Science.gov

Sample records for 33-tev pb ions

  1. 207Pb NMR in minium, Pb3O4: Evidence for the [Pb2]4+ ion andpossible relativistic effects in the Pb-Pb bond

    SciTech Connect

    Gabuda, S.P.; Kozlova, S.G.; Terskikh, V.V.; Dybowski, C.; Neue,G.; Perry, D.L.

    1999-07-18

    Solid Pb3O4 has been studied with 207Pb nuclear magnetic resonance (NMR) spectroscopy. The 207Pb NMR chemical-shift tensor of the Pb2+ site has principal values of delta 11=1980+-5 ppm, delta 22=1540+-5ppm, and delta 33=-1108+-10 ppm; delta iso=804+-10 ppm. The chemical-shift tensor of the Pb4+ site is axial, with principal values delta bar bar=-1009+-3 ppm and delta perpendicular=1132+-3 ppm; delta iso=-1091+-3ppm. The Pb4+ Pb2+ scalar coupling constant JPb Pb=2.3+-0.1 kHz. The main contribution to the Pb2+ chemical-shift anisotropy is proposed to arise from an exchange interaction in the Pb2+ Pb2+ pairs, conventionally regarded as molecular [Pb2]4+ ions.

  2. Size evolution of ion beam synthesized Pb nanoparticles in Al

    PubMed Central

    2014-01-01

    The size evolution of Pb nanoparticles (NPs) synthesized by ion implantation in an epitaxial Al film has been experimentally investigated. The average radius R of Pb NPs was determined as a function of implantation fluence f. The R(f) data were analyzed using various growth models. Our observations suggest that the size evolution of Pb NPs is controlled by the diffusion-limited growth kinetics (R2∝f). With increasing implantation current density, the diffusion coefficient of Pb atoms in Al is evident to be enhanced. By a comparative analysis of the R(f) data, values of the diffusion coefficient of Pb in Al were obtained. PMID:25114640

  3. Effect of Pb2+ ions on photosynthetic apparatus.

    PubMed

    Sersen, Frantisek; Kralova, Katarina; Pesko, Matus; Cigan, Marek

    2014-01-01

    Using model lead compounds Pb(NO3)2 and Pb(CH3CHOO)2, the mechanism and the site of action of Pb2+ ions in the photosynthetic apparatus of spinach chloroplasts were studied. Both compounds inhibited photosynthetic electron transport (PET) through photosystem 1 (PS1) and photosystem 2 (PS2), while Pb(NO3)2 was found to be more effective PET inhibitor. Using EPR spectroscopy the following sites of Pb2+ action in the photosynthetic apparatus were determined: the water-splitting complex and the Z•/D• intermediates on the donor side of PS2 and probably also the ferredoxin on the acceptor side of PS1, because cyclic electron flow in chloroplasts was impaired by treatment with Pb2+ ions. Study of chlorophyll fluorescence in suspension of spinach chloroplasts in the presence of Pb2+ ions confirmed their site of action in PS2. Using fluorescence spectroscopy also formation of complexes between Pb2+ and amino acid residues in photosynthetic proteins was confirmed and constants of complex formation among Pb2+ and aromatic amino acids were calculated for both studied lead compounds.

  4. Ancient Pb and Ti mobilization revealed by Scanning Ion Imaging

    NASA Astrophysics Data System (ADS)

    Kusiak, Monika A.; Whitehouse, Martin J.; Wilde, Simon A.

    2014-05-01

    Zircons from strongly layered early Archean ortho- and paragneisses in ultra-high temperature (UHT) metamorphic rocks of the Napier Complex, Enderby Land, East Antarctica are characterized by complex U-Th-Pb systematics [1,2,3]. A large number of zircons from three samples, Gage Ridge, Mount Sones and Dallwitz Nunatak, are reversely discordant (U/Pb ages older than 207Pb/206Pb ages) with the oldest date of 3.9 Ga [4] (for the grain from Gage Ridge orthogneiss). To further investigate this process, we utilized a novel high spatial resolution Scanning Ion Imaging technique on the CAMECA IMS 1280 at the Natural History Museum in Stockholm. Areas of 70 μm x 70 μm were selected for imaging in mono- and multicollection modes using a ~2 μm rastered primary beam to map out the distribution of 48Ti, 89Y, 180Hf, 232Th, 238U, 204Pb, 206Pb and 207Pb. The ion maps reveal variable distribution of certain elements within analysed grains that can be compared to their CL response. Yttrium, together with U and Th, exhibits zonation visible on the CL images, Hf shows expected minimal variation. Unusual patchiness is visible in the map for Ti and Pb distribution. The bright patches with enhanced signal do not correspond to any zones or to crystal imperfections (e.g. cracks). The presence of patchy titanium is likely to affect Ti-in-zircon thermometry, and patchy Pb affecting 207Pb/206Pb ages, usually considered as more robust for Archean zircons. Using the WinImage program, we produced 207Pb/206Pb ratio maps that allow calculation of 207Pb/206Pb ages for spots of any size within the frame of the picture and at any time after data collection. This provides a new and unique method for obtaining age information from zircon. These maps show areas of enhanced brightness where the 207Pb/206Pb ratio is higher and demonstrate that within these small areas (μm scale) the apparent 207Pb/206Pb age is older, in some of these patches even > 4 Ga. These data are a result of ancient Pb

  5. Radioactive halos and ion microprobe measurement of Pb isotope ratios

    NASA Technical Reports Server (NTRS)

    Gentry, R. V.

    1974-01-01

    This investigation was to obtain, if possible, the Pb isotope ratios of both lunar and meteoritic troilite grains by utilizing ion microprobe techniques. Such direct in situ measurement of Pb isotope ratios would eliminate contamination problems inherent in wet chemistry separation procedures, and conceivably determine whether lunar troilite grains were of meteoritic origin. For comparison purposes two samples of meteoritic troilite were selected (one from Canyon Diablo) for analysis along with two very small lunar troilite grains (approximately 50-100 microns). It was concluded that the ion microprobe as presently operating, does not permit the in situ measurement of Pb isotope ratios in lunar or meteoritic troilite. On the basis of these experiments no conclusions could be drawn as to the origin of the lunar troilite grains.

  6. Loess clay based copolymer for removing Pb(II) ions.

    PubMed

    He, Yu-Feng; Zhang, Ling; Wang, Rong-Min; Li, Hui-Ru; Wang, Yan

    2012-08-15

    Functional monomers, such as acrylic acid and 2-hydroxyethyl methacrylate were supported into loess clay in situ polymerization, which afforded loess clay based copolymer (LC/PAAHM), a new kind of polymer adsorbent for removing Pb(II) ions from aqueous solution. Characterization of the polymer adsorbent was carried out by different sophisticated methods, such as Fourier transformation infrared spectrometry (FTIR), scanning electron microscopy (SEM), X-ray diffractometry (XRD), thermogravimetric analysis (TGA), and Zetasizer. Batch experiments were carried out to evaluate the factors affecting the removal efficiency, in which the pH, the adsorbent dosage, temperature and initial Pb(II) concentration all found in positive relevance to the increase of Pb(II) removal efficiency. The removal rate of Pb(II) got to 99% at room temperature and the adsorption capacity got to 356.9 mg/g. The pseudo-first-order and pseudo-second-order kinetic models were applied to test the experimental data, and Langmuir and Freundlich models have been applied to study the adsorption equilibrium, respectively.

  7. Pb-207/Pb-206 ages of individual mineral phases in Luna 20 material by ion microprobe mass analysis.

    NASA Technical Reports Server (NTRS)

    Andersen, C. A.; Hinthorne, J. R.

    1973-01-01

    Ion microprobe analyses of returned lunar material have helped to demonstrate that U, Th, and radiogenic Pb are concentrated in small accessory mineral phases. It is possible to measure the isotopic composition of this Pb and obtain a radiometric Pb-207/Pb-206 age for the mineral. The ages so derived compare favorably with crystallization ages determined by conventional methods. A grain mount (22003,2/6) of Luna 20 material was searched for such accessory mineral phases, and two were found. One of these phases give an age of 4.12 plus or minus 0.04 b.y. and the other an age of 4.42 plus or minus 0.11 b.y. Ages of minerals dated by the ion probe in Apollo samples 14310 and 15555 are given for comparison. Data on the upper limit for Pb concentration in the outermost surface layers of free lunar soil particles are also given.

  8. Improved calibration procedures and new standards for U - Pb and Th - Pb dating of Phanerozoic xenotime by ion microprobe

    USGS Publications Warehouse

    Fletcher, I.R.; McNaughton, N.J.; Aleinikoff, J.A.; Rasmussen, B.; Kamo, S.L.

    2004-01-01

    Xenotime is a widely occurring mineral that is amenable to U-Pb and Th-Pb dating but often is found as micrometre-sized crystals that can only be dated by in situ microanalytical techniques. Determining accurate ages for Phanerozoic samples, and assessing concordance in older samples, requires accurate determination of Pb/U and Pb/Th; however, ion microprobe data for these ratios are affected by the highly variable trace element composition of xenotime. We have identified calibration procedures, including matrix corrections for the effects of the dominant trace elements U, Th and REE, that provide an accuracy of ???1% for Pb/U and <2% for Pb/Th. Several new standard samples are available that cover a range of compositions, permitting better matching of samples with standards as well as giving control of the matrix effects. However, no chemically homogeneous samples have been identified. ?? 2004 Elsevier B.V. All rights reserved.

  9. Utilization of barley straws as biosorbents for Cu2+ and Pb2+ ions.

    PubMed

    Pehlivan, Erol; Altun, Türkan; Parlayici, Serife

    2009-05-30

    The potential to remove Cu(2+) and Pb(2+) ion from aqueous solutions through biosorption using barley straw (BS) was investigated in batch experiments. The main parameters influencing Cu(2+) and Pb(2+) ion sorption on BS were: initial metal ion concentration, amount of adsorbent, contact time and pH value of solution. The influences of initial Cu(2+) and Pb(2+) ion concentration (0.1-1mM), pH (2-9), contact time (10-240 min) and adsorbent amount (0.1-1.0 g) have been reported. Equilibrium isotherms have been measured and modelled. The percent adsorption of Cu(2+) and Pb(2+) ions increased with an increase in pH and dosage of treated BS. The biosorptive capacity of the BS was dependent on the pH of Cu(2+) and Pb(2+) ion solution. Adsorption of Cu(2+) and Pb(2+) ion was in all cases pH dependent showing a maximum at equilibrium pH value at 6.0. The equilibrium sorption capacities of Cu(2+) and Pb(2+) after 2h were 4.64 mg/g and 23.20mg/g for BS, respectively. The adsorption data fit well with the Langmuir isotherm model and the experimental result inferred that complexation on surface, adsorption (chemisorption) and ion exchange is one of the major adsorption mechanisms for binding Cu(2+) and Pb(2+) ion to the sorbents.

  10. Synthesis of PbTe thermoelectric film by high energy heavy ion beam mixing

    SciTech Connect

    Gupta, Srashti; Neeleshwar, S.; Agarwal, D. C.; Avasthi, D. K.; Prakash, Jai; Tripathi, S. K.; Panigrahi, B. K.

    2011-12-12

    The Te/Pb bilayer samples were prepared by sequential thermal evaporation of Pb and Te on glass substrate. These bilayer samples were irradiated by 100 MeV Ag{sup 9+} at different fluences (3x10{sup 12}, 1x10{sup 13}, and 3x10{sup 13} ions/cm{sup 2}) to synthesis PbTe by ion beam mixing. The samples were characterized by RBS to study composition and X-ray diffraction (XRD) for phase identification before and after irradiation. Thickness of Pb and Te were 75 nm and 105 nm respectively in pristine film as deduced from RBS analysis. The RBS of irradiated sample indicates the mixing between Pb and Te layers. XRD revealed phases of PbTe in sample irradiated at 3x10{sup 13} ions/cm{sup 2}. This phase formation may be due to inter diffusion across the interface induced by swift heavy ion irradiation.

  11. Ion Microprobe U-Pb Dating of Zagami Phosphates

    NASA Astrophysics Data System (ADS)

    Sano, Y.; Koike, M.; Takahata, N.; Terada, K.

    2016-08-01

    We report U-Pb dating of Zagami phosphates using SHRIMP and NanoSIMS. A least-squares fit gives 238U-206Pb isochron age of 363 ± 120 Ma and total Pb/U age of 300 ± 84 Ma, which are older than 180 ± 7 Ma of baddeleyite of Zagami in literature.

  12. Removal of Pb(II) ions from aqueous solutions on few-layered graphene oxide nanosheets.

    PubMed

    Zhao, Guixia; Ren, Xuemei; Gao, Xing; Tan, Xiaoli; Li, Jiaxing; Chen, Changlun; Huang, Yuying; Wang, Xiangke

    2011-11-07

    Few-layered graphene oxide (FGO) was synthesized from graphite by using the modified Hummers method, and was characterized by scanning electron microscopy, atomic force microscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy. The prepared FGO was used to adsorb Pb(II) ions from aqueous solutions. The abundant oxygen-containing groups on the surfaces of FGO played an important role in Pb(II) ion adsorption on FGO. The adsorption of Pb(II) ions on FGO was dependent on pH values and independent of ionic strength. The adsorption of Pb(II) ions on FGO was mainly dominated by strong surface complexation. From the adsorption isotherms, the maximum adsorption capacities (C(smax)) of Pb(II) ions on FGO calculated from the Langmuir model were about 842, 1150, and 1850 mg g(-1) at 293, 313, and 333 K, respectively, higher than any currently reported. The FGO had the highest adsorption capacities of today's nanomaterials. The thermodynamic parameters calculated from the temperature dependent adsorption isotherms indicated that the adsorption of Pb(II) ions on FGO was a spontaneous and endothermic process.

  13. In situ ion microprobe U-Pb dating and REE abundances of a carboniferous conodont

    NASA Astrophysics Data System (ADS)

    Sano, Yuji; Terada, Kentaro

    We report here in situ ion microprobe U-Pb dating of a conodont micro-fossil using an ion microprobe method. Thirteen spots on the single fragment of the Carboniferous conodont (size: approximately 800 µm × 100 µm) yield a 238U/206Pb isochron age of 323±36 Ma and a Tera-Wasserburg concordia intercept age of 332±44 Ma in a three-dimensional 238U/206Pb-207Pb/206 Pb-204Pb/206Pb diagram. These ages are consistent with the depositional and early diagenetic ages of the fossil in its host Mississippian sedimentary sequence within experimental error. The success of the method depends on the chemical fractionation of U from Pb within a hundred-µm length scale and the consequent variations in Pb isotopic compositions due to radioactive decay. Shale-normalized rare earth element (REE) abundances of two spots on the same sample show flat patterns from light REE to middle REE and decreases from middle REE to heavy REE with negative anomalies of both Ce and Eu. The REE characteristics are significantly different from those of Devonian conodonts reported by other workers, suggesting discrepant redox states and/or formation environments.

  14. Stimulation of TRPC5 cationic channels by low micromolar concentrations of lead ions (Pb2+).

    PubMed

    Sukumar, Piruthivi; Beech, David J

    2010-02-26

    Lead toxicity is long-recognised but continues to be a major public health problem. Its effects are wide-ranging and include induction of hyper-anxiety states. In general it is thought to act by interfering with Ca(2+) signalling but specific targets are not clearly identified. Transient receptor potential canonical 5 (TRPC5) is a Ca(2+)-permeable ion channel that is linked positively to innate fear responses and unusual amongst ion channels in being stimulated by trivalent lanthanides, which include gadolinium. Here we show investigation of the effect of lead, which is a divalent ion (Pb(2+)). Intracellular Ca(2+) and whole-cell patch-clamp recordings were performed on HEK 293 cells conditionally over-expressing TRPC5 or other TRP channels. Extracellular application of Pb(2+) stimulated TRPC5 at concentrations greater than 1 microM. Control cells without TRPC5 showed little or no response to Pb(2+) and expression of other TRP channels (TRPM2 or TRPM3) revealed partial inhibition by 10 microM Pb(2+). The stimulatory effect on TRPC5 depended on an extracellular residue (E543) near the ion pore: similar to gadolinium action, E543Q TRPC5 was resistant to Pb(2+) but showed normal stimulation by the receptor agonist sphingosine-1-phosphate. The study shows that Pb(2+) is a relatively potent stimulator of the TRPC5 channel, generating the hypothesis that a function of the channel is to sense metal ion poisoning.

  15. Locating the binding sites of Pb(II) ion with human and bovine serum albumins.

    PubMed

    Belatik, Ahmed; Hotchandani, Surat; Carpentier, Robert; Tajmir-Riahi, Heidar-Ali

    2012-01-01

    Lead is a potent environmental toxin that has accumulated above its natural level as a result of human activity. Pb cation shows major affinity towards protein complexation and it has been used as modulator of protein-membrane interactions. We located the binding sites of Pb(II) with human serum (HSA) and bovine serum albumins (BSA) at physiological conditions, using constant protein concentration and various Pb contents. FTIR, UV-visible, CD, fluorescence and X-ray photoelectron spectroscopic (XPS) methods were used to analyse Pb binding sites, the binding constant and the effect of metal ion complexation on HSA and BSA stability and conformations. Structural analysis showed that Pb binds strongly to HSA and BSA via hydrophilic contacts with overall binding constants of K(Pb-HSA) = 8.2 (±0.8)×10(4) M(-1) and K(Pb-BSA) = 7.5 (±0.7)×10(4) M(-1). The number of bound Pb cation per protein is 0.7 per HSA and BSA complexes. XPS located the binding sites of Pb cation with protein N and O atoms. Pb complexation alters protein conformation by a major reduction of α-helix from 57% (free HSA) to 48% (metal-complex) and 63% (free BSA) to 52% (metal-complex) inducing a partial protein destabilization.

  16. Gold nanoflowers based colorimetric detection of Hg2+ and Pb2+ ions

    NASA Astrophysics Data System (ADS)

    Nalawade, Pradnya; Kapoor, Sudhir

    2013-12-01

    An optical detection method based on the interaction of gold nanoflowers with Hg2+ and Pb2+ has been described. After interaction, gold nanoflowers change the color from violet to wine red. The nanoflowers are capable of determining Hg2+ and Pb2+ over a dynamic range of 1.0 × 10-6 and 1.0 × 10-5 M, respectively. The response time of nanoflowers depends on the concentration of ions. The presence of both Hg2+ and Pb2+ ions in the mixture having Au nanoflowers induced color changes of the solution within several seconds even at 1.0 × 10-6 M. Common metal ions were chosen to investigate their interference in Hg2+ and Pb2+ detection, and the concentration of each metal ion studied was 1.0 × 10-5 M. Other metallic ions could not induce color change even at 1.0 × 10-5 M. The feasibility of our method to detect Hg2+ and Pb2+ ions at high concentration in real water samples was verified. Water samples were from our own laboratory and no pretreatment was made. As the particles are stable they can be used for more than 3 months without observing any major deviation.

  17. U, Th, Pb and REE abundances and Pb 207/Pb 206 ages of individual minerals in returned lunar material by ion microprobe mass analysis.

    NASA Technical Reports Server (NTRS)

    Andersen, C. A.; Hinthorne, J. R.

    1972-01-01

    Results of ion microprobe analyses of Apollo 11, 12 and 14 material, showing that U, Th, Pb and REE are concentrated in accessory minerals such as apatite, whitlockite, zircon, baddeleyite, zirkelite, and tranquillityite. Th/U ratios are found to vary by over a factor of 40 in these minerals. K, Ba, Rb and Sr have been localized in a K rich, U and Th poor glass phase that is commonly associated with the U and Th bearing accessory minerals. Li is observed to be fairly evenly distributed between the various accessory phases. The phosphates have been found to have REE abundance patterns (normalized to the chondrite abundances) that are fairly flat, while the Zr bearing minerals have patterns that rise steeply, by factors of ten or more, from La to Gd. All the accessory minerals have large negative Eu anomalies. Radiometric age dates (Pb 207/Pb 206) of the individual U and Th bearing minerals compare favorably with the Pb 207/Pb 206 age of the bulk rocks.

  18. Competitive adsorption of malachite green and Pb ions on natural zeolite.

    PubMed

    Wang, Shaobin; Ariyanto, Eko

    2007-10-01

    A natural zeolite was employed as adsorbent for removal of malachite green and Pb(2+) ions from aqueous solution. A batch system was applied to study the adsorption behaviour of the dye and heavy metal in single and binary systems on the natural zeolite. Kinetic studies indicate that malachite green and Pb(2+) adsorption on the natural zeolite in a single component system follows the first-order kinetics and the adsorption is diffusion process with single-stage for Pb(2+) and two-stage for malachite green. For the single system, malachite green adsorption isotherm follows the Langmuir model while Pb adsorption follows the Freundlich isotherm. The adsorption capacities of malachite green and Pb at 30 degrees C, pH 6 are 5x10(-5) and 10x10(-5)mol/g, respectively. In the binary system, malachite green and Pb(2+) exhibit competitive adsorption on the natural zeolite. The adsorption is reduced to 90 and 80% of single component of Pb(2+) and malachite green, respectively. However, the total adsorption is higher. In the binary system, Pb(2+) exhibits relative higher affinity and selectivity to be adsorbed on zeolite. The dynamic adsorption of malachite green and Pb(2+) still follows the first-order kinetics.

  19. Ion exchange induced removal of Pb(ii) by MOF-derived magnetic inorganic sorbents.

    PubMed

    Chen, Dezhi; Shen, Weisong; Wu, Shaolin; Chen, Caiqin; Luo, Xubiao; Guo, Lin

    2016-04-07

    Nanoporous adsorbents of ZnO/ZnFe2O4/C were synthesized by using a metal organic framework (Fe(III)-modified MOF-5) as both the precursor and the self-sacrificing template. The adsorption properties of ZnO/ZnFe2O4/C toward Pb(ii) ions were investigated, including the pH effect, adsorption equilibrium and adsorption kinetics. The adsorption isotherms and kinetics were well described by using the Langmuir isotherm model and pseudo-second-order model, respectively. The MOF-derived inorganic adsorbents exhibited high absorption performance with a maximum adsorption capacity of 344.83 mg g(-1). X-ray powder diffraction and high-resolution X-ray photoelectron spectroscopy suggest that Zn(ii) was substituted by a significant portion of Pb(ii) on the surface of ZnO nanocrystals. Microscopic observations also demonstrate the effect of Pb(ii) ions on ZnO crystals as reflected by the considerably reduced average particle size and defective outer layer. Quantitative measurement of the released Zn(ii) ions and the adsorbed Pb(ii) ions indicated a nearly linear relationship (R(2) = 0.977). Moreover, Pb-containing ZnO/ZnFe2O4/C adsorbents are strongly magnetic allowing their separation from the water environment by an external magnet.

  20. Direct ion microprobe U-Pb dating of fossil tooth of a Permian shark

    NASA Astrophysics Data System (ADS)

    Sano, Yuji; Terada, Kentaro

    1999-12-01

    We report here direct ion microprobe dating of fossil tooth (dentine) of a Permian fresh-water shark, Orthacanthus senckenbergianus using the SHRIMP instrument recently installed at Hiroshima University. Fifteen spots on the small sample (approximately 2 mm×1 mm) indicate a 238U/ 206Pb isochron age of 266±18 Ma and a Tera-Wasserburg concordia intercept age of 266±24 Ma in a three-dimensional 238U/ 206Pb- 207Pb/ 206Pb- 204Pb/ 206Pb diagram. These Permian ages are consistent with a 235U/ 207Pb age of 453±170 Ma and a 232Th- 208Pb age of 235±310 Ma, suggesting indistinguishable depositional and early diagenetic ages of the fossil in its sedimentary sequences. The success of the method depends on the chemical fractionation of uranium from lead in a specimen a few hundred microns in size and the consequent variations in lead isotopic compositions due to radioactive decay.

  1. Removal of Pb(II) ions from aqueous solution by adsorption using bael leaves (Aegle marmelos).

    PubMed

    Chakravarty, S; Mohanty, Ashok; Sudha, T Nag; Upadhyay, A K; Konar, J; Sircar, J K; Madhukar, A; Gupta, K K

    2010-01-15

    Biosorption of Pb(II) on bael leaves (Aegle marmelos) was investigated for the removal of Pb(II) from aqueous solution using different doses of adsorbent, initial pH, and contact time. The maximum Pb loading capacity of the bael leaves was 104 mg g(-1) at 50 mg L(-1) initial Pb(II) concentration at pH 5.1. SEM and FT-IR studies indicated that the adsorption of Pb(II) occurs inside the wall of the hollow tubes present in the bael leaves and carboxylic acid, thioester and sulphonamide groups are involved in the process. The sorption process was best described by pseudo second order kinetics. Among Freundlich and Langmuir isotherms, the latter had a better fit with the experimental data. The activation energy E(a) confirmed that the nature of adsorption was physisorption. Bael leaves can selectively remove Pb(II) in the presence of other metal ions. This was demonstrated by removing Pb from the effluent of exhausted batteries.

  2. Magnetic alginate beads for Pb(II) ions removal from wastewater.

    PubMed

    Bée, Agnès; Talbot, Delphine; Abramson, Sébastien; Dupuis, Vincent

    2011-10-15

    A magnetic adsorbent (called magsorbent) was developed by encapsulation of magnetic functionalized nanoparticles in calcium-alginate beads. The adsorption of Pb(II) ions by these magnetic beads was studied and the effect of different parameters, such as initial concentration, contact time and solution pH value on the adsorption of Pb(II) ions was investigated. Our magsorbent was found to be efficient to adsorb Pb(II) ions and maximal adsorption capacity occurred at pH 2.3-6. The classical Langmuir model used to fit the experimental adsorption data showed a maximum sorption capacity close to 100 mg g(-1). The experimental kinetic data were well correlated with a pseudo second-order model, 50% of the Pb(II) ions were removed within 20 min and the equilibrium was attained around 100 min. Moreover our magsorbent was easily collected from aqueous media by using an external magnetic field. These results permitted to conclude that magnetic alginate beads could be efficiently used to remove heavy metals in a water treatment process.

  3. Kinetic studies of Cd (II) and Pb (II) ions biosorption from aqueous media using untreated and chemically treated biosorbents.

    PubMed

    Bakyayita, G K; Norrström, A C; Nalubega, M; Kulabako, R N

    2014-01-01

    Untreated and chemically treated Albizia coriaria, Erythrina abyssinica and Musa spp. were studied in batch for uptake of Cd(2+) and Pb(2+) ions at pH 2.0-9.0 and agitation time of 30-390 min. Optimum biosorption conditions were pH 4 for Pb(2+) ions and pH 5 for Cd(2+) ions, contact time was 3.5 hours at 24 ± 1 °C for 10 mg/L biosorbent dosage and initial metal ions concentration of 20 mg/L. Chemical treatment had a 10-17% biosorption efficiency enhancement for Cd(2+) ions and a 1.6-2.3% reduction effect for Pb(2+) ions. The sorption capacities for Cd(2+) and Pb(2+) ions for treated biosorbents were 1.760-1.738 mg g(-1) compared to 1.415-1.539 mg g(-1) for untreated materials. The pseudo second-order model suitably fitted the Cd(2+) and Pb(2+) ions biosorption data with regression coefficients (R(2)) of 0.9784-0.9999. Fitting of the Ho model to the experimental data showed that the biosorption mechanism for both metal ions studied was mainly a chemisorption process. Therefore, treated A. coriaria, E. abyssinica and Musa spp. were potential biosorbents for remediation of Cd(2+) ions and the untreated materials suitable for removing Pb(2+) ions from contaminated aqueous media.

  4. Removal of Pb(II) ions from aqueous solutions by sulphuric acid-treated wheat bran.

    PubMed

    Ozer, A

    2007-03-22

    Sulphuric acid-treated wheat bran (STWB) was used as an adsorbent to remove Pb(II) ions from aqueous solution. It was observed that the adsorption yield of Pb(II) ions was found to be pH dependent. The equilibrium time for the process was determined as 2h. STWB gave the highest adsorption yield at around pH 6.0. At this pH, adsorption percentage for an initial Pb(II) ions concentration of 100mg/L was found to be 82.8 at 25 degrees C for contact time of 2h. The equilibrium data obtained at different temperatures fitted to the non-linear form of Langmuir, Freundlich and Redlich-Peterson and linear form of Langmuir and Freundlich models. Isotherm constants were calculated and compared for the models used. The maximum adsorption capacity (q(max)) which was obtained linear form of Langmuir model increased from 55.56 to 79.37mg/g with increasing temperature from 25 to 60 degrees C. Similar trend was observed for other isotherm constants related to the adsorption capacity. Linear form of Langmuir isotherm data was evaluated to determine the thermodynamic parameters for the process. Thermodynamic parameters show that adsorption process of Pb(II) ions is an endothermic and more effective process at high temperatures. The pseudo nth order kinetic model was successfully applied to the kinetic data and the order (n) of adsorption reaction was calculated at the range from 1.711 to 1.929. The values of k(ad) were found to be 5.82x10(-4) and 21.81x10(-4)(min(-1))(mg/g)(1-n) at 25 and 60 degrees C, respectively. Activation energy was determined as 29.65kJ/mol for the process. This suggest that the adsorption Pb(II) ions by STWB is chemically controlled.

  5. Ion exchange induced removal of Pb(ii) by MOF-derived magnetic inorganic sorbents

    NASA Astrophysics Data System (ADS)

    Chen, Dezhi; Shen, Weisong; Wu, Shaolin; Chen, Caiqin; Luo, Xubiao; Guo, Lin

    2016-03-01

    Nanoporous adsorbents of ZnO/ZnFe2O4/C were synthesized by using a metal organic framework (FeIII-modified MOF-5) as both the precursor and the self-sacrificing template. The adsorption properties of ZnO/ZnFe2O4/C toward Pb(ii) ions were investigated, including the pH effect, adsorption equilibrium and adsorption kinetics. The adsorption isotherms and kinetics were well described by using the Langmuir isotherm model and pseudo-second-order model, respectively. The MOF-derived inorganic adsorbents exhibited high absorption performance with a maximum adsorption capacity of 344.83 mg g-1. X-ray powder diffraction and high-resolution X-ray photoelectron spectroscopy suggest that Zn(ii) was substituted by a significant portion of Pb(ii) on the surface of ZnO nanocrystals. Microscopic observations also demonstrate the effect of Pb(ii) ions on ZnO crystals as reflected by the considerably reduced average particle size and defective outer layer. Quantitative measurement of the released Zn(ii) ions and the adsorbed Pb(ii) ions indicated a nearly linear relationship (R2 = 0.977). Moreover, Pb-containing ZnO/ZnFe2O4/C adsorbents are strongly magnetic allowing their separation from the water environment by an external magnet.Nanoporous adsorbents of ZnO/ZnFe2O4/C were synthesized by using a metal organic framework (FeIII-modified MOF-5) as both the precursor and the self-sacrificing template. The adsorption properties of ZnO/ZnFe2O4/C toward Pb(ii) ions were investigated, including the pH effect, adsorption equilibrium and adsorption kinetics. The adsorption isotherms and kinetics were well described by using the Langmuir isotherm model and pseudo-second-order model, respectively. The MOF-derived inorganic adsorbents exhibited high absorption performance with a maximum adsorption capacity of 344.83 mg g-1. X-ray powder diffraction and high-resolution X-ray photoelectron spectroscopy suggest that Zn(ii) was substituted by a significant portion of Pb(ii) on the surface of Zn

  6. Formation of dislocations and hardening of LiF crystals irradiated with energetic Au, Bi, Pb, and S ions

    NASA Astrophysics Data System (ADS)

    Maniks, J.; Manika, Ilze; Schwartz, K.; Toulemonde, M.; Trautmann, C.

    2003-08-01

    The irradiation of LiF crystals with Au, Pb, Bi, and S ions in the range of 400 - 2200 MeV leads to a remarkable increase of the hardness. The effect appears for Bi and Pb ions at fluences above 109 ions/cm2 and for S ions above 1010 ions/cm2. The increase of hardness follows the energy loss and is related to the formation of defects along the ion path. Defect complexes, clusters and aggregates with nanoscale dimensions serve as strong obstacles for dislocations and cause dispersion strengthening. Structural investigations reveal the generation of long-range stress in the adjacent non-irradiated part of the crystal. Close to the implantation zone, the stress exceeds the yield strength, causing microplastic deformation and work hardening. Compared to light S ions, heavy ions (Au, Pb, Bi) cause more severe structural damage, larger hardening effects, and higher internal and long-range stress.

  7. Ion microprobe U-Pb dating and REE abundance of biogenic apatite

    NASA Astrophysics Data System (ADS)

    Sano, Y.; Terada, K.; Ueki, S.

    2001-12-01

    If the direct U-Pb dating of a fossil itself is possible, the method could have great impact on stratigraphic studies in establishing the absolute chronology of sedimentary sequences. Micro fossil ?conodont? are candidates for this purpose since they consist of apatite (Ca2(PO5)3 (F,Cl,OH)), which would uptake U, Th and Pb after sedimentation no longer than a few million years and is supposed to remain closed to U and Pb under relatively low effective closure temperature. We report here results of direct ion microprobe U-Th-Pb dating of two conodonts; Trichognathus from Kinderhookian stage of Mississippian sedimentary sequence from Illinois Basin region in North America and Panderodus from a Llandoverian sedimentary sequence on Langkawi Island, northern Malaysia. Secondary purpose of the study is to indicate in situ analysis of all REE on the same spots of U-Pb measurements. Samples were cast into epoxy resin discs with a few grains of standard apatite, PRAP, derived from an alkaline rock of Prairie Lake circular complex in the Canadian Shield and polished until they were exposed through their mid-sections. U, Th and REE abundances, and Pb isotopic compositions were measured by using SHRIMP installed at Hiroshima University. Thirteen spots on Trichognathus yield a 238U/206Pb isochron age of 323+/-36 Ma, which is consistent with the depositional and early diagenetic ages. Fifteen spots on Panderodus give 232Th/208Pb isochron age of 429+/-50 Ma, which is again comparable to an early Silurian. Shale-normalized REE of Trichognathus shows a broadly flat pattern from light to middle REE and a decrease from middle to heavy REE with negative anomalies of Ce and Eu. In contrast Panderodus indicates a concave-shape pattern with middle REE enrichment. These characteristics are probably due to a different formation environment as suggested by other workers.

  8. Spectroscopy study of Zn, Cd, Pb and Cr ions immobilization on C-S-H phase.

    PubMed

    Żak, Renata; Deja, Jan

    2015-01-05

    Calcium silicate hydrates (C-S-H) have a large number of structural sites available for cations and anions to bind. The C-S-H phases are materials which have ability to toxic ions immobilization. Immobilization mechanisms for C-S-H include sorption, phase mixing, substitution and precipitation of insoluble compounds. This study presents the C-S-H (prepared with C/S ratios 1.0) phase as absorbent for immobilization of Zn, Cd, Pb and Cr ions. The C-S-H spectra before and after incorporation of heavy metals ions into the C-S-H structure were obtained. The effect of added heavy metals ions on the hydration phenomena was studied by means of X-ray diffractions analysis. FTIR spectra was measured. The microstructure and phase composition of C-S-H indicate that they can play an essential role in the immobilization of heavy metals. The properties of C-S-H in the presence of Zn, Cd, Pb and Cr cations were studied. The leaching ML test was used to evaluate the level of immobilization of heavy metals in C-S-H. The leached solutions are diluted and analyzed using atomic absorption spectrometry (AAS) and the activated solid particles are separated, washed, desiccated and analyzed by Fourier transform infrared (FTIR) spectroscopy. It was found that the degree of Cd, Zn, Pb and Cr cations immobilization was very high (exceeding 99.96%).

  9. Adsorption of Cu2+ and Pb2+ ion on dolomite powder.

    PubMed

    Pehlivan, Erol; Ozkan, Ali Müjdat; Dinç, Salih; Parlayici, Serife

    2009-08-15

    Natural Turkish dolomite was shown to be effective for removing Cu(2+) and Pb(2+) from aqueous solution. Selected information on pH, dose required, initial metal concentration, adsorption capacity of the raw dolomite powder was evaluated for its efficiency in adsorbing metal ions. Dolomite exhibited good Cu(2+) and Pb(2+) removal levels at all initial metal amount tested (0.04-0.32 mmol, 20 mL). It is important to note that the adsorption capacities of the materials in equilibrium vary, depending on the characteristics of the individual adsorbent, the initial concentration of the adsorbate and pH of the solution. One hour was enough for the removal of metal ions from (0.2 mmol in 20 mL) aqueous solution. Effective removal of metal ions was demonstrated at pH values of 5.0. The adsorptive behavior of dolomite was described by fitting data generated from the study of the Langmuir and Freundlich isotherm models. The adsorption capacity of dolomite was found as 8.26 mg for Cu(2+) and 21.74 mg for Pb(2+), respectively, from the calculation of adsorption isotherm equation. More than 85% of studied cations were removed by dolomite from aqueous solution in single step. The mechanism for cations removal by dolomite includes surface complexation and ion exchange.

  10. HPRT mutations in V79 Chinese hamster cells induced by accelerated Ni, Au and Pb ions.

    PubMed

    Stoll, U; Barth, B; Scheerer, N; Schneider, E; Kiefer, J

    1996-07-01

    Mutation induction by accelerated heavy ions to 6-TG resistance (HPRT system) in V79 Chinese hamster cells was investigated with Ni (6-630 Me V/u), Au (2.2, 8.7 Me V/u) and Pb ions (11.6-980 Me V/u) corresponding to a LET range between 180 and 12895 ke V/microns. Most experiments could only be performed once due to technical limitations using accelerator beam times. Survival curves were exponential, mutation induction curves linear with fluence. From their slopes inactivation- and mutation-induction cross-sections were derived. If they are plotted versus LET, single, ion-specific curves are obtained. It is shown that other parameters like ion energy and effective charge play an important role. In the case of Au and Pb ions the cross-sections follow a common line, since these ions have nearly the same atomic weight, so that they should have similar spatial ionization patterns in matter at the same energies. Calculated RBEs were higher for mutation induction than for killing for all LETs.

  11. The adsorption of Cu, Pb, Zn, and Cd on goethite from major ion seawater

    NASA Astrophysics Data System (ADS)

    Balistrieri, L. S.; Murray, J. W.

    1982-07-01

    The adsorption of Cu, Pb, Zn, and Cd on goethite (αFeOOH) from NaNO 3 solutions and from major ion seawater was compared to assess the effect of the major ions of seawater (Na, Mg, Ca, K, Cl, and SO 4) on the adsorption behavior of the metals. Magnesium and sulphate are the principal seawater ions which enhance or inhibit adsorption relative to the inert system. Their effect, as determined from the site-binding model of Davis et al. (1978), was a combination of changing the electrostatic conditions at the interface and decreasing the available binding sites. The basic differences between the experimental system of major ion seawater and natural seawater were examined. It was concluded that: 1) although the experimental metal concentrations in major ion seawater were higher than those found in natural seawater, estimates of the binding energy of Cu, Zn, and Cd with αFeOOH for natural seawater concentrations could be made from the data, 2) Cu, Pb, Zn, and Cd showed little or no competition for surface sites on goethite, and 3) the presence of carbonate, phosphate, and silicate had little or no effect on the adsorption of Zn and Cd on goethite.

  12. Interactions of aqueous Cu2+, Zn2+ and Pb2+ ions with crushed concrete fines.

    PubMed

    Coleman, Nichola J; Lee, William E; Slipper, Ian J

    2005-05-20

    The crushing of reclaimed concrete-based demolition waste to produce recycled aggregate gives rise to a large volume of cement-rich fine material for which market development would be beneficial. It was envisaged that this fine fraction may prove to be an effective sorbent for aqueous heavy metal species by virtue of its ion exchangeable phases and high pH. A batch sorption study confirmed that crushed concrete, in the particle size range 1-2 mm, successfully excluded Cu2+ (35 mg g(-1)), Zn2+ (33 mg g(-1)) and Pb2+ (37 mg g(-1)) from aqueous media. Subsequent distilled water leaching of the metal-laden concrete particles indicated that 1.9, 0.9 and 0.2% of the bound metals, Cu2+, Zn2+ and Pb2+, respectively, were readily soluble. Scanning electron microscopy revealed that the removal of Cu2+ and Zn2+ arose from surface precipitation reactions, whereas, the principal mechanism of uptake of Pb2+ was found to be by diffusion into the cement matrix. The metal ion removal efficiency of crushed concrete fines is compared with those of other low cost sorbents and potential applications which may exploit this sorptive property are also discussed.

  13. Preparation of xanthated bentonite and its removal behavior for Pb(II) ions.

    PubMed

    He, Y F; Li, F R; Wang, R M; Li, F Y; Wang, Y; Zhang, Z H

    2010-01-01

    Xanthate was successfully grafted onto bentonite by a relatively simple solution reaction. The obtained xanthated bentonite (XBent) was characterized by FT-IR spectrophotometer, thermogravimetric analysis (TG), particle size analysis, x-ray diffraction (XRD) and scanning electron microscopy (SEM). XBent acting as a type of environmentally friendly adsorbent was applied to remove lead ions from aqueous solutions. The optimum conditions were as follows: [Pb(2+)] = 500 mg L(-1), [XBent] = 2 g L(-1), pH = 5.0; oscillating 60 min under 200 rpm at 25 degrees C. The removal rate of lead was up to 99.9%. It was found that the lead(II) ions-XBent adsorption isotherm model fitted well to the Freundlich isotherm. The adsorption mechanism was also investigated by SEM and XRD, which concluded that lead ions were complexed or chelated with XBent. XBent appears to have potential to be used later in water treatment as a type of inorganic polymer reagent.

  14. Competitive adsorption of Pb2+, Cd2+ and Zn2+ ions onto Eichhornia crassipes in binary and ternary systems.

    PubMed

    Mahamadi, Courtie; Nharingo, Tichaona

    2010-02-01

    A batch sorption technique was used to study the biosorption of Pb(2+), Cd(2+) and Zn(2+) ions onto the vastly abundant water hyacinth weed, Eichhornia crassipes biomass in binary and ternary systems at a temperature of 30 degrees C and pH 4.84. Mutual interference effects were probed using equilibrium adsorption capacity ratios, q(e)(')/q(e), where the prime indicates the presence of one or two other metal ions. The combined action of the metals was found to be antagonistic, and the metal sorption followed the order Pb(2+)>Cd(2+)>Zn(2+). The behaviour of competitive biosorption for Pb-Cd and Pb-Zn combinations were successfully described by the Langmuir Competitive Model (CLM), whilst the model showed poor fitting to the Cd-Zn data. In conclusion, Pb(2+) ions could still be effectively removed from aqueous solution in the presence of both Cd(2+) and Zn(2+) ions, but removal of the Cd(2+) and Zn(2+) ions would be suppressed in the presence of Pb(2+).

  15. Physical, Optical and Electron paramagnetic resonance studies of PbBr2-PbO-B2O3 glasses containing Cu2+ ions

    NASA Astrophysics Data System (ADS)

    Sekhar, K. Chandra; Hameed, Abdul; Chary, M. Narasimha; Shareefuddin, Md

    2016-09-01

    The glasses with the composition PbBr2-PbO-B2O3 glasses containing Cu2+ ions were prepared by melt quenching technique. X-ray diffractograms revealed the amorphous nature of the glasses. Density and molar volume were determined. Density is found to decrease while the molar volume increases with increase of PbBr2 content. The optical absorption spectra exhibited a broad band corresponding to the d- d transition of Cu2+ ion. From optical absorption spectra Eopt and Urbach energies were determined. Electron Paramagnetic Resonance (EPR) studies were carried out by introducing Cu2+ as the spin probe. Glasses containing transition metal(TM) ions such as Cu2+ give the information about the structure and the site symmetry around the TM ions. EPR spectra of all the glass samples were recorded at X-band frequencies. From the EPR spectra spin-Hamiltonian parameters were evaluated. It was observed that g∥ >g±>ge (2.0023) and A∥>A±. From this values it is concluded that the ground state of Cu2+ is dx2-y2 (2B1g) and the site symmetry around Cu2+ ion is tetragonally distorted octahedral. From the EPR and Optical data bonding coefficients were evaluated. The in plane o-bonding(α2) is moderately ionic while out of plane 7t-bonding(β2) and in plane 7t-bonding(β1 2) are ionic nature

  16. Mobile Ion Induced Slow Carrier Dynamics in Organic-Inorganic Perovskite CH₃NH₃PbBr₃.

    PubMed

    Chen, Sheng; Wen, Xiaoming; Sheng, Rui; Huang, Shujuan; Deng, Xiaofan; Green, Martin A; Ho-Baillie, Anita

    2016-03-02

    Here, we investigate photoluminescence (PL) and time-resolved photoluminescence (TRPL) in CH3NH3PbBr3 perovskite under continuous illumination, using optical and electro-optical techniques. Under continuous excitation at constant intensity, PL intensity and PL decay (carrier recombination) exhibit excitation intensity dependent reductions in the time scale of seconds to minutes. The enhanced nonradiative recombination is ascribed to light activated negative ions and their accumulation which exhibit a slow dynamics in a time scale of seconds to minutes. The observed result suggests that the organic-inorganic hybrid perovskite is a mixed electronic-ionic semiconductor. The key findings in this work suggest that ions are photoactivated or electro-activated and their accumulation at localized sites can result in a change of carrier dynamics. The findings are therefore useful for the understanding of instability of perovskite solar cells and shed light on the necessary strategies for performance improvement.

  17. The preparation of polyelectrolyte complexes carboxymethyl chitosan(CMC)-pectin by reflux method as a Pb (II) metal ion adsorbent

    NASA Astrophysics Data System (ADS)

    Hastuti, Budi; Mudasir, Siswanta, Dwi; Triyono

    2016-02-01

    Aim of this research is to synthesized a chemically stable polyelectrolyte complexs carboxymetyl chitosan CMC-pectin as Pb(II) ion adsorbent by reflux method. During synthesis process, the optimum mass ratio of CMC and pectin was pre-determined and the active groups of the CMC-pectin complex was characterized by using IR spectrofotometer. Finally, adsorption capacity of the adsorbent material for Pb (II) ions was studied under optimum condition, i.e. adsorbent mass, contact time, and pH. Result shows that CMC could be succesfully combined with pectin to produce CMC-pectin complex. The optimum mass ratio CMC: pectin to form the polyelectrolyte complexs CMC-pectin was 70% : 30%. The active groups identified in the CMC-pectin complex was a hydroxyl (OH) and carboxylate (-COOH) groups. The optimum conditions for Pb (II) ion absoprtion was 10 mg of the adsorbent mass, 75 min of contact time, and pH 5. This material can be effectively used as adsorbents for Pb (II) ions, where up to 91% Pb (II) metal ions was adsorbed from aqueous solution and the adsorption capacity of the adsorbent was 41.63 mg/g.

  18. PbTe and SnTe quantum dot precipitates in a CdTe matrix fabricated by ion implantation

    SciTech Connect

    Kaufmann, E.; Schwarzl, T.; Groiss, H.; Hesser, G.; Schaeffler, F.; Palmetshofer, L.; Springholz, G.; Heiss, W.

    2009-08-15

    We present rock-salt IV-VI semiconductor quantum dots fabricated by implantation of Pb{sup +}, Te{sup +}, or Sn{sup +} ions into epitaxial zinc-blende CdTe layers. PbTe and SnTe nanoprecipitates of high structural quality are formed after implantation by thermal annealing due to the immiscibility of dot and matrix materials. For samples implanted only with Pb{sup +}, intense continuous-wave photoluminescence peaked at 1.6 mum at 300 K is found. In contrast, for PbTe quantum dots fabricated by coimplantation of Pb{sup +} and Te{sup +}, the 300 K emission peak is observed at 2.9 mum, indicating luminescence from much larger dots.

  19. U-Pb geochronology of zircons form lunar Breccia 73217 using a sensitive high mass-resolution ion microprobe

    NASA Astrophysics Data System (ADS)

    Compston, W.; Williams, I. S.; Meyer, C.

    1984-02-01

    U-Pb age determinations on four lunar zircons from existing thin-sections of one highland breccia, 73217, using the recently constructed ion microprobe SHRIMP, are reported. The analytical reproducibility of SHRIMP is demonstrated, and procedures for measuring Pb/U, Th/U, and corecting for initial Pb are explained. Electron microprobe analyses for the zircons are also are reported. The results show that the four zircons survived the lunar cataclysm without any identifiable effects on their U-Pb systematics. All four indicate a single age of 4356 +23 or -14 m.y. The zircons have experienced small variable amounts of Pb loss since crystallization, from almost zero up to about 10 percent. If this occurred during one later event, then age of the latter is between 1100 and 2300 m.y.

  20. U-Pb geochronology of zircons form lunar Breccia 73217 using a sensitive high mass-resolution ion microprobe

    NASA Technical Reports Server (NTRS)

    Compston, W.; Williams, I. S.; Meyer, C.

    1984-01-01

    U-Pb age determinations on four lunar zircons from existing thin-sections of one highland breccia, 73217, using the recently constructed ion microprobe SHRIMP, are reported. The analytical reproducibility of SHRIMP is demonstrated, and procedures for measuring Pb/U, Th/U, and corecting for initial Pb are explained. Electron microprobe analyses for the zircons are alsoar reported. The results show that the four zircons survived the lunar cataclysm without any identifiable effects on their U-Pb systematics. All four indicate a single age of 4356 +23 or -14 m.y. The zircons have experienced small variable amounts of Pb loss since crystallization, from almost zero up to about 10 percent. If this occurred during one later event, then age of the latter is between 1100 and 2300 m.y.

  1. U-Pb geochronology of zircons form lunar Breccia 73217 using a sensitive high mass-resolution ion microprobe

    SciTech Connect

    Compston, W.; Williams, I.S.

    1984-02-15

    U-Pb age determinations on four lunar zircons from existing thin-sections of one highland breccia, 73217, using the recently constructed ion microprobe SHRIMP, are reported. The analytical reproducibility of SHRIMP is demonstrated, and procedures for measuring Pb/U, Th/U, and corecting for initial Pb are explained. Electron microprobe analyses for the zircons are also reported. The results show that the four zircons survived the lunar cataclysm without any identifiable effects on their U-Pb systematics. All four indicate a single age of 4356 +23 or -14 m.y. The zircons have experienced small variable amounts of Pb loss since crystallization, from almost zero up to about 10 percent. If this occurred during one later event, then age of the latter is between 1100 and 2300 m.y. 18 references.

  2. Structural and optical characterization of the local environment of Er3+ ions in PbO-ZnO tellurite glasses.

    PubMed

    Ramamoorthy, R K; Bhatnagar, A K; Rocca, F; Mattarelli, M; Montagna, M

    2012-12-19

    Erbium activated PbO-ZnO tellurite glasses ((70TeO(2)-(30-x)ZnO-xPbO)(0.99)-(Er(2)O(3))(0.01) (TZPE), (x = 5, 10, 15, 20)) were prepared by a melt quenching process and studied by optical absorption, luminescence, Raman and x-ray absorption spectroscopy measurements as a function of the PbO/ZnO ratio. The glass structure, as monitored by Raman scattering, shows important changes with the PbO/ZnO ratio, attributed to a glass former action of PbO. The local environment of Er(3+) ions, as measured by extended x-ray absorption spectroscopy, does not appreciably change as regards the first oxygen shell. However, the intensity of the optical transitions is quite sensitive to the PbO/ZnO ratio, indicating a progressive increase of the site symmetry with the PbO content. The emission probability and radiative lifetime of several excited states of Er(3+) ions were calculated using Judd-Ofelt analysis.

  3. Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80.

    PubMed

    Pehlivan, Erol; Altun, Turkan

    2007-02-09

    Removal of trace amounts of heavy metals can be achieved by means of selective ion-exchange processes. The newly developed resins offered a high resin capacity and faster sorption kinetics for the metal ions such as Pb(2+), Cu(2+), Zn(2+), Cd(2+), and Ni(2+) ions. In the present study, the removal of Pb(2+), Cu(2+), Zn(2+), Cd(2+), and Ni(2+) ions from aqueous solutions was investigated. Experimental investigations were undertaken using the ion-exchange resin Lewatit CNP 80 (weakly acidic) and were compared with Lewatit TP 207 (weakly acidic and chelating). The optimum pH range for the ion-exchange of the above mentioned metal ions on Lewatit CNP 80 and Lewatit TP 207 were 7.0-9.0 and 4.5-5.5, respectively. The influence of pH, contact time, metal concentration and amount of ion-exchanger on the removal process was investigated. For investigations of the exchange equilibrium, different amounts of resin were contacted with a fixed volume of Pb(2+), Cu(2+), Zn(2+), Cd(2+), and Ni(2+) ion containing solution. The obtained sorption affinity sequence in the presented work was Ni(2+)>Cu(2+)>Cd(2+)>Zn(2+)>Pb(2+). The metal ion concentrations were measured by AAS methods. The distribution coefficient values for metal ions of 10(-3)M initial concentration at 0.1mol/L ionic strength show that the Lewatit CNP 80 was more selective for Ni(2+), Cu(2+) than it was for Cd(2+), Zn(2+) and Pb(2+). Langmuir isotherm was applicable to the ion-exchange process and its contents were calculated. The uptake of metal ions by the ion-exchange resins was reversible and thus has good potential for the removal of Pb(2+), Cu(2+), Zn(2+), Cd(2+), and Ni(2+) from aqueous solutions. The amount of sorbed metal ion per gram dry were calculated as 4.1, 4.6, 4.7, 4.8, and 4.7mequiv./g dry resin for Pb(2+), Cu(2+), Zn(2+), Cd(2+), and Ni(2+), respectively. Selectivity increased in the series: Cd(2+)>Pb(2+)>Cu(2+)>Ni(2+)>Zn(2+). The results obtained showed that Lewatit CNP 80 weakly acidic resin had

  4. Ion Microprobe U-Pb Dating and Sr Isotope Measurement of Conodont

    NASA Astrophysics Data System (ADS)

    Sano, Y.; Ishida, A.; Kagoshima, T.; Takahata, N.

    2014-12-01

    We have developed a method of in situ ion microprobe U-Pb dating and Sr isotope measurement of biogenic apatite using NanoSIMS. This was applied to a protoconodont, an early Cambrian phosphate microfossil [1]. On a single fragment of a fossil derived from a sedimentary layer in the Meishucunian Yuhucun Formation, southern China [2], 23 spots provide a 238U/206Pb isochron age of 547 ± 43 Ma (2sigma), which is consistent with the depositional age, 536.5 ± 2.5 Ma estimated using zircon U-Pb dating of interbedded tuffs [3]. However, five spots on a small region in the same protoconodont yield an isochron age of 417 ± 74 Ma (2sigma), apparently younger than the formation age. The younger age might be attributable to a later hydrothermal event, perhaps associated with Caledonian orogenic activity recorded in younger zircon with an age of 420-440 Ma [4]. We measured Sr isotopic ratios of the protoconodont by NanoSIMS. In the older domain, 19 spots give the ratio of 0.71032 ± 0.00023 (2sigma), although seven spots on the younger region provide the ratio of 0.70862 ± 0.00045; which is significantly less radiogenic than the older domain. We also measured U-Pb age and Sr isotopes of a Carboniferous conodont derived from the Kinderhookian stage from the Illinois Basin region in North America. 20 spots yield a 238U/206Pb isochron age of 291 ± 56 Ma (2sigma), which is markedly younger than the depositional age of the fossil of 350-363 Ma. On the other hand, 9 spots give a Sr isotopic ratio of 0.70784 ± 0.00030, less radiogenic than the older domain of protoconodont. These data together with other isotopes such as Cl may provide a constraint on the model for chemical evolution of seawater. [1] Sano et al. (2014) J. Asian Earth Sci. 92, 10-17. [2] Condon et al. (2005) Science 308, 95-98. [3] Sawaki et al. (2008) Gondwana Res. 14, 148-158. [4] Guo et al. (2009) Geochem. J. 43, 101-122.

  5. Development of ion-implantation confined, shallow mesa stripe (Pn,Sn)Te/Pb(Te,Se) DH laser diodes

    NASA Technical Reports Server (NTRS)

    Fonstad, C. G.; Harton, A.; Jiang, Y.-N.; Appelman, H.

    1983-01-01

    Preliminary results of a program to develop ion implantation confined, shallow mesa stripe (Pb,Sn)Te laser diodes are presented. The practicality of using a shallow mesa stripe to produce single mode laser output and to increase the single mode tuning range are demonstrated. The first results of p-type ion implantation in the lead-tin salts are also reported. It is shown that sodium and lithium both can be used to convert n-type Pb(Te,Se) to p-type. The implant and anneal procedures are described, and electrical characteristics of Li-implanted layers are presented.

  6. Preparation and Application of Nanostructure Ion-Imprinted Polymer for Selective Solid-Phase Extraction of Pb Ions in Water, Hair, and Food Samples.

    PubMed

    Dehghani Soltani, Maryam; Taher, Mohammad Ali; Behzadi, Mansoureh

    2016-09-01

    In this research, nanostructure Pb(II) ion-imprinted polymer (IIP) was prepared by formation of 1,5-diphenylthiocarbazon (dithizone) complex. Polymerization was performed via bulk polymerization, with methacrylic acid as the functional monomer and ethylene glycol dimethacrylate as the cross-linking monomer in the presence of ammonium persulfate as the initiator. To characterize the synthesized IIP, FTIR spectroscopy and field emission scanning electron microscopy were used. This polymer was used for selective preconcentration of ultra-trace amounts of Pb ions through the SPE method. The Pb ion concentration was determined by electrothermal atomic absorption spectrometry. In the optimization process, the effects of various factors, such as pH of the sample solution, type and concentration of eluent, equilibrium sorption and desorption times, and sample volume, were investigated. Under optimized conditions, the maximum sorbent capacity was 38.46 mg/g and the enrichment factor was 200. Linearity was within the range 1.0-320.0 ng/L, with good r(2) values. The LOD was 0.55 ng/L, and the intraday and interday RSD values (n = 7, 20 ng/L Pb ions) were 2.8 and 3.5%, respectively. This selective and sensitive proposed method was applied successfully to the determination of Pb in water, hair, and food samples, with high recoveries.

  7. Exploring the electronic structure of Pb2+ ions containing material Pb16(OH)16(NO3)16

    NASA Astrophysics Data System (ADS)

    Reshak, A. H.

    2016-12-01

    A theoretical band structure calculation for lead nitrate hydroxide Pb16(OH)16(NO3)16 single crystal was performed based on the experimental crystallographic data obtained by Chang et al. Calculations exhibit that the conduction band minimum (CBM) is situated at Γ the center of the Brillouin zone (BZ) while the valence band maximum (VBM) is located between Γ and Y points of the BZ, resulting in an indirect energy band gap of about 3.70 eV in close agreement to the measured one (3.78 eV). The angular momentum resolved projected density of states reveals the existence of the strong hybridization between the orbitals and the VBM is originated from Pb-6s/6p and O-2p orbitals while the CBM from N-2p and Pb-6p orbitals. The calculated valence electronic charge density distribution explore the bond characters and the dominancy of the covalent bonding between Pb-O of PbOn ployhedra and N-O of [NO3]- triangle. The calculated bond lengths and angles show good agreement with the experimental data.

  8. Removal of Pb(II) and Cd(II) ions from aqueous solution by thiosemicarbazide modified chitosan.

    PubMed

    Li, Manlin; Zhang, Zengqiang; Li, Ronghua; Wang, Jim J; Ali, Amjad

    2016-05-01

    The removal of Pb(II) and Cd(II) ions from aqueous solution by thiosemicarbazide modified chitosan (TCS) was studied in this article. The synthesized TCS was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), element analysis, N2 adsorption-desorption, scanning electron microscopy (SEM) and X-ray photoelectron spectrophotometer (XPS). Moreover, the influence of solution pH, contact time, initial heavy metal concentration, and solution temperature on the adsorption process was examined, and the adsorbent reusability and adsorption mechanisms were also studied. The results showed that TCS adsorbed greater amount of Pb(II) and Cd(II) ions than the raw chitosan. The adsorption amounts of Pb(II) and Cd(II) ions were affected by increasing solution pH and temperature. The maximum adsorption capacities of the TCS for Pb(II) and Cd(II) ions were found to be 325.2 and 257.2 mg/g, respectively. The endothermic adsorption fitted the pseudo-second-order kinetics equation and the adsorption isotherms could be well described by Langmuir model. The metal ions adsorption mechanism was concluded to be mainly dominated by complexation reaction process. The desorption study indicated that the target adsorbent was easy to be regenerated.

  9. Chemical modification of chitin with polypyrrole for the uptake of Pb(II) and Cd(II) ions.

    PubMed

    Karthik, Rathinam; Meenakshi, Sankaran

    2015-01-01

    This study described the possibility of using chemically modified chitin with polypyrrole (PPy-g-Ch) as an adsorbent for the removal of Pb(II) and Cd(II) ions from aqueous solution. The PPy-g-Ch was characterized using FTIR, SEM, EDX, XRD, TGA and DSC techniques. The influence of various parameters such as pH, dosage, co-ions, contact time and concentration on the removal of Pb(II) and Cd(II) ions was investigated. Among the various isotherm models studied, the Freundlich isotherm model fitted well to the equilibrium data. The magnitude of ΔG(0), ΔH(0) and ΔS(0) indicated the feasibility, spontaneity and the endothermic nature of the adsorption process, respectively. The kinetic process followed the pseudo-second-order kinetic model. The applicability of the PPy-g-Ch has been tested for the removal of Pb(II) and Cd(II) ions from a real water sample spiked with Pb(II) and Cd(II) ions.

  10. Stimulation of TRPC5 cationic channels by low micromolar concentrations of lead ions (Pb{sup 2+})

    SciTech Connect

    Sukumar, Piruthivi; Beech, David J.

    2010-02-26

    Lead toxicity is long-recognised but continues to be a major public health problem. Its effects are wide-ranging and include induction of hyper-anxiety states. In general it is thought to act by interfering with Ca{sup 2+} signalling but specific targets are not clearly identified. Transient receptor potential canonical 5 (TRPC5) is a Ca{sup 2+}-permeable ion channel that is linked positively to innate fear responses and unusual amongst ion channels in being stimulated by trivalent lanthanides, which include gadolinium. Here we show investigation of the effect of lead, which is a divalent ion (Pb{sup 2+}). Intracellular Ca{sup 2+} and whole-cell patch-clamp recordings were performed on HEK 293 cells conditionally over-expressing TRPC5 or other TRP channels. Extracellular application of Pb{sup 2+} stimulated TRPC5 at concentrations greater than 1 {mu}M. Control cells without TRPC5 showed little or no response to Pb{sup 2+} and expression of other TRP channels (TRPM2 or TRPM3) revealed partial inhibition by 10 {mu}M Pb{sup 2+}. The stimulatory effect on TRPC5 depended on an extracellular residue (E543) near the ion pore: similar to gadolinium action, E543Q TRPC5 was resistant to Pb{sup 2+} but showed normal stimulation by the receptor agonist sphingosine-1-phosphate. The study shows that Pb{sup 2+} is a relatively potent stimulator of the TRPC5 channel, generating the hypothesis that a function of the channel is to sense metal ion poisoning.

  11. Cross-linking of succinate-grafted chitosan and its effect on the capability to adsorb Pb(II) ion

    NASA Astrophysics Data System (ADS)

    Masykur, Abu; Juari Santosa, Sri; Jumina, Dwi Siswanta dan

    2016-02-01

    The aim of this research was to improve the adsorption capacity of chitosan by modification of the chitosan using various cross-linking agents and followed by grafting using succinate anhydride. Succinate anhydride was grafted into chitosan that had been cross-linked using ethylene glycol di-glycidyl ether (EGDE), diethylene glycol diglycidyl ether (DEGDE) andbisphenolAdiglycidyl ether (BADGE) on the hydroxyl group of chitosan to yield Chit- EGDE-Suc, Chit-DEGDE-Suc, and Chit-BADGE-Suc, respectively. Modified chitosans were analyzed using FTIR and TG-DTA and then applied as adsorbents for Pb(II) ion. Adsorption was carried out in batch condition with a variation of solution pH, contact time, and concentration of Pb(II) in the solution. Adsorption ofPb(II) ion reached optimum condition at pH 5 and contact time of 120 minutes. Adsorption of Pb(II) ion on all of the adsorbents fit well the pseudo-second order kinetic equation. Adsorption capacities of Pb(II) on Chit-EGDE-Suc, Chit-DEGDE-SucdanChit-BADGE-Suc were 0.333, 0.388 and 0.898 mmolg-1, respectively, which mean that the adsorption of Chit-BADGE-Suc was the highest and followed by Chit- DEGDE-Suc and Chit-EGDE-Suc.

  12. Removal of Pb(II) ions by using magnetic chitosan-4-((pyridin-2-ylimino)methyl)benzaldehyde Schiff's base.

    PubMed

    Gutha, Yuvaraja; Munagapati, Venkata Subbaiah

    2016-12-01

    A novel crosslinked magnetic chitosan-4-((pyridin-2-ylimino)methyl)benzaldehyde Schiff's Base (m-CSPIB) was prepared by crosslinking of magnetic iron oxide nanoparticles with chitosan-4-((pyridin-2-ylimino)methyl)benzaldehyde schiff's base and used as an biosorbent for the removal of Pb(II) ions from aqueous environment. The biopolymer has been characterized by XRD, FT-IR, SEM, TEM, (1)H NMR and VSM analysis. Kinetic studies were performed, and the data were fitted well with the pseudo-second-order model. The equilibrium data followed Langmuir isotherm model and the maximum monolayer sorption capacity was found to be 104.16 for Pb(II) ions at 323K. Different thermodynamic parameters namely, change in Gibbs free energy, enthalpy change, and entropy changes were also evaluated from the temperature dependence, and the results suggested that the sorption of Pb(II) onto m-CSPIB was feasible, spontaneous and endothermic in nature.

  13. Atrazine immobilization on sludge derived biochar and the interactive influence of coexisting Pb(II) or Cr(VI) ions.

    PubMed

    Zhang, Weihua; Zheng, Juan; Zheng, Pingping; Qiu, Rongliang

    2015-09-01

    Sludge derived biochars (SDBCs) may have the potential to simultaneously remove heavy metals and organic contaminants in relation to their various active sorption sites for both metal ions and organic compounds. SDBCs have been proven to provide a considerable capacity for immobilizing Pb(II) and Cr(VI) ions in solution, and in this study their ability to sorb atrazine, in addition to their corresponding interactive influences with coexisting metal ions, is extensively investigated. The results indicate that all atrazine adsorption isotherms fit well with the Freundlich equation, and the greatest value of 16.8 mg g(-1) sorption capacity occurred with SDBCs pyrolyzed at 400°C for 2h. The slow sorption kinetics fit well with the Lagergren's 2nd order reaction, and depend upon the initial atrazine concentration, indicating the significance of a site-specific process. The ionic strength-dependence of the atrazine adsorption behavior further consolidates the involvement of the mechanism of the H-bond with hydroxyl groups on SDBC. However, when Pb(II)/Cr(VI) metal ions coexist in solution, they substantially suppress atrazine adsorption, probably because the inner complex between the hydroxyl groups on SDBCs and Pb(II)/Cr(III) ions intrude the weak H-bond with atrazine. As a result, metal adsorption was found to be unaffected by the coexisting atrazine. Therefore, although SDBC is applicable for atrazine removal/immobilization in most of environmentally relevant conditions, a two-step process may be required if heavy metal ions coexist.

  14. Silica-coated ZnS quantum dots as fluorescent probes for the sensitive detection of Pb2+ ions

    NASA Astrophysics Data System (ADS)

    Qu, Hua; Cao, Lixin; Su, Ge; Liu, Wei; Gao, Rongjie; Xia, Chenghui; Qin, Junjie

    2014-12-01

    The silica-coated ZnS quantum dots (ZnS@SiO2 QDs) were prepared via a simple and environmentally friendly process. The oil-soluble ZnS cores were successfully transferred to water by the coating of SiO2 shells. The QDs exhibited satisfying dispersion and luminescent properties in water. The ZnS@SiO2 QDs were directly used as fluorescent probes for heavy metal ions without the addition of any buffer solution. The luminescence of QDs was extremely sensitive to Pb2+ ions, and the fluorescence quenching was well described by the Stern-Volmer equation, with an even quenching constant for the Pb2+ ions samples concentration ranging from 10-9 to 2.6 × 10-4 M. An extended hypothesis based on the traditional cation exchange mechanism is proposed to analyze the most significant fluorescence quenching effect by Pb2+ ions. Studies show that ZnS@SiO2 QDs have great potentials to be a sensor for Pb2+ analysis at low to high concentrations.

  15. Deflection and Extraction of Pb Ions up to 33 TeV/c by a Bent Silicon Crystal

    SciTech Connect

    Arduini, G.; Biino, C.; Clement, M.; Cornelis, K.; Doble, N.; Elsener, K.; Ferioli, G.; Fidecaro, G.; Gatignon, L.; Grafstroem, P.; Gyr, M.; Herr, W.; Klem, J.; Mikkelsen, U.; Weisse, E.; Mo Uggerho Taratin, A.; Freund, A.; Keppler, P.; Major, J.

    1997-11-01

    The first results from an experiment to deflect a beam of fully stripped, ultrarelativistic Pb{sup 82+} ions of 400 GeV/c per unit of charge, equivalent to 33 TeV/c , by means of a bent crystal are reported. Deflection efficiencies are as high as 14{percent}, in agreement with theoretical estimates. In a second experiment a bent crystal was used to extract 270 GeV/c -per-charge Pb{sup 82+} (22 TeV/c) ions from a coasting beam in the CERN-SPS, and a high extraction efficiency of up to 10{percent} was found. These represent the first measurements to demonstrate applications of bent crystals in high energy heavy ion beams. {copyright} {ital 1997} {ital The American Physical Society}

  16. Adsorption of Pb(II) ions from aqueous solution by native and activated bentonite: kinetic, equilibrium and thermodynamic study.

    PubMed

    Kul, Ali Riza; Koyuncu, Hülya

    2010-07-15

    In this study, the adsorption kinetics, equilibrium and thermodynamics of Pb(II) ions on native (NB) and acid activated (AAB) bentonites were examined. The specific surface areas, pore size and pore-size distributions of the samples were fully characterized. The adsorption efficiency of Pb(II) onto the NB and AAB was increased with increasing temperature. The kinetics of adsorption of Pb(II) ions was discussed using three kinetic models, the pseudo-first-order, the pseudo-second-order and the intra-particle diffusion model. The experimental data fitted very well the pseudo-second-order kinetic model. The initial sorption rate and the activation energy were also calculated. The activation energy of the sorption was calculated as 16.51 and 13.66 kJ mol(-1) for NB and AAB, respectively. Experimental results were also analysed by the Langmuir, Freundlich and Dubinin-Redushkevich (D-R) isotherm equations at different temperatures. R(L) separation factor for Langmuir and the n value for Freundlich isotherm show that Pb(II) ions are favorably adsorbed by NB and AAB. Thermodynamic quantities such as Gibbs free energy (DeltaG), the enthalpy (DeltaH) and the entropy change of sorption (DeltaS) were determined as about -5.06, 10.29 and 0.017 kJ mol(-1) K(-1), respectively for AAB. It was shown that the sorption processes were an endothermic reactions, controlled by physical mechanisms and spontaneously.

  17. Adsorptive removal of Cd(II) and Pb(II) ions from aqueous solutions by using Turkish illitic clay.

    PubMed

    Ozdes, Duygu; Duran, Celal; Senturk, Hasan Basri

    2011-12-01

    The ability of Turkish illitic clay (TIC) in removal of Cd(II) and Pb(II) ions from aqueous solutions has been examined in a batch adsorption process with respect to several experimental conditions including initial solution pH, contact time, initial metal ions concentration, temperature, ionic strength, and TIC concentration, etc. The characterization of TIC was performed by using FTIR, XRD and XRF techniques. The maximum uptake of Cd(II) (11.25 mg g(-1)) and Pb(II) (238.98 mg g(-1)) was observed when used 1.0 g L(-1) of TIC suspension, 50 mg L(-1) of initial Cd(II) and 250 mg L(-1) of initial Pb(II) concentration at initial pH 4.0 and contact time of 240 min at room temperature. The experimental data were analyzed by the Langmuir, Freundlich, Temkin and Dubinin Radushkevich (D-R) isotherm models. The monolayer adsorption capacity of TIC was found to be 13.09 mg g(-1) and 53.76 mg g(-1) for Cd(II) and Pb(II) ions, respectively. The kinetics of the adsorption was tested using pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion models. The results showed that the adsorption of Cd(II) and Pb(II) ions onto TIC proceeds according to the pseudo-second-order model. Thermodynamic parameters including the Gibbs free energy (ΔG), enthalpy (ΔH), and entropy (ΔS) changes indicated that the present adsorption process was feasible, spontaneous and endothermic in the temperature range of 5-40 °C.

  18. Highly sensitive and selective detection of Pb2+ ions using a novel and simple DNAzyme-based quartz crystal microbalance with dissipation biosensor.

    PubMed

    Teh, Hui Boon; Li, Haiyan; Yau Li, Sam Fong

    2014-10-21

    A novel, label-free DNAzyme-based quartz crystal microbalance with dissipation monitoring (QCM-D) biosensor was developed for the highly sensitive and specific detection of Pb(2+) ions. To enhance the performance of the sensor, oligonucleotide-functionalized gold nanoparticles were used for both frequency and dissipation amplification. This sensor was developed by immobilizing Pb(2+)-specific DNAzymes onto the QCM-D sensor surface and allowing them to hybridize with substrate-functionalized AuNPs. The DNAzyme catalyzed the cleavage of the substrate in the presence of Pb(2+) ions, causing the cleaved substrate-functionalized AuNPs to be removed from the sensor surface. Thus, Pb(2+) ions can be determined on-line by monitoring the change in frequency and dissipation signals. The results revealed that the sensor showed a sensitive response to Pb(2+) ions with detection limits of 14 nM and 20 nM for frequency and dissipation, respectively. This QCM-D biosensor also exhibited excellent selectivity toward Pb(2+) ions in the presence of other divalent metal ions. In addition, the approach was able to detect Pb(2+) in tap water, demonstrating its great potential for monitoring drinking water quality. The proposed sensor system described here represents a new class of lead ion sensor. Its simple detection strategy makes it feasible for 'pollution-free' detection; thus, the approach could have applications in on-line water quality monitoring.

  19. Detecting weak fluorescence turn-on in the presence of Pb2+ heavy metal ion using coaxial fiber optic sensor

    NASA Astrophysics Data System (ADS)

    Ma, Jianjun; Chiniforooshan, Yasser; Hao, Wenhui; Bock, Wojtek J.; Wang, Zhi Yuan

    2013-10-01

    This paper is devoted to examining the ability of a coaxial fiber-optic sensor (FOS) in detecting weak fluorescent light and weak fluorescence "turn-on" in the presence of trace heavy metal ion Pb2+. The captured fluorescent signal is detected by the Ocean Optics QE65000 spectrometer. The stock solutions include Pb2+ acetate in water (0.01 M) and a small molecule probe in water. The preliminary experiment shows that this FOS offers the Pb2+ detection limit (DL) of 1.26×10-4 mg/mL. The advantages, limitations and further improvements of this coaxial FOS are discussed in comparison with the bench-top instruments in terms of the abilities of signal light capture and stray excitation light suppression.

  20. Selective adsorption of Pb (II) ions by amylopectin-g-poly (acrylamide-co-acrylic acid): A bio-degradable graft copolymer.

    PubMed

    Sasmal, Dinabandhu; Maity, Jayanta; Kolya, Haradhan; Tripathy, Tridib

    2017-04-01

    Amylopectin-g-poly (acrylamide-co-acrylic acid) [AP-g-poly (AM-co-AA)] was synthesised in water medium by using potassium perdisulphate as an initiator. The graft copolymer was characterized by molecular weight determination by size exclusion chromatography (SEC), fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR) spectroscopy, scanning electron microscope (SEM) studies, thermal analysis, measurement of neutralisation equivalent and biodegradation studies. The graft copolymer was used for Pb (II) ion removal from aqueous solution. The Pb (II) ion removal capacity of the graft copolymer was also compared with another laboratory developed graft copolymer Amylopectin-g-poly (acrylamide) (AP-g-PAM). Both the graft copolymers were also used for the competitive metal ions removal with Pb (II)/Cd (II), Pb (II)/Zn (II), Pb (II)/Ni (II), Pb (II)/Cu (II) pairs separately under similar conditions. AP-g-poly (AM-co-AA) showed better Pb (II) ion adsorbing power over AP-g-PAM and also much selective towards Pb (II) ions. The adsorption follows a second order rate equation and Langmuir isotherm model.

  1. Beam losses from ultra-peripheral nuclear collisions between Pb ions in the Large Hadron Collider and their alleviation

    SciTech Connect

    Bruce, R.; Bocian, D.; Gilardoni, S.; Jowett, J.M.; /CERN

    2009-08-01

    Electromagnetic interactions between colliding heavy ions at the Large Hadron Collider (LHC) at CERN will give rise to localized beam losses that may quench superconducting magnets, apart from contributing significantly to the luminosity decay. To quantify their impact on the operation of the collider, we have used a three-step simulation approach, which consists of optical tracking, a Monte-Carlo shower simulation and a thermal network model of the heat flow inside a magnet. We present simulation results for the case of {sup 208}Pb{sup 82+} ion operation in the LHC, with focus on the alice interaction region, and show that the expected heat load during nominal {sup 208}Pb{sup 82+} operation is 40% above the quench level. This limits the maximum achievable luminosity. Furthermore, we discuss methods of monitoring the losses and possible ways to alleviate their effect.

  2. Ion-implantation-induced damage and resonant levels in Pb/sub 1-x/Sn/sub x/Te

    SciTech Connect

    Gresslehner, K.H.; Palmetshofer, L.

    1980-09-01

    The dependence of the carrier concentration on the implantation dose and on the temperature was investigated in ion-implanted thin films of Pb/sub 1-x/Sn/sub x/Te (0< or =x<0.1). By assuming a twofold defect level in the conduction band we are able to fit the experimental results. With increasing tin content the energy of the defect level shifts towards the conduction-band edge. By extending the results to SnTe a general model for the understanding of the electrical properties of ion-implanted Pb/sub 1-x/Sn/sub x/Te (0< or =x< or =1) is suggested.

  3. Application of central composite design for simultaneous removal of methylene blue and Pb2+ ions by walnut wood activated carbon

    NASA Astrophysics Data System (ADS)

    Ghaedi, M.; Mazaheri, H.; Khodadoust, S.; Hajati, S.; Purkait, M. K.

    2015-01-01

    Activated carbon was prepared from walnut wood which was locally available, non-toxic, abundant and cheap. This new adsorbent was characterized using BET, FTIR and SEM. Point of zero charge (pHpzc) and oxygen containing functional groups were also determined. The prepared adsorbent was applied for simultaneous removal of Pb2+ ions and methylene blue (MB) dye from aqueous solution. The prominent effect and interaction of variables such as amount of adsorbent, contact time, concentration of MB and Pb2+ ions were optimized by central composite design. The equilibrium data obtained at optimum condition were fitted to conventional isotherm models and found that Langmuir model was the best fitted isotherm. Kinetic data were fitted using various models. It was revealed that the adsorption rate follows pseudo-second order kinetic model and intraparticle diffusion model.

  4. Application of central composite design for simultaneous removal of methylene blue and Pb(2+) ions by walnut wood activated carbon.

    PubMed

    Ghaedi, M; Mazaheri, H; Khodadoust, S; Hajati, S; Purkait, M K

    2015-01-25

    Activated carbon was prepared from walnut wood which was locally available, non-toxic, abundant and cheap. This new adsorbent was characterized using BET, FTIR and SEM. Point of zero charge (pHpzc) and oxygen containing functional groups were also determined. The prepared adsorbent was applied for simultaneous removal of Pb(2+) ions and methylene blue (MB) dye from aqueous solution. The prominent effect and interaction of variables such as amount of adsorbent, contact time, concentration of MB and Pb(2+) ions were optimized by central composite design. The equilibrium data obtained at optimum condition were fitted to conventional isotherm models and found that Langmuir model was the best fitted isotherm. Kinetic data were fitted using various models. It was revealed that the adsorption rate follows pseudo-second order kinetic model and intraparticle diffusion model.

  5. Ion microprobe U-Th-Pb dating and REE analyses of phosphates in nakhlites: Lafayette and Yamato-000593/000749

    NASA Astrophysics Data System (ADS)

    Terada, Kentaro; Sano, Yuji

    2004-12-01

    U, Th, and Pb isotopes and rare earth elements (REEs) in individual phosphate grains from martian meteorites, Lafayette and Yamato-000593/000749, were measured using a sensitive high- resolution ion microprobe (SHRIMP). Observed U-Pb data of 12 apatite grains from Yamato-000593/ 000749 are well represented by linear regressions in both "conventional" 2D isochron plots and the 3D U-Pb plot (total Pb/U isochron), indicating that the formation age of this meteorite is 1.53 +/- 0.46 Ga (2?). However, the data of nine apatite grains from Lafayette are well represented by planar regression rather than linear regression, indicating that its formation age is 1.15 +/- 0.34 Ga (2?) and that a secondary alteration process slightly disturbed its U-Pb systematics as discussed in the literature regarding Nakhla. The observed REE abundance patterns of the apatites in Lafayette and Yamato-000749, normalized to CI chondrites, are characterized by a progressive depletion of HREEs, a negative Eu anomaly, similarity to each other, and consistency with previously reported data for Nakhla. Considering the extensive data from other radiometric systems such as Sm-Nd, Rb-Sr, Ar-Ar, and trace elements, our results suggest that the parent magmas of the nakhlites, including the newly found Yamato-000593/000749, are similar, and that their crystallization ages are ~1.3 Ga.

  6. Penicillamine-modified sensor for the voltammetric determination of Cd(II) and Pb(II) ions in natural samples.

    PubMed

    Pérez-Ràfols, Clara; Serrano, Núria; Díaz-Cruz, José Manuel; Ariño, Cristina; Esteban, Miquel

    2015-11-01

    A new penicillamine-GCE was developed based on the immobilization of d-penicillamine on aryl diazonium salt monolayers anchored to the glassy carbon electrode (GCE) surface and it was applied for the first time to the simultaneous determination of Cd(II) and Pb(II) ions by stripping voltammetric techniques. The detection and quantification limits at levels of µg L(-1) suggest that the penicillamine-GCE could be fully suitable for the determination of the considered ions in natural samples.

