Science.gov

Sample records for 34-m beam waveguide

  1. S/Ka Dichroic Plate with Rounded Corners for NASA's 34-m Beam-Waveguide Antenna

    NASA Astrophysics Data System (ADS)

    Veruttipong, W.; Khayatian, B.; Imbriale, W.

    2016-02-01

    An S-/Ka-band frequency selective surface (FSS) or a dichroic plate is designed, manufactured, and tested for use in NASA's Deep Space Network (DSN) 34-m beam-waveguide (BWG) antennas. Due to its large size, the proposed dichroic incorporates a new design feature: waveguides with rounded corners to cut cost and allow ease of manufacturing the plate. The dichroic is designed using an analysis that combines the finite-element method (FEM) for arbitrarily shaped guides with the method of moments and Floquet mode theory for periodic structures. The software was verified by comparison with previously measured and computed dichroic plates. The large plate was manufactured with end-mill machining. The RF performance was measured and is in excellent agreement with the analytical results. The dichroic has been successfully installed and is operational at DSS-24, DSS-34, and DSS-54.

  2. Multi-Step Ka/Ka Dichroic Plate with Rounded Corners for NASA's 34m Beam Waveguide Antenna

    NASA Technical Reports Server (NTRS)

    Veruttipong, Watt; Khayatian, Behrouz; Hoppe, Daniel; Long, Ezra

    2013-01-01

    A multi-step Ka/Ka dichroic plate Frequency Selective Surface (FSS structure) is designed, manufactured and tested for use in NASA's Deep Space Network (DSN) 34m Beam Waveguide (BWG) antennas. The proposed design allows ease of manufacturing and ability to handle the increased transmit power (reflected off the FSS) of the DSN BWG antennas from 20kW to 100 kW. The dichroic is designed using HFSS and results agree well with measured data considering the manufacturing tolerances that could be achieved on the dichroic.

  3. Strut Shaping of 34m Beam Waveguide Antenna for Reductions in Near-Field RF and Noise Temperature

    NASA Technical Reports Server (NTRS)

    Khayatian, Behrouz; Hoppe, Daniel J.; Britcliffe, Michael J.; Gama, Eric

    2012-01-01

    Strut shaping of NASA's Deep Space Network (DSN) 34m Beam Waveguide (BWG) antenna has been implemented to reduce near-field RF exposure while improving the antenna noise temperature. Strut shaping was achieved by introducing an RF shield that does not compromise the structural integrity of the existing antenna. Reduction in the RF near-field level will compensate for the planned transmit power increase of the antenna from 20 kW to 80 kW while satisfying safety requirements for RF exposure. Measured antenna noise temperature was also improved by as much as 1.5 K for the low elevation angles and 0.5 K in other areas.

  4. Strut Shaping of 34m Beam Waveguide Antenna for Reductions in Near-Field RF and Noise Temeperature

    NASA Technical Reports Server (NTRS)

    Khayatian, Behrouz; Hoppe, Daniel J.; Britcliffe, Michael J.; Gama, Eric

    2012-01-01

    Struts shaping of the NASA's Deep Space Network (DSN) 34m Beam Waveguide (BWG) antenna has been implemented to reduce near-field RF exposure while improving the antenna noise temperature. Strut shaping was achieved by introducing an RF shield that does not compromise the structural integrity of the existing structure. Reduction in the RF near-field exposure will compensate for the planned transmit power increase of the antenna from 20 kW to 80 kW while satisfying safety requirements for RF exposure. Antenna noise temperature was also improved by as much as 1.5 K for the low elevation angles and 0.5 K in other areas. Both reductions of RF near-field exposure and antenna noise temperature were verified through measurements and agree very well with calculated results.

  5. Determining noise temperatures in beam waveguide systems

    NASA Technical Reports Server (NTRS)

    Imbriale, W.; Veruttipong, W.; Otoshi, T.; Franco, M.

    1994-01-01

    A new 34-m research and development antenna was fabricated and tested as a precursor to introducing beam waveguide (BWG) antennas and Ka-band (32 GHz) frequencies into the NASA/JPL Deep Space Network. For deep space use, system noise temperature is a critical parameter. There are thought to be two major contributors to noise temperature in a BWG system: the spillover past the mirrors, and the conductivity loss in the walls. However, to date, there are no generally accepted methods for computing noise temperatures in a beam waveguide system. An extensive measurement program was undertaken to determine noise temperatures in such a system along with a correspondent effort in analytic prediction. Utilizing a very sensitive radiometer, noise temperature measurements were made at the Cassegrain focus, an intermediate focal point, and the focal point in the basement pedestal room. Several different horn diameters were used to simulate different amounts of spillover past the mirrors. Two analytic procedures were developed for computing noise temperature, one utilizing circular waveguide modes and the other a semiempirical approach. The results of both prediction methods are compared to the experimental data.

  6. A New Technique for Vernier Pointing of a Beam-Waveguide Antenna

    NASA Technical Reports Server (NTRS)

    Veruttipong, Watt; Bathker, Dan A.

    1994-01-01

    This paper presents a new and simple approach for the Ka-band vernier pointing of a 34m beam-waveguide (BWG) antenna (also applicable to a 70m antenna. In this study, rotation of a BWG flat mirror, located at the elevation axis, is used to scan the beam instead of using the very large tipping structure of the antenna.

  7. Electro-optic Waveguide Beam Deflector.

    DTIC Science & Technology

    beam deflection by variation in the electro - optic effect produced within the waveguide region in response to known or determinable magnitude variations in the electrical potential of an applied signal source.

  8. Correcting for Beam Aberrations in a Beam-Waveguide Antenna

    NASA Technical Reports Server (NTRS)

    Franco, Manuel; Slobin, Stephen; Veruttipong, Watt

    2003-01-01

    A method for correcting the aim of a beam-waveguide microwave antenna compensates for the beam aberration that occurs during radio tracking of a target that has a component of velocity transverse to the line of sight from the tracking station. The method was devised primarily for use in tracking of distant target spacecraft by large terrestrial beam-waveguide antennas of NASA's Deep Space Network (DSN). The method should also be adaptable to tracking, by other beam-waveguide antennas, of targets that move with large transverse velocities at large distances from the antennas.

  9. Beam waveguides in the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Clauss, R. C.; Smith, J. G.

    1987-01-01

    A beam waveguide is a mechanism for guiding electromagnetic radiation from one part of an antenna to another through a series of reflectors. Appropriate placement of reflectors on an antenna allows a beam to be guided around the elevation axis and/or below the alidade. The beam waveguide permits placement of all electronics in a room on the alidade below the elevation axis, or below the alidade; feed horn covers to be protected from the weather; and feed electronics to be in spacious rooms rather than in crowded cones, and always level rather than tipping with change in elevation angle. These factors can lead to lower costs in implementation such as Ka-band, better antenna performance at X-band, more efficient and stable performance of transmitters and receivers, and lower maintenance and operating costs. Studies are underway to determine methods for converting the major antennas of the Deep Space Network (DSN) to beam waveguide operations by 1995.

  10. Nonlinear optical beam interactions in waveguide arrays.

    PubMed

    Meier, Joachim; Stegeman, George I; Silberberg, Y; Morandotti, R; Aitchison, J S

    2004-08-27

    We report our investigation of Kerr nonlinear beam interactions in discrete systems. The influence of power and the relative phase between two Gaussian shaped beams was investigated in detail by performing numerical simulations of the discrete nonlinear Schrödinger equation and comparing the results with experiments done in AlGaAs waveguide arrays. Good agreement between theory and experiment was obtained.

  11. Vector Reflectometry in a Beam Waveguide

    NASA Technical Reports Server (NTRS)

    Eimer, J. R.; Bennett, C. L.; Chuss, D. T.; Wollack, E. J.

    2011-01-01

    We present a one-port calibration technique for characterization of beam waveguide components with a vector network analyzer. This technique involves using a set of known delays to separate the responses of the instrument and the device under test. We demonstrate this technique by measuring the reflected performance of a millimeter-wave variable-delay polarization modulator.

  12. Waveguide tapering for beam-width control in a waveguide transducer.

    PubMed

    Kwon, Young Eui; Jeon, Hyun Joong; Kim, Hoe Woong; Kim, Yoon Young

    2014-03-01

    In a waveguide transducer that transmits an ultrasonic wave through a waveguide unit to a test structure, it is most preferred to send a non-dispersive ultrasonic wave of a narrow beam width. However, there is an unresolved conflict between the generation of the non- or less-dispersive wave and the transmission of a narrow-beam wave into a test structure. Among others, the thickness of the waveguide unit in a waveguide transducer is the key variable determining these two conflicting criteria, but the use of a uniformly-thick waveguide of any thickness cannot fulfill the two conflicting criteria simultaneously. In this study, we propose a specially-engineered tapered waveguide unit for the simultaneous satisfaction. An excitation unit is installed at the end of the thin region of the tapered waveguide and generates only the lowest non-dispersive shear-horizontal wave. Then the generated wave propagates through the tapered region of the waveguide unit and reaches the thick region of the waveguide with insignificant mode conversion to higher modes. If the tapered waveguide is used, the surviving lowest mode in the thick region of the waveguide is shown to carry most of the transmitted power and is finally propagated into a test structure. Because the beam size of the propagated wave and the thickness of the contacting waveguide region are inversely related, the thick contacting region of the tapered waveguide ensures narrow beam width. Numerical and experimental investigations were performed to check the effectiveness of the proposed waveguide-tapering approach.

  13. Optimizing the G/T ratio of the DSS-13 34-meter beam-waveguide antenna

    NASA Technical Reports Server (NTRS)

    Esquivel, M. S.

    1992-01-01

    Calculations using Physical Optics computer software were done to optimize the gain-to-noise temperature (G/T) ratio of DSS-13, the DSN's 34-m beam-waveguide antenna, at X-band for operation with the ultra-low-noise amplifier maser system. A better G/T value was obtained by using a 24.2-dB far-field-gain smooth-wall dual-mode horn than by using the standard X-band 22.5-dB-gain corrugated horn.

  14. Optimizing the G/T ratio of the DSS-13 34-meter beam-waveguide antenna

    NASA Technical Reports Server (NTRS)

    Esquivel, M. S.

    1992-01-01

    Calculations using Physical Optics computer software were done to optimize the gain-to-noise-temperature (G/T) ratio of Deep Space Station (DSS)-13, the Deep Space Network's (DSN's) 34-m beam-waveguide antenna, at X-band for operation with the ultra-low-noise amplifier maser system. A better G/T value was obtained by using a 24.2-dB far-field-gain smooth-wall dual-mode horn than by using the standard X-band 22.5-dB-gain corrugated horn.

  15. Atmospheric refraction correction for Ka-band blind pointing on the DSS-13 beam waveguide antenna

    NASA Technical Reports Server (NTRS)

    Perez-Borroto, I. M.; Alvarez, L. S.

    1992-01-01

    An analysis of the atmospheric refraction corrections at the DSS-13 34-m diameter beam waveguide (BWG) antenna for the period Jul. - Dec. 1990 is presented. The current Deep Space Network (DSN) atmospheric refraction model and its sensitivity with respect to sensor accuracy are reviewed. Refraction corrections based on actual atmospheric parameters are compared with the DSS-13 station default corrections for the six-month period. Average blind-pointing improvement during the worst month would have amounted to 5 mdeg at 10 deg elevation using actual surface weather values. This would have resulted in an average gain improvement of 1.1 dB.

  16. Beam-waveguide antenna servo design issues for tracking low earth-orbiting satellites

    NASA Technical Reports Server (NTRS)

    Gawronski, W. K.; Mellstrom, J. A.

    1993-01-01

    Upcoming NASA missions will require tracking of low-orbit satellites. As a consequence, NASA antennas will be required to track satellites at higher rates than for the current deep space missions. This article investigates servo design issues for the 34-m beam-waveguide antennas that track low-orbit satellites. This includes upgrading the servo with a feedforward loop, using a monopulse controller design, and reducing tracking errors through either proper choice of elevation pinion location, application of a notch filter, or adjustment of the elevation drive amplifier gain. Finally, improvement of the signal-to-noise ratio through averaging of the over-sampled monopulse signal is described.

  17. Antenna noise temperatures of the 34-meter beam-waveguide antenna with horns of different gains installed at F1

    NASA Technical Reports Server (NTRS)

    Otoshi, T. Y.; Lee, P. R.; Franco, M. M.

    1994-01-01

    This article presents a set of theoretical and measured zenith-antenna noise temperatures at 8.45 GHz for the DSS-13 34-m beam-waveguide antenna when horns of different gains are installed at F1. The methodology for calculations is shown in detail. The major differences between calculated and measured values are attributed to changes in subreflector support leg scattering when illuminated by the various horns.

  18. Design and performance analysis of the DSS-13 beam waveguide antenna

    NASA Technical Reports Server (NTRS)

    Veruttipong, T.; Imbriale, W.; Bathker, D.

    1990-01-01

    A new 34 m research and development antenna is currently being constructed prior to introducing beam waveguide (BWG) antennas and Ka-band (32 GHz) frequencies into the NASA/JPL Deep Space Network. The new 34 m antenna, fed with either a center or bypass BWG, will lose less than 0.2 dB (excluding surface root mean square and mirror misalignment losses), as compared with a standard-fed Cassegrain antenna a X- (8.4 GHz) and Ka-bands. The antenna is currently under construction and is scheduled to be completed July 1990. Phase 1 of the project is for independent X- and Ka-band receive-only tests. Phase 2 of the project is for simultaneous S- (2.3 GHz) and X-band or X- and Ka-band operation, and the design is currently under way.

  19. Mid-IR laser source using hollow waveguide beam combining

    NASA Astrophysics Data System (ADS)

    Elder, Ian F.; Thorne, Daniel H.; Lamb, Robert A.; Jenkins, R. M.

    2016-03-01

    Hollow waveguide technology is a route to efficient beam combining of multiple laser sources in a compact footprint. It is a technology appropriate for combining free-space or fibre-coupled beams generated by semiconductor, fibre or solidstate laser sources. This paper will present results of a breadboard mid-IR system comprising four laser sources combined using a hollow waveguide optical circuit. In this approach the individual dichroic beam combiner components are held in precision alignment slots in the hollow waveguide circuit and the different input wavelengths are guided between the components to a common output port. The hollow waveguide circuit is formed in the surface of a Macor (machinable glass-ceramic) substrate using precision CNC machining techniques. The hollow waveguides have fundamentally different propagation characteristics to solid core waveguides leading to transmission characteristics close to those of the atmosphere while still providing useful light guidance properties. The transmission efficiency and power handling of the hollow waveguide circuit can be designed to be very high across a broad waveband range. Three of the sources are quantum cascade lasers (QCLs), a semiconductor laser technology providing direct generation of midwave IR output. The combined beams provide 4.2 W of near diffraction-limited output co-boresighted to better than 20 µrad. High coupling efficiency into the waveguides is demonstrated, with negligible waveguide transmission losses. The overall transmission of the hollow waveguide beam combining optical circuit, weighted by the laser power at each wavelength, is 93%. This loss is dominated by the performance of the dichroic optics used to combine the beams.

  20. Efficiency measurement techniques for calibration of a prototype 34-meter-diameter beam-waveguide antenna at 8.45 and 32 GHz

    NASA Technical Reports Server (NTRS)

    Slobin, Stephen D.; Otoshi, Tom Y.; Britcliffe, Michael J.; Alvarez, Leon S.; Stewart, Scott R.; Franco, Manuel M.

    1992-01-01

    Efficiency measurements at 8.45 and 32 GHz (X and Ka bands, respectively) were carried out on the new 34 m diameter beam waveguide antenna now in use at the NASA Goldstone Deep Space Communications Complex. The use of portable test packages enabled measurements at both the Cassegrain and beam waveguide focal points. Radio sources (quasars and Venus) were used as calibrators, and updated determinations of flux and source size correction were made during the period of the measurements. Gain and efficiency determinations as a function of elevation angle are presented, and the effects of the beam waveguide system and antenna structure are clearly seen. At the beam waveguide focus, an 8.45 GHz peak efficiency of 72.38 pct was measured; at 32 GHz, 44.89 pct was measured.

  1. Polymeric waveguide prism-based electro-optic beam deflector

    NASA Astrophysics Data System (ADS)

    Sun, Lin; Kim, Jin-ha; Jang, Chiou-Hung; An, Dechang; Lu, Xuejun; Zhou, Qingjun; Taboada, John M.; Chen, Ray T.; Maki, Jeffery J.; Tang, Suning; Zhang, Hua; Steier, William H.; Zhang, Cheng H.; Dalton, Larry R.

    2001-07-01

    Beam steering devices without moving parts are highly desirable for their potential application in emerging optical technologies such as holographic optical storage systems, all optical networks, and optical switches. We demonstrate a thin-film waveguide beam deflector device that consists of an electro-optic prism array within a polymer waveguide. An electrode structure defines the prism array within the planar waveguide. The deflection efficiency of 28 mrad/kV and the maximum deflection angle of +/- 8.4 mrad at +/- 300 V are obtained for this demonstration device. Further optimization of electrode-field poling and processing is likely to improve these results by at least an order of magnitude.

  2. Fiber optic reference frequency distribution to remote beam waveguide antennas

    NASA Technical Reports Server (NTRS)

    Calhoun, Malcolm; Kuhnle, Paul; Law, Julius

    1995-01-01

    In the NASA/JPL Deep Space Network (DSN), radio science experiments (probing outer planet atmospheres, rings, gravitational waves, etc.) and very long-base interferometry (VLBI) require ultra-stable, low phase noise reference frequency signals at the user locations. Typical locations for radio science/VLBI exciters and down-converters are the cone areas of the 34 m high efficiency antennas or the 70 m antennas, located several hundred meters from the reference frequency standards. Over the past three years, fiber optic distribution links have replaced coaxial cable distribution for reference frequencies to these antenna sites. Optical fibers are the preferred medium for distribution because of their low attenuation, immunity to EMI/IWI, and temperature stability. A new network of Beam Waveguide (BWG) antennas presently under construction in the DSN requires hydrogen maser stability at tens of kilometers distance from the frequency standards central location. The topic of this paper is the design and implementation of an optical fiber distribution link which provides ultra-stable reference frequencies to users at a remote BWG antenna. The temperature profile from the earth's surface to a depth of six feet over a time period of six months was used to optimize the placement of the fiber optic cables. In-situ evaluation of the fiber optic link performance indicates Allan deviation on the order of parts in 10(exp -15) at 1000 and 10,000 seconds averaging time; thus, the link stability degradation due to environmental conditions still preserves hydrogen maser stability at the user locations. This paper reports on the implementation of optical fibers and electro-optic devices for distributing very stable, low phase noise reference signals to remote BWG antenna locations. Allan deviation and phase noise test results for a 16 km fiber optic distribution link are presented in the paper.

  3. Beam propagation method analysis of optical waveguide lenses.

    PubMed

    Ishikawa, A; Izutsu, M; Sueta, T

    1990-12-01

    Focusing characteristics of optical waveguide lenses are analyzed by the beam propagation method (BPM) instead of the ray tracing method. By use of the BPM, we can observe field distributions of a converging or diverging light beam after it passes through a waveguide lens. Variations of the spot width and magnitude of diffraction can immediately be evaluated with this calculation. The BPM calculations are used for a mode-index, Luneburg, and geodesic lenses. For the application of the method to the geodesic lens, the surface deformation is converted into an equivalent index.

  4. Copper nanorod array assisted silicon waveguide polarization beam splitter.

    PubMed

    Kim, Sangsik; Qi, Minghao

    2014-04-21

    We present the design of a three-dimensional (3D) polarization beam splitter (PBS) with a copper nanorod array placed between two silicon waveguides. The localized surface plasmon resonance (LSPR) of a metal nanorod array selectively cross-couples transverse electric (TE) mode to the coupler waveguide, while transverse magnetic (TM) mode passes through the original input waveguide without coupling. An ultra-compact and broadband PBS compared to all-dielectric devices is achieved with the LSPR. The output ports of waveguides are designed to support either TM or TE mode only to enhance the extinction ratios. Compared to silver, copper is fully compatible with complementary metal-oxide-semiconductor (CMOS) technology.

  5. Copper nanorod array assisted silicon waveguide polarization beam splitter

    PubMed Central

    Kim, Sangsik; Qi, Minghao

    2014-01-01

    We present the design of a three-dimensional (3D) polarization beam splitter (PBS) with a copper nanorod array placed between two silicon waveguides. The localized surface plasmon resonance (LSPR) of a metal nanorod array selectively cross-couples transverse electric (TE) mode to the coupler waveguide, while transverse magnetic (TM) mode passes through the original input waveguide without coupling. An ultra-compact and broadband PBS compared to all-dielectric devices is achieved with the LSPR. The output ports of waveguides are designed to support either TM or TE mode only to enhance the extinction ratios. Compared to silver, copper is fully compatible with complementary metal-oxide-semiconductor (CMOS) technology. PMID:24787839

  6. Beam-waveguide antenna performance predictions with comparisons to experimental results

    NASA Technical Reports Server (NTRS)

    Bathker, Dan A.; Veruttipong, Watt; Otoshi, Tom Y.; Cramer, Paul W., Jr.

