Science.gov

Sample records for 33-tev pb ions

  1. 207Pb NMR in minium, Pb3O4: Evidence for the [Pb2]4+ ion andpossible relativistic effects in the Pb-Pb bond

    SciTech Connect

    Gabuda, S.P.; Kozlova, S.G.; Terskikh, V.V.; Dybowski, C.; Neue,G.; Perry, D.L.

    1999-07-18

    Solid Pb3O4 has been studied with 207Pb nuclear magnetic resonance (NMR) spectroscopy. The 207Pb NMR chemical-shift tensor of the Pb2+ site has principal values of delta 11=1980+-5 ppm, delta 22=1540+-5ppm, and delta 33=-1108+-10 ppm; delta iso=804+-10 ppm. The chemical-shift tensor of the Pb4+ site is axial, with principal values delta bar bar=-1009+-3 ppm and delta perpendicular=1132+-3 ppm; delta iso=-1091+-3ppm. The Pb4+ Pb2+ scalar coupling constant JPb Pb=2.3+-0.1 kHz. The main contribution to the Pb2+ chemical-shift anisotropy is proposed to arise from an exchange interaction in the Pb2+ Pb2+ pairs, conventionally regarded as molecular [Pb2]4+ ions.

  2. Size evolution of ion beam synthesized Pb nanoparticles in Al

    NASA Astrophysics Data System (ADS)

    Wang, Huan; Zhu, Hongzhi

    2014-07-01

    The size evolution of Pb nanoparticles (NPs) synthesized by ion implantation in an epitaxial Al film has been experimentally investigated. The average radius R of Pb NPs was determined as a function of implantation fluence f. The R( f) data were analyzed using various growth models. Our observations suggest that the size evolution of Pb NPs is controlled by the diffusion-limited growth kinetics ( R 2∝ f). With increasing implantation current density, the diffusion coefficient of Pb atoms in Al is evident to be enhanced. By a comparative analysis of the R( f) data, values of the diffusion coefficient of Pb in Al were obtained.

  3. Effect of Pb2+ ions on photosynthetic apparatus.

    PubMed

    Sersen, Frantisek; Kralova, Katarina; Pesko, Matus; Cigan, Marek

    2014-01-01

    Using model lead compounds Pb(NO3)2 and Pb(CH3CHOO)2, the mechanism and the site of action of Pb2+ ions in the photosynthetic apparatus of spinach chloroplasts were studied. Both compounds inhibited photosynthetic electron transport (PET) through photosystem 1 (PS1) and photosystem 2 (PS2), while Pb(NO3)2 was found to be more effective PET inhibitor. Using EPR spectroscopy the following sites of Pb2+ action in the photosynthetic apparatus were determined: the water-splitting complex and the Z•/D• intermediates on the donor side of PS2 and probably also the ferredoxin on the acceptor side of PS1, because cyclic electron flow in chloroplasts was impaired by treatment with Pb2+ ions. Study of chlorophyll fluorescence in suspension of spinach chloroplasts in the presence of Pb2+ ions confirmed their site of action in PS2. Using fluorescence spectroscopy also formation of complexes between Pb2+ and amino acid residues in photosynthetic proteins was confirmed and constants of complex formation among Pb2+ and aromatic amino acids were calculated for both studied lead compounds. PMID:24177022

  4. Ancient Pb and Ti mobilization revealed by Scanning Ion Imaging

    NASA Astrophysics Data System (ADS)

    Kusiak, Monika A.; Whitehouse, Martin J.; Wilde, Simon A.

    2014-05-01

    Zircons from strongly layered early Archean ortho- and paragneisses in ultra-high temperature (UHT) metamorphic rocks of the Napier Complex, Enderby Land, East Antarctica are characterized by complex U-Th-Pb systematics [1,2,3]. A large number of zircons from three samples, Gage Ridge, Mount Sones and Dallwitz Nunatak, are reversely discordant (U/Pb ages older than 207Pb/206Pb ages) with the oldest date of 3.9 Ga [4] (for the grain from Gage Ridge orthogneiss). To further investigate this process, we utilized a novel high spatial resolution Scanning Ion Imaging technique on the CAMECA IMS 1280 at the Natural History Museum in Stockholm. Areas of 70 μm x 70 μm were selected for imaging in mono- and multicollection modes using a ~2 μm rastered primary beam to map out the distribution of 48Ti, 89Y, 180Hf, 232Th, 238U, 204Pb, 206Pb and 207Pb. The ion maps reveal variable distribution of certain elements within analysed grains that can be compared to their CL response. Yttrium, together with U and Th, exhibits zonation visible on the CL images, Hf shows expected minimal variation. Unusual patchiness is visible in the map for Ti and Pb distribution. The bright patches with enhanced signal do not correspond to any zones or to crystal imperfections (e.g. cracks). The presence of patchy titanium is likely to affect Ti-in-zircon thermometry, and patchy Pb affecting 207Pb/206Pb ages, usually considered as more robust for Archean zircons. Using the WinImage program, we produced 207Pb/206Pb ratio maps that allow calculation of 207Pb/206Pb ages for spots of any size within the frame of the picture and at any time after data collection. This provides a new and unique method for obtaining age information from zircon. These maps show areas of enhanced brightness where the 207Pb/206Pb ratio is higher and demonstrate that within these small areas (μm scale) the apparent 207Pb/206Pb age is older, in some of these patches even > 4 Ga. These data are a result of ancient Pb

  5. Radioactive halos and ion microprobe measurement of Pb isotope ratios

    NASA Technical Reports Server (NTRS)

    Gentry, R. V.

    1974-01-01

    This investigation was to obtain, if possible, the Pb isotope ratios of both lunar and meteoritic troilite grains by utilizing ion microprobe techniques. Such direct in situ measurement of Pb isotope ratios would eliminate contamination problems inherent in wet chemistry separation procedures, and conceivably determine whether lunar troilite grains were of meteoritic origin. For comparison purposes two samples of meteoritic troilite were selected (one from Canyon Diablo) for analysis along with two very small lunar troilite grains (approximately 50-100 microns). It was concluded that the ion microprobe as presently operating, does not permit the in situ measurement of Pb isotope ratios in lunar or meteoritic troilite. On the basis of these experiments no conclusions could be drawn as to the origin of the lunar troilite grains.

  6. Excellent vacuum tribological properties of Pb/PbS film deposited by RF magnetron sputtering and ion sulfurizing.

    PubMed

    Guozheng, Ma; Binshi, Xu; Haidou, Wang; Shuying, Chen; Zhiguo, Xing

    2014-01-01

    Soft metal Pb film of 3 μm in thickness was deposited on AISI 440C steel by RF magnetron sputtering, and then some of the Pb film samples were treated by low-temperature ion sulfurizing (LTIS) and formed Pb/PbS composite film. Tribological properties of the Pb and Pb/PbS films were tested contrastively in vacuum and air condition using a self-developed tribometer (model of MSTS-1). Scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were adopted to analyze the microstructure and chemical construction of the films and their worn surfaces. The results show that a mass of Pb was changed to PbS during the process of LTIS. In air condition, owing to the severe oxidation effect, pure Pb film showed relatively high friction coefficients (0.6), and Pb/PbS composite film also lost its friction-reduction property after sliding for a short time. In a vacuum, the average friction coefficients of Pb film were about 0.1, but the friction coefficient curve fluctuated obviously. And the Pb/PbS composite film exhibited excellent tribological properties in vacuum condition. Its friction coefficients keep stable at a low value of about 0.07 for a long time. If takes the value of friction coefficients exceeding 0.2 continuously as a criterion of lubrication failure, the sliding friction life of Pb/PbS film was as long as 3.2 × 10(5) r, which is 8 times of that of the Pb film. It can be concluded that the Pb/PbS film has excellent vacuum tribological properties and important foreground for applying in space solid lubrication related fields.

  7. Improved calibration procedures and new standards for U - Pb and Th - Pb dating of Phanerozoic xenotime by ion microprobe

    USGS Publications Warehouse

    Fletcher, I.R.; McNaughton, N.J.; Aleinikoff, J.A.; Rasmussen, B.; Kamo, S.L.

    2004-01-01

    Xenotime is a widely occurring mineral that is amenable to U-Pb and Th-Pb dating but often is found as micrometre-sized crystals that can only be dated by in situ microanalytical techniques. Determining accurate ages for Phanerozoic samples, and assessing concordance in older samples, requires accurate determination of Pb/U and Pb/Th; however, ion microprobe data for these ratios are affected by the highly variable trace element composition of xenotime. We have identified calibration procedures, including matrix corrections for the effects of the dominant trace elements U, Th and REE, that provide an accuracy of ???1% for Pb/U and <2% for Pb/Th. Several new standard samples are available that cover a range of compositions, permitting better matching of samples with standards as well as giving control of the matrix effects. However, no chemically homogeneous samples have been identified. ?? 2004 Elsevier B.V. All rights reserved.

  8. Ion Microprobe U-Pb Dating of Zagami Phosphates

    NASA Astrophysics Data System (ADS)

    Sano, Y.; Koike, M.; Takahata, N.; Terada, K.

    2016-08-01

    We report U-Pb dating of Zagami phosphates using SHRIMP and NanoSIMS. A least-squares fit gives 238U-206Pb isochron age of 363 ± 120 Ma and total Pb/U age of 300 ± 84 Ma, which are older than 180 ± 7 Ma of baddeleyite of Zagami in literature.

  9. Superstatistics analysis of the ion current distribution function: Met3PbCl influence study.

    PubMed

    Miśkiewicz, Janusz; Trela, Zenon; Przestalski, Stanisław; Karcz, Waldemar

    2010-09-01

    A novel analysis of ion current time series is proposed. It is shown that higher (second, third and fourth) statistical moments of the ion current probability distribution function (PDF) can yield new information about ion channel properties. The method is illustrated on a two-state model where the PDF of the compound states are given by normal distributions. The proposed method was applied to the analysis of the SV cation channels of vacuolar membrane of Beta vulgaris and the influence of trimethyllead chloride (Met(3)PbCl) on the ion current probability distribution. Ion currents were measured by patch-clamp technique. It was shown that Met(3)PbCl influences the variance of the open-state ion current but does not alter the PDF of the closed-state ion current. Incorporation of higher statistical moments into the standard investigation of ion channel properties is proposed.

  10. Multifractal moments in heavy ion Pb-Pb collisions at 158 A GeV

    NASA Astrophysics Data System (ADS)

    Dutt, Sunil

    2016-05-01

    In present work, we use the method of scaled factorial moments to search for intermittent behavior in Pb-Pb interactions at 158 A GeV. The analysis is done on photon distributions obtained using preshower photon multiplicity detector. Scaled factorial moments are used to study short range fluctuations in pseudorapidity distributions of photons. Scaled factorial moments are calculated using horizontal corrected and vertical analysis. The results are compared with simulation analysis using VENUS event generator.

  11. Gold nanoflowers based colorimetric detection of Hg2+ and Pb2+ ions

    NASA Astrophysics Data System (ADS)

    Nalawade, Pradnya; Kapoor, Sudhir

    2013-12-01

    An optical detection method based on the interaction of gold nanoflowers with Hg2+ and Pb2+ has been described. After interaction, gold nanoflowers change the color from violet to wine red. The nanoflowers are capable of determining Hg2+ and Pb2+ over a dynamic range of 1.0 × 10-6 and 1.0 × 10-5 M, respectively. The response time of nanoflowers depends on the concentration of ions. The presence of both Hg2+ and Pb2+ ions in the mixture having Au nanoflowers induced color changes of the solution within several seconds even at 1.0 × 10-6 M. Common metal ions were chosen to investigate their interference in Hg2+ and Pb2+ detection, and the concentration of each metal ion studied was 1.0 × 10-5 M. Other metallic ions could not induce color change even at 1.0 × 10-5 M. The feasibility of our method to detect Hg2+ and Pb2+ ions at high concentration in real water samples was verified. Water samples were from our own laboratory and no pretreatment was made. As the particles are stable they can be used for more than 3 months without observing any major deviation.

  12. Comparative Results on Collimation of the SPS Beam of Protons and Pb Ions with Bent Crystals

    SciTech Connect

    Scandale, W.; Arduini, G.; Assmann, R.; Bracco, C.; Cerutti, F.; Christiansen, J.; Gilardoni, S.; Laface, E.; Losito, R.; Masi, A.; Metral, E.; Mirarchi, D.; Montesano, S.; Previtali, V.; Redaelli, S.; Valentino, G.; Schoofs, P.; Smirnov, G.; Tlustos, L.; Bagli, E.; Baricordi, S.; /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Ferrara U. /Frascati /Frascati /INFN, Legnaro /INFN, Legnaro /INFN, Legnaro /INFN, Legnaro /INFN, Legnaro /INFN, Legnaro /INFN, Rome /INFN, Rome /INFN, Rome /INFN, Rome /INFN, Naples /Serpukhov, IHEP /Serpukhov, IHEP /Serpukhov, IHEP /Serpukhov, IHEP /Serpukhov, IHEP /Dubna, JINR /Dubna, JINR /Dubna, JINR /St. Petersburg, INP /St. Petersburg, INP /St. Petersburg, INP /St. Petersburg, INP /Imperial Coll., London /Imperial Coll., London /Imperial Coll., London /Imperial Coll., London /Imperial Coll., London /Imperial Coll., London /Imperial Coll., London /Imperial Coll., London /Brookhaven /SLAC /SLAC /SLAC

    2012-04-30

    New experiments on crystal assisted collimation have been carried out at the CERN SPS with stored beams of 120 GeV/c protons and Pb ions. Bent silicon crystals of 2 mm long with about 170 {mu}rad bend angle and a small residual torsion were used as primary collimators. In channeling conditions, the beam loss rate induced by inelastic interactions of particles with the crystal nuclei is minimal. The loss reduction was about 6 for protons and about 3 for Pb ions. Lower reduction value for Pb ions can be explained by their considerably larger ionization losses in the crystal. In one of the crystals, the measured fraction of the Pb ion beam halo deflected in channeling conditions was 74%, a value very close to that for protons. The intensity of the off-momentum halo leaking out from the collimation station was measured in the first high dispersion area downstream. The particle population in the shadow of the secondary collimator-absorber was considerably smaller in channeling conditions than for amorphous orientations of the crystal. The corresponding reduction was in the range of 2-5 for both protons and Pb ions.

  13. Formation of nanodots and enhancement of thermoelectric power induced by ion irradiation in PbTe:Ag composite thin films

    NASA Astrophysics Data System (ADS)

    Bala, Manju; Meena, Ramcharan; Gupta, Srashti; Pannu, Compesh; Tripathi, Tripurari S.; Varma, Shikha; Tripathi, Surya K.; Asokan, K.; Avasthi, Devesh K.

    2016-07-01

    Present study demonstrates an enhancement in thermoelectric power of 10% Ag doped PbTe (PbTe:Ag) thin films when irradiated with 200 keV Ar ion. X-ray diffraction showed an increase in crystallinity for both PbTe and PbTe:10Ag nano-composite films after Ar ion irradiation due to annealing of defects in the grain boundaries. The preferential sputtering of Pb and Te ions in comparison to Ag ions resulted in the formation of nano-dots. This was further confirmed by X-ray photoelectron spectroscopy (XPS). Such an enhancement in thermoelectric power of irradiated PbTe:10Ag films in comparison to pristine PbTe:10Ag film is attributed to the decrease in charge carrier concentration that takes part in the transport process via restricting the tunneling of carriers through the wider potential barrier formed at the interface of nano-dots.

  14. A novel donor-acceptor receptor for selective detection of Pb2+ and Fe3+ ions.

    PubMed

    Nandre, Kamlakar P; Puyad, Avinash L; Bhosale, Sheshanath V; Bhosale, Sidhanath V

    2014-12-01

    An efficient and highly selective colorimetric and fluorescent receptor DTPDA has been synthesized for sensitive detection of Pb(2+) and Fe(3+) cations. The sensor DTPDA produces a facile, cost-effective and naked eye sensing platform to determine trace amounts of Pb(2+) and Fe(3+) metal ions by complexation with pendent S-termini of thiophenes, which commonly coordinates to central N-termini of pyridine. PMID:25159385

  15. Ion exchange induced removal of Pb(ii) by MOF-derived magnetic inorganic sorbents.

    PubMed

    Chen, Dezhi; Shen, Weisong; Wu, Shaolin; Chen, Caiqin; Luo, Xubiao; Guo, Lin

    2016-04-01

    Nanoporous adsorbents of ZnO/ZnFe2O4/C were synthesized by using a metal organic framework (Fe(III)-modified MOF-5) as both the precursor and the self-sacrificing template. The adsorption properties of ZnO/ZnFe2O4/C toward Pb(ii) ions were investigated, including the pH effect, adsorption equilibrium and adsorption kinetics. The adsorption isotherms and kinetics were well described by using the Langmuir isotherm model and pseudo-second-order model, respectively. The MOF-derived inorganic adsorbents exhibited high absorption performance with a maximum adsorption capacity of 344.83 mg g(-1). X-ray powder diffraction and high-resolution X-ray photoelectron spectroscopy suggest that Zn(ii) was substituted by a significant portion of Pb(ii) on the surface of ZnO nanocrystals. Microscopic observations also demonstrate the effect of Pb(ii) ions on ZnO crystals as reflected by the considerably reduced average particle size and defective outer layer. Quantitative measurement of the released Zn(ii) ions and the adsorbed Pb(ii) ions indicated a nearly linear relationship (R(2) = 0.977). Moreover, Pb-containing ZnO/ZnFe2O4/C adsorbents are strongly magnetic allowing their separation from the water environment by an external magnet. PMID:26967550

  16. Direct ion microprobe U-Pb dating of fossil tooth of a Permian shark

    NASA Astrophysics Data System (ADS)

    Sano, Yuji; Terada, Kentaro

    1999-12-01

    We report here direct ion microprobe dating of fossil tooth (dentine) of a Permian fresh-water shark, Orthacanthus senckenbergianus using the SHRIMP instrument recently installed at Hiroshima University. Fifteen spots on the small sample (approximately 2 mm×1 mm) indicate a 238U/ 206Pb isochron age of 266±18 Ma and a Tera-Wasserburg concordia intercept age of 266±24 Ma in a three-dimensional 238U/ 206Pb- 207Pb/ 206Pb- 204Pb/ 206Pb diagram. These Permian ages are consistent with a 235U/ 207Pb age of 453±170 Ma and a 232Th- 208Pb age of 235±310 Ma, suggesting indistinguishable depositional and early diagenetic ages of the fossil in its sedimentary sequences. The success of the method depends on the chemical fractionation of uranium from lead in a specimen a few hundred microns in size and the consequent variations in lead isotopic compositions due to radioactive decay.

  17. Locating the Binding Sites of Pb(II) Ion with Human and Bovine Serum Albumins

    PubMed Central

    Belatik, Ahmed; Hotchandani, Surat; Carpentier, Robert; Tajmir-Riahi, Heidar-Ali

    2012-01-01

    Lead is a potent environmental toxin that has accumulated above its natural level as a result of human activity. Pb cation shows major affinity towards protein complexation and it has been used as modulator of protein-membrane interactions. We located the binding sites of Pb(II) with human serum (HSA) and bovine serum albumins (BSA) at physiological conditions, using constant protein concentration and various Pb contents. FTIR, UV-visible, CD, fluorescence and X-ray photoelectron spectroscopic (XPS) methods were used to analyse Pb binding sites, the binding constant and the effect of metal ion complexation on HSA and BSA stability and conformations. Structural analysis showed that Pb binds strongly to HSA and BSA via hydrophilic contacts with overall binding constants of KPb-HSA = 8.2 (±0.8)×104 M−1 and KPb-BSA = 7.5 (±0.7)×104 M−1. The number of bound Pb cation per protein is 0.7 per HSA and BSA complexes. XPS located the binding sites of Pb cation with protein N and O atoms. Pb complexation alters protein conformation by a major reduction of α-helix from 57% (free HSA) to 48% (metal-complex) and 63% (free BSA) to 52% (metal-complex) inducing a partial protein destabilization. PMID:22574219

  18. Electron capture and ionization of 33-TeV Pb ions in gas targets

    SciTech Connect

    Krause, H. F.; Vane, C. R.; Datz, S.; Grafstro''m, P.; Knudsen, H.; Mikkelsen, U.; Scheidenberger, C.; Schuch, R. H.; Vilakazi, Z.

    2001-03-01

    We have measured the total cross sections for electron capture by bare Pb{sup 82+} ions and for the ionization of hydrogenlike Pb{sup 81+}(1s) ions at 158GeV/A, {gamma}=168, in Ar, Kr, and Xe gas targets. At this energy, the total capture cross sections are dominated by electron capture from pair production. The capture measurements are compared with the results of several theoretical calculations and with similar measurements made with solid targets. The Pb{sup 81+}(1s) ionization cross sections obtained, which are substantially lower than those measured in solids, agree well with recent calculations that predict saturation at high energies from target screening effects.

  19. Electron Capture and Ionization of Pb Ions at 33 TeV

    SciTech Connect

    Krause, H.F.; Vane, C.R.; Datz, S.; Grafstroem, P.; Scheidenberger, C.; Schuch, R.H.

    1998-02-01

    We have measured the total cross sections for electron capture by bare Pb{sup 82+} ions and ionization of hydrogenlike Pb{sup 81+} ions at 33TeV (160 GeV/A , {gamma}=168 ) in solid targets of Be, C, Al, Cu, Sn, and Au. The total capture cross sections are dominated by electron capture from pair production and are compared with theoretical calculations. The 1s ionization cross sections obtained are significantly smaller than those predicted by Anholt and Becker [Phys.Rev.A {bold 36}, 4628 (1987)]. The Pb radiative lifetimes extended by {gamma}=168 have a strong effect on the survival probability of excited states against ionization in high-Z solid targets. {copyright} {ital 1998} {ital The American Physical Society}

  20. Kinetic studies of Cd (II) and Pb (II) ions biosorption from aqueous media using untreated and chemically treated biosorbents.

    PubMed

    Bakyayita, G K; Norrström, A C; Nalubega, M; Kulabako, R N

    2014-01-01

    Untreated and chemically treated Albizia coriaria, Erythrina abyssinica and Musa spp. were studied in batch for uptake of Cd(2+) and Pb(2+) ions at pH 2.0-9.0 and agitation time of 30-390 min. Optimum biosorption conditions were pH 4 for Pb(2+) ions and pH 5 for Cd(2+) ions, contact time was 3.5 hours at 24 ± 1 °C for 10 mg/L biosorbent dosage and initial metal ions concentration of 20 mg/L. Chemical treatment had a 10-17% biosorption efficiency enhancement for Cd(2+) ions and a 1.6-2.3% reduction effect for Pb(2+) ions. The sorption capacities for Cd(2+) and Pb(2+) ions for treated biosorbents were 1.760-1.738 mg g(-1) compared to 1.415-1.539 mg g(-1) for untreated materials. The pseudo second-order model suitably fitted the Cd(2+) and Pb(2+) ions biosorption data with regression coefficients (R(2)) of 0.9784-0.9999. Fitting of the Ho model to the experimental data showed that the biosorption mechanism for both metal ions studied was mainly a chemisorption process. Therefore, treated A. coriaria, E. abyssinica and Musa spp. were potential biosorbents for remediation of Cd(2+) ions and the untreated materials suitable for removing Pb(2+) ions from contaminated aqueous media.

  1. Formation of dislocations and hardening of LiF crystals irradiated with energetic Au, Bi, Pb, and S ions

    NASA Astrophysics Data System (ADS)

    Maniks, J.; Manika, Ilze; Schwartz, K.; Toulemonde, M.; Trautmann, C.

    2003-08-01

    The irradiation of LiF crystals with Au, Pb, Bi, and S ions in the range of 400 - 2200 MeV leads to a remarkable increase of the hardness. The effect appears for Bi and Pb ions at fluences above 109 ions/cm2 and for S ions above 1010 ions/cm2. The increase of hardness follows the energy loss and is related to the formation of defects along the ion path. Defect complexes, clusters and aggregates with nanoscale dimensions serve as strong obstacles for dislocations and cause dispersion strengthening. Structural investigations reveal the generation of long-range stress in the adjacent non-irradiated part of the crystal. Close to the implantation zone, the stress exceeds the yield strength, causing microplastic deformation and work hardening. Compared to light S ions, heavy ions (Au, Pb, Bi) cause more severe structural damage, larger hardening effects, and higher internal and long-range stress.

  2. Ion microprobe U-Pb dating and REE abundance of biogenic apatite

    NASA Astrophysics Data System (ADS)

    Sano, Y.; Terada, K.; Ueki, S.

    2001-12-01

    If the direct U-Pb dating of a fossil itself is possible, the method could have great impact on stratigraphic studies in establishing the absolute chronology of sedimentary sequences. Micro fossil ?conodont? are candidates for this purpose since they consist of apatite (Ca2(PO5)3 (F,Cl,OH)), which would uptake U, Th and Pb after sedimentation no longer than a few million years and is supposed to remain closed to U and Pb under relatively low effective closure temperature. We report here results of direct ion microprobe U-Th-Pb dating of two conodonts; Trichognathus from Kinderhookian stage of Mississippian sedimentary sequence from Illinois Basin region in North America and Panderodus from a Llandoverian sedimentary sequence on Langkawi Island, northern Malaysia. Secondary purpose of the study is to indicate in situ analysis of all REE on the same spots of U-Pb measurements. Samples were cast into epoxy resin discs with a few grains of standard apatite, PRAP, derived from an alkaline rock of Prairie Lake circular complex in the Canadian Shield and polished until they were exposed through their mid-sections. U, Th and REE abundances, and Pb isotopic compositions were measured by using SHRIMP installed at Hiroshima University. Thirteen spots on Trichognathus yield a 238U/206Pb isochron age of 323+/-36 Ma, which is consistent with the depositional and early diagenetic ages. Fifteen spots on Panderodus give 232Th/208Pb isochron age of 429+/-50 Ma, which is again comparable to an early Silurian. Shale-normalized REE of Trichognathus shows a broadly flat pattern from light to middle REE and a decrease from middle to heavy REE with negative anomalies of Ce and Eu. In contrast Panderodus indicates a concave-shape pattern with middle REE enrichment. These characteristics are probably due to a different formation environment as suggested by other workers.

  3. Spectroscopy study of Zn, Cd, Pb and Cr ions immobilization on C-S-H phase.

    PubMed

    Żak, Renata; Deja, Jan

    2015-01-01

    Calcium silicate hydrates (C-S-H) have a large number of structural sites available for cations and anions to bind. The C-S-H phases are materials which have ability to toxic ions immobilization. Immobilization mechanisms for C-S-H include sorption, phase mixing, substitution and precipitation of insoluble compounds. This study presents the C-S-H (prepared with C/S ratios 1.0) phase as absorbent for immobilization of Zn, Cd, Pb and Cr ions. The C-S-H spectra before and after incorporation of heavy metals ions into the C-S-H structure were obtained. The effect of added heavy metals ions on the hydration phenomena was studied by means of X-ray diffractions analysis. FTIR spectra was measured. The microstructure and phase composition of C-S-H indicate that they can play an essential role in the immobilization of heavy metals. The properties of C-S-H in the presence of Zn, Cd, Pb and Cr cations were studied. The leaching ML test was used to evaluate the level of immobilization of heavy metals in C-S-H. The leached solutions are diluted and analyzed using atomic absorption spectrometry (AAS) and the activated solid particles are separated, washed, desiccated and analyzed by Fourier transform infrared (FTIR) spectroscopy. It was found that the degree of Cd, Zn, Pb and Cr cations immobilization was very high (exceeding 99.96%).

  4. Optical properties of Dy3+ ion in PbF2 laser crystal

    NASA Astrophysics Data System (ADS)

    Chen, G. Z.; Yin, J. G.; Zhang, L. H.; He, M. Z.; Ma, E.; Ning, K. J.; Zhang, P. X.; Liu, Y. C.; Hang, Y.

    2013-11-01

    High-quality Dy:PbF2 crystal is grown by the Bridgman method in a nonvacuum atmosphere. By measuring the area under absorption bands, the experimental oscillator strengths are determined. The Judd-Ofelt (JO) intensity parameters Ωλ (λ = 2, 4, 6) are evaluated by the least-squares fit method. These phenomenological parameters are used to predict radiative transition probabilities, radiative lifetime and branching ratios for various excited levels of the Dy3+:PbF2 crystal. Photoluminescence spectra and lifetime of 6H13/2 levels of the Dy3+ ions have been measured. The laser transitions with most potential are identified and the utility of the PbF2 crystal as laser active material is discussed.

  5. Local-site cation ordering of Eu3+ ion in doped PbTiO3

    NASA Astrophysics Data System (ADS)

    Mendez-González, Y.; Pentón-Madrigal, A.; Peláiz-Barranco, A.; Figueroa, Santiago J. A.; de Oliveira, L. A. S.; Concepción-Rosabal, B.

    2014-02-01

    X-ray diffraction (XRD), extended X-ray absorption fine structure (EXAFS), and scanning electron microscopy experiments were carried out in the (Pb0.88Eu0.08)TiO3 ferroelectric compound with a perovskite type structure. Qualitative EXAFS analysis has shown that Eu3+ ions substitute to Pb2+ and Ti4+ ions at A and B sites of the ABO3 structure, respectively. The XRD pattern refinement was consistent with the Eu3+ substitution at both A and B sites, which provides the formation of donor and acceptor-type defects. The shape of the observed X-ray lines profiles has shown features, which are known for this kind of ferroelectric material to be typical of the ferroelectric domains microstructure. A phenomenological model has been used for fitting the diffraction profiles by the Rietveld method.

  6. A surface complexation and ion exchange model of Pb and Cd competitive sorption on natural soils

    NASA Astrophysics Data System (ADS)

    Serrano, Susana; O'Day, Peggy A.; Vlassopoulos, Dimitri; García-González, Maria Teresa; Garrido, Fernando

    2009-02-01

    The bioavailability and fate of heavy metals in the environment are often controlled by sorption reactions on the reactive surfaces of soil minerals. We have developed a non-electrostatic equilibrium model (NEM) with both surface complexation and ion exchange reactions to describe the sorption of Pb and Cd in single- and binary-metal systems over a range of pH and metal concentration. Mineralogical and exchange properties of three different acidic soils were used to constrain surface reactions in the model and to estimate surface densities for sorption sites, rather than treating them as adjustable parameters. Soil heterogeneity was modeled with >FeOH and >SOH functional groups, representing Fe- and Al-oxyhydroxide minerals and phyllosilicate clay mineral edge sites, and two ion exchange sites (X - and Y -), representing clay mineral exchange. An optimization process was carried out using the entire experimental sorption data set to determine the binding constants for Pb and Cd surface complexation and ion exchange reactions. Modeling results showed that the adsorption of Pb and Cd was distributed between ion exchange sites at low pH values and specific adsorption sites at higher pH values, mainly associated with >FeOH sites. Modeling results confirmed the greater tendency of Cd to be retained on exchange sites compared to Pb, which had a higher affinity than Cd for specific adsorption on >FeOH sites. Lead retention on >FeOH occurred at lower pH than for Cd, suggesting that Pb sorbs to surface hydroxyl groups at pH values at which Cd interacts only with exchange sites. The results from the binary system (both Pb and Cd present) showed that Cd retained in >FeOH sites decreased significantly in the presence of Pb, while the occupancy of Pb in these sites did not change in the presence of Cd. As a consequence of this competition, Cd was shifted to ion exchange sites, where it competes with Pb and possibly Ca (from the background electrolyte). Sorption on >SOH

  7. Adsorption of Pb(II) ions onto biomass from Trifolium resupinatum: equilibrium and kinetic studies

    NASA Astrophysics Data System (ADS)

    Athar, Makshoof; Farooq, Umar; Aslam, Muhammad; Salman, M.

    2013-09-01

    The present study provides information about the binding of Pb(II) ions on an eco-friendly and easily available biodegradable biomass Trifolium resupinatum. The powdered biomass was characterized by FTIR, potentiometric titration and surface area analyses. The FTIR spectrum showed the presence of hydroxyl, carbonyl and amino functional groups and Pb(II) ions bound with the oxygen- and nitrogen-containing sites (hydroxyl and amino groups). The acidic groups were also confirmed by titrations. Effects of various environmental parameters (time, pH and concentration) have been studied. The biosorption process achieved equilibrium in a very short period of time (25 min). Non-linear approach for Langmuir and Freundlich models was used to study equilibrium process and root mean-square error was used as an indicator to decide the fitness of the mathematical model. The biosorption process was found to follow pseudo-second-order kinetics and was very fast. Thus, the biomass can be cost-effectively used for the binding of Pb(II) ions from aqueous solutions.

  8. Effects of electronic structure on the hydration of PbNO3(+) and SrNO3(+) ion pairs.

    PubMed

    Cooper, Richard J; Heiles, Sven; Williams, Evan R

    2015-06-28

    Hydration of PbNO3(+) and SrNO3(+) with up to 30 water molecules was investigated with infrared photodissociation (IRPD) spectroscopy and with theory. These ions are the same size, yet the IRPD spectra of these ion pairs for n = 2-8 are significantly different. Bands in the bonded O-H region (∼3000-3550 cm(-1)) indicate that the onset of a second hydration shell begins at n = 5 for PbNO3(+) and n = 6 for SrNO3(+). Spectra for [PbNO3](+)(H2O)2-5 and [SrNO3](+)(H2O)3-6 indicate that the structures of clusters with Pb(ii) are hemidirected with a void in the coordinate sphere. A natural bond orbital analysis of [PbNO3](+)(H2O)5 indicates that the anisotropic solvation of the ion is due to a region of asymmetric electron density on Pb(ii) that can be explained by charge transfer from the nitrate and water ligands into unoccupied p-orbitals on Pb(ii). There are differences in the IRPD spectra of PbNO3(+) and SrNO3(+) with up to 25 water molecules attached. IR intensity in the bonded O-H region is blue-shifted by ∼50 cm(-1) in nanodrops containing SrNO3(+) compared to those containing PbNO3(+), indicative of a greater perturbation of the water H-bond network by strontium. The free O-H stretches of surface water molecules in nanodrops containing 10, 15, 20, and 25 water molecules are red-shifted by ∼3-8 cm(-1) for PbNO3(+) compared to those for SrNO3(+), consistent with more charge transfer between water molecules and Pb(ii). These results demonstrate that the different electronic structure of these ions significantly influences how they are solvated. PMID:26028325

  9. Electrons Emitted from 33-TeV Pb Ions During Penetratiaon of Solids

    SciTech Connect

    Datz, S.; Grafstroem, P.; Knudsen, H.; Krause, H.F.; Mikkelsen, U.; Moeller, S.; Scheidenberger, C.; Schuch, R.H.; Uggerhoj, E.; Vane, C.R.; Vilikazi, Z.

    1999-07-22

    At ultrarelativistic energies, ionization cross sections exceed electron capture cross sections by several orders of magnitude (1,2). Effectively, all electrons transferred to a highly relativistic heavy ion moving in a solid or gaseous target medium are stripped in a relatively short distance. Above ~20 GeV/nucleon, the principal mechanism for electron capture is from pair production (ECPP) (2). The total cross sections for ECPP are te&nically important for making reliable predictions of operating limitations for relativistic heavy-ion colliders, e.g., RHIC and LHC (3). In ECPP, it is expected that ~30% of capture proceeds to excited states of the capturing ion. Some of these relatively weakly bound electrons are radiatively long-lived and easily lost in secondary collisions in solid targets, making measurements of their contributions to total capture experimentally difficult. Electrons lost from high-energy ions in collisions with target atoms form a cusp-shaped spectral peak in the forward direction in the laboratory frame centered at the velocity of the moving ion (4-5). The shape of this electron loss to projectile continuum (ELC) peak has been shown (5,6) to depend on the initial atomic bound state from which the electron is ionized. We have measured and compared ELC electrons from direct ionization of hydrogenlike 33-TeV Pb81+(ls) ions (Lorentz factory g = 168) in Al with similar data for electrons created by ECPP for bare Pb82+ ions in Au - followed by ionization. Both measured ELC peaks are narrow in momentum and angle and very similar in shape.

  10. Doping PbWO 4 with different ions to increase the light yield

    NASA Astrophysics Data System (ADS)

    Kobayashi, M.; Usuki, Y.; Ishii, M.; Nikl, M.

    2002-06-01

    To search for a possibility to utilize PbWO 4-based scintillators in inexpensive positron emission computed tomography, we have studied the effects of doping PbWO 4 with different ions on the light yield (LY). The LY in PbWO 4, which is undoped except a small concentration of rare-earth 3+ ions to improve the radiation hardness, decay time, mechanical quality, etc., is 25-35 photoelectrons/MeV (pe/MeV) (about 3-4% of LY in BGO) with bialkali photomultiplier for a fixed condition of the crsytal size of 10×10×(20-30) mm 3 and the gate width of 1 μs. For doping with single dopant, the maximum LY obtained was about 49 pe/MeV for Mo 6+. For co-doping with two dopants, the maximum LY of 58 pe/MeV was obtained for Mo 6++Nb 5+. For co-doping with three dopants, we have recently obtained 77 pe/MeV for Mo 6++Cd 2++Sb 5+,3+. The dependence of LY on the gate width indicates creation of medium-speed component in μs range in the samples doped with Mo 6++Cd 2++Sb 5+,3+ or Mo 6++Nb 5+. Their radioluminescence spectra are similar in shape to PWO:Mo 6+.

  11. Determination of phosphorous in titanium bearing minerals by potentiometric titration using Pb-ion selective electrode.

    PubMed

    Ramadoss, K; Murty, D S; Mahanta, P L; Gomathy, B; Rangaswamy, R

    2000-01-24

    A method for phosphorous determination in titanium bearing minerals by potentiometric titration using a Pb-ion selective electrode has been developed. Sample decomposition is achieved by means of K(2)CO(3) fusion in a platinum crucible at 800 degrees C for 30 min in a muffle furnace, and subsequent leaching with water of the fused melt. The aqueous leachate is neutralised with HClO(4) and subsequent boiling. The obtained solution is used for titration with Pb(ClO(4))(2), and the Pb-ion selective electrode detects the end point. The lowest concentration determinable is 0.02% P(2)O(5) in a solid sample. The method was applied on in-house titanium bearing mineral samples and on IGS-31 ilmenite sample (British Geological Survey, UK). Synthetic samples were prepared and analysed, and phosphorous recovery is in the range 98-106%. The recovery and accuracy of the present method have been validated by spiking experiments and by comparing with the spectrophotometric values, respectively. The precision of the proposed method in terms of relative standard deviation is 2.0%. PMID:18967837

  12. Dual N/Pb ion-implanted Si: Temperature dependence of the novel shift of the Pb peak under electron beam annealing

    NASA Astrophysics Data System (ADS)

    Markwitz, Andreas; Fang, Fang; Johnson, Peter B.

    2011-03-01

    (1 0 0) Si was dual ion-implanted with 24 keV N and 7 keV Pb to peak concentrations ˜10 at.%. Implanted samples were then electron beam annealed (EBA) at a peak temperature T for 30 s with T ranging from 100 °C to 900 °C and for 15 s at 1000 °C. Pb profiles were measured using RBS and surfaces characterised by AFM. For T up to 500 °C there was no shift in the profile from the implanted depth ˜10 nm. For higher values of T a striking feature was the large movement of the Pb profile away from the surface without a significant change in width or Pb content. The profile depths were: ˜40 nm for 600 °C, ˜68 nm for 700-900 °C and ˜80 nm for 1000 °C. The response to EBA was found to be strongly dependent on both ion implantation order and Si starting structure. For (1 0 0) Si nanowhiskers formed on the treated surfaces for T = 900 °C and 1000 °C. A model is developed based on the restructuring of the amorphous implanted layer under EBA. It is proposed that a compaction starting at the surface sweeps the Pb before it via a stress interaction as it advances into the Si.

  13. Physical, Optical and Electron paramagnetic resonance studies of PbBr2-PbO-B2O3 glasses containing Cu2+ ions

    NASA Astrophysics Data System (ADS)

    Sekhar, K. Chandra; Hameed, Abdul; Chary, M. Narasimha; Shareefuddin, Md

    2016-09-01

    The glasses with the composition PbBr2-PbO-B2O3 glasses containing Cu2+ ions were prepared by melt quenching technique. X-ray diffractograms revealed the amorphous nature of the glasses. Density and molar volume were determined. Density is found to decrease while the molar volume increases with increase of PbBr2 content. The optical absorption spectra exhibited a broad band corresponding to the d- d transition of Cu2+ ion. From optical absorption spectra Eopt and Urbach energies were determined. Electron Paramagnetic Resonance (EPR) studies were carried out by introducing Cu2+ as the spin probe. Glasses containing transition metal(TM) ions such as Cu2+ give the information about the structure and the site symmetry around the TM ions. EPR spectra of all the glass samples were recorded at X-band frequencies. From the EPR spectra spin-Hamiltonian parameters were evaluated. It was observed that g∥ >g±>ge (2.0023) and A∥>A±. From this values it is concluded that the ground state of Cu2+ is dx2-y2 (2B1g) and the site symmetry around Cu2+ ion is tetragonally distorted octahedral. From the EPR and Optical data bonding coefficients were evaluated. The in plane o-bonding(α2) is moderately ionic while out of plane 7t-bonding(β2) and in plane 7t-bonding(β1 2) are ionic nature

  14. Radiative electron capture at ultrarelativistic energies: 33-TeV Pb{sup 82+} ions

    SciTech Connect

    Vane, C. R.; Krause, H. F.; Datz, S.; Grafstroem, P.; Scheidenberger, C.; Schuch, R. H.

    2000-07-01

    Cross sections for radiative electron capture (REC) by 33-TeV Pb{sup 82+} ions in Be and C targets have been extracted from an analysis of measurements of total electron capture by these ions in Be, C, Al, Cu, Sn, and Au targets. The REC cross sections in the Be and C targets, where REC is significant, were obtained by subtracting cross sections for electron capture from pair production (ECPP), the only other significant capture process at these energies. The ECPP contributions in Be and C were determined from extrapolations of measured cross sections in the heavier targets where the ECPP process dominates, with suitable accounting for slightly decreased screening effects for the light targets. We obtain an experimental K-REC cross section (0.010{+-}0.002b per electron per Pb K vacancy), which agrees with a calculation of REC made by applying detailed balance to the corresponding process of radiative recombination and using tabulated photoelectric effect cross sections. A comparison is also presented of the present experimental result with other heavy-ion measurements made at lower energies, and with nonrelativistic and relativistic calculations, which differ considerably in this energy regime. (c) 2000 The American Physical Society.

  15. The preparation of polyelectrolyte complexes carboxymethyl chitosan(CMC)-pectin by reflux method as a Pb (II) metal ion adsorbent

    NASA Astrophysics Data System (ADS)

    Hastuti, Budi; Mudasir, Siswanta, Dwi; Triyono

    2016-02-01

    Aim of this research is to synthesized a chemically stable polyelectrolyte complexs carboxymetyl chitosan CMC-pectin as Pb(II) ion adsorbent by reflux method. During synthesis process, the optimum mass ratio of CMC and pectin was pre-determined and the active groups of the CMC-pectin complex was characterized by using IR spectrofotometer. Finally, adsorption capacity of the adsorbent material for Pb (II) ions was studied under optimum condition, i.e. adsorbent mass, contact time, and pH. Result shows that CMC could be succesfully combined with pectin to produce CMC-pectin complex. The optimum mass ratio CMC: pectin to form the polyelectrolyte complexs CMC-pectin was 70% : 30%. The active groups identified in the CMC-pectin complex was a hydroxyl (OH) and carboxylate (-COOH) groups. The optimum conditions for Pb (II) ion absoprtion was 10 mg of the adsorbent mass, 75 min of contact time, and pH 5. This material can be effectively used as adsorbents for Pb (II) ions, where up to 91% Pb (II) metal ions was adsorbed from aqueous solution and the adsorption capacity of the adsorbent was 41.63 mg/g.

  16. U-Pb geochronology of zircons form lunar Breccia 73217 using a sensitive high mass-resolution ion microprobe

    NASA Technical Reports Server (NTRS)

    Compston, W.; Williams, I. S.; Meyer, C.

    1984-01-01

    U-Pb age determinations on four lunar zircons from existing thin-sections of one highland breccia, 73217, using the recently constructed ion microprobe SHRIMP, are reported. The analytical reproducibility of SHRIMP is demonstrated, and procedures for measuring Pb/U, Th/U, and corecting for initial Pb are explained. Electron microprobe analyses for the zircons are alsoar reported. The results show that the four zircons survived the lunar cataclysm without any identifiable effects on their U-Pb systematics. All four indicate a single age of 4356 +23 or -14 m.y. The zircons have experienced small variable amounts of Pb loss since crystallization, from almost zero up to about 10 percent. If this occurred during one later event, then age of the latter is between 1100 and 2300 m.y.

  17. U-Pb geochronology of zircons form lunar Breccia 73217 using a sensitive high mass-resolution ion microprobe

    SciTech Connect

    Compston, W.; Williams, I.S.

    1984-02-15

    U-Pb age determinations on four lunar zircons from existing thin-sections of one highland breccia, 73217, using the recently constructed ion microprobe SHRIMP, are reported. The analytical reproducibility of SHRIMP is demonstrated, and procedures for measuring Pb/U, Th/U, and corecting for initial Pb are explained. Electron microprobe analyses for the zircons are also reported. The results show that the four zircons survived the lunar cataclysm without any identifiable effects on their U-Pb systematics. All four indicate a single age of 4356 +23 or -14 m.y. The zircons have experienced small variable amounts of Pb loss since crystallization, from almost zero up to about 10 percent. If this occurred during one later event, then age of the latter is between 1100 and 2300 m.y. 18 references.

  18. PbTe and SnTe quantum dot precipitates in a CdTe matrix fabricated by ion implantation

    SciTech Connect

    Kaufmann, E.; Schwarzl, T.; Groiss, H.; Hesser, G.; Schaeffler, F.; Palmetshofer, L.; Springholz, G.; Heiss, W.

    2009-08-15

    We present rock-salt IV-VI semiconductor quantum dots fabricated by implantation of Pb{sup +}, Te{sup +}, or Sn{sup +} ions into epitaxial zinc-blende CdTe layers. PbTe and SnTe nanoprecipitates of high structural quality are formed after implantation by thermal annealing due to the immiscibility of dot and matrix materials. For samples implanted only with Pb{sup +}, intense continuous-wave photoluminescence peaked at 1.6 mum at 300 K is found. In contrast, for PbTe quantum dots fabricated by coimplantation of Pb{sup +} and Te{sup +}, the 300 K emission peak is observed at 2.9 mum, indicating luminescence from much larger dots.

  19. PbSe films by ion exchange of synthetic plumbonacrite layers immersed in a selenium ionic solution

    NASA Astrophysics Data System (ADS)

    Mendívil-Reynoso, T.; Ochoa-Landín, R.; Ramírez-Rodríguez, L. P.; Gutierrez-Acosta, K.; Ramírez-Bon, R.; Castillo, S. J.

    2016-06-01

    Plumbonacrite is a lead compound with chemical formula Pb10(CO3)6(OH)6O, where several groups can be substituted by ion exchange in mild conditions. Plumbonacrite layers can be deposited by means of the chemical bath deposition technique. In this work it is studied the structural and morphological evolution of a plumbonacrite layer as a function of the immersion time in an aqueous solution containing Se-2 ions. The 1.39 μm thick plumbonacrite layer was chemically deposited on a glass substrate and immersed in an aqueous solution with Se-2 ions for 10, 20, 30 and 50 min. The as grown plumbonacrite layer as well as the immersed ones were analyzed by X-rays Diffraction, Scanning Electron Microscopy and Raman Spectroscopy measurements. The results show that the plumbonacrite layer is gradually converted to PbSe one by ion exchange process, where Se-2 ions substitute the groups of plumbonacrite.

  20. Ion Microprobe U-Pb Dating and Sr Isotope Measurement of Conodont

    NASA Astrophysics Data System (ADS)

    Sano, Y.; Ishida, A.; Kagoshima, T.; Takahata, N.

    2014-12-01

    We have developed a method of in situ ion microprobe U-Pb dating and Sr isotope measurement of biogenic apatite using NanoSIMS. This was applied to a protoconodont, an early Cambrian phosphate microfossil [1]. On a single fragment of a fossil derived from a sedimentary layer in the Meishucunian Yuhucun Formation, southern China [2], 23 spots provide a 238U/206Pb isochron age of 547 ± 43 Ma (2sigma), which is consistent with the depositional age, 536.5 ± 2.5 Ma estimated using zircon U-Pb dating of interbedded tuffs [3]. However, five spots on a small region in the same protoconodont yield an isochron age of 417 ± 74 Ma (2sigma), apparently younger than the formation age. The younger age might be attributable to a later hydrothermal event, perhaps associated with Caledonian orogenic activity recorded in younger zircon with an age of 420-440 Ma [4]. We measured Sr isotopic ratios of the protoconodont by NanoSIMS. In the older domain, 19 spots give the ratio of 0.71032 ± 0.00023 (2sigma), although seven spots on the younger region provide the ratio of 0.70862 ± 0.00045; which is significantly less radiogenic than the older domain. We also measured U-Pb age and Sr isotopes of a Carboniferous conodont derived from the Kinderhookian stage from the Illinois Basin region in North America. 20 spots yield a 238U/206Pb isochron age of 291 ± 56 Ma (2sigma), which is markedly younger than the depositional age of the fossil of 350-363 Ma. On the other hand, 9 spots give a Sr isotopic ratio of 0.70784 ± 0.00030, less radiogenic than the older domain of protoconodont. These data together with other isotopes such as Cl may provide a constraint on the model for chemical evolution of seawater. [1] Sano et al. (2014) J. Asian Earth Sci. 92, 10-17. [2] Condon et al. (2005) Science 308, 95-98. [3] Sawaki et al. (2008) Gondwana Res. 14, 148-158. [4] Guo et al. (2009) Geochem. J. 43, 101-122.

  1. Development of ion-implantation confined, shallow mesa stripe (Pn,Sn)Te/Pb(Te,Se) DH laser diodes

    NASA Technical Reports Server (NTRS)

    Fonstad, C. G.; Harton, A.; Jiang, Y.-N.; Appelman, H.

    1983-01-01

    Preliminary results of a program to develop ion implantation confined, shallow mesa stripe (Pb,Sn)Te laser diodes are presented. The practicality of using a shallow mesa stripe to produce single mode laser output and to increase the single mode tuning range are demonstrated. The first results of p-type ion implantation in the lead-tin salts are also reported. It is shown that sodium and lithium both can be used to convert n-type Pb(Te,Se) to p-type. The implant and anneal procedures are described, and electrical characteristics of Li-implanted layers are presented.

  2. Preparation and Application of Nanostructure Ion-Imprinted Polymer for Selective Solid-Phase Extraction of Pb Ions in Water, Hair, and Food Samples.

    PubMed

    Dehghani Soltani, Maryam; Taher, Mohammad Ali; Behzadi, Mansoureh

    2016-09-01

    In this research, nanostructure Pb(II) ion-imprinted polymer (IIP) was prepared by formation of 1,5-diphenylthiocarbazon (dithizone) complex. Polymerization was performed via bulk polymerization, with methacrylic acid as the functional monomer and ethylene glycol dimethacrylate as the cross-linking monomer in the presence of ammonium persulfate as the initiator. To characterize the synthesized IIP, FTIR spectroscopy and field emission scanning electron microscopy were used. This polymer was used for selective preconcentration of ultra-trace amounts of Pb ions through the SPE method. The Pb ion concentration was determined by electrothermal atomic absorption spectrometry. In the optimization process, the effects of various factors, such as pH of the sample solution, type and concentration of eluent, equilibrium sorption and desorption times, and sample volume, were investigated. Under optimized conditions, the maximum sorbent capacity was 38.46 mg/g and the enrichment factor was 200. Linearity was within the range 1.0-320.0 ng/L, with good r(2) values. The LOD was 0.55 ng/L, and the intraday and interday RSD values (n = 7, 20 ng/L Pb ions) were 2.8 and 3.5%, respectively. This selective and sensitive proposed method was applied successfully to the determination of Pb in water, hair, and food samples, with high recoveries. PMID:27325007

  3. Removal of Pb(II) and Cd(II) ions from aqueous solution by thiosemicarbazide modified chitosan.

    PubMed

    Li, Manlin; Zhang, Zengqiang; Li, Ronghua; Wang, Jim J; Ali, Amjad

    2016-05-01

    The removal of Pb(II) and Cd(II) ions from aqueous solution by thiosemicarbazide modified chitosan (TCS) was studied in this article. The synthesized TCS was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), element analysis, N2 adsorption-desorption, scanning electron microscopy (SEM) and X-ray photoelectron spectrophotometer (XPS). Moreover, the influence of solution pH, contact time, initial heavy metal concentration, and solution temperature on the adsorption process was examined, and the adsorbent reusability and adsorption mechanisms were also studied. The results showed that TCS adsorbed greater amount of Pb(II) and Cd(II) ions than the raw chitosan. The adsorption amounts of Pb(II) and Cd(II) ions were affected by increasing solution pH and temperature. The maximum adsorption capacities of the TCS for Pb(II) and Cd(II) ions were found to be 325.2 and 257.2 mg/g, respectively. The endothermic adsorption fitted the pseudo-second-order kinetics equation and the adsorption isotherms could be well described by Langmuir model. The metal ions adsorption mechanism was concluded to be mainly dominated by complexation reaction process. The desorption study indicated that the target adsorbent was easy to be regenerated. PMID:26879912

  4. Influence of Fluoride Ion on the Performance of Pb-Ag Anode During Long-Term Galvanostatic Electrolysis

    NASA Astrophysics Data System (ADS)

    Zhong, Xiaocong; Yu, Xiaoying; Jiang, Liangxing; Lv, Xiaojun; Liu, Fangyang; Lai, Yanqing; Li, Jie

    2015-09-01

    Anodic potential, morphology and phase composition of the anodic layer, corrosion morphology of the metallic substrate, and oxygen evolution behavior of Pb-Ag anode in H2SO4 solution without/with fluoride ion were investigated and compared. The results showed that the presence of fluoride ions contributed to a smoother anodic layer with lower PbO2 concentration, which resulted in lower double layer capacity and higher charge transfer resistance for the oxygen evolution reaction. Consequently, the Pb-Ag anode showed a higher anodic potential (about 35 mV) in the fluoride-containing electrolyte. In addition, the fluoride ions accelerated the detachment of loose flakes on the anodic layer. It was demonstrated that the anodic layer formed in the fluoride-containing H2SO4 solution was thinner. Furthermore, fluoride ions aggravated the corrosion of the metallic substrate at interdendritic boundary regions. Hence, the presence of fluoride ions is detrimental to oxygen evolution reactivity and increases the corrosion of the Pb-Ag anode, which may further increase the energy consumption and capital cost of zinc plants.

  5. Sorption properties of an amorphous hydroxo titanate towards Pb(2+), Ni(2+), and Cu(2+) ions in aqueous solution.

    PubMed

    Volpe, Angela; Pagano, Michele; Pastore, Carlo; Cuocci, Corrado; Milella, Antonella

    2016-11-01

    Titanates may be selectively used as inorganic adsorbents for heavy metal ions owing to their stability and fast adsorption kinetics. Nevertheless, the synthesis of such materials usually requires extreme reaction conditions. In this work, a new titanium-based material was rapidly synthesized under mild laboratory conditions. The obtained amorphous hydroxo titanate was tested for heavy metal sorption through kinetic and equilibrium batch tests, which indicated that the new material had high adsorption rates and adsorption capacities towards Cu(2+), Ni(2+) and Pb(2) ions. Adsorption kinetics were pseudo-second order, and equilibrium data fitted the Langmuir isotherm model. The calculated maximum adsorption capacities of Cu(2+), Ni(2+) and Pb(2+) in deionized water were around 1 mmol g(-1), and they decreased for Cu(2+) and Ni(2+) in the presence of Na(+), Ca(2+) and Mg(2+) ions, whereas the alkali metal ions did not influence Pb(2+) uptake. The efficiency of adsorption and recovery of lead ions were evaluated through column dynamic tests, by feeding the column with groundwater and tap water spiked with Pb(2+). The high performance of the hydroxo titanate over several cycles of retention and elution suggested that the product is potentially useful for the solid phase extraction of lead at trace levels in natural water samples, with potential use in metal pre-concentration for analytical applications. PMID:27419851

  6. Stimulation of TRPC5 cationic channels by low micromolar concentrations of lead ions (Pb{sup 2+})

    SciTech Connect

    Sukumar, Piruthivi; Beech, David J.

    2010-02-26

    Lead toxicity is long-recognised but continues to be a major public health problem. Its effects are wide-ranging and include induction of hyper-anxiety states. In general it is thought to act by interfering with Ca{sup 2+} signalling but specific targets are not clearly identified. Transient receptor potential canonical 5 (TRPC5) is a Ca{sup 2+}-permeable ion channel that is linked positively to innate fear responses and unusual amongst ion channels in being stimulated by trivalent lanthanides, which include gadolinium. Here we show investigation of the effect of lead, which is a divalent ion (Pb{sup 2+}). Intracellular Ca{sup 2+} and whole-cell patch-clamp recordings were performed on HEK 293 cells conditionally over-expressing TRPC5 or other TRP channels. Extracellular application of Pb{sup 2+} stimulated TRPC5 at concentrations greater than 1 {mu}M. Control cells without TRPC5 showed little or no response to Pb{sup 2+} and expression of other TRP channels (TRPM2 or TRPM3) revealed partial inhibition by 10 {mu}M Pb{sup 2+}. The stimulatory effect on TRPC5 depended on an extracellular residue (E543) near the ion pore: similar to gadolinium action, E543Q TRPC5 was resistant to Pb{sup 2+} but showed normal stimulation by the receptor agonist sphingosine-1-phosphate. The study shows that Pb{sup 2+} is a relatively potent stimulator of the TRPC5 channel, generating the hypothesis that a function of the channel is to sense metal ion poisoning.

  7. First Observation of the Deflection of a 33 TeV Pb Ion Beam in a Bent Silicon Crystal

    NASA Astrophysics Data System (ADS)

    Elsener, K.; Biino, C.; Clement, M.; Doble, N.; Gatignon, L.; Grafstrom, P.; Mikkelsen, U.; Taratin, A.; Møller, S. P.; Uggerhøj, E.

    1997-05-01

    The deflection of an ultra-relativistic, fully stripped Pb(82+) ion beam in a bent silicon crystal has been observed for the first time. The ions were provided by the CERN-SPS in the H4 beam at a momentum of 400 GeV/c/Z. A 60 mm long silicon crystal, bent over 50 mm to give a 4 mrad deflection angle, was used in this experiment. The measured Pb ion deflection efficiencies are comparable to the ones obtained with protons at an equivalent ratio p/Z, and are found to be about 15% for a beam with a divergence of 50 microradians (FWHM). The interaction rate observed in a background counter is reduced by about the same 15% when the crystal is well aligned with the beam. This corroborates further the channeling model, which predicts that channeled ions are steered away from regions of high electron densities as well as from the nuclei in the crystal.

  8. Atrazine immobilization on sludge derived biochar and the interactive influence of coexisting Pb(II) or Cr(VI) ions.

    PubMed

    Zhang, Weihua; Zheng, Juan; Zheng, Pingping; Qiu, Rongliang

    2015-09-01

    Sludge derived biochars (SDBCs) may have the potential to simultaneously remove heavy metals and organic contaminants in relation to their various active sorption sites for both metal ions and organic compounds. SDBCs have been proven to provide a considerable capacity for immobilizing Pb(II) and Cr(VI) ions in solution, and in this study their ability to sorb atrazine, in addition to their corresponding interactive influences with coexisting metal ions, is extensively investigated. The results indicate that all atrazine adsorption isotherms fit well with the Freundlich equation, and the greatest value of 16.8 mg g(-1) sorption capacity occurred with SDBCs pyrolyzed at 400°C for 2h. The slow sorption kinetics fit well with the Lagergren's 2nd order reaction, and depend upon the initial atrazine concentration, indicating the significance of a site-specific process. The ionic strength-dependence of the atrazine adsorption behavior further consolidates the involvement of the mechanism of the H-bond with hydroxyl groups on SDBC. However, when Pb(II)/Cr(VI) metal ions coexist in solution, they substantially suppress atrazine adsorption, probably because the inner complex between the hydroxyl groups on SDBCs and Pb(II)/Cr(III) ions intrude the weak H-bond with atrazine. As a result, metal adsorption was found to be unaffected by the coexisting atrazine. Therefore, although SDBC is applicable for atrazine removal/immobilization in most of environmentally relevant conditions, a two-step process may be required if heavy metal ions coexist.

  9. Ion microprobe U-Pb dating and strontium isotope analysis of biogenic apatite

    NASA Astrophysics Data System (ADS)

    Sano, Y.; Toyoshima, K.; Takahata, N.; Shirai, K.

    2012-12-01

    Conodonts are micro-fossils chemically composed of apatite which occurred in the body of one animal. They are guide fossils to show formation ages of sedimentary sequences with the highest resolution [1] and good samples to verify the dating method. We developed the ion microprobe U-Pb dating of apatite [2] and applied the method to a Carboniferous conodont [3] by using a SHRIMP II installed at Department of Earth and Planetary Sciences, Hiroshima University. Recently we have developed the NanoSIMS U-Pb dating method and successfully measured the formation ages of monazite [4] and zircon [5] at Atmosphere and Ocean Research Institute, University of Tokyo. In this work we carried out the NanoSIMS U-Pb dating of biogenic apatite such as conodont. Since the spot size of NanoSIMS is smaller than SHRIMP II, it is easier to have multi-spots on the single fragment of biogenic apatite. Based on the isochron method of U-Pb system, we have calculated the formation ages. They are consistent with those in literature. In order to study the chemical evolution of ocean during the past 600 Million years, strontium isotopes (87Sr/86Sr) of fossil marine carbonate such as coral skeletons and foraminifera tests were measured and compiled [6]. However they are not robust when the age is older than 500Ma, partly due to post-depositional histories. Apatite is more stable and more resistant to the alteration than carbonate [7]. Recently we have developed the method of NanoSIMS strontium isotopic analysis of a fish otolith, which composed of aragonite [8]. In this work we carried out the strontium isotopic analysis of biogenic apatite. The advantage of the ion microprobe technique over the TIMS (thermal ionization mass spectrometer) and MC-ICP-MS (multi-collector inductively coupled argon plasma mass spectrometer) method is preservation of the important textural context and to provide an opportunity for other simultaneous analytical work with high spatial resolution. This is the case for

  10. Deflection and Extraction of Pb Ions up to 33 TeV/c by a Bent Silicon Crystal

    NASA Astrophysics Data System (ADS)

    Arduini, G.; Biino, C.; Clément, M.; Cornelis, K.; Doble, N.; Elsener, K.; Ferioli, G.; Fidecaro, G.; Gatignon, L.; Grafström, P.; Gyr, M.; Herr, W.; Klem, J.; Mikkelsen, U.; Weisse, E.; Møller, S. P.; Uggerhøj, E.; Taratin, A.; Freund, A.; Keppler, P.; Major, J.

    1997-11-01

    The first results from an experiment to deflect a beam of fully stripped, ultrarelativistic Pb82+ ions of 400 GeV/c per unit of charge, equivalent to 33 TeV/c, by means of a bent crystal are reported. Deflection efficiencies are as high as 14%, in agreement with theoretical estimates. In a second experiment a bent crystal was used to extract 270 GeV/c-per-charge Pb82+ \\(22 TeV/c\\) ions from a coasting beam in the CERN-SPS, and a high extraction efficiency of up to 10% was found. These represent the first measurements to demonstrate applications of bent crystals in high energy heavy ion beams.

  11. Effects of Pb2+ ions on Na+ transport in the isolated skin of the toad Pleurodema thaul.

    PubMed

    Suwalsky, Mario; Schneider, Carlos; Norris, Beryl; Cárdenas, Hernán

    2004-12-01

    The effects induced by lead ions on the short-circuit current (SCC) and on the potential difference (V) of the toad Pleurodema thaul skin were investigated. Pb2+ applied to the outer (mucosal) surface increased SCC and V and when applied to the inner (serosal) surface decreased both parameters. The stimulatory effect, but not the inhibitory action, was reversible after washout of the metal ion. The amiloride test showed that the increase was due principally to stimulation of the driving potential for Na+ (V-E(Na+)) and that inhibition was accompanied by a reduction in the V-E(Na+) and also by a significant decrease in skin resistance indicating possible disruption of membrane and/or cell integrity. The effect of noradrenaline was increased by outer and decreased by inner administration of Pb2+. The results suggest that mucosal Pb2+ activates toad skin ion transport by stimulating the V-E(Na+) and that serosal Pb2+, with easier access to membrane and cellular constituents, inactivates this mechanism, revealing greater toxicity when applied to the inner surface of the skin. PMID:15689109

  12. Adsorption of Pb(II) ions from aqueous solution by native and activated bentonite: kinetic, equilibrium and thermodynamic study.

    PubMed

    Kul, Ali Riza; Koyuncu, Hülya

    2010-07-15

    In this study, the adsorption kinetics, equilibrium and thermodynamics of Pb(II) ions on native (NB) and acid activated (AAB) bentonites were examined. The specific surface areas, pore size and pore-size distributions of the samples were fully characterized. The adsorption efficiency of Pb(II) onto the NB and AAB was increased with increasing temperature. The kinetics of adsorption of Pb(II) ions was discussed using three kinetic models, the pseudo-first-order, the pseudo-second-order and the intra-particle diffusion model. The experimental data fitted very well the pseudo-second-order kinetic model. The initial sorption rate and the activation energy were also calculated. The activation energy of the sorption was calculated as 16.51 and 13.66 kJ mol(-1) for NB and AAB, respectively. Experimental results were also analysed by the Langmuir, Freundlich and Dubinin-Redushkevich (D-R) isotherm equations at different temperatures. R(L) separation factor for Langmuir and the n value for Freundlich isotherm show that Pb(II) ions are favorably adsorbed by NB and AAB. Thermodynamic quantities such as Gibbs free energy (DeltaG), the enthalpy (DeltaH) and the entropy change of sorption (DeltaS) were determined as about -5.06, 10.29 and 0.017 kJ mol(-1) K(-1), respectively for AAB. It was shown that the sorption processes were an endothermic reactions, controlled by physical mechanisms and spontaneously.

  13. Highly sensitive and selective detection of Pb2+ ions using a novel and simple DNAzyme-based quartz crystal microbalance with dissipation biosensor.

    PubMed

    Teh, Hui Boon; Li, Haiyan; Yau Li, Sam Fong

    2014-10-21

    A novel, label-free DNAzyme-based quartz crystal microbalance with dissipation monitoring (QCM-D) biosensor was developed for the highly sensitive and specific detection of Pb(2+) ions. To enhance the performance of the sensor, oligonucleotide-functionalized gold nanoparticles were used for both frequency and dissipation amplification. This sensor was developed by immobilizing Pb(2+)-specific DNAzymes onto the QCM-D sensor surface and allowing them to hybridize with substrate-functionalized AuNPs. The DNAzyme catalyzed the cleavage of the substrate in the presence of Pb(2+) ions, causing the cleaved substrate-functionalized AuNPs to be removed from the sensor surface. Thus, Pb(2+) ions can be determined on-line by monitoring the change in frequency and dissipation signals. The results revealed that the sensor showed a sensitive response to Pb(2+) ions with detection limits of 14 nM and 20 nM for frequency and dissipation, respectively. This QCM-D biosensor also exhibited excellent selectivity toward Pb(2+) ions in the presence of other divalent metal ions. In addition, the approach was able to detect Pb(2+) in tap water, demonstrating its great potential for monitoring drinking water quality. The proposed sensor system described here represents a new class of lead ion sensor. Its simple detection strategy makes it feasible for 'pollution-free' detection; thus, the approach could have applications in on-line water quality monitoring.

  14. Detecting weak fluorescence turn-on in the presence of Pb2+ heavy metal ion using coaxial fiber optic sensor

    NASA Astrophysics Data System (ADS)

    Ma, Jianjun; Chiniforooshan, Yasser; Hao, Wenhui; Bock, Wojtek J.; Wang, Zhi Yuan

    2013-10-01

    This paper is devoted to examining the ability of a coaxial fiber-optic sensor (FOS) in detecting weak fluorescent light and weak fluorescence "turn-on" in the presence of trace heavy metal ion Pb2+. The captured fluorescent signal is detected by the Ocean Optics QE65000 spectrometer. The stock solutions include Pb2+ acetate in water (0.01 M) and a small molecule probe in water. The preliminary experiment shows that this FOS offers the Pb2+ detection limit (DL) of 1.26×10-4 mg/mL. The advantages, limitations and further improvements of this coaxial FOS are discussed in comparison with the bench-top instruments in terms of the abilities of signal light capture and stray excitation light suppression.

  15. Application of central composite design for simultaneous removal of methylene blue and Pb2+ ions by walnut wood activated carbon

    NASA Astrophysics Data System (ADS)

    Ghaedi, M.; Mazaheri, H.; Khodadoust, S.; Hajati, S.; Purkait, M. K.

    2015-01-01

    Activated carbon was prepared from walnut wood which was locally available, non-toxic, abundant and cheap. This new adsorbent was characterized using BET, FTIR and SEM. Point of zero charge (pHpzc) and oxygen containing functional groups were also determined. The prepared adsorbent was applied for simultaneous removal of Pb2+ ions and methylene blue (MB) dye from aqueous solution. The prominent effect and interaction of variables such as amount of adsorbent, contact time, concentration of MB and Pb2+ ions were optimized by central composite design. The equilibrium data obtained at optimum condition were fitted to conventional isotherm models and found that Langmuir model was the best fitted isotherm. Kinetic data were fitted using various models. It was revealed that the adsorption rate follows pseudo-second order kinetic model and intraparticle diffusion model.

  16. Beam losses from ultra-peripheral nuclear collisions between Pb ions in the Large Hadron Collider and their alleviation

    SciTech Connect

    Bruce, R.; Bocian, D.; Gilardoni, S.; Jowett, J.M.; /CERN

    2009-08-01

    Electromagnetic interactions between colliding heavy ions at the Large Hadron Collider (LHC) at CERN will give rise to localized beam losses that may quench superconducting magnets, apart from contributing significantly to the luminosity decay. To quantify their impact on the operation of the collider, we have used a three-step simulation approach, which consists of optical tracking, a Monte-Carlo shower simulation and a thermal network model of the heat flow inside a magnet. We present simulation results for the case of {sup 208}Pb{sup 82+} ion operation in the LHC, with focus on the alice interaction region, and show that the expected heat load during nominal {sup 208}Pb{sup 82+} operation is 40% above the quench level. This limits the maximum achievable luminosity. Furthermore, we discuss methods of monitoring the losses and possible ways to alleviate their effect.

  17. Ion-implantation-induced damage and resonant levels in Pb/sub 1-x/Sn/sub x/Te

    SciTech Connect

    Gresslehner, K.H.; Palmetshofer, L.

    1980-09-01

    The dependence of the carrier concentration on the implantation dose and on the temperature was investigated in ion-implanted thin films of Pb/sub 1-x/Sn/sub x/Te (0< or =x<0.1). By assuming a twofold defect level in the conduction band we are able to fit the experimental results. With increasing tin content the energy of the defect level shifts towards the conduction-band edge. By extending the results to SnTe a general model for the understanding of the electrical properties of ion-implanted Pb/sub 1-x/Sn/sub x/Te (0< or =x< or =1) is suggested.

  18. Deflection of 32.8 TeV/c fully stripped Pb ions by means of a bent Si crystal

    NASA Astrophysics Data System (ADS)

    Biino, C.; Clément, M.; Doble, N.; Elsener, K.; Gatignon, L.; Grafström, P.; Herr, W.; Keppler, P.; Major, J.; Mikkelsen, U.; Taratin, A.; Velasco, M.

    2000-03-01

    New results on the deflection of fully stripped 32.8 TeV/c Pb ions in a bent Si crystal at the CERN-SPS are reported. Deflection efficiencies above 10% have been measured for deflection angles in the range 4-9 mrad. The effect of particle losses due to interaction in the crystal and other systematic errors have been carefully investigated. The experimental results are in agreement with theoretical calculations.

  19. Penicillamine-modified sensor for the voltammetric determination of Cd(II) and Pb(II) ions in natural samples.

    PubMed

    Pérez-Ràfols, Clara; Serrano, Núria; Díaz-Cruz, José Manuel; Ariño, Cristina; Esteban, Miquel

    2015-11-01

    A new penicillamine-GCE was developed based on the immobilization of d-penicillamine on aryl diazonium salt monolayers anchored to the glassy carbon electrode (GCE) surface and it was applied for the first time to the simultaneous determination of Cd(II) and Pb(II) ions by stripping voltammetric techniques. The detection and quantification limits at levels of µg L(-1) suggest that the penicillamine-GCE could be fully suitable for the determination of the considered ions in natural samples. PMID:26452863

  20. The effects of ion gun beam voltage on the electrical characteristics of NbCN/PbBi edge junctions

    NASA Technical Reports Server (NTRS)

    Lichtenberger, A. W.; Feldman, M. J.; Mattauch, R. J.; Cukauskas, E. J.

    1989-01-01

    The authors have succeeded in fabricating high-quality submicron NbCN edge junctions using a technique which is commonly used to make Nb edge junctions. A modified commercial ion gun was used to cut an edge in SiO2/NbCN films partially covered with photoresist. An insulating barrier was then formed on the exposed edge by reactive ion beam oxidation, and a counterelectrode of PbBi was deposited. The electrical quality of the resulting junctions was found to be strongly influenced by the ion beam acceleration voltages used to cut the edge and to oxidize it. For low ion beam voltages, the junction quality parameter was as high as Vm = 55 mV (measured at 3 mV), but higher ion beam voltages yielded strikingly poorer quality junctions. In light of the small coherence length of NbN, the dependence of the electrical characteristics on ion beam voltage is presumably due to mechanical damage of the NbCN surface. In contrast, for similar ion beam voltages, no such dependence was found for Nb edge junctions.

  1. Preparation of Pb(II) Ion Imprinted Polymer and Its Application as the Interface of an Electrochemical Sensor for Trace Lead Determination.

    PubMed

    Hu, Shanling; Xiong, Xiaodong; Huang, Shuiying; Lai, Xiaoqi

    2016-01-01

    An ion imprinted polymer (IIP) was synthesized by using Pb(II) as a template, methacrylic acid as a monomer, 8-hydoxyquinoline as a ligand, ethylene glycol dimethacrylate (EGDMA) as a crosslinker, and azobisisobutyronitrile as initiator. It can be applied to prepare lead ion selective voltammetric sensor for Pb(II) adsorption and trace detection. The Pb(II)-IIP was characterized by FTIR spectra and SEM image. Under optimized conditions of polymerization, the Pb(II)-IIP showed good adsorption behavior toward Pb(II), with a magnitude of three times higher than that of the non imprinted polymer (NIP). Also, it exhibited a favorable selectivity for Pb(II), compared with other heavy metal ions of Hg(II), Cd(II), Cu(II), and a negligible adsorption to the other cations. The synthesized IIP was used to determine trace levels of Pb(II) in food and water samples, with a calibration linear range over Pb(II) concentrations of 0.05 - 60 μM and a limit of detection at 0.01 μM.

  2. Preparation of Pb(II) Ion Imprinted Polymer and Its Application as the Interface of an Electrochemical Sensor for Trace Lead Determination.

    PubMed

    Hu, Shanling; Xiong, Xiaodong; Huang, Shuiying; Lai, Xiaoqi

    2016-01-01

    An ion imprinted polymer (IIP) was synthesized by using Pb(II) as a template, methacrylic acid as a monomer, 8-hydoxyquinoline as a ligand, ethylene glycol dimethacrylate (EGDMA) as a crosslinker, and azobisisobutyronitrile as initiator. It can be applied to prepare lead ion selective voltammetric sensor for Pb(II) adsorption and trace detection. The Pb(II)-IIP was characterized by FTIR spectra and SEM image. Under optimized conditions of polymerization, the Pb(II)-IIP showed good adsorption behavior toward Pb(II), with a magnitude of three times higher than that of the non imprinted polymer (NIP). Also, it exhibited a favorable selectivity for Pb(II), compared with other heavy metal ions of Hg(II), Cd(II), Cu(II), and a negligible adsorption to the other cations. The synthesized IIP was used to determine trace levels of Pb(II) in food and water samples, with a calibration linear range over Pb(II) concentrations of 0.05 - 60 μM and a limit of detection at 0.01 μM. PMID:27682403

  3. Sorption behavior of Pb(II) and Cd(II) on iron ore slime and characterization of metal ion loaded sorbent.

    PubMed

    Mohapatra, M; Rout, K; Mohapatra, B K; Anand, S

    2009-07-30

    The present investigation evaluates the sorption effectiveness of Pb(II) and Cd(II) ions on iron ore slime (IOS) obtained from Jindal Steel Ltd., Vijayanagaram, India. The sorption followed pseudo-second-order kinetics for both the cations. Pb(II) and Cd(II) sorption increased with the increase in pH from 2 to 4.5. The sorption data fitted well to Freundlich model as compared to Langmuir model. Synergistic effect of Pb(II) and Cd(II) on their sorption on IOS sample showed that Pb(II) sorption increases in presence of Cd(II) whereas Cd(II) sorption decreases. Presence of chloride or sulphate resulted in increased Pb(II) sorption but adversely affected Cd(II) sorption. The XRD patterns of Pb(II) adsorbed on IOS sample showed disappearance of some silica peaks and shifting of hematite peaks corresponding to 104 and 110 plane. For Cd(II) sorbed IOS sample, only peak shift for hematite of 104 and 110 plane was observed. Shifting of IR bands indicated that the Pb(II) sorption occurred through an inner sphere mechanism where as Cd(II) sorption occurred through outer sphere mechanism. EPMA studies showed that Pb(II) form a uniform thin layer and Cd(II) concentrate only on iron oxide phase. Regeneration and stability data on metal ion loaded IOS sample has been included.

  4. Synthesis and characterization of hydroxyapatite nanoparticles impregnated on apple pomace to enhanced adsorption of Pb(II), Cd(II), and Ni(II) ions from aqueous solution.

    PubMed

    Chand, Piar; Pakade, Yogesh B

    2015-07-01

    Hydroxyapatite nanoparticles were synthesized, characterized, and impregnated onto apple pomace surface (HANP@AP) for efficient removal of Pb(II), Cd(II), and Ni(II) ions from water. HANP@AP was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), transmission electron microscope (TEM), X-ray diffraction (XRD), and surface area analysis. Batch sorption studies were carried out to investigate the influence of different parameters as amount of dose (g), pH, time (min), and initial concentration (mg L(-1)) on adsorption process. Experimental kinetic data followed pseudo-second-order model and equilibrium data well fitted to Langmuir adsorption model with maximum adsorption capacities of 303, 250, and 100 mg g(-1) for Pb(II), Cd(II), and Ni(II) ions, respectively. Competitive adsorption of Pb(II), Cd(II), and Ni(II) ions in presences of each other was studied to evaluate the removal efficiency of HANP@AP against multi metal-loaded water. HANP@AP was successfully applied to real industrial wastewater with 100 % removal of all three metal ions even at high concentration. HANP@AP could be recycled for four, four, and three cycles in case of Pb(II), Cd(II) and Ni(II), respectively. The study showed that HANP@AP is fast, cost effective, and environmental friendly adsorbent for removal of Pb(II), Cd(II), and Ni(II) ions from real industrial wastewater.

  5. Synthesis and characterization of electroactive ferrocene derivatives: ferrocenylimidazoquinazoline as a multichannel chemosensor selectively for Hg2+ and Pb2+ ions in an aqueous environment.

    PubMed

    Pandey, Rampal; Gupta, Rakesh Kumar; Shahid, Mohammad; Maiti, Biswajit; Misra, Arvind; Pandey, Daya Shankar

    2012-01-01

    The synthesis and characterization of ferrocene (Fc) derivatives 4-[2,5-diferrocenyl-4-(4-pyridyl)imidazolidin-1-ylmethyl]pyridine (1), ferrocenylmethylenepyridin-3-ylmethylamine (2), N,N'-bis(ferrocenylmethylene)-2,4,6-trimethylbenzene-1,3-diamine (3), and 6-ferrocenyl-5,6-dihydro[4,5]imidazo[1,2-c]quinazoline (4) have been described. Structures of 1, 2, and 4 have been determined by single-crystal X-ray diffraction analyses. At 25 °C, 1-3 are nonfluorescent, while 4 displays moderate fluorescence and chromogenic, fluorogenic, and electrochemical sensing selectively toward Hg(2+) and Pb(2+) ions. Association constants (K(a)) for Hg(2+) and Pb(2+) have been determined by the Benesi-Hildebrand method. Job's plot analysis supported 1:1 and 1:2 stoichiometries for Hg(2+) and Pb(2+) ions. Cyclic voltammograms of 1-4 exhibited reversible waves corresponding to a ferrocene/ferrocenium couple. The wave associated with 4 (+0.0263 V) exhibited positive (ΔE(pa) = 0.136 V) and negative (ΔE(pa) = 0.025 V) shifts in the presence of Hg(2+) and Pb(2+) ions, respectively. The mode of interaction between metal ions and 4 has been supported by (1)H NMR spectroscopy and mass spectrometry studies and verified by theoretical studies. It presents the first report dealing with ferrocene-substituted quinazoline as a multichannel chemosensor for Hg(2+)/Pb(2+) ions.

  6. Experimental Cross Sections for Reactions of Heavy Ions and 208Pb, 209Bi, 238U, and 248Cm Targets

    SciTech Connect

    Patin, Joshua B.

    2002-05-24

    The study of the reactions between heavy ions and {sup 208}Pb, {sup 209}Bi, {sup 238}U, and {sup 248} Cm targets was performed to look at the differences between the cross sections of hot and cold fusion reactions. Experimental cross sections were compared with predictions from statistical computer codes to evaluate the effectiveness of the computer code in predicting production cross sections. Hot fusion reactions were studied with the MG system, catcher foil techniques and the Berkeley Gas-filled Separator (BGS). 3n- and 4n-exit channel production cross sections were obtained for the {sup 238}U({sup 18}O,xn){sup 256-x}Fm, {sup 238}U({sup 22}Ne,xn){sup 260-x}No, and {sup 248}Cm({sup 15}N,xn){sup 263-x}Lr reactions and are similar to previous experimental results. The experimental cross sections were accurately modeled by the predictions of the HIVAP code using the Reisdorf and Schaedel parameters and are consistent with the existing systematics of 4n exit channel reaction products. Cold fusion reactions were examined using the BGS. The {sup 208}Pb({sup 48}Ca,xn){sup 256-x}No, {sup 208}Pb({sup 50}Ti,xn){sup 258-x}Rf, {sup 208}Pb({sup 51}V,xn){sup 259-x}Db, {sup 209}Bi({sup 50}Ti,xn){sup 259-x}Db, and {sup 209}Bi({sup 51}V,xn){sup 260-x}Sg reactions were studied. The experimental production cross sections are in agreement with the results observed in previous experiments. It was necessary to slightly alter the Reisdorf and Schaedel parameters for use in the HIVAP code in order to more accurately model the experimental data. The cold fusion experimental results are in agreement with current 1n- and 2n-exit channel systematics.

  7. Swift heavy ion-irradiation effects on microstructure, surface morphology and optical properties of PbS thin films

    NASA Astrophysics Data System (ADS)

    Rajbongshi, Ananta; Kalita, M. P. C.; Singh, F.; Sarma, K. C.; Sarma, B. K.

    2016-05-01

    Chemically deposited PbS nanocrystalline thin films are irradiated by 100 MeV Si8+ swift heavy ions of fluences 1 × 1011, 1 × 1012 and 1 × 1013 ions/cm2. Detailed investigation on the effects of irradiation on microstructure is carried out by X-ray diffraction line profile analysis applying Williamson-Hall and modified Williamson-Hall methods, and transmission electron microscope observation, while atomic force microscope is used for studying the modifications in surface morphology. The band gaps are obtained from electronic absorption spectroscopy measurements, and photoluminescence spectra are recorded by spectrofluorometer. The pristine and irradiated films are polycrystalline in nature with spherical crystallites having face-centered cubic phase. The crystallite size of the pristine film is 20 nm, while films irradiated with ion fluences 1 × 1011, 1 × 1012 and 1 × 1013 ions/cm2 are 21, 20 and 20 nm, respectively. The lattice strain (dislocation density) of the pristine film is 8.9 × 10-3 (6.6 × 1016 m-2), while films irradiated with ion fluences 1 × 1011, 1 × 1012 and 1 × 1013 ions/cm2 are 8.6 × 10-3 (6.1 × 1016 m-2), 8.7 × 10-3 (6.4 × 1016 m-2) and 9.1 × 10-3 (7.0 × 1016 m-2), respectively. The dislocations present in both the pristine and irradiated films are edge in nature. The surface morphology changes significantly with elongation of the particles, increase in particle size and interparticle separation and slight decrease in rms roughness after irradiation. The band gap of the pristine film is 2.51 eV which remains unaltered after irradiation. Photoluminescence intensity increases significantly after irradiation which can be useful in enhancing the performance of different photonic devices such as light-emitting diodes, lasers and luminescence-based sensors.

  8. Removal of Pb (II) Ions from Aqueous Solutions by Cladophora rivularis (Linnaeus) Hoek

    PubMed Central

    Jafari, Naser; Senobari, Zoreh

    2012-01-01

    Biosorption of Pb(II) using Cladophora rivularis was examined as a function of initial pH heavy metal concentration and temperature. The optimum pH value for the biosorption of lead was 4.0. The adsorption equilibriums were well described by Langmuir and Freundlich isotherm models and it was implied by the results that the C. rivularis biomass is suitable for the development of efficient biosorbent in order to remove Pb(II) from wastewater and to recover it. The high values of correlation coefficient (R2 = 0.984) demonstrate equilibrium data concerning algal biomass, which is well fitted in Freundlich isotherms model equations. The dimensionless parameter RL is found in the range of 0.0639 to 0.1925 (0 < RL < 1), which confirms the favorable biosorption process. Fourier transform infra-red (FTIR) spectroscopy of C. rivularis was used to reveal the main function groups of biosorption, which were hydroxyl, amine groups, C–H stretching vibrations of –CH3 and –CH2, and complexation with functional groups. All these results suggest that C. rivularis can be used effectively for removal of Pb(II). PMID:22629198

  9. Velocity-Map Imaging Spectroscopy of the Ge^-, Sn^-, and Pb^- Negative Ions

    NASA Astrophysics Data System (ADS)

    Chartkunchand, Kiattichart; Carpenter, Kyle; Davis, Vernon; Neill, Paul; Thompson, Jeffrey; Covington, Aaron

    2012-06-01

    Photoelectrons ejected from collisions between laser-produced photons and fast-moving beams of negaitve ions have been studied using the technique of Velocity-Map Imaging (VMI) spectroscopy. Digital images produced by the VMI spectrometer have been used to determine photoelectron kinetic energy spectra, as well as photoelectron angular distributions for select isoelectronic Group 14 anions. Analysis of these data are helping to clarify detailed structural properties of these ions with increasing Z and is providing dynamical information on the photon-ion collision systems.

  10. Hopping rates and concentrations of mobile fluoride ions in Pb1-xSnxF2 solid solutions

    NASA Astrophysics Data System (ADS)

    Ahmad, Mohamad M.; Yamada, Koji

    2007-09-01

    In the present paper, the ion dynamics and relaxation of fluoride ions in Pb1-xSnxF2 (with x =0.2-0.6) solid solutions, prepared by mechanochemical milling, are studied in the conductivity formalism over wide ranges of frequencies and temperatures. The conductivity spectra of the investigated materials are analyzed by the Almond-West (AW) power-law model. The estimated values of the hopping rates and the dc conductivity of different compositions are thermally activated with almost the same activation energy. The calculated values of the concentration of mobile ions, nc, are almost independent of temperature and composition for x =0.2-0.4. The maximum value of nc is obtained for the x =0.6 sample, although it does not show the maximum conductivity. Therefore, the composition dependence of the ionic conductivity of these solid solutions could be explained based on the extracted parameters. The results presented in the current work indicate that the AW model represents a reasonable approximation of the overall frequency-dependent conductivity behavior of the investigated materials. The conductivity spectra at different temperatures for each composition are successfully scaled to a single master curve, indicating a temperature-independent relaxation mechanism. For different compositions, however, the conductivity spectra cannot be scaled properly, indicating composition-dependent relaxation dynamics.