  7. Magnetic ion-imprinted and -SH functionalized polymer for selective removal of Pb(II) from aqueous samples

    NASA Astrophysics Data System (ADS)

    Guo, Bin; Deng, Fang; Zhao, Yu; Luo, Xubiao; Luo, Shenglian; Au, Chaktong

    2014-02-01

    A magnetic ion-imprinted polymer (Fe3O4@SiO2-IIP) functionalized with -SH groups for the selective removal of Pb(II) ions from aqueous samples was synthesized by surface imprinting technique combined with a sol-gel process using 3-mercaptopropyl trimethoxysilane as monomer, tetraethyl orthosilicate as cross-linking agent, and Pb(II) ion as template. The Fe3O4@SiO2-IIP was characterized by infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and energy dispersive spectrometry. Fe3O4@SiO2-IIP showed higher capacity and selectivity than that of Fe3O4@SiO2-NIP. The effects of initial concentration of Pb(II) and pH of medium on adsorption capacity of Fe3O4@SiO2-IIP were studied. The experimental data fits well with the Langmuir adsorption isotherm. The maximum Pb(II)-sorption capacity calculated from Langmuir isotherm is 32.58 mg/g and 16.50 mg/g for Fe3O4@SiO2-IIP and Fe3O4@SiO2-NIP, respectively. Kinetics studies show that the adsorption process obeys a pseudo-second-order kinetic model with high correlation coefficient (R2 = 0.9982). The separation factor of Fe3O4@SiO2-IIP for Pb(II)/Cu(II), Pb(II)/Zn(II), and Pb(II)/Co(II) are 50.54, 52.14, and 37.39, respectively. The adsorption thermodynamic parameters ΔG, ΔH and ΔS were -4.98 kJ/mol, 3.27 kJ/mol and 28.84 J/mol/K, respectively. In addition, the spent Fe3O4@SiO2-IIP can be refreshed by simple washing with aqueous HCl solution, and there is no significant decrease in adsorption capacity after a test of up to five cycles, demonstrating that the Fe3O4@SiO2-IIP is stable and reusable.

  8. Visualization of 1.908-μm radiation of a Tm:YLF laser using PbF2-based ceramics doped with Ho3+ ions

    NASA Astrophysics Data System (ADS)

    Savikin, A. P.; Egorov, A. S.; Budruev, A. V.; Perunin, I. Yu.; Grishin, I. A.

    2016-11-01

    Visualization of IR radiation of a Tm:YLF laser at 1908 nm in PbF2 ceramic samples has been investigated. Luminescence spectra of the PbF2 samples doped with Ho3+ exhibited bands at wavelengths of 490, 545, and 650 nm (this red band is the strongest). It is established that at, a low laser intensity, the 5I5 and 5I6 levels are occupied mainly due to the ion-ion energy transfer.

  9. Interaction of the water soluble fraction of MSW-composts with Pb(II) and Cu(II) ions.

    PubMed

    Castaldi, Paola; Demurtas, Daniela; Silvetti, Margherita; Deiana, Salvatore; Garau, Giovanni

    2017-05-01

    In this study we report on the interactions between the water-soluble fraction (WSF) of two municipal solid waste composts (C1- and C2-WSF) with Pb(II) and Cu(II) ions at pH 4.5. The Me(II) addition to the compost-WSFs led to the formation of soluble Me(II)-organic complexes (as highlighted by FT-IR spectroscopy), and to a decrease of the trace metals' solubility, which was greater for Pb(II) than Cu(II). This was due to the formation of insoluble Me(II) complexes involving the water-soluble organic carbon (WSOC) and the inorganic anions within both WSFs [1.10 and 0.62 mmol L(-1) and 2.06 and 0.42 mmol L(-1) of Pb(II) and Cu(II) precipitated from C1- and C2-WSF respectively, when 6.4 mmol L(-1) Me(II) was added]. A loss of WSOC from both WSFs, i.e. ∼13% and <5%, was detected in the systems containing 6.4 mmol L(-1) Pb(II) and Cu(II) respectively. A significant contribution in the formation of Pb(II) precipitates was also due to phosphate, chloride and sulphate anions, since their concentrations in the WSF decreased of 80, 25 and 90%, respectively, after the addition of 6.4 mmol L(-1) Pb(II). A decrease of phosphate anions in both WSFs (∼30%) was found in the systems containing Cu(II).

  10. The effects of ion gun beam voltage on the electrical characteristics of NbCN/PbBi edge junctions

    NASA Technical Reports Server (NTRS)

    Lichtenberger, A. W.; Feldman, M. J.; Mattauch, R. J.; Cukauskas, E. J.

    1989-01-01

    The authors have succeeded in fabricating high-quality submicron NbCN edge junctions using a technique which is commonly used to make Nb edge junctions. A modified commercial ion gun was used to cut an edge in SiO2/NbCN films partially covered with photoresist. An insulating barrier was then formed on the exposed edge by reactive ion beam oxidation, and a counterelectrode of PbBi was deposited. The electrical quality of the resulting junctions was found to be strongly influenced by the ion beam acceleration voltages used to cut the edge and to oxidize it. For low ion beam voltages, the junction quality parameter was as high as Vm = 55 mV (measured at 3 mV), but higher ion beam voltages yielded strikingly poorer quality junctions. In light of the small coherence length of NbN, the dependence of the electrical characteristics on ion beam voltage is presumably due to mechanical damage of the NbCN surface. In contrast, for similar ion beam voltages, no such dependence was found for Nb edge junctions.

  11. Influence of pH, soil humic/fulvic acid, ionic strength, foreign ions and addition sequences on adsorption of Pb(II) onto GMZ bentonite.

    PubMed

    Wang, Suowei; Hu, Jun; Li, Jiaxing; Dong, Yunhui

    2009-08-15

    This work contributed to the adsorption of Pb(II) onto GMZ bentonite in the absence and presence of soil humic acid (HA)/fulvic acid (FA) using a batch technique. The influences of pH from 2 to 12, ionic strengths from 0.004M to 0.05M NaNO(3), soil HA/FA concentrations from 1.6 mg/L to 20mg/L, foreign cations (Li+, Na+, K+), anions (Cl(-), NO(3)(-)), and addition sequences on the adsorption of Pb(II) onto GMZ bentonite were tested. The adsorption isotherms of Pb(II) were determined at pH 3.6+/-0.1 and simulated with the Langmuir, Freundlich, and D-R adsorption models, respectively. The results demonstrated that the adsorption of Pb(II) onto GMZ bentonite increased with increasing pH from 2 to 6. HA was shown to enhance Pb(II) adsorption at low pH, but to reduce Pb(II) adsorption at high pH, whereas FA was shown to decrease Pb(II) adsorption at pH from 2 to 11. The results also demonstrated that the adsorption was strongly dependent on ionic strength and slightly dependent on the concentration of HA/FA. The adsorption of Pb(II) onto GMZ bentonite was dependent on foreign ions in solution. The addition sequences of bentonite/Pb(II)/HA had no effect on the adsorption of Pb(II).

  12. Removal of Pb(II) ions from aqueous solution using activated tea waste: Adsorption on a fixed-bed column.

    PubMed

    Mondal, M K

    2009-08-01

    An inexpensive and effective adsorbent was developed from waste tea leaves for the dynamic uptake of Pb(II). Characterization of the adsorbents showed a clear change between physico-chemical properties of activated tea waste and simply tea waste. The purpose of this work was to evaluate the potential of activated tea waste in continuous flow removal of Pb(II) ions from synthetic aqueous effluents. The performance of the system was evaluated to assess the effect of various process variables, viz., of bed height, hydraulic loading rate and initial feed concentration on breakthrough time and adsorption capacity. The shape of the breakthrough curves was determined for the adsorption of Pb(II) by varying different operating parameters like hydraulic loading rate (2.3-9.17m(3)/hm(2)), bed height (0.3-0.5m) and feed concentration (2-10mg/l). An attempt has also been made to model the data generated from column studies using the empirical relationship based on the Bohart-Adams model. There was an acceptable degree of agreement between the data for breakthrough time calculated from the Bohart-Adams model and the present experimental study with average absolute deviation of less than 5.0%. The activated tea waste in this study showed very good promise as compared with the other adsorbents available in the literature. The adsorbent could be suitable for repeated use (for more than four cycles) without noticeable loss of capacity.

  13. Exclusive reactions and the PbWO4-based Inner Calorimeter for the Electron-Ion Collider

    NASA Astrophysics Data System (ADS)

    Trotta, Richard; Horn, Tanja; Vargas, Andres; Carmignotto, Marco; Ali, Salina; Uniyal, Rishabh

    2017-01-01

    One of the main goals of the Electron-Ion Collider (EIC) is the three-dimensional imaging of nucleon and nuclei and unveiling the role of orbital angular motion of sea quarks and gluons in forming the nucleon spin. These studies are made possible through a new framework developed to explore nucleon structure through the Generalized Parton Distributions (GPDs) and the Transverse Momentum-Dependent parton distributions (TMDs). To carry out the scientific program, a specialized detector is needed. The particle identification requirements are driven by semi-inclusive and exclusive scattering processes like DVCS. For the latter an elimination or reduction of background events is mandatory. This requires good resolution in angle to distinguish between clusters, good energy resolution for measurements of the cluster energy, and the ability to withstand radiation. The small Moliere radius of the PbWO4 crystals makes them an ideal solution for the EIC inner crystal calorimeter. In this talk we will discuss what needs to be done to build a PbWO4-based inner calorimeter, the importance of PbWO4 quality, and results from ongoing crystal characterization efforts.

  14. Silver and potassium ion-exchanged waveguides in glasses doped with PbS semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Auxier, Jason M.; Honkanen, Seppo; Schülzgen, Axel; Morrell, Michael M.; Leigh, Matthew A.; Sen, Sabyasachi; Borrelli, Nicholas F.; Peyghambarian, Nasser

    2006-06-01

    We present a detailed analysis of potassium-sodium and silver-sodium ion-exchange processes for fabricating waveguides in glass doped with PbS semiconductor quantum dots. We compare the propagation losses of these waveguides, and we discuss the sources of these losses. In addition, we demonstrate a fourfold reduction in the propagation loss previously reported for potassium-sodium ion-exchanged waveguides and show that waveguides can be produced at additional quantum-dot resonances using both methods. We show that the near-infrared optical properties of these quantum dots remain intact by comparing the waveguide and bulk (unguided) luminescence spectra. Measurements of the near-field mode profiles show a high level of field confinement, which make these waveguides ideal for nonlinear optical (high-intensity) applications.

  15. Synthesis and characterization of hydroxyapatite nanoparticles impregnated on apple pomace to enhanced adsorption of Pb(II), Cd(II), and Ni(II) ions from aqueous solution.

    PubMed

    Chand, Piar; Pakade, Yogesh B

    2015-07-01

    Hydroxyapatite nanoparticles were synthesized, characterized, and impregnated onto apple pomace surface (HANP@AP) for efficient removal of Pb(II), Cd(II), and Ni(II) ions from water. HANP@AP was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), transmission electron microscope (TEM), X-ray diffraction (XRD), and surface area analysis. Batch sorption studies were carried out to investigate the influence of different parameters as amount of dose (g), pH, time (min), and initial concentration (mg L(-1)) on adsorption process. Experimental kinetic data followed pseudo-second-order model and equilibrium data well fitted to Langmuir adsorption model with maximum adsorption capacities of 303, 250, and 100 mg g(-1) for Pb(II), Cd(II), and Ni(II) ions, respectively. Competitive adsorption of Pb(II), Cd(II), and Ni(II) ions in presences of each other was studied to evaluate the removal efficiency of HANP@AP against multi metal-loaded water. HANP@AP was successfully applied to real industrial wastewater with 100 % removal of all three metal ions even at high concentration. HANP@AP could be recycled for four, four, and three cycles in case of Pb(II), Cd(II) and Ni(II), respectively. The study showed that HANP@AP is fast, cost effective, and environmental friendly adsorbent for removal of Pb(II), Cd(II), and Ni(II) ions from real industrial wastewater.

  16. Ion-Exchange-Induced 2D-3D Conversion of HMA1-x FAx PbI3 Cl Perovskite into a High-Quality MA1-x FAx PbI3 Perovskite.

    PubMed

    Li, Ge; Zhang, Taiyang; Guo, Nanjie; Xu, Feng; Qian, Xufang; Zhao, Yixin

    2016-10-17

    High-quality phase-pure MA1-x FAx PbI3 planar films (MA=methylammonium, FA=formamidinium) with extended absorption and enhanced thermal stability are difficult to deposit by regular simple solution chemistry approaches owing to crystallization competition between the easy-to-crystallize but unwanted δ-FAPbI3 /MAPbI3 and FAx MA1-x PbI3 requiring rigid crystallization conditions. Here A 2D-3D conversion to transform compact 2D mixed composition HMA1-x FAx PbI3 Cl perovskite precursor films into 3D MA1-x FAx PbI3 (x=0.1-0.9) perovskites is presented. The designed Cl/I and H/FA(MA) ion exchange reaction induced fast transformation of compact 2D perovskite film, helping to form the phase-pure and high quality MA1-x FAx PbI3 without δ-FAPbI3 and MAPbI3 impurity. In all, we successfully developed a facile one-step method to fabricate high quality phase-pure MA1-x FAx PbI3 (x=0.1-0.9) perovskite films by 2D-3D conversion of HMA1-x FAx PbI3 Cl perovskite. This 2D-3D conversion is a promising strategy for lead halide perovskite fabrication.

  17. Ion-probe U-Pb dating of authigenic and detrital opal from Neogene-Quaternary alluvium

    NASA Astrophysics Data System (ADS)

    Neymark, L. A.; Paces, J. B.

    2013-01-01

    Knowing depositional ages of alluvial fans is essential for many tectonic, paleoclimatic, and geomorphic studies in arid environments. The use of U-Pb dating on secondary silica to establish the age of Neogene-Quaternary clastic sediments was tested on samples of authigenic and detrital opal and chalcedony from depths of ˜25 to 53 m in boreholes at Midway Valley, Nevada. Dating of authigenic opal present as rinds on rock clasts and in calcite/silica cements establishes minimum ages of alluvium deposition; dating of detrital opal or chalcedony derived from the source volcanic rocks gives the maximum age of sediment deposition. Materials analyzed included 12 samples of authigenic opal, one sample of fracture-coating opal from bedrock, one sample of detrital opal, and two samples of detrital chalcedony. Uranium-lead isotope data were obtained by both thermal ionization mass spectrometry and ion-microprobe. Uranium concentrations ranged from tens to hundreds of μg/g. Relatively large U/Pb allowed calculation of 206Pb/238U ages that ranged from 1.64±0.36 (2σ) to 6.16±0.50 Ma for authigenic opal and from 8.34±0.28 to 11.2±1.3 Ma for detrital opal/chalcedony. Three samples with the most radiogenic Pb isotope compositions also allowed calculation of 207Pb/235U ages, which were concordant with 206Pb/238U ages from the same samples. These results indicate that basin development at Midway Valley was initiated between about 8 and 6 Ma, and that the basin was filled at long-term average deposition rates of less than 1 cm/ka. Because alluvium in Midway Valley was derived from adjacent highlands at Yucca Mountain, the low rates of deposition determined in this study may imply a slow rate of erosion of Yucca Mountain. Volcanic strata underlying the basin are offset by a number of buried faults to a greater degree than the relatively smooth-sloping bedrock/alluvium contact. These geologic relations indicate that movement on most faults ceased prior to erosional planation and

  18. Spectroscopic features of Ni(2+) ion in PbO-Bi2O3-SiO2 glass system.

    PubMed

    Suresh, B; Srinivasa Reddy, M; Siva Sesha Reddy, A; Gandhi, Y; Ravi Kumar, V; Veeraiah, N

    2015-04-15

    Glasses of the composition (30-x)PbO-5Bi2O3-65SiO2: xNiO (with x ranging from 0 to 1.0 mol%) were synthesized. A variety of spectroscopic studies, viz., IR, Raman optical absorption and luminescence properties of these glasses have been carried out as a function of NiO concentration. The analysis of results of all these studies has indicated that the nickel ions occupy both octahedral and tetrahedral positions. However, with the increase of NiO concentration the octahedral occupancy of Ni(2+) ions prevailed over the tetrahedral ions. The luminescence spectra of these glasses have exhibited a broad NIR emission band in region 1100-1500 nm. This band is identified as being due to (3)T2(3F)→(3)A2(3F) octahedral transition of Ni(2+) ions. The luminescence efficiency and cross section have been found to be the highest for the glass containing the highest concentration of NiO. The reasons for such high luminescence efficiency have been discussed in the light of structural variations taking place in the host glass network.

  19. Swift heavy ion-irradiation effects on microstructure, surface morphology and optical properties of PbS thin films

    NASA Astrophysics Data System (ADS)

    Rajbongshi, Ananta; Kalita, M. P. C.; Singh, F.; Sarma, K. C.; Sarma, B. K.

    2016-05-01

    Chemically deposited PbS nanocrystalline thin films are irradiated by 100 MeV Si8+ swift heavy ions of fluences 1 × 1011, 1 × 1012 and 1 × 1013 ions/cm2. Detailed investigation on the effects of irradiation on microstructure is carried out by X-ray diffraction line profile analysis applying Williamson-Hall and modified Williamson-Hall methods, and transmission electron microscope observation, while atomic force microscope is used for studying the modifications in surface morphology. The band gaps are obtained from electronic absorption spectroscopy measurements, and photoluminescence spectra are recorded by spectrofluorometer. The pristine and irradiated films are polycrystalline in nature with spherical crystallites having face-centered cubic phase. The crystallite size of the pristine film is 20 nm, while films irradiated with ion fluences 1 × 1011, 1 × 1012 and 1 × 1013 ions/cm2 are 21, 20 and 20 nm, respectively. The lattice strain (dislocation density) of the pristine film is 8.9 × 10-3 (6.6 × 1016 m-2), while films irradiated with ion fluences 1 × 1011, 1 × 1012 and 1 × 1013 ions/cm2 are 8.6 × 10-3 (6.1 × 1016 m-2), 8.7 × 10-3 (6.4 × 1016 m-2) and 9.1 × 10-3 (7.0 × 1016 m-2), respectively. The dislocations present in both the pristine and irradiated films are edge in nature. The surface morphology changes significantly with elongation of the particles, increase in particle size and interparticle separation and slight decrease in rms roughness after irradiation. The band gap of the pristine film is 2.51 eV which remains unaltered after irradiation. Photoluminescence intensity increases significantly after irradiation which can be useful in enhancing the performance of different photonic devices such as light-emitting diodes, lasers and luminescence-based sensors.

  20. Dynamical Dipole mode in heavy-ion fusion reactions in the 192Pb mass region

    NASA Astrophysics Data System (ADS)

    Parascandolo, C.; Pierroutsakou, D.; Alba, R.; Del Zoppo, A.; Maiolino, C.; Santonocito, D.; Agodi, C.; Baran, V.; Boiano, A.; Colonna, M.; Coniglione, R.; De Filippo, E.; Di Toro, M.; Emanuele, U.; Farinon, F.; Guglielmetti, A.; La Commara, M.; Martin, B.; Mazzocchi, C.; Mazzocco, M.; Rizzo, C.; Romoli, M.; Signorini, C.; Silvestri, R.; Soramel, F.; Strano, E.; Torresi, D.; Trifiró, A.; Trimarchi, M.

    2015-04-01

    The dynamical dipole mode was investigated in the mass region of the 192Pb compound nucleus, by using the 40Ca + 152Sm and 48Ca + 144Sm reactions at Elab=11 and 10.1 MeV/nucleon, respectively. Both fusion-evaporation and fission events were studied simultaneously for the first time. Our results for evaporation and fission events (preliminary) show that the dynamical dipole mode survives in reactions involving heavier nuclei than those studied previously.

  1. Removal of Pb (II) ions from aqueous solutions by Cladophora rivularis (Linnaeus) Hoek.

    PubMed

    Jafari, Naser; Senobari, Zoreh

    2012-01-01

    Biosorption of Pb(II) using Cladophora rivularis was examined as a function of initial pH heavy metal concentration and temperature. The optimum pH value for the biosorption of lead was 4.0. The adsorption equilibriums were well described by Langmuir and Freundlich isotherm models and it was implied by the results that the C. rivularis biomass is suitable for the development of efficient biosorbent in order to remove Pb(II) from wastewater and to recover it. The high values of correlation coefficient (R(2) = 0.984) demonstrate equilibrium data concerning algal biomass, which is well fitted in Freundlich isotherms model equations. The dimensionless parameter R(L) is found in the range of 0.0639 to 0.1925 (0 < R(L) < 1), which confirms the favorable biosorption process. Fourier transform infra-red (FTIR) spectroscopy of C. rivularis was used to reveal the main function groups of biosorption, which were hydroxyl, amine groups, C-H stretching vibrations of -CH3 and -CH2, and complexation with functional groups. All these results suggest that C. rivularis can be used effectively for removal of Pb(II).

  2. Hopping rates and concentrations of mobile fluoride ions in Pb1-xSnxF2 solid solutions

    NASA Astrophysics Data System (ADS)

    Ahmad, Mohamad M.; Yamada, Koji

    2007-09-01

    In the present paper, the ion dynamics and relaxation of fluoride ions in Pb1-xSnxF2 (with x =0.2-0.6) solid solutions, prepared by mechanochemical milling, are studied in the conductivity formalism over wide ranges of frequencies and temperatures. The conductivity spectra of the investigated materials are analyzed by the Almond-West (AW) power-law model. The estimated values of the hopping rates and the dc conductivity of different compositions are thermally activated with almost the same activation energy. The calculated values of the concentration of mobile ions, nc, are almost independent of temperature and composition for x =0.2-0.4. The maximum value of nc is obtained for the x =0.6 sample, although it does not show the maximum conductivity. Therefore, the composition dependence of the ionic conductivity of these solid solutions could be explained based on the extracted parameters. The results presented in the current work indicate that the AW model represents a reasonable approximation of the overall frequency-dependent conductivity behavior of the investigated materials. The conductivity spectra at different temperatures for each composition are successfully scaled to a single master curve, indicating a temperature-independent relaxation mechanism. For different compositions, however, the conductivity spectra cannot be scaled properly, indicating composition-dependent relaxation dynamics.

  3. Influence of Pb(II) Ions on the EPR Properties of the Semiquinone Radicals of Humic Acids and Model Compounds: High Field EPR and Relativistic DFT Studies

    NASA Astrophysics Data System (ADS)

    Witwicki, Maciej; Jerzykiewicz, Maria; Jaszewski, Adrian R.; Jezierska, Julia; Ozarowski, Andrzej

    2009-11-01

    X-band (9.76 GHz) and high field (416.00 GHz) electron paramagnetic resonance spectroscopy (EPR) was used to study the interactions between Pb(II) ions and semiquinone radicals of natural humic acids and their simple models. The EPR experiments were performed on powder samples. The formation of Pb(II) complexes with the radicals was accompanied by a significant decrease of g parameters as compared to those observed for parent radicals. Two types of complexes were identified depending on the initial concentration of Pb(II) ions. For one of them the anisotropic hyperfine coupling with the 207Pb nucleus was observed. Systematic DFT calculations were carried out for complexes with different forms of radical ligands (L2-•, HL-•, and H2L•) derived from 3,4-dihydroxybenzoic acid representing different ligation schemes. The g parameters calculated for the structure characterized by a significant accumulation of spin density on the Pb atom are strongly deviated from the values observed experimentally. Moreover, a decrease of the spin population on all oxygen atoms as a result of complexation of Pb(II) via carboxyl oxygens and protonation of hydroxyl oxygens is required to reproduce the experimental g parameters.

  4. Fabrication of Tetragonal Pb(Zr,Ti)O3 Nanorods by Focused Ion Beam and Characterization of the Domain Structure.

    PubMed

    Ito, Daisuke; Yamada, Tomoaki; Sakata, Osami; Kuroishi, Junki; Namazu, Takahiro; Funakubo, Horoshi; Yoshino, Masahito; Nagasaki, Takanori

    2016-05-19

    It has been widely revealed and discussed that the properties of ferroelectric nanostructures vary with their dimensionality and size. The mechanical substrate clamping and the depolarization field are considered as major factors, which cause their unique properties. In this paper, we fabricated tetragonal {100}-Pb(Zr, Ti)O3 rods with 100 nm - 4 μm widths on Nb-doped SrTiO3 substrates by using focused ion beam, and characterized their domain structure by synchrotron micro X-ray diffraction. It was found that the clapping angle in the a/c-domain structure became larger with decreasing the rod width, which indicates the significant reduction of substrate clamping by fabricating narrow rods.

  5. Neutron-induced light-ion production from Fe, Pb and U at 96 MeV.

    PubMed

    Pomp, S; Blideanu, V; Blomgren, J; Eudes, Ph; Guertin, A; Haddad, F; Johansson, C; Klug, J; Le Brun, Ch; Lecolley, F R; Lecolley, J F; Lefort, T; Louvel, M; Marie, N; Prokofiev, A; Tippawan, U; Ohrn, A; Osterlund, M

    2007-01-01

    Double-differential cross-sections for light-ion production (up to A = 4) induced by 96 MeV neutrons have been measured for Fe, Pb and U. The experiments have been performed at The Svedberg Laboratory in Uppsala, using two independent devices, MEDLEY and SCANDAL. The recorded data cover a wide angular range (20 degrees -160 degrees ) with low energy thresholds. The data have been normalised to obtain cross-sections using np elastic scattering events. The latter have been recorded with the same setup, and results for this measurement are reported. The work was performed within the HINDAS collaboration with the primary aim of improving the database for three of the most important nuclei for incineration of nuclear waste with accelerator-driven systems. The obtained cross-section data are of particular interest for the understanding of the so-called pre-equilibrium stage in a nuclear reaction and will be compared with model calculations.

  6. Removal of Pb(II) ions from aqueous solution by a waste mud from copper mine industry: equilibrium, kinetic and thermodynamic study.

    PubMed

    Ozdes, Duygu; Gundogdu, Ali; Kemer, Baris; Duran, Celal; Senturk, Hasan Basri; Soylak, Mustafa

    2009-07-30

    The objective of this study was to assess the adsorption potential of a waste mud (WM) for the removal of lead (Pb(II)) ions from aqueous solutions. The WM was activated with NaOH in order to increase its adsorption capacity. Adsorption studies were conducted in a batch system as a function of solution pH, contact time, initial Pb(II) concentration, activated-waste mud (a-WM) concentration, temperature, etc. Optimum pH was specified as 4.0. The adsorption kinetic studies indicated that the overall adsorption process was best described by pseudo-second-order kinetics. The equilibrium adsorption capacity of a-WM was obtained by using Langmuir and Freundlich isotherm models and both models fitted well. Adsorption capacity for Pb(II) was found to be 24.4 mg g(-1) for 10 g L(-1) of a-WM concentration. Thermodynamic parameters including the Gibbs free energy (Delta G degrees), enthalpy (Delta H degrees), and entropy (DeltaS degrees) indicated that the adsorption of Pb(II) ions on the a-WM was feasible, spontaneous and endothermic, at temperature range of 0-40 degrees C. Desorption studies were carried out successfully with diluted HCl solutions. The results indicate that a-WM can be used as an effective and no-cost adsorbent for the treatment of industrial wastewaters contaminated with Pb(II) ions.

  7. Removal of Pb(II) ions from aqueous solution using water hyacinth root by fixed-bed column and ANN modeling.

    PubMed

    Mitra, Tania; Singha, Biswajit; Bar, Nirjhar; Das, Sudip Kumar

    2014-05-30

    Hyacinth root was used as a biosorbent for generating adsorption data in fixed-bed glass column. The influence of different operating parameters like inlet Pb(II) ion concentration, liquid flow rate and bed height on the breakthrough curves and the performance of the column was studied. The result showed that the adsorption efficiency increased with increase in bed height and decreased with increase in inlet Pb(II) ion concentration and flow rate. Increasing the flow rate resulted in shorter time for bed saturation. The result showed that as the bed height increased the availability of more number of adsorption sites in the bed increased, hence the throughput volume of the aqueous solution also increased. The adsorption kinetics was analyzed using different models. It was observed that maximum adsorption capacity increased with increase in flow rate and initial Pb(II) ion concentration but decreased with increase in bed height. Applicability of artificial neural network (ANN) modeling for the prediction of Pb(II) ion removal was also reported by using multilayer perceptron with backpropagation, Levenberg-Marquardt and scaled conjugate algorithms and four different transfer functions in a hidden layer and a linear output transfer function.

  8. Preparation of new ion-selective cross-linked poly(vinylimidazole-co-ethylene glycol dimethacrylate) using a double-imprinting process for the preconcentration of Pb²⁺ ions.

    PubMed

    Tarley, César Ricardo Teixeira; Corazza, Marcela Zanetti; Somera, Bruna Fabrin; Segatelli, Mariana Gava

    2015-07-15

    A new ion-selective cross-linked poly(vinylimidazole-co-ethylene glycol dimethacrylate) prepared via a double-imprinting process was developed for the recognition and preconcentration of Pb(2+) from water samples. The sorbent was characterized by FT-IR, SEM, TGA and textural data. The maximum dynamic sorption capacity of Pb(2+) was 42.04 mg Pb(2+) g(-1) of the double-imprinted polymer. The sorption kinetics data were described by a pseudo-second-order model. The double-imprinted polymer exhibited a higher sorption efficiency of Pb(2+) than the blank polymer (non-imprinted polymer). The preconcentration procedure involved the loading of a Pb(2+) solution at pH 7.25 through 40.0 mg of the double-imprinted polymer packed in a mini-column at 5.0 mL min(-1). The selective efficiency of proposed method for the Pb(2+) preconcentration was assured by competitive sorption using different proportions of Pb(2+)/cations and Pb(2+)/anions. An analytical curve was obtained in the range 0.0-300.0 μg L(-1) (r=0.999) and a limit of detection of 2.46 μg L(-1) was obtained. The preconcentration factor was found to be 21, the consumptive index 0.95 mL and the concentration efficiency 5.25 min(-1). The preconcentration method was successfully applied to the Pb(2+) ions determination in different kinds of water samples with high recovery values (91.3-108.9%).

  9. Simultaneous removing of Pb(2+) ions and alizarin red S dye after their complexation by ultrasonic waves coupled adsorption process: Spectrophotometry detection and optimization study.

    PubMed

    Pourebrahim, F; Ghaedi, M; Dashtian, K; Heidari, F; Kheirandish, S

    2017-03-01

    Funthenalized chitosan (CS) was composited with mesoprous SBA-15 and characterized via. different techniques such as FT-IR and FE-SEM. Subsequently, this new material was applied for simulations ultrasound-assisted adsorption of Pb(2+) ion and alizarin red S (ARS) dye after their complexation. Efficient conventional variables in adsorption process such as initial ARS and Pb(2+) concentration, adsorbent mass and sonication time were studied by small central composite design (CCD) and optimized with desirability function approach. Lack of fit testes and model summary statistics for linear, 2FI, quadratic and cubic models were investigated and according to the insignificant lack of fit and maximizing the R-squared (R(2)), adjusted R-squared and the predicted R-squared quadratic model was selected for other step analysis for removal of ARS dye, while, for Pb(2+) ions 2FI model was selected as best model. Quadratic model ANOVA for ARS dye removal shows the F-value parameter (683.91), very low p-value model (<0.0001) and p-value lack of fit (0.0568) that implied this model was highly significant. Also, 2FI model ANOVA for Pb(2+) ions removal shows the F-value parameter (282.51), very low p-value model (<0.0001) and p-value lack of fit (2.05). According to desirability function approach maximum removal percentage of ARS (87.61%) and Pb(2+) ions (83.54%) was shown at optimum of condition that were set as at: 25 and 25mgL(-1), 0.028g and 11.8min for initial ARS and Pb(2+) ions concentration, adsorbent mass and sonication time, respectively. Finally, it was found that the equilibrium and kinetic of adsorption process follow the Langmuir isotherm and pseudo-second-order kinetic model, respectively. From the Langmuir isotherm, maximum monolayer capacity (qmax) was obtained 50.25 and 57.14mgg(-1) for ARS and Pb(2+) ions removal, respectively.

  10. Direct observation of Nd{sup 3+} and Tm{sup 3+} ion distributions in oxy-fluoride glass ceramics containing PbF{sub 2} nanocrystals

    SciTech Connect

    Zhang, Jihong; Zhao, Zhiyong; Liu, Chao; Zhang, Gaoke; Zhao, Xiujian; Heo, Jong; Jiang, Yang

    2014-12-15

    Nd{sup 3+} and Tm{sup 3+}, doped oxy-fluoride glasses and glass ceramics were prepared by conventional melt-quenching and subsequent heat-treatment, respectively. β-PbF{sub 2} nanocrystals with diameter 50 –100 nm formed in the glass matrix after heat treatment. The Stark splitting in absorption peaks, enhanced photoluminescence and prolonged lifetimes that β-PbF{sub 2} nanocrystal formation increased the luminescence of rare earth ions. Both Nd{sup 3+} and Tm{sup 3+} ions were incorporated into nanocrystals that were enriched in lead and fluorine, and deficient in oxygen. - Highlights: • EELS analysis for rare-earth ion distribution in oxy-fluoride glass ceramics • No significant changes in lifetimes of Nd{sup 3+}, while obvious change for Tm{sup 3+} • Direct evidence of Nd{sup 3+} and Tm{sup 3+} aggregation into fluoride nanocrystals.

  11. Laser-produced spectra and QED effects for Fe-, Co-, Cu-, and Zn-like ions of Au, Pb, Bi, Th, and U

    NASA Technical Reports Server (NTRS)

    Seely, J. F.; Ekberg, J. O.; Brown, C. M.; Feldman, U.; Behring, W. E.

    1986-01-01

    Spectra of very highly charged ions of Au, Pb, Bi, Th, and U have been observed in laser-produced plasmas generated by the OMEGA laser. Line identifications in the region 9-110 A were made for ions in the Fe, Co, Cu, and Zn isoelectronic sequences. Comparison of the measured wavelengths of the Cu-like ions with values calculated with and without QED corrections shows that the inclusion of QED corrections greatly improves the accuracy of the calculated 4s-4p wavelengths. However, significant differences between the observed and calculated values remain.

  12. FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd(2+) and Pb(2+) removal by mango peel waste.

    PubMed

    Iqbal, Muhammad; Saeed, Asma; Zafar, Saeed Iqbal

    2009-05-15

    Mango peel waste (MPW) was evaluated as a new sorbent for the removal of Cd(2+) and Pb(2+) from aqueous solution. The maximum sorption capacity of Cd(2+) and Pb(2+) was found to be 68.92 and 99.05mgg(-1), respectively. The kinetics of sorption of both metals was fast, reaching at equilibrium in 60min. Sorption kinetics and equilibria followed pseudo-second order and Langmuir adsorption isotherm models. FTIR analysis revealed that carboxyl and hydroxyl functional groups were mainly responsible for the sorption of Cd(2+) and Pb(2+). Chemical modification of MPW for blocking of carboxyl and hydroxyl groups showed that 72.46% and 76.26% removal of Cd(2+) and Pb(2+), respectively, was due to the involvement of carboxylic group, whereas 26.64% and 23.74% was due to the hydroxyl group. EDX analysis of MPW before and after metal sorption and release of cations (Ca(2+), Mg(2+), Na(+), K(+)) and proton H(+) from MPW with the corresponding uptake of Cd(2+) and Pb(2+) revealed that the main mechanism of sorption was ion exchange. The regeneration experiments showed that the MPW could be reused for five cycles without significant loss in its initial sorption capacity. The study points to the potential of new use of MPW as an effective sorbent for the removal of Cd(2+) and Pb(2+) from aqueous solution.

  13. Biosorption characteristics of Aspergillus flavus biomass for removal of Pb(II) and Cu(II) ions from an aqueous solution.

    PubMed

    Akar, Tamer; Tunali, Sibel

    2006-10-01

    The Pb(II) and Cu(II) biosorption characteristics of Aspergillus flavus fungal biomass were examined as a function of initial pH, contact time and initial metal ion concentration. Heat inactivated (killed) biomass was used in the determination of optimum conditions before investigating the performance of pretreated biosorbent. The maximum biosorption values were found to be 13.46 +/- 0.99 mg/g for Pb(II) and 10.82 +/- 1.46 mg/g for Cu(II) at pH 5.0 +/- 0.1 with an equilibrium time of 2 h. Detergent, sodium hydroxide and dimethyl sulfoxide pretreatments enhanced the biosorption capacity of biomass in comparison with the heat inactivated biomass. The biosorption data obtained under the optimum conditions were well described by the Freundlich isotherm model. Competitive biosorption of Pb(II) and Cu(II) ions was also investigated to determine the selectivity of the biomass. The results indicated that A. flavus is a suitable biosorbent for the removal of Pb(II) and Cu(II) ions from aqueous solution.

  14. Adsorption and desorption of Cu(II), Cd(II) and Pb(II) ions using chitosan crosslinked with epichlorohydrin-triphosphate as the adsorbent.

    PubMed

    Laus, Rogério; Costa, Thiago G; Szpoganicz, Bruno; Fávere, Valfredo T

    2010-11-15

    In this study, chitosan (CTS) was crosslinked with both epichlorohydrin (ECH) and triphosphate (TPP), by covalent and ionic crosslinking, respectively. The resulting new CTS-ECH-TPP adsorbent was characterized by CHN analysis, EDS, FTIR spectroscopy, TGA and DSC, and the adsorption and desorption of Cu(II), Cd(II) and Pb(II) ions in aqueous solution were investigated. Potentiometric studies were also performed and revealed three titratable protons for each pK(a) value of 5.14, 6.76 and 9.08. The results obtained showed that the optimum pH values for adsorption were 6.0 for Cu(II), 7.0 for Cd(II) and 5.0 for Pb(II). The kinetics study demonstrated that the adsorption process proceeded according to the pseudo-second-order model. Three isotherm models (Langmuir, Freundlich and Dubinin-Radushkevich) were employed in the analysis of the adsorption equilibrium data. The Langmuir model resulted in the best fit and the new adsorbent had maximum adsorption capacities for Cu(II), Cd(II) and Pb(II) ions of 130.72, 83.75 and 166.94 mg g(-1), respectively. Desorption studies revealed that HNO(3) and HCl were the best eluents for desorption of Cu(II), Cd(II) and Pb(II) ions from the crosslinked chitosan.

  15. Ion exchange of Pb(2+), Cu(2+), Fe(3+), and Cr(3+) on natural clinoptilolite: selectivity determination and influence of acidity on metal uptake.

    PubMed

    Inglezakis, Vassilis J; Loizidou, Maria D; Grigoropoulou, Helen P

    2003-05-01

    In the present study ion exchange of Pb(2+), Cu(2+), Fe(3+), and Cr(3+) on natural Greek clinoptilolite was examined in terms of selectivity toward the above heavy metals in single- and multicomponent solutions in batch systems. Also examined are the influence of clinoptilolite on solution acidity and the effect of acidity on the ion exchange process. Clinoptilolite increases solution acidity due to the exchange of H(+) cations with the cations initially present in its structure. H(+) cations should be considered as competitive ones in ion exchange processes, and consequently ion exchange of metals is favored at high acidity values. Cu(2+) and Cr(3+) are the most sensitive cations with respect to acidity. Selectivity determination demonstrates that the selectivity at total concentration 0.01 N and acidity 2 in both single- and multicomponent solutions is following the order Pb(2+)>Fe(3+)>Cr(3+) > or =Cu(2+). This order is set since the first days of equilibration. However, Cu(2+) shows remarkable changes in selectivity and generally its uptake and selectivity are increasing with time. On the other hand selectivity in single metal solutions where acidity is not adjusted is following the order Pb(2+)>Cr(3+)>Fe(3+) congruent with Cu(2+).

  16. Comparative adsorption of Cu(II), Zn(II), and Pb(II) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin.

    PubMed

    Chen, Arh-Hwang; Liu, Sheng-Chang; Chen, Chia-Yuan; Chen, Chia-Yun

    2008-06-15

    The crosslinked chitosans synthesized by the homogeneous reaction of chitosan in aqueous acetic acid solution with epichlorohydrin were used to investigate the adsorptions of three metals of Cu(II), Zn(II), and Pb(II) ions in an aqueous solution. The crosslinked chitosan characterized by 13CNMR, SEM, and elemental analysis, and the effects of pH and anion on the adsorption capacity were carried out. The dynamical study demonstrated that the adsorption process was followed the second-order kinetic equation. The results obtained from the equilibrium isotherms adsorption studies of three metals of Cu(II), Zn(II), and Pb(II) ions by being analyzed in three adsorption models, namely, Langmuir, Freundlich, and Dubinnin-Radushkevich isotherm equations, indicated to be well fitted to the Langmuir isotherm equation under the concentration range studied, by comparing the linear correlation coefficients. The order of the adsorption capacity (Qm) for three metal ions was as follows: Cu2+>Pb2+>Zn2+. This technique for syntheses of the crosslinked chitosans with epichlorohydrin via the homogeneous reaction in aqueous acetic acid solution showed that the adsorptions of three metal ions in aqueous solution were followed the monolayer coverage of the adsorbents through physical adsorption phenomena.

  17. The study of adsorption characteristics Cu2+ and Pb2+ ions onto PHEMA and P(MMA-HEMA) surfaces from aqueous single solution.

    PubMed

    Moradi, O; Aghaie, M; Zare, K; Monajjemi, M; Aghaie, H

    2009-10-30

    The adsorption characteristics of Cu2+ and Pb2+ ions onto poly2-hydroxyethyl methacrylate (PHEMA) and copolymer 2-hydroxyethyl methacrylate with monomer methyl methacrylate P(MMA-HEMA) adsorbent surfaces from aqueous single solution were investigated with respect to the changes in the pH of solution, adsorbent composition (changes in the weight percentage of MMA copolymerized with HEMA monomer), contact time and the temperature in the individual aqueous solutions. The linear correlation coefficients of Langmuir and Freundlich isotherms were obtained. The results revealed that the Langmuir isotherm fitted the experimental results better than the Freundlich isotherm. Using the Langmuir model equation, the monolayer adsorption capacity of PHEMA surface was found to be 0.840 and 3.037 mg/g for Cu2+ and Pb2+ ions and adsorption capacity of (PMMA-HEMA) was found to be 31.153 and 31.447 mg/g for Cu2+ and Pb2+ ions, respectively. Changes in the standard Gibbs free energy (DeltaG(0)), standard enthalpy (DeltaH(0)) and standard entropy (DeltaS(0)) show that the adsorption of mentioned ions onto PHEMA and P(MMA-HEMA) are spontaneous and exothermic at 293-323 K.

  18. Immobilization of Pb(II), Cd(II) and Ni(II) ions on kaolinite and montmorillonite surfaces from aqueous medium.

    PubMed

    Sen Gupta, Susmita; Bhattacharyya, Krishna G

    2008-04-01

    The present study investigates the immobilization of Pb(II), Cd(II) and Ni(II) on clays (kaolinite and montmorillonite) in aqueous medium through the process of adsorption under a set of variables (concentration of metal ion, amount of clay, pH, time and temperature of interaction). Increasing pH favours the removal of metal ions till they are precipitated as the insoluble hydroxides. The uptake is rapid with maximum adsorption being observed within 180 min for Pb(II) and Ni(II) and 240 min for Cd(II). A number of available models like the Lagergren pseudo first-order kinetics, second-order kinetics, Elovich equation, liquid film diffusion and intra-particle diffusion are utilized to evaluate the kinetics and the mechanism of the immobilization interactions. Two isotherm equations due to Langmuir and Freundlich showed good fits with the experimental data. Kaolinite and montmorillonite have considerable Langmuir monolayer capacity with respect to Pb(II), Cd(II) and Ni(II), the values being in the range of 6.8-11.5mg/g (kaolinite) and 21.1-31.1mg/g (montmorillonite). The Freundlich adsorption capacity follows a similar order. The thermodynamics of the immobilization process indicates the same to be exothermic with Pb(II) and Ni(II), but endothermic with Cd(II). The interactions with Pb(II) and Ni(II) are accompanied by decrease in entropy and Gibbs energy while the endothermic immobilization of Cd(II) is supported by an increase in entropy and an appreciable decrease in Gibbs energy. The results have established good potentiality for kaolinite and montmorillonite to remove heavy metals like Pb(II), Cd(II) and Ni(II) from aqueous medium through adsorption-mediated immobilization.

  19. Optimization, isotherm, kinetic and thermodynamic studies of Pb(II) ions adsorption onto N-maleated chitosan-immobilized TiO₂ nanoparticles from aqueous media.

    PubMed

    Shaker, Medhat A; Yakout, Amr A

    2016-02-05

    Chitosan, CS was chemically engineered by maleic anhydride via simple protocol to produce N-maleated chitosan, MCS which immobilized on anatase TiO2 to synthesize novel eco-friendly nanosorbent (51±3.8 nm), MCS@TiO2 for cost-effective and efficient removal of Pb(II) ions from aqueous media. The chemical structure, surface properties and morphology of MCS@TiO2 were recognized by FTIR, (1)H NMR, XRD, TEM, DLS and zeta-potential techniques. The relations between %removal of Pb(II) and different analytical parameters such as solution acidity (pH), MCS@TiO2 dosage, time of contact and initial Pb(II) concentration were optimized using response surface methodology (RSM) and Box-Behnken design (BBD) statistical procedures. The fitting of the experimental data to four different isotherm models at optimized conditions was carried out by various statistical treatments including the correlation coefficient (r), coefficient of determination (r(2)) and non-linear Chi-square (χ(2)) test analyses which all confirm the suitability of Langmuir model to explain the adsorption isotherm data. Also, statistics predicted that the pseudo-second-order model is the optimum kinetic model among four applied kinetic models to closely describe the rate equation of the adsorption process. Thermodynamics viewed the adsorption as endothermic and feasible physical process. EDTA could release the sorbed Pb(II) ions from MCS@TiO2 with a recovery above 92% after three sorption-desorption cycles. The novel synthesized nanosorbent is evidenced to be an excellent solid phase extractor for Pb(II) ions from wastewaters.

  20. Optimization, isotherm, kinetic and thermodynamic studies of Pb(II) ions adsorption onto N-maleated chitosan-immobilized TiO2 nanoparticles from aqueous media

    NASA Astrophysics Data System (ADS)

    Shaker, Medhat A.; Yakout, Amr A.

    2016-02-01

    Chitosan, CS was chemically engineered by maleic anhydride via simple protocol to produce N-maleated chitosan, MCS which immobilized on anatase TiO2 to synthesize novel eco-friendly nanosorbent (51 ± 3.8 nm), MCS@TiO2 for cost-effective and efficient removal of Pb(II) ions from aqueous media. The chemical structure, surface properties and morphology of MCS@TiO2 were recognized by FTIR, 1H NMR, XRD, TEM, DLS and zeta-potential techniques. The relations between %removal of Pb(II) and different analytical parameters such as solution acidity (pH), MCS@TiO2 dosage, time of contact and initial Pb(II) concentration were optimized using response surface methodology (RSM) and Box-Behnken design (BBD) statistical procedures. The fitting of the experimental data to four different isotherm models at optimized conditions was carried out by various statistical treatments including the correlation coefficient (r), coefficient of determination (r2) and non-linear Chi-square (χ2) test analyses which all confirm the suitability of Langmuir model to explain the adsorption isotherm data. Also, statistics predicted that the pseudo-second-order model is the optimum kinetic model among four applied kinetic models to closely describe the rate equation of the adsorption process. Thermodynamics viewed the adsorption as endothermic and feasible physical process. EDTA could release the sorbed Pb(II) ions from MCS@TiO2 with a recovery above 92% after three sorption-desorption cycles. The novel synthesized nanosorbent is evidenced to be an excellent solid phase extractor for Pb(II) ions from wastewaters.

  1. Highly selective and sensitive optical sensor for determination of Pb2+and Hg2+ ions based on the covalent immobilization of dithizone on agarose membrane

    NASA Astrophysics Data System (ADS)

    Zargoosh, Kiomars; Babadi, Fatemeh Farhadian

    2015-02-01

    A highly sensitive and selective optical membrane for determination of Hg2+ and Pb2+ was prepared by covalent immobilization of dithizone on agarose membrane. In addition to its high stability, reproducibility and relatively long lifetime, the proposed optical sensor revealed good selectivity for target ions over a large number of alkali, alkaline earth, transition, and heavy metal ions. The proposed optical membrane displays linear responses from 1.1 × 10-8 to 2.0 × 10-6 mol L-1 and 1.2 × 10-8 to 2.4 × 10-6 mol L-1 for Hg2+ and Pb2+, respectively. The limits of detection (LOD) were 2.0 × 10-9 mol L-1 and 4.0 × 10-9 mol L-1 for Hg2+ and Pb2, respectively. The prepared optical membrane was successfully applied to the determination of Hg2+ and Pb2+ in industrial wastes, spiked tap water and natural waters without any preconcentration step.

  2. Sputtered bismuth screen-printed electrode: a promising alternative to other bismuth modifications in the voltammetric determination of Cd(II) and Pb(II) ions in groundwater.

    PubMed

    Sosa, Velia; Serrano, Núria; Ariño, Cristina; Díaz-Cruz, José Manuel; Esteban, Miquel

    2014-02-01

    A commercially available sputtered bismuth screen-printed electrode (BispSPE) has been pioneeringly applied for the simultaneous determination of Cd(II) and Pb(II) ions in a certified groundwater sample by means of differential pulse anodic stripping voltammetry (DPASV) as an alternative to more conventional bismuth screen-printed carbon electrodes (BiSPCEs). BispSPEs can be used for a large set of measurements without any previous plating or activation. The obtained detection and quantification limits suggest that BispSPEs produce a better analytical performance as compared to In-situ BiSPCE for Pb(II) and Cd(II) determination, but also to Ex-situ BiSPCE for Cd(II) determination. The results confirm the applicability of these devices for the determination of low level concentrations of these metal ions in natural samples with very high reproducibility (0.7% and 2.5% for Pb(II) and Cd(II) respectively), and good trueness (0.3% and 2.4% for Pb(II) and Cd(II) respectively).

  3. Highly selective and sensitive optical sensor for determination of Pb2+ and Hg2+ ions based on the covalent immobilization of dithizone on agarose membrane.

    PubMed

    Zargoosh, Kiomars; Babadi, Fatemeh Farhadian

    2015-02-25

    A highly sensitive and selective optical membrane for determination of Hg(2+) and Pb(2+) was prepared by covalent immobilization of dithizone on agarose membrane. In addition to its high stability, reproducibility and relatively long lifetime, the proposed optical sensor revealed good selectivity for target ions over a large number of alkali, alkaline earth, transition, and heavy metal ions. The proposed optical membrane displays linear responses from 1.1×10(-8) to 2.0×10(-6) mol L(-1) and 1.2×10(-8) to 2.4×10(-6) mol L(-1) for Hg(2+) and Pb(2+), respectively. The limits of detection (LOD) were 2.0×10(-9) mol L(-1) and 4.0×10(-9) mol L(-1) for Hg(2+) and Pb(2), respectively. The prepared optical membrane was successfully applied to the determination of Hg(2+) and Pb(2+) in industrial wastes, spiked tap water and natural waters without any preconcentration step.

  4. Removal of Co(II), Cu(II) and Pb(II) ions by polymer based 2-hydroxyethyl methacrylate: thermodynamics and desorption studies

    PubMed Central

    2012-01-01

    Removal thermodynamics and desorption studies of some heavy metal ions such as Co(II), Cu(II) and Pb(II) by polymeric surfaces such as poly 2-hydroxyethyl methacrylate (PHEMA) and copolymer 2-hydroxyethyl methacrylate with monomer methyl methacrylate P(MMA-HEMA) as adsorbent surfaces from aqueous single solution were investigated with respect to the changes in pH of solution, adsorbent composition, contact time and temperature in the individual aqueous solution. The linear correlation coefficients of Langmuir and Freundlich isotherms were obtained and the results revealed that the Langmuir isotherm fitted the experiment results better than Freundlich isotherm. Using the Langmuir model equation, the monolayer removal capacity of PHEMA surface was found to be 0.7388, 0.8396 and 3.0367 mg/g for Co(II), Cu(ΙΙ) and Pb(II) ions and removal capacity of P(MMA-HEMA) was found to be 28.8442, 31.1526 and 31.4465 mg/g for Co(II), Cu(ΙΙ) and Pb(II) ions, respectively. Changes in the standard Gibbs free energy (ΔG0), standard enthalpy (ΔH0) and standard entropy (ΔS0) showed that the removals of mentioned ions onto PHEMA and P(MMA-HEMA) are spontaneous and exothermic at 293–323 K. The maximum desorption efficiency was 75.26% for Pb(II) using 0.100 M HNO3, 70.10% for Cu(II) using 0.100 M HCl, 59.20% for 0.100 M HCl 63.67% Co(II). PMID:23369255

  5. Removal of Co(II), Cu(II) and Pb(II) ions by polymer based 2-hydroxyethyl methacrylate: thermodynamics and desorption studies.

    PubMed

    Moradi, Omid; Mirza, Behrooz; Norouzi, Mehdi; Fakhri, Ali

    2012-12-22

    Removal thermodynamics and desorption studies of some heavy metal ions such as Co(II), Cu(II) and Pb(II) by polymeric surfaces such as poly 2-hydroxyethyl methacrylate (PHEMA) and copolymer 2-hydroxyethyl methacrylate with monomer methyl methacrylate P(MMA-HEMA) as adsorbent surfaces from aqueous single solution were investigated with respect to the changes in pH of solution, adsorbent composition, contact time and temperature in the individual aqueous solution. The linear correlation coefficients of Langmuir and Freundlich isotherms were obtained and the results revealed that the Langmuir isotherm fitted the experiment results better than Freundlich isotherm. Using the Langmuir model equation, the monolayer removal capacity of PHEMA surface was found to be 0.7388, 0.8396 and 3.0367 mg/g for Co(II), Cu(ΙΙ) and Pb(II) ions and removal capacity of P(MMA-HEMA) was found to be 28.8442, 31.1526 and 31.4465 mg/g for Co(II), Cu(ΙΙ) and Pb(II) ions, respectively. Changes in the standard Gibbs free energy (ΔG0), standard enthalpy (ΔH0) and standard entropy (ΔS0) showed that the removals of mentioned ions onto PHEMA and P(MMA-HEMA) are spontaneous and exothermic at 293-323 K. The maximum desorption efficiency was 75.26% for Pb(II) using 0.100 M HNO3, 70.10% for Cu(II) using 0.100 M HCl, 59.20% for 0.100 M HCl 63.67% Co(II).

  6. Post-annealing treatment for Cu-TiO2 nanotubes and their use in photocatalytic methyl orange degradation and Pb(II) heavy metal ions removal

    NASA Astrophysics Data System (ADS)

    Sreekantan, Srimala; Mohd Zaki, Syazwani; Lai, Chin Wei; Tzu, Teoh Wah

    2014-07-01

    TiO2 nanotubes were synthesized via electrochemical anodization of Ti foil at 60 V for 1 h in a bath with electrolytes composed of ethylene glycol containing 5 wt.% of NH4F and 1 vol.% of H2O2. The incorporation of optimum Cu2+ ions (1.30 at.%) into TiO2 nanotubes were prepared by using wet impregnation method to improve their photocatalytic methyl orange degradation and Pb(II) heavy metal removal. The small Cu2+ ions were successfully diffused into lattice of TiO2 nanotubes by conducting post-annealing treatment at 400 °C for 4 h in argon atmosphere after wet impregnation. In this manner, optimum Cu2+ ions played a crucial role in suppressing the recombination of charge carriers by forming inter-band states (mismatch of the band energies) within the lattice of Cu-TiO2. The experimental results showed that a maximum of 80% methyl orange removal and 97.3% Pb(II) heavy metal removal at pH 11 under UV irradiation for 5 h. Besides, it was noticed that photocatalytic Pb(II) heavy metal removal was strong dependence on pH of the solution because of the amphoteric character of Cu-TiO2 in an aqueous medium.

  7. Biochar prepared from castor oil cake at different temperatures: A voltammetric study applied for Pb(2+), Cd(2+) and Cu(2+) ions preconcentration.

    PubMed

    Kalinke, Cristiane; Mangrich, Antonio Sálvio; Marcolino-Junior, Luiz H; Bergamini, Márcio F

    2016-11-15

    Biochar is a carbonaceous material similar produced by pyrolysis of biomass under oxygen-limited conditions. Pyrolysis temperature is an important parameter that can alters biochar characteristics (e.g. surface area, pore size distribution and surface functional groups) and affects it efficacy for adsorption of several probes. In this work, biochar samples have been prepared from castor oil cake using different temperatures of pyrolysis (200-600°C). For the first time, a voltammetric procedure based on carbon paste modified electrode (CPME) was used to investigate the effect of temperature of pyrolysis on the adsorptive characteristics of biochar for Pb(II), Cd(II) and Cu(II) ions. Besides the electrochemical techniques, several characterizations have been performed to evaluate the physicochemical properties of biochar in function of the increase of the pyrolysis temperature. Results suggest that biochar pyrolized at 400°C (BC400) showed a better potential for ions adsorption. The CPME modified with BC400 showed better relative current signal with adsorption affinity: Pb(II)>Cd(II)>Cu(II). Kinetic studies revealed that the pseudo-second order model describes more accurately the adsorption process suggesting that the surface reactions control the adsorption rate. Values found for amount adsorbed were 15.94±0.09; 4.29±0.13 and 2.38±0.39μgg(-1) for Pb(II), Cd(II) and Cu(II) ions, respectively.

  8. Removal of Ni(II), Zn(II) and Pb(II) ions from single metal aqueous solution using rice husk-based activated carbon

    SciTech Connect

    Taha, Mohd F. Shaharun, Maizatul S.; Shuib, Anis Suhaila Borhan, Azry

    2014-10-24

    An attempt was made to investigate the potential of rice husk-based activated carbon as an alternative low-cost adsorbent for the removal of Ni(II), Zn(II) and Pb(II) ions from single aqueous solution. Rice husk-based activated carbon was prepared via treatment of rice husk with NaOH followed by the carbonization process at 400°C for 2 hours. Three samples, i.e. raw rice husk, rice husk treated with NaOH and rice husk-based activated carbon, were analyzed for their morphological characteristics using field-emission scanning electron microscope/energy dispersive X-ray (FESEM/EDX). These samples were also analyzed for their carbon, hydrogen, nitrogen, oxygen and silica contents using CHN elemental analyzer and FESEM/EDX. The porous properties of rice husk-based activated carbon were determined by Brunauer-Emmett-Teller (BET) surface area analyzer, and its surface area and pore volume were 255 m{sup 2}/g and 0.17 cm{sup 2}/g, respectively. The adsorption studies for the removal of Ni(II), Zn(II) and Pb(II) ions from single metal aqueous solution were carried out at a fixed initial concentration of metal ion (150 ppm) with variation amount of adsorbent (rice husk-based activated carbon) as a function of varied contact time at room temperature. The concentration of each metal ion was analyzed using atomic absorption spectrophotometer (AAS). The results obtained from adsorption studies indicate the potential of rice husk as an economically promising precursor for the preparation of activated carbon for removal of Ni(II), Zn(II) and Pb(II) ions from single aqueous solution. Isotherm and kinetic model analyses suggested that the experimental data of adsorption studies fitted well with Langmuir, Freundlich and second-order kinetic models.

  9. Removal of Ni(II), Zn(II) and Pb(II) ions from single metal aqueous solution using rice husk-based activated carbon

    NASA Astrophysics Data System (ADS)

    Taha, Mohd F.; Shuib, Anis Suhaila; Shaharun, Maizatul S.; Borhan, Azry

    2014-10-01

    An attempt was made to investigate the potential of rice husk-based activated carbon as an alternative low-cost adsorbent for the removal of Ni(II), Zn(II) and Pb(II) ions from single aqueous solution. Rice husk-based activated carbon was prepared via treatment of rice husk with NaOH followed by the carbonization process at 400°C for 2 hours. Three samples, i.e. raw rice husk, rice husk treated with NaOH and rice husk-based activated carbon, were analyzed for their morphological characteristics using field-emission scanning electron microscope/energy dispersive X-ray (FESEM/EDX). These samples were also analyzed for their carbon, hydrogen, nitrogen, oxygen and silica contents using CHN elemental analyzer and FESEM/EDX. The porous properties of rice husk-based activated carbon were determined by Brunauer-Emmett-Teller (BET) surface area analyzer, and its surface area and pore volume were 255 m2/g and 0.17 cm2/g, respectively. The adsorption studies for the removal of Ni(II), Zn(II) and Pb(II) ions from single metal aqueous solution were carried out at a fixed initial concentration of metal ion (150 ppm) with variation amount of adsorbent (rice husk-based activated carbon) as a function of varied contact time at room temperature. The concentration of each metal ion was analyzed using atomic absorption spectrophotometer (AAS). The results obtained from adsorption studies indicate the potential of rice husk as an economically promising precursor for the preparation of activated carbon for removal of Ni(II), Zn(II) and Pb(II) ions from single aqueous solution. Isotherm and kinetic model analyses suggested that the experimental data of adsorption studies fitted well with Langmuir, Freundlich and second-order kinetic models.

  10. Performance of packed bed column using Chara aculeolata biomass for removal of Pb and Cd ions from wastewater.

    PubMed

    Sooksawat, Najjapak; Meetam, Metha; Kruatrachue, Maleeya; Pokethitiyook, Prayad; Inthorn, Duangrat

    2017-02-22

    Biosorption of Pb and Cd from aqueous solution by biomass of Chara aculeolata was studied in a continuous packed bed column. C. aculeolata in the fixed bed column is capable of decreasing Pb and Cd concentrations from 10 mg/L to a value below the detection limit of 0.02 mg/L. Selective uptake of Pb and Cd in a binary solution resulted in Pb having much higher relative affinity than Cd. The experiments were conducted to study the effects of column design parameters, bed depth, and flow rate on the metal biosorption. Pb uptake capacity of C. aculeolata increased with increased bed depth and decreased flow rate, while Cd uptake capacity increased with increased bed depth but remained constant at any flow rate. The Thomas model was found in a suitable fitness with the experiment data for Pb and Cd (R(2) > 0.90). The efficiency of biosorbent regeneration achieved by 0.1 M HCl was very high, that was, 98% for Pb and 100% for Cd in the third reused cycle. It can be concluded that C. aculeolata is a good biosorbent for treating wastewater having low concentrations of Pb and Cd contamination.

  11. Optical and electrical characterizations of a single step ion beam milling mesa devices of chloride passivated PbS colloidal quantum dots based film

    NASA Astrophysics Data System (ADS)

    Hechster, Elad; Shapiro, Arthur; Lifshitz, Efrat; Sarusi, Gabby

    2016-07-01

    Colloidal Quantum Dots (CQDs) are of increasing interest, thanks to their quantum size effect that gives rise to their usage in various applications, such as biological tagging, solar cells and as the sensitizing layer of night vision devices. Here, we analyze the optical absorbance of chloride passivated PbS CQDs as well as revealing a correlation between their photoluminescence and sizes distribution, using theoretical models and experimental results from the literature. Next, we calculate the CQDs resistivity as a film. Although resistivity can be calculated from sheet resistance measurement using four point probes, such measurement is usually carried-out on the layer's surface that in most cases has dangling bonds and surface states, which might affect the charges flow and modify the resistivity. Therefore; our approach, which was applied in this work, is to extract the actual resistivity from measurements that are performed along the film's thickness (z-direction). For this intent, we fabricated gold capped PbS mesas devices using a single step Ion Beam Milling (IBM) process where we milled the gold and the PbS film continually, and then measured the vertical resistance. Knowing the mesas' dimensions, we calculate the resistivity. To the best of our knowledge, no previous work has extracted, vertically, the resistivity of chloride passivated PbS CQDs using the above method.

  12. Biosorption of Cu(II), Zn(II), Ni(II) and Pb(II) ions by cross-linked metal-imprinted chitosans with epichlorohydrin.

    PubMed

    Chen, Chia-Yun; Yang, Cheng-Yu; Chen, Arh-Hwang

    2011-03-01

    Cross-linked metal-imprinted chitosan microparticles were prepared from chitosan, using four metals (Cu(II), Zn(II), Ni(II), and Pb(II)) as templates, and epichlorohydrin as the cross-linker. The microparticles were characterized by Fourier transform infrared spectroscopy, solid state (13)C nuclear magnetic resonance spectroscopy, and energy-dispersive X-ray spectroscopy. They were used for comparative biosorption of Cu(II), Zn(II), Ni(II) and Pb(II) ions in an aqueous solution. The results showed that the sorption capacities of Cu(II), Zn(II), Ni(II), and Pb(II) on the templated microparticles increased from 25 to 74%, 13 to 46%, 41 to 57%, and 12 to 43%, respectively, as compared to the microparticles without metal ion templates. The dynamic study showed that the sorption process followed the second-order kinetic equation. Three sorption models, Langmuir, Freundlich, and Dubinin-Radushkevich, were applied to the equilibrium isotherm data. The result showed that the Langmuir isotherm equation best fitted for monolayer sorption processes. Furthermore, the microparticles can be regenerated and reused for the metal removal.

  13. Mechanism of Cu(II), Cd(II) and Pb(II) ions sorption from aqueous solutions by macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate)

    NASA Astrophysics Data System (ADS)

    Nastasović, Aleksandra B.; Ekmeščić, Bojana M.; Sandić, Zvjezdana P.; Ranđelović, Danijela V.; Mozetič, Miran; Vesel, Alenka; Onjia, Antonije E.

    2016-11-01

    The mechanism of Cu(II), Cd(II) and Pb(II) ions sorption from aqueous solutions by macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) (PGME) functionalized by reaction of the pendant epoxy groups with diethylene triamine (PGME-deta) was studied using X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) analysis. Atomic force microscopy (AFM) and scanning energy-dispersive X-ray spectroscopy (SEM-EDX) were used for the determination of surface morphology of the copolymer particles. The sorption behavior of heavy metals Cu(II), Cd(II) and Pb(II) ions sorption was investigated in batch static experiments under non-competitive conditions at room temperature (298 K). The obtained results were fitted to pseudo-first order, pseudo-second order and intraparticle diffusion kinetic model. The kinetics studies showed that Cu(II), Cd(II) and Pb(II) sorption obeys the pseudo-second-order model under all investigated operating conditions with evident influence of pore diffusion.

  14. Cowpea pod (Vigna unguiculata) biomass as a low-cost biosorbent for removal of Pb(II) ions from aqueous solution.

    PubMed

    Guyo, U; Moyo, M

    2017-01-01

    The use of cowpea pod (CPP) biomass for the removal of Pb(II) ions from aqueous solution was investigated. The effects of factors such as dosage concentration (0.2 to 1.6 g L(-1)), pH (2 to 8), contact time (5 to 120 min), metal ion concentrations (10 to 80 mg L(-1)) and temperature (20 to 50 °C) were examined through batch studies. The biosorption data conformed best to the Langmuir model at the three working temperatures (20, 30 and 40 °C) as revealed by the correlation coefficients (R (2)) which were greater than 0.940. The maximum sorption capacity of the CPP for Pb(II) was 32.96 mg g(-1) at 313 K. Furthermore, the kinetic data fitted well to the pseudo-second-order model as it had the lowest sum of square error (SSE) values and correlation coefficients close to unity (R (2) > 0.999). The thermodynamic parameters (ΔG°, ΔS° and ΔH°) showed that the biosorption process was spontaneous, feasible and endothermic. The results obtained in the present study indicated that cowpea pod biomass could be used for the effective removal of Pb(II) from aqueous solution.

  15. Determination of Pb2+ ions by a modified carbon paste electrode based on multi-walled carbon nanotubes (MWCNTs) and nanosilica.

    PubMed

    Ganjali, Mohammad Reza; Motakef-Kazami, Negar; Faridbod, Farnoush; Khoee, Sepideh; Norouzi, Parviz

    2010-01-15

    A novel carbon paste ion selective electrode for determination of trace amount of lead was prepared. Multi-walled carbon nanotubes (MWCNTs) and nanosilica were used for improvement of a lead carbon paste sensor response. MWCNTs have a good conductivity which helps the transduction of the signal in carbon paste electrode. The electrode composition of 20 wt% paraffin oil, 57% graphite powder, 15% ionophore (thiram), 5% MWCNTs, and 3% nanosilica showed the stable potential response to Pb(2+) ions with the Nernstian slope of 29.8 (+/-0.2)mV decade(-1) over a wide linear concentration range of 10(-7)-10(-2)mol L(-1). The electrode has fast response time, and long term stability (more than 2 months). The proposed electrode was used to determine the concentration of lead ions in waste water and black tea samples.

  16. Raman and Photoluminescence Spectroscopy of Nano-crystalline PbTiO3 Sensor Materials with Different Doping Ions

    NASA Technical Reports Server (NTRS)

    Katiyar, R. S.; Jinfang, Meng

    1998-01-01

    Raman spectra & photoluminescence studies in PbTiO3, have been carried out, as a function of particle size, temperature, pressure and dopants. There appears respectively a distinct temperature-induced soft mode phase transition in each sample whose Curie temperature can be determined from the mean-field theory. The detailed Curie temperature shift in the modified PbTiO3 ceramics by Ba, Sr, La and Zr, has been investigated as a function of particle size. Pressure-induced phase transitions display an obvious diffuse behavior. Room temperature photoluminescence for nanocrystalline Ba(1-x)Pb(x)TiO3 have been observed. These studies favor preparations of high efficiency PbTiO3 sensors.

  17. U-Th-Pb ion microprobe analysis of monazite from the Paleoproterozoic Karrat rare earth element (REE) deposit, western Greenland

    NASA Astrophysics Data System (ADS)

    Mott, A.; Grove, M.; Bird, D. K.

    2012-12-01

    The Karrat rare earth element (REE) deposit is located at 72°N on the Niaqornakavsak peninsula of Qeqertarssuq Island on the western coast of Greenland. Metasomatic alteration of an amphibolite host rock by carbonatite derived fluids resulted in REE mineralization in the Karrat Isfjord area. REE in the mineralization are primarily found in bastnasite, allanite, and monazite. In-situ analysis of monazite was conducted on samples obtained from three sites of mineralization: (1) the primary deposit at Niaqornakavsak consisting of a single distinct ~30m thick unit; (2) at Umiamako Nuna 7 km to the east of Niaqornakavsak where the majority of REE mineralization occurs within the first 20m of the surface; and (3) a 6m thick REE-rich vein 100m below the surface at Umiamako Nuna. Formation ages for monazite at Niaqornakavsak, Umiamako Nuna (surface), and Umiamako Nuna (vein) have been calculated using 207Pb/206Pb, 206Pb/238U, and 208Pb/232Th isotope ratios. Multiple isotope ratios were examined to determine the ideal method of monazite analysis based on the inherent issues of low U content of monazite, difficulties measuring 204Pb, common Pb corrections, and peak interferences resulting from high concentrations of REE. 208Pb/232Th analysis resulted in the best precision and smallest spread of values. Energy filtering was applied to 208Pb/232Th analyses in an effort to reduce interferences at several peaks. Although all three isotope ratio analyses result in a Paleoproterozoic age similar to the timing of convergence of the North Atlantic craton, Rae craton, and Aasiat domain as well as the emplacement of the Prøven Igneous Complex in Greenland (1.95-1.80Ga), the values range between 1.7-1.9Ga depending on the isotope ratio.

  18. Infrared study of the vibrational behavior of CrO 42- guest ions matrix-isolated in metal (II) sulfates (Me=Ca, Sr, Ba, Pb)

    NASA Astrophysics Data System (ADS)

    Stoilova, D.; Georgiev, M.; Marinova, D.

    2005-03-01

    Infrared spectra of matrix-isolated CrO 42- guest ions in host sulfate matrices - CaSO 4·2H 2O, SrSO 4, BaSO 4 and PbSO 4 are reported and discussed with respect to the Cr-O stretching and O-Cr-O bending modes. An adequate measure for the CrO 42- guest ion distortion is the site group splitting Δ νas and Δ νmax (the difference between the highest and the lowest wavenumbered components of the stretching and bending modes). When the smaller SO 42- ions are replaced by the larger CrO 42- ions the mean frequencies of the asymmetric stretching and bending modes ( ν and ν) as well as the frequencies of ν1 of the CrO 42- guest ions are shifted to higher wavenumbers as compared to those in the respective neat chromates due to the larger repulsion potential at the host lattice sites (smaller values of the unit-cell volumes of the neat sulfates than those of the neat chromates). The CrO 42- guest ions exhibit three bands corresponding to the ν3 modes as deduced from the site group analysis ( C2 site symmetry in CaSO 4·2H 2O and Cs site symmetry in SrSO 4, BaSO 4 and PbSO 4). However, the bending modes ν4 and ν2 of the CrO 42- guest ions in SrSO 4, BaSO 4 and PbSO 4 show an effectively higher local symmetry than the 'rigorous' crystallographic one (two bands for ν4 and one band for ν2 instead of a triplet and a doublet expected, respectively). Such different apparent site symmetries observed in various spectral regions may be attributed to the different influence of energetic and geometrical distortions of the polyatomic entities at particular site on various modes.

  19. Preparation of nanomaterials for the ultrasound-enhanced removal of Pb(2+) ions and malachite green dye: Chemometric optimization and modeling.

    PubMed

    Dil, Ebrahim Alipanahpour; Ghaedi, Mehrorang; Asfaram, Arash; Hajati, Shaaker; Mehrabi, Fatemeh; Goudarzi, Alireza

    2017-01-01

    Copper oxide nanoparticle-loaded activated carbon (CuO-NP-AC) was synthesized and characterized using different techniques such as FE-SEM, XRD and FT-IR. It was successfully applied for the ultrasound-assisted simultaneous removal of Pb(2+) ions and malachite green (MG) dye in binary system from aqueous solution. The effect of important parameters was modeled and optimized by artificial neural network (ANN) and response surface methodology (RSM). Maximum simultaneous removal percentages (>99.0%) were found at 25mgL(-1), 20mgL(-1), 0.02g, 5min and 6.0 corresponding to initial Pb(2+) concentration, initial MG concentration, CuO-NP-AC amount, ultrasonication time and pH, respectively. The precision of the equation obtained by RSM was confirmed by the analysis of variance and calculation of correlation coefficient relating the predicted and the experimental values of ultrasound-assisted simultaneous removal of the analytes. A good agreement between experimental and predicted values was observed. A feed-forward neural network with a topology optimized by response surface methodology was successfully applied for the prediction of ultrasound-assisted simultaneous removal of Pb(2+) ions and MG dye in binary system by CuO-NPs-AC. The number of hidden neurons, MSE, R(2), number of epochs and error histogram were chosen for ANN modeling. Then, Langmuir, Freundlich, Temkin and D-R isothermal models were applied for fitting the experimental data. It was found that the Langmuir model well describes the isotherm data with a maximum adsorption capacity of 98.328 and 87.719mgg(-1) for Pb(2+) and MG, respectively. Kinetic studies at optimum condition showed that maximum Pb(2+) and MG adsorption is achieved within 5min of the start of most experiments. The combination of pseudo-second-order rate equation and intraparticle diffusion model was applicable to explain the experimental data of ultrasound-assisted simultaneous removal of Pb(2+) and MG at optimum condition obtained from RSM.

  20. Determination of V, Cr, Cu, As, and Pb Ions in Water and Biological Samples by Combining ICP-MS with Online Preconcentration Using Impregnated Resin.

    PubMed

    Wang, Shuo; Dong, Xv; Dai, Bingye; Pan, Mingfei; He, Shaoyuan; Wang, Junping

    2015-01-01

    A method was developed for detection of V, Cr, Cu, As, and Pb in water and biological samples by combining online flow injection and preconcentration with inductively coupled plasma-MS. The 2-nitroso-1-naphthol-4-sulfonic acid (Nitroso-S) impregnated MCI GEL CHP20P resin was prepared as an enrichment sorbent. Some parameters affecting the efficiency of the preconcentration process were investigated in the experiment, including the pH and volume of sample solution, the flow rate for sample loading, the type and concentration of eluent, and the influence of co-existing ions. Under the optimal experimental conditions, the enrichment factor and LOD (3s) of chosen metal ions V, Cr, Cu, As, and Pb were in the ranges of 71-268 and 4.89-23.76 ng/L, respectively. Based on 11 repeated measurements of standard solutions (1.0 μg/L), the RSD of the ions ranged from 1.2 to 2.9%. The detection procedure was also performed for analyzing two certified reference materials, GBW 08607 (water) and GBW 10052 (green tea), as well as environmental water and biological samples. Good agreement with certified values and high recoveries have demonstrated improved accuracy of the proposed method.

  1. Pb isotopic variability in the modern-Pleistocene Indus River system measured by ion microprobe in detrital K-feldspar grains

    NASA Astrophysics Data System (ADS)

    Alizai, Anwar; Clift, Peter D.; Giosan, Liviu; VanLaningham, Sam; Hinton, Richard; Tabrez, Ali R.; Danish, Muhammad; Edinburgh Ion Microprobe Facility (EIMF)

    2011-09-01

    The western Himalaya, Karakoram and Tibet are known to be heterogeneous with regard to Pb isotope compositions in K-feldspars, which allows this system to be used as a sediment provenance tool. We used secondary ion mass spectrometry to measure the isotopic character of silt and sand-sized grains from the modern Sutlej and Chenab Rivers, together with Thar Desert sands, in order to constrain their origin. The rivers show a clear Himalayan provenance, contrasting with grains from the Indus Suture Zone, but with overlap to known Karakoram compositions. The desert dunes commonly show 207Pb/ 204Pb and 206Pb/ 204Pb values that are much higher than those seen in the rivers, most consistent with erosion from Nanga Parbat. This implies at least some origin from the trunk Indus, probably reworked by summer monsoon winds from the SW, a hypothesis supported by bulk Nd and U-Pb zircon dating. Further data collected from Holocene and Pleistocene sands shows that filled and abandoned channels on the western edge of the Thar Desert were sourced from Himalayan rivers before and at 6-8 ka, but that after that time the proportion of high isotopic ratio grains rose, indicating increased contribution from the Thar Desert dunes prior to ˜4.5 ka when flow ceased entirely. This may be linked to climatic drying, northward expansion of the Thar Desert, or changes in drainage style including regional capture, channel abandonment, or active local Thar tributaries. Our data further show a Himalayan river channel east of the present Indus, close to the delta, in the Nara River valley during the middle Holocene. While this cannot be distinguished from the Indus it is not heavily contaminated by reworking from the desert. The Pb system shows some use as a provenance tool, but is not effective at demonstrating whether these Nara sediments represent a Ghaggar-Hakra stream independent from the Indus. Our study highlights an important role for eolian reworking of floodplain sediments in arid rivers

  2. Biosorption of Cd(II) and Pb(II) ions by aqueous solutions of novel alkalophillic Streptomyces VITSVK5 spp. biomass

    NASA Astrophysics Data System (ADS)

    Saurav, Kumar; Kannabiran, Krishnan

    2011-03-01

    Discharge of heavy metals from metal processing industries is known to have adverse effects on the environment. Biosorption of heavy metals by metabolically inactive biomass of microbial organisms is an innovative and alternative technology for removal of these pollutants from aqueous solution. The search of marine actinobacteria with potential heavy metal biosorption ability resulted in the identification of a novel alkalophilic Streptomyces VITSVK5 species. The biosorption property of Streptomyces VITSVK5 spp. was investigated by absorbing heavy metals Cadmium (Cd) and Lead (Pb). Physiochemical characteristics and trace metal concentration analysis of the backwater showed the concentrations of different metals were lead 13±2.1 μg L-1, cadmium 3.1±0.3μg L-1, zinc 8.4±2.6μg L-1 and copper 0.3±0.1μg L-1, whereas mercury was well below the detection limit. The effect of pH and biomass dosage on removal efficiency of heavy metal ions was also investigated. The optimum pH for maximal biosorption was 4.0 for Cd (II) and 5.0 for Pb (II) with 41% and 84% biosorption respectively. The biosorbent dosage was optimized as 3 g L-1 for both the trace metals. Fourier transform infrared absorption spectrum results indicated the chemical interactions of hydrogen atoms in carboxyl (-COOH), hydroxyl (-CHOH) and amine (-NH2) groups of biomass with the metal ions. This could be mainly involved in the biosorption of Cd (II) and Pb (II) onto Streptomyces VITSVK5 spp. The results of our study revealed Streptomyces metabolites could be used to develop a biosorbent for adsorbing metal ions from aqueous environments.

  3. Glutathione Modified Gold Nanoparticles for Sensitive Colorimetric Detection of Pb(2+) Ions in Rainwater Polluted by Leaking Perovskite Solar Cells.

    PubMed

    Yu, Yaming; Hong, Ying; Gao, Peng; Nazeeruddin, Mohammad Khaja

    2016-12-20

    In the past few years, the advent of lead halide perovskite solar cells (PSCs) has revolutionized the prospects of the third- generation photovoltaics and the reported power conversion efficiency (PCE) has been updated to 22%. Nevertheless, two main challenges, including the poisonous content of Pb and the vexing instability toward water, still lie between the lab-based PSCs technology and large scale commercialization. With this background, we first evaluated Pb(2+) concentration from the rainwater samples polluted by three types of markets promising PSCs with inductively coupled plasma mass spectrometry measurements (ICP-MS) as a case study. The influence of possible conditions (pH value and exposure time) on the contents of Pb(2+) from the three PSCs was systematically compared and discussed. Furthermore, an optimized glutathione functionalized gold nanoparticles (GSH-AuNPs) colorimetric sensing assay was used to determine Pb(2+) leaking from PSCs for the first time. The Pb(2+)-induced aggregation of sensing assay could be monitored via both naked eye and UV-vis spectroscopy with a detection limit of 15 and 13 nM, which are all lower than the maximum level in drinking water permitted by WHO. The quantitative detection results were compared and in good agreement with that of ICP-MS. The results indicate that the content of Pb(2+) from three PSCs are in the same order of magnitude under various conditions. By the use of the prepared GSH-AuNPs self-assembled sensing assay, the fast and on-site detection of Pb(2+) from PSCs can be realized.