    1992-01-01

    An overview of a NASA/JPL antenna project is presented, with specific focus on the methodology used to predict the microwave performance of a 34-m-diameter beam-waveguide (BWG) reflector antenna, designated DSS 13 (Deep Space Station 13). DSS 13 is the R&D facility serving the NASA/JPL Deep Space Network. Microwave performance predictions as well as a summary of test results for the antenna are given. The antenna has Cassegrain and centerline BWG operating modes at X-band (8.450-GHz) and Ka-band (32-GHz) frequencies. The performance predictions regarding antenna area efficiencies, corresponding beampeak gains, and for several (but not all) operating noise temperatures are found to agree reasonably well with the corresponding experimental results.

  7. The efficiency calibration of the DSS-24 34-meter beam-waveguide antenna

    NASA Technical Reports Server (NTRS)

    Alvarez, L. S.; Britcliffe, M. J.; Franco, M. M.; Stewart, S. R.; Jackson, H. J.

    1995-01-01

    Microwave performance testing of the new Deep Space Station (DSS)-24 34-m-diameter antenna was carried out during the summer of 1994. Efficiency measurements were made at the 8.45 GHz (X-band) and 32-GHz (ka-band) frequencies both at the antenna Cassegrian (f1) and beam-waveguide (f3) focal points. In addition, the antenna f3 efficiencies were measured on the DSS-24 operational 2.295-GHz (S-band) and 8.45-Ghz feeds. This article presents the efficiency determinations as a function of elevation angle along with a corresponding error analysis of the measurements. Peak measured gains and efficiencies are tabulated for all frequencies.

  8. A portable Ku-band front-end test package for beam-waveguide antenna performance evaluation

    NASA Technical Reports Server (NTRS)

    Otoshi, T. Y.; Stewart, S. R.; Franco, M. M.

    1991-01-01

    A 34-m beam-waveguide (BWG) antenna has been built a Deep Space Station 13 (DDS 13) in the Goldstone Deep Space Communications Complex. This antenna is designed to be efficient at X-, Ku-, and Ka-bands, and it is the first NASA tracking antenna to use a BWG design. The design of a Ku-band test package for the new BWG antenna at 11.7-12.2 GHz is presented. Results of linear polarization measurements with the test package on the ground are also presented. This report is the fifth in a series of articles concerned with test package design and performance.

  9. Adaptive slit beam shaping for direct laser written waveguides.

    PubMed

    Salter, P S; Jesacher, A; Spring, J B; Metcalf, B J; Thomas-Peter, N; Simmonds, R D; Langford, N K; Walmsley, I A; Booth, M J

    2012-02-15

    We demonstrate an improved method for fabricating optical waveguides in bulk materials by means of femtosecond laser writing. We use an LC spatial light modulator (SLM) to shape the beam focus by generating adaptive slit illumination in the pupil of the objective lens. A diffraction grating is applied in a strip across the SLM to simulate a slit, with the first diffracted order mapped onto the pupil plane of the objective lens while the zeroth order is blocked. This technique enables real-time control of the beam-shaping parameters during writing, facilitating the fabrication of more complicated structures than is possible using nonadaptive methods. Waveguides are demonstrated in fused silica with a coupling loss to single-mode fibers in the range of 0.2 to 0.5 dB and propagation loss <0.4 dB/cm.

  10. Projecting light beams with 3D waveguide arrays

    NASA Astrophysics Data System (ADS)

    Crespi, Andrea; Bragheri, Francesca

    2017-01-01

    Free-space light beams with complex intensity patterns, or non-trivial phase structure, are demanded in diverse fields, ranging from classical and quantum optical communications, to manipulation and imaging of microparticles and cells. Static or dynamic spatial light modulators, acting on the phase or intensity of an incoming light wave, are the conventional choices to produce beams with such non-trivial characteristics. However, interfacing these devices with optical fibers or integrated optical circuits often requires difficult alignment or cumbersome optical setups. Here we explore theoretically and with numerical simulations the potentialities of directly using the output of engineered three-dimensional waveguide arrays, illuminated with linearly polarized light, to project light beams with peculiar structures. We investigate through a collection of illustrative configurations the far field distribution, showing the possibility to achieve orbital angular momentum, or to produce elaborate intensity or phase patterns with several singularity points. We also simulate the propagation of the projected beam, showing the possibility to concentrate light. We note that these devices should be at reach of current technology, thus perspectives are open for the generation of complex free-space optical beams from integrated waveguide circuits.

  11. Beam manipulation and acceleration with Dielectric-Lined Waveguides

    SciTech Connect

    Lemery, Francois

    2015-06-01

    The development of next-generation TeV+ electron accelerators will require either immense footprints based on conventional acceleraton techniques or the development of new higher{gradient acceleration methods. One possible alternative is beam-driven acceleration in a high-impedance medium such as a dielectric-lined-waveguide (DLW), where a highcharge bunch passes through a DLW and can excite gradients on the order of GV/m. An important characteristic of this acceleration class is the transformer ratio which characterizes the energy transfer of the scheme. This dissertation discusses alternative methods to improve the transformer ratio for beam-driven acceleration and also considers the use of DLWs for beam manipulation at low energy.

  12. Cold-atom dynamics in crossed-laser-beam waveguides

    SciTech Connect

    Torrontegui, E.; Muga, J. G.; Echanobe, J.; Ruschhaupt, A.; Guery-Odelin, D.

    2010-10-15

    We study the dynamics of neutral cold atoms in an L-shaped crossed-beam optical waveguide formed by two perpendicular red-detuned lasers of different intensities and a blue-detuned laser at the corner. The motion in one sense is optimized, and the motion in the other sense may be suppressed even if it is energetically allowed. Quantum and classical simulations are performed and give similar results. Complemented with a vibrational cooling process we find a range of parameters for which this setting works as a one-way device or 'atom diode'.

  13. A microwave beam waveguide undulator for a brilliant above 100 keV photon source.

    SciTech Connect

    Kang, Y. W.

    1999-04-19

    For generation of photons above 100-keV with a magnetic field strength in the range 0.2-0.5 Tesla, an undulator wavelength {lambda}{sub u} shorter than 5 mm may be needed with beam in the Advanced Photon Source (APS) storage ring. A microwave beam waveguide undulator system has been investigated for generation of such light. The waveguide structure consists of two parallel reflector surfaces that can be derived from an elliptically cylindrical waveguide. The structure can support deflecting TE{sub m0} modes with very low microwave loss. A microwave ring resonator circuit employing the beam waveguide is considered to construct an undulator with the above requirement. Microwave properties of the beam waveguide structure have been investigated, and the design criteria for a microwave undulator are discussed.

  14. A portable X-band front-end test package for beam-waveguide antenna performance evaluation. Part 2: Tests on the antenna

    NASA Technical Reports Server (NTRS)

    Otoshi, T. Y.; Stewart, S. R.; Franco, M. M.

    1991-01-01

    Results are given for an X-band (8.45 GHz) test package for testing the new 34-m beam-waveguide antenna at Goldstone in an 'on-the-antenna' configuration. Included are X-band zenith noise temperature values and tipping-curve data obtained at the Cassegrain focal point F1 as well as at the pedestal room focal point F3. Subreflector Z-defocus test results for both F1 and F3 are also presented. The X-band test package operated well in all of the different test configurations and exceeded expected performance.

  15. Kashima 34-m Radio Telescope

    NASA Technical Reports Server (NTRS)

    Sekido, Mamoru; Kawai, Eiji

    2013-01-01

    The Kashima 34-m radio telescope has been continuously operated and maintained by the National Institute of Information and Communications Technology (NICT) as a facility of the Kashima Space Technology Center (KSTC) in Japan. This brief report summarizes the status of this telescope, the staff, and activities during 2012.

  16. Design and evaluation of an electromagnetic beam waveguide for measuring electrical properties of materials

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.

    1994-01-01

    A beam waveguide was designed that is based upon the propagation characteristics of the fundamental Gaussian beam and the focusing properties of spherical dielectric lenses. The 20-GHz, two-horn, four-lens system was constructed and experimentally evaluated by probing the field in a plane perpendicular to the beam axis at the center of the beam waveguide system. The critical parameters were determined by numerical sensitivity studies, and the lens-horn critical spacing was adjusted to better focus the beam at the probe plane. The measured performance was analyzed by consideration of higher order Gaussian-Laguerre beam modes. The beam waveguide system was successfully used in the measurements of the electromagnetic transmission properties of Shuttle thermal-protection tiles while the tile surface was being heated to reentry-level temperatures with a high-power laser.

  17. Design method for four-reflector type beam waveguide systems

    NASA Technical Reports Server (NTRS)

    Betsudan, S.; Katagi, T.; Urasaki, S.

    1986-01-01

    Discussed is a method for the design of four reflector type beam waveguide feed systems, comprised of a conical horn and 4 focused reflectors, which are used widely as the primary reflector systems for communications satellite Earth station antennas. The design parameters for these systems are clarified, the relations between each parameter are brought out based on the beam mode development, and the independent design parameters are specified. The characteristics of these systems, namely spillover loss, crosspolarization components, and frequency characteristics, and their relation to the design parameters, are also shown. It is also indicated that design parameters which decide the dimensions of the conical horn or the shape of the focused reflectors can be unerringly established once the design standard for the system has been selected as either: (1) minimizing the crosspolarization component by keeping the spillover loss to within acceptable limits, or (2) minimizing the spillover loss by maintaining the crossover components below an acceptable level and the independent design parameters, such as the respective sizes of the focused reflectors and the distances between the focussed reflectors, etc., have been established according to mechanical restrictions. A sample design is also shown. In addition to being able to clarify the effects of each of the design parameters on the system and improving insight into these systems, the efficiency of these systems will also be increased with this design method.

  18. Ultrafast Optical Beam Deflection in a Planar Waveguide for High Dynamic Range Recording at Picosecond Resolution

    SciTech Connect

    Sarantos, C H; Heebner, J E

    2008-07-02

    We report the latest performance of an ultrafast, all-optical beam deflector based on a prism array imprinted in a planar waveguide. The deflector enables single-shot, high dynamic range optical recording with picosecond resolution.

  19. On the Calculation of Noise Temperature in Beam-Waveguide Systems

    NASA Technical Reports Server (NTRS)

    Imbriale, William A.

    1996-01-01

    None given. Paper covers the NASA Deep Space Network (DSN) Goldstone Complex in Mojave, California, and their beam-waveguide (BWG) antenna complex. They discuss system noise temperature,its major contributor, and its correction.

  20. Linear analysis of a rectangular waveguide cyclotron maser with a sheet electron beam

    SciTech Connect

    Zhao Ding; Ding Yaogen; Wang Yong; Ruan Cunjun

    2010-11-15

    A linear theory for a rectangular waveguide cyclotron maser with a sheet electron beam is developed by using the Laplace transformation approach. This theory can be applied to any TE{sub mn} rectangular waveguide mode. The corresponding equations for the TM{sub mn} mode in the rectangular waveguide are also derived as a useful reference. Especially, the effect from the coupling between degenerate modes, which is induced by the nonideal rectangular waveguide walls, on the dispersion relation is considered in order to provide a more accurate model for the real devices. Through numerical calculations, the linear growth rate, launching loss, and spontaneous oscillations (caused by the absolute instability and backward wave oscillation) of this new structure can be analyzed in detail. It is worthwhile to point out that the operation at higher power levels of the rectangular waveguide sheet beam system is possible.

  1. Stressed waveguides with tubular depressed-cladding inscribed in phosphate glasses by femtosecond hollow laser beams.

    PubMed

    Long, Xuewen; Bai, Jing; Zhao, Wei; Stoian, Razvan; Hui, Rongqing; Cheng, Guanghua

    2012-08-01

    We report on the single-step fabrication of stressed optical waveguides with tubular depressed-refractive-index cladding in phosphate glasses by the use of focused femtosecond hollow laser beams. Tubelike low index regions appear under direct exposure due to material rarefaction following expansion. Strained compacted zones emerged in domains neighboring the tubular track of lower refractive index, and waveguiding occurs mainly within the tube core fabricated by the engineered femtosecond laser beam. The refractive index profile of the optical waveguide was reconstructed from the measured transmitted near-field intensity.

  2. Hollow core waveguide as mid-infrared laser modal beam filter

    SciTech Connect

    Patimisco, P.; Giglio, M.; Spagnolo, V.; Sampaolo, A.; Kriesel, J. M.; Tittel, F. K.

    2015-09-21

    A novel method for mid-IR laser beam mode cleaning employing hollow core waveguide as a modal filter element is reported. The influence of the input laser beam quality on fiber optical losses and output beam profile using a hollow core waveguide with 200 μm-bore size was investigated. Our results demonstrate that even when using a laser with a poor spatial profile, there will exist a minimum fiber length that allows transmission of only the Gaussian-like fundamental waveguide mode from the fiber, filtering out all the higher order modes. This essentially single mode output is preserved also when the waveguide is bent to a radius of curvature of 7.5 cm, which demonstrates that laser mode filtering can be realized even if a curved light path is required.

  3. Coherent beam combination of fiber lasers with a strongly confined waveguide: numerical model.

    PubMed

    Tao, Rumao; Si, Lei; Ma, Yanxing; Zhou, Pu; Liu, Zejin

    2012-08-20

    Self-imaging properties of fiber lasers in a strongly confined waveguide (SCW) and their application in coherent beam combination (CBC) are studied theoretically. Analytical formulas are derived for the positions, amplitudes, and phases of the N images at the end of an SCW, which is important for quantitative analysis of waveguide CBC. The formulas are verified with experimental results and numerical simulation of a finite difference beam propagation method (BPM). The error of our analytical formulas is less than 6%, which can be reduced to less than 1.5% with Goos-Hahnchen penetration depth considered. Based on the theoretical model and BPM, we studied the combination of two laser beams based on an SCW. The effects of the waveguide refractive index and Gaussian beam waist are studied. We also simulated the CBC of nine and 16 fiber lasers, and a single beam without side lobes was achieved.

  4. Design and implementation of a beam-waveguide mirror control system for vernier pointing of the DSS-13 antenna

    NASA Technical Reports Server (NTRS)

    Alvarez, L. S.; Moore, M.; Veruttipong, W.; Andres, E.

    1994-01-01

    The design and implementation of an antenna beam-waveguide (BWG) mirror position control system at the DSS-13 34-m antenna is presented. While it has several potential applications, a positioner on the last flat-plate BWG mirror (M6) at DSS 13 is installed to demonstrate the conical scan (conscan) angle-tracking technique at the Ka-band (32-GHz) operating frequency. Radio frequency (RF) beam-scanning predictions for the M6 mirror, computed from a diffraction analysis, are presented. From these predictions, position control system requirements are then derived. The final mechanical positioner and servo system designs, as implemented at DSS 13, are illustrated with detailed design descriptions given in the appendices. Preliminary measurements of antenna Ka-band beam scan versus M6 mirror tilt made at DSS 13 in December 1993 are presented. After reduction, the initial measurements are shown to be in agreement with the RF predicts. Plans for preliminary conscan experimentation at DSS 13 are summarized.

  5. Propagation of a laser beam in a time-varying waveguide. [plasma heating for controlled fusion

    NASA Technical Reports Server (NTRS)

    Chapman, J. M.; Kevorkian, J.

    1978-01-01

    The propagation of an axisymmetric laser beam in a plasma column having a radially parabolic electron density distribution is reported. For the case of an axially uniform waveguide it is found that the basic characteristics of alternating focusing and defocusing beams are maintained. However, the intensity distribution is changed at the foci and outer-beam regions. The features of paraxial beam propagation are discussed with reference to axially varying waveguides. Laser plasma coupling is considered noting the case where laser heating produces a density distribution radially parabolic near the axis and the energy absorbed over the focal length of the plasma is small. It is found that: (1) beam-propagation stability is governed by the relative magnitude of the density fluctuations existing in the axial variation of the waveguides due to laser heating, and (2) for beam propagation in a time-varying waveguide, the global instability of the propagation is a function of the initial fluctuation growth rate as compared to the initial time rate of change in the radial curvature of the waveguide.

  6. Gain measurements on a waveguide FEL amplifier with pre-bunched electron beam

    SciTech Connect

    Dearden, G.; Mayhew, S.E.; Lucas, J.

    1995-12-31

    A theory proposed by Doria et al. suggests that a synchronous pre-bunched electron beam should amplify radiation with a power gain which is inversely proportional to the square root of the input power. We have measured the power gain experimentally for a waveguide FEL system using a low-voltage (55kV) pre-bunched electron beam produced by a waveguide cavity buncher. The gain has been observed as a function of the electron beam current and energy; the results are compared with theory.

  7. A novel method of the splitting ratio measurement of waveguide coupler using laser beam profiler

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Liu, Huilan; Feng, Lishuang; Liu, Jinrong

    2016-10-01

    At present, the splitting ratio test of the waveguide coupler usually adopts optical fiber coupling test method. The coupling process is complex and the coupling loss is different in two pigtail fibers, what can result in error in the splitting ratio. A new method for testing the splitting ratio of waveguide coupler using laser beam profiler is presented. Laser beam profiler is used to scan the horizontal directional light field in the cross-section of the waveguide. The measurement data are obtained. Data fitting and processing is carried out by data processing program. Finally, two light field curves are gotten, and the splitting ratio of the waveguide coupler is calculated. The feasibility of the new method is verified using fiber coupler. The error using the new method is only 0.68%. The waveguide coupler testing platform is built. The relationship between the measurement range of the splitting ratio and the minimum distances of the waveguide coupler is analyzed. The research provides an effective and convenient method for the test of splitting ratio of waveguide coupler.

  8. Self-imaging and high-beam-quality operation in multi-mode planar waveguide optical amplifiers.

    PubMed

    Baker, Howard; Lee, Jason; Hall, Denis

    2002-03-25

    Self-imaging in a multi-mode active waveguide is examined as a method to preserve beam quality when amplifying a fundamental gaussian beam. Misalignment tolerance, gain saturation and thermal lensing effects are evaluated for the use of self-imaging in high average power, diodepumped, planar waveguide lasers.

  9. waveguides

    NASA Astrophysics Data System (ADS)

    Bauters, Jared F.; Adleman, James R.; Heck, Martijn J. R.; Bowers, John E.

    2014-08-01

    Planar waveguides with ultra-low propagation loss are necessary for integrating optoelectronic systems that require long optical time delay or narrowband optical filters. In this paper, we review an ultra-low loss planar waveguide platform that uses thin (<150 nm) Si3N4 cores and thick (>8 μm) SiO2 cladding layers. In particular, we discuss the performance of arrayed waveguide gratings (AWGs) fabricated with the platform. We propose the use of a practical design method that takes the statistical nature of worst-case crosstalk into account. We also demonstrate the measurement of amplitude and phase error distributions in an AWG using an optical backscatter reflectometer. We show that the waveguides have phase errors small enough to achieve AWG crosstalk below -30 dB, while crosstalk below -40 dB should also be possible with optimization of the component design.

  10. Intracavity Beam Behavior in Hybrid Resonator Planar-Waveguide CO(2) Lasers.

    PubMed

    Wasilewski, B; Baker, H J; Hall, D R

    2000-11-20

    We describe a combined computer simulation and experimental investigation of the intracavity spatial beam profile characteristics of a planar-waveguide rf-excited CO(2) laser that incorporates a hybrid waveguide confocal unstable negative-branch resonator. The study includes results for the intracavity lateral beam intensity profile and output power of the laser as a function of resonator mirror misalignment. In addition, the behavior of the unstable resonator, observed experimentally and predicted by the simulation, in generating localized high intensity hot-spots when it is subjected to relatively large misalignment angles is reported.

  11. The 1- to 4-K refrigeration techniques for cooling masers on a beam waveguide antenna

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1986-01-01

    The status of technology is reported for various 1- to 4-K commercially available refrigeration systems capable of producing 1.5-K refrigeration to cool masers and superconducting cavity oscillators on the proposed beam waveguide antenna. The design requirements for the refrigeration system and the cryostat are presented. A continuously operating evaporation refrigerator that uses capillary tubing to provide a continuous, self-regulating flow of helium at approximately 1.5 K has been selected as the first refrigerator design for the beam waveguide antenna.

  12. An Analysis of Near Fields of 34m Antennas of JPL/NASA Deep Space Network

    NASA Technical Reports Server (NTRS)

    Jamnejad, Vahraz; Juan, Nuria Llombart

    2011-01-01

    This paper addresses the issue of calculating near fields of the 34m Beam Waveguide (BWG) antennas of the NASA/JPL Deep Space Network (DSN). Calculating the near fields of DSN antennas are of interest in receive mode where the transmitting signals from nearby flying objects such as helicopters and airplanes could interfere with the operation of sensitive RF receiving system of DSN antennas, and in the transmit mode where fields from high-powered DSN antennas interfere with receivers on nearby flying objects, as well as safety considerations for the operators and visitors to the grounds surrounding the antenna sites. A complete and detailed analysis has been performed using PO/PTD techniques, including surface errors and support struts effects. Some results are presented, including comparisons with preliminary field tests.