  11. A new fluorescent chemosensor for Pb²⁺ ions based on naphthalene derivatives.

    PubMed

    Azadbakht, Reza; Vaisi, Hojat; Mohamadvand, Hossain; Khanabadi, Javad

    2015-06-15

    A new naphthalene derivative receptor (L) was synthesized and characterized with common spectroscopic methods. L exhibited a strong fluorescence enhancement in the presence of trace amounts of Pb(2+), attributable to photoinduced electron transfer (PET) effect, which also displayed high selectivity over a series of other metal cations (Na(+), K(+), Cs(+), Mg(2+), Ba(2+), Cr(3+), Mn(2+), Fe(3+), Fe(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+) and Ag(+)) in acetonitrile/H2O (9:1, v/v) mixture.

  12. Effect of coexisting Al(III) ions on Pb(II) sorption on biochars: Role of pH buffer and competition.

    PubMed

    Yang, Yuxi; Zhang, Weihua; Qiu, Hao; Tsang, Daniel C W; Morel, Jean-Louis; Qiu, Rongliang

    2016-10-01

    Biochar is being widely considered as a promising amendment agent for immobilizing heavy metals in contaminated acidic soils, where plenty of soluble Al(III) ions exist. In view of uncertain significance of the effects of coexisting Al(III) on Pb(II) sorption by biochars, this study used kenaf core biochar (KB550; high carbon, low ash) and sewage sludge biochar (SB550; low carbon, high ash) pyrolyzed at 550 °C to elucidate the influence of coexisting Al(III) species and biochars' mineral components on Pb(II) immobilization conducted in aqueous solution with initial pHs of 3.0-4.5. Results showed that Al(III) reduced Pb(II) sorption on KB550 primarily via pH buffering against biochar alkalinity, thus inhibiting lead carbonate formation. In contrast, the reduction on SB550 mainly resulted from direct competition for sorption sites, especially on Fe-rich phengite 2M1 and metakaolinite. Because of Pb-P precipitation and Pb-K interlayer exchange, the residual Pb(II) adsorption capacity resistant to coexisting Al(III) was 3-5 times higher on SB550 than on KB550. The Pb-K interlayer exchange was enhanced by lower pH and coexisting Al(III), while Pb-P precipitation was the dominant Pb(II) sorption mechanism on SB550 resistant to Al(III) buffering and competition at higher pH. Application of these two biochars as amendments confirmed that the mineral-rich SB550 was more suitable for Pb(II) immobilization in acidic soils with high levels of extractable Al(III). PMID:27454898

  13. Effect of coexisting Al(III) ions on Pb(II) sorption on biochars: Role of pH buffer and competition.

    PubMed

    Yang, Yuxi; Zhang, Weihua; Qiu, Hao; Tsang, Daniel C W; Morel, Jean-Louis; Qiu, Rongliang

    2016-10-01

    Biochar is being widely considered as a promising amendment agent for immobilizing heavy metals in contaminated acidic soils, where plenty of soluble Al(III) ions exist. In view of uncertain significance of the effects of coexisting Al(III) on Pb(II) sorption by biochars, this study used kenaf core biochar (KB550; high carbon, low ash) and sewage sludge biochar (SB550; low carbon, high ash) pyrolyzed at 550 °C to elucidate the influence of coexisting Al(III) species and biochars' mineral components on Pb(II) immobilization conducted in aqueous solution with initial pHs of 3.0-4.5. Results showed that Al(III) reduced Pb(II) sorption on KB550 primarily via pH buffering against biochar alkalinity, thus inhibiting lead carbonate formation. In contrast, the reduction on SB550 mainly resulted from direct competition for sorption sites, especially on Fe-rich phengite 2M1 and metakaolinite. Because of Pb-P precipitation and Pb-K interlayer exchange, the residual Pb(II) adsorption capacity resistant to coexisting Al(III) was 3-5 times higher on SB550 than on KB550. The Pb-K interlayer exchange was enhanced by lower pH and coexisting Al(III), while Pb-P precipitation was the dominant Pb(II) sorption mechanism on SB550 resistant to Al(III) buffering and competition at higher pH. Application of these two biochars as amendments confirmed that the mineral-rich SB550 was more suitable for Pb(II) immobilization in acidic soils with high levels of extractable Al(III).

  14. A novel 4-(2-pyridylazo) resorcinol functionalised magnetic nanosorbent for selective extraction of Cu(II) and Pb(II) ions from food and water samples.

    PubMed

    Asgharinezhad, Ali Akbar; Ebrahimzadeh, Homeira; Rezvani, Mehdi; Shekari, Nafiseh; Loni, Masood

    2014-01-01

    This paper describes a novel sorbent based on 4-(2-pyridylazo) resorcinol functionalised magnetic nanoparticles and its application for the extraction and pre-concentration of trace amounts of Cu(II) and Pb(II) ions. The nanosorbent was characterised by Fourier transform infrared spectroscopy, X-ray powder diffraction, thermal analysis, elemental analysis and scanning electron microscopy. The effects of various parameters such as pH, sorption time, sorbent dosage, elution time, volume and concentration of eluent were investigated. Following the sorption and elution of analytes, Cu(II) and Pb(II) ions were quantified by flame atomic absorption spectrometry. The limits of detection were 0.07 and 0.7 μg l(-1) for Cu(II) and Pb(II), respectively. The relative standard deviations of the method were less than 7%. The sorption capacity of this new sorbent were 92 and 78 mg g(-1) for Cu(II) and Pb(II), respectively. Finally this nanosorbent was applied to the rapid extraction of trace quantities of Cu(II) and Pb(II) ions in different real samples and satisfactory results were obtained. PMID:24827373

  15. Removal of Pb(II) ions from aqueous solution by a waste mud from copper mine industry: equilibrium, kinetic and thermodynamic study.

    PubMed

    Ozdes, Duygu; Gundogdu, Ali; Kemer, Baris; Duran, Celal; Senturk, Hasan Basri; Soylak, Mustafa

    2009-07-30

    The objective of this study was to assess the adsorption potential of a waste mud (WM) for the removal of lead (Pb(II)) ions from aqueous solutions. The WM was activated with NaOH in order to increase its adsorption capacity. Adsorption studies were conducted in a batch system as a function of solution pH, contact time, initial Pb(II) concentration, activated-waste mud (a-WM) concentration, temperature, etc. Optimum pH was specified as 4.0. The adsorption kinetic studies indicated that the overall adsorption process was best described by pseudo-second-order kinetics. The equilibrium adsorption capacity of a-WM was obtained by using Langmuir and Freundlich isotherm models and both models fitted well. Adsorption capacity for Pb(II) was found to be 24.4 mg g(-1) for 10 g L(-1) of a-WM concentration. Thermodynamic parameters including the Gibbs free energy (Delta G degrees), enthalpy (Delta H degrees), and entropy (DeltaS degrees) indicated that the adsorption of Pb(II) ions on the a-WM was feasible, spontaneous and endothermic, at temperature range of 0-40 degrees C. Desorption studies were carried out successfully with diluted HCl solutions. The results indicate that a-WM can be used as an effective and no-cost adsorbent for the treatment of industrial wastewaters contaminated with Pb(II) ions.

  16. A novel 4-(2-pyridylazo) resorcinol functionalised magnetic nanosorbent for selective extraction of Cu(II) and Pb(II) ions from food and water samples.

    PubMed

    Asgharinezhad, Ali Akbar; Ebrahimzadeh, Homeira; Rezvani, Mehdi; Shekari, Nafiseh; Loni, Masood

    2014-01-01

    This paper describes a novel sorbent based on 4-(2-pyridylazo) resorcinol functionalised magnetic nanoparticles and its application for the extraction and pre-concentration of trace amounts of Cu(II) and Pb(II) ions. The nanosorbent was characterised by Fourier transform infrared spectroscopy, X-ray powder diffraction, thermal analysis, elemental analysis and scanning electron microscopy. The effects of various parameters such as pH, sorption time, sorbent dosage, elution time, volume and concentration of eluent were investigated. Following the sorption and elution of analytes, Cu(II) and Pb(II) ions were quantified by flame atomic absorption spectrometry. The limits of detection were 0.07 and 0.7 μg l(-1) for Cu(II) and Pb(II), respectively. The relative standard deviations of the method were less than 7%. The sorption capacity of this new sorbent were 92 and 78 mg g(-1) for Cu(II) and Pb(II), respectively. Finally this nanosorbent was applied to the rapid extraction of trace quantities of Cu(II) and Pb(II) ions in different real samples and satisfactory results were obtained.

  17. A novel starch-based adsorbent for removing toxic Hg(II) and Pb(II) ions from aqueous solution.

    PubMed

    Huang, Li; Xiao, Congming; Chen, Bingxia

    2011-08-30

    A novel effective starch-based adsorbent was prepared through two common reactions, which included the esterification of starch with excess maleic anhydride in the presence of pyridine and the cross-linking reaction of the obtained macromonomer with acrylic acid by using potassium persulphate as initiator. The percentage of carboxylic groups of the macromonomer ranged from 14% to 33.4%. The cross-linking degree of the adsorbent was tailored with the amount of acrylic acid which varied from 10wt% to 80wt%. Both Fourier transform infrared spectra and thermogravimetric analysis results verified the structure of the adsorbent. The maximum gel fraction and swelling ratio of the adsorbent were about 72% and 6.25, respectively, and they were able to be adjusted with the amount of monomers. The weight loss percentage of the adsorbent could reach 96.9% after immersing in the buffer solution that contained α-amylase for 14h. It was found that the adsorption capacities of the adsorbent for lead and mercury ions could be 123.2 and 131.2mg/g, respectively. In addition, the adsorbent was able to remove ca. 51-90% Pb(II) and Hg(II) ions that existed in the decoctions of four medicinal herbals. PMID:21724326

  18. Ion transport studies on Li2O-PbO-B2O3-P2O5 glass system

    NASA Astrophysics Data System (ADS)

    Muralidhara, R. S.; Anavekar, R. V.

    2009-07-01

    Electrical conductivity of Li+ ion conducting borophosphate glass system with the general formula xLi2O -10PbO-(90-x) [55B2O3 + 45 P2O5] where x=20, 25, 30 and 35 has been carried out both as a function of temperature and frequency in the temperature range 303K to 503K and over frequencies 20 Hz to 12 MHz. The dc conductivities show Arrhenius behaviour while exhibiting composition dependence. Edc estimated from Arrhenius plots varies from 0.82 eV 0.88 eV. The ac conductivity behaviour has been analyzed using a single power law. The exponent `s' obtained from the power law fits is found to have values ranging from 0.45 to 0.84.in these glasses and shows moderate temperature dependence The stretched exponent β also is seen to vary slightly with temperature. Scaling behaviour also has been carried out using the reduced plots of conductivity and frequency. The time-temperature superposition of data points is found to be satisfactory indicating that the ion transport mechanism remains the same in the entire range of temperatures and compositions studied. The results have been explained considering the borophosphate network and the role of Li2O as a glass modifier.

  19. Direct observation of Nd{sup 3+} and Tm{sup 3+} ion distributions in oxy-fluoride glass ceramics containing PbF{sub 2} nanocrystals

    SciTech Connect

    Zhang, Jihong; Zhao, Zhiyong; Liu, Chao; Zhang, Gaoke; Zhao, Xiujian; Heo, Jong; Jiang, Yang

    2014-12-15

    Nd{sup 3+} and Tm{sup 3+}, doped oxy-fluoride glasses and glass ceramics were prepared by conventional melt-quenching and subsequent heat-treatment, respectively. β-PbF{sub 2} nanocrystals with diameter 50 –100 nm formed in the glass matrix after heat treatment. The Stark splitting in absorption peaks, enhanced photoluminescence and prolonged lifetimes that β-PbF{sub 2} nanocrystal formation increased the luminescence of rare earth ions. Both Nd{sup 3+} and Tm{sup 3+} ions were incorporated into nanocrystals that were enriched in lead and fluorine, and deficient in oxygen. - Highlights: • EELS analysis for rare-earth ion distribution in oxy-fluoride glass ceramics • No significant changes in lifetimes of Nd{sup 3+}, while obvious change for Tm{sup 3+} • Direct evidence of Nd{sup 3+} and Tm{sup 3+} aggregation into fluoride nanocrystals.

  20. On the reduced interaction probability for fully stripped 33 TeV/c Pb ions channeled in a bent Si crystal

    NASA Astrophysics Data System (ADS)

    Biino, C.; Clément, M.; Doble, N.; Elsener, K.; Freund, A.; Gatignon, L.; Grafström, P.; Herr, W.; Taratin, A.; Uggerhøj, U. I.; Uzhinskii, V. V.; Velasco, M.

    2002-10-01

    We compare experimental results and computer simulations on the reduction of inelastic interactions for 33 TeV Pb 82+ ions channeled in a bent silicon crystal. The comparison shows that a very small fraction of the initially channeled ions suffer nuclear interactions while traversing the 60 mm long crystal under perfect alignment, even though its thickness would correspond to about 1.2 nuclear interaction lengths for an amorphous material. This result indicates that a bent crystal approach to extraction of high energy, fully stripped ions from e.g. RHIC or LHC might be feasible.

  1. Light ion induced L X-ray production cross-sections in Au and Pb

    NASA Astrophysics Data System (ADS)

    Ouziane, S.; Amokrane, A.; Toumert, I.

    2008-04-01

    Experimental proton-induced Lα, Lβ, Lγ, Lℓ and Ltot absolute X-ray production cross-sections for Au and Pb in the incident proton energy range between 1 and 2.5 MeV are presented. The experimental results for X-ray production cross-sections are compared to available data given in Sokhi and Crumpton [R.S. Sokhi, D. Crumpton, At. Data Nucl. Data Tables 30 (1984) 49], Jesus et al. [A.P. Jesus, J.S. Lopes, J.P. Ribeiro, J. Phys. B: At. Mol. Phys. 18 (1985) 2456; A.P. Jesus, T.M. Pinheiro, I.A. Nisa, J.P. Ribeiro, J.S. Lopes, Nucl. Instrum. Methods B15 (1986) 95] and Goudarzi et al. [M. Goudarzi, F. Shokouhi, M. Lamehi-Rachti, P.Olialiy, Nucl. Instrum. Methods Phys. Res. B247 (2006) 218]. The given data are also compared with the predictions of ECPSSR model [W. Brandt, G. Lapicki, Phys. Rev. A23 (1981) 1717].

  2. Microwave synthesized xanthan gum-g-poly(ethylacrylate): an efficient Pb2+ ion binder.

    PubMed

    Pandey, Sadanand; Mishra, Shivani B

    2012-09-01

    Microwave induced emulsion copolymerization of ethylacrylate and xanthan gum resulted in copolymer samples of different % grafting (%G). The synthesis was done in the presence of catalytic amount of KPS as an initiator and the adsorption behavior of the copolymer (360%G) was investigated by performing both the kinetics and equilibrium studies in batch conditions. The copolymer was characterized by different techniques. Several experimental parameters were varied to optimize the adsorption conditions. The most favorable pH for the adsorption was pH 5, and at this pH the adsorption data were modeled using Langmuir and Freundlich isotherms. On the basis of the Langmuir model, Q0 was calculated to be 142.86 mg g(-1) for microwave synthesized copolymer (mwXG-g-PEA). The sorption by mwXG-g-PEA followed pseudo second-order kinetics where a linear plot of t/(qt) versus t was obtained, the correlation coefficient (R(2)) and rate constant at 100 mg L(-1) Pb(II) being 0.994 and 3.013×10(-4)g/(mg min), respectively.

  3. Effect of 5. 3-GeV Pb-ion irradiation on irreversible magnetization in Y-Ba-Cu-O crystals

    SciTech Connect

    Konczykowski, M.; Rullier-Albenque, F. ); Yacoby, E.R.; Shaulov, A.; Yeshurun, Y. ); Lejay, P. )

    1991-10-01

    We report a dramatic change in the irreversibility line of Y-Ba-Cu-O crystals after irradiation with Pb ions. Near the transition temperature, following irradiation, the irreversibility temperature increases and the curvature of the irreversibility line changes sign. These changes are accompanied by a strong enhancement of critical current density and a decrease in flux creep rate. Pb irradiation induces damage in the form of amorphous tracks which penetrate throughout the thickness of the sample. We maintain that these defects are most efficient in terms of flux trapping and are responsible for the observed changes in irreversible magnetic features in the irradiated sample.

  4. Geochronology of the Martian meteorite Zagami revealed by U-Pb ion probe dating of accessory minerals

    NASA Astrophysics Data System (ADS)

    Zhou, Qin; Herd, Christopher D. K.; Yin, Qing-Zhu; Li, Xian-Hua; Wu, Fu-Yuan; Li, Qiu-Li; Liu, Yu; Tang, Guo-Qiang; McCoy, Timothy J.

    2013-07-01

    The precise chronology of geological events on Mars is hampered by the lack of absolute ages for the Martian timescale, and the significant uncertainties that result from the extrapolation of the lunar timescale to Mars (Hartmann and Neukum, 2001). Martian meteorites represent the only samples of Mars currently available. Attempts to identify source craters for the meteorites have thus far proven inconclusive (Hamilton et al., 2003; Lang et al., 2009; Mouginis-Mark and Boyce, 2012>), precluding their use in constraining the absolute Martian timescale. The majority of the known Martian meteorites are basalts ("shergottites"); all dated shergottites have mineral separate (Rb-Sr or Sm-Nd) ages of <600 Ma (Borg et al., 2005). Here we report a 238U/206Pb age of 182.7±6.9 Ma by ion microprobe analysis of baddeleyite (ZrO2) grains in the Zagami shergottite. There is no correlation between discordancy and baddeleyite grain location relative to shock metamorphism. Mineral petrography demonstrates that baddeleyite is the result of late-stage igneous crystallization, and Raman spectroscopy shows that baddeleyite has not been transformed by shock into preservable high-pressure polymorphs. Supported by an age of 153±81 Ma for phosphate grains, obtained using the same method, we conclude that Zagami crystallized at ~180 Ma, in agreement with previous results from mineral separate geochronology. Therefore, the shergottites represent igneous rocks preferentially ejected from young terrains on Mars in a small number of ejection events.

  5. Optimization, isotherm, kinetic and thermodynamic studies of Pb(II) ions adsorption onto N-maleated chitosan-immobilized TiO₂ nanoparticles from aqueous media.

    PubMed

    Shaker, Medhat A; Yakout, Amr A

    2016-02-01

    Chitosan, CS was chemically engineered by maleic anhydride via simple protocol to produce N-maleated chitosan, MCS which immobilized on anatase TiO2 to synthesize novel eco-friendly nanosorbent (51±3.8 nm), MCS@TiO2 for cost-effective and efficient removal of Pb(II) ions from aqueous media. The chemical structure, surface properties and morphology of MCS@TiO2 were recognized by FTIR, (1)H NMR, XRD, TEM, DLS and zeta-potential techniques. The relations between %removal of Pb(II) and different analytical parameters such as solution acidity (pH), MCS@TiO2 dosage, time of contact and initial Pb(II) concentration were optimized using response surface methodology (RSM) and Box-Behnken design (BBD) statistical procedures. The fitting of the experimental data to four different isotherm models at optimized conditions was carried out by various statistical treatments including the correlation coefficient (r), coefficient of determination (r(2)) and non-linear Chi-square (χ(2)) test analyses which all confirm the suitability of Langmuir model to explain the adsorption isotherm data. Also, statistics predicted that the pseudo-second-order model is the optimum kinetic model among four applied kinetic models to closely describe the rate equation of the adsorption process. Thermodynamics viewed the adsorption as endothermic and feasible physical process. EDTA could release the sorbed Pb(II) ions from MCS@TiO2 with a recovery above 92% after three sorption-desorption cycles. The novel synthesized nanosorbent is evidenced to be an excellent solid phase extractor for Pb(II) ions from wastewaters.

  6. Optimization, isotherm, kinetic and thermodynamic studies of Pb(II) ions adsorption onto N-maleated chitosan-immobilized TiO2 nanoparticles from aqueous media

    NASA Astrophysics Data System (ADS)

    Shaker, Medhat A.; Yakout, Amr A.

    2016-02-01

    Chitosan, CS was chemically engineered by maleic anhydride via simple protocol to produce N-maleated chitosan, MCS which immobilized on anatase TiO2 to synthesize novel eco-friendly nanosorbent (51 ± 3.8 nm), MCS@TiO2 for cost-effective and efficient removal of Pb(II) ions from aqueous media. The chemical structure, surface properties and morphology of MCS@TiO2 were recognized by FTIR, 1H NMR, XRD, TEM, DLS and zeta-potential techniques. The relations between %removal of Pb(II) and different analytical parameters such as solution acidity (pH), MCS@TiO2 dosage, time of contact and initial Pb(II) concentration were optimized using response surface methodology (RSM) and Box-Behnken design (BBD) statistical procedures. The fitting of the experimental data to four different isotherm models at optimized conditions was carried out by various statistical treatments including the correlation coefficient (r), coefficient of determination (r2) and non-linear Chi-square (χ2) test analyses which all confirm the suitability of Langmuir model to explain the adsorption isotherm data. Also, statistics predicted that the pseudo-second-order model is the optimum kinetic model among four applied kinetic models to closely describe the rate equation of the adsorption process. Thermodynamics viewed the adsorption as endothermic and feasible physical process. EDTA could release the sorbed Pb(II) ions from MCS@TiO2 with a recovery above 92% after three sorption-desorption cycles. The novel synthesized nanosorbent is evidenced to be an excellent solid phase extractor for Pb(II) ions from wastewaters.

  7. Optimization, isotherm, kinetic and thermodynamic studies of Pb(II) ions adsorption onto N-maleated chitosan-immobilized TiO₂ nanoparticles from aqueous media.

    PubMed

    Shaker, Medhat A; Yakout, Amr A

    2016-02-01

    Chitosan, CS was chemically engineered by maleic anhydride via simple protocol to produce N-maleated chitosan, MCS which immobilized on anatase TiO2 to synthesize novel eco-friendly nanosorbent (51±3.8 nm), MCS@TiO2 for cost-effective and efficient removal of Pb(II) ions from aqueous media. The chemical structure, surface properties and morphology of MCS@TiO2 were recognized by FTIR, (1)H NMR, XRD, TEM, DLS and zeta-potential techniques. The relations between %removal of Pb(II) and different analytical parameters such as solution acidity (pH), MCS@TiO2 dosage, time of contact and initial Pb(II) concentration were optimized using response surface methodology (RSM) and Box-Behnken design (BBD) statistical procedures. The fitting of the experimental data to four different isotherm models at optimized conditions was carried out by various statistical treatments including the correlation coefficient (r), coefficient of determination (r(2)) and non-linear Chi-square (χ(2)) test analyses which all confirm the suitability of Langmuir model to explain the adsorption isotherm data. Also, statistics predicted that the pseudo-second-order model is the optimum kinetic model among four applied kinetic models to closely describe the rate equation of the adsorption process. Thermodynamics viewed the adsorption as endothermic and feasible physical process. EDTA could release the sorbed Pb(II) ions from MCS@TiO2 with a recovery above 92% after three sorption-desorption cycles. The novel synthesized nanosorbent is evidenced to be an excellent solid phase extractor for Pb(II) ions from wastewaters. PMID:26520475

  8. Highly selective and sensitive optical sensor for determination of Pb2+ and Hg2+ ions based on the covalent immobilization of dithizone on agarose membrane.

    PubMed

    Zargoosh, Kiomars; Babadi, Fatemeh Farhadian

    2015-02-25

    A highly sensitive and selective optical membrane for determination of Hg(2+) and Pb(2+) was prepared by covalent immobilization of dithizone on agarose membrane. In addition to its high stability, reproducibility and relatively long lifetime, the proposed optical sensor revealed good selectivity for target ions over a large number of alkali, alkaline earth, transition, and heavy metal ions. The proposed optical membrane displays linear responses from 1.1×10(-8) to 2.0×10(-6) mol L(-1) and 1.2×10(-8) to 2.4×10(-6) mol L(-1) for Hg(2+) and Pb(2+), respectively. The limits of detection (LOD) were 2.0×10(-9) mol L(-1) and 4.0×10(-9) mol L(-1) for Hg(2+) and Pb(2), respectively. The prepared optical membrane was successfully applied to the determination of Hg(2+) and Pb(2+) in industrial wastes, spiked tap water and natural waters without any preconcentration step.

  9. Highly selective and sensitive optical sensor for determination of Pb2+ and Hg2+ ions based on the covalent immobilization of dithizone on agarose membrane.

    PubMed

    Zargoosh, Kiomars; Babadi, Fatemeh Farhadian

    2015-02-25

    A highly sensitive and selective optical membrane for determination of Hg(2+) and Pb(2+) was prepared by covalent immobilization of dithizone on agarose membrane. In addition to its high stability, reproducibility and relatively long lifetime, the proposed optical sensor revealed good selectivity for target ions over a large number of alkali, alkaline earth, transition, and heavy metal ions. The proposed optical membrane displays linear responses from 1.1×10(-8) to 2.0×10(-6) mol L(-1) and 1.2×10(-8) to 2.4×10(-6) mol L(-1) for Hg(2+) and Pb(2+), respectively. The limits of detection (LOD) were 2.0×10(-9) mol L(-1) and 4.0×10(-9) mol L(-1) for Hg(2+) and Pb(2), respectively. The prepared optical membrane was successfully applied to the determination of Hg(2+) and Pb(2+) in industrial wastes, spiked tap water and natural waters without any preconcentration step. PMID:25216460

  10. Highly selective and sensitive optical sensor for determination of Pb2+and Hg2+ ions based on the covalent immobilization of dithizone on agarose membrane

    NASA Astrophysics Data System (ADS)

    Zargoosh, Kiomars; Babadi, Fatemeh Farhadian

    2015-02-01

    A highly sensitive and selective optical membrane for determination of Hg2+ and Pb2+ was prepared by covalent immobilization of dithizone on agarose membrane. In addition to its high stability, reproducibility and relatively long lifetime, the proposed optical sensor revealed good selectivity for target ions over a large number of alkali, alkaline earth, transition, and heavy metal ions. The proposed optical membrane displays linear responses from 1.1 × 10-8 to 2.0 × 10-6 mol L-1 and 1.2 × 10-8 to 2.4 × 10-6 mol L-1 for Hg2+ and Pb2+, respectively. The limits of detection (LOD) were 2.0 × 10-9 mol L-1 and 4.0 × 10-9 mol L-1 for Hg2+ and Pb2, respectively. The prepared optical membrane was successfully applied to the determination of Hg2+ and Pb2+ in industrial wastes, spiked tap water and natural waters without any preconcentration step.

  11. Sputtered bismuth screen-printed electrode: a promising alternative to other bismuth modifications in the voltammetric determination of Cd(II) and Pb(II) ions in groundwater.

    PubMed

    Sosa, Velia; Serrano, Núria; Ariño, Cristina; Díaz-Cruz, José Manuel; Esteban, Miquel

    2014-02-01

    A commercially available sputtered bismuth screen-printed electrode (BispSPE) has been pioneeringly applied for the simultaneous determination of Cd(II) and Pb(II) ions in a certified groundwater sample by means of differential pulse anodic stripping voltammetry (DPASV) as an alternative to more conventional bismuth screen-printed carbon electrodes (BiSPCEs). BispSPEs can be used for a large set of measurements without any previous plating or activation. The obtained detection and quantification limits suggest that BispSPEs produce a better analytical performance as compared to In-situ BiSPCE for Pb(II) and Cd(II) determination, but also to Ex-situ BiSPCE for Cd(II) determination. The results confirm the applicability of these devices for the determination of low level concentrations of these metal ions in natural samples with very high reproducibility (0.7% and 2.5% for Pb(II) and Cd(II) respectively), and good trueness (0.3% and 2.4% for Pb(II) and Cd(II) respectively). PMID:24401424

  12. X-ray absorption spectroscopic analyses and fluorescence emission characteristics of PbO-Bi203-Ga203 glasses doped with rare-earth ions

    NASA Astrophysics Data System (ADS)

    Choi, Yong Gyu; Kim, Kyong-Hon; Chernov, Vladimir A.; Heo, Jong

    1999-12-01

    A representative of heavy metal oxide glasses, i.e., a PbO- Bi2O3-Ga2O3 glass, was investigated to identify the network structure of the glass and the electronic transition properties of rare-earth ions doped. X-ray absorption spectroscopic analyses showed that gallium forms GaO4 tetrahedral units with an average Ga-O bond length of approximately 1.87 A. Lead forms both PbO3 and PbO4 polyhedra, but the fraction of PbO4 decreases with decreasing PbO content. Bismuth in glasses constructs BiO5 and BiO6 polyhedra, which have a similar coordination scheme of the (alpha) -Bi2O3 crystal. Formation of three-coordinated oxygens is necessary to compensate shortage of oxygens to be two-fold coordinated. These glasses exhibit a relatively good thermal stability as well as the lowest phonon energy among oxide glasses, and thereby enhance numerous fluorescence emissions that are quenched in the conventional oxide glasses. Magnitudes of multiphonon relaxation are the lowest among oxide glasses and comparable to those of fluoride glasses. Fluorescence emission characteristics of Pr3+: 1.3 micrometer and Er3+: 2.7 micrometer were discussed in detail. In addition, influence of OH- on the Nd3+: 1.3 micrometer emission was analyzed. Further research efforts on impurity minimization and fiberization may realize a new oxide-based fiber-optic host.

  13. Synthesis and Characterization of Organic-Inorganic Nanocomposite Poly-o-anisidine Sn(IV) Arsenophosphate: Its Analytical Applications as Pb(II) Ion-Selective Membrane Electrode

    PubMed Central

    Khan, Asif Ali; Habiba, Umme; Khan, Anish

    2009-01-01

    Poly-o-anisidine Sn(IV) arsenophosphate is a newly synthesized nanocomposite material and has been characterized on the basis of its chemical composition, ion exchange capacity, TGA-DTA, FTIR, X-RAY, SEM, and TEM studies. On the basis of distribution studies, the exchanger was found to be highly selective for lead that is an environmental pollutant. For the detection of lead in water a heterogeneous precipitate based ion-selective membrane electrode was developed by means of this composite cation exchanger as electroactive material. The membrane electrode is mechanically stable, with a quick response time, and can be operated over a wide pH range. The selectivity coefficients were determined by mixed solution method and revealed that the electrode is sensitive for Pb(II) in presence of interfering cations. The practical utility of this membrane electrode has been established by employing it as an indicator electrode in the potentiometric titration of Pb(II). PMID:20140082

  14. Biochar prepared from castor oil cake at different temperatures: A voltammetric study applied for Pb(2+), Cd(2+) and Cu(2+) ions preconcentration.

    PubMed

    Kalinke, Cristiane; Mangrich, Antonio Sálvio; Marcolino-Junior, Luiz H; Bergamini, Márcio F

    2016-11-15

    Biochar is a carbonaceous material similar produced by pyrolysis of biomass under oxygen-limited conditions. Pyrolysis temperature is an important parameter that can alters biochar characteristics (e.g. surface area, pore size distribution and surface functional groups) and affects it efficacy for adsorption of several probes. In this work, biochar samples have been prepared from castor oil cake using different temperatures of pyrolysis (200-600°C). For the first time, a voltammetric procedure based on carbon paste modified electrode (CPME) was used to investigate the effect of temperature of pyrolysis on the adsorptive characteristics of biochar for Pb(II), Cd(II) and Cu(II) ions. Besides the electrochemical techniques, several characterizations have been performed to evaluate the physicochemical properties of biochar in function of the increase of the pyrolysis temperature. Results suggest that biochar pyrolized at 400°C (BC400) showed a better potential for ions adsorption. The CPME modified with BC400 showed better relative current signal with adsorption affinity: Pb(II)>Cd(II)>Cu(II). Kinetic studies revealed that the pseudo-second order model describes more accurately the adsorption process suggesting that the surface reactions control the adsorption rate. Values found for amount adsorbed were 15.94±0.09; 4.29±0.13 and 2.38±0.39μgg(-1) for Pb(II), Cd(II) and Cu(II) ions, respectively. PMID:27469040

  15. Biochar prepared from castor oil cake at different temperatures: A voltammetric study applied for Pb(2+), Cd(2+) and Cu(2+) ions preconcentration.

    PubMed

    Kalinke, Cristiane; Mangrich, Antonio Sálvio; Marcolino-Junior, Luiz H; Bergamini, Márcio F

    2016-11-15

    Biochar is a carbonaceous material similar produced by pyrolysis of biomass under oxygen-limited conditions. Pyrolysis temperature is an important parameter that can alters biochar characteristics (e.g. surface area, pore size distribution and surface functional groups) and affects it efficacy for adsorption of several probes. In this work, biochar samples have been prepared from castor oil cake using different temperatures of pyrolysis (200-600°C). For the first time, a voltammetric procedure based on carbon paste modified electrode (CPME) was used to investigate the effect of temperature of pyrolysis on the adsorptive characteristics of biochar for Pb(II), Cd(II) and Cu(II) ions. Besides the electrochemical techniques, several characterizations have been performed to evaluate the physicochemical properties of biochar in function of the increase of the pyrolysis temperature. Results suggest that biochar pyrolized at 400°C (BC400) showed a better potential for ions adsorption. The CPME modified with BC400 showed better relative current signal with adsorption affinity: Pb(II)>Cd(II)>Cu(II). Kinetic studies revealed that the pseudo-second order model describes more accurately the adsorption process suggesting that the surface reactions control the adsorption rate. Values found for amount adsorbed were 15.94±0.09; 4.29±0.13 and 2.38±0.39μgg(-1) for Pb(II), Cd(II) and Cu(II) ions, respectively.

  16. Preconcentration of Trace Amounts of Pb(II) Ions without Any Chelating Agent by Using Magnetic Iron Oxide Nanoparticles prior to ETAAS Determination

    PubMed Central

    Mohammadi, S. Z.; Shamspur, T.; Karimi, M. A.; Naroui, E.

    2012-01-01

    This work investigates the potential of magnetic Fe3O4 nanoparticles as an adsorbent for separation and preconcentration of trace amounts of lead from water samples prior to electrothermal atomic absorption spectrometry (ETAAS) determination. No chemical modifier is required in graphite furnace. Pb(II) ion was adsorbed on magnetic Fe3O4 nanoparticles in the pH range of 5.5–6.5, and then magnetic nanoparticles (MNPs) were easily separated from the aqueous solution by applying an external magnetic field; so, no filtration or centrifugation was necessary. After extraction and collection of MNPs, the analyte ions were eluted using HNO3 1.0 mol L−1. Several factors that may affect the preconcentration and extraction process, such as pH, type, and volume of eluent, amount of MNPs, sample volume, salting out effect, and interference ions were studied and optimized. Under the best experimental conditions, linearity was maintained between 0.005–0.5 ng mL−1. Detection limits for lead were 0.8 ng L−1 based on 3Sb. The relative standard deviation of seven replicate measurements of 0.05 ng mL−1 of Pb(II) ions was 3.8%. Finally, the method was successfully applied to extraction and determination of lead ions in the water and standard samples. PMID:22649300

  17. Removal of Ni(II), Zn(II) and Pb(II) ions from single metal aqueous solution using rice husk-based activated carbon

    SciTech Connect

    Taha, Mohd F. Shaharun, Maizatul S.; Shuib, Anis Suhaila Borhan, Azry

    2014-10-24

    An attempt was made to investigate the potential of rice husk-based activated carbon as an alternative low-cost adsorbent for the removal of Ni(II), Zn(II) and Pb(II) ions from single aqueous solution. Rice husk-based activated carbon was prepared via treatment of rice husk with NaOH followed by the carbonization process at 400°C for 2 hours. Three samples, i.e. raw rice husk, rice husk treated with NaOH and rice husk-based activated carbon, were analyzed for their morphological characteristics using field-emission scanning electron microscope/energy dispersive X-ray (FESEM/EDX). These samples were also analyzed for their carbon, hydrogen, nitrogen, oxygen and silica contents using CHN elemental analyzer and FESEM/EDX. The porous properties of rice husk-based activated carbon were determined by Brunauer-Emmett-Teller (BET) surface area analyzer, and its surface area and pore volume were 255 m{sup 2}/g and 0.17 cm{sup 2}/g, respectively. The adsorption studies for the removal of Ni(II), Zn(II) and Pb(II) ions from single metal aqueous solution were carried out at a fixed initial concentration of metal ion (150 ppm) with variation amount of adsorbent (rice husk-based activated carbon) as a function of varied contact time at room temperature. The concentration of each metal ion was analyzed using atomic absorption spectrophotometer (AAS). The results obtained from adsorption studies indicate the potential of rice husk as an economically promising precursor for the preparation of activated carbon for removal of Ni(II), Zn(II) and Pb(II) ions from single aqueous solution. Isotherm and kinetic model analyses suggested that the experimental data of adsorption studies fitted well with Langmuir, Freundlich and second-order kinetic models.

  18. New ion microprobe U-Pb analyses on unpolished zircon surfaces and polished grain interiors from the 28 Ma Fish Canyon Tuff reveal a protracted crystallization history

    NASA Astrophysics Data System (ADS)

    Coble, M. A.

    2013-12-01

    U-Pb analyses on surfaces and polished interiors of Oligocene Fish Canyon Tuff (FCT) zircon are investigated to better constrain the disparity in FCT ages measured by different isotopic techniques. FCT sanidine is a widely used geochronology standard for K-Ar and 40Ar/39Ar analyses with reported ages ranging from ~27.6-28.3 Ma. In comparison, published U-Pb ID-TIMS zircon ages using chemical or mechanical abrasion methods range from ~28.2 to 28.6 Ma. New 206U-238Pb SHRIMP-RG ion microprobe ages were obtained on untreated, unpolished FCT zircon surfaces as well as from polished zircon interiors. FCT zircon was mounted with primary age standard Temora-2 (416.8 Ma) and secondary zircon standard early-erupted Bishop Tuff (0.767 Ma) by pressing euhedral grains into pliable indium metal leaving the exterior surfaces exposed. The high spatial resolution of the ion-microprobe produced analytical pits 25-30 μm in diameter and 4-6 μm deep (~8 to 9 nA primary O2- beam), allowing only the youngest portion of the zircon to be targeted, while avoiding abundant mineral and glass inclusions pervasive in FCT zircons. The 230Th-corrected 206Pb-238U weighted mean age for FCT zircon surfaces is 28.03×0.17 Ma (2σ, n=38, MSWD=1.07, Th/Urock=2.2) and for Bishop Tuff zircon surfaces is 0.763×0.006 Ma (2σ, n=25, MSWD=0.88, Th/Urock=2.81) analyzed over three analytical sessions. Calculated ages for FCT zircon surfaces are insensitive to common-Pb correction due to high radiogenic yield (average 98.2% radiogenic 206Pb corrected using 207Pb). Following analysis of zircon surfaces, the mount was polished to expose the interior of FCT zircons and reanalyzed. 230Th-corrected 206Pb-238U ages for FCT zircon interiors range from 28.0 to 29.5 Ma, with a weighted mean age of 28.68×0.15 Ma (2σ, n=54, MSWD=2.6, Th/Urock=2.2). Using an age of 418.4 Ma for Temora-2 (Mattinson, 2010) increases the ages for FCT zircon by 0.10 My. Despite this added uncertainty in standardization and the imprecision

  19. Effect of annealing on the luminescence properties of YVO₄:Dy³⁺ phosphor on co-doping Pb²⁺ ions.

    PubMed

    Devi, Ch Victory; Singh, N Rajmuhon

    2015-07-01

    Pb(2+) co-doped YVO4:Dy(3+) phosphors have been synthesized at a relatively low temperature of 120°C via ethylene glycol route. The samples are further annealed at 500 and 900°C. The prepared samples were characterized by XRD, SEM, spectra energy dispersive analysis of X-ray (EDAX) and photoluminescence spectroscopy. XRD patterns of all samples are well indexed with single tetragonal phase of YVO4. The emission intensity of Dy(3+) is significantly enhanced on co-doping Pb(2+) ions. The highest emission is obtained at 7 at.% Pb(2+) for 900°C annealed samples. Both emission intensity and decay lifetime increases on annealing the samples from 500 to 900°C. On co-doping Pb(2+) into YVO4:Dy(3+) phosphors, the emission color falls near the white region and then shift towards yellow region on annealing from 500 to 900°C thereby indicating that annealing temperature play a role on tuning the color of the phosphors. As well as the emission color of the phosphors remain the same even on changing the excitation wavelengths from 280 nm, which would serve as potential phosphors for white emission in LED applications. PMID:25827617

  20. Optical and electrical characterizations of a single step ion beam milling mesa devices of chloride passivated PbS colloidal quantum dots based film

    NASA Astrophysics Data System (ADS)

    Hechster, Elad; Shapiro, Arthur; Lifshitz, Efrat; Sarusi, Gabby

    2016-07-01

    Colloidal Quantum Dots (CQDs) are of increasing interest, thanks to their quantum size effect that gives rise to their usage in various applications, such as biological tagging, solar cells and as the sensitizing layer of night vision devices. Here, we analyze the optical absorbance of chloride passivated PbS CQDs as well as revealing a correlation between their photoluminescence and sizes distribution, using theoretical models and experimental results from the literature. Next, we calculate the CQDs resistivity as a film. Although resistivity can be calculated from sheet resistance measurement using four point probes, such measurement is usually carried-out on the layer's surface that in most cases has dangling bonds and surface states, which might affect the charges flow and modify the resistivity. Therefore; our approach, which was applied in this work, is to extract the actual resistivity from measurements that are performed along the film's thickness (z-direction). For this intent, we fabricated gold capped PbS mesas devices using a single step Ion Beam Milling (IBM) process where we milled the gold and the PbS film continually, and then measured the vertical resistance. Knowing the mesas' dimensions, we calculate the resistivity. To the best of our knowledge, no previous work has extracted, vertically, the resistivity of chloride passivated PbS CQDs using the above method.

  1. Mechanism of Cu(II), Cd(II) and Pb(II) ions sorption from aqueous solutions by macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate)

    NASA Astrophysics Data System (ADS)

    Nastasović, Aleksandra B.; Ekmeščić, Bojana M.; Sandić, Zvjezdana P.; Ranđelović, Danijela V.; Mozetič, Miran; Vesel, Alenka; Onjia, Antonije E.

    2016-11-01

    The mechanism of Cu(II), Cd(II) and Pb(II) ions sorption from aqueous solutions by macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) (PGME) functionalized by reaction of the pendant epoxy groups with diethylene triamine (PGME-deta) was studied using X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) analysis. Atomic force microscopy (AFM) and scanning energy-dispersive X-ray spectroscopy (SEM-EDX) were used for the determination of surface morphology of the copolymer particles. The sorption behavior of heavy metals Cu(II), Cd(II) and Pb(II) ions sorption was investigated in batch static experiments under non-competitive conditions at room temperature (298 K). The obtained results were fitted to pseudo-first order, pseudo-second order and intraparticle diffusion kinetic model. The kinetics studies showed that Cu(II), Cd(II) and Pb(II) sorption obeys the pseudo-second-order model under all investigated operating conditions with evident influence of pore diffusion.

  2. Raman and Photoluminescence Spectroscopy of Nano-crystalline PbTiO3 Sensor Materials with Different Doping Ions

    NASA Technical Reports Server (NTRS)

    Katiyar, R. S.; Jinfang, Meng

    1998-01-01

    Raman spectra & photoluminescence studies in PbTiO3, have been carried out, as a function of particle size, temperature, pressure and dopants. There appears respectively a distinct temperature-induced soft mode phase transition in each sample whose Curie temperature can be determined from the mean-field theory. The detailed Curie temperature shift in the modified PbTiO3 ceramics by Ba, Sr, La and Zr, has been investigated as a function of particle size. Pressure-induced phase transitions display an obvious diffuse behavior. Room temperature photoluminescence for nanocrystalline Ba(1-x)Pb(x)TiO3 have been observed. These studies favor preparations of high efficiency PbTiO3 sensors.

  3. Infrared study of the vibrational behavior of CrO 42- guest ions matrix-isolated in metal (II) sulfates (Me=Ca, Sr, Ba, Pb)

    NASA Astrophysics Data System (ADS)

    Stoilova, D.; Georgiev, M.; Marinova, D.

    2005-03-01

    Infrared spectra of matrix-isolated CrO 42- guest ions in host sulfate matrices - CaSO 4·2H 2O, SrSO 4, BaSO 4 and PbSO 4 are reported and discussed with respect to the Cr-O stretching and O-Cr-O bending modes. An adequate measure for the CrO 42- guest ion distortion is the site group splitting Δ νas and Δ νmax (the difference between the highest and the lowest wavenumbered components of the stretching and bending modes). When the smaller SO 42- ions are replaced by the larger CrO 42- ions the mean frequencies of the asymmetric stretching and bending modes ( ν and ν) as well as the frequencies of ν1 of the CrO 42- guest ions are shifted to higher wavenumbers as compared to those in the respective neat chromates due to the larger repulsion potential at the host lattice sites (smaller values of the unit-cell volumes of the neat sulfates than those of the neat chromates). The CrO 42- guest ions exhibit three bands corresponding to the ν3 modes as deduced from the site group analysis ( C2 site symmetry in CaSO 4·2H 2O and Cs site symmetry in SrSO 4, BaSO 4 and PbSO 4). However, the bending modes ν4 and ν2 of the CrO 42- guest ions in SrSO 4, BaSO 4 and PbSO 4 show an effectively higher local symmetry than the 'rigorous' crystallographic one (two bands for ν4 and one band for ν2 instead of a triplet and a doublet expected, respectively). Such different apparent site symmetries observed in various spectral regions may be attributed to the different influence of energetic and geometrical distortions of the polyatomic entities at particular site on various modes.

  4. Ion microprobe U-Th-Pb geochronology and study of micro-inclusions in zircon from the Himalayan high- and ultrahigh-pressure eclogites, Kaghan Valley of Pakistan

    NASA Astrophysics Data System (ADS)

    Rehman, Hafiz Ur; Kobayash, Katsura; Tsujimori, Tatsuki; Ota, Tsutomu; Yamamoto, Hiroshi; Nakamura, Eizo; Kaneko, Yoshiyuki; Khan, Tahseenullah; Terabayashi, Masaru; Yoshida, Kenta; Hirajima, Takao

    2013-02-01

    We report ion microprobe U-Th-Pb geochronology of in situ zircon from the Himalayan high- and ultrahigh-pressure eclogites, Kaghan Valley of Pakistan. Combined with the textural features, mineral inclusions, cathodoluminescence image information and the U-Th-Pb isotope geochronology, two types of zircons were recognized in Group I and II eclogites. Zircons in Group I eclogites are of considerably large size (>100 μm up to 500 μm). A few grains are euhederal and prismatic, show oscillatory zoning with distinct core-rim luminescence pattern. Several other grains show irregular morphology, mitamictization, embayment and boundary truncations. They contain micro-inclusions such as muscovite, biotite, quartz and albite. Core or middle portions of zircons from Group I eclogites yielded concordant U-Th-Pb age of 267.6 ± 2.4 Ma (MSWD = 8.5), have higher U and Th contents with a Th/U ratio > 1, indicating typical magmatic core domains. Middle and rim or outer portions of these zircons contain inclusions of garnet, omphacite, phengite and these portions show no clear zonation. They yielded discordant values ranging between 210 and 71 Ma, indicating several thermal or Pb-loss events during their growth and recrystalization prior to or during the Himalayan eclogite-facies metamorphism. Zircons in Group II eclogites are smaller in size, prismatic to oval, display patchy or sector zoning and contain abundant inclusions of garnet, omphacite, phengite, quartz, rutile and carbonates. They yielded concordant U-Th-Pb age of 44.9 ± 1.2 Ma (MSWD = 4.9). The lower U and Th contents and a lower Th/U ratio (<0.05) in these zircons suggest their formation from the recrystallization of the older zircons during the Himalayan high and ultrahigh-pressure eclogite-facies metamorphism.

  5. Pb isotopic variability in the modern-Pleistocene Indus River system measured by ion microprobe in detrital K-feldspar grains

    NASA Astrophysics Data System (ADS)

    Alizai, Anwar; Clift, Peter D.; Giosan, Liviu; VanLaningham, Sam; Hinton, Richard; Tabrez, Ali R.; Danish, Muhammad; Edinburgh Ion Microprobe Facility (EIMF)

    2011-09-01

    The western Himalaya, Karakoram and Tibet are known to be heterogeneous with regard to Pb isotope compositions in K-feldspars, which allows this system to be used as a sediment provenance tool. We used secondary ion mass spectrometry to measure the isotopic character of silt and sand-sized grains from the modern Sutlej and Chenab Rivers, together with Thar Desert sands, in order to constrain their origin. The rivers show a clear Himalayan provenance, contrasting with grains from the Indus Suture Zone, but with overlap to known Karakoram compositions. The desert dunes commonly show 207Pb/ 204Pb and 206Pb/ 204Pb values that are much higher than those seen in the rivers, most consistent with erosion from Nanga Parbat. This implies at least some origin from the trunk Indus, probably reworked by summer monsoon winds from the SW, a hypothesis supported by bulk Nd and U-Pb zircon dating. Further data collected from Holocene and Pleistocene sands shows that filled and abandoned channels on the western edge of the Thar Desert were sourced from Himalayan rivers before and at 6-8 ka, but that after that time the proportion of high isotopic ratio grains rose, indicating increased contribution from the Thar Desert dunes prior to ˜4.5 ka when flow ceased entirely. This may be linked to climatic drying, northward expansion of the Thar Desert, or changes in drainage style including regional capture, channel abandonment, or active local Thar tributaries. Our data further show a Himalayan river channel east of the present Indus, close to the delta, in the Nara River valley during the middle Holocene. While this cannot be distinguished from the Indus it is not heavily contaminated by reworking from the desert. The Pb system shows some use as a provenance tool, but is not effective at demonstrating whether these Nara sediments represent a Ghaggar-Hakra stream independent from the Indus. Our study highlights an important role for eolian reworking of floodplain sediments in arid rivers

  6. Biosorption of Cd(II) and Pb(II) ions by aqueous solutions of novel alkalophillic Streptomyces VITSVK5 spp. biomass

    NASA Astrophysics Data System (ADS)

    Saurav, Kumar; Kannabiran, Krishnan

    2011-03-01

    Discharge of heavy metals from metal processing industries is known to have adverse effects on the environment. Biosorption of heavy metals by metabolically inactive biomass of microbial organisms is an innovative and alternative technology for removal of these pollutants from aqueous solution. The search of marine actinobacteria with potential heavy metal biosorption ability resulted in the identification of a novel alkalophilic Streptomyces VITSVK5 species. The biosorption property of Streptomyces VITSVK5 spp. was investigated by absorbing heavy metals Cadmium (Cd) and Lead (Pb). Physiochemical characteristics and trace metal concentration analysis of the backwater showed the concentrations of different metals were lead 13±2.1 μg L-1, cadmium 3.1±0.3μg L-1, zinc 8.4±2.6μg L-1 and copper 0.3±0.1μg L-1, whereas mercury was well below the detection limit. The effect of pH and biomass dosage on removal efficiency of heavy metal ions was also investigated. The optimum pH for maximal biosorption was 4.0 for Cd (II) and 5.0 for Pb (II) with 41% and 84% biosorption respectively. The biosorbent dosage was optimized as 3 g L-1 for both the trace metals. Fourier transform infrared absorption spectrum results indicated the chemical interactions of hydrogen atoms in carboxyl (-COOH), hydroxyl (-CHOH) and amine (-NH2) groups of biomass with the metal ions. This could be mainly involved in the biosorption of Cd (II) and Pb (II) onto Streptomyces VITSVK5 spp. The results of our study revealed Streptomyces metabolites could be used to develop a biosorbent for adsorbing metal ions from aqueous environments.

  7. Effects of heavy metal ions (Cu2+, Pb2+ and Cd2+) on DNA damage of the gills, hemocytes and hepatopancreas of marine crab, Charybdis japonica

    NASA Astrophysics Data System (ADS)

    Pan, Luqing; Liu, Na; Zhang, Hongxia; Wang, Jing; Miao, Jingjing

    2011-06-01

    There are rising concerns about the hazardous effects of heavy metals on the environment. In this study, comet assay and DNA alkaline unwinding assay were conducted on the tissues (gills, hepatopancreas, and hemocytes) of Charybdis japonica in order to illustrate genotoxicity of three heavy metal ions (Cu2+, Pb2+, and Cd2+) on the marine crabs C. japonica. The crabs were exposed to Cu2+ (10, 50, and 100 μg.L-1), Pb2+ (50, 250, and 500 μg L-1) and Cd2+ (5, 25, and 50 μg L-1), and the tissues were sampled at days 0.5, 1, 3, 6, 9, and 15. DNA alkaline unwinding assay was used for testing the DNA single strand break in gills and hepatopancreas and comet assay was employed for testing the DNA damage in hemocytes. The results showed that the DNA damage ( F-value) of gills in the crabs exposed to the three heavy metals was decreased gradually during the exposure periods and there was a dose-time response relationship in certain time, suggesting that the levels of DNA single strand break in all the experimental groups increased significantly compared to the controls. Changes of F-value in hepatopancreas of the crabs exposed to the three heavy metals were similar to those in gills except that the peak values were found in the 500 μg L-1 Pb2+ treatment group at day 3 and the 50 μg L-1 Cd2+ treatment group at day 9. The ranks of DNA damage in gills and hepatopancreas induced by the three heavy metal ions (50 μg L-1, day 15) were Cd2+ >Pb2+ >Cu2+ and Pb2+ >Cu2+ >Cd2+. The levels of DNA damage in gills were higher than those in hepatopancreas in the same experimental group. It can be concluded that indices of DNA damage can be used as the potential biomarkers of heavy metal pollution in marine environment.

  8. Simultaneous efficient adsorption of Pb2+ and MnO4- ions by MCM-41 functionalized with amine and nitrilotriacetic acid anhydride

    NASA Astrophysics Data System (ADS)

    Chen, Feiyun; Hong, Mingzhu; You, Weijie; Li, Chong; Yu, Yan

    2015-12-01

    A novel adsorbent NH2/MCM-41/NTAA, capable of simultaneous adsorption of cations and anions from aqueous solution, was prepared by immobilization of amine and nitrilotriacetic acid anhydride (NTAA) onto MCM-41. The structures and properties before and after surface modification were systematically investigated through X-ray diffraction (XRD), transmission electron microscope (TEM) and scanning electron microscope (SEM), nitrogen adsorption-desorption, and infrared spectroscopy (FTIR), thermogravimetry (TGA) and X-ray photoelectron spectroscopy (XPS). They together confirm that the amine and NTAA group were chemically bonded to the internal surface of the mesoporous. The NH2/MCM-41/NTAA were used to adsorb Pb2+ and MnO4- in an aqueous solution in a batch system, and the maximum adsorption efficiency was found to occur at pH 5.0 and 3.0, respectively. NH2/MCM-41/NTAA exhibit preferable removal of Pb2+ through electrostatic interactions and chelation, whereas it captures MnO4- by means of electrostatic interactions. The experimental data are fitted the Langmuir isotherm model reasonably well, with the maximum adsorption capacity of 147 mg/g for Pb2+ and of 156 mg/g for MnO4-. The adsorption rates of both Pb2+ and MnO4- are found to follow the pseudo-second order kinetics. Furthermore, the NH2/MCM-41/NTAA adsorbent performs good recyclability and reusability for 5 cycles use. This study indicates a potential applicability of NH2/MCM-41/NTAA as new absorbents for effective simultaneous adsorption of hazardous metal ions and anions from wastewater.

  9. Sr{sub 4}PbPt{sub 4}O{sub 11}, the first platinum oxide containing Pt{sub 2}{sup 6+} ions

    SciTech Connect

    Renard, Catherine . E-mail: catherine.renard@ensc-lille.fr; Roussel, Pascal; Rubbens, Annick; Daviero-Minaud, Sylvie; Abraham, Francis

    2006-07-15

    We report the synthesis and crystal structure of the new compound Sr{sub 4}PbPt{sub 4}O{sub 11}, containing platinum in highly unusual square pyramidal coordination. The crystals were obtained in molten lead oxide. The structure was solved by X-ray single crystal diffraction techniques on a twinned sample, the final R factors are R=0.0260 and wR=0.0262. The symmetry is triclinic, space group P1-bar , with a=5.6705(6)A, b=9.9852(5)A, c=10.0889(5)A, {alpha}=90.421(3){sup o}, {beta}=89.773(8){sup o}, {gamma}=90.140(9){sup o} and Z=2. The structure is built from dumbell-shaped Pt{sub 2}O{sub 9} entities formed by a dinuclear metal-metal bonded Pt{sub 2}{sup 6+} ion with asymmetric environments of the two Pt atoms, classical PtO{sub 4} square plane and unusual PtO{sub 5} square pyramid. Successive Pt{sub 2}O{sub 9} entities deduced from 90{sup o} rotations are connected through the oxygens of the PtO{sub 4} basal squares to form [Pt{sub 4}O{sub 10}{sup 8-}]{sub {approx}} columns further connected through Pb{sup 2+} and Sr{sup 2+} ions. Raman spectroscopy confirmed the peculiar platinum coordination environment.

  10. A novel and highly sensitive nanocatalytic surface plasmon resonance-scattering analytical platform for detection of trace Pb ions

    PubMed Central

    Ye, Lingling; Wen, Guiqing; Ouyang, Huixiang; Liu, Qingye; Liang, Aihui; Jiang, Zhiliang

    2016-01-01

    Gold nanoparticles (AuNP) have catalysis on the reaction of HAuCl4-H2O2. The produced AuNP have strong resonance Rayleigh scattering (RRS) effect and surface-enhanced resonance Raman scattering (SERS) effect when Victoria blue B (VBB) and rhodamine S (RhS) were used as probes. The increased RRS/SERS intensity respond linearly with the concentration of gold nanoparticles (AuNPB) which synthesized by NaBH4 over 0.038–76 ng/mL, 19–285 ng/mL, 3.8–456 ng/mL respectively. Four kinds of tested nanoparticles have catalysis on the HAuCl4-H2O2 particles reaction. Thus, a novel nanocatalysis surface plasmon resonance-scattering (SPR-S) analytical platform was developed for AuNP. The DNAzyme strand hybridized with the substrate strand to form double-stranded DNA (dsDNA) which couldn’t protect AuNPc to aggregate to AuNPc aggregations, having strong RRS effect. Upon addition of Pb2+, dsDNA could be cracked by Pb2+ to produce single-stranded DNA (ssDNA) that adsorbed on the AuNPc surface to form AuNPc-ssDNA conjugates. The conjugates have strong catalysis on HAuCl4-H2O2 reaction. With increased Pb2+ concentration, the concentration of AuNPc-ssDNA increased and lead to the catalytic activity stronger. The increased RRS intensity responds linearly with Pb2+ concentration over 16.7–666.7 nmol/L. The SERS intensity responded linearly with the concentration of Pb2+ over 50–500 nmol/L. PMID:27071936

  11. A novel and highly sensitive nanocatalytic surface plasmon resonance-scattering analytical platform for detection of trace Pb ions

    NASA Astrophysics Data System (ADS)

    Ye, Lingling; Wen, Guiqing; Ouyang, Huixiang; Liu, Qingye; Liang, Aihui; Jiang, Zhiliang

    2016-04-01

    Gold nanoparticles (AuNP) have catalysis on the reaction of HAuCl4-H2O2. The produced AuNP have strong resonance Rayleigh scattering (RRS) effect and surface-enhanced resonance Raman scattering (SERS) effect when Victoria blue B (VBB) and rhodamine S (RhS) were used as probes. The increased RRS/SERS intensity respond linearly with the concentration of gold nanoparticles (AuNPB) which synthesized by NaBH4 over 0.038-76 ng/mL, 19-285 ng/mL, 3.8-456 ng/mL respectively. Four kinds of tested nanoparticles have catalysis on the HAuCl4-H2O2 particles reaction. Thus, a novel nanocatalysis surface plasmon resonance-scattering (SPR-S) analytical platform was developed for AuNP. The DNAzyme strand hybridized with the substrate strand to form double-stranded DNA (dsDNA) which couldn’t protect AuNPc to aggregate to AuNPc aggregations, having strong RRS effect. Upon addition of Pb2+, dsDNA could be cracked by Pb2+ to produce single-stranded DNA (ssDNA) that adsorbed on the AuNPc surface to form AuNPc-ssDNA conjugates. The conjugates have strong catalysis on HAuCl4-H2O2 reaction. With increased Pb2+ concentration, the concentration of AuNPc-ssDNA increased and lead to the catalytic activity stronger. The increased RRS intensity responds linearly with Pb2+ concentration over 16.7-666.7 nmol/L. The SERS intensity responded linearly with the concentration of Pb2+ over 50-500 nmol/L.

  12. A novel and highly sensitive nanocatalytic surface plasmon resonance-scattering analytical platform for detection of trace Pb ions

    NASA Astrophysics Data System (ADS)

    Ye, Lingling; Wen, Guiqing; Ouyang, Huixiang; Liu, Qingye; Liang, Aihui; Jiang, Zhiliang

    2016-04-01

    Gold nanoparticles (AuNP) have catalysis on the reaction of HAuCl4-H2O2. The produced AuNP have strong resonance Rayleigh scattering (RRS) effect and surface-enhanced resonance Raman scattering (SERS) effect when Victoria blue B (VBB) and rhodamine S (RhS) were used as probes. The increased RRS/SERS intensity respond linearly with the concentration of gold nanoparticles (AuNPB) which synthesized by NaBH4 over 0.038–76 ng/mL, 19–285 ng/mL, 3.8–456 ng/mL respectively. Four kinds of tested nanoparticles have catalysis on the HAuCl4-H2O2 particles reaction. Thus, a novel nanocatalysis surface plasmon resonance-scattering (SPR-S) analytical platform was developed for AuNP. The DNAzyme strand hybridized with the substrate strand to form double-stranded DNA (dsDNA) which couldn’t protect AuNPc to aggregate to AuNPc aggregations, having strong RRS effect. Upon addition of Pb2+, dsDNA could be cracked by Pb2+ to produce single-stranded DNA (ssDNA) that adsorbed on the AuNPc surface to form AuNPc-ssDNA conjugates. The conjugates have strong catalysis on HAuCl4-H2O2 reaction. With increased Pb2+ concentration, the concentration of AuNPc-ssDNA increased and lead to the catalytic activity stronger. The increased RRS intensity responds linearly with Pb2+ concentration over 16.7–666.7 nmol/L. The SERS intensity responded linearly with the concentration of Pb2+ over 50–500 nmol/L.

  13. Isospin Character of Low-Lying Pygmy Dipole States in Pb208 via Inelastic Scattering of O17 Ions

    NASA Astrophysics Data System (ADS)

    Crespi, F. C. L.; Bracco, A.; Nicolini, R.; Mengoni, D.; Pellegri, L.; Lanza, E. G.; Leoni, S.; Maj, A.; Kmiecik, M.; Avigo, R.; Benzoni, G.; Blasi, N.; Boiano, C.; Bottoni, S.; Brambilla, S.; Camera, F.; Ceruti, S.; Giaz, A.; Million, B.; Morales, A. I.; Vandone, V.; Wieland, O.; Bednarczyk, P.; Ciemała, M.; Grebosz, J.; Krzysiek, M.; Mazurek, K.; Zieblinski, M.; Bazzacco, D.; Bellato, M.; Birkenbach, B.; Bortolato, D.; Calore, E.; Cederwall, B.; Charles, L.; de Angelis, G.; Désesquelles, P.; Eberth, J.; Farnea, E.; Gadea, A.; Görgen, A.; Gottardo, A.; Isocrate, R.; Jolie, J.; Jungclaus, A.; Karkour, N.; Korten, W.; Menegazzo, R.; Michelagnoli, C.; Molini, P.; Napoli, D. R.; Pullia, A.; Recchia, F.; Reiter, P.; Rosso, D.; Sahin, E.; Salsac, M. D.; Siebeck, B.; Siem, S.; Simpson, J.; Söderström, P.-A.; Stezowski, O.; Theisen, Ch.; Ur, C.; Valiente-Dobón, J. J.

    2014-07-01

    The properties of pygmy dipole states in Pb208 were investigated using the Pb208(O17, O17'γ) reaction at 340 MeV and measuring the γ decay with high resolution with the AGATA demonstrator array. Cross sections and angular distributions of the emitted γ rays and of the scattered particles were measured. The results are compared with (γ, γ') and (p, p') data. The data analysis with the distorted wave Born approximation approach gives a good description of the elastic scattering and of the inelastic excitation of the 2+ and 3- states. For the dipole transitions a form factor obtained by folding a microscopically calculated transition density was used for the first time. This has allowed us to extract the isoscalar component of the 1- excited states from 4 to 8 MeV.

  14. Effect of tin ions on enhancing the intensity of narrow luminescence line at 311 nm of Gd3+ ions in Li2Osbnd PbOsbnd P2O5 glass system

    NASA Astrophysics Data System (ADS)

    Gandhi, Y.; Rajanikanth, P.; Sundara Rao, M.; Ravi Kumar, V.; Veeraiah, N.; Piasecki, M.

    2016-07-01

    This study is mainly focused on enriching the UVB 311 narrow emission band of Gd3+ ions in Li2Osbnd PbOsbnd P2O5 glasses doped with 1.0 mol% of Gd2O3 and mixed with different concentrations of SnO2 (0-7.0 mol%). The emission spectra SnO2 free glasses exhibited intense narrow UVB band at 311 nm due to 6P7/2 → 8S7/2 transition of Gd3+ ions when excited at 273 nm. The intensity of this band is found to be enhanced nearly four times when the glasses are mixed with 3.0 mol% of SnO2. The reasons for this enhancement have been explored in the light of energy transfer from Sn4+ to Gd3+ ions with the help of rate equations. The declustering of Gd3+ ions (that reduce cross relaxation losses) by tin ions is also found to the other reason for such enrichment. The 311 nm radiation is an efficient in the treatment of various skin diseases and currently it is one of the most desirable and commonly utilised UVB in the construction of phototherapy devices.

  15. Effect of tin ions on enhancing the intensity of narrow luminescence line at 311 nm of Gd3+ ions in Li2Osbnd PbOsbnd P2O5 glass system

    NASA Astrophysics Data System (ADS)

    Gandhi, Y.; Rajanikanth, P.; Sundara Rao, M.; Ravi Kumar, V.; Veeraiah, N.; Piasecki, M.

    2016-07-01

    This study is mainly focused on enriching the UVB 311 narrow emission band of Gd3+ ions in Li2Osbnd PbOsbnd P2O5 glasses doped with 1.0 mol% of Gd2O3 and mixed with different concentrations of SnO2 (0-7.0 mol%). The emission spectra SnO2 free glasses exhibited intense narrow UVB band at 311 nm due to 6P7/2 → 8S7/2 transition of Gd3+ ions when excited at 273 nm. The intensity of this band is found to be enhanced nearly four times when the glasses are mixed with 3.0 mol% of SnO2. The reasons for this enhancement have been explored in the light of energy transfer from Sn4+ to Gd3+ ions with the help of rate equations. The declustering of Gd3+ ions (that reduce cross relaxation losses) by tin ions is also found to the other reason for such enrichment. The 311 nm radiation is an efficient in the treatment of various skin diseases and currently it is one of the most desirable and commonly utilised UVB in the construction of phototherapy devices.

  16. Sorption of Pb2+ Ions from Aqueous Solutions on Organic Wastes (part i) / Sorpcja JONÓW Pb2+ Z ROZTWORÓW Wodnych NA Odpadach Organicznych (CZĘŚĆ I)

    NASA Astrophysics Data System (ADS)

    Bożęcka, Agnieszka; Sanak-Rydlewska, Stanisława

    2013-12-01

    This article presents the results of the research on the Pb2+ ions sorption from model aqueous solutions on walnut shells, plum stones and sunflower hulls. The effect of various factors, such as the concentration of natural sorbent, the pH, and the temperature was studied. The process of Pb2+ ions sorption on studied sorbents was described by the Langmuir model. The best sorption capacity has been revealed for sunflower hulls. The maximum sorption capacity for this material was 36.9 mg/g. W artykule przedstawiono wyniki badań, które dotyczyły usuwania jonów Pb2+ z modelowych roztworów wodnych za pomocą odpadów organicznych, takich jak: łuski słonecznika, łupiny orzecha włoskiego i pestki śliwek. Dla badanego zakresu stężeń od 6,0-110 mg/dm3 i warunków procesu największą wydajność sorpcji, będącą w zakresie (89,4-96,3)% uzyskano dla łusek słonecznika. W przypadku łupin orzecha włoskiego i pestek śliwek sorpcja jonów Pb2+ jest znacznie niższa a jej wydajność wynosi odpowiednio (60,8-78,7)% i (62,3-81,3)%. Zbadano także wpływ stężenia sorbentu, pH roztworu i temperatury na badany proces sorpcji. Dla wszystkich materiałów optymalne stężenie sorbentu wyniosło 5 g/dm3. Powyżej tej wartości nie obserwowano istotnych zmian w stopniu redukcji jonów Pb2+ (rys.2). We wszystkich przypadkach maksima sorpcji osiągnięto przy pH równym 4,0±0,1 co obrazuje rysunek 3. Obniżenie sorpcji, występujące przy pH poniżej i powyżej wartości 4,0 prawdopodobnie związane jest to z ładunkiem gromadzącym się na powierzchni sorbentu (elektrostatyczne odpychanie i przyciąganie badanych jonów). Wartość pH roztworu determinuje także formę oraz stężenie badanego jonu w roztworze. W roztworach silnie kwaśnych ołów występuje głównie w postaci kationów. Stopniowy wzrost pH prowadzi do tworzenia jonów kompleksowych i strącania go w postaci wodorotlenku. Wykazano również, że ze wzrostem temperatury w zakresie (293-313)K nast

  17. Determination of Pb(II), Zn(II), Cd(II), and Co(II) ions by flame atomic absorption spectrometry in food and water samples after preconcentration by coprecipitation with Mo(VI)-diethyldithiocarbamate.

    PubMed

    Tufekci, Mehmet; Bulut, Volkan Numan; Elvan, Hamide; Ozdes, Duygu; Soylak, Mustafa; Duran, Celal

    2013-02-01

    A new, simple, and rapid separation and preconcentration procedure, for determination of Pb(II), Cd(II), Zn(II), and Co(II) ions in environmental real samples, has been developed. The method is based on the combination of coprecipitation of analyte ions by the aid of the Mo(VI)-diethyldithiocarbamate-(Mo(VI)-DDTC) precipitate and flame atomic absorption spectrometric determinations. The effects of experimental conditions like pH of the aqueous solution, amounts of DDTC and Mo(VI), standing time, centrifugation rate and time, sample volume, etc. and also the influences of some foreign ions were investigated in detail on the quantitative recoveries of the analyte ions. The preconcentration factors were found to be 150 for Pb(II), Zn(II) and Co(II), and 200 for Cd(II) ions. The detection limits were in the range of 0.1-2.2 μg L(-1) while the relative standard deviations were found to be lower than 5 % for the studied analyte ions. The accuracy of the method was checked by spiked/recovery tests and the analysis of certified reference material (CRM TMDW-500 Drinking Water). The procedure was successfully applied to seawater and stream water as liquid samples and baby food and dried eggplant as solid samples in order to determine the levels of Pb(II), Cd(II), Zn(II), and Co(II) ions. PMID:22527456

  18. Multi-stimuli-responsive organometallic gels based on ferrocene-linked poly(aryl ether) dendrons: reversible redox switching and Pb2+-ion sensing.

    PubMed

    Lakshmi, Neelakandan Vidhya; Mandal, Dipendu; Ghosh, Sundargopal; Prasad, Edamana

    2014-07-14

    We describe the design, synthesis, and "stimuli-responsive" study of ferrocene-linked Fréchet-type [poly(aryl ether)]-dendron-based organometallic gels, in which the ferrocene moiety is attached to the dendron framework through an acyl hydrazone linkage. The low-molecular-weight gelators (LMWGs) form robust gels in both polar and non-polar solvent/solvent mixtures. The organometallic gels undergo stimuli-responsive behavior through 1) thermal, 2) chemical, and 3) electrochemical methods. Among them, conditions 1 and 3 lead to seamlessly reversible with repeated cycles of identical efficiency. Results indicate that the flexible nature of the poly(aryl ether) dendron framework plays a key role in retaining the reversible electrochemical behavior of ferrocene moiety in the LMWGs. Further, the organometallic gelators have exhibited unique selectivity towards Pb(2+) ions (detection limit ≈10(-8)  M). The metal ion-sensing results in a gel-sol phase transition associated with a color change visible to the naked eye. Most importantly, decomplexing the metal ion from the system leads to the regeneration of the initial gel morphology, indicating the restoring ability of the organometallic gel. The metal-ligand binding nature has been analyzed by using (1)H NMR spectroscopy, mass spectrometry, and DFT calculations.

  19. Influence of modifier oxide on emission features of Dy3+ ion in Pb3O4 ‒ZnO‒P2O5 glasses

    NASA Astrophysics Data System (ADS)

    Ravi kumar, Valluri; Giridhar, G.; Veeraiah, N.

    2016-10-01

    Glasses of the composition Pb2O3‒ZnO‒P2O5: Dy3+ mixed with three different modifier oxides viz., MgO, CaO and SrO are prepared. The influence of modifier oxide on the luminescence characteristics of Dy3+ ions has been investigated. Using the intensities of various absorption bands of Dy3+ ions, the Judd-Ofelt parameters Ω2, Ω4 and Ω6 have been evaluated. Together with the J‒O parameters and the luminescence spectra, various radiative properties like transition probability A, branching ratio βr, the radiative life time τr, and the emission cross-section σE for various emission levels of Dy3+ ions have been evaluated and reported. The values of these parameters were found to be influenced by modifier oxides. Among the three modifier oxides mixed glasses, the glasses mixed with CaO mixed glasses exhibited the highest luminescence efficiency. The results have been analyzed in the light of structural modifications taking place in the glass network with the help of IR spectral studies.

  20. Properties of ion beam deposited Pb/sub 1-//sub x/La/sub x/(Zr/sub y/Ti/sub z/)/sub 1-//sub x//sub /4/O/sub 3/

    SciTech Connect

    Boyer, L.L.; Wu, A.Y.; Metzger, G.W.; McNeil, J.R.

    1989-05-01

    We have recently investigated ion beam sputtering and ion assisted deposition of Pb/sub 1-//sub x/La/sub x/(Zr/sub y/Ti/sub z/)/sub 1-//sub x//sub /4/O/sub 3/ (PLZT). Ion beam sputtered PLZT films display strong second-harmonic generation. Good quality material has been deposited on substrates of Si, Si with a buffer layer of SiO/sub 2/ , and fused silica. The surface morphology of ion beam sputtered PLZT is of very high quality.

  1. Modulation of the Structure and Properties of Uranyl Ion Coordination Polymers Derived from 1,3,5-Benzenetriacetate by Incorporation of Ag(I) or Pb(II).

    PubMed

    Thuéry, Pierre; Harrowfield, Jack

    2016-07-01

    Reaction of uranyl nitrate with 1,3,5-benzenetriacetic acid (H3BTA) in the presence of additional species, either organic bases or their conjugate acids or metal cations, has provided 12 new crystalline complexes, all but one obtained under solvo-hydrothermal conditions. The complexes [C(NH2)3][UO2(BTA)]·H2O (1) and [H2NMe2][UO2(BTA)] (2) crystallize as one- or two-dimensional (1D or 2D) assemblies, respectively, both with uranyl tris-chelation by carboxylate groups and hydrogen-bonded counterions but different ligand conformations. One of the bound carboxylate units is replaced by chelating 1,10-phenanthroline (phen) or 3,4,7,8-tetramethyl-1,10-phenanthroline (Me4phen) in the complexes [(UO2)3(BTA)2(phen)3]·4H2O (3) and [(UO2)3(BTA)2(Me4phen)3]·NMP·3H2O (4) (NMP = N-methyl-2-pyrrolidone), which are a 2D network with honeycomb topology and a 1D polymer, respectively. With silver(I) cations, [UO2Ag(BTA)] (5), a three-dimensional (3D) framework in which the ligand assumes various chelating/bridging coordination modes, and the aromatic ring is involved in Ag(I) bonding, is obtained. A series of seven heterometallic complexes results when lead(II) cations and N-chelating molecules are both present. The complexes [UO2Pb(BTA)(NO3)(bipy)] (6) and [UO2Pb2(BTA)2(bipy)2]·3H2O (7), where bipy is 2,2'-bipyridine, crystallize from the one solution, as 1D and 2D assemblies, respectively. The two 1D coordination polymers [UO2Pb(BTA)(HCOO)(phen)] (8 and 9), again obtained from the one synthesis, provide an example of coordination isomerism, with the formate anion bound either to lead(II) or to uranyl cations. Another 2D architecture is found in [(UO2)2Pb2(BTA)2(HBTA)(H2O)2(phen)2]·2H2O (10), which provides a possible example of a Pb-oxo(uranyl) "cation-cation" interaction. While [UO2Pb(BTA)(HCOO)0.5(NO3)0.5(Me2phen)] (11), where Me2phen is 5,6-dimethyl-1,10-phenanthroline, is a 1D assembly close to those in 6 and 8, [UO2Pb2(BTA)2(Me4phen)2] (12), obtained together with

  2. Modulation of the Structure and Properties of Uranyl Ion Coordination Polymers Derived from 1,3,5-Benzenetriacetate by Incorporation of Ag(I) or Pb(II).

    PubMed

    Thuéry, Pierre; Harrowfield, Jack

    2016-07-01

    Reaction of uranyl nitrate with 1,3,5-benzenetriacetic acid (H3BTA) in the presence of additional species, either organic bases or their conjugate acids or metal cations, has provided 12 new crystalline complexes, all but one obtained under solvo-hydrothermal conditions. The complexes [C(NH2)3][UO2(BTA)]·H2O (1) and [H2NMe2][UO2(BTA)] (2) crystallize as one- or two-dimensional (1D or 2D) assemblies, respectively, both with uranyl tris-chelation by carboxylate groups and hydrogen-bonded counterions but different ligand conformations. One of the bound carboxylate units is replaced by chelating 1,10-phenanthroline (phen) or 3,4,7,8-tetramethyl-1,10-phenanthroline (Me4phen) in the complexes [(UO2)3(BTA)2(phen)3]·4H2O (3) and [(UO2)3(BTA)2(Me4phen)3]·NMP·3H2O (4) (NMP = N-methyl-2-pyrrolidone), which are a 2D network with honeycomb topology and a 1D polymer, respectively. With silver(I) cations, [UO2Ag(BTA)] (5), a three-dimensional (3D) framework in which the ligand assumes various chelating/bridging coordination modes, and the aromatic ring is involved in Ag(I) bonding, is obtained. A series of seven heterometallic complexes results when lead(II) cations and N-chelating molecules are both present. The complexes [UO2Pb(BTA)(NO3)(bipy)] (6) and [UO2Pb2(BTA)2(bipy)2]·3H2O (7), where bipy is 2,2'-bipyridine, crystallize from the one solution, as 1D and 2D assemblies, respectively. The two 1D coordination polymers [UO2Pb(BTA)(HCOO)(phen)] (8 and 9), again obtained from the one synthesis, provide an example of coordination isomerism, with the formate anion bound either to lead(II) or to uranyl cations. Another 2D architecture is found in [(UO2)2Pb2(BTA)2(HBTA)(H2O)2(phen)2]·2H2O (10), which provides a possible example of a Pb-oxo(uranyl) "cation-cation" interaction. While [UO2Pb(BTA)(HCOO)0.5(NO3)0.5(Me2phen)] (11), where Me2phen is 5,6-dimethyl-1,10-phenanthroline, is a 1D assembly close to those in 6 and 8, [UO2Pb2(BTA)2(Me4phen)2] (12), obtained together with

  3. Study of the γ decay of high-lying states in 208Pb via inelastic scattering of 17O ions

    NASA Astrophysics Data System (ADS)

    Crespi, F. C. L.; Kmiecik, M.; Bracco, A.; Leoni, S.; Maj, A.; Benzoni, G.; Blasi, N.; Boiano, C.; Bottoni, S.; Brambilla, S.; Camera, F.; Ceruti, S.; Giaz, A.; Million, B.; Morales, A. I.; Nicolini, R.; Pellegri, L.; Riboldi, S.; Vandone, V.; Wieland, O.; Bednarczyk, P.; Ciemala, M.; Grebosz, J.; Krzysiek, M.; Mazurek, K.; Zieblinski, M.; Bazzacco, D.; Bellato, M.; Birkenbach, B.; Bortolato, D.; Calore, E.; De Angelis, G.; Farnea, E.; Gadea, A.; Görgen, A.; Gottardo, A.; Isocrate, R.; Lenzi, S.; Lunardi, S.; Mengoni, D.; Michelagnoli, C.; Molini, P.; Napoli, D. R.; Recchia, F.; Sahin, E.; Siebeck, B.; Siem, S.; Ur, C.; Valiente Dobon, J. J.

    2014-03-01

    A measurement of the high-lying states in 208Pb has been made using 17O beams at 20 MeV/u. The gamma decay following inelastic excitation was measured with the detector system AGATA Demonstrator based on segmented HPGe detectors, coupled to an array of large volume LaBr3:Ce scintillators and to an array of Si detectors. Preliminary results in comparison with (γ,γ') data, for states in the 5-8 MeV energy interval, are presented.

  4. A solid phase extraction procedure for the determination of Cd(II) and Pb(II) ions in food and water samples by flame atomic absorption spectrometry.

    PubMed

    Daşbaşı, Teslima; Saçmacı, Şerife; Ülgen, Ahmet; Kartal, Şenol

    2015-05-01

    A relatively rapid, accurate and precise solid phase extraction method is presented for the determination of cadmium(II) and lead(II) in various food and water samples. Quantitation is carried out by flame atomic absorption spectrometry (FAAS). The method is based on the retention of the trace metal ions on Dowex Marathon C, a strong acid cation exchange resin. Some important parameters affecting the analytical performance of the method such as pH, flow rate and volume of the sample solution; type, concentration, volume, flow rate of the eluent; and matrix effects on the retention of the metal ions were investigated. Common coexisting ions did not interfere on the separation and determination of the analytes. The detection limits (3 σb) for Cd(II) and Pb(II) were found as 0.13 and 0.18 μg L(-1), respectively, while the limit of quantification values (10 σb) were computed as 0.43 and 0.60 μg L(-1) for the same sequence of the analytes. The precision (as relative standard deviation was lower than 4% at 5 μg L(-1) Cd(II) and 10 μg L(-1) Pb(II) levels, and the preconcentration factor was found to be 250. The accuracy of the proposed procedure was verified by analysing the certified reference materials, SPS-WW2 Batch 108 wastewater level 2 and INCT-TL-1 tea leaves, with the satisfactory results. In addition, for the accuracy of the method the recovery studies (⩾ 95%) were carried out. The method was applied to the determination of the analytes in the various natural waters (lake water, tap water, waste water with boric acid, waste water with H2SO4) and food samples (pomegranate flower, organic pear, radish leaf, lamb meat, etc.), and good results were obtained. While the food samples almost do not contain cadmium, they have included lead at low levels of 0.13-1.12 μg g(-1). PMID:25529724

  5. Selective solid-phase extraction and analysis of trace-level Cr(III), Fe(III), Pb(II), and Mn(II) Ions in wastewater using diethylenetriamine-functionalized carbon nanotubes dispersed in graphene oxide colloids.

    PubMed

    Zhu, Xiangbing; Cui, Yuemei; Chang, Xijun; Wang, Hua

    2016-01-01

    Multi-walled carbon nanotubes (MCNTs) were dispersed in graphene oxide (GO) colloids to be further functionalized with diethylenetriamine (DETA), resulting in GO-MCNTs-DETA nanocomposites for the solid-phase extraction and analysis of Cr(III), Fe(III), Pb(II), and Mn(II) ions at the trace levels in wastewater. Inductively coupled plasma optical emission spectrometry (ICP-OES) indicates that this new solid-phase sorbent could facilitate the maximum static adsorption capacities of 5.4, 13.8, 6.6 and 9.5 mg g(-1) for Cr(III), Fe(III), Pb(II), and Mn(II) ions, respectively, showing the adsorption capacity up to 95% within about 30 min. Moreover, the detection limits of the GO-MCNTs-DETA-based analysis method were found to be 0.16, 0.50, 0.24 and 0.38 ng mL(-1) for Cr(III), Fe(III), Pb(II), and Mn(II) ions, respectively, with the relative standard deviation of lower than 3.0% (n=5). Importantly, common coexisting ions showed no significant interference on the separation and pre-concentration of these heavy metal ions at pH 4.0. Subsequently, the GO-MCNTs-DETA sorbent was successfully employed for the separation and analysis of trace-level Cr(III), Fe(III), Pb(II), and Mn(II) ions in wastewater samples yielding 75-folds concentration factors. PMID:26695275

  6. Study of Chemical Surface Structure of Natural Sorbents Used for Removing of Pb2+ Ions from Model Aqueous Solutions (part Ii)

    NASA Astrophysics Data System (ADS)

    Bożęcka, Agnieszka; Bożęcki, Piotr; Sanak-Rydlewska, Stanisława

    2014-03-01

    This article presents the results of the chemical structure research of organic sorbent surface such as walnut shells, plums stones and sunflower hulls with using such methods as infrared spectrometry (FTIR) and elemental analysis. Based on the IR spectra identification of functional groups present on the surface of studied materials has been done as well as determination of their effect on the sorption mechanism of Pb2+ ions from aqueous model solutions W artykule przedstawiono wyniki badań chemicznej struktury powierzchni sorbentów organicznych takich jak: łupiny orzecha włoskiego, pestki śliwek oraz łuski słonecznika z wykorzystaniem metody spektrometrii w podczerwieni (FTIR) oraz analizy elementarnej. W oparciu o uzyskane widma IR dokonano identyfikacji grup funkcyjnych obecnych na powierzchni tych materiałów i określono ich wpływ na mechanizm sorpcji jonów Pb2+ z modelowych roztworów wodnych. Analiza elementarna wykazała, że spośród badanych sorbentów, największą zawartość węgla (49,91%) i wodoru (5,93%) mają pestki śliwek. Najwięcej azotu (1,59%) zawierają łuszczyny słonecznika (tabela 1). Zawartość siarki we wszystkich badanych materiałach jest znikoma, dlatego nie udało się jej oznaczyć tą metodą. Obecność pozostałych pierwiastków może świadczyć o istnieniu zarówno alifatycznych jak i aromatycznych połączeń organicznych. Potwierdzeniem tego są również zarejestrowane widma IR (rysunki 1-3). W oparciu o uzyskane wyniki można przypuszczać także, iż udział procesu wymiany jonowej w sorpcji ołowiu z roztworów wodnych jest znaczący. Świadczą o tym m.in. intensywności pasm na widmach IR dla próbek badanych materiałów po ich kontakcie z roztworami jonów Pb2+ (rysunki 4-6).

  7. Properties of Products Originating from the Interaction of 35-MeV/nucleon {sup 7}Li Ions with Pb Nuclei

    SciTech Connect

    Demekhina, N.A.; Karapetyan, G.S.; Lukyanov, S.M.; Penionzhkevich, Yu.E.; Skobelev, N.K.; Yakushev, A.B.

    2005-01-01

    The results are presented that were obtained by measuring and analyzing the yields and kinematical features of radioactive products of the reactions initiated in a lead target by lithium ions accelerated to an energy of 35 MeV per nucleon. The cross sections, charge and mass distributions, and kinematical and energy features of various reaction products associated with the fission and the evaporation channels of the decay of excited nuclei are determined. Quantities that are calculated in the present study include the momenta and kinetic energies of residual nuclei, as well as the momentum transfer and the excitation energy of intermediate nuclear systems formed upon complete and incomplete fusion. On the basis of an analysis of data obtained in our experiment, the total cross section for nuclear interaction and partial widths with respect to various channels of the decay of intermediate compound nuclei are determined in the energy range being investigated.

  8. Vertically Free-Standing Ordered Pb(Zr0.52Ti0.48)O3 Nanocup Arrays by Template-Assisted Ion Beam Etching

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyan; Tang, Dan; Huang, Kangrong; Hu, Die; Zhang, Fengyuan; Gao, Xingsen; Lu, Xubing; Zhou, Guofu; Zhang, Zhang; Liu, Junming

    2016-04-01

    In this report, vertically free-standing lead zirconate titanate Pb(Zr0.52Ti0.48)O3 (PZT) nanocup arrays with good ordering and high density (1.3 × 1010 cm-2) were demonstrated. By a template-assisted ion beam etching (IBE) strategy, the PZT formed in the pore-through anodic aluminum oxide (AAO) membrane on the Pt/Si substrate was with a cup-like nanostructure. The mean diameter and height of the PZT nanocups (NCs) was about 80 and 100 nm, respectively, and the wall thickness of NCs was about 20 nm with a hole depth of about 80 nm. Uppermost, the nanocup structure with low aspect ratio realized vertically free-standing arrays when losing the mechanical support from templates, avoiding the collapse or bundling when compared to the typical nanotube arrays. X-ray diffraction (XRD) and Raman spectrum revealed that the as-prepared PZT NCs were in a perovskite phase. By the vertical piezoresponse force microscopy (VPFM) measurements, the vertically free-standing ordered ferroelectric PZT NCs showed well-defined ring-like piezoresponse phase and hysteresis loops, which indicated that the high-density PZT nanocup arrays could have potential applications in ultra-high non-volatile ferroelectric memories (NV-FRAM) or other nanoelectronic devices.