  4. Structure-based differences between the metal ion selectivity of two siderophores desferrioxamine B (DFB) and desferricoprogen (DFC): why DFC is much better Pb(II) sequestering agent than DFB?

    PubMed

    Farkas, Etelka; Bátka, Dávid; Kremper, Georgina; Pócsi, István

    2008-08-01

    Complexation of desferrioxamine B (DFB) and desferricoprogen (DFC) with Cd(II) and Pb(II) toxic ions as well as complexation of DFC with Ca(II) and Mg(II) essential metals have been investigated and the results have been compared to those with other metal ions. The two siderophores have moderate Cd(II)-binding ability, but both, and especially DFC, bind Pb(II) in high stability complexes. Surprisingly, significant differences exist between Pb(II)-complexation of DFB and DFC. Namely, a maximum of two hydroxamate groups of a DFB coordinate to a Pb(II) ion, the third one binds to another metal ion with high preference and the formation of a trinuclear species, [Pb(3)(DFBH)(2)](2+), is predominant even at 1:1 metal to ligand ratio in this system. On the contrary, DFC forms mononuclear complex, [ML], with much higher stability and the formation of the trinuclear complex is negligible compared to DFB. The 6s(2) electron-pair of Pb(II), which remains always inert during complexation with hydroxamic acids and also with DFB, seems to become active in the DFC complexes (due to the effect of the double bonds in beta-position to each hydroxamate), what, at least in some extent, allows the coordination of all the three hydroxamates of DFC to the same Pb(II) ion. This way of interaction (unique with a hydroxamate-based compound) results in significant stability increase, and, as a consequence, DFC is much better Pb(II)-chelating agent than DFB. Although DFC forms unexpectedly high stability complexes with Mg(II) compared to Ca(II), but even Mg(II), compared to many other metals, is not an efficient DFC-binding metal. Therefore, any sequestration of this biologically very important metal is not likely from a living organism by DFC.

  5. Characterization of Cu-Sn/Pb diffusion zones of microelectronic contacts by means of electron probe microanalysis and ion beam sputtering.

    PubMed

    Däbritz, S; Hauffe, W

    1995-10-01

    Physical parameters of material, such as strength and electrical conductivity, can be influenced considerably by the intermetallic compounds formed by diffusion in soldered microelectronic contacts between Cu and Sn/ Pb solders. Therefore, formation and growth of these contact zones were systematically investigated on model specimens in dependence on temperature, time and chemical tin-lead concentration of the solders by means of electron probe microanalytical investigations and characterized by phase growth constants. Compared with the conventional metallographic specimen preparation method, the ion beam etching of the contact surfaces proves to be an excellently suitable means for representing the microstructure after the cooling of the samples. Moreover, the three-dimensional grain structure and technologically caused defects in the contact can be shown by ion beam slope cutting. Effects as e.g. the dendritic growth and Kirkendall pores which increasingly occur at higher temperatures are successfully proved.

  6. Effects of heavy metal ions (Cu2+, Pb2+ and Cd2+) on DNA damage of the gills, hemocytes and hepatopancreas of marine crab, Charybdis japonica

    NASA Astrophysics Data System (ADS)

    Pan, Luqing; Liu, Na; Zhang, Hongxia; Wang, Jing; Miao, Jingjing

    2011-06-01

    There are rising concerns about the hazardous effects of heavy metals on the environment. In this study, comet assay and DNA alkaline unwinding assay were conducted on the tissues (gills, hepatopancreas, and hemocytes) of Charybdis japonica in order to illustrate genotoxicity of three heavy metal ions (Cu2+, Pb2+, and Cd2+) on the marine crabs C. japonica. The crabs were exposed to Cu2+ (10, 50, and 100 μg.L-1), Pb2+ (50, 250, and 500 μg L-1) and Cd2+ (5, 25, and 50 μg L-1), and the tissues were sampled at days 0.5, 1, 3, 6, 9, and 15. DNA alkaline unwinding assay was used for testing the DNA single strand break in gills and hepatopancreas and comet assay was employed for testing the DNA damage in hemocytes. The results showed that the DNA damage ( F-value) of gills in the crabs exposed to the three heavy metals was decreased gradually during the exposure periods and there was a dose-time response relationship in certain time, suggesting that the levels of DNA single strand break in all the experimental groups increased significantly compared to the controls. Changes of F-value in hepatopancreas of the crabs exposed to the three heavy metals were similar to those in gills except that the peak values were found in the 500 μg L-1 Pb2+ treatment group at day 3 and the 50 μg L-1 Cd2+ treatment group at day 9. The ranks of DNA damage in gills and hepatopancreas induced by the three heavy metal ions (50 μg L-1, day 15) were Cd2+ >Pb2+ >Cu2+ and Pb2+ >Cu2+ >Cd2+. The levels of DNA damage in gills were higher than those in hepatopancreas in the same experimental group. It can be concluded that indices of DNA damage can be used as the potential biomarkers of heavy metal pollution in marine environment.

  7. Simultaneous efficient adsorption of Pb2+ and MnO4- ions by MCM-41 functionalized with amine and nitrilotriacetic acid anhydride

    NASA Astrophysics Data System (ADS)

    Chen, Feiyun; Hong, Mingzhu; You, Weijie; Li, Chong; Yu, Yan

    2015-12-01

    A novel adsorbent NH2/MCM-41/NTAA, capable of simultaneous adsorption of cations and anions from aqueous solution, was prepared by immobilization of amine and nitrilotriacetic acid anhydride (NTAA) onto MCM-41. The structures and properties before and after surface modification were systematically investigated through X-ray diffraction (XRD), transmission electron microscope (TEM) and scanning electron microscope (SEM), nitrogen adsorption-desorption, and infrared spectroscopy (FTIR), thermogravimetry (TGA) and X-ray photoelectron spectroscopy (XPS). They together confirm that the amine and NTAA group were chemically bonded to the internal surface of the mesoporous. The NH2/MCM-41/NTAA were used to adsorb Pb2+ and MnO4- in an aqueous solution in a batch system, and the maximum adsorption efficiency was found to occur at pH 5.0 and 3.0, respectively. NH2/MCM-41/NTAA exhibit preferable removal of Pb2+ through electrostatic interactions and chelation, whereas it captures MnO4- by means of electrostatic interactions. The experimental data are fitted the Langmuir isotherm model reasonably well, with the maximum adsorption capacity of 147 mg/g for Pb2+ and of 156 mg/g for MnO4-. The adsorption rates of both Pb2+ and MnO4- are found to follow the pseudo-second order kinetics. Furthermore, the NH2/MCM-41/NTAA adsorbent performs good recyclability and reusability for 5 cycles use. This study indicates a potential applicability of NH2/MCM-41/NTAA as new absorbents for effective simultaneous adsorption of hazardous metal ions and anions from wastewater.

  8. Competitive adsorption of Pb2+ and Zn2+ ions from aqueous solutions by modified coal fly ash

    NASA Astrophysics Data System (ADS)

    Astuti, Widi; Martiani, Wulan; Any Ismawati Khair, N.

    2017-03-01

    Coal fly ash (CFA), which is a solid waste generated in large amounts worldwide, is mainly composed of some oxides having high crystallinity, including quartz (SiO2) and mullite (3Al2O3 2SiO2), and unburned carbon as a mesopore material that enables it to act as a dual site adsorbent. To decrease the crystallinity, CFA was modified by sodium hydroxide treatment. The modified fly ash (MFA) contains lower amount of Si and Al and has a higher specific surface area than the untreated fly ash (CFA). The objective of this study is to investigate the competitive adsorption of Pb2+ and Zn2+ from aqueous solutions by CFA and MFA. The effect of pH, contact time and initial concentration was investigated. Effective pH for Pb2+ and Zn2+ removal was 4. A greater percentage of Pb2+ and Zn2+ was removed with a decrease in the initial concentration of Pb2+ and Zn2+. Quasi-equilibrium reached in 240 min.

  9. A novel and highly sensitive nanocatalytic surface plasmon resonance-scattering analytical platform for detection of trace Pb ions

    NASA Astrophysics Data System (ADS)

    Ye, Lingling; Wen, Guiqing; Ouyang, Huixiang; Liu, Qingye; Liang, Aihui; Jiang, Zhiliang

    2016-04-01

    Gold nanoparticles (AuNP) have catalysis on the reaction of HAuCl4-H2O2. The produced AuNP have strong resonance Rayleigh scattering (RRS) effect and surface-enhanced resonance Raman scattering (SERS) effect when Victoria blue B (VBB) and rhodamine S (RhS) were used as probes. The increased RRS/SERS intensity respond linearly with the concentration of gold nanoparticles (AuNPB) which synthesized by NaBH4 over 0.038–76 ng/mL, 19–285 ng/mL, 3.8–456 ng/mL respectively. Four kinds of tested nanoparticles have catalysis on the HAuCl4-H2O2 particles reaction. Thus, a novel nanocatalysis surface plasmon resonance-scattering (SPR-S) analytical platform was developed for AuNP. The DNAzyme strand hybridized with the substrate strand to form double-stranded DNA (dsDNA) which couldn’t protect AuNPc to aggregate to AuNPc aggregations, having strong RRS effect. Upon addition of Pb2+, dsDNA could be cracked by Pb2+ to produce single-stranded DNA (ssDNA) that adsorbed on the AuNPc surface to form AuNPc-ssDNA conjugates. The conjugates have strong catalysis on HAuCl4-H2O2 reaction. With increased Pb2+ concentration, the concentration of AuNPc-ssDNA increased and lead to the catalytic activity stronger. The increased RRS intensity responds linearly with Pb2+ concentration over 16.7–666.7 nmol/L. The SERS intensity responded linearly with the concentration of Pb2+ over 50–500 nmol/L.

  10. A novel and highly sensitive nanocatalytic surface plasmon resonance-scattering analytical platform for detection of trace Pb ions

    PubMed Central

    Ye, Lingling; Wen, Guiqing; Ouyang, Huixiang; Liu, Qingye; Liang, Aihui; Jiang, Zhiliang

    2016-01-01

    Gold nanoparticles (AuNP) have catalysis on the reaction of HAuCl4-H2O2. The produced AuNP have strong resonance Rayleigh scattering (RRS) effect and surface-enhanced resonance Raman scattering (SERS) effect when Victoria blue B (VBB) and rhodamine S (RhS) were used as probes. The increased RRS/SERS intensity respond linearly with the concentration of gold nanoparticles (AuNPB) which synthesized by NaBH4 over 0.038–76 ng/mL, 19–285 ng/mL, 3.8–456 ng/mL respectively. Four kinds of tested nanoparticles have catalysis on the HAuCl4-H2O2 particles reaction. Thus, a novel nanocatalysis surface plasmon resonance-scattering (SPR-S) analytical platform was developed for AuNP. The DNAzyme strand hybridized with the substrate strand to form double-stranded DNA (dsDNA) which couldn’t protect AuNPc to aggregate to AuNPc aggregations, having strong RRS effect. Upon addition of Pb2+, dsDNA could be cracked by Pb2+ to produce single-stranded DNA (ssDNA) that adsorbed on the AuNPc surface to form AuNPc-ssDNA conjugates. The conjugates have strong catalysis on HAuCl4-H2O2 reaction. With increased Pb2+ concentration, the concentration of AuNPc-ssDNA increased and lead to the catalytic activity stronger. The increased RRS intensity responds linearly with Pb2+ concentration over 16.7–666.7 nmol/L. The SERS intensity responded linearly with the concentration of Pb2+ over 50–500 nmol/L. PMID:27071936

  11. Isospin character of low-lying pygmy dipole states in 208Pb via inelastic scattering of 17O ions.

    PubMed

    Crespi, F C L; Bracco, A; Nicolini, R; Mengoni, D; Pellegri, L; Lanza, E G; Leoni, S; Maj, A; Kmiecik, M; Avigo, R; Benzoni, G; Blasi, N; Boiano, C; Bottoni, S; Brambilla, S; Camera, F; Ceruti, S; Giaz, A; Million, B; Morales, A I; Vandone, V; Wieland, O; Bednarczyk, P; Ciemała, M; Grebosz, J; Krzysiek, M; Mazurek, K; Zieblinski, M; Bazzacco, D; Bellato, M; Birkenbach, B; Bortolato, D; Calore, E; Cederwall, B; Charles, L; de Angelis, G; Désesquelles, P; Eberth, J; Farnea, E; Gadea, A; Görgen, A; Gottardo, A; Isocrate, R; Jolie, J; Jungclaus, A; Karkour, N; Korten, W; Menegazzo, R; Michelagnoli, C; Molini, P; Napoli, D R; Pullia, A; Recchia, F; Reiter, P; Rosso, D; Sahin, E; Salsac, M D; Siebeck, B; Siem, S; Simpson, J; Söderström, P-A; Stezowski, O; Theisen, Ch; Ur, C; Valiente-Dobón, J J

    2014-07-04

    The properties of pygmy dipole states in 208Pb were investigated using the 208Pb(17O, 17O'γ) reaction at 340 MeV and measuring the γ decay with high resolution with the AGATA demonstrator array. Cross sections and angular distributions of the emitted γ rays and of the scattered particles were measured. The results are compared with (γ, γ') and (p, p') data. The data analysis with the distorted wave Born approximation approach gives a good description of the elastic scattering and of the inelastic excitation of the 2+ and 3- states. For the dipole transitions a form factor obtained by folding a microscopically calculated transition density was used for the first time. This has allowed us to extract the isoscalar component of the 1- excited states from 4 to 8 MeV.

  12. Isospin Character of Low-Lying Pygmy Dipole States in Pb208 via Inelastic Scattering of O17 Ions

    NASA Astrophysics Data System (ADS)

    Crespi, F. C. L.; Bracco, A.; Nicolini, R.; Mengoni, D.; Pellegri, L.; Lanza, E. G.; Leoni, S.; Maj, A.; Kmiecik, M.; Avigo, R.; Benzoni, G.; Blasi, N.; Boiano, C.; Bottoni, S.; Brambilla, S.; Camera, F.; Ceruti, S.; Giaz, A.; Million, B.; Morales, A. I.; Vandone, V.; Wieland, O.; Bednarczyk, P.; Ciemała, M.; Grebosz, J.; Krzysiek, M.; Mazurek, K.; Zieblinski, M.; Bazzacco, D.; Bellato, M.; Birkenbach, B.; Bortolato, D.; Calore, E.; Cederwall, B.; Charles, L.; de Angelis, G.; Désesquelles, P.; Eberth, J.; Farnea, E.; Gadea, A.; Görgen, A.; Gottardo, A.; Isocrate, R.; Jolie, J.; Jungclaus, A.; Karkour, N.; Korten, W.; Menegazzo, R.; Michelagnoli, C.; Molini, P.; Napoli, D. R.; Pullia, A.; Recchia, F.; Reiter, P.; Rosso, D.; Sahin, E.; Salsac, M. D.; Siebeck, B.; Siem, S.; Simpson, J.; Söderström, P.-A.; Stezowski, O.; Theisen, Ch.; Ur, C.; Valiente-Dobón, J. J.

    2014-07-01

    The properties of pygmy dipole states in Pb208 were investigated using the Pb208(O17, O17'γ) reaction at 340 MeV and measuring the γ decay with high resolution with the AGATA demonstrator array. Cross sections and angular distributions of the emitted γ rays and of the scattered particles were measured. The results are compared with (γ, γ') and (p, p') data. The data analysis with the distorted wave Born approximation approach gives a good description of the elastic scattering and of the inelastic excitation of the 2+ and 3- states. For the dipole transitions a form factor obtained by folding a microscopically calculated transition density was used for the first time. This has allowed us to extract the isoscalar component of the 1- excited states from 4 to 8 MeV.

  13. An effective nanostructured assembly for ion-selective electrodes. An ionophore covalently linked to carbon nanotubes for Pb2+ determination.

    PubMed

    Parra, Enrique J; Blondeau, Pascal; Crespo, Gastón A; Rius, F Xavier

    2011-02-28

    We report on the synthesis of a new hybrid material, i.e. benzo-18-crown-6 covalently linked to multi-wall carbon nanotubes, and its use in solid-state ion-selective electrodes both as a receptor and an ion-to-electron transducer. This new concept leads to potentiometric sensors with extremely high selectivity.

  14. Effect of tin ions on enhancing the intensity of narrow luminescence line at 311 nm of Gd3+ ions in Li2Osbnd PbOsbnd P2O5 glass system

    NASA Astrophysics Data System (ADS)

    Gandhi, Y.; Rajanikanth, P.; Sundara Rao, M.; Ravi Kumar, V.; Veeraiah, N.; Piasecki, M.

    2016-07-01

    This study is mainly focused on enriching the UVB 311 narrow emission band of Gd3+ ions in Li2Osbnd PbOsbnd P2O5 glasses doped with 1.0 mol% of Gd2O3 and mixed with different concentrations of SnO2 (0-7.0 mol%). The emission spectra SnO2 free glasses exhibited intense narrow UVB band at 311 nm due to 6P7/2 → 8S7/2 transition of Gd3+ ions when excited at 273 nm. The intensity of this band is found to be enhanced nearly four times when the glasses are mixed with 3.0 mol% of SnO2. The reasons for this enhancement have been explored in the light of energy transfer from Sn4+ to Gd3+ ions with the help of rate equations. The declustering of Gd3+ ions (that reduce cross relaxation losses) by tin ions is also found to the other reason for such enrichment. The 311 nm radiation is an efficient in the treatment of various skin diseases and currently it is one of the most desirable and commonly utilised UVB in the construction of phototherapy devices.

  15. Sorption of Pb2+ Ions from Aqueous Solutions on Organic Wastes (part i) / Sorpcja JONÓW Pb2+ Z ROZTWORÓW Wodnych NA Odpadach Organicznych (CZĘŚĆ I)

    NASA Astrophysics Data System (ADS)

    Bożęcka, Agnieszka; Sanak-Rydlewska, Stanisława

    2013-12-01

    This article presents the results of the research on the Pb2+ ions sorption from model aqueous solutions on walnut shells, plum stones and sunflower hulls. The effect of various factors, such as the concentration of natural sorbent, the pH, and the temperature was studied. The process of Pb2+ ions sorption on studied sorbents was described by the Langmuir model. The best sorption capacity has been revealed for sunflower hulls. The maximum sorption capacity for this material was 36.9 mg/g. W artykule przedstawiono wyniki badań, które dotyczyły usuwania jonów Pb2+ z modelowych roztworów wodnych za pomocą odpadów organicznych, takich jak: łuski słonecznika, łupiny orzecha włoskiego i pestki śliwek. Dla badanego zakresu stężeń od 6,0-110 mg/dm3 i warunków procesu największą wydajność sorpcji, będącą w zakresie (89,4-96,3)% uzyskano dla łusek słonecznika. W przypadku łupin orzecha włoskiego i pestek śliwek sorpcja jonów Pb2+ jest znacznie niższa a jej wydajność wynosi odpowiednio (60,8-78,7)% i (62,3-81,3)%. Zbadano także wpływ stężenia sorbentu, pH roztworu i temperatury na badany proces sorpcji. Dla wszystkich materiałów optymalne stężenie sorbentu wyniosło 5 g/dm3. Powyżej tej wartości nie obserwowano istotnych zmian w stopniu redukcji jonów Pb2+ (rys.2). We wszystkich przypadkach maksima sorpcji osiągnięto przy pH równym 4,0±0,1 co obrazuje rysunek 3. Obniżenie sorpcji, występujące przy pH poniżej i powyżej wartości 4,0 prawdopodobnie związane jest to z ładunkiem gromadzącym się na powierzchni sorbentu (elektrostatyczne odpychanie i przyciąganie badanych jonów). Wartość pH roztworu determinuje także formę oraz stężenie badanego jonu w roztworze. W roztworach silnie kwaśnych ołów występuje głównie w postaci kationów. Stopniowy wzrost pH prowadzi do tworzenia jonów kompleksowych i strącania go w postaci wodorotlenku. Wykazano również, że ze wzrostem temperatury w zakresie (293-313)K nast

  16. Multi-stimuli-responsive organometallic gels based on ferrocene-linked poly(aryl ether) dendrons: reversible redox switching and Pb2+-ion sensing.

    PubMed

    Lakshmi, Neelakandan Vidhya; Mandal, Dipendu; Ghosh, Sundargopal; Prasad, Edamana

    2014-07-14

    We describe the design, synthesis, and "stimuli-responsive" study of ferrocene-linked Fréchet-type [poly(aryl ether)]-dendron-based organometallic gels, in which the ferrocene moiety is attached to the dendron framework through an acyl hydrazone linkage. The low-molecular-weight gelators (LMWGs) form robust gels in both polar and non-polar solvent/solvent mixtures. The organometallic gels undergo stimuli-responsive behavior through 1) thermal, 2) chemical, and 3) electrochemical methods. Among them, conditions 1 and 3 lead to seamlessly reversible with repeated cycles of identical efficiency. Results indicate that the flexible nature of the poly(aryl ether) dendron framework plays a key role in retaining the reversible electrochemical behavior of ferrocene moiety in the LMWGs. Further, the organometallic gelators have exhibited unique selectivity towards Pb(2+) ions (detection limit ≈10(-8)  M). The metal ion-sensing results in a gel-sol phase transition associated with a color change visible to the naked eye. Most importantly, decomplexing the metal ion from the system leads to the regeneration of the initial gel morphology, indicating the restoring ability of the organometallic gel. The metal-ligand binding nature has been analyzed by using (1)H NMR spectroscopy, mass spectrometry, and DFT calculations.

  17. Spectroscopic features of copper ions in multi-component Na2Osbnd PbOsbnd Bi2O3sbnd SiO2 glass ceramics

    NASA Astrophysics Data System (ADS)

    Sambasiva Rao, M. V.; Suresh, S.; Narendrudu, T.; Suneel Kumar, A.; Chinna Ram, G.; Krishna Rao, D.

    2016-12-01

    Multi-component Na2Osbnd PbOsbnd Bi2O3sbnd SiO2 glasses were crystallised with different CuO contents (0-1 mol % in steps of 0.2) as nucleating agent. These glass ceramics were characterized by XRD, SEM and DTA techniques and indicated the samples contain well defined and randomly distributed grains of different crystalline phases. Spectroscopic studies viz., optical absorption, EPR, FTIR and Raman were also carried out on these glass ceramics. The broad absorption band observed in the wavelength region 550-1000 nm in these glass ceramics and is the characteristic of Cu2+ ions. Optical absorption and EPR studies suggest that Cu2+ ions enter into the lattice as tetragonally distorted octahedral symmetry for which the bonding parameters were evaluated. FTIR and Raman spectra give important information about the nature of various structural units in the glass ceramic matrix. The analysis of these spectroscopic investigations reveals that with increase in the concentration of nucleating agent CuO, copper ions exist in Cu2+ state they act as modifiers and increases the degree of disorder in the glass ceramic network.

  18. Modulation of the Structure and Properties of Uranyl Ion Coordination Polymers Derived from 1,3,5-Benzenetriacetate by Incorporation of Ag(I) or Pb(II).

    PubMed

    Thuéry, Pierre; Harrowfield, Jack

    2016-07-05

    Reaction of uranyl nitrate with 1,3,5-benzenetriacetic acid (H3BTA) in the presence of additional species, either organic bases or their conjugate acids or metal cations, has provided 12 new crystalline complexes, all but one obtained under solvo-hydrothermal conditions. The complexes [C(NH2)3][UO2(BTA)]·H2O (1) and [H2NMe2][UO2(BTA)] (2) crystallize as one- or two-dimensional (1D or 2D) assemblies, respectively, both with uranyl tris-chelation by carboxylate groups and hydrogen-bonded counterions but different ligand conformations. One of the bound carboxylate units is replaced by chelating 1,10-phenanthroline (phen) or 3,4,7,8-tetramethyl-1,10-phenanthroline (Me4phen) in the complexes [(UO2)3(BTA)2(phen)3]·4H2O (3) and [(UO2)3(BTA)2(Me4phen)3]·NMP·3H2O (4) (NMP = N-methyl-2-pyrrolidone), which are a 2D network with honeycomb topology and a 1D polymer, respectively. With silver(I) cations, [UO2Ag(BTA)] (5), a three-dimensional (3D) framework in which the ligand assumes various chelating/bridging coordination modes, and the aromatic ring is involved in Ag(I) bonding, is obtained. A series of seven heterometallic complexes results when lead(II) cations and N-chelating molecules are both present. The complexes [UO2Pb(BTA)(NO3)(bipy)] (6) and [UO2Pb2(BTA)2(bipy)2]·3H2O (7), where bipy is 2,2'-bipyridine, crystallize from the one solution, as 1D and 2D assemblies, respectively. The two 1D coordination polymers [UO2Pb(BTA)(HCOO)(phen)] (8 and 9), again obtained from the one synthesis, provide an example of coordination isomerism, with the formate anion bound either to lead(II) or to uranyl cations. Another 2D architecture is found in [(UO2)2Pb2(BTA)2(HBTA)(H2O)2(phen)2]·2H2O (10), which provides a possible example of a Pb-oxo(uranyl) "cation-cation" interaction. While [UO2Pb(BTA)(HCOO)0.5(NO3)0.5(Me2phen)] (11), where Me2phen is 5,6-dimethyl-1,10-phenanthroline, is a 1D assembly close to those in 6 and 8, [UO2Pb2(BTA)2(Me4phen)2] (12), obtained together with

  19. Study of the γ decay of high-lying states in 208Pb via inelastic scattering of 17O ions

    NASA Astrophysics Data System (ADS)

    Crespi, F. C. L.; Kmiecik, M.; Bracco, A.; Leoni, S.; Maj, A.; Benzoni, G.; Blasi, N.; Boiano, C.; Bottoni, S.; Brambilla, S.; Camera, F.; Ceruti, S.; Giaz, A.; Million, B.; Morales, A. I.; Nicolini, R.; Pellegri, L.; Riboldi, S.; Vandone, V.; Wieland, O.; Bednarczyk, P.; Ciemala, M.; Grebosz, J.; Krzysiek, M.; Mazurek, K.; Zieblinski, M.; Bazzacco, D.; Bellato, M.; Birkenbach, B.; Bortolato, D.; Calore, E.; De Angelis, G.; Farnea, E.; Gadea, A.; Görgen, A.; Gottardo, A.; Isocrate, R.; Lenzi, S.; Lunardi, S.; Mengoni, D.; Michelagnoli, C.; Molini, P.; Napoli, D. R.; Recchia, F.; Sahin, E.; Siebeck, B.; Siem, S.; Ur, C.; Valiente Dobon, J. J.

    2014-03-01

    A measurement of the high-lying states in 208Pb has been made using 17O beams at 20 MeV/u. The gamma decay following inelastic excitation was measured with the detector system AGATA Demonstrator based on segmented HPGe detectors, coupled to an array of large volume LaBr3:Ce scintillators and to an array of Si detectors. Preliminary results in comparison with (γ,γ') data, for states in the 5-8 MeV energy interval, are presented.

  20. Study of LiOH etching of polyethyleneterephtalate irradiated with 11.4 MeV/amu Pb ions by neutron depth profiling and alpha particle transmission

    NASA Astrophysics Data System (ADS)

    Vacík, J.; Červená, J.; Hnatowicz, V.; Fink, D.; Strauss, P.

    1998-12-01

    Polyethyleneterephtalate (PETP) foils, 23 μm thick, irradiated with 11.4 MeV/amu Pb ions to the fluence of about 1 × 107 cm-2 were etched in 5M LiOH solution at the temperature of 40°C for 30-570 min and the etching process kinetics was examined by combined alpha particle transmission (APT) and neutron depth profiling (NDP) techniques. The etching process was visualized from very initial stages up to the breakthrough and the appearance of first openings after about 300 min of etching. Several parameters characterizing the etching process were determined and the pore internal profile was determined by comparing the measured APT spectra with those simulated by Monte-Carlo method.

  1. A solid phase extraction procedure for the determination of Cd(II) and Pb(II) ions in food and water samples by flame atomic absorption spectrometry.

    PubMed

    Daşbaşı, Teslima; Saçmacı, Şerife; Ülgen, Ahmet; Kartal, Şenol

    2015-05-01

    A relatively rapid, accurate and precise solid phase extraction method is presented for the determination of cadmium(II) and lead(II) in various food and water samples. Quantitation is carried out by flame atomic absorption spectrometry (FAAS). The method is based on the retention of the trace metal ions on Dowex Marathon C, a strong acid cation exchange resin. Some important parameters affecting the analytical performance of the method such as pH, flow rate and volume of the sample solution; type, concentration, volume, flow rate of the eluent; and matrix effects on the retention of the metal ions were investigated. Common coexisting ions did not interfere on the separation and determination of the analytes. The detection limits (3 σb) for Cd(II) and Pb(II) were found as 0.13 and 0.18 μg L(-1), respectively, while the limit of quantification values (10 σb) were computed as 0.43 and 0.60 μg L(-1) for the same sequence of the analytes. The precision (as relative standard deviation was lower than 4% at 5 μg L(-1) Cd(II) and 10 μg L(-1) Pb(II) levels, and the preconcentration factor was found to be 250. The accuracy of the proposed procedure was verified by analysing the certified reference materials, SPS-WW2 Batch 108 wastewater level 2 and INCT-TL-1 tea leaves, with the satisfactory results. In addition, for the accuracy of the method the recovery studies (⩾ 95%) were carried out. The method was applied to the determination of the analytes in the various natural waters (lake water, tap water, waste water with boric acid, waste water with H2SO4) and food samples (pomegranate flower, organic pear, radish leaf, lamb meat, etc.), and good results were obtained. While the food samples almost do not contain cadmium, they have included lead at low levels of 0.13-1.12 μg g(-1).

  2. Study of Chemical Surface Structure of Natural Sorbents Used for Removing of Pb2+ Ions from Model Aqueous Solutions (part Ii)

    NASA Astrophysics Data System (ADS)

    Bożęcka, Agnieszka; Bożęcki, Piotr; Sanak-Rydlewska, Stanisława

    2014-03-01

    This article presents the results of the chemical structure research of organic sorbent surface such as walnut shells, plums stones and sunflower hulls with using such methods as infrared spectrometry (FTIR) and elemental analysis. Based on the IR spectra identification of functional groups present on the surface of studied materials has been done as well as determination of their effect on the sorption mechanism of Pb2+ ions from aqueous model solutions W artykule przedstawiono wyniki badań chemicznej struktury powierzchni sorbentów organicznych takich jak: łupiny orzecha włoskiego, pestki śliwek oraz łuski słonecznika z wykorzystaniem metody spektrometrii w podczerwieni (FTIR) oraz analizy elementarnej. W oparciu o uzyskane widma IR dokonano identyfikacji grup funkcyjnych obecnych na powierzchni tych materiałów i określono ich wpływ na mechanizm sorpcji jonów Pb2+ z modelowych roztworów wodnych. Analiza elementarna wykazała, że spośród badanych sorbentów, największą zawartość węgla (49,91%) i wodoru (5,93%) mają pestki śliwek. Najwięcej azotu (1,59%) zawierają łuszczyny słonecznika (tabela 1). Zawartość siarki we wszystkich badanych materiałach jest znikoma, dlatego nie udało się jej oznaczyć tą metodą. Obecność pozostałych pierwiastków może świadczyć o istnieniu zarówno alifatycznych jak i aromatycznych połączeń organicznych. Potwierdzeniem tego są również zarejestrowane widma IR (rysunki 1-3). W oparciu o uzyskane wyniki można przypuszczać także, iż udział procesu wymiany jonowej w sorpcji ołowiu z roztworów wodnych jest znaczący. Świadczą o tym m.in. intensywności pasm na widmach IR dla próbek badanych materiałów po ich kontakcie z roztworami jonów Pb2+ (rysunki 4-6).

  3. Vertically Free-Standing Ordered Pb(Zr0.52Ti0.48)O3 Nanocup Arrays by Template-Assisted Ion Beam Etching.

    PubMed

    Zhang, Xiaoyan; Tang, Dan; Huang, Kangrong; Hu, Die; Zhang, Fengyuan; Gao, Xingsen; Lu, Xubing; Zhou, Guofu; Zhang, Zhang; Liu, Junming

    2016-12-01

    In this report, vertically free-standing lead zirconate titanate Pb(Zr0.52Ti0.48)O3 (PZT) nanocup arrays with good ordering and high density (1.3 × 10(10) cm(-2)) were demonstrated. By a template-assisted ion beam etching (IBE) strategy, the PZT formed in the pore-through anodic aluminum oxide (AAO) membrane on the Pt/Si substrate was with a cup-like nanostructure. The mean diameter and height of the PZT nanocups (NCs) was about 80 and 100 nm, respectively, and the wall thickness of NCs was about 20 nm with a hole depth of about 80 nm. Uppermost, the nanocup structure with low aspect ratio realized vertically free-standing arrays when losing the mechanical support from templates, avoiding the collapse or bundling when compared to the typical nanotube arrays. X-ray diffraction (XRD) and Raman spectrum revealed that the as-prepared PZT NCs were in a perovskite phase. By the vertical piezoresponse force microscopy (VPFM) measurements, the vertically free-standing ordered ferroelectric PZT NCs showed well-defined ring-like piezoresponse phase and hysteresis loops, which indicated that the high-density PZT nanocup arrays could have potential applications in ultra-high non-volatile ferroelectric memories (NV-FRAM) or other nanoelectronic devices.

  4. Vertically Free-Standing Ordered Pb(Zr0.52Ti0.48)O3 Nanocup Arrays by Template-Assisted Ion Beam Etching

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyan; Tang, Dan; Huang, Kangrong; Hu, Die; Zhang, Fengyuan; Gao, Xingsen; Lu, Xubing; Zhou, Guofu; Zhang, Zhang; Liu, Junming

    2016-04-01

    In this report, vertically free-standing lead zirconate titanate Pb(Zr0.52Ti0.48)O3 (PZT) nanocup arrays with good ordering and high density (1.3 × 1010 cm-2) were demonstrated. By a template-assisted ion beam etching (IBE) strategy, the PZT formed in the pore-through anodic aluminum oxide (AAO) membrane on the Pt/Si substrate was with a cup-like nanostructure. The mean diameter and height of the PZT nanocups (NCs) was about 80 and 100 nm, respectively, and the wall thickness of NCs was about 20 nm with a hole depth of about 80 nm. Uppermost, the nanocup structure with low aspect ratio realized vertically free-standing arrays when losing the mechanical support from templates, avoiding the collapse or bundling when compared to the typical nanotube arrays. X-ray diffraction (XRD) and Raman spectrum revealed that the as-prepared PZT NCs were in a perovskite phase. By the vertical piezoresponse force microscopy (VPFM) measurements, the vertically free-standing ordered ferroelectric PZT NCs showed well-defined ring-like piezoresponse phase and hysteresis loops, which indicated that the high-density PZT nanocup arrays could have potential applications in ultra-high non-volatile ferroelectric memories (NV-FRAM) or other nanoelectronic devices.

  5. Comparative Study of Hydrogen- and Deuterium-Induced Degradation of Ferroelectric (Pb,La)(Zr,Ti)O3 Capacitors Using Time-of-Flight Secondary Ion Measurement.

    PubMed

    Takada, Yoko; Okamoto, Naoki; Saito, Takeyasu; Yoshimura, Takeshi; Fujimura, Norifumi; Higuchi, Koji; Kitajima, Akira; Shishido, Rie

    2016-10-01

    Ferroelectric (Pb,La)(Zr,Ti)O3 (PLZT) capacitors were fabricated with Pt, Al:ZnO (AZO), or Sn:In2O3 (ITO) top electrodes. Hydrogen- or deuterium-induced degradation was investigated for the three capacitors by annealing in a 3% H2/balance N2 or 3% D2/balance N2 ambient environment at 200 °C and 1 torr. The remnant polarization of all capacitors decreased after annealing in both H2 and D2 ambient after 45 min, and the remnant polarization of the Pt/PLZT/Pt capacitor significantly decreased after 45-min annealing compared with that of the AZO/PLZT/Pt and ITO/PLZT/Pt capacitors, even though the initial remnant polarization for the Pt/PLZT/Pt capacitor was larger. Time-of-flight secondary ion mass spectrometry showed slight differences in hydrogen content for the three different capacitors after H2 annealing. In contrast, the deuterium content of the Pt/PLZT/Pt and AZO/PLZT/Pt or ITO/PLZT/PT capacitors was significantly different after deuterium annealing. Deuterium depth profiles for the Pt/PLZT/Pt capacitor after annealing showed that deuterium conformally exists in the PLZT layer of the Pt/PLZT/Pt capacitor, and deuterium accumulation under the Pt bottom electrode was also observed. This result suggests that diffusion of deuterium in Pt was much higher than that in PLZT. AZO and ITO top electrodes could act as a hydrogen barrier layer for ferroelectric films.

  6. Simultaneous preconcentrations of Co(2+), Cr(6+), Hg(2+) and Pb(2+) ions by Bacillus altitudinis immobilized nanodiamond prior to their determinations in food samples by ICP-OES.

    PubMed

    Ozdemir, Sadin; Kilinc, Ersin; Celik, Kadir Serdar; Okumus, Veysi; Soylak, Mustafa

    2017-01-15

    A novel solid phase extraction method was developed for simultaneous preconcentration-separation of Co(2+), Cr(6+), Hg(2+) and Pb(2+) ions prior to their determinations in food samples by ICP-OES. Thermophilic Bacillus altitudinis immobilized nanodiamond was used as a new biosorbent. SEM and FT-IR analysis were studied to characterize the biosorbent. The optimum pH values of quantitative biosorption for Co(2+), Cr(6+), Hg(2+) and Pb(2+) were found to be 5.0, 6.0, 6.0 and 6.0, respectively. A flow rate of 3.0mLmin(-1) was selected as optimum for all metal ions. 5mL of 1mol/L HCl was used as eluent. Preconcentration factor was achieved as 80. LODs were calculated as 0.071, 0.023, 0.016 and 0.034ngmL(-1), respectively for Hg(2+), Co(2+), Cr(6+) and Pb(2+). The biosorption capacities were calculated for Co(2+), Cr(6+), Hg(2+) and Pb(2+) as 26.4, 30.4, 19.5, and 35.2mg/g, respectively. The developed method was successfully applied to food samples to determine analyte concentrations.

  7. Method for preparing Pb-. beta. ''-alumina ceramic

    DOEpatents

    Hellstrom, E.E.

    1984-08-30

    A process is disclosed for preparing impermeable, polycrystalline samples of Pb-..beta..''-alumina ceramic from Na-..beta..''-alumina ceramic by ion exchange. The process comprises two steps. The first step is a high-temperature vapor phase exchange of Na by K, followed by substitution of Pb for K by immersing the sample in a molten Pb salt bath. The result is a polycrystalline Pb-..beta..''-alumina ceramic that is substantially crack-free.

  8. Liquid-liquid extraction of metal ions, DFT and TD-DFT analysis of some 1,2,4-triazole Schiff Bases with high selectivity for Pb(II) and Fe(II)

    NASA Astrophysics Data System (ADS)

    Khoutoul, Mohamed; Lamsayah, Morad; Al-blewi, Fawzia F.; Rezki, Nadjet; Aouad, Mohamed Reda; Mouslim, Messali; Touzani, Rachid

    2016-06-01

    Liquid-liquid extraction of metal ions using some 1,2,4-triazole Schiff base derivatives as new extractants was studied. Fe2+, Zn2+, Cu2+, Co2+, Cd2+ and Pb2+ were extracted from the aqueous phase into the organic phase and the extractability for each metal ion was determined by atomic absorption. Interestingly, a competitive extraction was also investigated and then examined at different pH in order to explore the effect of the different substituent groups on metal extraction. Accordingly, high selectivity towards Fe2+ (90.1%) and Pb2+ (94.3%) provided respectively by the presence of electron withdrawing group and electron donor group was attained. In addition, geometry optimizations of the ground and excited-states of the ligands in order to get better insight into the geometry and the electronic structure were carried out by means of DFT and TD-DFT calculations.

  9. Analysis of HgI{sub 2} and PbI{sub 2} crystals and detectors by particle-induced x-ray emission (PIXE) and ion backscattering spectroscopy (IBS)

    SciTech Connect

    Bench, G.S.; Heikkinen, D.W.; Antolak, A.J.; Morse, D.H.; Pontau, A.E.; James, R.B.; David, D.C.; Burger, A.; Van Den Berg, L.

    1993-03-01

    The Ion Micro-Analysis Group (IMAG) in Livermore conducts quantitative trace elemental analysis with PIXE and depth profiling with IBS using an MeV ion microbeam. The system has the capability to produce two-dimensional trace element and IBS images. PIXE analyses have been conducted on HgI{sub 2} and PbI{sub 2} crystals and detector materials in order to identify and quantify near surface trace contaminants. IBS measurements have been conducted to investigate elemental depth distributions in various materials. The results of measurements on several different samples are reported and a discussion of factors affecting quantitative in vacuo microanalysis of these materials is presented.

  10. Open heavy-flavour measurements in p-Pb and Pb-Pb collisions with ALICE at the LHC

    NASA Astrophysics Data System (ADS)

    Terrevoli, Cristina; ALICE Collaboration

    2017-01-01

    Heavy flavours are sensitive probes of the hot and dense QCD medium formed in high-energy heavy-ion collisions. Measurements of their production in p-Pb collisions are crucial for the interpretation of heavy-ion results, by investigating the cold nuclear matter effects. The open heavy-flavour production studied with ALICE at the LHC in p-Pb collisions at and in Pb-Pb collisions at are presented. Emphasis is given to the recent measurements of D0 production cross section down to p T=0, the nuclear modification factor of heavy-flavour hadron decay electrons in p-Pb collisions, the nuclear modification factor of D-meson, and heavy-flavour hadron decay electron elliptic flow in Pb-Pb collisions, as a function of centrality.

  11. Alleviation of Cu and Pb rhizotoxicities in cowpea (Vigna unguiculata) as related to ion activities at root-cell plasma membrane surface.

    PubMed

    Kopittke, Peter M; Kinraide, Thomas B; Wang, Peng; Blamey, F Pax C; Reichman, Suzie M; Menzies, Neal W

    2011-06-01

    Cations, such as Ca and Mg, are generally thought to alleviate toxicities of trace metals through site-specific competition (as incorporated in the biotic ligand model, BLM). Short-term experiments were conducted with cowpea (Vigna unguiculata L. Walp.) seedlings in simple nutrient solutions to examine the alleviation of Cu and Pb toxicities by Al, Ca, H, Mg, and Na. For Cu, the cations depolarized the plasma membrane (PM) and reduced the negativity of ψ(0)(o) (electrical potential at the outer surface of the PM) and thereby decreased {Cu(2+)}(0)(o) (activity of Cu(2+) at the outer surface of the PM). For Pb, root elongation was generally better correlated to the activity of Pb(2+) in the bulk solution than to {Pb(2+)}(0)(o). However, we propose that the addition of cations resulted in a decrease in {Pb(2+)}(0)(o) but a simultaneous increase in the rate of Pb uptake (due to an increase in the negativity of E(m,surf), the difference in potential between the inner and outer surfaces of the PM) thus offsetting the decrease in {Pb(2+)}(0)(o). In addition, Ca was found to alleviate Pb toxicity through a specific effect. Although our data do not preclude site-specific competition (as incorporated in the BLM), we suggest that electrostatic effects have an important role.

  12. Coolwater culmination: Sensitive high-resolution ion microprobe (SHRIMP) U-Pb and isotopic evidence for continental delamination in the Syringa Embayment, Salmon River suture, Idaho

    USGS Publications Warehouse

    Lund, K.; Aleinikoff, J.N.; Yacob, E.Y.; Unruh, D.M.; Fanning, C.M.

    2008-01-01

    During dextral oblique translation along Laurentia in western Idaho, the Blue Mountains superterrane underwent clockwise rotation and impinged into the Syringa embayment at the northern end of the Salmon River suture. Along the suture, the superterrane is juxtaposed directly against western Laurentia, making this central Cordilleran accretionary-margin segment unusually attenuated. In the embayment, limited orthogonal contraction produced a crustal wedge of oceanic rocks that delaminated Laurentian crust. The wedge is exposed through Laurentian crust in the Coolwater culmination as documented by mapping and by sensitive high-resolution ion microprobe U-Pb, Sri, and ??Nd data for gneisses that lie inboard of the suture. The predominant country rock is Mesoproterozoic paragneiss overlying Laurentian basement. An overlying Neoproterozoic (or younger) paragneiss belt in the Syringa embayment establishes the form of the Cordilleran miogeocline and that the embayment is a relict of Rodinia rifting. An underlying Cretaceous paragneiss was derived from arc terranes and suture-zone orogenic welt but also from Laurentia. The Cretaceous paragneiss and an 86-Ma orthogneiss that intruded it formed the wedge of oceanic rocks that were inserted into the Laurentian margin between 98 and 73 Ma, splitting supracrustal Laurentian rocks from their basement. Crustal thickening, melting and intrusion within the wedge, and folding to form the Coolwater culmination continued until 61 Ma. The embayment formed a restraining bend at the end of the dextral transpressional suture. Clockwise rotation of the impinging superterrane and overthrusting of Laurentia that produced the crustal wedge in the Coolwater culmination are predicted by oblique collision into the Syringa embayment. Copyright 2008 by the American Geophysical Union.

  13. Fast self-diffusion of ions in CH 3 NH 3 PbI 3 : the interstiticaly mechanism versus vacancy-assisted mechanism

    SciTech Connect

    Yang, Ji-Hui; Yin, Wan-Jian; Park, Ji-Sang; Wei, Su-Huai

    2016-01-01

    The stability of organic-inorganic halide perovskites is a major challenge for their applications and has been extensively studied. Among the possible underlying reasons, ion self-diffusion has been inferred to play important roles. While theoretical studies congruously support that iodine is more mobile, experimental studies only observe the direct diffusion of the MA ion and possible diffusion of iodine. The discrepancy may result from the incomplete understanding of ion diffusion mechanisms. With the help of first-principles calculations, we studied ion diffusion in CH3NH3PbI3 (MAPbI3) through not only the vacancy-assisted mechanisms presumed in previous theoretical studies, but also the neglected interstiticaly mechanisms. We found that compared to the diffusion through the vacancy-assisted mechanism, MA ion diffusion through the interstiticaly mechanism has a much smaller barrier which could explain experimental observations. For iodine diffusion, both mechanisms can yield relatively small barriers. Depending on the growth conditions, defect densities of vacancies and interstitials can vary and so do the diffusion species as well as diffusion mechanisms. Our work thus supports that both MA and iodine ion diffusion could contribute to the performance instability of MAPbI3. While being congruous with experimental results, our work fills the research gap by providing a full understanding of ion diffusion in halide perovskites.

  14. PbLi2Ti6O14: A novel high-rate long-life anode material for rechargeable lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Peng; Qian, Shangshu; Yu, Haoxiang; Yan, Lei; Lin, Xiaoting; Yang, Ke; Long, Nengbing; Shui, Miao; Shu, Jie

    2016-10-01

    As a novel anode material, PbLi2Ti6O14 is prepared by a traditional solid state method at a calcination temperature of 900 °C. Structural analysis and electrochemical tests prove that PbLi2Ti6O14 possesses a good crystallinity and superior performance. PbLi2Ti6O14, composed of particles with 400 nm in length and 300 nm in width, exhibits an initial charge capacity of 155.1 mAh g-1 at 100 mA g-1 and maintains at 147.9 mAh g-1 after 100 cycles, with capacity retention as high as 95.4%. Especially, the reversible capacity of PbLi2Ti6O14 can stabilize at 101.6 mAh g-1 after 1000 cycles at a high current density of 1000 mA g-1, with capacity retention of 87.5%. Besides, the lithium storage behavior in PbLi2Ti6O14 is also studied by various in-situ and ex-situ methods. It is found that the lithiation/delithiation process in PbLi2Ti6O14 is a highly reversible reaction. All these results demonstrate that PbLi2Ti6O14 may be an impressive anode material in the near future.

  15. A time course assessment of changes in reactive oxygen species generation and antioxidant defense in hydroponically grown wheat in response to lead ions (Pb2+).

    PubMed

    Kaur, Gurpreet; Singh, Harminder Pal; Batish, Daizy Rani; Kohli, Ravinder Kumar

    2012-10-01

    We examined the effect of Pb(2+) (8 and 40 mg l(-1)) on reactive oxygen species generation and alterations in antioxidant enzymes in hydroponically grown wheat at 24, 72, and 120 h after exposure. Pb(2+) toxicity was more pronounced on root growth, and it correlated with the greater Pb accumulation in roots. Pb exposure (40 mg l(-1)) enhanced superoxide anion, H(2)O(2), and MDA content in wheat roots by 1.9- to 2.2-folds, 56-255%, and 41-90%, respectively, over the control. Pb-induced loss of membrane integrity was confirmed by the enhanced electrolyte leakage and in vivo histochemical localization. Activities of scavenging enzymes, superoxide dismutases and catalases, enhanced in Pb-treated wheat roots by 1.4- to 5.7-folds over that in the control. In contrast, the activities of ascorbate and guaiacol peroxidases and glutathione reductases decreased significantly, suggesting their non-involvement in detoxification process. The study concludes that Pb(2+)-induced oxidative damage in wheat roots involve greater H(2)O(2) accumulation and the deactivation of the related scavenging enzymes.

  16. [Influence of inorganic ions and humic acid on the removal of Pb(II) and Hg(II) in water by zero-valent iron].

    PubMed

    Shi, Qiu-Ling; Zhou, Xin; Zhang, Jin-Zhong; Qiu, Xin-Kai

    2014-08-01

    The effects of Ca2+, Cl- and humic acid (HA) on the removal rates of Pb(II) and Hg(II) in water by zero-valent (ZVI) and the kinetic characteristics were studied, and the removal mechanism of Pb(II) and Hg(II) by ZVI were preliminarily investigated using X-ray diffraction (XRD). The results indicated that the removal mechanism of Pb(II) might mainly be attributed to the adsorption and co-precipitation of ZVI, while that of Hg(II) might mainly be attributed to the oxidation-reduction of ZVI. With the increase of Ca2+ concentration, the removal rates of Hg(II) and Pb(II) showed the trends of gradual increase and slight decrease, respectively. The Hg(II) removal increased with increasing Cl- concentration, whereas no obvious increase in Pb(II) removal was observed. The removal rates of Hg(II) and Pb(II) showed the trends of slow increase and slow decrease with increasing HA concentration, respectively. When Ca2+, Cl- and HA coexisted, the removal rates of Hg(II) and Pb(II) reached 99.71% and 97.95%, respectively. The removal processes of Pb(II) and Hg(II) could be described by pseudo first-order reaction kinetic equations when Ca2+, Cl- and HA existed alone and in combination. The removal rate constant of Pb(II) was the maxinum (0.024 0 min(-1)) when 5 mg x L(-1) HA existed alone, whereas that of Hg(II) was the maximum (0.0169 min(-1)) when 0.80 mmol x L(-1) Ca2+ existed alone.

  17. NA49 Results on Single Particle and Correlation Measurements in Central PB+PB Collisions

    SciTech Connect

    Wang, F.

    1998-12-01

    Single-particle spectra and two-particle correlation functions measured by the NA49 collaboration in central Pb+Pb collisions at 158 GeV/nucleon are presented. These measurements are used to study the kinetic and chemical freeze-out conditions in heavy ion collisions. We conclude that large baryon stopping, high baryon density and strong transverse radial flow are achieved in central Pb+Pb collisions at the SPS.

  18. Highly Emissive Divalent-Ion-Doped Colloidal CsPb1-xMxBr3 Perovskite Nanocrystals through Cation Exchange.

    PubMed

    van der Stam, Ward; Geuchies, Jaco J; Altantzis, Thomas; van den Bos, Karel H W; Meeldijk, Johannes D; Van Aert, Sandra; Bals, Sara; Vanmaekelbergh, Daniel; de Mello Donega, Celso

    2017-03-22

    Colloidal CsPbX3 (X = Br, Cl, and I) perovskite nanocrystals (NCs) have emerged as promising phosphors and solar cell materials due to their remarkable optoelectronic properties. These properties can be tailored by not only controlling the size and shape of the NCs but also postsynthetic composition tuning through topotactic anion exchange. In contrast, property control by cation exchange is still underdeveloped for colloidal CsPbX3 NCs. Here, we present a method that allows partial cation exchange in colloidal CsPbBr3 NCs, whereby Pb(2+) is exchanged for several isovalent cations, resulting in doped CsPb1-xMxBr3 NCs (M= Sn(2+), Cd(2+), and Zn(2+); 0 < x ≤ 0.1), with preservation of the original NC shape. The size of the parent NCs is also preserved in the product NCs, apart from a small (few %) contraction of the unit cells upon incorporation of the guest cations. The partial Pb(2+) for M(2+) exchange leads to a blue-shift of the optical spectra, while maintaining the high photoluminescence quantum yields (>50%), sharp absorption features, and narrow emission of the parent CsPbBr3 NCs. The blue-shift in the optical spectra is attributed to the lattice contraction that accompanies the Pb(2+) for M(2+) cation exchange and is observed to scale linearly with the lattice contraction. This work opens up new possibilities to engineer the properties of halide perovskite NCs, which to date are demonstrated to be the only known system where cation and anion exchange reactions can be sequentially combined while preserving the original NC shape, resulting in compositionally diverse perovskite NCs.

  19. Highly Emissive Divalent-Ion-Doped Colloidal CsPb1–xMxBr3 Perovskite Nanocrystals through Cation Exchange

    PubMed Central

    2017-01-01

    Colloidal CsPbX3 (X = Br, Cl, and I) perovskite nanocrystals (NCs) have emerged as promising phosphors and solar cell materials due to their remarkable optoelectronic properties. These properties can be tailored by not only controlling the size and shape of the NCs but also postsynthetic composition tuning through topotactic anion exchange. In contrast, property control by cation exchange is still underdeveloped for colloidal CsPbX3 NCs. Here, we present a method that allows partial cation exchange in colloidal CsPbBr3 NCs, whereby Pb2+ is exchanged for several isovalent cations, resulting in doped CsPb1–xMxBr3 NCs (M= Sn2+, Cd2+, and Zn2+; 0 < x ≤ 0.1), with preservation of the original NC shape. The size of the parent NCs is also preserved in the product NCs, apart from a small (few %) contraction of the unit cells upon incorporation of the guest cations. The partial Pb2+ for M2+ exchange leads to a blue-shift of the optical spectra, while maintaining the high photoluminescence quantum yields (>50%), sharp absorption features, and narrow emission of the parent CsPbBr3 NCs. The blue-shift in the optical spectra is attributed to the lattice contraction that accompanies the Pb2+ for M2+ cation exchange and is observed to scale linearly with the lattice contraction. This work opens up new possibilities to engineer the properties of halide perovskite NCs, which to date are demonstrated to be the only known system where cation and anion exchange reactions can be sequentially combined while preserving the original NC shape, resulting in compositionally diverse perovskite NCs. PMID:28260380

  20. The synthesization of Fe3O4 magnetic nanoparticles based on natural iron sand by co-precipitation method for the used of the adsorption of Cu and Pb ions

    NASA Astrophysics Data System (ADS)

    Setiadi, E. A.; Sebayang, P.; Ginting, M.; Sari, A. Y.; Kurniawan, C.; Saragih, C. S.; Simamora, P.

    2016-11-01

    Magnetic nanoparticles of Fe3O4 (magnetite) have been synthesized from natural sand iron by co-precipitation method. The nanoparticles were synthesized using HCl as solvent and NH3 as co-precipitate. The nanoparticles synthesized at 70°C in two different treatments. Sample without Polyethylene Glycol (PEG) 6000 noted by A and sample with PEG 6000 noted by B symbol. The measurement that have been done for both samples were XRD (X-ray diffraction), FTIR (Fourier Transform Infrared) Spectrometry, SEM (Scanning electron microscopy), VSM (Vibrating sample magnetometer) and SAA (Surface area analyzer). The results showed that both samples were having Fe3O4 phases. Particle size, coercivity and magnetic saturation of B samples were smaller than A samples. But the surface area of B sample was larger than A sample. Both samples were then used to adsorb Cu and Pb ions using shaker method. Adsorption analysis from Atomic Adsorption Spectroscopy (AAS) showed that B was more effectivein adsorbing metal ions than A. The adsorption value of Cu and Pb ions were 79 and 91% respectively.

  1. Adsorption of Pb(II) ion from aqueous solution onto Chitosan/silica/polyethylene glycol (Ch/Si/P) composites membrane

    NASA Astrophysics Data System (ADS)

    Mahatmanti, F. W.; Rengga, W. D. P.; Kusumastuti, E.; Nuryono

    2017-02-01

    In this research, chitosan/silica/polyethylene glycol (Ch/Si/P) composites membrane was studied for selective adsorbent of Pb(II) from aqueous solution. This study started by preparation of Ch/Si/P composites membrane. The structure and surface morphology of Ch/Si/P composites membrane was characterized by X-ray diffraction (XRD), Fourier Transform Infra Red (FTIR) spectroscopy, and Scanning Electron Microscopy (SEM). Batch adsorption experiments were conducted with various contact time and Pb(II) concentrations to evaluate the adsorption kinetics and thermodynamics. Results show that adsorption fitted to Langmuir model and followed a kinetic model of pseudo-second-order. The adsorption capacity of Pb(II) onto the Ch/Si/P composites membrane is 0.16 mmol/g. The relative selective factor (αf) value of Pb(II)/Rhodamine B is 2.38. This means that Pb(II) can be determined even in the presence of Rhodamine B interference.

  2. Rapid adsorption of toxic Pb(II) ions from aqueous solution using multiwall carbon nanotubes synthesized by microwave chemical vapor deposition technique.

    PubMed

    Mubarak, Nabisab Mujawar; Sahu, Jaya Narayan; Abdullah, Ezzat Chan; Jayakumar, Natesan Subramanian

    2016-07-01

    Multiwall carbon nanotubes (MWCNTs) were synthesized using a tubular microwave chemical vapor deposition technique, using acetylene and hydrogen as the precursor gases and ferrocene as catalyst. The novel MWCNT samples were tested for their performance in terms of Pb(II) binding. The synthesized MWCNT samples were characterized using Fourier Transform Infrared (FT-IR), Brunauer, Emmett and Teller (BET), Field Emission Scanning Electron Microscopy (FESEM) analysis, and the adsorption of Pb(II) was studied as a function of pH, initial Pb(II) concentration, MWCNT dosage, agitation speed, and adsorption time, and process parameters were optimized. The adsorption data followed both Freundlich and Langmuir isotherms. On the basis of the Langmuir model, Qmax was calculated to be 104.2mg/g for the microwave-synthesized MWCNTs. In order to investigate the dynamic behavior of MWCNTs as an adsorbent, the kinetic data were modeled using pseudo first-order and pseudo second-order equations. Different thermodynamic parameters, viz., ∆H(0), ∆S(0) and ∆G(0) were evaluated and it was found that the adsorption was feasible, spontaneous and endothermic in nature. The statistical analysis revealed that the optimum conditions for the highest removal (99.9%) of Pb(II) are at pH5, MWCNT dosage 0.1g, agitation speed 160r/min and time of 22.5min with the initial concentration of 10mg/L. Our results proved that microwave-synthesized MWCNTs can be used as an effective Pb(II) adsorbent due to their high adsorption capacity as well as the short adsorption time needed to achieve equilibrium.

  3. Highly efficient simultaneous ultrasonic-assisted adsorption of Pb(II), Cd(II), Ni(II) and Cu (II) ions from aqueous solutions by graphene oxide modified with 2,2'-dipyridylamine: Central composite design optimization.

    PubMed

    Zare-Dorabei, Rouholah; Ferdowsi, Somayeh Moazen; Barzin, Ahmad; Tadjarodi, Azadeh

    2016-09-01

    In present work, a graphene oxide chemically modified with 2,2'-dipyridylamine (GO-DPA), was synthesized by simple, fast and low-cost process for the simultaneous adsorption of four toxic heavy metals, Pb(II), Cd(II), Ni(II) and Cu(II), from aqueous solutions. The synthesized adsorbent was characterized by FT-IR, XRD, XPS, SEM and AFM measurements. The effects of variables such as pH solution, initial ion concentrations, adsorbent dosage and sonicating time were investigated on adsorption efficiency by rotatable central composite design. The optimum conditions, specified as 8mg of adsorbent, 20mgL(-1) of each ion at pH 5 and short time of 4min led to the achievement of a high adsorption capacities. Ultrasonic power had important role in shortening the adsorption time of ions by enhancing the dispersion of adsorbent in solution. The adsorption kinetic studies and equilibrium isotherms for evaluating the mechanism of adsorption process showed a good fit to the pseudo-second order and Langmuir model, respectively. The maximum adsorption capacities (Qm) of this adsorbent were 369.749, 257.201, 180.893 and 358.824mgg(-1) for lead, cadmium, nickel and copper ions, respectively. The removal performance of adsorbent on the real wastewater samples also showed the feasibility of adsorbent for applying in industrial purposes.

  4. Synthesis, characterization and application of poly(acrylamide-co-methylenbisacrylamide) nanocomposite as a colorimetric chemosensor for visual detection of trace levels of Hg and Pb ions.

    PubMed

    Sedghi, Roya; Heidari, Bahareh; Behbahani, Mohammad

    2015-03-21

    In this study, a new colorimetric chemosensor based on TiO2/poly(acrylamide-co-methylenbisacrylamide) nanocomposites was designed for determination of mercury and lead ions at trace levels in environmental samples. The removal and preconcentration of lead and mercury ions on the sorbent was achieved due to sharing an electron pair of N and O groups of polymer chains with the mentioned heavy metal ions. The hydrogel sensor was designed by surface modification of a synthesized TiO2 nanoparticles using methacryloxypropyltrimethoxysilan (MAPTMS), which provided a reactive C=C bond that polymerized the acrylamide and methylenbisacrylamide. The sorbent was characterized using X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscope (SEM), EDS analysis and Fourier transform in frared (FT-IR) spectrometer. This nanostructured composite with polymer shell was developed as a sensitive and selective sorbent for adsorption of mercury and lead ions from aqueous solution at optimized condition. This method involves two-steps: (1) preconcentration of mercury and lead ions by the synthesized sorbent and (2) its selective monitoring of the target ions by complexation with dithizone (DZ). The color of the sorbent in the absence and presence of mercury and lead ions shifts from white to violet and red, respectively. The detection limit of the synthesized nanochemosensor for mercury and lead ions was 1 and 10 μg L(-1), respectively. The method was successfully applied for trace detection of mercury and lead ions in tap, river, and sea water samples.

  5. Low-energy fission investigated in reactions of 750 AMeV238U-ions with Pb and Be targets. I. Nuclear charge distributions

    NASA Astrophysics Data System (ADS)

    Armbruster, P.; Bernas, M.; Czajkowski, S.; Geissel, H.; Aumann, T.; Dessagne, Ph.; Donzaud, C.; Hanelt, E.; Heinz, A.; Hesse, M.; Kozhuharov, C.; Miehe, Ch.; Münzenberg, G.; Pfützner, M.; Schmidt, K.-H.; Schwab, W.; Stéphan, C.; Sümmerer, K.; Tassan-Got, L.; Voss, B.

    1996-12-01

    Charge distributions of fragments from low energy nuclear fission are investigated in reactions of highly fissile238U projectiles at relativistic energies (750 A·MeV) with a heavy (Pb) and a light (Be) target. The fully stripped fission fragments are separated by the Fragment Separator (FRS). Their high kinetic energies in the laboratory system allow the identification of all atomic numbers by using Multiple-Sampling Ionization Chambers (MUSIC). The elemental distributions of fragments observed at larger magnetic rigidities than the238U projectiles show asymmetric break-up and odd-even effects. They indicate a low energy fission process, induced mainly by dissociation in the electro-magnetic field for the U/Pb-system, or by peripheral nuclear interactions for the U/Be-system.

  6. Method for preparing Pb-.beta."-alumina ceramic

    DOEpatents

    Hellstrom, Eric E.

    1986-01-01

    A process is disclosed for preparing impermeable, polycrystalline samples of Pb-.beta."-alumina ceramic from Na-.beta."-alumina ceramic by ion exchange. The process comprises two steps. The first step is a high-temperature vapor phase exchange of Na by K, followed by substitution of Pb for K by immersing the sample in a molten Pb salt bath. The result is a polycrystalline Pb-.beta."-alumina ceramic that is substantially crack-free.

  7. Calculation of uncertainties of U-Pb isotope data

    USGS Publications Warehouse

    Ludwig, K. R.

    1980-01-01

    Equations are derived for the estimation of errors and error correlations for various types of U-Pb isotope data, taking into account ion-beam instabilities, run-to-run variability in mass-discrimination, uncertainties in Pb and U concentrations, and uncertainties in initial-Pb and blank-Pb amount and isotopic composition. Equations are also given for the calculation of concordia intercept errors. ?? 1980.

  8. Investigation of luminescence and laser transition of Dy3+ ion in P2O5sbnd PbOsbnd Bi2O3sbnd R2O3 (R = Al, Ga, In) glasses

    NASA Astrophysics Data System (ADS)

    Ram, G. Chinna; Narendrudu, T.; Suresh, S.; Kumar, A. Suneel; Rao, M. V. Sambasiva; Kumar, V. Ravi; Rao, D. Krishna

    2017-04-01

    P2O5sbnd PbOsbnd Bi2O3sbnd R2O3 (R = Al, Ga, In) glasses doped with Dy2O3 were prepared by melt quenching technique. The prepared glasses were characterized by XRD, optical absorption, FTIR, luminescence studies. Judd-Ofelt parameters have been evaluated for three glass systems from optical absorption spectra and in turn radiative parameters for excited luminescent levels of Dy3+ ion are also calculated. Emission cross section and branching ratio values are observed to high for 6H13/2 level for Dy3+ ion. The yellow to blue intensity ratios and CIE chromaticity coordinates were calculated. Decay curves exhibit non exponential behavior. Quantum efficiency of prepared glasses was measured by using radiative and calculated life times. IR studies, J-O parameters and Y/B ratio values indicate that more asymmetry around Dy3+ ions in Ga2O3 mixed glass was observed. Chromaticity coordinates lie near ideal white light region. These coordinates and CCT values have revealed that all the prepared glasses emit quality white light especially the glasses mixed with Ga2O3 are suitable for development of white LEDs.

  9. Solid-phase extraction of Mn(II), Co(II), Ni(II), Cu(II), Cd(II) and Pb(II) ions from environmental samples by flame atomic absorption spectrometry (FAAS).

    PubMed

    Duran, Celal; Gundogdu, Ali; Bulut, Volkan Numan; Soylak, Mustafa; Elci, Latif; Sentürk, Hasan Basri; Tüfekci, Mehmet

    2007-07-19

    A new method using a column packed with Amberlite XAD-2010 resin as a solid-phase extractant has been developed for the multi-element preconcentration of Mn(II), Co(II), Ni(II), Cu(II), Cd(II), and Pb(II) ions based on their complex formation with the sodium diethyldithiocarbamate (Na-DDTC) prior to flame atomic absorption spectrometric (FAAS) determinations. Metal complexes sorbed on the resin were eluted by 1 mol L(-1) HNO3 in acetone. Effects of the analytical conditions over the preconcentration yields of the metal ions, such as pH, quantity of Na-DDTC, eluent type, sample volume and flow rate, foreign ions etc. have been investigated. The limits of detection (LOD) of the analytes were found in the range 0.08-0.26 microg L(-1). The method was validated by analyzing three certified reference materials. The method has been applied for the determination of trace elements in some environmental samples.

  10. Evidence for transverse momentum and pseudorapidity dependent event plane fluctuations in PbPb and pPb collisions

    DOE PAGES

    Khachatryan, Vardan

    2015-09-22

    A systematic study of the factorization of long-range azimuthal two-particle correlations into a product of single-particle anisotropies is presented as a function of pT and η of both particles and as a function of the particle multiplicity in PbPb and pPb collisions. The data were taken with the CMS detector for PbPb collisions at √sNN=2.76 TeV and pPb collisions at √sNN=5.02 TeV, covering a very wide range of multiplicity. Factorization is observed to be broken as a function of both particle pT and η. When measured with particles of different pT, the magnitude of the factorization breakdown for the secondmore » Fourier harmonic reaches 20% for very central PbPb collisions but decreases rapidly as the multiplicity decreases. The data are consistent with viscous hydrodynamic predictions, which suggest that the effect of factorization breaking is mainly sensitive to the initial-state conditions rather than to the transport properties (e.g., shear viscosity) of the medium. The factorization breakdown is also computed with particles of different η. The effect is found to be weakest for mid-central PbPb events but becomes larger for more central or peripheral PbPb collisions, and also for very-high-multiplicity pPb collisions. The η-dependent factorization data provide new insights to the longitudinal evolution of the medium formed in heavy ion collisions.« less

  11. Evidence for transverse momentum and pseudorapidity dependent event plane fluctuations in PbPb and pPb collisions

    SciTech Connect

    Khachatryan, Vardan

    2015-09-22

    A systematic study of the factorization of long-range azimuthal two-particle correlations into a product of single-particle anisotropies is presented as a function of pT and η of both particles and as a function of the particle multiplicity in PbPb and pPb collisions. The data were taken with the CMS detector for PbPb collisions at √sNN=2.76 TeV and pPb collisions at √sNN=5.02 TeV, covering a very wide range of multiplicity. Factorization is observed to be broken as a function of both particle pT and η. When measured with particles of different pT, the magnitude of the factorization breakdown for the second Fourier harmonic reaches 20% for very central PbPb collisions but decreases rapidly as the multiplicity decreases. The data are consistent with viscous hydrodynamic predictions, which suggest that the effect of factorization breaking is mainly sensitive to the initial-state conditions rather than to the transport properties (e.g., shear viscosity) of the medium. The factorization breakdown is also computed with particles of different η. The effect is found to be weakest for mid-central PbPb events but becomes larger for more central or peripheral PbPb collisions, and also for very-high-multiplicity pPb collisions. The η-dependent factorization data provide new insights to the longitudinal evolution of the medium formed in heavy ion collisions.

  12. Facile sonochemical synthesis and morphology control of CePO₄ nanostructures via an oriented attachment mechanism: application as luminescent probe for selective sensing of Pb²⁺ ion in aqueous solution.

    PubMed

    Shiralizadeh Dezfuli, Amin; Ganjali, Mohammad Reza; Norouzi, Parviz

    2014-09-01

    CePO4 nanostructures with hexagonal phase were controllably synthesized using Ce(NO3)3 reaction with NH4H2PO4 through a sonochemical method by simply varying the reaction conditions. By adding ethanol and polyethylene glycol (PEG), coral-reef nanostructures (CRNs) were synthesized and controlling over pH caused to nanorods/nanowires. Oriented attachment (OA) is proposed as dominant mechanism on the growth of nanostructures which is in competition with Ostwald ripening (OR). The crystal structure and morphology of the nanostructures were characterized by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM), respectively. The luminescent properties of CePO4 with different morphologies have been studied. Among the nanostructures, nanoparticles with the highest intensity of fluorescent have been used as luminescent probe for selective sensing of Pb(2+) ion in aqueous solution.

  13. Experimental Cross Sections for Reactions of Heavy Ions and 208Pb, 209Bi, 238U, and 248Cm Targets

    SciTech Connect

    Patin, Joshua Barnes

    2002-01-01

    The study of the reactions between heavy ions and 208Pb, 209Bi, 238U, and 248Cm Cm targets was performed to look at the differences between the cross sections of hot and cold fusion reactions. Experimental cross sections were compared with predictions from statistical computer codes to evaluate the effectiveness of the computer code in predicting production cross sections. Hot fusion reactions were studied with the MG system, catcher foil techniques and the Berkeley Gas-filled Separator (BGS). 3n- and 4n-exit channel production cross sections were obtained for the 238U(18O,xn)256-xFm, 238U(22Ne,xn)260-xNo, and 248Cm(15N,xn)263-xLr reactions and are similar to previous experimental results. The experimental cross sections were accurately modeled by the predictions of the HIVAP code using the Reisdorf and Schaedel parameters and are consistent with the existing systematics of 4n exit channel reaction products. Cold fusion reactions were examined using the BGS. The 48Pb(238Ca,xn)256-xNo, 208Pb(50Ti,xn)258-xRf, 208Pb(51V,xn)259-xDb, 50Bi(238Ti,xn)259-xDb, and 209Bi(51V,xn)260-xSg reactions were studied. The experimental production cross sections are in agreement with the results observed in previous experiments. It was necessary to slightly alter the Reisdorf and Schaedel parameters for use in the HIVAP code in order to more accurately model the experimental data. The cold fusion experimental results are in agreement with current 1n- and 2n-exit channel systematics.

  14. Optical properties of Nd3+ and Er3+ ions in TeO2-WO3-PbO-La2O3 glasses

    NASA Astrophysics Data System (ADS)

    Burtan, Bozena; Mazurak, Zbigniew; Cisowski, Jan; Czaja, Maria; Lisiecki, Radoslaw; Ryba-Romanowski, Witold; Reben, Manuela; Wasylak, Jan

    2012-10-01

    Multicomponent telluride-tungstate glasses containing Nd3+ and Er3+ ions were studied experimentally at 77 and 293 K using spectroscopic methods. The Judd-Ofelt intensity parameters were derived from the absorption spectra and used to calculate the radiative lifetimes and branching ratios. The quantum efficiency η = 0.95 of the 4F3/2 level of Nd3+ ion is higher than the typical value of other tellurite-based glasses. For low concentration of Er3+ ions, the luminescence decay of the 4S3/2 and 4I11/2 levels is governed by radiative transitions and multiphonon relaxation involving the Te-O highest energy vibrations.

  15. Controlled Fabrication of Silk Protein Sericin Mediated Hierarchical Hybrid Flowers and Their Excellent Adsorption Capability of Heavy Metal Ions of Pb(II), Cd(II) and Hg(II).

    PubMed

    Koley, Pradyot; Sakurai, Makoto; Aono, Masakazu

    2016-01-27

    Fabrication of protein-inorganic hybrid materials of innumerable hierarchical patterns plays a major role in the development of multifunctional advanced materials with their improved features in synergistic way. However, effective fabrication and applications of the hybrid structures is limited due to the difficulty in control and production cost. Here, we report the controlled fabrication of complex hybrid flowers with hierarchical porosity through a green and facile coprecipitation method by using industrial waste natural silk protein sericin. The large surface areas and porosity of the microsize hybrid flowers enable water purification through adsorption of different heavy metal ions. The high adsorption capacity depends on their morphology, which is changed largely by sericin concentration in their fabrication. Superior adsorption and greater selectivity of the Pb(II) ions have been confirmed by the characteristic growth of needle-shaped nanowires on the hierarchical surface of the hybrid flowers. These hybrid flowers show excellent thermal stability even after complete evaporation of the protein molecules, significantly increasing the porosity of the flower petals. A simple, cost-effective and environmental friendly fabrication method of the porous flowers will lead to a new solution to water pollution required in the modern industrial society.

  16. Resonance effects in near-threshold electron-impact excitation of the 143.4 nm line in the Pb++ ion

    NASA Astrophysics Data System (ADS)

    Gomonai, Anna N.; Hutych, Yuriy I.; Gomonai, Aleksandr I.

    2017-02-01

    Electron-impact excitation of the resonance transition 6 s 26 d 2 D 3/2 → 6 s 26 p 2 P o 1/2 (143.4 nm) in the Pb+ ion within the (6-100) eV energy range is studied spectroscopically using a crossed-beam technique. The observed distinct structure in the energy dependence of the effective excitation cross section (including the energy region above the ion ionization potential) is primarily due to the decay of atomic and ionic autoionizing states, produced mainly by excitation of an electron from the subvalence 5 d 10 shell, to the resonance levels (directly or via the cascade transitions). The absolute cross section value for the line under investigation was determined by normalizing the experimental curve at the electron beam energy of 100 eV to the theoretical data obtained by the Van-Regemorter formula and found to be (0.5 ± 0.3) × 10-16 cm2.

  17. Calculation of the Coulomb Fission Cross Sections for Pb-Pb and Bi-Pb Interactions at 158 A GeV

    NASA Technical Reports Server (NTRS)

    Poyser, William J.; Ahern, Sean C.; Norbury, John W.; Tripathi, R. K.

    2002-01-01

    The Weizsacker-Williams (WW) method of virtual quanta is used to make approximate cross section calculations for peripheral relativistic heavy-ion collisions. We calculated the Coulomb fission cross sections for projectile ions of Pb-208 and Bi-209 with energies of 158 A GeV interacting with a Pb-208 target. We also calculated the electromagnetic absorption cross section for Pb-208 ion interacting as described. For comparison we use both the full WW method and a standard approximate WW method. The approximate WW method in larger cross sections compared to the more accurate full WW method.

  18. Kinetic sorption modelling of Cu, Ni, Zn, Pb and Cr ions to pine bark and blast furnace slag by using batch experiments.

    PubMed

    Nehrenheim, E; Gustafsson, J P

    2008-04-01

    Storm water and landfill leachate can both contain significant amounts of toxic metals such as Zn, Cu, Pb, Cr and Ni. Pine bark and blast furnace slag are both residual waste products that have shown a large potential for metal removal from contaminated water. There are however many variables that must be optimized in order to achieve efficient metal retention. One of these variables is the time of which the solution is in contact with each unit of filter material. Metal sorption was studied in two laboratory experiments to improve the knowledge of the effects of contact time. The results showed that pine bark was generally more efficient than blast furnace slag when the metal concentrations were relatively small, whereas blast furnace slag sorbed most metals to a larger extent at increased metal loads. In addition, sorption to blast furnace slag was found to be faster than metal binding to pine bark. A pseudo-second-order kinetic model was able to describe the data well within 1000 s of reaction time.

  19. Dynamical simulation of energy dissipation in asymmetric heavy-ion induced fission of {sup 200}Pb, {sup 213}Fr, and {sup 251}Es

    SciTech Connect

    Mirfathi, S. M.; Pahlavani, M. R.

    2008-12-15

    The dynamical model based on the asymmetric mass division has been applied to calculate pre-scission neutron multiplicity from heavy-ion induced fusion-fission reactions. Links between the pre-scission neutron multiplicity, excitation energy, and asymmetric mass distribution are clarified based on the Monte Carlo simulation and Langevin dynamics. The pre-scission neutron multiplicity is calculated and compared with the respective experimental data over a wide range of excitation energy and nonconstant viscosity. The analysis indicates a different effect for the application of asymmetric mass division in different energy regions of such processes.

  20. Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil.

    PubMed

    Uchimiya, Minori; Lima, Isabel M; Thomas Klasson, K; Chang, SeChin; Wartelle, Lynda H; Rodgers, James E

    2010-05-12

    Chars, a form of environmental black carbon resulting from incomplete burning of biomass, can immobilize organic contaminants by both surface adsorption and partitioning mechanisms. The predominance of each sorption mechanism depends upon the proportion of organic to carbonized fractions comprising the sorbent. Information is currently lacking in the effectiveness of char amendment for heavy metal immobilization in contaminated (e.g., urban and arms range) soils where several metal contaminants coexist. The present study employed sorbents of a common biomass origin (broiler litter manure) that underwent various degrees of carbonization (chars formed by pyrolysis at 350 and 700 degrees C and steam-activated analogues) for heavy metal (Cd(II), Cu(II), Ni(II), and Pb(II)) immobilization in water and soil. ATR-FTIR, (1)H NMR, and Boehm titration results suggested that higher pyrolysis temperature and activation lead to the disappearance (e.g., aliphatic -CH(2) and -CH(3)) and the formation (e.g., C-O) of certain surface functional groups, portions of which are leachable. Both in water and in soil, pH increase by the addition of basic char enhanced the immobilization of heavy metals. Heavy metal immobilization resulted in nonstoichiometric release of protons, that is, several orders of magnitude greater total metal concentration immobilized than protons released. The results suggest that with higher carbonized fractions and loading of chars, heavy metal immobilization by cation exchange becomes increasingly outweighed by other controlling factors such as the coordination by pi electrons (C=C) of carbon and precipitation.

  1. The mechanisms for the growth of the anodic Pb(II) oxides films formed on Pb-Sb and Pb-Sn alloys in sulfuric acid solution

    NASA Astrophysics Data System (ADS)

    Liu, Hou-Tian; Yang, Chun-Xiao; Liang, Hai-He; Yang, Jiong; Zhou, Wei-Fang

    The anodic Pb(II) films formed on Pb, Pb-Sb and Pb-Sn alloys at 0.9 V (versus Hg/Hg 2SO 4) in 4.5 mol/l H 2SO 4 solution for 1 h were studied using alternating current (ac) impedance, open circuit decay curve and linear sweep voltammetry methods. Our research group has obtained the thickness of the anodic PbO film on Pb from the photocurrent measurement and proved that the resistance of the anodic PbO film is close to that of the interstitial liquid among the PbO particles in the film, from which it was inferred that the anodic PbO film grows via the dissolution-precipitation mechanism. It was concluded from the experimental results that (1) the films on Pb-Sb and Pb-Sn alloys also grow via the dissolution-precipitation mechanism, and the interstitial liquid may serve as the major passage for ion transportation during the film growth, (2) Sn facilitates the mechanism of oxidation of the surface layer of PbO particles to PbO 1+ x (0< x<1), (3) the influence of Sb to facilitate the growth of PbO 1+ x is smaller than that of Sn, but the doping effect of Sb(III) in the PbO crystals is more remarkable, (4) Sn increases the porosity of the anodic PbO film remarkably. All of the above effects decrease the specific resistance of the films.

  2. Fabrication and properties of poly(vinylidenefluoride)/PbS/Au heterogeneous nanostructures.

    PubMed

    Lee, Kwang-Pill; Gopalan, Anantha Iyengar; Park, Jong Wook; Ragupathy, Dhanusuraman; Manesh, Kalayil Manian

    2009-01-01

    We report on the fabrication of polyvinylidenefluoride (PVdF) PVdF/PbS and PVdF/PbS/Au heterogeneous nanostructures by the processes, electrospinning and chemical treatment. Initially electrospinning a solution consisting of PVdF and lead acetate was used to form PVdF nanofibers loaded with Pb ions. Exposure of Pb ions loaded PVdF fibers to H2S resulted in PVdF/PbS nanostructures. The deposition of gold nanoparticles onto PVdF/PbS nanostructures results in PVdF/PbS/Au heterogeneous structure. The existence of PbS particles with an average diameter of 11 nm is evident from field emission transmission electron microscopy (FETEM) image of PVdF/PbS. The results from X-ray diffraction of PVdF/PbS also predict the size of PbS particles as in accordance with FETEM. A blue shift in the optical transition of PbS is noticed in the UV-visible spectrum of PVdF/PbS as a result of quantum confinement effect. The band gap of PbS is influenced by the presence of Au nanoparticles over the PbS particles. An equal atomic weight % of Au and PbS is found in the PVdF/PbS/Au nanostructure as inferred from energy dispersive X-ray spectroscopy (EDX). Photoluminescence (PL) spectra of PVdF/PbS and PVdF/PbS/Au are compared. Emission peaks are noticed at 400 nm and 480 nm for PVdF/PbS and PVdF/PbS/Au nanostructures respectively for an excitation wavelength of 254 nm. The presence of Au nanoclusters in PVdF/PbS/Au diminishes the intensity of photo emission of PbS.