  13. Diffractionless beam in free space with adiabatic changing refractive index in a single mode tapered slab waveguide.

    PubMed

    Tsai, Chang-Ching; Vinegoni, Claudio; Weissleder, Ralph

    2009-11-23

    We propose a novel design to produce a free space diffractionless beam by adiabatically reducing the difference of the refractive index between the core and the cladding regions of a single mode tapered slab waveguide. To ensure only one propagating eigenmode in the adiabatic transition, the correlation of the waveguide core width and the refractive index is investigated. Under the adiabatic condition, we demonstrate that our waveguide can emit a diffractionless beam in free space up to 500 micrometers maintaining 72% of its original peak intensity. The proposed waveguide could find excellent applications for imaging purposes where an extended depth of field is required.

  14. Large-distance refocusing of a submicrometre beam from an X-ray waveguide.

    PubMed

    Lagomarsino, S; Bukreeva, I; Mocella, V; Surpi, A; Bigault, T; Cedola, A

    2006-01-01

    Among the several available X-ray optics for synchrotron radiation producing micrometre and submicrometre beams with high intensity, the X-ray waveguide (WG) can provide the smallest hard X-ray beam in one direction. A drawback of this optics is that, owing to the divergence at the exit, a nanometre-sized spot on the sample can only be obtained if this is within a few micrometres of the WG exit. Another limitation is that in planar WGs the beam is compressed in only one direction. Here, using a dynamically bent elliptical Si/Pt mirror, the guided X-ray beam has been refocused at approximately 1 m from the waveguide exit. The large working distance between the device and the submicrometre focus leaves some space for sample environment (vacuum chamber, furnace, cryostat, magnets, high-pressure device etc.) and allows cross-coupled geometries with two WGs for efficient compression in two directions.

  15. A portable Ka-band front-end test package for beam-waveguide antenna performance evaluation. Part 2: Tests on the antenna

    NASA Technical Reports Server (NTRS)

    Otoshi, T. Y.; Stewart, S. R.; Franco, M. M.

    1991-01-01

    In part one of this article, a description was given of a Ka-band test package developed to enable testing of the Deep Space Station (DDS) 13 34-m beam-waveguide (BWG) antenna at 32 GHz. Test results were given for the Ka-band test package in an on-the-ground test configuration. This article is a companion article concerned with Ka-band test results for the test package in an on-the-antenna test configuration. Included are Ka-band zenith noise-temperature values, tipping-curve data, and subreflector test results obtained at the Cassegrain focal point, as well as at the final BWG focal point (located in a subterranean pedestal room). Test results show that, through the use of the Ka-band test package, the BWG antenna performance was successfully evaluated at Ka-band. The Ka-band test package operated well in all of the different antenna test configurations.

  16. Terahertz beam focusing based on plasmonic waveguide scattering

    NASA Astrophysics Data System (ADS)

    Monnai, Yasuaki; Altmann, Kristian; Jansen, Christian; Koch, Martin; Hillmer, Hartmut; Shinoda, Hiroyuki

    2012-10-01

    We demonstrate free-space focusing of terahertz (THz) radiation by scattering plasmonic surface-waves into the air. We use a grating of shallow holes which contains non-equidistant defects which act as scattering centers. The scattering occurs with defined phase delays such that the waves emitted in free-space interfere constructively to form a focus above the waveguide surface. In contrast to conventional lenses, this structure does not require any free-space on its backside and has great potential for integrated THz optics.

  17. High order mode beam waveguide for technological medium power millimeter wave applications

    SciTech Connect

    Rio, C. del; Gonzalo, R.; Marin, M.; Sorolla, M.; Moebius, A.; Thumm, M.

    1995-12-31

    The use of medium power millimeter CW gyrotrons (10-30 kW and 30-100 GHz) has several potential applications in advanced materials processing. Since a stochastic field distribution in the applicator is desirable no pencil beam is necessary. Then the possibility to couple the circular symmetric gyrotron output to a higher order free space mode can be considered. Beam waveguides based on iterative reflection of such high order beams on properly disigned mirrors opens the possibility to increase the efficiency and to reduce costs of present compact transmission lines in gyrotron technological systems.

  18. Enhancement of the output power of terahertz folded waveguide oscillator by two parallel electron beams

    SciTech Connect

    Li, Ke Cao, Miaomiao; Liu, Wenxin Wang, Yong; Liao, Suying

    2015-11-15

    A novel two-beam folded waveguide (FW) oscillator is presented for the purpose of gaining higher power with a small-size circuit compared with the normal FW oscillator. The high-frequency characteristics of the two-beam FW, including dispersion and interaction impedance, were investigated by the numerical simulation and compared with the one-beam FW. The radio-frequency loss of the two-beam FW was also analyzed. A 3-D particle-in-cell code CHIPIC was applied to analyze and optimize the performance of a G-band two-beam FW oscillator. The influences of the distance between the two beam tunnels, beam voltage, the number of periods, magnetic field, radius of beam tunnel, and the packing ratio on the circuit performance are investigated in detail. Compared with a one-beam circuit, a larger output power of the two-beam circuit with the same beam power was observed by the simulation. Moreover, the start-oscillation current of two-beam circuit is much lower than the one-beam circuit with better performance. It will favor the miniaturized design of the high-power terahertz oscillator.

  19. Microwave beamed power technology improvement. [magnetrons and slotted waveguide arrays

    NASA Technical Reports Server (NTRS)

    Brown, W. C.

    1980-01-01

    The magnetron directional amplifier was tested for (1) phase shift and power output as a function of gain, anode current, and anode voltage, (2) background noise and harmonics in the output, (3) long life potential of the magnetron cathode, and (4) high operational efficiency. Examples of results were an adequate range of current and voltage over which 20 dB of amplification could be obtained, spectral noise density 155 dB below the carrier, 81.7% overall efficiency, and potential cathode life of 50 years in a design for solar power satellite use. A fabrication method was used to fabricate a 64 slot, 30 in square slotted waveguide array module from 0.020 in thick aluminum sheet. The test results on the array are discussed.

  20. All-in-one 4-telescope beam combination with a zig-zag array of waveguides

    NASA Astrophysics Data System (ADS)

    Diener, Romina; Minardi, Stefano; Tepper, Jan; Nolte, Stefan; Labadie, Lucas

    2016-08-01

    In this work we propose a new geometry of discrete beam combiners (DBC) for spectrally-resolved stellar interferometry which overcomes limitations of previous designs. The new beam combiner is based on an array of coupled waveguides arranged in zig-zag pattern. It has been numerically optimized for the combination of 4 telescopes and engineered to operate in the L-band. We manufactured a first sample by direct laser writing in Gallium Lanthanum Sulfide glass, a highly transmissive material in the mid-infrared (550 nm to 10 μm). Initial near-field characterization of the fabricated sample at a wavelength of 3.4 μm are encouraging, but highlighted the necessity of a better control of the polarization dispersion of individual waveguides, as well as induced stresses from manufacturing process.

  1. Compensation of Gravity-Induced Structural Deformations on a Beam- Waveguide Antenna Using a Deformable Mirror

    NASA Technical Reports Server (NTRS)

    Imbriale, W. A.; Moore, M.; Rochblatt, D. J.; Veruttipong, W.

    1995-01-01

    At the NASA Deep Space Network (DSN) Goldstone Complex, a 34-meter- diameter beam-waveguide antenna, DSS-13, was constructed in 1988-1990 and has become an integral part of an advanced systems program and a test bed for technologies being developed to introduce Ka-band (32 GHz) frequencies into the DSN. A method for compensating the gravity- induced structural deformations in this large antenna is presented.

  2. Observation of Nonlinear Self-Trapping of Broad Beams in Defocusing Waveguide Arrays

    SciTech Connect

    Bennet, Francis H.; Haslinger, Franz; Neshev, Dragomir N.; Kivshar, Yuri S.; Alexander, Tristram J.; Mitchell, Arnan

    2011-03-04

    We demonstrate experimentally the localization of broad optical beams in periodic arrays of optical waveguides with defocusing nonlinearity. This observation in optics is linked to nonlinear self-trapping of Bose-Einstein-condensed atoms in stationary periodic potentials being associated with the generation of truncated nonlinear Bloch states, existing in the gaps of the linear transmission spectrum. We reveal that unlike gap solitons, these novel localized states can have an arbitrary width defined solely by the size of the input beam while independent of nonlinearity.

  3. Design and fabrication of a sub-millimeter multi-beam folded waveguide structure

    NASA Astrophysics Data System (ADS)

    Yan, Sheng-mei; Su, Wei; Zhang, Guo-liang

    2017-01-01

    A novel multi-beam folded waveguide (MBFW) circuit, which can enhance the output power and interaction efficiency of sub-terahertz (THz) traveling wave tube (TWT), is presented in the paper. Operating with fundamental mode and multiple electron beams means that a larger beam current can be used for a higher output power. The characteristics of the MBFW structure are analyzed and optimized. Compared with the single-beam folded waveguide (SBFW) TWT, the output power of the MBFW TWT increases from 3.64 W to 25.45 W at 140 GHz and its electronic efficiency increases from 1.06% to 7.4% under the conditions of an input peak power of 10 mW, a beam voltage of 9.55 kV and a current of 12 mA. The optimized MBFW structure can be successfully fabricated by micro milling, with dimension errors below expectation, and the measured transmission characteristics are in good agreement with the design.

  4. Lunar Noise-Temperature Increase Measurements at S-Band, X-Band, and Ka-Band Using a 34-Meter-Diameter Beam-Waveguide Antenna

    NASA Astrophysics Data System (ADS)

    Morabito, D. D.

    2006-08-01

    The Moon radiates energy at infrared and microwave wavelengths, in addition to reflecting sunlight at optical wavelengths. As a result, an antenna pointed at or near the Moon will cause an increase in receiver noise temperature that needs to be accounted for in telemetry, radio science, or ranging link budgets. The Deep Space Network may be required to use its antennas in future lunar robotic or human missions, and thus it is important to understand the nature of this temperature increase as a function of observing frequency, lunar phase, and angular offset of the antenna beam from the center of the lunar disk. This article quantifies such a set of measurements acquired at DSS 13, a 34-m-diameter research and development beam-waveguide antenna located at Goldstone, California, at three different telecommunication frequencies, S-band (2.3 GHz), X-band (8.4 GHz), and Ka-band (32 GHz), over a wide range of lunar phase, for both disk-centered and limb-centered positions of the antenna beam.

  5. Fabrication of LiNbO3-As2S3 waveguides for beam steering applications

    NASA Astrophysics Data System (ADS)

    Macik, Dwayne D.; Madsen, Christi K.

    2016-09-01

    A hybrid annealed proton exchange (APE) waveguide with a vertically integrated arsenic trisulfide (As2S3) waveguide on a lithium niobate (LiNbO3) substrate is used to create an optical phased array (OPA) that allows for the non-mechanical steering of 1550 nm light on an integrated optic platform. The high electro-optic coefficient of the x-cut y-propagating LiNbO3 (r33 = 30.8 pm/V) is utilized by electrode structures fabricated on the LiNbO3 substrate to create a low-power, lowloss beam steering with high-speed bandwidths, capable of 10 GHz and larger as demonstrated by commercial LiNbO3 modulators. The As2S3 waveguide is introduced because of its high refractive index, which leads to a highly confined optical mode. Design and fabrication are presented for a large full width steering angle of 34°, representing an order of magnitude improvement over low-confinement, diffused LiNbO3 waveguides and two orders of magnitude improvement over other reported LiNbO3 OPAs.

  6. Coherent Cherenkov-Cyclotron Radiation Excited by an Electron Beam in a Metamaterial Waveguide

    NASA Astrophysics Data System (ADS)

    Hummelt, J. S.; Lu, X.; Xu, H.; Mastovsky, I.; Shapiro, M. A.; Temkin, R. J.

    2016-12-01

    An electron beam passing through a metamaterial structure is predicted to generate reversed Cherenkov radiation, an unusual and potentially very useful property. We present an experimental test of this phenomenon using an intense electron beam passing through a metamaterial loaded waveguide. Power levels of up to 5 MW are observed in backward wave modes at a frequency of 2.40 GHz using a one microsecond pulsed electron beam of 490 keV, 84 A in a 400 G magnetic field. Contrary to expectations, the output power is not generated in the Cherenkov mode. Instead, the presence of the magnetic field, which is required to transport the electron beam, induces a Cherenkov-cyclotron (or anomalous Doppler) instability at a frequency equal to the Cherenkov frequency minus the cyclotron frequency. Nonlinear simulations indicate that the Cherenkov-cyclotron mode should dominate over the Cherenkov instability at a lower magnetic field where the highest output power is obtained.

  7. Independent control of beam astigmatism and ellipticity using a SLM for fs-laser waveguide writing.

    PubMed

    Ruiz de la Cruz, A; Ferrer, A; Gawelda, W; Puerto, D; Sosa, M Galván; Siegel, J; Solis, J

    2009-11-09

    We have used a low repetition rate (1 kHz), femtosecond laser amplifier in combination with a spatial light modulator (SLM) to write optical waveguides with controllable cross-section inside a phosphate glass sample. The SLM is used to induce a controllable amount of astigmatism in the beam wavefront while the beam ellipticity is controlled through the propagation distance from the SLM to the focusing optics of the writing set-up. The beam astigmatism leads to the formation of two separate disk-shaped foci lying in orthogonal planes. Additionally, the ellipticity has the effect of enabling control over the relative peak irradiances of the two foci, making it possible to bring the peak irradiance of one of them below the material transformation threshold. This allows producing a single waveguide with controllable cross-section. Numerical simulations of the irradiance distribution at the focal region under different beam shaping conditions are compared to in situ obtained experimental plasma emission images and structures produced inside the glass, leading to a very satisfactory agreement. Finally, guiding structures with controllable cross-section are successfully produced in the phosphate glass using this approach.

  8. Predicting folded beam waveguide absorber behavior using full translational and rotational degree of freedom coupling

    NASA Astrophysics Data System (ADS)

    Pray, Carl; Campbell, Robert; Hambric, Stephen; Munro, Andrew

    2003-10-01

    Folded beam waveguide absorbers (WGAs) have been shown to be effective low-frequency damping devices. Early WGA studies were unable to accurately predict this damping behavior. These studies used only translational degrees of freedom (DOFs), which resulted in the underestimation of the WGA damping performance. A recent study [Munro and Hambric, ``Modeling folded beam waveguide absorber behavior using translational and rotational degree of freedom frequency response function coupling,'' Proc. NOISE-CON 2003] used translational and rotational DOF frequency response functions to predict folded beam WGA behavior when attached to a thick rectangular plate, where the plate and WGA rotational DOFs were estimated using the finite-differencing method. Each plate and WGA DOF was coupled independently using frequency domain substructure synthesis (FDSS) [Jetmundsen et al., ``Generalized frequency domain synthesis,'' J. Am. Helicopter Soc. 55-64, Jan (1988)], and the damping contributions due to each DOF were summed to give the total WGA damping prediction. This method gives a much improved damping estimate from previous methods but is inefficient for complex problems. In this study, all the DOFs for the plate and WGA are combined simultaneously using FDSS to predict the WGA damping behavior and plate response with folded beam WGAs attached.

  9. Beam shaping of laser diode radiation by waveguides with arbitrary cladding geometry written with fs-laser radiation.

    PubMed

    Beckmann, Dennis; Schnitzler, Daniel; Schaefer, Dagmar; Gottmann, Jens; Kelbassa, Ingomar

    2011-12-05

    Waveguides with arbitrary cross sections are written in the volume of Al(2)O(3)-crystals using tightly focused femtosecond laser radiation. Utilizing a scanning system with large numerical aperture, complex cladding geometries are realized with a precision around 0.5 µm and a scanning speed up to 100 mm/s. Individual beam and mode shaping of laser diode radiation is demonstrated by varying the design of the waveguide cladding. The influence of the writing parameters on the waveguide properties are investigated resulting in a numerical aperture of the waveguides in the range of 0.1. This direct laser writing technique enables optical devices which could possibly replace bulky beam shaping setups with an integrated solution.

  10. A research of W-band folded waveguide traveling wave tube with elliptical sheet electron beam

    SciTech Connect

    Guo Guo; Wei Yanyu; Yue Lingna; Gong Yubin; Zhao Guoqing; Huang Minzhi; Tang Tao; Wang Wenxiang

    2012-09-15

    Folded waveguide (FWG) traveling wave tube (TWT), which shows advantages in high power capacity, moderate bandwidth, and low-cost fabrication, has become the focus of vacuum electronics recently. Sheet electron beam devices are better suited for producing radiation sources with large power in millimeter wave spectrum due to their characteristics of relatively low space charge fields and large transport current. A FWG TWT with elliptical sheet beam working in W-band is presented in this paper, with the analysis of its dispersion characteristics, coupling impedance, transmission properties, and interaction characteristics. A comparison is also made with the traditional FWG TWT. Simulation results lead to the conclusion that the FWG TWT with elliptical sheet beam investigated in this paper can make full use of relatively large electric fields and thus generate large output power with the same electric current density.

  11. Stabilization of three-wave vortex beams in the waveguide

    NASA Astrophysics Data System (ADS)

    Gammal, Arnaldo; Malomed, Boris A.

    2015-04-01

    We consider two-dimensional (2D) localized vortical modes in the three-wave system with the quadratic ({{χ }(2)}) nonlinearity, alias nondegenerate second-harmonic (SH)-generating system, guided by the isotropic harmonic-oscillator (alias parabolic) confining potential. In addition to the straightforward realization in optics, the system models mixed atomic-molecular Bose-Einstein condensates. The main issue is stability of the vortex modes, which is investigated through computation of instability growth rates for eigenmodes of small perturbations, and by means of direct simulations. The threshold of parametric instability for single-color beams, represented solely by the SH with zero vorticity, is found in an analytical form with the help of the variational approximation. Trapped states with vorticities ≤ft( +1,-1,0 \\right) in the two fundamental-frequency components and the SH one (the so-called hidden-vorticity modes) are completely unstable. Also unstable are semi-vortices, with component vorticities ≤ft( 1,0,1 \\right). However, full vortices, with charges ≤ft( 1,1,2 \\right), have a well-defined stability region. Unstable full vortices feature regions of robust dynamical behavior, where they periodically split and recombine, keeping their vortical content.

  12. Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses

    NASA Astrophysics Data System (ADS)

    Ams, Martin; Marshall, G. D.; Spence, D. J.; Withford, M. J.

    2005-07-01

    We report both theoretical and experimental results of a slit beam shaping configuration for fabricating photonic waveguides by use of femtosecond laser pulses. Most importantly we show the method supports focusing objectives with a long depth of field and allows the direct-writing of microstructures with circular cross-sections whilst employing a perpendicular writing scheme. We applied this technique to write low loss (0.39 dB/cm), single mode waveguides in phosphate glass.

  13. Optical waveguide beam splitters based on hybrid metal-dielectric-semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Li, Yunyun; Liang, Junwu; Zhang, Qinglin; Zhou, Zidong; Li, Honglai; Fan, Xiaopeng; Wang, Xiaoxia; Fan, Peng; Yang, Yankun; Guo, Pengfei; Zhuang, Xiujuan; Zhu, Xiaoli; Liao, Lei; Pan, Anlian

    2015-11-01

    Miniature integration is desirable for the future photonics circuit. Low-dimensional semiconductor and metal nanostructures is the potential building blocks in compact photonic circuits for their unique electronic and optical properties. In this work, a hybrid metal-dielectric-semiconductor nanostructure is designed and fabricated to realizing a nano-scale optical waveguide beam splitter, which is constructed with the sandwiched structure of a single CdS nanoribbon/HfO2 thin film/Au nanodisk arrays. Micro-optical investigations reveal that the guided light outputting at the terminal end of the CdS ribbon is well separated into several light spots. Numerical simulations further demonstrate that the beam splitting mechanism is attributed to the strong electromagnetic coupling between the Au nanodisks and light guided in the nanoribbon. The number of the split beams (light spots) at the terminal end of the nanoribbon is mainly determined by the number of the Au nanodisk rows, as well as the distance of the blank region between the nanodisks array and the end of the CdS ribbon, owing to the interference between the split beams. These optical beam splitters may find potential applications in high-density integrated photonic circuits and systems.

  14. Theory of beam-plasma instability in a periodic plasma-filled waveguide.

    PubMed

    Zaginaylov, G I; Rozhkov, A A; Raguin, J Y

    1999-12-01

    The beam-plasma wave interaction in a periodic plasma-filled waveguide is treated in a mathematically correct manner on the basis of the integral equation (IE) method. It has been shown that the relevant boundary-value problem could be reduced to an IE with a singular kernel for the longitudinal component of the electric field on the waveguide axis. The regularization of the IE was performed by extracting the static part of the kernel. The resulting IE of the second kind with a regular kernel, being rather convenient for a numerical analysis, is treated in a quasistatic approximation as a spectral problem. First-order expressions for eigenfunctions, and an infinite set of dispersion relations linking a wave number and frequency of plasma oscillations which separate radial branches of plasma oscillations from axial ones, have been obtained in the closed analytical form, thus enabling us to avoid the problem with the so-called "dense" spectrum. The solutions of the relevant "cold" dispersion relations establish a periodical dependence of the frequency on the wave number over several periods within the accuracy of order of the neglected terms. In the presence of an electron beam they turn out to be unstable near frequencies providing the resonances of the beam with spatial plasma harmonics. Evaluations of the instability saturation level predict a more efficient beam-plasma wave energy transfer compared with those following from a conventional theoretical analysis based on the formulation of a dispersion relation in terms of an infinite determinant, with following truncation of the latter to the finite sized relation.