  9. Method for preparing Pb-. beta. ''-alumina ceramic

    DOEpatents

    Hellstrom, E.E.

    1984-08-30

    A process is disclosed for preparing impermeable, polycrystalline samples of Pb-..beta..''-alumina ceramic from Na-..beta..''-alumina ceramic by ion exchange. The process comprises two steps. The first step is a high-temperature vapor phase exchange of Na by K, followed by substitution of Pb for K by immersing the sample in a molten Pb salt bath. The result is a polycrystalline Pb-..beta..''-alumina ceramic that is substantially crack-free.

  10. Simultaneous preconcentrations of Co(2+), Cr(6+), Hg(2+) and Pb(2+) ions by Bacillus altitudinis immobilized nanodiamond prior to their determinations in food samples by ICP-OES.

    PubMed

    Ozdemir, Sadin; Kilinc, Ersin; Celik, Kadir Serdar; Okumus, Veysi; Soylak, Mustafa

    2017-01-15

    A novel solid phase extraction method was developed for simultaneous preconcentration-separation of Co(2+), Cr(6+), Hg(2+) and Pb(2+) ions prior to their determinations in food samples by ICP-OES. Thermophilic Bacillus altitudinis immobilized nanodiamond was used as a new biosorbent. SEM and FT-IR analysis were studied to characterize the biosorbent. The optimum pH values of quantitative biosorption for Co(2+), Cr(6+), Hg(2+) and Pb(2+) were found to be 5.0, 6.0, 6.0 and 6.0, respectively. A flow rate of 3.0mLmin(-1) was selected as optimum for all metal ions. 5mL of 1mol/L HCl was used as eluent. Preconcentration factor was achieved as 80. LODs were calculated as 0.071, 0.023, 0.016 and 0.034ngmL(-1), respectively for Hg(2+), Co(2+), Cr(6+) and Pb(2+). The biosorption capacities were calculated for Co(2+), Cr(6+), Hg(2+) and Pb(2+) as 26.4, 30.4, 19.5, and 35.2mg/g, respectively. The developed method was successfully applied to food samples to determine analyte concentrations. PMID:27542497

  11. Simultaneous preconcentrations of Co(2+), Cr(6+), Hg(2+) and Pb(2+) ions by Bacillus altitudinis immobilized nanodiamond prior to their determinations in food samples by ICP-OES.

    PubMed

    Ozdemir, Sadin; Kilinc, Ersin; Celik, Kadir Serdar; Okumus, Veysi; Soylak, Mustafa

    2017-01-15

    A novel solid phase extraction method was developed for simultaneous preconcentration-separation of Co(2+), Cr(6+), Hg(2+) and Pb(2+) ions prior to their determinations in food samples by ICP-OES. Thermophilic Bacillus altitudinis immobilized nanodiamond was used as a new biosorbent. SEM and FT-IR analysis were studied to characterize the biosorbent. The optimum pH values of quantitative biosorption for Co(2+), Cr(6+), Hg(2+) and Pb(2+) were found to be 5.0, 6.0, 6.0 and 6.0, respectively. A flow rate of 3.0mLmin(-1) was selected as optimum for all metal ions. 5mL of 1mol/L HCl was used as eluent. Preconcentration factor was achieved as 80. LODs were calculated as 0.071, 0.023, 0.016 and 0.034ngmL(-1), respectively for Hg(2+), Co(2+), Cr(6+) and Pb(2+). The biosorption capacities were calculated for Co(2+), Cr(6+), Hg(2+) and Pb(2+) as 26.4, 30.4, 19.5, and 35.2mg/g, respectively. The developed method was successfully applied to food samples to determine analyte concentrations.

  12. Liquid-liquid extraction of metal ions, DFT and TD-DFT analysis of some 1,2,4-triazole Schiff Bases with high selectivity for Pb(II) and Fe(II)

    NASA Astrophysics Data System (ADS)

    Khoutoul, Mohamed; Lamsayah, Morad; Al-blewi, Fawzia F.; Rezki, Nadjet; Aouad, Mohamed Reda; Mouslim, Messali; Touzani, Rachid

    2016-06-01

    Liquid-liquid extraction of metal ions using some 1,2,4-triazole Schiff base derivatives as new extractants was studied. Fe2+, Zn2+, Cu2+, Co2+, Cd2+ and Pb2+ were extracted from the aqueous phase into the organic phase and the extractability for each metal ion was determined by atomic absorption. Interestingly, a competitive extraction was also investigated and then examined at different pH in order to explore the effect of the different substituent groups on metal extraction. Accordingly, high selectivity towards Fe2+ (90.1%) and Pb2+ (94.3%) provided respectively by the presence of electron withdrawing group and electron donor group was attained. In addition, geometry optimizations of the ground and excited-states of the ligands in order to get better insight into the geometry and the electronic structure were carried out by means of DFT and TD-DFT calculations.

  13. Upper Stephanian volcanism and sedimentation in the French Massif Central (France): A high resolution ion microprobe U-Th-Pb study of volcanic tuffs and its tectonic significance

    NASA Astrophysics Data System (ADS)

    Bruguier, O.; Becq-Giraudon, J. F.; Champenois, M.; Deloule, E.; Ludden, J.; Mangin, D.

    2003-04-01

    Post-convergence evolution of the Variscan belt is characterized by the development of numerous intramontane coal-bearing basins containing volcano-sedimentary successions. As these basins are widely distributed in the whole Variscan belt, they represent important tectonic markers that can be used to bracket the phases of extensional tectonics affecting basement country rocks. A series of five volcanic ash layers interbedded in stephanian sedimentary basins from the southern part of the French Massif Central (France) have been studied by high resolution ion-microprobe analyses of zircons in order to constrain the age of basin formation and sedimentation. Weighted mean 206Pb/238U ages for the five studied tuffs are indistinguishable at the 95% confidence level and range from 295.5±5.1 Ma (Graissessac) to 297.9±5.1 Ma (Roujan-Neffies). These U-Pb ages support the argument for intense magmatic activity in the southern part of the French Massif Central during the period 295--300 Ma which is contemporaneous with volcanic events identified in other parts of the Variscan Belt. This suggests magma generation by orogenic belt scale phenomenoms. Inherited zircons were identified in two out of the five dated tuff horizons and support a model involving a anatexis of basement source rocks with ages of ca. 2400 Ma (Jaujac basin), 1900 and 340 Ma (Graissessac basin). One possible xenocrystic grain, ca. 600 Ma old was also detected in zircons from the Graissessac bentonite. The Proterozoic components indicate a Gondwanan affinity for the deep seated material. Apatite concentrates and single zircon grains, analysed for their chemical composition, further indicate magma generation from the continental crust and, at least for the Jaujac basin, with participation of a mafic component. Contemporaneous eruption of mafic and silicic magmas is thought to be related to replenishment of magmatic chambers at depth by influx of mafic, mantle-derived, magmas triggering the upper Stephanian

  14. Solid phase extraction of Cu(II), Ni(II), Pb(II), Cd(II) and Mn(II) ions with 1-(2-thiazolylazo)-2-naphthol loaded Amberlite XAD-1180.

    PubMed

    Tokalioğlu, Serife; Yilmaz, Vedat; Kartal, Senol

    2009-05-01

    A new method for separation and preconcentration of trace amounts of Cu(II), Ni(II), Pb(II), Cd(II) and Mn(II) ions in various matrices was proposed. The method is based on the adsorption and chelation of the metal ions on a column containing Amberlite XAD-1180 resin impregnated with 1-(2-thiazolylazo)-2-naphthol (TAN) reagent prior to their determination by flame atomic absorption spectrometry (FAAS). The effect of pH, type, concentration and volume of eluent, sample volume, flow rates of sample and elution solutions, and interfering ions have been investigated. The optimum pH for simultaneous retention of all the metal ions was 9. Eluent for quantitative elution was 20 ml of 2 mol l(-1) HNO(3). The optimum sample and eluent flow rates were found as 4 ml min(-1), and also sample volume was 500 ml, except for Mn (87% recovery). The sorption capacity of the resin was found to be 0.77, 0.41, 0.57, and 0.30 mg g(-1) for Cu(II), Ni(II), Cd(II), and Mn(II), respectively. The preconcentration factor of the method was 200 for Cu(II), 150 for Pb(II), 100 for Cd(II) and Ni(II), and 50 for Mn(II). The recovery values for all of the metal ions were > or = 95% and relative standard deviations (RSDs) were < or = 5.1%. The detection limit values were in the range of 0.03 and 1.19 microg l(-1). The accuracy of the method was confirmed by analysing the certified reference materials (TMDA 54.4 fortified lake water and GBW 07605 tea samples) and the recovery studies. This procedure was applied to the determination of Cu(II), Ni(II), Pb(II), Cd(II) and Mn(II) in waste water and lake water samples.

  15. Alleviation of Cu and Pb rhizotoxicities in cowpea (Vigna unguiculata) as related to ion activities at root-cell plasma membrane surface.

    PubMed

    Kopittke, Peter M; Kinraide, Thomas B; Wang, Peng; Blamey, F Pax C; Reichman, Suzie M; Menzies, Neal W

    2011-06-01

    Cations, such as Ca and Mg, are generally thought to alleviate toxicities of trace metals through site-specific competition (as incorporated in the biotic ligand model, BLM). Short-term experiments were conducted with cowpea (Vigna unguiculata L. Walp.) seedlings in simple nutrient solutions to examine the alleviation of Cu and Pb toxicities by Al, Ca, H, Mg, and Na. For Cu, the cations depolarized the plasma membrane (PM) and reduced the negativity of ψ(0)(o) (electrical potential at the outer surface of the PM) and thereby decreased {Cu(2+)}(0)(o) (activity of Cu(2+) at the outer surface of the PM). For Pb, root elongation was generally better correlated to the activity of Pb(2+) in the bulk solution than to {Pb(2+)}(0)(o). However, we propose that the addition of cations resulted in a decrease in {Pb(2+)}(0)(o) but a simultaneous increase in the rate of Pb uptake (due to an increase in the negativity of E(m,surf), the difference in potential between the inner and outer surfaces of the PM) thus offsetting the decrease in {Pb(2+)}(0)(o). In addition, Ca was found to alleviate Pb toxicity through a specific effect. Although our data do not preclude site-specific competition (as incorporated in the BLM), we suggest that electrostatic effects have an important role.

  16. U-Pb sensitive high-resolution ion microprobe (SHRIMP) zircon geochronology of granitoid rocks in eastern Zambia: Terrane subdivision of the Mesoproterozoic Southern Irumide Belt

    NASA Astrophysics Data System (ADS)

    Johnson, S. P.; de Waele, B.; Liyungu, K. A.

    2006-12-01

    The Southern Irumide Belt (SIB) is a structurally and metamorphically complex region of mainly Mesoproterozoic igneous rocks in southern and eastern Zambia, northern Mozambique and northern Malawi that was strongly overprinted in the Neoproterozoic to Cambrian Damara-Lufilian-Zambezi (DLZ) orogeny. Because of the scarcity of geological data from this region, little is known about the timing of tectonomagmatic events; however, this belt has traditionally been considered to be a southerly continuation of the adjacent Irumide Belt (IB). Here we provide 27 new U-Pb sensitive high-resolution ion microprobe (SHRIMP) zircon ages that constrain the Paleoproterozoic to Cambrian tectonomagmatic history of this belt and which, for the first time, allow for direct comparison with the adjoining IB. The SIB is floored by a predominantly late Paleoproterozoic basement, which was intruded by voluminous continental margin arc-related magmas between 1.09 and 1.04 Ga and accompanied by high-temperature/low-pressure metamorphism. In contrast, the IB is floored by a late Paleoproterozoic basement that is generally older than 2.0 Ga, contains significant mid-Mesoproterozoic plutonic rocks that are not present within the SIB, and underwent moderate-pressure/moderate-temperature compressional metamorphism and S-type granitoid magmatism at circa 1.02 Ga. These data indicate that the crust underlying the SIB is not a continuation of that underlying the IB but represents an allocthonous continental margin arc terrane juxtaposed against the Congo-Tanzania-Bangweulu Craton during the late Mesoproterozoic Irumide orogeny. Reworking and shearing of the SIB occurred during the DLZ orogen, resulting in the present-day architecture as a series of stacked terranes which have been exploited by voluminous posttectonic granitoid batholiths.

  17. Coolwater culmination: Sensitive high-resolution ion microprobe (SHRIMP) U-Pb and isotopic evidence for continental delamination in the Syringa Embayment, Salmon River suture, Idaho

    USGS Publications Warehouse

    Lund, K.; Aleinikoff, J.N.; Yacob, E.Y.; Unruh, D.M.; Fanning, C.M.

    2008-01-01

    During dextral oblique translation along Laurentia in western Idaho, the Blue Mountains superterrane underwent clockwise rotation and impinged into the Syringa embayment at the northern end of the Salmon River suture. Along the suture, the superterrane is juxtaposed directly against western Laurentia, making this central Cordilleran accretionary-margin segment unusually attenuated. In the embayment, limited orthogonal contraction produced a crustal wedge of oceanic rocks that delaminated Laurentian crust. The wedge is exposed through Laurentian crust in the Coolwater culmination as documented by mapping and by sensitive high-resolution ion microprobe U-Pb, Sri, and ??Nd data for gneisses that lie inboard of the suture. The predominant country rock is Mesoproterozoic paragneiss overlying Laurentian basement. An overlying Neoproterozoic (or younger) paragneiss belt in the Syringa embayment establishes the form of the Cordilleran miogeocline and that the embayment is a relict of Rodinia rifting. An underlying Cretaceous paragneiss was derived from arc terranes and suture-zone orogenic welt but also from Laurentia. The Cretaceous paragneiss and an 86-Ma orthogneiss that intruded it formed the wedge of oceanic rocks that were inserted into the Laurentian margin between 98 and 73 Ma, splitting supracrustal Laurentian rocks from their basement. Crustal thickening, melting and intrusion within the wedge, and folding to form the Coolwater culmination continued until 61 Ma. The embayment formed a restraining bend at the end of the dextral transpressional suture. Clockwise rotation of the impinging superterrane and overthrusting of Laurentia that produced the crustal wedge in the Coolwater culmination are predicted by oblique collision into the Syringa embayment. Copyright 2008 by the American Geophysical Union.

  18. Fast self-diffusion of ions in CH 3 NH 3 PbI 3 : the interstiticaly mechanism versus vacancy-assisted mechanism

    SciTech Connect

    Yang, Ji-Hui; Yin, Wan-Jian; Park, Ji-Sang; Wei, Su-Huai

    2016-01-01

    The stability of organic-inorganic halide perovskites is a major challenge for their applications and has been extensively studied. Among the possible underlying reasons, ion self-diffusion has been inferred to play important roles. While theoretical studies congruously support that iodine is more mobile, experimental studies only observe the direct diffusion of the MA ion and possible diffusion of iodine. The discrepancy may result from the incomplete understanding of ion diffusion mechanisms. With the help of first-principles calculations, we studied ion diffusion in CH3NH3PbI3 (MAPbI3) through not only the vacancy-assisted mechanisms presumed in previous theoretical studies, but also the neglected interstiticaly mechanisms. We found that compared to the diffusion through the vacancy-assisted mechanism, MA ion diffusion through the interstiticaly mechanism has a much smaller barrier which could explain experimental observations. For iodine diffusion, both mechanisms can yield relatively small barriers. Depending on the growth conditions, defect densities of vacancies and interstitials can vary and so do the diffusion species as well as diffusion mechanisms. Our work thus supports that both MA and iodine ion diffusion could contribute to the performance instability of MAPbI3. While being congruous with experimental results, our work fills the research gap by providing a full understanding of ion diffusion in halide perovskites.

  19. Simultaneous trace-levels determination of Hg(II) and Pb(II) ions in various samples using a modified carbon paste electrode based on multi-walled carbon nanotubes and a new synthesized Schiff base.

    PubMed

    Afkhami, Abbas; Bagheri, Hasan; Khoshsafar, Hosein; Saber-Tehrani, Mohammad; Tabatabaee, Masoumeh; Shirzadmehr, Ali

    2012-10-01

    A modified carbon paste electrode based on multi-walled carbon nanotubes (MWCNTs) and 3-(4-methoxybenzylideneamino)-2-thioxothiazolodin-4-one as a new synthesized Schiff base was constructed for the simultaneous determination of trace amounts of Hg(II) and Pb(II) by square wave anodic stripping voltammetry. The modified electrode showed an excellent selectivity and stability for Hg(II) and Pb(II) determinations and for accelerated electron transfer between the electrode and the analytes. The electrochemical properties and applications of the modified electrode were studied. Operational parameters such as pH, deposition potential and deposition time were optimized for the purpose of determination of traces of metal ions at pH 3.0. Under optimal conditions the limits of detection, based on three times the background noise, were 9.0×10(-4) and 6.0×10(-4) μmol L(-1) for Hg(II) and Pb(II) with a 90 s preconcentration, respectively. In addition, the modified electrode displayed a good reproducibility and selectivity, making it suitable for the simultaneous determination of Hg(II) and Pb(II) in real samples such as sea water, waste water, tobacco, marine and human teeth samples. PMID:22975186

  20. PbLi2Ti6O14: A novel high-rate long-life anode material for rechargeable lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Peng; Qian, Shangshu; Yu, Haoxiang; Yan, Lei; Lin, Xiaoting; Yang, Ke; Long, Nengbing; Shui, Miao; Shu, Jie

    2016-10-01

    As a novel anode material, PbLi2Ti6O14 is prepared by a traditional solid state method at a calcination temperature of 900 °C. Structural analysis and electrochemical tests prove that PbLi2Ti6O14 possesses a good crystallinity and superior performance. PbLi2Ti6O14, composed of particles with 400 nm in length and 300 nm in width, exhibits an initial charge capacity of 155.1 mAh g-1 at 100 mA g-1 and maintains at 147.9 mAh g-1 after 100 cycles, with capacity retention as high as 95.4%. Especially, the reversible capacity of PbLi2Ti6O14 can stabilize at 101.6 mAh g-1 after 1000 cycles at a high current density of 1000 mA g-1, with capacity retention of 87.5%. Besides, the lithium storage behavior in PbLi2Ti6O14 is also studied by various in-situ and ex-situ methods. It is found that the lithiation/delithiation process in PbLi2Ti6O14 is a highly reversible reaction. All these results demonstrate that PbLi2Ti6O14 may be an impressive anode material in the near future.

  1. A time course assessment of changes in reactive oxygen species generation and antioxidant defense in hydroponically grown wheat in response to lead ions (Pb2+).

    PubMed

    Kaur, Gurpreet; Singh, Harminder Pal; Batish, Daizy Rani; Kohli, Ravinder Kumar

    2012-10-01

    We examined the effect of Pb(2+) (8 and 40 mg l(-1)) on reactive oxygen species generation and alterations in antioxidant enzymes in hydroponically grown wheat at 24, 72, and 120 h after exposure. Pb(2+) toxicity was more pronounced on root growth, and it correlated with the greater Pb accumulation in roots. Pb exposure (40 mg l(-1)) enhanced superoxide anion, H(2)O(2), and MDA content in wheat roots by 1.9- to 2.2-folds, 56-255%, and 41-90%, respectively, over the control. Pb-induced loss of membrane integrity was confirmed by the enhanced electrolyte leakage and in vivo histochemical localization. Activities of scavenging enzymes, superoxide dismutases and catalases, enhanced in Pb-treated wheat roots by 1.4- to 5.7-folds over that in the control. In contrast, the activities of ascorbate and guaiacol peroxidases and glutathione reductases decreased significantly, suggesting their non-involvement in detoxification process. The study concludes that Pb(2+)-induced oxidative damage in wheat roots involve greater H(2)O(2) accumulation and the deactivation of the related scavenging enzymes.

  2. Ultraperipheral Pb+Pb reactions at LHC energies

    NASA Astrophysics Data System (ADS)

    Norbeck, Edwin; Onel, Yasar

    2011-10-01

    The magnetic field midway between two Pb nuclei passing at 20 fm is 2 × 1020 gauss at LHC energies (1144 TeV in PbPb center of mass). At these energies the Coulomb field of a passing Pb nucleus can be regarded as a cloud of real photons. The cross sections for γγ and γA reactions are huge compared to 7 b for two Pb nuclei actually colliding. The reaction rate is limited by the 323 b cross section for breaking up the Pb nucleus or for the capture by a Pb ion of an e- from the many e+ e- pairs that are formed. These products go down the beam pipe and eventually hit superconducting magnets. The γγ reactions can produce particles with mc2 up to 100 GeV. The γA reactions can produce particles with mc2 more than 900 GeV. These ultraperipheral reactions are particularly clean. In proton-proton reactions, the reaction between two partons to produce something of interest is accompanied by a large background caused by many other parton-parton reactions. When γA breaks up a Pb nucleus, the transverse energy is small so that the fragments continue in the original beam direction. A single neutron in the original beam direction provides a useful flag that shows that an ultraperipheral reaction has occurred.

  3. Ion Probe U-Pb dating of the Central Sakarya basement: a peri-Gondwana terrane cut by late Lower Carboniferous subduction/collision related granitic magmatism

    NASA Astrophysics Data System (ADS)

    Ayda Ustaömer, P.; Ustaömer, Timur; Robertson, Alastair. H. F.

    2010-05-01

    Our aim here is to better understand the age and tectonic history of crystalline basement units in the Sakarya Zone of N Turkey, north of the Neotethyan İzmir-Ankara-Erzincan Suture Zone, utilising field, petrographic and ion probe dating, the latter carried out at the University of Edinburgh. One of the largest basement units, Central Sakarya, is dominated by paragneisses and schists that are best exposed between Bilecik and Sarıcakaya, forming a belt ~15 km wide x 100 km long. Smaller outcrops of this basement are exposed further north, for instance in the Geyve area. High-grade metamorphic basement is unconformably overlain by Lower Jurassic-Upper Cretaceous cover sediments of the Sakarya Zone and is in tectonic contact with the Late Palaeozoic-Early Mesozoic Karakaya Complex to the south. Ion-probe U-Pb dating of 89 detrital zircons, separated from one garnet micaschist sample, range from 551 Ma (Ediacaran) to 2738 Ma (Neoarchean). 85% of the ages are > 90 % concordant. Zircon populations cluster at ~550-750 Ma (28 grains), ~950-1050 Ma (27 grains) and ~2000 Ma (5 grains), with smaller groupings at ~800 Ma and ~1850 Ma. The first, prominent population (Neoproterozoic) reflects derivation from a source area related to a Cadomian-Avalonian magmatic arc, likely to be associated with a Cadomian/NE African terrane rather than Baltica (Baltica is known to be magmatically inactive during this period), or Avalonia/Amazonia (in view of the absence of Mesoproterozoic ages in Avalonian-Amazonian terranes). The early Neoproterozoic ages (0.9-1 Ga) deviate significantly from the known age spectra of Cadomian terranes (i.e. Armorican Terrane Assemblage) and instead suggest derivation from an original part of NE Africa. The detrital zircon age spectrum of Cambrian-Ordovician sandstones deposited at the northern periphery of the Arabian-Nubian Shield (i.e. the Elat sandstone) is notably similar to that of the Sakarya basement. The Central Sakarya terrane may have rifted in

  4. Purification of cyclotron-produced 203Pb for labeling Herceptin.

    PubMed

    Garmestani, Kayhan; Milenic, Diane E; Brady, Erik D; Plascjak, Paul S; Brechbiel, Martin W

    2005-04-01

    A simple and rapid procedure was developed for the purification of cyclotron-produced 203Pb via the 203Tl(d,2n) 203Pb reaction. A Pb(II) selective ion-exchange resin, with commercial name Pb Resin from Eichrom Technologies, Inc., was used to purify 203Pb from the cyclotron-irradiated Tl target with excellent recovery of the enriched Tl target material. The purified 203Pb was used to radiolabel the monoclonal antibody Herceptin. The in vitro and in vivo properties of the 203Pb radioimmunoconjugate were evaluated.

  5. Sensitive optical temperature sensor based on up-conversion luminescence spectra of Er3+ ions in PbO-Ga2O3-XO2 (X = Ge, Si) glasses

    NASA Astrophysics Data System (ADS)

    Pisarski, Wojciech A.; Pisarska, Joanna; Lisiecki, Radosław; Ryba-Romanowski, Witold

    2016-09-01

    Up-conversion luminescence spectra of Er3+ ions in PbO-Ga2O3-GeO2 and PbO-Ga2O3-SiO2 glasses have been examined as a function of temperature in the 298-650 K range. The relative emission intensities of green bands corresponding to 2H11/2 → 4I15/2 and 4S3/2 → 4I15/2 transitions of Er3+ were determined with temperature. Based on up-conversion luminescence spectra of Er3+, the fluorescence intensity ratio and temperature sensitivity for glasses based on PbO-Ga2O3-XO2 (X = Ge, Si) were calculated. The maximum sensitivity is equal to 20.4 × 10-4 K-1 at T = 620 K (X = Ge) and 26.4 × 10-4 K-1 at T = 590 K (X = Si) suggesting potential application in optical sensor thermometry.

  6. Rapid adsorption of toxic Pb(II) ions from aqueous solution using multiwall carbon nanotubes synthesized by microwave chemical vapor deposition technique.

    PubMed

    Mubarak, Nabisab Mujawar; Sahu, Jaya Narayan; Abdullah, Ezzat Chan; Jayakumar, Natesan Subramanian

    2016-07-01

    Multiwall carbon nanotubes (MWCNTs) were synthesized using a tubular microwave chemical vapor deposition technique, using acetylene and hydrogen as the precursor gases and ferrocene as catalyst. The novel MWCNT samples were tested for their performance in terms of Pb(II) binding. The synthesized MWCNT samples were characterized using Fourier Transform Infrared (FT-IR), Brunauer, Emmett and Teller (BET), Field Emission Scanning Electron Microscopy (FESEM) analysis, and the adsorption of Pb(II) was studied as a function of pH, initial Pb(II) concentration, MWCNT dosage, agitation speed, and adsorption time, and process parameters were optimized. The adsorption data followed both Freundlich and Langmuir isotherms. On the basis of the Langmuir model, Qmax was calculated to be 104.2mg/g for the microwave-synthesized MWCNTs. In order to investigate the dynamic behavior of MWCNTs as an adsorbent, the kinetic data were modeled using pseudo first-order and pseudo second-order equations. Different thermodynamic parameters, viz., ∆H(0), ∆S(0) and ∆G(0) were evaluated and it was found that the adsorption was feasible, spontaneous and endothermic in nature. The statistical analysis revealed that the optimum conditions for the highest removal (99.9%) of Pb(II) are at pH5, MWCNT dosage 0.1g, agitation speed 160r/min and time of 22.5min with the initial concentration of 10mg/L. Our results proved that microwave-synthesized MWCNTs can be used as an effective Pb(II) adsorbent due to their high adsorption capacity as well as the short adsorption time needed to achieve equilibrium. PMID:27372128

  7. Synthesis, characterization and application of poly(acrylamide-co-methylenbisacrylamide) nanocomposite as a colorimetric chemosensor for visual detection of trace levels of Hg and Pb ions.

    PubMed

    Sedghi, Roya; Heidari, Bahareh; Behbahani, Mohammad

    2015-03-21

    In this study, a new colorimetric chemosensor based on TiO2/poly(acrylamide-co-methylenbisacrylamide) nanocomposites was designed for determination of mercury and lead ions at trace levels in environmental samples. The removal and preconcentration of lead and mercury ions on the sorbent was achieved due to sharing an electron pair of N and O groups of polymer chains with the mentioned heavy metal ions. The hydrogel sensor was designed by surface modification of a synthesized TiO2 nanoparticles using methacryloxypropyltrimethoxysilan (MAPTMS), which provided a reactive C=C bond that polymerized the acrylamide and methylenbisacrylamide. The sorbent was characterized using X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscope (SEM), EDS analysis and Fourier transform in frared (FT-IR) spectrometer. This nanostructured composite with polymer shell was developed as a sensitive and selective sorbent for adsorption of mercury and lead ions from aqueous solution at optimized condition. This method involves two-steps: (1) preconcentration of mercury and lead ions by the synthesized sorbent and (2) its selective monitoring of the target ions by complexation with dithizone (DZ). The color of the sorbent in the absence and presence of mercury and lead ions shifts from white to violet and red, respectively. The detection limit of the synthesized nanochemosensor for mercury and lead ions was 1 and 10 μg L(-1), respectively. The method was successfully applied for trace detection of mercury and lead ions in tap, river, and sea water samples. PMID:25497023

  8. Low-energy fission investigated in reactions of 750 AMeV238U-ions with Pb and Be targets. I. Nuclear charge distributions

    NASA Astrophysics Data System (ADS)

    Armbruster, P.; Bernas, M.; Czajkowski, S.; Geissel, H.; Aumann, T.; Dessagne, Ph.; Donzaud, C.; Hanelt, E.; Heinz, A.; Hesse, M.; Kozhuharov, C.; Miehe, Ch.; Münzenberg, G.; Pfützner, M.; Schmidt, K.-H.; Schwab, W.; Stéphan, C.; Sümmerer, K.; Tassan-Got, L.; Voss, B.

    1996-12-01

    Charge distributions of fragments from low energy nuclear fission are investigated in reactions of highly fissile238U projectiles at relativistic energies (750 A·MeV) with a heavy (Pb) and a light (Be) target. The fully stripped fission fragments are separated by the Fragment Separator (FRS). Their high kinetic energies in the laboratory system allow the identification of all atomic numbers by using Multiple-Sampling Ionization Chambers (MUSIC). The elemental distributions of fragments observed at larger magnetic rigidities than the238U projectiles show asymmetric break-up and odd-even effects. They indicate a low energy fission process, induced mainly by dissociation in the electro-magnetic field for the U/Pb-system, or by peripheral nuclear interactions for the U/Be-system.

  9. Calculation of uncertainties of U-Pb isotope data

    USGS Publications Warehouse

    Ludwig, K. R.

    1980-01-01

    Equations are derived for the estimation of errors and error correlations for various types of U-Pb isotope data, taking into account ion-beam instabilities, run-to-run variability in mass-discrimination, uncertainties in Pb and U concentrations, and uncertainties in initial-Pb and blank-Pb amount and isotopic composition. Equations are also given for the calculation of concordia intercept errors. ?? 1980.

  10. Method for preparing Pb-.beta."-alumina ceramic

    DOEpatents

    Hellstrom, Eric E.

    1986-01-01

    A process is disclosed for preparing impermeable, polycrystalline samples of Pb-.beta."-alumina ceramic from Na-.beta."-alumina ceramic by ion exchange. The process comprises two steps. The first step is a high-temperature vapor phase exchange of Na by K, followed by substitution of Pb for K by immersing the sample in a molten Pb salt bath. The result is a polycrystalline Pb-.beta."-alumina ceramic that is substantially crack-free.

  11. Evidence for transverse momentum and pseudorapidity dependent event plane fluctuations in PbPb and pPb collisions

    DOE PAGES

    Khachatryan, Vardan

    2015-09-22

    A systematic study of the factorization of long-range azimuthal two-particle correlations into a product of single-particle anisotropies is presented as a function of pT and η of both particles and as a function of the particle multiplicity in PbPb and pPb collisions. The data were taken with the CMS detector for PbPb collisions at √sNN=2.76 TeV and pPb collisions at √sNN=5.02 TeV, covering a very wide range of multiplicity. Factorization is observed to be broken as a function of both particle pT and η. When measured with particles of different pT, the magnitude of the factorization breakdown for the secondmore » Fourier harmonic reaches 20% for very central PbPb collisions but decreases rapidly as the multiplicity decreases. The data are consistent with viscous hydrodynamic predictions, which suggest that the effect of factorization breaking is mainly sensitive to the initial-state conditions rather than to the transport properties (e.g., shear viscosity) of the medium. The factorization breakdown is also computed with particles of different η. The effect is found to be weakest for mid-central PbPb events but becomes larger for more central or peripheral PbPb collisions, and also for very-high-multiplicity pPb collisions. The η-dependent factorization data provide new insights to the longitudinal evolution of the medium formed in heavy ion collisions.« less

  12. Evidence for transverse momentum and pseudorapidity dependent event plane fluctuations in PbPb and pPb collisions

    SciTech Connect

    Khachatryan, Vardan

    2015-09-22

    A systematic study of the factorization of long-range azimuthal two-particle correlations into a product of single-particle anisotropies is presented as a function of pT and η of both particles and as a function of the particle multiplicity in PbPb and pPb collisions. The data were taken with the CMS detector for PbPb collisions at √sNN=2.76 TeV and pPb collisions at √sNN=5.02 TeV, covering a very wide range of multiplicity. Factorization is observed to be broken as a function of both particle pT and η. When measured with particles of different pT, the magnitude of the factorization breakdown for the second Fourier harmonic reaches 20% for very central PbPb collisions but decreases rapidly as the multiplicity decreases. The data are consistent with viscous hydrodynamic predictions, which suggest that the effect of factorization breaking is mainly sensitive to the initial-state conditions rather than to the transport properties (e.g., shear viscosity) of the medium. The factorization breakdown is also computed with particles of different η. The effect is found to be weakest for mid-central PbPb events but becomes larger for more central or peripheral PbPb collisions, and also for very-high-multiplicity pPb collisions. The η-dependent factorization data provide new insights to the longitudinal evolution of the medium formed in heavy ion collisions.

  13. Structural investigation of vanadium ions doped Li2Osbnd PbOsbnd B2O3sbnd P2O5 glasses by means of spectroscopic and dielectric studies

    NASA Astrophysics Data System (ADS)

    Yusub, S.; Narendrudu, T.; Suresh, S.; Krishna Rao, D.

    2014-11-01

    In the present investigation we report the synthesis of a series of transparent glasses of composition 20Li2Osbnd 20PbOsbnd 45B2O3sbnd (15-x) P2O5: xV2O5 with eight values of x ranging from 0 to 2.5 mol%, and their characterization. X-ray diffraction (XRD) spectra reflected the amorphous nature of the glasses. Optical absorption, electron paramagnetic resonance (EPR) spectra and FTIR study of vanadyl ions in the present glass network have been analyzed. The optical absorption and EPR investigations have revealed that vanadium ions do exist in both V4+ and V5+ states and the redox ratio (V4+/V5+) is observed to increase with the increase in concentration of V2O5. Dielectric properties viz., dielectric constant ε‧(ω), loss tan δ, electrical moduli M‧(ω), M″(ω), a.c. conductivity σac over an extensive scale of frequency and temperature have been investigated as a function of V2O5 concentration. The dispersion of dielectric constant ε‧(ω) with temperature has been interpreted by space charge polarization model. The dielectric loss and electrical moduli variation with frequency and temperature exhibited relaxation effects. These effects are ascribed to V4+ ions. The a.c. conductivity of the prepared glasses is perceived to escalate with the hike in V2O5 concentration whereas the activation energy for conduction exhibits a reverse trend. The conductivity mechanism is explained on the basis of polaronic transfer between V4+ and V5+ ions. The low temperature a.c. conductivity mechanism is elucidated by the quantum mechanical tunneling model. The growth in the values of dielectric parameters with raise in the concentration of V2O5 is due to V4+ ions which act as modifiers. The investigation of these results has indicated that at higher concentrations of V2O5, the VO2+ ions in the glasses were present in octahedral sites with tetragonal compression and belong to C4v symmetry.

  14. Controlled Fabrication of Silk Protein Sericin Mediated Hierarchical Hybrid Flowers and Their Excellent Adsorption Capability of Heavy Metal Ions of Pb(II), Cd(II) and Hg(II).

    PubMed

    Koley, Pradyot; Sakurai, Makoto; Aono, Masakazu

    2016-01-27

    Fabrication of protein-inorganic hybrid materials of innumerable hierarchical patterns plays a major role in the development of multifunctional advanced materials with their improved features in synergistic way. However, effective fabrication and applications of the hybrid structures is limited due to the difficulty in control and production cost. Here, we report the controlled fabrication of complex hybrid flowers with hierarchical porosity through a green and facile coprecipitation method by using industrial waste natural silk protein sericin. The large surface areas and porosity of the microsize hybrid flowers enable water purification through adsorption of different heavy metal ions. The high adsorption capacity depends on their morphology, which is changed largely by sericin concentration in their fabrication. Superior adsorption and greater selectivity of the Pb(II) ions have been confirmed by the characteristic growth of needle-shaped nanowires on the hierarchical surface of the hybrid flowers. These hybrid flowers show excellent thermal stability even after complete evaporation of the protein molecules, significantly increasing the porosity of the flower petals. A simple, cost-effective and environmental friendly fabrication method of the porous flowers will lead to a new solution to water pollution required in the modern industrial society. PMID:26736132

  15. Controlled Fabrication of Silk Protein Sericin Mediated Hierarchical Hybrid Flowers and Their Excellent Adsorption Capability of Heavy Metal Ions of Pb(II), Cd(II) and Hg(II).

    PubMed

    Koley, Pradyot; Sakurai, Makoto; Aono, Masakazu

    2016-01-27

    Fabrication of protein-inorganic hybrid materials of innumerable hierarchical patterns plays a major role in the development of multifunctional advanced materials with their improved features in synergistic way. However, effective fabrication and applications of the hybrid structures is limited due to the difficulty in control and production cost. Here, we report the controlled fabrication of complex hybrid flowers with hierarchical porosity through a green and facile coprecipitation method by using industrial waste natural silk protein sericin. The large surface areas and porosity of the microsize hybrid flowers enable water purification through adsorption of different heavy metal ions. The high adsorption capacity depends on their morphology, which is changed largely by sericin concentration in their fabrication. Superior adsorption and greater selectivity of the Pb(II) ions have been confirmed by the characteristic growth of needle-shaped nanowires on the hierarchical surface of the hybrid flowers. These hybrid flowers show excellent thermal stability even after complete evaporation of the protein molecules, significantly increasing the porosity of the flower petals. A simple, cost-effective and environmental friendly fabrication method of the porous flowers will lead to a new solution to water pollution required in the modern industrial society.

  16. Calculation of the Coulomb Fission Cross Sections for Pb-Pb and Bi-Pb Interactions at 158 A GeV

    NASA Technical Reports Server (NTRS)

    Poyser, William J.; Ahern, Sean C.; Norbury, John W.; Tripathi, R. K.

    2002-01-01

    The Weizsacker-Williams (WW) method of virtual quanta is used to make approximate cross section calculations for peripheral relativistic heavy-ion collisions. We calculated the Coulomb fission cross sections for projectile ions of Pb-208 and Bi-209 with energies of 158 A GeV interacting with a Pb-208 target. We also calculated the electromagnetic absorption cross section for Pb-208 ion interacting as described. For comparison we use both the full WW method and a standard approximate WW method. The approximate WW method in larger cross sections compared to the more accurate full WW method.

  17. High ZT in p-type (PbTe)1-2x(PbSe)x(PbS)x thermoelectric materials.

    PubMed

    Korkosz, Rachel J; Chasapis, Thomas C; Lo, Shih-han; Doak, Jeff W; Kim, Yoon Jun; Wu, Chun-I; Hatzikraniotis, Euripidis; Hogan, Timothy P; Seidman, David N; Wolverton, Chris; Dravid, Vinayak P; Kanatzidis, Mercouri G

    2014-02-26

    Lead chalcogenide thermoelectric systems have been shown to reach record high figure of merit values via modification of the band structure to increase the power factor or via nanostructuring to reduce the thermal conductivity. Recently, (PbTe)1-x(PbSe)x was reported to reach high power factors via a delayed onset of interband crossing. Conversely, the (PbTe)1-x(PbS)x was reported to achieve low thermal conductivities arising from extensive nanostructuring. Here we report the thermoelectric properties of the pseudoternary 2% Na-doped (PbTe)1-2x(PbSe)x(PbS)x system. The (PbTe)1-2x(PbSe)x(PbS)x system is an excellent platform to study phase competition between entropically driven atomic mixing (solid solution behavior) and enthalpy-driven phase separation. We observe that the thermoelectric properties of the PbTe-PbSe-PbS 2% Na doped are superior to those of 2% Na-doped PbTe-PbSe and PbTe-PbS, respectively, achieving a ZT ≈2.0 at 800 K. The material exhibits an increased the power factor by virtue of valence band modification combined with a very reduced lattice thermal conductivity deriving from alloy scattering and point defects. The presence of sulfide ions in the rock-salt structure alters the band structure and creates a plateau in the electrical conductivity and thermopower from 600 to 800 K giving a power factor of 27 μW/cmK(2). The very low total thermal conductivity values of 1.1 W/m·K of the x = 0.07 composition is accounted for essentially by phonon scattering from solid solution defects rather than the assistance of endotaxial nanostructures.

  18. Results on open-charm production in pp, p-Pb and Pb-Pb collisions with ALICE at the LHC

    NASA Astrophysics Data System (ADS)

    Meninno, E.; ALICE Collaboration

    2015-08-01

    ALICE (A Large Ion Collider Experiment) is designed to study the strongly-interacting medium created in heavy-ion collisions at LHC energies, the Quark-Gluon Plasma (QGP). Charm and beauty quarks are powerful probes to study the QGP in heavy-ion collisions: produced in hard partonic scattering processes on a short time scale, they are expected to traverse the QCD medium, interacting with its constituents and losing energy through radiative and collisional processes. In ALICE, open-charm production is studied through the reconstruction of the hadronic decays of D0, D+, D*+ and Ds+ mesons at mid-rapidity. The high precision tracking, good vertexing capabilities and excellent particle identification offered by ALICE allow for the measurement of particles containing heavy quarks (particularly D mesons) in a wide transverse-momentum range in pp, p-Pb and Pb-Pb collisions. A review of the main results on D-meson production in pp collisions at = 7 TeV, Pb-Pb collisions at = 2.76 TeV and the most recent results in p-Pb collisions at = 5.02 TeV will be presented. In particular, the pT-differential yields and cross sections in the three collision systems, the nuclear modification factors RAA and RpPb in Pb-Pb and p-Pb collisions, and the elliptic flow in Pb-Pb collisions will be discussed. The D-meson yield in pp and p-Pb collisions will also be shown as a function of charged-particle multiplicity.

  19. Dynamical simulation of energy dissipation in asymmetric heavy-ion induced fission of {sup 200}Pb, {sup 213}Fr, and {sup 251}Es

    SciTech Connect

    Mirfathi, S. M.; Pahlavani, M. R.

    2008-12-15

    The dynamical model based on the asymmetric mass division has been applied to calculate pre-scission neutron multiplicity from heavy-ion induced fusion-fission reactions. Links between the pre-scission neutron multiplicity, excitation energy, and asymmetric mass distribution are clarified based on the Monte Carlo simulation and Langevin dynamics. The pre-scission neutron multiplicity is calculated and compared with the respective experimental data over a wide range of excitation energy and nonconstant viscosity. The analysis indicates a different effect for the application of asymmetric mass division in different energy regions of such processes.

  20. Jet production in pp, p-Pb and Pb-Pb collisions measured by ALICE

    NASA Astrophysics Data System (ADS)

    Reed, Rosi; ALICE Collaboration

    2015-08-01

    Particle jets, formed when a hard scattered parton fragments into a jet of hadrons, are an ideal probe of the medium formed in heavy-ion collisions. The hard-scattered partons that produce them come from early in the collision, prior to the medium formation. These partons lose energy as they traverse the medium, and eventually fragment into jets of hadrons, which exhibit a modification when compared to jets produced in pp and p-Pb collisions. At LHC energies, the parton production cross-section is much larger than at RHIC, allowing jets to be reconstructed over a much wider kinematic range. Jet reconstruction allows for a more differential investigation of the parton energy loss than single hadrons, which have been used as jet proxies in the past, as the jets collect a larger percentage of the final state energy, which means their kinematics are more closely correlated to the kinematics of the initial parton. Jets are reconstructed in ALICE either using information from the tracking systems, or by combining this with the ALICE electromagnetic calorimeter (EMCal). In these proceedings, jet spectra from 2.76 TeV Pb-Pb and pp collisions will be presented. In particular, the centrality and event-plane dependence of the measured spectra and the background will be discussed. Jets from different centrality classes and event-plane orientations provide additional information necessary for understanding the path-length and temperature dependence of energy loss mechanisms. The reconstruction and correction procedures for jets will be shown. Results from Pb-Pb events will be compared to the baseline pp and p-Pb results, which allows the initial state and cold nuclear matter effects to be disentangled from hot medium effects. The jet nuclear modification, which quantifies the suppression, will be compared to energy-loss models.

  1. Evidence for an Early Archean component in the Middle to Late Archean gneisses of the Wind River Range, west-central Wyoming: conventional and ion microprobe U-Pb data

    USGS Publications Warehouse

    Aleinikoff, J.N.; Williams, I.S.; Compston, W.; Stuckless, J.S.; Worl, R.G.

    1989-01-01

    Gneissic rocks that are basement to the Late Archean granites comprising much of the Wind River Range, west-central Wyoming, have been dated by the zircon U-Pb method using both conventional and ion microprobe techniques. A foliated hornblende granite gneiss member from the southern border of the Bridger batholith is 2670??13 Ma. Zircons from a granulite just north of the Bridger batholith are equant and faceted, a typical morphology for zircon grown under high grade metamorphic conditions. This granulite, which may be related to a second phase of migmatization in the area, is 2698??8 Ma. South of the Bridger batholith, zircons from a granulite (charnockite), which is related to an earlier phase of migmatization in the Range, yield a discordia with intercept ages of about 2.3 and 3.3 Ga. However, ion microprobe analyses of single zircon grains indicate that this rock contains several populations of zircon, ranging in age from 2.67 to about 3.8 Ga. Based on zircon morphology and regional geologic relationships, we interpret the data as indicating an age of ???3.2 Ga for the first granulite metamorphism and migmatization. Older, possibly xenocrystic zircons give ages of ???3.35, 3.65 and ???3.8 Ga. Younger zircons grew at 2.7 and 2.85 Ga in response to events, including the second granulite metamorphism at 2.7 Ga, that culminated in the intrusion of the Bridger batholith and migmatization at 2.67 Ga. These data support the field and petrographic evidence for two granulite events and provide some temporal constraints for the formation of continental crust in the Early and Middle Archean in the Wyoming Province. ?? 1989 Springer-Verlag.

  2. Investigation of the properties of jets from p-Pb and Pb-Pb collisions with ALICE

    NASA Astrophysics Data System (ADS)

    Hess, B. A.

    2016-08-01

    Jets from hard scattering processes allow to study the properties of strongly interacting matter produced in ultra-relativistic heavy-ion collisions. The hot and dense medium created in such collisions is expected to cause energy loss of hard-scattered partons via elastic scattering and gluon radiation. Eventually, these processes modify the parton fragmentation. We report measurements of charged jets from lead-lead (Pb-Pb) and proton-lead (p-Pb) collisions at J= 2.76 TeV and 5.02 TeV. To estimate cold nuclear matter effects, the jet production in p-Pb collisions is studied for different centrality classes and is compared to that in proton-proton (pp) collisions via the nuclear modification factor. In addition, we discuss the measurement of (charged) jets recoiling from a high-pT trigger hadron, which allows to remove the contribution of combinatorial jets without introducing a bias on the jet population. Furthermore, we report about the measurement of strange hadrons (A, Kg) in association with charged jets from Pb-Pb and p-Pb collisions. The results are expected to clarify the role of the fragmentation process in the anomalous baryon-to-meson ratio observed at intermediate pT in A-A collisions. In particular, the measurement allows disentangling the contributions from jet fragmentation and other hadronisation processes.

  3. Chemometrics-assisted spectrophotometric method for simultaneous determination of Pb2+ and Cu2+ ions in different foodstuffs, soil and water samples using 2-benzylspiro [isoindoline-1,5‧-oxazolidine]-2‧,3,4‧-trione using continuous wavelet transformation and partial least squares - Calculation of pKf of complexes with rank annihilation factor analysis

    NASA Astrophysics Data System (ADS)

    Abbasi Tarighat, Maryam; Nabavi, Masoume; Mohammadizadeh, Mohammad Reza

    2015-06-01

    A new multi-component analysis method based on zero-crossing point-continuous wavelet transformation (CWT) was developed for simultaneous spectrophotometric determination of Cu2+ and Pb2+ ions based on the complex formation with 2-benzyl espiro[isoindoline-1,5oxasolidine]-2,3,4 trione (BSIIOT). The absorption spectra were evaluated with respect to synthetic ligand concentration, time of complexation and pH. Therefore according the absorbance values, 0.015 mmol L-1 BSIIOT, 10 min after mixing and pH 8.0 were used as optimum values. The complex formation between BSIIOT ligand and the cations Cu2+ and Pb2+ by application of rank annihilation factor analysis (RAFA) were investigated. Daubechies-4 (db4), discrete Meyer (dmey), Morlet (morl) and Symlet-8 (sym8) continuous wavelet transforms for signal treatments were found to be suitable among the wavelet families. The applicability of new synthetic ligand and selected mother wavelets were used for the simultaneous determination of strongly overlapped spectra of species without using any pre-chemical treatment. Therefore, CWT signals together with zero crossing technique were directly applied to the overlapping absorption spectra of Cu2+ and Pb2+. The calibration graphs for estimation of Pb2+ and Cu 2+were obtained by measuring the CWT amplitudes at zero crossing points for Cu2+ and Pb2+ at the wavelet domain, respectively. The proposed method was validated by simultaneous determination of Cu2+ and Pb2+ ions in red beans, walnut, rice, tea and soil samples. The obtained results of samples with proposed method have been compared with those predicted by partial least squares (PLS) and flame atomic absorption spectrophotometry (FAAS).

  4. Chemometrics-assisted spectrophotometric method for simultaneous determination of Pb²⁺ and Cu²⁺ ions in different foodstuffs, soil and water samples using 2-benzylspiro [isoindoline-1,5'-oxazolidine]-2',3,4'-trione using continuous wavelet transformation and partial least squares - calculation of pKf of complexes with rank annihilation factor analysis.

    PubMed

    Abbasi Tarighat, Maryam; Nabavi, Masoume; Mohammadizadeh, Mohammad Reza

    2015-06-15

    A new multi-component analysis method based on zero-crossing point-continuous wavelet transformation (CWT) was developed for simultaneous spectrophotometric determination of Cu(2+) and Pb(2+) ions based on the complex formation with 2-benzyl espiro[isoindoline-1,5 oxasolidine]-2,3,4 trione (BSIIOT). The absorption spectra were evaluated with respect to synthetic ligand concentration, time of complexation and pH. Therefore according the absorbance values, 0.015 mmol L(-1) BSIIOT, 10 min after mixing and pH 8.0 were used as optimum values. The complex formation between BSIIOT ligand and the cations Cu(2+) and Pb(2+) by application of rank annihilation factor analysis (RAFA) were investigated. Daubechies-4 (db4), discrete Meyer (dmey), Morlet (morl) and Symlet-8 (sym8) continuous wavelet transforms for signal treatments were found to be suitable among the wavelet families. The applicability of new synthetic ligand and selected mother wavelets were used for the simultaneous determination of strongly overlapped spectra of species without using any pre-chemical treatment. Therefore, CWT signals together with zero crossing technique were directly applied to the overlapping absorption spectra of Cu(2+) and Pb(2+). The calibration graphs for estimation of Pb(2+) and Cu (2+)were obtained by measuring the CWT amplitudes at zero crossing points for Cu(2+) and Pb(2+) at the wavelet domain, respectively. The proposed method was validated by simultaneous determination of Cu(2+) and Pb(2+) ions in red beans, walnut, rice, tea and soil samples. The obtained results of samples with proposed method have been compared with those predicted by partial least squares (PLS) and flame atomic absorption spectrophotometry (FAAS).

  5. Chemometrics-assisted spectrophotometric method for simultaneous determination of Pb²⁺ and Cu²⁺ ions in different foodstuffs, soil and water samples using 2-benzylspiro [isoindoline-1,5'-oxazolidine]-2',3,4'-trione using continuous wavelet transformation and partial least squares - calculation of pKf of complexes with rank annihilation factor analysis.

    PubMed

    Abbasi Tarighat, Maryam; Nabavi, Masoume; Mohammadizadeh, Mohammad Reza

    2015-06-15

    A new multi-component analysis method based on zero-crossing point-continuous wavelet transformation (CWT) was developed for simultaneous spectrophotometric determination of Cu(2+) and Pb(2+) ions based on the complex formation with 2-benzyl espiro[isoindoline-1,5 oxasolidine]-2,3,4 trione (BSIIOT). The absorption spectra were evaluated with respect to synthetic ligand concentration, time of complexation and pH. Therefore according the absorbance values, 0.015 mmol L(-1) BSIIOT, 10 min after mixing and pH 8.0 were used as optimum values. The complex formation between BSIIOT ligand and the cations Cu(2+) and Pb(2+) by application of rank annihilation factor analysis (RAFA) were investigated. Daubechies-4 (db4), discrete Meyer (dmey), Morlet (morl) and Symlet-8 (sym8) continuous wavelet transforms for signal treatments were found to be suitable among the wavelet families. The applicability of new synthetic ligand and selected mother wavelets were used for the simultaneous determination of strongly overlapped spectra of species without using any pre-chemical treatment. Therefore, CWT signals together with zero crossing technique were directly applied to the overlapping absorption spectra of Cu(2+) and Pb(2+). The calibration graphs for estimation of Pb(2+) and Cu (2+)were obtained by measuring the CWT amplitudes at zero crossing points for Cu(2+) and Pb(2+) at the wavelet domain, respectively. The proposed method was validated by simultaneous determination of Cu(2+) and Pb(2+) ions in red beans, walnut, rice, tea and soil samples. The obtained results of samples with proposed method have been compared with those predicted by partial least squares (PLS) and flame atomic absorption spectrophotometry (FAAS). PMID:25766479

  6. Biosorption of Pb(II) Ions by Klebsiella sp. 3S1 Isolated from a Wastewater Treatment Plant: Kinetics and Mechanisms Studies.

    PubMed

    Muñoz, Antonio Jesús; Espínola, Francisco; Moya, Manuel; Ruiz, Encarnación

    2015-01-01

    Lead biosorption by Klebsiella sp. 3S1 isolated from a wastewater treatment plant was investigated through a Rotatable Central Composite Experimental Design. The optimisation study indicated the following optimal values of operating variables: 0.4 g/L of biosorbent dosage, pH 5, and 34°C. According to the results of the kinetic studies, the biosorption process can be described by a two-step process, one rapid, almost instantaneous, and one slower, both contributing significantly to the overall biosorption; the model that best fits the experimental results was pseudo-second order. The equilibrium studies showed a maximum lead uptake value of 140.19 mg/g according to the Langmuir model. The mechanism study revealed that lead ions were bioaccumulated into the cytoplasm and adsorbed on the cell surface. The bacterium  Klebsiella sp. 3S1 has a good potential in the bioremoval of lead in an inexpensive and effective process.

  7. Biosorption of Pb(II) Ions by Klebsiella sp. 3S1 Isolated from a Wastewater Treatment Plant: Kinetics and Mechanisms Studies

    PubMed Central

    Muñoz, Antonio Jesús; Espínola, Francisco; Moya, Manuel; Ruiz, Encarnación

    2015-01-01

    Lead biosorption by Klebsiella sp. 3S1 isolated from a wastewater treatment plant was investigated through a Rotatable Central Composite Experimental Design. The optimisation study indicated the following optimal values of operating variables: 0.4 g/L of biosorbent dosage, pH 5, and 34°C. According to the results of the kinetic studies, the biosorption process can be described by a two-step process, one rapid, almost instantaneous, and one slower, both contributing significantly to the overall biosorption; the model that best fits the experimental results was pseudo-second order. The equilibrium studies showed a maximum lead uptake value of 140.19 mg/g according to the Langmuir model. The mechanism study revealed that lead ions were bioaccumulated into the cytoplasm and adsorbed on the cell surface. The bacterium  Klebsiella sp. 3S1 has a good potential in the bioremoval of lead in an inexpensive and effective process. PMID:26504824

  8. Discrimination of the Cigarettes Geographical Origin by DRC-ICP-MS Measurements of Pb Isotope Compositions

    NASA Astrophysics Data System (ADS)

    Guo, W.; Hu, S.; Jin, L.

    2014-12-01

    Trace Pb are taken up with the same isotopic ratios as is present in the source soil, and the isotopic composition of Pb could used to reflect these sources and provide powerful indicators of the geographic origin of agriculture products derived from vegetative matter. We developed a simple and high throughput method, which based on DRC-ICP-MS for determination of Pb isotope ratios for discriminating the geographic origin of cigarettes. After acid digestion procedure, the cigarette digested solutions were directly analyzed by ICP-QMS with a DRC pressurized by the non-reactive gas Ne. In the DRC, Ne molecules collision with Pb ions and improves Pb isotope ratios precision 3-fold, which may be due to the collisional dampling smoothes out the ion beam fluctuations. Under the optimum DRC rejection parameter Q (RPq = 0.45), the main matrix components (K, Na, Ca, Mg, Al, Fe etc.) originating from cigarettes were filtered out. Mass discrimination of 208Pb/206Pb ratio in Ne DRC mode increased 0.3% compared to the standard mode, the mass bias due to the in-cell Ne gas collision can be accurately corrected by NIST 981 Pb isotope standard. This method was verified by a tobacco reference material CTV-OTL-2. Results of 208Pb/206Pb and 207Pb/206Pb were 2.0848 ± 0.0028 (2δ) and 0.8452 ± 0.0011 (2δ) for CTA-VTL-2, which were agreed with the literature values (208Pb/206Pb = 2.0884 ± 0.0090 and 207Pb/206Pb = 0.8442 ± 0.0032). The precision of Pb isotope ratios (208Pb/206Pb and 207Pb/206Pb) for the cigarette samples are ranged from 0.01 to 0.08% (N = 5). It has sufficient precision to discriminate 91 different brand cigarettes originated from four different geographic regions (Shown in Fig).

  9. The Pb isotopic evolution of the Martian mantle constrained by initial Pb in Martian meteorites

    NASA Astrophysics Data System (ADS)

    Bellucci, J. J.; Nemchin, A. A.; Whitehouse, M. J.; Snape, J. F.; Bland, P.; Benedix, G. K.

    2015-12-01

    The Pb isotopic compositions of maskelynite and pyroxene grains were measured in ALH84001 and three enriched shergottites (Zagami, Roberts Massif 04262, and Larkman Nunatuk 12011) by secondary ion mass spectrometry. A maskelynite-pyroxene isochron for ALH84001 defines a crystallization age of 4089 ± 73 Ma (2σ). The initial Pb isotopic composition of each meteorite was measured in multiple maskelynite grains. ALH84001 has the least radiogenic initial Pb isotopic composition of any Martian meteorite measured to date (i.e., 206Pb/204Pb = 10.07 ± 0.17, 2σ). Assuming an age of reservoir formation for ALH84001 and the enriched shergottites of 4513 Ma, a two-stage Pb isotopic model has been constructed. This model links ALH84001 and the enriched shergottites by their similar μ value (238U/204Pb) of 4.1-4.6 from 4.51 Ga to 4.1 Ga and 0.17 Ga, respectively. The model employed here is dependent on a chondritic μ value (~1.2) from 4567 to 4513 Ma, which implies that core segregation had little to no effect on the μ value(s) of the Martian mantle. The proposed Pb isotopic model here can be used to calculate ages that are in agreement with Rb-Sr, Lu-Hf, and Sm-Nd ages previously determined in the meteorites and confirm the young (~170 Ma) ages of the enriched shergottites and ancient, >4 Ga, age of ALH84001.

  10. A transferable force field for CdS-CdSe-PbS-PbSe solid systems

    SciTech Connect

    Fan, Zhaochuan; Vlugt, Thijs J. H.; Koster, Rik S.; Fang, Changming; Huis, Marijn A. van; Wang, Shuaiwei; Yalcin, Anil O.; Tichelaar, Frans D.; Zandbergen, Henny W.

    2014-12-28

    A transferable force field for the PbSe-CdSe solid system using the partially charged rigid ion model has been successfully developed and was used to study the cation exchange in PbSe-CdSe heteronanocrystals [A. O. Yalcin et al., “Atomic resolution monitoring of cation exchange in CdSe-PbSe heteronanocrystals during epitaxial solid-solid-vapor growth,” Nano Lett. 14, 3661–3667 (2014)]. In this work, we extend this force field by including another two important binary semiconductors, PbS and CdS, and provide detailed information on the validation of this force field. The parameterization combines Bader charge analysis, empirical fitting, and ab initio energy surface fitting. When compared with experimental data and density functional theory calculations, it is shown that a wide range of physical properties of bulk PbS, PbSe, CdS, CdSe, and their mixed phases can be accurately reproduced using this force field. The choice of functional forms and parameterization strategy is demonstrated to be rational and effective. This transferable force field can be used in various studies on II-VI and IV-VI semiconductor materials consisting of CdS, CdSe, PbS, and PbSe. Here, we demonstrate the applicability of the force field model by molecular dynamics simulations whereby transformations are initiated by cation exchange.

  11. Heavy-flavour correlations in pp, p-Pb and Pb-Pb collisions with ALICE

    NASA Astrophysics Data System (ADS)

    Bjelogrlić, S.; ALICE Collaboration

    2015-08-01

    Heavy quarks (charm and beauty) are produced in initial hard scattering processes in heavy-ion collisions, before the formation of a strongly-interacting medium, the Quark-Gluon Plasma (QGP). The measurement of angular correlations between open heavy-flavour hadrons and charged particles can provide insight into the effects of the medium on charm and beauty production. For instance, in Pb-Pb collisions, the azimuthal correlations can provide information on the energy-loss mechanisms of heavy quarks in the QGP. Additionally, azimuthal correlations are sensitive to possible modifications of the heavy-quark parton shower and hadronisation in the presence of the medium. The observed double-ridge long-range correlations between light hadrons in p-Pb collisions could originate from a collective expansion of the system, as well as from gluon saturation in the initial state (color-glass condensate). The same effect can be studied for heavier quarks via the correlation between heavy-flavour hadrons (or their decay electrons) and charged particles. In pp collisions, the azimuthal correlations allow to measure the beauty production cross section as well as they represent a powerful tool to test pQCD models.

  12. Investigation on morphological stability of ultrathin Pb films

    SciTech Connect

    Zhang, L. H.; Sui, M. L.; Zhang, L.; Hu, K. Y.; Li, D. X.

    2001-06-04

    Ultrathin Pb films supported by Al film were made by using cold-rolling and ion-beam thinning techniques. The morphological instability of the Pb film under electron-beam irradiation was investigated by means of in situ transmission electron microscopy observations. It has been found that under electron-beam irradiation, Pb films with an incoherent Pb/Al interface spheroidized into Pb particles, but those with a semicoherent Pb/Al interface were stable in morphology. The morphological stability of thin films depends on the microstructure and the thermodynamic property of the interphase boundary. A critical interfacial energy for the spheroidization of thin films was determined based on a thermodynamics analysis. {copyright} 2001 American Institute of Physics.

  13. A Single Grain U-Pb and Pb-Pb Dating and D/H Ratios of the Phosphate Mineral in ALH84001

    NASA Astrophysics Data System (ADS)

    Koike, M.; Ota, Y.; Takahata, N.; Sano, Y.; Sugiura, N.

    2012-12-01

    There are many studies that determine U-Pb and Pb-Pb ages of phosphates in Martian meteorites. Phosphate minerals such as an apatite (Ca5(PO4)3[OH, F, Cl]) and a whitlockite (Ca9 [Mg, Fe2+] (PO4)6 PO3OH) contain water in the form of OH, which provides us hydrogen isotopic information. The goal of this study is to obtain a crystallization age and hydrogen isotopic distributions of each grain and to relate them to the surface evolution of Mars. ALH84001 is known to be about 4 billion years old [1]. Its carbonates and maskelynite showed high D/H ratios with large deviations, which indicates large fractionation at early Mars surface [2]. Due to small grain sizes and limited spatial resolutions of measurements, previous studies used several grains for one age or one series of isotopic distributions. Here we determined single grain ages and D/H ratios using NanoSIMS with a high spatial resolution. A thin section of ALH84001 was polished and carbon-coated. The section was then observed by SEM-EDS to locate phosphate minerals. A large phosphate grain (>100μm) was found and analyzed by NanoSIMS. A ~10nA O- primary ion beam (with spot diameter of ~20μm) was used for U-Pb and Pb-Pb measurements and a ~1nA (spot diameter of <10μm) was for D/H ratio measurements. An apatite from a Prairie Lake circular complex, PRAP, with a known age (1156 Ma; [3]) was used as a standard for U-Pb. The D/H ratio and the water content of an apatite from Morocco were measured by conventional methods to use as a D/H standard. 238U-206Pb isochron, 207Pb-206Pb isochron, and total U-Pb isochron age, a regression line in 3-D space (238U/206Pb-207Pb/206Pb-204Pb/206Pb) showed a consistent age ~4 Ga. The ages obtained in this study were also consistent with previous U-Pb dating within experimental errors. D/H ratios in the same grain showed high values and a considerable deviation, which seems to be due to mixing of terrestrial water. References: [1] Terada K. et al. 2003 Meteoritics & Planet. Sci. 38

  14. NMR absolute shielding scale and nuclear magnetic dipole moment of (207)Pb.

    PubMed

    Adrjan, Bożena; Makulski, Włodzimierz; Jackowski, Karol; Demissie, Taye B; Ruud, Kenneth; Antušek, Andrej; Jaszuński, Michał

    2016-06-28

    An absolute shielding scale is proposed for (207)Pb nuclear magnetic resonance (NMR) spectroscopy. It is based on ab initio calculations performed on an isolated tetramethyllead Pb(CH3)4 molecule and the assignment of the experimental resonance frequency from the gas-phase NMR spectra of Pb(CH3)4, extrapolated to zero density of the buffer gas to obtain the result for an isolated molecule. The computed (207)Pb shielding constant is 10 790 ppm for the isolated molecule, leading to a shielding of 10799.7 ppm for liquid Pb(CH3)4 which is the accepted reference standard for (207)Pb NMR spectra. The new experimental and theoretical data are used to determine μ((207)Pb), the nuclear magnetic dipole moment of (207)Pb, by applying the standard relationship between NMR frequencies, shielding constants and nuclear moments of two nuclei in the same external magnetic field. Using the gas-phase (207)Pb and (reference) proton results and the theoretical value of the Pb shielding in Pb(CH3)4, we find μ((207)Pb) = 0.59064 μN. The analysis of new experimental and theoretical data obtained for the Pb(2+) ion in water solutions provides similar values of μ((207)Pb), in the range of 0.59000-0.59131 μN. PMID:27265668

  15. Archean Pb Isotope Evolution: Implications for the Early Earth.

    NASA Astrophysics Data System (ADS)

    Vervoort, J. D.; Thorpe, R.; Albarede, F.; Blichert-Toft, J.

    2008-12-01

    The U-Pb isotope system provides us with a powerful tool for understanding the chemical evolution of the Earth. Pb isotopes in Archean rocks, however, have not been widely utilized because U mobility makes initial Pb isotope ratios from old silicate rocks difficult, if not impossible, to determine. Galenas in syngenetic volcanogenic massive sulfide (VMS) deposits, however, provide snapshots of initial Pb ratios because their Pb isotopic composition is time invariant at their formation (U/Pb=0). The Pb isotopic record from galenas from rocks of all age have been utilized for over 70 years to answer a wide range of scientific problems beginning with Al Nier's pioneering work analyzing Pb isotopes in the 1930's but are no longer widely used by the isotopic community because they have been produced by older TIMS techniques. We have begun a re-examination of Archean Pb by an extensive analysis of over 100 galena samples from Archean VMS deposits throughout the Superior and Slave Provinces in Canada as well as from other VMS deposits in Finland, South Africa and Western Australia. The goal of this work is to provide modern, high precision measurements and update an old, but venerable, Pb isotopic data set. We feel these data provide important constraints on not only the Pb isotopic evolution of the Earth, but planetary differentiation and recycling processes operating in the first 2 b.y. of Earth's history. Our analytical techniques include dissolving the Pb sulfide minerals, purifying them with ion chromatography, and analyzing them using MC-ICPMS at both Washington State University (Neptune) and Ecole Normale Superieure in Lyon, France (Nu). All Pb solutions are doped with Tl in order to correct for mass fractionation. In this abstract we report preliminary galena Pb isotope data from 6 VMS deposits in the Abitibi greenstone belt: Chibougamu, Matagami, Noranda, Normetal, Timmins, and Val d"Or. These deposits are all approximately 2.7 Ga in age but in detail vary from 2

  16. Melting of Pb Nanocrystals Embedded in Al, Si, and Cu Matrices

    NASA Astrophysics Data System (ADS)

    Wang, Huan; Zhu, Hongzhi

    2015-12-01

    Dispersions of nanoscale Pb particles embedded in Si, Al, and Cu matrices have been synthesized by ion implantation and subsequent annealing. The melting transitions of the embedded Pb nanocrystals with epitaxial particle/matrix interfaces were investigated by means of in situ high-temperature X-ray diffraction. Due to different levels of lattice mismatch, the Pb nanoprecipitates experience a different elastic strain in different matrices. Further analysis on the lattice constants of the embedded Pb nanocrystals gives unambiguous evidence of the strain-related pressure effect, which is particle size and matrix dependent, on tuning of the melting behavior of the embedded Pb nanoparticles.

  17. Pb2+ induced DNA conformational switch from hairpin to G-quadruplex: electrochemical detection of Pb2+.

    PubMed

    Lin, Zhenzhen; Chen, Yue; Li, Xiaohong; Fang, Weihai

    2011-06-01

    Conformational switch from hairpin DNA to G-quadruplex induced by Pb(2+) is studied by electrochemical impedance spectroscopy (EIS) in the presence of [Fe(CN)(6)](3-/4-) as the redox probe. In the presence of Pb(2+), the G-rich hairpin DNA opens the stem-loop and forms G-quadruplex structure, which gives rise to a sharp increase in the charge-transfer resistance (R(CT)) of the film reflected by the EIS. This structural change is also confirmed by circular dichroism (CD) measurements and UV-Vis spectroscopic analysis and calculated by density functional theory (DFT). On the basis of this, we develop a label-free electrochemical DNA biosensor for Pb(2+) detection. With increasing concentrations of Pb(2+), the differences in the charge-transfer resistance R(CT) before and after the Pb(2+) incubation is linearly dependent on the logarithm of Pb(2+) concentration within a range from 50 μM to 0.5 nM. The biosensor also exhibits good selectivity for Pb(2+) over other metal ions. This is a simple and label-free electrochemical method for Pb(2+) detection making use of the G-quadruplex. PMID:21491024

  18. Transport and Magnetic Properties of Nd2Ni2Pb and NdNiPb

    NASA Astrophysics Data System (ADS)

    Goruganti, V.; Li, Yang; Ross, Joseph H., Jr.; Rathnayaka, K. D. D.; Öner, Y.

    2006-03-01

    We report magnetic, transport and thermodynamic measurements for Nd2Ni2Pb and NdNiPb, members of recently-discovered R-Ni-Pb families of intermetallics. In Nd2Ni2Pb a λ-type specific heat jump was observed at 19 K corresponding to an antiferromagnetic transition. Magnetization measurements show this phase to have a canted structure, with a metamagnetic transition in H = 3 T at low temperatures. We have further explored the metamagnetic transition using field dependent specific heat, concluding that the metamagnetic phase is a fully aligned phase. The single antiferromagnetic phase stands in contrast to the more complex magnetic structures observed in the heavy-rare-earth members of this family. Nd is the lightest RE forming this type strucure. At high temperatures the magnetization obeys a Curie law and the magnetic moment agrees with the free ion moment of Nd. Resistivity measurements showed metallic behavior with a kink at 19 K. We performed similar measurements on NdNiPb and observed an antiferromagnetic transition at 4 K. Specific heat indicated rather different critical behavior, with magnetic fluctuations extending well above the transition. This work was supported by the Robert A. Welch Foundation (grant A-1526), the National Science Foundation (DMR-0103455), and by the Texas A&M University Telecommunications and Informatics Task Force.

  19. 210Pb dating

    USGS Publications Warehouse

    Swarzenski, Peter W.

    2014-01-01

    Roughly fifty years ago, a small group of scientists from Belgium and the United States, trying to better constrain ice sheet accumulation rates, attempted to apply what was then know about environmental lead as a potential geochronometer. Thus Goldberg (1963) developed the first principles of the 210Pb dating method, which was soon followed by a paper by Crozaz et al. (1964), who examined accumulation history of Antarctic snow using 210Pb. Shortly thereafter, Koide et al. (1972, 1973) adapted this technique to unravel sediment deposition and accumulation records in deep-sea environments. Serendipitously, they chose to work in a deep basin off California, where an independent and robust age model had already been developed. Krishanswami et al. (1971) extended the use of this technique to lacustrine deposits to reconstruct depositional histories of lake sediment, and maybe more importantly, contaminant inputs and burial. Thus, the powerful tool for dating recent (up to about one century old) sediment deposits was established and soon widely adopted. Today almost all oceanographic or limnologic studies that address recent depositional reconstructions employ 210Pb as one of several possible geochronometers (Andrews et al., 2009; Gale, 2009; Baskaran, 2011; Persson and Helms, 2011). This paper presents a short overview of the principles of 210Pb dating and provides a few examples that illustrate the utility of this tracer in contrasting depositional systems. Potential caveats and uncertainties (Appleby et al., 1986; Binford, 1990; Binford et al., 1993; Smith, 2001; Hancock et al., 2002) inherent to the use and interpretation of 210Pb-derived age-models are also introduced. Recommendations as to best practices for most reliable uses and reporting are presented in the summary.

  20. Thermoelectric properties of PbTe/PbSe mesomaterials

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Wang, Yaqi; Xue, Yuyi; Chu, C. W.; Zhang, Jun; Fang, Jiye; Tan, Chunhu; Lin, Zhigang; Liu, Bob

    2008-03-01

    Ball milled PbTe mixed with PbSe nano-wires (PTSW) or with PbSe nano-crystals (PTSC) are sintered under high pressure. Different sintering conditions are tested to preserve the mesostructures. Thermoelectric properties (resistivity, Seebeck coefficient and thermal conductivity) are measured at various temperatures. Pure ball milled PbTe are also sintered and measured for comparison. In this talk, we will present these data and compare with various PbTe data from the literature. Our results show that this mesostructure approach is promising and the sintering condition is the key factor for further improvement.

  1. Outer Sphere Adsorption of Pb(II)EDTA on Goethite

    SciTech Connect

    Bargar, John R

    1999-07-16

    FTIR and EXAFS spectroscopic measurements were performed on Pb(II)EDTA adsorbed on goethite as functions of pH (4-6), Pb(II)EDTA concentration (0.11 {micro}M - 72 {micro}M), and ionic strength (16 {micro}M - 0.5M). FTIR measurements show no evidence for carboxylate-Fe(III) bonding or protonation of EDTA at Pb:EDTA = 1:1. Both FTIR and EXAFS measurements suggest that EDTA acts as a hexadentate ligand, with all four of its carboxylate and both amine groups bonded to Pb(II). No evidence was observed for inner-sphere Pb(II)-goethite bonding at Pb:EDTA = 1:1. Hence, the adsorbed complexes should have composition Pb(II)EDTA{sup 2{minus}}. Since substantial uptake of PbEDTA(II){sup 2{minus}} occurred in the samples, we infer that Pb(II)EDTA{sup 2{minus}} adsorbed as outer-sphere complexes and/or as complexes that lose part of their solvation shells and hydrogen bond directly to goethite surface sites. We propose the term ''hydration-sphere'' for the latter type of complexes because they should occupy space in the primary hydration spheres of goethite surface functional groups, and to distinguish this mode of sorption from common structural definitions of inner- and outer-sphere complexes. The similarity of Pb(II) uptake isotherms to those of other divalent metal ions complexed by EDTA suggests that they too adsorb by these mechanisms. The lack of evidence for inner-sphere EDTA-Fe(III) bonding suggests that previously proposed metal-ligand - promoted dissolution mechanisms should be modified, specifically to account for the presence of outer-sphere precursor species.

  2. Primordial Pb, radiogenic Pb and lunar soil maturation

    NASA Technical Reports Server (NTRS)

    Reed, G. W., Jr.; Jovanovic, S.

    1978-01-01

    Pb-204 is directly correlated with the reduced Fe measured by ferromagnetic resonance. A similar correlation has been noted for hydrolyzable carbon (Pillinger et al., 1974). An enrichment of these elements appears to have occurred during soil maturation. In contrast to Pb-204, radiogenic Pb is reported to be lost during soil maturation (Church et al., 1976). Radiogenic Pb is present in mineral grains and may be lost by solar wind sputtering (or volatilization) and not resupplied. Pb-204 coating grain surfaces acts as a reservoir to provide the Pb-204 being extracted in the reduced Fe formation process. Venting or some other volatile release mechanism may replenish the surface-related Pb-204.

  3. Mesocrystalline coordination polymer as a promising cathode for sodium-ion batteries.

    PubMed

    Meng, Qi; Zhang, Wei; Hu, Ming; Jiang, Ji-Sen

    2016-01-31

    Prussian blue (PB) mesocrystals with Na as the alkaline metal were synthesized and used as cathode materials in Na-ion batteries. The mesocrystalline structure endowed PB with very different phase change behavior and electrochemical performance in contrast to PB single-crystals in cyclic voltammograms and galvanostatic discharge/charge voltage profiles of PB/Na half-cells. PMID:26688489

  4. Easter microplate evolution: Pb isotope evidence

    NASA Astrophysics Data System (ADS)

    Hanan, Barry B.; Schilling, Jean-Guy

    1989-06-01

    We report on 53 Pb isotope analyses of basalts from 48 dredge stations occupied along the spreading boundaries of the Easter microplate and adjacent East Pacific Rise (EPR). Also included in the study are seven analyses of basalts from Easter and Sala y Gomez islands. A major anomaly is observed on the East Rift, around 27°S, where this ridge is shallowest and closest to Easter and Sala y Gomez islands. Basalts from the West Rift are less radiogenic. The means for the two rift populations are distinct, but their ranges overlap significantly. On the average, there is a systematic westward decrease in radiogenic Pb content with distance from Sala y Gomez. The Pb isotope anomaly is confined to the boundaries of the Microplate and the total range exceeds that of the entire EPR, both in the most and the least end of radiogenic Pb content. Radiogenic Pb content covaries with (La/Sm)N ratios with the exception of a nepheline-normative picritic basalt glass outlier. The trends are curvilinear. There is no correlation between the Pb isotope ratios and the bulk composition of the lavas. In Pb versus Pb isotope diagrams, basalts from the East and West rifts form two tight linear trends of statistically indistinguishable slope. Basalts from Easter and Sala y Gomez islands lie on the upper end of these trends. A binary mixing process between a radiogenic source similar to that present beneath Sala y Gomez and the large ion lithophile element (LILE)-depleted mid-ocean ridge basalt (MORB) source is strongly suggested. There is no trace of the Dupal anomaly beneath the microplate nor beneath Easter or Sala y Gomez Islands. If the Dupal anomaly is indeed continuous and of semi global extent, it must lie deeper in the mantle than the depths at which basaltic melts take source beneath the microplate and these two islands. There is also no correlation between the apparent dispersion of Pb isotope ratios and the rate at which the various ridge segments of the microplate spread. Tests

  5. [Immobilization of heavy metal Pb2+ with geopolymer].

    PubMed

    Jin, Man-tong; Jin, Zan-fang; Huang, Cai-ju

    2011-05-01

    A series of geopolymers were synthesized by mixing metakaolinite, water glass, sodium hydroxide and water, and the lead ion solidification experiments were performed with the geopolymer. Then, the immobilization efficiency was characterized by monitoring the leaching concentration and compressive strength of solidified products. Additionally, the structure and properties of the solidified products were studied by X-ray diffraction (XRD), scan electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. Furthermore, based on the analysis of immobilization efficiency, microstructure and mineral structure, the difference between geopolymer and cement on the performance of immobilizing heavy metals was discussed. The results of lead ion immobilization experiments showed that over 99.7% of heavy metal was captured by the geopolymer as the doping concentration of lead ion was less than 3%. Meanwhile, the compressive strength of the solidified product ranged from 40 MPa to 50 MPa. Furthermore, by using the same Pb2+ concentration, the geopolymer showed higher compressive strength and lower leaching concentration compared to the cement. Because lead ion participated in constitution of structure of geopolymer, or Pb2+ was adsorbed by the aluminium ions on the geopolymeric skeleton and held in geopolymer. However, cement mainly solidified lead ion by physical encapsulation and adsorption mechanism. Therefore, both from the compressive strength and leaching concentration and from the microstructure characterization as well as the mechanism of the geopolymerization reaction, the geopolymer has more advantages in immobilizing Pb2+ than the cement.

  6. Predictions for √{sNN}=5.02 TeV Pb + Pb collisions from a multiphase transport model

    NASA Astrophysics Data System (ADS)

    Ma, Guo-Liang; Lin, Zi-Wei

    2016-05-01

    We present predictions from the string melting version of a multiphase transport model on various observables in Pb+Pb collisions at √{sNN}=5.02 TeV . We use the same version of the model as an earlier study that reasonably reproduced d N /d y , pT spectra and elliptic flow of charged pions and kaons at low-pT for central and semicentral heavy ion collisions at 200 GeV and 2.76 TeV. While we compare with the already-available centrality dependence data on charged particle d N /d η at mid-pseudorapidity in Pb+Pb collisions at 5.02 TeV, we make predictions on identified particle d N /d y , pT spectra, azimuthal anisotropies vn(n =2 ,3 ,4 ) , and factorization ratios rn(ηa,ηb) (n =2 ,3 ) for longitudinal correlations.

  7. Synthesis of PbSO4 crystals by hydrogel template on postprocessing strategy for secondary pollution

    NASA Astrophysics Data System (ADS)

    Han, Bing; Xie, Anjian; Yu, Qingbo; Huang, Fangzhi; Shen, Yuhua; Zhu, Ling

    2012-11-01

    Pb2+ ions pose a significant threat to the environment and public health. Removal and reuse of Pb2+ ions from the environment are major focuses of waste treatment. Here the poly(acrylonitrile-acrylamide-acrylic acid) hydrogel prepared via crosslinking polymerization was introduced to capture Pb2+ ions, then as an in situ template to induce the formation of PbSO4 crystals with special morphology successfully. The absorption efficiency of Pb2+ ions by hydrogel was tested. The results show at the conditions of initial pH 5, 25 °C, 1.578 mg Pb2+ ions was removed by per unit hydrogel mass. PbSO4 crystals were characterized by X-ray diffraction, Raman spectrum, scanning electron microscopy, transmission electron microscopy, and fluorescence spectrometer. The results indicate that the branch-type structure crystals were excellent crystalline and mainly oriented along (1 0 1) and (2 3 1) plane. The PL spectrum show emission peaks at 380 and 400 nm and indicate that the product may have applications in an electronic light device. This approach provides an inspiration on the post-processing of the secondary pollution.

  8. Continuous biosorption of Pb/Cu and Pb/Cd in fixed-bed column using algae Gelidium and granulated agar extraction algal waste.

    PubMed

    Vilar, Vítor J P; Loureiro, José M; Botelho, Cidália M S; Boaventura, Rui A R

    2008-06-15

    Continuous metal ions biosorption from Pb/Cu and Pb/Cd solutions onto seaweed Gelidium sesquipedale and a composite material prepared from an industrial algal waste was performed in a packed bed column. A binary Langmuir equation describes well the equilibrium data and indicates a good adsorption capacity. In the sorption process, Cd and Cu break through the column faster than Pb due to its lower affinity for the biosorbent. An overshoot in the outlet Cd concentration was observed and explained by competitive adsorption between Pb and Cd, whereby the higher Pb affinity for the biosorbent displaces bound Cd ions. A small overshoot happens for Cu adsorption in the presence of Pb ions. Desorption using 0.1 M HNO3 as eluant, was 100% effective. A mass transfer model for the adsorption and desorption processes, considering an external and intraparticle film resistance, adequately simulates the column performance. A binary Langmuir equation was used to describe equilibrium for the saturation process and a mass action law for the desorption process. Elution process is defined as an ion exchange mechanism, between protons and metal ions. PMID:18162305

  9. Bose-Einstein correlations in pp and PbPb collisions with ALICE at the LHC

    ScienceCinema

    None

    2016-07-12

    We report on the results of identical pion femtoscopy at the LHC. The Bose-Einstein correlation analysis was performed on the large-statistics ALICE p+p at sqrt{s}= 0.9 TeV and 7 TeV datasets collected during 2010 LHC running and the first Pb+Pb dataset at sqrt{s_NN}= 2.76 TeV. Detailed pion femtoscopy studies in heavy-ion collisions have shown that emission region sizes ("HBT radii") decrease with increasing pair momentum, which is understood as a manifestation of the collective behavior of matter. 3D radii were also found to universally scale with event multiplicity. In p+p collisions at 7 TeV one measures multiplicities which are comparable with those registered in peripheral AuAu and CuCu collisions at RHIC, so direct comparisons and tests of scaling laws are now possible. We show the results of double-differential 3D pion HBT analysis, as a function of multiplicity and pair momentum. The results for two collision energies are compared to results obtained in the heavy-ion collisions at similar multiplicity and p+p collisions at lower energy. We identify the relevant scaling variables for the femtoscopic radii and discuss the similarities and differences to results from heavy-ions. The observed trends give insight into the soft particle production mechanism in p+p collisions and suggest that a self-interacting collective system may be created in sufficiently high multiplicity events. First results for the central Pb+Pb collisions are also shown. A significant increase of the reaction zone volume and lifetime in comparison to RHIC is observed. Signatures of collective hydrodynamics-like behavior of the system are also apparent, and are compared to model predictions.

  10. Low-mass dimuon measurements in pp, p-Pb and Pb-Pb collisions with ALICE at the LHC

    NASA Astrophysics Data System (ADS)

    Uras, Antonio

    2016-01-01

    Low-mass dimuon production, including light vector mesons ρ, ω, ϕ, provides key information on the hot and dense state of strongly interacting matter produced in high-energy heavy-ion collisions. In particular, strangeness production can be studied via ϕ meson measurements, while the detailed description of the full dimuon mass spectrum down to the kinematic threshold can be used to reveal in-medium modifications of hadron properties and the thermal emission arising from the medium. Measurements in pp and p-A systems, in absence of hot nuclear matter effects, must be used as a reference to test our knowledge of the processes expected to contribute to dilepton production. Dimuon production is studied with the ALICE apparatus at the LHC at forward rapidity (2.5 < y < 4) with the Muon Spectrometer. In this contribution, results on low-mass dimuon production are shown, for various center-of-mass energies per nucleon pair, in pp, p-Pb, and Pb-Pb collisions.

  11. Assessment of the Pb-Pb and U-Pb chronometry of the early solar system

    NASA Astrophysics Data System (ADS)

    Tera, Fouad; Carlson, Richard W.

    1999-06-01

    An evaluation of early solar system chronometry by the Pb-Pb and U-Pb methods is provided. Specifically, three consequential factors are examined: procedure of age calculation, extent of terrestrial Pb contamination, and initial Pb isotopic composition. On a Pb-Pb diagram, high temperature inclusions of the Allende meteorite are tightly organized into a well-defined line (inside a potentially dispersive mixing field), which is consistent with the inclusions containing initial Pb that is more primitive than that of Cañon Diablo troilite (PAT). Consequences of the possible existence of a pre-PAT Pb to the evolution history of the solar nebula are discussed. Phosphates from the ordinary chondrite St. Séverin appear to be contaminated by terrestrial Pb, a condition that renders age calculation based on subtraction of PAT inaccurate. The Pb-Pb mixing line of these phosphates indicates an age of 4.558 Ga. Interestingly, Angra dos Reis phosphate and pyroxene, as well as pyroxene of the other angrite Lewis Cliff 86010 fall precisely on the line defined by St. Séverin phosphates. Whole rocks of ordinary chondrites are pictorially and explicitly shown to be seriously contaminated with terrestrial Pb, thus their single-stage U-Pb ages may not be suitable markers of time. Because their true crystallization ages are often younger than the whole rocks, and because of the possibility of multistage evolution, phosphates of ordinary chondrites may yield single-stage ages older than their true crystallization ages. A hypothetical numerical demonstration is provided. On the basis of revised ages and new observations we provide an "updated" chronometry for the early solar system.

  12. What causes Psi suppression in Pb + Pb Collisions?

    SciTech Connect

    Vogt, R.