  3. Long-Term Performance of Pb Isotopic Analysis by TIMS with 202Pb-205Pb Double Spike

    NASA Astrophysics Data System (ADS)

    Amelin, Y.; Connelly, J. N.

    2008-05-01

    The 202Pb-205Pb-233U-235U spike (Pb DS), prepared at the Geological Survey of Canada in 2005 [1], and the 202Pb-205Pb-235U spike, prepared at the Department of Geosciences, University of Oslo [2], have been used for more than two years. Both spikes are routinely used for TIMS analysis of Pb with internal fractionation correction for U-Pb dating of various rocks and minerals, including dating perovskite [2] and meteorites and their components [1, 4-7]. A few hundred standard and sample Pb DS analyses were acquired with these two spikes using Triton TI mass spectrometers at the Geological Survey of Canada, US Geological Survey and the Australian National University, a Finnigan-MAT 261 mass spectrometer at The University of Texas at Austin and a Finnigan-MAT 262 mass spectrometer at the University of Oslo. All analyses were performed using high efficiency silicic acid emitter [8] and a static multicollector mode if the samples were sufficiently large to produce an ion beam greater than ca. 2-5×10-14 A on 206Pb and 207Pb. These data allow us to evaluate long - term performance of the Pb DS procedure for sub-nanogram samples of Pb. The performance of this procedure is evaluated on the basis of the long-term reproducibility of analyses of isotopic standards, and from improving quality of linear fits in Pb-Pb isochron diagrams (and, hence, improved precision of ages) compared to the same data reduced using external normalization. The data for 0.3 ng loads of SRM-981, analyzed with the batches of samples in 2006 and 2007 at the GSC, yield the mean 204Pb/206Pb of 0.05904±0.00013 (0.226% 2σ), #207Pb/206Pb of 0.91483±0.00018 (0.020% 2σ)), and 208Pb/206Pb of 2.16771±0.00054 (0.025% 2σ)). These values and errors are similar to those reported in [1] for the loads of the same size, and to the values obtained for similar loads at the USGS and at ANU over shorter periods of time. The precision and reproducibility of sample analysis and standard analyses is similar, and

  4. Chemometrics-assisted spectrophotometric method for simultaneous determination of Pb2+ and Cu2+ ions in different foodstuffs, soil and water samples using 2-benzylspiro [isoindoline-1,5‧-oxazolidine]-2‧,3,4‧-trione using continuous wavelet transformation and partial least squares - Calculation of pKf of complexes with rank annihilation factor analysis

    NASA Astrophysics Data System (ADS)

    Abbasi Tarighat, Maryam; Nabavi, Masoume; Mohammadizadeh, Mohammad Reza

    2015-06-01

    A new multi-component analysis method based on zero-crossing point-continuous wavelet transformation (CWT) was developed for simultaneous spectrophotometric determination of Cu2+ and Pb2+ ions based on the complex formation with 2-benzyl espiro[isoindoline-1,5oxasolidine]-2,3,4 trione (BSIIOT). The absorption spectra were evaluated with respect to synthetic ligand concentration, time of complexation and pH. Therefore according the absorbance values, 0.015 mmol L-1 BSIIOT, 10 min after mixing and pH 8.0 were used as optimum values. The complex formation between BSIIOT ligand and the cations Cu2+ and Pb2+ by application of rank annihilation factor analysis (RAFA) were investigated. Daubechies-4 (db4), discrete Meyer (dmey), Morlet (morl) and Symlet-8 (sym8) continuous wavelet transforms for signal treatments were found to be suitable among the wavelet families. The applicability of new synthetic ligand and selected mother wavelets were used for the simultaneous determination of strongly overlapped spectra of species without using any pre-chemical treatment. Therefore, CWT signals together with zero crossing technique were directly applied to the overlapping absorption spectra of Cu2+ and Pb2+. The calibration graphs for estimation of Pb2+ and Cu 2+were obtained by measuring the CWT amplitudes at zero crossing points for Cu2+ and Pb2+ at the wavelet domain, respectively. The proposed method was validated by simultaneous determination of Cu2+ and Pb2+ ions in red beans, walnut, rice, tea and soil samples. The obtained results of samples with proposed method have been compared with those predicted by partial least squares (PLS) and flame atomic absorption spectrophotometry (FAAS).

  5. W and Z bosons with CMS in pp, pPb and PbPb collisions

    NASA Astrophysics Data System (ADS)

    Chapon, Émilien

    2016-12-01

    Electroweak boson production is an important benchmark process in high-energy heavy-ion collisions at the LHC. W and Z bosons do not participate in the strong interaction and their leptonic decays provide medium-blind probes of the initial state of the collisions. The final results on the W and Z production in pPb collisions at 5.02 TeV, combining both the muon and electron channels, will be presented. When compared to theory calculations that include nuclear modifications to the parton distributions, data show a clear sensitivity to this type of effects. The final results in PbPb collisions at 2.76 TeV, compared to pp collisions at the same centre of mass energy, will also be presented. The centrality dependence confirms the binary scaling of hard probes in heavy-ion collisions, while the differential cross sections points to initial state effects small compared to the statistical precision of the available data.

  6. Biosorption of Pb(II) Ions by Klebsiella sp. 3S1 Isolated from a Wastewater Treatment Plant: Kinetics and Mechanisms Studies

    PubMed Central

    Muñoz, Antonio Jesús; Espínola, Francisco; Moya, Manuel; Ruiz, Encarnación

    2015-01-01

    Lead biosorption by Klebsiella sp. 3S1 isolated from a wastewater treatment plant was investigated through a Rotatable Central Composite Experimental Design. The optimisation study indicated the following optimal values of operating variables: 0.4 g/L of biosorbent dosage, pH 5, and 34°C. According to the results of the kinetic studies, the biosorption process can be described by a two-step process, one rapid, almost instantaneous, and one slower, both contributing significantly to the overall biosorption; the model that best fits the experimental results was pseudo-second order. The equilibrium studies showed a maximum lead uptake value of 140.19 mg/g according to the Langmuir model. The mechanism study revealed that lead ions were bioaccumulated into the cytoplasm and adsorbed on the cell surface. The bacterium  Klebsiella sp. 3S1 has a good potential in the bioremoval of lead in an inexpensive and effective process. PMID:26504824

  7. Investigation of the properties of jets from p-Pb and Pb-Pb collisions with ALICE

    NASA Astrophysics Data System (ADS)

    Hess, B. A.

    2016-08-01

    Jets from hard scattering processes allow to study the properties of strongly interacting matter produced in ultra-relativistic heavy-ion collisions. The hot and dense medium created in such collisions is expected to cause energy loss of hard-scattered partons via elastic scattering and gluon radiation. Eventually, these processes modify the parton fragmentation. We report measurements of charged jets from lead-lead (Pb-Pb) and proton-lead (p-Pb) collisions at J= 2.76 TeV and 5.02 TeV. To estimate cold nuclear matter effects, the jet production in p-Pb collisions is studied for different centrality classes and is compared to that in proton-proton (pp) collisions via the nuclear modification factor. In addition, we discuss the measurement of (charged) jets recoiling from a high-pT trigger hadron, which allows to remove the contribution of combinatorial jets without introducing a bias on the jet population. Furthermore, we report about the measurement of strange hadrons (A, Kg) in association with charged jets from Pb-Pb and p-Pb collisions. The results are expected to clarify the role of the fragmentation process in the anomalous baryon-to-meson ratio observed at intermediate pT in A-A collisions. In particular, the measurement allows disentangling the contributions from jet fragmentation and other hadronisation processes.

  8. Monazite Th-Pb age depth profiling

    SciTech Connect

    Grove, M.; Harrison, T.M.

    1999-06-01

    The significant capabilities of the ion microprobe for thermochronometric investigations of geologic materials remain largely unexploited. Whereas {sup 208}Pb/{sup 232}Th spot analysis allows {approximately} 10-mm-scale imaging of Pb loss profiles or overgrowths in sectioned monazite grains, the spatial resolution offered by depth profiling into the surface region of natural crystals is more than two orders of magnitude higher. The authors document here the ability of the high-resolution ion microprobe to detect {sup 208}Pb/{sup 232}Th age differences of < 1 m.y. with better than 0.05 {micro}m depth resolution in the outer micron of Tertiary monazites from the hanging wall of the Himalayan Main Central thrust. Age gradients on this scale are inaccessible to ion microprobe spot analysis or conventional thermal ionization mass spectrometry. Interpretation of the near-surface {sup 208}Pb distributions with available monazite Pb diffusion data illustrates the potential of the approach for recovering continuous, high-temperature thermal history information not previously available.

  9. Discrimination of the Cigarettes Geographical Origin by DRC-ICP-MS Measurements of Pb Isotope Compositions

    NASA Astrophysics Data System (ADS)

    Guo, W.; Hu, S.; Jin, L.

    2014-12-01

    Trace Pb are taken up with the same isotopic ratios as is present in the source soil, and the isotopic composition of Pb could used to reflect these sources and provide powerful indicators of the geographic origin of agriculture products derived from vegetative matter. We developed a simple and high throughput method, which based on DRC-ICP-MS for determination of Pb isotope ratios for discriminating the geographic origin of cigarettes. After acid digestion procedure, the cigarette digested solutions were directly analyzed by ICP-QMS with a DRC pressurized by the non-reactive gas Ne. In the DRC, Ne molecules collision with Pb ions and improves Pb isotope ratios precision 3-fold, which may be due to the collisional dampling smoothes out the ion beam fluctuations. Under the optimum DRC rejection parameter Q (RPq = 0.45), the main matrix components (K, Na, Ca, Mg, Al, Fe etc.) originating from cigarettes were filtered out. Mass discrimination of 208Pb/206Pb ratio in Ne DRC mode increased 0.3% compared to the standard mode, the mass bias due to the in-cell Ne gas collision can be accurately corrected by NIST 981 Pb isotope standard. This method was verified by a tobacco reference material CTV-OTL-2. Results of 208Pb/206Pb and 207Pb/206Pb were 2.0848 ± 0.0028 (2δ) and 0.8452 ± 0.0011 (2δ) for CTA-VTL-2, which were agreed with the literature values (208Pb/206Pb = 2.0884 ± 0.0090 and 207Pb/206Pb = 0.8442 ± 0.0032). The precision of Pb isotope ratios (208Pb/206Pb and 207Pb/206Pb) for the cigarette samples are ranged from 0.01 to 0.08% (N = 5). It has sufficient precision to discriminate 91 different brand cigarettes originated from four different geographic regions (Shown in Fig).

  10. A transferable force field for CdS-CdSe-PbS-PbSe solid systems

    SciTech Connect

    Fan, Zhaochuan; Vlugt, Thijs J. H.; Koster, Rik S.; Fang, Changming; Huis, Marijn A. van; Wang, Shuaiwei; Yalcin, Anil O.; Tichelaar, Frans D.; Zandbergen, Henny W.

    2014-12-28

    A transferable force field for the PbSe-CdSe solid system using the partially charged rigid ion model has been successfully developed and was used to study the cation exchange in PbSe-CdSe heteronanocrystals [A. O. Yalcin et al., “Atomic resolution monitoring of cation exchange in CdSe-PbSe heteronanocrystals during epitaxial solid-solid-vapor growth,” Nano Lett. 14, 3661–3667 (2014)]. In this work, we extend this force field by including another two important binary semiconductors, PbS and CdS, and provide detailed information on the validation of this force field. The parameterization combines Bader charge analysis, empirical fitting, and ab initio energy surface fitting. When compared with experimental data and density functional theory calculations, it is shown that a wide range of physical properties of bulk PbS, PbSe, CdS, CdSe, and their mixed phases can be accurately reproduced using this force field. The choice of functional forms and parameterization strategy is demonstrated to be rational and effective. This transferable force field can be used in various studies on II-VI and IV-VI semiconductor materials consisting of CdS, CdSe, PbS, and PbSe. Here, we demonstrate the applicability of the force field model by molecular dynamics simulations whereby transformations are initiated by cation exchange.

  11. A transferable force field for CdS-CdSe-PbS-PbSe solid systems

    NASA Astrophysics Data System (ADS)

    Fan, Zhaochuan; Koster, Rik S.; Wang, Shuaiwei; Fang, Changming; Yalcin, Anil O.; Tichelaar, Frans D.; Zandbergen, Henny W.; van Huis, Marijn A.; Vlugt, Thijs J. H.

    2014-12-01

    A transferable force field for the PbSe-CdSe solid system using the partially charged rigid ion model has been successfully developed and was used to study the cation exchange in PbSe-CdSe heteronanocrystals [A. O. Yalcin et al., "Atomic resolution monitoring of cation exchange in CdSe-PbSe heteronanocrystals during epitaxial solid-solid-vapor growth," Nano Lett. 14, 3661-3667 (2014)]. In this work, we extend this force field by including another two important binary semiconductors, PbS and CdS, and provide detailed information on the validation of this force field. The parameterization combines Bader charge analysis, empirical fitting, and ab initio energy surface fitting. When compared with experimental data and density functional theory calculations, it is shown that a wide range of physical properties of bulk PbS, PbSe, CdS, CdSe, and their mixed phases can be accurately reproduced using this force field. The choice of functional forms and parameterization strategy is demonstrated to be rational and effective. This transferable force field can be used in various studies on II-VI and IV-VI semiconductor materials consisting of CdS, CdSe, PbS, and PbSe. Here, we demonstrate the applicability of the force field model by molecular dynamics simulations whereby transformations are initiated by cation exchange.

  12. A transferable force field for CdS-CdSe-PbS-PbSe solid systems.

    PubMed

    Fan, Zhaochuan; Koster, Rik S; Wang, Shuaiwei; Fang, Changming; Yalcin, Anil O; Tichelaar, Frans D; Zandbergen, Henny W; van Huis, Marijn A; Vlugt, Thijs J H

    2014-12-28

    A transferable force field for the PbSe-CdSe solid system using the partially charged rigid ion model has been successfully developed and was used to study the cation exchange in PbSe-CdSe heteronanocrystals [A. O. Yalcin et al., "Atomic resolution monitoring of cation exchange in CdSe-PbSe heteronanocrystals during epitaxial solid-solid-vapor growth," Nano Lett. 14, 3661-3667 (2014)]. In this work, we extend this force field by including another two important binary semiconductors, PbS and CdS, and provide detailed information on the validation of this force field. The parameterization combines Bader charge analysis, empirical fitting, and ab initio energy surface fitting. When compared with experimental data and density functional theory calculations, it is shown that a wide range of physical properties of bulk PbS, PbSe, CdS, CdSe, and their mixed phases can be accurately reproduced using this force field. The choice of functional forms and parameterization strategy is demonstrated to be rational and effective. This transferable force field can be used in various studies on II-VI and IV-VI semiconductor materials consisting of CdS, CdSe, PbS, and PbSe. Here, we demonstrate the applicability of the force field model by molecular dynamics simulations whereby transformations are initiated by cation exchange.

  13. Identified charged hadron production in pp, p-Pb and Pb-Pb collisions at LHC energies with ALICE

    NASA Astrophysics Data System (ADS)

    Volpe, Giacomo

    2015-05-01

    The ALICE detector is dedicated to the study of strongly interacting matter in the extremely high temperature and energy density conditions reached in relativistic heavy-ions collisions at the LHC. ALICE has unique particle identification (PID) capabilities among the LHC experiments thanks to the use of the combination of different PID techniques, i.e. energy loss and time of flight measurements, Cherenkov and transition radiation detection, calorimetry and topological ID. The latest results on charged pions, kaons and (anti)protons transverse momentum (pT) spectra, ratios and integrated yields, measured in pp collisions at √s = 7 TeV and √s = 2.76 TeV, Pb-Pb collisions at √sNN = 2.76 TeV and p-Pb collisions at √sNN = 5.02 TeV, will be presented. The nuclear modification factors as a function of pT, for Pb-Pb and p-Pb interactions, will be shown. The results from different colliding systems will be compared. These will also be compared with calculations from hydrodynamical and statistical hadronization models.

  14. Monazite RW-1: a homogenous natural reference material for SIMS U-Pb and Th-Pb isotopic analysis

    NASA Astrophysics Data System (ADS)

    Ling, Xiao-Xiao; Huyskens, Magdalena H.; Li, Qiu-Li; Yin, Qin-Zhu; Werner, Ronald; Liu, Yu; Tang, Guo-Qiang; Yang, Ya-Nan; Li, Xian-Hua

    2016-10-01

    Well-characterized matrix-matched natural mineral references of known age are an important prerequisite for SIMS (secondary ion mass spectrometry) U-Th-Pb dating. We have characterized RW-1, a 44 g yellowish-brown single monazite specimen from a Norwegian pegmatite as an excellent hi-Th reference material for secondary ion mass spectrometric U-Th-Pb dating. A total of 206 secondary ion mass spectrometric analyses over six analytical sessions were performed on different monazite fragments of RW-1. The analyses resulted in 207Pb-based common lead corrected 206Pb/238U ages and Th-Pb ages with overall 2 % (2 SD = standard deviation) variations, indicating the good U-Th-Pb system homogeneity. The homogeneity of Th content of 11.8 ± 1.0 wt% (2 SD) and Th/U of 42 ± 3 (2 SD) make this crystal also a good compositional reference material. We used the combined ID-TIMS(Pb)/ID-MC-ICP-MS(U) technique (i.e. isotope dilution thermal ionization mass spectrometry for Pb, and isotope dilution multi-collector inductively-coupled plasma mass spectrometry for U) to determine U-Pb ages of the monazite samples studied. The mean 207Pb/235U age of 904.15 ± 0.26 Ma (95 % confidence level) is recommended as the best estimate crystallization age for RW-1 monazite. Considering that the most commonly distributed U-Pb monazite reference materials have rather low ThO2, we suggest that this RW-1 monazite with its ThO2 of 13.5 wt% is a suitable reference material providing investigators more confidence when dating high-Th monazite unknowns.

  15. On the role of Pb0 atoms on the nucleation and growth of PbSe and PbTe nanoparticles

    NASA Astrophysics Data System (ADS)

    Garcia-Gutierrez, Domingo I.; De Leon-Covian, Lina M.; Garcia-Gutierrez, Diana F.; Treviño-Gonzalez, M.; Garza-Navarro, M. A.; Sepulveda-Guzman, S.

    2013-05-01

    In this contribution, a nucleation and growth mechanism of PbSe and PbTe nanoparticles are proposed. The formation and growth of PbSe and PbTe nanoparticles during their reaction synthesis were studied and followed using transmission electron microscopy, and their related techniques. In the synthesis method, trioctylphosphine-selenide and telluride were used as the chalcogen precursors, while lead oleate was employed as the lead precursor. Different synthesis conditions were tested to assess the effect of varying the reaction time, lead to chalcogen ratio, reaction temperature, and lead oleate concentration. The synthesized nanoparticles were characterized by means of electron diffraction, energy dispersive X-ray spectroscopy, scanning transmission electron microscopy, and electron energy loss spectroscopy, to obtain information related to their morphology, crystal structure, and composition. The experimental results suggest that the growth of the lead chalcogenide nanoparticles greatly relies on the reduction of Pb2+ ions to Pb0 atoms at early reaction times; this reduction of the lead precursor is evidenced by the formation of Pb nanoparticles with sizes between 1 and 3 nm under certain synthesis conditions. These Pb nanoparticles gradually disappear as the reaction progresses, suggesting that the reduced Pb0 atoms are able to contribute to the growth of the PbSe and PbTe nanoparticles, reaching sizes between 8 and 18 nm. The current results contribute to a better understanding of the nucleation and growth mechanisms of lead chalcogenide nanoparticles, which will enable the definition of more efficient synthesis routes of these types of nanostructures.

  16. Charmonium production in pp, pPb and PbPb with CMS

    NASA Astrophysics Data System (ADS)

    Lee, Songkyo; CMS collaboration

    2017-01-01

    We report on the analysis of charmonia in pp, pPb and PbPb collisions with the CMS experiment with various observables. The cross section for coherent J/ψ photoproduction is measured in ultra-peripheral PbPb collisions at 2.76 TeV. The ratio of prompt J/ψ yields at forward (proton-going direction) and backward (Pb-going direction) is studied as a function of p T, rapidity, and the event activity in pPb collisions at 5.02 TeV. The nuclear modification factor of prompt J/ψ in PbPb collisions at 2.76 TeV is presented as a function of centrality, p T, and rapidity. Finally, the production yields of ψ(2S) and J/ψ in pp and PbPb collisions have been compared.

  17. Identified charged hadron production in pp and Pb-Pb collisions with ALICE at the LHC

    NASA Astrophysics Data System (ADS)

    Vasileiou, Maria

    2016-11-01

    Nuclear matter under extreme conditions can be investigated in ultra-relativistic heavy-ion collisions. The measurement of transverse momentum distributions and yields of identified particles is a fundamental step in understanding collective and thermal properties of the matter produced in such collisions. The ALICE Experiment results on identified charged hadron production are presented for pp collisions at √s = 0.9, 2.76 and 7 TeV and for Pb-Pb collisions at √sNN = 2.76 TeV. Spectral shapes, production yields and nuclear modification factors are shown and compared to previous experiments and Monte Carlo predictions. The spectral shapes in Pb-Pb collisions indicate a strong increase of the radial flow velocity with respect to RHIC energies, which in hydrodynamic models is expected as a consequence of the increasing particle density. The observed suppression of high transverse momentum particles in central Pb-Pb collisions provides evidence for strong parton energy loss in the hot and dense medium.

  18. NMR absolute shielding scale and nuclear magnetic dipole moment of (207)Pb.

    PubMed

    Adrjan, Bożena; Makulski, Włodzimierz; Jackowski, Karol; Demissie, Taye B; Ruud, Kenneth; Antušek, Andrej; Jaszuński, Michał

    2016-06-28

    An absolute shielding scale is proposed for (207)Pb nuclear magnetic resonance (NMR) spectroscopy. It is based on ab initio calculations performed on an isolated tetramethyllead Pb(CH3)4 molecule and the assignment of the experimental resonance frequency from the gas-phase NMR spectra of Pb(CH3)4, extrapolated to zero density of the buffer gas to obtain the result for an isolated molecule. The computed (207)Pb shielding constant is 10 790 ppm for the isolated molecule, leading to a shielding of 10799.7 ppm for liquid Pb(CH3)4 which is the accepted reference standard for (207)Pb NMR spectra. The new experimental and theoretical data are used to determine μ((207)Pb), the nuclear magnetic dipole moment of (207)Pb, by applying the standard relationship between NMR frequencies, shielding constants and nuclear moments of two nuclei in the same external magnetic field. Using the gas-phase (207)Pb and (reference) proton results and the theoretical value of the Pb shielding in Pb(CH3)4, we find μ((207)Pb) = 0.59064 μN. The analysis of new experimental and theoretical data obtained for the Pb(2+) ion in water solutions provides similar values of μ((207)Pb), in the range of 0.59000-0.59131 μN.

  19. Biosorption of lead from aqueous solutions by ion-imprinted tetraethylenepentamine modified chitosan beads.

    PubMed

    Liu, Bingjie; Chen, Wei; Peng, Xiaoning; Cao, Qiqi; Wang, Qianrui; Wang, Dongfeng; Meng, Xianghong; Yu, Guangli

    2016-05-01

    In this paper, the bio-based ion-imprinted tetraethylenepentamine (TEPA) modified chitosan beads using Pb(II) as imprinted ions (Pb-ITMCB) were chemically synthesized, characterized and applied to selectively adsorb Pb(II) ions from aqueous solutions containing other metal ions, which has the same concentration as that of Pb(II) ions. Batch adsorption experiments were performed to evaluate the adsorption conditions, selectivity and reusability. FTIR, SEM and TEM technologies were used to elucidate the mechanism of Pb-ITMCB adsorbing Pb(II) ions. The results showed that the adsorption capacity of Pb-ITMCB for Pb(II) ions reached 259.68 mg/g at pH 6, 40 °C. The adsorption data could be fitted well with pseudo-second order kinetics model and Langmuir isotherm model. Compared with other metal cations, Pb(II) ions showed an overall affinity of being adsorbed by Pb-ITMCB. With the participation of active groups including NH2, NH and OH, the adsorption reaction took place both inside and on the surface of Pb-ITMCB. It indicated that Pb-ITMCB is a comparatively promising biosorbent for selective removal of Pb(II) ions from aqueous solutions.

  20. Mechanism and kinetics of Pb(II) adsorption on ultrathin nanocrystalline titania coatings.

    PubMed

    Yang, Zheng-peng; Zhang, Chun-jing

    2009-12-30

    Pb(II) is a highly toxic substance, exposure to which can cause various diseases. To better understand the application of titania as an adsorbent for removing Pb(II) from wastewater, quartz crystal microbalance (QCM) technique was employed to investigate the adsorption behavior of Pb(II) on ultrathin nanocrystalline titania coatings. The present study focused on the mechanism and kinetics of Pb(II) adsorption. The obtained results show that the driving force of Pb(II) adsorption on titania coatings is electrostatic interaction, and that Pb(II) is adsorbed onto titania coatings by Pb(II) ions coordinating with hydroxyl groups of titania surface. In terms of the in situ frequency measurements of QCM, the adsorption kinetic parameter is estimated to be 4.12x10(5)L/mol. QCM measurement provides a useful method for monitoring the adsorption process of Pb(II) on titania coatings.

  1. Time of flight secondary ion mass spectrometry and high-resolution transmission electron microscopy/energy dispersive spectroscopy: a preliminary study of the distribution of Cu2+ and Cu2+/Pb2+ on a Bt horizon surfaces.

    PubMed

    Cerqueira, B; Vega, F A; Serra, C; Silva, L F O; Andrade, M L

    2011-11-15

    Relatively new techniques can help in determining the occurrence of mineral species and the distribution of contaminants on soil surfaces such as natural minerals and organic matter. The Bt horizon from an Endoleptic Luvisol was chosen because of its well-known sorption capability. The samples were contaminated with Cu(2+) and/or Pb(2+) and both sorption and desorption experiments were performed. The preferential distribution of the contaminant species ((63)Cu and (208)Pb) to the main soil components and their associations were studied together with the effectiveness of the surface sorption and desorption processes. The results obtained were compared with non-contaminated samples as well as with previous results obtained by different analytical techniques and advanced statistical analysis. Pb(2+) competes favorably for the sorption sites in this soil, mainly in oxides and the clay fraction. Cu(2+) and Pb(2+) were mainly associated with hematite, gibbsite, vermiculite and chlorite. This study will serve as a basis for further scientific research on the soil retention of heavy metals. New techniques such as spectroscopic imaging and transmission electron microscopy make it possible to check which soil components retain heavy metals, thereby contributing to propose effective measures for the remediation of contaminated soil.

  2. Open-charm production measurements in pp, 1 p-Pb and Pb-Pb collisions with ALICE at the LHC

    NASA Astrophysics Data System (ADS)

    Meninno, Elisa

    2017-03-01

    ALICE (A Large Ion Collider Experiment) is designed to study the strongly in teracting matter, the Quark-Gluon Plasma (QGP), created in heavy-ion collisions at LHC energies. Charm and beauty quarks are powerful probes to study the QGP. Produced in hard partonic scattering processes on a short time scale, they are expected to traverse the QCD medium, interacting with its constituents and losing energy through radiative and collisional processes. In ALICE, open-charm production is studied through the reconstruction of the hadronic decays of D0, D+, D*+ and Ds+ mesons at mid-rapidity. High precision tracking, good vertexing capabilities and excellent particle identification offered by ALICE allow for the measurement of particles containing heavy quarks (particularly D mesons) in a wide transverse momentum range in pp, p-Pb and Pb-Pb collisions. A review of the main results on D-meson production in pp collisions at √s = 7 TeV, p-Pb collisions at √sNN = 5.02 TeV and Pb-Pb collisions at √sNN = 2.76 TeV will be presented.

  3. Metal interactions with voltage- and receptor-activated ion channels.

    PubMed Central

    Vijverberg, H P; Oortgiesen, M; Leinders, T; van Kleef, R G

    1994-01-01

    Effects of Pb and several other metal ions on various distinct types of voltage-, receptor- and Ca-activated ion channels have been investigated in cultured N1E-115 mouse neuroblastoma cells. Experiments were performed using the whole-cell voltage clamp and single-channel patch clamp techniques. External superfusion of nanomolar to submillimolar concentrations of Pb causes multiple effects on ion channels. Barium current through voltage-activated Ca channels is blocked by micromolar concentrations of Pb, whereas voltage-activated Na current appears insensitive. Neuronal type nicotinic acetylcholine receptor-activated ion current is blocked by nanomolar concentrations of Pb and this block is reversed at micromolar concentrations. Serotonin 5-HT3 receptor-activated ion current is much less sensitive to Pb. In addition, external superfusion with micromolar concentrations of Pb as well as of Cd and aluminum induces inward current, associated with the direct activation of nonselective cation channels by these metal ions. In excised inside-out membrane patches of neuroblastoma cells, micromolar concentrations of Ca activate small (SK) and big (BK) Ca-activated K channels. Internally applied Pb activates SK and BK channels more potently than Ca, whereas Cd is approximately equipotent to Pb with respect to SK channel activation, but fails to activate BK channels. The results show that metal ions cause distinct, selective effects on the various types of ion channels and that metal ion interaction sites of ion channels may be highly selective for particular metal ions. PMID:7531139

  4. Measurement of inclusive jet spectra in pp, p–Pb, and Pb–Pb collisions with the ALICE detector

    NASA Astrophysics Data System (ADS)

    Haake, Rüdiger; ALICE Collaboration

    2017-02-01

    Highly energetic jets are sensitive probes of the kinematic properties and the topology of high energy hadron collisions. Jets are collimated sprays of charged and neutral particles, which are produced in fragmentation of hard scattered partons from an early stage of the collision. In ALICE, jets have been measured in pp, p–Pb, and Pb–Pb collisions at several collision energies. While analyses of Pb–Pb events unveil properties of the hot and dense medium formed in heavy-ion collisions, pp and p–Pb collisions can shed light on hadronization and cold nuclear matter effects in jet production. Additionally, pp and p–Pb collisions serve as a baseline for disentangling hot and cold nuclear matter effects. A possible modification of the initial state is tested in p–Pb analyses. For the extraction of a jet signal, the exact evaluation of the background from the underlying event is an especially important ingredient. Due to the different nature of underlying events, each collision system requires a different analysis technique for removing the effect of the background on the jet sample. The focus of this publication is on the ALICE measurements of nuclear modification factors connecting p–Pb and Pb–Pb events to pp collisions. Furthermore, the radial jet structure is explored by comparing jet spectra reconstructed with different resolution parameters.

  5. New results on fully corrected dijet asymmetry in Pb + Pb collisions with ATLAS

    SciTech Connect

    Perepelitsa, Dennis V.

    2016-12-01

    The phenomenon of events containing highly asymmetric dijet pairs is one of the most striking results in heavy ion physics, providing the first direct observation of in-medium jet energy loss at the Large Hadron Collider. Detailed measurements of a centrality-dependent dijet imbalance in 2.76 TeV Pb+Pb collisions using data collected by the ATLAS detector in the 2011 LHC heavy ion run are presented. The new analysis provides a measurement, fully corrected for detector effects to the particle level, of the centrality- and leading jet transverse momentum-(pT-) dependence of the dijet pT balance distribution, compared to an analogous measurement in pp collisions at the same center-of-mass energy.

  6. New results on fully corrected dijet asymmetry in Pb + Pb collisions with ATLAS

    NASA Astrophysics Data System (ADS)

    Perepelitsa, Dennis V.

    2016-12-01

    The phenomenon of events containing highly asymmetric dijet pairs is one of the most striking results in heavy ion physics, providing the first direct observation of in-medium jet energy loss at the Large Hadron Collider. Detailed measurements of a centrality-dependent dijet imbalance in 2.76 TeV Pb + Pb collisions using data collected by the ATLAS detector in the 2011 LHC heavy ion run are presented. The new analysis provides a measurement, fully corrected for detector effects to the particle level, of the centrality- and leading jet transverse momentum-(pT-) dependence of the dijet pT balance distribution, compared to an analogous measurement in pp collisions at the same center-of-mass energy.

  7. Z(0 power) boson measurement in the dimuon channel in PbPb collisions with the CMS experiment

    NASA Astrophysics Data System (ADS)

    Robles, Jorge A.

    The unprecedented center of mass energy available at the LHC offers unique opportunities for studying the properties of the strongly-interacting QCD matter created in PbPb collisions. This QCD matter is created at extreme temperatures, intermediate momentum fractions and large Q2 values. With its high precision, large acceptance for tracking, and a trigger scheme that allows analysis of each minimum-bias PbPb events, CMS is especially suited to measure high-p T dimuons, even in the high multiplicity environment of heavy-ion collisions. Electroweak probes are accessible for the first time in heavy-ion collisions. The Z0 boson is cleanly reconstructed in the dimuon channel with the CMS detector. Precise measurements of Z0 production in heavy-ion collisions can help to constrain the nuclear parton distribution functions (PDF) as well as serve as a standard candle of the initial state in PbPb collisions at the LHC energies. From the PbPb run at sNN = 2.76 TeV, the inclusive and differential measurements of the Z0 boson yield in the muon decay channel are presented. Making use of the pp reference run at the same center-of-mass energy, the nuclear modification factor, RAA, is calculated. The value of the RAA = 1.03 +/- 25(stat)[+4.0, -5.0](syst) is found to be consistent with the expectation that no modification is observed with respect to next-to-leading order pQCD calculations, scaled by the number of incoherent nucleon-nucleon collisions.

  8. Absorption and resonance Raman spectra of Pb2, Pb3 and Pb4 in xenon matrices

    NASA Technical Reports Server (NTRS)

    Stranz, D. D.; Khanna, R. K.

    1980-01-01

    Lead metal was vaporized and trapped in solid xenon at 12K. Electronic absorption and resonance Raman spectra were recorded of the resulting matrix, which was shown to contain Pb2, Pb3, and possibly Pb4 molecular species. The vibrational frequency for Pb2 is determined to be 108/cm for the ground state, with a dissociation energy of 82000/cm. Ad3h symmetry is indicated for the Pb3 species, with nu sub 1=117/cm and nu sub 2 = 96 /cm. The existence of Pb4 is suggested by a fundamental and overtone of 111/cm spacing.

  9. 210Pb dating

    USGS Publications Warehouse

    Swarzenski, Peter W.

    2014-01-01

    Roughly fifty years ago, a small group of scientists from Belgium and the United States, trying to better constrain ice sheet accumulation rates, attempted to apply what was then know about environmental lead as a potential geochronometer. Thus Goldberg (1963) developed the first principles of the 210Pb dating method, which was soon followed by a paper by Crozaz et al. (1964), who examined accumulation history of Antarctic snow using 210Pb. Shortly thereafter, Koide et al. (1972, 1973) adapted this technique to unravel sediment deposition and accumulation records in deep-sea environments. Serendipitously, they chose to work in a deep basin off California, where an independent and robust age model had already been developed. Krishanswami et al. (1971) extended the use of this technique to lacustrine deposits to reconstruct depositional histories of lake sediment, and maybe more importantly, contaminant inputs and burial. Thus, the powerful tool for dating recent (up to about one century old) sediment deposits was established and soon widely adopted. Today almost all oceanographic or limnologic studies that address recent depositional reconstructions employ 210Pb as one of several possible geochronometers (Andrews et al., 2009; Gale, 2009; Baskaran, 2011; Persson and Helms, 2011). This paper presents a short overview of the principles of 210Pb dating and provides a few examples that illustrate the utility of this tracer in contrasting depositional systems. Potential caveats and uncertainties (Appleby et al., 1986; Binford, 1990; Binford et al., 1993; Smith, 2001; Hancock et al., 2002) inherent to the use and interpretation of 210Pb-derived age-models are also introduced. Recommendations as to best practices for most reliable uses and reporting are presented in the summary.

  10. Outer Sphere Adsorption of Pb(II)EDTA on Goethite

    SciTech Connect

    Bargar, John R

    1999-07-16

    FTIR and EXAFS spectroscopic measurements were performed on Pb(II)EDTA adsorbed on goethite as functions of pH (4-6), Pb(II)EDTA concentration (0.11 {micro}M - 72 {micro}M), and ionic strength (16 {micro}M - 0.5M). FTIR measurements show no evidence for carboxylate-Fe(III) bonding or protonation of EDTA at Pb:EDTA = 1:1. Both FTIR and EXAFS measurements suggest that EDTA acts as a hexadentate ligand, with all four of its carboxylate and both amine groups bonded to Pb(II). No evidence was observed for inner-sphere Pb(II)-goethite bonding at Pb:EDTA = 1:1. Hence, the adsorbed complexes should have composition Pb(II)EDTA{sup 2{minus}}. Since substantial uptake of PbEDTA(II){sup 2{minus}} occurred in the samples, we infer that Pb(II)EDTA{sup 2{minus}} adsorbed as outer-sphere complexes and/or as complexes that lose part of their solvation shells and hydrogen bond directly to goethite surface sites. We propose the term ''hydration-sphere'' for the latter type of complexes because they should occupy space in the primary hydration spheres of goethite surface functional groups, and to distinguish this mode of sorption from common structural definitions of inner- and outer-sphere complexes. The similarity of Pb(II) uptake isotherms to those of other divalent metal ions complexed by EDTA suggests that they too adsorb by these mechanisms. The lack of evidence for inner-sphere EDTA-Fe(III) bonding suggests that previously proposed metal-ligand - promoted dissolution mechanisms should be modified, specifically to account for the presence of outer-sphere precursor species.

  11. Large Pb Isotopic Variations in Pre-shield Stage Kilauea Magmas

    NASA Astrophysics Data System (ADS)

    Shimizu, N.; Sisson, T. W.; Layne, G. D.

    2001-12-01

    Volcaniclastic sediments found from a scarp below the mid-slope bench at water depths between 3,000 and 5,000m offshore south of Kilauea, Hawaii, contain abundant glass shards that represent submarine eruptions from an ancestral Kilauea volcano (Lipman et al., 2000; Sisson et al., 2001). Their major element compositions range from tholeiites/transitional basalts to alkali basalts to basanites and nephelinites. Pb isotopic compositions of the glasses were determined using a Cameca IMS 1270 ion microprobe at Woods Hole Oceanographic Institution. Replicate analyses of basalt glass stnadards show that 208Pb/206Pb and 207Pb/206Pb ratios could be determined in basalt glasses with external precisions better than 0.15% (1σ ) in a spot of 30 μ m across. Results show that: (1) a range of Pb isotopic compositions observed in the glasses are much greater than the entire spectrum of the Hawaiian volcanics. 208Pb/206Pb ratios vary from 2.099 to 2.004 and 207Pb/206Pb from 0.864 to 0.805. (2) There appear to be three distinct compositions, with each being represented by diverse magmatic compositions. There appears to be no significant mixing between them, and they form a linear array in a 208/206 vs 207/206 space, encompassing the entire Hawaiian Pb isotopic composition array. The least radiogenic composition (208Pb/206Pb=2.099, 207Pb/206Pb=0.864) in on an extension of the Honolulu Volcanics array, whereas the most radiogenic composition (208Pb/206Pb=2.004, 207Pb/206Pb=0.805) is far more radiogenic than any known Hawaiian magmas. The intermediate composition (208Pb/206Pb=2.041, 207Pb/206Pb=0.827) is close to the "Kea" endmember composition proposed by Eiler et al. (1998). The ancestral Kilauea nephelinites are derived from two distinct sources with radiogenic compositions and are quite distinct from all other Hawaiian post-erosional nephelinites. It is evident that diverse sources were tapped during the pre-shield stage Kilauea magmatism, and that melts erupted without mixing

  12. [Immobilization of heavy metal Pb2+ with geopolymer].

    PubMed

    Jin, Man-tong; Jin, Zan-fang; Huang, Cai-ju

    2011-05-01

    A series of geopolymers were synthesized by mixing metakaolinite, water glass, sodium hydroxide and water, and the lead ion solidification experiments were performed with the geopolymer. Then, the immobilization efficiency was characterized by monitoring the leaching concentration and compressive strength of solidified products. Additionally, the structure and properties of the solidified products were studied by X-ray diffraction (XRD), scan electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. Furthermore, based on the analysis of immobilization efficiency, microstructure and mineral structure, the difference between geopolymer and cement on the performance of immobilizing heavy metals was discussed. The results of lead ion immobilization experiments showed that over 99.7% of heavy metal was captured by the geopolymer as the doping concentration of lead ion was less than 3%. Meanwhile, the compressive strength of the solidified product ranged from 40 MPa to 50 MPa. Furthermore, by using the same Pb2+ concentration, the geopolymer showed higher compressive strength and lower leaching concentration compared to the cement. Because lead ion participated in constitution of structure of geopolymer, or Pb2+ was adsorbed by the aluminium ions on the geopolymeric skeleton and held in geopolymer. However, cement mainly solidified lead ion by physical encapsulation and adsorption mechanism. Therefore, both from the compressive strength and leaching concentration and from the microstructure characterization as well as the mechanism of the geopolymerization reaction, the geopolymer has more advantages in immobilizing Pb2+ than the cement.

  13. Continuous biosorption of Pb/Cu and Pb/Cd in fixed-bed column using algae Gelidium and granulated agar extraction algal waste.

    PubMed

    Vilar, Vítor J P; Loureiro, José M; Botelho, Cidália M S; Boaventura, Rui A R

    2008-06-15

    Continuous metal ions biosorption from Pb/Cu and Pb/Cd solutions onto seaweed Gelidium sesquipedale and a composite material prepared from an industrial algal waste was performed in a packed bed column. A binary Langmuir equation describes well the equilibrium data and indicates a good adsorption capacity. In the sorption process, Cd and Cu break through the column faster than Pb due to its lower affinity for the biosorbent. An overshoot in the outlet Cd concentration was observed and explained by competitive adsorption between Pb and Cd, whereby the higher Pb affinity for the biosorbent displaces bound Cd ions. A small overshoot happens for Cu adsorption in the presence of Pb ions. Desorption using 0.1 M HNO3 as eluant, was 100% effective. A mass transfer model for the adsorption and desorption processes, considering an external and intraparticle film resistance, adequately simulates the column performance. A binary Langmuir equation was used to describe equilibrium for the saturation process and a mass action law for the desorption process. Elution process is defined as an ion exchange mechanism, between protons and metal ions.

  14. Bose-Einstein correlations in pp and PbPb collisions with ALICE at the LHC

    ScienceCinema

    None

    2016-07-12

    We report on the results of identical pion femtoscopy at the LHC. The Bose-Einstein correlation analysis was performed on the large-statistics ALICE p+p at sqrt{s}= 0.9 TeV and 7 TeV datasets collected during 2010 LHC running and the first Pb+Pb dataset at sqrt{s_NN}= 2.76 TeV. Detailed pion femtoscopy studies in heavy-ion collisions have shown that emission region sizes ("HBT radii") decrease with increasing pair momentum, which is understood as a manifestation of the collective behavior of matter. 3D radii were also found to universally scale with event multiplicity. In p+p collisions at 7 TeV one measures multiplicities which are comparable with those registered in peripheral AuAu and CuCu collisions at RHIC, so direct comparisons and tests of scaling laws are now possible. We show the results of double-differential 3D pion HBT analysis, as a function of multiplicity and pair momentum. The results for two collision energies are compared to results obtained in the heavy-ion collisions at similar multiplicity and p+p collisions at lower energy. We identify the relevant scaling variables for the femtoscopic radii and discuss the similarities and differences to results from heavy-ions. The observed trends give insight into the soft particle production mechanism in p+p collisions and suggest that a self-interacting collective system may be created in sufficiently high multiplicity events. First results for the central Pb+Pb collisions are also shown. A significant increase of the reaction zone volume and lifetime in comparison to RHIC is observed. Signatures of collective hydrodynamics-like behavior of the system are also apparent, and are compared to model predictions.

  15. Bose-Einstein correlations in pp and PbPb collisions with ALICE at the LHC

    SciTech Connect

    2011-02-15

    We report on the results of identical pion femtoscopy at the LHC. The Bose-Einstein correlation analysis was performed on the large-statistics ALICE p+p at sqrt{s}= 0.9 TeV and 7 TeV datasets collected during 2010 LHC running and the first Pb+Pb dataset at sqrt{s_NN}= 2.76 TeV. Detailed pion femtoscopy studies in heavy-ion collisions have shown that emission region sizes ("HBT radii") decrease with increasing pair momentum, which is understood as a manifestation of the collective behavior of matter. 3D radii were also found to universally scale with event multiplicity. In p+p collisions at 7 TeV one measures multiplicities which are comparable with those registered in peripheral AuAu and CuCu collisions at RHIC, so direct comparisons and tests of scaling laws are now possible. We show the results of double-differential 3D pion HBT analysis, as a function of multiplicity and pair momentum. The results for two collision energies are compared to results obtained in the heavy-ion collisions at similar multiplicity and p+p collisions at lower energy. We identify the relevant scaling variables for the femtoscopic radii and discuss the similarities and differences to results from heavy-ions. The observed trends give insight into the soft particle production mechanism in p+p collisions and suggest that a self-interacting collective system may be created in sufficiently high multiplicity events. First results for the central Pb+Pb collisions are also shown. A significant increase of the reaction zone volume and lifetime in comparison to RHIC is observed. Signatures of collective hydrodynamics-like behavior of the system are also apparent, and are compared to model predictions.

  16. In-medium Υ suppression and feed-down in UU and PbPb collisions

    NASA Astrophysics Data System (ADS)

    Hoelck, J.; Nendzig, F.; Wolschin, G.

    2017-02-01

    The suppression of Υ mesons in the hot quark-gluon plasma (QGP) versus reduced feed-down is investigated in UU collisions at energies currently available at the BNL Relativistic Heavy Ion Collider and PbPb collisions at energies available at the CERN Large Hadron Collider. Our centrality- and pT-dependent model encompasses screening, collisional damping, and gluodissociation in the QGP. For Υ (1 S ) it is in agreement with data from both STAR and CMS collaborations provided the relativistic Doppler effect and the reduced feed-down from the Υ (n S ) and χb(n P ) states are properly considered. At both energies, most of the Υ (1 S ) suppression is found to be due to reduced feed-down, whereas most of the Υ (2 S ) suppression is caused by hot-medium effects. The importance of the latter increases with energy. The pT dependence is flat due to the relativistic Doppler effect and reduced feed-down. We predict the Υ (1 S ) suppression in PbPb at √{sN N}=5.02 T e V .

  17. Measurement of charged jet suppression in Pb-Pb collisions at = 2 .76 TeV

    NASA Astrophysics Data System (ADS)

    Abelev, B.; Adam, J.; Adamová, D.; Aggarwal, M. M.; Rinella, G. Aglieri; Agnello, M.; Agocs, A. G.; Agostinelli, A.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Masoodi, A. Ahmad; Ahmed, I.; Ahn, S. U.; Ahn, S. A.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Prado, C. Alves Garcia; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bairathi, V.; Bala, R.; Baldisseri, A.; Pedrosa, F. Baltasar Dos Santos; Bán, J.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batyunya, B.; Batzing, P. C.; Baumann, C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Berger, M. E.; Bergognon, A. A. E.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Boehmer, F. V.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bornschein, J.; Bossú, F.; Botje, M.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Caliva, A.; Villar, E. Calvo; Camerini, P.; Roman, V. Canoa; Carena, F.; Carena, W.; Carminati, F.; Díaz, A. Casanova; Castellanos, J. Castillo; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Sanchez, C. Ceballos; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Barroso, V. Chibante; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Balbastre, G. Conesa; del Valle, Z. Conesa; Connors, M. E.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Morales, Y. Corrales; Cortese, P.; Maldonado, I. Cortés; Cosentino, M. R.; Costa, F.; Crochet, P.; Albino, R. Cruz; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dang, R.; Danu, A.; Das, D.; Das, I.; Das, K.; Das, S.; Dash, A.; Dash, S.; De, S.; Delagrange, H.; Deloff, A.; Dénes, E.; D'Erasmo, G.; de Barros, G. O. V.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; de Rooij, R.; Corchero, M. A. Diaz; Dietel, T.; Divià, R.; Di Bari, D.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Gimenez, D. Domenicis; Dönigus, B.; Dordic, O.; Dorheim, S.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Majumdar, A. K. Dutta; Elia, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Téllez, A. Fernández; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Girard, M. Fusco; Gaardhøje, J. J.; Gagliardi, M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez, R.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Graczykowski, L. K.; Grajcarek, R.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Khan, K. H.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hanratty, L. D.; Hansen, A.; Harris, J. W.; Hartmann, H.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Hayrapetyan, A.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Corral, G. Herrera; Hess, B. A.; Hetland, K. F.; Hicks, B.; Hippolyte, B.; Hladky, J.; Hristov, P.; Huang, M.; Humanic, T. J.; Hutter, D.; Hwang, D. S.; Ianigro, J.-C.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Incani, E.; Innocenti, G. M.; Ionita, C.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Ivanytskyi, O.; Jacholkowski, A.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, S.; Bustamante, R. T. Jimenez; Jones, P. G.; Jung, H.; Jusko, A.; Kalcher, S.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Uysal, A. Karasu; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kebschull, U.; Keidel, R.; Ketzer, B.; Khan, M. Mohisin.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D. W.; Kim, D. J.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Köhler, M. K.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Konevskikh, A.; Kovalenko, V.; Kowalski, M.; Kox, S.; Meethaleveedu, G. Koyithatta; Kral, J.; Králik, I.; Kramer, F.; Kravčáková, A.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Krus, M.; Kryshen, E.; Krzewicki, M.; Kučera, V.; Kucheriaev, Y.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kulakov, I.; Kumar, J.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kushpil, V.; Kweon, M. J.; Kwon, Y.; de Guevara, P. Ladron; Fernandes, C. Lagana; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; La Pointe, S. L.; La Rocca, P.; Lea, R.; Lee, G. R.; Legrand, I.; Lehnert, J.; Lemmon, R. C.; Lenhardt, M.; Lenti, V.; Leogrande, E.; Leoncino, M.; Monzón, I. León; Lévai, P.; Li, S.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Lohner, D.; Loizides, C.; Lopez, X.; Torres, E. López; Lu, X.-G.; Luettig, P.; Lunardon, M.; Luo, J.; Luparello, G.; Luzzi, C.; Gago, A. M.; Jacobs, P. M.; Ma, R.; Maevskaya, A.; Mager, M.; Mahapatra, D. P.; Maire, A.; Malaev, M.; Cervantes, I. Maldonado; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manceau, L.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Marín, A.; Markert, C.; Marquard, M.; Martashvili, I.; Martin, N. A.; Martinengo, P.; Martínez, M. I.; García, G. Martínez; Blanco, J. Martin; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazumder, R.; Mazzoni, M. A.; Meddi, F.; Menchaca-Rocha, A.; Pérez, J. Mercado; Meres, M.; Miake, Y.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miskowiec, D.; Mitu, C. M.; Mlynarz, J.; Mohanty, B.; Molnar, L.; Zetina, L. Montaño; Montes, E.; Morando, M.; De Godoy, D. A. Moreira; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Muhuri, S.; Mukherjee, M.; Müller, H.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Nattrass, C.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nicassio, M.; Niculescu, M.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Nilsen, B. S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Nyanin, A.; Nyatha, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Okatan, A.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Onderwaater, J.; Oppedisano, C.; Velasquez, A. Ortiz; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Pachmayer, Y.; Pachr, M.; Pagano, P.; Paić, G.; Painke, F.; Pajares, C.; Pal, S. K.; Palmeri, A.; Pant, D.; Papikyan, V.; Pappalardo, G. S.; Park, W. J.; Passfeld, A.; Patalakha, D. I.; Paticchio, V.; Paul, B.; Pawlak, T.; Peitzmann, T.; Da Costa, H. Pereira; De Oliveira Filho, E. Pereira; Peresunko, D.; Lara, C. E. Pérez; Peryt, W.; Pesci, A.; Pestov, Y.; Petráček, V.; Petran, M.; Petris, M.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Ploskon, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Pohjoisaho, E. H. O.; Polichtchouk, B.; Poljak, N.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, V.; Potukuchi, B.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Rauf, A. W.; Razazi, V.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reicher, M.; Reidt, F.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rivetti, A.; Rocco, E.; Cahuantzi, M. Rodríguez; Manso, A. Rodriguez; Røed, K.; Rogochaya, E.; Rohni, S.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossegger, S.; Rossi, A.; Roy, A.; Roy, C.; Roy, P.; Montero, A. J. Rubio; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, R.; Sahu, P. K.; Saini, J.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Castro, X. Sanchez; Rodríguez, F. J. Sánchez; Šándor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, P. A.; Scott, R.; Segato, G.; Seger, J. E.; Selyuzhenkov, I.; Seo, J.; Serradilla, E.; Sevcenco, A.; Shabetai, A.; Shabratova, G.; Shahoyan, R.; Shangaraev, A.; Sharma, N.; Sharma, S.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Skjerdal, K.; Smakal, R.; Smirnov, N.; Snellings, R. J. M.; Søgaard, C.; Soltz, R.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Spacek, M.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Stolpovskiy, M.; Strmen, P.; Suaide, A. A. P.; Vasquez, M. A. Subieta; Sugitate, T.; Suire, C.; Suleymanov, M.; Sultanov, R.; Šumbera, M.; Susa, T.; Symons, T. J. M.; de Toledo, A. Szanto; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tangaro, M. A.; Takaki, J. D. Tapia; Peloni, A. Tarantola; Martinez, A. Tarazona; Tauro, A.; Muñoz, G. Tejeda; Telesca, A.; Terrevoli, C.; Ter Minasyan, A.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Torii, H.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ulery, J.; Ullaland, K.; Ulrich, J.; Uras, A.; Usai, G. L.; Vajzer, M.; Vala, M.; Palomo, L. Valencia; Vallero, S.; Vyvre, P. Vande; Vannucci, L.; Van Hoorne, J. W.; van Leeuwen, M.; Vargas, A.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vechernin, V.; Veldhoen, M.; Venaruzzo, M.; Vercellin, E.; Limón, S. Vergara; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Baillie, O. Villalobos; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wagner, V.; Wang, M.; Wang, Y.; Watanabe, D.; Weber, M.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Xiang, C.; Yaldo, C. G.; Yamaguchi, Y.; Yang, H.; Yang, P.; Yang, S.; Yano, S.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yoo, I.-K.; Yushmanov, I.; Zaccolo, V.; Zach, C.; Zaman, A.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, F.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhao, C.; Zhou, D.; Zhou, F.; Zhou, Y.; Zhu, H.; Zhu, J.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zoccarato, Y.; Zynovyev, M.; Zyzak, M.

    2014-03-01

    A measurement of the transverse momentum spectra of jets in Pb-Pb collisions at = 2 .76TeV is reported. Jets are reconstructed from charged particles using the anti- k T jet algorithm with jet resolution parameters R of 0 .2 and 0 .3 in pseudo-rapidity | η| < 0 .5. The transverse momentum p T of charged particles is measured down to 0 .15 GeV/ c which gives access to the low p T fragments of the jet. Jets found in heavy-ion collisions are corrected event-by-event for average background density and on an inclusive basis (via unfolding) for residual background fluctuations and detector effects. A strong suppression of jet production in central events with respect to peripheral events is observed. The suppression is found to be similar to the suppression of charged hadrons, which suggests that substantial energy is radiated at angles larger than the jet resolution parameter R = 0 .3 considered in the analysis. The fragmentation bias introduced by selecting jets with a high p T leading particle, which rejects jets with a soft fragmentation pattern, has a similar effect on the jet yield for central and peripheral events. The ratio of jet spectra with R = 0 .2 and R = 0 .3 is found to be similar in Pb-Pb and simulated PYTHIA pp events, indicating no strong broadening of the radial jet structure in the reconstructed jets with R < 0 .3. [Figure not available: see fulltext.

  18. What causes Psi suppression in Pb + Pb Collisions?

    SciTech Connect

    Vogt, R.

    1998-01-07

    A reexamination of hadronic comover scattering indicates that this mechanism cannot explain the observed {psi} suppression in Pb+Pb interactions. The possibility of quark-gluon plasma formation is therefore considered. Implications for RHIC and LHC are also discussed. The agreement of the NA50 Pb+Pb data with naive comover models is reassessed. Previous work is reanalyzed and expanded to include feeding of the {psi}' and {chi}{sub c} states to the {psi}. The effect of color screening is also investigated. Only the {psi}/Drell-Yan (DY) ratios are discussed here.

  19. Rapid removal and recovery of Pb(II) from wastewater by magnetic nanoadsorbents.

    PubMed

    Nassar, Nashaat N

    2010-12-15

    Iron oxide nanoadsorbents are cost-effective adsorbents that provide high adsorption capacity, rapid adsorption rate and simple separation and regeneration. In this study, Fe(3)O(4) nanoadsorbents have been employed for the removal of Pb(II) ions from aqueous solutions by a batch-adsorption technique. The effects of contact time, initial concentration of Pb(II) ions, temperature, solution pH and coexisting ions on the amount of Pb(II) adsorbed have been investigated. Pb(II) adsorption was fast, and equilibrium was achieved within 30 min. The amount of Pb(II) adsorbed increased as temperature increased, suggesting an endothermic adsorption. The optimal pH value for Pb(II) adsorption was around 5.5. Furthermore, the addition of coexisting cations such as Ca(2+), Ni(2+), Co(2+), and Cd(2+) has no remarkable influence on Pb(II) removal efficiency. The adsorption equilibrium data fitted very well to Langmuir and Freundlich adsorption isotherm models. The thermodynamics of Pb(II) adsorption onto the Fe(3)O(4) nanoadsorbents indicated that the adsorption was spontaneous, endothermic and physical in nature. The desorption and regeneration studies have proven that Fe(3)O(4) nanoadsorbents can be employed repeatedly without impacting its adsorption capacity.

  20. Pb tolerance and bioaccumulation by the mycelia of Flammulina velutipes in artificial enrichment medium.

    PubMed

    Zhu, Changwei; Li, Zhengpeng; Li, Decai; Xin, Yan

    2014-01-01

    Mushrooms have the ability to accumulate high concentrations of heavy metals, which gives them potential for use as bioremediators of environmental contamination. The Pb(2+) tolerance and accumulation ability of living mycelia of Flammulina velutipes were studied in this work. Mycelial growth was inhibited when exposed to 1 mM Pb(2+). The colony diameter on solid medium decreased almost 10% compared with the control. Growth decreased almost 50% when the Pb(2+) concentration increased to 4 mM in the medium, with the colony diameter decreasing from 80 mm to 43.4 mm, and dry biomass production in liquid cultures decreasing from 9.23±0.55 to 4.27±0.28 g/L. Lead ions were efficiently accumulated in the mycelia. The amount of Pb(2+) in the mycelia increased with increasing Pb(2+) concentration in the medium, with the maximum concentration up to 707±91.4 mg/kg dry weight. We also show evidence that a large amount of the Pb(2+) was adsorbed to the mycelial surface, which may indicate that an exclusion mechanism is involved in Pb tolerance. These results demonstrate that F. velutipes could be useful as a remediator of heavy metal contamination because of the characteristics of high tolerance to Pb(2+) and efficient accumulation of Pb(2+) ions by the mycelia.

  1. Adsorption Behavior of Pb(II) Onto Potassium Polytitanate Nanofibres.

    PubMed

    Shahid, Mohammad; Tiling, Leonard D; El Saliby, Ibrahim; McDonagh, Andrew; Kim, Jong-Beom; Kim, Jong-Ho; Shon, Ho Kyong

    2016-02-01

    Potassium polytitanate nanofibres prepared by a hydrothermal method were investigated for their possible application in removing toxic metals from aqueous solution. Particular attention was paid to employing the titanate as a novel effective adsorbent for the removal of Pb(II). Batch adsorption experiments demonstrated that the adsorption was influenced by various conditions such as solution pH, adsorbent dosage and initial Pb(II) concentration. The results showed that the adsorption rate was faster in the first 5 min and equilibrium was achieved after 180 min. The maximum amount of adsorption was detected at pH 5. Potassium titanate showed much higher adsorption capacity compared to P25. The kinetic studies indicated that the adsorption of Pb(II) onto titanate best fit the pseudo-second-order kinetic model. FTIR spectra revealed that the hydroxyl groups in titanate were responsible for Pb(II) adsorption. The principal mechanism of the adsorption of Pb(II) in the present study is attributed to both ion exchange and oxygen bonding. The adsorption-desorption results demonstrated that the titanate could be readily regenerated after adsorption. Therefore, the present titanate exhibits great potential for the removal of Pb(II) from wastewater.

  2. In-Situ Geochronology: Extending Larims to Pb-Pb Isocrhons

    NASA Astrophysics Data System (ADS)

    Whitaker, Tom; Anderson, Scott; Levine, Jonathan

    2016-04-01

    HfO2, which have been known to cause problems in Inductively Coupled Plasma Mass Spectrometry (ICPMS) of Pb isotopes [3]. LARIMS enables a simple check for interfering species by detuning the laser wavelength off the Pb resonance. The resonance ionization signal for the desired species should disappear when the resonance laser is detuned. Any residual signal is due to an interfering species. Three resonance ionization laser schemes were examined for initial LARIMS analysis of Pb: 1) a 2+1 scheme that uses λ1 = λ2 = 450.3 nm (the first transition in this scheme is a simultaneous two-photon excitation), 2) a 1+1+1 scheme using λ1 = 283.3 nm, λ2 = 600.2 nm and λ3 < 1270 nm, and 3) a 1+1 scheme that uses λ1 = λ2 = 283.3 nm. One-photon resonance excitations have cross-sections that are orders of magnitude greater than either two-photon resonance excitations or photoionization processes. Therefore, although schemes 1) and 3) have the advantage of requiring fewer lasers, they also require high-intensity blue or UV wavelengths. This adversely affects the selectivity of the resonance ionization process. Scheme 2) uses low-intensity UV and visible wavelengths and a high-intensity IR wavelength. This is the preferred scheme and was selected for our initial Pb LARIMS measurements. Preliminary Results: A laser system capable of producing the required wavelengths for scheme 2) was assembled. A Nd:YAG laser pumped dye laser produces 566.6 nm light, which is frequency-doubled in a beta barium borate crystal. A second Nd:YAG pumped dye laser produces the 600.2 nm light for the second resonance in scheme 2). The fundamental of one of the Nd:YAG lasers (1064 nm) is used for the final photoionization step. We focus the fifth harmonic (213 nm) of another Nd:YAG laser onto the sample to ablate material off the surface. Electric fields suppress the ions created in the ablation process, preventing these ions from entering the mass spectrometer. The three resonance ionization laser

  3. Strangeness production in p–Pb and Pb–Pb collisions with ALICE at LHC

    NASA Astrophysics Data System (ADS)

    Colella, Domenico; ALICE Collaboration

    2017-01-01

    The main goal of the ALICE experiment is to study the properties of the hot and dense medium created in ultra-relativistic heavy-ion collisions. The measurement of the (multi-)strange particles is an important tool to understand particle production mechanisms and the dynamics of the quark-gluon plasma (QGP). We report on the production of in proton-lead (p–Pb) collisions at and lead-lead (Pb–Pb) collisions at measured by ALICE at the LHC. The comparison of the hyperon-to-pion ratios in the two colliding systems may provide insight into strangeness production mechanisms, while the comparison of the nuclear modification factors helps to determine the contribution of initial state effects and the suppression from strange quark energy loss in nuclear matter.

  4. Mutual effects of Pb(II) and humic acid adsorption on multiwalled carbon nanotubes/polyacrylamide composites from aqueous solutions.

    PubMed

    Yang, Shubin; Hu, Jun; Chen, Changlun; Shao, Dadong; Wang, Xiangke

    2011-04-15

    This paper examines the adsorption of Pb(II) and a natural organic macromolecular compound (humic acid, HA) on polyacrylamide (PAAM) -grafted multiwalled carbon nanotubes (denoted as MWCNTs/PAAM), prepared by an N(2)-plasma-induced grafting technique. The mutual effects of HA/Pb(II) on Pb(II) and HA adsorption on MWCNTs/PAAM, as well as the effects of pH, ionic strength, HA/Pb(II) concentrations, and the addition sequences of HA/Pb(II) were investigated. The results indicated that Pb(II) and HA adsorption were strongly dependent on pH and ionic strength. The presence of HA led to a strong increase in Pb(II) adsorption at low pH and a decrease at high pH, whereas the presence of Pb(II) led to an increase in HA adsorption. The adsorbed HA contributed to modification of adsorbent surface properties and partial complexation of Pb(II) with the adsorbed HA. Different effects of HA/Pb(II) concentrations and addition sequences on Pb(II) and HA adsorption were observed, indicating different adsorption mechanisms. After adsorption of HA on MWCNTs/PAAM, the adsorption capacity for Pb(II) was enhanced at pH 5.0; the adsorption capacity for HA was also enhanced after Pb(II) adsorption on MWCNTs/PAAM. These results are important for estimating and optimizing the removal of metal ions and organic substances by use of MWCNT/PAAM composites.

  5. Observation of sequential Υ suppression in PbPb collisions.

    PubMed

    Chatrchyan, S; Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Aguilo, E; Bergauer, T; Dragicevic, M; Erö, J; Fabjan, C; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hörmann, N; Hrubec, J; Jeitler, M; Kiesenhofer, W; Knünz, V; Krammer, M; Krätschmer, I; Liko, D; Mikulec, I; Pernicka, M; Rahbaran, B; Rohringer, C; Rohringer, H; Schöfbeck, R; Strauss, J; Taurok, A; Waltenberger, W; Walzel, G; Widl, E; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Bansal, S; Cornelis, T; De Wolf, E A; Janssen, X; Luyckx, S; Mucibello, L; Ochesanu, S; Roland, B; Rougny, R; Selvaggi, M; Staykova, Z; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Blekman, F; Blyweert, S; D'Hondt, J; Gonzalez Suarez, R; Kalogeropoulos, A; Maes, M; Olbrechts, A; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Clerbaux, B; De Lentdecker, G; Dero, V; Gay, A P R; Hreus, T; Léonard, A; Marage, P E; Reis, T; Thomas, L; Vander Velde, C; Vanlaer, P; Wang, J; Adler, V; Beernaert, K; Cimmino, A; Costantini, S; Garcia, G; Grunewald, M; Klein, B; Lellouch, J; Marinov, A; McCartin, J; Ocampo Rios, A A; Ryckbosch, D; Strobbe, N; Thyssen, F; Tytgat, M; Verwilligen, P; Walsh, S; Yazgan, E; Zaganidis, N; Basegmez, S; Bruno, G; Castello, R; Ceard, L; Delaere, C; du Pree, T; Favart, D; Forthomme, L; Giammanco, A; Hollar, J; Lemaitre, V; Liao, J; Militaru, O; Nuttens, C; Pagano, D; Pin, A; Piotrzkowski, K; Schul, N; Vizan Garcia, J M; Beliy, N; Caebergs, T; Daubie, E; Hammad, G H; Alves, G A; Correa Martins, M; De Jesus Damiao, D; Martins, T; Pol, M E; Souza, M H G; Aldá, W L; Carvalho, W; Custódio, A; Da Costa, E M; De Oliveira Martins, C; Fonseca De Souza, S; Matos Figueiredo, D; Mundim, L; Nogima, H; Oguri, V; Prado Da Silva, W L; Santoro, A; Soares Jorge, L; Sznajder, A; Anjos, T S; Bernardes, C A; Dias, F A; Fernandez Perez Tomei, T R; Gregores, E M; Lagana, C; Marinho, F; Mercadante, P G; Novaes, S F; Padula, Sandra S; Genchev, V; Iaydjiev, P; Piperov, S; Rodozov, M; Stoykova, S; Sultanov, G; Tcholakov, V; Trayanov, R; Vutova, M; Dimitrov, A; Hadjiiska, R; Kozhuharov, V; Litov, L; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Jiang, C H; Liang, D; Liang, S; Meng, X; Tao, J; Wang, J; Wang, X; Wang, Z; Xiao, H; Xu, M; Zang, J; Zhang, Z; Asawatangtrakuldee, C; Ban, Y; Guo, S; Guo, Y; Li, W; Liu, S; Mao, Y; Qian, S J; Teng, H; Wang, D; Zhang, L; Zhu, B; Zou, W; Avila, C; Gomez, J P; Gomez Moreno, B; Osorio Oliveros, A F; Sanabria, J C; Godinovic, N; Lelas, D; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Kovac, M; Brigljevic, V; Duric, S; Kadija, K; Luetic, J; Morovic, S; Attikis, A; Galanti, M; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Finger, M; Finger, M; Assran, Y; Elgammal, S; Ellithi Kamel, A; Khalil, S; Mahmoud, M A; Radi, A; Kadastik, M; Müntel, M; Raidal, M; Rebane, L; Tiko, A; Eerola, P; Fedi, G; Voutilainen, M; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Peltola, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Ungaro, D; Wendland, L; Banzuzi, K; Karjalainen, A; Korpela, A; Tuuva, T; Besancon, M; Choudhury, S; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Malcles, J; Millischer, L; Nayak, A; Rander, J; Rosowsky, A; Shreyber, I; Titov, M; Baffioni, S; Beaudette, F; Benhabib, L; Bianchini, L; Bluj, M; Broutin, C; Busson, P; Charlot, C; Daci, N; Dahms, T; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Mironov, C; Naranjo, I N; Nguyen, M; Ochando, C; Paganini, P; Sabes, D; Salerno, R; Sirois, Y; Veelken, C; Zabi, A; Agram, J-L; Andrea, J; Bloch, D; Bodin, D; Brom, J-M; Cardaci, M; Chabert, E C; Collard, C; Conte, E; Drouhin, F; Ferro, C; Fontaine, J-C; Gelé, D; Goerlach, U; Juillot, P; Le Bihan, A-C; Van Hove, P; Fassi, F; Mercier, D; Beauceron, S; Beaupere, N; Bondu, O; Boudoul, G; Chasserat, J; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fay, J; Gascon, S; Gouzevitch, M; Ille, B; Kurca, T; Lethuillier, M; Mirabito, L; Perries, S; Sordini, V; Tschudi, Y; Verdier, P; Viret, S; Tsamalaidze, Z; Anagnostou, G; Beranek, S; Edelhoff, M; Feld, L; Heracleous, N; Hindrichs, O; Jussen, R; Klein, K; Merz, J; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Sprenger, D; Weber, H; Wittmer, B; Zhukov, V; Ata, M; Caudron, J; Dietz-Laursonn, E; Duchardt, D; Erdmann, M; Fischer, R; Güth, A; Hebbeker, T; Heidemann, C; Hoepfner, K; Klingebiel, D; Kreuzer, P; Magass, C; Merschmeyer, M; Meyer, A; Olschewski, M; Papacz, P; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Steggemann, J; Teyssier, D; Weber, M; Bontenackels, M; Cherepanov, V; Flügge, G; Geenen, H; Geisler, M; Haj Ahmad, W; Hoehle, F; Kargoll, B; Kress, T; Kuessel, Y; Nowack, A; Perchalla, L; Pooth, O; Sauerland, P; Stahl, A; Aldaya Martin, M; Behr, J; Behrenhoff, W; Behrens, U; Bergholz, M; Bethani, A; Borras, K; Burgmeier, A; Cakir, A; Calligaris, L; Campbell, A; Castro, E; Costanza, F; Dammann, D; Diez Pardos, C; Eckerlin, G; Eckstein, D; Flucke, G; Geiser, A; Glushkov, I; Gunnellini, P; Habib, S; Hauk, J; Hellwig, G; Jung, H; Kasemann, M; Katsas, P; Kleinwort, C; Kluge, H; Knutsson, A; Krämer, M; Krücker, D; Kuznetsova, E; Lange, W; Lohmann, W; Lutz, B; Mankel, R; Marfin, I; Marienfeld, M; Melzer-Pellmann, I-A; Meyer, A B; Mnich, J; Mussgiller, A; Naumann-Emme, S; Olzem, J; Perrey, H; Petrukhin, A; Pitzl, D; Raspereza, A; Ribeiro Cipriano, P M; Riedl, C; Ron, E; Rosin, M; Salfeld-Nebgen, J; Schmidt, R; Schoerner-Sadenius, T; Sen, N; Spiridonov, A; Stein, M; Walsh, R; Wissing, C; Autermann, C; Blobel, V; Draeger, J; Enderle, H; Erfle, J; Gebbert, U; Görner, M; Hermanns, T; Höing, R S; Kaschube, K; Kaussen, G; Kirschenmann, H; Klanner, R; Lange, J; Mura, B; Nowak, F; Peiffer, T; Pietsch, N; Rathjens, D; Sander, C; Schettler, H; Schleper, P; Schlieckau, E; Schmidt, A; Schröder, M; Schum, T; Seidel, M; Sola, V; Stadie, H; Steinbrück, G; Thomsen, J; Vanelderen, L; Barth, C; Berger, J; Böser, C; Chwalek, T; De Boer, W; Descroix, A; Dierlamm, A; Feindt, M; Guthoff, M; Hackstein, C; Hartmann, F; Hauth, T; Heinrich, M; Held, H; Hoffmann, K H; Honc, S; Katkov, I; Komaragiri, J R; Lobelle Pardo, P; Martschei, D; Mueller, S; Müller, Th; Niegel, M; Nürnberg, A; Oberst, O; Oehler, A; Ott, J; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Röcker, S; Scheurer, A; Schilling, F-P; Schott, G; Simonis, H J; Stober, F M; Troendle, D; Ulrich, R; Wagner-Kuhr, J; Wayand, S; Weiler, T; Zeise, M; Daskalakis, G; Geralis, T; Kesisoglou, S; Kyriakis, A; Loukas, D; Manolakos, I; Markou, A; Markou, C; Mavrommatis, C; Ntomari, E; Gouskos, L; Mertzimekis, T J; Panagiotou, A; Saoulidou, N; Evangelou, I; Foudas, C; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Bencze, G; Hajdu, C; Hidas, P; Horvath, D; Sikler, F; Veszpremi, V; Vesztergombi, G; Zsigmond, A; Beni, N; Czellar, S; Molnar, J; Palinkas, J; Szillasi, Z; Karancsi, J; Raics, P; Trocsanyi, Z L; Ujvari, B; Beri, S B; Bhatnagar, V; Dhingra, N; Gupta, R; Jindal, M; Kaur, M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, J; Kumar, Ashok; Kumar, Arun; Ahuja, S; Bhardwaj, A; Choudhary, B C; Malhotra, S; Naimuddin, M; Ranjan, K; Sharma, V; Shivpuri, R K; Banerjee, S; Bhattacharya, S; Dutta, S; Gomber, B; Jain, Sa; Jain, Sh; Khurana, R; Sarkar, S; Sharan, M; Abdulsalam, A; Choudhury, R K; Dutta, D; Kailas, S; Kumar, V; Mehta, P; Mohanty, A K; Pant, L M; Shukla, P; Aziz, T; Ganguly, S; Guchait, M; Maity, M; Majumder, G; Mazumdar, K; Mohanty, G B; Parida, B; Sudhakar, K; Wickramage, N; Banerjee, S; Dugad, S; Arfaei, H; Bakhshiansohi, H; Etesami, S M; Fahim, A; Hashemi, M; Hesari, H; Jafari, A; Khakzad, M; Mohammadi Najafabadi, M; Paktinat Mehdiabadi, S; Safarzadeh, B; Zeinali, M; Abbrescia, M; Barbone, L; Calabria, C; Chhibra, S S; Colaleo, A; Creanza, D; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Lusito, L; Maggi, G; Maggi, M; Marangelli, B; My, S; Nuzzo, S; Pacifico, N; Pompili, A; Pugliese, G; Selvaggi, G; Silvestris, L; Singh, G; Venditti, R; Zito, G; Abbiendi, G; Benvenuti, A C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Capiluppi, P; Castro, A; Cavallo, F R; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Meneghelli, M; Montanari, A; Navarria, F L; Odorici, F; Perrotta, A; Primavera, F; Rossi, A M; Rovelli, T; Siroli, G; Travaglini, R; Albergo, S; Cappello, G; Chiorboli, M; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Gonzi, S; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bianco, S; Colafranceschi, S; Fabbri, F; Piccolo, D; Fabbricatore, P; Musenich, R; Tosi, S; Benaglia, A; De Guio, F; Di Matteo, L; Fiorendi, S; Gennai, S; Ghezzi, A; Malvezzi, S; Manzoni, R A; Martelli, A; Massironi, A; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Ragazzi, S; Redaelli, N; Sala, S; Tabarelli de Fatis, T; Buontempo, S; Carrillo Montoya, C A; Cavallo, N; De Cosa, A; Dogangun, O; Fabozzi, F; Iorio, A O M; Lista, L; Meola, S; Merola, M; Paolucci, P; Azzi, P; Bacchetta, N; Biasotto, M; Bisello, D; Branca, A; Checchia, P; Dorigo, T; Gasparini, F; Gonella, F; Gozzelino, A; Gulmini, M; Kanishchev, K; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Meneguzzo, A T; Montecassiano, F; Pazzini, J; Pozzobon, N; Ronchese, P; Torassa, E; Tosi, M; Vanini, S; Gabusi, M; Ratti, S P; Riccardi, C; Torre, P; Vitulo, P; Biasini, M; Bilei, G M; Fanò, L; Lariccia, P; Lucaroni, A; Mantovani, G; Menichelli, M; Nappi, A; Romeo, F; Saha, A; Santocchia, A; Spiezia, A; Taroni, S; Azzurri, P; Bagliesi, G; Boccali, T; Broccolo, G; Castaldi, R; D'Agnolo, R T; Dell'Orso, R; Fiori, F; Foà, L; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Palla, F; Rizzi, A; Serban, A T; Spagnolo, P; Squillacioti, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; Del Re, D; Diemoz, M; Fanelli, C; Grassi, M; Longo, E; Meridiani, P; Micheli, F; Nourbakhsh, S; Organtini, G; Paramatti, R; Rahatlou, S; Sigamani, M; Soffi, L; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Cartiglia, N; Costa, M; Demaria, N; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Musich, M; Obertino, M M; Pastrone, N; Pelliccioni, M; Potenza, A; Romero, A; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Vilela Pereira, A; Belforte, S; Candelise, V; Cossutti, F; Della Ricca, G; Gobbo, B; Marone, M; Montanino, D; Penzo, A; Schizzi, A; Heo, S G; Kim, T Y; Nam, S K; Chang, S; Kim, D H; Kim, G N; Kong, D J; Park, H; Ro, S R; Son, D C; Son, T; Kim, J Y; Kim, Zero J; Song, S; Choi, S; Gyun, D; Hong, B; Jo, M; Kim, H; Kim, T J; Lee, K S; Moon, D H; Park, S K; Choi, M; Kim, J H; Park, C; Park, I C; Park, S; Ryu, G; Cho, Y; Choi, Y; Choi, Y K; Goh, J; Kim, M S; Kwon, E; Lee, B; Lee, J; Lee, S; Seo, H; Yu, I; Bilinskas, M J; Grigelionis, I; Janulis, M; Juodagalvis, A; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-de La Cruz, I; Lopez-Fernandez, R; Magaña Villalba, R; Martínez-Ortega, J; Sánchez-Hernández, A; Villasenor-Cendejas, L M; Carrillo Moreno, S; Vazquez Valencia, F; Salazar Ibarguen, H A; Casimiro Linares, E; Morelos Pineda, A; Reyes-Santos, M A; Krofcheck, D; Bell, A J; Butler, P H; Doesburg, R; Reucroft, S; Silverwood, H; Ahmad, M; Asghar, M I; Hoorani, H R; Khalid, S; Khan, W A; Khurshid, T; Qazi, S; Shah, M A; Shoaib, M; Bialkowska, H; Boimska, B; Frueboes, T; Gokieli, R; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Wrochna, G; Zalewski, P; Brona, G; Bunkowski, K; Cwiok, M; Dominik, W; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Almeida, N; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Gallinaro, M; Seixas, J; Varela, J; Vischia, P; Afanasiev, S; Belotelov, I; Bunin, P; Gavrilenko, M; Golutvin, I; Kamenev, A; Karjavin, V; Kozlov, G; Lanev, A; Malakhov, A; Moisenz, P; Palichik, V; Perelygin, V; Shmatov, S; Smirnov, V; Volodko, A; Zarubin, A; Evstyukhin, S; Golovtsov, V; Ivanov, Y; Kim, V; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Vorobyev, An; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Erofeeva, M; Gavrilov, V; Kossov, M; Lychkovskaya, N; Popov, V; Safronov, G; Semenov, S; Stolin, V; Vlasov, E; Zhokin, A; Belyaev, A; Boos, E; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Korotkikh, V; Lokhtin, I; Markina, A; Obraztsov, S; Perfilov, M; Petrushanko, S; Popov, A; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Mesyats, G; Rusakov, S V; Vinogradov, A; Azhgirey, I; Bayshev, I; Bitioukov, S; Grishin, V; Kachanov, V; Konstantinov, D; Korablev, A; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Ekmedzic, M; Krpic, D; Milosevic, J; Aguilar-Benitez, M; Alcaraz Maestre, J; Arce, P; Battilana, C; Calvo, E; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Delgado Peris, A; Domínguez Vázquez, D; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Merino, G; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Santaolalla, J; Soares, M S; Willmott, C; Albajar, C; Codispoti, G; de Trocóniz, J F; Brun, H; Cuevas, J; Fernandez Menendez, J; Folgueras, S; Gonzalez Caballero, I; Lloret Iglesias, L; Piedra Gomez, J; Brochero Cifuentes, J A; Cabrillo, I J; Calderon, A; Chuang, S H; Duarte Campderros, J; Felcini, M; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Graziano, A; Jorda, C; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Matorras, F; Munoz Sanchez, F J; Rodrigo, T; Rodríguez-Marrero, A Y; Ruiz-Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Baillon, P; Ball, A H; Barney, D; Benitez, J F; Bernet, C; Bianchi, G; Bloch, P; Bocci, A; Bonato, A; Botta, C; Breuker, H; Camporesi, T; Cerminara, G; Christiansen, T; Coarasa Perez, J A; D'Enterria, D; Dabrowski, A; De Roeck, A; Di Guida, S; Dobson, M; Dupont-Sagorin, N; Elliott-Peisert, A; Frisch, B; Funk, W; Georgiou, G; Giffels, M; Gigi, D; Gill, K; Giordano, D; Giunta, M; Glege, F; Gomez-Reino Garrido, R; Govoni, P; Gowdy, S; Guida, R; Hansen, M; Harris, P; Hartl, C; Harvey, J; Hegner, B; Hinzmann, A; Innocente, V; Janot, P; Kaadze, K; Karavakis, E; Kousouris, K; Lecoq, P; Lee, Y-J; Lenzi, P; Lourenço, C; Mäki, T; Malberti, M; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Mersi, S; Meschi, E; Moser, R; Mozer, M U; Mulders, M; Musella, P; Nesvold, E; Orimoto, T; Orsini, L; Palencia Cortezon, E; Perez, E; Perrozzi, L; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Piparo, D; Polese, G; Quertenmont, L; Racz, A; Reece, W; Rodrigues Antunes, J; Rolandi, G; Rommerskirchen, T; Rovelli, C; Rovere, M; Sakulin, H; Santanastasio, F; Schäfer, C; Schwick, C; Segoni, I; Sekmen, S; Sharma, A; Siegrist, P; Silva, P; Simon, M; Sphicas, P; Spiga, D; Tsirou, A; Veres, G I; Vlimant, J R; Wöhri, H K; Worm, S D; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Bäni, L; Bortignon, P; Buchmann, M A; Casal, B; Chanon, N; Deisher, A; Dissertori, G; Dittmar, M; Donegà, M; Dünser, M; Eugster, J; Freudenreich, K; Grab, C; Hits, D; Lecomte, P; Lustermann, W; Marini, A C; Martinez Ruiz del Arbol, P; Mohr, N; Moortgat, F; Nägeli, C; Nef, P; Nessi-Tedaldi, F; Pandolfi, F; Pape, L; Pauss, F; Peruzzi, M; Ronga, F J; Rossini, M; Sala, L; Sanchez, A K; Starodumov, A; Stieger, B; Takahashi, M; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Urscheler, C; Wallny, R; Weber, H A; Wehrli, L; Amsler, C; Chiochia, V; De Visscher, S; Favaro, C; Ivova Rikova, M; Millan Mejias, B; Otiougova, P; Robmann, P; Snoek, H; Tupputi, S; Verzetti, M; Chang, Y H; Chen, K H; Kuo, C M; Li, S W; Lin, W; Liu, Z K; Lu, Y J; Mekterovic, D; Singh, A P; Volpe, R; Yu, S S; Bartalini, P; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Dietz, C; Grundler, U; Hou, W-S; Hsiung, Y; Kao, K Y; Lei, Y J; Lu, R-S; Majumder, D; Petrakou, E; Shi, X; Shiu, J G; Tzeng, Y M; Wan, X; Wang, M; Adiguzel, A; Bakirci, M N; Cerci, S; Dozen, C; Dumanoglu, I; Eskut, E; Girgis, S; Gokbulut, G; Gurpinar, E; Hos, I; Kangal, E E; Karaman, T; Karapinar, G; Kayis Topaksu, A; Onengut, G; Ozdemir, K; Ozturk, S; Polatoz, A; Sogut, K; Sunar Cerci, D; Tali, B; Topakli, H; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilin, B; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Ocalan, K; Ozpineci, A; Serin, M; Sever, R; Surat, U E; Yalvac, M; Yildirim, E; Zeyrek, M; Gülmez, E; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Cankocak, K; Levchuk, L; Bostock, F; Brooke, J J; Clement, E; Cussans, D; Flacher, H; Frazier, R; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Kreczko, L; Metson, S; Newbold, D M; Nirunpong, K; Poll, A; Senkin, S; Smith, V J; Williams, T; Basso, L; Belyaev, A; Brew, C; Brown, R M; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Jackson, J; Kennedy, B W; Olaiya, E; Petyt, D; Radburn-Smith, B C; Shepherd-Themistocleous, C H; Tomalin, I R; Womersley, W J; Bainbridge, R; Ball, G; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Cutajar, M; Dauncey, P; Davies, G; Della Negra, M; Ferguson, W; Fulcher, J; Futyan, D; Gilbert, A; Guneratne Bryer, A; Hall, G; Hatherell, Z; Hays, J; Iles, G; Jarvis, M; Karapostoli, G; Lyons, L; Magnan, A-M; Marrouche, J; Mathias, B; Nandi, R; Nash, J; Nikitenko, A; Papageorgiou, A; Pela, J; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rogerson, S; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sparrow, A; Stoye, M; Tapper, A; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardle, N; Whyntie, T; Chadwick, M; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leggat, D; Leslie, D; Martin, W; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Hatakeyama, K; Liu, H; Scarborough, T; Charaf, O; Henderson, C; Rumerio, P; Avetisyan, A; Bose, T; Fantasia, C; Heister, A; St John, J; Lawson, P; Lazic, D; Rohlf, J; Sperka, D; Sulak, L; Alimena, J; Bhattacharya, S; Cutts, D; Ferapontov, A; Heintz, U; Jabeen, S; Kukartsev, G; Laird, E; Landsberg, G; Luk, M; Narain, M; Nguyen, D; Segala, M; Sinthuprasith, T; Speer, T; Tsang, K V; Breedon, R; Breto, G; Calderon De La Barca Sanchez, M; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Dolen, J; Erbacher, R; Gardner, M; Houtz, R; Ko, W; Kopecky, A; Lander, R; Miceli, T; Pellett, D; Ricci-tam, F; Rutherford, B; Searle, M; Smith, J; Squires, M; Tripathi, M; Vasquez Sierra, R; Andreev, V; Cline, D; Cousins, R; Duris, J; Erhan, S; Everaerts, P; Farrell, C; Hauser, J; Ignatenko, M; Jarvis, C; Plager, C; Rakness, G; Schlein, P; Traczyk, P; Valuev, V; Weber, M; Babb, J; Clare, R; Dinardo, M E; Ellison, J; Gary, J W; Giordano, F; Hanson, G; Jeng, G Y; Liu, H; Long, O R; Luthra, A; Nguyen, H; Paramesvaran, S; Sturdy, J; Sumowidagdo, S; Wilken, R; Wimpenny, S; Andrews, W; Branson, J G; Cerati, G B; Cittolin, S; Evans, D; Golf, F; Holzner, A; Kelley, R; Lebourgeois, M; Letts, J; Macneill, I; Mangano, B; Padhi, S; Palmer, C; Petrucciani, G; Pieri, M; Sani, M; Sharma, V; Simon, S; Sudano, E; Tadel, M; Tu, Y; Vartak, A; Wasserbaech, S; Würthwein, F; Yagil, A; Yoo, J; Barge, D; Bellan, R; Campagnari, C; D'Alfonso, M; Danielson, T; Flowers, K; Geffert, P; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lowette, S; McColl, N; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; West, C; Apresyan, A; Bornheim, A; Chen, Y; Di Marco, E; Duarte, J; Gataullin, M; Ma, Y; Mott, A; Newman, H B; Rogan, C; Spiropulu, M; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhu, R Y; Akgun, B; Azzolini, V; Carroll, R; Ferguson, T; Iiyama, Y; Jang, D W; Liu, Y F; Paulini, M; Vogel, H; Vorobiev, I; Cumalat, J P; Drell, B R; Edelmaier, C J; Ford, W T; Gaz, A; Heyburn, B; Luiggi Lopez, E; Smith, J G; Stenson, K; Ulmer, K A; Wagner, S R; Alexander, J; Chatterjee, A; Eggert, N; Gibbons, L K; Heltsley, B; Khukhunaishvili, A; Kreis, B; Mirman, N; Nicolas Kaufman, G; Patterson, J R; Ryd, A; Salvati, E; Sun, W; Teo, W D; Thom, J; Thompson, J; Tucker, J; Vaughan, J; Weng, Y; Winstrom, L; Wittich, P; Winn, D; Abdullin, S; Albrow, M; Anderson, J; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bloch, I; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Elvira, V D; Fisk, I; Freeman, J; Gao, Y; Green, D; Gutsche, O; Hanlon, J; Harris, R M; Hirschauer, J; Hooberman, B; Jindariani, S; Johnson, M; Joshi, U; Kilminster, B; Klima, B; Kunori, S; Kwan, S; Leonidopoulos, C; Linacre, J; Lincoln, D; Lipton, R; Lykken, J; Maeshima, K; Marraffino, J M; Maruyama, S; Mason, D; McBride, P; Mishra, K; Mrenna, S; Musienko, Y; Newman-Holmes, C; O'Dell, V; Prokofyev, O; Sexton-Kennedy, E; Sharma, S; Spalding, W J; Spiegel, L; Tan, P; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wu, W; Yang, F; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Bourilkov, D; Chen, M; Cheng, T; Das, S; De Gruttola, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fisher, M; Fu, Y; Furic, I K; Gartner, J; Hugon, J; Kim, B; Konigsberg, J; Korytov, A; Kropivnitskaya, A; Kypreos, T; Low, J F; Matchev, K; Milenovic, P; Mitselmakher, G; Muniz, L; Remington, R; Rinkevicius, A; Sellers, P; Skhirtladze, N; Snowball, M; Yelton, J; Zakaria, M; Gaultney, V; Hewamanage, S; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Bochenek, J; Chen, J; Diamond, B; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prosper, H; Veeraraghavan, V; Weinberg, M; Baarmand, M M; Dorney, B; Hohlmann, M; Kalakhety, H; Vodopiyanov, I; Adams, M R; Anghel, I M; Apanasevich, L; Bai, Y; Bazterra, V E; Betts, R R; Bucinskaite, I; Callner, J; Cavanaugh, R; Dragoiu, C; Evdokimov, O; Gauthier, L; Gerber, C E; Hofman, D J; Khalatyan, S; Lacroix, F; Malek, M; O'Brien, C; Silkworth, C; Strom, D; Varelas, N; Akgun, U; Albayrak, E A; Bilki, B; Clarida, W; Duru, F; Griffiths, S; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Onel, Y; Ozok, F; Sen, S; Tiras, E; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bolognesi, S; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Hu, G; Maksimovic, P; Rappoccio, S; Swartz, M; Whitbeck, A; Baringer, P; Bean, A; Benelli, G; Grachov, O; Kenny, R P; Murray, M; Noonan, D; Sanders, S; Stringer, R; Tinti, G; Wood, J S; Zhukova, V; Barfuss, A F; Bolton, T; Chakaberia, I; Ivanov, A; Khalil, S; Makouski, M; Maravin, Y; Shrestha, S; Svintradze, I; Gronberg, J; Lange, D; Wright, D; Baden, A; Boutemeur, M; Calvert, B; Eno, S C; Gomez, J A; Hadley, N J; Kellogg, R G; Kirn, M; Kolberg, T; Lu, Y; Marionneau, M; Mignerey, A C; Pedro, K; Peterman, A; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Twedt, E; Apyan, A; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; Dutta, V; Gomez Ceballos, G; Goncharov, M; Hahn, K A; Kim, Y; Klute, M; Krajczar, K; Li, W; Luckey, P D; Ma, T; Nahn, S; Paus, C; Ralph, D; Roland, C; Roland, G; Rudolph, M; Stephans, G S F; Stöckli, F; Sumorok, K; Sung, K; Velicanu, D; Wenger, E A; Wolf, R; Wyslouch, B; Xie, S; Yang, M; Yilmaz, Y; Yoon, A S; Zanetti, M; Cooper, S I; Dahmes, B; De Benedetti, A; Franzoni, G; Gude, A; Kao, S C; Klapoetke, K; Kubota, Y; Mans, J; Pastika, N; Rusack, R; Sasseville, M; Singovsky, A; Tambe, N; Turkewitz, J; Cremaldi, L M; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Avdeeva, E; Bloom, K; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kravchenko, I; Lazo-Flores, J; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Godshalk, A; Iashvili, I; Jain, S; Kharchilava, A; Kumar, A; Shipkowski, S P; Smith, K; Alverson, G; Barberis, E; Baumgartel, D; Chasco, M; Haley, J; Nash, D; Trocino, D; Wood, D; Zhang, J; Anastassov, A; Kubik, A; Mucia, N; Odell, N; Ofierzynski, R A; Pollack, B; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Brinkerhoff, A; Hildreth, M; Jessop, C; Karmgard, D J; Kolb, J; Lannon, K; Luo, W; Lynch, S; Marinelli, N; Morse, D M; Pearson, T; Ruchti, R; Slaunwhite, J; Valls, N; Wayne, M; Wolf, M; Bylsma, B; Durkin, L S; Hill, C; Hughes, R; Hughes, R; Kotov, K; Ling, T Y; Puigh, D; Rodenburg, M; Vuosalo, C; Williams, G; Winer, B L; Adam, N; Berry, E; Elmer, P; Gerbaudo, D; Halyo, V; Hebda, P; Hegeman, J; Hunt, A; Jindal, P; Lopes Pegna, D; Lujan, P; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Quan, X; Raval, A; Safdi, B; Saka, H; Stickland, D; Tully, C; Werner, J S; Zuranski, A; Acosta, J G; Brownson, E; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Zatserklyaniy, A; Alagoz, E; Barnes, V E; Benedetti, D; Bolla, G; Bortoletto, D; De Mattia, M; Everett, A; Hu, Z; Jones, M; Koybasi, O; Kress, M; Laasanen, A T; Leonardo, N; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Shipsey, I; Silvers, D; Svyatkovskiy, A; Vidal Marono, M; Yoo, H D; Zablocki, J; Zheng, Y; Guragain, S; Parashar, N; Adair, A; Boulahouache, C; Ecklund, K M; Geurts, F J M; Padley, B P; Redjimi, R; Roberts, J; Zabel, J; Betchart, B; Bodek, A; Chung, Y S; Covarelli, R; de Barbaro, P; Demina, R; Eshaq, Y; Garcia-Bellido, A; Goldenzweig, P; Han, J; Harel, A; Miner, D C; Vishnevskiy, D; Zielinski, M; Bhatti, A; Ciesielski, R; Demortier, L; Goulianos, K; Lungu, G; Malik, S; Mesropian, C; Arora, S; Barker, A; Chou, J P; Contreras-Campana, C; Contreras-Campana, E; Duggan, D; Ferencek, D; Gershtein, Y; Gray, R; Halkiadakis, E; Hidas, D; Lath, A; Panwalkar, S; Park, M; Patel, R; Rekovic, V; Robles, J; Rose, K; Salur, S; Schnetzer, S; Seitz, C; Somalwar, S; Stone, R; Thomas, S; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Eusebi, R; Flanagan, W; Gilmore, J; Kamon, T; Khotilovich, V; Montalvo, R; Osipenkov, I; Pakhotin, Y; Perloff, A; Roe, J; Safonov, A; Sakuma, T; Sengupta, S; Suarez, I; Tatarinov, A; Toback, D; Akchurin, N; Damgov, J; Dudero, P R; Jeong, C; Kovitanggoon, K; Lee, S W; Libeiro, T; Roh, Y; Volobouev, I; Appelt, E; Delannoy, A G; Florez, C; Greene, S; Gurrola, A; Johns, W; Johnston, C; Kurt, P; Maguire, C; Melo, A; Sharma, M; Sheldon, P; Snook, B; Tuo, S; Velkovska, J; Arenton, M W; Balazs, M; Boutle, S; Cox, B; Francis, B; Goodell, J; Hirosky, R; Ledovskoy, A; Lin, C; Neu, C; Wood, J; Yohay, R; Gollapinni, S; Harr, R; Karchin, P E; Kottachchi Kankanamge Don, C; Lamichhane, P; Sakharov, A; Anderson, M; Bachtis, M; Belknap, D; Borrello, L; Carlsmith, D; Cepeda, M; Dasu, S; Friis, E; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Herndon, M; Hervé, A; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Mohapatra, A; Ojalvo, I; Palmonari, F; Pierro, G A; Ross, I; Savin, A; Smith, W H; Swanson, J