  15. Excitation of the surface flute waves in electron cyclotron frequency range by internal rotating electron beam in a coaxial waveguide

    NASA Astrophysics Data System (ADS)

    Blednov, O.; Girka, I.; Girka, V.; Pavlenko, I.; Sydora, R.

    2014-12-01

    The initial stage of interaction between a gyrating beam of electrons, which move along Larmor orbits in a narrow gap between a cylindrical plasma layer and an internal screen of a metal coaxial waveguide and electromagnetic eigen waves, is studied theoretically. These waves are extraordinary polarized ones; they propagate along the azimuthal angle across an axial external steady magnetic field in the electron cyclotron frequency range. The numerical analysis shows that the excitation process is stable enough in respect to changing plasma waveguide parameters. The wider the plasma layer, the broader the range of plasma waveguide parameters within which effective wave excitation takes place. The main influence on the excitation of these modes is performed by the applied axial magnetic field, namely: its increase leads to an increase of growth rate and a broadening of the range of the waveguide parameters within which wave excitation is effective.

  16. Submicrometre beams from a hard X-ray waveguide at a third-generation synchrotron radiation source.

    PubMed

    Cedola, A; Lagomarsino, S; Di Fonzo, S; Jark, W; Riekel, C; Deschamps, P

    1998-01-01

    The use of an X-ray waveguide for scattering experiments at an undulator of a third-generation synchrotron radiation source is discussed. The performance with a perfect crystal monochromator, multilayer monochromator and focusing mirror is explored. A maximum flux of 8 x 109 photons s(-1) at lambda = 0.083 nm was obtained for a 0.15 (V) x 600 (H) micron(2) beam at the exit of the waveguide with a multilayer monochromator. The combination of an Si (111) monochromator and ellipsoidal mirror resulted in a flux of approximately 10(9) photons s(-1) but with a horizontal compression of the beam to approximately 30 micron. The use of the waveguide in diffraction experiments is addressed.

  17. Coherent Cherenkov-Cyclotron Radiation Excited by an Electron Beam in a Metamaterial Waveguide.

    PubMed

    Hummelt, J S; Lu, X; Xu, H; Mastovsky, I; Shapiro, M A; Temkin, R J

    2016-12-02

    An electron beam passing through a metamaterial structure is predicted to generate reversed Cherenkov radiation, an unusual and potentially very useful property. We present an experimental test of this phenomenon using an intense electron beam passing through a metamaterial loaded waveguide. Power levels of up to 5 MW are observed in backward wave modes at a frequency of 2.40 GHz using a one microsecond pulsed electron beam of 490 keV, 84 A in a 400 G magnetic field. Contrary to expectations, the output power is not generated in the Cherenkov mode. Instead, the presence of the magnetic field, which is required to transport the electron beam, induces a Cherenkov-cyclotron (or anomalous Doppler) instability at a frequency equal to the Cherenkov frequency minus the cyclotron frequency. Nonlinear simulations indicate that the Cherenkov-cyclotron mode should dominate over the Cherenkov instability at a lower magnetic field where the highest output power is obtained.

  18. Stress-induced waveguides in Nd:YAG by simultaneous double-beam irradiation with femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Castillo, Gabriel R.; Romero, Carolina; Lifante, Ginés; Jaque, Daniel; Chen, Feng; Varela, Óscar; García-García, Enrique; Méndez, Cruz; Camacho-López, Santiago; Vázquez de Aldana, Javier R.

    2016-01-01

    We report on the fabrication of stress-induced waveguides in Nd:YAG (neodymium doped yttrium aluminum garnet, Nd:Y3Al5O12) by simultaneous double-beam irradiation with femtosecond laser pulses. An interferometer was used to generate two femtosecond laser beams that, focused with certain lateral separation inside the crystal, produced two parallel damage tracks with a single scan. The propagation of the mechanical waves simultaneously created in both focal spots produced a highly symmetrical stress field that is clearly revealed in micro-luminescence maps. The optical properties of the double-beam waveguides are studied and compared to those of single-beam irradiation, showing relevant differences. The creation of more symmetric stress patterns and a slight reduction of propagation losses are explained in terms of the fact that simultaneous inscription allows for a drastic reduction in the magnitude of "incubation" effects related to the existence of pre-damaged states.

  19. Quasi-phase matching and quantum control of high harmonic generation in waveguides using counterpropagating beams

    DOEpatents

    Zhang, Xiaoshi; Lytle, Amy L.; Cohen, Oren; Kapteyn, Henry C.; Murnane, Margaret M.

    2010-11-09

    All-optical quasi-phase matching (QPM) uses a train of counterpropagating pulses to enhance high-order harmonic generation (HHG) in a hollow waveguide. A pump pulse enters one end of the waveguide, and causes HHG in the waveguide. The counterpropagation pulses enter the other end of the waveguide and interact with the pump pulses to cause QPM within the waveguide, enhancing the HHG.

  20. Thermal-induced two dimensional beam distortion in planar waveguide amplifiers.

    PubMed

    Wang, Xiao-Jun; Ke, Wei-Wei; Su, Hua

    2013-07-29

    Mode characteristics in the solid-state planar waveguide (PWG) laser amplifiers are investigated theoretically, in consideration of the temperature gradient generated by cooling across the thickness and by pumping inhomogeneity along the width direction. When variation of the refractive index along the width direction is dominated by the lower spatial frequencies, the vector wave equation is solved analytically by means of the perturbation method. It is similar to the zigzag slab amplifier in which the phase aberration depending on the width coordinate plays the most important role to cause degradation of the beam quality. The crossing mode distortions owing to two dimension nature of the index variations are illustrated, and that mode profile is varied by the index variation along both the thickness and the width directions. Modes in the single-mode or the few-mode PWGs are shown to suffer weaker thermal-induced distortion across the thickness than those in the multi-mode PWGs.

  1. Novel solutions to low-frequency problems with geometrically designed beam-waveguide systems

    NASA Technical Reports Server (NTRS)

    Imbriale, W. A.; Esquivel, M. S.; Manshadi, F.

    1995-01-01

    The poor low-frequency performance of geometrically designed beam-waveguide (BWG) antennas is shown to be caused by the diffraction phase centers being far from the geometrical optics mirror focus, resulting in substantial spillover and defocusing loss. Two novel solutions are proposed: (1) reposition the mirrors to focus low frequencies and redesign the high frequencies to utilize the new mirror positions, and (2) redesign the input feed system to provide an optimum solution for the low frequency. A novel use of the conjugate phase-matching technique is utilized to design the optimum low-frequency feed system, and the new feed system has been implemented in the JPL research and development BWG as part of a dual S-/X-band (2.3 GHz/8.45 GHz) feed system. The new S-band feed system is shown to perform significantly better than the original geometrically designed system.

  2. Analysis of the EM scattering from arbitrary open-ended waveguide cavities using axial Gaussian Beam tracking

    NASA Technical Reports Server (NTRS)

    Burkholder, R. J.; Pathak, P. H.

    1988-01-01

    The electromagnetic (EM) scattering from a planar termination located inside relatively arbitrarily shaped open-ended waveguide cavities with smoothly curved interior walls is analyzed using a Gaussian Beam (GB) expansion of the incident plane wave fields in the open end. The cavities under consideration may contain perfectly-conducting interior walls with or without a thin layer of material coating, or the walls may be characterized by an impedance boundary condition. In the present approach, the GB's are tracked only to the termination of the waveguide cavity via beam reflections from interior waveguide cavity walls. The Gaussian beams are tracked approximately only along their beam axes; this approximation which remains valid for relatively well focussed beams assumes that an incident GB gives rise to a reflected GB with parameters related to the incident beam and the radius of curvature of the wall. It is found that this approximation breaks down for GB's which come close to grazing a convex surface and when the width of the incident beam is comparable to the radius of curvature of the surface. The expansion of the fields at the open end depend on the incidence angle only through the expansion coefficients, so the GB's need to be tracked through the waveguide cavity only once for a wide range of incidence angles. At the termination, the sum of all the GB's are integrated using a result developed from a generalized reciprocity principle, to give the fields scattered from the interior of the cavity. The rim edge at the open end of the cavity is assumed to be sharp and the external scattering from the rim is added separately using Geometrical Theory of Diffraction. The results based on the present approach are compared with solutions based on the hybrid asymptotic modal method. The agreement is found to be very good for cavities made up of planar surfaces, and also for cavities with curved surfaces which are not too long with respect to their width.

  3. T-shaped polarization beam splitter based on two-dimensional photonic crystal waveguide structures

    NASA Astrophysics Data System (ADS)

    Li, Xinlan; Shen, Hongjun; Li, Ting; Liu, Jie; Huang, Xianjian

    2016-12-01

    A T-shaped polarization beam splitter based on two-dimensional photonic crystal is proposed, which is composed of three waveguides: one input and two output. Unpolarized beams incident from the input port will be separated into two different polarization modes and outputted individually by two different coupling structures. Simulation results can be obtained by the finite-difference time-domain (FDTD) method. In the normalized frequency range of 0.3456 < ω α /2π {}c < 0.37, multiple frequencies can obtain high transmission efficiency simultaneously for both TE and TM modes. And the degree of polarization is very closed to 1 for both output ports at this frequency range. When the normalized frequency f=0.3534 ω α /2π {}c, the transmission efficiency, respectively, is 88 % and 91 % for TE modes and TM modes. The extinction ratio is all 30dB for both modes. The polarization beam splitter attains the requirement we expected by analyzing simulation results.

  4. Monolithic integration of a lithium niobate microresonator with a free-standing waveguide using femtosecond laser assisted ion beam writing

    PubMed Central

    Fang, Zhiwei; Xu, Yingxin; Wang, Min; Qiao, Lingling; Lin, Jintian; Fang, Wei; Cheng, Ya

    2017-01-01

    We demonstrated integrating a high quality factor lithium niobate microdisk resonator with a free-standing membrane waveguide. Our technique is based on femtosecond laser direct writing which produces the pre-structure, followed by focused ion beam milling which reduces the surface roughness of sidewall of the fabricated structure to nanometer scale. Efficient light coupling between the integrated waveguide and microdisk was achieved, and the quality factor of the microresonator was measured as high as 1.67 × 105. PMID:28358135

  5. Approximate analytical solution for waveguide excitation of a plane dielectric layer by a Gaussian beam at frustrated total internal reflection.

    PubMed

    Serdyuk, Vladimir; Rudnitsky, Anton

    2015-05-01

    We present an approximate 2D asymptotic analytic theory of light field excitation in a plane thin dielectric layer under conditions of frustrated total internal reflection, when an inclined Gaussian beam, falling from a triangular prism, excites a decaying field in air spacing between a prism and a plane dielectric. Ignoring the radiation scattering on the sharp edges of a prism, we have obtained the formulas that allow us to compute spatial structures of an electromagnetic field in every point of space and to estimate the integral efficiency of waveguide mode excitation in a plane dielectric layer and the total energy of a reflected beam. It is shown that the width of an initial Gaussian beam has an effect on waveguide mode intensity.

  6. Efficient extraction of high power THz radiation generated by an ultra-relativistic electron beam in a dielectric loaded waveguide

    NASA Astrophysics Data System (ADS)

    Antipov, S.; Baryshev, S. V.; Kostin, R.; Baturin, S.; Qiu, J.; Jing, C.; Swinson, C.; Fedurin, M.; Wang, D.

    2016-10-01

    We have measured an intense THz radiation produced by a sub-picosecond, relativistic electron bunch in a dielectric loaded waveguide. For efficient THz pulse extraction, the dielectric loaded waveguide end was cut at an angle. For an appropriate choice of angle cut, such antenna converts the TM01 mode excited in the waveguide into a free-space fundamental Gauss-Hermite mode propagating at an angle with respect to the electron beam trajectory. Simulations show that more than 95% of energy can be extracted using such a simple approach. More than 40 oscillations of about 170 ps long 0.48 THz signal were explicitly measured with an interferometer and 10 μJ of energy per pulse, as determined with a calorimetric energy meter, were delivered outside the electron beamline to an area suitable for THz experiments.

  7. Efficient extraction of high power THz radiation generated by an ultra-relativistic electron beam in a dielectric loaded waveguide

    DOE PAGES

    Antipov, S.; Baryshev, S. V.; Kostin, R.; ...

    2016-10-03

    Here, we have measured an intense THz radiation produced by a sub-picosecond, relativistic electron bunch in a dielectric loaded waveguide. For efficient THz pulse extraction, the dielectric loaded waveguide end was cut at an angle. For an appropriate choice of angle cut, such antenna converts the TM01 mode excited in the waveguide into a free-space fundamental Gauss-Hermite mode propagating at an angle with respect to the electron beam trajectory. Simulations show that more than 95% of energy can be extracted using such a simple approach. More than 40 oscillations of about 170 ps long 0.48 THz signal were explicitly measuredmore » with an interferometer and 10 μJ of energy per pulse, as determined with a calorimetric energy meter, were delivered outside the electron beamline to an area suitable for THz experiments.« less

  8. Efficient extraction of high power THz radiation generated by an ultra-relativistic electron beam in a dielectric loaded waveguide

    SciTech Connect

    Antipov, S.; Baryshev, S. V.; Kostin, R.; Baturin, S.; Qiu, J.; Jing, C.; Swinson, C.; Fedurin, M.; Wang, D.

    2016-10-03

    Here, we have measured an intense THz radiation produced by a sub-picosecond, relativistic electron bunch in a dielectric loaded waveguide. For efficient THz pulse extraction, the dielectric loaded waveguide end was cut at an angle. For an appropriate choice of angle cut, such antenna converts the TM01 mode excited in the waveguide into a free-space fundamental Gauss-Hermite mode propagating at an angle with respect to the electron beam trajectory. Simulations show that more than 95% of energy can be extracted using such a simple approach. More than 40 oscillations of about 170 ps long 0.48 THz signal were explicitly measured with an interferometer and 10 μJ of energy per pulse, as determined with a calorimetric energy meter, were delivered outside the electron beamline to an area suitable for THz experiments.

  9. Analysis of EM penetration into and scattering by electrically large open waveguide cavities using Gaussian beam shooting

    NASA Technical Reports Server (NTRS)

    Burkholder, Robert J.; Pathak, Prabhakar H.

    1991-01-01

    Gaussian beam (GB) representation methods are used to analyze the electromagnetic coupling into and the scattering by a large nonuniform cavity. The aperture field in the cavity is decomposed into beams using the Gabor expansion, and shooting techniques are then employed. The method is illustrated only for the two-dimensional (2-D) case. The GBs are tracked axially using the rules of beam optics which ignore any beam distortion upon reflection at the walls. The effects of beam distortion are not significant for relatively slowly varying waveguide cavities. The field scattered into the exterior by the termination within the cavity is found using a reciprocity integral formulation which requires a knowledge of the beam fields near the termination. Numerical results based on this GB approach are presented and compared with results based on an independent reference solution.

  10. Power scaling from buried depressed-cladding waveguides realized in Nd:YVO4 by femtosecond-laser beam writing

    NASA Astrophysics Data System (ADS)

    Salamu, Gabriela; Pavel, Nicolaie

    2016-10-01

    We report on output power performances obtained by diode-laser pumping of buried cladding-waveguides that were inscribed with a femtosecond-laser beam writing technique in several Nd:YVO4 media. Continuous-wave output power of 3.4 W at 1.06 μm for an absorbed pump power at 808 nm of 10.3 W was obtained from a circular waveguide of 100-μm diameter that was realized in a 6.9-mm long, 0.5-at% Nd:YVO4 crystal; the slope efficiency with respect to the absorbed pump power was 0.36. The pump at 880 nm, directly into the 4F3/2 emitting level, was used to improve the waveguide output characteristics. With an absorbed pump power of 9.8 W at 880 nm, the same waveguide yielded 4.4 W at 1.06 μm, whereas for emission at 1.34 μm the output power reached 1.7 W; the slope efficiency improved to 0.47 for laser emission at 1.06 μm and reached 0.24 for operation at 1.34 μm. Results recorded from similar waveguides that were inscribed in 0.7-at% Nd:YVO4 and 1.0-at% Nd:YVO4 crystals are presented.

  11. Terahertz mirage: Deflecting terahertz beams in an inhomogeneous artificial dielectric based on a parallel-plate waveguide

    NASA Astrophysics Data System (ADS)

    Mendis, Rajind; Liu, Jingbo; Mittleman, Daniel M.

    2012-09-01

    The field of metamaterials and the formalism of transformation optics have provided a prescription for constructing artificial dielectrics with unique properties such as light trapping and cloaking. Here, we describe a different approach to creating an inhomogeneous artificial medium, based on waveguide techniques, which does not rely on engineered subwavelength-scale components. We demonstrate a mirage effect in which an object several times larger than the selected wavelength is rendered invisible by bending a beam around it.

  12. Terahertz electromagnetic wave generation and amplification by an electron beam in the elliptical plasma waveguides with dielectric rod

    SciTech Connect

    Rahmani, Z. Jazi, B.; Heidari-Semiromi, E.

    2014-09-15

    The propagation of electromagnetic waves in an elliptical plasma waveguide including strongly magnetized plasma column and a dielectric rod is investigated. The dispersion relation of guided hybrid electromagnetic waves is obtained. Excitation of the waves by a thin annular relativistic elliptical electron beam will be studied. The time growth rate of electromagnetic waves is obtained. The effects of relative permittivity constant of dielectric rod, radius of dielectric rod, accelerating voltage, and current density of the annular elliptical beam on the growth rate and the frequency spectra are numerically presented.

  13. Ultrashort broadband polarization beam splitter based on a combined hybrid plasmonic waveguide

    PubMed Central

    Chang, Ken-Wei; Huang, Chia-Chien

    2016-01-01

    We propose an ultracompact broadband polarization beam splitter (PBS) based on a combined hybrid plasmonic waveguide (HPW). The proposed PBS separates transverse-electric (TE) and transverse-magnetic (TM) modes using a bent lower HPW with vertical nanoscale gaps and a straight upper HPW with a horizontal nanoscale gap, respectively, without relying on an additional coupling region. This design considerably reduces the length of the PBS to the submicron scale (920 nm, the shortest PBS reported to date) while offering polarization extinction ratios (PERs) of ~19 dB (~18 dB) and insertion losses (ILs) of ~0.6 dB (~0.3 dB) for the TE (TM) mode over an extremely broad band of 400 nm (from λ = 1300 nm to 1700 nm, covering entirely second and third telecom windows). The length of the designed PBS can be reduced further to 620 nm while still offering PERs of 15 dB, realizing a densely photonic integrated circuit. Considering the fabrication tolerance, the designed PBS allows for large geometrical deviations of ±20 nm while restricting PER variations to within 1 dB, except for those in the nanoscale gaps smaller than 10nm. Additionally, we also address the input and ouput coupling efficiencies of the proposed PBS. PMID:26786972

  14. Design of a compact and integrated TM-rotated/TE-through polarization beam splitter for silicon-based slot waveguides.

    PubMed

    Xu, Yin; Xiao, Jinbiao

    2016-01-20

    A compact and integrated TM-rotated/TE-through polarization beam splitter for silicon-based slot waveguides is proposed and characterized. For the input TM mode, it is first transferred into the cross strip waveguide using a tapered directional coupler (DC), and then efficiently rotated to the corresponding TE mode using an L-shaped bending polarization rotator (PR). Finally, the TE mode for slot waveguide at the output end is obtained with the help of a strip-to-slot mode converter. By contrast, for the input TE mode, it almost passes through the slot waveguide directly and outputs at the bar end with nearly neglected coupling due to a large mode mismatch. Moreover, an additional S-bend connecting the tapered DC and bending PR is used to enhance the performance. Results show that a total device length of 19.6 μm is achieved, where the crosstalk (CT) and polarization conversion loss are, respectively -26.09 and 0.54 dB, for the TM mode, and the CT and insertion loss are, respectively, -22.21 and 0.41 dB, for the TE mode, both at 1.55 μm. The optical bandwidth is approximately 50 nm with a CT<-20  dB. In addition, fabrication tolerances and field evolution are also presented.

  15. Characterization of GaAlAs optical waveguide heterostructures grown by molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    Radens, C. J.; Jackson, H. E.; Boyd, J. T.; Bhasin, K. B.; Pouch, J. J.