    1998-01-07

    A reexamination of hadronic comover scattering indicates that this mechanism cannot explain the observed {psi} suppression in Pb+Pb interactions. The possibility of quark-gluon plasma formation is therefore considered. Implications for RHIC and LHC are also discussed. The agreement of the NA50 Pb+Pb data with naive comover models is reassessed. Previous work is reanalyzed and expanded to include feeding of the {psi}' and {chi}{sub c} states to the {psi}. The effect of color screening is also investigated. Only the {psi}/Drell-Yan (DY) ratios are discussed here.

  13. {Xi} ({Omega}) production in Pb + Pb collisions at 158 GeV/c

    SciTech Connect

    Odyniec, G.; Cooper, G.E.; Jacobs, P.

    1997-06-01

    Using the NA49 main TPC, the central production of ({Xi} + {bar {Xi}}) hyperons has been measured in CERN SPS Pb on Pb collisions at 158 GeV/c. The preliminary ({Xi} + {bar {Xi}})/ ({Lambda} + {bar {Lambda}}) ratio, studied at 2.0 < y < 2.6 and 1 < p{sub T} < 3 GeV/c, equals {approximately} (13 {+-} 4)% (systematic error only). It is compatible, within errors, with the previously obtained ratios for central S+S, S+W, and S+Au collisions. The fit to the transferse momentum distribution resulted in an inverse slope parameter T of 297 MeV. At this level of statistics we do not see any noticeable enhancement of hyperon production with the increased volume (and, possibly, degree of equilibration) of the system from S+S to Pb+Pb. This result is unexpected and counterintuitive, and should be further investigated. If confirmed, it will have a significant impact on our understanding of mechanisms leading to the enhanced strangeness production in heavy ion collisions.

  14. Measurement of charged jet suppression in Pb-Pb collisions at = 2 .76 TeV

    NASA Astrophysics Data System (ADS)

    Abelev, B.; Adam, J.; Adamová, D.; Aggarwal, M. M.; Rinella, G. Aglieri; Agnello, M.; Agocs, A. G.; Agostinelli, A.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Masoodi, A. Ahmad; Ahmed, I.; Ahn, S. U.; Ahn, S. A.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Prado, C. Alves Garcia; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bairathi, V.; Bala, R.; Baldisseri, A.; Pedrosa, F. Baltasar Dos Santos; Bán, J.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batyunya, B.; Batzing, P. C.; Baumann, C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Berger, M. E.; Bergognon, A. A. E.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Boehmer, F. V.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bornschein, J.; Bossú, F.; Botje, M.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Caliva, A.; Villar, E. Calvo; Camerini, P.; Roman, V. Canoa; Carena, F.; Carena, W.; Carminati, F.; Díaz, A. Casanova; Castellanos, J. Castillo; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Sanchez, C. Ceballos; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Barroso, V. Chibante; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Balbastre, G. Conesa; del Valle, Z. Conesa; Connors, M. E.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Morales, Y. Corrales; Cortese, P.; Maldonado, I. Cortés; Cosentino, M. R.; Costa, F.; Crochet, P.; Albino, R. Cruz; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dang, R.; Danu, A.; Das, D.; Das, I.; Das, K.; Das, S.; Dash, A.; Dash, S.; De, S.; Delagrange, H.; Deloff, A.; Dénes, E.; D'Erasmo, G.; de Barros, G. O. V.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; de Rooij, R.; Corchero, M. A. Diaz; Dietel, T.; Divià, R.; Di Bari, D.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Gimenez, D. Domenicis; Dönigus, B.; Dordic, O.; Dorheim, S.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Majumdar, A. K. Dutta; Elia, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Téllez, A. Fernández; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Girard, M. Fusco; Gaardhøje, J. J.; Gagliardi, M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez, R.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Graczykowski, L. K.; Grajcarek, R.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Khan, K. H.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hanratty, L. D.; Hansen, A.; Harris, J. W.; Hartmann, H.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Hayrapetyan, A.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Corral, G. Herrera; Hess, B. A.; Hetland, K. F.; Hicks, B.; Hippolyte, B.; Hladky, J.; Hristov, P.; Huang, M.; Humanic, T. J.; Hutter, D.; Hwang, D. S.; Ianigro, J.-C.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Incani, E.; Innocenti, G. M.; Ionita, C.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Ivanytskyi, O.; Jacholkowski, A.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, S.; Bustamante, R. T. Jimenez; Jones, P. G.; Jung, H.; Jusko, A.; Kalcher, S.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Uysal, A. Karasu; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kebschull, U.; Keidel, R.; Ketzer, B.; Khan, M. Mohisin.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D. W.; Kim, D. J.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Köhler, M. K.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Konevskikh, A.; Kovalenko, V.; Kowalski, M.; Kox, S.; Meethaleveedu, G. Koyithatta; Kral, J.; Králik, I.; Kramer, F.; Kravčáková, A.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Krus, M.; Kryshen, E.; Krzewicki, M.; Kučera, V.; Kucheriaev, Y.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kulakov, I.; Kumar, J.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kushpil, V.; Kweon, M. J.; Kwon, Y.; de Guevara, P. Ladron; Fernandes, C. Lagana; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; La Pointe, S. L.; La Rocca, P.; Lea, R.; Lee, G. R.; Legrand, I.; Lehnert, J.; Lemmon, R. C.; Lenhardt, M.; Lenti, V.; Leogrande, E.; Leoncino, M.; Monzón, I. León; Lévai, P.; Li, S.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Lohner, D.; Loizides, C.; Lopez, X.; Torres, E. López; Lu, X.-G.; Luettig, P.; Lunardon, M.; Luo, J.; Luparello, G.; Luzzi, C.; Gago, A. M.; Jacobs, P. M.; Ma, R.; Maevskaya, A.; Mager, M.; Mahapatra, D. P.; Maire, A.; Malaev, M.; Cervantes, I. Maldonado; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manceau, L.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Marín, A.; Markert, C.; Marquard, M.; Martashvili, I.; Martin, N. A.; Martinengo, P.; Martínez, M. I.; García, G. Martínez; Blanco, J. Martin; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazumder, R.; Mazzoni, M. A.; Meddi, F.; Menchaca-Rocha, A.; Pérez, J. Mercado; Meres, M.; Miake, Y.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miskowiec, D.; Mitu, C. M.; Mlynarz, J.; Mohanty, B.; Molnar, L.; Zetina, L. Montaño; Montes, E.; Morando, M.; De Godoy, D. A. Moreira; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Muhuri, S.; Mukherjee, M.; Müller, H.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Nattrass, C.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nicassio, M.; Niculescu, M.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Nilsen, B. S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Nyanin, A.; Nyatha, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Okatan, A.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Onderwaater, J.; Oppedisano, C.; Velasquez, A. Ortiz; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Pachmayer, Y.; Pachr, M.; Pagano, P.; Paić, G.; Painke, F.; Pajares, C.; Pal, S. K.; Palmeri, A.; Pant, D.; Papikyan, V.; Pappalardo, G. S.; Park, W. J.; Passfeld, A.; Patalakha, D. I.; Paticchio, V.; Paul, B.; Pawlak, T.; Peitzmann, T.; Da Costa, H. Pereira; De Oliveira Filho, E. Pereira; Peresunko, D.; Lara, C. E. Pérez; Peryt, W.; Pesci, A.; Pestov, Y.; Petráček, V.; Petran, M.; Petris, M.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Ploskon, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Pohjoisaho, E. H. O.; Polichtchouk, B.; Poljak, N.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, V.; Potukuchi, B.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Rauf, A. W.; Razazi, V.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reicher, M.; Reidt, F.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rivetti, A.; Rocco, E.; Cahuantzi, M. Rodríguez; Manso, A. Rodriguez; Røed, K.; Rogochaya, E.; Rohni, S.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossegger, S.; Rossi, A.; Roy, A.; Roy, C.; Roy, P.; Montero, A. J. Rubio; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, R.; Sahu, P. K.; Saini, J.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Castro, X. Sanchez; Rodríguez, F. J. Sánchez; Šándor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, P. A.; Scott, R.; Segato, G.; Seger, J. E.; Selyuzhenkov, I.; Seo, J.; Serradilla, E.; Sevcenco, A.; Shabetai, A.; Shabratova, G.; Shahoyan, R.; Shangaraev, A.; Sharma, N.; Sharma, S.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Skjerdal, K.; Smakal, R.; Smirnov, N.; Snellings, R. J. M.; Søgaard, C.; Soltz, R.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Spacek, M.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Stolpovskiy, M.; Strmen, P.; Suaide, A. A. P.; Vasquez, M. A. Subieta; Sugitate, T.; Suire, C.; Suleymanov, M.; Sultanov, R.; Šumbera, M.; Susa, T.; Symons, T. J. M.; de Toledo, A. Szanto; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tangaro, M. A.; Takaki, J. D. Tapia; Peloni, A. Tarantola; Martinez, A. Tarazona; Tauro, A.; Muñoz, G. Tejeda; Telesca, A.; Terrevoli, C.; Ter Minasyan, A.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Torii, H.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ulery, J.; Ullaland, K.; Ulrich, J.; Uras, A.; Usai, G. L.; Vajzer, M.; Vala, M.; Palomo, L. Valencia; Vallero, S.; Vyvre, P. Vande; Vannucci, L.; Van Hoorne, J. W.; van Leeuwen, M.; Vargas, A.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vechernin, V.; Veldhoen, M.; Venaruzzo, M.; Vercellin, E.; Limón, S. Vergara; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Baillie, O. Villalobos; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wagner, V.; Wang, M.; Wang, Y.; Watanabe, D.; Weber, M.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Xiang, C.; Yaldo, C. G.; Yamaguchi, Y.; Yang, H.; Yang, P.; Yang, S.; Yano, S.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yoo, I.-K.; Yushmanov, I.; Zaccolo, V.; Zach, C.; Zaman, A.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, F.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhao, C.; Zhou, D.; Zhou, F.; Zhou, Y.; Zhu, H.; Zhu, J.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zoccarato, Y.; Zynovyev, M.; Zyzak, M.

    2014-03-01

    A measurement of the transverse momentum spectra of jets in Pb-Pb collisions at = 2 .76TeV is reported. Jets are reconstructed from charged particles using the anti- k T jet algorithm with jet resolution parameters R of 0 .2 and 0 .3 in pseudo-rapidity | η| < 0 .5. The transverse momentum p T of charged particles is measured down to 0 .15 GeV/ c which gives access to the low p T fragments of the jet. Jets found in heavy-ion collisions are corrected event-by-event for average background density and on an inclusive basis (via unfolding) for residual background fluctuations and detector effects. A strong suppression of jet production in central events with respect to peripheral events is observed. The suppression is found to be similar to the suppression of charged hadrons, which suggests that substantial energy is radiated at angles larger than the jet resolution parameter R = 0 .3 considered in the analysis. The fragmentation bias introduced by selecting jets with a high p T leading particle, which rejects jets with a soft fragmentation pattern, has a similar effect on the jet yield for central and peripheral events. The ratio of jet spectra with R = 0 .2 and R = 0 .3 is found to be similar in Pb-Pb and simulated PYTHIA pp events, indicating no strong broadening of the radial jet structure in the reconstructed jets with R < 0 .3. [Figure not available: see fulltext.

  15. Photoinduced reactions between Pb3O4 and organic dyes in aqueous solution under visible light.

    PubMed

    Zhou, Yangen; Long, Jinlin; Gu, Quan; Lin, Huaxiang; Lin, Huan; Wang, Xuxu

    2012-12-01

    Pb(3)O(4) could react with organic dyes in aqueous solution under visible light irradiation, in which Pb(3)O(4) was transformed into Pb(3)(CO(3))(2)(OH)(2) along with oxidation of the organic dyes. Cu(2+) has considerable effect on the reaction. In the presence of Cu(2+), MO (20 ppm) and RhB (10(-5) mol L(-1)) were completely degraded under visible light within 6 and 20 min, respectively, while both Pb(3)O(4) and Cu(2+) keep almost stable during photodegradation. The mechanisms of the reactions with and without Cu(2+) ions were studied. The photochemical system of Pb(3)O(4) cooperating with Cu(2+) ions is probably used for the treatment of organic pollutants in water under visible light.

  16. Pb tolerance and bioaccumulation by the mycelia of Flammulina velutipes in artificial enrichment medium.

    PubMed

    Zhu, Changwei; Li, Zhengpeng; Li, Decai; Xin, Yan

    2014-01-01

    Mushrooms have the ability to accumulate high concentrations of heavy metals, which gives them potential for use as bioremediators of environmental contamination. The Pb(2+) tolerance and accumulation ability of living mycelia of Flammulina velutipes were studied in this work. Mycelial growth was inhibited when exposed to 1 mM Pb(2+). The colony diameter on solid medium decreased almost 10% compared with the control. Growth decreased almost 50% when the Pb(2+) concentration increased to 4 mM in the medium, with the colony diameter decreasing from 80 mm to 43.4 mm, and dry biomass production in liquid cultures decreasing from 9.23±0.55 to 4.27±0.28 g/L. Lead ions were efficiently accumulated in the mycelia. The amount of Pb(2+) in the mycelia increased with increasing Pb(2+) concentration in the medium, with the maximum concentration up to 707±91.4 mg/kg dry weight. We also show evidence that a large amount of the Pb(2+) was adsorbed to the mycelial surface, which may indicate that an exclusion mechanism is involved in Pb tolerance. These results demonstrate that F. velutipes could be useful as a remediator of heavy metal contamination because of the characteristics of high tolerance to Pb(2+) and efficient accumulation of Pb(2+) ions by the mycelia.

  17. In-Situ Geochronology: Extending Larims to Pb-Pb Isocrhons

    NASA Astrophysics Data System (ADS)

    Whitaker, Tom; Anderson, Scott; Levine, Jonathan

    2016-04-01

    HfO2, which have been known to cause problems in Inductively Coupled Plasma Mass Spectrometry (ICPMS) of Pb isotopes [3]. LARIMS enables a simple check for interfering species by detuning the laser wavelength off the Pb resonance. The resonance ionization signal for the desired species should disappear when the resonance laser is detuned. Any residual signal is due to an interfering species. Three resonance ionization laser schemes were examined for initial LARIMS analysis of Pb: 1) a 2+1 scheme that uses λ1 = λ2 = 450.3 nm (the first transition in this scheme is a simultaneous two-photon excitation), 2) a 1+1+1 scheme using λ1 = 283.3 nm, λ2 = 600.2 nm and λ3 < 1270 nm, and 3) a 1+1 scheme that uses λ1 = λ2 = 283.3 nm. One-photon resonance excitations have cross-sections that are orders of magnitude greater than either two-photon resonance excitations or photoionization processes. Therefore, although schemes 1) and 3) have the advantage of requiring fewer lasers, they also require high-intensity blue or UV wavelengths. This adversely affects the selectivity of the resonance ionization process. Scheme 2) uses low-intensity UV and visible wavelengths and a high-intensity IR wavelength. This is the preferred scheme and was selected for our initial Pb LARIMS measurements. Preliminary Results: A laser system capable of producing the required wavelengths for scheme 2) was assembled. A Nd:YAG laser pumped dye laser produces 566.6 nm light, which is frequency-doubled in a beta barium borate crystal. A second Nd:YAG pumped dye laser produces the 600.2 nm light for the second resonance in scheme 2). The fundamental of one of the Nd:YAG lasers (1064 nm) is used for the final photoionization step. We focus the fifth harmonic (213 nm) of another Nd:YAG laser onto the sample to ablate material off the surface. Electric fields suppress the ions created in the ablation process, preventing these ions from entering the mass spectrometer. The three resonance ionization laser

  18. Jet (de)coherence in Pb-Pb collisions at the LHC

    NASA Astrophysics Data System (ADS)

    Mehtar-Tani, Yacine; Tywoniuk, Konrad

    2015-05-01

    We study the modifications of jets created in heavy-ion collisions at LHC energies. The inherent hierarchy of scales governing the jet evolution allows to distinguish a leading jet structure, which interacts coherently with the medium as a single color charge, from softer sub-structures that will be sensitive to effects of color decoherence. We argue how this separation comes about and show that this picture is consistent with experimental data on reconstructed jets at the LHC, providing a quantitative description simultaneously of the jet nuclear modification factor, the missing energy in di-jet events and the modification of the fragmentation functions. In particular, we demonstrate that effects due to color decoherence are manifest in the excess of soft particles measured in fragmentation functions in Pb-Pb compared to proton-proton collisions.

  19. Optical Properties of PbTe and PbSe

    SciTech Connect

    Ekuma, Chinedu E; Singh, David J; Moreno, Juana; Jarrell, Mark

    2012-01-01

    We report optical properties of PbTe and PbSe as obtained from first-principles calculations with the Tran-Blaha modified Becke-Johnson potential. The results are discussed in relation to existing experimental data, particularly in relation to the temperature dependence of the band gap.

  20. Observation of sequential Υ suppression in PbPb collisions.

    PubMed

    Chatrchyan, S; Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Aguilo, E; Bergauer, T; Dragicevic, M; Erö, J; Fabjan, C; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hörmann, N; Hrubec, J; Jeitler, M; Kiesenhofer, W; Knünz, V; Krammer, M; Krätschmer, I; Liko, D; Mikulec, I; Pernicka, M; Rahbaran, B; Rohringer, C; Rohringer, H; Schöfbeck, R; Strauss, J; Taurok, A; Waltenberger, W; Walzel, G; Widl, E; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Bansal, S; Cornelis, T; De Wolf, E A; Janssen, X; Luyckx, S; Mucibello, L; Ochesanu, S; Roland, B; Rougny, R; Selvaggi, M; Staykova, Z; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Blekman, F; Blyweert, S; D'Hondt, J; Gonzalez Suarez, R; Kalogeropoulos, A; Maes, M; Olbrechts, A; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Clerbaux, B; De Lentdecker, G; Dero, V; Gay, A P R; Hreus, T; Léonard, A; Marage, P E; Reis, T; Thomas, L; Vander Velde, C; Vanlaer, P; Wang, J; Adler, V; Beernaert, K; Cimmino, A; Costantini, S; Garcia, G; Grunewald, M; Klein, B; Lellouch, J; Marinov, A; McCartin, J; Ocampo Rios, A A; Ryckbosch, D; Strobbe, N; Thyssen, F; Tytgat, M; Verwilligen, P; Walsh, S; Yazgan, E; Zaganidis, N; Basegmez, S; Bruno, G; Castello, R; Ceard, L; Delaere, C; du Pree, T; Favart, D; Forthomme, L; Giammanco, A; Hollar, J; Lemaitre, V; Liao, J; Militaru, O; Nuttens, C; Pagano, D; Pin, A; Piotrzkowski, K; Schul, N; Vizan Garcia, J M; Beliy, N; Caebergs, T; Daubie, E; Hammad, G H; Alves, G A; Correa Martins, M; De Jesus Damiao, D; Martins, T; Pol, M E; Souza, M H G; Aldá, W L; Carvalho, W; Custódio, A; Da Costa, E M; De Oliveira Martins, C; Fonseca De Souza, S; Matos Figueiredo, D; Mundim, L; Nogima, H; Oguri, V; Prado Da Silva, W L; Santoro, A; Soares Jorge, L; Sznajder, A; Anjos, T S; Bernardes, C A; Dias, F A; Fernandez Perez Tomei, T R; Gregores, E M; Lagana, C; Marinho, F; Mercadante, P G; Novaes, S F; Padula, Sandra S; Genchev, V; Iaydjiev, P; Piperov, S; Rodozov, M; Stoykova, S; Sultanov, G; Tcholakov, V; Trayanov, R; Vutova, M; Dimitrov, A; Hadjiiska, R; Kozhuharov, V; Litov, L; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Jiang, C H; Liang, D; Liang, S; Meng, X; Tao, J; Wang, J; Wang, X; Wang, Z; Xiao, H; Xu, M; Zang, J; Zhang, Z; Asawatangtrakuldee, C; Ban, Y; Guo, S; Guo, Y; Li, W; Liu, S; Mao, Y; Qian, S J; Teng, H; Wang, D; Zhang, L; Zhu, B; Zou, W; Avila, C; Gomez, J P; Gomez Moreno, B; Osorio Oliveros, A F; Sanabria, J C; Godinovic, N; Lelas, D; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Kovac, M; Brigljevic, V; Duric, S; Kadija, K; Luetic, J; Morovic, S; Attikis, A; Galanti, M; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Finger, M; Finger, M; Assran, Y; Elgammal, S; Ellithi Kamel, A; Khalil, S; Mahmoud, M A; Radi, A; Kadastik, M; Müntel, M; Raidal, M; Rebane, L; Tiko, A; Eerola, P; Fedi, G; Voutilainen, M; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Peltola, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Ungaro, D; Wendland, L; Banzuzi, K; Karjalainen, A; Korpela, A; Tuuva, T; Besancon, M; Choudhury, S; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Malcles, J; Millischer, L; Nayak, A; Rander, J; Rosowsky, A; Shreyber, I; Titov, M; Baffioni, S; Beaudette, F; Benhabib, L; Bianchini, L; Bluj, M; Broutin, C; Busson, P; Charlot, C; Daci, N; Dahms, T; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Mironov, C; Naranjo, I N; Nguyen, M; Ochando, C; Paganini, P; Sabes, D; Salerno, R; Sirois, Y; Veelken, C; Zabi, A; Agram, J-L; Andrea, J; Bloch, D; Bodin, D; Brom, J-M; Cardaci, M; Chabert, E C; Collard, C; Conte, E; Drouhin, F; Ferro, C; Fontaine, J-C; Gelé, D; Goerlach, U; Juillot, P; Le Bihan, A-C; Van Hove, P; Fassi, F; Mercier, D; Beauceron, S; Beaupere, N; Bondu, O; Boudoul, G; Chasserat, J; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fay, J; Gascon, S; Gouzevitch, M; Ille, B; Kurca, T; Lethuillier, M; Mirabito, L; Perries, S; Sordini, V; Tschudi, Y; Verdier, P; Viret, S; Tsamalaidze, Z; Anagnostou, G; Beranek, S; Edelhoff, M; Feld, L; Heracleous, N; Hindrichs, O; Jussen, R; Klein, K; Merz, J; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Sprenger, D; Weber, H; Wittmer, B; Zhukov, V; Ata, M; Caudron, J; Dietz-Laursonn, E; Duchardt, D; Erdmann, M; Fischer, R; Güth, A; Hebbeker, T; Heidemann, C; Hoepfner, K; Klingebiel, D; Kreuzer, P; Magass, C; Merschmeyer, M; Meyer, A; Olschewski, M; Papacz, P; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Steggemann, J; Teyssier, D; Weber, M; Bontenackels, M; Cherepanov, V; Flügge, G; Geenen, H; Geisler, M; Haj Ahmad, W; Hoehle, F; Kargoll, B; Kress, T; Kuessel, Y; Nowack, A; Perchalla, L; Pooth, O; Sauerland, P; Stahl, A; Aldaya Martin, M; Behr, J; Behrenhoff, W; Behrens, U; Bergholz, M; Bethani, A; Borras, K; Burgmeier, A; Cakir, A; Calligaris, L; Campbell, A; Castro, E; Costanza, F; Dammann, D; Diez Pardos, C; Eckerlin, G; Eckstein, D; Flucke, G; Geiser, A; Glushkov, I; Gunnellini, P; Habib, S; Hauk, J; Hellwig, G; Jung, H; Kasemann, M; Katsas, P; Kleinwort, C; Kluge, H; Knutsson, A; Krämer, M; Krücker, D; Kuznetsova, E; Lange, W; Lohmann, W; Lutz, B; Mankel, R; Marfin, I; Marienfeld, M; Melzer-Pellmann, I-A; Meyer, A B; Mnich, J; Mussgiller, A; Naumann-Emme, S; Olzem, J; Perrey, H; Petrukhin, A; Pitzl, D; Raspereza, A; Ribeiro Cipriano, P M; Riedl, C; Ron, E; Rosin, M; Salfeld-Nebgen, J; Schmidt, R; Schoerner-Sadenius, T; Sen, N; Spiridonov, A; Stein, M; Walsh, R; Wissing, C; Autermann, C; Blobel, V; Draeger, J; Enderle, H; Erfle, J; Gebbert, U; Görner, M; Hermanns, T; Höing, R S; Kaschube, K; Kaussen, G; Kirschenmann, H; Klanner, R; Lange, J; Mura, B; Nowak, F; Peiffer, T; Pietsch, N; Rathjens, D; Sander, C; Schettler, H; Schleper, P; Schlieckau, E; Schmidt, A; Schröder, M; Schum, T; Seidel, M; Sola, V; Stadie, H; Steinbrück, G; Thomsen, J; Vanelderen, L; Barth, C; Berger, J; Böser, C; Chwalek, T; De Boer, W; Descroix, A; Dierlamm, A; Feindt, M; Guthoff, M; Hackstein, C; Hartmann, F; Hauth, T; Heinrich, M; Held, H; Hoffmann, K H; Honc, S; Katkov, I; Komaragiri, J R; Lobelle Pardo, P; Martschei, D; Mueller, S; Müller, Th; Niegel, M; Nürnberg, A; Oberst, O; Oehler, A; Ott, J; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Röcker, S; Scheurer, A; Schilling, F-P; Schott, G; Simonis, H J; Stober, F M; Troendle, D; Ulrich, R; Wagner-Kuhr, J; Wayand, S; Weiler, T; Zeise, M; Daskalakis, G; Geralis, T; Kesisoglou, S; Kyriakis, A; Loukas, D; Manolakos, I; Markou, A; Markou, C; Mavrommatis, C; Ntomari, E; Gouskos, L; Mertzimekis, T J; Panagiotou, A; Saoulidou, N; Evangelou, I; Foudas, C; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Bencze, G; Hajdu, C; Hidas, P; Horvath, D; Sikler, F; Veszpremi, V; Vesztergombi, G; Zsigmond, A; Beni, N; Czellar, S; Molnar, J; Palinkas, J; Szillasi, Z; Karancsi, J; Raics, P; Trocsanyi, Z L; Ujvari, B; Beri, S B; Bhatnagar, V; Dhingra, N; Gupta, R; Jindal, M; Kaur, M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, J; Kumar, Ashok; Kumar, Arun; Ahuja, S; Bhardwaj, A; Choudhary, B C; Malhotra, S; Naimuddin, M; Ranjan, K; Sharma, V; Shivpuri, R K; Banerjee, S; Bhattacharya, S; Dutta, S; Gomber, B; Jain, Sa; Jain, Sh; Khurana, R; Sarkar, S; Sharan, M; Abdulsalam, A; Choudhury, R K; Dutta, D; Kailas, S; Kumar, V; Mehta, P; Mohanty, A K; Pant, L M; Shukla, P; Aziz, T; Ganguly, S; Guchait, M; Maity, M; Majumder, G; Mazumdar, K; Mohanty, G B; Parida, B; Sudhakar, K; Wickramage, N; Banerjee, S; Dugad, S; Arfaei, H; Bakhshiansohi, H; Etesami, S M; Fahim, A; Hashemi, M; Hesari, H; Jafari, A; Khakzad, M; Mohammadi Najafabadi, M; Paktinat Mehdiabadi, S; Safarzadeh, B; Zeinali, M; Abbrescia, M; Barbone, L; Calabria, C; Chhibra, S S; Colaleo, A; Creanza, D; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Lusito, L; Maggi, G; Maggi, M; Marangelli, B; My, S; Nuzzo, S; Pacifico, N; Pompili, A; Pugliese, G; Selvaggi, G; Silvestris, L; Singh, G; Venditti, R; Zito, G; Abbiendi, G; Benvenuti, A C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Capiluppi, P; Castro, A; Cavallo, F R; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Meneghelli, M; Montanari, A; Navarria, F L; Odorici, F; Perrotta, A; Primavera, F; Rossi, A M; Rovelli, T; Siroli, G; Travaglini, R; Albergo, S; Cappello, G; Chiorboli, M; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Gonzi, S; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bianco, S; Colafranceschi, S; Fabbri, F; Piccolo, D; Fabbricatore, P; Musenich, R; Tosi, S; Benaglia, A; De Guio, F; Di Matteo, L; Fiorendi, S; Gennai, S; Ghezzi, A; Malvezzi, S; Manzoni, R A; Martelli, A; Massironi, A; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Ragazzi, S; Redaelli, N; Sala, S; Tabarelli de Fatis, T; Buontempo, S; Carrillo Montoya, C A; Cavallo, N; De Cosa, A; Dogangun, O; Fabozzi, F; Iorio, A O M; Lista, L; Meola, S; Merola, M; Paolucci, P; Azzi, P; Bacchetta, N; Biasotto, M; Bisello, D; Branca, A; Checchia, P; Dorigo, T; Gasparini, F; Gonella, F; Gozzelino, A; Gulmini, M; Kanishchev, K; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Meneguzzo, A T; Montecassiano, F; Pazzini, J; Pozzobon, N; Ronchese, P; Torassa, E; Tosi, M; Vanini, S; Gabusi, M; Ratti, S P; Riccardi, C; Torre, P; Vitulo, P; Biasini, M; Bilei, G M; Fanò, L; Lariccia, P; Lucaroni, A; Mantovani, G; Menichelli, M; Nappi, A; Romeo, F; Saha, A; Santocchia, A; Spiezia, A; Taroni, S; Azzurri, P; Bagliesi, G; Boccali, T; Broccolo, G; Castaldi, R; D'Agnolo, R T; Dell'Orso, R; Fiori, F; Foà, L; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Palla, F; Rizzi, A; Serban, A T; Spagnolo, P; Squillacioti, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; Del Re, D; Diemoz, M; Fanelli, C; Grassi, M; Longo, E; Meridiani, P; Micheli, F; Nourbakhsh, S; Organtini, G; Paramatti, R; Rahatlou, S; Sigamani, M; Soffi, L; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Cartiglia, N; Costa, M; Demaria, N; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Musich, M; Obertino, M M; Pastrone, N; Pelliccioni, M; Potenza, A; Romero, A; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Vilela Pereira, A; Belforte, S; Candelise, V; Cossutti, F; Della Ricca, G; Gobbo, B; Marone, M; Montanino, D; Penzo, A; Schizzi, A; Heo, S G; Kim, T Y; Nam, S K; Chang, S; Kim, D H; Kim, G N; Kong, D J; Park, H; Ro, S R; Son, D C; Son, T; Kim, J Y; Kim, Zero J; Song, S; Choi, S; Gyun, D; Hong, B; Jo, M; Kim, H; Kim, T J; Lee, K S; Moon, D H; Park, S K; Choi, M; Kim, J H; Park, C; Park, I C; Park, S; Ryu, G; Cho, Y; Choi, Y; Choi, Y K; Goh, J; Kim, M S; Kwon, E; Lee, B; Lee, J; Lee, S; Seo, H; Yu, I; Bilinskas, M J; Grigelionis, I; Janulis, M; Juodagalvis, A; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-de La Cruz, I; Lopez-Fernandez, R; Magaña Villalba, R; Martínez-Ortega, J; Sánchez-Hernández, A; Villasenor-Cendejas, L M; Carrillo Moreno, S; Vazquez Valencia, F; Salazar Ibarguen, H A; Casimiro Linares, E; Morelos Pineda, A; Reyes-Santos, M A; Krofcheck, D; Bell, A J; Butler, P H; Doesburg, R; Reucroft, S; Silverwood, H; Ahmad, M; Asghar, M I; Hoorani, H R; Khalid, S; Khan, W A; Khurshid, T; Qazi, S; Shah, M A; Shoaib, M; Bialkowska, H; Boimska, B; Frueboes, T; Gokieli, R; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Wrochna, G; Zalewski, P; Brona, G; Bunkowski, K; Cwiok, M; Dominik, W; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Almeida, N; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Gallinaro, M; Seixas, J; Varela, J; Vischia, P; Afanasiev, S; Belotelov, I; Bunin, P; Gavrilenko, M; Golutvin, I; Kamenev, A; Karjavin, V; Kozlov, G; Lanev, A; Malakhov, A; Moisenz, P; Palichik, V; Perelygin, V; Shmatov, S; Smirnov, V; Volodko, A; Zarubin, A; Evstyukhin, S; Golovtsov, V; Ivanov, Y; Kim, V; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Vorobyev, An; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Erofeeva, M; Gavrilov, V; Kossov, M; Lychkovskaya, N; Popov, V; Safronov, G; Semenov, S; Stolin, V; Vlasov, E; Zhokin, A; Belyaev, A; Boos, E; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Korotkikh, V; Lokhtin, I; Markina, A; Obraztsov, S; Perfilov, M; Petrushanko, S; Popov, A; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Mesyats, G; Rusakov, S V; Vinogradov, A; Azhgirey, I; Bayshev, I; Bitioukov, S; Grishin, V; Kachanov, V; Konstantinov, D; Korablev, A; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Ekmedzic, M; Krpic, D; Milosevic, J; Aguilar-Benitez, M; Alcaraz Maestre, J; Arce, P; Battilana, C; Calvo, E; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Delgado Peris, A; Domínguez Vázquez, D; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Merino, G; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Santaolalla, J; Soares, M S; Willmott, C; Albajar, C; Codispoti, G; de Trocóniz, J F; Brun, H; Cuevas, J; Fernandez Menendez, J; Folgueras, S; Gonzalez Caballero, I; Lloret Iglesias, L; Piedra Gomez, J; Brochero Cifuentes, J A; Cabrillo, I J; Calderon, A; Chuang, S H; Duarte Campderros, J; Felcini, M; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Graziano, A; Jorda, C; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Matorras, F; Munoz Sanchez, F J; Rodrigo, T; Rodríguez-Marrero, A Y; Ruiz-Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Baillon, P; Ball, A H; Barney, D; Benitez, J F; Bernet, C; Bianchi, G; Bloch, P; Bocci, A; Bonato, A; Botta, C; Breuker, H; Camporesi, T; Cerminara, G; Christiansen, T; Coarasa Perez, J A; D'Enterria, D; Dabrowski, A; De Roeck, A; Di Guida, S; Dobson, M; Dupont-Sagorin, N; Elliott-Peisert, A; Frisch, B; Funk, W; Georgiou, G; Giffels, M; Gigi, D; Gill, K; Giordano, D; Giunta, M; Glege, F; Gomez-Reino Garrido, R; Govoni, P; Gowdy, S; Guida, R; Hansen, M; Harris, P; Hartl, C; Harvey, J; Hegner, B; Hinzmann, A; Innocente, V; Janot, P; Kaadze, K; Karavakis, E; Kousouris, K; Lecoq, P; Lee, Y-J; Lenzi, P; Lourenço, C; Mäki, T; Malberti, M; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Mersi, S; Meschi, E; Moser, R; Mozer, M U; Mulders, M; Musella, P; Nesvold, E; Orimoto, T; Orsini, L; Palencia Cortezon, E; Perez, E; Perrozzi, L; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Piparo, D; Polese, G; Quertenmont, L; Racz, A; Reece, W; Rodrigues Antunes, J; Rolandi, G; Rommerskirchen, T; Rovelli, C; Rovere, M; Sakulin, H; Santanastasio, F; Schäfer, C; Schwick, C; Segoni, I; Sekmen, S; Sharma, A; Siegrist, P; Silva, P; Simon, M; Sphicas, P; Spiga, D; Tsirou, A; Veres, G I; Vlimant, J R; Wöhri, H K; Worm, S D; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Bäni, L; Bortignon, P; Buchmann, M A; Casal, B; Chanon, N; Deisher, A; Dissertori, G; Dittmar, M; Donegà, M; Dünser, M; Eugster, J; Freudenreich, K; Grab, C; Hits, D; Lecomte, P; Lustermann, W; Marini, A C; Martinez Ruiz del Arbol, P; Mohr, N; Moortgat, F; Nägeli, C; Nef, P; Nessi-Tedaldi, F; Pandolfi, F; Pape, L; Pauss, F; Peruzzi, M; Ronga, F J; Rossini, M; Sala, L; Sanchez, A K; Starodumov, A; Stieger, B; Takahashi, M; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Urscheler, C; Wallny, R; Weber, H A; Wehrli, L; Amsler, C; Chiochia, V; De Visscher, S; Favaro, C; Ivova Rikova, M; Millan Mejias, B; Otiougova, P; Robmann, P; Snoek, H; Tupputi, S; Verzetti, M; Chang, Y H; Chen, K H; Kuo, C M; Li, S W; Lin, W; Liu, Z K; Lu, Y J; Mekterovic, D; Singh, A P; Volpe, R; Yu, S S; Bartalini, P; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Dietz, C; Grundler, U; Hou, W-S; Hsiung, Y; Kao, K Y; Lei, Y J; Lu, R-S; Majumder, D; Petrakou, E; Shi, X; Shiu, J G; Tzeng, Y M; Wan, X; Wang, M; Adiguzel, A; Bakirci, M N; Cerci, S; Dozen, C; Dumanoglu, I; Eskut, E; Girgis, S; Gokbulut, G; Gurpinar, E; Hos, I; Kangal, E E; Karaman, T; Karapinar, G; Kayis Topaksu, A; Onengut, G; Ozdemir, K; Ozturk, S; Polatoz, A; Sogut, K; Sunar Cerci, D; Tali, B; Topakli, H; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilin, B; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Ocalan, K; Ozpineci, A; Serin, M; Sever, R; Surat, U E; Yalvac, M; Yildirim, E; Zeyrek, M; Gülmez, E; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Cankocak, K; Levchuk, L; Bostock, F; Brooke, J J; Clement, E; Cussans, D; Flacher, H; Frazier, R; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Kreczko, L; Metson, S; Newbold, D M; Nirunpong, K; Poll, A; Senkin, S; Smith, V J; Williams, T; Basso, L; Belyaev, A; Brew, C; Brown, R M; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Jackson, J; Kennedy, B W; Olaiya, E; Petyt, D; Radburn-Smith, B C; Shepherd-Themistocleous, C H; Tomalin, I R; Womersley, W J; Bainbridge, R; Ball, G; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Cutajar, M; Dauncey, P; Davies, G; Della Negra, M; Ferguson, W; Fulcher, J; Futyan, D; Gilbert, A; Guneratne Bryer, A; Hall, G; Hatherell, Z; Hays, J; Iles, G; Jarvis, M; Karapostoli, G; Lyons, L; Magnan, A-M; Marrouche, J; Mathias, B; Nandi, R; Nash, J; Nikitenko, A; Papageorgiou, A; Pela, J; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rogerson, S; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sparrow, A; Stoye, M; Tapper, A; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardle, N; Whyntie, T; Chadwick, M; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leggat, D; Leslie, D; Martin, W; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Hatakeyama, K; Liu, H; Scarborough, T; Charaf, O; Henderson, C; Rumerio, P; Avetisyan, A; Bose, T; Fantasia, C; Heister, A; St John, J; Lawson, P; Lazic, D; Rohlf, J; Sperka, D; Sulak, L; Alimena, J; Bhattacharya, S; Cutts, D; Ferapontov, A; Heintz, U; Jabeen, S; Kukartsev, G; Laird, E; Landsberg, G; Luk, M; Narain, M; Nguyen, D; Segala, M; Sinthuprasith, T; Speer, T; Tsang, K V; Breedon, R; Breto, G; Calderon De La Barca Sanchez, M; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Dolen, J; Erbacher, R; Gardner, M; Houtz, R; Ko, W; Kopecky, A; Lander, R; Miceli, T; Pellett, D; Ricci-tam, F; Rutherford, B; Searle, M; Smith, J; Squires, M; Tripathi, M; Vasquez Sierra, R; Andreev, V; Cline, D; Cousins, R; Duris, J; Erhan, S; Everaerts, P; Farrell, C; Hauser, J; Ignatenko, M; Jarvis, C; Plager, C; Rakness, G; Schlein, P; Traczyk, P; Valuev, V; Weber, M; Babb, J; Clare, R; Dinardo, M E; Ellison, J; Gary, J W; Giordano, F; Hanson, G; Jeng, G Y; Liu, H; Long, O R; Luthra, A; Nguyen, H; Paramesvaran, S; Sturdy, J; Sumowidagdo, S; Wilken, R; Wimpenny, S; Andrews, W; Branson, J G; Cerati, G B; Cittolin, S; Evans, D; Golf, F; Holzner, A; Kelley, R; Lebourgeois, M; Letts, J; Macneill, I; Mangano, B; Padhi, S; Palmer, C; Petrucciani, G; Pieri, M; Sani, M; Sharma, V; Simon, S; Sudano, E; Tadel, M; Tu, Y; Vartak, A; Wasserbaech, S; Würthwein, F; Yagil, A; Yoo, J; Barge, D; Bellan, R; Campagnari, C; D'Alfonso, M; Danielson, T; Flowers, K; Geffert, P; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lowette, S; McColl, N; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; West, C; Apresyan, A; Bornheim, A; Chen, Y; Di Marco, E; Duarte, J; Gataullin, M; Ma, Y; Mott, A; Newman, H B; Rogan, C; Spiropulu, M; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhu, R Y; Akgun, B; Azzolini, V; Carroll, R; Ferguson, T; Iiyama, Y; Jang, D W; Liu, Y F; Paulini, M; Vogel, H; Vorobiev, I; Cumalat, J P; Drell, B R; Edelmaier, C J; Ford, W T; Gaz, A; Heyburn, B; Luiggi Lopez, E; Smith, J G; Stenson, K; Ulmer, K A; Wagner, S R; Alexander, J; Chatterjee, A; Eggert, N; Gibbons, L K; Heltsley, B; Khukhunaishvili, A; Kreis, B; Mirman, N; Nicolas Kaufman, G; Patterson, J R; Ryd, A; Salvati, E; Sun, W; Teo, W D; Thom, J; Thompson, J; Tucker, J; Vaughan, J; Weng, Y; Winstrom, L; Wittich, P; Winn, D; Abdullin, S; Albrow, M; Anderson, J; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bloch, I; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Elvira, V D; Fisk, I; Freeman, J; Gao, Y; Green, D; Gutsche, O; Hanlon, J; Harris, R M; Hirschauer, J; Hooberman, B; Jindariani, S; Johnson, M; Joshi, U; Kilminster, B; Klima, B; Kunori, S; Kwan, S; Leonidopoulos, C; Linacre, J; Lincoln, D; Lipton, R; Lykken, J; Maeshima, K; Marraffino, J M; Maruyama, S; Mason, D; McBride, P; Mishra, K; Mrenna, S; Musienko, Y; Newman-Holmes, C; O'Dell, V; Prokofyev, O; Sexton-Kennedy, E; Sharma, S; Spalding, W J; Spiegel, L; Tan, P; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wu, W; Yang, F; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Bourilkov, D; Chen, M; Cheng, T; Das, S; De Gruttola, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fisher, M; Fu, Y; Furic, I K; Gartner, J; Hugon, J; Kim, B; Konigsberg, J; Korytov, A; Kropivnitskaya, A; Kypreos, T; Low, J F; Matchev, K; Milenovic, P; Mitselmakher, G; Muniz, L; Remington, R; Rinkevicius, A; Sellers, P; Skhirtladze, N; Snowball, M; Yelton, J; Zakaria, M; Gaultney, V; Hewamanage, S; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Bochenek, J; Chen, J; Diamond, B; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prosper, H; Veeraraghavan, V; Weinberg, M; Baarmand, M M; Dorney, B; Hohlmann, M; Kalakhety, H; Vodopiyanov, I; Adams, M R; Anghel, I M; Apanasevich, L; Bai, Y; Bazterra, V E; Betts, R R; Bucinskaite, I; Callner, J; Cavanaugh, R; Dragoiu, C; Evdokimov, O; Gauthier, L; Gerber, C E; Hofman, D J; Khalatyan, S; Lacroix, F; Malek, M; O'Brien, C; Silkworth, C; Strom, D; Varelas, N; Akgun, U; Albayrak, E A; Bilki, B; Clarida, W; Duru, F; Griffiths, S; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Onel, Y; Ozok, F; Sen, S; Tiras, E; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bolognesi, S; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Hu, G; Maksimovic, P; Rappoccio, S; Swartz, M; Whitbeck, A; Baringer, P; Bean, A; Benelli, G; Grachov, O; Kenny, R P; Murray, M; Noonan, D; Sanders, S; Stringer, R; Tinti, G; Wood, J S; Zhukova, V; Barfuss, A F; Bolton, T; Chakaberia, I; Ivanov, A; Khalil, S; Makouski, M; Maravin, Y; Shrestha, S; Svintradze, I; Gronberg, J; Lange, D; Wright, D; Baden, A; Boutemeur, M; Calvert, B; Eno, S C; Gomez, J A; Hadley, N J; Kellogg, R G; Kirn, M; Kolberg, T; Lu, Y; Marionneau, M; Mignerey, A C; Pedro, K; Peterman, A; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Twedt, E; Apyan, A; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; Dutta, V; Gomez Ceballos, G; Goncharov, M; Hahn, K A; Kim, Y; Klute, M; Krajczar, K; Li, W; Luckey, P D; Ma, T; Nahn, S; Paus, C; Ralph, D; Roland, C; Roland, G; Rudolph, M; Stephans, G S F; Stöckli, F; Sumorok, K; Sung, K; Velicanu, D; Wenger, E A; Wolf, R; Wyslouch, B; Xie, S; Yang, M; Yilmaz, Y; Yoon, A S; Zanetti, M; Cooper, S I; Dahmes, B; De Benedetti, A; Franzoni, G; Gude, A; Kao, S C; Klapoetke, K; Kubota, Y; Mans, J; Pastika, N; Rusack, R; Sasseville, M; Singovsky, A; Tambe, N; Turkewitz, J; Cremaldi, L M; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Avdeeva, E; Bloom, K; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kravchenko, I; Lazo-Flores, J; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Godshalk, A; Iashvili, I; Jain, S; Kharchilava, A; Kumar, A; Shipkowski, S P; Smith, K; Alverson, G; Barberis, E; Baumgartel, D; Chasco, M; Haley, J; Nash, D; Trocino, D; Wood, D; Zhang, J; Anastassov, A; Kubik, A; Mucia, N; Odell, N; Ofierzynski, R A; Pollack, B; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Brinkerhoff, A; Hildreth, M; Jessop, C; Karmgard, D J; Kolb, J; Lannon, K; Luo, W; Lynch, S; Marinelli, N; Morse, D M; Pearson, T; Ruchti, R; Slaunwhite, J; Valls, N; Wayne, M; Wolf, M; Bylsma, B; Durkin, L S; Hill, C; Hughes, R; Hughes, R; Kotov, K; Ling, T Y; Puigh, D; Rodenburg, M; Vuosalo, C; Williams, G; Winer, B L; Adam, N; Berry, E; Elmer, P; Gerbaudo, D; Halyo, V; Hebda, P; Hegeman, J; Hunt, A; Jindal, P; Lopes Pegna, D; Lujan, P; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Quan, X; Raval, A; Safdi, B; Saka, H; Stickland, D; Tully, C; Werner, J S; Zuranski, A; Acosta, J G; Brownson, E; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Zatserklyaniy, A; Alagoz, E; Barnes, V E; Benedetti, D; Bolla, G; Bortoletto, D; De Mattia, M; Everett, A; Hu, Z; Jones, M; Koybasi, O; Kress, M; Laasanen, A T; Leonardo, N; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Shipsey, I; Silvers, D; Svyatkovskiy, A; Vidal Marono, M; Yoo, H D; Zablocki, J; Zheng, Y; Guragain, S; Parashar, N; Adair, A; Boulahouache, C; Ecklund, K M; Geurts, F J M; Padley, B P; Redjimi, R; Roberts, J; Zabel, J; Betchart, B; Bodek, A; Chung, Y S; Covarelli, R; de Barbaro, P; Demina, R; Eshaq, Y; Garcia-Bellido, A; Goldenzweig, P; Han, J; Harel, A; Miner, D C; Vishnevskiy, D; Zielinski, M; Bhatti, A; Ciesielski, R; Demortier, L; Goulianos, K; Lungu, G; Malik, S; Mesropian, C; Arora, S; Barker, A; Chou, J P; Contreras-Campana, C; Contreras-Campana, E; Duggan, D; Ferencek, D; Gershtein, Y; Gray, R; Halkiadakis, E; Hidas, D; Lath, A; Panwalkar, S; Park, M; Patel, R; Rekovic, V; Robles, J; Rose, K; Salur, S; Schnetzer, S; Seitz, C; Somalwar, S; Stone, R; Thomas, S; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Eusebi, R; Flanagan, W; Gilmore, J; Kamon, T; Khotilovich, V; Montalvo, R; Osipenkov, I; Pakhotin, Y; Perloff, A; Roe, J; Safonov, A; Sakuma, T; Sengupta, S; Suarez, I; Tatarinov, A; Toback, D; Akchurin, N; Damgov, J; Dudero, P R; Jeong, C; Kovitanggoon, K; Lee, S W; Libeiro, T; Roh, Y; Volobouev, I; Appelt, E; Delannoy, A G; Florez, C; Greene, S; Gurrola, A; Johns, W; Johnston, C; Kurt, P; Maguire, C; Melo, A; Sharma, M; Sheldon, P; Snook, B; Tuo, S; Velkovska, J; Arenton, M W; Balazs, M; Boutle, S; Cox, B; Francis, B; Goodell, J; Hirosky, R; Ledovskoy, A; Lin, C; Neu, C; Wood, J; Yohay, R; Gollapinni, S; Harr, R; Karchin, P E; Kottachchi Kankanamge Don, C; Lamichhane, P; Sakharov, A; Anderson, M; Bachtis, M; Belknap, D; Borrello, L; Carlsmith, D; Cepeda, M; Dasu, S; Friis, E; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Herndon, M; Hervé, A; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Mohapatra, A; Ojalvo, I; Palmonari, F; Pierro, G A; Ross, I; Savin, A; Smith, W H; Swanson, J

    2012-11-30

    The suppression of the individual Υ(nS) states in PbPb collisions with respect to their yields in pp data has been measured. The PbPb and pp data sets used in the analysis correspond to integrated luminosities of 150 μb(-1) and 230 nb(-1), respectively, collected in 2011 by the CMS experiment at the LHC, at a center-of-mass energy per nucleon pair of 2.76 TeV. The Υ(nS) yields are measured from the dimuon invariant mass spectra. The suppression of the Υ(nS) yields in PbPb relative to the yields in pp, scaled by the number of nucleon-nucleon collisions, R(AA), is measured as a function of the collision centrality. Integrated over centrality, the R(AA) values are 0.56±0.08(stat)±0.07(syst), 0.12±0.04(stat)±0.02(syst), and lower than 0.10 (at 95% confidence level), for the Υ(1S), Υ(2S), and Υ(3S) states, respectively. The results demonstrate the sequential suppression of the Υ(nS) states in PbPb collisions at LHC energies.

  1. U-Pb Homogeneity of Duluth Gabbro Baddeleyite from Microgram to Nanogram Scales

    NASA Astrophysics Data System (ADS)

    Schmitt, A. K.; Chamberlain, K.; Swapp, S. M.; Harrison, T. M.

    2009-12-01

    Baddeleyite has significant potential for U-Pb geochronology of mafic rocks, but due to small crystal sizes it can be exceedingly difficult to extract by conventional mineral separation techniques. We therefore developed in-situ dating of baddeleyite crystals with lateral dimensions between 5 and 20 μm (micro-baddeleyite) in polished petrographic thin sections using a CAMECA ims 1270 ion microprobe, and tested the homogeneity of a baddeleyite standard from Duluth gabbro complex over a wide range of grain sizes. Large (100 - 200 μm in diameter) baddeleyite crystals were separated from sample FC4-b from the Duluth gabbro complex and individually analyzed by isotope dilution thermal ionization mass spectrometry (ID-TIMS). Three FC-4b baddeleyite analyses overlap within error with a weighted mean 207Pb/206Pb date of 1099.6±1.5 Ma that closely agrees with published Duluth gabbro zircon dates. The weighted mean ID-TIMS 206Pb/238U date for FC4-b baddeleyite crystal separates (1096.8±0.3 Ma) is slightly younger than those for zircon. Large FC4-b baddeleyite crystals were also mounted along with pieces of polished thin-sections containing micro-baddeleyite and analyzed by ion microprobe using oxygen flooding to enhance sensitivity for positively charged Pb ions by a factor of ten. Ion microprobe 207Pb/206Pb ages for micro-baddeleyite (average 1096.9±2.6 Ma; MSWD = 1.2; n = 27) agree with the ID-TIMS age. With U-Pb relative sensitivities calibrated on FC4-b crystal separates, the weighted average 206Pb/238U micro-baddeleyite date is 1113±11 Ma (MSWD = 2.6; n = 27). This demonstrates that ion microprobe U-Pb baddeleyite analyses are unbiased by crystallographic orientation or grain size, and that 207Pb/206Pb and 206Pb/238U dates for Precambrian micro-baddeleyite are accurate and precise to within <0.3% and <2% relative uncertainty, respectively. For Phanerozoic samples, we anticipate similar 206Pb/238U age uncertainty if radiogenic yields are high. This opens new

  2. Particle production in p-Pb collisions with ALICE at the LHC

    NASA Astrophysics Data System (ADS)

    Toia, Alberica

    2016-05-01

    Measurements of the transverse momentum spectra of light flavor particles at intermediate and high pT are an important tool for QCD studies. In pp collisions they provide a baseline for perturbative QCD, while in Pb-Pb they are used to investigate the suppression caused by the surrounding medium. In p-Pb collisions, such measurements provide a reference to disentangle final from initial state effects and thus play an important role in the search for signatures of the formation of a deconfined hot medium. While the comparison of the p-Pb and Pb-Pb data indicates that initial state effects do not play a role in the suppression of hadron production observed at high pT in heavy ion collisions, several measurements of particle production in the low and intermediate pT region indicate the presence of collective effects.

  3. U-Pb SHRIMP dating of uraniferous opals

    USGS Publications Warehouse

    Nemchin, A.A.; Neymark, L.A.; Simons, S.L.

    2006-01-01

    U-Pb and U-series analyses of four U-rich opal samples using sensitive high-resolution ion microprobe (SHRIMP) demonstrate the potential of this technique for the dating of opals with ages ranging from several tens of thousand years to millions of years. The major advantages of the technique, compared to the conventional thermal ionisation mass spectrometry (TIMS), are the high spatial resolution (???20 ??m), the ability to analyse in situ all isotopes required to determine both U-Pb and U-series ages, and a relatively short analysis time which allows obtaining a growth rate of opal as a result of a single SHRIMP session. There are two major limitations to this method, determined by both current level of development of ion probes and understanding of ion sputtering processes. First, sufficient secondary ion beam intensities can only be obtained for opal samples with U concentrations in excess of ???20 ??g/g. However, this restriction still permits dating of a large variety of opals. Second, U-Pb ratios in all analyses drifted with time and were only weakly correlated with changes in other ratios (such as U/UO). This drift, which is difficult to correct for, remains the main factor currently limiting the precision and accuracy of the U-Pb SHRIMP opal ages. Nevertheless, an assumption of similar behaviour of standard and unknown opals under similar analytical conditions allowed successful determination of ages with precisions of ???10% for the samples investigated in this study. SHRIMP-based U-series and U-Pb ages are consistent with TIMS dating results of the same materials and known geological timeframes. ?? 2005 Elsevier B.V. All rights reserved.

  4. Production, composition and Pb2+ adsorption characteristics of capsular polysaccharides extracted from a cyanobacterium Gloeocapsa gelatinosa.

    PubMed

    Raungsomboon, Suneerat; Chidthaisong, Amnat; Bunnag, Boosya; Inthorn, Duangrat; Harvey, Narumon W

    2006-12-01

    Pb2+ adsorption by the living cells of the cyanobacterium Gloeocapsa gelatinosa was studied. Cyanobacterial cells with intact capsular polysaccharide (CPS) showed 5.7 times higher Pb adsorption capacity than that of cells without CPS. The adsorbed Pb was desorbed by EDTA, indicating that Pb2+ adsorption occurred mainly on cell surface. Production, sugar content and ability of CPS to remove Pb2+ were then studied in details. CPS production by G. gelatinosa increased when culture time was prolonged. The maximum CPS production was 35.43 mg g(-1) dry weight after 30-day cultivation. Xylose, arabinose, ribose, rhamnose, galactose, glucose, mannose and fructose were the neutral sugars presented in CPS of G. gelatinosa. Acidic sugars including galacturonic and glucuronic acids were also found in CPS. The amount and composition of G. gelatinosa's CPS varied according to its growth phase and culture conditions. The highest amount of acidic sugars was produced when cultured under low light intensity. The extracted CPS rapidly removed Pb2+ from the solution (82.22+/-4.82 mg Pb2+ per g CPS), directly demonstrating its roles in binding Pb2+ ions. Its ability to remove Pb2+ rapidly and efficiently, to grow under sub-optimal conditions (such as low pH and low light intensity), and to produce high amount of CPS with acidic sugars, leads us to conclude that G. gelatinosa is a potential viable bioadsorber for mildly acidic water contaminated with Pb2+.

  5. Pb isotopes in sediments of Lake Constance, Central Europe constrain the heavy metal pathways and the pollution history of the catchment, the lake and the regional atmosphere

    SciTech Connect

    Kober, B.; Wessels, M.; Bollhoefer, A.; Mangini

    1999-05-01

    Pb isotope ratios and Pb concentrations of well-dated sediments of Lake Constance, Central Europe have been analyzed using thermal ion mass spectrometry. Sequential extraction studies indicated isotope homogeneity of the leachable Pb components within the investigated layers. Since the middle of the 19th century a significant anthropogenic Pb component appeared in the lake sediments, and rapidly approaches concentration levels similar to that of the geogenic Pb background (20 ppm) at the beginning of the 20th century. Anthropogenic Pb was predominantly transferred to the lake sediments via the atmosphere. Pb sources were coal combustion, industrial ore processing and leaded gasoline. The flux of a fluvial Pb component to the lake sediments, additive to atmospheric Pb deposition, peaked in about 1960. This flux is attributed to (re)mobilization of Pb from polluted parts of the lake catchment, and indicates the change of catchment soils from a pollution sink to a heavy metal source. The strong reduction of anthropogenic Pb in the uppermost lake sediments since the 1960s has been caused by advances of environmental protection. The lake sediments record the changing fluxes and the isotope composition of the deposited aeolian Pb pollution. During the 20th century aeolian Pb fluxes to the lake sediments were in the range of 1--4 {micro}g/cm{sup 2}/a. During peak emission periods of gasoline Pb to the atmosphere (1960--1990) the aerosol Pb isotope composition was rather constant ({sup 206}Pb/{sup 207}Pb: 1.12--1.13) and probably a mixture of Canadian and Australian with Russian and Central European Pb types. Aeolian Pb isotope and Pb flux trends in the lake sediments as a whole agree well with the trends found in Alpine glaciers (Doering et al., 1997a,b) and in ombrotrophic peat bogs of Switzerland (Shotyk et al., 1996). However, different industrial Pb components were deposited in the archives of aeolian pollution during the early 20th century.

  6. Spectroscopic and energy transfer behavior of Dy3+ ions in B2O3sbnd TeO2sbnd PbOsbnd PbF2sbnd Bi2O3sbnd CdO glasses for laser and WLED applications

    NASA Astrophysics Data System (ADS)

    Arunkumar, S.; Venkataiah, G.; Marimuthu, K.

    2015-02-01

    A new series of white light emitting Dy3+ doped Lead tellurofluoroborate glasses have been prepared and their spectroscopic and energy transfer behavior were explored through analyzing XRD, FTIR, Raman, SEM, EDAX, optical absorption, photoluminescence and lifetime measurements. The fundamental stretching of the various borate and tellurite networks were identified using FTIR and Raman spectral analysis. The bonding parameter studies reveal the ionic nature of the Dysbnd O bond in the present glasses. The Judd-Ofelt (JO) intensity parameters determined from the absorption spectra have been used to investigate the nature of bonding and symmetry orientation of the Dy-ligand field environment. The luminescence intensity increases with increasing Dy3+ ion concentration up to 0.5 wt%, beyond that luminescence quenching is observed. The JO parameters have been used to determine the transition probability (A), stimulated emission cross-section (σPE), radiative lifetime (τR) and branching ratios (βR) for the different emission transitions from the 4F9/2 excited level. The higher σPE and βR values of the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions suggest the possible laser action in the visible region. The Y/B ratio, CIE chromaticity color coordinates (x, y) and Color correlated temperature (CCT) were also estimated from the luminescence spectra for different concentration as well as pumping wavelengths. The x, y chromaticity color coordinates fall within the white light region and the white light can be tuned by varying the excitation wavelengths. The lifetime of the 4F9/2 excited state were measured and is found to decrease with increasing Dy3+ ion content. The non-exponential behavior is predominant in higher Dy3+ ion content glasses and is due to the efficient energy transfer between Dy3+sbnd Dy3+ ions. The decay curves were fitted to the Inokuti-Hirayama (IH) model to understand the nature of energy transfer. Among the prepared glasses, 0.5DPTFB glass

  7. W boson studies in pPb and PbPb collisions with CMS

    NASA Astrophysics Data System (ADS)

    Chapon, Émilien; CMS Collaboration

    2015-05-01

    The electroweak W bosons do not participate in the strong interaction, and thus constitute clean probes of the initial state of nuclear collisions. They provide a unique constraint on the nuclear parton distributions, in particular on the antiquarks from the sea. A first analysis of PbPb data has confirmed the medium-blind characteristic of the electroweak bosons. With the new pPb data collected at the beginning of 2013, nuclear matter without the creation of a hot medium can hence be studied. Being 10 times more prevalent than Z bosons, the yield of W bosons recorded from pPb collisions allows precise comparisons to theoretical predictions. A yield of approximately 20 000 W is observed in pPb collisions in both the muon and electron channels. In this paper the CMS measurements of W bosons in PbPb at nucleon-nucleon center-of-mass energy of \\sqrt{sNN} = 2.76 TeV and from the new pPb data at \\sqrt{sNN} = 5.02 TeV are reported. The charge asymmetry, forward/backward asymmetry and fully corrected yields will be shown.

  8. Synthesis and characterization of PbS nanocrystals in water/C12E9/cyclohexane microemulsions

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Li, Guanghai; Zhang, Jun; Zhang, Yong; Zhang, Lide

    2003-04-01

    PbS nanocrystals were prepared using water/C12E9/cyclohexane microemulsions as nanoreactors. The sizes and morphologies of the cubic PbS nanocrystals can be modified by controlling the concentration of ions, the volume ratio of water to surfactant and the reaction temperature. The shuttle-like nanoparticles consisting of PbS nanocrystals were obtained by reaction at the temperature of 150°C.

  9. Density functional theory studies of Pb (II) interaction with chitosan and its derivatives.

    PubMed

    Hassan, Basila; Muraleedharan, K; Abdul Mujeeb, V M

    2015-03-01

    Density functional theory (DFT) studies of Pb (II) ions interaction with biopolymer chitosan and its derivatives are presented. Schiff bases and N-alkylated/arylated derivatives of chitosan were characterized as adsorbents of lead ions and are studied at monomer level. Natural bond orbital (NBO) analysis was carried out for chitosan and derivatives to understand the donor-acceptor interactions. Molecular electrostatic potential (MEP) maps of the adsorbents were plotted with color code. Global reactivity parameters of adsorbents were calculated on the basis of frontier molecular orbital (FMO) energies. Structure of complexes formed between chitosan and derivatives with Pb (II) ion were examined at B3LYP/LanL2DZ level of DFT. The stability of the complexes are discussed based on the values of Eads. We observed that the N-reduced pyridine carboxaldehyde derivative of chitosan (RPC) forms more stable complex with Pb (II) ions than with other derivatves. PMID:25583020

  10. Secondary Ionization Mass Spectrometry (SIMS) U-Th-Pb Geochronology of Rutile Under O2+ Bombardment

    NASA Astrophysics Data System (ADS)

    Schmitt, A. K.; Zack, T.

    2012-12-01

    In-situ geochronology of rutile can be applied to a large range of geological problems, from exhumation of lower crust to sedimentary provenance. Recent attempts to improve SIMS U-Pb rutile dating were stifled by crystal orientation dependent instrumental fractionation between Pb and U, leading to considerable uncertainty in the calibration [1], [2]. Here, we demonstrate that injection of oxygen into the sputtered target region (O2 flooding) significantly reduces variation in the depth sputter rate for rutile. O2 flooding also correlates with increased homogeneity of the UO2+/U+ vs. Pb/U relative sensitivity calibration, resulting in higher precision for U-Pb ages. We also successfully tested an O2+ beam for rutile analysis. Natural and synthetic rutiles were found to efficiently dissipate local charges from positive ion bombardment, whereas charging largely prohibits the use of an O2+ primary beam for insulating silicates and phosphates that are common targets for in-situ geochronology. The advantage of the O2+ beam for rutile analysis is an ~10-times more intense beam current at a lateral resolution equivalent to conventionally used O- or O2- beams. The intense O2+ beam is also efficient in removing surficial Pb contamination. This leads to highly radiogenic Pb yields and combined with a 208Pb-based correction minimizes bias in the common Pb correction resulting from unresolved interferences on the conventionally used 204Pb. We compared three well-characterized rutiles where high-precision U-Pb ages are available: R10b (Gjerstad, Norway; 1090 Ma), R19 (Blumberg, Australia; 489.5 Ma), and JIMP-1B (Windmill Hills, Australia; 2625 Ma). O2+ -generated SIMS U-Pb and Pb-Pb age averages are accurate within <1% for Paleozoic to Archean rutile, the best accuracy reached so far for any in-situ rutile dating study. This underscores the potential of SIMS U-Th-Pb rutile geochronology at a precision and accuracy commensurate to zircon over a wide range of ages. Other potential

  11. Quarkonium and Bc mesons from Pb + Pb at LHC energies

    NASA Astrophysics Data System (ADS)

    Norbeck, Edwin; Nachtman, Jane; Onel, Yasar

    2013-08-01

    The bbar b(Upsilon) mesons appear to be produced in the initial PbPb collision at 2.76 TeV per nucleon pair followed by partial melting in the hot quark-gluon plasma. In sharp contrast, the cbar c(J/Ψ) mesons seem more likely to be formed by recombination at the hadronization stage. The Bc mesons, with one quark of each kind are seldom seen in pp collisions because a particle-antiparticle pair requires the simultaneous production of four heavy quarks. Although a family of Bc mesons have been predicted, only the ground state has been seen. If the cbar c mesons are produced by recombination, it could be expected that Bc mesons would be abundant with PbPb. Because the quark and antiquark have different flavor, the Bc are relatively long lived, 0.45 ps (to be compared with about 1.5 ps for the lighter B mesons). They would be seen with PbPb reactions by B±c → J/Ψ(μ+μ-)π± looking at muons and pions from displaced vertices.

  12. Oxygen isotopic composition and U-Pb discordance in zircon

    USGS Publications Warehouse

    Booth, A.L.; Kolodny, Y.; Chamberlain, C.P.; McWilliams, M.; Schmitt, A.K.; Wooden, J.

    2005-01-01

    We have investigated U-Pb discordance and oxygen isotopic composition of zircon using high-spatial resolution ??18O measurement by ion microprobe. ??18O in both concordant and discordant zircon grains provides an indication of the relationship between fluid interaction and discordance. Our results suggest that three characteristics of zircon are interrelated: (1) U-Pb systematics and concomitant age discordance, (2) ??18O and the water-rock interactions implied therein, and (3) zircon texture, as revealed by cathodoluminescence and BSE imaging. A key observation is that U-Pb-disturbed zircons are often also variably depleted in 18O, but the relationship between discordance and ??18O is not systematic. ??18O values of discordant zircons are generally lighter but irregular in their distribution. Textural differences between zircon grains can be correlated with both U-Pb discordance and ??18O. Discordant grains exhibit either a recrystallized, fractured, or strongly zoned CL texture, and are characteristic of 18O depletion. We interpret this to be a result of metamictization, leading to destruction of the zircon lattice and an increased susceptibility to lead loss. Conversely, grains that are concordant have less-expressed zoning and a smoother CL texture and are enriched in 18O. From this it is apparent that various stages of water-rock interaction, as evidenced by systematic variations in ??18O, leave their imprint on both the texture and U-Pb systematics of zircon. Copyright ?? 2005 Elsevier Ltd.

  13. High Rydberg resonances in dielectronic recombination of pb(79+).

    PubMed

    Brandau, C; Bartsch, T; Hoffknecht, A; Knopp, H; Schippers, S; Shi, W; Müller, A; Grün, N; Scheid, W; Steih, T; Bosch, F; Franzke, B; Kozhuharov, C; Mokler, P H; Nolden, F; Steck, M; Stöhlker, T; Stachura, Z

    2002-07-29

    Dielectronic recombination resonances of Pb (79+) associated with 2s(1/2)-->2p(1/2) excitations were measured at the heavy-ion storage ring ESR at GSI. The fine structure of the energetically lowest resonance manifold Pb (78+)(1s(2)2p(1/2)20l(j)) at around 18 eV could partially be resolved, and rate coefficients on an absolute scale were obtained. A comparison of the experimental data with results of a fully relativistic theoretical approach shows that high-angular-momentum components up to j=31/2 significantly contribute to the total resonance strength demonstrating the necessity to revise the widespread notion of negligible high-angular-momentum contributions at least for very highly charged ions.

  14. High Rydberg resonances in dielectronic recombination of pb(79+).

    PubMed

    Brandau, C; Bartsch, T; Hoffknecht, A; Knopp, H; Schippers, S; Shi, W; Müller, A; Grün, N; Scheid, W; Steih, T; Bosch, F; Franzke, B; Kozhuharov, C; Mokler, P H; Nolden, F; Steck, M; Stöhlker, T; Stachura, Z

    2002-07-29

    Dielectronic recombination resonances of Pb (79+) associated with 2s(1/2)-->2p(1/2) excitations were measured at the heavy-ion storage ring ESR at GSI. The fine structure of the energetically lowest resonance manifold Pb (78+)(1s(2)2p(1/2)20l(j)) at around 18 eV could partially be resolved, and rate coefficients on an absolute scale were obtained. A comparison of the experimental data with results of a fully relativistic theoretical approach shows that high-angular-momentum components up to j=31/2 significantly contribute to the total resonance strength demonstrating the necessity to revise the widespread notion of negligible high-angular-momentum contributions at least for very highly charged ions. PMID:12144440

  15. Multiparticle azimuthal correlations in p -Pb and Pb-Pb collisions at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Abelev, B.; Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agostinelli, A.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahmed, I.; Ahn, S. U.; Ahn, S. A.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Baumann, C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Belmont, R.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Berger, M. E.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Böhmer, F. V.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bossú, F.; Botje, M.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Castillo Castellanos, J.; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dang, R.; Danu, A.; Das, D.; Das, I.; Das, K.; Das, S.; Dash, A.; Dash, S.; de, S.; Delagrange, H.; Deloff, A.; Dénes, E.; D'Erasmo, G.; de Caro, A.; de Cataldo, G.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; de Rooij, R.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; di Bari, D.; di Liberto, S.; di Mauro, A.; di Nezza, P.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Dørheim, S.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; Hilden, T. E.; Ehlers, R. J.; Elia, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Eschweiler, D.; Espagnon, B.; Esposito, M.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez Ramirez, A.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Graczykowski, L. K.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gumbo, M.; Gunji, T.; Gupta, A.; Gupta, R.; Khan, K. H.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hanratty, L. D.; Hansen, A.; Harris, J. W.; Hartmann, H.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hippolyte, B.; Hladky, J.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Innocenti, G. M.; Ionita, C.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Jachołkowski, A.; Jacobs, P. M.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kadyshevskiy, V.; Kalcher, S.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil Svn, M.; Khan, M. M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D. W.; Kim, D. J.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Köhler, M. K.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Konevskikh, A.; Kovalenko, V.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kravčáková, A.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kučera, V.; Kucheriaev, Y.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kulakov, I.; Kumar, J.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; La Pointe, S. L.; La Rocca, P.; Lea, R.; Leardini, L.; Lee, G. R.; Legrand, I.; Lehnert, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; Leoncino, M.; León Monzón, I.; Lévai, P.; Li, S.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Lohner, D.; Loizides, C.; Lopez, X.; López Torres, E.; Lu, X.-G.; Luettig, P.; Lunardon, M.; Luparello, G.; Ma, R.; Maevskaya, A.; Mager, M.; Mahapatra, D. P.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manceau, L.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Marín, A.; Markert, C.; Marquard, M.; Martashvili, I.; Martin, N. A.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martin Blanco, J.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; Meddi, F.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mlynarz, J.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Morando, M.; Moreira de Godoy, D. A.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Müller, H.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Nattrass, C.; Nayak, K.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nicassio, M.; Niculescu, M.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Nilsen, B. S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Okatan, A.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Onderwaater, J.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Sahoo, P.; Pachmayer, Y.; Pachr, M.; Pagano, P.; Paić, G.; Painke, F.; Pajares, C.; Pal, S. K.; Palmeri, A.; Pant, D.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Patalakha, D. I.; Paticchio, V.; Paul, B.; Pawlak, T.; Peitzmann, T.; Pereira da Costa, H.; Pereira de Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Pesci, A.; Peskov, V.; Pestov, Y.; Petráček, V.; Petran, M.; Petris, M.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Pohjoisaho, E. H. O.; Polichtchouk, B.; Poljak, N.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Potukuchi, B.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Rauf, A. W.; Razazi, V.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reicher, M.; Reidt, F.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohni, S.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, R.; Sahu, P. K.; Saini, J.; Sakai, S.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Sánchez Rodríguez, F. J.; Šándor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Segato, G.; Seger, J. E.; Sekiguchi, Y.; Selyuzhenkov, I.; Seo, J.; Serradilla, E.; Sevcenco, A.; Shabetai, A.; Shabratova, G.; Shahoyan, R.; Shangaraev, A.; Sharma, N.; Sharma, S.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Skjerdal, K.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Søgaard, C.; Soltz, R.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Stolpovskiy, M.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Sultanov, R.; Šumbera, M.; Susa, T.; Symons, T. J. M.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tarazona Martinez, A.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terrevoli, C.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; Vande Vyvre, P.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vechernin, V.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wagner, V.; Wang, M.; Wang, Y.; Watanabe, D.; Weber, M.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yaldo, C. G.; Yamaguchi, Y.; Yang, H.; Yang, P.; Yang, S.; Yano, S.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yoo, I.-K.; Yushmanov, I.; Zaccolo, V.; Zach, C.; Zaman, A.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, F.; Zhou, Y.; Zhou, Zhuo; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zoccarato, Y.; Zyzak, M.; Alice Collaboration

    2014-11-01

    Measurements of multiparticle azimuthal correlations (cumulants) for charged particles in p -Pb at √{sNN}=5.02 TeV and Pb-Pb at √{sNN}=2.76 TeV collisions are presented. They help address the question of whether there is evidence for global, flowlike, azimuthal correlations in the p -Pb system. Comparisons are made to measurements from the larger Pb-Pb system, where such evidence is established. In particular, the second harmonic two-particle cumulants are found to decrease with multiplicity, characteristic of a dominance of few-particle correlations in p -Pb collisions. However, when a |Δ η | gap is placed to suppress such correlations, the two-particle cumulants begin to rise at high multiplicity, indicating the presence of global azimuthal correlations. The Pb-Pb values are higher than the p -Pb values at similar multiplicities. In both systems, the second harmonic four-particle cumulants exhibit a transition from positive to negative values when the multiplicity increases. The negative values allow for a measurement of v2{4 } to be made, which is found to be higher in Pb-Pb collisions at similar multiplicities. The second harmonic six-particle cumulants are also found to be higher in Pb-Pb collisions. In Pb-Pb collisions, we generally find v2{4 } ≃v2{6 } ≠0 which is indicative of a Bessel-Gaussian function for the v2 distribution. For very high-multiplicity Pb-Pb collisions, we observe that the four- and six-particle cumulants become consistent with 0. Finally, third harmonic two-particle cumulants in p -Pb and Pb-Pb are measured. These are found to be similar for overlapping multiplicities, when a |Δ η |>1.4 gap is placed.

  16. Adsorption characteristics of Cu(II) and Pb(II) onto expanded perlite from aqueous solution.

    PubMed

    Sari, Ahmet; Tuzen, Mustafa; Citak, Demirhan; Soylak, Mustafa

    2007-09-01

    The adsorption characteristics of Cu(II) and Pb(II) onto expanded perlite (EP) from aqueous solution were investigated with respect to the changes in pH of solution, adsorbent dosage, contact time and temperature of solution. For the adsorption of both metal ions, the Langmuir isotherm model fitted to equilibrium data better than the Freundlich isotherm model. Using the Langmuir model equation, the monolayer adsorption capacity of EP was found to be 8.62 and 13.39 mg/g for Cu(II) and Pb(II) ions, respectively. Dubinin-Radushkevich (D-R) isotherm model was also applied to the equilibrium data and the mean free energies of adsorption were found as 10.82 kJ/mol for Cu(II) and 9.12 kJ/mol for Pb(II) indicating that the adsorption of both metal ions onto EP was taken place by chemical ion-exchange. Thermodynamic functions, the change of free energy (DeltaG degrees ), enthalpy (DeltaH degrees ) and entropy (DeltaS degrees ) of adsorption were also calculated for each metal ions. These parameters showed that the adsorption of Cu(II) and Pb(II) ions onto EP was feasible, spontaneous and exothermic at 20-50 degrees C. Experimental data were also evaluated in terms of kinetic characteristics of adsorption and it was found that adsorption process for both metal ions followed well pseudo-second-order kinetics.

  17. Elliptic and triangular flow in p-Pb and peripheral Pb-Pb collisions from parton scatterings

    DOE PAGES

    Bzdak, Adam; Ma, Guo-Liang

    2014-12-15

    Using a multiphase transport model (AMPT) we calculate the elliptic v₂ and triangular v₃ Fourier coefficients of the two-particle azimuthal correlation function in proton-nucleus (p-Pb) and peripheral nucleus-nucleus (Pb-Pb) collisions. Our results for v₃ are in a good agreement with the CMS data collected at the Large Hadron Collider. The v₂ coefficient is very well described in p-Pb collisions and is underestimated for higher transverse momenta in Pb-Pb interactions. The characteristic mass ordering of v₂ in p-Pb is reproduced, whereas for v₃, this effect is not observed. We further predict the pseudorapidity dependence of v₂ and v₃ in p-Pb andmore » observe that both are increasing when going from a proton side to a Pb-nucleus side. Predictions for the higher-order Fourier coefficients, v₄ and v₅, in p-Pb are also presented.« less

  18. Elliptic and triangular flow in p-Pb and peripheral Pb-Pb collisions from parton scatterings

    SciTech Connect

    Bzdak, Adam; Ma, Guo-Liang

    2014-12-15

    Using a multiphase transport model (AMPT) we calculate the elliptic v₂ and triangular v₃ Fourier coefficients of the two-particle azimuthal correlation function in proton-nucleus (p-Pb) and peripheral nucleus-nucleus (Pb-Pb) collisions. Our results for v₃ are in a good agreement with the CMS data collected at the Large Hadron Collider. The v₂ coefficient is very well described in p-Pb collisions and is underestimated for higher transverse momenta in Pb-Pb interactions. The characteristic mass ordering of v₂ in p-Pb is reproduced, whereas for v₃, this effect is not observed. We further predict the pseudorapidity dependence of v₂ and v₃ in p-Pb and observe that both are increasing when going from a proton side to a Pb-nucleus side. Predictions for the higher-order Fourier coefficients, v₄ and v₅, in p-Pb are also presented.

  19. Elliptic and triangular flow in p-Pb and peripheral Pb-Pb collisions from Parton scatterings.

    PubMed

    Bzdak, Adam; Ma, Guo-Liang

    2014-12-19

    Using a multiphase transport model (AMPT) we calculate the elliptic v_{2} and triangular v_{3} Fourier coefficients of the two-particle azimuthal correlation function in proton-nucleus (p-Pb) and peripheral nucleus-nucleus (Pb-Pb) collisions. Our results for v_{3} are in a good agreement with the CMS data collected at the Large Hadron Collider. The v_{2} coefficient is very well described in p-Pb collisions and is underestimated for higher transverse momenta in Pb-Pb interactions. The characteristic mass ordering of v_{2} in p-Pb is reproduced, whereas for v_{3}, this effect is not observed. We further predict the pseudorapidity dependence of v_{2} and v_{3} in p-Pb and observe that both are increasing when going from a proton side to a Pb-nucleus side. Predictions for the higher-order Fourier coefficients, v_{4} and v_{5}, in p-Pb are also presented.

  20. Pb enamel biomarker: Deposition of pre- and postnatal Pb isotope injection in reconstructed time points along rat enamel transect

    SciTech Connect

    Rinderknecht, A.L.; Kleinman, M.T.; Ericson, J.E. . E-mail: jeericso@uci.edu

    2005-10-01

    Exposure to lead (Pb) as well as other heavy metals in the environment is still a matter of public health concern. The development of the enamel biomarker for heavy metal exposure assessment is designed to improve studies of dose-effect relationships to developmental anomalies, particularly embryonic dysfunctions, and to provide a time-specific recount of past exposures. The work presented in this paper demonstrates maternal transfer across the placental barrier of the enriched isotope {sup 206}Pb tracer to the enamel of the rat pup. Likewise, injections of {sup 204}Pb-enriched tracer in the neonate rat resulted in deposition of the tracer in the enamel histology as measured by secondary ion microprobe spectrometry. Through enamel, we were able to observe biological removal and assimilation of prenatal and postnatal tracers, respectively. This research demonstrates that enamel can be used as a biomarker of exposure to Pb and may illustrate the toxicokinetics of incorporating Pb into fetal and neonatal steady-state system processes. The biomarker technique, when completely developed, may be applied to cross-sectional and longitudinal epidemiological research.

  1. Direct Photon and Neutral Pion Production in pp and Pb-Pb Collisions Measured with the ALICE Experiment at LHC

    NASA Astrophysics Data System (ADS)

    Peressounko, D.

    2015-06-01

    Measurements of direct photon and neutral pion production in heavy-ion collisions provide a comprehensive set of observables characterizing properties of the hot QCD medium. Direct photons provide means to test the initial stage of an AA collision and carry information about the temperature and space-time evolution of the hot medium. Neutral pion suppression probes the parton energy loss in the hot medium. Measurements of neutral meson spectra in pp collisions at LHC energies √ {s} = 0.9, ; 2.76, ; 7 ; {textrm{TeV}} serve as a reference for heavy-ion collisions and also provide valuable input data for parameterization of the QCD parton Fragmentation Functions. In this talk, results from the ALICE experiment on direct photon and neutral pion production in pp and Pb-Pb collisions are summarized.

  2. Charm production in Pb + Pb collisions at energies available at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Song, Taesoo; Berrehrah, Hamza; Cabrera, Daniel; Cassing, Wolfgang; Bratkovskaya, Elena

    2016-03-01

    We study charm production in Pb +Pb collisions at √{sN N}=2.76 TeV in the parton-hadron-string-dynamics (PHSD) transport approach and the charm dynamics in the partonic and hadronic medium. The charm quarks are produced through initial binary nucleon-nucleon collisions by using the pythia event generator, taking into account the (anti-)shadowing incorporated in the eps09 package. The produced charm quarks interact with off-shell massive partons in the quark-gluon plasma and are hadronized into D mesons through coalescence or fragmentation close to the critical energy density, and then interact with hadrons in the final hadronic stage with scattering cross sections calculated in an effective Lagrangian approach with heavy-quark spin symmetry. The PHSD results show a reasonable RAA and elliptic flow of D mesons in comparison to the experimental data for Pb +Pb collisions at √{sN N}=2.76 TeV from the ALICE Collaboration. We also study the effect of temperature-dependent off-shell charm quarks in relativistic heavy-ion collisions. We find that the scattering cross sections are only moderately affected by off-shell charm degrees of freedom. However, the position of the peak of RAA for D mesons depends on the strength of the scalar partonic forces which also have an impact on the D meson elliptic flow. The comparison with experimental data on the RAA suggests that the repulsive force is weaker for off-shell charm quarks as compared to that for light quarks. Furthermore, the effects from radiative charm energy loss appear to be low compared to the collisional energy loss up to transverse momenta of ˜15 GeV/c .

  3. A new method for As(V) removal from waters by precipitation of mimetite Pb5(AsO4)3Cl on Pb-activated zeolite

    NASA Astrophysics Data System (ADS)

    Manecki, Maciej; Buszkiewicz, Urszula

    2016-04-01

    A new method for removal of arsenate AsO43- ions from aqueous solutions is proposed. The principle of the method stems from precipitation of very insoluble crystalline lead arsenate apatite (mimetite Pb5(AsO4)3Cl) induced by bringing in contact Pb-activated zeolite and As-contaminated water in the presence of Cl-. Zeolite is activated by sorption of Pb2+ followed by washing with water to remove the excess of Pb and to desorbe weakly adsorbed ions. Lead adsorbed on zeolite is bound strong enough to prevent desorption by water but weak enough to undergo desorption induced by heterogeneous precipitation of mimetite nanocrystals on the surface of zeolite. The experiment consisted of two steps. In the first step, aliquots of 0.5 g of natural clinoptilolite zeolite (from Zeocem a.s., Bystré, Slovak Republic) were reacted with 40 mL of solutions containing 20, 100, 500, and 2000 mg Pb/L (pH =4.5; reaction for 30 minutes followed by centrifugation). The amount of Pb sorbed was calculated from the drop of Pb concentration in solution. Centrifuged zeolite was washed three times by mixing with 10 mL of DDI water, followed by centrifugation. No Pb was detected in the water after second washing. Wet pulp resulting from this stage was exposed to solutions containing 70 mg/L Cl- and various concentrations of AsO43- (2 and 100 mg As/L; pH=4). Complete removal of As was observed for 2 mg As/L solutions mixed with zeolite-20 and zeolite-100. The precipitation of mimetite Pb5(AsO4)3Cl in the form of hexagonal crystals ca. 0.25 μm in size was observed using SEM/EDS. This work is partially funded by AGH research grant no 11.11.140.319.

  4. Reliability of stable Pb isotopes to identify Pb sources and verifying biological fractionation of Pb isotopes in goats and chickens.

    PubMed

    Nakata, Hokuto; Nakayama, Shouta M M; Yabe, John; Liazambi, Allan; Mizukawa, Hazuki; Darwish, Wageh Sobhy; Ikenaka, Yoshinori; Ishizuka, Mayumi

    2016-01-01

    Stable Pb isotope ratios (Pb-IRs) have been recognized as an efficient tool for identifying sources. This study carried out at Kabwe mining area, Zambia, to elucidate the presence or absence of Pb isotope fractionation in goat and chicken, to evaluate the reliability of identifying Pb pollution sources via analysis of Pb-IRs, and to assess whether a threshold for blood Pb levels (Pb-B) for biological fractionation was present. The variation of Pb-IRs in goat decreased with an increase in Pb-B and were fixed at certain values close to those of the dominant source of Pb exposure at Pb-B > 5 μg/dL. However, chickens did not show a clear relationship for Pb-IRs against Pb-B, or a fractionation threshold. Given these, the biological fractionation of Pb isotopes should not occur in chickens but in goats, and the threshold for triggering biological fractionation is at around 5 μg/dL of Pb-B in goats.

  5. Solubility of Litharge (a-PbO) in Alkaline Media at Elevated Temperatures

    SciTech Connect

    SE Ziemniak; DA Palmer; P Benezeth; LM Anovitz

    2004-11-02

    An inert, flowing autoclave facility is used to investigate the solubility behavior of {alpha}-PbO (litharge, tetragonal) in aqueous solutions of morpholine, ammonia and sodium hydroxide between 38 and 260 C. Lead solubilities increased from about 0.4 mmol kg{sup -1} at 38 C to about 4.5 mmol kg{sup -1} at 260 C and were relatively insensitive to the concentration and identity of the pH-reagent. The measured lead solubilities were interpreted using a Pb(II) ion hydroxocomplexing model and thermodynamic functions for these equilibria were obtained from a least-squares analysis of the data. A consistent set of thermodynamic properties for the species Pb(OH){sup +}, Pb(OH){sub 2}(aq) and Pb(OH){sub 3}{sup -} is provided to permit accurate lead oxide solubility calculations over broad ranges of temperature and alkalinity.