    2012-11-30

    The suppression of the individual Υ(nS) states in PbPb collisions with respect to their yields in pp data has been measured. The PbPb and pp data sets used in the analysis correspond to integrated luminosities of 150 μb(-1) and 230 nb(-1), respectively, collected in 2011 by the CMS experiment at the LHC, at a center-of-mass energy per nucleon pair of 2.76 TeV. The Υ(nS) yields are measured from the dimuon invariant mass spectra. The suppression of the Υ(nS) yields in PbPb relative to the yields in pp, scaled by the number of nucleon-nucleon collisions, R(AA), is measured as a function of the collision centrality. Integrated over centrality, the R(AA) values are 0.56±0.08(stat)±0.07(syst), 0.12±0.04(stat)±0.02(syst), and lower than 0.10 (at 95% confidence level), for the Υ(1S), Υ(2S), and Υ(3S) states, respectively. The results demonstrate the sequential suppression of the Υ(nS) states in PbPb collisions at LHC energies.

  6. Observation of Sequential Υ Suppression in PbPb Collisions

    NASA Astrophysics Data System (ADS)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hammer, J.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Staykova, Z.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Gonzalez Suarez, R.; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Reis, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Verwilligen, P.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins Junior, M.; De Jesus Damiao, D.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldá Júnior, W. L.; Carvalho, W.; Custódio, A.; Da Costa, E. M.; De Oliveira Martins, C.; De Souza, S. Fonseca; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, S.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zhu, B.; Zou, W.; Avila, C.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Morovic, S.; Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M., Jr.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Khalil, S.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Müntel, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dobrzynski, L.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Juillot, P.; Le Bihan, A.-C.; Van Hove, P.; Fassi, F.; Mercier, D.; Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Anagnostou, G.; Beranek, S.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.

    2012-11-01

    The suppression of the individual Υ(nS) states in PbPb collisions with respect to their yields in pp data has been measured. The PbPb and pp data sets used in the analysis correspond to integrated luminosities of 150μb-1 and 230nb-1, respectively, collected in 2011 by the CMS experiment at the LHC, at a center-of-mass energy per nucleon pair of 2.76 TeV. The Υ(nS) yields are measured from the dimuon invariant mass spectra. The suppression of the Υ(nS) yields in PbPb relative to the yields in pp, scaled by the number of nucleon-nucleon collisions, RAA, is measured as a function of the collision centrality. Integrated over centrality, the RAA values are 0.56±0.08(stat)±0.07(syst), 0.12±0.04(stat)±0.02(syst), and lower than 0.10 (at 95% confidence level), for the Υ(1S), Υ(2S), and Υ(3S) states, respectively. The results demonstrate the sequential suppression of the Υ(nS) states in PbPb collisions at LHC energies.

  7. A colorimetric probe to determine Pb(2+) using functionalized silver nanoparticles.

    PubMed

    Noh, Kwon-Chul; Nam, Yun-Sik; Lee, Ho-Jin; Lee, Kang-Bong

    2015-12-21

    A simple and sensitive colorimetric method for the determination of Pb(2+) ions in aqueous samples was developed using 1-(2-mercaptoethyl)-1,3,5-triazinane-2,4,6-trione (MTT) functionalized silver nanoparticles (MTT-AgNPs). The Pb(2+) ion acted as the metal center of the coordination complex, which formed N-Pb(2+)-O coordination bonds with the MTT-AgNPs, shortening the interparticle distance, and inducing aggregation of the MTT-AgNPs. This aggregation resulted in a dramatic color change from yellow to dark blue. Using this methodology, the concentration of Pb(2+) ions in environmental samples could be quantitatively detected with the naked eye or by using UV-vis spectrometry. Also, we found that the selectivity and sensitivity of detection were noticeably improved in the pH range of 7-8, at which a more obvious color change was observed. The absorption ratios (A625/A395) of the modified AgNP solution exhibited a linear correlation with Pb(2+) ion concentrations within the linear range of 0.1-0.6 μg mL(-1), and the limits of detection in tap and pond water were 0.02 and 0.06 μg mL(-1), respectively. This cost-effective sensing system allows for the rapid and facile determination of Pb(2+) ions in aqueous samples.

  8. U-Pb SHRIMP dating of uraniferous opals

    USGS Publications Warehouse

    Nemchin, A.A.; Neymark, L.A.; Simons, S.L.

    2006-01-01

    U-Pb and U-series analyses of four U-rich opal samples using sensitive high-resolution ion microprobe (SHRIMP) demonstrate the potential of this technique for the dating of opals with ages ranging from several tens of thousand years to millions of years. The major advantages of the technique, compared to the conventional thermal ionisation mass spectrometry (TIMS), are the high spatial resolution (???20 ??m), the ability to analyse in situ all isotopes required to determine both U-Pb and U-series ages, and a relatively short analysis time which allows obtaining a growth rate of opal as a result of a single SHRIMP session. There are two major limitations to this method, determined by both current level of development of ion probes and understanding of ion sputtering processes. First, sufficient secondary ion beam intensities can only be obtained for opal samples with U concentrations in excess of ???20 ??g/g. However, this restriction still permits dating of a large variety of opals. Second, U-Pb ratios in all analyses drifted with time and were only weakly correlated with changes in other ratios (such as U/UO). This drift, which is difficult to correct for, remains the main factor currently limiting the precision and accuracy of the U-Pb SHRIMP opal ages. Nevertheless, an assumption of similar behaviour of standard and unknown opals under similar analytical conditions allowed successful determination of ages with precisions of ???10% for the samples investigated in this study. SHRIMP-based U-series and U-Pb ages are consistent with TIMS dating results of the same materials and known geological timeframes. ?? 2005 Elsevier B.V. All rights reserved.

  9. Lead (Pb) and copper (Cu) share a common uptake transporter in the unicellular alga Chlamydomonas reinhardtii.

    PubMed

    Sánchez-Marín, Paula; Fortin, Claude; Campbell, Peter G C

    2014-02-01

    The unicellular alga Chlamydomonas reinhardtii has a very high rate of lead (Pb) internalization and is known to be highly sensitive to dissolved Pb. However, the transport pathway that this metal uses to cross cellular membranes in microalgae is still unknown. To identify the Pb(2+) transport pathway in C. reinhartdii, we performed several competition experiments with environmentally relevant concentrations of Pb(2+) (~10 nM) and a variety of divalent cations. Among the essential trace metals tested, cobalt, manganese, nickel and zinc had no effect on Pb internalization. A greater than tenfold increase in the concentrations of the major ions calcium and magnesium led to a slight decrease (~34 %) in short-term Pb internalization by the algae. Copper (Cu) was even more effective: at a Cu concentration 50 times higher than that of Pb, Pb internalization by the algae decreased by 87 %. Pre-exposure of the algae to Cu showed that the effect was not due to a physiological effect of Cu on the algae, but rather to competition for the same transporter. A reciprocal effect of Pb on Cu internalization was also observed. These results suggest that Cu and Pb share a common transport pathway in C. reinhardtii at environmentally relevant metal concentrations.

  10. Pb isotopes in sediments of Lake Constance, Central Europe constrain the heavy metal pathways and the pollution history of the catchment, the lake and the regional atmosphere

    SciTech Connect

    Kober, B.; Wessels, M.; Bollhoefer, A.; Mangini

    1999-05-01

    Pb isotope ratios and Pb concentrations of well-dated sediments of Lake Constance, Central Europe have been analyzed using thermal ion mass spectrometry. Sequential extraction studies indicated isotope homogeneity of the leachable Pb components within the investigated layers. Since the middle of the 19th century a significant anthropogenic Pb component appeared in the lake sediments, and rapidly approaches concentration levels similar to that of the geogenic Pb background (20 ppm) at the beginning of the 20th century. Anthropogenic Pb was predominantly transferred to the lake sediments via the atmosphere. Pb sources were coal combustion, industrial ore processing and leaded gasoline. The flux of a fluvial Pb component to the lake sediments, additive to atmospheric Pb deposition, peaked in about 1960. This flux is attributed to (re)mobilization of Pb from polluted parts of the lake catchment, and indicates the change of catchment soils from a pollution sink to a heavy metal source. The strong reduction of anthropogenic Pb in the uppermost lake sediments since the 1960s has been caused by advances of environmental protection. The lake sediments record the changing fluxes and the isotope composition of the deposited aeolian Pb pollution. During the 20th century aeolian Pb fluxes to the lake sediments were in the range of 1--4 {micro}g/cm{sup 2}/a. During peak emission periods of gasoline Pb to the atmosphere (1960--1990) the aerosol Pb isotope composition was rather constant ({sup 206}Pb/{sup 207}Pb: 1.12--1.13) and probably a mixture of Canadian and Australian with Russian and Central European Pb types. Aeolian Pb isotope and Pb flux trends in the lake sediments as a whole agree well with the trends found in Alpine glaciers (Doering et al., 1997a,b) and in ombrotrophic peat bogs of Switzerland (Shotyk et al., 1996). However, different industrial Pb components were deposited in the archives of aeolian pollution during the early 20th century.

  11. In situ Spectroscopy of Solid-State Chemical Reaction in PbBr2-Deposited CsBr Crystals

    NASA Astrophysics Data System (ADS)

    Kondo, Shin-ichi; Matsunaga, Toshihiro; Saito, Tadaaki; Asada, Hiroshi

    2003-09-01

    It is possible to measure the fundamental optical absorption spectra of CsPbBr3 and Cs4PbBr6, whose stability is predicted by the study of phase diagram in the binary system CsBr-PbBr2, by means of in situ optical absorption and reflection spectroscopy of thermally induced solid-state chemical reaction in PbBr2-deposited CsBr crystals. On heavy annealing of the crystals, the Pb2+ ions are uniformly dispersed in the crystal matrix. The present experiment provides a novel method for measuring intrinsic optical absorption of ternary metal halides and also for in situ monitoring of doping metal halide crystal with impurities (metal ions or halogen ions).

  12. W boson studies in pPb and PbPb collisions with CMS

    NASA Astrophysics Data System (ADS)

    Chapon, Émilien; CMS Collaboration

    2015-05-01

    The electroweak W bosons do not participate in the strong interaction, and thus constitute clean probes of the initial state of nuclear collisions. They provide a unique constraint on the nuclear parton distributions, in particular on the antiquarks from the sea. A first analysis of PbPb data has confirmed the medium-blind characteristic of the electroweak bosons. With the new pPb data collected at the beginning of 2013, nuclear matter without the creation of a hot medium can hence be studied. Being 10 times more prevalent than Z bosons, the yield of W bosons recorded from pPb collisions allows precise comparisons to theoretical predictions. A yield of approximately 20 000 W is observed in pPb collisions in both the muon and electron channels. In this paper the CMS measurements of W bosons in PbPb at nucleon-nucleon center-of-mass energy of \\sqrt{sNN} = 2.76 TeV and from the new pPb data at \\sqrt{sNN} = 5.02 TeV are reported. The charge asymmetry, forward/backward asymmetry and fully corrected yields will be shown.

  13. Function of DNA methyltransferase 3a in lead (Pb(2+) )-Induced Cyclooxygenase-2 gene.

    PubMed

    Tsai, Yao-Ting; Chang, Che-Mai; Wang, Jaw-Yuan; Hou, Ming-Feng; Wang, Ju-Ming; Shiurba, Robert; Chang, Wen-Chang; Chang, Wei-Chiao

    2015-09-01

    Lead ions (Pb(2+) ) are toxic industrial pollutants associated with chronic inflammatory diseases in humans and animals. Previously, we found that Pb(2+) ions induce COX-2 gene expression via the EGF receptor/nuclear factor-κB signal transduction pathway in epidermoid carcinoma cell line A431. In this study, to see whether Pb(2+) ions affect COX-2 expression by epigenetic mechanisms, we looked at the mRNAs of DNA methyltransferases (DNMTs) using real-time PCR of total RNA from these cells. Cells exposed to Pb(2+) had low levels of DNMT3a mRNA, whereas the levels of DNMT1 and DNMT3b mRNAs remained unchanged. Pretreatment of cells with DNMT inhibitor 5-aza-2'-deoxycytidine (5 μM) followed by Pb(2+) (1 μM) significantly increased levels of COX-2 mRNA compared with cells treated with Pb(2+) alone. Overexpression of tumor suppressor gene Rb correlated with an increase in COX-2 mRNA and a decrease in DNMT3a mRNA. Conversely, overexpression of transcription factor E2F1 correlated with a decrease in COX-2 mRNA and an increase in DMNT3a mRNA. Pretreatment with EGFR inhibitors AG1478 and PD153035 significantly limited Pb(2+) -induced reduction in DNMT3a mRNA. In addition, gene knockdown of DNMT3a with short hairpin RNA correlated with increased COX-2 mRNA induced by Pb(2+) . Our findings suggest Pb(2+) ions induce COX-2 expression indirectly by reducing DNMT3a methylation of the COX-2 promoter via transcription factors Rb and E2F1.

  14. High Rydberg resonances in dielectronic recombination of pb(79+).

    PubMed

    Brandau, C; Bartsch, T; Hoffknecht, A; Knopp, H; Schippers, S; Shi, W; Müller, A; Grün, N; Scheid, W; Steih, T; Bosch, F; Franzke, B; Kozhuharov, C; Mokler, P H; Nolden, F; Steck, M; Stöhlker, T; Stachura, Z

    2002-07-29

    Dielectronic recombination resonances of Pb (79+) associated with 2s(1/2)-->2p(1/2) excitations were measured at the heavy-ion storage ring ESR at GSI. The fine structure of the energetically lowest resonance manifold Pb (78+)(1s(2)2p(1/2)20l(j)) at around 18 eV could partially be resolved, and rate coefficients on an absolute scale were obtained. A comparison of the experimental data with results of a fully relativistic theoretical approach shows that high-angular-momentum components up to j=31/2 significantly contribute to the total resonance strength demonstrating the necessity to revise the widespread notion of negligible high-angular-momentum contributions at least for very highly charged ions.

  15. Nearly Monodisperse Insulator Cs4PbX6 (X = Cl, Br, I) Nanocrystals, Their Mixed Halide Compositions, and Their Transformation into CsPbX3 Nanocrystals.

    PubMed

    Akkerman, Quinten A; Park, Sungwook; Radicchi, Eros; Nunzi, Francesca; Mosconi, Edoardo; De Angelis, Filippo; Brescia, Rosaria; Rastogi, Prachi; Prato, Mirko; Manna, Liberato

    2017-03-08

    We have developed a colloidal synthesis of nearly monodisperse nanocrystals of pure Cs4PbX6 (X = Cl, Br, I) and their mixed halide compositions with sizes ranging from 9 to 37 nm. The optical absorption spectra of these nanocrystals display a sharp, high energy peak due to transitions between states localized in individual PbX6(4-) octahedra. These spectral features are insensitive to the size of the particles and in agreement with the features of the corresponding bulk materials. Samples with mixed halide composition exhibit absorption bands that are intermediate in spectral position between those of the pure halide compounds. Furthermore, the absorption bands of intermediate compositions broaden due to the different possible combinations of halide coordination around the Pb(2+) ions. Both observations are supportive of the fact that the [PbX6](4-) octahedra are electronically decoupled in these systems. Because of the large band gap of Cs4PbX6 (>3.2 eV), no excitonic emission in the visible range was observed. The Cs4PbBr6 nanocrystals can be converted into green fluorescent CsPbBr3 nanocrystals by their reaction with an excess of PbBr2 with preservation of size and size distributions. The insertion of PbX2 into Cs4PbX6 provides a means of accessing CsPbX3 nanocrystals in a wide variety of sizes, shapes, and compositions, an important aspect for the development of precisely tuned perovskite nanocrystal inks.

  16. Nearly Monodisperse Insulator Cs4PbX6 (X = Cl, Br, I) Nanocrystals, Their Mixed Halide Compositions, and Their Transformation into CsPbX3 Nanocrystals

    PubMed Central

    2017-01-01

    We have developed a colloidal synthesis of nearly monodisperse nanocrystals of pure Cs4PbX6 (X = Cl, Br, I) and their mixed halide compositions with sizes ranging from 9 to 37 nm. The optical absorption spectra of these nanocrystals display a sharp, high energy peak due to transitions between states localized in individual PbX64– octahedra. These spectral features are insensitive to the size of the particles and in agreement with the features of the corresponding bulk materials. Samples with mixed halide composition exhibit absorption bands that are intermediate in spectral position between those of the pure halide compounds. Furthermore, the absorption bands of intermediate compositions broaden due to the different possible combinations of halide coordination around the Pb2+ ions. Both observations are supportive of the fact that the [PbX6]4– octahedra are electronically decoupled in these systems. Because of the large band gap of Cs4PbX6 (>3.2 eV), no excitonic emission in the visible range was observed. The Cs4PbBr6 nanocrystals can be converted into green fluorescent CsPbBr3 nanocrystals by their reaction with an excess of PbBr2 with preservation of size and size distributions. The insertion of PbX2 into Cs4PbX6 provides a means of accessing CsPbX3 nanocrystals in a wide variety of sizes, shapes, and compositions, an important aspect for the development of precisely tuned perovskite nanocrystal inks. PMID:28196323

  17. Multiparticle azimuthal correlations in p -Pb and Pb-Pb collisions at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Abelev, B.; Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agostinelli, A.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahmed, I.; Ahn, S. U.; Ahn, S. A.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Baumann, C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Belmont, R.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Berger, M. E.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Böhmer, F. V.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bossú, F.; Botje, M.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Castillo Castellanos, J.; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dang, R.; Danu, A.; Das, D.; Das, I.; Das, K.; Das, S.; Dash, A.; Dash, S.; de, S.; Delagrange, H.; Deloff, A.; Dénes, E.; D'Erasmo, G.; de Caro, A.; de Cataldo, G.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; de Rooij, R.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; di Bari, D.; di Liberto, S.; di Mauro, A.; di Nezza, P.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Dørheim, S.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; Hilden, T. E.; Ehlers, R. J.; Elia, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Eschweiler, D.; Espagnon, B.; Esposito, M.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez Ramirez, A.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Graczykowski, L. K.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gumbo, M.; Gunji, T.; Gupta, A.; Gupta, R.; Khan, K. H.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hanratty, L. D.; Hansen, A.; Harris, J. W.; Hartmann, H.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hippolyte, B.; Hladky, J.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Innocenti, G. M.; Ionita, C.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Jachołkowski, A.; Jacobs, P. M.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kadyshevskiy, V.; Kalcher, S.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil Svn, M.; Khan, M. M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D. W.; Kim, D. J.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Köhler, M. K.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Konevskikh, A.; Kovalenko, V.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kravčáková, A.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kučera, V.; Kucheriaev, Y.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kulakov, I.; Kumar, J.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; La Pointe, S. L.; La Rocca, P.; Lea, R.; Leardini, L.; Lee, G. R.; Legrand, I.; Lehnert, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; Leoncino, M.; León Monzón, I.; Lévai, P.; Li, S.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Lohner, D.; Loizides, C.; Lopez, X.; López Torres, E.; Lu, X.-G.; Luettig, P.; Lunardon, M.; Luparello, G.; Ma, R.; Maevskaya, A.; Mager, M.; Mahapatra, D. P.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manceau, L.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Marín, A.; Markert, C.; Marquard, M.; Martashvili, I.; Martin, N. A.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martin Blanco, J.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; Meddi, F.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mlynarz, J.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Morando, M.; Moreira de Godoy, D. A.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Müller, H.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Nattrass, C.; Nayak, K.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nicassio, M.; Niculescu, M.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Nilsen, B. S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Okatan, A.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Onderwaater, J.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Sahoo, P.; Pachmayer, Y.; Pachr, M.; Pagano, P.; Paić, G.; Painke, F.; Pajares, C.; Pal, S. K.; Palmeri, A.; Pant, D.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Patalakha, D. I.; Paticchio, V.; Paul, B.; Pawlak, T.; Peitzmann, T.; Pereira da Costa, H.; Pereira de Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Pesci, A.; Peskov, V.; Pestov, Y.; Petráček, V.; Petran, M.; Petris, M.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Pohjoisaho, E. H. O.; Polichtchouk, B.; Poljak, N.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Potukuchi, B.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Rauf, A. W.; Razazi, V.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reicher, M.; Reidt, F.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohni, S.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, R.; Sahu, P. K.; Saini, J.; Sakai, S.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Sánchez Rodríguez, F. J.; Šándor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Segato, G.; Seger, J. E.; Sekiguchi, Y.; Selyuzhenkov, I.; Seo, J.; Serradilla, E.; Sevcenco, A.; Shabetai, A.; Shabratova, G.; Shahoyan, R.; Shangaraev, A.; Sharma, N.; Sharma, S.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Skjerdal, K.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Søgaard, C.; Soltz, R.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Stolpovskiy, M.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Sultanov, R.; Šumbera, M.; Susa, T.; Symons, T. J. M.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tarazona Martinez, A.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terrevoli, C.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; Vande Vyvre, P.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vechernin, V.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wagner, V.; Wang, M.; Wang, Y.; Watanabe, D.; Weber, M.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yaldo, C. G.; Yamaguchi, Y.; Yang, H.; Yang, P.; Yang, S.; Yano, S.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yoo, I.-K.; Yushmanov, I.; Zaccolo, V.; Zach, C.; Zaman, A.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, F.; Zhou, Y.; Zhou, Zhuo; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zoccarato, Y.; Zyzak, M.; Alice Collaboration

    2014-11-01

    Measurements of multiparticle azimuthal correlations (cumulants) for charged particles in p -Pb at √{sNN}=5.02 TeV and Pb-Pb at √{sNN}=2.76 TeV collisions are presented. They help address the question of whether there is evidence for global, flowlike, azimuthal correlations in the p -Pb system. Comparisons are made to measurements from the larger Pb-Pb system, where such evidence is established. In particular, the second harmonic two-particle cumulants are found to decrease with multiplicity, characteristic of a dominance of few-particle correlations in p -Pb collisions. However, when a |Δ η | gap is placed to suppress such correlations, the two-particle cumulants begin to rise at high multiplicity, indicating the presence of global azimuthal correlations. The Pb-Pb values are higher than the p -Pb values at similar multiplicities. In both systems, the second harmonic four-particle cumulants exhibit a transition from positive to negative values when the multiplicity increases. The negative values allow for a measurement of v2{4 } to be made, which is found to be higher in Pb-Pb collisions at similar multiplicities. The second harmonic six-particle cumulants are also found to be higher in Pb-Pb collisions. In Pb-Pb collisions, we generally find v2{4 } ≃v2{6 } ≠0 which is indicative of a Bessel-Gaussian function for the v2 distribution. For very high-multiplicity Pb-Pb collisions, we observe that the four- and six-particle cumulants become consistent with 0. Finally, third harmonic two-particle cumulants in p -Pb and Pb-Pb are measured. These are found to be similar for overlapping multiplicities, when a |Δ η |>1.4 gap is placed.

  18. Zirconolite: A new U-Pb chronometer for mafic igneous rocks

    NASA Astrophysics Data System (ADS)

    Rasmussen, Birger; Fletcher, Ian R.

    2004-09-01

    Precise dates for mafic igneous events are essential for tectonic reconstructions and understanding mantle dynamics, mass extinctions, and paleoclimate. Zirconolite (CaZrTi2O7) is a uranium-bearing accessory mineral, found in a wide range of terrestrial and lunar rocks, that has been largely overlooked as a chronometer. In situ U-Pb geochronology of zirconolite from three dolerite intrusions in Western Australia demonstrates that it yields emplacement ages that are more precise than those obtained from coexisting zircon and baddeleyite. Dikes in the Stirling Range Formation give a zirconolite 207Pb/ 206Pb age of 1218 ± 3 Ma, indistinguishable from the less precise dates obtained from zircon (1215 ± 10 Ma) and baddeleyite (1217 ± 39 Ma) and coincident with dike emplacement in the adjacent craton margin and peak metamorphism in the Albany-Fraser orogen. Zirconolite from the 755 Ma Mundine Well dike swarm yields a 207Pb/206Pb age of 754 ± 5 Ma. Sills intruding the Proterozoic Manganese Group contain zirconolite crystals that give a 207Pb/206Pb age of 523 ± 14 Ma. Despite high U contents (550 ppm to 14,000 ppm) and greenschist facies metamorphism, zirconolite in these samples is apparently unaffected by loss of radiogenic Pb. Because of its remarkable properties for U-Pb geochronology, it may soon become the dominant tool for dating mafic igneous rocks as young as 500 Ma by ion microprobe, and thus will prove especially valuable in reconstructing Precambrian geologic history.

  19. Adsorption of Pb(II) from aqueous solution by silica-gel supported hyperbranched polyamidoamine dendrimers.

    PubMed

    Niu, Yuzhong; Qu, Rongjun; Sun, Changmei; Wang, Chunhua; Chen, Hou; Ji, Chunnuan; Zhang, Ying; Shao, Xia; Bu, Fanling

    2013-01-15

    The adsorption properties of silica-gel supported hyperbranched polyamidoamine dendrimers (SiO(2)-G0-SiO(2)-G4.0) have been investigated by batch method. The effect of pH of the solution, contact time, initial Pb(II) ion concentration, temperature and coexisting metal ions have been demonstrated. The results indicated that the optimum pH value was 5. Adsorption kinetics was found to follow the pseudo-second-order model and controlled by film diffusion. The adsorption isotherms were fitted by Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models. Langmuir isotherm model was found to be more suitable to describe the equilibrium data, suggesting the uptake of Pb(II) ions by monolayer adsorption. From D-R isotherm model, the calculated mean free energy E demonstrated the adsorption processes occurred by chemical ion-exchange mechanism. FTIR analysis revealed that amine groups were mainly responsible for the adsorption of Pb(II) by amino-terminated adsorbents, while CO of ester groups also participated in the adsorption process of ester-terminated ones. The adsorbents can selectively adsorb Pb(II) from binary ion systems in the presence of Mn(II), Cu(II), Co(II), and Ni(II). Based on the results, it is concluded that SiO(2)-G0-SiO(2)-G4.0 had great potential for the removal of Pb(II) from aqueous solution.

  20. Elliptic and triangular flow in p-Pb and peripheral Pb-Pb collisions from parton scatterings

    SciTech Connect

    Bzdak, Adam; Ma, Guo-Liang

    2014-12-15

    Using a multiphase transport model (AMPT) we calculate the elliptic v₂ and triangular v₃ Fourier coefficients of the two-particle azimuthal correlation function in proton-nucleus (p-Pb) and peripheral nucleus-nucleus (Pb-Pb) collisions. Our results for v₃ are in a good agreement with the CMS data collected at the Large Hadron Collider. The v₂ coefficient is very well described in p-Pb collisions and is underestimated for higher transverse momenta in Pb-Pb interactions. The characteristic mass ordering of v₂ in p-Pb is reproduced, whereas for v₃, this effect is not observed. We further predict the pseudorapidity dependence of v₂ and v₃ in p-Pb and observe that both are increasing when going from a proton side to a Pb-nucleus side. Predictions for the higher-order Fourier coefficients, v₄ and v₅, in p-Pb are also presented.

  1. Elliptic and triangular flow in p-Pb and peripheral Pb-Pb collisions from parton scatterings

    DOE PAGES

    Bzdak, Adam; Ma, Guo-Liang

    2014-12-15

    Using a multiphase transport model (AMPT) we calculate the elliptic v₂ and triangular v₃ Fourier coefficients of the two-particle azimuthal correlation function in proton-nucleus (p-Pb) and peripheral nucleus-nucleus (Pb-Pb) collisions. Our results for v₃ are in a good agreement with the CMS data collected at the Large Hadron Collider. The v₂ coefficient is very well described in p-Pb collisions and is underestimated for higher transverse momenta in Pb-Pb interactions. The characteristic mass ordering of v₂ in p-Pb is reproduced, whereas for v₃, this effect is not observed. We further predict the pseudorapidity dependence of v₂ and v₃ in p-Pb andmore » observe that both are increasing when going from a proton side to a Pb-nucleus side. Predictions for the higher-order Fourier coefficients, v₄ and v₅, in p-Pb are also presented.« less

  2. Pb enamel biomarker: Deposition of pre- and postnatal Pb isotope injection in reconstructed time points along rat enamel transect

    SciTech Connect

    Rinderknecht, A.L.; Kleinman, M.T.; Ericson, J.E. . E-mail: jeericso@uci.edu

    2005-10-01

    Exposure to lead (Pb) as well as other heavy metals in the environment is still a matter of public health concern. The development of the enamel biomarker for heavy metal exposure assessment is designed to improve studies of dose-effect relationships to developmental anomalies, particularly embryonic dysfunctions, and to provide a time-specific recount of past exposures. The work presented in this paper demonstrates maternal transfer across the placental barrier of the enriched isotope {sup 206}Pb tracer to the enamel of the rat pup. Likewise, injections of {sup 204}Pb-enriched tracer in the neonate rat resulted in deposition of the tracer in the enamel histology as measured by secondary ion microprobe spectrometry. Through enamel, we were able to observe biological removal and assimilation of prenatal and postnatal tracers, respectively. This research demonstrates that enamel can be used as a biomarker of exposure to Pb and may illustrate the toxicokinetics of incorporating Pb into fetal and neonatal steady-state system processes. The biomarker technique, when completely developed, may be applied to cross-sectional and longitudinal epidemiological research.

  3. A new method for As(V) removal from waters by precipitation of mimetite Pb5(AsO4)3Cl on Pb-activated zeolite

    NASA Astrophysics Data System (ADS)

    Manecki, Maciej; Buszkiewicz, Urszula

    2016-04-01

    A new method for removal of arsenate AsO43- ions from aqueous solutions is proposed. The principle of the method stems from precipitation of very insoluble crystalline lead arsenate apatite (mimetite Pb5(AsO4)3Cl) induced by bringing in contact Pb-activated zeolite and As-contaminated water in the presence of Cl-. Zeolite is activated by sorption of Pb2+ followed by washing with water to remove the excess of Pb and to desorbe weakly adsorbed ions. Lead adsorbed on zeolite is bound strong enough to prevent desorption by water but weak enough to undergo desorption induced by heterogeneous precipitation of mimetite nanocrystals on the surface of zeolite. The experiment consisted of two steps. In the first step, aliquots of 0.5 g of natural clinoptilolite zeolite (from Zeocem a.s., Bystré, Slovak Republic) were reacted with 40 mL of solutions containing 20, 100, 500, and 2000 mg Pb/L (pH =4.5; reaction for 30 minutes followed by centrifugation). The amount of Pb sorbed was calculated from the drop of Pb concentration in solution. Centrifuged zeolite was washed three times by mixing with 10 mL of DDI water, followed by centrifugation. No Pb was detected in the water after second washing. Wet pulp resulting from this stage was exposed to solutions containing 70 mg/L Cl- and various concentrations of AsO43- (2 and 100 mg As/L; pH=4). Complete removal of As was observed for 2 mg As/L solutions mixed with zeolite-20 and zeolite-100. The precipitation of mimetite Pb5(AsO4)3Cl in the form of hexagonal crystals ca. 0.25 μm in size was observed using SEM/EDS. This work is partially funded by AGH research grant no 11.11.140.319.

  4. Reliability of stable Pb isotopes to identify Pb sources and verifying biological fractionation of Pb isotopes in goats and chickens.

    PubMed

    Nakata, Hokuto; Nakayama, Shouta M M; Yabe, John; Liazambi, Allan; Mizukawa, Hazuki; Darwish, Wageh Sobhy; Ikenaka, Yoshinori; Ishizuka, Mayumi

    2016-01-01

    Stable Pb isotope ratios (Pb-IRs) have been recognized as an efficient tool for identifying sources. This study carried out at Kabwe mining area, Zambia, to elucidate the presence or absence of Pb isotope fractionation in goat and chicken, to evaluate the reliability of identifying Pb pollution sources via analysis of Pb-IRs, and to assess whether a threshold for blood Pb levels (Pb-B) for biological fractionation was present. The variation of Pb-IRs in goat decreased with an increase in Pb-B and were fixed at certain values close to those of the dominant source of Pb exposure at Pb-B > 5 μg/dL. However, chickens did not show a clear relationship for Pb-IRs against Pb-B, or a fractionation threshold. Given these, the biological fractionation of Pb isotopes should not occur in chickens but in goats, and the threshold for triggering biological fractionation is at around 5 μg/dL of Pb-B in goats.

  5. Optimization study for Pb(II) and COD sequestration by consortium of sulphate-reducing bacteria

    NASA Astrophysics Data System (ADS)

    Verma, Anamika; Bishnoi, Narsi R.; Gupta, Asha

    2016-04-01

    In this study, initial minimum inhibitory concentration (MIC) of Pb(II) ions was analysed to check optimum concentration of Pb(II) ions at which the growth of sulphate-reducing consortium (SRC) was found to be maximum. 80 ppm of Pb(II) ions was investigated as minimum inhibitory concentration for SRC. Influence of electron donors such as lactose, sucrose, glucose and sodium lactate was examined to investigate best carbon source for growth and activity of sulphate-reducing bacteria. Sodium lactate was found to be the prime carbon source for SRC. Later optimization of various parameters was executed using Box-Behnken design model of response surface methodology to explore the effectiveness of three independent operating variables, namely, pH (5.0-9.0), temperature (32-42 °C) and time (5.0-9.0 days), on dependent variables, i.e. protein content, precipitation of Pb(II) ions, and removal of COD by SRC biomass. Maximum removal of COD and Pb(II) was observed to be 91 and 98 %, respectively, at pH 7.0 and temperature 37 °C and incubation time 7 days. According to response surface analysis and analysis of variance, the experimental data were perfectly fitted to the quadratic model, and the interactive influence of pH, temperature and time on Pb(II) and COD removal was highly significant. A high regression coefficient between the variables and response (r 2 = 0.9974) corroborate eminent evaluation of experimental data by second-order polynomial regression model. SEM and Fourier transform infrared analysis was performed to investigate morphology of PbS precipitates, sorption mechanism and involved functional groups in metal-free and metal-loaded biomass of SRC for Pb(II) binding.

  6. Effect of Cu(II), Cd(II) and Zn(II) on Pb(II) biosorption by algae Gelidium-derived materials.

    PubMed

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2008-06-15

    Biosorption of Pb(II), Cu(II), Cd(II) and Zn(II) from binary metal solutions onto the algae Gelidium sesquipedale, an algal industrial waste and a waste-based composite material was investigated at pH 5.3, in a batch system. Binary Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II) solutions have been tested. For the same equilibrium concentrations of both metal ions (1 mmol l(-1)), approximately 66, 85 and 86% of the total uptake capacity of the biosorbents is taken by lead ions in the systems Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II), respectively. Two-metal results were fitted to a discrete and a continuous model, showing the inhibition of the primary metal biosorption by the co-cation. The model parameters suggest that Cd(II) and Zn(II) have the same decreasing effect on the Pb(II) uptake capacity. The uptake of Pb(II) was highly sensitive to the presence of Cu(II). From the discrete model it was possible to obtain the Langmuir affinity constant for Pb(II) biosorption. The presence of the co-cations decreases the apparent affinity of Pb(II). The experimental results were successfully fitted by the continuous model, at different pH values, for each biosorbent. The following sequence for the equilibrium affinity constants was found: Pb>Cu>Cd approximately Zn.

  7. [Effects of Low-Molecular-Weight Organic Acids on the Speciation of Pb in Purple Soil and Soil Solution].

    PubMed

    Liu, Jiang; Jiang, Tao; Huang, Rong; Zhang, Jin-zhong; Chen, Hong

    2016-04-15

    Lead (Pb) in purple soil was selected as the research target, using one-step extraction method with 0.01 mol · L⁻¹ sodium nitrate as the background electrolyte to study the release effect of citric acid (CA), tartaric acid (TA) and acetic acid (AC) with different concentrations. Sequential extraction and geochemical model (Visual Minteq v3.0) were applied to analyze and predict the speciation of Pb in soil solid phase and soil solution phase. Then the ebvironmental implications and risks of low-molecule weight organic acid (LMWOA) on soil Pb were analyzed. The results indicated that all three types of LMWOA increased the desorption capacity of Pb in purple soil, and the effect followed the descending order of CA > TA > AC. After the action of LMWOAs, the exchangeable Pb increased; the carbonate-bound Pb and Fe-Mn oxide bound Pb dropped in soil solid phase. Organic bound Pb was the main speciation in soil solution phase, accounting for 45.16%-75.05%. The following speciation of Pb in soil solution was free Pb, accounting for 22.71%-50.25%. For CA and TA treatments, free Pb ions and inorganic bound Pb in soil solution increased with increasing LMWOAs concentration, while organic bound Pb suffered a decrease in this process. An opposite trend for AC treatment was observed compared with CA and TA treatments. Overall, LMWOAs boosted the bioavailability of Pb in purple soil and had a potential risk to contaminate underground water. Among the three LMWOAs in this study, CA had the largest potential to activate soil Pb.

  8. Multiferroic properties of Pb{sub 2}Fe{sub 2}O{sub 5} ceramics

    SciTech Connect

    Wang, Min; Tan, Guolong

    2011-03-15

    Research highlights: {yields} Simultaneous occurrence of ferromagnetism and ferroelectricity in Pb{sub 2}Fe{sub 2}O{sub 5} ceramics. {yields} The off-centers of shifted Pb{sup 2+} ions as well as the FeO{sub 6} octahedra in the 'Pb{sub 2}Fe{sub 2}O{sub 5}' lead to a ferroelectric polarization. {yields} Pb{sub 2}Fe{sub 2}O{sub 5} ceramic demonstrates ferromagnetic order state due to the spin arrangement in the double chains of FeO{sub 5} tetrahedral pyramids. -- Abstract: Pb{sub 2}Fe{sub 2}O{sub 5} (PFO) powders in monoclinic structure have been synthesized using lead acetate in glycerin and ferric acetylacetonate as the precursor. The powders were pressed into pellets, which were sintered into ceramics at 800 {sup o}C for 1 h. The morphology and structure have been determined by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). Polarization was observed in Pb{sub 2}Fe{sub 2}O{sub 5} ceramics at room temperature, exhibiting a clear ferroelectric hysteresis loop. The remanent polarization of Pb{sub 2}Fe{sub 2}O{sub 5} ceramic is estimated to be Pr {approx} 0.22 {mu}C/cm{sup 2}. The origin of the polarization may be attributed to the off-centers of shifted Pb{sup 2+} ions as well as the FeO{sub 6} octahedra in the perovskite-based structure of Pb{sub 2}Fe{sub 2}O{sub 5}. Magnetic hysteresis loop was also observed at room temperature. The Pb{sub 2}Fe{sub 2}O{sub 5} ceramic shows coexistence of ferroelectricity and ferromagnetism. It provides a new field of research for complex oxides with multiferroic properties.

  9. Antiferrodistortive reconstruction of the PbTiO{sub 3} surface.

    SciTech Connect

    Munkholm, A.; Streiffer, S. K.; Murty, R. M. V.; Eastman, J. A.; Thompson, C.; Auciello, O.; Thompson, L.; Moore, J. F. Stephenson, G. B.; Northern Illinois Univ.

    2002-01-07

    We present in situ x-ray scattering measurements of the surface structures of PbTiO{sub 3} (001) in equilibrium with PbO vapor. At 875 to 1025 K, a reconstruction having c(2x2) symmetry is present under most conditions, while a 1x6 reconstruction occurs under PbO-poor conditions. The atomic structure of the c(2x2) phase is found to consist of a single layer of an antiferrodistortive structure with oxygen cages counter-rotated by 10 degrees about the titanium ions.

  10. Direct Pb Isotopic Analysis of a Nuclear Fallout Debris Particle from the Trinity Nuclear Test.

    PubMed

    Bellucci, Jeremy J; Snape, Joshua F; Whitehouse, Martin J; Nemchin, Alexander A

    2017-02-07

    The Pb isotope composition of a nuclear fallout debris particle has been directly measured in post-detonation materials produced during the Trinity nuclear test by a secondary ion mass spectrometry (SIMS) scanning ion image technique (SII). This technique permits the visual assessment of the spatial distribution of Pb and can be used to obtain full Pb isotope compositions in user-defined regions in a 70 μm × 70 μm analytical window. In conjunction with backscattered electron (BSE) and energy-dispersive spectroscopy (EDS) mapping of the same particle, the Pb measured in this fallout particle cannot be from a major phase in the precursor arkosic sand. Similarly, the Pb isotope composition of the particle is resolvable from the surrounding glass at the 2σ uncertainty level (where σ represents the standard deviation). The Pb isotope composition measured in the particle here is in excellent agreement with that inferred from measurements of green and red trinitite, suggesting that these types of particles are responsible for the Pb isotope compositions measured in both trinitite glasses.

  11. Theoretical assessment of phosphate amendments for stabilization of (Pb+Zn) in polluted soil.

    PubMed

    Raicevic, S; Perovic, V; Zouboulis, A I

    2009-05-01

    Contamination of the environment with toxic metals, such as lead (Pb), represents a serious concern for human health. Most of the studies on Pb stabilization were performed using various phosphorus-containing amendments that can reduce Pb mobility and bioavailability by the sorption and precipitation of new, stable pyromorphite-type minerals, presenting very low solubility and bioaccessibility. However, the presence of competing ions, such as zinc (Zn), can reduce stabilization efficacy. The role of chemical composition on the stability of immobilization products of Pb and Zn by the addition of hydroxyapatite (HAP) or fluoroapatite (FAP) has been examined in this paper. In this analysis we used a theoretical criterion which is based on calculation of the ion-ion interaction potential, representing the main term of the cohesive energy of the matrix/pollutant system. It has been demonstrated that the stability of the HAP matrix decreases and that the stability of the FAP matrix increases with the Pb immobilization in the presence of Zn. The results of this analysis point out FAP as an advantageous amendment for the immobilization of Pb in the presence of Zn.

  12. Removal of Pb(II) from aqueous solution by oxidized multiwalled carbon nanotubes.

    PubMed

    Xu, Di; Tan, Xiaoli; Chen, Changlun; Wang, Xiangke

    2008-06-15

    Oxidized multiwalled carbon nanotubes (MWCNTs) were employed as sorbent to study the sorption characteristic of Pb(II) from aqueous solution as a function of contact time, pH, ionic strength, foreign ions, and oxidized MWCNTs' contents under ambient conditions using batch technique. The results indicate that sorption of Pb(II) on oxidized MWCNTs is strongly dependent on pH values, and independent of ionic strength and the type of foreign ions. The removal of Pb(II) to oxidized MWCNTs is rather quickly and the kinetic sorption can be described by a pseudo-second-order model very well. Sorption of Pb(II) is mainly dominated by surface complexation rather than ion exchange. The efficient removal of Pb(II) from aqueous solution is limited at pH 7-10. X-ray photoelectron spectroscopy (XPS) is performed to study the sorption mechanism at a molecular level and thereby to identify the species of the sorption processes. The 3-D relationship of pH, Ceq and q indicates that all the data of Ceq-q lie in a straight line with slope -V/m and intercept C0V/m for the same initial concentration of Pb(II) and same content of oxidized MWCNTs of each experimental data.

  13. Pb(II) and Cd(II) removal from aqueous solutions by olive cake.

    PubMed

    Doyurum, Sabriye; Celik, Ali

    2006-11-02

    The removal of heavy metals from wastewater using olive cake as an adsorbent was investigated. The effect of the contact time, pH, temperature, and concentration of adsorbate on adsorption performance of olive cake for Pb(II) and Cd(II) ions were examined by batch method. Adsorption of Pb(II) and Cd(II) in aqueous solution onto olive cake was studied in single component. After establishing the optimum conditions, elution of these ions from the adsorbent surface was also examined. The optimum sorption conditions were determined for two elements. Maximum desorption of the Pb(II) and Cd(II) ions were found to be 95.92 and 53.97% by 0.5M HNO(3) and 0.2M HCl, respectively. The morphological analysis of the olive cake was performed by the scanning electron microscopy (SEM).

  14. Pb-Pb chronometry and the early Solar System

    NASA Astrophysics Data System (ADS)

    Connelly, J. N.; Bollard, J.; Bizzarro, M.

    2017-03-01

    Of the long-lived chronometric systems, only the dual decay of 238U and 235U to 206Pb and 207Pb, respectively, have appropriate half-lives to resolve the ages of meteorites and their components formed in the first 5 Myr of the Solar System. This paper reviews the theory and methods behind this chronometer, offers criteria to critically evaluate Pb-Pb ages and presents a summary of the current state and immediate future of the chronometry of the early Solar System. We recognize that there is some debate over the age of the Solar System, but conclude that an age of 4567.30 ± 0.16 Ma based on four CAIs dated individually by the same method in two different laboratories is presently the best constrained published value. We further conclude that nebular chondrules dated by the Pb-Pb method require that they formed contemporaneously with CAIs and continued to form for at least ∼4 Myr, a conclusion that implies heterogeneous distribution of the short-lived 26Al nuclide in the protoplanetary disk. Planetesimals were already forming by ∼1 Myr after CAI formation, consistent with their growth predominantly through the accretion of chondrules. Nebular chondrule formation was completed by ∼5 Myr after CAI formation when the impact-generated Cba chondrules formed after the disk was cleared of gas and dust. We note that the absolute age of the Solar System or any single early Solar System object is not fundamental to any significant scientific question and that it is important only to know the correct relative ages of objects being used to piece together the formation history of the Solar System. As such, we point out the risks inherent in comparing Pb-Pb ages produced by different approaches in different laboratories at the level of the internal errors of individual ages. Until a cross-calibration exercise using synthetic and natural standards establishes the reproducibility between laboratories, only ages from a single laboratory, or between laboratories having

  15. The Interstellar Abundance of Lead: Experimental Oscillator Strengths for Pb II λ1203 and λ1433 and New Detections of Pb II in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Ritchey, Adam Michael; Heidarian, Negar; Irving, Richard E.; Federman, Steven R.; Ellis, David G.; Cheng, Song; Curtis, Larry J.; Furman, W. A.

    2015-08-01

    Accurate gas-phase abundances of ions in the interstellar medium may be obtained through the analysis of interstellar absorption lines, but only if the oscillator strengths (f-values) of the relevant transitions are well known. For dominant ions, comparison of the gas-phase abundance with the appropriate solar reference abundance yields the degree to which the element is incorporated into interstellar dust grains. Singly-ionized lead is the dominant form of this element in the neutral interstellar medium. However, while Pb II has several strong resonance lines in the ultraviolet, the f-values for these transitions are uncertain. Here, we present the first experimentally determined oscillator strengths for the Pb II transitions at 1203.6 Å and 1433.9 Å, obtained from lifetime measurements made using beam-foil techniques. We also present new detections of these lines in the interstellar medium from an analysis of archival spectra acquired by the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope. Notably, our observations of the Pb II λ1203 line represent the first detection of this transition in interstellar gas. Our experimental f-values for the Pb II λ1203 and λ1433 transitions are consistent with recent theoretical results, including our own relativistic calculations, but are significantly smaller than previous values based on older calculations. For the Pb II λ1433 line, in particular, our new f-value yields an increase in the interstellar abundance of Pb of 0.43 dex over estimates based on the f-value listed by Morton. With our revised f-values, and with our new detections of Pb II λ1203 and λ1433, we find that the depletion of Pb onto interstellar grains is not nearly as severe as previously thought, and is very similar to the depletions seen for elements such as Zn and Sn, which have similar condensation temperatures.

  16. Anthropogenic Pb input into Bohai Bay, China: Evidence from stable Pb isotopic compositions in sediments

    NASA Astrophysics Data System (ADS)

    Ning-jing, Hu; Peng, Huang; Hui, Zhang; Ai-mei, Zhu; Ji-hua, Liu; Jun, Zhang; Lian-hua, He

    2015-10-01

    To investigate the source of Pb within Bohai Bay, Pb concentrations and Pb isotopic compositions (204Pb, 206Pb, 207Pb, and 208Pb) of surface sediments in this area were determined. The Pb concentration in this bay varied widely from 6.9 to 39.2 μg/g (average: 21.8±7.8 μg/g), and the Pb isotopic compositions ranged from 0.8338 to 0.8864 (average: 2.0997±0.0180) for 208Pb/206Pb and from 2.0797 to 2.1531 (average: 0.8477±0.0135) for 207Pb/206Pb, presenting in three distinct clusters. The Pb isotopic ratios of sediments from the northeastern (NE zone) and northwestern (NW zone) coastal areas were significantly influenced by anthropogenic sources such as coal combustion and automobile emission. In sediments from the central and southern Bohai Bay (C-S zone); however, Pb mainly originated from the Yellow River catchment, as a result of lithogenic sediment (from rock weathering) accumulation. The Pb isotopic ratios further indicate that, apart from riverine inputs, the neighboring large-scale ports and aerosols significantly contributed to the anthropogenic Pb contained in these sediments. Pb contamination in the Haihe and Luanhe river mouths as well as in the regions near ports is also suggested from anthropogenic enrichment factors. As cities and ports continue to develop around Bohai Bay, a long-term extensive sewage monitoring program is highly recommended.

  17. Flow Harmonics vn in pPb and PbPb Collisions

    NASA Astrophysics Data System (ADS)

    Wang, Quan

    2016-12-01

    Previous CMS measurements have demonstrated the collective nature of multiparticle correlations in high-multiplicity pPb collisions at the LHC. This collectivity is consistent with a hydrodynamic flow origin. However, it can also be interpreted in terms of initial state effects arising from gluon saturation. The pseudorapidity dependence of the azimuthal Fourier coefficients (vn) is expected to be sensitive to the underlying mechanism with, in the hydrodynamic picture, the longer lifetime of the fireball on the Pb-going side expected to lead to a larger flow signal than found on the p-going side. To investigate the detailed properties of the observed collectivity, differential vn values in transverse momentum (pT) and pseudorapidity (η) are presented over the full range of the CMS tracker detector (- 2.4 < η < 2.4) for pPb collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV. Results based on multiparticle analyses involving four or more particles are shown. An event plane analysis is presented where the influence of recently demonstrated event-plane decorrelation is considered. Comparisons are made with peripheral PbPb collisions measured at similar mid-rapidity particle multiplicities. The results will be discussed in the context of current models of the longitudinal dependence of the multiparticle correlations.

  18. The Transport of Ions Across Plant Cell Membranes.

    ERIC Educational Resources Information Center

    Baker, D. A.

    1981-01-01

    Presented is one of a series of articles designed to help science teachers keep current on ideas in specific areas of biology. This article provides information about ion transport in plant cells. (PB)

  19. Potential use of lactic acid bacteria Leuconostoc mesenteroides as a probiotic for the removal of Pb(II) toxicity.

    PubMed

    Yi, Young-Joo; Lim, Jeong-Muk; Gu, Suna; Lee, Wan-Kyu; Oh, Eunyoung; Lee, Sang-Myeong; Oh, Byung-Taek

    2017-04-01

    It has been demonstrated that certain lactic acid bacteria (LAB) can sequester metal ions by binding them to their surfaces. In the present study, lead (Pb)-resistant LAB were isolated from kimchi, a Korean fermented food. A total of 96 different LAB strains were isolated, and 52 strains showed lead resistance. Among them, an LAB strain-96 (L-96) identified as Leuconostoc mesenteroides showed remarkable Pb resistance and removal capacity. The maximum adsorption capacity of this strain calculated using the Langmuir isotherm was 60.6 mg Pb/g. In an in vivo experiment, young male mice were provided with water (A), Pb-water (B), or Pb-water+ L-96 (C) during puberty. Lower glutamate oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT) levels in Pb-exposed male mice that received strain L-96 as a probiotic were suggestive of reduced hepatotoxicity. Moreover, feces from mice treated with L-96 contained more Pb than feces from untreated mice. Increased Pb elimination likely reduced internal accumulation, and this hypothesis was supported by significantly lower Pb concentrations in kidneys and testes of the mice treated with strain L-96. The motility and ATP content of epididymal spermatozoa were partially restored if strain L-96 was administered. In conclusion, isolated L-96 LAB had lead-biosorption activity and efficiently detoxified lead-poisoned male mice, resulting in recovering male reproductive function. These results suggest the potential use of LAB as a probiotic to protect humans from the adverse effects of Pb exposure.

  20. Mechanism of Pb Adsorption to Fatty Acid Langmuir Monolayers Studied by X-ray Absorption Fine Structure Spectroscopy

    SciTech Connect

    Boyanov, M.I.; Kmetko, J.; Shibata, T.; Datta, A.; Dutta, P.; Bunker, B.A.

    2010-09-30

    The local atomic environment of lead (Pb) adsorbed to a CH{sub 3}(CH{sub 2}){sub 19}COOH Langmuir monolayer was investigated in situ using grazing-incidence X-ray absorption fine structure (GI-XAFS) spectroscopy at the Pb L{sub III} edge. Measurements were performed at pH 6.5 of the 10{sup -5} M PbCl{sub 2} solution subphase, a condition under which grazing incidence diffraction (GID) revealed a large-area commensurate superstructure underneath the close-packed organic monolayer. The XAFS results indicate covalent binding of the Pb cations to the carboxyl headgroups, and the observed Pb-Pb coordination suggests that the metal is adsorbed as a hydrolysis polymer, rather than as individual Pb{sup 2+} ions. The data are consistent with a bidentate chelating mechanism and a one Pb atom to one carboxyl headgroup binding stoichiometry. We discuss how this adsorption model can explain the peculiarities observed with Pb in previous metal-Langmuir monolayer studies. A systematic study of lead perchlorate and lead acetate aqueous solutions is presented and used in the analysis. XAFS multiple scattering effects from alignment of the Pb-C-C atoms in the lead acetate solutions are reported.

  1. Mobility and diagenesis of Pb and sup 210 Pb in peat

    SciTech Connect

    Urban, N.R.; Eisenreich, S.J. ); Grigal, D.F. ); Schurr, K.T. )

    1990-12-01

    Peatlands long have been considered to preserve the record of atmospheric deposition of anthropogenic contaminants such as Pb. In the past two decades, {sup 210}Pb has been widely used to data recent strata of peat and to calculate accumulation rates. The assumption that Pb and {sup 210}Pb are immobile and not subject to diagenesis in peat has been questioned but not rigorously tested. The authors attempted to determine if Pb is mobile in peatlands and if Pb profiles are altered by diagenic processes by constructing a mass balance for Pb about a small peatland, by comparing inventories, concentrations, and accumulation rates of Pb and {sup 210}Pb in peatlands across northeastern North America, and by examining the relationship between concentrations of Pb in bog waters and peat in numerous sites. The results clearly demonstrate that Pb and {sup 210}Pb are mobilized by the organic-rich waters of peatlands. Profiles of Pb and {sup 210}Pb at depths below the water table do not preserve the record of atmospheric deposition, and inventories of Pb and {sup 210}Pb are depleted in peatland hollows. Concentrations of Pb in bog waters are regulated by the concentration of Pb in the peat and the concentration of dissolved organic carbon. The mass balance for one bog indicated that over the specific three-year period of study more than 30% of inputs of Pb were not retained within the peat. As a result of this mobility, dates based on {sup 210}Pb can be biased and inaccurate by as much as 30 years. Dates based on {sup 210}Pb should be verified by other techniques, especially when the inventory of {sup 210}Pb is less than that expected from local rates of deposition.

  2. Direct detection of Pb in urine and Cd, Pb, Cu, and Ag in natural waters using electrochemical sensors immobilized with DMSA functionalized magnetic nanoparticles.

    PubMed

    Yantasee, Wassana; Hongsirikarn, Kitiya; Warner, Cynthia L; Choi, Daiwon; Sangvanich, Thanapon; Toloczko, Mychailo B; Warner, Marvin G; Fryxell, Glen E; Addleman, R Shane; Timchalk, Charles

    2008-03-01

    Urine is universally recognized as one of the best non-invasive matrices for biomonitoring exposure to a broad range of xenobiotics, including toxic metals. Detection of metal ions in urine has been problematic due to the protein competition and electrode fouling. For direct, simple, and field-deployable monitoring of urinary Pb, electrochemical sensors employing superparamagnetic iron oxide (Fe3O4) nanoparticles with a surface functionalization of dimercaptosuccinic acid (DMSA) has been developed. The metal detection involves rapid collection of dispersed metal-bound nanoparticles from a sample solution at a magnetic or electromagnetic electrode, followed by the stripping voltammetry of the metal in acidic medium. The sensors were evaluated as a function of solution pH, the binding affinity of Pb to DMSA-Fe3O4, the ratio of nanoparticles per sample volume, preconcentration time, and Pb concentrations. The effect of binding competitions between the DMSA-Fe3O4 and urine constituents for Pb on the sensor responses was studied. After 90 s of preconcentration in samples containing 25 vol.% of rat urine and 0.1 g L(-1) of DMSA-Fe3O4, the sensor could detect background level of Pb (0.5 ppb) and yielded linear responses from 0 to 50 ppb of Pb, excellent reproducibility (%RSD of 5.3 for seven measurements of 30 ppb Pb), and Pb concentrations comparable to those measured by ICP-MS. The sensor could also simultaneously detect background levels (<1 ppb) of Cd, Pb, Cu, and Ag in river and seawater.

  3. Ion source

    DOEpatents

    Leung, Ka-Ngo; Ehlers, Kenneth W.

    1984-01-01

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species.

  4. Adsorption characteristics of copper, lead, zinc and cadmium ions by tourmaline.

    PubMed

    Jiang, Kan; Sun, Tie-heng; Sun, Li-na; Li, Hai-bo

    2006-01-01

    The adsorption characteristics of heavy metals: Cu(II), Pb(II), Zn(II) and Cd(II) ions on tourmaline were studied. Adsorption equilibrium was established. The adsorption isotherms of all the four metal ions followed well Langmuir equation. Tourmaline was found to remove heavy metal ions efficiently from aqueous solution with selectivity in the order of Pb(II)>Cu(II)>Cd(II)>Zn(II). The adsorption of metal ions by tourmaline increased with the initial concentration of metal ions increasing in the medium. Tourmaline could also increase pH value of metal solution. -The maximum heavy metal ions adsorbed by tourmaline was found to be 78.86, 154.08, 67.25, and 66.67 mg/g for Cu(II), Pb(II), Zn(II) and Cd(R), respectively. The temperature (25-55 degrees C) had a small effect on the adsorption capacity of tourmaline. Competitive adsorption of Cu(II), Pb(II), Zn(II) and Cd(II) ions was also studied. The adsorption capacity of tourmaline for single metal decreased in the order of Pb>Cu>Zn >Cd and inhibition dominance observed in two metal systems was Pb>Cu, Pb>Zn, Pb>Cd, Cu>Zn, Cu>Cd, and Cd>Zn.

  5. Synthesis and crystallographic study of Pb-Sr hydroxyapatite solid solutions by high temperature mixing method under hydrothermal conditions

    SciTech Connect

    Zhu Kongjun; Yanagisawa, Kazumichi; Shimanouchi, Rie; Onda, Ayumu; Kajiyoshi, Koji; Qiu Jinhao

    2009-06-03

    The solid solutions in the system of Pb and Sr hydroxyapatite, Sr{sub 10-x}Pb{sub x}HAp (x = 0-10), were successfully synthesized by high-temperature mixing method (HTMM) at 160 deg. C for 12 h under hydrothermal conditions. The samples were characterized by X-ray diffraction, chemical analysis and electron microscopic observation, and the site of the metal ions in the solid solutions was analyzed with the Rietveld method. The lattice constants, both a and c, of the solid solutions varied linearly with Pb content. It was found that Pb ions in the solid solutions preferentially occupied the M(2) site in the apatite structure. HTMM gives Sr-Pb HAp solid solutions much better crystallization. However, due to the formation of intermediate compound of Pb{sub 3}O{sub 2}(OH){sub 2} in the Pb(NO{sub 3}){sub 2}.4H{sub 2}O solution before mixing with (NH{sub 4}){sub 2}HPO{sub 4} solution at 160 deg. C, HTMM causes the decrease of crystallization of the samples with high Pb content.

  6. Pb uptake and toxicity to Iris halophila tested on Pb mine tailing materials.

    PubMed

    Han, Yulin; Zhang, Lili; Yang, Yongheng; Yuan, Haiyan; Zhao, Jiuzhou; Gu, Jiguang; Huang, Suzhen

    2016-07-01

    Pb tolerant mechanisms, plant physiological response and Pb sub-cellular localization in the root cells of Iris halophila were studied in sand culture and the Pb mine tailings. Results showed that the activities of superoxide dismutase (SOD) and peroxidase (POD) in the underground parts and the activity of catalase (CAT) in the aboveground and underground parts increased as Pb level was enhanced. Glutathione (GSH) and ascorbic acid (AsA) contents increased by Pb treatments. Pb deposits were found in the middle cell walls or along the inner side of epibiotic protoplasm of some cells which accumulated a large quantity of Pb and died. The dry weights (DWs) of aboveground parts under all Pb tailings treatments decreased insignificantly, while the DW of the underground parts growing in the pure Pb tailings decreased significantly. Pb, Cu, Cd, and Zn contents increased significantly as the levels of Pb tailings were enhanced and Pb contents in the aboveground and underground parts reached 64.75 and 751.75 μg/g DW, respectively, at pure Pb tailings treatment. The results indicated that I. halophila is a promising plant in the phytoremediation of Pb contaminated environment. Some antioxidant enzymes, antioxidants and compartmentalization of Pb were played major roles in Pb tolerance of I. halophila.

  7. Preparation of graphene oxide/chitosan/FeOOH nanocomposite for the removal of Pb(II) from aqueous solution.

    PubMed

    Sheshmani, Shabnam; Akhundi Nematzadeh, Mehrnaz; Shokrollahzadeh, Soheila; Ashori, Alireza

    2015-09-01

    In the present study, a graphene oxide/chitosan/FeOOH (GO/Ch/FeOOH) nanostructured composite was prepared and used as an adsorbent for the removal of Pb(II) ions from aqueous solution. The nanocomposite was characterized by FT-IR, XRD, and SEM techniques. Several important parameters influencing the adsorption of Pb(II) ions such as pH (3-7), temperature (25-80 °C), shaking speed (150-800 rpm), contact time (10-70 min), and sorbent mass (10-100 mg) were studied. The results showed that, benefiting from the surface property of graphene oxide, the abundant amino and hydroxyl functional groups of chitosan, the adsorbent provides adequate and versatile adsorption for the Pb(II) ions under investigation. The batch adsorption experiments showed that the adsorption of the Pb(II) is considerably dependent on pH of milieu, amount of adsorbent, and contact time. The Freundlich and Langmuir adsorption models were used for the mathematical description of adsorption equilibrium and isotherm constants. Both models were applicable for the description of Pb(II) adsorption isotherm in the concentration range studied. However, Langmuir model showed higher correlation coefficient (R(2)) than Freundlich model. The study suggests that the GO/Ch/FeOOH is a promising nano adsorbent for the removal of Pb(II) ions from aqueous solution.

  8. Charmonium production in Pb-Pb collisions at and 5.02 TeV with ALICE

    NASA Astrophysics Data System (ADS)

    Paul, Biswarup; ALICE Collaboration

    2017-01-01

    The production of charmonium states, J/ψ and ψ(2S), in heavy-ion collisions, is an important probe to investigate the formation of a plasma of quarks and gluons. In such a hot and deconfined medium, quarkonium production is, indeed, expected to be significantly modified, with respect to the pp yields, due to the interplay of color screening and charm-quark recombination mechanisms. The ALICE Collaboration at the LHC has measured charmonium production in Pb-Pb collisions at . The nuclear modification factor of inclusive J/ψ, evaluated at forward (2.5 < y < 4) rapidity, is measured as a function of the event centrality and of the J/ψ kinematic variables such as transverse momentum and rapidity. In this article, we report on the new J/ψ results, obtained at forward rapidity, at . These new results are compared to that obtained at and to the available theoretical predictions.

  9. Competitive sorption of Pb(II) and Zn(II) on polyacrylic acid-coated hydrated aluminum-oxide surfaces.

    PubMed

    Wang, Yingge; Michel, F Marc; Levard, Clement; Choi, Yong; Eng, Peter J; Brown, Gordon E

    2013-01-01

    Natural organic matter (NOM) often forms coatings on minerals. Such coatings are expected to affect metal-ion sorption due to abundant sorption sites in NOM and potential modifications to mineral surfaces, but such effects are poorly understood in complex multicomponent systems. Using poly(acrylic acid) (PAA), a simplified analog of NOM containing only carboxylic groups, Pb(II) and Zn(II) partitioning between PAA coatings and α-Al2O3 (1-102) and (0001) surfaces was investigated using long-period X-ray standing wave-florescence yield spectroscopy. In the single-metal-ion systems, PAA was the dominant sink for Pb(II) and Zn(II) for α-Al2O3(1-102) (63% and 69%, respectively, at 0.5 μM metal ions and pH 6.0). In equi-molar mixed-Pb(II)-Zn(II) systems, partitioning of both ions onto α-Al2O3(1-102) decreased compared with the single-metal-ion systems; however, Zn(II) decreased Pb(II) sorption to a greater extent than vice versa, suggesting that Zn(II) outcompeted Pb(II) for α-Al2O3(1-102) sorption sites. In contrast, >99% of both metal ions sorbed to PAA when equi-molar Pb(II) and Zn(II) were added simultaneously to PAA/α-Al2O3(0001). PAA outcompeted both α-Al2O3 surfaces for metal sorption but did not alter their intrinsic order of reactivity. This study suggests that single-metal-ion sorption results cannot be used to predict multimetal-ion sorption at NOM/metal-oxide interfaces when NOM is dominated by carboxylic groups.