    1988-01-01

    Multiple-layer GaAlAs optical waveguide heterostructures have been grown by MBE. These samples were designed to operate at 840 nm with negligible coupling of guided light to the absorbing GaAs substrate. The Al concentration was 13 percent for the guiding layer and was 16 percent for the cladding layers. The process for growing waveguide layers was calibrated primarily by high-energy electron diffraction, with the optical quality confirmed by photoluminescence measurements. Channel waveguide structures having widths of 5 microns were etched in a low-pressure magnetically confined multipolar plasma reactor. The resulting waveguide structures were characterized by Raman spectroscopy, ellipsometry, AES, and optical-waveguide loss measurements.

  16. Reflection of a TE-polarised Gaussian beam from a layered structure under conditions of resonance excitation of waveguide modes

    SciTech Connect

    Sokolov, V I; Marusin, N V; Molchanova, S I; Savelyev, A G; Khaydukov, E V; Panchenko, V Ya

    2014-11-30

    The problem of reflection of a TE-polarised Gaussian light beam from a layered structure under conditions of resonance excitation of waveguide modes using a total internal reflection prism is considered. Using the spectral approach we have derived the analytic expressions for the mode propagation lengths, widths and depths of m-lines (sharp and narrow dips in the angular dependence of the specular reflection coefficient), depending on the structure parameters. It is shown that in the case of weak coupling, when the propagation lengths l{sub m} of the waveguide modes are mainly determined by the extinction coefficient in the film, the depth of m-lines grows with the mode number m. In the case of strong coupling, when l{sub m} is determined mainly by the radiation of modes into the prism, the depth of m-lines decreases with increasing m. The change in the TE-polarised Gaussian beam shape after its reflection from the layered structure is studied, which is determined by the energy transfer from the incident beam into waveguide modes that propagate along the structure by the distance l{sub m}, are radiated in the direction of specular reflection and interfere with a part of the beam reflected from the working face of the prism. It is shown that this interference can lead to the field intensity oscillations near m-lines. The analysis of different methods for determining the parameters of thin-film structures is presented, including the measurement of mode angles θ{sub m} and the reflected beam shape. The methods are based on simultaneous excitation of a few waveguide modes in the film with a strongly focused monochromatic Gaussian beam, the waist width of which is much smaller than the propagation length of the modes. As an example of using these methods, the refractive index and the thickness of silicon monoxide film on silica substrate at the wavelength 633 nm are determined. (fibre and integrated-optical structures)

  17. Graphene Q-switched Yb:KYW planar waveguide laser

    SciTech Connect

    Kim, Jun Wan; Young Choi, Sun; Jun Ahn, Kwang; Yeom, Dong-Il E-mail: rotermun@ajou.ac.kr; Rotermund, Fabian E-mail: rotermun@ajou.ac.kr; Aravazhi, Shanmugam; Pollnau, Markus; Griebner, Uwe; Petrov, Valentin; Bae, Sukang

    2015-01-15

    A diode-pumped Yb:KYW planar waveguide laser, single-mode Q-switched by evanescent-field interaction with graphene, is demonstrated for the first time. Few-layer graphene grown by chemical vapor deposition is transferred onto the top of a guiding layer, which initiates stable Q-switched operation in a 2.4-cm-long waveguide laser operating near 1027 nm. Average output powers up to 34 mW and pulse durations as short as 349 ns are achieved. The measured output beam profile, clearly exhibiting a single mode, agrees well with the theoretically calculated mode intensity distribution inside the waveguide. As the pump power is increased, the repetition rate and pulse energy increase from 191 to 607 kHz and from 7.4 to 58.6 nJ, respectively, whereas the pulse duration decreases from 2.09 μs to 349 ns.

  18. Beam-steering in hollow ZrO2/SiO2 distributed Bragg reflector waveguides for one-dimensional RGB imaging

    NASA Astrophysics Data System (ADS)

    Gu, Xiaodong; Nakahama, Masanori; Ahmed, Moustafa; Bakry, Ahmed; Koyama, Fumio

    2014-03-01

    A novel one-dimensional beam deflector based on a hollow Bragg reflector waveguide for RGB imaging was proposed and evaluated by modeling. Large steering range over 30° is possible by only 100 nm change in the hollow air-core thickness. Electrostatic actuation enables fast and precise control of the beam-steering with a low operation voltage. An ultra-small divergence angle and super-high resolution are expected for device lengths of a few millimeters thanks to the high coherency of the output beam. The proposed hollow-waveguide type deflector is extremely compact and can be arrayed with high density.

  19. The effect of different background beams on the optical rogue waves generated in a graded-index waveguide

    NASA Astrophysics Data System (ADS)

    Goyal, Amit; Raju, Thokala Soloman; Kumar, C. N.; Panigrahi, Prasanta K.

    2016-04-01

    We analytically explore optical rogue waves in a nonlinear graded-index waveguide, with spatially modulated dispersion, nonlinearity, and linear refractive-index. We study the evolution of first-order rogue wave and rogue wave triplet on Airy-Bessel, sech2, and tanh background beams, and reveal that the characteristics of RWs are well maintained while the amplitude of the first-order RW gets enhanced three times the maximum value of the Airy-Bessel and sech2 background beams and five times in the case of RW triplet. These results could be of great interest in realizing the RWs in experimentally realizable situations on small-amplitude background beams in nonlinear optics.

  20. Recent results on photonic devices made by laser writing: 3D 3T near IR waveguides, mid-IR spectrometers and electro-optic beam combiners

    NASA Astrophysics Data System (ADS)

    Martin, G.; Vázquez de Aldana, J. R.; Rodenas, A.; d'Amico, C.; Stoian, R.

    2016-07-01

    Direct laser writing is a powerful technique for the development of astrophotonic devices, namely by allowing 3D structuring of waveguides and structures. One of the main interests is the possibility to avoid in-plane crossings of waveguides that can induce losses and crosstalk in future multi-telescope beam combiners. We will present our results in 3D three telescope beam combiners in the near infrared, that allow for phase closure studies. Besides, laser writing can be used to inscribe a grating over long distances along the waveguide direction. This can be used as an on-chip diffraction grating or as a way to sample a stationary wave that can be obtained in the waveguide. Thus, integrated optics spectrometers based on the SWIFTS concept (stationary wave integrated Fourier transform spectrometer) have been realized and characterized in the near and mid infrared using commercial chalcogenide glasses. Finally, we will also present our results on laser writing on electro-optic materials, that allow to obtain waveguides and beam combiners that can be phase-modulated using electrodes. We have focused our work on two well-known materials: Lithium Niobate, that allows for TM waveguides and has a high electro-optical coefficient, and BGO, that has a lower coefficient, but presents the advantage of being isotropic, guiding both TE and TM polarizations identically.

  1. The electrical conductivities of the DSS-13 beam-waveguide antenna shroud material and other antenna reflector surface materials

    NASA Technical Reports Server (NTRS)

    Otoshi, T. Y.; Franco, M. M.; Reilly, H. F., Jr.

    1992-01-01

    A significant amount of noise temperature can potentially be generated by currently unknown dissipative losses in the beam waveguide (BWG) shroud. The amount of noise temperature contribution from this source is currently being studied. In conjunction with this study, electrical conductivity measurements were made on samples of the DSS-13 BWG shroud material at 8.420 GHz. The effective conductivities of unpainted and painted samples of the BWG shroud were measured to be 0.01 x 10(exp 7) and 0.0036 x 10(exp 7) mhos/m, respectively. This value may be compared with 5.66 x 10(exp 7) mhos/m for high conductivity copper.

  2. Simultaneously coherent excitation of multi-modes THz radiation from dielectric loaded waveguide by pre-bunched electron beam

    NASA Astrophysics Data System (ADS)

    Li, Biaobin; Lu, Yalin; He, Zhigang; Li, Weiwei; Jia, Qika; Wang, Lin

    2017-02-01

    The cylindrical dielectric loaded waveguide (DLW) supports a discrete set of modes, which can be excited by electron beam passing through the structure, and the high-order modes can be the harmonics of the fundamental one by properly choosing the parameters of the DLW. By using a train of electron bunches, repeated at the fundamental frequency of the DLW, as the driving source, coherent and simultaneous excitation of multi-modes can be expected. With this proposed scheme, multi-color narrow-band THz radiation with high pulse power and high frequency can be obtained simultaneously.

  3. Fiber optic probes based on silver-only coated hollow glass waveguides for ionizing beam radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Darafsheh, Arash; Liu, Haoyang; Melzer, Jeffrey E.; Taleei, Reza; Harrington, James A.; Kassaee, Alireza; Zhu, Timothy C.; Finlay, Jarod C.

    2016-03-01

    Čerenkov contamination is a significant issue in radiation detection by fiber-coupled scintillators. To enhance the scintillation signal transmission while minimizing Čerenkov contamination, we designed a fiber probe using a silver-only coated hollow waveguide (HWG). The HWG tip with inserted scintillator, embedded in tissue mimicking phantoms, was irradiated with clinical electron and photon beams. Optical spectra of irradiated tips were taken using a fiber spectrometer, and the signal was deconvolved with a linear fitting algorithm. The resultant decomposed spectra of the scintillator with and without Čerenkov correction were in good agreement with measurements performed by an electron diode and ion chamber for electron and photon beam dosimetry, respectively, indicating the minimal effect of Čerenkov contamination. Compared with a silver/dielectric coated HWG fiber dosimeter design we observed higher signal transmission in our design based on the use of silver-only HWG.

  4. Beam Scanning Antenna with Wideband Broadside Radiation Based on Multilayered Substrate Integrated Waveguide Composite Right/Left-Handed Structure

    NASA Astrophysics Data System (ADS)

    Zhang, Qin; Wu, Guo-cheng; Wang, Guang-ming; Liang, Jian-gang; Gao, Xiang-jun

    2017-01-01

    In this paper, a novel multilayered substrate integrated waveguide (SIW) composite right/left-handed (CRLH) structure is proposed to design beam scanning antenna for wideband broadside radiation. The unit cell of the SIW-CRLH structure is formed by spiral interdigital fingers etched on the upper ground of SIW, and a parasitic patch beneath the slot, has a continuous change of phase constant from negative to positive value within its passband. The proposed beam scanning antenna, which consists of consists of 15 identical elementary cells of the SIW-CRLH, is simulated, fabricated and measured. According to the measured results, the proposed antenna not only realizes a continuous main beam scanning from backward -78° to forward +80° within the operating frequency range from 8.25 to 12.2 GHz, but also obtains the measured broadside gain of 11.5 dB with variation of 1.0 dB over the frequency range of 8.8-9.25 GHz (4.99 %). Besides, compared with the same works in the references, this one has the most wonderful performance.

  5. A full vectorial generalized discontinuous Galerkin beam propagation method (GDG-BPM) for nonsmooth electromagnetic fields in waveguides

    SciTech Connect

    Fan Kai; Cai Wei Ji Xia

    2008-07-20

    In this paper, we propose a new full vectorial generalized discontinuous Galerkin beam propagation method (GDG-BPM) to accurately handle the discontinuities in electromagnetic fields associated with wave propagations in inhomogeneous optical waveguides. The numerical method is a combination of the traditional beam propagation method (BPM) with a newly developed generalized discontinuous Galerkin (GDG) method [K. Fan, W. Cai, X. Ji, A generalized discontinuous Galerkin method (GDG) for Schroedinger equations with nonsmooth solutions, J. Comput. Phys. 227 (2008) 2387-2410]. The GDG method is based on a reformulation, using distributional variables to account for solution jumps across material interfaces, of Schroedinger equations resulting from paraxial approximations of vector Helmholtz equations. Four versions of the GDG-BPM are obtained for either the electric or magnetic field components. Modeling of wave propagations in various optical fibers using the full vectorial GDG-BPM is included. Numerical results validate the high order accuracy and the flexibility of the method for various types of interface jump conditions.

  6. Time growth rate and field profiles of hybrid modes excited by a relativistic elliptical electron beam in an elliptical metallic waveguide with dielectric rod

    SciTech Connect

    Jazi, B.; Rahmani, Z.; Abdoli-Arani, A.; Heidari-Semiromi, E.

    2012-10-15

    The dispersion relation of guided electromagnetic waves propagating in an elliptical metallic waveguide with a dielectric rod driven by relativistic elliptical electron beam (REEB) is investigated. The electric field profiles and the growth rates of the waves are numerically calculated by using Mathieu functions. The effects of relative permittivity constant of dielectric rod, accelerating voltage, and current density of REEB on the growth rate are presented.

  7. Development of embedded Mach-Zehnder optical waveguide structures in polydimethylsiloxane thin films by proton beam writing

    NASA Astrophysics Data System (ADS)

    Kada, W.; Miura, K.; Kato, H.; Saruya, R.; Kubota, A.; Satoh, T.; Koka, M.; Ishii, Y.; Kamiya, T.; Nishikawa, H.; Hanaizumi, O.

    2015-04-01

    A focused 750 keV proton microbeam was used to fabricate an embedded Mach-Zehnder (MZ) optical waveguide in a polydimethylsiloxane (PDMS) film for interferometer application. The sample position was precisely controlled by a mechanical stage together with scanning microbeam to form an embedded MZ waveguide structure within an area of 0.3 mm × 40 mm. The MZ waveguides with core size of 8 μm was successfully embedded in PDMS film at a depth of 18 μm by 750 keV proton microbeam with fluences from 10 to 100 nC/mm2. The MZ waveguides were coupled with an IR fiber-laser with a center wavelength of 1550 nm and evaluated by using the transmitted intensity images from an IR vidicon camera. The results indicate that the embedded MZ waveguide structure in PDMS achieved single spot light propagation, which is necessary for building optical switching circuits based on polymer MZ waveguides.

  8. Transverse writing of three-dimensional tubular optical waveguides in glass with a slit-shaped femtosecond laser beam

    PubMed Central

    Liao, Yang; Qi, Jia; Wang, Peng; Chu, Wei; Wang, Zhaohui; Qiao, Lingling; Cheng, Ya

    2016-01-01

    We report on fabrication of tubular optical waveguides buried in ZBLAN glass based on transverse femtosecond laser direct writing. Irradiation in ZBLAN with focused femtosecond laser pulses leads to decrease of refractive index in the modified region. Tubular optical waveguides of variable mode areas are fabricated by forming the four sides of the cladding with slit-shaped femtosecond laser pulses, ensuring single mode waveguiding with a mode field dimension as small as ~4 μm. PMID:27346285

  9. Excitation of high-frequency azimuthal surface waves by an annular electron beam in a waveguide with a noncircular interface of the plasma column

    SciTech Connect

    Girka, V. O. Girka, I. O. Pavlenko, I. V.

    2013-05-15

    An initial stage of the interaction of an electron beam ring rotating along Larmor orbits in a gap between the plasma column and a circular metal chamber of a cylindrical waveguide with extraordinarily polarized electromagnetic waves of the surface type is studied. These waves propagate along the azimuthal angle across an axial magnetic field in the range above the upper hybrid frequency. Using numerical analysis of the dispersion relation, it is shown that by the aid of an appropriate choice of the shape of the plasma-vacuum interface one can achieve a significant increasing of growth rates of the resonant beam instability of these waves.

  10. Environmental Projects. Volume 17; Biological Assessment, Opinion, and New 34-Meter Beam-Waveguide Antenna (DSS 24) at Apollo Site

    NASA Technical Reports Server (NTRS)

    Bengelsdorf, Irving

    1996-01-01

    This report deals with the Biological Assessment, Biological Opinion and Final Report on the construction of a high- efficiency 34-meter, multifrequency beam-waveguide antenna at the Apollo Site of the Goldstone Deep Space Communications Complex, operated by JPL. According to the Endangered Species Act of 1973, a Biological Assessment must be conducted and a Biological Opinion, with terms and conditions, rendered (the Opinion by the U.S. Department of the Interior) before construction of any federal project that may affect endangered or threatened flora or fauna. After construction, a final report is filed with the Department. The desert tortoise, designated "threatened" by the U.S. Fish and Wildlife Service, and the Mojave ground squirrel and the Lane Mountain milk vetch, both designated "candidate threatened," required the reporting specified by the Act. The Assessment found no significant danger to the animal species if workers are educated about them. No stands of the plant species were observed in the surveyed construction area. The Department issued a Biological Opinion to safeguard the two animal species. The Service and the California Department of Fish and Game both issued a Biological Concurrence that JPL had satisfied all environmental criteria for preserving threatened species.

  11. Analytical and Experimental Studies of Beam Waveguide Absorbers for Structural Damping.

    DTIC Science & Technology

    1988-03-01

    la\\cr %~ilwVadc aoorbcr rthle 1 )U NUC-IzN irqtenva2e. Allt constant Variabls of’ tile Redu,-e rog-ram1 were defined inl eachi FORTRAN-k, program. We...thle infinite beaml as i’rcq uenc(: inl - creaIse. Thle results of’ thle Bernoul-1E1-uler beam theory do riot quite corres;pond to ex- perrirntl suls...2... ............ ... .... ... . .. .. . . .. ... lmr

  12. Optical diffraction into thick slab waveguides: a finite-beam RCWA approach to solve extremely asymmetrical scattering-EAS in slanted holographic gratings

    NASA Astrophysics Data System (ADS)

    Pietralunga, Silvia M.; Geroldi, Alessandro; Serafini, Mirko

    2012-06-01

    We have implemented a Finite-Beam Rigorous Coupled-Wave Approach (FB-RCWA) to solve for guided-optics propagation in the presence of holographic slanted Bragg gratings, embedded in the core of slab waveguides and operated in Extreme Asymmetrical Scattering (EAS) configuration. In EAS a resonance condition can be established, as proceeding from the design parameters. Diffraction efficiency can be evaluated as the ratio of the flux of diffracted power P1, on a suitably defined cross-section along the propagation of diffracted beam, and input power P0. By FBRCWA, no limitation in the depth of grating modulation is assumed. The first-order diffracted field in resonant Bragg condition propagates along the waveguide. EAS in thick waveguides operating in highly multimodal regime can be investigated, as well as macroscopic volumes and widely extended illuminated regions up to a few millimeters. In thick slabs, η > 90% is demonstrated, for input illuminated apertures of length L >= Lc, where Lc is the optimum coupling length. The effects of detuning from Bragg condition, both in distribution and amplitude of the diffracted field, are quantified. Diffraction efficiency, i.e. optical coupling, bandwidth is evaluated.

  13. High-power radio frequency pulse generation and extration based on wakefield excited by an intense charged particle beam in dielectric-loaded waveguides.

    SciTech Connect

    Gao, F.; High Energy Physics; Illinois Inst. of Tech

    2009-07-24

    Power extraction using a dielectric-loaded (DL) waveguide is a way to generate high-power radio frequency (RF) waves for future particle accelerators, especially for two-beam-acceleration. In a two-beam-acceleration scheme, a low-energy, high-current particle beam is passed through a deceleration section of waveguide (decelerator), where the power from the beam is partially transferred to trailing electromagnetic waves (wakefields); then with a properly designed RF output coupler, the power generated in the decelerator is extracted to an output waveguide, where finally the power can be transmitted and used to accelerate another usually high-energy low-current beam. The decelerator, together with the RF output coupler, is called a power extractor. At Argonne Wakefield Accelerator (AWA), we designed a 7.8GHz power extractor with a circular DL waveguide and tested it with single electron bunches and bunch trains. The output RF frequency (7.8GHz) is the sixth harmonic of the operational frequency (1.3GHz) of the electron gun and the linac at AWA. In single bunch excitation, a 1.7ns RF pulse with 30MW of power was generated by a single 66nC electron bunch passing through the decelerator. In subsequent experiments, by employing different splitting-recombining optics for the photoinjector laser, electron bunch trains were generated and thus longer RF pulses could be successfully generated and extracted. In 16-bunch experiments, 10ns and 22ns RF pulses have been generated and extracted; and in 4-bunch experiments, the maximum power generated was 44MW with 40MW extracted. A 26GHz DL power extractor has also been designed to test this technique in the millimeter-wave range. A power level of 148MW is expected to be generated by a bunch train with a bunch spacing of 769ps and bunch charges of 20nC each. The arrangement for the experiment is illustrated in a diagram. Higher-order-mode (HOM) power extraction has also been explored in a dual-frequency design. By using a bunch

  14. Development of a Propagating Millimeter-Wave Beam Position and Profile Monitor in the Oversize Corrugated Waveguide Used in an ECRH System

    NASA Astrophysics Data System (ADS)

    Shimozuma, Takashi; Kobayashi, Sakuji; Ito, Satoshi; Ito, Yasuhiko; Kubo, Shin; Yoshimura, Yasuo; Nishiura, Masaki; Igami, Hiroe; Takahashi, Hiromi; Mizuno, Yoshinori; Okada, Kohta; Mutoh, Takashi

    2016-01-01

    In a high-power electron cyclotron resonance heating (ECRH) system for plasma heating, a long-distance and low-loss transmission system of the millimeter wave is required. A real-time monitor of the millimeter-wave beam position and its intensity profile, which can be used in a high-power, evacuated, and cooled transmission line, is proposed, designed, manufactured, and tested. The beam-position and profile monitor (BPM) consists of a reflector, Peltier-device array, and a heat-sink, which is installed in the reflector-plate of a miterbend. The BPM was tested using both simulated electric heater power and high-power gyrotron output power. The profile obtained from the monitor using the gyrotron output was well agreed with the burn patter on a thermal sensitive paper. Methods of data analysis and mode-content analysis of a propagating millimeter-wave in the corrugated waveguide are proposed.