  6. Optimization study for Pb(II) and COD sequestration by consortium of sulphate-reducing bacteria

    NASA Astrophysics Data System (ADS)

    Verma, Anamika; Bishnoi, Narsi R.; Gupta, Asha

    2016-04-01

    In this study, initial minimum inhibitory concentration (MIC) of Pb(II) ions was analysed to check optimum concentration of Pb(II) ions at which the growth of sulphate-reducing consortium (SRC) was found to be maximum. 80 ppm of Pb(II) ions was investigated as minimum inhibitory concentration for SRC. Influence of electron donors such as lactose, sucrose, glucose and sodium lactate was examined to investigate best carbon source for growth and activity of sulphate-reducing bacteria. Sodium lactate was found to be the prime carbon source for SRC. Later optimization of various parameters was executed using Box-Behnken design model of response surface methodology to explore the effectiveness of three independent operating variables, namely, pH (5.0-9.0), temperature (32-42 °C) and time (5.0-9.0 days), on dependent variables, i.e. protein content, precipitation of Pb(II) ions, and removal of COD by SRC biomass. Maximum removal of COD and Pb(II) was observed to be 91 and 98 %, respectively, at pH 7.0 and temperature 37 °C and incubation time 7 days. According to response surface analysis and analysis of variance, the experimental data were perfectly fitted to the quadratic model, and the interactive influence of pH, temperature and time on Pb(II) and COD removal was highly significant. A high regression coefficient between the variables and response (r 2 = 0.9974) corroborate eminent evaluation of experimental data by second-order polynomial regression model. SEM and Fourier transform infrared analysis was performed to investigate morphology of PbS precipitates, sorption mechanism and involved functional groups in metal-free and metal-loaded biomass of SRC for Pb(II) binding.

  7. Measurement of D-meson production in Pb—Pb collisions at the LHC with ALICE

    NASA Astrophysics Data System (ADS)

    Festanti, Andrea

    2016-01-01

    The measurement of D-meson production in heavy-ion collisions at LHC energy provides insights into the mechanisms of interaction of charm quarks in the hot and dense medium formed in these collisions. ALICE results on the D-meson nuclear modification factor and azimuthal anisotropy in Pb-Pb collisions at √sNN = 2.76 TeV are presented.

  8. [Effects of Low-Molecular-Weight Organic Acids on the Speciation of Pb in Purple Soil and Soil Solution].

    PubMed

    Liu, Jiang; Jiang, Tao; Huang, Rong; Zhang, Jin-zhong; Chen, Hong

    2016-04-15

    Lead (Pb) in purple soil was selected as the research target, using one-step extraction method with 0.01 mol · L⁻¹ sodium nitrate as the background electrolyte to study the release effect of citric acid (CA), tartaric acid (TA) and acetic acid (AC) with different concentrations. Sequential extraction and geochemical model (Visual Minteq v3.0) were applied to analyze and predict the speciation of Pb in soil solid phase and soil solution phase. Then the ebvironmental implications and risks of low-molecule weight organic acid (LMWOA) on soil Pb were analyzed. The results indicated that all three types of LMWOA increased the desorption capacity of Pb in purple soil, and the effect followed the descending order of CA > TA > AC. After the action of LMWOAs, the exchangeable Pb increased; the carbonate-bound Pb and Fe-Mn oxide bound Pb dropped in soil solid phase. Organic bound Pb was the main speciation in soil solution phase, accounting for 45.16%-75.05%. The following speciation of Pb in soil solution was free Pb, accounting for 22.71%-50.25%. For CA and TA treatments, free Pb ions and inorganic bound Pb in soil solution increased with increasing LMWOAs concentration, while organic bound Pb suffered a decrease in this process. An opposite trend for AC treatment was observed compared with CA and TA treatments. Overall, LMWOAs boosted the bioavailability of Pb in purple soil and had a potential risk to contaminate underground water. Among the three LMWOAs in this study, CA had the largest potential to activate soil Pb. PMID:27548978

  9. [Effects of Low-Molecular-Weight Organic Acids on the Speciation of Pb in Purple Soil and Soil Solution].

    PubMed

    Liu, Jiang; Jiang, Tao; Huang, Rong; Zhang, Jin-zhong; Chen, Hong

    2016-04-15

    Lead (Pb) in purple soil was selected as the research target, using one-step extraction method with 0.01 mol · L⁻¹ sodium nitrate as the background electrolyte to study the release effect of citric acid (CA), tartaric acid (TA) and acetic acid (AC) with different concentrations. Sequential extraction and geochemical model (Visual Minteq v3.0) were applied to analyze and predict the speciation of Pb in soil solid phase and soil solution phase. Then the ebvironmental implications and risks of low-molecule weight organic acid (LMWOA) on soil Pb were analyzed. The results indicated that all three types of LMWOA increased the desorption capacity of Pb in purple soil, and the effect followed the descending order of CA > TA > AC. After the action of LMWOAs, the exchangeable Pb increased; the carbonate-bound Pb and Fe-Mn oxide bound Pb dropped in soil solid phase. Organic bound Pb was the main speciation in soil solution phase, accounting for 45.16%-75.05%. The following speciation of Pb in soil solution was free Pb, accounting for 22.71%-50.25%. For CA and TA treatments, free Pb ions and inorganic bound Pb in soil solution increased with increasing LMWOAs concentration, while organic bound Pb suffered a decrease in this process. An opposite trend for AC treatment was observed compared with CA and TA treatments. Overall, LMWOAs boosted the bioavailability of Pb in purple soil and had a potential risk to contaminate underground water. Among the three LMWOAs in this study, CA had the largest potential to activate soil Pb.

  10. Synthesis of the Pb-based superconductor of the Pb3201 phase (Pb 2Cu)Sr 0.9La 1.1CuO 6+δ by the modified polymerized complex method

    NASA Astrophysics Data System (ADS)

    Kato, Masatsune; Sakuma, Atsushi; Noji, Takashi; Koike, Yoji

    1996-02-01

    We have succeeded in obtaining single-phase samples of the Pb3201 phase (Pb 2Cu)Sr 0.9La 1.1CuO 6+δ by the modified polymerized complex method. At the first step of the synthesis, a transparent gel is found to be obtained by increasing the molar ratio of citric acid to total metal ions up to 5 without controlling the pH of the solution and without ethylene glycol. Secondly, the precursor is prepared by calcining the transparent gel. Finally, highly homogeneous samples with the onset temperature of the superconducting transition, ∼ 37 K, are obtained by sintering the precursor and subsequently annealing it. Moreover, the Pb3201 phase is found to be stable only for x = 1.1 in (Pb 2Cu)Sr 2- xLa xCuO 6+δ.

  11. Theoretical assessment of phosphate amendments for stabilization of (Pb+Zn) in polluted soil.

    PubMed

    Raicevic, S; Perovic, V; Zouboulis, A I

    2009-05-01

    Contamination of the environment with toxic metals, such as lead (Pb), represents a serious concern for human health. Most of the studies on Pb stabilization were performed using various phosphorus-containing amendments that can reduce Pb mobility and bioavailability by the sorption and precipitation of new, stable pyromorphite-type minerals, presenting very low solubility and bioaccessibility. However, the presence of competing ions, such as zinc (Zn), can reduce stabilization efficacy. The role of chemical composition on the stability of immobilization products of Pb and Zn by the addition of hydroxyapatite (HAP) or fluoroapatite (FAP) has been examined in this paper. In this analysis we used a theoretical criterion which is based on calculation of the ion-ion interaction potential, representing the main term of the cohesive energy of the matrix/pollutant system. It has been demonstrated that the stability of the HAP matrix decreases and that the stability of the FAP matrix increases with the Pb immobilization in the presence of Zn. The results of this analysis point out FAP as an advantageous amendment for the immobilization of Pb in the presence of Zn.

  12. Atomistic understanding of cation exchange in PbS nanocrystals using simulations with pseudoligands

    NASA Astrophysics Data System (ADS)

    Fan, Zhaochuan; Lin, Li-Chiang; Buijs, Wim; Vlugt, Thijs J. H.; van Huis, Marijn A.

    2016-05-01

    Cation exchange is a powerful tool for the synthesis of nanostructures such as core-shell nanocrystals, however, the underlying mechanism is poorly understood. Interactions of cations with ligands and solvent molecules are systematically ignored in simulations. Here, we introduce the concept of pseudoligands to incorporate cation-ligand-solvent interactions in molecular dynamics. This leads to excellent agreement with experimental data on cation exchange of PbS nanocrystals, whereby Pb ions are partially replaced by Cd ions from solution. The temperature and the ligand-type control the exchange rate and equilibrium composition of cations in the nanocrystal. Our simulations reveal that Pb ions are kicked out by exchanged Cd interstitials and migrate through interstitial sites, aided by local relaxations at core-shell interfaces and point defects. We also predict that high-pressure conditions facilitate strongly enhanced cation exchange reactions at elevated temperatures. Our approach is easily extendable to other semiconductor compounds and to other families of nanocrystals.

  13. Pb(II) and Cd(II) removal from aqueous solutions by olive cake.

    PubMed

    Doyurum, Sabriye; Celik, Ali

    2006-11-01

    The removal of heavy metals from wastewater using olive cake as an adsorbent was investigated. The effect of the contact time, pH, temperature, and concentration of adsorbate on adsorption performance of olive cake for Pb(II) and Cd(II) ions were examined by batch method. Adsorption of Pb(II) and Cd(II) in aqueous solution onto olive cake was studied in single component. After establishing the optimum conditions, elution of these ions from the adsorbent surface was also examined. The optimum sorption conditions were determined for two elements. Maximum desorption of the Pb(II) and Cd(II) ions were found to be 95.92 and 53.97% by 0.5M HNO(3) and 0.2M HCl, respectively. The morphological analysis of the olive cake was performed by the scanning electron microscopy (SEM). PMID:16806680

  14. Strangelet search and antinuclei production studies in Pb + Pb collisions

    NASA Astrophysics Data System (ADS)

    Ambrosini, G.; Appelquist, G.; Arsenescu, R.; Baglin, C.; Beringer, J.; Bohm, C.; Borer, K.; Bussière, A.; Dittus, F.; Elsener, K.; Frei, D.; Gorodetzky, Ph.; Guillaud, J. P.; Hess, P.; Hugentobler, E.; Kabana, S.; Klingenberg, R.; Lindén, T.; Lohmann, K. D.; Mommsen, R.; Moser, U.; Pal, T.; Pretzl, K.; Schacher, J.; Selldén, B.; Stoffel, F.; Tuominiemi, J.; Weber, M.; Zhang, Q. P.

    1996-02-01

    We searched for long-lived strange quark matter particles, so-called strangelets, and studied particle and antiparticle production in Pb + Pb collisions at 158 GeV/ c per nucleon at zero degree production angle. We give upper limits for the production of strangelets covering a mass to charge ratio up to 120 GeV/ c 2 and lifetimes tlab > 1.2 μs and plot invariant differential production cross sections as a function of rapidity for a variety of particles.

  15. Nanoporous Au-based chronocoulometric aptasensor for amplified detection of Pb(2+) using DNAzyme modified with Au nanoparticles.

    PubMed

    Zhang, Chen; Lai, Cui; Zeng, Guangming; Huang, Danlian; Tang, Lin; Yang, Chunping; Zhou, Yaoyu; Qin, Lei; Cheng, Min

    2016-07-15

    The authors herein described an amplified detection strategy employing nanoporous Au (NPG) and gold nanoparticles (AuNPs) to detect Pb(2+) ions in aqueous solution. The thiol modified Pb(2+)-specific DNAzyme was self-assembled onto the surface of the NPG modified electrode for hybridizing with the AuNPs labeled oligonucleotide and for forming the DNA double helix structure. Electrochemical signal, redox charge of hexaammineruthenium(III) chloride (RuHex), was measured by chronocoulometry. Taking advantage of amplification effects of the NPG electrode for increasing the reaction sites of capture probe and DNA-AuNPs complexes for bringing about the adsorption of large numbers of RuHex molecules, this electrochemical sensor could detect Pb(2+) quantitatively, in the range of 0.05-100nM, with a limit of detection as low as 0.012nM. Selectivity measurements revealed that the sensor was specific for Pb(2+) even with interference by high concentrations of other metal ions. This sensor was also used to detect Pb(2+) ions from samples of tap water, river water, and landfill leachate samples spiked with Pb(2+) ions, and the results showed good agreement with the found values determined by an atomic fluorescence spectrometer. This simple aptasensor represented a promising potential for on-site detecting Pb(2+) in drinking water. PMID:26921553

  16. Charmonium production at mid-rapidity in Pb-Pb and p-Pb collisions with ALICE

    NASA Astrophysics Data System (ADS)

    Weber, Steffen Georg

    2016-01-01

    We present an overview of the ALICE measurements on the production of J/ψ in Pb-Pb collisions at a centre-of-mass energy per nucleon pair of √SNN = 2.76 TeV and p-Pb collisions at √sNN = 5.02 TeV at mid-rapidity (|ylab| < 0.8) down to zero transverse momentum. The cold nuclear matter effects estimated from the p-Pb measurements and their impact on the interpretation of Pb-Pb results are discussed, based on comparison of data to model calculations.

  17. Structural heterogeneity and dynamics in liquid PbSiO3: insight from analysis and visualization of molecular dynamics data

    NASA Astrophysics Data System (ADS)

    Yen, N. V.; Hong, N. V.; Hung, P. K.; Huy, N. V.

    2015-06-01

    The structure and dynamics of liquid lead silicate (PbSiO3) are investigated by molecular dynamics simulation with the pair potentials. The models of PbSiO3 consisting of 5000 atoms (1000 Pb, 1000 Si, and 3000 O atoms) are constructed at 3200 K and in a 0-35 GPa pressure range. The local structure, polymorphism, and dynamics in liquid PbSiO3 are investigated through pair radial distribution function, coordination distribution, topology structure of basic structural units, and mean square displacement. Short-range order (SRO) and intermediate-range order (IRO) are clarified by visualization of simulated data. The local environment around Pb+2 and Si+4 ions, the network structure of SiOx (x = 4, 5, 6) and PbOn (n = 3 - 9) polyhedra, and the correlation between structure and dynamics, as well as their change under compression, are also discussed in detail.

  18. Thermodynamics of Pb(ii) and Zn(ii) binding to MT-3, a neurologically important metallothionein.

    PubMed

    Carpenter, M C; Shami Shah, A; DeSilva, S; Gleaton, A; Su, A; Goundie, B; Croteau, M L; Stevenson, M J; Wilcox, D E; Austin, R N

    2016-06-01

    Isothermal titration calorimetry (ITC) was used to quantify the thermodynamics of Pb(2+) and Zn(2+) binding to metallothionein-3 (MT-3). Pb(2+) binds to zinc-replete Zn7MT-3 displacing each zinc ion with a similar change in free energy (ΔG) and enthalpy (ΔH). EDTA chelation measurements of Zn7MT-3 and Pb7MT-3 reveal that both metal ions are extracted in a tri-phasic process, indicating that they bind to the protein in three populations with different binding thermodynamics. Metal binding is entropically favoured, with an enthalpic penalty that reflects the enthalpic cost of cysteine deprotonation accompanying thiolate ligation of the metal ions. These data indicate that Pb(2+) binding to both apo MT-3 and Zn7MT-3 is thermodynamically favourable, and implicate MT-3 in neuronal lead biochemistry. PMID:26757944

  19. The Interstellar Abundance of Lead: Experimental Oscillator Strengths for Pb II λ1203 and λ1433 and New Detections of Pb II in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Ritchey, Adam Michael; Heidarian, Negar; Irving, Richard E.; Federman, Steven R.; Ellis, David G.; Cheng, Song; Curtis, Larry J.; Furman, W. A.

    2015-08-01

    Accurate gas-phase abundances of ions in the interstellar medium may be obtained through the analysis of interstellar absorption lines, but only if the oscillator strengths (f-values) of the relevant transitions are well known. For dominant ions, comparison of the gas-phase abundance with the appropriate solar reference abundance yields the degree to which the element is incorporated into interstellar dust grains. Singly-ionized lead is the dominant form of this element in the neutral interstellar medium. However, while Pb II has several strong resonance lines in the ultraviolet, the f-values for these transitions are uncertain. Here, we present the first experimentally determined oscillator strengths for the Pb II transitions at 1203.6 Å and 1433.9 Å, obtained from lifetime measurements made using beam-foil techniques. We also present new detections of these lines in the interstellar medium from an analysis of archival spectra acquired by the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope. Notably, our observations of the Pb II λ1203 line represent the first detection of this transition in interstellar gas. Our experimental f-values for the Pb II λ1203 and λ1433 transitions are consistent with recent theoretical results, including our own relativistic calculations, but are significantly smaller than previous values based on older calculations. For the Pb II λ1433 line, in particular, our new f-value yields an increase in the interstellar abundance of Pb of 0.43 dex over estimates based on the f-value listed by Morton. With our revised f-values, and with our new detections of Pb II λ1203 and λ1433, we find that the depletion of Pb onto interstellar grains is not nearly as severe as previously thought, and is very similar to the depletions seen for elements such as Zn and Sn, which have similar condensation temperatures.

  20. In-Situ Geochronology: Extending Larims to Pb-Pb Isocrhons

    NASA Astrophysics Data System (ADS)

    Whitaker, Tom; Anderson, Scott; Levine, Jonathan

    2016-04-01

    HfO2, which have been known to cause problems in Inductively Coupled Plasma Mass Spectrometry (ICPMS) of Pb isotopes [3]. LARIMS enables a simple check for interfering species by detuning the laser wavelength off the Pb resonance. The resonance ionization signal for the desired species should disappear when the resonance laser is detuned. Any residual signal is due to an interfering species. Three resonance ionization laser schemes were examined for initial LARIMS analysis of Pb: 1) a 2+1 scheme that uses λ1 = λ2 = 450.3 nm (the first transition in this scheme is a simultaneous two-photon excitation), 2) a 1+1+1 scheme using λ1 = 283.3 nm, λ2 = 600.2 nm and λ3 < 1270 nm, and 3) a 1+1 scheme that uses λ1 = λ2 = 283.3 nm. One-photon resonance excitations have cross-sections that are orders of magnitude greater than either two-photon resonance excitations or photoionization processes. Therefore, although schemes 1) and 3) have the advantage of requiring fewer lasers, they also require high-intensity blue or UV wavelengths. This adversely affects the selectivity of the resonance ionization process. Scheme 2) uses low-intensity UV and visible wavelengths and a high-intensity IR wavelength. This is the preferred scheme and was selected for our initial Pb LARIMS measurements. Preliminary Results: A laser system capable of producing the required wavelengths for scheme 2) was assembled. A Nd:YAG laser pumped dye laser produces 566.6 nm light, which is frequency-doubled in a beta barium borate crystal. A second Nd:YAG pumped dye laser produces the 600.2 nm light for the second resonance in scheme 2). The fundamental of one of the Nd:YAG lasers (1064 nm) is used for the final photoionization step. We focus the fifth harmonic (213 nm) of another Nd:YAG laser onto the sample to ablate material off the surface. Electric fields suppress the ions created in the ablation process, preventing these ions from entering the mass spectrometer. The three resonance ionization laser

  1. Mechanism of Pb Adsorption to Fatty Acid Langmuir Monolayers Studied by X-ray Absorption Fine Structure Spectroscopy

    SciTech Connect

    Boyanov, M.I.; Kmetko, J.; Shibata, T.; Datta, A.; Dutta, P.; Bunker, B.A.

    2010-09-30

    The local atomic environment of lead (Pb) adsorbed to a CH{sub 3}(CH{sub 2}){sub 19}COOH Langmuir monolayer was investigated in situ using grazing-incidence X-ray absorption fine structure (GI-XAFS) spectroscopy at the Pb L{sub III} edge. Measurements were performed at pH 6.5 of the 10{sup -5} M PbCl{sub 2} solution subphase, a condition under which grazing incidence diffraction (GID) revealed a large-area commensurate superstructure underneath the close-packed organic monolayer. The XAFS results indicate covalent binding of the Pb cations to the carboxyl headgroups, and the observed Pb-Pb coordination suggests that the metal is adsorbed as a hydrolysis polymer, rather than as individual Pb{sup 2+} ions. The data are consistent with a bidentate chelating mechanism and a one Pb atom to one carboxyl headgroup binding stoichiometry. We discuss how this adsorption model can explain the peculiarities observed with Pb in previous metal-Langmuir monolayer studies. A systematic study of lead perchlorate and lead acetate aqueous solutions is presented and used in the analysis. XAFS multiple scattering effects from alignment of the Pb-C-C atoms in the lead acetate solutions are reported.

  2. Light-by-light scattering in ultraperipheral Pb-Pb collisions at energies available at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Kłusek-Gawenda, Mariola; Lebiedowicz, Piotr; Szczurek, Antoni

    2016-04-01

    We calculate cross sections for diphoton production in (semi)exclusive PbPb collisions, relevant for the CERN Large Hadron Collider (LHC). The calculation is based on the equivalent photon approximation in the impact parameter space. The cross sections for the elementary γ γ →γ γ subprocess are calculated including two different mechanisms. We take into account box diagrams with leptons and quarks in the loops. In addition, we consider a vector-meson dominance (VDM-Regge) contribution with virtual intermediate hadronic (vector-like) excitations of the photons. We get measurable cross sections in PbPb collisions. This opens a possibility to study the γ γ →γ γ (quasi)elastic scattering at the LHC. We present many interesting differential distributions which could be measured by the ALICE, CMS, or ATLAS Collaborations at the LHC. We study whether a separation or identification of different components (boxes, VDM-Regge) is possible. We find that the cross section for elastic γ γ scattering could be measured in the heavy-ion collisions for subprocess energies smaller than Wγ γ≈15 -20 GeV.

  3. KS0 and Λ Production in Pb-Pb Collisions at sNN=2.76TeV

    NASA Astrophysics Data System (ADS)

    Abelev, B.; Adam, J.; Adamová, D.; Adare, A. M.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agocs, A. G.; Agostinelli, A.; Ahammed, Z.; Ahmad, N.; Ahmad Masoodi, A.; Ahmed, I.; Ahn, S. U.; Ahn, S. A.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bailhache, R.; Bairathi, V.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Bán, J.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batyunya, B.; Batzing, P. C.; Baumann, C.; Bearden, I. G.; Beck, H.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bergognon, A. A. E.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bornschein, J.; Botje, M.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brun, R.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Cara Romeo, G.; Carena, F.; Carena, W.; Carminati, F.; Casanova Díaz, A.; Castillo Castellanos, J.; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dang, R.; Danu, A.; Das, K.; Das, D.; Das, I.; Dash, A.; Dash, S.; De, S.; Delagrange, H.; Deloff, A.; Dénes, E.; Deppman, A.; D'Erasmo, G.; de Barros, G. O. V.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; de Rooij, R.; Diaz Corchero, M. A.; Dietel, T.; Divià, R.; Di Bari, D.; Di Giglio, C.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Dönigus, B.; Dordic, O.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; Elia, D.; Emschermann, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Gianotti, P.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Goerlich, L.; Gomez, R.; González-Zamora, P.; Gorbunov, S.; Gotovac, S.; Graczykowski, L. K.; Grajcarek, R.; Grelli, A.; Grigoras, C.; Grigoras, A.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Khan, K. H.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hanratty, L. D.; Hansen, A.; Harris, J. W.; Hartmann, H.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Hayrapetyan, A.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, N.; Hess, B. A.; Hetland, K. F.; Hicks, B.; Hippolyte, B.; Hori, Y.; Hristov, P.; Hřivnáčová, I.; Huang, M.; Humanic, T. J.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Incani, E.; Innocenti, G. M.; Ionita, C.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Ivanytskyi, O.; Jachołkowski, A.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kalcher, S.; Kaliňák, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kazantsev, A.; Kebschull, U.; Keidel, R.; Ketzer, B.; Khan, M. M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, T.; Kim, B.; Kim, D. J.; Kim, D. W.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Köhler, M. K.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Konevskikh, A.; Kovalenko, V.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kramer, F.; Kravčáková, A.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Krus, M.; Kryshen, E.; Krzewicki, M.; Kucera, V.; Kucheriaev, Y.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kulakov, I.; Kumar, J.; Kurashvili, P.; Kurepin, A. B.; Kurepin, A.; Kuryakin, A.; Kushpil, V.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; Ladrón de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; La Pointe, S. L.; La Rocca, P.; Lea, R.; Lechman, M.; Lee, S. C.; Lee, G. R.; Legrand, I.; Lehnert, J.; Lemmon, R. C.; Lenhardt, M.; Lenti, V.; Leoncino, M.; León Monzón, I.; Lévai, P.; Li, S.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Lohner, D.; Loizides, C.; Lopez, X.; López Torres, E.; Løvhøiden, G.; Lu, X.-G.; Luettig, P.; Lunardon, M.; Luo, J.; Luparello, G.; Luzzi, C.; Jacobs, P. M.; Ma, R.; Maevskaya, A.; Mager, M.; Mahapatra, D. P.; Maire, A.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manceau, L.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Marín, A.; Markert, C.; Marquard, M.; Martashvili, I.; Martin, N. A.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martin Blanco, J.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mazer, J.; Mazumder, R.; Mazzoni, M. A.; Meddi, F.; Menchaca-Rocha, A.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitu, C.; Mlynarz, J.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Monteno, M.; Montes, E.; Morando, M.; Moreira De Godoy, D. A.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Muhuri, S.; Mukherjee, M.; Müller, H.; Munhoz, M. G.; Murray, S.; Musa, L.; Nandi, B. K.; Nania, R.; Nappi, E.; Nattrass, C.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nicassio, M.; Niculescu, M.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Nilsen, B. S.; Nilsson, M. S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Nyanin, A.; Nyatha, A.; Nystrand, J.; Oeschler, H.; Oh, S. K.; Oh, S.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Onderwaater, J.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Pachmayer, Y.; Pachr, M.; Pagano, P.; Paić, G.; Painke, F.; Pajares, C.; Pal, S. K.; Palaha, A.; Palmeri, A.; Papikyan, V.; Pappalardo, G. S.; Park, W. J.; Passfeld, A.; Patalakha, D. I.; Paticchio, V.; Paul, B.; Pawlak, T.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Perrino, D.; Peryt, W.; Pesci, A.; Pestov, Y.; Petráček, V.; Petran, M.; Petris, M.; Petrov, P.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Pitz, N.; Piyarathna, D. B.; Planinic, M.; Płoskoń, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Pop, A.; Porteboeuf-Houssais, S.; Pospíšil, V.; Potukuchi, B.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puddu, G.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Rademakers, A.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, S.; Raniwala, R.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Rauch, W.; Rauf, A. W.; Razazi, V.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reicher, M.; Reidt, F.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riccati, L.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rivetti, A.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohni, S.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Rosnet, P.; Rossegger, S.; Rossi, A.; Roy, P.; Roy, C.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahoo, R.; Sahu, P. K.; Saini, J.; Sakaguchi, H.; Sakai, S.; Sakata, D.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Šándor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Santoro, R.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Scott, P. A.; Segato, G.; Selyuzhenkov, I.; Seo, J.; Serci, S.; Serradilla, E.; Sevcenco, A.; Shabetai, A.; Shabratova, G.; Shahoyan, R.; Sharma, S.; Sharma, N.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Skjerdal, K.; Smakal, R.; Smirnov, N.; Snellings, R. J. M.; Soltz, R.; Song, M.; Song, J.; Soos, C.; Soramel, F.; Spacek, M.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Stolpovskiy, M.; Strmen, P.; Suaide, A. A. P.; Subieta Vásquez, M. A.; Sugitate, T.; Suire, C.; Suleymanov, M.; Sultanov, R.; Šumbera, M.; Susa, T.; Symons, T. J. M.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymański, M.; Takahashi, J.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tarazona Martinez, A.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terrevoli, C.; Ter Minasyan, A.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Torii, H.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ulery, J.; Ullaland, K.; Ulrich, J.; Uras, A.; Urciuoli, G. M.; Usai, G. L.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vande Vyvre, P.; Vannucci, L.; Van Hoorne, J. W.; van Leeuwen, M.; Vargas, A.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vechernin, V.; Veldhoen, M.; Venaruzzo, M.; Vercellin, E.; Vergara, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, S.; Voloshin, K.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, V.; Wagner, J.; Wang, Y.; Wang, Y.; Wang, M.; Watanabe, D.; Watanabe, K.; Weber, M.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Xiang, C.; Yaldo, C. G.; Yamaguchi, Y.; Yang, H.; Yang, P.; Yang, S.; Yano, S.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yoo, I.-K.; Yushmanov, I.; Zaccolo, V.; Zach, C.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zelnicek, P.; Zgura, I. S.; Zhalov, M.; Zhang, F.; Zhang, Y.; Zhang, H.; Zhang, X.; Zhou, D.; Zhou, Y.; Zhou, F.; Zhu, X.; Zhu, J.; Zhu, J.; Zhu, H.; Zichichi, A.; Zimmermann, M. B.; Zimmermann, A.; Zinovjev, G.; Zoccarato, Y.; Zynovyev, M.; Zyzak, M.

    2013-11-01

    The ALICE measurement of KS0 and Λ production at midrapidity in Pb-Pb collisions at sNN=2.76TeV is presented. The transverse momentum (pT) spectra are shown for several collision centrality intervals and in the pT range from 0.4GeV/c (0.6GeV/c for Λ) to 12GeV/c. The pT dependence of the Λ/KS0 ratios exhibits maxima in the vicinity of 3GeV/c, and the positions of the maxima shift towards higher pT with increasing collision centrality. The magnitude of these maxima increases by almost a factor of three between most peripheral and most central Pb-Pb collisions. This baryon excess at intermediate pT is not observed in pp interactions at s=0.9TeV and at s=7TeV. Qualitatively, the baryon enhancement in heavy-ion collisions is expected from radial flow. However, the measured pT spectra above 2GeV/c progressively decouple from hydrodynamical-model calculations. For higher values of pT, models that incorporate the influence of the medium on the fragmentation and hadronization processes describe qualitatively the pT dependence of the Λ/KS0 ratio.

  4. J/ψ Elliptic Flow in Pb-Pb Collisions at sNN=2.76TeV

    NASA Astrophysics Data System (ADS)

    Abbas, E.; Abelev, B.; Adam, J.; Adamová, D.; Adare, A. M.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agocs, A. G.; Agostinelli, A.; Ahammed, Z.; Ahmad, N.; Ahmad Masoodi, A.; Ahn, S. A.; Ahn, S. U.; Aimo, I.; Ajaz, M.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alici, A.; Alkin, A.; Almaráz Aviña, E.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Arend, A.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Asryan, A.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Äystö, J.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Bán, J.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batyunya, B.; Batzing, P. C.; Baumann, C.; Bearden, I. G.; Beck, H.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bergognon, A. A. E.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bhom, J.; Bianchi, N.; Bianchi, L.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Boccioli, M.; Böttger, S.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bossú, F.; Botje, M.; Botta, E.; Braidot, E.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brun, R.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Cara Romeo, G.; Carena, W.; Carena, F.; Carlin Filho, N.; Carminati, F.; Casanova Díaz, A.; Castillo Castellanos, J.; Castillo Hernandez, J. F.; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Cotallo, M. E.; Crescio, E.; Crochet, P.; Cruz Alaniz, E.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dang, R.; Danu, A.; Das, D.; Das, K.; Das, S.; Das, I.; Dash, A.; Dash, S.; De, S.; de Barros, G. O. V.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; Delagrange, H.; Deloff, A.; De Marco, N.; Dénes, E.; De Pasquale, S.; Deppman, A.; D'Erasmo, G.; de Rooij, R.; Diaz Corchero, M. A.; Di Bari, D.; Dietel, T.; Di Giglio, C.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Dönigus, B.; Dordic, O.; Driga, O.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; Elia, D.; Emschermann, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Fenton-Olsen, B.; Feofilov, G.; Fernández Téllez, A.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Geuna, C.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Gianotti, P.; Girard, M. R.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez, R.; Ferreiro, E. G.; González-Trueba, L. H.; González-Zamora, P.; Gorbunov, S.; Goswami, A.; Gotovac, S.; Graczykowski, L. K.; Grajcarek, R.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gros, P.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Han, B. H.; Hanratty, L. D.; Hansen, A.; Harmanová-Tóthová, Z.; Harris, J. W.; Hartig, M.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Hayrapetyan, A.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, N.; Hess, B. A.; Hetland, K. F.; Hicks, B.; Hippolyte, B.; Hori, Y.; Hristov, P.; Hřivnáčová, I.; Huang, M.; Humanic, T. J.; Hwang, D. S.; Ichou, R.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Incani, E.; Innocenti, P. G.; Innocenti, G. M.; Ippolitov, M.; Irfan, M.; Ivan, C.; Ivanov, M.; Ivanov, V.; Ivanov, A.; Ivanytskyi, O.; Jachołkowski, A.; Jacobs, P. M.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, S.; Jha, D. M.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kaidalov, A. B.; Kalcher, S.; Kaliňák, P.; Kalliokoski, T.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kazantsev, A.; Kebschull, U.; Keidel, R.; Ketzer, B.; Khan, S. A.; Khan, M. M.; Khan, P.; Khan, K. H.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, M.; Kim, S.; Kim, M.; Kim, J. S.; Kim, J. H.; Kim, T.; Kim, B.; Kim, D. J.; Kim, D. W.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Klay, J. L.; Klein, J.; Klein-Bösing, C.; Kliemant, M.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Köhler, M. K.; Kollegger, T.; Kolojvari, A.; Kompaniets, M.; Kondratiev, V.; Kondratyeva, N.; Konevskikh, A.; Kovalenko, V.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kramer, F.; Kravčáková, A.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Krus, M.; Kryshen, E.; Krzewicki, M.; Kucera, V.; Kucheriaev, Y.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kulakov, I.; Kumar, J.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kushpil, V.; Kvaerno, H.; Kweon, M. J.; Kwon, Y.; Ladrón de Guevara, P.; Lakomov, I.; Langoy, R.; La Pointe, S. L.; Lara, C.; Lardeux, A.; La Rocca, P.; Lea, R.; Lechman, M.; Lee, S. C.; Lee, G. R.; Legrand, I.; Lehnert, J.; Lemmon, R. C.; Lenhardt, M.; Lenti, V.; León, H.; Leoncino, M.; León Monzón, I.; Lévai, P.; Li, S.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Lohner, D.; Loizides, C.; Loo, K. K.; Lopez, X.; López Torres, E.; Løvhøiden, G.; Lu, X.-G.; Luettig, P.; Lunardon, M.; Luo, J.; Luparello, G.; Luzzi, C.; Ma, R.; Ma, K.; Madagodahettige-Don, D. M.; Maevskaya, A.; Mager, M.; Mahapatra, D. P.; Maire, A.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manceau, L.; Mangotra, L.; Manko, V.; Manso, F.; Manukyan, N.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Marín, A.; Markert, C.; Marquard, M.; Martashvili, I.; Martin, N. A.; Martinengo, P.; Martínez, M. I.; Martínez Davalos, A.; Martínez García, G.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; Meddi, F.; Menchaca-Rocha, A.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitu, C.; Mizuno, S.; Mlynarz, J.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Monteno, M.; Montes, E.; Moon, T.; Morando, M.; Moreira De Godoy, D. A.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Muhuri, S.; Mukherjee, M.; Müller, H.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Nattrass, C.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nicassio, M.; Niculescu, M.; Nielsen, B. S.; Niida, T.; Nikolaev, S.; Nikolic, V.; Nikulin, S.; Nikulin, V.; Nilsen, B. S.; Nilsson, M. S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Nyanin, A.; Nyatha, A.; Nygaard, C.; Nystrand, J.; Ochirov, A.; Oeschler, H.; Oh, S.; Oh, S. K.; Oleniacz, J.; Oliveira Da Silva, A. C.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Ostrowski, P.; Otwinowski, J.; Oyama, K.; Ozawa, K.; Pachmayer, Y.; Pachr, M.; Padilla, F.; Pagano, P.; Paić, G.; Painke, F.; Pajares, C.; Pal, S. K.; Palaha, A.; Palmeri, A.; Papikyan, V.; Pappalardo, G. S.; Park, W. J.; Passfeld, A.; Patalakha, D. I.; Paticchio, V.; Paul, B.; Pavlinov, A.; Pawlak, T.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Perrino, D.; Peryt, W.; Pesci, A.; Pestov, Y.; Petráček, V.; Petran, M.; Petris, M.; Petrov, P.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Pitz, N.; Piyarathna, D. B.; Planinic, M.; Płoskoń, M.; Pluta, J.; Pocheptsov, T.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polák, K.; Polichtchouk, B.; Poljak, N.; Pop, A.; Porteboeuf-Houssais, S.; Pospíšil, V.; Potukuchi, B.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puddu, G.; Punin, V.; Putiš, M.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Rademakers, A.; Räihä, T. S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, S.; Raniwala, R.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Rauch, W.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reicher, M.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riccati, L.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Rosnet, P.; Rossegger, S.; Rossi, A.; Roy, P.; Roy, C.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahoo, R.; Sahu, P. K.; Saini, J.; Sakaguchi, H.; Sakai, S.; Sakata, D.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Šándor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Santoro, R.; Sarkamo, J.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, H. R.; Schmidt, C.; Schuchmann, S.; Schukraft, J.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Scott, P. A.; Segato, G.; Selyuzhenkov, I.; Senyukov, S.; Seo, J.; Serci, S.; Serradilla, E.; Sevcenco, A.; Shabetai, A.; Shabratova, G.; Shahoyan, R.; Sharma, N.; Sharma, S.; Rohni, S.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Sicking, E.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Skjerdal, K.; Smakal, R.; Smirnov, N.; Snellings, R. J. M.; Søgaard, C.; Soltz, R.; Song, M.; Song, J.; Soos, C.; Soramel, F.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Stolpovskiy, M.; Strmen, P.; Suaide, A. A. P.; Subieta Vásquez, M. A.; Sugitate, T.; Suire, C.; Sultanov, R.; Šumbera, M.; Susa, T.; Symons, T. J. M.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymański, M.; Takahashi, J.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tarazona Martinez, A.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Ter Minasyan, A.; Terrevoli, C.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Tlusty, D.; Toia, A.; Torii, H.; Toscano, L.; Trubnikov, V.; Truesdale, D.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ulery, J.; Ullaland, K.; Ulrich, J.; Uras, A.; Urciuoli, G. M.; Usai, G. L.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vande Vyvre, P.; Van Hoorne, J. W.; van Leeuwen, M.; Vannucci, L.; Vargas, A.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vechernin, V.; Veldhoen, M.; Venaruzzo, M.; Vercellin, E.; Vergara, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, Y.; Vinogradov, L.; Vinogradov, A.; Virgili, T.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, S.; Voloshin, K.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, V.; Wan, R.; Wang, Y.; Wang, M.; Wang, Y.; Watanabe, K.; Weber, M.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Williams, M. C. S.; Windelband, B.; Xaplanteris Karampatsos, L.; Yaldo, C. G.; Yamaguchi, Y.; Yang, S.; Yang, P.; Yang, H.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yoo, I.-K.; Yoon, J.; Yu, W.; Yuan, X.; Yushmanov, I.; Zaccolo, V.; Zach, C.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zelnicek, P.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhou, D.; Zhou, F.; Zhou, Y.; Zhu, H.; Zhu, J.; Zhu, X.; Zhu, J.; Zichichi, A.; Zimmermann, A.; Zinovjev, G.; Zoccarato, Y.; Zynovyev, M.; Zyzak, M.

    2013-10-01

    We report on the first measurement of inclusive J/ψ elliptic flow v2 in heavy-ion collisions at the LHC. The measurement is performed with the ALICE detector in Pb-Pb collisions at sNN=2.76TeV in the rapidity range 2.5Pb-Pb collisions at sNN=2.76TeV, an indication of nonzero v2 is observed with a largest measured value of v2=0.116±0.046(stat)±0.029(syst) for J/ψ in the transverse momentum range 2≤pT<4GeV/c. The elliptic flow measurement complements the previously reported ALICE results on the inclusive J/ψ nuclear modification factor and favors the scenario of a significant fraction of J/ψ production from charm quarks in a deconfined partonic phase.

  5. The Transport of Ions Across Plant Cell Membranes.

    ERIC Educational Resources Information Center

    Baker, D. A.

    1981-01-01

    Presented is one of a series of articles designed to help science teachers keep current on ideas in specific areas of biology. This article provides information about ion transport in plant cells. (PB)

  6. HYDRO + JETS (HYDJET+ +) event generator for Pb+Pb collisions at LHC

    NASA Astrophysics Data System (ADS)

    Bravina, L.; Brusheim Johansson, B. H.; Crkovská, J.; Eyyubova, G.; Korotkikh, V.; Lokhtin, I.; Malinina, L.; Nazarova, E.; Petrushanko, S.; Snigirev, A.; Zabrodin, E.

    2016-08-01

    The Monte Carlo event generator HYDJET++ is one of the few generators, designed for the calculations of heavy-ion collisions at ultrarelativistic energies, which combine treatment of soft hydro-like processes with the description of jets traversing the hot and dense partonic medium. The model is employed to study the azimuthal anisotropy phenomena, dihadron angular correlations and event-by-event (EbyE) fluctuations of the anisotropic flow in Pb+Pb collisions at ^/snn = 2.76 TeV. The interplay of soft and hard processes describes the violation of the mass hierarchy of meson and baryon elliptic and triangular flows at pT > 2 GeV/c, the fall-off of the flow harmonics at intermediate transverse momenta, and the worsening of the number-of-constituent-quark (NCQ) scaling of elliptic/triangular flow at LHC compared to RHIC energies. The cross-talk of v2 and v3 leads to emergence of higher order harmonics in the model and to appearance of the ridge structure in dihadron angular correlations in a broad pseudorapidity range. HYDJET++ possesses also the dynamical EbyE fluctuations of the anisotropic flow. The model results agree well with the experimental data.

  7. Pb uptake and toxicity to Iris halophila tested on Pb mine tailing materials.

    PubMed

    Han, Yulin; Zhang, Lili; Yang, Yongheng; Yuan, Haiyan; Zhao, Jiuzhou; Gu, Jiguang; Huang, Suzhen

    2016-07-01

    Pb tolerant mechanisms, plant physiological response and Pb sub-cellular localization in the root cells of Iris halophila were studied in sand culture and the Pb mine tailings. Results showed that the activities of superoxide dismutase (SOD) and peroxidase (POD) in the underground parts and the activity of catalase (CAT) in the aboveground and underground parts increased as Pb level was enhanced. Glutathione (GSH) and ascorbic acid (AsA) contents increased by Pb treatments. Pb deposits were found in the middle cell walls or along the inner side of epibiotic protoplasm of some cells which accumulated a large quantity of Pb and died. The dry weights (DWs) of aboveground parts under all Pb tailings treatments decreased insignificantly, while the DW of the underground parts growing in the pure Pb tailings decreased significantly. Pb, Cu, Cd, and Zn contents increased significantly as the levels of Pb tailings were enhanced and Pb contents in the aboveground and underground parts reached 64.75 and 751.75 μg/g DW, respectively, at pure Pb tailings treatment. The results indicated that I. halophila is a promising plant in the phytoremediation of Pb contaminated environment. Some antioxidant enzymes, antioxidants and compartmentalization of Pb were played major roles in Pb tolerance of I. halophila. PMID:27131809

  8. [Preparation of Pb2+ imprinted acrylic acid-co-styrene and analysis of its adsorption properties by FAAS].

    PubMed

    Shawket, Abliz; Abdiryim, Supahun; Wang, Ji-De; Ismayil, Nurulla

    2011-06-01

    With lead ion template, acrylic acid as functional monomer, potassium persulfate as initiator, strytrene as framework monomer, lead ion imprinted polymers (Pb(II)-IIPs) were prepared using free emulsion polymerization method. The structure and morphology of the polymers were analyzed by UV-spectra, FTIR and scanning electron microscopy. The adsorption/ desorption and selectivity for Pb2+ were investigated by flame atomic absorption spectrometry (FAAS) as the detection means. The results show that compared with non-imprinted polymers(NIPs), the Pb(II)-IIPs had higher specific adsorption properties and selective recognition ability for Pb(II). The relative selectivity coefficient of Pb(II)-IIPs for Pb(II) was 6.25, 6.18, 6.25 and 6.38 in the presence of Cd(II), Cu(II), Mn(II) and Zn(II) interferences, respectively. The absorption rate was the best at the pH of adsorbent solution of 6, Adsorption rate reached 96% during the 2.5 h static adsorption time. Using 3.0 mol x L(-1) HCI as the best desorption solvent to desorb the adsorbents, the desorbtion rate reached 98%. Under the best adsorption conditions, the adsorption capacity of Pb(II)-IIPs for Pb(II) was found to be 40. mg x g(-1). PMID:21847962

  9. Synthesis and crystallographic study of Pb-Sr hydroxyapatite solid solutions by high temperature mixing method under hydrothermal conditions

    SciTech Connect

    Zhu Kongjun; Yanagisawa, Kazumichi; Shimanouchi, Rie; Onda, Ayumu; Kajiyoshi, Koji; Qiu Jinhao

    2009-06-03

    The solid solutions in the system of Pb and Sr hydroxyapatite, Sr{sub 10-x}Pb{sub x}HAp (x = 0-10), were successfully synthesized by high-temperature mixing method (HTMM) at 160 deg. C for 12 h under hydrothermal conditions. The samples were characterized by X-ray diffraction, chemical analysis and electron microscopic observation, and the site of the metal ions in the solid solutions was analyzed with the Rietveld method. The lattice constants, both a and c, of the solid solutions varied linearly with Pb content. It was found that Pb ions in the solid solutions preferentially occupied the M(2) site in the apatite structure. HTMM gives Sr-Pb HAp solid solutions much better crystallization. However, due to the formation of intermediate compound of Pb{sub 3}O{sub 2}(OH){sub 2} in the Pb(NO{sub 3}){sub 2}.4H{sub 2}O solution before mixing with (NH{sub 4}){sub 2}HPO{sub 4} solution at 160 deg. C, HTMM causes the decrease of crystallization of the samples with high Pb content.

  10. Inherent electrochemistry of layered post-transition metal halides: the unexpected effect of potential cycling of PbI2.

    PubMed

    Chua, Chun Kiang; Sofer, Zdeněk; Lim, Chee Shan; Pumera, Martin

    2015-02-01

    The development of two-dimensional nanomaterials has expedited the growth of advanced technological applications. PbI2 is a layered inorganic solid with important and unique properties suitable for applications in the detection of electromagnetic radiation. While the optical and electrical properties of layered PbI2 have been generally established, its electrochemistry has remained largely unexplored. In this work, we examine the inherent electrochemistry of PbI2 in relation to its morphological and structural properties. A direct comparison between commercially available and solution-grown PbI2 showed high similarity in properties based on characterizations by X-ray photoelectron spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The respective layered PbI2 materials also exhibited similar inherent electrochemistry. Electrochemical potential cycling of PbI2 in phosphate buffer resulted in the dissolution of iodide ions from PbI2 to form complex lead-phosphate-chloride with the oxygen groups of the phosphate ions while retaining the hexagonal structure. In the case of KCl solution, the formation of PbO2 was observed.

  11. Net-Charge Fluctuations in Pb-Pb Collisions at sNN=2.76TeV

    NASA Astrophysics Data System (ADS)

    Abelev, B.; Adam, J.; Adamová, D.; Adare, A. M.; Aggarwal, M. M.; Aglieri Rinella, G.; Agocs, A. G.; Agostinelli, A.; Aguilar Salazar, S.; Ahammed, Z.; Ahmad Masoodi, A.; Ahmad, N.; Ahn, S. A.; Ahn, S. U.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaráz Aviña, E.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Arend, A.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Asryan, A.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Äystö, J.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bailhache, R.; Bala, R.; Baldini Ferroli, R.; Baldisseri, A.; Baldit, A.; Baltasar Dos Santos Pedrosa, F.; Bán, J.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batyunya, B.; Baumann, C.; Bearden, I. G.; Beck, H.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bergognon, A. A. E.; Berzano, D.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Boccioli, M.; Bock, N.; Böttger, S.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bose, S.; Bossú, F.; Botje, M.; Boyer, B.; Braidot, E.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Browning, T. A.; Broz, M.; Brun, R.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Bugaiev, K.; Busch, O.; Buthelezi, Z.; Caballero Orduna, D.; Caffarri, D.; Cai, X.; Caines, H.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Cara Romeo, G.; Carena, F.; Carena, W.; Carlin Filho, N.; Carminati, F.; Carrillo Montoya, C. A.; Casanova Díaz, A.; Castillo Castellanos, J.; Castillo Hernandez, J. F.; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chawla, I.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Coccetti, F.; Colamaria, F.; Colella, D.; Conesa Balbastre, G.; Conesa del Valle, Z.; Constantin, P.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Cotallo, M. E.; Crescio, E.; Crochet, P.; Cruz Alaniz, E.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dalsgaard, H. H.; Danu, A.; Das, D.; Das, I.; Das, K.; Dash, S.; Dash, A.; De, S.; de Barros, G. O. V.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; Delagrange, H.; Deloff, A.; Demanov, V.; De Marco, N.; Dénes, E.; De Pasquale, S.; Deppman, A.; Erasmo, G. D.; de Rooij, R.; Diaz Corchero, M. A.; Di Bari, D.; Dietel, T.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domínguez, I.; Dönigus, B.; Dordic, O.; Driga, O.; Dubey, A. K.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, M. R.; Dutta Majumdar, A. K.; Elia, D.; Emschermann, D.; Engel, H.; Erdal, H. A.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fearick, R.; Fedunov, A.; Fehlker, D.; Feldkamp, L.; Felea, D.; Fenton-Olsen, B.; Feofilov, G.; Fernández Téllez, A.; Ferretti, A.; Ferretti, R.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Garishvili, I.; Gerhard, J.; Germain, M.; Geuna, C.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Di Giglio, C.; Gianotti, P.; Girard, M. R.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez, R.; Gonschior, A.; Ferreiro, E. G.; González-Trueba, L. H.; González-Zamora, P.; Gorbunov, S.; Goswami, A.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Grajcarek, R.; Grelli, A.; Grigoras, C.; Grigoras, A.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gros, P.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerra Gutierrez, C.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Gutbrod, H.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Han, B. H.; Hanratty, L. D.; Hansen, A.; Harmanova, Z.; Harris, J. W.; Hartig, M.; Hasegan, D.; Hatzifotiadou, D.; Hayrapetyan, A.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, N.; Hess, B. A.; Hetland, K. F.; Hicks, B.; Hille, P. T.; Hippolyte, B.; Horaguchi, T.; Hori, Y.; Hristov, P.; Hřivnáčová, I.; Huang, M.; Humanic, T. J.; Hwang, D. S.; Ichou, R.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Incani, E.; Innocenti, G. M.; Innocenti, P. G.; Ippolitov, M.; Irfan, M.; Ivan, C.; Ivanov, V.; Ivanov, M.; Ivanov, A.; Ivanytskyi, O.; Jachołkowski, A.; Jacobs, P. M.; Jang, H. J.; Jangal, S.; Janik, M. A.; Janik, R.; Jayarathna, P. H. S. Y.; Jena, S.; Jha, D. M.; Jimenez Bustamante, R. T.; Jirden, L.; Jones, P. G.; Jung, H.; Jusko, A.; Kaidalov, A. B.; Kakoyan, V.; Kalcher, S.; Kaliňák, P.; Kalliokoski, T.; Kalweit, A.; Kanaki, K.; Kang, J. H.; Kaplin, V.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kazantsev, A.; Kebschull, U.; Keidel, R.; Khan, P.; Khan, M. M.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, D. W.; Kim, M.; Kim, M.; Kim, S. H.; Kim, D. J.; Kim, S.; Kim, J. H.; Kim, J. S.; Kim, B.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Klay, J. L.; Klein, J.; Klein-Bösing, C.; Kliemant, M.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Koch, K.; Köhler, M. K.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Konevskikh, A.; Korneev, A.; Kour, R.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kramer, F.; Kraus, I.; Krawutschke, T.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Krus, M.; Kryshen, E.; Krzewicki, M.; Kucheriaev, Y.; Kuhn, C.; Kuijer, P. G.; Kulakov, I.; Kumar, J.; Kurashvili, P.; Kurepin, A. B.; Kurepin, A.; Kuryakin, A.; Kushpil, V.; Kushpil, S.; Kvaerno, H.; Kweon, M. J.; Kwon, Y.; Ladrón de Guevara, P.; Lakomov, I.; Langoy, R.; La Pointe, S. L.; Lara, C.; Lardeux, A.; La Rocca, P.; Lazzeroni, C.; Lea, R.; Le Bornec, Y.; Lechman, M.; Lee, S. C.; Lee, K. S.; Lee, G. R.; Lefèvre, F.; Lehnert, J.; Leistam, L.; Lenhardt, M.; Lenti, V.; León, H.; Leoncino, M.; León Monzón, I.; León Vargas, H.; Lévai, P.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Liu, L.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Lohn, S.; Lohner, D.; Loizides, C.; Loo, K. K.; Lopez, X.; López Torres, E.; Løvhøiden, G.; Lu, X.-G.; Luettig, P.; Lunardon, M.; Luo, J.; Luparello, G.; Luquin, L.; Luzzi, C.; Ma, R.; Ma, K.; Madagodahettige-Don, D. M.; Maevskaya, A.; Mager, M.; Mahapatra, D. P.; Maire, A.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manceau, L.; Mangotra, L.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Marín, A.; Marin Tobon, C. A.; Markert, C.; Martashvili, I.; Martinengo, P.; Martínez, M. I.; Martínez Davalos, A.; Martínez García, G.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastromarco, M.; Mastroserio, A.; Matthews, Z. L.; Matyja, A.; Mayani, D.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; Meddi, F.; Menchaca-Rocha, A.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitu, C.; Mlynarz, J.; Mohanty, B.; Mohanty, A. K.; Molnar, L.; Montaño Zetina, L.; Monteno, M.; Montes, E.; Moon, T.; Morando, M.; Moreira De Godoy, D. A.; Moretto, S.; Morsch, A.; Muccifora, V.; Mudnic, E.; Muhuri, S.; Mukherjee, M.; Müller, H.; Munhoz, M. G.; Musa, L.; Musso, A.; Nandi, B. K.; Nania, R.; Nappi, E.; Nattrass, C.; Naumov, N. P.; Navin, S.; Nayak, T. K.; Nazarenko, S.; Nazarov, G.; Nedosekin, A.; Nicassio, M.; Niculescu, M.; Nielsen, B. S.; Niida, T.; Nikolaev, S.; Nikolic, V.; Nikulin, S.; Nikulin, V.; Nilsen, B. S.; Nilsson, M. S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Novitzky, N.; Nyanin, A.; Nyatha, A.; Nygaard, C.; Nystrand, J.; Ochirov, A.; Oeschler, H.; Oh, S.; Oh, S. K.; Oleniacz, J.; Oppedisano, C.; Ortiz Velasquez, A.; Ortona, G.; Oskarsson, A.; Ostrowski, P.; Otwinowski, J.; Oyama, K.; Ozawa, K.; Pachmayer, Y.; Pachr, M.; Padilla, F.; Pagano, P.; Paić, G.; Painke, F.; Pajares, C.; Pal, S.; Pal, S. K.; Palaha, A.; Palmeri, A.; Papikyan, V.; Pappalardo, G. S.; Park, W. J.; Passfeld, A.; Pastirčák, B.; Patalakha, D. I.; Paticchio, V.; Pavlinov, A.; Pawlak, T.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Perez Lezama, E.; Perini, D.; Perrino, D.; Peryt, W.; Pesci, A.; Peskov, V.; Pestov, Y.; Petráček, V.; Petran, M.; Petris, M.; Petrov, P.; Petrovici, M.; Petta, C.; Piano, S.; Piccotti, A.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Pitz, N.; Piyarathna, D. B.; Płoskoń, M.; Pluta, J.; Pocheptsov, T.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polák, K.; Polichtchouk, B.; Pop, A.; Porteboeuf-Houssais, S.; Pospíšil, V.; Potukuchi, B.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puchagin, S.; Puddu, G.; Pujol Teixido, J.; Pulvirenti, A.; Punin, V.; Putiš, M.; Putschke, J.; Quercigh, E.; Qvigstad, H.; Rachevski, A.; Rademakers, A.; Radomski, S.; Räihä, T. S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Ramírez Reyes, A.; Raniwala, S.; Raniwala, R.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Real, J. S.; Redlich, K.; Reichelt, P.; Reicher, M.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riccati, L.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rodrigues Fernandes Rabacal, B.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Rosnet, P.; Rossegger, S.; Rossi, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Ryabinkin, E.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahoo, R.; Sahu, P. K.; Saini, J.; Sakaguchi, H.; Sakai, S.; Sakata, D.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Šándor, L.; Sandoval, A.; Sano, S.; Sano, M.; Santo, R.; Santoro, R.; Sarkamo, J.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schreiner, S.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Scott, P. A.; Segato, G.; Selyuzhenkov, I.; Senyukov, S.; Seo, J.; Serci, S.; Serradilla, E.; Sevcenco, A.; Shabetai, A.; Shabratova, G.; Shahoyan, R.; Sharma, N.; Sharma, S.; Rohni, S.; Shigaki, K.; Shimomura, M.; Shtejer, K.; Sibiriak, Y.; Siciliano, M.; Sicking, E.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, T.; Sinha, B. C.; Sitar, B.; Sitta, M.; Skaali, T. B.; Skjerdal, K.; Smakal, R.; Smirnov, N.; Snellings, R. J. M.; Søgaard, C.; Soltz, R.; Son, H.; Song, M.; Song, J.; Soos, C.; Soramel, F.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stan, I.; Stefanek, G.; Steinbeck, T.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Stolpovskiy, M.; Strabykin, K.; Strmen, P.; Suaide, A. A. P.; Subieta Vásquez, M. A.; Sugitate, T.; Suire, C.; Sukhorukov, M.; Sultanov, R.; Šumbera, M.; Susa, T.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szostak, A.; Szymanski, M.; Takahashi, J.; Tapia Takaki, J. D.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terrevoli, C.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Tlusty, D.; Toia, A.; Torii, H.; Toscano, L.; Truesdale, D.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ulery, J.; Ullaland, K.; Ulrich, J.; Uras, A.; Urbán, J.; Urciuoli, G. M.; Usai, G. L.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; van der Kolk, N.; Vande Vyvre, P.; van Leeuwen, M.; Vannucci, L.; Vargas, A.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vechernin, V.; Veldhoen, M.; Venaruzzo, M.; Vercellin, E.; Vergara, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Vikhlyantsev, O.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y. P.; Vodopyanov, A.; Voloshin, K.; Voloshin, S.; Volpe, G.; von Haller, B.; Vranic, D.; Øvrebekk, G.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, V.; Wagner, B.; Wan, R.; Wang, M.; Wang, D.; Wang, Y.; Wang, Y.; Watanabe, K.; Weber, M.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilk, A.; Williams, M. C. S.; Windelband, B.; Xaplanteris Karampatsos, L.; Yaldo, C. G.; Yamaguchi, Y.; Yang, H.; Yang, S.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yoo, I.-K.; Yoon, J.; Yu, W.; Yuan, X.; Yushmanov, I.; Zach, C.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zelnicek, P.; Zgura, I. S.; Zhalov, M.; Zhang, X.; Zhang, H.; Zhou, F.; Zhou, D.; Zhou, Y.; Zhu, J.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zinovjev, G.; Zoccarato, Y.; Zynovyev, M.; Zyzak, M.

    2013-04-01

    We report the first measurement of the net-charge fluctuations in Pb-Pb collisions at sNN=2.76TeV, measured with the ALICE detector at the CERN Large Hadron Collider. The dynamical fluctuations per unit entropy are observed to decrease when going from peripheral to central collisions. An additional reduction in the amount of fluctuations is seen in comparison to the results from lower energies. We examine the dependence of fluctuations on the pseudorapidity interval, which may account for the dilution of fluctuations during the evolution of the system. We find that the fluctuations at the LHC are smaller compared to the measurements at the BNL Relativistic Heavy Ion Collider, and as such, closer to what has been theoretically predicted for the formation of a quark-gluon plasma.

  12. Synthesis and surface modification of PbSe/PbS core shell nanocrystals for potential device applications

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Cui, Dehu; Zhu, Ting; Paradee, Gary; Liang, Ziqi; Wang, Qing; Xu, Shengyong; Wang, Andrew Y.

    2006-11-01

    We report in this paper the growth of PbS shells over colloidal PbSe nanocrystal quantum dots (NQDs) with monolayer-precision. The technique of successive ion layer adsorption and reaction (SILAR) has been adapted to the growth of high-quality core-shell nanocrystals. The core-shell infrared NQDs were ligand-exchanged with short-chain octylamine, and the photoluminescence efficiency of the surface-engineered core-shell nanoparticles was substantially higher than that of the plain core structures undergoing the same surface processing, which reveals less ligand dependence and enhanced chemical robustness in the core-shell NQDs. The reported results open up the possibility of incorporating semiconductor infrared NQDs in the silicon matrix to develop all-inorganic light-emitting heterojunctions on silicon substrates.

  13. Preparation of graphene oxide/chitosan/FeOOH nanocomposite for the removal of Pb(II) from aqueous solution.

    PubMed

    Sheshmani, Shabnam; Akhundi Nematzadeh, Mehrnaz; Shokrollahzadeh, Soheila; Ashori, Alireza

    2015-09-01

    In the present study, a graphene oxide/chitosan/FeOOH (GO/Ch/FeOOH) nanostructured composite was prepared and used as an adsorbent for the removal of Pb(II) ions from aqueous solution. The nanocomposite was characterized by FT-IR, XRD, and SEM techniques. Several important parameters influencing the adsorption of Pb(II) ions such as pH (3-7), temperature (25-80 °C), shaking speed (150-800 rpm), contact time (10-70 min), and sorbent mass (10-100 mg) were studied. The results showed that, benefiting from the surface property of graphene oxide, the abundant amino and hydroxyl functional groups of chitosan, the adsorbent provides adequate and versatile adsorption for the Pb(II) ions under investigation. The batch adsorption experiments showed that the adsorption of the Pb(II) is considerably dependent on pH of milieu, amount of adsorbent, and contact time. The Freundlich and Langmuir adsorption models were used for the mathematical description of adsorption equilibrium and isotherm constants. Both models were applicable for the description of Pb(II) adsorption isotherm in the concentration range studied. However, Langmuir model showed higher correlation coefficient (R(2)) than Freundlich model. The study suggests that the GO/Ch/FeOOH is a promising nano adsorbent for the removal of Pb(II) ions from aqueous solution. PMID:26187194

  14. Adsorption characteristics of copper, lead, zinc and cadmium ions by tourmaline.

    PubMed

    Jiang, Kan; Sun, Tie-heng; Sun, Li-na; Li, Hai-bo

    2006-01-01

    The adsorption characteristics of heavy metals: Cu(II), Pb(II), Zn(II) and Cd(II) ions on tourmaline were studied. Adsorption equilibrium was established. The adsorption isotherms of all the four metal ions followed well Langmuir equation. Tourmaline was found to remove heavy metal ions efficiently from aqueous solution with selectivity in the order of Pb(II)>Cu(II)>Cd(II)>Zn(II). The adsorption of metal ions by tourmaline increased with the initial concentration of metal ions increasing in the medium. Tourmaline could also increase pH value of metal solution. -The maximum heavy metal ions adsorbed by tourmaline was found to be 78.86, 154.08, 67.25, and 66.67 mg/g for Cu(II), Pb(II), Zn(II) and Cd(R), respectively. The temperature (25-55 degrees C) had a small effect on the adsorption capacity of tourmaline. Competitive adsorption of Cu(II), Pb(II), Zn(II) and Cd(II) ions was also studied. The adsorption capacity of tourmaline for single metal decreased in the order of Pb>Cu>Zn >Cd and inhibition dominance observed in two metal systems was Pb>Cu, Pb>Zn, Pb>Cd, Cu>Zn, Cu>Cd, and Cd>Zn. PMID:17294969

  15. Adsorption characteristics of copper, lead, zinc and cadmium ions by tourmaline.

    PubMed

    Jiang, Kan; Sun, Tie-heng; Sun, Li-na; Li, Hai-bo

    2006-01-01

    The adsorption characteristics of heavy metals: Cu(II), Pb(II), Zn(II) and Cd(II) ions on tourmaline were studied. Adsorption equilibrium was established. The adsorption isotherms of all the four metal ions followed well Langmuir equation. Tourmaline was found to remove heavy metal ions efficiently from aqueous solution with selectivity in the order of Pb(II)>Cu(II)>Cd(II)>Zn(II). The adsorption of metal ions by tourmaline increased with the initial concentration of metal ions increasing in the medium. Tourmaline could also increase pH value of metal solution. -The maximum heavy metal ions adsorbed by tourmaline was found to be 78.86, 154.08, 67.25, and 66.67 mg/g for Cu(II), Pb(II), Zn(II) and Cd(R), respectively. The temperature (25-55 degrees C) had a small effect on the adsorption capacity of tourmaline. Competitive adsorption of Cu(II), Pb(II), Zn(II) and Cd(II) ions was also studied. The adsorption capacity of tourmaline for single metal decreased in the order of Pb>Cu>Zn >Cd and inhibition dominance observed in two metal systems was Pb>Cu, Pb>Zn, Pb>Cd, Cu>Zn, Cu>Cd, and Cd>Zn.

  16. Pb-induced cellular defense system in the root meristematic cells of Allium sativum L

    PubMed Central

    2010-01-01

    Background Electron microscopy (EM) techniques enable identification of the main accumulations of lead (Pb) in cells and cellular organelles and observations of changes in cell ultrastructure. Although there is extensive literature relating to studies on the influence of heavy metals on plants, Pb tolerance strategies of plants have not yet been fully explained. Allium sativum L. is a potential plant for absorption and accumulation of heavy metals. In previous investigations the effects of different concentrations (10-5 to 10-3 M) of Pb were investigated in A. sativum, indicating a significant inhibitory effect on shoot and root growth at 10-3 to 10-4 M Pb. In the present study, we used EM and cytochemistry to investigate ultrastructural alterations, identify the synthesis and distribution of cysteine-rich proteins induced by Pb and explain the possible mechanisms of the Pb-induced cellular defense system in A. sativum. Results After 1 h of Pb treatment, dictyosomes were accompanied by numerous vesicles within cytoplasm. The endoplasm reticulum (ER) with swollen cisternae was arranged along the cell wall after 2 h. Some flattened cisternae were broken up into small closed vesicles and the nuclear envelope was generally more dilated after 4 h. During 24-36 h, phenomena appeared such as high vacuolization of cytoplasm and electron-dense granules in cell walls, vacuoles, cytoplasm and mitochondrial membranes. Other changes included mitochondrial swelling and loss of cristae, and vacuolization of ER and dictyosomes during 48-72 h. In the Pb-treatment groups, silver grains were observed in cell walls and in cytoplasm, suggesting the Gomori-Swift reaction can indirectly evaluate the Pb effects on plant cells. Conclusions Cell walls can immobilize some Pb ions. Cysteine-rich proteins in cell walls were confirmed by the Gomori-Swift reaction. The morphological alterations in plasma membrane, dictyosomes and ER reflect the features of detoxification and tolerance under Pb

  17. Anthropogenic Pb input into Bohai Bay, China: Evidence from stable Pb isotopic compositions in sediments

    NASA Astrophysics Data System (ADS)

    Hu, Ningjing; Huang, Peng

    2016-04-01

    Anthropogenic Pb input into Bohai Bay, China: Evidence from stable Pb isotopic compositions in sediments Hu Ning-jinga, Huang Pengb,, Liu Ji-huaa, a First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China b Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China To investigate the source of Pb within Bohai Bay, Pb concentrations and Pb isotopic compositions (204Pb, 206Pb, 207Pb, and 208Pb) of surface sediments in this area were determined. The Pb concentration in this bay varied widely from 6.9 to 39.2 μg/g (average: 21.8 ± 7.8 μg/g), and the Pb isotopic compositions ranged from 0.8338 to 0.8864 (average: 2.0997 ± 0.0180) for 208Pb/206Pb and from 2.0797 to 2.1531 (average: 0.8477 ± 0.0135) for 207Pb/206Pb, presenting in three distinct clusters. The Pb isotopic ratios of sediments from the northeastern (NE zone) and northwestern (NW zone) coastal areas were significantly influenced by anthropogenic sources such as coal combustion and automobile emission. In sediments from the central and southern Bohai Bay (C-S zone); however, Pb mainly originated from the Yellow River catchment, as a result of lithogenic sediment (from rock weathering) accumulation. The Pb isotopic ratios further indicate that, apart from riverine inputs, the neighboring large-scale ports and aerosols significantly contributed to the anthropogenic Pb contained in these sediments. Pb contamination in the Haihe and Luanhe river mouths as well as in the regions near ports is also suggested from anthropogenic enrichment factors. As cities and ports continue to develop around Bohai Bay, a long-term extensive sewage monitoring program is highly recommended.

  18. Band alignment of type I at (100)ZnTe/PbSe interface

    NASA Astrophysics Data System (ADS)

    Konovalov, Igor; Emelianov, Vitali; Linke, Ralf

    2016-06-01

    A junction of lattice-matched cubic semiconductors ZnTe and PbSe results in a band alignment of type I so that the narrow band gap of PbSe is completely within the wider band gap of ZnTe. The valence band offset of 0.27 eV was found, representing a minor barrier during injection of holes from PbSe into ZnTe. Simple linear extrapolation of the valence band edge results in a smaller calculated band offset, but a more elaborate square root approximation was used instead, which accounts for parabolic bands. PbSe was electrodeposited at room temperature with and without Cd2+ ions in the electrolyte. Although Cd adsorbs at the surface, the presence of Cd in the electrolyte does not influence the band offset.

  19. Inorganic-ligand exchanging time effect in PbS quantum dot solar cell

    NASA Astrophysics Data System (ADS)

    Kim, Byung-Sung; Hong, John; Hou, Bo; Cho, Yuljae; Sohn, Jung Inn; Cha, SeungNam; Kim, Jong Min

    2016-08-01

    We investigate time-dependent inorganic ligand exchanging effect and photovoltaic performance of lead sulfide (PbS) nanocrystal films. With optimal processing time, volume shrinkage induced by residual oleic acid of the PbS colloidal quantum dot (CQD) was minimized and a crack-free film was obtained with improved flatness. Furthermore, sufficient surface passivation significantly increased the packing density by replacing from long oleic acid to a short iodide molecule. It thus facilities exciton dissociation via enhanced charge carrier transport in PbS CQD films, resulting in the improved power conversion efficiency from 3.39% to 6.62%. We also found that excess iodine ions on the PbS surface rather hinder high photovoltaic performance of the CQD solar cell.

  20. Paper sludge as a feasible soil amendment for the immobilization of Pb2+.

    PubMed

    He, Xiaojia; Yao, Lei; Liang, Zhu; Ni, Jinren

    2010-01-01

    The possibility of amending Pb2+ contaminated soil (S) with paper sludge (P) was investigated through adsorption and desorption experiments. The adsorption process of Pb2+ in soil containing paper sludge (SP) could be well described by pseudo second-order kinetic model and the Langmuir isotherm model. After P addition, the equilibrium time decreased greatly (from 28 to 8 hr) and the Pb2+ maximum adsorbed amount (Qmax) increased by a factor of more than three to 102.04 mg/g. Qmax reached its maximum as S:P was 9:1 (m/m) after 10 days contact between S and P. Moreover, Pb2+ adsorbed amount increased with the rise of pH during the adsorption process. Desorption experiments indicated that Pb2+ adsorption in SP was irreversible. The metal ion fraction was analyzed with Energy Dispersive Spectrometer and Environmental Scan Electron Microscope. As a result, the addition of P to soil was found to induce a decrease in the mobile forms. The Pb2+ complexes formation in the presence of carbonates was the main adsorption mechanism. Overall, the paper sludge could be one of the promising soil amendments for the remediation of soil with Pb2+ contamination.

  1. Pb Isotopes Track Asian Pollution in California

    NASA Astrophysics Data System (ADS)

    Ewing, S. A.; Christensen, J. N.; Brown, S. T.; Vancuren, R. A.; Cliff, S. S.; Depaolo, D. J.

    2008-12-01

    The transport of Asian pollution to North America has broad implications for global climate models and regional air quality regulation. In the western US, rising atmospheric Pb levels have been evident since the mid-1990s despite the phase-out of leaded gasoline. We use Pb isotopes to fingerprint the trans-Pacific component of atmospheric pollution in California. We measured Pb isotopes in airborne particles collected at two sites west (Mt. Tamalpais) and east (Chabot Observatory, Oakland Hills) of the San Francisco Bay Area, from winter 2007 through late spring 2008. We also analyzed archived springtime samples from inland sites throughout central California. Wintertime values of 206Pb/207Pb vs. 208Pb/207Pb at Chabot Observatory form a linear array that is consistent with published data for San Francisco Bay waters, whereas published values for Chinese cities and loess fall along a separate and distinct array for that region, consistent with our analysis of samples collected at Hefei, China in 2002. Between March and May 2008, the Tamalpais and Chabot samples diverge from the California regional array toward the Chinese array. About half of the central California samples also show a strong Asian influence. We quantify the divergence of values from the regional California array as Δ208Pb = (208Pb/207Pb)expected - (208Pb/207Pb) )observed, where (208Pb/207Pb)expected is derived from a linear fit to the wintertime samples at Chabot Observatory. These Δ208Pb values increase between winter and spring at both Mt. Tamapais and Chabot Observatory, and are higher at Mt. Tamalpais, despite lower Pb concentrations at that site. They indicate that up to 80% of the Pb in the Tamalpais samples, and up to 40% of the Pb in the Chabot Observatory samples, reflect trans-Pacific transport. The lower proportion in the Chabot samples -- where there is often more Pb -- indicates dilution by local urban sources. Our data provide conclusive evidence of Asian air pollution reaching

  2. Ion source

    DOEpatents

    Leung, Ka-Ngo; Ehlers, Kenneth W.

    1984-01-01

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species.

  3. Lead (Pb) fluxes and Pb isotopic compositions from Masaya Volcano, Nicaragua

    NASA Astrophysics Data System (ADS)

    Vallelonga, P.; Mather, T. A.

    We report Pb concentrations and isotopic compositions measured in plume aerosol and Pele's hair (lava) samples collected from Masaya volcano, Nicaragua, to provide the first data pertaining to Pb emissions from the Central American volcanic arc. Lead isotopic compositions, determined by Thermal Ionisation Mass Spectrometry, in the Pele's hair samples were found to be 206Pb/ 207Pb˜1.196, 208Pb/ 207Pb˜2.46 and 206Pb/ 204Pb˜18.6. Mean Pb fluxes from Masaya were calculated to be 1.0 ton Pb yr -1 with a mean plume Pb/S (gas) ratio of 1.3×10 -5. Also, it was found that the majority of Pb emitted was present in the fine aerosol (<2.5 μm diameter) fraction but that the percentage of Pb in the fine aerosol fraction decreased from 96% in the dry daytime plume to 61% in the condensed night-time plume. The contribution from the filter blank was usually a substantial fraction of the total amount of Pb measured, requiring the data to be corrected for blank contributions using Pb isotopic systematics.

  4. Mass-dependent and -independent fractionation of isotopes in Ni and Pb chelate complex formation reactions

    SciTech Connect

    Nomura, Masao; Kudo, Takashi; Adachi, Atsuhiko; Aida, Masao; Fujii, Yasuhiko

    2013-11-13

    Mass independent fractionation (MIF) has been a very interesting topic in the field of inorganic isotope chemistry, in particular, geo- and cosmo- chemistry. In the present work, we studied the isotope fractionation of Ni(II) and Pb(II) ions in complex formation with chelating reagent EDTA. To obtain clear results on the mass dependence of the isotope fractionation, we have conducted long-distance ion exchange chromatography of Ni(II) and Pb(II), using chelate complex reagent EDTA. The results apparently show that the isotope fractionation in Ni complex formation system is governed by the mass dependent rule. On the other hand the isotope fractionation in the Pb complex system is governed by the mass independent rule or the nuclear volume effect.

  5. Preparation of crosslinked carboxymethyl chitosan with epichlorohydrin and its use for Pb(II) removal

    NASA Astrophysics Data System (ADS)

    Hastuti, Budi; Mudasir, Siswanta, Dwi; Triyono

    2015-12-01

    A modified pectin has been synthesized by reacting/combining -OH group among pectin and chitosan with ECH (Epichlorohydrin) croslinker agent. Chitosan was grafted with acetate to form carboxymetyl chitosan (CMC). The result of this study was Pectin-CMC-ECH film could be greater adsorp Pb(II) ion than chitosan without modified. The structure of Pectin-CMC-ECH film was characterized by Fourier transform infrared (FTIR) spectroscopy. Adsorption experiment were performed in batch processes; Result of the study showed that optimum conditions for the adsorption of Pb(II) on the adsorbent were found at pH 5 with with 93 % of adsorption and adsorption capacity was 42.77 mg/g, contact time 12 hour with 91 % of adsorption and adsorption capacity was 39.74 mg/g. Pectin-CMC-ECH film demonstrate the ability to absorb Pb (II) metal ions was higher than chitosan without modified.

  6. Jets and Vector Bosons in Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    de la Cruz, Begoña

    2013-11-01

    This paper reviews experimental results on jets and electroweak boson (photon,Wand Z) production in heavy-ion collisions, from the CMS and ATLAS detectors, using data collected during 2011 PbPb run and pp data collected at an equivalent energy. By comparing the two collision systems, the energy loss of the partons propagating through the medium produced in PbPb collisions can be studied. Its characterization is done using dijet events and isolated photon-jet pairs. Since the electroweak gauge bosons do not participate in the strong interaction, and are thus unmodified by the nuclear medium, they serve as clean probes of the initial state in the collision.

  7. Synthesis of Quercetin Loaded Nanoparticles Based on Alginate for Pb(II) Adsorption in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Qi, Yun; Jiang, Meng; Cui, Yuan-Lu; Zhao, Lin; Zhou, Xia

    2015-10-01

    Pb(II) is a representative heavy metal in industrial wastewater, which may frequently cause serious hazard to living organisms. In this study, comparative studies between alginate nanoparticles (AN) and quercetin-decorated alginate nanoparticles (Q-AN) were investigated for Pb(II) ion adsorption. Characterization of AN and Q-AN were analysed by transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FT-IR), X-ray diffractometer (XRD), and thermogravimetric analysis (TG-DTG-DSC). The main operating conditions such as pH, initial concentration of Pb(II), and co-existing metal ions were also investigated using a batch experiment. AN and Q-AN, with a diameter of 95.06 and 58.23 nm, were constituted by many small primary nanoparticles. It revealed that when initial concentration of Pb(II) is between 250 and 1250 mg L-1, the adsorption rate and equilibrium adsorption were increased with the increase of pH from 2 to 7. The maximum adsorption capacities of 147.02 and 140.37 mg L-1 were achieved by AN and Q-AN, respectively, with 0.2 g adsorbents in 1000 mg L-1 Pb(II) at pH 7. The adsorption rate of Pb(II) was little influenced by the co-existing metal ions, such as Mn(II), Co(II), and Cd(II). Desorption experiments showed that Q-AN possessed a higher desorption rate than AN, which were 90.07 and 83.26 %, respectively. AN and Q-AN would probably be applied as adsorbents to remove Pb(II) and then recover it from wastewater for the advantages of simple preparation, high adsorption capacity, and recyclability.

  8. Atomic layer deposition effect on the electrical properties of Al{sub 2}O{sub 3}-passivated PbS quantum dot field-effect transistors

    SciTech Connect

    So, Hye-Mi; Shim, Hyung Cheoul; Choi, Hyekyoung; Lee, Seung-Mo; Jeong, Sohee; Chang, Won Seok

    2015-03-02

    We have investigated the effect of atomic layer deposition (ALD) on the electrical properties of colloidal PbS quantum dot field-effect transistors (PbS QD-FETs). Low-temperature Al{sub 2}O{sub 3} ALD process was used to fill up the pore spaces of PbS QD films containing 1, 2-ethanedithiol ligands. Upon deposition of Al{sub 2}O{sub 3} on PbS film, the PbS QD-FETs showed ambipolar behavior. The treated film retained this property for over 2 months, despite of exposure to air. This change in the electrical properties of the PbS QD-FETs is attributed to the formation of electron channels in the Al{sub 2}O{sub 3}-passivated PbS film. We conclude that these electron transport channels in the Al{sub x}O{sub y}-PbS film are formed due to substitution of the Pb sites by Al metal and chemical reduction of Pb{sup 2+} ions, as determined by an analysis of the depth profile of the film using secondary ion mass spectrometry and X-ray photoelectron spectroscopy.

  9. Local Distortions in PbTe:Tl

    NASA Astrophysics Data System (ADS)

    Keiber, Trevor; Bridges, Frank; Sales, Brian

    2013-03-01

    Lead Telluride (PbTe) is a well characterized thermoelectric material. Tl doping increases the figure of merit with a maximum at 2% Tl. Recent X-ray diffraction and total neutron scattering experiments suggest Pb moves off-center along the 100 axis as T increases. To investigate the local structure we present an Extended X-ray Absorption Fine Structure (EXAFS) analysis for 0-3% Tl concentrations at the Tl and Pb L3 edges and at the Te K edge. At 10K the local structure about Pb is well ordered, the Pb-Te (Te-Pb) pair distribution function (PDF) broadens rapidly with T. Attempts to model the increase in σ2(T) for the Pb-Te pair (σ is the width of the PDF) with a 100 Pb off-center displacement, were not successful. However σ2(T) for the Pb-Te pair is well described by a correlated Debye model with a low correlated Debye temperature. The Te edge shows increased disorder for the the Te-Te pair and later peaks which may be caused by a structural change around the Te atom. For Tl, the environment is distorted even at 10K within the host material. This indicates a large variation of the Tl-Te bond lengths, presumably as a result of the presence of Tl(+1). We discuss possible models for the disorder about Tl, Pb, and Te in PbTe:Tl. Support: NSF DMR 1005568

  10. Hydrogels Containing Prussian Blue Nanoparticles Toward Removal of Radioactive Cesium Ions.

    PubMed

    Kamachi, Yuichiro; Zakaria, Mohamed B; Torad, Nagy L; Nakato, Teruyuki; Ahamad, Tansir; Alshehri, Saad M; Malgras, Victor; Yamauchil, Yusuke

    2016-04-01

    Recent reports have demonstrated the practical application of Prussian blue (PB) nanoparticles toward environmental clean-up of radionuclide 173Cs. Herein, we prepared a large amount of PB nanoparticles by mixing both iron(III) chloride and sodium ferrocyanide hydrate as starting precursors. The obtained PB nanoparticles show a high surface area (440 m2. g-1) and consequently an excellent uptake ability of Cs ions from aqueous solutions. The uptake ability of Cs ions into poly(N-isopropylacrylamide (PNIPA) hydrogel is drastically increased up to 156.7 m2. g-1 after incorporating our PB nanoparticles, compared to 30.2 m2 . g-1 after using commercially available PB. Thus, our PB-containing PNIPA hydrogel can be considered as an excellent candidate for the removal of Cs ions from aqueous solutions, which will be useful for the remediation of the nuclear waste.

  11. Hydrogels Containing Prussian Blue Nanoparticles Toward Removal of Radioactive Cesium Ions.

    PubMed

    Kamachi, Yuichiro; Zakaria, Mohamed B; Torad, Nagy L; Nakato, Teruyuki; Ahamad, Tansir; Alshehri, Saad M; Malgras, Victor; Yamauchil, Yusuke

    2016-04-01

    Recent reports have demonstrated the practical application of Prussian blue (PB) nanoparticles toward environmental clean-up of radionuclide 173Cs. Herein, we prepared a large amount of PB nanoparticles by mixing both iron(III) chloride and sodium ferrocyanide hydrate as starting precursors. The obtained PB nanoparticles show a high surface area (440 m2. g-1) and consequently an excellent uptake ability of Cs ions from aqueous solutions. The uptake ability of Cs ions into poly(N-isopropylacrylamide (PNIPA) hydrogel is drastically increased up to 156.7 m2. g-1 after incorporating our PB nanoparticles, compared to 30.2 m2 . g-1 after using commercially available PB. Thus, our PB-containing PNIPA hydrogel can be considered as an excellent candidate for the removal of Cs ions from aqueous solutions, which will be useful for the remediation of the nuclear waste. PMID:27451787

  12. Effects of Pb plus Cd mixtures on toxicity, and internal electrolyte and osmotic balance in the rainbow trout (Oncorhynchus mykiss).

    PubMed

    Clemow, Yvonne H; Wilkie, Michael P

    2015-04-01

    The physiological and toxicological effects of Cd and Pb have been thoroughly studied, but relatively little work has been done to determine how mixtures of these metals affect fishes in soft (<100 μmol L(-1)Ca(2+)) slightly acidic (pH ∼6) waters typical of many lakes in the Canadian Shield and other regions. Recently, it has been suggested that acute exposure to Cd plus Pb mixtures (3h) had greater than additive effects on both Ca(2+) and Na(+) influx, which could potentially exacerbate disturbances to ion balance and result in greater toxicity in rainbow trout (Oncorhynchus mykiss). The goal of the present study was to test this hypothesis by assessing the physiological and toxicological effects of Cd plus Pb mixtures over longer time periods (3-5 days), but at relatively low, more environmentally relevant concentrations of these metals. Accordingly, toxicity and measurements of blood acid-base regulation (PaO2, pHa), hematology (Ht, Hb, MCHC, and Protein), ionic composition (body ions and plasma Ca(2+), Na(+), Cl(-), osmolality), unidirectional Na(+) fluxes and branchial Na(+)/K(+)-ATPase activity were measured in rainbow trout exposed to Cd plus Pb mixtures. Experiments on rainbow trout, implanted with dorsal aortic catheters for repetitive blood sampling, demonstrated that exposure to Pb alone (26 nmol PbL(-1)) was less toxic than Cd alone (6 nmol CdL(-1)), which was much less toxic to the fish than a Cd plus Pb mixture (7 nmol CdL(-1) plus 45 nmol PbL(-1)), which led to greater than additive 80% mortality by 5d. Both Cd and Pb inhibited Na(+) influx over 3d exposure to the metals, which was partially offset by decreases in the diffusive efflux (outflux) of Na(+) across the gill. Despite an absence of detectable effects of Pb alone on plasma ion balance, Cd plus Pb mixtures exacerbated Cd-induced reductions in plasma Ca(2+) concentration, and resulted in pronounced reductions in plasma Na(+), Cl(-), and osmolality. No effects on Na(+)/K(+)-ATPase activity

  13. Effects of Pb plus Cd mixtures on toxicity, and internal electrolyte and osmotic balance in the rainbow trout (Oncorhynchus mykiss).

    PubMed

    Clemow, Yvonne H; Wilkie, Michael P

    2015-04-01

    The physiological and toxicological effects of Cd and Pb have been thoroughly studied, but relatively little work has been done to determine how mixtures of these metals affect fishes in soft (<100 μmol L(-1)Ca(2+)) slightly acidic (pH ∼6) waters typical of many lakes in the Canadian Shield and other regions. Recently, it has been suggested that acute exposure to Cd plus Pb mixtures (3h) had greater than additive effects on both Ca(2+) and Na(+) influx, which could potentially exacerbate disturbances to ion balance and result in greater toxicity in rainbow trout (Oncorhynchus mykiss). The goal of the present study was to test this hypothesis by assessing the physiological and toxicological effects of Cd plus Pb mixtures over longer time periods (3-5 days), but at relatively low, more environmentally relevant concentrations of these metals. Accordingly, toxicity and measurements of blood acid-base regulation (PaO2, pHa), hematology (Ht, Hb, MCHC, and Protein), ionic composition (body ions and plasma Ca(2+), Na(+), Cl(-), osmolality), unidirectional Na(+) fluxes and branchial Na(+)/K(+)-ATPase activity were measured in rainbow trout exposed to Cd plus Pb mixtures. Experiments on rainbow trout, implanted with dorsal aortic catheters for repetitive blood sampling, demonstrated that exposure to Pb alone (26 nmol PbL(-1)) was less toxic than Cd alone (6 nmol CdL(-1)), which was much less toxic to the fish than a Cd plus Pb mixture (7 nmol CdL(-1) plus 45 nmol PbL(-1)), which led to greater than additive 80% mortality by 5d. Both Cd and Pb inhibited Na(+) influx over 3d exposure to the metals, which was partially offset by decreases in the diffusive efflux (outflux) of Na(+) across the gill. Despite an absence of detectable effects of Pb alone on plasma ion balance, Cd plus Pb mixtures exacerbated Cd-induced reductions in plasma Ca(2+) concentration, and resulted in pronounced reductions in plasma Na(+), Cl(-), and osmolality. No effects on Na(+)/K(+)-ATPase activity

  14. Interaction of Cu(2+), Pb (2+), Zn (2+) with trypsin: what is the key factor of their toxicity?

    PubMed

    Zhang, Tong; Zhang, Hao; Liu, Guiliang; Gao, Canzhu; Liu, Rutao

    2014-11-01

    Heavy metals possess great endangerment to environment even human health because of their indissolubility and bioaccumulation. The toxicity of heavy metal ions (Cu(2+), Pb(2+), Zn(2+)) to trypsin was investigated by fluorescence, synchronous fluorescence, UV-vis absorption, circular dichroism (CD) spectroscopy, isothermal titration calorimetry (ITC), and enzyme activity assay. The experimental results showed that toxic effect of heavy metal ions was due to their own characteristic, rather than the electric charges of the ion. Zn(2+) could not show the obvious toxicity to trypsin, while the structure and function of trypsin was damaged when the enzyme explored to Cu(2+) and Pb(2+). From the spectra results, we found that Cu(2+) would bind with trypsin, which lead to the fluorescence quenched and hydrophobicity increased. Pb(2+) could also change the structure and reduce the activity of trypsin in high concentration. In vitro measurement, the toxicity order of heavy metal ions to trypsin is: Cu(2+) > Pb(2+) > Zn(2+). In addition, isothermal titration calorimetry analysis proved that the interactions between Cu(2+), Pb(2+), Zn(2+) and trypsin were all spontaneous and exothermic, which indicated the adverse effect of these heavy metal ions to trypsin. PMID:25323557

  15. Studies of azimuthal dihadron correlations in ultra-central PbPb collisions at $\\sqrt{s_{NN}} =$ 2.76 TeV

    SciTech Connect

    Chatrchyan, Serguei

    2014-02-20

    Azimuthal dihadron correlations of charged particles have been measured in PbPb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV by the CMS collaboration, using data from the 2011 LHC heavy-ion run. The data set includes a sample of ultra-central (0-0.2% centrality) PbPb events collected using a trigger based on total transverse energy in the hadron forward calorimeters and the total multiplicity of pixel clusters in the silicon pixel tracker. A total of about 1.8 million ultra-central events were recorded, corresponding to an integrated luminosity of 120 inverse microbarns. The observed correlations in ultra-central PbPb events are expected to be particularly sensitive to initial-state fluctuations. The single-particle anisotropy Fourier harmonics, from $v_2$ to $v_6$, are extracted as a function of particle transverse momentum. At higher transverse momentum, the $v_2$ harmonic becomes significantly smaller than the higher-order $v_n$ (n greater than or equal to 3). The pt-averaged $v_2$ and $v_3$ are found to be equal within 2%, while higher-order $v_n$ decrease as n increases. The breakdown of factorization of dihadron correlations into single-particle azimuthal anisotropies is observed. This effect is found to be most prominent in the ultra-central PbPb collisions, where the initial-state fluctuations play a dominant role. As a result, a comparison of the factorization data to hydrodynamic predictions with event-by-event fluctuating initial conditions is also presented.