  10. Pb deposition on I-coated Au(111). UHV-EC and EC-STM studies.

    PubMed

    Kim, Youn-Geun; Kim, Jay Yu; Thambidurai, Chandru; Stickney, John L

    2007-02-27

    This article concerns the growth of an atomic layer of Pb on the Au(111)( radical3 x radical3)R30 degrees -I structure. The importance of this study lies in the use of Pb underpotential deposition (UPD) as a sacrificial layer in surface-limited redox replacement (SLRR). SLRR reactions are being applied in the formation of metal nanofilms via electrochemical atomic layer deposition (ALD). Pb UPD is a surface-limited reaction, and if it is placed in a solution of ions of a more noble metal, redox replacement can occur, but limited by the amount of Pb present. Pb UPD is a candidate for use as a sacrificial layer for replacement by any more noble element. It has been used by this group for both Cu and Pt nanofilm formation using electrochemical ALD. The I atom layer was intended to facilitate electrochemical annealing during nanofilm growth. Two distinctly different Pb atomic layer structures are reported, studied using in situ scanning tunneling microscopy (STM) with an electrochemical flow cell and ultrahigh vacuum surface analysis combined directly with electrochemical reactions (UHV-EC). Starting with the initial Au(111)( radical3 x radical3)R30 degrees -I, 1/3 monolayer of I on the Au(111) surface, Pb deposition began at approximately 0.1 V. The first Pb UPD structure was observed just below -0.2 V and displayed a (2 x radical3)-rect unit cell, for a structure composed of 1/4 monolayer each of Pb and I. The I atoms fit in Pb 4-fold sites, on the Au(111) surface. The structure was present in domains rotated by 120 degrees. Deposition to -0.4 V resulted in complete loss of the I atoms and formation of a Pb monolayer on the Au(111), which produced a Moiré pattern, due to the Pb and Au lattice mismatch. These structures represent two well-defined starting points for the growth of nanofilms of other more noble elements. It is apparent from these studies that the adsorption of I- on Pb is weak, and it will rinse away. If Pb is used as a sacrificial metal in an

  11. Spectroscopic identification of interactions of Pb2+ with bovine serum albumin.

    PubMed

    Liu, Yihong; Zhang, Lijun; Liu, Rutao; Zhang, Pengjun

    2012-01-01

    The effect of Pb(2+) targeted to bovine serum albumin (BSA) in vitro was investigated by fluorescence, synchronous fluorescence, UV absorption and circular dichroism (CD) spectrophotometry. The characteristic fluorescence of BSA was quenched, which indicated that Pb(2+) changed the skeleton of BSA and caused the gradual exposure of aromatic amino acid residues (Trp, Tyr, Phe) in the internal hydrophobic region of BSA. When the concentration of Pb(2+) was higher than 1 × 10(-4) mol/L, the BSA was completely denatured. The excess lead ion interacted with the aromatic amino acid residues of BSA exposed to the solution, which decreased the fluorescence of BSA further. According to the experiment results, we found that a lead-BSA complex was formed following static quenching and the binding site was calculated approximately equal to 1. This work reflected the interaction mechanism of BSA and Pb(2+) from the perspective of spectroscopy.

  12. Inorganic-ligand exchanging time effect in PbS quantum dot solar cell

    NASA Astrophysics Data System (ADS)

    Kim, Byung-Sung; Hong, John; Hou, Bo; Cho, Yuljae; Sohn, Jung Inn; Cha, SeungNam; Kim, Jong Min

    2016-08-01

    We investigate time-dependent inorganic ligand exchanging effect and photovoltaic performance of lead sulfide (PbS) nanocrystal films. With optimal processing time, volume shrinkage induced by residual oleic acid of the PbS colloidal quantum dot (CQD) was minimized and a crack-free film was obtained with improved flatness. Furthermore, sufficient surface passivation significantly increased the packing density by replacing from long oleic acid to a short iodide molecule. It thus facilities exciton dissociation via enhanced charge carrier transport in PbS CQD films, resulting in the improved power conversion efficiency from 3.39% to 6.62%. We also found that excess iodine ions on the PbS surface rather hinder high photovoltaic performance of the CQD solar cell.

  13. Paper sludge as a feasible soil amendment for the immobilization of Pb2+.

    PubMed

    He, Xiaojia; Yao, Lei; Liang, Zhu; Ni, Jinren

    2010-01-01

    The possibility of amending Pb2+ contaminated soil (S) with paper sludge (P) was investigated through adsorption and desorption experiments. The adsorption process of Pb2+ in soil containing paper sludge (SP) could be well described by pseudo second-order kinetic model and the Langmuir isotherm model. After P addition, the equilibrium time decreased greatly (from 28 to 8 hr) and the Pb2+ maximum adsorbed amount (Qmax) increased by a factor of more than three to 102.04 mg/g. Qmax reached its maximum as S:P was 9:1 (m/m) after 10 days contact between S and P. Moreover, Pb2+ adsorbed amount increased with the rise of pH during the adsorption process. Desorption experiments indicated that Pb2+ adsorption in SP was irreversible. The metal ion fraction was analyzed with Energy Dispersive Spectrometer and Environmental Scan Electron Microscope. As a result, the addition of P to soil was found to induce a decrease in the mobile forms. The Pb2+ complexes formation in the presence of carbonates was the main adsorption mechanism. Overall, the paper sludge could be one of the promising soil amendments for the remediation of soil with Pb2+ contamination.

  14. Magnetic properties of Ce3+ in PbCeA (A= Te, Se, S)

    NASA Astrophysics Data System (ADS)

    Isber, S.; Gratens, X.; Charar, S.; Golacki, Z.

    2013-01-01

    The magnetic susceptibility of Pb1-xCexA (A = S, Se and Te) crystals with 0.006 ≤ x ≤ 0.036 were studied in the temperature range from 20 mK up to room temperature. X-band (~9.5 GHz) Electron Paramagnetic Resonance (EPR) showed small shifts in the effective Landé factors that were attributed to crystal-field admixture. The EPR measurements were correlated with the magnetic susceptibility data and resulted in estimating the crystal-field splitting Δ = E(Γ8) - E(Γ7) of the lowest 2F5/2 manifold for Ce3+ ions in PbA (A = S, Se and Te) of about 340 K, 440 K and 540 K for Pb1-xCexTe, Pb1-xCexSe, and Pb1-xCexS, respectively. The values for the crystal-field splitting deduced from the magnetic data were found to be in agreement with the calculated ones based on the point charge model. Moreover, the deHaas van-Alphen magnetic oscillations in the susceptibility measurements of Pb1-xCexTe (x~ 0.05 and 0.07) were observed at ultra-low temperature (20 mK); The oscillations were investigated and the values of the oscillatory period for Pb1-xCexTe (x = 0.0048 and 0.007) are reported.

  15. Anthropogenic Pb input into Bohai Bay, China: Evidence from stable Pb isotopic compositions in sediments

    NASA Astrophysics Data System (ADS)

    Hu, Ningjing; Huang, Peng

    2016-04-01

    Anthropogenic Pb input into Bohai Bay, China: Evidence from stable Pb isotopic compositions in sediments Hu Ning-jinga, Huang Pengb,, Liu Ji-huaa, a First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China b Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China To investigate the source of Pb within Bohai Bay, Pb concentrations and Pb isotopic compositions (204Pb, 206Pb, 207Pb, and 208Pb) of surface sediments in this area were determined. The Pb concentration in this bay varied widely from 6.9 to 39.2 μg/g (average: 21.8 ± 7.8 μg/g), and the Pb isotopic compositions ranged from 0.8338 to 0.8864 (average: 2.0997 ± 0.0180) for 208Pb/206Pb and from 2.0797 to 2.1531 (average: 0.8477 ± 0.0135) for 207Pb/206Pb, presenting in three distinct clusters. The Pb isotopic ratios of sediments from the northeastern (NE zone) and northwestern (NW zone) coastal areas were significantly influenced by anthropogenic sources such as coal combustion and automobile emission. In sediments from the central and southern Bohai Bay (C-S zone); however, Pb mainly originated from the Yellow River catchment, as a result of lithogenic sediment (from rock weathering) accumulation. The Pb isotopic ratios further indicate that, apart from riverine inputs, the neighboring large-scale ports and aerosols significantly contributed to the anthropogenic Pb contained in these sediments. Pb contamination in the Haihe and Luanhe river mouths as well as in the regions near ports is also suggested from anthropogenic enrichment factors. As cities and ports continue to develop around Bohai Bay, a long-term extensive sewage monitoring program is highly recommended.

  16. Studies of jet quenching using isolated-photon + jet correlations in PbPb and pp collisions at √{sNN} = 2.76 TeV

    NASA Astrophysics Data System (ADS)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hammer, J.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Wagner, P.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Maes, T.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Gonzalez Suarez, R.; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Charaf, O.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Reis, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Vanelderen, L.; Verwilligen, P.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins Junior, M.; De Jesus Damiao, D.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldá Júnior, W. L.; Carvalho, W.; Custódio, A.; Da Costa, E. M.; De Oliveira Martins, C.; Fonseca De Souza, S.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Silva Do Amaral, S. M.; Soares Jorge, L.; Sznajder, A.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, S.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, S.; Zhu, B.; Zou, W.; Avila, C.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Morovic, S.; Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Khalil, S.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Müntel, M.; Raidal, M.; Rebane, L.; Tiko, A.; Azzolini, V.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dobrzynski, L.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Juillot, P.; Karim, M.; Le Bihan, A.-C.; Van Hove, P.; Fassi, F.; Mercier, D.; Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Brun, H.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tosi, S.; Tschudi, Y.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Anagnostou, G.; Beranek, S.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.; Raupach, F.

    2013-01-01

    Results from the first study of isolated-photon + jet correlations in relativistic heavy ion collisions are reported. The analysis uses data from PbPb collisions at a centre-of-mass energy of 2.76 TeV per nucleon pair corresponding to an integrated luminosity of 150 μb-1 recorded by the CMS experiment at the LHC. For events containing an isolated photon with transverse momentum pTγ > 60 GeV / c and an associated jet with pTJet > 30 GeV / c, the photon + jet pT imbalance is studied as a function of collision centrality and compared to pp data and PYTHIA calculations at the same collision energy. Using the pTγ of the isolated photon as an estimate of the momentum of the associated parton at production, this measurement allows an unbiased characterisation of the in-medium parton energy loss. For more central PbPb collisions, a significant decrease in the ratio pTJet / pTγ relative to that in the PYTHIA reference is observed. Furthermore, significantly more pTγ > 60 GeV / c photons in PbPb are observed not to have an associated pTJet > 30 GeV / c jet, compared to the reference. However, no significant broadening of the photon + jet azimuthal correlation is observed.

  17. Hydrogels Containing Prussian Blue Nanoparticles Toward Removal of Radioactive Cesium Ions.

    PubMed

    Kamachi, Yuichiro; Zakaria, Mohamed B; Torad, Nagy L; Nakato, Teruyuki; Ahamad, Tansir; Alshehri, Saad M; Malgras, Victor; Yamauchil, Yusuke

    2016-04-01

    Recent reports have demonstrated the practical application of Prussian blue (PB) nanoparticles toward environmental clean-up of radionuclide 173Cs. Herein, we prepared a large amount of PB nanoparticles by mixing both iron(III) chloride and sodium ferrocyanide hydrate as starting precursors. The obtained PB nanoparticles show a high surface area (440 m2. g-1) and consequently an excellent uptake ability of Cs ions from aqueous solutions. The uptake ability of Cs ions into poly(N-isopropylacrylamide (PNIPA) hydrogel is drastically increased up to 156.7 m2. g-1 after incorporating our PB nanoparticles, compared to 30.2 m2 . g-1 after using commercially available PB. Thus, our PB-containing PNIPA hydrogel can be considered as an excellent candidate for the removal of Cs ions from aqueous solutions, which will be useful for the remediation of the nuclear waste.

  18. Preparation of crosslinked carboxymethyl chitosan with epichlorohydrin and its use for Pb(II) removal

    NASA Astrophysics Data System (ADS)

    Hastuti, Budi; Mudasir, Siswanta, Dwi; Triyono

    2015-12-01

    A modified pectin has been synthesized by reacting/combining -OH group among pectin and chitosan with ECH (Epichlorohydrin) croslinker agent. Chitosan was grafted with acetate to form carboxymetyl chitosan (CMC). The result of this study was Pectin-CMC-ECH film could be greater adsorp Pb(II) ion than chitosan without modified. The structure of Pectin-CMC-ECH film was characterized by Fourier transform infrared (FTIR) spectroscopy. Adsorption experiment were performed in batch processes; Result of the study showed that optimum conditions for the adsorption of Pb(II) on the adsorbent were found at pH 5 with with 93 % of adsorption and adsorption capacity was 42.77 mg/g, contact time 12 hour with 91 % of adsorption and adsorption capacity was 39.74 mg/g. Pectin-CMC-ECH film demonstrate the ability to absorb Pb (II) metal ions was higher than chitosan without modified.

  19. Mass-dependent and -independent fractionation of isotopes in Ni and Pb chelate complex formation reactions

    NASA Astrophysics Data System (ADS)

    Nomura, Masao; Kudo, Takashi; Adachi, Atsuhiko; Aida, Masao; Fujii, Yasuhiko

    2013-11-01

    Mass independent fractionation (MIF) has been a very interesting topic in the field of inorganic isotope chemistry, in particular, geo- and cosmo- chemistry. In the present work, we studied the isotope fractionation of Ni(II) and Pb(II) ions in complex formation with chelating reagent EDTA. To obtain clear results on the mass dependence of the isotope fractionation, we have conducted long-distance ion exchange chromatography of Ni(II) and Pb(II), using chelate complex reagent EDTA. The results apparently show that the isotope fractionation in Ni complex formation system is governed by the mass dependent rule. On the other hand the isotope fractionation in the Pb complex system is governed by the mass independent rule or the nuclear volume effect.

  20. Mass-dependent and -independent fractionation of isotopes in Ni and Pb chelate complex formation reactions

    SciTech Connect

    Nomura, Masao; Kudo, Takashi; Adachi, Atsuhiko; Aida, Masao; Fujii, Yasuhiko

    2013-11-13

    Mass independent fractionation (MIF) has been a very interesting topic in the field of inorganic isotope chemistry, in particular, geo- and cosmo- chemistry. In the present work, we studied the isotope fractionation of Ni(II) and Pb(II) ions in complex formation with chelating reagent EDTA. To obtain clear results on the mass dependence of the isotope fractionation, we have conducted long-distance ion exchange chromatography of Ni(II) and Pb(II), using chelate complex reagent EDTA. The results apparently show that the isotope fractionation in Ni complex formation system is governed by the mass dependent rule. On the other hand the isotope fractionation in the Pb complex system is governed by the mass independent rule or the nuclear volume effect.

  1. Atomic layer deposition effect on the electrical properties of Al{sub 2}O{sub 3}-passivated PbS quantum dot field-effect transistors

    SciTech Connect

    So, Hye-Mi; Shim, Hyung Cheoul; Choi, Hyekyoung; Lee, Seung-Mo; Jeong, Sohee; Chang, Won Seok

    2015-03-02

    We have investigated the effect of atomic layer deposition (ALD) on the electrical properties of colloidal PbS quantum dot field-effect transistors (PbS QD-FETs). Low-temperature Al{sub 2}O{sub 3} ALD process was used to fill up the pore spaces of PbS QD films containing 1, 2-ethanedithiol ligands. Upon deposition of Al{sub 2}O{sub 3} on PbS film, the PbS QD-FETs showed ambipolar behavior. The treated film retained this property for over 2 months, despite of exposure to air. This change in the electrical properties of the PbS QD-FETs is attributed to the formation of electron channels in the Al{sub 2}O{sub 3}-passivated PbS film. We conclude that these electron transport channels in the Al{sub x}O{sub y}-PbS film are formed due to substitution of the Pb sites by Al metal and chemical reduction of Pb{sup 2+} ions, as determined by an analysis of the depth profile of the film using secondary ion mass spectrometry and X-ray photoelectron spectroscopy.

  2. Synthesis of Quercetin Loaded Nanoparticles Based on Alginate for Pb(II) Adsorption in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Qi, Yun; Jiang, Meng; Cui, Yuan-Lu; Zhao, Lin; Zhou, Xia

    2015-10-01

    Pb(II) is a representative heavy metal in industrial wastewater, which may frequently cause serious hazard to living organisms. In this study, comparative studies between alginate nanoparticles (AN) and quercetin-decorated alginate nanoparticles (Q-AN) were investigated for Pb(II) ion adsorption. Characterization of AN and Q-AN were analysed by transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FT-IR), X-ray diffractometer (XRD), and thermogravimetric analysis (TG-DTG-DSC). The main operating conditions such as pH, initial concentration of Pb(II), and co-existing metal ions were also investigated using a batch experiment. AN and Q-AN, with a diameter of 95.06 and 58.23 nm, were constituted by many small primary nanoparticles. It revealed that when initial concentration of Pb(II) is between 250 and 1250 mg L-1, the adsorption rate and equilibrium adsorption were increased with the increase of pH from 2 to 7. The maximum adsorption capacities of 147.02 and 140.37 mg L-1 were achieved by AN and Q-AN, respectively, with 0.2 g adsorbents in 1000 mg L-1 Pb(II) at pH 7. The adsorption rate of Pb(II) was little influenced by the co-existing metal ions, such as Mn(II), Co(II), and Cd(II). Desorption experiments showed that Q-AN possessed a higher desorption rate than AN, which were 90.07 and 83.26 %, respectively. AN and Q-AN would probably be applied as adsorbents to remove Pb(II) and then recover it from wastewater for the advantages of simple preparation, high adsorption capacity, and recyclability.

  3. Tracing source and migration of Pb during waste incineration using stable Pb isotopes.

    PubMed

    Li, Yang; Zhang, Hua; Shao, Li-Ming; He, Pin-Jing

    2017-04-05

    Emission of Pb is a significant environmental concern during solid waste incineration. To target Pb emission control strategies effectively, the major sources of Pb in the waste incineration byproducts must be traced and quantified. However, identifying the migration of Pb in each waste component is difficult because of the heterogeneity of the waste. This study used a laboratory-scale incinerator to simulate the incineration of municipal solid waste (MSW). The Pb isotope ratios of the major waste components ((207)Pb/(206)Pb=0.8550-0.8627 and (208)Pb/(206)Pb=2.0957-2.1131) and their incineration byproducts were measured to trace sources and quantify the Pb contribution of each component to incineration byproducts. As the proportions of food waste (FW), newspaper (NP), and polyethylene bag (PE) in the artificial MSW changed, the contribution ratios of FW and PE to Pb in fly ash changed accordingly, ranging from 31.2% to 50.6% and from 35.0% to 41.8%, respectively. The replacement of PE by PVC significantly increased the partitioning and migration ratio of Pb. The use of Pb isotope ratios as a quantitative tool for tracing Pb from raw waste to incineration byproducts is a feasible means for improving Pb pollution control.

  4. Adsorption of Cd(II) and Pb(II) from aqueous solutions on activated alumina.

    PubMed

    Naiya, Tarun Kumar; Bhattacharya, Ashim Kumar; Das, Sudip Kumar

    2009-05-01

    The ability of activated alumina as synthetic adsorbent was investigated for adsorptive removal of Cd(II) and Pb(II) ions from aqueous solutions. Various physico-chemical parameters such as pH, initial metal ion concentration, and adsorbent dosage level and equilibrium contact time were studied. The optimum solution pH for adsorption of Cd(II) and Pb(II) from aqueous solutions was found to be 5. Kinetics data were best described by pseudo-second order model. The effective particle diffusion coefficient of Cd(II) and Pb(II) are of the order of 10(-10) m(2)/s. Values of mass transfer coefficient were estimated as 4.868x10(-6) cm/s and 6.85x10(-6) cm/s for Cd(II) and Pb(II) adsorption respectively. The equilibrium adsorption data for Cd(II) and Pb(II) were better fitted to Langmuir adsorption isotherm model. The thermodynamic studies indicated that the adsorption was spontaneous and exothermic for Cd(II) adsorption and endothermic for Pb(II). The sorption energy calculated from Dubinin-Radushkevich isotherm were 11.85 kJ/mol and 11.8 kJ/mol for the adsorption of Cd(II) and Pb(II) respectively which indicated that both the adsorption processes were chemical in nature. Desorption studies were carried out using dilute mineral acids. Application studies carried out using industrial waste water samples containing Cd(II) and Pb(II) showed the suitability of activated alumina in waste water treatment plant operation.

  5. Effects of Pb plus Cd mixtures on toxicity, and internal electrolyte and osmotic balance in the rainbow trout (Oncorhynchus mykiss).

    PubMed

    Clemow, Yvonne H; Wilkie, Michael P

    2015-04-01

    The physiological and toxicological effects of Cd and Pb have been thoroughly studied, but relatively little work has been done to determine how mixtures of these metals affect fishes in soft (<100 μmol L(-1)Ca(2+)) slightly acidic (pH ∼6) waters typical of many lakes in the Canadian Shield and other regions. Recently, it has been suggested that acute exposure to Cd plus Pb mixtures (3h) had greater than additive effects on both Ca(2+) and Na(+) influx, which could potentially exacerbate disturbances to ion balance and result in greater toxicity in rainbow trout (Oncorhynchus mykiss). The goal of the present study was to test this hypothesis by assessing the physiological and toxicological effects of Cd plus Pb mixtures over longer time periods (3-5 days), but at relatively low, more environmentally relevant concentrations of these metals. Accordingly, toxicity and measurements of blood acid-base regulation (PaO2, pHa), hematology (Ht, Hb, MCHC, and Protein), ionic composition (body ions and plasma Ca(2+), Na(+), Cl(-), osmolality), unidirectional Na(+) fluxes and branchial Na(+)/K(+)-ATPase activity were measured in rainbow trout exposed to Cd plus Pb mixtures. Experiments on rainbow trout, implanted with dorsal aortic catheters for repetitive blood sampling, demonstrated that exposure to Pb alone (26 nmol PbL(-1)) was less toxic than Cd alone (6 nmol CdL(-1)), which was much less toxic to the fish than a Cd plus Pb mixture (7 nmol CdL(-1) plus 45 nmol PbL(-1)), which led to greater than additive 80% mortality by 5d. Both Cd and Pb inhibited Na(+) influx over 3d exposure to the metals, which was partially offset by decreases in the diffusive efflux (outflux) of Na(+) across the gill. Despite an absence of detectable effects of Pb alone on plasma ion balance, Cd plus Pb mixtures exacerbated Cd-induced reductions in plasma Ca(2+) concentration, and resulted in pronounced reductions in plasma Na(+), Cl(-), and osmolality. No effects on Na(+)/K(+)-ATPase activity

  6. Studies of azimuthal dihadron correlations in ultra-central PbPb collisions at $$\\sqrt{s_{NN}} =$$ 2.76 TeV

    DOE PAGES

    Chatrchyan, Serguei

    2014-02-20

    Azimuthal dihadron correlations of charged particles have been measured in PbPb collisions atmore » $$\\sqrt{s_{NN}}$$ = 2.76 TeV by the CMS collaboration, using data from the 2011 LHC heavy-ion run. The data set includes a sample of ultra-central (0-0.2% centrality) PbPb events collected using a trigger based on total transverse energy in the hadron forward calorimeters and the total multiplicity of pixel clusters in the silicon pixel tracker. A total of about 1.8 million ultra-central events were recorded, corresponding to an integrated luminosity of 120 inverse microbarns. The observed correlations in ultra-central PbPb events are expected to be particularly sensitive to initial-state fluctuations. The single-particle anisotropy Fourier harmonics, from $$v_2$$ to $$v_6$$, are extracted as a function of particle transverse momentum. At higher transverse momentum, the $$v_2$$ harmonic becomes significantly smaller than the higher-order $$v_n$$ (n greater than or equal to 3). The pt-averaged $$v_2$$ and $$v_3$$ are found to be equal within 2%, while higher-order $$v_n$$ decrease as n increases. The breakdown of factorization of dihadron correlations into single-particle azimuthal anisotropies is observed. This effect is found to be most prominent in the ultra-central PbPb collisions, where the initial-state fluctuations play a dominant role. As a result, a comparison of the factorization data to hydrodynamic predictions with event-by-event fluctuating initial conditions is also presented.« less

  7. Studies of azimuthal dihadron correlations in ultra-central PbPb collisions at $\\sqrt{s_{NN}} =$ 2.76 TeV

    SciTech Connect

    Chatrchyan, Serguei

    2014-02-20

    Azimuthal dihadron correlations of charged particles have been measured in PbPb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV by the CMS collaboration, using data from the 2011 LHC heavy-ion run. The data set includes a sample of ultra-central (0-0.2% centrality) PbPb events collected using a trigger based on total transverse energy in the hadron forward calorimeters and the total multiplicity of pixel clusters in the silicon pixel tracker. A total of about 1.8 million ultra-central events were recorded, corresponding to an integrated luminosity of 120 inverse microbarns. The observed correlations in ultra-central PbPb events are expected to be particularly sensitive to initial-state fluctuations. The single-particle anisotropy Fourier harmonics, from $v_2$ to $v_6$, are extracted as a function of particle transverse momentum. At higher transverse momentum, the $v_2$ harmonic becomes significantly smaller than the higher-order $v_n$ (n greater than or equal to 3). The pt-averaged $v_2$ and $v_3$ are found to be equal within 2%, while higher-order $v_n$ decrease as n increases. The breakdown of factorization of dihadron correlations into single-particle azimuthal anisotropies is observed. This effect is found to be most prominent in the ultra-central PbPb collisions, where the initial-state fluctuations play a dominant role. As a result, a comparison of the factorization data to hydrodynamic predictions with event-by-event fluctuating initial conditions is also presented.

  8. Isomorphous Substitution of Rare-Earth Elements in Lacunary Apatite Pb8Na2(PO4)6.

    PubMed

    Get'man, Evgeni I; Loboda, Stanislav N; Ignatov, Alexey V; Prisedsky, Vadim V; Abdul Jabar, Mohammed A B; Ardanova, Lyudmyla I

    2016-03-07

    The substitution of rare-earth elements (REEs) for Pb in the lacunary apatite Pb8Na2(PO4)6 with void structural channels was studied by means of powder X-ray diffraction (including the Rietveld refinement), scanning electron microscopy, energy-dispersive X-ray microanalysis, and IR spectroscopy and also measurements of the electrical conductivity. The substitution limits (xmax in Pb8-xLnxNa2(PO4)6Ox/2) at 800 °C were found to decrease with the atomic number of the REE from 1.40 for La to 0.12 for Yb with a rapid drop from light to heavy lanthanides (between Gd and Tb). The REE atoms substitute for Pb predominantly at Pb2 sites of the apatite structure according to the scheme 2Pb(2+) + □ → 2Ln(3+) + O(2-), where □ is a vacancy in the structural channel. The substitution in lacunary apatite produces quite different changes in the structural parameters compared with broadly studied alkaline-earth hydroxyapatites. In spite of the much lower ionic radii of REE than that of Pb(2+), the mean distances ⟨Pb1-O⟩ somewhat increase, whereas the distances ⟨Pb2-Pb2⟩ and ⟨Pb2-O4⟩ do not change considerably with the degree of substitution. This implies control of the substitution by not only spatial and charge accommodation of REE ions but also the availability of a stereochemically active 6s(2) electron pair on Pb(2+). The high-temperature electrical conductivity shows dependence on the degree of substitution with a minimum at x = 0.2 indicative of a possible change of the type of conductivity.

  9. Ion-Ion Neutralization.

    DTIC Science & Technology

    1980-12-31

    plasma were identified using a downstream quadrupole mass spectrometer. In these experimento it is a simple matter to establish H+(H 2 0):f as the...pressure as predicted by the Thomson t2rnary mechanism whicK hzr been suownr to be valid experimentally at hiTh rrsurs (,han and Peron, 1:EI4 hereafter t...of NO , NO2 ions in various gases and the ternary recombination coefficients of these ions in the higher pres:;ure ( Thomson ) re"ie. Equation (5) cr>n

  10. Photovoltaic performance and the energy landscape of CH3NH3PbI3.

    PubMed

    Zhou, Yecheng; Huang, Fuzhi; Cheng, Yi-Bing; Gray-Weale, Angus

    2015-09-21

    Photovoltaic cells with absorbing layers of certain perovskites have power conversion efficiencies up to 20%. Among these materials, CH3NH3PbI3 is widely used. Here we use density-functional theory to calculate the energies and rotational energy barriers of a methylammonium ion in the α or β phase of CH3NH3PbI3 with differently oriented neighbouring methylammonium ions. Our results suggest the methylammonium ions in CH3NH3PbI3 prefer to rotate collectively, and to be parallel to their neighbours. Changes in polarization on rotation of methylammonium ions are two to three times larger than those on relaxation of the lead ion from the centre of its coordination shell. The preferences for parallel configuration and concerted rotation, with the polarisation changes, are consistent with ferroelectricity in the material, and indicate that this polarisation is governed by methylammonium orientational correlations. We show that the field due to this polarisation is strong enough to screen the field hindering charge transport, and find this screening field in agreement with experiment. We examine two possible mechanisms for the effect of methylammonium ion rotation on photovoltaic performance. One is that rearrangement of methylammoniums promotes the creation and transport of charge carriers. Some effective masses change greatly, but changes in band structure with methylammonium rotation are not large enough to explain current-voltage hysteresis behaviour. The second possible mechanism is that polarization screens the hindering electric field, which arises from charge accumulation in the transport layers. Polarization changes on methylammonium rotation favour this second mechanism, suggesting that collective reorientation of methylammonium ions in the bulk crystal are in significant part responsible for the hysteresis and power conversion characteristics of CH3NH3PbI3 photovoltaic cells.

  11. Surface complexation modeling calculation of Pb(II) adsorption onto the calcined diatomite

    NASA Astrophysics Data System (ADS)

    Ma, Shu-Cui; Zhang, Ji-Lin; Sun, De-Hui; Liu, Gui-Xia

    2015-12-01

    Removal of noxious heavy metal ions (e.g. Pb(II)) by surface adsorption of minerals (e.g. diatomite) is an important means in the environmental aqueous pollution control. Thus, it is very essential to understand the surface adsorptive behavior and mechanism. In this work, the Pb(II) apparent surface complexation reaction equilibrium constants on the calcined diatomite and distributions of Pb(II) surface species were investigated through modeling calculations of Pb(II) based on diffuse double layer model (DLM) with three amphoteric sites. Batch experiments were used to study the adsorption of Pb(II) onto the calcined diatomite as a function of pH (3.0-7.0) and different ionic strengths (0.05 and 0.1 mol L-1 NaCl) under ambient atmosphere. Adsorption of Pb(II) can be well described by Freundlich isotherm models. The apparent surface complexation equilibrium constants (log K) were obtained by fitting the batch experimental data using the PEST 13.0 together with PHREEQC 3.1.2 codes and there is good agreement between measured and predicted data. Distribution of Pb(II) surface species on the diatomite calculated by PHREEQC 3.1.2 program indicates that the impurity cations (e.g. Al3+, Fe3+, etc.) in the diatomite play a leading role in the Pb(II) adsorption and dominant formation of complexes and additional electrostatic interaction are the main adsorption mechanism of Pb(II) on the diatomite under weak acidic conditions.

  12. Synthesis and characterization of a PbO{sub 2}-clay nanocomposite: Removal of lead from water using montmorillonite

    SciTech Connect

    Aroui, L.; Zerroual, L.; Boutahala, M.

    2012-02-15

    Graphical abstract: The replacement of Na by Pb in the interlayer space of the smectite leads to a decrease in the intensity of the the (0 0 1) reflection as the concentration of lead nitrate increases. A significant restructuring at the particle scale is observed leading probably to the exfoliation of the caly. In addition, the thermal behaviour of the montmorillonite samples with regard to their dehydration and dehydroxilation capacities is significantly influenced. This leads to a lowering of the water content and a decrease in the ionic conductivity of the clay. Highlights: Black-Right-Pointing-Pointer In the clay, Pb replaces Na ions and a significant restructuring at the particle scale is observed. Black-Right-Pointing-Pointer Pb influenced significantly the thermal behaviour of the clay with regard to its dehydration. Black-Right-Pointing-Pointer In the interlayer space, the exchange of Na by Pb leads to a decrease in the protonic conductivity. Black-Right-Pointing-Pointer A PbO{sub 2}-clay nanocomposite material with good conductivity is synthesized. -- Abstract: The aim of this paper is to present the results obtained with Pb(II) sorption on an Algerian Clay. The experiments were carried out using a batch process. Powder X-rays diffraction patterns (PXRD) prove that in the montmorillonite Pb replaces Na ions. A significant restructuring at the particle scale is observed leading to the disappearance of the d{sub 001} reflection of the clay at high concentrations of lead. The replacement of hydrated Na with Pb ions influenced significantly the thermal behaviour of the montmorillonite samples with regard to their dehydration and dehydroxilation capacities with a lowering of the water content. A PbO{sub 2}-clay composite material with good electrical conductivity is synthesized.

  13. Complex Histories of Two Lunar Zircons as Evidenced by their Internal Structures and U-Pb Ages

    NASA Technical Reports Server (NTRS)

    Pidgeon, R. T.; Nemchin, A. A.; Meyer, Charles

    2006-01-01

    The U-Pb dating of lunar zircon by ion-microprobe provides a robust technique for investigating the timing of lunar events [1,2]. However, we have now identified two cases where the U-Pb systems in a single zircon show more than one age. These complex zircons provide new opportunities for extending our knowledge on the timing of events in the early history of the Moon.

  14. XRF-measured bone lead (Pb) as a biomarker for Pb exposure and toxicity among children diagnosed with Pb poisoning

    PubMed Central

    Specht, Aaron J.; Lin, Yanfen; Weisskopf, Marc; Yan, Chonghuai; Hu, Howard; Xu, Jian; Nie, Linda H.

    2016-01-01

    Childhood lead (Pb) poisoning remains a global issue, especially in industrial areas. In this study, 115 children with average age 5.7 years were recruited as either patient diagnosed with Pb poisoning or controls at Xinhua Hospital in China. The subjects’ bone Pb was measured with a K-shell X-ray fluorescence (KXRF) and a portable X-ray fluorescence (XRF) system. A significant correlation between KXRF bone Pb and blood Pb and portable XRF and KXRF measurements were observed. The half-life of blood-lead was calculated to be 9.96 ± 3.92 d. Our results indicate that bone is a useful biomarker for Pb in children. PMID:26856822

  15. XRF-measured bone lead (Pb) as a biomarker for Pb exposure and toxicity among children diagnosed with Pb poisoning.

    PubMed

    Specht, Aaron J; Lin, Yanfen; Weisskopf, Marc; Yan, Chonghuai; Hu, Howard; Xu, Jian; Nie, Linda H

    2016-01-01

    Childhood lead (Pb) poisoning remains a global issue, especially in industrial areas. In this study, 115 children with average age 5.7 years were recruited as either patient diagnosed with Pb poisoning or controls at Xinhua Hospital in China. The subjects' bone Pb was measured with a K-shell X-ray fluorescence (KXRF) and a portable X-ray fluorescence (XRF) system. A significant correlation between KXRF bone Pb and blood Pb and portable XRF and KXRF measurements were observed. The half-life of blood-lead was calculated to be 9.96 ± 3.92 d. Our results indicate that bone is a useful biomarker for Pb in children.

  16. The role of point defects in PbS, PbSe and PbTe: a first principles study.

    PubMed

    Li, Wun-Fan; Fang, Chang-Ming; Dijkstra, Marjolein; van Huis, Marijn A

    2015-09-09

    Intrinsic defects are of central importance to many physical and chemical processes taking place in compound nanomaterials, such as photoluminescence, accommodation of off-stoichiometry and cation exchange. Here, the role of intrinsic defects in the above mentioned processes inside rock salt (RS) lead chalcogenide systems PbS, PbSe and PbTe (PbX) was studied systematically using first principles density functional theory. Vacancy, interstitial, Schottky and Frenkel defects were considered. Rock salt PbO was included for comparison. The studied physical properties include defect formation energy, local geometry relaxation, Bader charge analysis, and electronic structure. The defect formation energies show that monovacancy defects and Schottky defects are favoured over interstitial and Frenkel defects. Schottky dimers, where the cation vacancy and anion vacancy are adjacent to each other, have the lowest defect formation energies at 1.27 eV, 1.29 eV and 1.21 eV for PbS, PbSe and PbTe, respectively. Our results predict that a Pb monovacancy gives rise to a shallow acceptor state, while an X vacancy generates a deep donor state, and Schottky defects create donor-acceptor pairs inside the band gap. The surprisingly low formation energy of Schottky dimers suggests that they may play an important role in cation exchange processes, in contrast to the current notion that only single point defects migrate during cation exchange.

  17. Selective adsorption of Pb(II) from aqueous solution using porous biosilica extracted from marine diatom biomass: Properties and mechanism

    NASA Astrophysics Data System (ADS)

    Qi, Yarong; Wang, Jingfeng; Wang, Xin; Cheng, Jay Jiayang; Wen, Zhiyou

    2017-02-01

    Biosilica with a surface area of 143 m2 g-1 derived from marine diatoms was prepared using an easy two-step method involving washing with dilute acid and baking. The extracted biosilica was used to remove divalent lead ions, i.e., Pb(II), from aqueous solution. The effects on Pb(II) adsorption of initial pH, shaking speed, and adsorbent loading were investigated. The adsorption of Pb(II) in the presence of other ions was also investigated. The biosilica showed a high adsorption capacity with high selectivity for Pb(II). The experimental maximum adsorption capacity was 108.2-120.4 mg g-1 at an adsorbent loading of 1 g L-1. The adsorption process was best described by the Langmuir model. The adsorbent selectively adsorbed Pb(II) from binary ion systems in the presence of Cu(II), Cd(II), Ni(II), and Ag(I). The results of this study show that biosilica extracted from fresh marine diatoms is a more efficient and selective adsorbent for Pb(II) than other inorganic adsorbents.

  18. EDTA-assisted Pb phytoextraction.

    PubMed

    Saifullah; Meers, E; Qadir, M; de Caritat, P; Tack, F M G; Du Laing, G; Zia, M H

    2009-03-01

    Pb is one of the most widespread and metal pollutants in soil. It is generally concentrated in surface layers with only a minor portion of the total metal found in soil solution. Phytoextraction has been proposed as an inexpensive, sustainable, in situ plant-based technology that makes use of natural hyperaccumulators as well as high biomass producing crops to help rehabilitate soils contaminated with heavy metals without destructive effects on soil properties. The success of phytoextraction is determined by the amount of biomass, concentration of heavy metals in plant, and bioavailable fraction of heavy metals in the rooting medium. In general, metal hyperaccumulators are low biomass, slow growing plant species that are highly metal specific. For some metals such as Pb, there are no hyperaccumulator plant species known to date. Although high biomass-yielding non-hyperaccumulator plants lack an inherent ability to accumulate unusual concentrations of Pb, soil application of chelating agents such as EDTA has been proposed to enhance the metal concentration in above-ground harvestable plant parts through enhancing the metal solubility and translocation from roots to shoots. Leaching of metals due to enhanced mobility during EDTA-assisted phytoextraction has been demonstrated as one of the potential hazards associated with this technology. Due to environmental persistence of EDTA in combination with its strong chelating abilities, the scientific community is moving away from the use of EDTA in phytoextraction and is turning to less aggressive alternative strategies such as the use of organic acids or more degradable APCAs (aminopolycarboxylic acids). We have therefore arrived at a point in phytoremediation research history in which we need to distance ourselves from EDTA as a proposed soil amendment within the context of phytoextraction. However, valuable lessons are to be learned from over a decade of EDTA-assisted phytoremediation research when considering the

  19. Estimating distributions of endogenous and exogenous Pb in soils by using Pb isotopic ratios.

    PubMed

    Semlali, R M; van Oort, F; Denaix, L; Loubet, M

    2001-11-01

    Metal contamination of soils by diffuse atmospheric deposition is a worldwide phenomenon. The assessment of incorporation of exogenous metal contaminants in soils is of major environmental importance. Once entering in the soil's biogeochemical cycling, specific pedogenetic soil processes govern metal distribution patterns with depth. In this paper, we attempt to estimate the distribution of endogenous and exogenous Pb in two soils with contrasting pedogenesis, both representative of undisturbed ecosystems. Pb isotope analyses were performed using high-precision thermal ionization mass spectrometry. Endogenous and exogenous Pb concentrations and exogenous 206Pb/207Pb ratios of the samples were calculated using bulk Pb and Sc concentrations and bulk 206Pb/207Pb ratios. Endogenous Pb distribution was in agreementwith dominant soil characteristics, almost constant in the young Andosol and with a clear minimum and maximum in the eluvial and illuvial horizons of the Podzol. The distribution of exogenous Pb was closely related to that of organic C in both soils. Exogenous Pb was evidenced in significant amounts at depth. Using moderate dispersive particle-size fractionation allowed us to evidence the presence of exogenous Pb in functional soil compartments and to highlight preferential distributions of Pb, according to pedology.

  20. Optical and vibrational properties of PbSe nanoparticles synthesized in clinoptilolite

    NASA Astrophysics Data System (ADS)

    Flores-Valenzuela, J.; Cortez-Valadez, M.; Ramírez-Bon, R.; Arizpe-Chavez, H.; Román-Zamorano, J. F.; Flores-Acosta, M.

    2015-08-01

    In this work, the optical and vibrational properties of composites based on PbSe semiconductor immersed in a zeolite matrix are reported. The natural zeolite, (clinoptilolite) was used as the host material of PbSe nanoparticles. The method for obtaining these particles is also reported here, which is based on ion exchange processes inside the natural zeolite in alkaline aqueous solution that contains the precursor ions Pb2+ and Se2-. The process of synthesis was conducted temperature, volume, concentration and reaction time of the precursors. The samples were studied by powder X-ray diffraction, TEM (transmission electron microscopy), diffuse reflectance and Raman spectroscopy. The experimental results demonstrate that with this method, the particles with nanometric PbSe sizes were synthesized in the zeolite matrix. Vibrational Raman bands at low wave numbers were detected in these particles by the presence of a shoulder located at 135 cm-1 and a band at around 149 cm-1. The vibrational calculations for small clusters of PbSe at LSDA (Local Spin Density Approximation) level combined with the basis set LANDL2DZ (Los Alamos National Laboratory 2 double ζ), were considered through DFT (Density Functionl Theory). The "breathing" Raman modes located at 119-152 cm-1 were detected for this level of theory.

  1. Thiolated DAB dendrimers and CdSe quantum dots nanocomposites for Cd(II) or Pb(II) sensing.

    PubMed

    Algarra, M; Campos, B B; Alonso, B; Miranda, M S; Martínez, A M; Casado, C M; Esteves da Silva, J C G

    2012-01-15

    Four different generation of thiol-DAB dendrimers were synthesized, S-DAB-G(x) (x=1, 2, 3 and 5), and coupled with CdSe quantum dots, to obtain fluorescent nanocomposites as metal ions sensing. Cd(II) and Pb(II) showed the higher enhancement and quenching effects respectively towards the fluorescence of S-DAB-G(5)-CdSe nanocomposite. The fluorescence enhancement provoked by Cd(II) can be linearized using a Henderson-Hasselbalch type equation and the quenching provoked by Pb(II) can be linearized by a Stern-Volmer equation. The sensor responds to Cd(II) ion in the 0.05-0.7μM concentration range and to Pb(II) ion in the 0.01-0.15mM concentration range with a LOD of 0.06mM. The sensor has selectivity limitations but its dendrimer configuration has analytical advantages.

  2. Measurement of neutral mesons in pp and Pb-Pb collisions at mid-rapidity with ALICE

    NASA Astrophysics Data System (ADS)

    Morreale, Astrid

    2016-12-01

    One of the key signatures of the Quark-Gluon Plasma (QGP), is the modification of hadron transverse momentum differential cross-sections in heavy-ion collisions (HIC) as compared to proton-proton (pp) collisions. Suppression of hadron production at high transverse momenta (pT) in HIC has been explained by the energy loss of the partons produced in the hard scattering processes which traverse the deconfined quantum chromodynamic (QCD) matter. The dependence of the observed suppression on the pT of the measured hadron towards higher pT is an important input for the theoretical understanding of jet quenching effects in the QGP and the nature of the energy loss. The ALICE experiment at the Large Hadron Collider (LHC) performs measurements of neutral meson inclusive spectra at mid-rapidity in a wide pT range in pp, p-Pb and Pb-Pb collisions. Neutral mesons (π0 , η , ω) are reconstructed via complementary methods, using the ALICE electromagnetic calorimeters, PHOS and EMCal, and by the central tracking system, identifying photons converted into e+e- pairs in the material of the inner barrel detectors (TPC and ITS).

  3. IMMUNOASSAYS FOR METAL IONS. (R824029)

    EPA Science Inventory

    Abstract

    Antibodies that recognize chelated forms of metal ions have been used to construct immunoassays for Cd(II), Hg(II), Pb(II), and Ni(II). In this paper, the format of these immunoassays is described and the binding properties of three monoclonal antibodies direc...

  4. A thin-layer chromatography plate prepared from BODIPY-based receptor immobilized SiO2 nanoparticles as a portable chemosensor for Pb2+.

    PubMed

    Son, Hyunjong; Kang, Gyusik; Jung, Jong Hwa

    2012-01-07

    A new fluorescence receptor based on BODIPY-immobilized silica nanoparticles (BODIPY-SiO(2)) exhibits a high affinity and selectivity for Pb(2+) over competing metal ions in water. An overall emission change of ca. 100-fold at the emission maximum was observed for Pb(2+). The fluorescence receptor BODIPY-SiO(2) can remove 97% and 95% of the initial 100 ppb Pb(2+) from human blood and waste solution, respectively. Experiments show the fluorescence receptor BODIPY-SiO(2) can be a potentially useful and effective agent for the selective separation and rapid removal of Pb(2+)in vivo. We also prepared a portable chemosensor kit by coating a 4 μm thick film of BODIPY-SiO(2) onto a glass substrate. We found that this BODIPY-SiO(2) film detects Pb(2+) ions at pH 7.4 with a sensitivity of 3.2 nM. Finally, we tested the effect of pH on BODIPY-SiO(2) with Pb(2+) ions between pH 3.0 and 11.0. The fluorescence changes of BODIPY-SiO(2) were almost constant between pH 3 and 11. The results imply that the BODIPY-SiO(2) film is applicable as a portable chemosensor for detection of Pb(2+) ions in the environmental field.

  5. Soft electronic structure modulation of surface (thin-film) and bulk (ceramics) morphologies of TiO2-host by Pb-implantation: XPS-and-DFT characterization

    NASA Astrophysics Data System (ADS)

    Zatsepin, D. A.; Boukhvalov, D. W.; Gavrilov, N. V.; Zatsepin, A. F.; Shur, V. Ya.; Esin, A. A.; Kim, S. S.; Kurmaev, E. Z.

    2017-04-01

    The results of combined experimental and theoretical study of substitutional and clustering effects in the structure of Pb-doped TiO2-hosts (bulk ceramics and thin-film morphologies) are presented. Pb-doping of the bulk and thin-film titanium dioxide was made with the help of pulsed ion-implantation without posterior tempering (Electronic Structure Modulation Mode). The X-ray photoelectron spectroscopy (XPS) qualification of core-levels and valence bands and Density-Functional Theory (DFT) calculations were employed in order to study the yielded electronic structure of Pb-ion modulated TiO2 host-matrices. The combined XPS-and-DFT analysis has agreed definitely with the scenario of the implantation stimulated appearance of PbO-like structures in the bulk morphology of TiO2:Pb, whereas in thin-film morphology the PbO2-like structure becomes dominating, essentially contributing weak O/Pb bonding (PbxOy defect clusters). The crucial role of the oxygen hollow-type vacancies for the process of Pb-impurity "insertion" into the structure of bulk TiO2 was pointed out employing DFT-based theoretical background. Both experiment and theory established clearly the final electronic structure re-arrangement of the bulk and thin-film morphologies of TiO2 because of the Pb-modulated deformation and shift of the initial Valence Base-Band Width about 1 eV up.

  6. Removal of Cu (II) and Pb (II) from Aqueous Solution using engineered Iron Oxide Nanoparticles

    PubMed Central

    Tamez, Carlos; Hernandez, Rebecca; Parsons, J. G.

    2015-01-01

    Nano-sized Fe3O4 and Fe2O3 were synthesized using a precipitation method. The nanomaterials were tested as adsorbents for the removal of both Cu2+ and Pb2+ ions. The nanomaterials were characterized using X-ray powder diffraction to determine both the phase and the average grain size of the synthesized nanomaterials. Batch pH studies were performed to determine the optimum binding pH for both the Cu2+ and Pb2+ to the synthesized nanomaterials. The optimum binding was observed to occur at pH 4 and above. Time dependency studies for Cu2+ and Pb2+ showed the binding occurred within the first five minutes of contact and remained constant up to 2 hours of contact. Isotherm studies were utilized to determine the binding capacity of each of the nanomaterials for Cu2+ and Pb2+. The binding capacity of Fe3O4 with Cu2+ and Pb2+ were 37.04 mg/g and 166.67 mg/g, respectively. The binding capacities of the Fe2O3 nanomaterials with Cu2+ and Pb2+ were determined to be 19.61 mg/g and 47.62 mg/g, respectively. In addition, interference studies showed no significant reduction in the binding of either Cu2+ or Pb2+ to the Fe3O4 or Fe2O3 nanomaterials in the presence of solutions containing the individual ions Na+, K+, Mg2+ and Ca2+ or a solution consisting of a combination of all the aforementioned cations in one solution. PMID:26811549

  7. Removal of Cu (II) and Pb (II) from Aqueous Solution using engineered Iron Oxide Nanoparticles.

    PubMed

    Tamez, Carlos; Hernandez, Rebecca; Parsons, J G

    2016-03-01

    Nano-sized Fe3O4 and Fe2O3 were synthesized using a precipitation method. The nanomaterials were tested as adsorbents for the removal of both Cu(2+) and Pb(2+) ions. The nanomaterials were characterized using X-ray powder diffraction to determine both the phase and the average grain size of the synthesized nanomaterials. Batch pH studies were performed to determine the optimum binding pH for both the Cu(2+) and Pb(2+) to the synthesized nanomaterials. The optimum binding was observed to occur at pH 4 and above. Time dependency studies for Cu(2+) and Pb(2+) showed the binding occurred within the first five minutes of contact and remained constant up to 2 hours of contact. Isotherm studies were utilized to determine the binding capacity of each of the nanomaterials for Cu(2+) and Pb(2+). The binding capacity of Fe3O4 with Cu(2+) and Pb(2+) were 37.04 mg/g and 166.67 mg/g, respectively. The binding capacities of the Fe2O3 nanomaterials with Cu(2+) and Pb(2+) were determined to be 19.61 mg/g and 47.62 mg/g, respectively. In addition, interference studies showed no significant reduction in the binding of either Cu(2+) or Pb(2+) to the Fe3O4 or Fe2O3 nanomaterials in the presence of solutions containing the individual ions Na(+), K(+), Mg(2+) and Ca(2+) or a solution consisting of a combination of all the aforementioned cations in one solution.

  8. A Pb isotopic resolution to the Martian meteorite age paradox

    NASA Astrophysics Data System (ADS)

    Bellucci, J. J.; Nemchin, A. A.; Whitehouse, M. J.; Snape, J. F.; Kielman, R. B.; Bland, P. A.; Benedix, G. K.

    2016-01-01

    Determining the chronology and quantifying various geochemical reservoirs on planetary bodies is fundamental to understanding planetary accretion, differentiation, and global mass transfer. The Pb isotope compositions of individual minerals in the Martian meteorite Chassigny have been measured by Secondary Ion Mass Spectrometry (SIMS). These measurements indicate that Chassigny has mixed with a Martian reservoir that evolved with a long-term 238U/204Pb (μ) value ∼ two times higher than those inferred from studies of all other Martian meteorites except 4.428 Ga clasts in NWA7533. Any significant mixing between this and an unradiogenic reservoir produces ambiguous trends in Pb isotope variation diagrams. The trend defined by our new Chassigny data can be used to calculate a crystallization age for Chassigny of 4.526 ± 0.027 Ga (2σ) that is clearly in error as it conflicts with all other isotope systems, which yield a widely accepted age of 1.39 Ga. Similar, trends have also been observed in the Shergottites and have been used to calculate a >4 Ga age or, alternatively, attributed to terrestrial contamination. Our new Chassigny data, however, argue that the radiogenic component is Martian, mixing occurred on the surface of Mars, and is therefore likely present in virtually every Martian meteorite. The presence of this radiogenic reservoir on Mars resolves the paradox between Pb isotope data and all other radiogenic isotope systems in Martian meteorites. Importantly, Chassigny and the Shergottites are likely derived from the northern hemisphere of Mars, while NWA 7533 originated from the Southern hemisphere, implying that the U-rich reservoir, which most likely represents some form of crust, must be widespread. The significant age difference between SNC meteorites and NWA 7533 is also consistent with an absence of tectonic recycling throughout Martian history.

  9. Lead (Pb)-Free Solder Applications

    SciTech Connect

    VIANCO,PAUL T.

    2000-08-15

    Legislative and marketing forces both abroad and in the US are causing the electronics industry to consider the use of Pb-free solders in place of traditional Sn-Pb alloys. Previous case studies have demonstrated the satisfactory manufacturability and reliability of several Pb-free compositions for printed circuit board applications. Those data, together with the results of fundamental studies on Pb-free solder materials, have indicated the general feasibility of their use in the broader range of present-day, electrical and electronic components.

  10. Removal of Pb(II) and Zn(II) from Aqueous Solutions by Raw Crab Shell: A Comparative Study.

    PubMed

    Zhou, Chuanqiang; Gong, Xiangxiang; Han, Jie; Guo, Rong

    2016-04-01

    Removals of Pb(II) and Zn(II) ions from water using crab (Clistocoeloma sinensis) shell particles as biosorbent have been compared in this study. Uptake equilibriums for two ions well described by Langmuir isotherm revealed that crab shell possessed higher uptake capacity for Pb(II) (709 mg/g) than that for Zn(II) (117 mg/g). Kinetics data for the uptake of the two metals were successfully modeled using the pseudo-second-order model, where the initial uptake rate of Pb(II) was much faster than that of Zn(II). Dubinin-Radushkevick modeling and thermodynamic parameters hinted at different uptake mechanisms of Pb(II) and Zn(II) removal by crab shell, attested by FTIR, XRD, FESEM analysis. Pb(II) ion was removed mainly through the chemical reaction, while the uptake of Zn(II) ion onto crab shell was attributed to the chelation and coordination interactions. The polluted river water and laboratory wastewater both satisfied the standards for drinking and irrigation/fishery water, respectively, after being treated with crab shell particles.

  11. U-Th-Pb in chondrites - Evidence of elemental mobilities and the singularity of primordial PB

    NASA Astrophysics Data System (ADS)

    Tera, F.

    1983-05-01

    A unified graphical approach that emphasizes the strict corellativity in the U-Th-Pb systematics and projects subtle diagnostic deviations from it is adopted in evaluating the existing data base. It is found that excess radiogenic Pb in chondrites is largely an artifact stemming from Pb contamination of some samples and apparent recent U loss from other samples. Taken at face value, the data are seen as indicating that recent U-Th mobility on the chondrule-scale is pervasive in Allende. In contrast, apparent recent U-Th mobility in Barwell is in general consistent with a gain of terrestrial Pb. Another finding is that Allende carries the isotopic imprints of recent multiple disturbances in which elemental mobilities were effected, but not isotopic homogenization of Pb. For Allende, the Pb isotope pattern of the matrix samples indicates terrestrial contamination. Canyon Diablo primitive Pb is seen as representing the primordial composition from which chondritic Pb evolved.

  12. Sorption characteristics and mechanisms of Pb(II) from aqueous solution by using bioflocculant MBFR10543.

    PubMed

    Guo, Junyuan; Yu, Jing

    2014-01-01

    This paper focuses on the effectiveness of removing Pb(II) from aqueous solution using bioflocculant MBFR10543 and a series of experimental parameters including MBFR10543 dose, calcium ions concentration, solution pH, and temperature on Pb(II) uptake was evaluated. Meanwhile, the flocculation mechanism of MBFR10543 was discussed. Results have demonstrated that the removal efficiency of Pb(II) reached 94.7 % (with the sorption capacity of 81.2 mg · g(-1)) by adding MBFR10543 in two stages, separately, 3 × 10(-2) % (w/w) in the 1.0 min's rapid mixing (180 rpm) and 4 × 10(-2) % (w/w) after 2.0 min's slow mixing (80 rpm) with pH value fixed at 6. Pb(II) flocculation process could be described by the Langmuir isotherms model and pseudo-second-order kinetic model. The negative Gibbs free energy change indicated the spontaneous nature of the flocculation. Fourier transform infrared spectra analysis indicated that functional groups, such as -OH, C=O, and C-N, were existed in MBFR10543 molecular chains, which had strong capacity for removing Pb(II). Furthermore, both charge neutralization and bridging being the main mechanisms involved in Pb(II) removal by MBFR10543.

  13. U-Pb Dating of Zircons and Phosphates in Lunar Meteorites, Acapulcoites and Angrites

    NASA Technical Reports Server (NTRS)

    Zhou, Q.; Zeigler, R. A.; Yin, Q. Z.; Korotev, R. L.; Joliff, B. L.; Amelin, Y.; Marti, K.; Wu, F. Y.; Li, X. H.; Li, Q. L.; Lin, Y. T.; Liu, Y.; Tang, G. Q.

    2012-01-01

    Zircon U-Pb geochronology has made a great contribution to the timing of magmatism in the early Solar System [1-3]. Ca phosphates are another group of common accessory minerals in meteorites with great potential for U-Pb geochronology. Compared to zircons, the lower closure temperatures of the U-Pb system for apatite and merrillite (the most common phosphates in achondrites) makes them susceptible to resetting during thermal metamorphism. The different closure temperatures of the U-Pb system for zircon and apatite provide us an opportunity to discover the evolutionary history of meteoritic parent bodies, such as the crystallization ages of magmatism, as well as later impact events and thermal metamorphism. We have developed techniques using the Cameca IMS-1280 ion microprobe to date both zircon and phosphate grains in meteorites. Here we report U-Pb dating results for zircons and phosphates from lunar meteorites Dhofar 1442 and SaU 169. To test and verify the reliability of the newly developed phosphate dating technique, two additional meteorites, Acapulco, obtained from Acapulco consortium, and angrite NWA 4590 were also selected for this study as both have precisely known phosphate U-Pb ages by TIMS [4,5]. Both meteorites are from very fast cooled parent bodies with no sign of resetting [4,5], satisfying a necessity for precise dating.

  14. Mg(OH)2 Supported Nanoscale Zero Valent Iron Enhancing the Removal of Pb(II) from Aqueous Solution.

    PubMed

    Liu, Minghui; Wang, Yonghao; Chen, Luntai; Zhang, Yan; Lin, Zhang

    2015-04-22

    In this article, a novel composite (Mg(OH)2 supported nanoscale zerovalent iron (denoted as nZVI@Mg(OH)2) was prepared and characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy method. The morphology analysis revealed that Mg(OH)2 appeared as self-supported flower-like spheres, and nano Fe0 particles were uniformly immobilized on the surface of their "flower petals", thus aggregation of Fe0 particles was minimized. Then the Pb(II) removal performance was tested by batch experiments. The composite presented exceptional removal capacity (1986.6 mg/g) compared with Mg(OH)2 and nanoscale zerovalent iron due to the synergistic effect. Mechanisms were also explored by a comparative study of the phase, morphology, and surface valence state of composite before and after reaction, indicating that at least three paths are involved in the synergistic removal process: (1) Pb(II) adsorption by Mg(OH)2 (companied with ion exchange reaction); (2) Pb(II) reduction to Pb0 by nanoscale zerovalent iron; and (3) Pb(II) precipitation as Pb(OH)2. The hydroxies provided by Mg(OH)2 can dramatically promote the role of nanoscale zerovalent iron as reducer, thus greatly enhancing the whole Pb(II) sequestration process. The excellent performance shown in our research potentially provides an alternative technique for Pb(II) pollution treatment.

  15. Two new Pb coordination polymers derived from pyrimidine-2-thiolate: Synthesis, methyl substitution-induced effect and properties

    NASA Astrophysics Data System (ADS)

    Song, Jiang-Feng; Li, Si-Zhe; Zhou, Rui-Sha; Hu, Tuo-Ping; Shao, Jia; Zhang, Xiao

    2016-07-01

    Two new coordination compounds, {Pb(pymt)2}∞ (1) and {Pb(mpymt)2}∞ (2) (pymt = pyrimidine-2-thiolate and mpymt = 4-methyl-pyrimidine-2-thione) have been synthesized under solvothermal conditions and characterized by elemental analyses, IR spectroscopy, thermogravimetric analysis, powder X-ray diffraction and single-crystal X-ray diffraction. In compounds 1 and 2, pymt- and mpymt- adopt the same coordination modes (μ-1 κN, S and μ2-1 κN, S: 2 κS, N) to interacted with Pb2+, however, different topology structures for compounds 1 and 2 are obtained. Compound 1 displays a one-dimensional (1D) ribbon with square cavity constructed from two double concentric chains of [Pb-S]∞ and [Pb-Pyrimidine] ∞ sharing Pb1 ions. Compound 2 shows 1D polymeric single chain constructed by [Pb-S]∞ and [Pb-methyl-pyrimidine]∞ chains. The results revealed that the methyl groups don't influence the coordination modes of pyrimidine-2-thiolate but directed the structural variations. Moreover, the fluorescent properties of compounds 1 and 2 were investigated.

  16. Observation of Charge-Dependent Azimuthal Correlations in p -Pb Collisions and Its Implication for the Search for the Chiral Magnetic Effect

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; König, A.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Strauss, J.; Waltenberger, W.; Wulz, C.-E.; Dvornikov, O.; Makarenko, V.; Zykunov, V.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; De Wolf, E. A.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Khvastunov, I.; Poyraz, D.; Salva, S.; Schöfbeck, R.; Sharma, A.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Bakhshiansohi, H.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Jafari, A.; Jez, P.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Nuttens, C.; Piotrzkowski, K.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Cheng, T.; Jiang, C. H.; Leggat, D.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Micanovic, S.; Sudic, L.; Susa, T.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Tsiakkouri, D.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Abdelalim, A. A.; Mohammed, Y.; Salama, E.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Miné, P.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Le Bihan, A.-C.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sabes, D.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schomakers, C.; Schulz, J.; Verlage, T.; Weber, H.; Zhukov, V.; Albert, A.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bin Anuar, A. A.; Borras, K.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Gunnellini, P.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Seitz, C.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hoffmann, M.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Poehlsen, J.; Sander, C.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baur, S.; Baus, C.; Berger, J.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Fink, S.; Freund, B.; Friese, R.; Giffels, M.; Gilbert, A.; Goldenzweig, P.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kudella, S.; Lobelle Pardo, P.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Filipovic, N.; Bencze, G.; Hajdu, C.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Bahinipati, S.; Choudhury, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Kumari, P.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Kole, G.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhowmik, S.; Dewanjee, R. K.; Ganguly, S.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Behnamian, H.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Fahim, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; De Nardo, G.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Zanetti, M.; Zotto, P.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Del Re, D.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Brochero Cifuentes, J. A.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Lee, H.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Magaña Villalba, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Calpas, B.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Chtchipounov, L.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Murzin, V.; Oreshkin, V.; Sulimov, V.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Markin, O.; Tarkovskii, E.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Ershov, A.; Gribushin, A.; Kaminskiy, A.; Kodolova, O.; Korotkikh, V.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Vardanyan, I.; Blinov, V.; Skovpen, Y.; Shtol, D.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Barrio Luna, M.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Suárez Andrés, I.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras De Saa, J. R.; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dorney, B.; du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Fartoukh, S.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Gulhan, D.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kieseler, J.; Kirschenmann, H.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Kousouris, K.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Sauvan, J. B.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Verweij, M.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Yang, Y.; Zucchetta, A.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Paganis, E.; Psallidas, A.; Tsai, J. f.; Tzeng, Y. M.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Sunar Cerci, D.; Tali, B.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Berry, E.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Jesus, O.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Spencer, E.; Syarif, R.; Breedon, R.; Breto, G.; Burns, D.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Everaerts, P.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Saltzberg, D.; Schnaible, C.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Si, W.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Derdzinski, M.; Holzner, A.; Klein, D.; Krutelyov, V.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mullin, S. D.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Apresyan, A.; Bendavid, J.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Lawhorn, J. M.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Winn, D.; Abdullin, S.; Albrow, M.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cremonesi, M.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Wu, Y.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Rank, D.; Shchutska, L.; Sperka, D.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bein, S.; Diamond, B.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Santra, A.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Jung, K.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Turner, P.; Varelas, N.; Wang, H.; Wu, Z.; Zakaria, M.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Osherson, M.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Bruner, C.; Castle, J.; Forthomme, L.; Kenny, R. P.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Apyan, A.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Tatar, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bartek, R.; Bloom, K.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Malta Rodrigues, A.; Meier, F.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Kubik, A.; Kumar, A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Lange, D.; Luo, J.; Marlow, D.; Mc Donald, J.; Medvedeva, T.; Mei, K.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Svyatkovskiy, A.; Tully, C.; Zuranski, A.; Malik, S.; Barker, A.; Barnes, V. E.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Miller, D. H.; Neumeister, N.; Schulte, J. F.; Shi, X.; Sun, J.; Wang, F.; Xie, W.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Agapitos, A.; Chou, J. P.; Contreras-Campana, E.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Nash, K.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Juska, E.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; De Guio, F.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Sturdy, J.; Belknap, D. A.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.; CMS Collaboration

    2017-03-01

    Charge-dependent azimuthal particle correlations with respect to the second-order event plane in p -Pb and PbPb collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV have been studied with the CMS experiment at the LHC. The measurement is performed with a three-particle correlation technique, using two particles with the same or opposite charge within the pseudorapidity range |η | <2.4 , and a third particle measured in the hadron forward calorimeters (4.4 <|η | <5 ). The observed differences between the same and opposite sign correlations, as functions of multiplicity and η gap between the two charged particles, are of similar magnitude in p -Pb and PbPb collisions at the same multiplicities. These results pose a challenge for the interpretation of charge-dependent azimuthal correlations in heavy ion collisions in terms of the chiral magnetic effect.

  17. Observation of Charge-Dependent Azimuthal Correlations in p-Pb Collisions and Its Implication for the Search for the Chiral Magnetic Effect.