  15. Ion beam damage assessment and waveguide formation induced by energetic Si-ion irradiation in lanthanum aluminate crystal

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Huang, Q.; Crespillo, M. L.; Qiao, M.; Liu, P.; Wang, X. L.

    2017-02-01

    Lanthanum aluminate (LaAlO3) crystal has emerged as one of the most valuable functional-materials, and its physical, electronic and optical properties strongly depend on the crystal structure, which can be easily altered in an irradiation environment and therefore affect the performance of LaAlO3-based devices. On the other hand, the preparation of LaAlO3 waveguide is also a scientific challenge for its potential application prospects in optoelectronics field. In this work, the damage evolution behavior of LaAlO3 crystal under Si-ion irradiation has been discussed in detail utilizing complementary characterization techniques, and then, single-mode waveguide of LaAlO3 crystal in the visible band can be obtained based on ion-irradiation-induced lattice damage behavior. Waveguide optical-coupling techniques are used to show its competitive features. Thus, novel optical waveguides with optimized features in LaAlO3 crystals can be tailored by a proper selection of ion mass, energy and fluence using the modification of the target material during ion irradiation process.

  16. Generation and pointing stabilization of multi-GeV electron beams from a laser plasma accelerator driven in a pre-formed plasma waveguide

    SciTech Connect

    Gonsalves, A. J.; Nakamura, K.; Daniels, J.; Mao, H.-S.; Benedetti, C.; Schroeder, C. B.; Tóth, Cs.; Tilborg, J. van; Vay, J.-L.; Geddes, C. G. R.; Esarey, E.; Mittelberger, D. E.; Bulanov, S. S.; Leemans, W. P.

    2015-05-15

    Laser pulses with peak power 0.3 PW were used to generate electron beams with energy >4 GeV within a 9 cm-long capillary discharge waveguide operated with a plasma density of ≈7×10{sup 17} cm{sup −3}. Simulations showed that the super-Gaussian near-field laser profile that is typical of high-power femtosecond laser systems reduces the efficacy of guiding in parabolic plasma channels compared with the Gaussian laser pulses that are typically simulated. In the experiments, this was mitigated by increasing the plasma density and hence the contribution of self-guiding. This allowed for the generation of multi-GeV electron beams, but these had angular fluctuation ≳2 mrad rms. Mitigation of capillary damage and more accurate alignment allowed for stable beams to be produced with energy 2.7±0.1 GeV. The pointing fluctuation was 0.6 mrad rms, which was less than the beam divergence of ≲1 mrad full-width-half-maximum.

  17. 1.55 {mu}m GaAs/GaNAsSb/GaAs optical waveguides grown by radio frequency nitrogen plasma-assisted molecular beam epitaxy

    SciTech Connect

    Tan, K. H.; Yoon, S. F.; Loke, W. K.; Wicaksono, S.; Xu, Z.; Ng, T. K.; Lew, K. L.; Saadsaoud, N.; Zegaoui, M.; Decoster, D.; Chazelas, J.

    2008-03-17

    We demonstrate a 1.55 {mu}m GaAs/GaNAsSb/GaAs optical waveguide grown by molecular beam epitaxy as an alternative to the AlGaAs/GaAs system. The 0.4-{mu}m-thick GaNAsSb guiding layer contains {approx}3.5% of N and 9% of Sb, resulting in optical band gap of 0.88 eV. The refractive index of the GaNAsSb layer was measured from 800 to 1700 nm. The GaNAsSb layer has a refractive index value of 3.42 at 1.55 {mu}m wavelength. The propagation loss measured using the Fabry-Perot resonance method was found to be affected by nitrogen-related defect absorption.

  18. A portable Ka-band front-end test package for beam-waveguide antenna performance evaluation. Part 1: Design and ground tests

    NASA Technical Reports Server (NTRS)

    Otoshi, T. Y.; Stewart, S. R.; Franco, M. M.

    1991-01-01

    A unique experimental method was used to test the beam waveguide (BWG) antenna at Deep Space Station (DDS) 13 in the Goldstone Deep Space Communications Complex near Barstow, California. The methodology involved the use of portable test packages to make measurements of operating noise temperatures and antenna efficiencies (as functions of antenna pointing angles) at the Cassegrain focal point and the final focal point located in a subterranean pedestal room. Degradations caused by the BWG mirror systems were determined by making comparisons of the measured parameters at the two focal points of the antenna. Previous articles were concerned with the design, performance characteristics, and test results obtained with an X-band test package operating at 32 GHz. Noise temperature measurement results are presented for the Ka-band test package in an on-the-ground test configuration.

  19. Configurable silicon photonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Prorok, Stefan; Petrov, Alexander; Eich, Manfred; Luo, Jingdong; Jen, Alex K.-Y.

    2013-12-01

    In this Letter, we demonstrate that the mode cut off of a photonic crystal waveguide can be trimmed with high accuracy by electron beam bleaching of a chromophore doped polymer cladding. Using this method, configurable waveguides are realized, which allow for spatially resolved changes of the photonic crystal's effective lattice constant as small as 7.6 pm. We show three different examples how to take advantage of configurable photonic crystal waveguides: Shifting of the complete transmission spectrum, definition of cavities with high quality factor, and tuning of existing cavities.

  20. Configurable silicon photonic crystal waveguides

    SciTech Connect

    Prorok, Stefan; Petrov, Alexander; Eich, Manfred; Luo, Jingdong; Jen, Alex K.-Y.

    2013-12-23

    In this Letter, we demonstrate that the mode cut off of a photonic crystal waveguide can be trimmed with high accuracy by electron beam bleaching of a chromophore doped polymer cladding. Using this method, configurable waveguides are realized, which allow for spatially resolved changes of the photonic crystal's effective lattice constant as small as 7.6 pm. We show three different examples how to take advantage of configurable photonic crystal waveguides: Shifting of the complete transmission spectrum, definition of cavities with high quality factor, and tuning of existing cavities.

  1. Dielectric waveguide gas-filled stark shift modulator

    DOEpatents

    Hutchinson, Donald P.; Richards, Roger K.

    2003-07-22

    An optical modulator includes a dielectric waveguide for receiving an optical beam and coupling energy of the optical beam into the waveguide. At least one Stark material is provided in the waveguide. A bias circuit generates a bias signal to produce an electrical field across the Stark material to shift at least one of the Stark absorption frequencies towards the frequency of the optical beam. A circuit for producing a time varying electric field across the Stark material modulates the optical beam. At least a portion of the bias field can be generated by an alternating bias signal, such as a square wave. A method of modulating optical signals includes the steps of providing a dielectric waveguide for receiving an optical beam and coupling energy of the optical beam into the waveguide, the waveguide having at least one Stark material disposed therein, and varying an electric field imposed across the Stark material.

  2. Metallic waveguide mirrors in polymer film waveguides

    NASA Astrophysics Data System (ADS)

    Wolff, S.; Giehl, A. R.; Renno, M.; Fouckhardt, H.

    2001-10-01

    A technology for the fabrication of metallic waveguide mirrors is developed. Plane and curved waveguide mirrors, the latter acting in the same way as cylindrical lenses, are realized in benzocyclobutene (BCB) film waveguides. The waveguide mirror structure is dry-etched into the BCB film waveguide. To enhance the reflectivity of the waveguide mirrors, the waveguide edge is metallized. The BCB film waveguide mirrors are characterized with respect to waveguide attenuation and mirror reflectivity. The waveguide attenuation of the processed BCB waveguide is 0.5 dB/cm. Ag-coated BCB waveguide mirrors show a reflectivity of 71%. The efficiency of total internal reflection (TIR, i.e. in the case without metallization) at the dry-etched waveguide edge is 74%. As an application of the BCB waveguide mirrors a hybrid integrated optical module for Fourier-optical transverse mode selection in broad area lasers (BAL) is proposed.

  3. Shift multiplexing by planar waveguide referencing

    NASA Astrophysics Data System (ADS)

    Yi, Tao; Zhang, Jiasen; Yan, Lifen; Gong, Qihuang

    2005-09-01

    We present a new method with which to implement shift multiplexing by planar waveguide referencing. In this method, a planar waveguide is used to steer the reference beam, and we implement shift multiplexing by shifting the recording medium. A spatial selectivity as high as 1.1 μm is obtained. By using waveguide referencing we can make a compact and simple holographic system.

  4. Design Considerations for Monolithic Beam Formers Based on Electro-Optic Polymer Phase Modulators and Strain-Induced Optical Waveguides - Postprint

    DTIC Science & Technology

    2015-01-01

    passive optical polymer is that it can provide low-loss optical waveguides and its mode can be made to match that of a 4.0~4.5 m small-core fiber ...on top of the polymer introduces a strain-induced refractive index change within the core layer thus providing better lateral optical mode ...induced optical waveguide technique to reduce optical propagation loss, 4) the TO switch in closely spaced parallel single- mode waveguides, and 5

  5. Analysis of tipping-curve measurements performed at the DSS-13 beam-waveguide antenna at 32.0 and 8.45 GigaHertz

    NASA Technical Reports Server (NTRS)

    Morabito, D. D.; Skjerve, L.

    1995-01-01

    This article reports on the analysis of the Ka-band Antenna Performance Experiment tipping-curve data acquired at the DSS-13 research and development beam-waveguide (BWG) antenna. By measuring the operating system temperatures as the antenna is moved form zenith to low-elevation angles and fitting a model to the data, one can obtain information on how well the overall temperature model behaves at zenith and approximate the contribution due to the atmosphere. The atmospheric contribution estimated from the data can be expressed in the form of (1) atmospheric noise temperatures that can provide weather statistic information and be compared against those estimated from other methods and (2) the atmospheric loss factor used to refer efficiency measurements to zero atmosphere. This article reports on an analysis performed on a set of 68 8.4-GHz and 67 32-GHz tipping-curve data sets acquired between December 1993 and May 1995 and compares the results with those inferred from a surface model using input meteorological data and from water vapor radiometer (WVR) data. The general results are that, for a selected subset of tip curves, (1) the BWG tipping-curve atmospheric temperatures are in good agreement with those determined from WVR data (the average difference is 0.06 +/- 0.64 K at 32 GHz) and (2) the surface model average values are biased 3.6 K below those of the BWG and WVR at 32 GHz.

  6. LOADED WAVEGUIDES

    DOEpatents

    Mullett, L.B.; Loach, B.G.; Adams, G.L.

    1958-06-24

    >Loaded waveguides are described for the propagation of electromagnetic waves with reduced phase velocities. A rectangular waveguide is dimensioned so as to cut-off the simple H/sub 01/ mode at the operating frequency. The waveguide is capacitance loaded, so as to reduce the phase velocity of the transmitted wave, by connecting an electrical conductor between directly opposite points in the major median plane on the narrower pair of waveguide walls. This conductor may take a corrugated shape or be an aperature member, the important factor being that the electrical length of the conductor is greater than one-half wavelength at the operating frequency. Prepared for the Second U.N. International ConferThe importance of nuclear standards is duscussed. A brief review of the international callaboration in this field is given. The proposal is made to let the International Organization for Standardization (ISO) coordinate the efforts from other groups. (W.D.M.)

  7. Gratings in polymeric waveguides

    NASA Astrophysics Data System (ADS)

    Mishakov, G.; Sokolov, V.; Kocabas, A.; Aydinli, A.

    2007-04-01

    Laser-induced formation of polymer Bragg grating filters for Dense Wavelength Division Multiplexing (DWDM) applications is discussed. Acrylate monomers halogenated with both fluorine and chlorine, which possess absorption losses less than 0.25 dB/cm and wide choice of refractive indices (from 1.3 to 1.5) in the 1.5 μm telecom wavelength region were used. The monomers are highly intermixable thus permitting to adjust the refractive index of the composition within +/-0.0001. Moreover they are photocurable under UV exposure and exhibit high contrast in polymerization. These properties make halogenated acrylates very promising for fabricating polymeric waveguides and photonic circuits. Single-mode polymer waveguides were fabricated on silicon wafers using resistless contact lithography. Submicron index gratings have been written in polymer waveguides using holographic exposure with He-Cd laser beam (325 nm) through a phase mask. Both uniform and apodized gratings have been fabricated. The gratings are stable and are not erased by uniform UV exposure. The waveguide gratings possess narrowband reflection spectra in the 1.5 μm wavelength region of 0.4 nm width, nearly rectangular shape of the stopband and reflectivity R > 99%. The fabricated Bragg grating filters can be used for multiplexing/demultiplexing optical signals in high-speed DWDM optical fiber networks.

  8. Temporal waveguides for optical pulses

    SciTech Connect

    Plansinis, Brent W.; Donaldson, William R.; Agrawal, Govind P.

    2016-05-12

    Here we discuss, temporal total internal reflection (TIR), in analogy to the conventional TIR of an optical beam at a dielectric interface, is the total reflection of an optical pulse inside a dispersive medium at a temporal boundary across which the refractive index changes. A pair of such boundaries separated in time acts as the temporal analog of planar dielectric waveguides. We study the propagation of optical pulses inside such temporal waveguides, both analytically and numerically, and show that the waveguide supports a finite number of temporal modes. We also discuss how a single-mode temporal waveguide can be created in practice. In contrast with the spatial case, the confinement can occur even when the central region has a lower refractive index.

  9. Temporal waveguides for optical pulses

    DOE PAGES

    Plansinis, Brent W.; Donaldson, William R.; Agrawal, Govind P.

    2016-05-12

    Here we discuss, temporal total internal reflection (TIR), in analogy to the conventional TIR of an optical beam at a dielectric interface, is the total reflection of an optical pulse inside a dispersive medium at a temporal boundary across which the refractive index changes. A pair of such boundaries separated in time acts as the temporal analog of planar dielectric waveguides. We study the propagation of optical pulses inside such temporal waveguides, both analytically and numerically, and show that the waveguide supports a finite number of temporal modes. We also discuss how a single-mode temporal waveguide can be created inmore » practice. In contrast with the spatial case, the confinement can occur even when the central region has a lower refractive index.« less

  10. Wideband waveguide polarizer development for SETI

    NASA Technical Reports Server (NTRS)

    Lee, P.; Stanton, P.

    1991-01-01

    A wideband polarizer for the Deep Space Network (DSN) 34 meter beam waveguide antenna is needed for the Search for Extraterrestrial Intelligence (SETI) project. The results of a computer analysis of a wideband polarizer are presented.

  11. Waveguide grating mirror for laser resonators

    NASA Astrophysics Data System (ADS)

    Rabady, Rabi Ibrahim

    Improved beam quality for semiconductor lasers has been a challenging problem since laser invention. The approach proposed in this thesis for beam improvement is based on zero-order anomalies in the reflectance spectra of periodically corrugated waveguides, which is the waveguide analogy of the well-known Wood anomalies in diffraction spectra of metallic gratings. The proposed investigation include developing a high-quality and reliable technologies for optical waveguides, holographic-grating, and optical resonant filters. Applications of this research include high-power and high-brightness vertical-cavity surface-emitting lasers (VCSELs), large area lasers, and laser arrays for optical communications, lidars, and industrial material processing.

  12. Antenna servo control system characterization: Rate loop analysis for 34-m antenna at DSS 15

    NASA Technical Reports Server (NTRS)

    Nickerson, J. A.; Cox, D. G.; Smith, H. K.; Engel, J. H.; Ahlstrom, H. G.

    1986-01-01

    The elevation and azimuth servo rate loops at the 34-m High Efficiency Deep Space Station 15 (DSS 15) are described. Time and frequency response performance criteria were measured. The results are compared to theoretically deduced performance criteria. Unexpected anomalies in the frequency response are observed and identified.

  13. Controlling the path of discretized light in waveguide lattices

    SciTech Connect

    Longhi, Stefano

    2011-01-15

    A general method for flexible control of the path of discretized light beams in homogeneous waveguide lattices, based on longitudinal modulation of the coupling constant, is theoretically proposed. As compared to beam steering and refraction achievable in graded-index waveguide arrays, the proposed approach enables the synthesis of rather arbitrary target paths.

  14. CONTROL OF LASER RADIATION PARAMETERS: Optimisation of waveguide parameters of laser InGaAs/AlGaAs/GaAs heterostructures for obtaining the maximum beam width in the resonator and the maximum output power

    NASA Astrophysics Data System (ADS)

    Bogatov, A. P.; Gushchik, T. I.; Drakin, A. E.; Nekrasov, A. P.; Popovichev, V. V.

    2008-10-01

    The waveguide design of a laser heterostructure is optimised to expand the laser beam in the vertical direction at the output mirror of a laser diode (up to 1.5 μm at the half intensity for the zero mode). Experimental samples of such diodes operated in the cw transverse single-mode lasing regime up to the output power of 0.5 W. The radiation divergence was 11°—12° and 4°—7° in the vertical and horizontal directions, respectively.

  15. Ultrafast laser fabrication of Bragg waveguides in chalcogenide glass.

    PubMed

    McMillen, Ben; Li, Mingshan; Huang, Sheng; Zhang, Botao; Chen, Kevin P

    2014-06-15

    Bragg waveguides are fundamental components in photonic integrated circuits and are particularly interesting for mid-IR applications in high index, highly nonlinear materials. In this work, we present Bragg waveguides fabricated in bulk chalcogenide glass using an ultrafast laser. Waveguides with near circularly symmetric cross sections and low propagation loss are obtained through spatial and temporal beam shaping. Using a single-pass technique, the waveguide and Bragg structure are formed at the same time. First through sixth order gratings with strengths of up to 25 dB are realized, and performance is evaluated based on the modulation duty cycle of the writing beam.

  16. Coupler for coupling gyrotron whispering gallery mode RF into HE11 waveguide

    DOEpatents

    Neilson, Jeffrey M

    2015-02-24

    A cylindrical waveguide with a mode converter transforms a whispering gallery mode from a gyrotron cylindrical waveguide with a helical cut launch edge to a quasi-Gaussian beam suitable for conveyance through a corrugated waveguide. This quasi-Gaussian beam is radiated away from the waveguide using a spiral cut launch edge, which is in close proximity to a first mode converting reflector. The first mode converting reflector is coupled to a second mode converting reflector which provides an output free-space HE11 mode wave suitable for direct coupling into a corrugated waveguide. The radiated beam produced at the output of the second mode converting reflector is substantially circular.

  17. Raman scattering in a whispering mode optical waveguide

    DOEpatents

    Kurnit, Norman A.

    1982-01-01

    A device and method for Raman scattering in a whispering mode optical waveguide. Both a helical ribbon and cylinder are disclosed which incorporate an additional curvature .rho. p for confining the beam to increase intensity. A Raman scattering medium is disposed in the optical path of the beam as it propagates along the waveguide. Raman scattering is enhanced by the high intensities of the beam and long interaction path lengths which are achieved in a small volume.

  18. Optical pumping in a whispering-mode optical waveguide

    DOEpatents

    Kurnit, N.A.

    1981-08-11

    A device and method for optical pumping in a whispering mode optical waveguide are described. Both a helical ribbon and cylinder are disclosed which incorporate an additional curvature for confining the beam to increase intensity. An optical pumping medium is disposed in the optical path of the beam as it propagates along the waveguide. Optical pumping is enhanced by the high intensities of the beam and long interaction path lengths which are achieved in a small volume.

  19. High-power CO[sub 2] laser with coaxial waveguide and diffusion cooling

    SciTech Connect

    Ehrlichmann, D.; Habich, U.; Plum, H.D. )

    1993-07-01

    A diffusion-cooled CO[sub 2] laser using a coaxial waveguide is analyzed theoretically and experimentally. The resonator extracting the laser beam consists of two annular plane mirrors enclosing the two ends of the waveguide. The beam exits through an aperture in one of these annular mirrors. The mirror tilt is shown to provide efficient beam extraction through this aperture. A theoretical resonator model based on the vector modes of propagation in a dielectric coaxial waveguide is presented. Experimental data show the feasibility of coaxial waveguide lasers and their ability to supply beams of high power and quality. Experimental data are discussed with respect to the presented theory.

  20. Compact waveguide circular polarizer

    SciTech Connect

    Tantawi, Sami G.

    2016-08-16

    A multi-port waveguide is provided having a rectangular waveguide that includes a Y-shape structure with first top arm having a first rectangular waveguide port, a second top arm with second rectangular waveguide port, and a base arm with a third rectangular waveguide port for supporting a TE.sub.10 mode and a TE.sub.20 mode, where the end of the third rectangular waveguide port includes rounded edges that are parallel to a z-axis of the waveguide, a circular waveguide having a circular waveguide port for supporting a left hand and a right hand circular polarization TE.sub.11 mode and is coupled to a base arm broad wall, and a matching feature disposed on the base arm broad wall opposite of the circular waveguide for terminating the third rectangular waveguide port, where the first rectangular waveguide port, the second rectangular waveguide port and the circular waveguide port are capable of supporting 4-modes of operation.

  1. Optofluidic waveguides: I. Concepts and implementations

    PubMed Central

    Schmidt, Holger; Hawkins, Aaron R.