  16. Studies of azimuthal dihadron correlations in ultra-central PbPb collisions at $$\\sqrt{s_{NN}} =$$ 2.76 TeV

    DOE PAGES

    Chatrchyan, Serguei

    2014-02-20

    Azimuthal dihadron correlations of charged particles have been measured in PbPb collisions atmore » $$\\sqrt{s_{NN}}$$ = 2.76 TeV by the CMS collaboration, using data from the 2011 LHC heavy-ion run. The data set includes a sample of ultra-central (0-0.2% centrality) PbPb events collected using a trigger based on total transverse energy in the hadron forward calorimeters and the total multiplicity of pixel clusters in the silicon pixel tracker. A total of about 1.8 million ultra-central events were recorded, corresponding to an integrated luminosity of 120 inverse microbarns. The observed correlations in ultra-central PbPb events are expected to be particularly sensitive to initial-state fluctuations. The single-particle anisotropy Fourier harmonics, from $v_2$ to $v_6$, are extracted as a function of particle transverse momentum. At higher transverse momentum, the $v_2$ harmonic becomes significantly smaller than the higher-order $v_n$ (n greater than or equal to 3). The pt-averaged $v_2$ and $v_3$ are found to be equal within 2%, while higher-order $v_n$ decrease as n increases. The breakdown of factorization of dihadron correlations into single-particle azimuthal anisotropies is observed. This effect is found to be most prominent in the ultra-central PbPb collisions, where the initial-state fluctuations play a dominant role. As a result, a comparison of the factorization data to hydrodynamic predictions with event-by-event fluctuating initial conditions is also presented.« less

  17. Biosorption of Pb2+ from aqueous solution by waste biomass of aerial roots of Rhizophora mangle (red mangrove).

    PubMed

    Horsfall, Michael; Ogban, Fred; Akporhonor, Eyitemi Emmanuel

    2005-09-01

    The processing waste of the aerial roots of Rhizophora mangle was used in both its unmodified or mercaptoacetic acid (MAA) modified form for the sorption of Pb2+ from aqueous solution. The biomass rapidly and strongly sorbed Pb2+ at pH 5.0, which indicated chemisorption. A significant increase in Pb2+ sorption resulted from MAA treatment of the biomass, indicating that sorption occurs through an ion-exchange process. From sorption-capacity experiments, the unmodified and modified materials extracted, at pH 5, 31.3 and 85.5 mg of Pb2+ per gram of biomass, respectively, from aqueous solutions. Our studies may contribute to an innovative method for the economical and ecologically save removal and recovery of heavy-atom metal ions from contaminated waters through biosorption. PMID:17193207

  18. Quarkonium shadowing in pPb and Pb+Pb collisions

    SciTech Connect

    Vogt, R

    2007-05-21

    The d+Au data from RHIC, including the pA results from the fixed-target CERN SPS pA data, suggest increased importance of initial-state shadowing and decreasing nuclear absorption with increasing energy. This is not surprising since smaller x is probed at higher energy while absorption due to multiple scattering is predicted to decrease with energy. The CERN SPS data suggest a J/{psi} absorption cross section of about 4 mb without shadowing, and a larger absorption cross section if it is included since the SPS x range is in the antishadowing region. The d+Au RHIC data support smaller absorption, {sigma}{sup J/{psi}}{sub abs} {approx} 0-2 mb. Thus our predictions for J/{psi} and {Upsilon} production in pPb and Pb+Pb interactions at the LHC are shown for initial-state shadowing alone with no absorption or dense matter effects. We note that including absorption would only move the calculated ratios down in proportion to the absorption survival probability since, at LHC energies, any rapidity dependence of absorption is at very large |y|, outside the detector acceptance.

  19. Isomorphous Substitution of Rare-Earth Elements in Lacunary Apatite Pb8Na2(PO4)6.

    PubMed

    Get'man, Evgeni I; Loboda, Stanislav N; Ignatov, Alexey V; Prisedsky, Vadim V; Abdul Jabar, Mohammed A B; Ardanova, Lyudmyla I

    2016-03-01

    The substitution of rare-earth elements (REEs) for Pb in the lacunary apatite Pb8Na2(PO4)6 with void structural channels was studied by means of powder X-ray diffraction (including the Rietveld refinement), scanning electron microscopy, energy-dispersive X-ray microanalysis, and IR spectroscopy and also measurements of the electrical conductivity. The substitution limits (xmax in Pb8-xLnxNa2(PO4)6Ox/2) at 800 °C were found to decrease with the atomic number of the REE from 1.40 for La to 0.12 for Yb with a rapid drop from light to heavy lanthanides (between Gd and Tb). The REE atoms substitute for Pb predominantly at Pb2 sites of the apatite structure according to the scheme 2Pb(2+) + □ → 2Ln(3+) + O(2-), where □ is a vacancy in the structural channel. The substitution in lacunary apatite produces quite different changes in the structural parameters compared with broadly studied alkaline-earth hydroxyapatites. In spite of the much lower ionic radii of REE than that of Pb(2+), the mean distances ⟨Pb1-O⟩ somewhat increase, whereas the distances ⟨Pb2-Pb2⟩ and ⟨Pb2-O4⟩ do not change considerably with the degree of substitution. This implies control of the substitution by not only spatial and charge accommodation of REE ions but also the availability of a stereochemically active 6s(2) electron pair on Pb(2+). The high-temperature electrical conductivity shows dependence on the degree of substitution with a minimum at x = 0.2 indicative of a possible change of the type of conductivity.

  20. Photovoltaic performance and the energy landscape of CH3NH3PbI3.

    PubMed

    Zhou, Yecheng; Huang, Fuzhi; Cheng, Yi-Bing; Gray-Weale, Angus

    2015-09-21

    Photovoltaic cells with absorbing layers of certain perovskites have power conversion efficiencies up to 20%. Among these materials, CH3NH3PbI3 is widely used. Here we use density-functional theory to calculate the energies and rotational energy barriers of a methylammonium ion in the α or β phase of CH3NH3PbI3 with differently oriented neighbouring methylammonium ions. Our results suggest the methylammonium ions in CH3NH3PbI3 prefer to rotate collectively, and to be parallel to their neighbours. Changes in polarization on rotation of methylammonium ions are two to three times larger than those on relaxation of the lead ion from the centre of its coordination shell. The preferences for parallel configuration and concerted rotation, with the polarisation changes, are consistent with ferroelectricity in the material, and indicate that this polarisation is governed by methylammonium orientational correlations. We show that the field due to this polarisation is strong enough to screen the field hindering charge transport, and find this screening field in agreement with experiment. We examine two possible mechanisms for the effect of methylammonium ion rotation on photovoltaic performance. One is that rearrangement of methylammoniums promotes the creation and transport of charge carriers. Some effective masses change greatly, but changes in band structure with methylammonium rotation are not large enough to explain current-voltage hysteresis behaviour. The second possible mechanism is that polarization screens the hindering electric field, which arises from charge accumulation in the transport layers. Polarization changes on methylammonium rotation favour this second mechanism, suggesting that collective reorientation of methylammonium ions in the bulk crystal are in significant part responsible for the hysteresis and power conversion characteristics of CH3NH3PbI3 photovoltaic cells.

  1. Surface complexation modeling calculation of Pb(II) adsorption onto the calcined diatomite

    NASA Astrophysics Data System (ADS)

    Ma, Shu-Cui; Zhang, Ji-Lin; Sun, De-Hui; Liu, Gui-Xia

    2015-12-01

    Removal of noxious heavy metal ions (e.g. Pb(II)) by surface adsorption of minerals (e.g. diatomite) is an important means in the environmental aqueous pollution control. Thus, it is very essential to understand the surface adsorptive behavior and mechanism. In this work, the Pb(II) apparent surface complexation reaction equilibrium constants on the calcined diatomite and distributions of Pb(II) surface species were investigated through modeling calculations of Pb(II) based on diffuse double layer model (DLM) with three amphoteric sites. Batch experiments were used to study the adsorption of Pb(II) onto the calcined diatomite as a function of pH (3.0-7.0) and different ionic strengths (0.05 and 0.1 mol L-1 NaCl) under ambient atmosphere. Adsorption of Pb(II) can be well described by Freundlich isotherm models. The apparent surface complexation equilibrium constants (log K) were obtained by fitting the batch experimental data using the PEST 13.0 together with PHREEQC 3.1.2 codes and there is good agreement between measured and predicted data. Distribution of Pb(II) surface species on the diatomite calculated by PHREEQC 3.1.2 program indicates that the impurity cations (e.g. Al3+, Fe3+, etc.) in the diatomite play a leading role in the Pb(II) adsorption and dominant formation of complexes and additional electrostatic interaction are the main adsorption mechanism of Pb(II) on the diatomite under weak acidic conditions.

  2. XRF-measured bone lead (Pb) as a biomarker for Pb exposure and toxicity among children diagnosed with Pb poisoning.

    PubMed

    Specht, Aaron J; Lin, Yanfen; Weisskopf, Marc; Yan, Chonghuai; Hu, Howard; Xu, Jian; Nie, Linda H

    2016-01-01

    Childhood lead (Pb) poisoning remains a global issue, especially in industrial areas. In this study, 115 children with average age 5.7 years were recruited as either patient diagnosed with Pb poisoning or controls at Xinhua Hospital in China. The subjects' bone Pb was measured with a K-shell X-ray fluorescence (KXRF) and a portable X-ray fluorescence (XRF) system. A significant correlation between KXRF bone Pb and blood Pb and portable XRF and KXRF measurements were observed. The half-life of blood-lead was calculated to be 9.96 ± 3.92 d. Our results indicate that bone is a useful biomarker for Pb in children. PMID:26856822

  3. XRF-measured bone lead (Pb) as a biomarker for Pb exposure and toxicity among children diagnosed with Pb poisoning

    PubMed Central

    Specht, Aaron J.; Lin, Yanfen; Weisskopf, Marc; Yan, Chonghuai; Hu, Howard; Xu, Jian; Nie, Linda H.

    2016-01-01

    Childhood lead (Pb) poisoning remains a global issue, especially in industrial areas. In this study, 115 children with average age 5.7 years were recruited as either patient diagnosed with Pb poisoning or controls at Xinhua Hospital in China. The subjects’ bone Pb was measured with a K-shell X-ray fluorescence (KXRF) and a portable X-ray fluorescence (XRF) system. A significant correlation between KXRF bone Pb and blood Pb and portable XRF and KXRF measurements were observed. The half-life of blood-lead was calculated to be 9.96 ± 3.92 d. Our results indicate that bone is a useful biomarker for Pb in children. PMID:26856822

  4. XRF-measured bone lead (Pb) as a biomarker for Pb exposure and toxicity among children diagnosed with Pb poisoning.

    PubMed

    Specht, Aaron J; Lin, Yanfen; Weisskopf, Marc; Yan, Chonghuai; Hu, Howard; Xu, Jian; Nie, Linda H

    2016-01-01

    Childhood lead (Pb) poisoning remains a global issue, especially in industrial areas. In this study, 115 children with average age 5.7 years were recruited as either patient diagnosed with Pb poisoning or controls at Xinhua Hospital in China. The subjects' bone Pb was measured with a K-shell X-ray fluorescence (KXRF) and a portable X-ray fluorescence (XRF) system. A significant correlation between KXRF bone Pb and blood Pb and portable XRF and KXRF measurements were observed. The half-life of blood-lead was calculated to be 9.96 ± 3.92 d. Our results indicate that bone is a useful biomarker for Pb in children.

  5. Synthesis and characterization of a PbO{sub 2}-clay nanocomposite: Removal of lead from water using montmorillonite

    SciTech Connect

    Aroui, L.; Zerroual, L.; Boutahala, M.

    2012-02-15

    Graphical abstract: The replacement of Na by Pb in the interlayer space of the smectite leads to a decrease in the intensity of the the (0 0 1) reflection as the concentration of lead nitrate increases. A significant restructuring at the particle scale is observed leading probably to the exfoliation of the caly. In addition, the thermal behaviour of the montmorillonite samples with regard to their dehydration and dehydroxilation capacities is significantly influenced. This leads to a lowering of the water content and a decrease in the ionic conductivity of the clay. Highlights: Black-Right-Pointing-Pointer In the clay, Pb replaces Na ions and a significant restructuring at the particle scale is observed. Black-Right-Pointing-Pointer Pb influenced significantly the thermal behaviour of the clay with regard to its dehydration. Black-Right-Pointing-Pointer In the interlayer space, the exchange of Na by Pb leads to a decrease in the protonic conductivity. Black-Right-Pointing-Pointer A PbO{sub 2}-clay nanocomposite material with good conductivity is synthesized. -- Abstract: The aim of this paper is to present the results obtained with Pb(II) sorption on an Algerian Clay. The experiments were carried out using a batch process. Powder X-rays diffraction patterns (PXRD) prove that in the montmorillonite Pb replaces Na ions. A significant restructuring at the particle scale is observed leading to the disappearance of the d{sub 001} reflection of the clay at high concentrations of lead. The replacement of hydrated Na with Pb ions influenced significantly the thermal behaviour of the montmorillonite samples with regard to their dehydration and dehydroxilation capacities with a lowering of the water content. A PbO{sub 2}-clay composite material with good electrical conductivity is synthesized.

  6. Divalent Cu, Cd, and Pb Biosorption in Mixed Solvents

    PubMed Central

    Al-Qunaibit, M. H.

    2009-01-01

    Dead dried Chlorella vulgaris was studied in terms of its performance in binding divalent copper, cadmium, and lead ions from their aqueous or 50% v/v methanol, ethanol, and acetone solutions. The percentage uptake of cadmium ions exhibited a general decrease with decrease in dielectric constant values, while that of copper and lead ions showed a general decrease with increase in donor numbers. Uptake percentage becomes less sensitive to solvent properties the larger the atomic radius of the biosorbed ion, and uptake of copper was the most affected. FT-IR analyses revealed stability of the biomass in mixed solvents and a shift in vibrations of amide(I) and (II), carboxylate, glucose ring, and metal oxygen upon metal binding in all media. ΔνCOO values (59–69 cm−1) confirmed bidentate metal coordination to carboxylate ligands. The value of νasCOO increased slightly upon Cu, Cd, and Pb biosorption from aqueous solutions indicating lowering of symmetry, while a general decrease was noticed in mixed solvents pointing to the opposite. M–O stretching frequencies increased unexpectedly with increase in atomic mass as a result of solvent effect on the nature of binding sites. Lowering polarity of the solvent permits variations in metal-alga bonds strengths; the smaller the metal ion, the more affected. PMID:19688108

  7. Complex Histories of Two Lunar Zircons as Evidenced by their Internal Structures and U-Pb Ages

    NASA Technical Reports Server (NTRS)

    Pidgeon, R. T.; Nemchin, A. A.; Meyer, Charles

    2006-01-01

    The U-Pb dating of lunar zircon by ion-microprobe provides a robust technique for investigating the timing of lunar events [1,2]. However, we have now identified two cases where the U-Pb systems in a single zircon show more than one age. These complex zircons provide new opportunities for extending our knowledge on the timing of events in the early history of the Moon.

  8. Thermal properties of PbUO4 and Pb3UO6

    NASA Astrophysics Data System (ADS)

    Popa, K.; Beneš, O.; Staicu, D.; Griveau, J.-C.; Colineau, E.; Raison, P. E.; Vigier, J.-F.; Pagliosa, G.; Sierig, M.; Vălu, O. S.; Somers, J.; Konings, R. J. M.

    2016-10-01

    Investigations on the phase relation in the Pb-U-O ternary system have shown the formation of three lead uranium(VI) oxides: PbUO4, Pb3UO6, and Pb3U11O36. We present here the synthesis, thermal expansion, low- and high-temperature heat capacity, and thermal diffusivity of two representative phases (PbUO4 and Pb3UO6 uranates). Combining these results, a value for their thermal conductivity was derived and reported here for the first time.

  9. Use of New 1013 Ohm Current Amplifiers in U and Pb Isotope Ratio Analysis by TIMS

    NASA Astrophysics Data System (ADS)

    Bouman, C.; Trinquier, A.; Lloyd, N. S.; Schwieters, J. B.

    2014-12-01

    For U-Pb dating of small zircon grains as well as for nuclear forensics, sample volume is limited and the ion beam currents in TIMS analyses are typically down to the fA range. For some samples, all ion beams are measured sequentially in a peak jumping experiment using a single collector ion counting detector, i.e. a Daly or a secondary electron multiplier. Such analyses do not take advantage of multicollection and require reasonable ion beam stability. Because of the sequential measurement sample utilization is a concern. With respect to the attainable precision and accuracy, there are at least two major ion counter characteristics to be dealt with: 1) linearity effects related to the dead time of the ion counter and 2) the mass-dependent detection efficiency of the ion counter inducing an instrumental mass bias effect. Both effects need proper calibration and monitoring otherwise could lead to systematic errors. For instance, the accurate measurement of a 1 Mcps signal down to 0.01% would require an accuracy of the dead time correction to <100 ps, which in itself is a challenge. Also proper calibration of detector-induced mass bias effects to the required precision of 0.01% is difficult. For demanding applications like high-precision U-Pb geochronology TIMS measurements, the goal is even to get precision and accuracy down to 100 ppm. In this paper, we present our latest developments on low noise Faraday cup amplifier technology, that completely avoids the dead time calibration as well as instrumental mass bias effects introduced by ion counters. Faraday cup detectors have proven accuracy down to the ppm range, but have a limitation due to the Johnson noise involved in classical current 1011 Ohm amplifiers. We have developed new current amplifiers using 100 times larger resistor values of 1013 Ohm, giving a signal-to-noise improvement of a factor of 10 over the classical 1011Ohm current amplifiers. As such the final precision of very small sample measurements on

  10. Multiplicity dependence of the average transverse momentum in pp, p-Pb, and Pb-Pb collisions at the LHC

    NASA Astrophysics Data System (ADS)

    Abelev, B.; Adam, J.; Adamová, D.; Adare, A. M.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agocs, A. G.; Agostinelli, A.; Ahammed, Z.; Ahmad Masoodi, A.; Ahmad, N.; Ahmed, I.; Ahn, S. A.; Ahn, S. U.; Aimo, I.; Ajaz, M.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Arend, A.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Asryan, A.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Äystö, J.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Bán, J.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batyunya, B.; Batzing, P. C.; Baumann, C.; Bearden, I. G.; Beck, H.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bergognon, A. A. E.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bhom, J.; Bianchi, N.; Bianchi, L.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Boccioli, M.; Bock, F.; Böttger, S.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bossú, F.; Botje, M.; Botta, E.; Braidot, E.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brun, R.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Cara Romeo, G.; Carena, F.; Carena, W.; Carlin Filho, N.; Carminati, F.; Casanova Díaz, A.; Castillo Castellanos, J.; Castillo Hernandez, J. F.; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Cotallo, M. E.; Crescio, E.; Crochet, P.; Cruz Alaniz, E.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dang, R.; Danu, A.; Das, K.; Das, D.; Das, I.; Das, S.; Dash, S.; Dash, A.; De, S.; de Barros, G. O. V.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; Delagrange, H.; Deloff, A.; De Marco, N.; Dénes, E.; De Pasquale, S.; Deppman, A.; D Erasmo, G.; de Rooij, R.; Diaz Corchero, M. A.; Di Bari, D.; Dietel, T.; Di Giglio, C.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Dönigus, B.; Dordic, O.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; Elia, D.; Elwood, B. G.; Emschermann, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Fenton-Olsen, B.; Feofilov, G.; Fernández Téllez, A.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Gianotti, P.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Goerlich, L.; Gomez, R.; Ferreiro, E. G.; González-Zamora, P.; Gorbunov, S.; Goswami, A.; Gotovac, S.; Graczykowski, L. K.; Grajcarek, R.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, S.; Grigoryan, A.; Grinyov, B.; Grion, N.; Gronefeld, J. M.; Gros, P.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Han, B. H.; Hanratty, L. D.; Hansen, A.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Hayrapetyan, A.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, N.; Hess, B. A.; Hetland, K. F.; Hicks, B.; Hippolyte, B.; Hori, Y.; Hristov, P.; Hřivnáčová, I.; Huang, M.; Humanic, T. J.; Hwang, D. S.; Ichou, R.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Incani, E.; Innocenti, G. M.; Innocenti, P. G.; Ionita, C.; Ippolitov, M.; Irfan, M.; Ivan, C.; Ivanov, V.; Ivanov, A.; Ivanov, M.; Ivanytskyi, O.; Jachołkowski, A.; Jacobs, P. M.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, S.; Jha, D. M.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kaidalov, A. B.; Kalcher, S.; Kaliňák, P.; Kalliokoski, T.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kazantsev, A.; Kebschull, U.; Keidel, R.; Ketzer, B.; Khan, P.; Khan, S. A.; Khan, K. H.; Khan, M. M.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, J. S.; Kim, B.; Kim, D. W.; Kim, T.; Kim, J. H.; Kim, M.; Kim, M.; Kim, S.; Kim, D. J.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Klay, J. L.; Klein, J.; Klein-Bösing, C.; Kliemant, M.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Köhler, M. K.; Kollegger, T.; Kolojvari, A.; Kompaniets, M.; Kondratiev, V.; Kondratyeva, N.; Konevskikh, A.; Kovalenko, V.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kramer, F.; Kravčáková, A.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Krus, M.; Kryshen, E.; Krzewicki, M.; Kucera, V.; Kucheriaev, Y.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kulakov, I.; Kumar, J.; Kurashvili, P.; Kurepin, A. B.; Kurepin, A.; Kuryakin, A.; Kushpil, V.; Kushpil, S.; Kvaerno, H.; Kweon, M. J.; Kwon, Y.; Ladrón de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; La Pointe, S. L.; Lara, C.; Lardeux, A.; La Rocca, P.; Lea, R.; Lechman, M.; Lee, S. C.; Lee, G. R.; Legrand, I.; Lehnert, J.; Lemmon, R. C.; Lenhardt, M.; Lenti, V.; León, H.; Leoncino, M.; León Monzón, I.; Lévai, P.; Li, S.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Lohner, D.; Loizides, C.; Loo, K. K.; Lopez, X.; López Torres, E.; Løvhøiden, G.; Lu, X.-G.; Luettig, P.; Lunardon, M.; Luo, J.; Luparello, G.; Luzzi, C.; Ma, K.; Ma, R.; Madagodahettige-Don, D. M.; Maevskaya, A.; Mager, M.; Mahapatra, D. P.; Maire, A.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manceau, L.; Mangotra, L.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Marín, A.; Markert, C.; Marquard, M.; Martashvili, I.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazumder, R.; Mazzoni, M. A.; Meddi, F.; Menchaca-Rocha, A.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitu, C.; Mlynarz, J.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Monteno, M.; Montes, E.; Moon, T.; Morando, M.; Moreira De Godoy, D. A.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Muhuri, S.; Mukherjee, M.; Müller, H.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Nattrass, C.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nicassio, M.; Niculescu, M.; Nielsen, B. S.; Nikolaev, S.; Nikolic, V.; Nikulin, S.; Nikulin, V.; Nilsen, B. S.; Nilsson, M. S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Nyanin, A.; Nyatha, A.; Nygaard, C.; Nystrand, J.; Ochirov, A.; Oeschler, H.; Oh, S. K.; Oh, S.; Oleniacz, J.; Oliveira Da Silva, A. C.; Onderwaater, J.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Ostrowski, P.; Otwinowski, J.; Oyama, K.; Ozawa, K.; Pachmayer, Y.; Pachr, M.; Padilla, F.; Pagano, P.; Paić, G.; Painke, F.; Pajares, C.; Pal, S. K.; Palaha, A.; Palmeri, A.; Papikyan, V.; Pappalardo, G. S.; Park, W. J.; Passfeld, A.; Patalakha, D. I.; Paticchio, V.; Paul, B.; Pavlinov, A.; Pawlak, T.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Perrino, D.; Peryt, W.; Pesci, A.; Pestov, Y.; Petráček, V.; Petran, M.; Petris, M.; Petrov, P.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Pitz, N.; Piyarathna, D. B.; Planinic, M.; Płoskoń, M.; Pluta, J.; Pocheptsov, T.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polák, K.; Polichtchouk, B.; Poljak, N.; Pop, A.; Porteboeuf-Houssais, S.; Pospíšil, V.; Potukuchi, B.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puddu, G.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Rademakers, A.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, S.; Raniwala, R.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Rauch, W.; Rauf, A. W.; Razazi, V.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reicher, M.; Reidt, F.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riccati, L.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rivetti, A.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Rosnet, P.; Rossegger, S.; Rossi, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahoo, R.; Sahu, P. K.; Saini, J.; Sakaguchi, H.; Sakai, S.; Sakata, D.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Šándor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Santoro, R.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, H. R.; Schmidt, C.; Schuchmann, S.; Schukraft, J.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Scott, P. A.; Segato, G.; Selyuzhenkov, I.; Senyukov, S.; Seo, J.; Serci, S.; Serradilla, E.; Sevcenco, A.; Shabetai, A.; Shabratova, G.; Shahoyan, R.; Sharma, N.; Sharma, S.; Rohni, S.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, T.; Sinha, B. C.; Sitar, B.; Sitta, M.; Skaali, T. B.; Skjerdal, K.; Smakal, R.; Smirnov, N.; Snellings, R. J. M.; Søgaard, C.; Soltz, R.; Song, M.; Song, J.; Soos, C.; Soramel, F.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Stolpovskiy, M.; Strmen, P.; Suaide, A. A. P.; Subieta Vásquez, M. A.; Sugitate, T.; Suire, C.; Suleymanov, M.; Sultanov, R.; Šumbera, M.; Susa, T.; Symons, T. J. M.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymański, M.; Takahashi, J.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tarazona Martinez, A.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Ter Minasyan, A.; Terrevoli, C.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Tlusty, D.; Toia, A.; Torii, H.; Toscano, L.; Trubnikov, V.; Truesdale, D.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ulery, J.; Ullaland, K.; Ulrich, J.; Uras, A.; Urciuoli, G. M.; Usai, G. L.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; Vande Vyvre, P.; Van Hoorne, J. W.; van Leeuwen, M.; Vannucci, L.; Vargas, A.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vechernin, V.; Veldhoen, M.; Venaruzzo, M.; Vercellin, E.; Vergara, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, Y.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, V.; Wagner, J.; Wang, M.; Wang, Y.; Wang, Y.; Watanabe, K.; Watanabe, D.; Weber, M.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yaldo, C. G.; Yamaguchi, Y.; Yang, S.; Yang, H.; Yang, P.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yoo, I.-K.; Yoon, J.; Yuan, X.; Yushmanov, I.; Zaccolo, V.; Zach, C.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zelnicek, P.; Zgura, I. S.; Zhalov, M.; Zhang, X.; Zhang, H.; Zhang, Y.; Zhou, F.; Zhou, Y.; Zhou, D.; Zhu, J.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zinovjev, G.; Zoccarato, Y.; Zynovyev, M.; Zyzak, M.

    2013-12-01

    The average transverse momentum versus the charged-particle multiplicity Nch was measured in p-Pb collisions at a collision energy per nucleon-nucleon pair √{sNN}=5.02 TeV and in pp collisions at collision energies of √{s}=0.9,2.76, and 7 TeV in the kinematic range 0.15Pb-Pb collisions at √{sNN}=2.76 TeV at similar charged-particle multiplicities. In pp and p-Pb collisions, a strong increase of with Nch is observed, which is much stronger than that measured in Pb-Pb collisions. For pp collisions, this could be attributed, within a model of hadronizing strings, to multiple-parton interactions and to a final-state color reconnection mechanism. The data in p-Pb and Pb-Pb collisions cannot be described by an incoherent superposition of nucleon-nucleon collisions and pose a challenge to most of the event generators.

  11. Provenancing anthropogenic Pb within the fluvial environment: developments and challenges in the use of Pb isotopes.

    PubMed

    Bird, Graham

    2011-05-01

    The potentially deleterious presence of ore-derived Pb within riverine environments has been a long-term impact of industrial and anthropogenic activity in general. The surface drainage network has been widely established as a key transport mechanism and storage environment for anthropogenically-derived Pb and other potentially harmful trace metals. Lead isotopes ((204)Pb, (206)Pb, (207)Pb, (208)Pb) have been utilized as a geochemical tracer of Pb origin in a variety of environmental media, notably in atmospheric aerosols. However, given the relative complexity of dispersal processes within riverine environments, the use of Pb isotopes as geochemical tracers has been relatively limited and it is only relatively recently that a growing body of research has applied Pb isotopes to provenancing fluvially-dispersed Pb. This paper seeks to synthesize the developments in the use of Pb isotopes within riverine environments. In doing so it outlines the Pb-isotope fingerprinting technique and associated analytical developments, and assesses the application of Pb isotopes in establishing the origin and dispersal mechanisms of anthropogenically- and geogenically-derived Pb at a range of temporal and spatial scales. Of particular importance are the approaches quantifying source inputs using Pb isotopic signatures and the challenges faced, and options available in quantifying source inputs at the catchment scale; where Pb may be sourced from a variety (n=>2) of sources. The Pb isotopic signature of contemporary riverine Pb loads is shown to reflect a spatially complex influence of mineralization chemistry, anthropogenic activity as well as the hydro-morphological controls exerted upon Pb release, dispersal and storage. In relation to this, the long-term environmental legacy, and its influence upon Pb fingerprinting studies, of tetra-ethyl Pb, sourced from the combustion of leaded-petrol is also discussed. Finally, this paper places the use of Pb isotopes in the context of

  12. Luminescence in semimagnetic Pb1-xMnxSe quantum dots grown in a glass host: Radiative and nonradiative emission processes

    NASA Astrophysics Data System (ADS)

    Silva, R. S.; Baffa, Oswaldo; Chen, Felipe; Lourenço, S. A.; Dantas, N. O.

    2013-04-01

    We report on the radiative and nonradiative emission processes from semimagnetic Pb1-xMnxSe quantum dots (QDs) embedded in a glass matrix. Emissions between the 4T1 → 6A1 states of Mn2+ ions located in the PbSe semiconductor gap were not observed. Electron Paramagnetic Resonance spectra confirmed that Mn2+ ions are located in two distinct QD sites. Furthermore, Magnetic Force Microscopy confirmed the formation of high quality Pb1-xMnxSe QDs with uniformly distributed magnetic moments.

  13. Interpreting U-Pb data from primary and secondary features in lunar zircon

    NASA Astrophysics Data System (ADS)

    Grange, M. L.; Pidgeon, R. T.; Nemchin, A. A.; Timms, N. E.; Meyer, C.

    2013-01-01

    In this paper, we describe primary and secondary microstructures and textural characteristics found in lunar zircon and discuss the relationships between these features and the zircon U-Pb isotopic systems and the significance of these features for understanding lunar processes. Lunar zircons can be classified according to: (i) textural relationships between zircon and surrounding minerals in the host breccias, (ii) the internal microstructures of the zircon grains as identified by optical microscopy, cathodoluminescence (CL) imaging and electron backscattered diffraction (EBSD) mapping and (iii) results of in situ ion microprobe analyses of the Th-U-Pb isotopic systems. Primary zircon can occur as part of a cogenetic mineral assemblage (lithic clast) or as an individual mineral clast and is unzoned, or has sector and/or oscillatory zoning. The age of primary zircon is obtained when multiple ion microprobe analyses across the polished surface of the grain give reproducible and essentially concordant data. A secondary set of microstructures, superimposed on primary zircon, include localised recrystallised domains, localised amorphous domains, crystal-plastic deformation, planar deformation features and fractures, and are associated with impact processes. The first two secondary microstructures often yield internally consistent and close to concordant U-Pb ages that we interpret as dating impact events. Others secondary microstructures such as planar deformation features, crystal-plastic deformation and micro-fractures can provide channels for Pb diffusion and result in partial resetting of the U-Pb isotopic systems.

  14. Four Postmortem Case Reports with Quantitative Detection of the Synthetic Cannabinoid, 5F-PB-22

    PubMed Central

    Behonick, George; Shanks, Kevin G.; Firchau, Dennis J.; Mathur, Gagan; Lynch, Charles F.; Nashelsky, Marcus; Jaskierny, David J.; Meroueh, Chady

    2014-01-01

    In January 2014, the US government temporarily designated 5F-PB-22, along with three other synthetic cannabinoids (AB-FUBINACA, ADB-PINACA and PB-22), into Schedule I. Over the course of a 4-month time period (July–October 2013), our laboratory quantitatively identified 5F-PB-22 in specimens obtained from four postmortem cases. We describe the four cases, to include pertinent autopsy findings and decedent histories, together with quantitative results for 5F-PB-22 determined in postmortem blood and antemortem serum. Samples were prepared via a liquid–liquid extraction at pH 10.2 into hexane : ethyl acetate. Instrumental analysis was achieved with liquid chromatography coupled with electrospray ionization tandem mass spectrometry operating in multiple reaction monitoring mode. Two ion transitions were monitored for the analyte of interest, and one ion transition was monitored for the internal standard. The observed concentration range of 5F-PB-22 is 1.1–1.5 ng/mL for three postmortem blood specimens and one antemortem serum specimen. Three of the decedents experienced abrupt, sudden death; however, one decedent expired after a rapidly deteriorating hospital course. PMID:24876364

  15. Four postmortem case reports with quantitative detection of the synthetic cannabinoid, 5F-PB-22.

    PubMed

    Behonick, George; Shanks, Kevin G; Firchau, Dennis J; Mathur, Gagan; Lynch, Charles F; Nashelsky, Marcus; Jaskierny, David J; Meroueh, Chady

    2014-10-01

    In January 2014, the US government temporarily designated 5F-PB-22, along with three other synthetic cannabinoids (AB-FUBINACA, ADB-PINACA and PB-22), into Schedule I. Over the course of a 4-month time period (July-October 2013), our laboratory quantitatively identified 5F-PB-22 in specimens obtained from four postmortem cases. We describe the four cases, to include pertinent autopsy findings and decedent histories, together with quantitative results for 5F-PB-22 determined in postmortem blood and antemortem serum. Samples were prepared via a liquid-liquid extraction at pH 10.2 into hexane : ethyl acetate. Instrumental analysis was achieved with liquid chromatography coupled with electrospray ionization tandem mass spectrometry operating in multiple reaction monitoring mode. Two ion transitions were monitored for the analyte of interest, and one ion transition was monitored for the internal standard. The observed concentration range of 5F-PB-22 is 1.1-1.5 ng/mL for three postmortem blood specimens and one antemortem serum specimen. Three of the decedents experienced abrupt, sudden death; however, one decedent expired after a rapidly deteriorating hospital course. PMID:24876364

  16. Relationships Between Pb and 210Pb in Aerosol and Precipitation at a Semiremote Site in Northern Wisconsin

    NASA Astrophysics Data System (ADS)

    Talbot, R. W.; Andren, A. W.

    1983-08-01

    Measurements of Al, Pb, 210Pb, and 210Po in precipitation and aerosol were used to estimate wet and dry components of the atmospheric flux at a semiremote site in northern Wisconsin. Wet deposition was primarily responsible for removing airborne Pb, 210Pb, and 210Po, while dry deposition was also important for Al. Although Pb and 210Pb both exhibited a wet/total ratio of about 0.8, precipitation washout ratios for Pb and 210Pb suggested that 210Pb was washed from the atmosphere with greater efficiency than was Pb. This phenomenon was also illustrated by comparing the weighted mean annual specific activity in precipitation (976 pCi 210Pb mg-1 Pb) and in aerosol (476 pCi 210Pb mg-1 Pb) at this site between June 1979 and June 1980. By consideration of the apparent differential precipitation washout of Pb and 210Pb, a reasonable estimate of the atmospheric flux of Pb was obtained by using the mean Pb/210Pb ratio in aerosol and the 210Pb flux. The atmospheric flux to northern Wisconsin was estimated to be 0.8 μg cm-2 yr-1 for Pb and 0.70 pCi cm-2 yr-1 for 210Pb.

  17. Thiolated DAB dendrimers and CdSe quantum dots nanocomposites for Cd(II) or Pb(II) sensing.

    PubMed

    Algarra, M; Campos, B B; Alonso, B; Miranda, M S; Martínez, A M; Casado, C M; Esteves da Silva, J C G

    2012-01-15

    Four different generation of thiol-DAB dendrimers were synthesized, S-DAB-G(x) (x=1, 2, 3 and 5), and coupled with CdSe quantum dots, to obtain fluorescent nanocomposites as metal ions sensing. Cd(II) and Pb(II) showed the higher enhancement and quenching effects respectively towards the fluorescence of S-DAB-G(5)-CdSe nanocomposite. The fluorescence enhancement provoked by Cd(II) can be linearized using a Henderson-Hasselbalch type equation and the quenching provoked by Pb(II) can be linearized by a Stern-Volmer equation. The sensor responds to Cd(II) ion in the 0.05-0.7μM concentration range and to Pb(II) ion in the 0.01-0.15mM concentration range with a LOD of 0.06mM. The sensor has selectivity limitations but its dendrimer configuration has analytical advantages.

  18. Mono-component versus binary isotherm models for Cu(II) and Pb(II) sorption from binary metal solution by the green alga Pithophora oedogonia.

    PubMed

    Kumar, Dhananjay; Singh, Alpana; Gaur, J P

    2008-11-01

    The sorption of Cu(II) and Pb(II) by Pithophora markedly decreased as the concentration of the secondary metal ion, Cu(II) or Pb(II), increased in the binary metal solution. However, the test alga showed a greater affinity to sorb Cu(II) than Pb(II) from the binary metal solution. Mono-component Freundlich, Langmuir, Redlich-Peterson and Sips isotherms successfully predicted the sorption of Cu(II) and Pb(II) from both single and binary metal solutions. None of the tested binary sorption isotherms could realistically predict Cu(II) and Pb(II) sorption capacity and affinity of the test alga for the binary metal solutions of varying composition, which mono-component isotherms could very well accomplish. Hence, mono-component isotherm modeling at different concentrations of the secondary metal ion seems to be a better option than binary isotherms for metal sorption from binary metal solution.

  19. A thin-layer chromatography plate prepared from BODIPY-based receptor immobilized SiO2 nanoparticles as a portable chemosensor for Pb2+.

    PubMed

    Son, Hyunjong; Kang, Gyusik; Jung, Jong Hwa

    2012-01-01

    A new fluorescence receptor based on BODIPY-immobilized silica nanoparticles (BODIPY-SiO(2)) exhibits a high affinity and selectivity for Pb(2+) over competing metal ions in water. An overall emission change of ca. 100-fold at the emission maximum was observed for Pb(2+). The fluorescence receptor BODIPY-SiO(2) can remove 97% and 95% of the initial 100 ppb Pb(2+) from human blood and waste solution, respectively. Experiments show the fluorescence receptor BODIPY-SiO(2) can be a potentially useful and effective agent for the selective separation and rapid removal of Pb(2+)in vivo. We also prepared a portable chemosensor kit by coating a 4 μm thick film of BODIPY-SiO(2) onto a glass substrate. We found that this BODIPY-SiO(2) film detects Pb(2+) ions at pH 7.4 with a sensitivity of 3.2 nM. Finally, we tested the effect of pH on BODIPY-SiO(2) with Pb(2+) ions between pH 3.0 and 11.0. The fluorescence changes of BODIPY-SiO(2) were almost constant between pH 3 and 11. The results imply that the BODIPY-SiO(2) film is applicable as a portable chemosensor for detection of Pb(2+) ions in the environmental field. PMID:22080041

  20. Lead (Pb)-Free Solder Applications

    SciTech Connect

    VIANCO,PAUL T.

    2000-08-15

    Legislative and marketing forces both abroad and in the US are causing the electronics industry to consider the use of Pb-free solders in place of traditional Sn-Pb alloys. Previous case studies have demonstrated the satisfactory manufacturability and reliability of several Pb-free compositions for printed circuit board applications. Those data, together with the results of fundamental studies on Pb-free solder materials, have indicated the general feasibility of their use in the broader range of present-day, electrical and electronic components.

  1. Plasticity of single-atom Pb junctions

    NASA Astrophysics Data System (ADS)

    Müller, M.; Salgado, C.; Néel, N.; Palacios, J. J.; Kröger, J.

    2016-06-01

    A low-temperature scanning tunneling microscope was used to fabricate atomic contacts on Pb(111). Conductance characteristics of the junctions were simultaneously recorded with forming and subsequent breaking of the contacts. A pronounced hysteresis effect in conductance traces was observed from junctions comprising the clean Pb(111) surface. The hysteretic behavior was less profound in contacts to single Pb atoms adsorbed to Pb(111). Density-functional calculations reproduced the experimental results by performing a full ab initio modeling of plastic junction deformations. A comprehensive description of the experimental findings was achieved by considering different atomic tip apex geometries.

  2. A Pb isotopic resolution to the Martian meteorite age paradox

    NASA Astrophysics Data System (ADS)

    Bellucci, J. J.; Nemchin, A. A.; Whitehouse, M. J.; Snape, J. F.; Kielman, R. B.; Bland, P. A.; Benedix, G. K.

    2016-01-01

    Determining the chronology and quantifying various geochemical reservoirs on planetary bodies is fundamental to understanding planetary accretion, differentiation, and global mass transfer. The Pb isotope compositions of individual minerals in the Martian meteorite Chassigny have been measured by Secondary Ion Mass Spectrometry (SIMS). These measurements indicate that Chassigny has mixed with a Martian reservoir that evolved with a long-term 238U/204Pb (μ) value ˜ two times higher than those inferred from studies of all other Martian meteorites except 4.428 Ga clasts in NWA7533. Any significant mixing between this and an unradiogenic reservoir produces ambiguous trends in Pb isotope variation diagrams. The trend defined by our new Chassigny data can be used to calculate a crystallization age for Chassigny of 4.526 ± 0.027 Ga (2σ) that is clearly in error as it conflicts with all other isotope systems, which yield a widely accepted age of 1.39 Ga. Similar, trends have also been observed in the Shergottites and have been used to calculate a >4 Ga age or, alternatively, attributed to terrestrial contamination. Our new Chassigny data, however, argue that the radiogenic component is Martian, mixing occurred on the surface of Mars, and is therefore likely present in virtually every Martian meteorite. The presence of this radiogenic reservoir on Mars resolves the paradox between Pb isotope data and all other radiogenic isotope systems in Martian meteorites. Importantly, Chassigny and the Shergottites are likely derived from the northern hemisphere of Mars, while NWA 7533 originated from the Southern hemisphere, implying that the U-rich reservoir, which most likely represents some form of crust, must be widespread. The significant age difference between SNC meteorites and NWA 7533 is also consistent with an absence of tectonic recycling throughout Martian history.

  3. Removal of Pb(II) and Zn(II) from Aqueous Solutions by Raw Crab Shell: A Comparative Study.

    PubMed

    Zhou, Chuanqiang; Gong, Xiangxiang; Han, Jie; Guo, Rong

    2016-04-01

    Removals of Pb(II) and Zn(II) ions from water using crab (Clistocoeloma sinensis) shell particles as biosorbent have been compared in this study. Uptake equilibriums for two ions well described by Langmuir isotherm revealed that crab shell possessed higher uptake capacity for Pb(II) (709 mg/g) than that for Zn(II) (117 mg/g). Kinetics data for the uptake of the two metals were successfully modeled using the pseudo-second-order model, where the initial uptake rate of Pb(II) was much faster than that of Zn(II). Dubinin-Radushkevick modeling and thermodynamic parameters hinted at different uptake mechanisms of Pb(II) and Zn(II) removal by crab shell, attested by FTIR, XRD, FESEM analysis. Pb(II) ion was removed mainly through the chemical reaction, while the uptake of Zn(II) ion onto crab shell was attributed to the chelation and coordination interactions. The polluted river water and laboratory wastewater both satisfied the standards for drinking and irrigation/fishery water, respectively, after being treated with crab shell particles.

  4. U-Pb Dating of Zircons and Phosphates in Lunar Meteorites, Acapulcoites and Angrites

    NASA Technical Reports Server (NTRS)

    Zhou, Q.; Zeigler, R. A.; Yin, Q. Z.; Korotev, R. L.; Joliff, B. L.; Amelin, Y.; Marti, K.; Wu, F. Y.; Li, X. H.; Li, Q. L.; Lin, Y. T.; Liu, Y.; Tang, G. Q.

    2012-01-01

    Zircon U-Pb geochronology has made a great contribution to the timing of magmatism in the early Solar System [1-3]. Ca phosphates are another group of common accessory minerals in meteorites with great potential for U-Pb geochronology. Compared to zircons, the lower closure temperatures of the U-Pb system for apatite and merrillite (the most common phosphates in achondrites) makes them susceptible to resetting during thermal metamorphism. The different closure temperatures of the U-Pb system for zircon and apatite provide us an opportunity to discover the evolutionary history of meteoritic parent bodies, such as the crystallization ages of magmatism, as well as later impact events and thermal metamorphism. We have developed techniques using the Cameca IMS-1280 ion microprobe to date both zircon and phosphate grains in meteorites. Here we report U-Pb dating results for zircons and phosphates from lunar meteorites Dhofar 1442 and SaU 169. To test and verify the reliability of the newly developed phosphate dating technique, two additional meteorites, Acapulco, obtained from Acapulco consortium, and angrite NWA 4590 were also selected for this study as both have precisely known phosphate U-Pb ages by TIMS [4,5]. Both meteorites are from very fast cooled parent bodies with no sign of resetting [4,5], satisfying a necessity for precise dating.

  5. Effect of Radium mobility on the U-Pb systematic and age determination of uraninite.

    NASA Astrophysics Data System (ADS)

    Deloule, Etienne; Brouand, Marc

    2014-05-01

    The U-Pb radio chronometer is commonly used to date the formation of uraninite, a major component of uranium deposit. Uraninite was first used in 1905, when Rutherford determines ages up to 500 Ma in using their He/U ratio, and in 1907 when Boltwood determine the first U-Pb ages (413-535 Ma). During the last decade, in situ U-Pb datation on Uraninite has been developed, either in using 'chemical ages' with the determination by EMP of U and Pb contents, either in using 'isotopic ages' with the determination of Pb and U isotopic ratios and contents by SIMS, providing a large amount of age from archean up to Cenozoic ages. It is noticeable that the determination of chemical age relies on the assumption that the U-Pb system stay closed over time. This assumption can be supported by many isotopic measurements providing concordant or close to concordance 238U-206Pb and 235U-207Pb ages. However, during the last year, SIMS U-Pb age determination on Uraninite from the Imouraren (Niger) uranium deposit provides contrasted results. On one hand, samples provide concordant U-Pb ages with an average value of 99 ±2 Ma. On the other hand, samples provide largely discordant ages, with 207Pb/206Pb ages up to 340 Ma. Duplicated measurements and careful data examination allowed us to discard any common lead contamination as a source of discordance. Therefore we set the in situ measurement of the U series nuclides 238U - 234U - 230Th - 226Ra. The high transmission at high mass resolution of the CRPG -Cameca IMS 1270 ion microprobe allowed us to get significant secondary beam intensities for the smaller isotopes and to determine the activity ratios with a few % precision. These measurements points out that 234U and 230Th are at equilibrium with 238U, when 226Ra may be largely depleted, up to 50%. This points out that in the geological context of the deposit, hydrothermal fluids may leach Ra. To explain the observed discordant ages, Ra should have been lost during a large amount of time

  6. Kinematic constraints on interacting nucleons in Pb + Pb collisions at √{sN N}=2.76 TeV within the HIJING code

    NASA Astrophysics Data System (ADS)

    Abdel-Waged, Khaled; Felemban, Nuha

    2016-02-01

    The kinematic constraints on interacting nucleons in Large Hadron Collider (LHC) heavy-ion collisions are investigated in the framework of the Heavy Ion Jet Interaction Generator (HIJING) code incorporated with a collective cascade recipe. The latter is used to implement energy-momentum conservation constraints on both primary and secondary interacting nucleons. It is found that the energy-momentum conservation constraints on the interacting nucleons affect the whole charged-particle pseudorapidity density distribution (d/Nc h d η ), at different centralities [from central (0-5%) to peripheral (70-80%) collisions], in Pb + Pb collisions at √{sN N}=2.76 TeV. In particular, the kinematic constraints on the interacting nucleons are shown to reduce (d/Nc h d η ) yield at mid-pseudorapidity (|η |<2 ) in all centrality intervals, which is consistent with the LHC data. In addition, the model predicts an enhancement of the hadron production at |η |>8 , which could be checked in the future ALICE Zero Degree Calorimeter. Such an enhancement is found to be mainly due to the interactions of protons at the spectator parts of the collision. This indicates that the kinematic constraints are important for a correct geometrical treatment of Pb + Pb collisions at LHC energies.

  7. Ion-exchange aspects of toxic metal uptake by Indian mustard.

    PubMed

    Crist, Ray H; Martin, J Robert; Crist, DeLanson R

    2004-01-01

    Uptake of lead (Pb), copper (Cu), zinc (Zn), and cadmium (Cd) as +2 ions by excised roots of Indian mustard was demonstrated to be an ion-exchange process with existing Ca or protons released to the solution. This initial reaction at the root-aqueous interface is important in the uptake of these toxic metals from contaminated soil. Ethylene diamine tetraacetic acid (EDTA)-amended soil for phytoremediation has Pb in anionic form as [Pb-EDTA]2-, which was not taken up by excised roots. In nonliving B. juncea, Pb2+ was translocated from a solution through a cut stem to petiole and leaves much more quickly than anionic [Pb-EDTA]2-. However, in living plants [Pb-EDTA]2- was more quickly translocated from a solution through roots and petiole to leaves than Pb2+. The final amount of uptake on roots of the living plants was the same for both forms of Pb. The present results are important toward understanding the mechanism of phytoremediation of toxic metal-contaminated soil for two reasons: 1) the initial process, uptake of metal ions by roots, was shown to occur by cation exchange and 2) since [Pb-EDTA]2- was not sorbed by excised roots, other factors such as transpiration and active transport are important in applications using EDTA-amended soils contaminated by Pb. PMID:15224777

  8. Mg(OH)2 Supported Nanoscale Zero Valent Iron Enhancing the Removal of Pb(II) from Aqueous Solution.

    PubMed

    Liu, Minghui; Wang, Yonghao; Chen, Luntai; Zhang, Yan; Lin, Zhang

    2015-04-22

    In this article, a novel composite (Mg(OH)2 supported nanoscale zerovalent iron (denoted as nZVI@Mg(OH)2) was prepared and characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy method. The morphology analysis revealed that Mg(OH)2 appeared as self-supported flower-like spheres, and nano Fe0 particles were uniformly immobilized on the surface of their "flower petals", thus aggregation of Fe0 particles was minimized. Then the Pb(II) removal performance was tested by batch experiments. The composite presented exceptional removal capacity (1986.6 mg/g) compared with Mg(OH)2 and nanoscale zerovalent iron due to the synergistic effect. Mechanisms were also explored by a comparative study of the phase, morphology, and surface valence state of composite before and after reaction, indicating that at least three paths are involved in the synergistic removal process: (1) Pb(II) adsorption by Mg(OH)2 (companied with ion exchange reaction); (2) Pb(II) reduction to Pb0 by nanoscale zerovalent iron; and (3) Pb(II) precipitation as Pb(OH)2. The hydroxies provided by Mg(OH)2 can dramatically promote the role of nanoscale zerovalent iron as reducer, thus greatly enhancing the whole Pb(II) sequestration process. The excellent performance shown in our research potentially provides an alternative technique for Pb(II) pollution treatment.

  9. Effect of dissolved humic acid on the Pb bioavailability in soil solution and its consequence on ecological risk.

    PubMed

    An, Jinsung; Jho, Eun Hea; Nam, Kyoungphile

    2015-04-01

    Current risk characterization in ecological risk assessment does not consider bioavailability of heavy metals, which highly depends on physicochemical properties of environmental media. This study was set to investigate the effect of humic acid (HA), used as a surrogate of organic matter, on Pb toxicity and the subsequent effect on risk characterization in ecological risk assessment. Pb toxicity was assessed using Microtox(®) in the presence and absence of two different forms of HA, particulate HA (pHA) and dissolved HA (dHA). With increasing contact time, the EC10 values increased (i.e., the toxic effects decreased) and the dissolved Pb concentrations of the filtrates decreased. The high correlation (R = 0.88, p < 0.001) between toxic effects determined using both the mixture and its filtrate as exposure media leads us to conclude that the Pb toxicity highly depends on the soluble fraction. Also, reduced Pb toxicity with increasing dHA concentrations, probably due to formation of Pb-dHA complexes, indicated that Pb toxicity largely comes from free Pb ions. Overall, this study shows the effect of HA on metal toxicity alleviation, and emphasizes the need for incorporating the bioavailable heavy metal concentrations in environmental media as a point of exposure in ecological risk assessment.

  10. Two new Pb coordination polymers derived from pyrimidine-2-thiolate: Synthesis, methyl substitution-induced effect and properties

    NASA Astrophysics Data System (ADS)

    Song, Jiang-Feng; Li, Si-Zhe; Zhou, Rui-Sha; Hu, Tuo-Ping; Shao, Jia; Zhang, Xiao

    2016-07-01

    Two new coordination compounds, {Pb(pymt)2}∞ (1) and {Pb(mpymt)2}∞ (2) (pymt = pyrimidine-2-thiolate and mpymt = 4-methyl-pyrimidine-2-thione) have been synthesized under solvothermal conditions and characterized by elemental analyses, IR spectroscopy, thermogravimetric analysis, powder X-ray diffraction and single-crystal X-ray diffraction. In compounds 1 and 2, pymt- and mpymt- adopt the same coordination modes (μ-1 κN, S and μ2-1 κN, S: 2 κS, N) to interacted with Pb2+, however, different topology structures for compounds 1 and 2 are obtained. Compound 1 displays a one-dimensional (1D) ribbon with square cavity constructed from two double concentric chains of [Pb-S]∞ and [Pb-Pyrimidine] ∞ sharing Pb1 ions. Compound 2 shows 1D polymeric single chain constructed by [Pb-S]∞ and [Pb-methyl-pyrimidine]∞ chains. The results revealed that the methyl groups don't influence the coordination modes of pyrimidine-2-thiolate but directed the structural variations. Moreover, the fluorescent properties of compounds 1 and 2 were investigated.

  11. IMMUNOASSAYS FOR METAL IONS. (R824029)

    EPA Science Inventory

    Abstract

    Antibodies that recognize chelated forms of metal ions have been used to construct immunoassays for Cd(II), Hg(II), Pb(II), and Ni(II). In this paper, the format of these immunoassays is described and the binding properties of three monoclonal antibodies direc...

  12. Pb isotopes in drinking water: a new strategy for detection of low Pb sources

    EPA Science Inventory

    Source detection of low concentrations of Pb in water, for instance less than 15 µg L-1, may require a new methodology as the tolerances of Pb in drinking water are further reduced. It appears that the isotope properties of Pb may aid discrimination among natural sources and anth...

  13. Chelate-assisted Pb phytoextraction: Pb availability, uptake, and translocation constraints

    SciTech Connect

    Wu, J.; Hsu, F.C.; Cunningham, S.D.

    1999-06-01

    Chelates have been shown to enhance phytoextraction of Pb from contaminated soil. Mechanisms behind this phenomenon, however, remain largely unexplored. In this paper the authors examine chelate effect on Pb dissolution, plant Pb uptake, and internal plant Pb translocation. EDTA was found to be the most efficient in increasing water-soluble Pb concentration in the test soil. Unfortunately, Pb-EDTA is highly water-soluble and posses potential risks to ground water in its application. In addition, it would not appear to be ideally suited for plant uptake and translocation based upon the relative water solubility of Pb-EDTA. The authors demonstrated that N,N{prime}-di(2-hydroxybenzyl)ethylenediamine N,N{prime}-diacetic acid (HBED) resulted in Zea mays root Pb content significantly higher than did EDTA, indicating that a chelate better than EDTA might be designed. Fortuitously, EDTA appears to increase overall plant transpiration, the driving force in phytoextraction of the Pb-chelate complex from soil. The authors also found that there was a significant increase in Pb uptake and translocation for corn transplanted into soil, then treated with EDTA, as compared to plants germinated and grown in Pb-contaminated soil to which EDTA was subsequently applied. These results demonstrate that significant improvement over current chelate-assisted phytoextraction of Pb may be possible.

  14. NMR study of glasses in the PbO-B/sub 2/O/sub 3/-PbF/sub 2/-AlF/sub 3/ system

    SciTech Connect

    Vopilov, V.A.; Bogdanov, V.L.; Buznik, V.M.; Karapetyan, A.K.; Matsulev, A.N.

    1986-01-01

    The NMR method has been successfully used in the study of the structure of oxide glasses and in lithium glasses. Using steady-state and pulse methods of B-11 and F-19 NMR, the authors have studied borate glasses in the PbO-B/sub 2/O/sub 3/-PbF/sub 2/-AlF/sub 3/ system. Lead fluoride was added to the composition of the experimental glasses. A small amount of PbF2 has a weak effect on the electrical conductivity, and it is only in the specimen with the maximum values of the PbF/sub 2/ concentration that conductivity becomes significant. In glasses of the PbO X B/sub 2/O/sub 3/ X AlF/sub 3/ compositions, there is an exchange of the oxygen and fluoride modifier anions and as a result the F ions are incorporated into the first coordination sphere of the lead cations.

  15. Structural phase transitions of ionic layered PbFX (X = Cl{sup −}or Br{sup –}) compounds under high pressure

    SciTech Connect

    Sorb, Y.A. Sornadurai, D.

    2015-05-15

    The PbFX (X = Cl{sup –}or Br{sup –}) compounds crystallize in tetragonal structure with space group P4/nmm. High pressure X-ray diffraction studies carried out on PbFCl compound reveals that it undergoes pressure induced structural transitions at ∼18 GPa and ∼38 GPa to orthorhombic and monoclinic (P2{sub 1}/m) phases respectively. Like PbFCl, a similar phase transition from tetragonal to orthorhombic phase is observed in PbFBr at intermediate pressure. These phase transitions seem to be similar to the transitions involving other matlockite structure compounds such as BaFX (X = Cl{sup –}, Br{sup –}or I{sup –}). PbFCl has a larger structural stability range compared to BaFCl and is attributed to the large anisotropic coordination of the Pb{sup 2+} and Cl{sup –}ions.

  16. Trapping of Oxygen Vacancies at Crystallographic Shear Planes in Acceptor-Doped Pb-Based Ferroelectrics.

    PubMed

    Batuk, Dmitry; Batuk, Maria; Tsirlin, Alexander A; Hadermann, Joke; Abakumov, Artem M

    2015-12-01

    The defect chemistry of the ferroelectric material PbTiO3 after doping with Fe(III) acceptor ions is reported. Using advanced transmission electron microscopy and powder X-ray and neutron diffraction, we demonstrate that even at concentrations as low as circa 1.7% (material composition approximately ABO2.95), the oxygen vacancies are trapped into extended planar defects, specifically crystallographic shear planes. We investigate the evolution of these defects upon doping and unravel their detailed atomic structure using the formalism of superspace crystallography, thus unveiling their role in nonstoichiometry in the Pb-based perovskites.

  17. Anomalies in the Nuclear Dissociation Cross Sections of {sup 208}Pb at 33 TeV

    SciTech Connect

    Datz, S.; Beene, J.R.; Krause, H.F.; Vane, C.R.; Grafstroem, P.; Schuch, R.H.

    1997-11-01

    We have measured total nuclear disintegration cross sections for {sup 208}Pb ions at 33TeV (160-GeV A) colliding with C, Si, Cu, Sn, and Pb. Using well established theory, we calculate the nuclear electromagnetic, electron electromagnetic, and the hadronic contributions and find that their sum underestimates the measured cross sections. An additive correction term linear in target Z{sub T} (i.e., 120Z{sub T} mb ) is necessary to bring agreement between theory and experiment. The source of this additional term is unknown. {copyright} {ital 1997} {ital The American Physical Society}

  18. Identified particle production in pp, p-Pb, and Pb-Pb collisions measured with ALICE at LHC energies

    NASA Astrophysics Data System (ADS)

    Tonatiuh Jiménez-Bustamante, Raúl; Alice Collaboration

    2015-01-01

    The ALICE detector has excellent Particle IDentification (PID) capabilities in the central barrel (|η| < 0.9). This allows identified hadron production to be measured over a wide transverse momentum (pT) range, using different sub-detectors and techniques: their specific energy loss (dE/dx), the time of flight, the Cherenkov angle or their characteristic weak decay topology. Results on identified particle spectra and production yield ratios at mid-rapidity measured by ALICE in different colliding systems (pp, p-Pb and Pb-Pb) are presented and the similarities among them are discussed. For Pb-Pb collisions the nuclear modification factor as a function of pT is shown for different collision centralities.

  19. Morphology control of nanostructures: Na-doped PbTe-PbS system.

    PubMed

    He, Jiaqing; Blum, I D; Wang, Hui-Qiong; Girard, S N; Doak, J; Zhao, Li-Dong; Zheng, Jin-Cheng; Casillas, G; Wolverton, C; Jose-Yacaman, M; Seidman, D N; Kanatzidis, M G; Dravid, V P

    2012-11-14

    The morphology of crystalline precipitates in a solid-state matrix is governed by complex but tractable energetic considerations driven largely by volume strain energy minimization and anisotropy of interfacial energies. Spherical precipitate morphologies are favored by isotropic systems, while anisotropic interfacial energies give energetic preference to certain crystallographically oriented interfaces, resulting in a faceted precipitate morphology. In conventional solid-solution precipitation, a precipitate's morphological evolution is mediated by surface anchoring of capping molecules, which dramatically alter the surface energy in an anisotropic manner, thereby providing exquisite morphology control during crystal growth. Herein, we present experimental evidence and theoretical validation for the role of a ternary element (Na) in controlling the morphology of nanoscale PbS crystals nucleating in a PbTe matrix, an important bulk thermoelectric system. The PbS nanostructures formed by phase separation from a PbI(2)-doped or undoped PbTe matrix have irregular morphologies. However, replacing the iodine dopant with Na (1-2 mol %) alters dramatically the morphology of the PbS precipitates. Segregation of Na at PbTe/PbS interfaces result in cuboidal and truncated cuboidal morphologies for PbS. Using analytical scanning/transmission electron microscopy and atom-probe tomography, we demonstrate unambiguously that Na partitions to the precipitates and segregates at the matrix/precipitate interfaces, inducing morphological anisotropy of PbS precipitates. First-principles and semiclassical calculations reveal that Na as a solute in PbTe has a higher energy than in PbS and that Na segregation at a (100) PbTe/PbS interface decreases the total energy of matrix/precipitate system, resulting in faceting of PbS precipitates. These results provide an impetus for a new strategy for controlling morphological evolution in matrix/precipitate systems, mediated by solute partitioning

  20. CONCH: A Visual Basic program for interactive processing of ion-microprobe analytical data

    NASA Astrophysics Data System (ADS)

    Nelson, David R.

    2006-11-01

    A Visual Basic program for flexible, interactive processing of ion-microprobe data acquired for quantitative trace element, 26Al- 26Mg, 53Mn- 53Cr, 60Fe- 60Ni and U-Th-Pb geochronology applications is described. Default but editable run-tables enable software identification of secondary ion species analyzed and for characterization of the standard used. Counts obtained for each species may be displayed in plots against analysis time and edited interactively. Count outliers can be automatically identified via a set of editable count-rejection criteria and displayed for assessment. Standard analyses are distinguished from Unknowns by matching of the analysis label with a string specified in the Set-up dialog, and processed separately. A generalized routine writes background-corrected count rates, ratios and uncertainties, plus weighted means and uncertainties for Standards and Unknowns, to a spreadsheet that may be saved as a text-delimited file. Specialized routines process trace-element concentration, 26Al- 26Mg, 53Mn- 53Cr, 60Fe- 60Ni, and Th-U disequilibrium analysis types, and U-Th-Pb isotopic data obtained for zircon, titanite, perovskite, monazite, xenotime and baddeleyite. Correction to measured Pb-isotopic, Pb/U and Pb/Th ratios for the presence of common Pb may be made using measured 204Pb counts, or the 207Pb or 208Pb counts following subtraction from these of the radiogenic component. Common-Pb corrections may be made automatically, using a (user-specified) common-Pb isotopic composition appropriate for that on the sample surface, or for that incorporated within the mineral at the time of its crystallization, depending on whether the 204Pb count rate determined for the Unknown is substantially higher than the average 204Pb count rate for all session standards. Pb/U inter-element fractionation corrections are determined using an interactive log e-log e plot of common-Pb corrected 206Pb/ 238U ratios against any nominated fractionation-sensitive species pair

  1. Study of isospin correlation in high energy S + Pb and Pb + Pb interactions with a magnetic-interferometric-emulsion-chamber. Final report

    SciTech Connect

    Takahashi, Yoshiyuki

    1997-12-12

    This report describes the research results of the study of high energy heavy-ion interactions and multi-cluster correlations at the University of Alabama in Huntsville (UAH). This study has been performed as the CERN experiments, EMU05, EMU09 and EMU16, and a part of the RHIC PHENIX and its MVD Collaboration work. Physics objectives and methods are described in chapters 1, 2, 3 and Appendices A1 and A2. The experimental set-up, measurements, an the data analyses at UAH are described in chapters 4 through 10 and Appendices. The UAH research was a quest for high density state of nuclear matter, in terms of finding analysis methods of multi-isospin correlations. The present work emphasized a study of the fluctuation of the particle density, discriminating the isospin for exploring the Disoriented Chiral Condensate (DCC). The analysis methods developed are: (1) Chi-square density test; (2) Run-test; (3) G-test; (4) Fourier analysis; and (5) Lomb`s Periodogram. The application of these methods for central collision events in 2,000 GeV/n S + Pb and 167 GeV/n Pb + Pb produced interesting DCC correlations for a few events. However, further investigation of fluctuations with Monte Carlo method guided them to understand various hidden degree of freedoms in such analyses. The results of the analysis of the experimental data in comparison with the Monte Carlo data did not support the DCC process as compelling. The developed methods evolved for a plan to investigate the DCC in the PHENIX. The study has obtained several mathematical analysis methods from the CERN EMU05/16 experiments for a possible use in RHIC experiments.

  2. Who Needs Uranium? Pb-Pb Dating of (and Temporal Resolution in) Zircon

    NASA Astrophysics Data System (ADS)

    Tera, F.

    2002-12-01

    A method akin to Differential Isotope Correlation (Tera, 2000 and 2002) is applied to 204Pb-depleted systems (e. g., zircons), where 206Pb/ 208Pb and 207Pb/ 208Pb are plotted separately versus the same X-axis of 207Pb/ 206Pb or ( 206Pb/ 208Pb)-( 207Pb/ 208Pb). Because of the general transparency of isotopic ratios to recent U-Pb mobility, these correlations usually project less obscured patterns, which are reiterated in the two diagrams. The redundancy allows correlated filtration of aberrant data, thus resulting in sharper lineation. The justification of filtration through redundancy (FTR) is in the concurrent emergence of synchronism (that is, co-incidence of reason) from the two diagrams. Each judiciously filtered line is the result of mixing of two end-members: (1) initial Pb and (2) in-situ produced Pb (through U and Th decay). A system of a single age can have multiple lines, each corresponding to a specific K = Th / U for the in-situ component. If such a system is not complicated beyond recent mobilities, the lines would converge to intersect at a point corresponding to initial Pb (see Fig. 3, Tera, 1983). The {206, 207, 208}Pb plots mentioned are referred to here as Quasi Differential Diagrams. When the data of the filtered lines, obtained as described above, are plotted on an age-producing diagram of 206Pb/ 208Pb Vs 207Pb/ 208Pb they would produce a single line, the slope of which yields the age as is conventionally calculated. Thus without measuring the often hopelessly non-correlated U (mostly because of prevalent recent U-Pb mobility), a uranium-enriched mineral (e. g., zircon), may be accurately dated. Furthermore, two other aspects of evolution-history may be revealed: (1) In a case where determination of initial Pb on a Quasi Differential Diagram was possible, the age of the source is calculable in a straightforward fashion from the radiogenic ratio of 207Pb/ 206Pb; (2) Events resulting in coexisting re-equilibrated domains may be resolvable into

  3. The Pb radius experiment (PREX)

    NASA Astrophysics Data System (ADS)

    Mammei, Juliette M.

    2013-10-01

    We report the first measurement of the parity-violating asymmetry APV in the elastic scattering of polarized electrons from 208Pb from the Lead Radius Experiment PREX which ran in Hall A at the Thomas Jefferson National Accelerator Facility (JLab). APV is sensitive to the radius of the neutron distribution Rn. The Z boson that mediates the weak neutral interaction couples mainly to neutrons and provides a clean, model-independent measurement of the RMS radius Rn of the neutron distribution in the nucleus and is a fundamental test of nuclear structure theory. The result, APV = 0.656±0.060(stat)±0.014(syst) ppm, corresponds to a difference between the radii of the neutron and proton distributions Rn-Rp = 0.33-0.18+0.16 fm and provides the first electroweak observation of the neutron skin which is expected in a heavy, neutron-rich nucleus.

  4. Surface disordering of Pb(110)

    NASA Technical Reports Server (NTRS)

    Tibbits, P.; Karimi, M.; Ila, D.; Dalins, I.; Vidali, G.

    1991-01-01

    A molecular dynamics simulation of Pb(110), using embedded atom method energy functional and two-body potential derived for the purpose, shows that near 400 K the three surface layers begin to disorder well before the bulk (interior) layers. Transfer of atoms from the first subsurface layer to the surface layer occurs. Disordering propagates beyond the top three layers above 550 K, accompanied by formation of an adlayer and vacancies in the top three layers. Behavior of the two-dimensional layer structure factors indicates that disordering is anisotropic. Simulation results are consistent with experimental observations of surface roughening near 400 K and more extensive surface ordering above 525 K. Results are consistent with simulations for Ni and Al.

  5. Pb-Free Soldering Iron Temperature Controller

    NASA Astrophysics Data System (ADS)

    Hamane, Hiroto; Wajima, Kenji; Hayashi, Yoichi; Komiyama, Eiichi; Tachibana, Toshiaki; Miyazaki, Kazuyoshi

    Recently, much importance has been attached to the environmental problem. The content of two directives to better control the management of waste electronic equipment was approved. The two directives are the Waste from Electrical and Electronic Equipment (WEEE) and the Restriction of Hazardous Substances (RoHS). These set phase-out dates for the use of lead materials contained in electronic products. Increasingly, attention is focusing on the potential use of Pb-free soldering in electronics manufacturing. It should be noted that many of the current solding irons are not suitable for Pb-free technology, due to the inferior wetting ability of Pb-free alloys compared with SnPb solder pastes. This paper presents a Pb-free soldering iron temperature controller using an embedded micro-processor with a low memory capacity.

  6. Pb distribution and translocation in Jiaozhou Bay

    NASA Astrophysics Data System (ADS)

    Yang, Dongfang; Su, Chang; Gao, Zhenhui; Sun, Peiyan; Cao, Lixin

    2008-08-01

    The trends of distribution, translocation and seasonal change of heavy metal Pb were studied based on the surface and bottom water sampling in Jiaozhou Bay in 1979, and compared with those in 1990’s. The results showed that the source of Pb in the bay was from wastewater and sewage in the east of Jiaozhou Bay from ocean vessels. Pb concentration was higher in spring and lower in summer and autumn, and remained stable through sedimentation in the bottom layer. The overall water quality was good in 1970’s. Compared with the environmental monitoring data of 1995 1999, Pb pollution had become serious. Therefore, more efforts should be made to protect the bay from Pb pollution.

  7. Studies of biosorption of Pb2+, Cd2+ and Cu2+ from aqueous solutions using Adansonia digitata root powders.

    PubMed

    Ekere, N R; Agwogie, A B; Ihedioha, J N

    2016-01-01

    The potentials of Adansonia digitata root powders (ADRP) for adsorption of Pb(2+), Cd(2+) and Cu(2+) from aqueous solutions was investigated. Physico-chemical analysis of the adsorbent (ADRP) shows that hydroxyl, carbonyl and amino groups were predominant on the surface of the adsorbent. Scanning Electron Microscope (SEM) image revealed its high porosity and irregular pores in the adsorbent while the Energy Dispersive X-ray Spectrum showed the major element with 53.0% Nitrogen, 23.8% carbon, 9.1% calcium, 7.5% potassium and 6.6% magnesium present. The found optimal conditions were: initial concentration of the metal ions = 0.5 mg/L, pH = 5, contact time = 90 min, adsorbent dose = 0.4 g and particle size = 32 µm. Freundlich isotherm showed good fit for the adsorption of Pb(2+), Cd(2+) and Cu(2+). Dubinin-Radushkevich isotherm revealed that the adsorption processes were physisorption Cd(II) and Cu(II) but chemisorption with respect to Pb(II) ions. The kinetics and thermodynamic studies showed that Pseudo-second order and chemisorptions provided the best fit to the experimental data of Pb (II) ions only. Batch desorption result show that desorption in the acidic media for the metal ions were more rapid and over 90% of the metal ions were recovered from the biomass. PMID:26267780

  8. Reconstruction of historical atmospheric Pb using Dutch urban lake sediments: a Pb isotope study.

    PubMed

    Walraven, N; van Os, B J H; Klaver, G Th; Middelburg, J J; Davies, G R

    2014-06-15

    Lake sediments provide a record of atmospheric Pb deposition and changes in Pb isotope composition. To our knowledge, such an approach has not previously been performed in The Netherlands or linked to national air monitoring data. Results are presented for Pb content and isotope composition of (137)Cs dated lake sediments from 2 Dutch urban lakes. Between 1942 and 2002A.D. anthropogenic atmospheric Pb deposition rates in the two lakes varied from 12±2 to 69±16μgcm(-2)year(-1). The rise and fall of leaded gasoline is clearly reflected in the reconstructed atmospheric Pb deposition rates. After the ban on leaded gasoline, late 1970s/early 1980s, atmospheric Pb deposition rates decreased rapidly in the two urban lakes and the relative contributions of other anthropogenic Pb sources - incinerator ash (industrial Pb) and coal/galena - increased sharply. Atmospheric Pb deposition rates inferred from the lake record a clear relationship with nearby measured annual mean air Pb concentrations. Based on this relationship it was estimated that air Pb concentrations between 1942 and 2002A.D. varied between 5 and 293ng/m(3).

  9. Deep Sub-Barrier Fusion Enhancement in the {sup 6}He+{sup 206}Pb Reaction

    SciTech Connect

    Penionzhkevich, Yu.E.; Zagrebaev, V.I.; Lukyanov, S.M.; Kalpakchieva, R.

    2006-04-28

    The fusion of {sup 6}He with {sup 206}Pb has been studied at energies close to and below the Coulomb barrier. The experiment was carried out at the Dubna Radioactive Ion Beams complex of FLNR, JINR. The {sup 6}He beam intensity was about 5x10{sup 6} pps, the maximum energy being 60.3{+-}0.4 MeV. The yield of the {sup 210}Po isotope, produced in the 2n-evaporation channel, demonstrates an extremely large enhancement of the sub-barrier fusion cross section as compared with the {sup 4}He+{sup 208}Pb reaction. This enhancement is most likely due to the mechanism of 'sequential fusion' with an intermediate neutron transfer from {sup 6}He to the Pb nucleus with positive Q values.

  10. XAFS studies of Pb(II)-chloro and Hg(II)-chloro ternary complexes on goethite

    USGS Publications Warehouse

    Bargar, J.R.; Persson, Petra; Brown, Gordon E.

    1997-01-01

    EXAFS spectroscopy was used to study Pb(II) and Hg(II) adsorption complexes on goethite (??-FeOOH) in the presence of Cl-. At pH 7, the dominant Pb(II) species are bonded to edges of FeO6 octahedra and are similar to complexes that occur in the absence of Cl-. At pH ??? 6, Pb(II)-chloro ternary complexes predominate and are bonded to corners of FeO6 octahedra. At pH 6.5, linear Hg(OH)Cl ternary complexes predominate that are bonded to goethite through surface oxygens in a bent Hg-O-Fe geometry. In the absence of Cl-, the Hg(II) surface complexes retain this basic geometry, but an OH group replaces the chloride ion in the first coordination shell.

  11. Ferromagnetism and strong magnetic anisotropy of the PbMnBO4 orthoborate single crystals

    NASA Astrophysics Data System (ADS)

    Pankrats, A.; Sablina, K.; Eremin, M.; Balaev, A.; Kolkov, M.; Tugarinov, V.; Bovina, A.

    2016-09-01

    The PbMnBO4 orthoborate single crystals were first grown and their magnetic properties and ferromagnetic resonance were studied. It was found that the ferromagnetic state below the Curie temperature TC=31 K is characterized by the strong magnetic anisotropy. The significant effective anisotropy fields of PbMnBO4 determine the energy gap in the FMR spectrum, which is extraordinary large for ferromagnets (112 GHz at T=4.2 K). It was shown that the static Jahn-Teller effect characteristic of the Mn3+ ion leads to both the ferromagnetic ordering and the strong magnetic anisotropy in the crystal. In the strong external magnetic field the induced ferromagnetic ordering is retained in the crystal above the Curie temperature up to the temperatures multiply higher than TC. A weak anomaly of the dielectric permittivity was observed in PbMnBO4 at the Curie temperature at which the long-range ferromagnetic order is established.

  12. Mimetite Formation from Goethite-Adsorbed Ions.

    PubMed

    Kleszczewska-Zębala, Anna; Manecki, Maciej; Bajda, Tomasz; Rakovan, John; Borkiewicz, Olaf J

    2016-06-01

    Bioavailability of arsenic in contaminated soils and wastes can be reduced to insignificant levels by precipitation of mimetite Pb5(AsO4)3Cl. The objective of this study is to elucidate mechanisms of the reaction between solution containing lead ions and arsenates adsorbed on synthetic goethite (AsO4-goethite), or arsenate ions in the solution and goethite saturated with adsorbed Pb (Pb-goethite). These reactions, in the presence of Cl, result in rapid crystallization of mimetite. Formation of mimetite is faster than desorption of AsO4 but slower than desorption of Pb from the goethite surface. Slow desorption of arsenates from AsO4-goethite results in heterogeneous precipitation and formation of mimetite incrustation on goethite crystals. Desorption of lead from Pb-goethite is at least as fast as diffusion and advection of AsO4 and Cl in suspension allowing for homogeneous crystallization of mimetite in intergranular solution. Therefore, the mechanism of nucleation is primarily driven by the kinetics of constituent supply to the saturation front, rather than by the thermodynamics of nucleation. The products of the reactions are well documented using microscopy methods such as scanning electron microscopy, electron backscattered diffraction, X-ray diffraction, and Fourier transform infrared spectroscopy.

  13. New high spin states and isomers in the {sup 208}Pb and {sup 207}Pb nuclei

    SciTech Connect

    Broda, R.; Wrzesinski, J.; Pawlat, T.

    1996-12-31

    The two most prominent examples of the heavy doubly closed shell (DCS) nuclei, {sup 208}Pb and {sup 132}Sn, are not accessible by conventional heavy-ion fusion processes populating high-spin states. This experimental difficulty obscured for a long time the investigation of yrast high-spin states in both DCS and neighboring nuclei and consequently restricted the study of the shell model in its most attractive regions. Recent technical development of multidetector gamma arrays opened new ways to exploit more complex nuclear processes which populate the nuclei of interest with suitable yields for gamma spectroscopy and involve population of moderately high spin states. This new possibility extended the range of accessible spin values and is a promising way to reach new yrast states. Some of these states are expected to be of high configurational purity and can be a source of important shell model parameters which possibly can be used later to check the validity of the spherical shell model description at yet higher spin and higher excitation energy. The nuclei in the closest vicinity of {sup 132}Sn are produced in spontaneous fission and states with spin values up to I=14 can be reached in fission gamma spectroscopy studies with the presently achieved sensitivity of gamma arrays. New results on yrast states in the {sup 134}Te and {sup 135}I nuclei populated in fission of the {sup 248}Cm presented at this conference illustrate such application of the resolving power offered by modern gamma techniques.

  14. Rare Earth Element Abundances and Pb-Pb Ages of Merrillite in Jinju H5 Chondrite: Implications to Shock Metamorphism

    NASA Astrophysics Data System (ADS)

    Goh, S.; Choi, B.-G.

    2016-08-01

    Jinju merrillite shows homogeneous REE abundances and relatively young Pb-Pb ages. Jinju H5 chondrite was probably neither equilibrated nor compacted prior to the impact and the shock made trace elements including REEs and U-Pb equilibrated.

  15. Ion microprobe zircon geochronology of the Uivak Gneisses: Implications for the evolution of early terrestrial crust in the North Atlantic Craton

    NASA Technical Reports Server (NTRS)

    Collerson, K. D.

    1983-01-01

    Ion microprobe U-Pb results for zircons from three Uivak I gneisses and one specimen of Uivak II gneiss, from the Saglek-Hebron area of Northern Labrador are reported. These results are compared with interpretations based on published conventional U-Pb zircon results and with conclusions about crustal evolution in the NAC derived from Rb-Sr, Sm-Nd and Pb-Pb isotopic studies.

  16. Atomic displacements in PbMg1/3Nb2/3O3 under high pressures

    NASA Astrophysics Data System (ADS)

    Rotaru, G.-M.; Gvasaliya, S. N.; Pomjakushin, V.; Roessli, B.; Strässle, Th; Lushnikov, S. G.; Shaplygina, T. A.; Günter, P.

    2008-03-01

    We have investigated the chemical structure of PbMg1/3Nb2/3O3 (PMN) relaxor ferroelectric at room temperature under hydrostatic pressures up to 8.37 GPa and at ambient pressure as a function of temperature. The refinement of the crystal structure shows that the amplitude of the displacements of the Pb ions from the (0 0 0) position decreases with increasing pressure. On the other hand, the thermal displacement parameters of Mg/Nb ions are almost insensitive to pressure. The decrease in the Pb displacements correlates with an increase in the anisotropy in the thermal displacement parameter of the O ions. These results are in agreement with those obtained in PbMg1/3Ta2/3O3 (PMT) and show further evidence that the Pb displacements play an important role in the relaxor behavior. The aim of this study is to clarify the microscopic origin for the anomalous pressure effects observed in relaxors as well as to provide new data for the understanding of this class of materials.

  17. Study of Z production in PbPb and pp collisions at $ \\sqrt{s_{\\mathrm{NN}}}=2.76 $ TeV in the dimuon and dielectron decay channels

    SciTech Connect

    Chatrchyan, Serguei

    2015-03-04

    We found that the production of Z bosons is studied in the dimuon and dielectron decay channels in PbPb and pp collisions at √sNN=2.76 TeV, using data collected by the CMS experiment at the LHC. The PbPb data sample corresponds to an integrated luminosity of about 166 μb-1, while the pp data sample collected in 2013 at the same nucleon-nucleon centre-of-mass energy has an integrated luminosity of 5.4 pb-1. The Z boson yield is measured as a function of rapidity, transverse momentum, and collision centrality. The ratio of PbPb to pp yields, scaled by the number of inelastic nucleon-nucleon collisions, is found to be 1.06 ± 0.05 (stat) ± 0.08 (syst) in the dimuon channel and 1.02 ± 0.08 (stat) ± 0.15 (syst) in the dielectron channel, for centrality-integrated Z boson production. Finally, this binary collision scaling is seen to hold in the entire kinematic region studied, as expected for a colourless probe that is unaffected by the hot and dense QCD medium produced in heavy ion collisions.

  18. Study of Z production in PbPb and pp collisions at $$ \\sqrt{s_{\\mathrm{NN}}}=2.76 $$ TeV in the dimuon and dielectron decay channels

    DOE PAGES

    Chatrchyan, Serguei

    2015-03-04

    We found that the production of Z bosons is studied in the dimuon and dielectron decay channels in PbPb and pp collisions at √sNN=2.76 TeV, using data collected by the CMS experiment at the LHC. The PbPb data sample corresponds to an integrated luminosity of about 166 μb-1, while the pp data sample collected in 2013 at the same nucleon-nucleon centre-of-mass energy has an integrated luminosity of 5.4 pb-1. The Z boson yield is measured as a function of rapidity, transverse momentum, and collision centrality. The ratio of PbPb to pp yields, scaled by the number of inelastic nucleon-nucleon collisions,more » is found to be 1.06 ± 0.05 (stat) ± 0.08 (syst) in the dimuon channel and 1.02 ± 0.08 (stat) ± 0.15 (syst) in the dielectron channel, for centrality-integrated Z boson production. Finally, this binary collision scaling is seen to hold in the entire kinematic region studied, as expected for a colourless probe that is unaffected by the hot and dense QCD medium produced in heavy ion collisions.« less

  19. Synthesis and Characterization of Templated Ion Exchange Resins for the Selective Complexation of Actinide Ions

    SciTech Connect

    Uy, O. Manual

    2001-03-01

    The purpose of this research is to develop a polymeric extractant for the selective complexation of uranyl ions (and subsequently other actinyl and actinide ions) from aqueous solutions (lakes, streams, waste tanks and even body fluids). Chemical insights into what makes a good complexation site will be used to synthesize reagents tailor-made for the complexation of uranyl and other actinide ions. These insights, derived from studies of molecular recognition include ion coordination number and geometry, ionic size and ionic shape, as well as ion to ligand thermodynamic affinity. Selectivity for a specific actinide ion will be obtained by providing the polymers with cavities lined with complexing ligands so arranged as to match the charge, coordination number, coordination geometry, and size of the actinide metal ion. These cavity-containing polymers will be produced by using a specific ion (or surrogate) as a template around which monomeric complexing ligands will be polymerized. The complexing ligands will be ones containing functional groups known to form stable complexes with a specific ion and less stable complexes with other cations. Prior investigator's approaches for making templated resins for metal ions have had marginal success. We have extended and amended these methodologies in our work with Pb(II) and uranyl ion, by changing the order of the steps, by the inclusion of sonication, by using higher complex loading, and the selection of functional groups with better complexation constants. This has resulted in significant improvements to selectivity. The unusual shape of the uranyl ion suggests that this approach will result in even greater selectivities than already observed for Pb(II). Preliminary data obtained for uranyl templated polymers shows unprecedented selectivity and has resulted in the first ion selective electrode for uranyl ion.

  20. Aspects of heavy-ion collisions at the LHC

    SciTech Connect

    Wolschin, G.