    PubMed

    Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Asilar, E; Bergauer, T; Brandstetter, J; Brondolin, E; Dragicevic, M; Erö, J; Flechl, M; Friedl, M; Frühwirth, R; Ghete, V M; Hartl, C; Hörmann, N; Hrubec, J; Jeitler, M; König, A; Krätschmer, I; Liko, D; Matsushita, T; Mikulec, I; Rabady, D; Rad, N; Rahbaran, B; Rohringer, H; Schieck, J; Strauss, J; Waltenberger, W; Wulz, C-E; Dvornikov, O; Makarenko, V; Zykunov, V; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Alderweireldt, S; De Wolf, E A; Janssen, X; Lauwers, J; Van De Klundert, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Abu Zeid, S; Blekman, F; D'Hondt, J; Daci, N; De Bruyn, I; Deroover, K; Lowette, S; Moortgat, S; Moreels, L; Olbrechts, A; Python, Q; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Parijs, I; Brun, H; Clerbaux, B; De Lentdecker, G; Delannoy, H; Fasanella, G; Favart, L; Goldouzian, R; Grebenyuk, A; Karapostoli, G; Lenzi, T; Léonard, A; Luetic, J; Maerschalk, T; Marinov, A; Randle-Conde, A; Seva, T; Vander Velde, C; Vanlaer, P; Vannerom, D; Yonamine, R; Zenoni, F; Zhang, F; Cimmino, A; Cornelis, T; Dobur, D; Fagot, A; Garcia, G; Gul, M; Khvastunov, I; Poyraz, D; Salva, S; Schöfbeck, R; Sharma, A; Tytgat, M; Van Driessche, W; Yazgan, E; Zaganidis, N; Bakhshiansohi, H; Beluffi, C; Bondu, O; Brochet, S; Bruno, G; Caudron, A; De Visscher, S; Delaere, C; Delcourt, M; Francois, B; Giammanco, A; Jafari, A; Jez, P; Komm, M; Krintiras, G; Lemaitre, V; Magitteri, A; Mertens, A; Musich, M; Nuttens, C; Piotrzkowski, K; Quertenmont, L; Selvaggi, M; Vidal Marono, M; Wertz, S; Beliy, N; Aldá Júnior, W L; Alves, F L; Alves, G A; Brito, L; Hensel, C; Moraes, A; Pol, M E; Rebello Teles, P; Belchior Batista Das Chagas, E; Carvalho, W; Chinellato, J; Custódio, A; Da Costa, E M; Da Silveira, G G; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Huertas Guativa, L M; Malbouisson, H; Matos Figueiredo, D; Mora Herrera, C; Mundim, L; Nogima, H; Prado Da Silva, W L; Santoro, A; Sznajder, A; Tonelli Manganote, E J; Vilela Pereira, A; Ahuja, S; Bernardes, C A; Dogra, S; Fernandez Perez Tomei, T R; Gregores, E M; Mercadante, P G; Moon, C S; Novaes, S F; Padula, Sandra S; Romero Abad, D; Ruiz Vargas, J C; Aleksandrov, A; Hadjiiska, R; Iaydjiev, P; Rodozov, M; Stoykova, S; Sultanov, G; Vutova, M; Dimitrov, A; Glushkov, I; Litov, L; Pavlov, B; Petkov, P; Fang, W; Ahmad, M; Bian, J G; Chen, G M; Chen, H S; Chen, M; Chen, Y; Cheng, T; Jiang, C H; Leggat, D; Liu, Z; Romeo, F; Shaheen, S M; Spiezia, A; Tao, J; Wang, C; Wang, Z; Zhang, H; Zhao, J; Ban, Y; Chen, G; Li, Q; Liu, S; Mao, Y; Qian, S J; Wang, D; Xu, Z; Avila, C; Cabrera, A; Chaparro Sierra, L F; Florez, C; Gomez, J P; González Hernández, C F; Ruiz Alvarez, J D; Sanabria, J C; Godinovic, N; Lelas, D; Puljak, I; Ribeiro Cipriano, P M; Sculac, T; Antunovic, Z; Kovac, M; Brigljevic, V; Ferencek, D; Kadija, K; Mesic, B; Micanovic, S; Sudic, L; Susa, T; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Rykaczewski, H; Tsiakkouri, D; Finger, M; Finger, M; Carrera Jarrin, E; Abdelalim, A A; Mohammed, Y; Salama, E; Kadastik, M; Perrini, L; Raidal, M; Tiko, A; Veelken, C; Eerola, P; Pekkanen, J; Voutilainen, M; Härkönen, J; Järvinen, T; Karimäki, V; Kinnunen, R; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Tuominiemi, J; Tuovinen, E; Wendland, L; Talvitie, J; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Favaro, C; Ferri, F; Ganjour, S; Ghosh, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Kucher, I; Locci, E; Machet, M; Malcles, J; Rander, J; Rosowsky, A; Titov, M; Zghiche, A; Abdulsalam, A; Antropov, I; Baffioni, S; Beaudette, F; Busson, P; Cadamuro, L; Chapon, E; Charlot, C; Davignon, O; Granier de Cassagnac, R; Jo, M; Lisniak, S; Miné, P; Nguyen, M; Ochando, C; Ortona, G; Paganini, P; Pigard, P; Regnard, S; Salerno, R; Sirois, Y; Strebler, T; Yilmaz, Y; Zabi, A; Agram, J-L; Andrea, J; Aubin, A; Bloch, D; Brom, J-M; Buttignol, M; Chabert, E C; Chanon, N; Collard, C; Conte, E; Coubez, X; Fontaine, J-C; Gelé, D; Goerlach, U; Le Bihan, A-C; Skovpen, K; Van Hove, P; Gadrat, S; Beauceron, S; Bernet, C; Boudoul, G; Bouvier, E; Carrillo Montoya, C A; Chierici, R; Contardo, D; Courbon, B; Depasse, P; El Mamouni, H; Fan, J; Fay, J; Gascon, S; Gouzevitch, M; Grenier, G; Ille, B; Lagarde, F; Laktineh, I B; Lethuillier, M; Mirabito, L; Pequegnot, A L; Perries, S; Popov, A; Sabes, D; Sordini, V; Vander Donckt, M; Verdier, P; Viret, S; Toriashvili, T; Tsamalaidze, Z; Autermann, C; Beranek, S; Feld, L; Heister, A; Kiesel, M K; Klein, K; Lipinski, M; Ostapchuk, A; Preuten, M; Raupach, F; Schael, S; Schomakers, C; Schulz, J; Verlage, T; Weber, H; Zhukov, V; Albert, A; Brodski, M; Dietz-Laursonn, E; Duchardt, D; Endres, M; Erdmann, M; Erdweg, S; Esch, T; Fischer, R; Güth, A; Hamer, M; Hebbeker, T; Heidemann, C; Hoepfner, K; Knutzen, S; Merschmeyer, M; Meyer, A; Millet, P; Mukherjee, S; Olschewski, M; Padeken, K; Pook, T; Radziej, M; Reithler, H; Rieger, M; Scheuch, F; Sonnenschein, L; Teyssier, D; Thüer, S; Cherepanov, V; Flügge, G; Kargoll, B; Kress, T; Künsken, A; Lingemann, J; Müller, T; Nehrkorn, A; Nowack, A; Pistone, C; Pooth, O; Stahl, A; Aldaya Martin, M; Arndt, T; Asawatangtrakuldee, C; Beernaert, K; Behnke, O; Behrens, U; Bin Anuar, A A; Borras, K; Campbell, A; Connor, P; Contreras-Campana, C; Costanza, F; Diez Pardos, C; Dolinska, G; Eckerlin, G; Eckstein, D; Eichhorn, T; Eren, E; Gallo, E; Garay Garcia, J; Geiser, A; Gizhko, A; Grados Luyando, J M; Gunnellini, P; Harb, A; Hauk, J; Hempel, M; Jung, H; Kalogeropoulos, A; Karacheban, O; Kasemann, M; Keaveney, J; Kleinwort, C; Korol, I; Krücker, D; Lange, W; Lelek, A; Leonard, J; Lipka, K; Lobanov, A; Lohmann, W; Mankel, R; Melzer-Pellmann, I-A; Meyer, A B; Mittag, G; Mnich, J; Mussgiller, A; Ntomari, E; Pitzl, D; Placakyte, R; Raspereza, A; Roland, B; Sahin, M Ö; Saxena, P; Schoerner-Sadenius, T; Seitz, C; Spannagel, S; Stefaniuk, N; Van Onsem, G P; Walsh, R; Wissing, C; Blobel, V; Centis Vignali, M; Draeger, A R; Dreyer, T; Garutti, E; Gonzalez, D; Haller, J; Hoffmann, M; Junkes, A; Klanner, R; Kogler, R; Kovalchuk, N; Lapsien, T; Lenz, T; Marchesini, I; Marconi, D; Meyer, M; Niedziela, M; Nowatschin, D; Pantaleo, F; Peiffer, T; Perieanu, A; Poehlsen, J; Sander, C; Scharf, C; Schleper, P; Schmidt, A; Schumann, S; Schwandt, J; Stadie, H; Steinbrück, G; Stober, F M; Stöver, M; Tholen, H; Troendle, D; Usai, E; Vanelderen, L; Vanhoefer, A; Vormwald, B; Akbiyik, M; Barth, C; Baur, S; Baus, C; Berger, J; Butz, E; Caspart, R; Chwalek, T; Colombo, F; De Boer, W; Dierlamm, A; Fink, S; Freund, B; Friese, R; Giffels, M; Gilbert, A; Goldenzweig, P; Haitz, D; Hartmann, F; Heindl, S M; Husemann, U; Katkov, I; Kudella, S; Lobelle Pardo, P; Mildner, H; Mozer, M U; Müller, Th; Plagge, M; Quast, G; Rabbertz, K; Röcker, S; Roscher, F; Schröder, M; Shvetsov, I; Sieber, G; Simonis, H J; Ulrich, R; Wagner-Kuhr, J; Wayand, S; Weber, M; Weiler, T; Williamson, S; Wöhrmann, C; Wolf, R; Anagnostou, G; Daskalakis, G; Geralis, T; Giakoumopoulou, V A; Kyriakis, A; Loukas, D; Topsis-Giotis, I; Kesisoglou, S; Panagiotou, A; Saoulidou, N; Tziaferi, E; Evangelou, I; Flouris, G; Foudas, C; Kokkas, P; Loukas, N; Manthos, N; Papadopoulos, I; Paradas, E; Filipovic, N; Bencze, G; Hajdu, C; Horvath, D; Sikler, F; Veszpremi, V; Vesztergombi, G; Zsigmond, A J; Beni, N; Czellar, S; Karancsi, J; Makovec, A; Molnar, J; Szillasi, Z; Bartók, M; Raics, P; Trocsanyi, Z L; Ujvari, B; Bahinipati, S; Choudhury, S; Mal, P; Mandal, K; Nayak, A; Sahoo, D K; Sahoo, N; Swain, S K; Bansal, S; Beri, S B; Bhatnagar, V; Chawla, R; Bhawandeep, U; Kalsi, A K; Kaur, A; Kaur, M; Kumar, R; Kumari, P; Mehta, A; Mittal, M; Singh, J B; Walia, G; Kumar, Ashok; Bhardwaj, A; Choudhary, B C; Garg, R B; Keshri, S; Malhotra, S; Naimuddin, M; Nishu, N; Ranjan, K; Sharma, R; Sharma, V; Bhattacharya, R; Bhattacharya, S; Chatterjee, K; Dey, S; Dutt, S; Dutta, S; Ghosh, S; Majumdar, N; Modak, A; Mondal, K; Mukhopadhyay, S; Nandan, S; Purohit, A; Roy, A; Roy, D; Roy Chowdhury, S; Sarkar, S; Sharan, M; Thakur, S; Behera, P K; Chudasama, R; Dutta, D; Jha, V; Kumar, V; Mohanty, A K; Netrakanti, P K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Dugad, S; Kole, G; Mahakud, B; Mitra, S; Mohanty, G B; Parida, B; Sur, N; Sutar, B; Banerjee, S; Bhowmik, S; Dewanjee, R K; Ganguly, S; Guchait, M; Jain, Sa; Kumar, S; Maity, M; Majumder, G; Mazumdar, K; Sarkar, T; Wickramage, N; Chauhan, S; Dube, S; Hegde, V; Kapoor, A; Kothekar, K; Pandey, S; Rane, A; Sharma, S; Behnamian, H; Chenarani, S; Eskandari Tadavani, E; Etesami, S M; Fahim, A; Khakzad, M; Mohammadi Najafabadi, M; Naseri, M; Paktinat Mehdiabadi, S; Rezaei Hosseinabadi, F; Safarzadeh, B; Zeinali, M; Felcini, M; Grunewald, M; Abbrescia, M; Calabria, C; Caputo, C; Colaleo, A; Creanza, D; Cristella, L; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Maggi, G; Maggi, M; Miniello, G; My, S; Nuzzo, S; Pompili, A; Pugliese, G; Radogna, R; Ranieri, A; Selvaggi, G; Silvestris, L; Venditti, R; Verwilligen, P; Abbiendi, G; Battilana, C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Campanini, R; Capiluppi, P; Castro, A; Cavallo, F R; Chhibra, S S; Codispoti, G; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G P; Tosi, N; Albergo, S; Costa, S; Di Mattia, A; Giordano, F; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Viliani, L; Benussi, L; Bianco, S; Fabbri, F; Piccolo, D; Primavera, F; Calvelli, V; Ferro, F; Lo Vetere, M; Monge, M R; Robutti, E; Tosi, S; Brianza, L; Dinardo, M E; Fiorendi, S; Gennai, S; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Manzoni, R A; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Pigazzini, S; Ragazzi, S; Tabarelli de Fatis, T; Buontempo, S; Cavallo, N; De Nardo, G; Di Guida, S; Esposito, M; Fabozzi, F; Fienga, F; Iorio, A O M; Lanza, G; Lista, L; Meola, S; Paolucci, P; Sciacca, C; Thyssen, F; Azzi, P; Bacchetta, N; Benato, L; Bisello, D; Boletti, A; Carlin, R; Carvalho Antunes De Oliveira, A; Checchia, P; Dall'Osso, M; De Castro Manzano, P; Dorigo, T; Dosselli, U; Gasparini, F; Gasparini, U; Gozzelino, A; Lacaprara, S; Margoni, M; Meneguzzo, A T; Pazzini, J; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Zanetti, M; Zotto, P; Zumerle, G; Braghieri, A; Magnani, A; Montagna, P; Ratti, S P; Re, V; Riccardi, C; Salvini, P; Vai, I; Vitulo, P; Alunni Solestizi, L; Bilei, G M; Ciangottini, D; Fanò, L; Lariccia, P; Leonardi, R; Mantovani, G; Menichelli, M; Saha, A; Santocchia, A; Androsov, K; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Castaldi, R; Ciocci, M A; Dell'Orso, R; Donato, S; Fedi, G; Giassi, A; Grippo, M T; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Palla, F; Rizzi, A; Savoy-Navarro, A; Spagnolo, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; Cipriani, M; Del Re, D; Diemoz, M; Gelli, S; Longo, E; Margaroli, F; Marzocchi, B; Meridiani, P; Organtini, G; Paramatti, R; Preiato, F; Rahatlou, S; Rovelli, C; Santanastasio, F; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Bartosik, N; Bellan, R; Biino, C; Cartiglia, N; Cenna, F; Costa, M; Covarelli, R; Degano, A; Demaria, N; Finco, L; Kiani, B; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Monteil, E; Monteno, M; Obertino, M M; Pacher, L; Pastrone, N; Pelliccioni, M; Pinna Angioni, G L; Ravera, F; Romero, A; Ruspa, M; Sacchi, R; Shchelina, K; Sola, V; Solano, A; Staiano, A; Traczyk, P; Belforte, S; Casarsa, M; Cossutti, F; Della Ricca, G; Zanetti, A; Kim, D H; Kim, G N; Kim, M S; Lee, S; Lee, S W; Oh, Y D; Sekmen, S; Son, D C; Yang, Y C; Lee, A; Kim, H; Brochero Cifuentes, J A; Kim, T J; Cho, S; Choi, S; Go, Y; Gyun, D; Ha, S; Hong, B; Jo, Y; Kim, Y; Lee, B; Lee, K; Lee, K S; Lee, S; Lim, J; Park, S K; Roh, Y; Almond, J; Kim, J; Lee, H; Oh, S B; Radburn-Smith, B C; Seo, S H; Yang, U K; Yoo, H D; Yu, G B; Choi, M; Kim, H; Kim, J H; Lee, J S H; Park, I C; Ryu, G; Ryu, M S; Choi, Y; Goh, J; Hwang, C; Lee, J; Yu, I; Dudenas, V; Juodagalvis, A; Vaitkus, J; Ahmed, I; Ibrahim, Z A; Komaragiri, J R; Md Ali, M A B; Mohamad Idris, F; Wan Abdullah, W A T; Yusli, M N; Zolkapli, Z; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-De La Cruz, I; Hernandez-Almada, A; Lopez-Fernandez, R; Magaña Villalba, R; Mejia Guisao, J; Sanchez-Hernandez, A; Carrillo Moreno, S; Oropeza Barrera, C; Vazquez Valencia, F; Carpinteyro, S; Pedraza, I; Salazar Ibarguen, H A; Uribe Estrada, C; Morelos Pineda, A; Krofcheck, D; Butler, P H; Ahmad, A; Ahmad, M; Hassan, Q; Hoorani, H R; Khan, W A; Saddique, A; Shah, M A; Shoaib, M; Waqas, M; Bialkowska, H; Bluj, M; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Zalewski, P; Bunkowski, K; Byszuk, A; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Olszewski, M; Walczak, M; Bargassa, P; Beirão Da Cruz E Silva, C; Calpas, B; Di Francesco, A; Faccioli, P; Ferreira Parracho, P G; Gallinaro, M; Hollar, J; Leonardo, N; Lloret Iglesias, L; Nemallapudi, M V; Rodrigues Antunes, J; Seixas, J; Toldaiev, O; Vadruccio, D; Varela, J; Vischia, P; Afanasiev, S; Bunin, P; Gavrilenko, M; Golutvin, I; Gorbunov, I; Kamenev, A; Karjavin, V; Lanev, A; Malakhov, A; Matveev, V; Palichik, V; Perelygin, V; Shmatov, S; Shulha, S; Skatchkov, N; Smirnov, V; Voytishin, N; Zarubin, A; Chtchipounov, L; Golovtsov, V; Ivanov, Y; Kim, V; Kuznetsova, E; Murzin, V; Oreshkin, V; Sulimov, V; Vorobyev, A; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Karneyeu, A; Kirsanov, M; Krasnikov, N; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Gavrilov, V; Lychkovskaya, N; Popov, V; Pozdnyakov, I; Safronov, G; Spiridonov, A; Toms, M; Vlasov, E; Zhokin, A; Bylinkin, A; Markin, O; Tarkovskii, E; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Terkulov, A; Baskakov, A; Belyaev, A; Boos, E; Ershov, A; Gribushin, A; Kaminskiy, A; Kodolova, O; Korotkikh, V; Lokhtin, I; Miagkov, I; Obraztsov, S; Petrushanko, S; Savrin, V; Snigirev, A; Vardanyan, I; Blinov, V; Skovpen, Y; Shtol, D; Azhgirey, I; Bayshev, I; Bitioukov, S; Elumakhov, D; Kachanov, V; Kalinin, A; Konstantinov, D; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Cirkovic, P; Devetak, D; Dordevic, M; Milosevic, J; Rekovic, V; Alcaraz Maestre, J; Barrio Luna, M; Calvo, E; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Delgado Peris, A; Escalante Del Valle, A; Fernandez Bedoya, C; Fernández Ramos, J P; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Navarro De Martino, E; Pérez-Calero Yzquierdo, A; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Soares, M S; de Trocóniz, J F; Missiroli, M; Moran, D; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; González Fernández, J R; Palencia Cortezon, E; Sanchez Cruz, S; Suárez Andrés, I; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Castiñeiras De Saa, J R; Curras, E; Fernandez, M; Garcia-Ferrero, J; Gomez, G; Lopez Virto, A; Marco, J; Martinez Rivero, C; Matorras, F; Piedra Gomez, J; Rodrigo, T; Ruiz-Jimeno, A; Scodellaro, L; Trevisani, N; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Bachtis, M; Baillon, P; Ball, A H; Barney, D; Bloch, P; Bocci, A; Bonato, A; Botta, C; Camporesi, T; Castello, R; Cepeda, M; Cerminara, G; D'Alfonso, M; d'Enterria, D; Dabrowski, A; Daponte, V; David, A; De Gruttola, M; De Roeck, A; Di Marco, E; Dobson, M; Dorney, B; du Pree, T; Duggan, D; Dünser, M; Dupont, N; Elliott-Peisert, A; Fartoukh, S; Franzoni, G; Fulcher, J; Funk, W; Gigi, D; Gill, K; Girone, M; Glege, F; Gulhan, D; Gundacker, S; Guthoff, M; Hammer, J; Harris, P; Hegeman, J; Innocente, V; Janot, P; Kieseler, J; Kirschenmann, H; Knünz, V; Kornmayer, A; Kortelainen, M J; Kousouris, K; Krammer, M; Lange, C; Lecoq, P; Lourenço, C; Lucchini, M T; Malgeri, L; Mannelli, M; Martelli, A; Meijers, F; Merlin, J A; Mersi, S; Meschi, E; Milenovic, P; Moortgat, F; Morovic, S; Mulders, M; Neugebauer, H; Orfanelli, S; Orsini, L; Pape, L; Perez, E; Peruzzi, M; Petrilli, A; Petrucciani, G; Pfeiffer, A; Pierini, M; Racz, A; Reis, T; Rolandi, G; Rovere, M; Ruan, M; Sakulin, H; Sauvan, J B; Schäfer, C; Schwick, C; Seidel, M; Sharma, A; Silva, P; Sphicas, P; Steggemann, J; Stoye, M; Takahashi, Y; Tosi, M; Treille, D; Triossi, A; Tsirou, A; Veckalns, V; Veres, G I; Verweij, M; Wardle, N; Wöhri, H K; Zagozdzinska, A; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Horisberger, R; Ingram, Q; Kaestli, H C; Kotlinski, D; Langenegger, U; Rohe, T; Bachmair, F; Bäni, L; Bianchini, L; Casal, B; Dissertori, G; Dittmar, M; Donegà, M; Grab, C; Heidegger, C; Hits, D; Hoss, J; Kasieczka, G; Lecomte, P; Lustermann, W; Mangano, B; Marionneau, M; Martinez Ruiz Del Arbol, P; Masciovecchio, M; Meinhard, M T; Meister, D; Micheli, F; Musella, P; Nessi-Tedaldi, F; Pandolfi, F; Pata, J; Pauss, F; Perrin, G; Perrozzi, L; Quittnat, M; Rossini, M; Schönenberger, M; Starodumov, A; Tavolaro, V R; Theofilatos, K; Wallny, R; Aarrestad, T K; Amsler, C; Caminada, L; Canelli, M F; De Cosa, A; Galloni, C; Hinzmann, A; Hreus, T; Kilminster, B; Ngadiuba, J; Pinna, D; Rauco, G; Robmann, P; Salerno, D; Yang, Y; Zucchetta, A; Candelise, V; Doan, T H; Jain, Sh; Khurana, R; Konyushikhin, M; Kuo, C M; Lin, W; Lu, Y J; Pozdnyakov, A; Yu, S S; Kumar, Arun; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Chen, P H; Dietz, C; Fiori, F; Hou, W-S; Hsiung, Y; Liu, Y F; Lu, R-S; Miñano Moya, M; Paganis, E; Psallidas, A; Tsai, J F; Tzeng, Y M; Asavapibhop, B; Singh, G; Srimanobhas, N; Suwonjandee, N; Adiguzel, A; Cerci, S; Damarseckin, S; Demiroglu, Z S; Dozen, C; Dumanoglu, I; Girgis, S; Gokbulut, G; Guler, Y; Hos, I; Kangal, E E; Kara, O; Kayis Topaksu, A; Kiminsu, U; Oglakci, M; Onengut, G; Ozdemir, K; Sunar Cerci, D; Tali, B; Turkcapar, S; Zorbakir, I S; Zorbilmez, C; Bilin, B; Bilmis, S; Isildak, B; Karapinar, G; Yalvac, M; Zeyrek, M; Gülmez, E; Kaya, M; Kaya, O; Yetkin, E A; Yetkin, T; Cakir, A; Cankocak, K; Sen, S; Grynyov, B; Levchuk, L; Sorokin, P; Aggleton, R; Ball, F; Beck, L; Brooke, J J; Burns, D; Clement, E; Cussans, D; Flacher, H; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Jacob, J; Kreczko, L; Lucas, C; Newbold, D M; Paramesvaran, S; Poll, A; Sakuma, T; Seif El Nasr-Storey, S; Smith, D; Smith, V J; Belyaev, A; Brew, C; Brown, R M; Calligaris, L; Cieri, D; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Olaiya, E; Petyt, D; Shepherd-Themistocleous, C H; Thea, A; Tomalin, I R; Williams, T; Baber, M; Bainbridge, R; Buchmuller, O; Bundock, A; Burton, D; Casasso, S; Citron, M; Colling, D; Corpe, L; Dauncey, P; Davies, G; De Wit, A; Della Negra, M; Di Maria, R; Dunne, P; Elwood, A; Futyan, D; Haddad, Y; Hall, G; Iles, G; James, T; Lane, R; Laner, C; Lucas, R; Lyons, L; Magnan, A-M; Malik, S; Mastrolorenzo, L; Nash, J; Nikitenko, A; Pela, J; Penning, B; Pesaresi, M; Raymond, D M; Richards, A; Rose, A; Seez, C; Summers, S; Tapper, A; Uchida, K; Vazquez Acosta, M; Virdee, T; Wright, J; Zenz, S C; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Borzou, A; Call, K; Dittmann, J; Hatakeyama, K; Liu, H; Pastika, N; Cooper, S I; Henderson, C; Rumerio, P; West, C; Arcaro, D; Avetisyan, A; Bose, T; Gastler, D; Rankin, D; Richardson, C; Rohlf, J; Sulak, L; Zou, D; Benelli, G; Berry, E; Cutts, D; Garabedian, A; Hakala, J; Heintz, U; Hogan, J M; Jesus, O; Kwok, K H M; Laird, E; Landsberg, G; Mao, Z; Narain, M; Piperov, S; Sagir, S; Spencer, E; Syarif, R; Breedon, R; Breto, G; Burns, D; Calderon De La Barca Sanchez, M; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Erbacher, R; Flores, C; Funk, G; Gardner, M; Ko, W; Lander, R; Mclean, C; Mulhearn, M; Pellett, D; Pilot, J; Shalhout, S; Smith, J; Squires, M; Stolp, D; Tripathi, M; Bravo, C; Cousins, R; Dasgupta, A; Everaerts, P; Florent, A; Hauser, J; Ignatenko, M; Mccoll, N; Saltzberg, D; Schnaible, C; Takasugi, E; Valuev, V; Weber, M; Burt, K; Clare, R; Ellison, J; Gary, J W; Ghiasi Shirazi, S M A; Hanson, G; Heilman, J; Jandir, P; Kennedy, E; Lacroix, F; Long, O R; Olmedo Negrete, M; Paneva, M I; Shrinivas, A; Si, W; Wei, H; Wimpenny, S; Yates, B R; Branson, J G; Cerati, G B; Cittolin, S; Derdzinski, M; Holzner, A; Klein, D; Krutelyov, V; Letts, J; Macneill, I; Olivito, D; Padhi, S; Pieri, M; Sani, M; Sharma, V; Simon, S; Tadel, M; Vartak, A; Wasserbaech, S; Welke, C; Wood, J; Würthwein, F; Yagil, A; Zevi Della Porta, G; Amin, N; Bhandari, R; Bradmiller-Feld, J; Campagnari, C; Dishaw, A; Dutta, V; Franco Sevilla, M; George, C; Golf, F; Gouskos, L; Gran, J; Heller, R; Incandela, J; Mullin, S D; Ovcharova, A; Qu, H; Richman, J; Stuart, D; Suarez, I; Yoo, J; Anderson, D; Apresyan, A; Bendavid, J; Bornheim, A; Bunn, J; Chen, Y; Duarte, J; Lawhorn, J M; Mott, A; Newman, H B; Pena, C; Spiropulu, M; Vlimant, J R; Xie, S; Zhu, R Y; Andrews, M B; Azzolini, V; Ferguson, T; Paulini, M; Russ, J; Sun, M; Vogel, H; Vorobiev, I; Weinberg, M; Cumalat, J P; Ford, W T; Jensen, F; Johnson, A; Krohn, M; Mulholland, T; Stenson, K; Wagner, S R; Alexander, J; Chaves, J; Chu, J; Dittmer, S; Mcdermott, K; Mirman, N; Nicolas Kaufman, G; Patterson, J R; Rinkevicius, A; Ryd, A; Skinnari, L; Soffi, L; Tan, S M; Tao, Z; Thom, J; Tucker, J; Wittich, P; Zientek, M; Winn, D; Abdullin, S; Albrow, M; Apollinari, G; Banerjee, S; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bolla, G; Burkett, K; Butler, J N; Cheung, H W K; Chlebana, F; Cihangir, S; Cremonesi, M; Elvira, V D; Fisk, I; Freeman, J; Gottschalk, E; Gray, L; Green, D; Grünendahl, S; Gutsche, O; Hare, D; Harris, R M; Hasegawa, S; Hirschauer, J; Hu, Z; Jayatilaka, B; Jindariani, S; Johnson, M; Joshi, U; Klima, B; Kreis, B; Lammel, S; Linacre, J; Lincoln, D; Lipton, R; Liu, T; Lopes De Sá, R; Lykken, J; Maeshima, K; Magini, N; Marraffino, J M; Maruyama, S; Mason, D; McBride, P; Merkel, P; Mrenna, S; Nahn, S; Newman-Holmes, C; O'Dell, V; Pedro, K; Prokofyev, O; Rakness, G; Ristori, L; Sexton-Kennedy, E; Soha, A; Spalding, W J; Spiegel, L; Stoynev, S; Strobbe, N; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vernieri, C; Verzocchi, M; Vidal, R; Wang, M; Weber, H A; Whitbeck, A; Wu, Y; Acosta, D; Avery, P; Bortignon, P; Bourilkov, D; Brinkerhoff, A; Carnes, A; Carver, M; Curry, D; Das, S; Field, R D; Furic, I K; Konigsberg, J; Korytov, A; Low, J F; Ma, P; Matchev, K; Mei, H; Mitselmakher, G; Rank, D; Shchutska, L; Sperka, D; Thomas, L; Wang, J; Wang, S; Yelton, J; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Ackert, A; Adams, J R; Adams, T; Askew, A; Bein, S; Diamond, B; Hagopian, S; Hagopian, V; Johnson, K F; Khatiwada, A; Prosper, H; Santra, A; Yohay, R; Baarmand, M M; Bhopatkar, V; Colafranceschi, S; Hohlmann, M; Noonan, D; Roy, T; Yumiceva, F; Adams, M R; Apanasevich, L; Berry, D; Betts, R R; Bucinskaite, I; Cavanaugh, R; Evdokimov, O; Gauthier, L; Gerber, C E; Hofman, D J; Jung, K; Kurt, P; O'Brien, C; Sandoval Gonzalez, I D; Turner, P; Varelas, N; Wang, H; Wu, Z; Zakaria, M; Zhang, J; Bilki, B; Clarida, W; Dilsiz, K; Durgut, S; Gandrajula, R P; Haytmyradov, M; Khristenko, V; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Ogul, H; Onel, Y; Ozok, F; Penzo, A; Snyder, C; Tiras, E; Wetzel, J; Yi, K; Anderson, I; Blumenfeld, B; Cocoros, A; Eminizer, N; Fehling, D; Feng, L; Gritsan, A V; Maksimovic, P; Martin, C; Osherson, M; Roskes, J; Sarica, U; Swartz, M; Xiao, M; Xin, Y; You, C; Al-Bataineh, A; Baringer, P; Bean, A; Boren, S; Bowen, J; Bruner, C; Castle, J; Forthomme, L; Kenny, R P; Khalil, S; Kropivnitskaya, A; Majumder, D; Mcbrayer, W; Murray, M; Sanders, S; Stringer, R; Tapia Takaki, J D; Wang, Q; Ivanov, A; Kaadze, K; Maravin, Y; Mohammadi, A; Saini, L K; Skhirtladze, N; Toda, S; Rebassoo, F; Wright, D; Anelli, C; Baden, A; Baron, O; Belloni, A; Calvert, B; Eno, S C; Ferraioli, C; Gomez, J A; Hadley, N J; Jabeen, S; Kellogg, R G; Kolberg, T; Kunkle, J; Lu, Y; Mignerey, A C; Ricci-Tam, F; Shin, Y H; Skuja, A; Tonjes, M B; Tonwar, S C; Abercrombie, D; Allen, B; Apyan, A; Barbieri, R; Baty, A; Bi, R; Bierwagen, K; Brandt, S; Busza, W; Cali, I A; Demiragli, Z; Di Matteo, L; Gomez Ceballos, G; Goncharov, M; Hsu, D; Iiyama, Y; Innocenti, G M; Klute, M; Kovalskyi, D; Krajczar, K; Lai, Y S; Lee, Y-J; Levin, A; Luckey, P D; Maier, B; Marini, A C; Mcginn, C; Mironov, C; Narayanan, S; Niu, X; Paus, C; Roland, C; Roland, G; Salfeld-Nebgen, J; Stephans, G S F; Sumorok, K; Tatar, K; Varma, M; Velicanu, D; Veverka, J; Wang, J; Wang, T W; Wyslouch, B; Yang, M; Zhukova, V; Benvenuti, A C; Chatterjee, R M; Evans, A; Finkel, A; Gude, A; Hansen, P; Kalafut, S; Kao, S C; Kubota, Y; Lesko, Z; Mans, J; Nourbakhsh, S; Ruckstuhl, N; Rusack, R; Tambe, N; Turkewitz, J; Acosta, J G; Oliveros, S; Avdeeva, E; Bartek, R; Bloom, K; Claes, D R; Dominguez, A; Fangmeier, C; Gonzalez Suarez, R; Kamalieddin, R; Kravchenko, I; Malta Rodrigues, A; Meier, F; Monroy, J; Siado, J E; Snow, G R; Stieger, B; Alyari, M; Dolen, J; George, J; Godshalk, A; Harrington, C; Iashvili, I; Kaisen, J; Kharchilava, A; Kumar, A; Parker, A; Rappoccio, S; Roozbahani, B; Alverson, G; Barberis, E; Hortiangtham, A; Massironi, A; Morse, D M; Nash, D; Orimoto, T; Teixeira De Lima, R; Trocino, D; Wang, R-J; Wood, D; Bhattacharya, S; Charaf, O; Hahn, K A; Kubik, A; Kumar, A; Mucia, N; Odell, N; Pollack, B; Schmitt, M H; Sung, K; Trovato, M; Velasco, M; Dev, N; Hildreth, M; Hurtado Anampa, K; Jessop, C; Karmgard, D J; Kellams, N; Lannon, K; Marinelli, N; Meng, F; Mueller, C; Musienko, Y; Planer, M; Reinsvold, A; Ruchti, R; Smith, G; Taroni, S; Wayne, M; Wolf, M; Woodard, A; Alimena, J; Antonelli, L; Bylsma, B; Durkin, L S; Flowers, S; Francis, B; Hart, A; Hill, C; Hughes, R; Ji, W; Liu, B; Luo, W; Puigh, D; Winer, B L; Wulsin, H W; Cooperstein, S; Driga, O; Elmer, P; Hardenbrook, J; Hebda, P; Lange, D; Luo, J; Marlow, D; Mc Donald, J; Medvedeva, T; Mei, K; Mooney, M; Olsen, J; Palmer, C; Piroué, P; Stickland, D; Svyatkovskiy, A; Tully, C; Zuranski, A; Malik, S; Barker, A; Barnes, V E; Folgueras, S; Gutay, L; Jha, M K; Jones, M; Jung, A W; Miller, D H; Neumeister, N; Schulte, J F; Shi, X; Sun, J; Wang, F; Xie, W; Parashar, N; Stupak, J; Adair, A; Akgun, B; Chen, Z; Ecklund, K M; Geurts, F J M; Guilbaud, M; Li, W; Michlin, B; Northup, M; Padley, B P; Redjimi, R; Roberts, J; Rorie, J; Tu, Z; Zabel, J; Betchart, B; Bodek, A; de Barbaro, P; Demina, R; Duh, Y T; Ferbel, T; Galanti, M; Garcia-Bellido, A; Han, J; Hindrichs, O; Khukhunaishvili, A; Lo, K H; Tan, P; Verzetti, M; Agapitos, A; Chou, J P; Contreras-Campana, E; Gershtein, Y; Gómez Espinosa, T A; Halkiadakis, E; Heindl, M; Hidas, D; Hughes, E; Kaplan, S; Kunnawalkam Elayavalli, R; Kyriacou, S; Lath, A; Nash, K; Saka, H; Salur, S; Schnetzer, S; Sheffield, D; Somalwar, S; Stone, R; Thomas, S; Thomassen, P; Walker, M; Delannoy, A G; Foerster, M; Heideman, J; Riley, G; Rose, K; Spanier, S; Thapa, K; Bouhali, O; Celik, A; Dalchenko, M; De Mattia, M; Delgado, A; Dildick, S; Eusebi, R; Gilmore, J; Huang, T; Juska, E; Kamon, T; Mueller, R; Pakhotin, Y; Patel, R; Perloff, A; Perniè, L; Rathjens, D; Rose, A; Safonov, A; Tatarinov, A; Ulmer, K A; Akchurin, N; Cowden, C; Damgov, J; De Guio, F; Dragoiu, C; Dudero, P R; Faulkner, J; Gurpinar, E; Kunori, S; Lamichhane, K; Lee, S W; Libeiro, T; Peltola, T; Undleeb, S; Volobouev, I; Wang, Z; Greene, S; Gurrola, A; Janjam, R; Johns, W; Maguire, C; Melo, A; Ni, H; Sheldon, P; Tuo, S; Velkovska, J; Xu, Q; Arenton, M W; Barria, P; Cox, B; Goodell, J; Hirosky, R; Ledovskoy, A; Li, H; Neu, C; Sinthuprasith, T; Sun, X; Wang, Y; Wolfe, E; Xia, F; Clarke, C; Harr, R; Karchin, P E; Sturdy, J; Belknap, D A; Buchanan, J; Caillol, C; Dasu, S; Dodd, L; Duric, S; Gomber, B; Grothe, M; Herndon, M; Hervé, A; Klabbers, P; Lanaro, A; Levine, A; Long, K; Loveless, R; Ojalvo, I; Perry, T; Pierro, G A; Polese, G; Ruggles, T; Savin, A; Smith, N; Smith, W H; Taylor, D; Woods, N

    2017-03-24

    Charge-dependent azimuthal particle correlations with respect to the second-order event plane in p-Pb and PbPb collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV have been studied with the CMS experiment at the LHC. The measurement is performed with a three-particle correlation technique, using two particles with the same or opposite charge within the pseudorapidity range |η|<2.4, and a third particle measured in the hadron forward calorimeters (4.4<|η|<5). The observed differences between the same and opposite sign correlations, as functions of multiplicity and η gap between the two charged particles, are of similar magnitude in p-Pb and PbPb collisions at the same multiplicities. These results pose a challenge for the interpretation of charge-dependent azimuthal correlations in heavy ion collisions in terms of the chiral magnetic effect.

  18. Structural phase transitions of ionic layered PbFX (X = Cl{sup −}or Br{sup –}) compounds under high pressure

    SciTech Connect

    Sorb, Y.A. Sornadurai, D.

    2015-05-15

    The PbFX (X = Cl{sup –}or Br{sup –}) compounds crystallize in tetragonal structure with space group P4/nmm. High pressure X-ray diffraction studies carried out on PbFCl compound reveals that it undergoes pressure induced structural transitions at ∼18 GPa and ∼38 GPa to orthorhombic and monoclinic (P2{sub 1}/m) phases respectively. Like PbFCl, a similar phase transition from tetragonal to orthorhombic phase is observed in PbFBr at intermediate pressure. These phase transitions seem to be similar to the transitions involving other matlockite structure compounds such as BaFX (X = Cl{sup –}, Br{sup –}or I{sup –}). PbFCl has a larger structural stability range compared to BaFCl and is attributed to the large anisotropic coordination of the Pb{sup 2+} and Cl{sup –}ions.

  19. A Sensitive and Label-Free Pb(II) Fluorescence Sensor Based on a DNAzyme Controlled G-Quadruplex/Thioflavin T Conformation

    PubMed Central

    Wen, Yanli; Wang, Lele; Li, Lanying; Xu, Li; Liu, Gang

    2016-01-01

    Pb(II) can cause serious damaging effects to human health, and thus, the study of Pb2+ detection methods to sensitively and selectively monitor Pb(II) pollution has significant importance. In this work, we have developed a label-free fluorescence sensing strategy based on a Pb(II) DNAzyme cleavage and the ThT/G-quadruplex complex. In the presence of Pb(II), a G-rich tail was cut and released from the substrate strand, which then would form a G-quadruplex structure by combination with ThT dye. The fluorescence signal increase was then measured for sensitive Pb(II) quantification with a limit of detection of 0.06 nM. Our sensor also demonstrated high selectivity against six different metal ions, which is very important for the analysis of complex samples. PMID:27999248

  20. Observation of charge-dependent azimuthal correlations in pPb collisions and its implication for the search for the chiral magnetic effect

    SciTech Connect

    Khachatryan, Vardan; et al.

    2016-10-02

    Charge-dependent azimuthal particle correlations with respect to the second-order event plane in pPb and PbPb collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV have been studied with the CMS experiment at the LHC. The measurement is performed with a three-particle correlation technique, using two particles with the same or opposite charge within the pseudorapidity range abs(eta)<2.4, and a third particle measured in the hadron forward calorimeters (4.4< abs(eta)<5). The observed differences between the same and opposite sign correlations, as functions of multiplicity and eta gap between the two charged particles, are of similar magnitude in pPb and PbPb collisions at the same multiplicities. These results pose a challenge for the interpretation of charge-dependent azimuthal correlations in heavy ion collisions in terms of the chiral magnetic effect.

  1. Decomposing transverse momentum balance contributions for quenched jets in PbPb collisions at $ \\sqrt{s_{\\mathrm{N}\\;\\mathrm{N}}}=2.76 $ TeV

    SciTech Connect

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; König, A.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C. -E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; De Wolf, E. A.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D’Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Poyraz, D.; Salva, S.; Schöfbeck, R.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Bakhshiansohi, H.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; De Visscher, S.; Delaere, C.; Delcourt, M.; Forthomme, L.; Francois, B.; Giammanco, A.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Nuttens, C.; Piotrzkowski, K.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Cheng, T.; Jiang, C. H.; Leggat, D.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Micanovic, S.; Sudic, L.; Susa, T.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Ellithi Kamel, A.; Mahmoud, M. A.; Radi, A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Peltola, T.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Miné, P.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J. -L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J. -M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J. -C.; Gelé, D.; Goerlach, U.; Le Bihan, A. -C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sabes, D.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schomakers, C.; Schulte, J. F.; Schulz, J.; Verlage, T.; Weber, H.; Zhukov, V.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Flügge, G.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bin Anuar, A. A.; Borras, K.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Gunnellini, P.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Keaveney, J.; Kieseler, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Seitz, C.; Spannagel, S.; Stefaniuk, N.; Trippkewitz, K. D.; Van Onsem, G. P.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hoffmann, M.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Poehlsen, J.; Sander, C.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Barth, C.; Baus, C.; Berger, J.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Fink, S.; Friese, R.; Giffels, M.; Gilbert, A.; Goldenzweig, P.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Filipovic, N.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Bahinipati, S.; Choudhury, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Kole, G.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhowmik, S.; Dewanjee, R. K.; Ganguly, S.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Rane, A.; Sharma, S.; Behnamian, H.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Fahim, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Chiorboli, M.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D’Alessandro, R.; Focardi, E.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; De Nardo, G.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall’Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell’Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; D’imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; La Licata, C.; Schizzi, A.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Brochero Cifuentes, J. A.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Oh, S. B.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Magaña Villalba, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Golutvin, I.; Kamenev, A.; Karjavin, V.; Korenkov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Mitsyn, V. V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Skatchkov, N.; Smirnov, V.; Tikhonenko, E.; Yuldashev, B. S.; Zarubin, A.; Chtchipounov, L.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Murzin, V.; Oreshkin, V.; Sulimov, V.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Chistov, R.; Danilov, M.; Rusinov, V.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Rusakov, S. V.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Demiyanov, A.; Ershov, A.; Gribushin, A.; Kodolova, O.; Korotkikh, V.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Vardanyan, I.; Blinov, V.; Skovpen, Y.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Barrio Luna, M.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Suárez Andrés, I.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras De Saa, J. R.; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; D’Alfonso, M.; d’Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dorney, B.; du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Fartoukh, S.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Gulhan, D.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Kousouris, K.; Krammer, M.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Sauvan, J. B.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Wardle, N.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Yang, Y.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Hou, W. -S.; Hsiung, Y.; Liu, Y. F.; Lu, R. -S.; Miñano Moya, M.; Paganis, E.; Psallidas, A.; Tsai, J. f.; Tzeng, Y. M.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Sunar Cerci, D.; Topakli, H.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Barducci, D.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lucas, R.; Lyons, L.; Magnan, A. -M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Berry, E.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Jesus, O.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Spencer, E.; Syarif, R.; Breedon, R.; Breto, G.; Burns, D.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Florent, A.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Malberti, M.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Holzner, A.; Klein, D.; Krutelyov, V.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mccoll, N.; Mullin, S. D.; Ovcharova, A.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bendavid, J.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Lawhorn, J. M.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Winn, D.; Abdullin, S.; Albrow, M.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cremonesi, M.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O’Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Shchutska, L.; Sperka, D.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bein, S.; Diamond, B.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Santra, A.; Weinberg, M.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O’Brien, C.; Sandoval Gonzalez, I. D.; Trauger, H.; Turner, P.; Varelas, N.; Wang, H.; Wu, Z.; Zakaria, M.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Osherson, M.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Bowen, J.; Bruner, C.; Castle, J.; Kenny, R. P.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Apyan, A.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y. -J.; Levin, A.; Luckey, P. D.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Tatar, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bartek, R.; Bloom, K.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Malta Rodrigues, A.; Meier, F.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Baumgartel, D.; Hortiangtham, A.; Knapp, B.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R. -J.; Wood, D.; Bhattacharya, S.; Hahn, K. A.; Kubik, A.; Kumar, A.; Low, J. F.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Lange, D.; Luo, J.; Marlow, D.; Medvedeva, T.; Mei, K.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Zuranski, A.; Malik, S.; Barker, A.; Barnes, V. E.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Jung, K.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Chou, J. P.; Contreras-Campana, E.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Nash, K.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Juska, E.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.

    2016-11-09

    Interactions between jets and the quark-gluon plasma produced in heavy ion collisions are studied via the angular distributions of summed charged-particle transverse momenta (pT) with respect to both the leading and subleading jet axes in high-pt dijet events. The contributions of charged particles in different momentum ranges to the overall event pt balance are decomposed into short-range jet peaks and a long-range azimuthal asymmetry in charged-particle pT. The results for PbPb collisions are compared to those in pp collisions using data collected in 2011 and 2013, at collision energy $ \\sqrt{s_{\\mathrm{N}\\;\\mathrm{N}}}=2.76 $ TeV with integrated luminosities of 166 μb–1 and 5.3 pb–1, respectively, by the CMS experiment at the LHC. Furthermore, measurements are presented as functions of PbPb collision centrality, charged-particle pt, relative azimuth, and radial distance from the jet axis for balanced and unbalanced dijets.

  2. Decomposing transverse momentum balance contributions for quenched jets in PbPb collisions at √{s_{NN}}=2.76 TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; König, A.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; De Wolf, E. A.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Poyraz, D.; Salva, S.; Schöfbeck, R.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Bakhshiansohi, H.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; De Visscher, S.; Delaere, C.; Delcourt, M.; Forthomme, L.; Francois, B.; Giammanco, A.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Nuttens, C.; Piotrzkowski, K.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Cheng, T.; Jiang, C. H.; Leggat, D.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Micanovic, S.; Sudic, L.; Susa, T.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Ellithi Kamel, A.; Mahmoud, M. A.; Radi, A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Peltola, T.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Miné, P.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sabes, D.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schomakers, C.; Schulte, J. F.; Schulz, J.; Verlage, T.; Weber, H.; Zhukov, V.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Flügge, G.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bin Anuar, A. A.; Borras, K.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Gunnellini, P.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Keaveney, J.; Kieseler, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Seitz, C.; Spannagel, S.; Stefaniuk, N.; Trippkewitz, K. D.; Van Onsem, G. P.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hoffmann, M.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Poehlsen, J.; Sander, C.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Barth, C.; Baus, C.; Berger, J.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Fink, S.; Friese, R.; Giffels, M.; Gilbert, A.; Goldenzweig, P.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Filipovic, N.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Bahinipati, S.; Choudhury, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Kole, G.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhowmik, S.; Dewanjee, R. K.; Ganguly, S.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Rane, A.; Sharma, S.; Behnamian, H.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Fahim, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Chiorboli, M.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; De Nardo, G.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; La Licata, C.; Schizzi, A.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Brochero Cifuentes, J. A.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Oh, S. B.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Magaña Villalba, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Golutvin, I.; Kamenev, A.; Karjavin, V.; Korenkov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Mitsyn, V. V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Skatchkov, N.; Smirnov, V.; Tikhonenko, E.; Yuldashev, B. S.; Zarubin, A.; Chtchipounov, L.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Murzin, V.; Oreshkin, V.; Sulimov, V.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Chistov, R.; Danilov, M.; Rusinov, V.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Rusakov, S. V.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Demiyanov, A.; Ershov, A.; Gribushin, A.; Kodolova, O.; Korotkikh, V.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Vardanyan, I.; Blinov, V.; Skovpen, Y.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Barrio Luna, M.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Suárez Andrés, I.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras De Saa, J. R.; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dorney, B.; du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Fartoukh, S.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Gulhan, D.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Kousouris, K.; Krammer, M.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Sauvan, J. B.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Wardle, N.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Yang, Y.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Paganis, E.; Psallidas, A.; Tsai, J. f.; Tzeng, Y. M.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Sunar Cerci, D.; Topakli, H.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Barducci, D.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Berry, E.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Jesus, O.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Spencer, E.; Syarif, R.; Breedon, R.; Breto, G.; Burns, D.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Florent, A.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Malberti, M.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Holzner, A.; Klein, D.; Krutelyov, V.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mccoll, N.; Mullin, S. D.; Ovcharova, A.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bendavid, J.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Lawhorn, J. M.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Winn, D.; Abdullin, S.; Albrow, M.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cremonesi, M.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Shchutska, L.; Sperka, D.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bein, S.; Diamond, B.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Santra, A.; Weinberg, M.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Trauger, H.; Turner, P.; Varelas, N.; Wang, H.; Wu, Z.; Zakaria, M.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Osherson, M.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Bowen, J.; Bruner, C.; Castle, J.; Kenny, R. P.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Apyan, A.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Tatar, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bartek, R.; Bloom, K.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Malta Rodrigues, A.; Meier, F.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Baumgartel, D.; Hortiangtham, A.; Knapp, B.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Bhattacharya, S.; Hahn, K. A.; Kubik, A.; Kumar, A.; Low, J. F.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Lange, D.; Luo, J.; Marlow, D.; Medvedeva, T.; Mei, K.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Zuranski, A.; Malik, S.; Barker, A.; Barnes, V. E.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Jung, K.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Chou, J. P.; Contreras-Campana, E.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Nash, K.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Juska, E.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.

    2016-11-01

    Interactions between jets and the quark-gluon plasma produced in heavy ion collisions are studied via the angular distributions of summed charged-particle transverse momenta ( p T) with respect to both the leading and subleading jet axes in high- p T dijet events. The contributions of charged particles in different momentum ranges to the overall event p T balance are decomposed into short-range jet peaks and a long-range azimuthal asymmetry in charged-particle p T. The results for PbPb collisions are compared to those in pp collisions using data collected in 2011 and 2013, at collision energy √{s_{NN}}=2.76 TeV with integrated luminosities of 166 μb-1 and 5.3 pb-1, respectively, by the CMS experiment at the LHC. Measurements are presented as functions of PbPb collision centrality, charged-particle p T, relative azimuth, and radial distance from the jet axis for balanced and unbalanced dijets. [Figure not available: see fulltext.

  3. Pb isotopes in drinking water: a new strategy for detection of low Pb sources

    EPA Science Inventory

    Source detection of low concentrations of Pb in water, for instance less than 15 µg L-1, may require a new methodology as the tolerances of Pb in drinking water are further reduced. It appears that the isotope properties of Pb may aid discrimination among natural sources and anth...

  4. Chelate-assisted Pb phytoextraction: Pb availability, uptake, and translocation constraints

    SciTech Connect

    Wu, J.; Hsu, F.C.; Cunningham, S.D.

    1999-06-01

    Chelates have been shown to enhance phytoextraction of Pb from contaminated soil. Mechanisms behind this phenomenon, however, remain largely unexplored. In this paper the authors examine chelate effect on Pb dissolution, plant Pb uptake, and internal plant Pb translocation. EDTA was found to be the most efficient in increasing water-soluble Pb concentration in the test soil. Unfortunately, Pb-EDTA is highly water-soluble and posses potential risks to ground water in its application. In addition, it would not appear to be ideally suited for plant uptake and translocation based upon the relative water solubility of Pb-EDTA. The authors demonstrated that N,N{prime}-di(2-hydroxybenzyl)ethylenediamine N,N{prime}-diacetic acid (HBED) resulted in Zea mays root Pb content significantly higher than did EDTA, indicating that a chelate better than EDTA might be designed. Fortuitously, EDTA appears to increase overall plant transpiration, the driving force in phytoextraction of the Pb-chelate complex from soil. The authors also found that there was a significant increase in Pb uptake and translocation for corn transplanted into soil, then treated with EDTA, as compared to plants germinated and grown in Pb-contaminated soil to which EDTA was subsequently applied. These results demonstrate that significant improvement over current chelate-assisted phytoextraction of Pb may be possible.

  5. CONCH: A Visual Basic program for interactive processing of ion-microprobe analytical data

    NASA Astrophysics Data System (ADS)

    Nelson, David R.

    2006-11-01

    A Visual Basic program for flexible, interactive processing of ion-microprobe data acquired for quantitative trace element, 26Al- 26Mg, 53Mn- 53Cr, 60Fe- 60Ni and U-Th-Pb geochronology applications is described. Default but editable run-tables enable software identification of secondary ion species analyzed and for characterization of the standard used. Counts obtained for each species may be displayed in plots against analysis time and edited interactively. Count outliers can be automatically identified via a set of editable count-rejection criteria and displayed for assessment. Standard analyses are distinguished from Unknowns by matching of the analysis label with a string specified in the Set-up dialog, and processed separately. A generalized routine writes background-corrected count rates, ratios and uncertainties, plus weighted means and uncertainties for Standards and Unknowns, to a spreadsheet that may be saved as a text-delimited file. Specialized routines process trace-element concentration, 26Al- 26Mg, 53Mn- 53Cr, 60Fe- 60Ni, and Th-U disequilibrium analysis types, and U-Th-Pb isotopic data obtained for zircon, titanite, perovskite, monazite, xenotime and baddeleyite. Correction to measured Pb-isotopic, Pb/U and Pb/Th ratios for the presence of common Pb may be made using measured 204Pb counts, or the 207Pb or 208Pb counts following subtraction from these of the radiogenic component. Common-Pb corrections may be made automatically, using a (user-specified) common-Pb isotopic composition appropriate for that on the sample surface, or for that incorporated within the mineral at the time of its crystallization, depending on whether the 204Pb count rate determined for the Unknown is substantially higher than the average 204Pb count rate for all session standards. Pb/U inter-element fractionation corrections are determined using an interactive log e-log e plot of common-Pb corrected 206Pb/ 238U ratios against any nominated fractionation-sensitive species pair

  6. LA ICP MS and Ion Probe U-Pb dating of igneous and metasedimentary units in the NE Pontides, NE Turkey: evidence of Peri-Gondwanan terrane accretion, Late Palaeozoic magmatism/metamorphism and Early Mesozoic extension along the S Eurasian margin

    NASA Astrophysics Data System (ADS)

    Ustaömer, Timur; Robertson, Alastair H. F.; Gerdes, Axel; Ayda Ustaömer, P.

    2010-05-01

    The Artvin area is critical to an understanding of the tectonic development of the S margin of Eurasia and Tethys to the south. We have supplemented recent MTA mapping with 1/25,000-scale mapping of a critical area, combined with integrated stratigraphical, sedimentary, geochemical and geochronological studies. Here, we focus on U-Pb zircon dating of igneous and detrital zircons derived from basement units of the Pontide Autocthon and from overlying slice complexes, carried out by LA ICP MS at Frankfurt University and by Ion Probe at Edinburgh University. The Eastern Pontide Autocthon is overlain by north-vergent thrust sheets, mostly of continental margin origin, whereas Mesozoic (Neotethyan) ophiolites form the uppermost thrust sheet. The Autochton basement (Çamlıkaya pluton) is mainly tonalite, cut by granitic dykes. Both intrusions are of within-plate type, without a chemically identifiable subduction influence. The pluton yielded a concordant age of 330.4 ± 4.2 Ma (Visean), while crosscutting dykes gave an age of 156.3 ± 2.0 Ma (Oxfordian). The overlying lower slice complex (Slice 1) begins with a low-grade meta-clastic basement unit, intruded by coarse-grained granite. Detrital zircons from the meta-clastics yielded late Neoproterozoic (579-700), early Neoproterozoic (0.9 Ga) and Kibaran/Grenvillian (1.1-1.3 Ga) zircon populations. The oldest known zircon has an age of 2719 Ma. Slice 2 above this (Demirkent Intrusive Complex) is represented by foliated amphibolites, cut by granitic veins and, together, cut by swarms of basic-silicic dykes that postdate regional metamorphism and related deformation. A granitic vein yielded a concordia age of 325.4 ± 2.8 Ma (Visean-Serpukhovian). Slice 2 was intruded by two small tonalitic bodies, one of which yielded a concordant age of 179.8 ± 1 Ma (Toarcian). Slice 3 above this begins with granulite-facies gneiss and schist (Karadağ Metamorphics). A representative 1 m-wide meta-granitic stock within paragneiss

  7. Fast and precise method for Pb isotope ratio determination in complex matrices using GC-MC-ICPMS: application to crude oil, kerogen, and asphaltene samples.

    PubMed

    Sanabria-Ortega, Georgia; Pécheyran, Christophe; Bérail, Sylvain; Donard, Olivier F X

    2012-09-18

    A new method to determine Pb isotope ratio without ion-exchange-matrix separation is proposed. After acid digestion, Pb was ethylated to Et(4)Pb, separated from the digested solution (black shale, asphaltene, crude oil and kerogen) by extraction in isooctane, and then injected into a gas chromatograph coupled to a multicollector inductively coupled plasma mass spectrometer. Seven isotopes ((202)Hg, (203)Tl, (204)Pb, (205)Tl, (206)Pb, (207)Pb, (208)Pb) were monitored simultaneously with peak duration of 23 s. GC elution was operated under wet plasma conditions where a thallium standard solution was introduced to the mass spectrometer for mass bias correction. The total time of the procedure (sample preparation and analysis, after acid digestion) was reduced by a factor of 15 compared to conventional-continuous sample introduction. Data treatment was carried out using the linear regression slope method. Mass bias was corrected using the double correction method (first thallium normalization followed by classical bracketing). For the (208/206)Pb and (207/206)Pb ratios, precision (2RSD(EXT), n = 21) was 49 and 69 ppm, and the bias between experimental results and reference values was better than 0.0033 and 0.0007 ‰, when injecting 1.2 ng of ethylated Pb SRM NIST 981 solution. Results obtained by this method were validated by comparison with those obtained via conventional-continuous sample introduction. The applicability of this approach was demonstrated with the analysis of black shale, asphaltene, crude oil and kerogen samples.

  8. Study of isospin correlation in high energy S + Pb and Pb + Pb interactions with a magnetic-interferometric-emulsion-chamber. Final report

    SciTech Connect

    Takahashi, Yoshiyuki

    1997-12-12

    This report describes the research results of the study of high energy heavy-ion interactions and multi-cluster correlations at the University of Alabama in Huntsville (UAH). This study has been performed as the CERN experiments, EMU05, EMU09 and EMU16, and a part of the RHIC PHENIX and its MVD Collaboration work. Physics objectives and methods are described in chapters 1, 2, 3 and Appendices A1 and A2. The experimental set-up, measurements, an the data analyses at UAH are described in chapters 4 through 10 and Appendices. The UAH research was a quest for high density state of nuclear matter, in terms of finding analysis methods of multi-isospin correlations. The present work emphasized a study of the fluctuation of the particle density, discriminating the isospin for exploring the Disoriented Chiral Condensate (DCC). The analysis methods developed are: (1) Chi-square density test; (2) Run-test; (3) G-test; (4) Fourier analysis; and (5) Lomb`s Periodogram. The application of these methods for central collision events in 2,000 GeV/n S + Pb and 167 GeV/n Pb + Pb produced interesting DCC correlations for a few events. However, further investigation of fluctuations with Monte Carlo method guided them to understand various hidden degree of freedoms in such analyses. The results of the analysis of the experimental data in comparison with the Monte Carlo data did not support the DCC process as compelling. The developed methods evolved for a plan to investigate the DCC in the PHENIX. The study has obtained several mathematical analysis methods from the CERN EMU05/16 experiments for a possible use in RHIC experiments.

  9. Surface disordering of Pb(110)

    NASA Technical Reports Server (NTRS)

    Tibbits, P.; Karimi, M.; Ila, D.; Dalins, I.; Vidali, G.

    1991-01-01

    A molecular dynamics simulation of Pb(110), using embedded atom method energy functional and two-body potential derived for the purpose, shows that near 400 K the three surface layers begin to disorder well before the bulk (interior) layers. Transfer of atoms from the first subsurface layer to the surface layer occurs. Disordering propagates beyond the top three layers above 550 K, accompanied by formation of an adlayer and vacancies in the top three layers. Behavior of the two-dimensional layer structure factors indicates that disordering is anisotropic. Simulation results are consistent with experimental observations of surface roughening near 400 K and more extensive surface ordering above 525 K. Results are consistent with simulations for Ni and Al.

  10. Studies of biosorption of Pb2+, Cd2+ and Cu2+ from aqueous solutions using Adansonia digitata root powders.

    PubMed

    Ekere, N R; Agwogie, A B; Ihedioha, J N

    2016-01-01

    The potentials of Adansonia digitata root powders (ADRP) for adsorption of Pb(2+), Cd(2+) and Cu(2+) from aqueous solutions was investigated. Physico-chemical analysis of the adsorbent (ADRP) shows that hydroxyl, carbonyl and amino groups were predominant on the surface of the adsorbent. Scanning Electron Microscope (SEM) image revealed its high porosity and irregular pores in the adsorbent while the Energy Dispersive X-ray Spectrum showed the major element with 53.0% Nitrogen, 23.8% carbon, 9.1% calcium, 7.5% potassium and 6.6% magnesium present. The found optimal conditions were: initial concentration of the metal ions = 0.5 mg/L, pH = 5, contact time = 90 min, adsorbent dose = 0.4 g and particle size = 32 µm. Freundlich isotherm showed good fit for the adsorption of Pb(2+), Cd(2+) and Cu(2+). Dubinin-Radushkevich isotherm revealed that the adsorption processes were physisorption Cd(II) and Cu(II) but chemisorption with respect to Pb(II) ions. The kinetics and thermodynamic studies showed that Pseudo-second order and chemisorptions provided the best fit to the experimental data of Pb (II) ions only. Batch desorption result show that desorption in the acidic media for the metal ions were more rapid and over 90% of the metal ions were recovered from the biomass.

  11. Germination, Physiological Responses and Gene Expression of Tall Fescue (Festuca arundinacea Schreb.) Growing under Pb and Cd.

    PubMed

    Lou, Yanhong; Zhao, Peng; Wang, Deling; Amombo, Erick; Sun, Xin; Wang, Hui; Zhuge, Yuping

    2017-01-01

    Cadmium (Cd) and lead (Pb) are recognized as the most toxic metal ions due to their detrimental effects not only to plants, but also to humans. The objective of this study was to investigate the effects of Cd and Pb treatments on seed germination, plant growth, and physiological response in tall fescue (Festuca arundinacea Schreb.). We employed six treatments: CK (nutrient solution as control), T1 (1000 mg L-1 Pb), T2 (50 mg L-1 Cd), T3 (150 mg L-1 Cd), T4 (1000 mg L-1 Pb+50 mg L-1 Cd), T5 (1000 mg L-1 Pb+150 mg L-1 Cd). Antagonistic and synergistic actions were observed in tall fescue under Pb and Cd combined treatments. Under low Cd, plants exhibited higher relative germination rate, germ length, VSGR, catalase (CAT) and peroxidase (POD) activities. Additionally, in the shoots, the gene expression level of Cu/Zn SOD, FeSOD, POD, GPX, translocation factors, MDA, EL, and soluble protein contents were reduced under Pb stress. Conversely, under high Cd level, there was a decline in NRT, Pb content in shoots, Pb translocation factors, CAT activity; and an increase in VSGR, Pb content in roots, gene expression level of Cu/ZnSOD and POD in tall fescue exposed to Pb2+ regimes. On the other hand, tall fescue plants treated with low Cd exhibited lower relative germination rate, germination index, germ length, NRT, Cd content in roots. On the other hand there was higher Cd content, Cd translocation factor, CAT and POD activities, and gene expression level of Cu/Zn SOD, FeSOD, POD, GPX under Pb treatment compared with single Cd2+ treatment in the shoots. However, after high Cd exposure, plants displayed lower NRT, Cd content, CAT activity, and exhibited higher Cd contents, Cd translocation factor, MDA content, gene expression level of Cu/ZnSOD and GPX with the presence of Pb2+ relative to single Cd2+ treatment. These findings lead to a conclusion that the presence of low Cd level impacted positively towards tall fescue growth under Pb stress, while high level of Cd impacted

  12. Germination, Physiological Responses and Gene Expression of Tall Fescue (Festuca arundinacea Schreb.) Growing under Pb and Cd

    PubMed Central

    Lou, Yanhong; Zhao, Peng; Wang, Deling; Amombo, Erick; Sun, Xin; Wang, Hui; Zhuge, Yuping

    2017-01-01

    Cadmium (Cd) and lead (Pb) are recognized as the most toxic metal ions due to their detrimental effects not only to plants, but also to humans. The objective of this study was to investigate the effects of Cd and Pb treatments on seed germination, plant growth, and physiological response in tall fescue (Festuca arundinacea Schreb.). We employed six treatments: CK (nutrient solution as control), T1 (1000 mg L-1 Pb), T2 (50 mg L-1 Cd), T3 (150 mg L-1 Cd), T4 (1000 mg L-1 Pb+50 mg L-1 Cd), T5 (1000 mg L-1 Pb+150 mg L-1 Cd). Antagonistic and synergistic actions were observed in tall fescue under Pb and Cd combined treatments. Under low Cd, plants exhibited higher relative germination rate, germ length, VSGR, catalase (CAT) and peroxidase (POD) activities. Additionally, in the shoots, the gene expression level of Cu/Zn SOD, FeSOD, POD, GPX, translocation factors, MDA, EL, and soluble protein contents were reduced under Pb stress. Conversely, under high Cd level, there was a decline in NRT, Pb content in shoots, Pb translocation factors, CAT activity; and an increase in VSGR, Pb content in roots, gene expression level of Cu/ZnSOD and POD in tall fescue exposed to Pb2+ regimes. On the other hand, tall fescue plants treated with low Cd exhibited lower relative germination rate, germination index, germ length, NRT, Cd content in roots. On the other hand there was higher Cd content, Cd translocation factor, CAT and POD activities, and gene expression level of Cu/Zn SOD, FeSOD, POD, GPX under Pb treatment compared with single Cd2+ treatment in the shoots. However, after high Cd exposure, plants displayed lower NRT, Cd content, CAT activity, and exhibited higher Cd contents, Cd translocation factor, MDA content, gene expression level of Cu/ZnSOD and GPX with the presence of Pb2+ relative to single Cd2+ treatment. These findings lead to a conclusion that the presence of low Cd level impacted positively towards tall fescue growth under Pb stress, while high level of Cd impacted

  13. Giant M1 resonance in Pb

    SciTech Connect

    Laszewski, R.M.; Rullhusen, P.; Hoblit, S.D.; LeBrun, S.F.

    1985-02-11

    Highly polarized tagged photons were used to measure the distribution of M1 transition strength in /sup 206/Pb at excitations between 6.7 and 8.1 MeV. The observed B(up-arrowM1) of about 19..mu../sub 0//sup 2/ can account for most of the isovector M1 strength that is expected in the Pb nucleus. This result in /sup 206/Pb is compared with the current experimental situation in /sup 208/Pb. The discrepancy between predicted and observed M1 strengths in /sup 208/Pb can probably be attributed to local fragmentation of the strength into states that are too weak to have yet all been identified.

  14. Heavy-flavour productions in the relativistic heavy ion collisions in LHC

    NASA Astrophysics Data System (ADS)

    Sakai, Shingo

    2017-03-01

    In the Large Hadron Collider (LHC), open heavy-flavour productions in the heavy-ion collisions (Pb-Pb) has studied by measuring D mesons, leptons from semi-leptonic decay of heavy-flavour hadrons and jets which are original from heavy quarks. In this proceedings, those results are shown together with the measurements with pp and p-Pb collisions and discussed with theoretical calculations to understand the properties of the QCD matter.

  15. Thermoelectrics from abundant chemical elements: high-performance nanostructured PbSe-PbS.

    PubMed

    Androulakis, John; Todorov, Iliya; He, Jiaqing; Chung, Duck-Young; Dravid, Vinayak; Kanatzidis, Mercouri

    2011-07-20

    We report promising thermoelectric properties of the rock salt PbSe-PbS system which consists of chemical elements with high natural abundance. Doping with PbCl(2), excess Pb, and Bi gives n-type behavior without significantly perturbing the cation sublattice. Thus, despite the great extent of dissolution of PbS in PbSe, the transport properties in this system, such as carrier mobilities and power factors, are remarkably similar to those of pristine n-type PbSe in fractions as high as 16%. The unexpected finding is the presence of precipitates ~2-5 nm in size, revealed by transmission electron microscopy, that increase in density with increasing PbS concentration, in contrast to previous reports of the occurrence of a complete solid solution in this system. We report a marked impact of the observed nanostructuring on the lattice thermal conductivity, as highlighted by contrasting the experimental values (~1.3 W/mK) to those predicted by Klemens-Drabble theory at room temperature (~1.6 W/mK). Our thermal conductivity results show that, unlike in PbTe, optical phonon excitations in PbSe-PbS systems contribute to heat transport at all temperatures. We show that figures of merit reaching as high as ~1.2-1.3 at 900 K can be obtained, suggesting that large-scale applications with good conversion efficiencies are possible from systems based on abundant, inexpensive chemical elements.

  16. The Antagonistic Effect of Selenium on Lead Toxicity Is Related to the Ion Profile in Chicken Liver.

    PubMed

    Xu, Tong; Gao, Xuejiao; Liu, Guowen

    2016-02-01

    The interactions between the essential element selenium (Se) and the toxic element lead (Pb) have been reported extensively; however, limited data are available regarding the effects of Se on Pb and the ion profile in chicken liver. Whether the change in the ion profile was involved in the protective process of Se and the toxic effect of Pb is unknown. In the present study, we detected 26 ion profiles (including those of Na, Mg, K, Ca, B, Si, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Mo, Sb, Ba, Tl, Li, Al, As, Cd, Sn, Hg, and Pb) in chicken liver following treatment with Se or Pb and with the compound treatment of Se and Pb. The results showed that Se supplementation decreased the content of B and Cr and increased that of Zn and Ba (P < 0.05); however, Pb exposure decreased Cr, Mn, Cu, Se, Mo, and Hg and increased V, Fe, Cd, and Sn (P < 0.05). The results showed that Se and Pb primarily influenced essential microelements and toxic microelements in the chicken liver. In this process, Se alleviated the increased Cd and Pb induced by Pb exposure but aggravated the decreased Cu and Mn. The results also indicated that there existed both synergistic and antagonistic interactions between different ions, further verifying the principal component analysis. Thus, the results showed that prolonged exposure to Se and Pb influences the ion profiles in chicken liver. The protective role of Se and toxic effect of Pb may be related to these changing ion profiles in chicken liver.

  17. Functional and Integrative Analysis of the Proteomic Profile of Radish Root under Pb Exposure

    PubMed Central

    Wang, Yan; Xu, Liang; Tang, Mingjia; Jiang, Haiyan; Chen, Wei; Zhang, Wei; Wang, Ronghua; Liu, Liwang

    2016-01-01

    Lead (Pb) is one of the most abundant heavy metal (HM) pollutants, which can penetrate the plant through the root and then enter the food chain causing potential health risks for human beings. Radish is an important root vegetable crop worldwide. To investigate the mechanism underlying plant response to Pb stress in radish, the protein profile changes of radish roots respectively upon Pb(NO3)2 at 500 mg L−1(Pb500) and 1000 mg L−1(Pb1000), were comprehensively analyzed using iTRAQ (Isobaric Tag for Relative and Absolute Quantification). A total of 3898 protein species were successfully detected and 2141 were quantified. Among them, a subset of 721 protein species were differentially accumulated upon at least one Pb treatment, and 135 ones showed significantly abundance changes under both two Pb-stressed conditions. Many critical protein species related to protein translation, processing, and degradation, reactive oxygen species (ROS) scavenging, photosynthesis, and respiration and carbon metabolism were successfully identified. Gene Ontology (GO) and pathway enrichment analysis of the 135 differential abundance protein species (DAPS) revealed that the overrepresented GO terms included “cell wall,” “apoplast,” “response to metal ion,” “vacuole,” and “peroxidase activity,” and the critical enriched pathways were involved in “citric acid (TCA) cycle and respiratory electron transport,” “pyruvate metabolism,” “phenylalanine metabolism,” “phenylpropanoid biosynthesis,” and “carbon metabolism.” Furthermore, the integrative analysis of transcriptomic, miRNA, degradome, metabolomics and proteomic data provided a strengthened understanding of radish response to Pb stress at multiple levels. Under Pb stress, many key enzymes (i.e., ATP citrate lyase, Isocitrate dehydrogenase, fumarate hydratase and malate dehydrogenase) involved in the glycolysis and TCA cycle were severely affected, which ultimately cause alteration of some

  18. Removal of iodide ion from simulated radioactive liquid waste

    NASA Astrophysics Data System (ADS)

    Kodama, H.

    1999-01-01

    The previous study reported that BiPbO2(NO3) is one of the most promising candidate materials for removing and immobilizing radioactive iodide. In that case, the solution contained only dissolved NaI and did not contain competing anions. This paper reports the reactivity of BiPbO2(NO3) with iodide ions in simulated radioactive liquid waste. This liquid contains many components, especially highly concentrated NaNO2, Na2CO3 and NaNO3. The obtained results show that BiPbO2(NO3) is useful for removing iodide ion from the simulated radioactive liquid waste but that there is a problem which should be resolved in the future. The problem is that a competing anion, HCO3 -, interferes with the exchange reaction, and only the surfaces of the BiPbO2(NO3) crystals are used for the reaction.

  19. ϕ production at forward rapidity in pp, p-Pb and Pb-Pb collisions with ALICE

    NASA Astrophysics Data System (ADS)

    De Falco, Alessandro

    2016-12-01

    The ALICE experiment at the LHC measured vector meson production in p-Pb collisions at √{sNN} = 5.02 TeV, pp and Pb-Pb collisions at √{sNN} = 2.76 TeV. In pp collisions, the ϕ differential cross section as a function of pT was measured in the range 1 Pb collisions, measurements of the ϕ yield and the nuclear modification factor in the rapidity ranges 2.03 < y < 3.53 (p-going direction) and - 4.46 < y < - 2.96 (Pb-going direction) are shown. An asymmetry between the cross section at forward and backward rapidity is observed. Results are compared with the predictions provided by commonly used event generators. In Pb-Pb collisions, the ϕ yield and the nuclear modification factor are obtained as a function of centrality in the intermediate pT region (2

  20. Ion microprobe zircon geochronology of the Uivak Gneisses: Implications for the evolution of early terrestrial crust in the North Atlantic Craton

    NASA Technical Reports Server (NTRS)

    Collerson, K. D.

    1983-01-01

    Ion microprobe U-Pb results for zircons from three Uivak I gneisses and one specimen of Uivak II gneiss, from the Saglek-Hebron area of Northern Labrador are reported. These results are compared with interpretations based on published conventional U-Pb zircon results and with conclusions about crustal evolution in the NAC derived from Rb-Sr, Sm-Nd and Pb-Pb isotopic studies.

  1. Synthesis and Characterization of Templated Ion Exchange Resins for the Selective Complexation of Actinide Ions

    SciTech Connect

    Uy, O. Manual

    2001-03-01

    The purpose of this research is to develop a polymeric extractant for the selective complexation of uranyl ions (and subsequently other actinyl and actinide ions) from aqueous solutions (lakes, streams, waste tanks and even body fluids). Chemical insights into what makes a good complexation site will be used to synthesize reagents tailor-made for the complexation of uranyl and other actinide ions. These insights, derived from studies of molecular recognition include ion coordination number and geometry, ionic size and ionic shape, as well as ion to ligand thermodynamic affinity. Selectivity for a specific actinide ion will be obtained by providing the polymers with cavities lined with complexing ligands so arranged as to match the charge, coordination number, coordination geometry, and size of the actinide metal ion. These cavity-containing polymers will be produced by using a specific ion (or surrogate) as a template around which monomeric complexing ligands will be polymerized. The complexing ligands will be ones containing functional groups known to form stable complexes with a specific ion and less stable complexes with other cations. Prior investigator's approaches for making templated resins for metal ions have had marginal success. We have extended and amended these methodologies in our work with Pb(II) and uranyl ion, by changing the order of the steps, by the inclusion of sonication, by using higher complex loading, and the selection of functional groups with better complexation constants. This has resulted in significant improvements to selectivity. The unusual shape of the uranyl ion suggests that this approach will result in even greater selectivities than already observed for Pb(II). Preliminary data obtained for uranyl templated polymers shows unprecedented selectivity and has resulted in the first ion selective electrode for uranyl ion.

  2. Mobilization of Pb in zircon during high-T metamorphism (Invited)

    NASA Astrophysics Data System (ADS)

    Kelly, N. M.; Gorman, B.; Hinton, R. W.; Harley, S. L.

    2010-12-01

    Accurate and precise geochronology is key to effectively characterizing the event histories of high-grade terrains and placing robust constraints on the rates of deep crustal processes. Although zircon has proven to be a reliable chronometer for geochronology of high-T rocks due to its capacity to preserve evidence for multiple episodes of growth, under certain conditions zircon can be highly susceptible to alteration and recrystallization. This is particularly problematic in zircon suites from poly-metamorphic terrains, which commonly display complex age patterns. While normal discordance can be attributed to Pb loss during overprinting thermal events, the origin of reverse discordance in low-U, non-metamict zircon is less well understood. Zircon grains in felsic orthogneiss samples from the Oygarden Group, east Antarctica, display complex normal and reverse discordance patterns in U-Pb data. The Oygarden Group experienced a history of overprinting tectonothermal events extending back into the middle Archaean, culminating in high-T metamorphism and intense deformation (T≥900°C, P≈10 kbars) at ~930 Ma. Low-U (typically <40ppm) zircon grains display highly disturbed U-Pb isotope systematics characterized by extreme normal and reverse discordance. Initial dating by Secondary Ion Mass Spectrometry (SIMS) revealed a complex data set that made unambiguous age determination problematic. Time-resolved SIMS analysis for U-Pb showed that while U, Th, Hf and Si count rates remained constant with depth, count rates of all Pb isotopes fluctuated on a nanometer scale. Such fluctuations are indicative of Pb mobility that has resulted in sub-micron scale domains variably depleted or enriched in Pb. We therefore interpret that data being concordant, normally discordant or reversely discordant can be directly attributed to relative proportions of Pb-enriched or -depleted domains being sampled during ion microprobe analysis. Further analytical work using Electron Backscatter

  3. Deep Sub-Barrier Fusion Enhancement in the {sup 6}He+{sup 206}Pb Reaction

    SciTech Connect

    Penionzhkevich, Yu.E.; Zagrebaev, V.I.; Lukyanov, S.M.; Kalpakchieva, R.

    2006-04-28

    The fusion of {sup 6}He with {sup 206}Pb has been studied at energies close to and below the Coulomb barrier. The experiment was carried out at the Dubna Radioactive Ion Beams complex of FLNR, JINR. The {sup 6}He beam intensity was about 5x10{sup 6} pps, the maximum energy being 60.3{+-}0.4 MeV. The yield of the {sup 210}Po isotope, produced in the 2n-evaporation channel, demonstrates an extremely large enhancement of the sub-barrier fusion cross section as compared with the {sup 4}He+{sup 208}Pb reaction. This enhancement is most likely due to the mechanism of 'sequential fusion' with an intermediate neutron transfer from {sup 6}He to the Pb nucleus with positive Q values.

  4. XAFS studies of Pb(II)-chloro and Hg(II)-chloro ternary complexes on goethite

    USGS Publications Warehouse

    Bargar, J.R.; Persson, Petra; Brown, Gordon E.

    1997-01-01

    EXAFS spectroscopy was used to study Pb(II) and Hg(II) adsorption complexes on goethite (??-FeOOH) in the presence of Cl-. At pH 7, the dominant Pb(II) species are bonded to edges of FeO6 octahedra and are similar to complexes that occur in the absence of Cl-. At pH ??? 6, Pb(II)-chloro ternary complexes predominate and are bonded to corners of FeO6 octahedra. At pH 6.5, linear Hg(OH)Cl ternary complexes predominate that are bonded to goethite through surface oxygens in a bent Hg-O-Fe geometry. In the absence of Cl-, the Hg(II) surface complexes retain this basic geometry, but an OH group replaces the chloride ion in the first coordination shell.

  5. Effects of Dietary Selenium Against Lead Toxicity Are Related to the Ion Profile in Chicken Muscle.

    PubMed

    Jin, Xi; Liu, Chun Peng; Teng, Xiao Hua; Fu, Jing

    2016-08-01

    Complex antagonistic interactions between Selenium (Se) and heavy metals have been reported in previous studies. However, little is known regarding the effects of Se on lead (Pb)-induced toxicity and the ion profile in the muscles of chickens. In this present study, we fed chickens either Se or Pb or both Se and Pb supplement and later analyzed the concentrations of 26 ions in chicken muscle tissues. We determined that a Se- and Pb-containing diets significantly affected microelements in chicken muscle. Treatment with Se increased the content of Se but resulted in a reduced concentration of Cu, As, Cd, Sn, Hg, and Ba. Treatment with Pb increased concentrations of Ni while reducing those of B, V, Cr, Fe, Co, Cu, Zn, and Mo. Moreover, Se also reduced the concentration of Pb, Zn, Co, Fe, V, and Cr, which in contrast were induced by Pb. Additionally, we also found that synergistic and antagonistic interactions existed between Se and Pb supplementation. Our findings suggested that Se can exert a negative effect on Pb in chicken muscle tissues and may be related to changes in ion profiles.

  6. The adsorption behavior and mechanism investigation of Pb(II) removal by flocculation using microbial flocculant GA1.

    PubMed

    Feng, Jing; Yang, Zhaohui; Zeng, Guangming; Huang, Jing; Xu, Haiyin; Zhang, Yuanyuan; Wei, Shumei; Wang, Like

    2013-11-01

    In this work, microbial flocculant GA1 (MBFGA1) was used to remove Pb(II) ions from aqueous solution. A series of experimental parameters including initial pH, MBFGA1 dose, temperature and initial calcium ions concentration on Pb(II) uptake was evaluated. Meanwhile, the flocculation mechanism of MBFGA1 was investigated. The removal efficiency of Pb(II) reached up to 99.85% when MBFGA1 was added in two stages, separately. The results indicated that Pb(II) adsorption could be described by the Langmuir adsorption model, and being the monolayer capacity negatively affected with an increase in temperature. The adsorption process could be described by pseudo-second-order kinetic model. Fourier transform-infrared spectra and environmental scanning electron microscope analysis indicated that MBFGA1 had a large number of functional groups, which had strong capacity for removing Pb(II). The main mechanisms of Pb(II) removal by MBFGA1 could be charge neutralization and adsorption bridging.

  7. Adsorption of Pb(II) and Cd(II) from aqueous solutions using titanate nanotubes prepared via hydrothermal method.

    PubMed

    Xiong, Lin; Chen, Cheng; Chen, Qing; Ni, Jinren

    2011-05-30

    Titanate nanotubes (TNs) with specific surface areas of 272.31 m(2)g(-1) and pore volumes of 1.264 cm(3)g(-1) were synthesized by alkaline hydrothermal method. The TNs were investigated as adsorbents for the removal of Pb(II) and Cd(II) from aqueous solutions. The FT-IR analysis indicated that Pb(II) and Cd(II) adsorption were mainly ascribed to the hydroxyl groups in the TNs. Batch experiments were conducted by varying contact time, pH and adsorbent dosage. It was shown that the initial uptake of each metal ion was very fast in the first 5 min, and adsorption equilibrium was reached after 180 min. The adsorption of Pb(II) and Cd(II) were found to be maximum at pH in the range of 5.0-6.0. The adsorption kinetics of both metal ions followed the pseudo-second-order model. Equilibrium data were best fitted with the Langmuir isotherm model, and the maximum adsorption capacities of Pb(II) and Cd(II) were determined to be 520.83 and 238.61 mg g(-1), respectively. Moreover, more than 80% of Pb(II) and 85% of Cd(II) adsorbed onto TNs can be desorbed with 0.1M HCl after 3h. Thus, TNs were considered to be effective and promising materials for the removal of both Pb(II) and Cd(II) from wastewater.

  8. Amorphous boron-doped sodium titanates hydrates: Efficient and reusable adsorbents for the removal of Pb(2+) from water.

    PubMed

    di Bitonto, Luigi; Volpe, Angela; Pagano, Michele; Bagnuolo, Giuseppe; Mascolo, Giuseppe; La Parola, Valeria; Di Leo, Paola; Pastore, Carlo

    2017-02-15

    Amorphous titanium hydroxide and boron-doped (B-doped) sodium titanates hydrates were synthetized and used as adsorbents for the removal of Pb(2+) from water. The use of sodium borohydride (NaBH4) and titanium(IV) isopropoxide (TTIP) as precursors permits a very easy synthesis of B-doped adsorbents at 298K. The new adsorbent materials were first chemically characterized (XRD, XPS, SEM, DRIFT and elemental analysis) and then tested in Pb(2+) adsorption batch experiments, in order to define kinetics and equilibrium studies. The nature of interaction between such sorbent materials and Pb(2+) was also well defined: besides a pure adsorption due to hydroxyl interaction functionalities, there is also an ionic exchange between Pb(2+) and sodium ions even working at pH 4.4. Langmuir model presented the best fitting with a maximum adsorption capacity up to 385mg/g. The effect of solution pH and common ions (i.e. Na(+), Ca(2+) and Mg(2+)) onto Pb(2+) sorption were also investigated. Finally, recovery was positively conducted using EDTA. Very efficient adsorption (>99.9%) was verified even using tap water spiked with traces of Pb(2+) (50ppb).

  9. SHI induced enhancement in conductivity of PbTe thin film for thermoelectric applications

    SciTech Connect

    Gupta, Srashti; Agarwal, D. C.; Singh, J. P.; Tripathi, S. K.; Neeleshwar, S.; Asokan, K.; Panigrahi, B. K.; Avasthi, D. K.

    2012-06-05

    PbTe thin film were synthesized using thermal evaporation and irradiated by 100 MeV Ag ions at different fluences ranging from 3x10{sup 13} and 1x10{sup 14} ions/cm{sup 2}. Pristine films annealed under Ar atm at 250 deg. C for 1 hr. X-ray Diffraction (XRD) of pristine and irradiated films reveals the improvement of PbTe phase with increasing fluence. The thickness of the film is decreased from 195 nm to 150 nm after ion irradiation as indicated by Rutherford backscattering spectrometry (RBS) analysis due to the sputtering. Resistivity measurement using four probe techniques of these films shows the conductivity enhancement with ion fluence. The conductivity is found to be {approx} 6 fold at fluence 3x10{sup 13} ions/cm{sup 2} whereas it decreases to 3 fold after annealing in comparison to pristine sample. On further increasing the fluence from 3x10{sup 13} ions/cm{sup 2}, the properties of the film begin to deteriorate. SHI induced modification may be explained on the basis of oxygen desorption and change in stochiometry of film during irradiation.

  10. New high spin states and isomers in the {sup 208}Pb and {sup 207}Pb nuclei

    SciTech Connect

    Broda, R.; Wrzesinski, J.; Pawlat, T.

    1996-12-31

    The two most prominent examples of the heavy doubly closed shell (DCS) nuclei, {sup 208}Pb and {sup 132}Sn, are not accessible by conventional heavy-ion fusion processes populating high-spin states. This experimental difficulty obscured for a long time the investigation of yrast high-spin states in both DCS and neighboring nuclei and consequently restricted the study of the shell model in its most attractive regions. Recent technical development of multidetector gamma arrays opened new ways to exploit more complex nuclear processes which populate the nuclei of interest with suitable yields for gamma spectroscopy and involve population of moderately high spin states. This new possibility extended the range of accessible spin values and is a promising way to reach new yrast states. Some of these states are expected to be of high configurational purity and can be a source of important shell model parameters which possibly can be used later to check the validity of the spherical shell model description at yet higher spin and higher excitation energy. The nuclei in the closest vicinity of {sup 132}Sn are produced in spontaneous fission and states with spin values up to I=14 can be reached in fission gamma spectroscopy studies with the presently achieved sensitivity of gamma arrays. New results on yrast states in the {sup 134}Te and {sup 135}I nuclei populated in fission of the {sup 248}Cm presented at this conference illustrate such application of the resolving power offered by modern gamma techniques.

  11. Aspects of heavy-ion collisions at the LHC

    SciTech Connect

    Wolschin, G.

    2014-01-14

    Three aspects of relativistic heavy-ion collisions are considered in this article: (1) Stopping and baryon transport in a QCD-based approach, (2) charged-hadron production in a nonequilibrium-statistical relativistic diffusion model (RDM), and (3) quarkonia suppression and in particular, Υ suppression in PbPb at the current LHC energy of √(s{sub NN}) = 2.76TeV.

  12. Accumulation of metal ions by pectinates

    NASA Astrophysics Data System (ADS)

    Deiana, S.; Deiana, L.; Palma, A.; Premoli, A.; Senette, C.

    2009-04-01

    The knowledge of the mechanisms which regulate the interactions of metal ions with partially methyl esterified linear polymers of α-1,4 linked D-galacturonic acid units (pectinates), well represented in the root inner and outer apoplasm, is of great relevance to understand the processes which control their accumulation at the soil-root interface as well as their mobilization by plant metabolites. Accumulation of a metal by pectinates can be affected by the presence of other metals so that competition or distribution could be expected depending on the similar or different affinity of the metal ions towards the binding sites, mainly represented by the carboxylate groups. In order to better understand the mechanism of accumulation in the apoplasm of several metal ions, the sorption of Cd(II), Zn(II), Cu(II), Pb(II) and Cr(III) by a Ca-polygalacturonate gel, used as model of the soil-root interface, with a degree of esterification of 18% (PGAE1) and 65% (PGAE2) was studied at pH 3.0, 4.0, 5.0 and 6.0 in the presence of CaCl2 2.5 mM.. The results show that sorption increases with increasing both the initial metal concentration and pH. A similar sorption trend was evidenced for Cu(II) and Pb(II) and for Zn(II) and Cd(II), indicating that the mechanism of sorption for these two ionic couples is quite different. As an example, at pH 6.0 and an initial metal concentration equal to 2.0 mM, the amount of Cu(II) and Pb(II) sorbed was about 1.98 mg-1 of PGAE1 while that of Cd(II) and Zn(II) was about 1.2 mg-1. Cr(III) showed a rather different sorption trend and a much higher amount (2.8 mg-1of PGAE1 at pH 6.0) was recorded. The higher affinity of Cr(III) for the polysaccharidic matrix is attributable to the formation of Cr(III) polynuclear species in solution, as shown by the distribution diagrams obtained through the MEDUSA software. On the basis of these findings, the following affinity towards the PGAE1 can be assessed: Cr(III) > Cu(II) ? Pb(II) > Zn (II) ? Cd

  13. Vorticity in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Deng, Wei-Tian; Huang, Xu-Guang

    2016-06-01

    We study the event-by-event generation of flow vorticity in the BNL Relativistic Heavy Ion Collider Au +Au collisions and CERN Large Hadron Collider Pb +Pb collisions by using the hijing model. Different definitions of the vorticity field and velocity field are considered. A variety of properties of the vorticity are explored, including the impact parameter dependence, the collision energy dependence, the spatial distribution, the event-by-event fluctuation of the magnitude and azimuthal direction, and the time evolution. In addition, the spatial distribution of the flow helicity is also studied.

  14. [Sorption characteristics of tea waste modified by hydrated ferric oxide toward Pb(II) in water].

    PubMed

    Wan, Shun-Li; Xue, Yao; Ma, Zhao-Zhao; Liu, Guo-Bin; Yu, Yan-Xia; Ma, Ming-Hai

    2014-10-01

    Hydrated ferric oxide was successfully impregnated onto tea waste by precipitation to obtain a new sorbent named HFO-TW, the adsorption characteristics of which toward Pb(II) in aqueous solution was investigated by evaluating the effects of pH value, contact time, coexisting ion, temperature, and initial concentration of Pb(II). The Pb(II) sorption onto HFO-TW was pH- dependent, and the higher pH value was more helpful for Pb(II) adsorption onto HFO-TW in the pH range of 2.5-7. Lead sorption speed was quick and could reach equilibrium within 100 min, and the kinetics curve could be fitted well by both pseudo-first and pseudo-second models. The related coefficient was 98.8%. HFO-TW exhibited highly selective lead retention and the adsorption capacity of Pb(II) onto HFO-TW was declined by only 12.1 mg · g(-1) and 8.1 mg · g(-1) in the presence of competing Ca(II), Mg(II) at 50 times of the target ion. In addition, Pb(II) sorption onto HFO-TW could be described satisfactorily by Langmuir model, and the maximal sorption capacity calculated by Langmuir equation was 89.43 mg · g(-1), which was much higher than the unmodified tea waste and other bio-sorbents. All the results validated that HFO-TW was a promising sorbent for removal of lead from waters.

  15. Pb+ irradiation of synthetic zircon (ZrSiO4): Infrared spectroscopic investigation

    SciTech Connect

    Zhang, Ming; Boatner, Lynn A; Salje, Ekhard K.H.; Honda, Shin-ichi; Ewing, Rodney C.

    2008-01-01

    The structural variations of synthetic zircon (ZrSiO{sub 4}) single crystals irradiated at room temperature by 280 keV Pb{sup +} ions (with fluences up to 1 x 10{sup 15} ions/cm{sup 2}) were investigated using infrared (IR) spectroscopy. Like metamict zircon whose crystal structure is damaged and amorphized by naturally occurring {alpha}-decay events, the Pb{sup +}-irradiated zircon crystals show a dramatic decrease in reflectivity. However, no significant decrease in wavenumbers of the stretching vibrations of SiO{sub 4} tetrahedra in zircon was detected. The Pb{sup +}-implanted zircon exhibits new IR bands, indicating irradiation-induced new vibrations or domains, clusters or phases in addition to SiO{sub 2} and ZrO{sub 2}. IR features consistent with those of Pb silicates (with a divalent state, i.e., Pb{sup 2+}) are also found in the irradiated sample. This finding implies that some of the radiogenic Pb in natural zircon might not actually reside in the zircon lattice or in ZrSiO{sub 4} phases, but form new local domains or clusters. Infrared bands of OH-stretching vibrations were also detected in the irradiated synthetic zircon, which was originally free from OH features prior to the irradiation. These results indicate that H can easily diffuse into the irradiated layer or into irradiated-induced phases to form OH or and hydrous species after the irradiated material is damaged. The type and content of hydrous species vary with irradiation fluences.

  16. Modelling the leaching of Pb, Cd, As, and Cr from cementitious waste using PHREEQC.

    PubMed

    Halim, Cheryl E; Short, Stephen A; Scott, Jason A; Amal, Rose; Low, Gary

    2005-10-17

    A leaching model was developed using the United States Geological Survey public domain PHREEQC geochemical package to simulate the leaching of Pb, Cd, As, and Cr from cementitious wastes. The model utilises both kinetic terms and equilibrium thermodynamics of key compounds and provides information on leachate and precipitate speciation. The model was able to predict the leaching of Pb, Cd, As, and Cr from cement in the presence of both simple (0.1 and 0.6M acetic acid) and complex municipal landfill leachates. Heavy metal complexation by the municipal landfill leachate was accounted for by the introduction of a monoprotic organic species into the model. The model indicated Pb and As were predominantly incorporated within the calcium silicate hydrate matrix while a greater portion of Cd was seen to exist as discrete particles in the cement pores and Cr (VI) existed mostly as free CrO4(2-) ions. Precipitation was found to be the dominant mechanism controlling heavy metal solubility with carbonate and silicate species governing the solubility of Pb and carbonate, silicate and hydroxide species governing the solubility of Cd. In the presence of acetic acid, at low pH values Pb and Cd acetate complexes were predominant whereas, at high pH values, hydroxide species dominated. At high pH values, the concentration of As in the leachate was governed by the solubility of Ca3(AsO4)2 with the presence of carbonate alkalinity competing with arsenate for Ca ions. In the presence of municipal landfill leachate, Pb and Cd organic complexes dominated the heavy metal species in solution. The reduction of As and Cr in municipal landfill leachate was crucial for determining aqueous speciation, with typical municipal landfill conditions providing the reduced forms of As and Cr.