    2011-01-01

    We review recent developments and current status of liquid-core optical waveguides in optofluidics with emphasis on suitability for creating fully planar optofluidic labs-on-a-chip. In this first of two contributions, we give an overview of the different waveguide types that are being considered for effectively combining micro and nanofluidics with integrated optics. The large number of approaches is separated into conventional index-guided waveguides and more recent implementations using wave interference. The underlying principle for waveguiding and the current status are described for each type. We then focus on reviewing recent work on microfabricated liquid-core antiresonant reflecting optical (ARROW) waveguides, including the development of intersecting 2D waveguide networks and optical fluorescence and Raman detection with planar beam geometry. Single molecule detection capability and addition of electrical control for electrokinetic manipulation and analysis of single bioparticles are demonstrated. The demonstrated performance of liquid-core ARROWs is representative of the potential of integrated waveguides for on-chip detection with ultrahigh sensitivity, and points the way towards the next generation of high-performance, low-cost and portable biomedical instruments. PMID:21442048

  2. Optical Waveguide Output Couplers Fabricated in Polymers

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Abushagur, Mustafa A. G.; Ashley, Paul R.; Johnson-Cole, Helen

    1998-01-01

    Waveguide output couplers fabricated in Norland Optical Adhesive (NOA) #81 and AMOCO Ultradel 9020D polyimide are investigated. The output couplers are implemented using periodic relief gratings on a planar waveguide. Design theory of the couplers is based on the perturbation approach. Coupling of light from waveguide propagation modes to output radiation modes is described by coupled mode theory and the transmission line approximation of the perturbed area (grating structure). Using these concepts, gratings can be accurately designed to output a minimum number of modes at desired output angles. Waveguide couplers were designed using these concepts. These couplers were fabricated and analyzed for structural accuracy, output beam accuracy, and output efficiency. The results for the two different materials are compared.

  3. Waveguide circuits in three-dimensional photonic crystals

    SciTech Connect

    Biswas, Rana; Christensen, C.; Muehlmeier, J.; Tuttle, G.; Ho, K.-M.

    2008-04-07

    Waveguide circuits in three-dimensional photonic crystals with complete photonic band gaps are simulated with finite difference time domain (FDTD) simulations, and compared with measurements on microwave scale photonic crystals. The transmission through waveguide bends critically depends on the photonic crystal architecture in the bend region. We have found experimentally and theoretically, a new waveguide bend configuration consisting of overlapping rods in the bend region, that performs better than the simple waveguide bend of terminated rods, especially in the higher frequency portion of the band. Efficient beam splitters with this junction geometry are also simulated.

  4. Focusing of partially coherent light into planar waveguides.

    PubMed

    Saastamoinen, Toni; Kuittinen, Markku; Vahimaa, Pasi; Turunen, Jari; Tervo, Jani

    2004-09-20

    Edge coupling of a focused partially coherent Gaussian Schell-model beam into a planar dielectric waveguide is examined. The incident field is decomposed into a sum of coherent modes that are expressed as a discrete superposition of plane-wave components. A model based on the rigorous diffraction theory of gratings is used to replace the waveguide with a corresponding periodic multilayer structure to determine the coupling efficiencies. Numerical simulations are presented for single and multimode planar waveguides and for a graded index waveguide. The results are compared with the predictions of the overlap integral method.

  5. Waveguide cooling system

    NASA Technical Reports Server (NTRS)

    Chen, B. C. J.; Hartop, R. W. (Inventor)

    1981-01-01

    An improved system is described for cooling high power waveguides by the use of cooling ducts extending along the waveguide, which minimizes hot spots at the flanges where waveguide sections are connected together. The cooling duct extends along substantially the full length of the waveguide section, and each flange at the end of the section has a through hole with an inner end connected to the duct and an opposite end that can be aligned with a flange hole in another waveguide section. Earth flange is formed with a drainage groove in its face, between the through hole and the waveguide conduit to prevent leakage of cooling fluid into the waveguide. The ducts have narrowed sections immediately adjacent to the flanges to provide room for the installation of fasteners closely around the waveguide channel.

  6. Waveguide cooling system

    NASA Astrophysics Data System (ADS)

    Chen, B. C. J.; Hartop, R. W.

    1981-04-01

    An improved system is described for cooling high power waveguides by the use of cooling ducts extending along the waveguide, which minimizes hot spots at the flanges where waveguide sections are connected together. The cooling duct extends along substantially the full length of the waveguide section, and each flange at the end of the section has a through hole with an inner end connected to the duct and an opposite end that can be aligned with a flange hole in another waveguide section. Earth flange is formed with a drainage groove in its face, between the through hole and the waveguide conduit to prevent leakage of cooling fluid into the waveguide. The ducts have narrowed sections immediately adjacent to the flanges to provide room for the installation of fasteners closely around the waveguide channel.

  7. Quantitative study of rectangular waveguide behavior in the THz.

    SciTech Connect

    Rowen, Adam M.; Nordquist, Christopher Daniel; Wanke, Michael Clement

    2009-10-01

    This report describes our efforts to quantify the behavior of micro-fabricated THz rectangular waveguides on a configurable, robust semiconductor-based platform. These waveguides are an enabling technology for coupling THz radiation directly from or to lasers, mixers, detectors, antennas, and other devices. Traditional waveguides fabricated on semiconductor platforms such as dielectric guides in the infrared or co-planar waveguides in the microwave regions, suffer high absorption and radiative losses in the THz. The former leads to very short propagation lengths, while the latter will lead to unwanted radiation modes and/or crosstalk in integrated devices. This project exploited the initial developments of THz micro-machined rectangular waveguides developed under the THz Grand Challenge Program, but instead of focusing on THz transceiver integration, this project focused on exploring the propagation loss and far-field radiation patterns of the waveguides. During the 9 month duration of this project we were able to reproduce the waveguide loss per unit of length in the waveguides and started to explore how the loss depended on wavelength. We also explored the far-field beam patterns emitted by H-plane horn antennas attached to the waveguides. In the process we learned that the method of measuring the beam patterns has a significant impact on what is actually measured, and this may have an effect on most of the beam patterns of THz that have been reported to date. The beam pattern measurements improved significantly throughout the project, but more refinements of the measurement are required before a definitive determination of the beam-pattern can be made.

  8. Offset Waveguide Transmission Measurements

    NASA Technical Reports Server (NTRS)

    Cravey, Robin

    1997-01-01

    This report describes measurements to determine transmission losses in S-band (2.60-3.95 GHz) waveguide sections due to misalignment of the sections relative to each other. The experiments were performed in support of the Hydrostar program to determine the feasibility of using deployable waveguide sections in a large space radiometer. The waveguide sections would possibly be hinged and folded for launch, then deployed in space to form long sections of waveguide. Since very low losses are required for radiometer applications, the effects of potential misalignment after deployment of the waveguide sections may be significant. These measurements were performed in the Electromagnetic Properties Measurement Laboratory in the Electromagnetics Research Branch.

  9. Highly dispersive slot waveguides.

    PubMed

    Zhang, Lin; Yue, Yang; Xiao-Li, Yinying; Beausoleil, Raymond G; Willner, Alan E

    2009-04-27

    We propose a slot-waveguide with high dispersion, in which a slot waveguide is coupled to a strip waveguide. A negative dispersion of up to -181520 ps/nm/km is obtained due to a strong interaction of the slot and strip modes. A flat and large dispersion is achievable by cascading the dispersive slot-waveguides with varied waveguide thickness or width for dispersion compensation and signal processing applications. We show - 31300 ps/nm/km dispersion over 147-nm bandwidth with <1% variance.

  10. Light transmission loss in liquid crystal waveguides

    NASA Astrophysics Data System (ADS)

    Nowinowski-Kruszelnicki, Edward; Walczak, Andrzej; Kiezun, Aleksander; Jaroszewicz, Leszek R.

    1998-02-01

    The investigation results of the propagation loss due to light scattering in electrically induced channel in planar waveguides are presented. The channel structure was obtained by means of electric driven stripe electrode made by photolithographic process. Planar waveguiding cell has been fabricated using ITO/SiO2/polyimide-coated glass plates and LC film 20 micrometers thick. A nematic liquid crystal layer with 90 degrees-twisted nematic orientation was studied. The He-Ne light beam was endfire coupled into an input edge of a waveguide using an objective lens. The propagation loss have been evaluated from the spatial variation intensity of light scattered out perpendicularly to the waveguide surface along the light propagation direction measured with CCD camera. Loss measurements have been made in room temperature. Waveguiding channel effect has been observed above 2.5 Vrms of applied voltage with the loss of about 17 +/- 1 dB. Increased driving voltage up to 100 Vrms reduces the loss to minimum value of 12 +/- 1 dB/cm. As a result of the experiments one may conclude that transmission loss in thick nematic waveguide have bulk character caused by imperfection of molecular alignment.

  11. Fabrication slab waveguide based polymethyl methacrylate (PMMA) with spin coating method

    NASA Astrophysics Data System (ADS)

    Andriawan, Alan; Pramono, Yono Hadi; Masoed, Asnawi

    2016-11-01

    Fabrication and characterization slab waveguide based polymethyl methacrylate (PMMA) has been carried out. Slab waveguide fabrication done by the spin coating method. Slab waveguide fabrication process carried out by the rotational speed of 1000, 2000, and 3000 rpm respectively played for 10 seconds. Then the slab waveguides heated using a hot plate. Heating process starting from room temperature then increased 5°C to 70°C with a 5 minute warm-up time interval. From the results of characterization fabricated slab waveguides to determine the film thickness is made. Then made observations on the waveguide by passing the light beam He-Ne laser on the thin layer through a single mode optical fiber. From the results of characterization is known that the fabrication of a slab waveguide with a layer thickness of 166 μm. From this research it is known that polymethyl methacrylate (PMMA) can be used as a waveguide with a spin coating method.

  12. Gamma-ray irradiated polymer optical waveguides

    SciTech Connect

    Lai, C.-C.; Wei, T.-Y.; Chang, C.-Y.; Wang, W.-S.; Wei, Y.-Y.

    2008-01-14

    Optical waveguides fabricated by gamma-ray irradiation on polymer through a gold mask are presented. The gamma-ray induced index change is found almost linearly dependent on the dose of the irradiation. And the measured propagation losses are low enough for practical application. Due to the high penetrability of gamma ray, uniform refractive index change in depth can be easily achieved. Moreover, due to large-area printing, the uniformity of waveguide made by gamma-ray irradiation is much better than that by e-beam direct writing.

  13. Interconnect Between a Waveguide and a Dielectric Waveguide Comprising an Impedance Matched Dielectric Lens

    NASA Technical Reports Server (NTRS)

    Decrossas, Emmanuel (Inventor); Chattopadhyay, Goutam (Inventor); Chahat, Nacer (Inventor); Tang, Adrian J. (Inventor)

    2016-01-01

    A lens for interconnecting a metallic waveguide with a dielectric waveguide is provided. The lens may be coupled a metallic waveguide and a dielectric waveguide, and minimize a signal loss between the metallic waveguide and the dielectric waveguide.

  14. Low-loss single-mode integrated waveguides in soda-lime glass

    NASA Astrophysics Data System (ADS)

    Dyakonov, I. V.; Kalinkin, A. A.; Saygin, M. Yu.; Abroskin, A. G.; Radchenko, I. V.; Straupe, S. S.; Kulik, S. P.

    2016-09-01

    Low-loss single-mode optical waveguide fabrication process in extra-white soda-lime glass is demonstrated. Waveguiding structures are formed in bulk substrates employing femtosecond laser writing technology. The combination of a slit beam shaping method and a multiscan fabrication process enables writing of waveguides with a well-defined symmetric cross-sectional profile. Fabricated waveguides exhibit 0.86 dB/cm propagation loss for 800-nm wavelength. Bending loss in the waveguides is addressed experimentally and compared with a model for radiation loss.

  15. Waveguide disturbance detection method

    DOEpatents

    Korneev, Valeri A.; Nihei, Kurt T.; Myer, Larry R.

    2000-01-01

    A method for detection of a disturbance in a waveguide comprising transmitting a wavefield having symmetric and antisymmetric components from a horizontally and/or vertically polarized source and/or pressure source disposed symmetrically with respect to the longitudinal central axis of the waveguide at one end of the waveguide, recording the horizontal and/or vertical component or a pressure of the wavefield with a vertical array of receivers disposed at the opposite end of the waveguide, separating the wavenumber transform of the wavefield into the symmetric and antisymmetric components, integrating the symmetric and antisymmetric components over a broad frequency range, and comparing the magnitude of the symmetric components and the antisymmetric components to an expected magnitude for the symmetric components and the antisymmetric components for a waveguide of uniform thickness and properties thereby determining whether or not a disturbance is present inside the waveguide.

  16. Silicon nitride grating waveguide based directional coupler

    NASA Astrophysics Data System (ADS)

    Feng, Jijun; Li, Anyuan; Akimoto, Ryoichi; Zeng, Heping

    2016-10-01

    Silicon nitride is a promising wave-guiding material for integrated photonics applications with a wide transparency bandwidth from visible to mid-infrared, with a superior performance in fiber-coupling and propagation losses, more tolerant fabrication process to the structure parameters variation and compatible with the CMOS technology. Directional coupler (DC) is very popular for realizing beam splitter because of its structural simplicity and no excess loss intrinsically. Here, a conventional silicon nitride directional coupler, three-dimensional vertical coupler, and grating waveguide assisted coupler are designed and fabricated, and compared with each other. A grating waveguide based coupler with a period of 300 nm and coupling length of 26 um, can realize a wideband 3-dB splitter for the wavelength in the range from 1540 to 1620 nm, for a transverse electric (TE) polarized wave. With further optimization of the grating period and duty cycle, the device performance can be further improved with a wider bandwidth.

  17. Broad band waveguide spectrometer

    DOEpatents

    Goldman, Don S.

    1995-01-01

    A spectrometer for analyzing a sample of material utilizing a broad band source of electromagnetic radiation and a detector. The spectrometer employs a waveguide possessing an entry and an exit for the electromagnetic radiation emanating from the source. The waveguide further includes a surface between the entry and exit portions which permits interaction between the electromagnetic radiation passing through the wave guide and a sample material. A tapered portion forms a part of the entry of the wave guide and couples the electromagnetic radiation emanating from the source to the waveguide. The electromagnetic radiation passing from the exit of the waveguide is captured and directed to a detector for analysis.

  18. Vortices and ring dark solitons in nonlinear amplifying waveguides

    SciTech Connect

    Zhang Jiefang; Wu Lei; Li Lu; Mihalache, Dumitru; Malomed, Boris A.

    2010-02-15

    We consider the generation and propagation of (2+1)-dimensional beams in a nonlinear waveguide with the linear gain. Simple self-similar evolution of the beams is achieved at the asymptotic stage if the input beams represent the fundamental mode. On the contrary, if they carry vorticity or amplitude nodes (or phase slips), vortex tori and ring dark solitons (RDSs) are generated, featuring another type of the self-similar evolution, with an exponentially shrinking vortex core or notch of the RDS. Numerical and analytical considerations reveal that these self-similar structures are robust entities in amplifying waveguides, being stable against azimuthal perturbations.

  19. Slotted antenna waveguide plasma source

    NASA Technical Reports Server (NTRS)

    Foster, John (Inventor)

    2007-01-01

    A high density plasma generated by microwave injection using a windowless electrodeless rectangular slotted antenna waveguide plasma source has been demonstrated. Plasma probe measurements indicate that the source could be applicable for low power ion thruster applications, ion implantation, and related applications. This slotted antenna plasma source invention operates on the principle of electron cyclotron resonance (ECR). It employs no window and it is completely electrodeless and therefore its operation lifetime is long, being limited only by either the microwave generator itself or charged particle extraction grids if used. The high density plasma source can also be used to extract an electron beam that can be used as a plasma cathode neutralizer for ion source beam neutralization applications.

  20. Waveguide arrangements based on adiabatic elimination

    SciTech Connect

    Suchowski, Haim; Mrejen, Michael; Wu, Chihhui; Zhang, Xiang

    2016-09-13

    This disclosure provides systems, methods, and apparatus related to nanophotonics. In one aspect, an arrangement of waveguides includes a substrate and three waveguides. Each of the three waveguides may be a linear waveguide. A second waveguide is positioned between a first waveguide and a third waveguide. The dimensions and positions of the first, the second, and the third waveguides are specified to substantially eliminate coupling between the first waveguide and the third waveguide over a distance of about 1 millimeter to 2 millimeters along lengths of the first waveguide, the second waveguide, and the third waveguide.

  1. Evanescent field response to immunoassay layer thickness on planar waveguides

    NASA Astrophysics Data System (ADS)

    Yan, Rongjin; Yuan, Guangwei; Stephens, Matthew D.; He, Xinya; Henry, Charles S.; Dandy, David S.; Lear, Kevin L.

    2008-09-01

    The response of a compact photonic immunoassay biosensor based on a planar waveguide to variation in antigen (C-reactive protein) concentration as well as waveguide ridge height has been investigated. Near-field scanning optical microscope measurements indicate 1.7%/nm and 3.3%/nm top surface optical intensity modulation due to changes in effective adlayer thickness on waveguides with 16.5 and 10nm ridge heights, respectively. Beam propagation method simulations are in good agreement with the experimental sensitivities as well as the observation of leaky mode interference both within and after the adlayer region.

  2. Low-loss arrayed waveguide grating at 760 nm.

    PubMed

    Stanton, E J; Spott, A; Davenport, M L; Volet, N; Bowers, J E

    2016-04-15

    An arrayed waveguide grating (AWG) at 760 nm is demonstrated with an insertion loss smaller than 0.5 dB. Interface roughness and waveguide length errors contribute much more to scattering loss and phase errors at 760 nm than at longer wavelengths, thus requiring improved design and fabrication. This Letter details how this is achieved by minimizing interfacial scattering, grating side-order excitation, and phase errors in the AWG. With silicon nitride core and silicon dioxide clad waveguides on silicon, this AWG is compatible with heterogeneously integrated lasers for on-chip spectral beam combining.

  3. Photon-pair generation in arrays of cubic nonlinear waveguides.

    PubMed

    Solntsev, Alexander S; Sukhorukov, Andrey A; Neshev, Dragomir N; Kivshar, Yuri S

    2012-11-19

    We study photon-pair generation in arrays of cubic nonlinear waveguides through spontaneous four-wave mixing. We analyze numerically the quantum statistics of photon pairs at the array output as a function of waveguide dispersion and pump beam power. We show flexible spatial quantum state control such as pump-power-controlled transition between bunching and anti-bunching correlations due to nonlinear self-focusing.

  4. Polymeric waveguide Bragg grating filter using soft lithography

    NASA Astrophysics Data System (ADS)

    Kocabas, Askin; Aydinli, Atilla

    2006-10-01

    We use the soft lithography technique to fabricate a polymeric waveguide Bragg grating filter. Master grating structure is patterned by e-beam lithography. Using an elastomeric stamp and capillary action, uniform grating structures with very thin residual layers are transferred to the UV curable polymer without the use of an imprint machine. The waveguide layer based on BCB optical polymer is fabricated by conventional optical lithography. This approach provides processing simplicity to fabricate Bragg grating filters.

  5. A Wideband 220 GHz, 50 W Serpentine Waveguide Amplifier

    DTIC Science & Technology

    2013-03-01

    Abstract—Final assembly is underway for a 220 GHz, 50 W serpentine waveguide vacuum electron amplifier showcasing a novel embedded monofilament...4]. II. AMPLIFIER STATUS This serpentine waveguide (SWG) amplifier is designed to operate from a single, round 11.7 kV, 120 mA electron beam...III. CIRCUIT FABRICATION To create reliable, high vertical aspect ratio serpentine features as required, a UV-LIGA technique was employed in two

  6. Single-shot fluctuations in waveguided high-harmonic generation.

    PubMed

    Goh, S J; Tao, Y; van der Slot, P J M; Bastiaens, H J M; Herek, J; Biedron, S G; Danailov, M B; Milton, S V; Boller, K-J

    2015-09-21

    For exploring the application potential of coherent soft x-ray (SXR) and extreme ultraviolet radiation (XUV) provided by high-harmonic generation, it is important to characterize the central output parameters. Of specific importance are pulse-to-pulse (shot-to-shot) fluctuations of the high-harmonic output energy, fluctuations of the direction of the emission (pointing instabilities), and fluctuations of the beam divergence and shape that reduce the spatial coherence. We present the first single-shot measurements of waveguided high-harmonic generation in a waveguided (capillary-based) geometry. Using a capillary waveguide filled with Argon gas as the nonlinear medium, we provide the first characterization of shot-to-shot fluctuations of the pulse energy, of the divergence and of the beam pointing. We record the strength of these fluctuations vs. two basic input parameters, which are the drive laser pulse energy and the gas pressure in the capillary waveguide. In correlation measurements between single-shot drive laser beam profiles and single-shot high-harmonic beam profiles we prove the absence of drive laser beam-pointing-induced fluctuations in the high-harmonic output. We attribute the main source of high-harmonic fluctuations to ionization-induced nonlinear mode mixing during propagation of the drive laser pulse inside the capillary waveguide.