    2014-01-14

    Three aspects of relativistic heavy-ion collisions are considered in this article: (1) Stopping and baryon transport in a QCD-based approach, (2) charged-hadron production in a nonequilibrium-statistical relativistic diffusion model (RDM), and (3) quarkonia suppression and in particular, Υ suppression in PbPb at the current LHC energy of √(s{sub NN}) = 2.76TeV.

  1. Competitive adsorption of Pb2+ and Cd2+ on magnetic modified sugarcane bagasse prepared by two simple steps

    NASA Astrophysics Data System (ADS)

    Yu, Jun-Xia; Wang, Li-Yan; Chi, Ru-An; Zhang, Yue-Fei; Xu, Zhi-Gao; Guo, Jia

    2013-03-01

    Magnetic modified sugarcane bagasse with high adsorption capacity and rapid adsorption rate was prepared by two simple steps. Experimental results showed that the adsorption capacities of the magnetic sorbent for Pb2+ and Cd2+ were 1.2 and 1.1 mmol g-1, respectively. Pseudo-second-order and pseudo-first-order kinetic model both could predict the adsorption and desorption kinetic process occurred on the modified sorbent. EDX analysis showed that Pb2+ and Cd2+ were adsorbed on the sorbent mainly through ion exchange. Competitive adsorption results showed that the presence of Pb2+ exerted a great inhibitory effect on Cd2+ adsorption, and the inhibitory effect increased with the increase of the initial concentration ratio of Pb2+ and Cd2+ (C0Pb: C0Cd). Pb2+ could be selectively adsorbed by the magnetic sorbent when the values of C0Pb: C0Cd was higher than or equal to 4:1. It was also found that Langmuir competitive model was suitable to predict the sorption isotherm in the binary system. The as prepared magnetic sorbent had a potential in heavy metal wastewater treatment.

  2. Removal of Pb2+ from aqueous solutions by a high-efficiency resin

    NASA Astrophysics Data System (ADS)

    Guo, Hao; Ren, Yongzheng; Sun, Xueliang; Xu, Yadi; Li, Xuemei; Zhang, Tiancheng; Kang, Jianxiong; Liu, Dongqi

    2013-10-01

    The removal of Pb2+ from aqueous solution by 732 cation-exchange resin in sodium type (732-CR) has been studied in batch experiments at varying pH (2.0-8.0), Pb2+ concentration (50-200 mg/L), contact time (5-300 min), temperature (288-308 K) and resin dose (0.125-0.75 g/L). The experimental data show that the ion-exchange process was dependent on pH and temperature, the optimal exchange capacity was found at pH 4.0, and higher temperature was beneficial to lead sorption. Kinetic data indicate that the ion-exchange process followed a pseudo-first order model. The equilibrium exchange capacity could be reached at approximately 4 h, and the maximum sorption capacity of Pb2+ at pH 4.0 was 396.8 mg/g resin. The equilibrium data were evaluated with Langmuir and Freundlich model, and were best fitted with Langmuir model. The thermodynamic parameters for removal of Pb2+ indicate that the reaction was spontaneous and endothermic. Additionally, column tests were conducted by using both synthetic solution and effluents from lead battery industry. The regeneration of resin was performed for two sorption-regeneration cycles by 1 M NaOH, and the results show that effective regeneration was achieved by this method.

  3. Vorticity in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Deng, Wei-Tian; Huang, Xu-Guang

    2016-06-01

    We study the event-by-event generation of flow vorticity in the BNL Relativistic Heavy Ion Collider Au +Au collisions and CERN Large Hadron Collider Pb +Pb collisions by using the hijing model. Different definitions of the vorticity field and velocity field are considered. A variety of properties of the vorticity are explored, including the impact parameter dependence, the collision energy dependence, the spatial distribution, the event-by-event fluctuation of the magnitude and azimuthal direction, and the time evolution. In addition, the spatial distribution of the flow helicity is also studied.

  4. Equilibrium studies of sorption of lead(II) ions by different pectin compounds.

    PubMed

    Khotimchenko, Maxim; Kovalev, Valeri; Khotimchenko, Yuri

    2007-11-19

    The adsorption of Pb(II) ions from aqueous solution by different pectin compounds was studied in a batch sorption system. Water-soluble low- and high-esterified pectins and insoluble calcium pectate beads were investigated. The lead-binding capacity of all pectin compounds was highest within the pH range from 7 to 8. The binding capacities and rates of Pb(II) ions by pectin compounds were evaluated. The Langmuir, Freundlich and BET sorption models were applied to describe the isotherms and isotherm constants. Sorption isothermal data could be well interpreted by the Langmuir model. These results obtained through the study suggest that pectin compounds are favorable sorbers. The largest amount of Pb(II) ions were bound by pectin with the low degree of esterfication. Therefore, pectin substances may be considered as perspective for sorption and removal of Pb(II) ions from wastewaters.

  5. Removal of heavy metal ions by biogenic hydroxyapatite: Morphology influence and mechanism study

    NASA Astrophysics Data System (ADS)

    Wang, Dandan; Guan, Xiaomei; Huang, Fangzhi; Li, Shikuo; Shen, Yuhua; Chen, Jun; Long, Haibo

    2016-08-01

    Based on the synthesis of hydroxyapatite (HA) with different morphologies, such as nanorod-like, flower-like and sphere-like assembled HA nanorods, a new strategy has been developed for the removal of heavy metal ions such as Pb2+, Cu2+, Mn2+, Zn2+. The dependence of removal efficiency on the morphology and the suspended concentration of trapping agent, the removal time and selectivity were evaluated and discussed. The experimental results proved that the removal capacity of flower-like assembled HA nanorods (NAFL-HA) was the best, and the maximum removal ratio for Pb2+ ion was 99.97%. The mechanism of Pb2+ removal was studied in detail, noting that some metal ions were completely incorporated into hydroxyapatitie to produce Pb-HA. It reveals that the metal ions capture by HA is mainly controlled by sample surface adsorption and co-precipitation, which are directly controlled by sample morphology.

  6. Thermal physics of the lead chalcogenides PbS, PbSe, and PbTe from first principles

    NASA Astrophysics Data System (ADS)

    Skelton, Jonathan M.; Parker, Stephen C.; Togo, Atsushi; Tanaka, Isao; Walsh, Aron

    2014-05-01

    The lead chalcogenides represent an important family of functional materials, in particular due to the benchmark high-temperature thermoelectric performance of PbTe. A number of recent investigations, experimental and theoretical, have aimed to gather insight into their unique lattice dynamics and electronic structure. However, the majority of first-principles modeling has been performed at fixed temperatures, and there has been no comprehensive and systematic computational study of the effect of temperature on the material properties. We report a comparative lattice-dynamics study of the temperature dependence of the properties of PbS, PbSe, and PbTe, focusing particularly on those relevant to thermoelectric performance, viz. phonon frequencies, lattice thermal conductivity, and electronic band structure. Calculations are performed within the quasiharmonic approximation, with the inclusion of phonon-phonon interactions from many-body perturbation theory, which are used to compute phonon lifetimes and predict the lattice thermal conductivity. The results are critically compared against experimental data and other calculations, and add insight to ongoing research on the PbX compounds in relation to the off-centering of Pb at high temperatures, which is shown to be related to phonon softening. The agreement with experiment suggests that this method could serve as a straightforward, powerful, and generally applicable means of investigating the temperature dependence of material properties from first principles.

  7. Pectinous cell wall thickenings formation - A common defense strategy of plants to cope with Pb.

    PubMed

    Krzesłowska, Magdalena; Rabęda, Irena; Basińska, Aneta; Lewandowski, Michał; Mellerowicz, Ewa J; Napieralska, Anna; Samardakiewicz, Sławomir; Woźny, Adam

    2016-07-01

    Lead, one of the most abundant and hazardous trace metals affecting living organisms, has been commonly detected in plant cell walls including some tolerant plants, mining ecotypes and hyperaccumulators. We have previously shown that in tip growing Funaria sp. protonemata cell wall is remodeled in response to lead by formation of thickenings rich in low-methylesterified pectins (pectin epitope JIM5 - JIM5-P) able to bind metal ions, which accumulate large amounts of Pb. Hence, it leads to the increase of cell wall capacity for Pb compartmentalization. Here we show that diverse plant species belonging to different phyla (Arabidopsis, hybrid aspen, star duckweed), form similar cell wall thickenings in response to Pb. These thickenings are formed in tip growing cells such as the root hairs, and in diffuse growing cells such as meristematic and root cap columella cells of root apices in hybrid aspen and Arabidopsis and in mesophyll cells in star duckweed fronds. Notably, all analyzed cell wall thickenings were abundant in JIM5-P and accumulated high amounts of Pb. In addition, the co-localization of JIM5-P and Pb commonly occurred in these cells. Hence, cell wall thickenings formed the extra compartment for Pb accumulation. In this way plant cells increased cell wall capacity for compartmentalization of this toxic metal, protecting protoplast from its toxicity. As cell wall thickenings occurred in diverse plant species and cell types differing in the type of growth we may conclude that pectinous cell wall thickenings formation is a widespread defense strategy of plants to cope with Pb. Moreover, detection of natural defense strategy, increasing plant cell walls capacity for metal accumulation, reveals a promising direction for enhancing plant efficiency in phytoremediation. PMID:27107260

  8. Occurrence and distribution of 210Pb and 210Po in selected California groundwater wells.

    PubMed

    Ruberu, Shiyamalie R; Liu, Yun-Gang; Perera, S Kusum

    2007-05-01

    Groundwater wells from across the State of California were sampled and analyzed for Pb and Po. The separation method involved Fe(OH)3 precipitation from a 5-L groundwater sample followed by electrodeposition of Po on a nickel disk. The resulting solution was passed through an ion-exchange resin column for the isolation of Pb. De-ionized water spiked at a concentration range from 4.92 mBq L(-1) to 755 mBq L(-1) with these radionuclide standards showed excellent accuracy and precision of the method. In the groundwater wells, overall activity of Pb ranged from 3.7 mBq L(-1) to 1,481 mBq L(-1) and the Po activity ranged from 0.25 mBq L(-1) to 555 mBq L(-1). Of the select wells tested, 27% for Pb and 19% for Po were above the proposed maximum contamination limits for these radionuclides, which are set at 37 mBq L(-1) and 26 mBq L(-1), respectively. From a public health perspective this is a concern, since the drinking water screening levels for gross alpha is at 555 mBq L(-1) and gross beta is at 1,850 mBq L(-1). At such high screening levels Pb and Po will not be captured, and this situation was found in several of the wells studied. The occurrence of Pb and Po are not correlated within the sources, however; the polonium concentrations were always lower than the lead concentrations. Activities of Pb measured from wells two years apart clearly demonstrated the continuous flux of groundwater within aquifers.

  9. Pectinous cell wall thickenings formation - A common defense strategy of plants to cope with Pb.

    PubMed

    Krzesłowska, Magdalena; Rabęda, Irena; Basińska, Aneta; Lewandowski, Michał; Mellerowicz, Ewa J; Napieralska, Anna; Samardakiewicz, Sławomir; Woźny, Adam

    2016-07-01

    Lead, one of the most abundant and hazardous trace metals affecting living organisms, has been commonly detected in plant cell walls including some tolerant plants, mining ecotypes and hyperaccumulators. We have previously shown that in tip growing Funaria sp. protonemata cell wall is remodeled in response to lead by formation of thickenings rich in low-methylesterified pectins (pectin epitope JIM5 - JIM5-P) able to bind metal ions, which accumulate large amounts of Pb. Hence, it leads to the increase of cell wall capacity for Pb compartmentalization. Here we show that diverse plant species belonging to different phyla (Arabidopsis, hybrid aspen, star duckweed), form similar cell wall thickenings in response to Pb. These thickenings are formed in tip growing cells such as the root hairs, and in diffuse growing cells such as meristematic and root cap columella cells of root apices in hybrid aspen and Arabidopsis and in mesophyll cells in star duckweed fronds. Notably, all analyzed cell wall thickenings were abundant in JIM5-P and accumulated high amounts of Pb. In addition, the co-localization of JIM5-P and Pb commonly occurred in these cells. Hence, cell wall thickenings formed the extra compartment for Pb accumulation. In this way plant cells increased cell wall capacity for compartmentalization of this toxic metal, protecting protoplast from its toxicity. As cell wall thickenings occurred in diverse plant species and cell types differing in the type of growth we may conclude that pectinous cell wall thickenings formation is a widespread defense strategy of plants to cope with Pb. Moreover, detection of natural defense strategy, increasing plant cell walls capacity for metal accumulation, reveals a promising direction for enhancing plant efficiency in phytoremediation.

  10. Alkali modified hydrochar of grape pomace as a perspective adsorbent of Pb(2+) from aqueous solution.

    PubMed

    Petrović, Jelena T; Stojanović, Mirjana D; Milojković, Jelena V; Petrović, Marija S; Šoštarić, Tatjana D; Laušević, Mila D; Mihajlović, Marija L

    2016-11-01

    Hydrochar produced via hydrothermal carbonization of grape pomace was considered as novel sorbent of Pb(2+) from aqueous solution. In order to enhance the adsorption capacity, hydrochar was chemically modified using 2 M KOH solution. Both materials were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy and X-ray diffraction technique. Batch experiments were performed to examine the effect of sorbent dosage, pH and contact time. Obtained results showed that the KOH treatment increased the sorption capacity of hydrochar from 27.8 mg g(-1) up to 137 mg g(-1) at pH 5. Adsorption of lead on either of the materials was achieved through ion-exchange mechanism, chemisorption and Pb(2+)-π interaction. The Sips isotherm model gave the best fit with the experimental data obtained for Pb(2+) sorption using activated hydrochar. The adsorption kinetic followed a pseudo second-order model. Thermodynamic parameters implied that the Pb(2+) binding for hydrochar surface was spontaneous and exothermic process. Findings from this work suggest that the hydrothermal carbonization is a promising route for production of efficient Pb (2+) sorbents for wastewater treatment. PMID:27494605

  11. Polyaniline nanofibers assembled on alginate microsphere for Cu2+ and Pb2+ uptake.

    PubMed

    Jiang, Nina; Xu, Yiting; Dai, Yuqiong; Luo, Weiang; Dai, Lizong

    2012-05-15

    Polyaniline (PANI) nanofibers were assembled on the micro- or millimeter-scale calcium alginate (CA) beads by "competitive adsorption-restricted polymerization" approach. The CA beads made the dimensional expansion of PANI nanofibers evident, which overcame the serious aggregation of PANI nanofibers and benefited the practical operation of PANI nanofibers. Batch adsorption results showed that the millimeter-scale CA beads decorated by PANI nanofibers had high affinity to Cu(2+) and Pb(2+) in aqueous solutions. The removal percentages of Cu(2+) and Pb(2+) in aqueous solutions by this PANI/CA composite with milli/nano hierarchical structure surpassed 90% in a wide pH range from 3 to 7. Sorption of the two kinds of ions to PANI/CA composite sorbent agreed well with the Freundlich adsorption model. The adsorption kinetic results of Cu(2+) and Pb(2+) showed that the adsorption reached equilibrium within 120min and 40min, respectively. And their adsorption rates could be described by pseudo-second-order kinetics. The desorption percentages of Pb(2+) and Cu(2+) from this PANI/CA composite are 62% and 75%, respectively. The Pb(2+) and Cu(2+) removal capacity of the sorbent could be further reinforced when the diameter of CA beads turned from millimeter to micrometer.

  12. Assembly of PbTe/Pb-based nanocomposite and photoelectric property.

    PubMed

    Zong, Zhaocun; Wang, Hongxia; Kong, Lingmin

    2013-04-24

    PbTe/Pb-based nanocomposite was assembled by combining the regular PbTe/Pb nanostructure and the ZnxMn1-xS nanoparticles; the photoelectric property of the nanocomposite was measured in situ. The results showed that the through current of the nanocomposite had an obvious increase compared to that of the individual PbTe/Pb nanomaterial under the same irradiation conditions. The improvement of photoelectric performance would be attributed to the synergistic effect brought by the incident light and exciting light of the ZnxMn1-xS nanoparticles. The result implied that the underlying mechanism could be used to improve the performance of nano-optoelectronic devices and the light-use efficiency of solar devices.

  13. Fast evolution of tropospheric Pb- and Zn-rich particles in the vicinity of a lead smelter

    NASA Astrophysics Data System (ADS)

    Choël, M.; Deboudt, K.; Flament, P.; Lecornet, G.; Perdrix, E.; Sobanska, S.

    Dusts collected on air filters at a Pb-Zn refinery located in northern France were sampled in 1997, 1999 and 2002. The low temporal variability in major elements (Pb, Zn and S) abundances suggested chemical composition of particulate emissions was stable over time. In July 2001 and March 2002, atmospheric aerosols were sampled in the vicinity of the Pb-Zn refinery upwind and downwind from the smelters. Bulk concentrations of major elements (Al, Fe, Pb and Zn) and hydrosoluble ions (Na +, NH 4+, Mg 2+, K +, Ca 2+, Cl - NO 3- and SO 42-) were, respectively, determined by atomic absorption spectrometry and ion chromatography. Elemental and molecular individual particle analyses were, respectively, performed by automated SEM-EDX and Raman microspectrometry. Continental air masses (campaign 2001) were characterized by low Na + and high SO 42-, NO 3- and NH 4+ contents upwind from the smelters. Individual particle analysis of Pb- and Zn-rich airborne particles collected downwind from the refinery indicated elemental associations and molecular speciation were similar to those obtained at the emission: Pb compounds were mainly identified as oxides, sulfates and oxy-sulfates whereas Zn compounds were identified as sulfides. Marine air masses (campaign 2002) were characterized by high Na + contents upwind from the smelters. Individual particle analysis of Pb- and Zn-rich particles collected downwind from the refinery pointed out a systematic association with Na, not emitted by the refinery, suggesting internal mixing of marine aerosols with heavy-metals dusts emitted by the refinery. Such fast evolution of airborne particles chemical composition in the vicinity of the refinery was further proven by SEM-EDX and Raman microspectrometry mappings showing physical evolution by aggregation or coagulation of Zn- and Pb-rich particles with aged sea-salts.

  14. Uraninite recrystallization and Pb loss in the Oklo and Bangombé natural fission reactors, Gabon

    NASA Astrophysics Data System (ADS)

    Evins, Lena Z.; Jensen, Keld A.; Ewing, Rodney C.

    2005-03-01

    The Oklo and Bangombé natural fossil fission reactors formed ca. 2 Ga ago in the Franceville basin, Gabon. The response of uraninite in the natural reactors to different geological conditions has implications for the disposal of the UO 2 in spent nuclear fuel. Uraninite and galena from two reactor zones, RZ16 at Oklo and RZB at Bangombé, were studied to clarify the chronology and effect of alteration events on the reactor zones. In addition, ion microprobe U-Pb analysis of zircons from a dolerite dyke in the Oklo deposit were completed to better constrain the age of the dyke, and thereby testing the link between the dyke and an important alteration event in the reactor zones. The analyzed uraninite from RZ16 and RZB contains ca. 6 wt% PbO, indicating a substantial loss of radiogenic Pb. Transmission electron microscopy showed that microscopic uraninite grains in the reactor zones consist of mainly defect-free nanocrystalline to microcrystalline aggregates. However, the nanocrystalline regions have elevated Si contents and lower Pb contents than coarser uraninite crystallites. Single stage model ages of large, millimeter-sized galena grains at both RZ16 and RZB correlate well with the age of the Oklo dolerite dyke, 860 ± 39 Ma (2σ). Thus, the first major Pb loss from uraninite occurred at both Oklo and Bangombé during regional extension and the intrusion of a dyke swarm in the Franceville basin, ˜860-890 Ma ago. Uraninite Pb isotopes from RZ16 and RZB give lower ages of ca. 500 Ma. These ages agree with the "chemical" ages of the uraninite, and show that an ancient Pb loss occurred after the intrusion of the dolerite dykes. The presence of nanocrystallites in the reactor uraninite indicates internal recrystallization, which may have occurred around 500 Ma, resulting in the 6wt% PbO uraninite. It is suggested that leaching by fluid interaction triggered by the Pan-African orogeny was important during this second Pb-loss event. Thus, there are indications that

  15. EFFECTS OF PH, SOLID/SOLUTION RATIO, IONIC STRENGTH, AND ORGANIC ACIDS ON PB AND CD SOPRTION ON KAOLINITE

    EPA Science Inventory

    Potentiometric and ion-selective electrode titrations together with batch sorption/desorption experiments, were performed to explain the aqueous and surface complexation reactions between kaolinite, Pb, Cd and three organic acids. Variables included pH, ionic strength, metal conc...

  16. Early Basaltic Volcanism and Late Heavy Bombardment on Vesta: U-Pb Ages of Small Zircons and Phosphates in Eucrites

    NASA Astrophysics Data System (ADS)

    Zhou, Q.; Yin, Q.-Z.; Bottke, B.; Claeys, P.; Li, X.-H.; Wu, F.-Y.; Li, Q.-L.; Liu, Y.; Tang, G.-Q.

    2011-03-01

    We report a new technique to determine U-Pb ages in very small zircons (<5 µm) and apatite in eucrites by the Cameca ims 1280 ion probe. The new apatite age for eucrites suggests late heavy bombardment may have started as early as 4.1 Ga.

  17. Analysis of Phase Separation in High Performance PbTe–PbS Thermoelectric Materials

    SciTech Connect

    Girard, Steven N.; Schmidt-Rohr, Klaus; Chasapis, Thomas C.; Hatzikraniotis, Euripides; Njegic, B.; Levin, E. M.; Rawal, A.; Paraskevopoulos, Konstantios M.; Kanatzidis, Mercouri G.

    2013-02-11

    Phase immiscibility in PbTe–based thermoelectric materials is an effective means of top-down synthesis of nanostructured composites exhibiting low lattice thermal conductivities. PbTe1-x Sx thermoelectric materials can be synthesized as metastable solid solution alloys through rapid quenching. Subsequent post-annealing induces phase separation at the nanometer scale, producing nanostructures that increase phonon scattering and reduce lattice thermal conductivity. However, there has yet to be any study investigating in detail the local chemical structure of both the solid solution and nanostructured variants of this material system. Herein, quenched and annealed (i.e., solid solution and phase-separated) samples of PbTe–PbS are analyzed by in situ high-resolution synchrotron powder X-ray diffraction, solid-state 125Te nuclear magnetic resonance (NMR), and infrared (IR) spectroscopy analysis. For high concentrations of PbS in PbTe, e.g., x >16%, NMR and IR analyses reveal that rapidly quenched samples exhibit incipient phase separation that is not detected by state-of-the-art synchrotron X-ray diffraction, providing an example of a PbTe thermoelectric “alloy” that is in fact phase inhomogeneous. Thermally-induced PbS phase separation in PbTe–PbS occurs close to 200 °C for all compositions studied, and the solubility of the PbS phase in PbTe at elevated temperatures >500 °C is reported. The findings of this study suggest that there may be a large number of thermoelectric alloy systems that are phase inhomogeneous or nanostructured despite adherence to Vegard's Law of alloys, highlighting the importance of careful chemical characterization to differentiate between thermoelectric alloys and composites.

  18. Oxygen modulation of flexible PbS/Pb Schottky junction PEC cells with improved photoelectric performance

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Fan, Libo; Guo, Qiuquan; Shi, Hongcai; Wang, Liwen; Liu, Yujian; Li, Ming; Zhang, Chunli; Yang, Jun; Zheng, Zhi

    2016-09-01

    Flexible photoelectric devices are emerging as a new class of photovoltaic cells. In this study, lead (Pb) foil was used as a flexible substrate to grow in situ lead sulfide (PbS) film with good uniformity and adhesion by a solvothermal elemental direct reaction, resulting in a PbS/Pb Schottky junction formed naturally between the PbS film and underlying Pb foil. We found that the photocurrent response of the photoelectrochemical (PEC) cell was greatly improved through a facile oxygen (O2)-modulation-based post-processing technique. O2 could decompose the organic residue and oxidize the Pb at the interface between the PbS film and Pb foils. Different characterization techniques, including thermogravimetric analysis, differential scanning calorimetry, x-ray diffraction, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, the change in transient photocurrent density (J p) with time (t), dark current-voltage (I-V) and absorption spectra were applied to get a full understanding of the O2 modulation effect. The oxidization treatment of the PbS film could regulate the flow of charge carriers to reduce their recombination, leading to photoresponse enhancement for the PEC cells. In particular, the process could modulate the tunneling current and interface states to optimize dark I-V characteristics. In addition, the magnitude of the barrier height can be tuned by O2 modulation, which was explained by theoretical analysis and calculation. We also demonstrated that the in situ formed PbS film has outstanding adhesion on the flexible Pb substrate. Our film synthesis method and post O2-modulation design as well as the corresponding device assembly may provide a novel perspective to the flexible PCE-cell-related research.

  19. Oxygen modulation of flexible PbS/Pb Schottky junction PEC cells with improved photoelectric performance.

    PubMed

    Wang, Peng; Fan, Libo; Guo, Qiuquan; Shi, Hongcai; Wang, Liwen; Liu, Yujian; Li, Ming; Zhang, Chunli; Yang, Jun; Zheng, Zhi

    2016-09-01

    Flexible photoelectric devices are emerging as a new class of photovoltaic cells. In this study, lead (Pb) foil was used as a flexible substrate to grow in situ lead sulfide (PbS) film with good uniformity and adhesion by a solvothermal elemental direct reaction, resulting in a PbS/Pb Schottky junction formed naturally between the PbS film and underlying Pb foil. We found that the photocurrent response of the photoelectrochemical (PEC) cell was greatly improved through a facile oxygen (O2)-modulation-based post-processing technique. O2 could decompose the organic residue and oxidize the Pb at the interface between the PbS film and Pb foils. Different characterization techniques, including thermogravimetric analysis, differential scanning calorimetry, x-ray diffraction, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, the change in transient photocurrent density (J p) with time (t), dark current-voltage (I-V) and absorption spectra were applied to get a full understanding of the O2 modulation effect. The oxidization treatment of the PbS film could regulate the flow of charge carriers to reduce their recombination, leading to photoresponse enhancement for the PEC cells. In particular, the process could modulate the tunneling current and interface states to optimize dark I-V characteristics. In addition, the magnitude of the barrier height can be tuned by O2 modulation, which was explained by theoretical analysis and calculation. We also demonstrated that the in situ formed PbS film has outstanding adhesion on the flexible Pb substrate. Our film synthesis method and post O2-modulation design as well as the corresponding device assembly may provide a novel perspective to the flexible PCE-cell-related research. PMID:27455067

  20. Oxygen modulation of flexible PbS/Pb Schottky junction PEC cells with improved photoelectric performance

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Fan, Libo; Guo, Qiuquan; Shi, Hongcai; Wang, Liwen; Liu, Yujian; Li, Ming; Zhang, Chunli; Yang, Jun; Zheng, Zhi

    2016-09-01

    Flexible photoelectric devices are emerging as a new class of photovoltaic cells. In this study, lead (Pb) foil was used as a flexible substrate to grow in situ lead sulfide (PbS) film with good uniformity and adhesion by a solvothermal elemental direct reaction, resulting in a PbS/Pb Schottky junction formed naturally between the PbS film and underlying Pb foil. We found that the photocurrent response of the photoelectrochemical (PEC) cell was greatly improved through a facile oxygen (O2)-modulation-based post-processing technique. O2 could decompose the organic residue and oxidize the Pb at the interface between the PbS film and Pb foils. Different characterization techniques, including thermogravimetric analysis, differential scanning calorimetry, x-ray diffraction, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, the change in transient photocurrent density (J p) with time (t), dark current–voltage (I–V) and absorption spectra were applied to get a full understanding of the O2 modulation effect. The oxidization treatment of the PbS film could regulate the flow of charge carriers to reduce their recombination, leading to photoresponse enhancement for the PEC cells. In particular, the process could modulate the tunneling current and interface states to optimize dark I–V characteristics. In addition, the magnitude of the barrier height can be tuned by O2 modulation, which was explained by theoretical analysis and calculation. We also demonstrated that the in situ formed PbS film has outstanding adhesion on the flexible Pb substrate. Our film synthesis method and post O2-modulation design as well as the corresponding device assembly may provide a novel perspective to the flexible PCE-cell-related research.

  1. Oxygen modulation of flexible PbS/Pb Schottky junction PEC cells with improved photoelectric performance.

    PubMed

    Wang, Peng; Fan, Libo; Guo, Qiuquan; Shi, Hongcai; Wang, Liwen; Liu, Yujian; Li, Ming; Zhang, Chunli; Yang, Jun; Zheng, Zhi

    2016-09-01

    Flexible photoelectric devices are emerging as a new class of photovoltaic cells. In this study, lead (Pb) foil was used as a flexible substrate to grow in situ lead sulfide (PbS) film with good uniformity and adhesion by a solvothermal elemental direct reaction, resulting in a PbS/Pb Schottky junction formed naturally between the PbS film and underlying Pb foil. We found that the photocurrent response of the photoelectrochemical (PEC) cell was greatly improved through a facile oxygen (O2)-modulation-based post-processing technique. O2 could decompose the organic residue and oxidize the Pb at the interface between the PbS film and Pb foils. Different characterization techniques, including thermogravimetric analysis, differential scanning calorimetry, x-ray diffraction, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, the change in transient photocurrent density (J p) with time (t), dark current-voltage (I-V) and absorption spectra were applied to get a full understanding of the O2 modulation effect. The oxidization treatment of the PbS film could regulate the flow of charge carriers to reduce their recombination, leading to photoresponse enhancement for the PEC cells. In particular, the process could modulate the tunneling current and interface states to optimize dark I-V characteristics. In addition, the magnitude of the barrier height can be tuned by O2 modulation, which was explained by theoretical analysis and calculation. We also demonstrated that the in situ formed PbS film has outstanding adhesion on the flexible Pb substrate. Our film synthesis method and post O2-modulation design as well as the corresponding device assembly may provide a novel perspective to the flexible PCE-cell-related research.

  2. Pb isotopic heterogeneity in basaltic phenocrysts

    SciTech Connect

    Bryce, Julia G.; DePaolo, Donald J.

    2002-06-01

    The Pb isotopic compositions of phenocrystic phases in young basaltic lavas have been investigated using the Getty-DePaolo method (Getty S. J. and DePaolo D. J. [1995] Quaternary geochronology by the U-Th-Pb method. Geochim. Cosmochim. Acta 59, 3267 3272), which allows for the resolution of small isotopic differences. Phenocryst, matrix, and whole rock analyses were made on samples from the 17 Myr-old Imnaha basalts of the Columbia River Group, a zero-age MORB from the Mid-Atlantic Ridge, and a ca. 260 kyr-old tholeiite from Mount Etna. Plagioclase feldspar phenocrysts have low-(U, Th)/Pb, and in each sample the plagioclase has significantly lower 206Pb/207Pb and 208Pb/207Pb values than whole rock, matrix, and magnetite-rich separates. The Pb isotopic contrast between plagioclase and matrix/whole rock is found in three samples with varying grain sizes (0.5 2 cm for the Imnaha basalt and MORB and <1 mm for the Etna sample) from different tectonic settings, suggesting that these results are not unique. The isotopic contrasts are only slightly smaller in magnitude than the variations exhibited by whole rock samples from the region. The Imnaha basalts also have Sr isotopic heterogeneity evident only in plagioclase phenocrysts, but the MORB and Etna lavas do not. The isotopic heterogeneities reflect magma mixing, and indicate that isotopically diverse magmas were mixed together just prior to eruption. The results reinforce indications from melt inclusion studies that magma source region isotopic heterogeneities have large amplitudes at short length scales, and that the isotopic variations imparted to the magmas are not entirely homogenized during segregation and transport processes.

  3. Anisotropic Flow of Charged Particles in Pb-Pb Collisions at √{sN N }=5.02 TeV

    NASA Astrophysics Data System (ADS)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Balasubramanian, S.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Benacek, P.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Grachov, O. A.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gronefeld, J. M.; Grosse-Oetringhaus, J. F.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Horak, D.; Hosokawa, R.; Hristov, P.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Incani, E.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kostarakis, P.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Lehas, F.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; León Vargas, H.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; McDonald, D.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, D.; Pagano, P.; Paić, G.; Pal, S. K.; Pan, J.; Pandey, A. K.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Pereira da Costa, H.; Peresunko, D.; Pérez Lara, C. E.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Šándor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Sarkar, N.; Sarma, P.; Scapparone, E.; Scarlassara, F.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shahzad, M. I.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; de Souza, R. D.; Sozzi, F.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thakur, D.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; Valencia Palomo, L.; Vallero, S.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yang, H.; Yang, P.; Yano, S.; Yasin, Z.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.; Alice Collaboration

    2016-04-01

    We report the first results of elliptic (v2), triangular (v3), and quadrangular (v4) flow of charged particles in Pb-Pb collisions at a center-of-mass energy per nucleon pair of √{sN N }=5.02 TeV with the ALICE detector at the CERN Large Hadron Collider. The measurements are performed in the central pseudorapidity region |η |<0.8 and for the transverse momentum range 0.2 Pb-Pb collisions at √{sN N }=2.76 TeV , the anisotropic flow coefficients v2, v3, and v4 are found to increase by (3.0 ±0.6 )% , (4.3 ±1.4 )% , and (10.2 ±3.8 )% , respectively, in the centrality range 0%-50%. This increase can be attributed mostly to an increase of the average transverse momentum between the two energies. The measurements are found to be compatible with hydrodynamic model calculations. This comparison provides a unique opportunity to test the validity of the hydrodynamic picture and the power to further discriminate between various possibilities for the temperature dependence of shear viscosity to entropy density ratio of the produced matter in heavy-ion collisions at the highest energies.

  4. K(S)0 and Λ production in Pb-Pb collisions at √(s(NN))=2.76 TeV.

    PubMed

    Abelev, B; Adam, J; Adamová, D; Adare, A M; Aggarwal, M M; Aglieri Rinella, G; Agnello, M; Agocs, A G; Agostinelli, A; Ahammed, Z; Ahmad, N; Ahmad Masoodi, A; Ahmed, I; Ahn, S U; Ahn, S A; Aimo, I; Aiola, S; Ajaz, M; Akindinov, A; Aleksandrov, D; Alessandro, B; Alexandre, D; Alici, A; Alkin, A; Alme, J; Alt, T; Altini, V; Altinpinar, S; Altsybeev, I; Alves Garcia Prado, C; Andrei, C; Andronic, A; Anguelov, V; Anielski, J; Antičić, T; Antinori, F; Antonioli, P; Aphecetche, L; Appelshäuser, H; Arbor, N; Arcelli, S; Armesto, N; Arnaldi, R; Aronsson, T; Arsene, I C; Arslandok, M; Augustinus, A; Averbeck, R; Awes, T C; Azmi, M D; Bach, M; Badalà, A; Baek, Y W; Bailhache, R; Bairathi, V; Bala, R; Baldisseri, A; Baltasar Dos Santos Pedrosa, F; Bán, J; Baral, R C; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L S; Barret, V; Bartke, J; Basile, M; Bastid, N; Basu, S; Bathen, B; Batigne, G; Batyunya, B; Batzing, P C; Baumann, C; Bearden, I G; Beck, H; Behera, N K; Belikov, I; Bellini, F; Bellwied, R; Belmont-Moreno, E; Bencedi, G; Beole, S; Berceanu, I; Bercuci, A; Berdnikov, Y; Berenyi, D; Bergognon, A A E; Bertens, R A; Berzano, D; Betev, L; Bhasin, A; Bhati, A K; Bhom, J; Bianchi, L; Bianchi, N; Bielčík, J; Bielčíková, J; Bilandzic, A; Bjelogrlic, S; Blanco, F; Blanco, F; Blau, D; Blume, C; Bock, F; Bogdanov, A; Bøggild, H; Bogolyubsky, M; Boldizsár, L; Bombara, M; Book, J; Borel, H; Borissov, A; Bornschein, J; Botje, M; Botta, E; Böttger, S; Braun-Munzinger, P; Bregant, M; Breitner, T; Broker, T A; Browning, T A; Broz, M; Brun, R; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Buncic, P; Busch, O; Buthelezi, Z; Caffarri, D; Cai, X; Caines, H; Caliva, A; Calvo Villar, E; Camerini, P; Canoa Roman, V; Cara Romeo, G; Carena, F; Carena, W; Carminati, F; Casanova Díaz, A; Castillo Castellanos, J; Casula, E A R; Catanescu, V; Cavicchioli, C; Ceballos Sanchez, C; Cepila, J; Cerello, P; Chang, B; Chapeland, S; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Cherney, M; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Chochula, P; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Colamaria, F; Colella, D; Collu, A; Colocci, M; Conesa Balbastre, G; Conesa del Valle, Z; Connors, M E; Contin, G; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortese, P; Cortés Maldonado, I; Cosentino, M R; Costa, F; Crochet, P; Cruz Albino, R; Cuautle, E; Cunqueiro, L; Dainese, A; Dang, R; Danu, A; Das, K; Das, D; Das, I; Dash, A; Dash, S; De, S; Delagrange, H; Deloff, A; Dénes, E; Deppman, A; D'Erasmo, G; de Barros, G O V; De Caro, A; de Cataldo, G; de Cuveland, J; De Falco, A; De Gruttola, D; De Marco, N; De Pasquale, S; de Rooij, R; Diaz Corchero, M A; Dietel, T; Divià, R; Di Bari, D; Di Giglio, C; Di Liberto, S; Di Mauro, A; Di Nezza, P; Djuvsland, Ø; Dobrin, A; Dobrowolski, T; Dönigus, B; Dordic, O; Dubey, A K; Dubla, A; Ducroux, L; Dupieux, P; Dutta Majumdar, A K; Elia, D; Emschermann, D; Engel, H; Erazmus, B; Erdal, H A; Eschweiler, D; Espagnon, B; Estienne, M; Esumi, S; Evans, D; Evdokimov, S; Eyyubova, G; Fabris, D; Faivre, J; Falchieri, D; Fantoni, A; Fasel, M; Fehlker, D; Feldkamp, L; Felea, D; Feliciello, A; Feofilov, G; Ferencei, J; Fernández Téllez, A; Ferreiro, E G; Ferretti, A; Festanti, A; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Floratos, E; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Francescon, A; Frankenfeld, U; Fuchs, U; Furget, C; Fusco Girard, M; Gaardhøje, J J; Gagliardi, M; Gago, A; Gallio, M; Gangadharan, D R; Ganoti, P; Garabatos, C; Garcia-Solis, E; Gargiulo, C; Garishvili, I; Gerhard, J; Germain, M; Gheata, A; Gheata, M; Ghidini, B; Ghosh, P; Gianotti, P; Giubellino, P; Gladysz-Dziadus, E; Glässel, P; Goerlich, L; Gomez, R; González-Zamora, P; Gorbunov, S; Gotovac, S; Graczykowski, L K; Grajcarek, R; Grelli, A; Grigoras, C; Grigoras, A; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grinyov, B; Grion, N; Grosse-Oetringhaus, J F; Grossiord, J-Y; Grosso, R; Guber, F; Guernane, R; Guerzoni, B; Guilbaud, M; Gulbrandsen, K; Gulkanyan, H; Gunji, T; Gupta, A; Gupta, R; Khan, K H; Haake, R; Haaland, Ø; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Hanratty, L D; Hansen, A; Harris, J W; Hartmann, H; Harton, A; Hatzifotiadou, D; Hayashi, S; Hayrapetyan, A; Heckel, S T; Heide, M; Helstrup, H; Herghelegiu, A; Herrera Corral, G; Herrmann, N; Hess, B A; Hetland, K F; Hicks, B; Hippolyte, B; Hori, Y; Hristov, P; Hřivnáčová, I; Huang, M; Humanic, T J; Hutter, D; Hwang, D S; Ilkaev, R; Ilkiv, I; Inaba, M; Incani, E; Innocenti, G M; Ionita, C; Ippolitov, M; Irfan, M; Ivanov, M; Ivanov, V; Ivanytskyi, O; Jachołkowski, A; Jahnke, C; Jang, H J; Janik, M A; Jayarathna, P H S Y; Jena, S; Jimenez Bustamante, R T; Jones, P G; Jung, H; Jusko, A; Kalcher, S; Kaliňák, P; Kalweit, A; Kang, J H; Kaplin, V; Kar, S; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karpechev, E; Kazantsev, A; Kebschull, U; Keidel, R; Ketzer, B; Khan, M M; Khan, P; Khan, S A; Khanzadeev, A; Kharlov, Y; Kileng, B; Kim, T; Kim, B; Kim, D J; Kim, D W; Kim, J S; Kim, M; Kim, M; Kim, S; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Kiss, G; Klay, J L; Klein, J; Klein-Bösing, C; Kluge, A; Knichel, M L; Knospe, A G; Kobdaj, C; Köhler, M K; Kollegger, T; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Konevskikh, A; Kovalenko, V; Kowalski, M; Kox, S; Koyithatta Meethaleveedu, G; Kral, J; Králik, I; Kramer, F; Kravčáková, A; Krelina, M; Kretz, M; Krivda, M; Krizek, F; Krus, M; Kryshen, E; Krzewicki, M; Kucera, V; Kucheriaev, Y; Kugathasan, T; Kuhn, C; Kuijer, P G; Kulakov, I; Kumar, J; Kurashvili, P; Kurepin, A B; Kurepin, A; Kuryakin, A; Kushpil, V; Kushpil, S; Kweon, M J; Kwon, Y; Ladrón de Guevara, P; Lagana Fernandes, C; Lakomov, I; Langoy, R; Lara, C; Lardeux, A; Lattuca, A; La Pointe, S L; La Rocca, P; Lea, R; Lechman, M; Lee, S C; Lee, G R; Legrand, I; Lehnert, J; Lemmon, R C; Lenhardt, M; Lenti, V; Leoncino, M; León Monzón, I; Lévai, P; Li, S; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Ljunggren, H M; Lodato, D F; Loenne, P I; Loggins, V R; Loginov, V; Lohner, D; Loizides, C; Lopez, X; López Torres, E; Løvhøiden, G; Lu, X-G; Luettig, P; Lunardon, M; Luo, J; Luparello, G; Luzzi, C; Jacobs, P M; Ma, R; Maevskaya, A; Mager, M; Mahapatra, D P; Maire, A; Malaev, M; Maldonado Cervantes, I; Malinina, L; Mal'Kevich, D; Malzacher, P; Mamonov, A; Manceau, L; Manko, V; Manso, F; Manzari, V; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Marín, A; Markert, C; Marquard, M; Martashvili, I; Martin, N A; Martinengo, P; Martínez, M I; Martínez García, G; Martin Blanco, J; Martynov, Y; Mas, A; Masciocchi, S; Masera, M; Masoni, A; Massacrier, L; Mastroserio, A; Matyja, A; Mazer, J; Mazumder, R; Mazzoni, M A; Meddi, F; Menchaca-Rocha, A; Mercado Pérez, J; Meres, M; Miake, Y; Mikhaylov, K; Milano, L; Milosevic, J; Mischke, A; Mishra, A N; Miśkowiec, D; Mitu, C; Mlynarz, J; Mohanty, B; Molnar, L; Montaño Zetina, L; Monteno, M; Montes, E; Morando, M; Moreira De Godoy, D A; Moretto, S; Morreale, A; Morsch, A; Muccifora, V; Mudnic, E; Muhuri, S; Mukherjee, M; Müller, H; Munhoz, M G; Murray, S; Musa, L; Nandi, B K; Nania, R; Nappi, E; Nattrass, C; Nayak, T K; Nazarenko, S; Nedosekin, A; Nicassio, M; Niculescu, M; Nielsen, B S; Nikolaev, S; Nikulin, S; Nikulin, V; Nilsen, B S; Nilsson, M S; Noferini, F; Nomokonov, P; Nooren, G; Nyanin, A; Nyatha, A; Nystrand, J; Oeschler, H; Oh, S K; Oh, S; Olah, L; Oleniacz, J; Oliveira Da Silva, A C; Onderwaater, J; Oppedisano, C; Ortiz Velasquez, A; Oskarsson, A; Otwinowski, J; Oyama, K; Pachmayer, Y; Pachr, M; Pagano, P; Paić, G; Painke, F; Pajares, C; Pal, S K; Palaha, A; Palmeri, A; Papikyan, V; Pappalardo, G S; Park, W J; Passfeld, A; Patalakha, D I; Paticchio, V; Paul, B; Pawlak, T; Peitzmann, T; Pereira Da Costa, H; Pereira De Oliveira Filho, E; Peresunko, D; Pérez Lara, C E; Perrino, D; Peryt, W; Pesci, A; Pestov, Y; Petráček, V; Petran, M; Petris, M; Petrov, P; Petrovici, M; Petta, C; Piano, S; Pikna, M; Pillot, P; Pinazza, O; Pinsky, L; Pitz, N; Piyarathna, D B; Planinic, M; Płoskoń, M; Pluta, J; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polichtchouk, B; Pop, A; Porteboeuf-Houssais, S; Pospíšil, V; Potukuchi, B; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puddu, G; Punin, V; Putschke, J; Qvigstad, H; Rachevski, A; Rademakers, A; Rak, J; Rakotozafindrabe, A; Ramello, L; Raniwala, S; Raniwala, R; Räsänen, S S; Rascanu, B T; Rathee, D; Rauch, W; Rauf, A W; Razazi, V; Read, K F; Real, J S; Redlich, K; Reed, R J; Rehman, A; Reichelt, P; Reicher, M; Reidt, F; Renfordt, R; Reolon, A R; Reshetin, A; Rettig, F; Revol, J-P; Reygers, K; Riccati, L; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Rivetti, A; Rodríguez Cahuantzi, M; Rodriguez Manso, A; Røed, K; Rogochaya, E; Rohni, S; Rohr, D; Röhrich, D; Romita, R; Ronchetti, F; Rosnet, P; Rossegger, S; Rossi, A; Roy, P; Roy, C; Rubio Montero, A J; Rui, R; Russo, R; Ryabinkin, E; Rybicki, A; Sadovsky, S; Safařík, K; Sahoo, R; Sahu, P K; Saini, J; Sakaguchi, H; Sakai, S; Sakata, D; Salgado, C A; Salzwedel, J; Sambyal, S; Samsonov, V; Sanchez Castro, X; Sándor, L; Sandoval, A; Sano, M; Santagati, G; Santoro, R; Sarkar, D; Scapparone, E; Scarlassara, F; Scharenberg, R P; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schuchmann, S; Schukraft, J; Schulc, M; Schuster, T; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, R; Scott, P A; Segato, G; Selyuzhenkov, I; Seo, J; Serci, S; Serradilla, E; Sevcenco, A; Shabetai, A; Shabratova, G; Shahoyan, R; Sharma, S; Sharma, N; Shigaki, K; Shtejer, K; Sibiriak, Y; Siddhanta, S; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simatovic, G; Singaraju, R; Singh, R; Singha, S; Singhal, V; Sinha, B C; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Skjerdal, K; Smakal, R; Smirnov, N; Snellings, R J M; Soltz, R; Song, M; Song, J; Soos, C; Soramel, F; Spacek, M; Sputowska, I; Spyropoulou-Stassinaki, M; Srivastava, B K; Stachel, J; Stan, I; Stefanek, G; Steinpreis, M; Stenlund, E; Steyn, G; Stiller, J H; Stocco, D; Stolpovskiy, M; Strmen, P; Suaide, A A P; Subieta Vásquez, M A; Sugitate, T; Suire, C; Suleymanov, M; Sultanov, R; Sumbera, M; Susa, T; Symons, T J M; Szanto de Toledo, A; Szarka, I; Szczepankiewicz, A; Szymański, M; Takahashi, J; Tangaro, M A; Tapia Takaki, J D; Tarantola Peloni, A; Tarazona Martinez, A; Tauro, A; Tejeda Muñoz, G; Telesca, A; Terrevoli, C; Ter Minasyan, A; Thäder, J; Thomas, D; Tieulent, R; Timmins, A R; Toia, A; Torii, H; Trubnikov, V; Trzaska, W H; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ulery, J; Ullaland, K; Ulrich, J; Uras, A; Urciuoli, G M; Usai, G L; Vajzer, M; Vala, M; Valencia Palomo, L; Vande Vyvre, P; Vannucci, L; Van Hoorne, J W; van Leeuwen, M; Vargas, A; Varma, R; Vasileiou, M; Vasiliev, A; Vechernin, V; Veldhoen, M; Venaruzzo, M; Vercellin, E; Vergara, S; Vernet, R; Verweij, M; Vickovic, L; Viesti, G; Viinikainen, J; Vilakazi, Z; Villalobos Baillie, O; Vinogradov, A; Vinogradov, L; Vinogradov, Y; Virgili, T; Viyogi, Y P; Vodopyanov, A; Völkl, M A; Voloshin, S; Voloshin, K; Volpe, G; von Haller, B; Vorobyev, I; Vranic, D; Vrláková, J; Vulpescu, B; Vyushin, A; Wagner, B; Wagner, V; Wagner, J; Wang, Y; Wang, Y; Wang, M; Watanabe, D; Watanabe, K; Weber, M; Wessels, J P; Westerhoff, U; Wiechula, J; Wikne, J; Wilde, M; Wilk, G; Wilkinson, J; Williams, M C S; Windelband, B; Winn, M; Xiang, C; Yaldo, C G; Yamaguchi, Y; Yang, H; Yang, P; Yang, S; Yano, S; Yasnopolskiy, S; Yi, J; Yin, Z; Yoo, I-K; Yushmanov, I; Zaccolo, V; Zach, C; Zampolli, C; Zaporozhets, S; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zelnicek, P; Zgura, I S; Zhalov, M; Zhang, F; Zhang, Y; Zhang, H; Zhang, X; Zhou, D; Zhou, Y; Zhou, F; Zhu, X; Zhu, J; Zhu, J; Zhu, H; Zichichi, A; Zimmermann, M B; Zimmermann, A; Zinovjev, G; Zoccarato, Y; Zynovyev, M; Zyzak, M

    2013-11-27

    The ALICE measurement of K(S)(0) and Λ production at midrapidity in Pb-Pb collisions at √(s(NN))=2.76 TeV is presented. The transverse momentum (p(T)) spectra are shown for several collision centrality intervals and in the p(T) range from 0.4 GeV/c (0.6 GeV/c for Λ) to 12 GeV/c. The p(T) dependence of the Λ/K(S)(0) ratios exhibits maxima in the vicinity of 3 GeV/c, and the positions of the maxima shift towards higher p(T) with increasing collision centrality. The magnitude of these maxima increases by almost a factor of three between most peripheral and most central Pb-Pb collisions. This baryon excess at intermediate p(T) is not observed in pp interactions at √s=0.9 TeV and at √s=7 TeV. Qualitatively, the baryon enhancement in heavy-ion collisions is expected from radial flow. However, the measured p(T) spectra above 2 GeV/c progressively decouple from hydrodynamical-model calculations. For higher values of p(T), models that incorporate the influence of the medium on the fragmentation and hadronization processes describe qualitatively the p(T) dependence of the Λ/K(S)(0) ratio.

  5. K(S)0 and Λ production in Pb-Pb collisions at √(s(NN))=2.76 TeV.

    PubMed

    Abelev, B; Adam, J; Adamová, D; Adare, A M; Aggarwal, M M; Aglieri Rinella, G; Agnello, M; Agocs, A G; Agostinelli, A; Ahammed, Z; Ahmad, N; Ahmad Masoodi, A; Ahmed, I; Ahn, S U; Ahn, S A; Aimo, I; Aiola, S; Ajaz, M; Akindinov, A; Aleksandrov, D; Alessandro, B; Alexandre, D; Alici, A; Alkin, A; Alme, J; Alt, T; Altini, V; Altinpinar, S; Altsybeev, I; Alves Garcia Prado, C; Andrei, C; Andronic, A; Anguelov, V; Anielski, J; Antičić, T; Antinori, F; Antonioli, P; Aphecetche, L; Appelshäuser, H; Arbor, N; Arcelli, S; Armesto, N; Arnaldi, R; Aronsson, T; Arsene, I C; Arslandok, M; Augustinus, A; Averbeck, R; Awes, T C; Azmi, M D; Bach, M; Badalà, A; Baek, Y W; Bailhache, R; Bairathi, V; Bala, R; Baldisseri, A; Baltasar Dos Santos Pedrosa, F; Bán, J; Baral, R C; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L S; Barret, V; Bartke, J; Basile, M; Bastid, N; Basu, S; Bathen, B; Batigne, G; Batyunya, B; Batzing, P C; Baumann, C; Bearden, I G; Beck, H; Behera, N K; Belikov, I; Bellini, F; Bellwied, R; Belmont-Moreno, E; Bencedi, G; Beole, S; Berceanu, I; Bercuci, A; Berdnikov, Y; Berenyi, D; Bergognon, A A E; Bertens, R A; Berzano, D; Betev, L; Bhasin, A; Bhati, A K; Bhom, J; Bianchi, L; Bianchi, N; Bielčík, J; Bielčíková, J; Bilandzic, A; Bjelogrlic, S; Blanco, F; Blanco, F; Blau, D; Blume, C; Bock, F; Bogdanov, A; Bøggild, H; Bogolyubsky, M; Boldizsár, L; Bombara, M; Book, J; Borel, H; Borissov, A; Bornschein, J; Botje, M; Botta, E; Böttger, S; Braun-Munzinger, P; Bregant, M; Breitner, T; Broker, T A; Browning, T A; Broz, M; Brun, R; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Buncic, P; Busch, O; Buthelezi, Z; Caffarri, D; Cai, X; Caines, H; Caliva, A; Calvo Villar, E; Camerini, P; Canoa Roman, V; Cara Romeo, G; Carena, F; Carena, W; Carminati, F; Casanova Díaz, A; Castillo Castellanos, J; Casula, E A R; Catanescu, V; Cavicchioli, C; Ceballos Sanchez, C; Cepila, J; Cerello, P; Chang, B; Chapeland, S; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Cherney, M; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Chochula, P; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Colamaria, F; Colella, D; Collu, A; Colocci, M; Conesa Balbastre, G; Conesa del Valle, Z; Connors, M E; Contin, G; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortese, P; Cortés Maldonado, I; Cosentino, M R; Costa, F; Crochet, P; Cruz Albino, R; Cuautle, E; Cunqueiro, L; Dainese, A; Dang, R; Danu, A; Das, K; Das, D; Das, I; Dash, A; Dash, S; De, S; Delagrange, H; Deloff, A; Dénes, E; Deppman, A; D'Erasmo, G; de Barros, G O V; De Caro, A; de Cataldo, G; de Cuveland, J; De Falco, A; De Gruttola, D; De Marco, N; De Pasquale, S; de Rooij, R; Diaz Corchero, M A; Dietel, T; Divià, R; Di Bari, D; Di Giglio, C; Di Liberto, S; Di Mauro, A; Di Nezza, P; Djuvsland, Ø; Dobrin, A; Dobrowolski, T; Dönigus, B; Dordic, O; Dubey, A K; Dubla, A; Ducroux, L; Dupieux, P; Dutta Majumdar, A K; Elia, D; Emschermann, D; Engel, H; Erazmus, B; Erdal, H A; Eschweiler, D; Espagnon, B; Estienne, M; Esumi, S; Evans, D; Evdokimov, S; Eyyubova, G; Fabris, D; Faivre, J; Falchieri, D; Fantoni, A; Fasel, M; Fehlker, D; Feldkamp, L; Felea, D; Feliciello, A; Feofilov, G; Ferencei, J; Fernández Téllez, A; Ferreiro, E G; Ferretti, A; Festanti, A; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Floratos, E; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Francescon, A; Frankenfeld, U; Fuchs, U; Furget, C; Fusco Girard, M; Gaardhøje, J J; Gagliardi, M; Gago, A; Gallio, M; Gangadharan, D R; Ganoti, P; Garabatos, C; Garcia-Solis, E; Gargiulo, C; Garishvili, I; Gerhard, J; Germain, M; Gheata, A; Gheata, M; Ghidini, B; Ghosh, P; Gianotti, P; Giubellino, P; Gladysz-Dziadus, E; Glässel, P; Goerlich, L; Gomez, R; González-Zamora, P; Gorbunov, S; Gotovac, S; Graczykowski, L K; Grajcarek, R; Grelli, A; Grigoras, C; Grigoras, A; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grinyov, B; Grion, N; Grosse-Oetringhaus, J F; Grossiord, J-Y; Grosso, R; Guber, F; Guernane, R; Guerzoni, B; Guilbaud, M; Gulbrandsen, K; Gulkanyan, H; Gunji, T; Gupta, A; Gupta, R; Khan, K H; Haake, R; Haaland, Ø; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Hanratty, L D; Hansen, A; Harris, J W; Hartmann, H; Harton, A; Hatzifotiadou, D; Hayashi, S; Hayrapetyan, A; Heckel, S T; Heide, M; Helstrup, H; Herghelegiu, A; Herrera Corral, G; Herrmann, N; Hess, B A; Hetland, K F; Hicks, B; Hippolyte, B; Hori, Y; Hristov, P; Hřivnáčová, I; Huang, M; Humanic, T J; Hutter, D; Hwang, D S; Ilkaev, R; Ilkiv, I; Inaba, M; Incani, E; Innocenti, G M; Ionita, C; Ippolitov, M; Irfan, M; Ivanov, M; Ivanov, V; Ivanytskyi, O; Jachołkowski, A; Jahnke, C; Jang, H J; Janik, M A; Jayarathna, P H S Y; Jena, S; Jimenez Bustamante, R T; Jones, P G; Jung, H; Jusko, A; Kalcher, S; Kaliňák, P; Kalweit, A; Kang, J H; Kaplin, V; Kar, S; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karpechev, E; Kazantsev, A; Kebschull, U; Keidel, R; Ketzer, B; Khan, M M; Khan, P; Khan, S A; Khanzadeev, A; Kharlov, Y; Kileng, B; Kim, T; Kim, B; Kim, D J; Kim, D W; Kim, J S; Kim, M; Kim, M; Kim, S; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Kiss, G; Klay, J L; Klein, J; Klein-Bösing, C; Kluge, A; Knichel, M L; Knospe, A G; Kobdaj, C; Köhler, M K; Kollegger, T; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Konevskikh, A; Kovalenko, V; Kowalski, M; Kox, S; Koyithatta Meethaleveedu, G; Kral, J; Králik, I; Kramer, F; Kravčáková, A; Krelina, M; Kretz, M; Krivda, M; Krizek, F; Krus, M; Kryshen, E; Krzewicki, M; Kucera, V; Kucheriaev, Y; Kugathasan, T; Kuhn, C; Kuijer, P G; Kulakov, I; Kumar, J; Kurashvili, P; Kurepin, A B; Kurepin, A; Kuryakin, A; Kushpil, V; Kushpil, S; Kweon, M J; Kwon, Y; Ladrón de Guevara, P; Lagana Fernandes, C; Lakomov, I; Langoy, R; Lara, C; Lardeux, A; Lattuca, A; La Pointe, S L; La Rocca, P; Lea, R; Lechman, M; Lee, S C; Lee, G R; Legrand, I; Lehnert, J; Lemmon, R C; Lenhardt, M; Lenti, V; Leoncino, M; León Monzón, I; Lévai, P; Li, S; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Ljunggren, H M; Lodato, D F; Loenne, P I; Loggins, V R; Loginov, V; Lohner, D; Loizides, C; Lopez, X; López Torres, E; Løvhøiden, G; Lu, X-G; Luettig, P; Lunardon, M; Luo, J; Luparello, G; Luzzi, C; Jacobs, P M; Ma, R; Maevskaya, A; Mager, M; Mahapatra, D P; Maire, A; Malaev, M; Maldonado Cervantes, I; Malinina, L; Mal'Kevich, D; Malzacher, P; Mamonov, A; Manceau, L; Manko, V; Manso, F; Manzari, V; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Marín, A; Markert, C; Marquard, M; Martashvili, I; Martin, N A; Martinengo, P; Martínez, M I; Martínez García, G; Martin Blanco, J; Martynov, Y; Mas, A; Masciocchi, S; Masera, M; Masoni, A; Massacrier, L; Mastroserio, A; Matyja, A; Mazer, J; Mazumder, R; Mazzoni, M A; Meddi, F; Menchaca-Rocha, A; Mercado Pérez, J; Meres, M; Miake, Y; Mikhaylov, K; Milano, L; Milosevic, J; Mischke, A; Mishra, A N; Miśkowiec, D; Mitu, C; Mlynarz, J; Mohanty, B; Molnar, L; Montaño Zetina, L; Monteno, M; Montes, E; Morando, M; Moreira De Godoy, D A; Moretto, S; Morreale, A; Morsch, A; Muccifora, V; Mudnic, E; Muhuri, S; Mukherjee, M; Müller, H; Munhoz, M G; Murray, S; Musa, L; Nandi, B K; Nania, R; Nappi, E; Nattrass, C; Nayak, T K; Nazarenko, S; Nedosekin, A; Nicassio, M; Niculescu, M; Nielsen, B S; Nikolaev, S; Nikulin, S; Nikulin, V; Nilsen, B S; Nilsson, M S; Noferini, F; Nomokonov, P; Nooren, G; Nyanin, A; Nyatha, A; Nystrand, J; Oeschler, H; Oh, S K; Oh, S; Olah, L; Oleniacz, J; Oliveira Da Silva, A C; Onderwaater, J; Oppedisano, C; Ortiz Velasquez, A; Oskarsson, A; Otwinowski, J; Oyama, K; Pachmayer, Y; Pachr, M; Pagano, P; Paić, G; Painke, F; Pajares, C; Pal, S K; Palaha, A; Palmeri, A; Papikyan, V; Pappalardo, G S; Park, W J; Passfeld, A; Patalakha, D I; Paticchio, V; Paul, B; Pawlak, T; Peitzmann, T; Pereira Da Costa, H; Pereira De Oliveira Filho, E; Peresunko, D; Pérez Lara, C E; Perrino, D; Peryt, W; Pesci, A; Pestov, Y; Petráček, V; Petran, M; Petris, M; Petrov, P; Petrovici, M; Petta, C; Piano, S; Pikna, M; Pillot, P; Pinazza, O; Pinsky, L; Pitz, N; Piyarathna, D B; Planinic, M; Płoskoń, M; Pluta, J; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polichtchouk, B; Pop, A; Porteboeuf-Houssais, S; Pospíšil, V; Potukuchi, B; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puddu, G; Punin, V; Putschke, J; Qvigstad, H; Rachevski, A; Rademakers, A; Rak, J; Rakotozafindrabe, A; Ramello, L; Raniwala, S; Raniwala, R; Räsänen, S S; Rascanu, B T; Rathee, D; Rauch, W; Rauf, A W; Razazi, V; Read, K F; Real, J S; Redlich, K; Reed, R J; Rehman, A; Reichelt, P; Reicher, M; Reidt, F; Renfordt, R; Reolon, A R; Reshetin, A; Rettig, F; Revol, J-P; Reygers, K; Riccati, L; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Rivetti, A; Rodríguez Cahuantzi, M; Rodriguez Manso, A; Røed, K; Rogochaya, E; Rohni, S; Rohr, D; Röhrich, D; Romita, R; Ronchetti, F; Rosnet, P; Rossegger, S; Rossi, A; Roy, P; Roy, C; Rubio Montero, A J; Rui, R; Russo, R; Ryabinkin, E; Rybicki, A; Sadovsky, S; Safařík, K; Sahoo, R; Sahu, P K; Saini, J; Sakaguchi, H; Sakai, S; Sakata, D; Salgado, C A; Salzwedel, J; Sambyal, S; Samsonov, V; Sanchez Castro, X; Sándor, L; Sandoval, A; Sano, M; Santagati, G; Santoro, R; Sarkar, D; Scapparone, E; Scarlassara, F; Scharenberg, R P; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schuchmann, S; Schukraft, J; Schulc, M; Schuster, T; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, R; Scott, P A; Segato, G; Selyuzhenkov, I; Seo, J; Serci, S; Serradilla, E; Sevcenco, A; Shabetai, A; Shabratova, G; Shahoyan, R; Sharma, S; Sharma, N; Shigaki, K; Shtejer, K; Sibiriak, Y; Siddhanta, S; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simatovic, G; Singaraju, R; Singh, R; Singha, S; Singhal, V; Sinha, B C; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Skjerdal, K; Smakal, R; Smirnov, N; Snellings, R J M; Soltz, R; Song, M; Song, J; Soos, C; Soramel, F; Spacek, M; Sputowska, I; Spyropoulou-Stassinaki, M; Srivastava, B K; Stachel, J; Stan, I; Stefanek, G; Steinpreis, M; Stenlund, E; Steyn, G; Stiller, J H; Stocco, D; Stolpovskiy, M; Strmen, P; Suaide, A A P; Subieta Vásquez, M A; Sugitate, T; Suire, C; Suleymanov, M; Sultanov, R; Sumbera, M; Susa, T; Symons, T J M; Szanto de Toledo, A; Szarka, I; Szczepankiewicz, A; Szymański, M; Takahashi, J; Tangaro, M A; Tapia Takaki, J D; Tarantola Peloni, A; Tarazona Martinez, A; Tauro, A; Tejeda Muñoz, G; Telesca, A; Terrevoli, C; Ter Minasyan, A; Thäder, J; Thomas, D; Tieulent, R; Timmins, A R; Toia, A; Torii, H; Trubnikov, V; Trzaska, W H; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ulery, J; Ullaland, K; Ulrich, J; Uras, A; Urciuoli, G M; Usai, G L; Vajzer, M; Vala, M; Valencia Palomo, L; Vande Vyvre, P; Vannucci, L; Van Hoorne, J W; van Leeuwen, M; Vargas, A; Varma, R; Vasileiou, M; Vasiliev, A; Vechernin, V; Veldhoen, M; Venaruzzo, M; Vercellin, E; Vergara, S; Vernet, R; Verweij, M; Vickovic, L; Viesti, G; Viinikainen, J; Vilakazi, Z; Villalobos Baillie, O; Vinogradov, A; Vinogradov, L; Vinogradov, Y; Virgili, T; Viyogi, Y P; Vodopyanov, A; Völkl, M A; Voloshin, S; Voloshin, K; Volpe, G; von Haller, B; Vorobyev, I; Vranic, D; Vrláková, J; Vulpescu, B; Vyushin, A; Wagner, B; Wagner, V; Wagner, J; Wang, Y; Wang, Y; Wang, M; Watanabe, D; Watanabe, K; Weber, M; Wessels, J P; Westerhoff, U; Wiechula, J; Wikne, J; Wilde, M; Wilk, G; Wilkinson, J; Williams, M C S; Windelband, B; Winn, M; Xiang, C; Yaldo, C G; Yamaguchi, Y; Yang, H; Yang, P; Yang, S; Yano, S; Yasnopolskiy, S; Yi, J; Yin, Z; Yoo, I-K; Yushmanov, I; Zaccolo, V; Zach, C; Zampolli, C; Zaporozhets, S; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zelnicek, P; Zgura, I S; Zhalov, M; Zhang, F; Zhang, Y; Zhang, H; Zhang, X; Zhou, D; Zhou, Y; Zhou, F; Zhu, X; Zhu, J; Zhu, J; Zhu, H; Zichichi, A; Zimmermann, M B; Zimmermann, A; Zinovjev, G; Zoccarato, Y; Zynovyev, M; Zyzak, M

    2013-11-27

    The ALICE measurement of K(S)(0) and Λ production at midrapidity in Pb-Pb collisions at √(s(NN))=2.76 TeV is presented. The transverse momentum (p(T)) spectra are shown for several collision centrality intervals and in the p(T) range from 0.4 GeV/c (0.6 GeV/c for Λ) to 12 GeV/c. The p(T) dependence of the Λ/K(S)(0) ratios exhibits maxima in the vicinity of 3 GeV/c, and the positions of the maxima shift towards higher p(T) with increasing collision centrality. The magnitude of these maxima increases by almost a factor of three between most peripheral and most central Pb-Pb collisions. This baryon excess at intermediate p(T) is not observed in pp interactions at √s=0.9 TeV and at √s=7 TeV. Qualitatively, the baryon enhancement in heavy-ion collisions is expected from radial flow. However, the measured p(T) spectra above 2 GeV/c progressively decouple from hydrodynamical-model calculations. For higher values of p(T), models that incorporate the influence of the medium on the fragmentation and hadronization processes describe qualitatively the p(T) dependence of the Λ/K(S)(0) ratio. PMID:24329443

  6. J/ψ elliptic flow in Pb-Pb collisions at √(s(NN))=2.76 TeV.

    PubMed

    Abbas, E; Abelev, B; Adam, J; Adamová, D; Adare, A M; Aggarwal, M M; Aglieri Rinella, G; Agnello, M; Agocs, A G; Agostinelli, A; Ahammed, Z; Ahmad, N; Ahmad Masoodi, A; Ahn, S A; Ahn, S U; Aimo, I; Ajaz, M; Akindinov, A; Aleksandrov, D; Alessandro, B; Alici, A; Alkin, A; Almaráz Aviña, E; Alme, J; Alt, T; Altini, V; Altinpinar, S; Altsybeev, I; Andrei, C; Andronic, A; Anguelov, V; Anielski, J; Anson, C; Antičić, T; Antinori, F; Antonioli, P; Aphecetche, L; Appelshäuser, H; Arbor, N; Arcelli, S; Arend, A; Armesto, N; Arnaldi, R; Aronsson, T; Arsene, I C; Arslandok, M; Asryan, A; Augustinus, A; Averbeck, R; Awes, T C; Äystö, J; Azmi, M D; Bach, M; Badalà, A; Baek, Y W; Bailhache, R; Bala, R; Baldisseri, A; Baltasar Dos Santos Pedrosa, F; Bán, J; Baral, R C; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L S; Barret, V; Bartke, J; Basile, M; Bastid, N; Basu, S; Bathen, B; Batigne, G; Batyunya, B; Batzing, P C; Baumann, C; Bearden, I G; Beck, H; Behera, N K; Belikov, I; Bellini, F; Bellwied, R; Belmont-Moreno, E; Bencedi, G; Beole, S; Berceanu, I; Bercuci, A; Berdnikov, Y; Berenyi, D; Bergognon, A A E; Bertens, R A; Berzano, D; Betev, L; Bhasin, A; Bhati, A K; Bhom, J; Bianchi, N; Bianchi, L; Bianchin, C; Bielčík, J; Bielčíková, J; Bilandzic, A; Bjelogrlic, S; Blanco, F; Blanco, F; Blau, D; Blume, C; Boccioli, M; Böttger, S; Bogdanov, A; Bøggild, H; Bogolyubsky, M; Boldizsár, L; Bombara, M; Book, J; Borel, H; Borissov, A; Bossú, F; Botje, M; Botta, E; Braidot, E; Braun-Munzinger, P; Bregant, M; Breitner, T; Broker, T A; Browning, T A; Broz, M; Brun, R; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Buncic, P; Busch, O; Buthelezi, Z; Caffarri, D; Cai, X; Caines, H; Calvo Villar, E; Camerini, P; Canoa Roman, V; Cara Romeo, G; Carena, W; Carena, F; Carlin Filho, N; Carminati, F; Casanova Díaz, A; Castillo Castellanos, J; Castillo Hernandez, J F; Casula, E A R; Catanescu, V; Cavicchioli, C; Ceballos Sanchez, C; Cepila, J; Cerello, P; Chang, B; Chapeland, S; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Cherney, M; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Chochula, P; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Colamaria, F; Colella, D; Collu, A; Conesa Balbastre, G; Conesa del Valle, Z; Connors, M E; Contin, G; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortese, P; Cortés Maldonado, I; Cosentino, M R; Costa, F; Cotallo, M E; Crescio, E; Crochet, P; Cruz Alaniz, E; Cruz Albino, R; Cuautle, E; Cunqueiro, L; Dainese, A; Dang, R; Danu, A; Das, D; Das, K; Das, S; Das, I; Dash, A; Dash, S; De, S; de Barros, G O V; De Caro, A; de Cataldo, G; de Cuveland, J; De Falco, A; De Gruttola, D; Delagrange, H; Deloff, A; De Marco, N; Dénes, E; De Pasquale, S; Deppman, A; D'Erasmo, G; de Rooij, R; Diaz Corchero, M A; Di Bari, D; Dietel, T; Di Giglio, C; Di Liberto, S; Di Mauro, A; Di Nezza, P; Divià, R; Djuvsland, Ø; Dobrin, A; Dobrowolski, T; Dönigus, B; Dordic, O; Driga, O; Dubey, A K; Dubla, A; Ducroux, L; Dupieux, P; Dutta Majumdar, A K; Elia, D; Emschermann, D; Engel, H; Erazmus, B; Erdal, H A; Eschweiler, D; Espagnon, B; Estienne, M; Esumi, S; Evans, D; Evdokimov, S; Eyyubova, G; Fabris, D; Faivre, J; Falchieri, D; Fantoni, A; Fasel, M; Fehlker, D; Feldkamp, L; Felea, D; Feliciello, A; Fenton-Olsen, B; Feofilov, G; Fernández Téllez, A; Ferretti, A; Festanti, A; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Floratos, E; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Francescon, A; Frankenfeld, U; Fuchs, U; Furget, C; Fusco Girard, M; Gaardhøje, J J; Gagliardi, M; Gago, A; Gallio, M; Gangadharan, D R; Ganoti, P; Garabatos, C; Garcia-Solis, E; Gargiulo, C; Garishvili, I; Gerhard, J; Germain, M; Geuna, C; Gheata, A; Gheata, M; Ghidini, B; Ghosh, P; Gianotti, P; Girard, M R; Giubellino, P; Gladysz-Dziadus, E; Glässel, P; Gomez, R; Ferreiro, E G; González-Trueba, L H; González-Zamora, P; Gorbunov, S; Goswami, A; Gotovac, S; Graczykowski, L K; Grajcarek, R; Grelli, A; Grigoras, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grinyov, B; Grion, N; Gros, P; Grosse-Oetringhaus, J F; Grossiord, J-Y; Grosso, R; Guber, F; Guernane, R; Guerzoni, B; Guilbaud, M; Gulbrandsen, K; Gulkanyan, H; Gunji, T; Gupta, A; Gupta, R; Haake, R; Haaland, Ø; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Han, B H; Hanratty, L D; Hansen, A; Harmanová-Tóthová, Z; Harris, J W; Hartig, M; Harton, A; Hatzifotiadou, D; Hayashi, S; Hayrapetyan, A; Heckel, S T; Heide, M; Helstrup, H; Herghelegiu, A; Herrera Corral, G; Herrmann, N; Hess, B A; Hetland, K F; Hicks, B; Hippolyte, B; Hori, Y; Hristov, P; Hřivnáčová, I; Huang, M; Humanic, T J; Hwang, D S; Ichou, R; Ilkaev, R; Ilkiv, I; Inaba, M; Incani, E; Innocenti, P G; Innocenti, G M; Ippolitov, M; Irfan, M; Ivan, C; Ivanov, M; Ivanov, V; Ivanov, A; Ivanytskyi, O; Jachołkowski, A; Jacobs, P M; Jahnke, C; Jang, H J; Janik, M A; Jayarathna, P H S Y; Jena, S; Jha, D M; Jimenez Bustamante, R T; Jones, P G; Jung, H; Jusko, A; Kaidalov, A B; Kalcher, S; Kaliňák, P; Kalliokoski, T; Kalweit, A; Kang, J H; Kaplin, V; Kar, S; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karpechev, E; Kazantsev, A; Kebschull, U; Keidel, R; Ketzer, B; Khan, S A; Khan, M M; Khan, P; Khan, K H; Khanzadeev, A; Kharlov, Y; Kileng, B; Kim, M; Kim, S; Kim, M; Kim, J S; Kim, J H; Kim, T; Kim, B; Kim, D J; Kim, D W; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Klay, J L; Klein, J; Klein-Bösing, C; Kliemant, M; Kluge, A; Knichel, M L; Knospe, A G; Köhler, M K; Kollegger, T; Kolojvari, A; Kompaniets, M; Kondratiev, V; Kondratyeva, N; Konevskikh, A; Kovalenko, V; Kowalski, M; Kox, S; Koyithatta Meethaleveedu, G; Kral, J; Králik, I; Kramer, F; Kravčáková, A; Krelina, M; Kretz, M; Krivda, M; Krizek, F; Krus, M; Kryshen, E; Krzewicki, M; Kucera, V; Kucheriaev, Y; Kugathasan, T; Kuhn, C; Kuijer, P G; Kulakov, I; Kumar, J; Kurashvili, P; Kurepin, A; Kurepin, A B; Kuryakin, A; Kushpil, S; Kushpil, V; Kvaerno, H; Kweon, M J; Kwon, Y; Ladrón de Guevara, P; Lakomov, I; Langoy, R; La Pointe, S L; Lara, C; Lardeux, A; La Rocca, P; Lea, R; Lechman, M; Lee, S C; Lee, G R; Legrand, I; Lehnert, J; Lemmon, R C; Lenhardt, M; Lenti, V; León, H; Leoncino, M; León Monzón, I; Lévai, P; Li, S; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Ljunggren, H M; Lodato, D F; Loenne, P I; Loggins, V R; Loginov, V; Lohner, D; Loizides, C; Loo, K K; Lopez, X; López Torres, E; Løvhøiden, G; Lu, X-G; Luettig, P; Lunardon, M; Luo, J; Luparello, G; Luzzi, C; Ma, R; Ma, K; Madagodahettige-Don, D M; Maevskaya, A; Mager, M; Mahapatra, D P; Maire, A; Malaev, M; Maldonado Cervantes, I; Malinina, L; Mal'Kevich, D; Malzacher, P; Mamonov, A; Manceau, L; Mangotra, L; Manko, V; Manso, F; Manukyan, N; Manzari, V; Mao, Y; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Marín, A; Markert, C; Marquard, M; Martashvili, I; Martin, N A; Martinengo, P; Martínez, M I; Martínez Davalos, A; Martínez García, G; Martynov, Y; Mas, A; Masciocchi, S; Masera, M; Masoni, A; Massacrier, L; Mastroserio, A; Matyja, A; Mayer, C; Mazer, J; Mazzoni, M A; Meddi, F; Menchaca-Rocha, A; Mercado Pérez, J; Meres, M; Miake, Y; Mikhaylov, K; Milano, L; Milosevic, J; Mischke, A; Mishra, A N; Miśkowiec, D; Mitu, C; Mizuno, S; Mlynarz, J; Mohanty, B; Molnar, L; Montaño Zetina, L; Monteno, M; Montes, E; Moon, T; Morando, M; Moreira De Godoy, D A; Moretto, S; Morreale, A; Morsch, A; Muccifora, V; Mudnic, E; Muhuri, S; Mukherjee, M; Müller, H; Munhoz, M G; Murray, S; Musa, L; Musinsky, J; Nandi, B K; Nania, R; Nappi, E; Nattrass, C; Nayak, T K; Nazarenko, S; Nedosekin, A; Nicassio, M; Niculescu, M; Nielsen, B S; Niida, T; Nikolaev, S; Nikolic, V; Nikulin, S; Nikulin, V; Nilsen, B S; Nilsson, M S; Noferini, F; Nomokonov, P; Nooren, G; Nyanin, A; Nyatha, A; Nygaard, C; Nystrand, J; Ochirov, A; Oeschler, H; Oh, S; Oh, S K; Oleniacz, J; Oliveira Da Silva, A C; Oppedisano, C; Ortiz Velasquez, A; Oskarsson, A; Ostrowski, P; Otwinowski, J; Oyama, K; Ozawa, K; Pachmayer, Y; Pachr, M; Padilla, F; Pagano, P; Paić, G; Painke, F; Pajares, C; Pal, S K; Palaha, A; Palmeri, A; Papikyan, V; Pappalardo, G S; Park, W J; Passfeld, A; Patalakha, D I; Paticchio, V; Paul, B; Pavlinov, A; Pawlak, T; Peitzmann, T; Pereira Da Costa, H; Pereira De Oliveira Filho, E; Peresunko, D; Pérez Lara, C E; Perrino, D; Peryt, W; Pesci, A; Pestov, Y; Petráček, V; Petran, M; Petris, M; Petrov, P; Petrovici, M; Petta, C; Piano, S; Pikna, M; Pillot, P; Pinazza, O; Pinsky, L; Pitz, N; Piyarathna, D B; Planinic, M; Płoskoń, M; Pluta, J; Pocheptsov, T; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polák, K; Polichtchouk, B; Poljak, N; Pop, A; Porteboeuf-Houssais, S; Pospíšil, V; Potukuchi, B; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puddu, G; Punin, V; Putiš, M; Putschke, J; Qvigstad, H; Rachevski, A; Rademakers, A; Räihä, T S; Rak, J; Rakotozafindrabe, A; Ramello, L; Raniwala, S; Raniwala, R; Räsänen, S S; Rascanu, B T; Rathee, D; Rauch, W; Read, K F; Real, J S; Redlich, K; Reed, R J; Rehman, A; Reichelt, P; Reicher, M; Renfordt, R; Reolon, A R; Reshetin, A; Rettig, F; Revol, J-P; Reygers, K; Riccati, L; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Rodríguez Cahuantzi, M; Rodriguez Manso, A; Røed, K; Rogochaya, E; Rohr, D; Röhrich, D; Romita, R; Ronchetti, F; Rosnet, P; Rossegger, S; Rossi, A; Roy, P; Roy, C; Rubio Montero, A J; Rui, R; Russo, R; Ryabinkin, E; Rybicki, A; Sadovsky, S; Šafařík, K; Sahoo, R; Sahu, P K; Saini, J; Sakaguchi, H; Sakai, S; Sakata, D; Salgado, C A; Salzwedel, J; Sambyal, S; Samsonov, V; Sanchez Castro, X; Šándor, L; Sandoval, A; Sano, M; Santagati, G; Santoro, R; Sarkamo, J; Sarkar, D; Scapparone, E; Scarlassara, F; Scharenberg, R P; Schiaua, C; Schicker, R; Schmidt, H R; Schmidt, C; Schuchmann, S; Schukraft, J; Schuster, T; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, R; Scott, P A; Segato, G; Selyuzhenkov, I; Senyukov, S; Seo, J; Serci, S; Serradilla, E; Sevcenco, A; Shabetai, A; Shabratova, G; Shahoyan, R; Sharma, N; Sharma, S; Rohni, S; Shigaki, K; Shtejer, K; Sibiriak, Y; Sicking, E; Siddhanta, S; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simatovic, G; Simonetti, G; Singaraju, R; Singh, R; Singha, S; Singhal, V; Sinha, B C; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Skjerdal, K; Smakal, R; Smirnov, N; Snellings, R J M; Søgaard, C; Soltz, R; Song, M; Song, J; Soos, C; Soramel, F; Sputowska, I; Spyropoulou-Stassinaki, M; Srivastava, B K; Stachel, J; Stan, I; Stefanek, G; Steinpreis, M; Stenlund, E; Steyn, G; Stiller, J H; Stocco, D; Stolpovskiy, M; Strmen, P; Suaide, A A P; Subieta Vásquez, M A; Sugitate, T; Suire, C; Sultanov, R; Šumbera, M; Susa, T; Symons, T J M; Szanto de Toledo, A; Szarka, I; Szczepankiewicz, A; Szymański, M; Takahashi, J; Tangaro, M A; Tapia Takaki, J D; Tarantola Peloni, A; Tarazona Martinez, A; Tauro, A; Tejeda Muñoz, G; Telesca, A; Ter Minasyan, A; Terrevoli, C; Thäder, J; Thomas, D; Tieulent, R; Timmins, A R; Tlusty, D; Toia, A; Torii, H; Toscano, L; Trubnikov, V; Truesdale, D; Trzaska, W H; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ulery, J; Ullaland, K; Ulrich, J; Uras, A; Urciuoli, G M; Usai, G L; Vajzer, M; Vala, M; Valencia Palomo, L; Vande Vyvre, P; Van Hoorne, J W; van Leeuwen, M; Vannucci, L; Vargas, A; Varma, R; Vasileiou, M; Vasiliev, A; Vechernin, V; Veldhoen, M; Venaruzzo, M; Vercellin, E; Vergara, S; Vernet, R; Verweij, M; Vickovic, L; Viesti, G; Viinikainen, J; Vilakazi, Z; Villalobos Baillie, O; Vinogradov, Y; Vinogradov, L; Vinogradov, A; Virgili, T; Viyogi, Y P; Vodopyanov, A; Völkl, M A; Voloshin, S; Voloshin, K; Volpe, G; von Haller, B; Vorobyev, I; Vranic, D; Vrláková, J; Vulpescu, B; Vyushin, A; Wagner, B; Wagner, V; Wan, R; Wang, Y; Wang, M; Wang, Y; Watanabe, K; Weber, M; Wessels, J P; Westerhoff, U; Wiechula, J; Wikne, J; Wilde, M; Wilk, G; Williams, M C S; Windelband, B; Xaplanteris Karampatsos, L; Yaldo, C G; Yamaguchi, Y; Yang, S; Yang, P; Yang, H; Yasnopolskiy, S; Yi, J; Yin, Z; Yoo, I-K; Yoon, J; Yu, W; Yuan, X; Yushmanov, I; Zaccolo, V; Zach, C; Zampolli, C; Zaporozhets, S; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zelnicek, P; Zgura, I S; Zhalov, M; Zhang, H; Zhang, X; Zhang, Y; Zhou, D; Zhou, F; Zhou, Y; Zhu, H; Zhu, J; Zhu, X; Zhu, J; Zichichi, A; Zimmermann, A; Zinovjev, G; Zoccarato, Y; Zynovyev, M; Zyzak, M

    2013-10-18

    We report on the first measurement of inclusive J/ψ elliptic flow v2 in heavy-ion collisions at the LHC. The measurement is performed with the ALICE detector in Pb-Pb collisions at √(s(NN))=2.76 TeV in the rapidity range 2.5Pb-Pb collisions at √(s(NN))=2.76 TeV, an indication of nonzero v2 is observed with a largest measured value of v2=0.116±0.046(stat)±0.029(syst) for J/ψ in the transverse momentum range 2≤p(T)<4 GeV/c. The elliptic flow measurement complements the previously reported ALICE results on the inclusive J/ψ nuclear modification factor and favors the scenario of a significant fraction of J/ψ production from charm quarks in a deconfined partonic phase. PMID:24182258