  17. A Novel Potassium-Ion-Based Dual-Ion Battery.

    PubMed

    Ji, Bifa; Zhang, Fan; Song, Xiaohe; Tang, Yongbing

    2017-03-15

    In this work, combining both advantages of potassium-ion batteries and dual-ion batteries, a novel potassium-ion-based dual-ion battery (named as K-DIB) system is developed based on a potassium-ion electrolyte, using metal foil (Sn, Pb, K, or Na) as anode and expanded graphite as cathode. When using Sn foil as the anode, the K-DIB presents a high reversible capacity of 66 mAh g(-1) at a current density of 50 mA g(-1) over the voltage window of 3.0-5.0 V, and exhibits excellent long-term cycling performance with 93% capacity retention for 300 cycles. Moreover, as the Sn foil simultaneously acts as the anode material and the current collector, dead load and dead volume of the battery can be greatly reduced, thus the energy density of the K-DIB is further improved. It delivers a high energy density of 155 Wh kg(-1) at a power density of 116 W kg(-1) , which is comparable with commercial lithium-ion batteries. Thus, with the advantages of environmentally friendly, cost effective, and high energy density, this K-DIB shows attractive potential for future energy storage application.

  18. Removal of heavy metal ions by biogenic hydroxyapatite: Morphology influence and mechanism study

    NASA Astrophysics Data System (ADS)

    Wang, Dandan; Guan, Xiaomei; Huang, Fangzhi; Li, Shikuo; Shen, Yuhua; Chen, Jun; Long, Haibo

    2016-08-01

    Based on the synthesis of hydroxyapatite (HA) with different morphologies, such as nanorod-like, flower-like and sphere-like assembled HA nanorods, a new strategy has been developed for the removal of heavy metal ions such as Pb2+, Cu2+, Mn2+, Zn2+. The dependence of removal efficiency on the morphology and the suspended concentration of trapping agent, the removal time and selectivity were evaluated and discussed. The experimental results proved that the removal capacity of flower-like assembled HA nanorods (NAFL-HA) was the best, and the maximum removal ratio for Pb2+ ion was 99.97%. The mechanism of Pb2+ removal was studied in detail, noting that some metal ions were completely incorporated into hydroxyapatitie to produce Pb-HA. It reveals that the metal ions capture by HA is mainly controlled by sample surface adsorption and co-precipitation, which are directly controlled by sample morphology.

  19. Study of Z production in PbPb and pp collisions at $$ \\sqrt{s_{\\mathrm{NN}}}=2.76 $$ TeV in the dimuon and dielectron decay channels

    DOE PAGES

    Chatrchyan, Serguei

    2015-03-04

    We found that the production of Z bosons is studied in the dimuon and dielectron decay channels in PbPb and pp collisions at √sNN=2.76 TeV, using data collected by the CMS experiment at the LHC. The PbPb data sample corresponds to an integrated luminosity of about 166 μb-1, while the pp data sample collected in 2013 at the same nucleon-nucleon centre-of-mass energy has an integrated luminosity of 5.4 pb-1. The Z boson yield is measured as a function of rapidity, transverse momentum, and collision centrality. The ratio of PbPb to pp yields, scaled by the number of inelastic nucleon-nucleon collisions,more » is found to be 1.06 ± 0.05 (stat) ± 0.08 (syst) in the dimuon channel and 1.02 ± 0.08 (stat) ± 0.15 (syst) in the dielectron channel, for centrality-integrated Z boson production. Finally, this binary collision scaling is seen to hold in the entire kinematic region studied, as expected for a colourless probe that is unaffected by the hot and dense QCD medium produced in heavy ion collisions.« less

  20. Study of Z production in PbPb and pp collisions at $ \\sqrt{s_{\\mathrm{NN}}}=2.76 $ TeV in the dimuon and dielectron decay channels

    SciTech Connect

    Chatrchyan, Serguei

    2015-03-04

    We found that the production of Z bosons is studied in the dimuon and dielectron decay channels in PbPb and pp collisions at √sNN=2.76 TeV, using data collected by the CMS experiment at the LHC. The PbPb data sample corresponds to an integrated luminosity of about 166 μb-1, while the pp data sample collected in 2013 at the same nucleon-nucleon centre-of-mass energy has an integrated luminosity of 5.4 pb-1. The Z boson yield is measured as a function of rapidity, transverse momentum, and collision centrality. The ratio of PbPb to pp yields, scaled by the number of inelastic nucleon-nucleon collisions, is found to be 1.06 ± 0.05 (stat) ± 0.08 (syst) in the dimuon channel and 1.02 ± 0.08 (stat) ± 0.15 (syst) in the dielectron channel, for centrality-integrated Z boson production. Finally, this binary collision scaling is seen to hold in the entire kinematic region studied, as expected for a colourless probe that is unaffected by the hot and dense QCD medium produced in heavy ion collisions.

  1. A method for simultaneous determination of 210Pb and 212Pb in drinking water samples

    NASA Astrophysics Data System (ADS)

    Jia, Guogang; Torri, G.; Leandro, M.

    2012-04-01

    A sensitive and accurate method for determination of 210Pb and 212Pb in drinking water samples was developed. In the method Pb was pre-concentrated as hydroxides, separated from alkaline earth elements as PbS precipitate, purified by an anion exchange resin chro-matography column, precipitated as PbSC4 for source preparation and counted by a low background β-counter. The procedure was checked with a reference material supplied by the IAEA, and the obtained data were in good agreement with the recommended values, showing the recommended procedure can provide reliable results. The minimum detectable activity of the method was 0.039 mBq L-1 for 210Pb and 0.033 mBq L-1 for 212Pb if a 48 liter of water sample was analyzed. Seventeen drinking water samples were analyzed with a Pb recovery of 88.8 ± 5.5%, and the typical activity concentration was in the range of 0.191-15.1 mBq L-1 for 210Pb and of 1.12-5.77 mBq L-1 for 212Pb.

  2. Soft modelling for the resolution of highly overlapped voltammetric peaks: application to some Pb-phytochelatin systems.

    PubMed

    Alberich, Arístides; Ariño, Cristina; Díaz-Cruz, José Manuel; Esteban, Miquel

    2007-01-15

    A differential pulse polarographic (DPP) study of the Pb(2+)/Cys-Gly, Pb(2+)/gamma-Glu-Cys, Pb(2+)/PC(2) and Pb(2+)/PC(3) systems is performed, being PC(2) and PC(3) the phytochelatins of general structure (gamma-Glu-Cys)(n)-Gly, with n=2 and 3, respectively. Analysis of DPP data is assisted by multivariate curve resolution with alternating least squares (MCR-ALS) method in order to establish the complexes formation sequence and their final stoichiometries. DPP signals of these systems present, besides overlapping of peaks due to free metal ion and metal complexes, interference of mercury anodic signals. Despite these complications, MCR-ALS allows us to propose a model of complexation for each system, and some tentative structures for the complexes.

  3. Partially hydrolyzed bamboo (Phyllostachys heterocycla) as a porous Bioadsorbent for the removal of Pb(II) from aqueous mixtures.

    PubMed

    OuYang, Xiao-kun; Jin, Ru-Na; Yang, Le-Ping; Wen, Zheng-Shun; Yang, Li-Ye; Wang, Yang-Guang; Wang, Chong-Yu

    2014-06-25

    A novel porous succinylated bioadsorbent was prepared by the partial enzymatic hydrolysis of bamboo (Phyllostachys heterocycla) and its subsequent modification with succinic anhydride. Pb(II) removal from solutions that also contained sodium chloride and an amino acid was investigated using the bioadsorbent. Enzymatic hydrolysis increased the number of accessible hydroxyl groups and surface area of the raw bamboo, and created many pores within the material. The porous succinylated bioadsorbent exhibited high efficiency for Pb(II) binding. The sodium chloride content significantly decreased the Pb(II) adsorption capacity, whereas a minor effect was observed in the presence of arginine. The experimental data could be accurately described by a pseudo-second-order kinetics model, and the adsorption proceeded via an ion exchange mechanism. Even in a solution containing sodium chloride and arginine, the maximum adsorption capacity of Pb(II) by the porous succinylated bioadsorbent was 99.5 mg/g at 303 K.

  4. Direct photon measurement in Pb-Pb collisions at √{sNN} = 2.76 TeV with ALICE

    NASA Astrophysics Data System (ADS)

    Sahlmüller, Baldo

    2016-12-01

    The ALICE experiment has measured the direct photon spectra in Pb-Pb collisions at √{sNN} = 2.76 TeV for three different centrality selections. The measurement was performed emplying a method utilizing conversion of photons into e+e- pairs in the detector material, and a method using the PHOS calorimeter. The two measurements were combined in order to measure direct photons over a broad transverse momentum range of 0.9 ion collisions. These proceedings provide a summary of the results published in [J. Adam, others (ALICE Collaboration), Direct photon production in Pb-Pb collisions at √{sNN} = 2.76 TeV, arxiv:arXiv:1509.07324] and [J. Adam, others (ALICE Collaboration), Supplemental figures: Direct photon production in Pb-Pb collisions at √{sNN} = 2.76 TeV. URL https://cds.cern.ch/record/2102398.

  5. Electrochemiluminescent immunosensing of prostate-specific antigen based on silver nanoparticles-doped Pb (II) metal-organic framework.

    PubMed

    Ma, Hongmin; Li, Xiaojian; Yan, Tao; Li, Yan; Zhang, Yong; Wu, Dan; Wei, Qin; Du, Bin

    2016-05-15

    In this work, silver nanoparticles-doped Pb (II) metal-organic framework (Ag-MOF) was prepared and exploited as a luminescence probe for the development of label-free electrochemiluminescence (ECL) immunosensing scheme for prostate-specific antigen (PSA). The β-cyclodextrin based MOF, Pb-β-cyclodextrin (Pb(II)-β-CD) shows excellent ECL behavior and unexpected reducing capacity towards silver ions. Silver nanoparticles could massively form on the surface of Pb(II)-β-CD (Ag@Pb(II)-β-CD) without use any additional reducing agent, while the ECL behavior of Pb(II)-β-CD still was well retained. The Ag@Pb(II)-β-CD was used as a substrate material to modify glass carbon electrodes and formed a sensing platform for the fabricating ECL immunosensor. The presence of silver nanoparticles enables the facile immobilization of capturing antibody of PSA. The specific binding of PSA onto the electrode surface induces the decrease of ECL signals. A linear range of 0.001-50 ng mL(-1) with a detection limit of 0.34 pg mL(-1) (S/N=3) was obtained after the optimization of experimental conditions. This simply fabricated immunosensor exhibits good stability, accuracy and acceptable reproducibility, which suggesting its potential applications in clinical diagnostics.

  6. Removal of Pb2+ from aqueous solutions by a high-efficiency resin

    NASA Astrophysics Data System (ADS)

    Guo, Hao; Ren, Yongzheng; Sun, Xueliang; Xu, Yadi; Li, Xuemei; Zhang, Tiancheng; Kang, Jianxiong; Liu, Dongqi

    2013-10-01

    The removal of Pb2+ from aqueous solution by 732 cation-exchange resin in sodium type (732-CR) has been studied in batch experiments at varying pH (2.0-8.0), Pb2+ concentration (50-200 mg/L), contact time (5-300 min), temperature (288-308 K) and resin dose (0.125-0.75 g/L). The experimental data show that the ion-exchange process was dependent on pH and temperature, the optimal exchange capacity was found at pH 4.0, and higher temperature was beneficial to lead sorption. Kinetic data indicate that the ion-exchange process followed a pseudo-first order model. The equilibrium exchange capacity could be reached at approximately 4 h, and the maximum sorption capacity of Pb2+ at pH 4.0 was 396.8 mg/g resin. The equilibrium data were evaluated with Langmuir and Freundlich model, and were best fitted with Langmuir model. The thermodynamic parameters for removal of Pb2+ indicate that the reaction was spontaneous and endothermic. Additionally, column tests were conducted by using both synthetic solution and effluents from lead battery industry. The regeneration of resin was performed for two sorption-regeneration cycles by 1 M NaOH, and the results show that effective regeneration was achieved by this method.

  7. Removal of Pb(II) from water by natural zeolitic tuff: kinetics and thermodynamics.

    PubMed

    Karatas, Mustafa

    2012-01-15

    The present study was aimed at examining the ability of a natural zeolitic volcanic tuff to remove Pb(II) ions from aqueous solutions under various conditions. The effects of various parameters such as optimum adsorbent mass, contact time, pH of the medium, Pb(II) concentration, and temperature were investigated. In addition, different adsorption isotherms were obtained using concentrations of Pb(II) ions ranging from 1mg/L to 200mg/L. The adsorption process follows second-order reaction kinetics and follows the Langmuir adsorption isotherm. The thermodynamic parameters are discussed in this article, including changes in Gibbs free energy, entropy, and enthalpy, for the adsorption of Pb(II) on tuff, and it is revealed that the adsorption process was spontaneous and exothermic under natural conditions. The maximum removal efficiency of 92% was obtained at a pH of 5 with a 25-min contact time for a 10 g/L solid-to-liquid ratio and an initial heavy metal concentration of 100mg/L.

  8. Adsorption of Cr(VI) and Pb(II) from aqueous solution using agricultural solid waste.

    PubMed

    Geetha, A; Sivakumar, P; Sujatha, M; Palanisamy, P N

    2009-04-01

    Areca nut shell, an agricultural solid waste by-product, has been studied for the removal of heavy metals Cr(VI) and Pb(II) from aqueous solution. Parameters, such as equilibrium time, effect of initial metal ion concentration, effect of pH on the removal, were analyzed. An initial pH of 4.0 was found most favourable for Cr(VI) removal and 5.0 for Pb(II) removal. Two theoretical isotherm models, namely Langmuir and Freundlich, were analyzed for the applicability of the experimental data. The Langmuir adsorption capacity (Q0) was calculated. The results of thermodynamic parameters suggest the exothermic nature of the adsorption. The desorption studies were carried out using dilute hydrochloric acid. Maximum desorption of 88% for Cr(VI) and 91% for Pb(II) were achieved. Areca nut shell waste, the low cost adsorbent is found to be effective in the removal of Cr(VI) and Pb(II) ions, and hence it can be applied for the removal of heavy metals from industrial wastewater.

  9. The (1)H NMR structure of bovine Pb(2+)-osteocalcin and implications for lead toxicity.

    PubMed

    Dowd, T L; Li, L; Gundberg, C M

    2008-11-01

    Structural information on the effect of Pb(2+) on proteins under physiologically relevant conditions is largely unknown. We have previously shown that low levels of lead increased the amount of osteocalcin bound to hydroxyapatite (BBA 1535:153). This suggested that lead induced a more compact structure in the protein. We have determined the 3D structure of Pb(2+)-osteocalcin (49 amino acids), a bone protein from a target tissue, using (1)H 2D NMR techniques. Lead, at a stoichiometry of only 1:1, induced a similar fold in the protein as that induced by Ca(2+) at a stoichiometry of 3:1. The structure consisted of an unstructured N-terminus and an ordered C-terminal consisting of a hydrophobic core (residues 16-49). The genetic algorithm-molecular dynamics simulation predicted the lead ion was coordinated by the Gla 24 and Gla 21 residues. It is proposed that mineral binding occurs via uncoordinated Gla oxygen ions binding to calcium in hydroxyapatite. A comparison of Pb(2+)- and Ca(2+)-osteocalcin suggests Pb(2+), at a lower stoichiometry, may induce similar conformational changes in proteins and subsequent molecular processes normally controlled by calcium alone. This may contribute to a molecular mechanism of lead toxicity for calcium binding proteins. Lead exposure may alter the amount of mineral bound osteocalcin and contribute to abnormal bone remodeling.

  10. Environmental exposure to lead (Pb) and variations in its susceptibility.

    PubMed

    Kim, Jina; Lee, Youngeun; Yang, Mihi

    2014-01-01

    Based on exposure frequency and intrinsic toxicity, lead (Pb) ranks one of the highest priority toxic materials. Continuous regulation of environmental Pb exposure has contributed to dramatically diminished exposure levels of Pb, for example, blood level of Pb. However, the safety level of Pb is not established, as low-level exposure to Pb still shows severe toxicity in high susceptible population and late onset of some diseases from early exposure. In the present study, we focused on food-borne Pb exposure and found broad variations in Pb exposure levels via food among countries. In addition, there are genetic or ethnical variations in Pb-targeted and protective genes. Moreover, various epigenetic alterations were induced by Pb poisoning. Therefore, we suggest a systemic approach including governmental (public) and individual prevention from Pb exposure with continuous biological monitoring and genetic or epigenetic consideration.

  11. Pectinous cell wall thickenings formation - A common defense strategy of plants to cope with Pb.

    PubMed

    Krzesłowska, Magdalena; Rabęda, Irena; Basińska, Aneta; Lewandowski, Michał; Mellerowicz, Ewa J; Napieralska, Anna; Samardakiewicz, Sławomir; Woźny, Adam

    2016-07-01

    Lead, one of the most abundant and hazardous trace metals affecting living organisms, has been commonly detected in plant cell walls including some tolerant plants, mining ecotypes and hyperaccumulators. We have previously shown that in tip growing Funaria sp. protonemata cell wall is remodeled in response to lead by formation of thickenings rich in low-methylesterified pectins (pectin epitope JIM5 - JIM5-P) able to bind metal ions, which accumulate large amounts of Pb. Hence, it leads to the increase of cell wall capacity for Pb compartmentalization. Here we show that diverse plant species belonging to different phyla (Arabidopsis, hybrid aspen, star duckweed), form similar cell wall thickenings in response to Pb. These thickenings are formed in tip growing cells such as the root hairs, and in diffuse growing cells such as meristematic and root cap columella cells of root apices in hybrid aspen and Arabidopsis and in mesophyll cells in star duckweed fronds. Notably, all analyzed cell wall thickenings were abundant in JIM5-P and accumulated high amounts of Pb. In addition, the co-localization of JIM5-P and Pb commonly occurred in these cells. Hence, cell wall thickenings formed the extra compartment for Pb accumulation. In this way plant cells increased cell wall capacity for compartmentalization of this toxic metal, protecting protoplast from its toxicity. As cell wall thickenings occurred in diverse plant species and cell types differing in the type of growth we may conclude that pectinous cell wall thickenings formation is a widespread defense strategy of plants to cope with Pb. Moreover, detection of natural defense strategy, increasing plant cell walls capacity for metal accumulation, reveals a promising direction for enhancing plant efficiency in phytoremediation.

  12. Occurrence and distribution of 210Pb and 210Po in selected California groundwater wells.

    PubMed

    Ruberu, Shiyamalie R; Liu, Yun-Gang; Perera, S Kusum

    2007-05-01

    Groundwater wells from across the State of California were sampled and analyzed for Pb and Po. The separation method involved Fe(OH)3 precipitation from a 5-L groundwater sample followed by electrodeposition of Po on a nickel disk. The resulting solution was passed through an ion-exchange resin column for the isolation of Pb. De-ionized water spiked at a concentration range from 4.92 mBq L(-1) to 755 mBq L(-1) with these radionuclide standards showed excellent accuracy and precision of the method. In the groundwater wells, overall activity of Pb ranged from 3.7 mBq L(-1) to 1,481 mBq L(-1) and the Po activity ranged from 0.25 mBq L(-1) to 555 mBq L(-1). Of the select wells tested, 27% for Pb and 19% for Po were above the proposed maximum contamination limits for these radionuclides, which are set at 37 mBq L(-1) and 26 mBq L(-1), respectively. From a public health perspective this is a concern, since the drinking water screening levels for gross alpha is at 555 mBq L(-1) and gross beta is at 1,850 mBq L(-1). At such high screening levels Pb and Po will not be captured, and this situation was found in several of the wells studied. The occurrence of Pb and Po are not correlated within the sources, however; the polonium concentrations were always lower than the lead concentrations. Activities of Pb measured from wells two years apart clearly demonstrated the continuous flux of groundwater within aquifers.

  13. Adsorption of Pb(II) from glucose solution on thiol-functionalized cellulosic biomass.

    PubMed

    Wu, Zhimin; Cheng, Zihong; Ma, Wei

    2012-01-01

    Absorbent cotton, wood sawdust, buckwheat hull were thiol-functionalized to facilitate selective adsorption of Pb(II) from glucose solution. Fourier transform infrared (FTIR) spectroscopic analysis confirmed the formation of S-H modifications. While unmodified absorbent cotton had a Pb(II) adsorption capacity of 10.78 mg/g, thiol-modified absorbent cotton was able to adsorb 28.67 mg/g at optimum pH 6.0. The Pb(II) adsorption capacity increased as the concentration of Pb(II) or glucose increased without loss of glucose during the adsorption process. Wood sawdust and buckwheat hull exhibited greater Pb(II) uptake both before and after modification (wood sawdust: 17.03 mg/g and 43.14 mg/g, buckwheat hull: 34.06 mg/g and 44.84 mg/g), because these cellulosic biomass contained more helpful functional groups for metal binding. The results suggested that modified cellulosic biomass might be a promising adsorbent for heavy metal ion uptake in beverage industry.

  14. Alkali modified hydrochar of grape pomace as a perspective adsorbent of Pb(2+) from aqueous solution.

    PubMed

    Petrović, Jelena T; Stojanović, Mirjana D; Milojković, Jelena V; Petrović, Marija S; Šoštarić, Tatjana D; Laušević, Mila D; Mihajlović, Marija L

    2016-11-01

    Hydrochar produced via hydrothermal carbonization of grape pomace was considered as novel sorbent of Pb(2+) from aqueous solution. In order to enhance the adsorption capacity, hydrochar was chemically modified using 2 M KOH solution. Both materials were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy and X-ray diffraction technique. Batch experiments were performed to examine the effect of sorbent dosage, pH and contact time. Obtained results showed that the KOH treatment increased the sorption capacity of hydrochar from 27.8 mg g(-1) up to 137 mg g(-1) at pH 5. Adsorption of lead on either of the materials was achieved through ion-exchange mechanism, chemisorption and Pb(2+)-π interaction. The Sips isotherm model gave the best fit with the experimental data obtained for Pb(2+) sorption using activated hydrochar. The adsorption kinetic followed a pseudo second-order model. Thermodynamic parameters implied that the Pb(2+) binding for hydrochar surface was spontaneous and exothermic process. Findings from this work suggest that the hydrothermal carbonization is a promising route for production of efficient Pb (2+) sorbents for wastewater treatment.

  15. Permeation liquid membrane as a tool for monitoring bioavailable Pb in natural waters.

    PubMed

    Slaveykova, Vera I; Parthasarathy, Nalini; Buffle, Jacques; Wilkinson, Kevin J

    2004-07-26

    In order to predict metal bioavailability by microorganisms in natural waters, analytical speciation techniques such as the permeation liquid membrane (PLM) are required. A planar sheet PLM has been characterized by measuring Pb fluxes in the absence and presence of tiron and nitrilotriacetic, iminodiacetic, malonic, citric, polyacrylic and fulvic (Suwannee River fulvic, SRFA) acids. Important parameters such as the diffusion coefficient in the membrane phase and the effective distribution coefficient between the solution and membrane were evaluated in order to determine limiting conditions for the overall transport flux through the membrane. Subsequently, the PLM was tested for its ability to predict bioavailability by the freshwater alga, Chlorella kesslerii by comparing Pb PLM fluxes (JPLM) to Pb biouptake fluxes (Jint) in the absence and presence of the synthetic ligands and SRFA. The capability of the PLM to mimic transport across biological membranes was demonstrated, in particular, from the similarity between the accumulated (PLM, algal) Pb vs. time plots under the different conditions. Under membrane transport limiting conditions, fluxes across both the PLM and biological membranes were proportional to the free metal ion and directly correlated to each other in the zone below saturation of the biological metal uptake sites. The correlation between the different fluxes may be used to predict Pb uptake by C. kesslerii in the presence of the synthetic ligands. However, in the presence of SRFA, the observed Jint was much higher than predicted by results obtained either in the absence or presence of the synthetic ligands.

  16. Changes of root morphology and Pb uptake by two species of Elsholtzia under Pb toxicity*

    PubMed Central

    Peng, Hong-yun; Tian, Sheng-ke; Yang, Xiao-e

    2005-01-01

    Elsholtzia argyi and Elsholtzia splendens, which are Chinese endemic Pb/Zn mined and Cu mined ecotype respectively, were investigated on the aspect of their response to Pb toxicity in the presence or absence of EDTA addition. After 8 d’s Pb treatment, root length, root surface area and root volume of E. splendens decreased much more than those of E. argyi, and reduced considerably with increase of Pb, while no marked change was noted for root average diameter. Compared to E. argyi, length of root with diameter (D)<0.2 mm was significantly reduced for E. splendens as Pb increased. D<0.1 mm E. splendens root had cross-sectional surface area at Pb≥10 mg/L, while for E. argyi, it was at Pb≥25 mg/L. With increase of Pb, DW of E. splendens decreased much more than that of E. argyi. E. argyi exhibited much more tolerance to Pb toxicity than E. splendens. Treatment with 100 mg/L Pb plus 50 mmol/L EDTA significantly decreased the length and surface area of D≤0.2 mm root, increased the length and surface area of 0.2≤D≤0.8 mm root for the case of E. argyi, while for E. splendens, length and surface area of D<0.6 mm root reduced, as compared to 100 mg/L Pb treatment, alone. At 100 mg/L Pb, shoot Pb accumulation in E. splendens and E. argyi were 27.9 and 89.0 μg/plant DW respectively, and much more Pb was uptaken by the root and translocated to the stem of E. argyi as compared to E. splendens. Treatment of the plant with 100 mg/L Pb plus 50 mmol/L EDTA increased leaf Pb accumulation from 16.8 to 84.9 g/plant for E. splendens and from 18.8 to 52.5 g/plant for E. argyi, while both root and stem Pb pronouncedly reduced for both Elsholtzia species. The increased translocation of Pb to the leaf of E. splendens being than that of E. argyi after treatment with 100 mg/L Pb plus 50 mmol/L EDTA should be further investigated. PMID:15909342

  17. Comparing Fragmentation Functions in Pb-Pb Collisions using JEWEL

    NASA Astrophysics Data System (ADS)

    Davis, Harrison

    2016-09-01

    Collisions between lead nuclei at relativistic speeds create a hot, dense state of deconfined quark matter called the quark gluon plasma (QGP). Due to its extreme density, temperature, and abundance of color charge, the QGP gives us a unique opportunity to study strong interactions and test the limits of QCD. Collisions between nuclei produce jets, clusters of particles hadronized from an energetic parton. Jets produced in heavy ion collisions must travel through the energetic and dense QGP, which changes the structure and momenta of the jets, a phenomenon known as jet quenching. By analyzing the changes in hadron fragmentation and momenta, we probe the properties and structure of the QGP. To analyze the jet fragmentation, we simulated lead-lead collisions with JEWEL, a modification to the Monte-Carlo (MC) generator PYTHIA6, and compared the results with ATLAS data at 2.76 TeV and 5 TeV. These comparisons between the ATLAS data and the MC simulation are important for understanding jet quenching in heavy ion collisions. This poster gives an overview of the results of the simulation and how they compare with ATLAS data on fragmentation.

  18. EFFECTS OF PH, SOLID/SOLUTION RATIO, IONIC STRENGTH, AND ORGANIC ACIDS ON PB AND CD SOPRTION ON KAOLINITE

    EPA Science Inventory

    Potentiometric and ion-selective electrode titrations together with batch sorption/desorption experiments, were performed to explain the aqueous and surface complexation reactions between kaolinite, Pb, Cd and three organic acids. Variables included pH, ionic strength, metal conc...

  19. Assembly of PbTe/Pb-based nanocomposite and photoelectric property

    NASA Astrophysics Data System (ADS)

    Zong, Zhaocun; Wang, Hongxia; Kong, Lingmin

    2013-04-01

    PbTe/Pb-based nanocomposite was assembled by combining the regular PbTe/Pb nanostructure and the Zn x Mn1- x S nanoparticles; the photoelectric property of the nanocomposite was measured in situ. The results showed that the through current of the nanocomposite had an obvious increase compared to that of the individual PbTe/Pb nanomaterial under the same irradiation conditions. The improvement of photoelectric performance would be attributed to the synergistic effect brought by the incident light and exciting light of the Zn x Mn1- x S nanoparticles. The result implied that the underlying mechanism could be used to improve the performance of nano-optoelectronic devices and the light-use efficiency of solar devices.

  20. Assembly of PbTe/Pb-based nanocomposite and photoelectric property.

    PubMed

    Zong, Zhaocun; Wang, Hongxia; Kong, Lingmin

    2013-04-24

    PbTe/Pb-based nanocomposite was assembled by combining the regular PbTe/Pb nanostructure and the ZnxMn1-xS nanoparticles; the photoelectric property of the nanocomposite was measured in situ. The results showed that the through current of the nanocomposite had an obvious increase compared to that of the individual PbTe/Pb nanomaterial under the same irradiation conditions. The improvement of photoelectric performance would be attributed to the synergistic effect brought by the incident light and exciting light of the ZnxMn1-xS nanoparticles. The result implied that the underlying mechanism could be used to improve the performance of nano-optoelectronic devices and the light-use efficiency of solar devices.

  1. Homogeneous eutectic of Pb-Sb

    NASA Technical Reports Server (NTRS)

    Winter, J. M., Jr.

    1977-01-01

    Dendrite free eutectic mixture of Pb-Sb is expected to be superelastic material that can be used in formation of shaped charge liners for industrial explosive metal-forming processes and other applications.

  2. Comparing Tsallis and Boltzmann temperatures from relativistic heavy ion collider and large hadron collider heavy-ion data

    NASA Astrophysics Data System (ADS)

    Gao, Y.-Q.; Liu, F.-H.

    2016-03-01

    The transverse momentum spectra of charged particles produced in Au + Au collisions at the relativistic heavy ion collider and in Pb + Pb collisions at the large hadron collider with different centrality intervals are described by the multisource thermal model which is based on different statistic distributions for a singular source. Each source in the present work is described by the Tsallis distribution and the Boltzmann distribution, respectively. Then, the interacting system is described by the (two-component) Tsallis distribution and the (two-component) Boltzmann distribution, respectively. The results calculated by the two distributions are in agreement with the experimental data of the Solenoidal Tracker At Relativistic heavy ion collider, Pioneering High Energy Nuclear Interaction eXperiment, and A Large Ion Collider Experiment Collaborations. The effective temperature parameters extracted from the two distributions on the descriptions of heavy-ion data at the relativistic heavy ion collider and large hadron collider are obtained to show a linear correlation.

  3. Analysis of Phase Separation in High Performance PbTe–PbS Thermoelectric Materials

    SciTech Connect

    Girard, Steven N.; Schmidt-Rohr, Klaus; Chasapis, Thomas C.; Hatzikraniotis, Euripides; Njegic, B.; Levin, E. M.; Rawal, A.; Paraskevopoulos, Konstantios M.; Kanatzidis, Mercouri G.

    2013-02-11

    Phase immiscibility in PbTe–based thermoelectric materials is an effective means of top-down synthesis of nanostructured composites exhibiting low lattice thermal conductivities. PbTe1-x Sx thermoelectric materials can be synthesized as metastable solid solution alloys through rapid quenching. Subsequent post-annealing induces phase separation at the nanometer scale, producing nanostructures that increase phonon scattering and reduce lattice thermal conductivity. However, there has yet to be any study investigating in detail the local chemical structure of both the solid solution and nanostructured variants of this material system. Herein, quenched and annealed (i.e., solid solution and phase-separated) samples of PbTe–PbS are analyzed by in situ high-resolution synchrotron powder X-ray diffraction, solid-state 125Te nuclear magnetic resonance (NMR), and infrared (IR) spectroscopy analysis. For high concentrations of PbS in PbTe, e.g., x >16%, NMR and IR analyses reveal that rapidly quenched samples exhibit incipient phase separation that is not detected by state-of-the-art synchrotron X-ray diffraction, providing an example of a PbTe thermoelectric “alloy” that is in fact phase inhomogeneous. Thermally-induced PbS phase separation in PbTe–PbS occurs close to 200 °C for all compositions studied, and the solubility of the PbS phase in PbTe at elevated temperatures >500 °C is reported. The findings of this study suggest that there may be a large number of thermoelectric alloy systems that are phase inhomogeneous or nanostructured despite adherence to Vegard's Law of alloys, highlighting the importance of careful chemical characterization to differentiate between thermoelectric alloys and composites.

  4. Oxygen modulation of flexible PbS/Pb Schottky junction PEC cells with improved photoelectric performance

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Fan, Libo; Guo, Qiuquan; Shi, Hongcai; Wang, Liwen; Liu, Yujian; Li, Ming; Zhang, Chunli; Yang, Jun; Zheng, Zhi

    2016-09-01

    Flexible photoelectric devices are emerging as a new class of photovoltaic cells. In this study, lead (Pb) foil was used as a flexible substrate to grow in situ lead sulfide (PbS) film with good uniformity and adhesion by a solvothermal elemental direct reaction, resulting in a PbS/Pb Schottky junction formed naturally between the PbS film and underlying Pb foil. We found that the photocurrent response of the photoelectrochemical (PEC) cell was greatly improved through a facile oxygen (O2)-modulation-based post-processing technique. O2 could decompose the organic residue and oxidize the Pb at the interface between the PbS film and Pb foils. Different characterization techniques, including thermogravimetric analysis, differential scanning calorimetry, x-ray diffraction, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, the change in transient photocurrent density (J p) with time (t), dark current-voltage (I-V) and absorption spectra were applied to get a full understanding of the O2 modulation effect. The oxidization treatment of the PbS film could regulate the flow of charge carriers to reduce their recombination, leading to photoresponse enhancement for the PEC cells. In particular, the process could modulate the tunneling current and interface states to optimize dark I-V characteristics. In addition, the magnitude of the barrier height can be tuned by O2 modulation, which was explained by theoretical analysis and calculation. We also demonstrated that the in situ formed PbS film has outstanding adhesion on the flexible Pb substrate. Our film synthesis method and post O2-modulation design as well as the corresponding device assembly may provide a novel perspective to the flexible PCE-cell-related research.

  5. Oxygen modulation of flexible PbS/Pb Schottky junction PEC cells with improved photoelectric performance.

    PubMed

    Wang, Peng; Fan, Libo; Guo, Qiuquan; Shi, Hongcai; Wang, Liwen; Liu, Yujian; Li, Ming; Zhang, Chunli; Yang, Jun; Zheng, Zhi

    2016-09-02

    Flexible photoelectric devices are emerging as a new class of photovoltaic cells. In this study, lead (Pb) foil was used as a flexible substrate to grow in situ lead sulfide (PbS) film with good uniformity and adhesion by a solvothermal elemental direct reaction, resulting in a PbS/Pb Schottky junction formed naturally between the PbS film and underlying Pb foil. We found that the photocurrent response of the photoelectrochemical (PEC) cell was greatly improved through a facile oxygen (O2)-modulation-based post-processing technique. O2 could decompose the organic residue and oxidize the Pb at the interface between the PbS film and Pb foils. Different characterization techniques, including thermogravimetric analysis, differential scanning calorimetry, x-ray diffraction, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, the change in transient photocurrent density (J p) with time (t), dark current-voltage (I-V) and absorption spectra were applied to get a full understanding of the O2 modulation effect. The oxidization treatment of the PbS film could regulate the flow of charge carriers to reduce their recombination, leading to photoresponse enhancement for the PEC cells. In particular, the process could modulate the tunneling current and interface states to optimize dark I-V characteristics. In addition, the magnitude of the barrier height can be tuned by O2 modulation, which was explained by theoretical analysis and calculation. We also demonstrated that the in situ formed PbS film has outstanding adhesion on the flexible Pb substrate. Our film synthesis method and post O2-modulation design as well as the corresponding device assembly may provide a novel perspective to the flexible PCE-cell-related research.

  6. Ion colliders

    SciTech Connect

    Fischer, W.

    2011-12-01

    Ion colliders are research tools for high-energy nuclear physics, and are used to test the theory of Quantum Chromo Dynamics (QCD). The collisions of fully stripped high-energy ions create matter of a temperature and density that existed only microseconds after the Big Bang. Ion colliders can reach higher densities and temperatures than fixed target experiments although at a much lower luminosity. The first ion collider was the CERN Intersecting Storage Ring (ISR), which collided light ions [77Asb1, 81Bou1]. The BNL Relativistic Heavy Ion Collider (RHIC) is in operation since 2000 and has collided a number of species at numerous energies. The CERN Large Hadron Collider (LHC) started the heavy ion program in 2010. Table 1 shows all previous and the currently planned running modes for ISR, RHIC, and LHC. All three machines also collide protons, which are spin-polarized in RHIC. Ion colliders differ from proton or antiproton colliders in a number of ways: the preparation of the ions in the source and the pre-injector chain is limited by other effects than for protons; frequent changes in the collision energy and particle species, including asymmetric species, are typical; and the interaction of ions with each other and accelerator components is different from protons, which has implications for collision products, collimation, the beam dump, and intercepting instrumentation devices such a profile monitors. In the preparation for the collider use the charge state Z of the ions is successively increased to minimize the effects of space charge, intrabeam scattering (IBS), charge change effects (electron capture and stripping), and ion-impact desorption after beam loss. Low charge states reduce space charge, intrabeam scattering, and electron capture effects. High charge states reduce electron stripping, and make bending and acceleration more effective. Electron stripping at higher energies is generally more efficient. Table 2 shows the charge states and energies in the

  7. Pb isotopes as tracers of mining-related Pb in lichens, seaweed and mussels near a former Pb-Zn mine in West Greenland.

    PubMed

    Søndergaard, Jens; Asmund, Gert; Johansen, Poul; Elberling, Bo

    2010-05-01

    Identification of mining-related contaminants is important in order to assess the spreading of contaminants from mining as well as for site remediation purposes. This study focuses on lead (Pb) contamination in biota near the abandoned 'Black Angel Mine' in West Greenland in the period 1988-2008. Stable Pb isotope ratios and total Pb concentrations were determined in lichens, seaweed and mussels as well as in marine sediments. The results show that natural background Pb ((207)Pb/(206)Pb: 0.704-0.767) and Pb originating from the mine ore ((207)Pb/(206)Pb: 0.955) have distinct isotopic fingerprints. Total Pb in lichens, seaweed, and mussels was measured at values up to 633, 19 and 1536 mg kg(-1) dry weight, respectively, and is shown to be a mixture of natural Pb and ore-Pb. This enables quantification of mining-related Pb and shows that application of Pb isotope data is a valuable tool for monitoring mining pollution.

  8. Thermoelectric performance of n-type (PbTe)0.75(PbS)0.15(PbSe)0.1 composites.

    PubMed

    Yamini, Sima Aminorroaya; Wang, Heng; Ginting, Dianta; Mitchell, David R G; Dou, Shi Xue; Snyder, G Jeffrey

    2014-07-23

    Lead chalcogenides (PbQ, Q = Te, Se, S) have proved to possess high thermoelectric efficiency for both n-type and p-type compounds. Recent success in tuning of electronic band structure, including manipulating the band gap, multiple bands, or introducing resonant states, has led to a significant improvement in the thermoelectric performance of p-type lead chalcogenides compared to the n-type ones. Here, the n-type quaternary composites of (PbTe)0.75(PbS)0.15(PbSe)0.1 are studied to evaluate the effects of nanostructuring on lattice thermal conductivity, carrier mobility, and effective mass variation. The results are compared with the similar ternary systems of (PbTe)(1-x)(PbSe)x, (PbSe)(1-x)(PbS)x, and (PbS)(1-x)(PbTe)x. The reduction in the lattice thermal conductivity owing to phonon scattering at the defects and interfaces was found to be compensated by reduced carrier mobility. This results in a maximum figure of merit, zT, of ∼1.1 at 800 K similar to the performance of the single phase alloys of PbTe, PbSe, and (PbTe)(1-x)(PbSe)x.

  9. Interaction of 11Li with 208Pb

    NASA Astrophysics Data System (ADS)

    Vinodkumar, A. M.; Loveland, W.; Yanez, R.; Leonard, M.; Yao, L.; Bricault, P.; Dombsky, M.; Kunz, P.; Lassen, J.; Morton, A. C.; Ottewell, D.; Preddy, D.; Trinczek, M.

    2013-04-01

    Background: 11Li is one of the most studied halo nuclei. The fusion of 11Li with 208Pb is the subject of a number of theoretical studies with widely differing predictions, ranging over four orders of magnitude, for the fusion excitation function.Purpose: The purpose was to measure the excitation function for the 11Li + 208Pb reaction.Methods: A stacked foil and degrader assembly of 208Pb targets was irradiated with a 11Li beam producing center-of-target beam energies from above-barrier to near-barrier energies (40-29 MeV). The intensity of the 11Li beam (chopped) was 1250 particles/s and the beam on-target time was 34 h. The α decay of the stopped evaporation residues (EVRs) was detected in an α-detector array at each beam energy in the beam-off period (the beam was on for ≤5 ns and then off for 170 ns).Results: The observed nuclidic yields of 212/215At and 214At are consistent with being produced in the complete fusion of 11Li with 208Pb. The observed yields of 213At appear to be the result of the breakup of 11Li into 9Li+2n, with the 9Li fusing with 208Pb. The magnitudes of the total fusion cross sections are substantially less than most theoretical predictions.Conclusions: It is possible to measure the EVR production cross sections resulting from the interaction of 11Li with 208Pb using current-generation radioactive beam facilities. Both complete fusion and breakup fusion processes occur in the interaction of 11Li with 208Pb. An important breakup process leads to the fusion of the 9Li fragment with 208Pb.

  10. Pb isotopic heterogeneity in basaltic phenocrysts

    SciTech Connect

    Bryce, Julia G.; DePaolo, Donald J.

    2002-06-01

    The Pb isotopic compositions of phenocrystic phases in young basaltic lavas have been investigated using the Getty-DePaolo method (Getty S. J. and DePaolo D. J. [1995] Quaternary geochronology by the U-Th-Pb method. Geochim. Cosmochim. Acta 59, 3267 3272), which allows for the resolution of small isotopic differences. Phenocryst, matrix, and whole rock analyses were made on samples from the 17 Myr-old Imnaha basalts of the Columbia River Group, a zero-age MORB from the Mid-Atlantic Ridge, and a ca. 260 kyr-old tholeiite from Mount Etna. Plagioclase feldspar phenocrysts have low-(U, Th)/Pb, and in each sample the plagioclase has significantly lower 206Pb/207Pb and 208Pb/207Pb values than whole rock, matrix, and magnetite-rich separates. The Pb isotopic contrast between plagioclase and matrix/whole rock is found in three samples with varying grain sizes (0.5 2 cm for the Imnaha basalt and MORB and <1 mm for the Etna sample) from different tectonic settings, suggesting that these results are not unique. The isotopic contrasts are only slightly smaller in magnitude than the variations exhibited by whole rock samples from the region. The Imnaha basalts also have Sr isotopic heterogeneity evident only in plagioclase phenocrysts, but the MORB and Etna lavas do not. The isotopic heterogeneities reflect magma mixing, and indicate that isotopically diverse magmas were mixed together just prior to eruption. The results reinforce indications from melt inclusion studies that magma source region isotopic heterogeneities have large amplitudes at short length scales, and that the isotopic variations imparted to the magmas are not entirely homogenized during segregation and transport processes.

  11. Air-stable PbSe/PbS and PbSe/PbSexS1-x core-shell nanocrystal quantum dots and their applications.

    PubMed

    Lifshitz, E; Brumer, M; Kigel, A; Sashchiuk, A; Bashouti, M; Sirota, M; Galun, E; Burshtein, Z; Le Quang, A Q; Ledoux-Rak, I; Zyss, J

    2006-12-21

    The optical properties and functionality of air-stable PbSe/PbS core-shell and PbSe/PbSexS1-x core-alloyed shell nanocrystal quantum dots (NQDs) are presented. These NQDs showed chemical robustness over months and years and band-gap tunability in the near infrared spectral regime, with a reliance on the NQD size and composition. Furthermore, these NQDs exhibit high emission quantum efficiencies of up to 65% and an exciton emission band that is narrower than that of the corresponding PbSe NQDs. In addition, the emission bands showed a peculiar energy shift with respect to the relevant absorption band, changing from a Stokes shift to an anti-Stokes shift, with an increase of the NQD diameter. The described core-shell structures and the corresponding PbSe core NQDs were used as passive Q-switches in eye-safe lasers of Er:glass, where they act as saturable absorbers. The absorber saturation investigations revealed a relatively large ground-state cross-section of absorption (sigma gs = 10(-16) - 10(-15) cm2) and a behavior of a "fast" absorber with an effective lifetime of tau eff approximately 4.0 ps is proposed. This lifetime is associated with the formation of multiple excitons at the measured pumping power. The product of sigma gs and tau eff enables sufficient Q-switching performance and tunability in the near infrared spectral regime. The amplified spontaneous emission properties of PbSe NQDs were examined under continuous illumination by a diode laser at room temperature, suitable for standard device conditions. The results revealed a relatively large gain parameter (g = 2.63 - 6.67 cm-1). The conductivity properties of PbSe NQD self-assembled solids, annealed at 200 degrees C, showed an Ohmic behavior at the measured voltages (up to 30 V), which is governed by a variable-range-hopping charge transport mechanism.

  12. Ion mixing

    NASA Technical Reports Server (NTRS)

    Matteson, S.; Nicolet, M.-A.

    1983-01-01

    Recent experimental studies of the ion-mixing phenomenon are summarized. Ion mixing is differentiated from ion implantation and shown to be a useful technique for overcoming the sputter-dependent limitations of implantation processes. The fundamental physical principles of ion/solid interactions are explored. The basic experimental configurations currently in use are characterized: bilayered samples, multilayered samples, and samples with a thin marker layer. A table listing the binary systems (metal-semiconductor or metal-metal) which have been investigated using each configuration is presented. Results are discussed, and some sample data are plotted. The prospects for future application of ion mixing to the alteration of solid surface properties are considered. Practical applications are seen as restricted by economic considerations to the production of small, expensive components or to fields (such as the semiconductor industry) which already have facilities for ion implantation.

  13. ION SOURCE

    DOEpatents

    Martina, E.F.

    1958-04-22

    An improved ion source particularly adapted to provide an intense beam of ions with minimum neutral molecule egress from the source is described. The ion source structure includes means for establishing an oscillating electron discharge, including an apertured cathode at one end of the discharge. The egress of ions from the source is in a pencil like beam. This desirable form of withdrawal of the ions from the plasma created by the discharge is achieved by shaping the field at the aperture of the cathode. A tubular insulator is extended into the plasma from the aperture and in cooperation with the electric fields at the cathode end of the discharge focuses the ions from the source,

  14. Electronic structure, photoemission spectra, and vacuum-ultraviolet optical spectra of CsPbCl3 and CsPbBr3

    NASA Astrophysics Data System (ADS)

    Heidrich, K.; Schäfer, W.; Schreiber, M.; Söchtig, J.; Trendel, G.; Treusch, J.; Grandke, T.; Stolz, H. J.

    1981-11-01

    Optical spectra of CsPbCl3 and CsPbBr3 have been measured in the range from 2 to 10 eV and have been combined with ultraviolet-photoemission-spectroscopy (UPS)-measurements at 21.1 and 40.8 eV. A quantitative band calculation is presented, which takes into account anion-anion interaction as well as electronic states of the Cs+ ion. The prominent features of earlier band models and measurements are reestablished through our measurements and calculations, namely that the valence band consists of anionic p functions and Pb 6s functions, the lowest conduction band being Pb 6p type, and the lowest gap occuring at the R point of the Brillouin zone. Inclusion of a further (Cs 6s-type) conduction band, however, is necessary to bring the calculated joint density of states into agreement with vacuum-ultraviolet optical spectra. The calculated densities of states of the valence bands are in quantitative agreement with those deduced from our UPS measurements.

  15. J/ψ elliptic flow in Pb-Pb collisions at √(s(NN))=2.76 TeV.

    PubMed

    Abbas, E; Abelev, B; Adam, J; Adamová, D; Adare, A M; Aggarwal, M M; Aglieri Rinella, G; Agnello, M; Agocs, A G; Agostinelli, A; Ahammed, Z; Ahmad, N; Ahmad Masoodi, A; Ahn, S A; Ahn, S U; Aimo, I; Ajaz, M; Akindinov, A; Aleksandrov, D; Alessandro, B; Alici, A; Alkin, A; Almaráz Aviña, E; Alme, J; Alt, T; Altini, V; Altinpinar, S; Altsybeev, I; Andrei, C; Andronic, A; Anguelov, V; Anielski, J; Anson, C; Antičić, T; Antinori, F; Antonioli, P; Aphecetche, L; Appelshäuser, H; Arbor, N; Arcelli, S; Arend, A; Armesto, N; Arnaldi, R; Aronsson, T; Arsene, I C; Arslandok, M; Asryan, A; Augustinus, A; Averbeck, R; Awes, T C; Äystö, J; Azmi, M D; Bach, M; Badalà, A; Baek, Y W; Bailhache, R; Bala, R; Baldisseri, A; Baltasar Dos Santos Pedrosa, F; Bán, J; Baral, R C; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L S; Barret, V; Bartke, J; Basile, M; Bastid, N; Basu, S; Bathen, B; Batigne, G; Batyunya, B; Batzing, P C; Baumann, C; Bearden, I G; Beck, H; Behera, N K; Belikov, I; Bellini, F; Bellwied, R; Belmont-Moreno, E; Bencedi, G; Beole, S; Berceanu, I; Bercuci, A; Berdnikov, Y; Berenyi, D; Bergognon, A A E; Bertens, R A; Berzano, D; Betev, L; Bhasin, A; Bhati, A K; Bhom, J; Bianchi, N; Bianchi, L; Bianchin, C; Bielčík, J; Bielčíková, J; Bilandzic, A; Bjelogrlic, S; Blanco, F; Blanco, F; Blau, D; Blume, C; Boccioli, M; Böttger, S; Bogdanov, A; Bøggild, H; Bogolyubsky, M; Boldizsár, L; Bombara, M; Book, J; Borel, H; Borissov, A; Bossú, F; Botje, M; Botta, E; Braidot, E; Braun-Munzinger, P; Bregant, M; Breitner, T; Broker, T A; Browning, T A; Broz, M; Brun, R; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Buncic, P; Busch, O; Buthelezi, Z; Caffarri, D; Cai, X; Caines, H; Calvo Villar, E; Camerini, P; Canoa Roman, V; Cara Romeo, G; Carena, W; Carena, F; Carlin Filho, N; Carminati, F; Casanova Díaz, A; Castillo Castellanos, J; Castillo Hernandez, J F; Casula, E A R; Catanescu, V; Cavicchioli, C; Ceballos Sanchez, C; Cepila, J; Cerello, P; Chang, B; Chapeland, S; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Cherney, M; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Chochula, P; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Colamaria, F; Colella, D; Collu, A; Conesa Balbastre, G; Conesa del Valle, Z; Connors, M E; Contin, G; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortese, P; Cortés Maldonado, I; Cosentino, M R; Costa, F; Cotallo, M E; Crescio, E; Crochet, P; Cruz Alaniz, E; Cruz Albino, R; Cuautle, E; Cunqueiro, L; Dainese, A; Dang, R; Danu, A; Das, D; Das, K; Das, S; Das, I; Dash, A; Dash, S; De, S; de Barros, G O V; De Caro, A; de Cataldo, G; de Cuveland, J; De Falco, A; De Gruttola, D; Delagrange, H; Deloff, A; De Marco, N; Dénes, E; De Pasquale, S; Deppman, A; D'Erasmo, G; de Rooij, R; Diaz Corchero, M A; Di Bari, D; Dietel, T; Di Giglio, C; Di Liberto, S; Di Mauro, A; Di Nezza, P; Divià, R; Djuvsland, Ø; Dobrin, A; Dobrowolski, T; Dönigus, B; Dordic, O; Driga, O; Dubey, A K; Dubla, A; Ducroux, L; Dupieux, P; Dutta Majumdar, A K; Elia, D; Emschermann, D; Engel, H; Erazmus, B; Erdal, H A; Eschweiler, D; Espagnon, B; Estienne, M; Esumi, S; Evans, D; Evdokimov, S; Eyyubova, G; Fabris, D; Faivre, J; Falchieri, D; Fantoni, A; Fasel, M; Fehlker, D; Feldkamp, L; Felea, D; Feliciello, A; Fenton-Olsen, B; Feofilov, G; Fernández Téllez, A; Ferretti, A; Festanti, A; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Floratos, E; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Francescon, A; Frankenfeld, U; Fuchs, U; Furget, C; Fusco Girard, M; Gaardhøje, J J; Gagliardi, M; Gago, A; Gallio, M; Gangadharan, D R; Ganoti, P; Garabatos, C; Garcia-Solis, E; Gargiulo, C; Garishvili, I; Gerhard, J; Germain, M; Geuna, C; Gheata, A; Gheata, M; Ghidini, B; Ghosh, P; Gianotti, P; Girard, M R; Giubellino, P; Gladysz-Dziadus, E; Glässel, P; Gomez, R; Ferreiro, E G; González-Trueba, L H; González-Zamora, P; Gorbunov, S; Goswami, A; Gotovac, S; Graczykowski, L K; Grajcarek, R; Grelli, A; Grigoras, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grinyov, B; Grion, N; Gros, P; Grosse-Oetringhaus, J F; Grossiord, J-Y; Grosso, R; Guber, F; Guernane, R; Guerzoni, B; Guilbaud, M; Gulbrandsen, K; Gulkanyan, H; Gunji, T; Gupta, A; Gupta, R; Haake, R; Haaland, Ø; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Han, B H; Hanratty, L D; Hansen, A; Harmanová-Tóthová, Z; Harris, J W; Hartig, M; Harton, A; Hatzifotiadou, D; Hayashi, S; Hayrapetyan, A; Heckel, S T; Heide, M; Helstrup, H; Herghelegiu, A; Herrera Corral, G; Herrmann, N; Hess, B A; Hetland, K F; Hicks, B; Hippolyte, B; Hori, Y; Hristov, P; Hřivnáčová, I; Huang, M; Humanic, T J; Hwang, D S; Ichou, R; Ilkaev, R; Ilkiv, I; Inaba, M; Incani, E; Innocenti, P G; Innocenti, G M; Ippolitov, M; Irfan, M; Ivan, C; Ivanov, M; Ivanov, V; Ivanov, A; Ivanytskyi, O; Jachołkowski, A; Jacobs, P M; Jahnke, C; Jang, H J; Janik, M A; Jayarathna, P H S Y; Jena, S; Jha, D M; Jimenez Bustamante, R T; Jones, P G; Jung, H; Jusko, A; Kaidalov, A B; Kalcher, S; Kaliňák, P; Kalliokoski, T; Kalweit, A; Kang, J H; Kaplin, V; Kar, S; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karpechev, E; Kazantsev, A; Kebschull, U; Keidel, R; Ketzer, B; Khan, S A; Khan, M M; Khan, P; Khan, K H; Khanzadeev, A; Kharlov, Y; Kileng, B; Kim, M; Kim, S; Kim, M; Kim, J S; Kim, J H; Kim, T; Kim, B; Kim, D J; Kim, D W; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Klay, J L; Klein, J; Klein-Bösing, C; Kliemant, M; Kluge, A; Knichel, M L; Knospe, A G; Köhler, M K; Kollegger, T; Kolojvari, A; Kompaniets, M; Kondratiev, V; Kondratyeva, N; Konevskikh, A; Kovalenko, V; Kowalski, M; Kox, S; Koyithatta Meethaleveedu, G; Kral, J; Králik, I; Kramer, F; Kravčáková, A; Krelina, M; Kretz, M; Krivda, M; Krizek, F; Krus, M; Kryshen, E; Krzewicki, M; Kucera, V; Kucheriaev, Y; Kugathasan, T; Kuhn, C; Kuijer, P G; Kulakov, I; Kumar, J; Kurashvili, P; Kurepin, A; Kurepin, A B; Kuryakin, A; Kushpil, S; Kushpil, V; Kvaerno, H; Kweon, M J; Kwon, Y; Ladrón de Guevara, P; Lakomov, I; Langoy, R; La Pointe, S L; Lara, C; Lardeux, A; La Rocca, P; Lea, R; Lechman, M; Lee, S C; Lee, G R; Legrand, I; Lehnert, J; Lemmon, R C; Lenhardt, M; Lenti, V; León, H; Leoncino, M; León Monzón, I; Lévai, P; Li, S; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Ljunggren, H M; Lodato, D F; Loenne, P I; Loggins, V R; Loginov, V; Lohner, D; Loizides, C; Loo, K K; Lopez, X; López Torres, E; Løvhøiden, G; Lu, X-G; Luettig, P; Lunardon, M; Luo, J; Luparello, G; Luzzi, C; Ma, R; Ma, K; Madagodahettige-Don, D M; Maevskaya, A; Mager, M; Mahapatra, D P; Maire, A; Malaev, M; Maldonado Cervantes, I; Malinina, L; Mal'Kevich, D; Malzacher, P; Mamonov, A; Manceau, L; Mangotra, L; Manko, V; Manso, F; Manukyan, N; Manzari, V; Mao, Y; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Marín, A; Markert, C; Marquard, M; Martashvili, I; Martin, N A; Martinengo, P; Martínez, M I; Martínez Davalos, A; Martínez García, G; Martynov, Y; Mas, A; Masciocchi, S; Masera, M; Masoni, A; Massacrier, L; Mastroserio, A; Matyja, A; Mayer, C; Mazer, J; Mazzoni, M A; Meddi, F; Menchaca-Rocha, A; Mercado Pérez, J; Meres, M; Miake, Y; Mikhaylov, K; Milano, L; Milosevic, J; Mischke, A; Mishra, A N; Miśkowiec, D; Mitu, C; Mizuno, S; Mlynarz, J; Mohanty, B; Molnar, L; Montaño Zetina, L; Monteno, M; Montes, E; Moon, T; Morando, M; Moreira De Godoy, D A; Moretto, S; Morreale, A; Morsch, A; Muccifora, V; Mudnic, E; Muhuri, S; Mukherjee, M; Müller, H; Munhoz, M G; Murray, S; Musa, L; Musinsky, J; Nandi, B K; Nania, R; Nappi, E; Nattrass, C; Nayak, T K; Nazarenko, S; Nedosekin, A; Nicassio, M; Niculescu, M; Nielsen, B S; Niida, T; Nikolaev, S; Nikolic, V; Nikulin, S; Nikulin, V; Nilsen, B S; Nilsson, M S; Noferini, F; Nomokonov, P; Nooren, G; Nyanin, A; Nyatha, A; Nygaard, C; Nystrand, J; Ochirov, A; Oeschler, H; Oh, S; Oh, S K; Oleniacz, J; Oliveira Da Silva, A C; Oppedisano, C; Ortiz Velasquez, A; Oskarsson, A; Ostrowski, P; Otwinowski, J; Oyama, K; Ozawa, K; Pachmayer, Y; Pachr, M; Padilla, F; Pagano, P; Paić, G; Painke, F; Pajares, C; Pal, S K; Palaha, A; Palmeri, A; Papikyan, V; Pappalardo, G S; Park, W J; Passfeld, A; Patalakha, D I; Paticchio, V; Paul, B; Pavlinov, A; Pawlak, T; Peitzmann, T; Pereira Da Costa, H; Pereira De Oliveira Filho, E; Peresunko, D; Pérez Lara, C E; Perrino, D; Peryt, W; Pesci, A; Pestov, Y; Petráček, V; Petran, M; Petris, M; Petrov, P; Petrovici, M; Petta, C; Piano, S; Pikna, M; Pillot, P; Pinazza, O; Pinsky, L; Pitz, N; Piyarathna, D B; Planinic, M; Płoskoń, M; Pluta, J; Pocheptsov, T; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polák, K; Polichtchouk, B; Poljak, N; Pop, A; Porteboeuf-Houssais, S; Pospíšil, V; Potukuchi, B; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puddu, G; Punin, V; Putiš, M; Putschke, J; Qvigstad, H; Rachevski, A; Rademakers, A; Räihä, T S; Rak, J; Rakotozafindrabe, A; Ramello, L; Raniwala, S; Raniwala, R; Räsänen, S S; Rascanu, B T; Rathee, D; Rauch, W; Read, K F; Real, J S; Redlich, K; Reed, R J; Rehman, A; Reichelt, P; Reicher, M; Renfordt, R; Reolon, A R; Reshetin, A; Rettig, F; Revol, J-P; Reygers, K; Riccati, L; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Rodríguez Cahuantzi, M; Rodriguez Manso, A; Røed, K; Rogochaya, E; Rohr, D; Röhrich, D; Romita, R; Ronchetti, F; Rosnet, P; Rossegger, S; Rossi, A; Roy, P; Roy, C; Rubio Montero, A J; Rui, R; Russo, R; Ryabinkin, E; Rybicki, A; Sadovsky, S; Šafařík, K; Sahoo, R; Sahu, P K; Saini, J; Sakaguchi, H; Sakai, S; Sakata, D; Salgado, C A; Salzwedel, J; Sambyal, S; Samsonov, V; Sanchez Castro, X; Šándor, L; Sandoval, A; Sano, M; Santagati, G; Santoro, R; Sarkamo, J; Sarkar, D; Scapparone, E; Scarlassara, F; Scharenberg, R P; Schiaua, C; Schicker, R; Schmidt, H R; Schmidt, C; Schuchmann, S; Schukraft, J; Schuster, T; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, R; Scott, P A; Segato, G; Selyuzhenkov, I; Senyukov, S; Seo, J; Serci, S; Serradilla, E; Sevcenco, A; Shabetai, A; Shabratova, G; Shahoyan, R; Sharma, N; Sharma, S; Rohni, S; Shigaki, K; Shtejer, K; Sibiriak, Y; Sicking, E; Siddhanta, S; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simatovic, G; Simonetti, G; Singaraju, R; Singh, R; Singha, S; Singhal, V; Sinha, B C; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Skjerdal, K; Smakal, R; Smirnov, N; Snellings, R J M; Søgaard, C; Soltz, R; Song, M; Song, J; Soos, C; Soramel, F; Sputowska, I; Spyropoulou-Stassinaki, M; Srivastava, B K; Stachel, J; Stan, I; Stefanek, G; Steinpreis, M; Stenlund, E; Steyn, G; Stiller, J H; Stocco, D; Stolpovskiy, M; Strmen, P; Suaide, A A P; Subieta Vásquez, M A; Sugitate, T; Suire, C; Sultanov, R; Šumbera, M; Susa, T; Symons, T J M; Szanto de Toledo, A; Szarka, I; Szczepankiewicz, A; Szymański, M; Takahashi, J; Tangaro, M A; Tapia Takaki, J D; Tarantola Peloni, A; Tarazona Martinez, A; Tauro, A; Tejeda Muñoz, G; Telesca, A; Ter Minasyan, A; Terrevoli, C; Thäder, J; Thomas, D; Tieulent, R; Timmins, A R; Tlusty, D; Toia, A; Torii, H; Toscano, L; Trubnikov, V; Truesdale, D; Trzaska, W H; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ulery, J; Ullaland, K; Ulrich, J; Uras, A; Urciuoli, G M; Usai, G L; Vajzer, M; Vala, M; Valencia Palomo, L; Vande Vyvre, P; Van Hoorne, J W; van Leeuwen, M; Vannucci, L; Vargas, A; Varma, R; Vasileiou, M; Vasiliev, A; Vechernin, V; Veldhoen, M; Venaruzzo, M; Vercellin, E; Vergara, S; Vernet, R; Verweij, M; Vickovic, L; Viesti, G; Viinikainen, J; Vilakazi, Z; Villalobos Baillie, O; Vinogradov, Y; Vinogradov, L; Vinogradov, A; Virgili, T; Viyogi, Y P; Vodopyanov, A; Völkl, M A; Voloshin, S; Voloshin, K; Volpe, G; von Haller, B; Vorobyev, I; Vranic, D; Vrláková, J; Vulpescu, B; Vyushin, A; Wagner, B; Wagner, V; Wan, R; Wang, Y; Wang, M; Wang, Y; Watanabe, K; Weber, M; Wessels, J P; Westerhoff, U; Wiechula, J; Wikne, J; Wilde, M; Wilk, G; Williams, M C S; Windelband, B; Xaplanteris Karampatsos, L; Yaldo, C G; Yamaguchi, Y; Yang, S; Yang, P; Yang, H; Yasnopolskiy, S; Yi, J; Yin, Z; Yoo, I-K; Yoon, J; Yu, W; Yuan, X; Yushmanov, I; Zaccolo, V; Zach, C; Zampolli, C; Zaporozhets, S; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zelnicek, P; Zgura, I S; Zhalov, M; Zhang, H; Zhang, X; Zhang, Y; Zhou, D; Zhou, F; Zhou, Y; Zhu, H; Zhu, J; Zhu, X; Zhu, J; Zichichi, A; Zimmermann, A; Zinovjev, G; Zoccarato, Y; Zynovyev, M; Zyzak, M

    2013-10-18

    We report on the first measurement of inclusive J/ψ elliptic flow v2 in heavy-ion collisions at the LHC. The measurement is performed with the ALICE detector in Pb-Pb collisions at √(s(NN))=2.76 TeV in the rapidity range 2.5Pb-Pb collisions at √(s(NN))=2.76 TeV, an indication of nonzero v2 is observed with a largest measured value of v2=0.116±0.046(stat)±0.029(syst) for J/ψ in the transverse momentum range 2≤p(T)<4 GeV/c. The elliptic flow measurement complements the previously reported ALICE results on the inclusive J/ψ nuclear modification factor and favors the scenario of a significant fraction of J/ψ production from charm quarks in a deconfined partonic phase.

  16. K(S)0 and Λ production in Pb-Pb collisions at √(s(NN))=2.76 TeV.

    PubMed

    Abelev, B; Adam, J; Adamová, D; Adare, A M; Aggarwal, M M; Aglieri Rinella, G; Agnello, M; Agocs, A G; Agostinelli, A; Ahammed, Z; Ahmad, N; Ahmad Masoodi, A; Ahmed, I; Ahn, S U; Ahn, S A; Aimo, I; Aiola, S; Ajaz, M; Akindinov, A; Aleksandrov, D; Alessandro, B; Alexandre, D; Alici, A; Alkin, A; Alme, J; Alt, T; Altini, V; Altinpinar, S; Altsybeev, I; Alves Garcia Prado, C; Andrei, C; Andronic, A; Anguelov, V; Anielski, J; Antičić, T; Antinori, F; Antonioli, P; Aphecetche, L; Appelshäuser, H; Arbor, N; Arcelli, S; Armesto, N; Arnaldi, R; Aronsson, T; Arsene, I C; Arslandok, M; Augustinus, A; Averbeck, R; Awes, T C; Azmi, M D; Bach, M; Badalà, A; Baek, Y W; Bailhache, R; Bairathi, V; Bala, R; Baldisseri, A; Baltasar Dos Santos Pedrosa, F; Bán, J; Baral, R C; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L S; Barret, V; Bartke, J; Basile, M; Bastid, N; Basu, S; Bathen, B; Batigne, G; Batyunya, B; Batzing, P C; Baumann, C; Bearden, I G; Beck, H; Behera, N K; Belikov, I; Bellini, F; Bellwied, R; Belmont-Moreno, E; Bencedi, G; Beole, S; Berceanu, I; Bercuci, A; Berdnikov, Y; Berenyi, D; Bergognon, A A E; Bertens, R A; Berzano, D; Betev, L; Bhasin, A; Bhati, A K; Bhom, J; Bianchi, L; Bianchi, N; Bielčík, J; Bielčíková, J; Bilandzic, A; Bjelogrlic, S; Blanco, F; Blanco, F; Blau, D; Blume, C; Bock, F; Bogdanov, A; Bøggild, H; Bogolyubsky, M; Boldizsár, L; Bombara, M; Book, J; Borel, H; Borissov, A; Bornschein, J; Botje, M; Botta, E; Böttger, S; Braun-Munzinger, P; Bregant, M; Breitner, T; Broker, T A; Browning, T A; Broz, M; Brun, R; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Buncic, P; Busch, O; Buthelezi, Z; Caffarri, D; Cai, X; Caines, H; Caliva, A; Calvo Villar, E; Camerini, P; Canoa Roman, V; Cara Romeo, G; Carena, F; Carena, W; Carminati, F; Casanova Díaz, A; Castillo Castellanos, J; Casula, E A R; Catanescu, V; Cavicchioli, C; Ceballos Sanchez, C; Cepila, J; Cerello, P; Chang, B; Chapeland, S; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Cherney, M; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Chochula, P; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Colamaria, F; Colella, D; Collu, A; Colocci, M; Conesa Balbastre, G; Conesa del Valle, Z; Connors, M E; Contin, G; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortese, P; Cortés Maldonado, I; Cosentino, M R; Costa, F; Crochet, P; Cruz Albino, R; Cuautle, E; Cunqueiro, L; Dainese, A; Dang, R; Danu, A; Das, K; Das, D; Das, I; Dash, A; Dash, S; De, S; Delagrange, H; Deloff, A; Dénes, E; Deppman, A; D'Erasmo, G; de Barros, G O V; De Caro, A; de Cataldo, G; de Cuveland, J; De Falco, A; De Gruttola, D; De Marco, N; De Pasquale, S; de Rooij, R; Diaz Corchero, M A; Dietel, T; Divià, R; Di Bari, D; Di Giglio, C; Di Liberto, S; Di Mauro, A; Di Nezza, P; Djuvsland, Ø; Dobrin, A; Dobrowolski, T; Dönigus, B; Dordic, O; Dubey, A K; Dubla, A; Ducroux, L; Dupieux, P; Dutta Majumdar, A K; Elia, D; Emschermann, D; Engel, H; Erazmus, B; Erdal, H A; Eschweiler, D; Espagnon, B; Estienne, M; Esumi, S; Evans, D; Evdokimov, S; Eyyubova, G; Fabris, D; Faivre, J; Falchieri, D; Fantoni, A; Fasel, M; Fehlker, D; Feldkamp, L; Felea, D; Feliciello, A; Feofilov, G; Ferencei, J; Fernández Téllez, A; Ferreiro, E G; Ferretti, A; Festanti, A; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Floratos, E; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Francescon, A; Frankenfeld, U; Fuchs, U; Furget, C; Fusco Girard, M; Gaardhøje, J J; Gagliardi, M; Gago, A; Gallio, M; Gangadharan, D R; Ganoti, P; Garabatos, C; Garcia-Solis, E; Gargiulo, C; Garishvili, I; Gerhard, J; Germain, M; Gheata, A; Gheata, M; Ghidini, B; Ghosh, P; Gianotti, P; Giubellino, P; Gladysz-Dziadus, E; Glässel, P; Goerlich, L; Gomez, R; González-Zamora, P; Gorbunov, S; Gotovac, S; Graczykowski, L K; Grajcarek, R; Grelli, A; Grigoras, C; Grigoras, A; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grinyov, B; Grion, N; Grosse-Oetringhaus, J F; Grossiord, J-Y; Grosso, R; Guber, F; Guernane, R; Guerzoni, B; Guilbaud, M; Gulbrandsen, K; Gulkanyan, H; Gunji, T; Gupta, A; Gupta, R; Khan, K H; Haake, R; Haaland, Ø; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Hanratty, L D; Hansen, A; Harris, J W; Hartmann, H; Harton, A; Hatzifotiadou, D; Hayashi, S; Hayrapetyan, A; Heckel, S T; Heide, M; Helstrup, H; Herghelegiu, A; Herrera Corral, G; Herrmann, N; Hess, B A; Hetland, K F; Hicks, B; Hippolyte, B; Hori, Y; Hristov, P; Hřivnáčová, I; Huang, M; Humanic, T J; Hutter, D; Hwang, D S; Ilkaev, R; Ilkiv, I; Inaba, M; Incani, E; Innocenti, G M; Ionita, C; Ippolitov, M; Irfan, M; Ivanov, M; Ivanov, V; Ivanytskyi, O; Jachołkowski, A; Jahnke, C; Jang, H J; Janik, M A; Jayarathna, P H S Y; Jena, S; Jimenez Bustamante, R T; Jones, P G; Jung, H; Jusko, A; Kalcher, S; Kaliňák, P; Kalweit, A; Kang, J H; Kaplin, V; Kar, S; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karpechev, E; Kazantsev, A; Kebschull, U; Keidel, R; Ketzer, B; Khan, M M; Khan, P; Khan, S A; Khanzadeev, A; Kharlov, Y; Kileng, B; Kim, T; Kim, B; Kim, D J; Kim, D W; Kim, J S; Kim, M; Kim, M; Kim, S; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Kiss, G; Klay, J L; Klein, J; Klein-Bösing, C; Kluge, A; Knichel, M L; Knospe, A G; Kobdaj, C; Köhler, M K; Kollegger, T; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Konevskikh, A; Kovalenko, V; Kowalski, M; Kox, S; Koyithatta Meethaleveedu, G; Kral, J; Králik, I; Kramer, F; Kravčáková, A; Krelina, M; Kretz, M; Krivda, M; Krizek, F; Krus, M; Kryshen, E; Krzewicki, M; Kucera, V; Kucheriaev, Y; Kugathasan, T; Kuhn, C; Kuijer, P G; Kulakov, I; Kumar, J; Kurashvili, P; Kurepin, A B; Kurepin, A; Kuryakin, A; Kushpil, V; Kushpil, S; Kweon, M J; Kwon, Y; Ladrón de Guevara, P; Lagana Fernandes, C; Lakomov, I; Langoy, R; Lara, C; Lardeux, A; Lattuca, A; La Pointe, S L; La Rocca, P; Lea, R; Lechman, M; Lee, S C; Lee, G R; Legrand, I; Lehnert, J; Lemmon, R C; Lenhardt, M; Lenti, V; Leoncino, M; León Monzón, I; Lévai, P; Li, S; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Ljunggren, H M; Lodato, D F; Loenne, P I; Loggins, V R; Loginov, V; Lohner, D; Loizides, C; Lopez, X; López Torres, E; Løvhøiden, G; Lu, X-G; Luettig, P; Lunardon, M; Luo, J; Luparello, G; Luzzi, C; Jacobs, P M; Ma, R; Maevskaya, A; Mager, M; Mahapatra, D P; Maire, A; Malaev, M; Maldonado Cervantes, I; Malinina, L; Mal'Kevich, D; Malzacher, P; Mamonov, A; Manceau, L; Manko, V; Manso, F; Manzari, V; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Marín, A; Markert, C; Marquard, M; Martashvili, I; Martin, N A; Martinengo, P; Martínez, M I; Martínez García, G; Martin Blanco, J; Martynov, Y; Mas, A; Masciocchi, S; Masera, M; Masoni, A; Massacrier, L; Mastroserio, A; Matyja, A; Mazer, J; Mazumder, R; Mazzoni, M A; Meddi, F; Menchaca-Rocha, A; Mercado Pérez, J; Meres, M; Miake, Y; Mikhaylov, K; Milano, L; Milosevic, J; Mischke, A; Mishra, A N; Miśkowiec, D; Mitu, C; Mlynarz, J; Mohanty, B; Molnar, L; Montaño Zetina, L; Monteno, M; Montes, E; Morando, M; Moreira De Godoy, D A; Moretto, S; Morreale, A; Morsch, A; Muccifora, V; Mudnic, E; Muhuri, S; Mukherjee, M; Müller, H; Munhoz, M G; Murray, S; Musa, L; Nandi, B K; Nania, R; Nappi, E; Nattrass, C; Nayak, T K; Nazarenko, S; Nedosekin, A; Nicassio, M; Niculescu, M; Nielsen, B S; Nikolaev, S; Nikulin, S; Nikulin, V; Nilsen, B S; Nilsson, M S; Noferini, F; Nomokonov, P; Nooren, G; Nyanin, A; Nyatha, A; Nystrand, J; Oeschler, H; Oh, S K; Oh, S; Olah, L; Oleniacz, J; Oliveira Da Silva, A C; Onderwaater, J; Oppedisano, C; Ortiz Velasquez, A; Oskarsson, A; Otwinowski, J; Oyama, K; Pachmayer, Y; Pachr, M; Pagano, P; Paić, G; Painke, F; Pajares, C; Pal, S K; Palaha, A; Palmeri, A; Papikyan, V; Pappalardo, G S; Park, W J; Passfeld, A; Patalakha, D I; Paticchio, V; Paul, B; Pawlak, T; Peitzmann, T; Pereira Da Costa, H; Pereira De Oliveira Filho, E; Peresunko, D; Pérez Lara, C E; Perrino, D; Peryt, W; Pesci, A; Pestov, Y; Petráček, V; Petran, M; Petris, M; Petrov, P; Petrovici, M; Petta, C; Piano, S; Pikna, M; Pillot, P; Pinazza, O; Pinsky, L; Pitz, N; Piyarathna, D B; Planinic, M; Płoskoń, M; Pluta, J; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polichtchouk, B; Pop, A; Porteboeuf-Houssais, S; Pospíšil, V; Potukuchi, B; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puddu, G; Punin, V; Putschke, J; Qvigstad, H; Rachevski, A; Rademakers, A; Rak, J; Rakotozafindrabe, A; Ramello, L; Raniwala, S; Raniwala, R; Räsänen, S S; Rascanu, B T; Rathee, D; Rauch, W; Rauf, A W; Razazi, V; Read, K F; Real, J S; Redlich, K; Reed, R J; Rehman, A; Reichelt, P; Reicher, M; Reidt, F; Renfordt, R; Reolon, A R; Reshetin, A; Rettig, F; Revol, J-P; Reygers, K; Riccati, L; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Rivetti, A; Rodríguez Cahuantzi, M; Rodriguez Manso, A; Røed, K; Rogochaya, E; Rohni, S; Rohr, D; Röhrich, D; Romita, R; Ronchetti, F; Rosnet, P; Rossegger, S; Rossi, A; Roy, P; Roy, C; Rubio Montero, A J; Rui, R; Russo, R; Ryabinkin, E; Rybicki, A; Sadovsky, S; Safařík, K; Sahoo, R; Sahu, P K; Saini, J; Sakaguchi, H; Sakai, S; Sakata, D; Salgado, C A; Salzwedel, J; Sambyal, S; Samsonov, V; Sanchez Castro, X; Sándor, L; Sandoval, A; Sano, M; Santagati, G; Santoro, R; Sarkar, D; Scapparone, E; Scarlassara, F; Scharenberg, R P; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schuchmann, S; Schukraft, J; Schulc, M; Schuster, T; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, R; Scott, P A; Segato, G; Selyuzhenkov, I; Seo, J; Serci, S; Serradilla, E; Sevcenco, A; Shabetai, A; Shabratova, G; Shahoyan, R; Sharma, S; Sharma, N; Shigaki, K; Shtejer, K; Sibiriak, Y; Siddhanta, S; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simatovic, G; Singaraju, R; Singh, R; Singha, S; Singhal, V; Sinha, B C; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Skjerdal, K; Smakal, R; Smirnov, N; Snellings, R J M; Soltz, R; Song, M; Song, J; Soos, C; Soramel, F; Spacek, M; Sputowska, I; Spyropoulou-Stassinaki, M; Srivastava, B K; Stachel, J; Stan, I; Stefanek, G; Steinpreis, M; Stenlund, E; Steyn, G; Stiller, J H; Stocco, D; Stolpovskiy, M; Strmen, P; Suaide, A A P; Subieta Vásquez, M A; Sugitate, T; Suire, C; Suleymanov, M; Sultanov, R; Sumbera, M; Susa, T; Symons, T J M; Szanto de Toledo, A; Szarka, I; Szczepankiewicz, A; Szymański, M; Takahashi, J; Tangaro, M A; Tapia Takaki, J D; Tarantola Peloni, A; Tarazona Martinez, A; Tauro, A; Tejeda Muñoz, G; Telesca, A; Terrevoli, C; Ter Minasyan, A; Thäder, J; Thomas, D; Tieulent, R; Timmins, A R; Toia, A; Torii, H; Trubnikov, V; Trzaska, W H; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ulery, J; Ullaland, K; Ulrich, J; Uras, A; Urciuoli, G M; Usai, G L; Vajzer, M; Vala, M; Valencia Palomo, L; Vande Vyvre, P; Vannucci, L; Van Hoorne, J W; van Leeuwen, M; Vargas, A; Varma, R; Vasileiou, M; Vasiliev, A; Vechernin, V; Veldhoen, M; Venaruzzo, M; Vercellin, E; Vergara, S; Vernet, R; Verweij, M; Vickovic, L; Viesti, G; Viinikainen, J; Vilakazi, Z; Villalobos Baillie, O; Vinogradov, A; Vinogradov, L; Vinogradov, Y; Virgili, T; Viyogi, Y P; Vodopyanov, A; Völkl, M A; Voloshin, S; Voloshin, K; Volpe, G; von Haller, B; Vorobyev, I; Vranic, D; Vrláková, J; Vulpescu, B; Vyushin, A; Wagner, B; Wagner, V; Wagner, J; Wang, Y; Wang, Y; Wang, M; Watanabe, D; Watanabe, K; Weber, M; Wessels, J P; Westerhoff, U; Wiechula, J; Wikne, J; Wilde, M; Wilk, G; Wilkinson, J; Williams, M C S; Windelband, B; Winn, M; Xiang, C; Yaldo, C G; Yamaguchi, Y; Yang, H; Yang, P; Yang, S; Yano, S; Yasnopolskiy, S; Yi, J; Yin, Z; Yoo, I-K; Yushmanov, I; Zaccolo, V; Zach, C; Zampolli, C; Zaporozhets, S; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zelnicek, P; Zgura, I S; Zhalov, M; Zhang, F; Zhang, Y; Zhang, H; Zhang, X; Zhou, D; Zhou, Y; Zhou, F; Zhu, X; Zhu, J; Zhu, J; Zhu, H; Zichichi, A; Zimmermann, M B; Zimmermann, A; Zinovjev, G; Zoccarato, Y; Zynovyev, M; Zyzak, M

    2013-11-27

    The ALICE measurement of K(S)(0) and Λ production at midrapidity in Pb-Pb collisions at √(s(NN))=2.76 TeV is presented. The transverse momentum (p(T)) spectra are shown for several collision centrality intervals and in the p(T) range from 0.4 GeV/c (0.6 GeV/c for Λ) to 12 GeV/c. The p(T) dependence of the Λ/K(S)(0) ratios exhibits maxima in the vicinity of 3 GeV/c, and the positions of the maxima shift towards higher p(T) with increasing collision centrality. The magnitude of these maxima increases by almost a factor of three between most peripheral and most central Pb-Pb collisions. This baryon excess at int