  7. J/ψ elliptic flow in Pb-Pb collisions at √(s(NN))=2.76 TeV.

    PubMed

    Abbas, E; Abelev, B; Adam, J; Adamová, D; Adare, A M; Aggarwal, M M; Aglieri Rinella, G; Agnello, M; Agocs, A G; Agostinelli, A; Ahammed, Z; Ahmad, N; Ahmad Masoodi, A; Ahn, S A; Ahn, S U; Aimo, I; Ajaz, M; Akindinov, A; Aleksandrov, D; Alessandro, B; Alici, A; Alkin, A; Almaráz Aviña, E; Alme, J; Alt, T; Altini, V; Altinpinar, S; Altsybeev, I; Andrei, C; Andronic, A; Anguelov, V; Anielski, J; Anson, C; Antičić, T; Antinori, F; Antonioli, P; Aphecetche, L; Appelshäuser, H; Arbor, N; Arcelli, S; Arend, A; Armesto, N; Arnaldi, R; Aronsson, T; Arsene, I C; Arslandok, M; Asryan, A; Augustinus, A; Averbeck, R; Awes, T C; Äystö, J; Azmi, M D; Bach, M; Badalà, A; Baek, Y W; Bailhache, R; Bala, R; Baldisseri, A; Baltasar Dos Santos Pedrosa, F; Bán, J; Baral, R C; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L S; Barret, V; Bartke, J; Basile, M; Bastid, N; Basu, S; Bathen, B; Batigne, G; Batyunya, B; Batzing, P C; Baumann, C; Bearden, I G; Beck, H; Behera, N K; Belikov, I; Bellini, F; Bellwied, R; Belmont-Moreno, E; Bencedi, G; Beole, S; Berceanu, I; Bercuci, A; Berdnikov, Y; Berenyi, D; Bergognon, A A E; Bertens, R A; Berzano, D; Betev, L; Bhasin, A; Bhati, A K; Bhom, J; Bianchi, N; Bianchi, L; Bianchin, C; Bielčík, J; Bielčíková, J; Bilandzic, A; Bjelogrlic, S; Blanco, F; Blanco, F; Blau, D; Blume, C; Boccioli, M; Böttger, S; Bogdanov, A; Bøggild, H; Bogolyubsky, M; Boldizsár, L; Bombara, M; Book, J; Borel, H; Borissov, A; Bossú, F; Botje, M; Botta, E; Braidot, E; Braun-Munzinger, P; Bregant, M; Breitner, T; Broker, T A; Browning, T A; Broz, M; Brun, R; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Buncic, P; Busch, O; Buthelezi, Z; Caffarri, D; Cai, X; Caines, H; Calvo Villar, E; Camerini, P; Canoa Roman, V; Cara Romeo, G; Carena, W; Carena, F; Carlin Filho, N; Carminati, F; Casanova Díaz, A; Castillo Castellanos, J; Castillo Hernandez, J F; Casula, E A R; Catanescu, V; Cavicchioli, C; Ceballos Sanchez, C; Cepila, J; Cerello, P; Chang, B; Chapeland, S; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Cherney, M; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Chochula, P; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Colamaria, F; Colella, D; Collu, A; Conesa Balbastre, G; Conesa del Valle, Z; Connors, M E; Contin, G; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortese, P; Cortés Maldonado, I; Cosentino, M R; Costa, F; Cotallo, M E; Crescio, E; Crochet, P; Cruz Alaniz, E; Cruz Albino, R; Cuautle, E; Cunqueiro, L; Dainese, A; Dang, R; Danu, A; Das, D; Das, K; Das, S; Das, I; Dash, A; Dash, S; De, S; de Barros, G O V; De Caro, A; de Cataldo, G; de Cuveland, J; De Falco, A; De Gruttola, D; Delagrange, H; Deloff, A; De Marco, N; Dénes, E; De Pasquale, S; Deppman, A; D'Erasmo, G; de Rooij, R; Diaz Corchero, M A; Di Bari, D; Dietel, T; Di Giglio, C; Di Liberto, S; Di Mauro, A; Di Nezza, P; Divià, R; Djuvsland, Ø; Dobrin, A; Dobrowolski, T; Dönigus, B; Dordic, O; Driga, O; Dubey, A K; Dubla, A; Ducroux, L; Dupieux, P; Dutta Majumdar, A K; Elia, D; Emschermann, D; Engel, H; Erazmus, B; Erdal, H A; Eschweiler, D; Espagnon, B; Estienne, M; Esumi, S; Evans, D; Evdokimov, S; Eyyubova, G; Fabris, D; Faivre, J; Falchieri, D; Fantoni, A; Fasel, M; Fehlker, D; Feldkamp, L; Felea, D; Feliciello, A; Fenton-Olsen, B; Feofilov, G; Fernández Téllez, A; Ferretti, A; Festanti, A; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Floratos, E; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Francescon, A; Frankenfeld, U; Fuchs, U; Furget, C; Fusco Girard, M; Gaardhøje, J J; Gagliardi, M; Gago, A; Gallio, M; Gangadharan, D R; Ganoti, P; Garabatos, C; Garcia-Solis, E; Gargiulo, C; Garishvili, I; Gerhard, J; Germain, M; Geuna, C; Gheata, A; Gheata, M; Ghidini, B; Ghosh, P; Gianotti, P; Girard, M R; Giubellino, P; Gladysz-Dziadus, E; Glässel, P; Gomez, R; Ferreiro, E G; González-Trueba, L H; González-Zamora, P; Gorbunov, S; Goswami, A; Gotovac, S; Graczykowski, L K; Grajcarek, R; Grelli, A; Grigoras, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grinyov, B; Grion, N; Gros, P; Grosse-Oetringhaus, J F; Grossiord, J-Y; Grosso, R; Guber, F; Guernane, R; Guerzoni, B; Guilbaud, M; Gulbrandsen, K; Gulkanyan, H; Gunji, T; Gupta, A; Gupta, R; Haake, R; Haaland, Ø; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Han, B H; Hanratty, L D; Hansen, A; Harmanová-Tóthová, Z; Harris, J W; Hartig, M; Harton, A; Hatzifotiadou, D; Hayashi, S; Hayrapetyan, A; Heckel, S T; Heide, M; Helstrup, H; Herghelegiu, A; Herrera Corral, G; Herrmann, N; Hess, B A; Hetland, K F; Hicks, B; Hippolyte, B; Hori, Y; Hristov, P; Hřivnáčová, I; Huang, M; Humanic, T J; Hwang, D S; Ichou, R; Ilkaev, R; Ilkiv, I; Inaba, M; Incani, E; Innocenti, P G; Innocenti, G M; Ippolitov, M; Irfan, M; Ivan, C; Ivanov, M; Ivanov, V; Ivanov, A; Ivanytskyi, O; Jachołkowski, A; Jacobs, P M; Jahnke, C; Jang, H J; Janik, M A; Jayarathna, P H S Y; Jena, S; Jha, D M; Jimenez Bustamante, R T; Jones, P G; Jung, H; Jusko, A; Kaidalov, A B; Kalcher, S; Kaliňák, P; Kalliokoski, T; Kalweit, A; Kang, J H; Kaplin, V; Kar, S; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karpechev, E; Kazantsev, A; Kebschull, U; Keidel, R; Ketzer, B; Khan, S A; Khan, M M; Khan, P; Khan, K H; Khanzadeev, A; Kharlov, Y; Kileng, B; Kim, M; Kim, S; Kim, M; Kim, J S; Kim, J H; Kim, T; Kim, B; Kim, D J; Kim, D W; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Klay, J L; Klein, J; Klein-Bösing, C; Kliemant, M; Kluge, A; Knichel, M L; Knospe, A G; Köhler, M K; Kollegger, T; Kolojvari, A; Kompaniets, M; Kondratiev, V; Kondratyeva, N; Konevskikh, A; Kovalenko, V; Kowalski, M; Kox, S; Koyithatta Meethaleveedu, G; Kral, J; Králik, I; Kramer, F; Kravčáková, A; Krelina, M; Kretz, M; Krivda, M; Krizek, F; Krus, M; Kryshen, E; Krzewicki, M; Kucera, V; Kucheriaev, Y; Kugathasan, T; Kuhn, C; Kuijer, P G; Kulakov, I; Kumar, J; Kurashvili, P; Kurepin, A; Kurepin, A B; Kuryakin, A; Kushpil, S; Kushpil, V; Kvaerno, H; Kweon, M J; Kwon, Y; Ladrón de Guevara, P; Lakomov, I; Langoy, R; La Pointe, S L; Lara, C; Lardeux, A; La Rocca, P; Lea, R; Lechman, M; Lee, S C; Lee, G R; Legrand, I; Lehnert, J; Lemmon, R C; Lenhardt, M; Lenti, V; León, H; Leoncino, M; León Monzón, I; Lévai, P; Li, S; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Ljunggren, H M; Lodato, D F; Loenne, P I; Loggins, V R; Loginov, V; Lohner, D; Loizides, C; Loo, K K; Lopez, X; López Torres, E; Løvhøiden, G; Lu, X-G; Luettig, P; Lunardon, M; Luo, J; Luparello, G; Luzzi, C; Ma, R; Ma, K; Madagodahettige-Don, D M; Maevskaya, A; Mager, M; Mahapatra, D P; Maire, A; Malaev, M; Maldonado Cervantes, I; Malinina, L; Mal'Kevich, D; Malzacher, P; Mamonov, A; Manceau, L; Mangotra, L; Manko, V; Manso, F; Manukyan, N; Manzari, V; Mao, Y; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Marín, A; Markert, C; Marquard, M; Martashvili, I; Martin, N A; Martinengo, P; Martínez, M I; Martínez Davalos, A; Martínez García, G; Martynov, Y; Mas, A; Masciocchi, S; Masera, M; Masoni, A; Massacrier, L; Mastroserio, A; Matyja, A; Mayer, C; Mazer, J; Mazzoni, M A; Meddi, F; Menchaca-Rocha, A; Mercado Pérez, J; Meres, M; Miake, Y; Mikhaylov, K; Milano, L; Milosevic, J; Mischke, A; Mishra, A N; Miśkowiec, D; Mitu, C; Mizuno, S; Mlynarz, J; Mohanty, B; Molnar, L; Montaño Zetina, L; Monteno, M; Montes, E; Moon, T; Morando, M; Moreira De Godoy, D A; Moretto, S; Morreale, A; Morsch, A; Muccifora, V; Mudnic, E; Muhuri, S; Mukherjee, M; Müller, H; Munhoz, M G; Murray, S; Musa, L; Musinsky, J; Nandi, B K; Nania, R; Nappi, E; Nattrass, C; Nayak, T K; Nazarenko, S; Nedosekin, A; Nicassio, M; Niculescu, M; Nielsen, B S; Niida, T; Nikolaev, S; Nikolic, V; Nikulin, S; Nikulin, V; Nilsen, B S; Nilsson, M S; Noferini, F; Nomokonov, P; Nooren, G; Nyanin, A; Nyatha, A; Nygaard, C; Nystrand, J; Ochirov, A; Oeschler, H; Oh, S; Oh, S K; Oleniacz, J; Oliveira Da Silva, A C; Oppedisano, C; Ortiz Velasquez, A; Oskarsson, A; Ostrowski, P; Otwinowski, J; Oyama, K; Ozawa, K; Pachmayer, Y; Pachr, M; Padilla, F; Pagano, P; Paić, G; Painke, F; Pajares, C; Pal, S K; Palaha, A; Palmeri, A; Papikyan, V; Pappalardo, G S; Park, W J; Passfeld, A; Patalakha, D I; Paticchio, V; Paul, B; Pavlinov, A; Pawlak, T; Peitzmann, T; Pereira Da Costa, H; Pereira De Oliveira Filho, E; Peresunko, D; Pérez Lara, C E; Perrino, D; Peryt, W; Pesci, A; Pestov, Y; Petráček, V; Petran, M; Petris, M; Petrov, P; Petrovici, M; Petta, C; Piano, S; Pikna, M; Pillot, P; Pinazza, O; Pinsky, L; Pitz, N; Piyarathna, D B; Planinic, M; Płoskoń, M; Pluta, J; Pocheptsov, T; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polák, K; Polichtchouk, B; Poljak, N; Pop, A; Porteboeuf-Houssais, S; Pospíšil, V; Potukuchi, B; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puddu, G; Punin, V; Putiš, M; Putschke, J; Qvigstad, H; Rachevski, A; Rademakers, A; Räihä, T S; Rak, J; Rakotozafindrabe, A; Ramello, L; Raniwala, S; Raniwala, R; Räsänen, S S; Rascanu, B T; Rathee, D; Rauch, W; Read, K F; Real, J S; Redlich, K; Reed, R J; Rehman, A; Reichelt, P; Reicher, M; Renfordt, R; Reolon, A R; Reshetin, A; Rettig, F; Revol, J-P; Reygers, K; Riccati, L; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Rodríguez Cahuantzi, M; Rodriguez Manso, A; Røed, K; Rogochaya, E; Rohr, D; Röhrich, D; Romita, R; Ronchetti, F; Rosnet, P; Rossegger, S; Rossi, A; Roy, P; Roy, C; Rubio Montero, A J; Rui, R; Russo, R; Ryabinkin, E; Rybicki, A; Sadovsky, S; Šafařík, K; Sahoo, R; Sahu, P K; Saini, J; Sakaguchi, H; Sakai, S; Sakata, D; Salgado, C A; Salzwedel, J; Sambyal, S; Samsonov, V; Sanchez Castro, X; Šándor, L; Sandoval, A; Sano, M; Santagati, G; Santoro, R; Sarkamo, J; Sarkar, D; Scapparone, E; Scarlassara, F; Scharenberg, R P; Schiaua, C; Schicker, R; Schmidt, H R; Schmidt, C; Schuchmann, S; Schukraft, J; Schuster, T; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, R; Scott, P A; Segato, G; Selyuzhenkov, I; Senyukov, S; Seo, J; Serci, S; Serradilla, E; Sevcenco, A; Shabetai, A; Shabratova, G; Shahoyan, R; Sharma, N; Sharma, S; Rohni, S; Shigaki, K; Shtejer, K; Sibiriak, Y; Sicking, E; Siddhanta, S; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simatovic, G; Simonetti, G; Singaraju, R; Singh, R; Singha, S; Singhal, V; Sinha, B C; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Skjerdal, K; Smakal, R; Smirnov, N; Snellings, R J M; Søgaard, C; Soltz, R; Song, M; Song, J; Soos, C; Soramel, F; Sputowska, I; Spyropoulou-Stassinaki, M; Srivastava, B K; Stachel, J; Stan, I; Stefanek, G; Steinpreis, M; Stenlund, E; Steyn, G; Stiller, J H; Stocco, D; Stolpovskiy, M; Strmen, P; Suaide, A A P; Subieta Vásquez, M A; Sugitate, T; Suire, C; Sultanov, R; Šumbera, M; Susa, T; Symons, T J M; Szanto de Toledo, A; Szarka, I; Szczepankiewicz, A; Szymański, M; Takahashi, J; Tangaro, M A; Tapia Takaki, J D; Tarantola Peloni, A; Tarazona Martinez, A; Tauro, A; Tejeda Muñoz, G; Telesca, A; Ter Minasyan, A; Terrevoli, C; Thäder, J; Thomas, D; Tieulent, R; Timmins, A R; Tlusty, D; Toia, A; Torii, H; Toscano, L; Trubnikov, V; Truesdale, D; Trzaska, W H; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ulery, J; Ullaland, K; Ulrich, J; Uras, A; Urciuoli, G M; Usai, G L; Vajzer, M; Vala, M; Valencia Palomo, L; Vande Vyvre, P; Van Hoorne, J W; van Leeuwen, M; Vannucci, L; Vargas, A; Varma, R; Vasileiou, M; Vasiliev, A; Vechernin, V; Veldhoen, M; Venaruzzo, M; Vercellin, E; Vergara, S; Vernet, R; Verweij, M; Vickovic, L; Viesti, G; Viinikainen, J; Vilakazi, Z; Villalobos Baillie, O; Vinogradov, Y; Vinogradov, L; Vinogradov, A; Virgili, T; Viyogi, Y P; Vodopyanov, A; Völkl, M A; Voloshin, S; Voloshin, K; Volpe, G; von Haller, B; Vorobyev, I; Vranic, D; Vrláková, J; Vulpescu, B; Vyushin, A; Wagner, B; Wagner, V; Wan, R; Wang, Y; Wang, M; Wang, Y; Watanabe, K; Weber, M; Wessels, J P; Westerhoff, U; Wiechula, J; Wikne, J; Wilde, M; Wilk, G; Williams, M C S; Windelband, B; Xaplanteris Karampatsos, L; Yaldo, C G; Yamaguchi, Y; Yang, S; Yang, P; Yang, H; Yasnopolskiy, S; Yi, J; Yin, Z; Yoo, I-K; Yoon, J; Yu, W; Yuan, X; Yushmanov, I; Zaccolo, V; Zach, C; Zampolli, C; Zaporozhets, S; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zelnicek, P; Zgura, I S; Zhalov, M; Zhang, H; Zhang, X; Zhang, Y; Zhou, D; Zhou, F; Zhou, Y; Zhu, H; Zhu, J; Zhu, X; Zhu, J; Zichichi, A; Zimmermann, A; Zinovjev, G; Zoccarato, Y; Zynovyev, M; Zyzak, M

    2013-10-18

    We report on the first measurement of inclusive J/ψ elliptic flow v2 in heavy-ion collisions at the LHC. The measurement is performed with the ALICE detector in Pb-Pb collisions at √(s(NN))=2.76 TeV in the rapidity range 2.5Pb-Pb collisions at √(s(NN))=2.76 TeV, an indication of nonzero v2 is observed with a largest measured value of v2=0.116±0.046(stat)±0.029(syst) for J/ψ in the transverse momentum range 2≤p(T)<4 GeV/c. The elliptic flow measurement complements the previously reported ALICE results on the inclusive J/ψ nuclear modification factor and favors the scenario of a significant fraction of J/ψ production from charm quarks in a deconfined partonic phase.

  8. Atomistic understanding of cation exchange in PbS nanocrystals using simulations with pseudoligands

    PubMed Central

    Fan, Zhaochuan; Lin, Li-Chiang; Buijs, Wim; Vlugt, Thijs J. H.; van Huis, Marijn A.

    2016-01-01

    Cation exchange is a powerful tool for the synthesis of nanostructures such as core–shell nanocrystals, however, the underlying mechanism is poorly understood. Interactions of cations with ligands and solvent molecules are systematically ignored in simulations. Here, we introduce the concept of pseudoligands to incorporate cation-ligand-solvent interactions in molecular dynamics. This leads to excellent agreement with experimental data on cation exchange of PbS nanocrystals, whereby Pb ions are partially replaced by Cd ions from solution. The temperature and the ligand-type control the exchange rate and equilibrium composition of cations in the nanocrystal. Our simulations reveal that Pb ions are kicked out by exchanged Cd interstitials and migrate through interstitial sites, aided by local relaxations at core–shell interfaces and point defects. We also predict that high-pressure conditions facilitate strongly enhanced cation exchange reactions at elevated temperatures. Our approach is easily extendable to other semiconductor compounds and to other families of nanocrystals. PMID:27160371

  9. Direct photon production in Pb-Pb collisions at √{sNN} = 2.76 TeV

    NASA Astrophysics Data System (ADS)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Böttger, S.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; De, S.; De Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; Deplano, C.; Dhankher, P.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Engel, H.; Epple, E.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Grachov, O. A.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gronefeld, J. M.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Hosokawa, R.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobayashi, T.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Lehas, F.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; León Vargas, H.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; Mcdonald, D.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Minervini, L. M.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Moreira De Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Munzer, R. H.; Murray, S.; Musa, L.; Musinsky, J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Nayak, K.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, P.; Paić, G.; Pal, S. K.; Pan, J.; Pandey, A. K.; Papcun, P.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Šándor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Søgaard, C.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Stachel, J.; Stan, I.; Stefanek, G.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tangaro, M. A.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yaldo, C. G.; Yang, H.; Yang, P.; Yano, S.; Yasar, C.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.

    2016-03-01

    Direct photon production at mid-rapidity in Pb-Pb collisions at √{sNN} = 2.76 TeV was studied in the transverse momentum range 0.9 ion collisions agree with the data within uncertainties.

  10. Zircon U-Pb ages, geochemical and Sr-Nd-Pb-Hf isotopic constraints on petrogenesis of the Tarom-Olya pluton, Alborz magmatic belt, NW Iran

    NASA Astrophysics Data System (ADS)

    Nabatian, Ghasem; Jiang, Shao-Yong; Honarmand, Maryam; Neubauer, Franz

    2016-02-01

    A petrological, geochemical and Sr-Nd-Pb isotopic study was carried out on the Tarom-Olya pluton, Iran, in the central part of the Alpine-Himalayan orogenic belt. The pluton is composed of diorite, monzonite, quartz-monzonite and monzogranite, which form part of the Western Alborz magmatic belt. LA-ICP-MS analyses of zircons yield ages from 35.7 ± 0.8 Ma to 37.7 ± 0.5 Ma, interpreted as the ages of crystallization of magmas. Rocks from the pluton have SiO2 contents ranging from 57.0 to 69.9 wt.%, high K2O + Na2O (5.5 to 10.3 wt.%) and K2O/Na2O ratio of 0.9 to 2.0. Geochemical discrimination criteria show I-type and shoshonitic features for the studied rocks. All investigated rocks are enriched in light rare earth elements (LREEs), large ion lithophile elements (LILEs), depleted in high-field strength elements (HFSEs), and show weak or insignificant Eu anomalies (Eu/Eu* = 0.57-1.02) in chondrite-normalized trace element patterns. The Tarom-Olya pluton samples also show depletions in Nb, Ta and Ti typical of subduction-related arc magmatic signatures. The samples have relatively low ISr (0.7047-0.7051) and positive εNd(36 Ma) (+ 0.39 to + 2.10) values. The Pb isotopic ratios show a (206Pb/204Pb)i ratio of 18.49-18.67, (207Pb/204Pb)i ratio of 15.58-15.61 and (208Pb/204Pb)i ratio of 38.33-38.77. The εHf(t) values of the Tarom-Olya pluton zircons vary from - 5.9 to + 8.4, with a peak at + 2 to + 4. The depleted mantle Hf model ages for the Tarom-Olya samples are close to 600 Ma. These isotope evidences indicate contribution of juvenile sources in petrogenesis of the Tarom-Olya pluton. Geochemical and isotopic data suggest that the parental magma of the Tarom-Olya pluton was mainly derived from a sub-continental lithospheric mantle source, which was metasomatized by fluids and melts from the subducted Neotethyan slab with a minor crustal contribution. Subsequent hot asthenospheric upwelling and lithospheric extension caused decompression melting in the final stage of

  11. Electron lone pair distortion facilitated metal-insulator transition in β-Pb{sub 0.33}V{sub 2}O{sub 5} nanowires

    SciTech Connect

    Wangoh, L.; Quackenbush, N. F.; Marley, P. M.; Banerjee, S.; Sallis, S.; Fischer, D. A.; Woicik, J. C.; Piper, L. F. J.

    2014-05-05

    The electronic structure of β-Pb{sub 0.33}V{sub 2}O{sub 5} nanowires has been studied with x-ray photoelectron spectroscopy techniques. The recent synthesis of defect-free β-Pb{sub 0.33}V{sub 2}O{sub 5} nanowires resulted in the discovery of an abrupt voltage-induced metal insulator transition. First principle calculations predicted an additional V-O-Pb hybridized “in-gap” state unique to this vanadium bronze playing a significant role in facilitating the transition. We confirm the existence, energetic position, and orbital character of the “in-gap” state. Moreover, we reveal that this state is a hybridized Pb 6s–O 2p antibonding lone pair state resulting from the asymmetric coordination of the Pb{sup 2+} ions.

  12. Pb-binding to various dissolved organic matter in urban aquatic systems: Key role of the most hydrophilic fraction

    NASA Astrophysics Data System (ADS)

    Pernet-Coudrier, Benoît; Companys, Encarnació; Galceran, Josep; Morey, Margalida; Mouchel, Jean-Marie; Puy, Jaume; Ruiz, Núria; Varrault, Gilles

    2011-07-01

    Dissolved organic matter (DOM) from the treated effluent of a wastewater treatment plant and from the river Seine under high human pressure has been separated into three fractions: hydrophobic (containing humic and fulvic substances), transphilic and hydrophilic using a two column array of XAD-8 and XAD-4 resins. The acid base properties and the binding characteristics with respect to Pb ions (using the new electroanalytical technique AGNES, Absence of Gradients and Nernstian Equilibrium Stripping) have been studied and fitted to NICA (Non-Ideal Competitive Isotherm). We evaluated the binding potential of each DOM fraction in order to better predict the speciation of Pb and, later, its bioavailability in the river. The total binding capacity of the different fractions to Pb, as well as the total titratable charge, reaches its maximum value at the most hydrophilic fraction from the treated effluent. Specific properties of the distribution of the complexing sites within each DOM fraction have been exposed by plotting the conditional affinity spectrum (CAS). The addition of these distributions, weighted according to the respective abundance of each organic fraction, allows for a full description of the Pb binding properties of the whole DOM of a sampling site. Despite its weak aromaticity, the hydrophilic fraction from the wastewater treatment plant effluent exhibits a high lead binding affinity, so that at typical environmental pH and free Pb levels (0.1 μg L -1), Pb is mainly bound to the most hydrophilic fraction of the treated effluent (49% of bound Pb at pH 7). This feature may greatly enhance the transport of Pb and highlights that Pb speciation should also consider other fractions apart from humic and/or fulvic acids when studying surface waters under high human pressure.

  13. Fast Ion Conductors

    NASA Astrophysics Data System (ADS)

    Chadwick, Alan V.

    Fast ion conductors, sometimes referred to as superionic conductors or solid electrolytes, are solids with ionic conductivities that are comparable to those found in molten salts and aqueous solutions of strong electrolytes, i.e., 10-2-10 S cm-1. Such materials have been known of for a very long time and some typical examples of the conductivity are shown in Fig. 1, along with sodium chloride as the archetypal normal ionic solid. Faraday [1] first noted the high conductivity of solid lead fluoride (PbF2) and silver sulphide (Ag2S) in the 1830s and silver iodide was known to be unusually high ionic conductor to the German physicists early in the 1900s. However, the materials were regarded as anomalous until the mid 1960s when they became the focus of intense interest to academics and technologists and they have remained at the forefront of materials research [2-4]. The academic aim is to understand the fundamental origin of fast ion behaviour and the technological goal is to utilize the properties in applications, particularly in energy applications such as the electrolyte membranes in solid-state batteries and fuel cells, and in electrochemical sensors. The last four decades has seen an expansion of the types of material that exhibit fast ion behaviour that now extends beyond simple binary ionic crystals to complex solids and even polymeric materials. Over this same period computer simulations of solids has also developed (in fact these methods and the interest in fast ion conductors were almost coincidental in their time of origin) and the techniques have played a key role in this area of research.

  14. Synthesis, characterization and thermochemistry of synthetic Pb-As, Pb-Cu and Pb-Zn jarosites

    NASA Astrophysics Data System (ADS)

    Forray, Ferenc Lázár; Smith, A. M. L.; Navrotsky, A.; Wright, K.; Hudson-Edwards, K. A.; Dubbin, W. E.

    2014-02-01

    The enthalpy of formation from the elements of well characterized Pb-As, Pb-Cu, and Pb-Zn synthetic jarosites, corresponding to chemical formulas (H3O)0.68±0.03Pb0.32±0.002Fe2.86±0.14(SO4)1.69±0.08(AsO4)0.31±0.02(OH)5.59±0.28(H2O)0.41±0.02, (H3O)0.67±0.03Pb0.33±0.02Fe2.71±0.14Cu0.25±0.01(SO4)2±0.00(OH)5.96±0.30(H2O)0.04±0.002 and (H3O)0.57±0.03Pb0.43±0.02Fe2.70±0.14Zn0.21±0.01(SO4)2±0.00(OH)5.95±0.30(H2O)0.05±0.002, was measured by high temperature oxide melt solution calorimetry and gave ΔH°f = -3691.2 ± 8.6 kJ/mol, ΔH°f = -3653.6 ± 8.2 kJ/mol, and ΔH°f = -3669.4 ± 8.4 kJ/mol, respectively. Using estimated entropies, the standard Gibbs free energy of formation from elements at 298 K ΔG°f of the three compounds were calculated to be -3164.8 ± 9.1, -3131.4 ± 8.7, and -3153.6 ± 8.9 kJ/mol, respectively. Based on these free energies, their log Ksp values are -13.94 ± 1.89, -4.38 ± 1.81 and -3.75 ± 1.80, respectively. For this compounds, a log10{Pb2+}-pH diagram is presented. The diagram shows that the formation of Pb-As jarosite may decrease aqueous arsenic and lead concentrations to meet drinking water standards. The new thermodynamic data confirm that transformation of Pb-As jarosite to plumbojarosite is thermodynamically possible.

  15. HEAVY ION PHYSICS WITH THE ATLAS DETECTOR.

    SciTech Connect

    WHITE, S.

    2005-02-05

    Soon after the LHC is commissioned with proton beams the ATLAS experiment will begin studies of Pb-Pb collisions with a center of mass energy of {radical}s{sub NN} = 5.5 TeV. The ATLAS program is a natural extension of measurements at RHIC in a direction that exploits the higher LHC energies and the superb ATLAS calorimeter and tracking coverage. At LHC energies, collisions will be produced with even higher energy density than observed at RHIC. The properties of the resulting hot medium can be studied with higher energy probes, which are more directly interpreted through modification of jet properties emerging from these collisions, for example. Other topics which are enabled by the 30-fold increase in center of mass energy include probing the partonic structure of nuclei with hard photoproduction (in UltraPeripheral collisions) and in p-Pb collisions. Here we report on evaluation of ATLAS capabilities for Heavy Ion Physics.

  16. U-Pb Geochronology of Hydrous Silica (Siebengebirge, Germany)

    NASA Astrophysics Data System (ADS)

    Tomaschek, Frank; Nemchin, Alexander; Geisler, Thorsten; Heuser, Alexander; Merle, Renaud

    2015-04-01

    Low-temperature, hydrous weathering eventually leads to characteristic products such as silica indurations. Elevated U concentrations and the ability of silica to maintain a closed system permits silica to be dated by the U-Pb method, which, in turn, will potentially allow constraining the timing of near-surface processes. To test the feasibility of silica U-Pb geochronology, we sampled opal and chalcedony from the Siebengebirge, Germany. This study area is situated at the terminus of the Cenozoic Lower Rhine Basin on the Rhenish Massif. The investigated samples include silicified gravels from the Mittelbachtal locality, renowned for the embedded wood opal. Structural characterization of the silica phases (Raman spectroscopy) was combined with in situ isotopic analyses, using ion microprobe and LA-ICPMS techniques. In the Siebengebirge area fluviatile sediments of Upper Oligocene age were covered by an extended trachyte tuff at around 25 Ma. Silica is known to indurate some domains within the tuff and, in particular, certain horizons within the subjacent fluviatile sediments ('Tertiärquarzite'). Cementation of the gravels occurred during at least three successive growth stages: early paracrystalline silica (opal-CT), fibrous chalcedony, and late microcrystalline quartz. It has traditionally been assumed that this silica induration reflects intense weathering, more or less synchronous with the deposition of the volcanic ashes. Results from U-Pb geochronology returned a range of discrete 206Pb-238U ages, recording a protracted silicification history. For instance, we obtained 22 ± 1 Ma for opal-CT cement from a silicified tuff, 16.6 ± 0.5 Ma for silicified wood and opal-CT cement in the fluviatile gravels, as well as 11 ± 1 Ma for texturally late chalcedony. While silicification of the sampled tuff might be contemporaneous with late-stage basalts, opaline silicification of the subjacent sediments and their wood in the Mittelbachtal clearly postdates active

  17. Ion colliders

    SciTech Connect

    Fischer, W.

    2011-12-01

    Ion colliders are research tools for high-energy nuclear physics, and are used to test the theory of Quantum Chromo Dynamics (QCD). The collisions of fully stripped high-energy ions create matter of a temperature and density that existed only microseconds after the Big Bang. Ion colliders can reach higher densities and temperatures than fixed target experiments although at a much lower luminosity. The first ion collider was the CERN Intersecting Storage Ring (ISR), which collided light ions [77Asb1, 81Bou1]. The BNL Relativistic Heavy Ion Collider (RHIC) is in operation since 2000 and has collided a number of species at numerous energies. The CERN Large Hadron Collider (LHC) started the heavy ion program in 2010. Table 1 shows all previous and the currently planned running modes for ISR, RHIC, and LHC. All three machines also collide protons, which are spin-polarized in RHIC. Ion colliders differ from proton or antiproton colliders in a number of ways: the preparation of the ions in the source and the pre-injector chain is limited by other effects than for protons; frequent changes in the collision energy and particle species, including asymmetric species, are typical; and the interaction of ions with each other and accelerator components is different from protons, which has implications for collision products, collimation, the beam dump, and intercepting instrumentation devices such a profile monitors. In the preparation for the collider use the charge state Z of the ions is successively increased to minimize the effects of space charge, intrabeam scattering (IBS), charge change effects (electron capture and stripping), and ion-impact desorption after beam loss. Low charge states reduce space charge, intrabeam scattering, and electron capture effects. High charge states reduce electron stripping, and make bending and acceleration more effective. Electron stripping at higher energies is generally more efficient. Table 2 shows the charge states and energies in the

  18. Solid-electrolyte oxide-ion electrode for molten nitrates

    SciTech Connect

    Nissen, D.A.

    1981-10-01

    An oxide ion sensitive electrode of the type Pb, PbO/ZrO/sub 2/(Y/sub 2/O/sub 3/)// was constructed and its performance tested in the binary, equimolar molten salt NaNO/sub 3/-KNO/sub 3/ over the temperature range 336 to 350/sup 0/C. The response of this electrode to oxide ion concentrations over the range 10/sup -6/ to 10/sup -10/ moles/kg is linearly dependent upon log (0/sup =/), and dE/dlog(0/sup =/) corresponds to a two-electron process.

  19. ION SOURCE

    DOEpatents

    Martina, E.F.

    1958-04-22

    An improved ion source particularly adapted to provide an intense beam of ions with minimum neutral molecule egress from the source is described. The ion source structure includes means for establishing an oscillating electron discharge, including an apertured cathode at one end of the discharge. The egress of ions from the source is in a pencil like beam. This desirable form of withdrawal of the ions from the plasma created by the discharge is achieved by shaping the field at the aperture of the cathode. A tubular insulator is extended into the plasma from the aperture and in cooperation with the electric fields at the cathode end of the discharge focuses the ions from the source,

  20. Alpha decay of {sup 181}Pb

    SciTech Connect

    Davids, C.N.; Henderson, D.J.; Hermann, R.

    1995-08-01

    The {alpha}-decay energy of {sup 181}Pb was measured as 7211(10) keV and 7044(15). In the first study the isotope was produced in {sup 90}Zr bombardments of {sup 94}Mo and, after traversing a velocity filter, implanted in a position-sensitive Si detector; no half life for {sup 181}Pb was reported. In the second study the isotope was produced in {sup 40}Ca bombardments of {sup 144}Sm and transported to a position in front of a Si(Au) surface barrier detector with a fast He-gas-jet capillary system; an estimate of 50 ms was determined for the {sup 181}Pb half life. Recently we investigated {sup 181}Pb {alpha} decay at ATLAS as part of a survey experiment in which a l-pnA beam of 400-MeV {sup 92}Mo was used to irradiate targets of {sup 89}Y, {sup 90,92,94}Zr, and {sup 92}Mo to examine yields for one- and two-nucleon evaporation products from symmetric cold-fusion reactions. Recoiling nuclei of interest were passed through the Fragment Mass Analyzer and implanted in a double-sided silicon strip detector for {alpha}-particle assay. With the {sup 90}Zr target we observed a group at 7065(20) keV which was correlated with A = 181 recoils and had a half life of 45(20) ms. Our new results for {sup 181}Pb therefore agreed with those of the second study. There was no indication in the {sup 90}Zr + {sup 92}Mo data of the 7211(10)-keV {alpha} particles seen by Keller et al. The interested reader is referred to the 1993 atomic mass evaluation wherein the input {alpha}-decay energies and resultant masses of the light Pb isotopes (including {sup 181}Pb) are discussed.

  1. Net-charge fluctuations in Pb-Pb collisions at sqrt[sNN]=2.76  TeV.

    PubMed

    Abelev, B; Adam, J; Adamová, D; Adare, A M; Aggarwal, M M; Aglieri Rinella, G; Agocs, A G; Agostinelli, A; Aguilar Salazar, S; Ahammed, Z; Ahmad Masoodi, A; Ahmad, N; Ahn, S A; Ahn, S U; Akindinov, A; Aleksandrov, D; Alessandro, B; Alfaro Molina, R; Alici, A; Alkin, A; Almaráz Aviña, E; Alme, J; Alt, T; Altini, V; Altinpinar, S; Altsybeev, I; Andrei, C; Andronic, A; Anguelov, V; Anielski, J; Anson, C; Antičić, T; Antinori, F; Antonioli, P; Aphecetche, L; Appelshäuser, H; Arbor, N; Arcelli, S; Arend, A; Armesto, N; Arnaldi, R; Aronsson, T; Arsene, I C; Arslandok, M; Asryan, A; Augustinus, A; Averbeck, R; Awes, T C; Äystö, J; Azmi, M D; Bach, M; Badalà, A; Baek, Y W; Bailhache, R; Bala, R; Baldini Ferroli, R; Baldisseri, A; Baldit, A; Baltasar Dos Santos Pedrosa, F; Bán, J; Baral, R C; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L S; Barret, V; Bartke, J; Basile, M; Bastid, N; Basu, S; Bathen, B; Batigne, G; Batyunya, B; Baumann, C; Bearden, I G; Beck, H; Behera, N K; Belikov, I; Bellini, F; Bellwied, R; Belmont-Moreno, E; Bencedi, G; Beole, S; Berceanu, I; Bercuci, A; Berdnikov, Y; Berenyi, D; Bergognon, A A E; Berzano, D; Betev, L; Bhasin, A; Bhati, A K; Bhom, J; Bianchi, L; Bianchi, N; Bianchin, C; Bielčík, J; Bielčíková, J; Bilandzic, A; Bjelogrlic, S; Blanco, F; Blanco, F; Blau, D; Blume, C; Boccioli, M; Bock, N; Böttger, S; Bogdanov, A; Bøggild, H; Bogolyubsky, M; Boldizsár, L; Bombara, M; Book, J; Borel, H; Borissov, A; Bose, S; Bossú, F; Botje, M; Boyer, B; Braidot, E; Braun-Munzinger, P; Bregant, M; Breitner, T; Browning, T A; Broz, M; Brun, R; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Bugaiev, K; Busch, O; Buthelezi, Z; Caballero Orduna, D; Caffarri, D; Cai, X; Caines, H; Calvo Villar, E; Camerini, P; Canoa Roman, V; Cara Romeo, G; Carena, F; Carena, W; Carlin Filho, N; Carminati, F; Carrillo Montoya, C A; Casanova Díaz, A; Castillo Castellanos, J; Castillo Hernandez, J F; Casula, E A R; Catanescu, V; Cavicchioli, C; Ceballos Sanchez, C; Cepila, J; Cerello, P; Chang, B; Chapeland, S; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Chawla, I; Cherney, M; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Chochula, P; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Coccetti, F; Colamaria, F; Colella, D; Conesa Balbastre, G; Conesa del Valle, Z; Constantin, P; Contin, G; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortese, P; Cortés Maldonado, I; Cosentino, M R; Costa, F; Cotallo, M E; Crescio, E; Crochet, P; Cruz Alaniz, E; Cuautle, E; Cunqueiro, L; Dainese, A; Dalsgaard, H H; Danu, A; Das, D; Das, I; Das, K; Dash, S; Dash, A; De, S; de Barros, G O V; De Caro, A; de Cataldo, G; de Cuveland, J; De Falco, A; De Gruttola, D; Delagrange, H; Deloff, A; Demanov, V; De Marco, N; Dénes, E; De Pasquale, S; Deppman, A; Erasmo, G D; de Rooij, R; Diaz Corchero, M A; Di Bari, D; Dietel, T; Di Liberto, S; Di Mauro, A; Di Nezza, P; Divià, R; Djuvsland, Ø; Dobrin, A; Dobrowolski, T; Domínguez, I; Dönigus, B; Dordic, O; Driga, O; Dubey, A K; Ducroux, L; Dupieux, P; Dutta Majumdar, M R; Dutta Majumdar, A K; Elia, D; Emschermann, D; Engel, H; Erdal, H A; Espagnon, B; Estienne, M; Esumi, S; Evans, D; Eyyubova, G; Fabris, D; Faivre, J; Falchieri, D; Fantoni, A; Fasel, M; Fearick, R; Fedunov, A; Fehlker, D; Feldkamp, L; Felea, D; Fenton-Olsen, B; Feofilov, G; Fernández Téllez, A; Ferretti, A; Ferretti, R; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Frankenfeld, U; Fuchs, U; Furget, C; Fusco Girard, M; Gaardhøje, J J; Gagliardi, M; Gago, A; Gallio, M; Gangadharan, D R; Ganoti, P; Garabatos, C; Garcia-Solis, E; Garishvili, I; Gerhard, J; Germain, M; Geuna, C; Gheata, A; Gheata, M; Ghidini, B; Ghosh, P; Di Giglio, C; Gianotti, P; Girard, M R; Giubellino, P; Gladysz-Dziadus, E; Glässel, P; Gomez, R; Gonschior, A; Ferreiro, E G; González-Trueba, L H; González-Zamora, P; Gorbunov, S; Goswami, A; Gotovac, S; Grabski, V; Graczykowski, L K; Grajcarek, R; Grelli, A; Grigoras, C; Grigoras, A; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grinyov, B; Grion, N; Gros, P; Grosse-Oetringhaus, J F; Grossiord, J-Y; Grosso, R; Guber, F; Guernane, R; Guerra Gutierrez, C; Guerzoni, B; Guilbaud, M; Gulbrandsen, K; Gunji, T; Gupta, A; Gupta, R; Gutbrod, H; Haaland, Ø; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Han, B H; Hanratty, L D; Hansen, A; Harmanova, Z; Harris, J W; Hartig, M; Hasegan, D; Hatzifotiadou, D; Hayrapetyan, A; Heckel, S T; Heide, M; Helstrup, H; Herghelegiu, A; Herrera Corral, G; Herrmann, N; Hess, B A; Hetland, K F; Hicks, B; Hille, P T; Hippolyte, B; Horaguchi, T; Hori, Y; Hristov, P; Hřivnáčová, I; Huang, M; Humanic, T J; Hwang, D S; Ichou, R; Ilkaev, R; Ilkiv, I; Inaba, M; Incani, E; Innocenti, G M; Innocenti, P G; Ippolitov, M; Irfan, M; Ivan, C; Ivanov, V; Ivanov, M; Ivanov, A; Ivanytskyi, O; Jachołkowski, A; Jacobs, P M; Jang, H J; Jangal, S; Janik, M A; Janik, R; Jayarathna, P H S Y; Jena, S; Jha, D M; Jimenez Bustamante, R T; Jirden, L; Jones, P G; Jung, H; Jusko, A; Kaidalov, A B; Kakoyan, V; Kalcher, S; Kaliňák, P; Kalliokoski, T; Kalweit, A; Kanaki, K; Kang, J H; Kaplin, V; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karpechev, E; Kazantsev, A; Kebschull, U; Keidel, R; Khan, P; Khan, M M; Khan, S A; Khanzadeev, A; Kharlov, Y; Kileng, B; Kim, D W; Kim, M; Kim, M; Kim, S H; Kim, D J; Kim, S; Kim, J H; Kim, J S; Kim, B; Kim, T; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Klay, J L; Klein, J; Klein-Bösing, C; Kliemant, M; Kluge, A; Knichel, M L; Knospe, A G; Koch, K; Köhler, M K; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Konevskikh, A; Korneev, A; Kour, R; Kowalski, M; Kox, S; Koyithatta Meethaleveedu, G; Kral, J; Králik, I; Kramer, F; Kraus, I; Krawutschke, T; Krelina, M; Kretz, M; Krivda, M; Krizek, F; Krus, M; Kryshen, E; Krzewicki, M; Kucheriaev, Y; Kuhn, C; Kuijer, P G; Kulakov, I; Kumar, J; Kurashvili, P; Kurepin, A B; Kurepin, A; Kuryakin, A; Kushpil, V; Kushpil, S; Kvaerno, H; Kweon, M J; Kwon, Y; Ladrón de Guevara, P; Lakomov, I; Langoy, R; La Pointe, S L; Lara, C; Lardeux, A; La Rocca, P; Lazzeroni, C; Lea, R; Le Bornec, Y; Lechman, M; Lee, S C; Lee, K S; Lee, G R; Lefèvre, F; Lehnert, J; Leistam, L; Lenhardt, M; Lenti, V; León, H; Leoncino, M; León Monzón, I; León Vargas, H; Lévai, P; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Liu, L; Loenne, P I; Loggins, V R; Loginov, V; Lohn, S; Lohner, D; Loizides, C; Loo, K K; Lopez, X; López Torres, E; Løvhøiden, G; Lu, X-G; Luettig, P; Lunardon, M; Luo, J; Luparello, G; Luquin, L; Luzzi, C; Ma, R; Ma, K; Madagodahettige-Don, D M; Maevskaya, A; Mager, M; Mahapatra, D P; Maire, A; Malaev, M; Maldonado Cervantes, I; Malinina, L; Mal'Kevich, D; Malzacher, P; Mamonov, A; Manceau, L; Mangotra, L; Manko, V; Manso, F; Manzari, V; Mao, Y; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Marín, A; Marin Tobon, C A; Markert, C; Martashvili, I; Martinengo, P; Martínez, M I; Martínez Davalos, A; Martínez García, G; Martynov, Y; Mas, A; Masciocchi, S; Masera, M; Masoni, A; Massacrier, L; Mastromarco, M; Mastroserio, A; Matthews, Z L; Matyja, A; Mayani, D; Mayer, C; Mazer, J; Mazzoni, M A; Meddi, F; Menchaca-Rocha, A; Mercado Pérez, J; Meres, M; Miake, Y; Milano, L; Milosevic, J; Mischke, A; Mishra, A N; Miśkowiec, D; Mitu, C; Mlynarz, J; Mohanty, B; Mohanty, A K; Molnar, L; Montaño Zetina, L; Monteno, M; Montes, E; Moon, T; Morando, M; Moreira De Godoy, D A; Moretto, S; Morsch, A; Muccifora, V; Mudnic, E; Muhuri, S; Mukherjee, M; Müller, H; Munhoz, M G; Musa, L; Musso, A; Nandi, B K; Nania, R; Nappi, E; Nattrass, C; Naumov, N P; Navin, S; Nayak, T K; Nazarenko, S; Nazarov, G; Nedosekin, A; Nicassio, M; Niculescu, M; Nielsen, B S; Niida, T; Nikolaev, S; Nikolic, V; Nikulin, S; Nikulin, V; Nilsen, B S; Nilsson, M S; Noferini, F; Nomokonov, P; Nooren, G; Novitzky, N; Nyanin, A; Nyatha, A; Nygaard, C; Nystrand, J; Ochirov, A; Oeschler, H; Oh, S; Oh, S K; Oleniacz, J; Oppedisano, C; Ortiz Velasquez, A; Ortona, G; Oskarsson, A; Ostrowski, P; Otwinowski, J; Oyama, K; Ozawa, K; Pachmayer, Y; Pachr, M; Padilla, F; Pagano, P; Paić, G; Painke, F; Pajares, C; Pal, S; Pal, S K; Palaha, A; Palmeri, A; Papikyan, V; Pappalardo, G S; Park, W J; Passfeld, A; Pastirčák, B; Patalakha, D I; Paticchio, V; Pavlinov, A; Pawlak, T; Peitzmann, T; Pereira Da Costa, H; Pereira De Oliveira Filho, E; Peresunko, D; Pérez Lara, C E; Perez Lezama, E; Perini, D; Perrino, D; Peryt, W; Pesci, A; Peskov, V; Pestov, Y; Petráček, V; Petran, M; Petris, M; Petrov, P; Petrovici, M; Petta, C; Piano, S; Piccotti, A; Pikna, M; Pillot, P; Pinazza, O; Pinsky, L; Pitz, N; Piyarathna, D B; Płoskoń, M; Pluta, J; Pocheptsov, T; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polák, K; Polichtchouk, B; Pop, A; Porteboeuf-Houssais, S; Pospíšil, V; Potukuchi, B; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puchagin, S; Puddu, G; Pujol Teixido, J; Pulvirenti, A; Punin, V; Putiš, M; Putschke, J; Quercigh, E; Qvigstad, H; Rachevski, A; Rademakers, A; Radomski, S; Räihä, T S; Rak, J; Rakotozafindrabe, A; Ramello, L; Ramírez Reyes, A; Raniwala, S; Raniwala, R; Räsänen, S S; Rascanu, B T; Rathee, D; Read, K F; Real, J S; Redlich, K; Reichelt, P; Reicher, M; Renfordt, R; Reolon, A R; Reshetin, A; Rettig, F; Revol, J-P; Reygers, K; Riccati, L; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Rodrigues Fernandes Rabacal, B; Rodríguez Cahuantzi, M; Rodriguez Manso, A; Røed, K; Rohr, D; Röhrich, D; Romita, R; Ronchetti, F; Rosnet, P; Rossegger, S; Rossi, A; Roy, C; Roy, P; Rubio Montero, A J; Rui, R; Ryabinkin, E; Rybicki, A; Sadovsky, S; Šafařík, K; Sahoo, R; Sahu, P K; Saini, J; Sakaguchi, H; Sakai, S; Sakata, D; Salgado, C A; Salzwedel, J; Sambyal, S; Samsonov, V; Sanchez Castro, X; Šándor, L; Sandoval, A; Sano, S; Sano, M; Santo, R; Santoro, R; Sarkamo, J; Scapparone, E; Scarlassara, F; Scharenberg, R P; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schreiner, S; Schuchmann, S; Schukraft, J; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, R; Scott, P A; Segato, G; Selyuzhenkov, I; Senyukov, S; Seo, J; Serci, S; Serradilla, E; Sevcenco, A; Shabetai, A; Shabratova, G; Shahoyan, R; Sharma, N; Sharma, S; Rohni, S; Shigaki, K; Shimomura, M; Shtejer, K; Sibiriak, Y; Siciliano, M; Sicking, E; Siddhanta, S; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simatovic, G; Simonetti, G; Singaraju, R; Singh, R; Singha, S; Singhal, V; Sinha, T; Sinha, B C; Sitar, B; Sitta, M; Skaali, T B; Skjerdal, K; Smakal, R; Smirnov, N; Snellings, R J M; Søgaard, C; Soltz, R; Son, H; Song, M; Song, J; Soos, C; Soramel, F; Sputowska, I; Spyropoulou-Stassinaki, M; Srivastava, B K; Stachel, J; Stan, I; Stan, I; Stefanek, G; Steinbeck, T; Steinpreis, M; Stenlund, E; Steyn, G; Stiller, J H; Stocco, D; Stolpovskiy, M; Strabykin, K; Strmen, P; Suaide, A A P; Subieta Vásquez, M A; Sugitate, T; Suire, C; Sukhorukov, M; Sultanov, R; Šumbera, M; Susa, T; Szanto de Toledo, A; Szarka, I; Szczepankiewicz, A; Szostak, A; Szymanski, M; Takahashi, J; Tapia Takaki, J D; Tauro, A; Tejeda Muñoz, G; Telesca, A; Terrevoli, C; Thäder, J; Thomas, D; Tieulent, R; Timmins, A R; Tlusty, D; Toia, A; Torii, H; Toscano, L; Truesdale, D; Trzaska, W H; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ulery, J; Ullaland, K; Ulrich, J; Uras, A; Urbán, J; Urciuoli, G M; Usai, G L; Vajzer, M; Vala, M; Valencia Palomo, L; Vallero, S; van der Kolk, N; Vande Vyvre, P; van Leeuwen, M; Vannucci, L; Vargas, A; Varma, R; Vasileiou, M; Vasiliev, A; Vechernin, V; Veldhoen, M; Venaruzzo, M; Vercellin, E; Vergara, S; Vernet, R; Verweij, M; Vickovic, L; Viesti, G; Vikhlyantsev, O; Vilakazi, Z; Villalobos Baillie, O; Vinogradov, A; Vinogradov, L; Vinogradov, Y; Virgili, T; Viyogi, Y P; Vodopyanov, A; Voloshin, K; Voloshin, S; Volpe, G; von Haller, B; Vranic, D; Øvrebekk, G; Vrláková, J; Vulpescu, B; Vyushin, A; Wagner, V; Wagner, B; Wan, R; Wang, M; Wang, D; Wang, Y; Wang, Y; Watanabe, K; Weber, M; Wessels, J P; Westerhoff, U; Wiechula, J; Wikne, J; Wilde, M; Wilk, G; Wilk, A; Williams, M C S; Windelband, B; Xaplanteris Karampatsos, L; Yaldo, C G; Yamaguchi, Y; Yang, H; Yang, S; Yasnopolskiy, S; Yi, J; Yin, Z; Yoo, I-K; Yoon, J; Yu, W; Yuan, X; Yushmanov, I; Zach, C; Zampolli, C; Zaporozhets, S; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zelnicek, P; Zgura, I S; Zhalov, M; Zhang, X; Zhang, H; Zhou, F; Zhou, D; Zhou, Y; Zhu, J; Zhu, J; Zhu, X; Zichichi, A; Zimmermann, A; Zinovjev, G; Zoccarato, Y; Zynovyev, M; Zyzak, M

    2013-04-12

    We report the first measurement of the net-charge fluctuations in Pb-Pb collisions at sqrt[sNN]=2.76  TeV, measured with the ALICE detector at the CERN Large Hadron Collider. The dynamical fluctuations per unit entropy are observed to decrease when going from peripheral to central collisions. An additional reduction in the amount of fluctuations is seen in comparison to the results from lower energies. We examine the dependence of fluctuations on the pseudorapidity interval, which may account for the dilution of fluctuations during the evolution of the system. We find that the fluctuations at the LHC are smaller compared to the measurements at the BNL Relativistic Heavy Ion Collider, and as such, closer to what has been theoretically predicted for the formation of a quark-gluon plasma.

  2. Net-charge fluctuations in Pb-Pb collisions at sqrt[sNN]=2.76  TeV.

    PubMed

    Abelev, B; Adam, J; Adamová, D; Adare, A M; Aggarwal, M M; Aglieri Rinella, G; Agocs, A G; Agostinelli, A; Aguilar Salazar, S; Ahammed, Z; Ahmad Masoodi, A; Ahmad, N; Ahn, S A; Ahn, S U; Akindinov, A; Aleksandrov, D; Alessandro, B; Alfaro Molina, R; Alici, A; Alkin, A; Almaráz Aviña, E; Alme, J; Alt, T; Altini, V; Altinpinar, S; Altsybeev, I; Andrei, C; Andronic, A; Anguelov, V; Anielski, J; Anson, C; Antičić, T; Antinori, F; Antonioli, P; Aphecetche, L; Appelshäuser, H; Arbor, N; Arcelli, S; Arend, A; Armesto, N; Arnaldi, R; Aronsson, T; Arsene, I C; Arslandok, M; Asryan, A; Augustinus, A; Averbeck, R; Awes, T C; Äystö, J; Azmi, M D; Bach, M; Badalà, A; Baek, Y W; Bailhache, R; Bala, R; Baldini Ferroli, R; Baldisseri, A; Baldit, A; Baltasar Dos Santos Pedrosa, F; Bán, J; Baral, R C; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L S; Barret, V; Bartke, J; Basile, M; Bastid, N; Basu, S; Bathen, B; Batigne, G; Batyunya, B; Baumann, C; Bearden, I G; Beck, H; Behera, N K; Belikov, I; Bellini, F; Bellwied, R; Belmont-Moreno, E; Bencedi, G; Beole, S; Berceanu, I; Bercuci, A; Berdnikov, Y; Berenyi, D; Bergognon, A A E; Berzano, D; Betev, L; Bhasin, A; Bhati, A K; Bhom, J; Bianchi, L; Bianchi, N; Bianchin, C; Bielčík, J; Bielčíková, J; Bilandzic, A; Bjelogrlic, S; Blanco, F; Blanco, F; Blau, D; Blume, C; Boccioli, M; Bock, N; Böttger, S; Bogdanov, A; Bøggild, H; Bogolyubsky, M; Boldizsár, L; Bombara, M; Book, J; Borel, H; Borissov, A; Bose, S; Bossú, F; Botje, M; Boyer, B; Braidot, E; Braun-Munzinger, P; Bregant, M; Breitner, T; Browning, T A; Broz, M; Brun, R; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Bugaiev, K; Busch, O; Buthelezi, Z; Caballero Orduna, D; Caffarri, D; Cai, X; Caines, H; Calvo Villar, E; Camerini, P; Canoa Roman, V; Cara Romeo, G; Carena, F; Carena, W; Carlin Filho, N; Carminati, F; Carrillo Montoya, C A; Casanova Díaz, A; Castillo Castellanos, J; Castillo Hernandez, J F; Casula, E A R; Catanescu, V; Cavicchioli, C; Ceballos Sanchez, C; Cepila, J; Cerello, P; Chang, B; Chapeland, S; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Chawla, I; Cherney, M; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Chochula, P; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Coccetti, F; Colamaria, F; Colella, D; Conesa Balbastre, G; Conesa del Valle, Z; Constantin, P; Contin, G; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortese, P; Cortés Maldonado, I; Cosentino, M R; Costa, F; Cotallo, M E; Crescio, E; Crochet, P; Cruz Alaniz, E; Cuautle, E; Cunqueiro, L; Dainese, A; Dalsgaard, H H; Danu, A; Das, D; Das, I; Das, K; Dash, S; Dash, A; De, S; de Barros, G O V; De Caro, A; de Cataldo, G; de Cuveland, J; De Falco, A; De Gruttola, D; Delagrange, H; Deloff, A; Demanov, V; De Marco, N; Dénes, E; De Pasquale, S; Deppman, A; Erasmo, G D; de Rooij, R; Diaz Corchero, M A; Di Bari, D; Dietel, T; Di Liberto, S; Di Mauro, A; Di Nezza, P; Divià, R; Djuvsland, Ø; Dobrin, A; Dobrowolski, T; Domínguez, I; Dönigus, B; Dordic, O; Driga, O; Dubey, A K; Ducroux, L; Dupieux, P; Dutta Majumdar, M R; Dutta Majumdar, A K; Elia, D; Emschermann, D; Engel, H; Erdal, H A; Espagnon, B; Estienne, M; Esumi, S; Evans, D; Eyyubova, G; Fabris, D; Faivre, J; Falchieri, D; Fantoni, A; Fasel, M; Fearick, R; Fedunov, A; Fehlker, D; Feldkamp, L; Felea, D; Fenton-Olsen, B; Feofilov, G; Fernández Téllez, A; Ferretti, A; Ferretti, R; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Frankenfeld, U; Fuchs, U; Furget, C; Fusco Girard, M; Gaardhøje, J J; Gagliardi, M; Gago, A; Gallio, M; Gangadharan, D R; Ganoti, P; Garabatos, C; Garcia-Solis, E; Garishvili, I; Gerhard, J; Germain, M; Geuna, C; Gheata, A; Gheata, M; Ghidini, B; Ghosh, P; Di Giglio, C; Gianotti, P; Girard, M R; Giubellino, P; Gladysz-Dziadus, E; Glässel, P; Gomez, R; Gonschior, A; Ferreiro, E G; González-Trueba, L H; González-Zamora, P; Gorbunov, S; Goswami, A; Gotovac, S; Grabski, V; Graczykowski, L K; Grajcarek, R; Grelli, A; Grigoras, C; Grigoras, A; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grinyov, B; Grion, N; Gros, P; Grosse-Oetringhaus, J F; Grossiord, J-Y; Grosso, R; Guber, F; Guernane, R; Guerra Gutierrez, C; Guerzoni, B; Guilbaud, M; Gulbrandsen, K; Gunji, T; Gupta, A; Gupta, R; Gutbrod, H; Haaland, Ø; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Han, B H; Hanratty, L D; Hansen, A; Harmanova, Z; Harris, J W; Hartig, M; Hasegan, D; Hatzifotiadou, D; Hayrapetyan, A; Heckel, S T; Heide, M; Helstrup, H; Herghelegiu, A; Herrera Corral, G; Herrmann, N; Hess, B A; Hetland, K F; Hicks, B; Hille, P T; Hippolyte, B; Horaguchi, T; Hori, Y; Hristov, P; Hřivnáčová, I; Huang, M; Humanic, T J; Hwang, D S; Ichou, R; Ilkaev, R; Ilkiv, I; Inaba, M; Incani, E; Innocenti, G M; Innocenti, P G; Ippolitov, M; Irfan, M; Ivan, C; Ivanov, V; Ivanov, M; Ivanov, A; Ivanytskyi, O; Jachołkowski, A; Jacobs, P M; Jang, H J; Jangal, S; Janik, M A; Janik, R; Jayarathna, P H S Y; Jena, S; Jha, D M; Jimenez Bustamante, R T; Jirden, L; Jones, P G; Jung, H; Jusko, A; Kaidalov, A B; Kakoyan, V; Kalcher, S; Kaliňák, P; Kalliokoski, T; Kalweit, A; Kanaki, K; Kang, J H; Kaplin, V; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karpechev, E; Kazantsev, A; Kebschull, U; Keidel, R; Khan, P; Khan, M M; Khan, S A; Khanzadeev, A; Kharlov, Y; Kileng, B; Kim, D W; Kim, M; Kim, M; Kim, S H; Kim, D J; Kim, S; Kim, J H; Kim, J S; Kim, B; Kim, T; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Klay, J L; Klein, J; Klein-Bösing, C; Kliemant, M; Kluge, A; Knichel, M L; Knospe, A G; Koch, K; Köhler, M K; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Konevskikh, A; Korneev, A; Kour, R; Kowalski, M; Kox, S; Koyithatta Meethaleveedu, G; Kral, J; Králik, I; Kramer, F; Kraus, I; Krawutschke, T; Krelina, M; Kretz, M; Krivda, M; Krizek, F; Krus, M; Kryshen, E; Krzewicki, M; Kucheriaev, Y; Kuhn, C; Kuijer, P G; Kulakov, I; Kumar, J; Kurashvili, P; Kurepin, A B; Kurepin, A; Kuryakin, A; Kushpil, V; Kushpil, S; Kvaerno, H; Kweon, M J; Kwon, Y; Ladrón de Guevara, P; Lakomov, I; Langoy, R; La Pointe, S L; Lara, C; Lardeux, A; La Rocca, P; Lazzeroni, C; Lea, R; Le Bornec, Y; Lechman, M; Lee, S C; Lee, K S; Lee, G R; Lefèvre, F; Lehnert, J; Leistam, L; Lenhardt, M; Lenti, V; León, H; Leoncino, M; León Monzón, I; León Vargas, H; Lévai, P; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Liu, L; Loenne, P I; Loggins, V R; Loginov, V; Lohn, S; Lohner, D; Loizides, C; Loo, K K; Lopez, X; López Torres, E; Løvhøiden, G; Lu, X-G; Luettig, P; Lunardon, M; Luo, J; Luparello, G; Luquin, L; Luzzi, C; Ma, R; Ma, K; Madagodahettige-Don, D M; Maevskaya, A; Mager, M; Mahapatra, D P; Maire, A; Malaev, M; Maldonado Cervantes, I; Malinina, L; Mal'Kevich, D; Malzacher, P; Mamonov, A; Manceau, L; Mangotra, L; Manko, V; Manso, F; Manzari, V; Mao, Y; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Marín, A; Marin Tobon, C A; Markert, C; Martashvili, I; Martinengo, P; Martínez, M I; Martínez Davalos, A; Martínez García, G; Martynov, Y; Mas, A; Masciocchi, S; Masera, M; Masoni, A; Massacrier, L; Mastromarco, M; Mastroserio, A; Matthews, Z L; Matyja, A; Mayani, D; Mayer, C; Mazer, J; Mazzoni, M A; Meddi, F; Menchaca-Rocha, A; Mercado Pérez, J; Meres, M; Miake, Y; Milano, L; Milosevic, J; Mischke, A; Mishra, A N; Miśkowiec, D; Mitu, C; Mlynarz, J; Mohanty, B; Mohanty, A K; Molnar, L; Montaño Zetina, L; Monteno, M; Montes, E; Moon, T; Morando, M; Moreira De Godoy, D A; Moretto, S; Morsch, A; Muccifora, V; Mudnic, E; Muhuri, S; Mukherjee, M; Müller, H; Munhoz, M G; Musa, L; Musso, A; Nandi, B K; Nania, R; Nappi, E; Nattrass, C; Naumov, N P; Navin, S; Nayak, T K; Nazarenko, S; Nazarov, G; Nedosekin, A; Nicassio, M; Niculescu, M; Nielsen, B S; Niida, T; Nikolaev, S; Nikolic, V; Nikulin, S; Nikulin, V; Nilsen, B S; Nilsson, M S; Noferini, F; Nomokonov, P; Nooren, G; Novitzky, N; Nyanin, A; Nyatha, A; Nygaard, C; Nystrand, J; Ochirov, A; Oeschler, H; Oh, S; Oh, S K; Oleniacz, J; Oppedisano, C; Ortiz Velasquez, A; Ortona, G; Oskarsson, A; Ostrowski, P; Otwinowski, J; Oyama, K; Ozawa, K; Pachmayer, Y; Pachr, M; Padilla, F; Pagano, P; Paić, G; Painke, F; Pajares, C; Pal, S; Pal, S K; Palaha, A; Palmeri, A; Papikyan, V; Pappalardo, G S; Park, W J; Passfeld, A; Pastirčák, B; Patalakha, D I; Paticchio, V; Pavlinov, A; Pawlak, T; Peitzmann, T; Pereira Da Costa, H; Pereira De Oliveira Filho, E; Peresunko, D; Pérez Lara, C E; Perez Lezama, E; Perini, D; Perrino, D; Peryt, W; Pesci, A; Peskov, V; Pestov, Y; Petráček, V; Petran, M; Petris, M; Petrov, P; Petrovici, M; Petta, C; Piano, S; Piccotti, A; Pikna, M; Pillot, P; Pinazza, O; Pinsky, L; Pitz, N; Piyarathna, D B; Płoskoń, M; Pluta, J; Pocheptsov, T; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polák, K; Polichtchouk, B; Pop, A; Porteboeuf-Houssais, S; Pospíšil, V; Potukuchi, B; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puchagin, S; Puddu, G; Pujol Teixido, J; Pulvirenti, A; Punin, V; Putiš, M; Putschke, J; Quercigh, E; Qvigstad, H; Rachevski, A; Rademakers, A; Radomski, S; Räihä, T S; Rak, J; Rakotozafindrabe, A; Ramello, L; Ramírez Reyes, A; Raniwala, S; Raniwala, R; Räsänen, S S; Rascanu, B T; Rathee, D; Read, K F; Real, J S; Redlich, K; Reichelt, P; Reicher, M; Renfordt, R; Reolon, A R; Reshetin, A; Rettig, F; Revol, J-P; Reygers, K; Riccati, L; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Rodrigues Fernandes Rabacal, B; Rodríguez Cahuantzi, M; Rodriguez Manso, A; Røed, K; Rohr, D; Röhrich, D; Romita, R; Ronchetti, F; Rosnet, P; Rossegger, S; Rossi, A; Roy, C; Roy, P; Rubio Montero, A J; Rui, R; Ryabinkin, E; Rybicki, A; Sadovsky, S; Šafařík, K; Sahoo, R; Sahu, P K; Saini, J; Sakaguchi, H; Sakai, S; Sakata, D; Salgado, C A; Salzwedel, J; Sambyal, S; Samsonov, V; Sanchez Castro, X; Šándor, L; Sandoval, A; Sano, S; Sano, M; Santo, R; Santoro, R; Sarkamo, J; Scapparone, E; Scarlassara, F; Scharenberg, R P; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schreiner, S; Schuchmann, S; Schukraft, J; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, R; Scott, P A; Segato, G; Selyuzhenkov, I; Senyukov, S; Seo, J; Serci, S; Serradilla, E; Sevcenco, A; Shabetai, A; Shabratova, G; Shahoyan, R; Sharma, N; Sharma, S; Rohni, S; Shigaki, K; Shimomura, M; Shtejer, K; Sibiriak, Y; Siciliano, M; Sicking, E; Siddhanta, S; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simatovic, G; Simonetti, G; Singaraju, R; Singh, R; Singha, S; Singhal, V; Sinha, T; Sinha, B C; Sitar, B; Sitta, M; Skaali, T B; Skjerdal, K; Smakal, R; Smirnov, N; Snellings, R J M; Søgaard, C; Soltz, R; Son, H; Song, M; Song, J; Soos, C; Soramel, F; Sputowska, I; Spyropoulou-Stassinaki, M; Srivastava, B K; Stachel, J; Stan, I; Stan, I; Stefanek, G; Steinbeck, T; Steinpreis, M; Stenlund, E; Steyn, G; Stiller, J H; Stocco, D; Stolpovskiy, M; Strabykin, K; Strmen, P; Suaide, A A P; Subieta Vásquez, M A; Sugitate, T; Suire, C; Sukhorukov, M; Sultanov, R; Šumbera, M; Susa, T; Szanto de Toledo, A; Szarka, I; Szczepankiewicz, A; Szostak, A; Szymanski, M; Takahashi, J; Tapia Takaki, J D; Tauro, A; Tejeda Muñoz, G; Telesca, A; Terrevoli, C; Thäder, J; Thomas, D; Tieulent, R; Timmins, A R; Tlusty, D; Toia, A; Torii, H; Toscano, L; Truesdale, D; Trzaska, W H; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ulery, J; Ullaland, K; Ulrich, J; Uras, A; Urbán, J; Urciuoli, G M; Usai, G L; Vajzer, M; Vala, M; Valencia Palomo, L; Vallero, S; van der Kolk, N; Vande Vyvre, P; van Leeuwen, M; Vannucci, L; Vargas, A; Varma, R; Vasileiou, M; Vasiliev, A; Vechernin, V; Veldhoen, M; Venaruzzo, M; Vercellin, E; Vergara, S; Vernet, R; Verweij, M; Vickovic, L; Viesti, G; Vikhlyantsev, O; Vilakazi, Z; Villalobos Baillie, O; Vinogradov, A; Vinogradov, L; Vinogradov, Y; Virgili, T; Viyogi, Y P; Vodopyanov, A; Voloshin, K; Voloshin, S; Volpe, G; von Haller, B; Vranic, D; Øvrebekk, G; Vrláková, J; Vulpescu, B; Vyushin, A; Wagner, V; Wagner, B; Wan, R; Wang, M; Wang, D; Wang, Y; Wang, Y; Watanabe, K; Weber, M; Wessels, J P; Westerhoff, U; Wiechula, J; Wikne, J; Wilde, M; Wilk, G; Wilk, A; Williams, M C S; Windelband, B; Xaplanteris Karampatsos, L; Yaldo, C G; Yamaguchi, Y; Yang, H; Yang, S; Yasnopolskiy, S; Yi, J; Yin, Z; Yoo, I-K; Yoon, J; Yu, W; Yuan, X; Yushmanov, I; Zach, C; Zampolli, C; Zaporozhets, S; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zelnicek, P; Zgura, I S; Zhalov, M; Zhang, X; Zhang, H; Zhou, F; Zhou, D; Zhou, Y; Zhu, J; Zhu, J; Zhu, X; Zichichi, A; Zimmermann, A; Zinovjev, G; Zoccarato, Y; Zynovyev, M; Zyzak, M

    2013-04-12

    We report the first measurement of the net-charge fluctuations in Pb-Pb collisions at sqrt[sNN]=2.76  TeV, measured with the ALICE detector at the CERN Large Hadron Collider. The dynamical fluctuations per unit entropy are observed to decrease when going from peripheral to central collisions. An additional reduction in the amount of fluctuations is seen in comparison to the results from lower energies. We examine the dependence of fluctuations on the pseudorapidity interval, which may account for the dilution of fluctuations during the evolution of the system. We find that the fluctuations at the LHC are smaller compared to the measurements at the BNL Relativistic Heavy Ion Collider, and as such, closer to what has been theoretically predicted for the formation of a quark-gluon plasma. PMID:25167254

  3. High Pb concentration stress on Typha latifolia growth and Pb removal in microcosm wetlands.

    PubMed

    Han, Jianqiu; Chen, Fengzhen; Zhou, Yumei; Wang, Chaohua

    2015-01-01

    When constructed wetlands are used to treat high-Pb wastewater, Pb may become a stress to wetland plants, which subsequently reduces treatment performance and the other ecosystem services. To facilitate the design and operation of constructed wetlands for treatment of Pb-rich wastewater, we investigated the irreversible inhibitory level of Pb for Typha latifolia through experiments in microcosm wetlands. Seven horizontal subsurface flow constructed wetlands were built with rectangular plastic tanks and packed with marble chips and sand. All wetlands were transplanted with nine stems of Typha latifolia each. The wetlands were batch operated in a greenhouse with artificial wastewater (10 L each) for 12 days. Influent to the seven wetlands had different concentrations of Pb: 0 mg/L, 10 mg/L, 25 mg/L, 50 mg/L, 100 mg/L, 200 mg/L, and 500 mg/L, respectively. The results suggested that leaf chlorophyll relative content, relative growth rate, photosynthetic characteristics, activities of superoxide dismutase, peroxidase, and content of malondialdehyde were not affected when initial Pb concentration was at 100 mg/L and below. But when initial Pb concentration was above 100 mg/L, all of them were seriously affected. We conclude that high Pb concentrations wastewater could inhibit the growth of Typha latifolia and decrease the removal rate of wetlands.

  4. Reliability of Solder Materials (Sn-Pb and Pb-Free) for Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni

    2011-01-01

    The purpose of this study is to assess the experimental reliability results of miniaturized passive components (01005, 0201, 0402, 0603, 0805, and 1206) assembled using surface mounting processes with tin-lead (Sn-Pb) and lead-free (Pb-Free) solder alloys under extreme temperature deep space environments.

  5. Crystal and Morphological Phase Transformation of Pb(II) to Pb(IV) in Chlorinated Water

    EPA Science Inventory

    Herein, we show that an important transformation of Pb(II) to Pb(IV) under laboratory conditions which is intended to represent in real water flowing system in lead pipes. These results will give an insight in understanding the scale formation in lead pipes and dissolution of lea...

  6. Space-time evolution of the hadronic source in peripheral to central Pb+Pb collisions

    NASA Astrophysics Data System (ADS)

    Bearden, I. G.; Bøggild, H.; Boissevain, J.; Christiansen, P. H. L.; Conin, L.; Dodd, J.; Erazmus, B.; Esumi, S.; Fabjan, C. W.; Ferenc, D.; Franz, A.; Gaardhøje, J. J.; Hansen, A. G.; Hansen, O.; Hardtke, D.; van Hecke, H.; Holzer, E. B.; Humanic, T. J.; Hummel, P.; Jacak, B. V.; Kaimi, K.; Kaneta, M.; Kohama, T.; Kopytine, M.; Leltchouk, M.; Ljubičić, A., Jr.; Lörstad, B.; Maeda, N.; Martin, L.; Medvedev, A.; Murray, M.; Ohnishi, H.; Paić, G.; Pandey, S. U.; Piuz, F.; Pluta, J.; Polychronakos, V.; Potekhin, M.; Poulard, G.; Reichhold, D.; Sakaguchi, A.; Schmidt-Sørensen, J.; Simon-Gillo, J.; Sondheim, W.; Sugitate, T.; Sullivan, J. P.; Sumi, Y.; Willis, W. J.; Wolf, K.; Xu, N.; Zachary, D. S.

    2000-12-01

    Two-particle correlations of negative pions as a function of charged particle multiplicity are studied in Pb+Pb collisions at sqrt{s}=17.3GeV per nucleon using the NA44 experiment at the CERN Super Proton Synchrotron(SPS). We find that the source size parameters increase with the charged particle multiplicity. However the slope of the source size parameters plotted as a function of charged multiplicity is slightly larger at high multiplicity than at low multiplicity. The value of λ is independent of charged multiplicity. For Pb+Pb collisions, R_L is larger than R_{TS} and R_{TO} for all multiplicity intervals, whereas these three radius parameters were approximately equal in S+Nucleus collisions. The ratios (R_L/R_{TS}) and (R_L/R_{TO}) for Pb+Pb data show almost no dependence on charged multiplicity. The duration of pion emission Δ tau is constant at 3.8±1.1 fm/ c as a function of the charged multiplicity in Pb+Pb collisions. Effective volume (V) is also calculated as V=π× R_{TS}^2× R_L, assuming a cylindrically shaped source. We found, within the limited statistics, the effective volume rapidly increases at high multiplicity.

  7. Controllable synthesis and adjustable antineoplastic activity of bovine serum albumin-conjugated PbS/Ag2S core/shell nano-composites.

    PubMed

    Wang, Hua-Jie; Yu, Xue-Hong; Cao, Ying; Zhou, Bei; Wang, Cai-Feng

    2012-08-01

    Series of mono-dispersed bovine serum albumin (BSA)-conjugated PbS/Ag(2)S core/shell nano-composites with different Pb/Ag ratios had been successfully synthesized by an ion-exchange method under the gentle conditions using BSA-conjugated PbS nano-crystals as precursors, which were prepared by a biomimetic method. Fourier transform infrared spectra analysis and transmission electron microscopy (TEM) observation demonstrated that BSA was a key factor to control the morphology and size of final products. Additionally, the real-time TEM observation, X-ray powder diffraction and atomic absorption spectroscopy analysis were applied to monitor the synthesis process. The results indicated that the shell thickness and ratio of Pb to Ag could be controlled by adjusting the ion-exchange time. Both metabolic and morphological methods revealed that the proliferation of rat pheochromocytoma (PC 12) cells could be inhibited by BSA-conjugated PbS/Ag(2)S core/shell nano-composites, and the antineoplastic activity was Pb/Ag ratio-dependent. It might be explained by a Trojan horse-type mechanism. Summarily, the present study would be helpful to find a new core/shell nano-composite with higher and controllable antineoplastic activity due to the synergistic reaction of different metal ions.

  8. Biosorption of Pb2+ from aqueous solutions by Moringa oleifera bark: equilibrium and kinetic studies.

    PubMed

    Reddy, D Harikishore Kumar; Seshaiah, K; Reddy, A V R; Rao, M Madhava; Wang, M C

    2010-02-15

    Biosorption of Pb(2+) from aqueous solution by biomass prepared from Moringa oleifera bark (MOB), an agricultural solid waste has been studied. Parameters that influence the biosorption such as pH, biosorbent dose, contact time and concentration of metal ion were investigated. The experimental equilibrium adsorption data were tested by four widely used two-parameter equations, the Langmuir, Freundlich, Dubinin-Radushkevich (D-R) and Temkin isotherms. Results indicated that the data of Pb(2+) adsorption onto MOB were best fit by the Freundlich model. The adsorption capacity (Q(m)) calculated from the Langmuir isotherm was 34.6mgPb(2+)g(-1) at an initial pH of 5.0. Adsorption kinetics data were analyzed using the pseudo-first-, pseudo-second-order equations and intraparticle diffusion models. The results indicated that the adsorption kinetic data were best described by pseudo-second-order model. Infrared (IR) spectral analysis revealed that the lead ions were chelated to hydroxyl and/or carboxyl functional groups present on the surface of MOB. Biosorbent was effective in removing lead in the presence of common metal ions like Na(+), K(+), Ca(2+) and Mg(2+) present in water. Desorption studies were carried out with dilute hydrochloric acid for quantitative recovery of the metal ion as well as to regenerate the adsorbent. Based on the results obtained such as good uptake capacity, rapid kinetics, and its low cost, M. oleifera bark appears to be a promising biosorbent material for the removal of heavy metal ions from wastewater/effluents. PMID:19853374

  9. Water binding energies of [Pb(amino acid-H)H2O]+ complexes determined by blackbody infrared radiative dissociation.

    PubMed

    Burt, Michael B; Decker, Sarah G A; Fridgen, Travis D

    2012-11-21

    The water binding energies (E(0)) of eight deprotonated Pb(2+)-amino acid (Aa) complexes of the form [Pb(Aa-H)H(2)O](+) (Aa = Gly, Ala, Val, Leu, Ile, Phe, Glu, and Lys) were determined using blackbody infrared radiative dissociation (BIRD). A Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer was used to trap ions generated by electrospray ionization (ESI) in a "zero"-pressure (~10(-10) torr) cell where dissociation can only occur by absorption of thermally generated photons. Since the [Pb(Aa-H)H(2)O](+) complexes have relatively few vibrational degrees of freedom (36-78) and are within the slow-exchange kinetic limit, the master equation was solved to extract meaningful threshold dissociation energies and thermal unimolecular dissociation rate constants (k(uni)). The master equation analysis uses variable reaction coordinate transition state theory (VRC-TST) to minimize the Rice-Ramsperger-Kassel-Marcus (RRKM) dissociation rate constants. The determined water binding energies range from 76.6 to 113.6 kJ mol(-1), and agree well with 0 K dissociation energies calculated using the B3LYP/6-31+G(d,p) and MP2(full)/6-311++G(2d,2p)//B3LYP/6-31+G(d,p) methods. The relative strengths of the binding energies reflect the known structural isomers (A-, B-, C-, and D-type) of these [Pb(Aa-H)H(2)O](+) complexes.

  10. Charge-transfer dynamics in multilayered PbS and PbSe quantum dot architectures

    SciTech Connect

    Xu, F.; Ma, X.; Haughn, C. R.; Doty, M. F.; Cloutier, S. G.

    2014-02-03

    We demonstrate control of the charge transfer process in PbS and PbSe quantum dot assemblies. We first demonstrate efficient charge transfer from donor quantum dots to acceptor quantum dots in a multi-layer PbSe cascade structure. Then, we assemble type-I and type-II heterostructures using both PbS and PbSe quantum dots via careful control of the band alignment. In type-I structures, photo-generated carriers are transferred and localized in the smaller bandgap (acceptor) quantum dots, resulting in a significant luminescence enhancement. In contrast, a significant luminescence quenching and shorter emission lifetime confirms an efficient separation of photo-generated carriers in the type-II architecture.

  11. Synthesis of poly(aminopropyl/methyl)silsesquioxane particles as effective Cu(II) and Pb(II) adsorbents.

    PubMed

    Lu, Xin; Yin, Qiangfeng; Xin, Zhong; Li, Yang; Han, Ting

    2011-11-30

    Poly(aminopropyl/methyl)silsesquioxane (PAMSQ) particles have been synthesized by a one-step hydrolytic co-condensation process using 3-aminopropyltriethoxysilane (APTES) and methyltrimethoxysilane (MTMS) as precursors in the presence of base catalyst in aqueous medium. The amino functionalities of the particles could be controlled by adjusting the organosilanes feed ratio. The compositions of the amino-functionalized polysilsesquioxanes were confirmed by FT-IR spectroscopy, solid-state (29)Si NMR spectroscopy, and elemental analysis. The strong adsorbability of Cu(II) and Pb(II) ions onto PAMSQ particles was systematically examined. The effect of adsorption time, initial metal ions concentration and pH of solutions was studied to optimize the metal ions adsorbability of PAMSQ particles. The kinetic studies indicated that the adsorption process well fits the pseudo-second-order kinetics. Adsorption phenomena appeared to follow Langmuir isotherm. The PAMSQ particles demonstrate the highest Cu(II) and Pb(II) adsorption capacity of 2.29 mmol/g and 1.31 mmol/g at an initial metal ions concentration of 20mM, respectively. The PAMSQ particles demonstrate a promising application in the removal of Cu(II) and Pb(II) ions from aqueous solutions. PMID:21945683

  12. U-Pb Ages of Lunar Apatites

    NASA Technical Reports Server (NTRS)

    Vaughan, J.; Nemchin, A. A.; Pidgeon, R. T.; Meyer, Charles

    2006-01-01

    Apatite is one of the minerals that is rarely utilized in U-Pb geochronology, compared to some other U-rich accessory phases. Relatively low U concentration, commonly high proportion of common Pb and low closure temperature of U-Pb system of apatite inhibit its application as geochronological tool when other minerals such as zircon are widely available. However, zircon appear to be restricted to certain type of lunar rocks, carrying so called KREEP signature, whereas apatite (and whitlockite) is a common accessory mineral in the lunar samples. Therefore, utilizing apatite for lunar chronology may increase the pool of rocks that are available for U-Pb dating. The low stability of U-Pb systematics of apatite may also result in the resetting of the system during meteoritic bombardment, in which case apatite may provide an additional tool for the study of the impact history of the Moon. In order to investigate these possibilities, we have analysed apatites and zircons from two breccia samples collected during the Apollo 14 mission. Both samples were collected within the Fra Mauro formation, which is interpreted as a material ejected during the impact that formed the Imbrium Basin.

  13. A century long sedimentary record of anthropogenic lead (Pb), Pb isotopes and other trace metals in Singapore.

    PubMed

    Chen, Mengli; Boyle, Edward A; Switzer, Adam D; Gouramanis, Chris

    2016-06-01

    Reconstructing the history of metal deposition in Singapore lake sediments contributes to understanding the anthropogenic and natural metal deposition in the data-sparse Southeast Asia. To this end, we present a sedimentary record of Pb, Pb isotopes and eleven other metals (Ag, As, Ba, Cd, Co, Cr, Cu, Ni, Tl, U and Zn) from a well-dated sediment core collected near the depocenter of MacRitchie Reservoir in central Singapore. Before the 1900s, the sedimentary Pb concentration was less than 2 mg/kg for both soil and sediment, with a corresponding (206)Pb/(207)Pb of ∼1.20. The Pb concentration increased to 55 mg/kg in the 1990s, and correspondingly the (206)Pb/(207)Pb decreased to less than 1.14. The (206)Pb/(207)Pb in the core top sediment is concordant with the (206)Pb/(207)Pb signal of aerosols in Singapore and other Southeast Asian cities, suggesting that Pb in the reservoir sediment was mainly from atmospheric deposition. Using the Pb concentration in the topmost layer of sediment, the estimated atmospheric Pb flux in Singapore today is ∼1.6 × 10(-2) g/m(2) yr. The concentrations of eleven other metals preserved in the sediment were also determined. A principal component analysis showed that most of the metals exhibit an increasing trend towards 1990s with a local concentration peak in the mid-20(th) century.

  14. A century long sedimentary record of anthropogenic lead (Pb), Pb isotopes and other trace metals in Singapore.

    PubMed

    Chen, Mengli; Boyle, Edward A; Switzer, Adam D; Gouramanis, Chris

    2016-06-01

    Reconstructing the history of metal deposition in Singapore lake sediments contributes to understanding the anthropogenic and natural metal deposition in the data-sparse Southeast Asia. To this end, we present a sedimentary record of Pb, Pb isotopes and eleven other metals (Ag, As, Ba, Cd, Co, Cr, Cu, Ni, Tl, U and Zn) from a well-dated sediment core collected near the depocenter of MacRitchie Reservoir in central Singapore. Before the 1900s, the sedimentary Pb concentration was less than 2 mg/kg for both soil and sediment, with a corresponding (206)Pb/(207)Pb of ∼1.20. The Pb concentration increased to 55 mg/kg in the 1990s, and correspondingly the (206)Pb/(207)Pb decreased to less than 1.14. The (206)Pb/(207)Pb in the core top sediment is concordant with the (206)Pb/(207)Pb signal of aerosols in Singapore and other Southeast Asian cities, suggesting that Pb in the reservoir sediment was mainly from atmospheric deposition. Using the Pb concentration in the topmost layer of sediment, the estimated atmospheric Pb flux in Singapore today is ∼1.6 × 10(-2) g/m(2) yr. The concentrations of eleven other metals preserved in the sediment were also determined. A principal component analysis showed that most of the metals exhibit an increasing trend towards 1990s with a local concentration peak in the mid-20(th) century. PMID:26967352

  15. EPR and optical study of Yb3+-doped β-PbF2 single crystals and nanocrystals of glass-ceramics

    NASA Astrophysics Data System (ADS)

    Dantelle, G.; Mortier, M.; Goldner, Ph; Vivien, D.

    2006-08-01

    β-PbF2 single crystals doped with YbF3 (0.2% and 2%) were studied by x-ray diffraction (XRD), electron paramagnetic resonance (EPR) and optical spectroscopy. EPR revealed the presence of only one kind of paramagnetic ion Yb3+, in a cubic symmetry site. The optical absorption, emission and excitation spectra enabled us to identify the transitions attributed to Yb3+ in the cubic site and to determine its energy level diagram. Site-selective laser spectroscopy also evidenced the presence of another type of Yb3+ ions, undetectable by classical EPR. This second type, which dominates in the 2%-doped crystal and exhibits cooperative luminescence, was attributed to Yb3+ ions forming clusters. Transparent oxyfluoride glass-ceramics, containing β-Pb1-yYbyF2+y nanocrystallites, were also synthesized and studied by XRD, EPR and optical spectroscopy. Two types of Yb3+ ions were found, as in β-PbF2 single crystals. The optical properties of the oxyfluoride glass-ceramics turn out to be similar to those of ytterbium activated β-PbF2 single crystals. Moreover, the Yb environments found in PbF2 single crystals seem to already occur in the parent glass. Therefore, these materials are expected to be good laser media, like the rare-earth doped fluorite crystals, either in bulk or fibre form.

  16. Selective removals of heavy metals (Pb(2+), Cu(2+), and Cd(2+)) from wastewater by gelation with alginate for effective metal recovery.

    PubMed

    Wang, Fei; Lu, Xingwen; Li, Xiao-yan

    2016-05-01

    A novel method that uses the aqueous sodium alginate solution for direct gelation with metal ions is developed for effective removal and recovery of heavy metals from industrial wastewater. The experimental study was conducted on Pb(2+), Cu(2+), and Cd(2+) as the model heavy metals. The results show that gels can be formed rapidly between the metals and alginate in less than 10 min and the gelation rates fit well with the pseudo second-order kinetic model. The optimum dosing ratio of alginate to the metal ions was found to be between 2:1 and 3:1 for removing Pb(2+) and around 4:1 for removing Cu(2+) and Cd(2+) from wastewater, and the metal removal efficiency by gelation increased as the solution pH increased. Alginate exhibited a higher gelation affinity toward Pb(2+) than Cu(2+) and Cd(2+), which allowed a selective removal of Pb(2+) from the wastewater in the presence of Cu(2+) and Cd(2+) ions. Chemical analysis of the gels suggests that the gelation mainly occurred between the metal ions and the -COO(-) and -OH groups on alginate. By simple calcination of the metal-laden gels at 700 °C for 1 h, the heavy metals can be well recovered as valuable resources. The metals obtained after the thermal treatment are in the form of PbO, CuO, and CdO nanopowders with crystal sizes of around 150, 50, and 100 nm, respectively.

  17. Low temperature synthesis of lead germanate (PbGeO{sub 3})/polypyrrole (PPy) nanocomposites and their lithium storage performance

    SciTech Connect

    Feng, Jinkui; Ci, Lijie; Qi, Yongxin; Lun, Ning; Xiong, Shenglin; Qian, Yitai

    2014-09-15

    Highlights: • PbGeO{sub 3}/PPy nanocomposites are successfully fabricated for the first time. •