  7. Transforming guided waves with metamaterial waveguide cores

    NASA Astrophysics Data System (ADS)

    Viaene, S.; Ginis, V.; Danckaert, J.; Tassin, P.

    2016-04-01

    Metamaterials make use of subwavelength building blocks to enhance our control on the propagation of light. To determine the required material properties for a given functionality, i.e., a set of desired light flows inside a metamaterial device, metamaterial designs often rely on a geometrical design tool known as transformation optics. In recent years, applications in integrated photonics motivated several research groups to develop two-dimensional versions of transformation optics capable of routing surface waves along graphene-dielectric and metal-dielectric interfaces. Although guided electromagnetic waves are highly relevant to applications in integrated optics, no consistent transformation-optical framework has so far been developed for slab waveguides. Indeed, the conventional application of transformation optics to dielectric slab waveguides leads to bulky three-dimensional devices with metamaterial implementations both inside and outside of the waveguide's core. In this contribution, we develop a transformationoptical framework that still results in thin metamaterial waveguide devices consisting of a nonmagnetic metamaterial core of varying thickness [Phys. Rev. B 93.8, 085429 (2016)]. We numerically demonstrate the effectiveness and versatility of our equivalence relations with three crucial functionalities: a beam bender, a beam splitter and a conformal lens. Our devices perform well on a qualitative (comparison of fields) and quantitative (comparison of transmitted power) level compared to their bulky counterparts. As a result, the geometrical toolbox of transformation optics may lead to a plethora of integrated metamaterial devices to route guided waves along optical chips.

  8. Far field propagation of the truncated EH/sub 11/ dielectric waveguide mode

    SciTech Connect

    Bennett, C. A.; Hutchinson, D. P.

    1989-07-01

    The Fraunhofer diffraction pattern from hole-coupled and nonhole-coupled waveguides is obtained in analytical form. Nonlinear regression is used to fit a Gaussian beam to the far field pattern, and the effective beam waist is computed and compared to previous measurements. The ratio of the effective beam waist and the output aperture radius is found to depend on the ratio of the aperture and waveguide diameters. The percentage of power contained in nonzero diffraction orders is computed.

  9. Birefringent corrugated waveguide

    DOEpatents

    Moeller, Charles P.

    1990-01-01

    A corrugated waveguide having a circular bore and noncircularly symmetric corrugations, and preferably elliptical corrugations, provides birefringence for rotation of polarization in the HE.sub.11 mode. The corrugated waveguide may be fabricated by cutting circular grooves on a lathe in a cylindrical tube or rod of aluminum of a diameter suitable for the bore of the waveguide, and then cutting an approximation to ellipses for the corrugations using a cutting radius R.sub.0 from the bore axis that is greater than the bore radius, and then making two circular cuts using a radius R.sub.1 less than R.sub.0 at centers +b and -b from the axis of the waveguide bore. Alternatively, stock for the mandrel may be formed with an elliptical transverse cross section, and then only the circular grooves need be cut on a lathe, leaving elliptical corrugations between the grooves. In either case, the mandrel is first electroplated and then dissolved leaving a corrugated waveguide with noncircularly symmetric corrugations. A transition waveguide is used that gradually varies from circular to elliptical corrugations to couple a circularly corrugated waveguide to an elliptically corrugated waveguide.

  10. Peptide Optical waveguides.

    PubMed

    Handelman, Amir; Apter, Boris; Shostak, Tamar; Rosenman, Gil

    2017-02-01

    Small-scale optical devices, designed and fabricated onto one dielectric substrate, create integrated optical chip like their microelectronic analogues. These photonic circuits, based on diverse physical phenomena such as light-matter interaction, propagation of electromagnetic waves in a thin dielectric material, nonlinear and electro-optical effects, allow transmission, distribution, modulation, and processing of optical signals in optical communication systems, chemical and biological sensors, and more. The key component of these optical circuits providing both optical processing and photonic interconnections is light waveguides. Optical confinement and transmitting of the optical waves inside the waveguide material are possible due to the higher refractive index of the waveguides in comparison with their surroundings. In this work, we propose a novel field of bionanophotonics based on a new concept of optical waveguiding in synthetic elongated peptide nanostructures composed of ordered peptide dipole biomolecules. New technology of controllable deposition of peptide optical waveguiding structures by nanofountain pen technique is developed. Experimental studies of refractive index, optical transparency, and linear and nonlinear waveguiding in out-of-plane and in-plane diphenylalanine peptide nanotubes have been conducted. Optical waveguiding phenomena in peptide structures are simulated by the finite difference time domain method. The advantages of this new class of bio-optical waveguides are high refractive index contrast, wide spectral range of optical transparency, large optical nonlinearity, and electro-optical effect, making them promising for new applications in integrated multifunctional photonic circuits. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  11. Ehf Multiple Beam Antennas.

    DTIC Science & Technology

    1981-09-21

    design was a system employing a waveguide lens and 37 feed horns. Computer simulation of a lens design indicated that the system could provide 37...simultaneous beams with a minimum gain of 27 dB over the earth, at least 40.0% efficiency, and sidelobes 20 dB down. A waveguide lens, feed horns, a mixer...gain to jammers not in that sector. RESULTS The chosen design was a system employing a waveguide lens and 37 feed horns. Com- puter simulation of a lens

  12. Nanocrystal waveguide (NOW) laser

    DOEpatents

    Simpson, John T.; Simpson, Marcus L.; Withrow, Stephen P.; White, Clark W.; Jaiswal, Supriya L.

    2005-02-08

    A solid state laser includes an optical waveguide and a laser cavity including at least one subwavelength mirror disposed in or on the optical waveguide. A plurality of photoluminescent nanocrystals are disposed in the laser cavity. The reflective subwavelength mirror can be a pair of subwavelength resonant gratings (SWG), a pair of photonic crystal structures (PC), or a distributed feedback structure. In the case of a pair of mirrors, a PC which is substantially transmissive at an operating wavelength of the laser can be disposed in the laser cavity between the subwavelength mirrors to improve the mode structure, coherence and overall efficiency of the laser. A method for forming a solid state laser includes the steps of providing an optical waveguide, creating a laser cavity in the optical waveguide by disposing at least one subwavelength mirror on or in the waveguide, and positioning a plurality of photoluminescent nanocrystals in the laser cavity.

  13. Zero-mode waveguides

    DOEpatents

    Levene, Michael J.; Korlach, Jonas; Turner, Stephen W.; Craighead, Harold G.; Webb, Watt W.

    2007-02-20

    The present invention is directed to a method and an apparatus for analysis of an analyte. The method involves providing a zero-mode waveguide which includes a cladding surrounding a core where the cladding is configured to preclude propagation of electromagnetic energy of a frequency less than a cutoff frequency longitudinally through the core of the zero-mode waveguide. The analyte is positioned in the core of the zero-mode waveguide and is then subjected, in the core of the zero-mode waveguide, to activating electromagnetic radiation of a frequency less than the cut-off frequency under conditions effective to permit analysis of the analyte in an effective observation volume which is more compact than if the analysis were carried out in the absence of the zero-mode waveguide.

  14. Rogue waves as spatial energy concentrators in arrays of nonlinear waveguides.

    PubMed

    Bludov, Yuliy V; Konotop, Vladimir V; Akhmediev, Nail

    2009-10-01

    In an array of nonlinear waveguides, a giant compression of the input beam can be achieved by exciting a rogue wave. Input field almost homogeneously distributed over hundreds of waveguides concentrates practically all the energy into a single waveguide at the output plane of the structure. We determine the required input profile of the electric field to achieve this. We illustrate the phenomenon by modeling the array by direct numerical simulations of the discrete nonlinear Schrödinger equation.

  15. Calculations of high-frequency parameters of disc-loaded waveguides

    NASA Astrophysics Data System (ADS)

    Kaschiev, M. S.; Mamonov, V. N.; Obukhov, Yu. L.; Reshetnikova, K. A.; Rubin, S. B.

    1987-12-01

    Radio-technical parameters of a disc-loaded waveguide suitable for modeling two-beam acceleration are designed. Two series of calculations using the finite element method (MULTIMODE program) and restricted region method (ALF program) lead to coinciding resonance frequencies for rectangular-disc waveguide. The MULTIMODE program package is also used for the numerical simulation of the rounded-edge-disc waveguide, the field distribution picture and several energy parameters of the designed system.

  16. Computer Modeling for Optical Waveguide Sensors.

    DTIC Science & Technology

    1987-12-15

    COSATI CODES 18 SUBJECT TERMS (Continue on reverse it necessary and cleritify by DIock numnerl FIEL GRUP SB-GOUP Optical waveguide sensors Computer...reflection. The resultant probe beam transmission may be plotted as a function of changes in the refractive index of the surrounding fluid medium. BASIC...all angles of incidence about the critical angle ecr. It should be noted that N in equation (3) is a function of e, since = sin - l sin 8 , see

  17. Dark and bright blocker soliton interaction in defocusing waveguide arrays.

    PubMed

    Smirnov, Eugene; Rüter, Christian E; Stepić, Milutin; Shandarov, Vladimir; Kip, Detlef

    2006-11-13

    We experimentally demonstrate the interaction of an optical probe beam with both bright and dark blocker solitons formed with low optical light power in a saturable defocusing waveguide array in photorefractive lithium niobate. A phase insensitive interaction of the beams is achieved by means of counterpropagating light waves. Partial and full reflection (blocking) of the probe beam on the positive or negative light-induced defect is obtained, respectively, in good agreement with numerical simulations.

  18. Two-dimensional X-ray waveguides: fabrication by wafer-bonding process and characterization

    NASA Astrophysics Data System (ADS)

    Kohlstedt, A.; Kalbfleisch, S.; Salditt, T.; Reiche, M.; Gösele, U.; Lima, E.; Willmott, P.

    2008-04-01

    The fabrication of two-dimensionally confining X-ray waveguides enables the generation of nanoscopic X-ray beams. First applications of such waveguides for lens-less holographic imaging have already been demonstrated, but were limited by the fabrication methods and the design. To overcome these limitations, we present here the fabrication process for a second generation of X-ray waveguide with air or vacuum as guiding channel, based on e-beam lithography, ion etching and subsequent wafer bonding. This is a first step towards waveguides fulfilling requirements of high transmission and high confinement, since the process can be scaled down to smaller channel dimensions from the present structures. We address the structuring method used and present results of first X-ray characterization at synchrotron beamlines, under two entirely different beam settings, corresponding to the coupling of a coherent beam and an incoherent beam.

  19. Compound semiconductor optical waveguide switch

    DOEpatents

    Spahn, Olga B.; Sullivan, Charles T.; Garcia, Ernest J.

    2003-06-10

    An optical waveguide switch is disclosed which is formed from III-V compound semiconductors and which has a moveable optical waveguide with a cantilevered portion that can be bent laterally by an integral electrostatic actuator to route an optical signal (i.e. light) between the moveable optical waveguide and one of a plurality of fixed optical waveguides. A plurality of optical waveguide switches can be formed on a common substrate and interconnected to form an optical switching network.

  20. High power folded waveguide millimeter-wave gyro-TWT

    SciTech Connect

    Choi, J.J.; Ganguly, A.K.; Armstrong, C.M.

    1994-12-31

    Investigations on a periodic TE serpentine waveguide gyro-TWT are underway at NRL. A high power axis-encircling electron beam interacts with a fundamental TE waveguide mode when it passes through an oversized beam tunnel hole in the narrow wall of the H-plane bend rectangular serpentine waveguide. Potential advantages of the circuit configuration include: easy fabrication, fundamental forward space harmonic operation, large beam tunnel suitable for high power application, natural separation of beam and rf, and simplicity of coupling. To avoid bandwidth reduction due to closely spaced stop-bands and large gap detuning angle, a double rigid TE folded waveguide structure is proposed. To utilize the entire bandwidth, it is necessary to suppress gyro-BWO oscillation at the higher space harmonics. Linear theory predicts that oscillation takes place at {approximately} 7 cm near the stop-band frequency. Therefore, a multi-stage configuration is required to saturate the device without oscillations. An experiment is underway at NRL to verify the negative mass instability in both fast and slow wave regions in a transverse folded waveguide structure and to investigate the basic circuit stability characteristics. Design parameters of the amplifier, large signal simulations using a MAGIC code and cold-test results of the circuit components will be presented.

  1. Rippled beam free electron Laser Amplifier

    SciTech Connect

    Carlsten, Bruce E.

    1998-04-21

    A free electron laser amplifier provides a scalloping annular electron beam that interacts with the axial electric field of a T{sub 0n} mode. A waveguide defines an axial centerline and . A solenoid arranged about the waveguide produces an axial constant magnetic field within the waveguide. An electron beam source outputs a annular electron beam that interacts with the axial magnetic field to have an equilibrium radius and a ripple radius component having a variable radius with a ripple period along the axial centerline. An rf source outputs an axial electric field that propagates within the waveguide coaxial with the electron beam and has a radial mode that interacts at the electron beam at the equilibrium radius component of the electron beam.

  2. Rippled beam free electron laser amplifier

    DOEpatents

    Carlsten, Bruce E.

    1999-01-01

    A free electron laser amplifier provides a scalloping annular electron beam that interacts with the axial electric field of a TM.sub.0n mode. A waveguide defines an axial centerline and, a solenoid arranged about the waveguide produces an axial constant magnetic field within the waveguide. An electron beam source outputs a annular electron beam that interacts with the axial magnetic field to have an equilibrium radius and a ripple radius component having a variable radius with a ripple period along the axial centerline. An rf source outputs an axial electric field that propagates within the waveguide coaxial with the electron beam and has a radial mode that interacts at the electron beam at the equilibrium radius component of the electron beam.

  3. Invariance of waveguide grating mirrors to lateral displacement phase shifts.

    PubMed

    Brown, Daniel; Friedrich, Daniel; Brückner, Frank; Carbone, Ludovico; Schnabel, Roman; Freise, Andreas

    2013-06-01

    We present a method to analyze the coupling of lateral displacements in nanoscale structures, in particular waveguide grating mirrors (WGMs), into the phase of a reflected Gaussian beam using a finite-difference time-domain simulation. Such phase noise is of interest for using WGMs in high-precision interferometry. We show that, to the precision of our simulations (10(-7) rad), waveguide mirrors do not couple lateral displacement into phase noise of a reflected beam and that WGMs are therefore not subject to the same stringent alignment requirements as previously proposed layouts using diffraction gratings.

  4. Microfabricated bragg waveguide

    DOEpatents

    Fleming, James G.; Lin, Shawn-Yu; Hadley, G. Ronald

    2004-10-19

    A microfabricated Bragg waveguide of semiconductor-compatible material having a hollow core and a multilayer dielectric cladding can be fabricated by integrated circuit technologies. The microfabricated Bragg waveguide can comprise a hollow channel waveguide or a hollow fiber. The Bragg fiber can be fabricated by coating a sacrificial mandrel or mold with alternating layers of high- and low-refractive-index dielectric materials and then removing the mandrel or mold to leave a hollow tube with a multilayer dielectric cladding. The Bragg channel waveguide can be fabricated by forming a trench embedded in a substrate and coating the inner wall of the trench with a multilayer dielectric cladding. The thicknesses of the alternating layers can be selected to satisfy the condition for minimum radiation loss of the guided wave.

  5. Omnidirectional optical waveguide

    DOEpatents

    Bora, Mihail; Bond, Tiziana C.

    2016-08-02

    In one embodiment, a system includes a scintillator material; a detector coupled to the scintillator material; and an omnidirectional waveguide coupled to the scintillator material, the omnidirectional waveguide comprising: a plurality of first layers comprising one or more materials having a refractive index in a first range; and a plurality of second layers comprising one or more materials having a refractive index in a second range, the second range being lower than the first range, a plurality of interfaces being defined between alternating ones of the first and second layers. In another embodiment, a method includes depositing alternating layers of a material having a relatively high refractive index and a material having a relatively low refractive index on a substrate to form an omnidirectional waveguide; and coupling the omnidirectional waveguide to at least one surface of a scintillator material.

  6. Calculate waveguide aperture susceptance

    NASA Astrophysics Data System (ADS)

    Kwon, J.-K.; Ishii, T. K.

    1982-12-01

    A method is developed for calculating aperture susceptance which makes use of the distribution of an aperture's local fields. This method can be applied to the computation of the aperture susceptance of irises, as well as the calculation of the susceptances of waveguide filters, aperture antennas, waveguide cavity coupling, waveguide junctions, and heterogeneous boundaries such as inputs to ferrite or dielectric loaded waveguides. This method assumes a local field determined by transverse components of the incident wave in the local surface of the cross section in the discontinuity plane which lies at the aperture. The aperture susceptance is calculated by the use of the local fields, the law of energy conservation, and the principles of continuity of the fields. This method requires that the thickness of the aperture structure be zero, but this does not limit the practical usefulness of this local-field method.

  7. Axially Modulated Plasma Waveguides

    SciTech Connect

    Layer, B. D.; York, A. G.; Varma, S.; Chen, Y.-H.; Milchberg, H. M.

    2009-01-22

    We demonstrate two techniques for making periodically modulated plasma waveguides-one with sharp, stable voids as short as 50 {mu}m with a period as small as 200 {mu}m, and another which modulates the waveguide diameter with a corrugation period as short as 35 {mu}m[1]. These features persist as the plasma expands for the full lifetime of the waveguide (>6 ns). The waveguides were made using the hydrodynamic shock method in a cluster jet using hydrogen, nitrogen, and argon. We demonstrate guided propagation at intensities up to 2x10{sup 17} W/cm{sup 2}, limited by our laser energy currently available. This technique is useful for quasi-phase matching to allow efficient coupling of laser energy to acceleration of relativistic electrons or generation of coherent electromagnetic radiation at selected frequencies.

  8. Surface modification to waveguides

    DOEpatents

    Timberlake, J.R.; Ruzic, D.N.; Moore, R.L.; Cohen, S.A.; Manos, D.M.

    1982-06-16

    A method is described for treating the interior surfaces of a waveguide to improve power transmission comprising the steps of mechanically polishing to remove surface protrusions; electropolishing to remove embedded particles; ultrasonically cleaning to remove any residue; coating the interior waveguide surfaces with an alkyd resin solution or electrophoretically depositing carbon lamp black suspended in an alkyd resin solution to form a 1..mu.. to 5..mu.. thick film; vacuum pyrolyzing the film to form a uniform adherent carbon coating.

  9. Surface modification to waveguides

    DOEpatents

    Timberlake, John R.; Ruzic, David N.; Moore, Richard L.; Cohen, Samuel A.; Manos, Dennis M.

    1983-01-01

    A method of treating the interior surfaces of a waveguide to improve power transmission comprising the steps of mechanically polishing to remove surface protrusions; electropolishing to remove embedded particles; ultrasonically cleaning to remove any residue; coating the interior waveguide surfaces with an alkyd resin solution or electrophoretically depositing carbon lamp black suspended in an alkyd resin solution to form a 1.mu. to 5.mu. thick film; vacuum pyrolyzing the film to form a uniform adherent carbon coating.

  10. Wavefront shaping through emulated curved space in waveguide settings

    PubMed Central

    Sheng, Chong; Bekenstein, Rivka; Liu, Hui; Zhu, Shining; Segev, Mordechai

    2016-01-01

    The past decade has witnessed remarkable progress in wavefront shaping, including shaping of beams in free space, of plasmonic wavepackets and of electronic wavefunctions. In all of these, the wavefront shaping was achieved by external means such as masks, gratings and reflection from metasurfaces. Here, we propose wavefront shaping by exploiting general relativity (GR) effects in waveguide settings. We demonstrate beam shaping within dielectric slab samples with predesigned refractive index varying so as to create curved space environment for light. We use this technique to construct very narrow non-diffracting beams and shape-invariant beams accelerating on arbitrary trajectories. Importantly, the beam transformations occur within a mere distance of 40 wavelengths, suggesting that GR can inspire any wavefront shaping in highly tight waveguide settings. In such settings, we demonstrate Einstein's Rings: a phenomenon dating back to 1936. PMID:26899285

  11. Color sorting by retinal waveguides.

    PubMed

    Labin, Amichai M; Ribak, Erez N

    2014-12-29

    Light is being detected by the two distinct types of photoreceptors in the human retina: cones and rods. Before light arrives at the photoreceptors, it must traverse the whole retina, along its array of higher-index Müller cells serving as natural waveguides. Here we analyze this optical process of light propagation through Müller cells by two independent optical methods: numerical beam propagation and analytical modal analysis. We show that the structure and refractive index profile of the Müller cells create a unique spatio-spectral distribution of light. This distribution corresponds to the positions and spectral sensitivities of both cones and rods to improve their light absorption.

  12. Planned waveguide electric field breakdown studies

    SciTech Connect

    Wang Faya; Li Zenghai

    2012-12-21

    This paper presents an experimental setup for X-band rf breakdown studies. The setup is composed of a section of WR90 waveguide with a tapered pin located at the middle of the waveguide E-plane. Another pin is used to rf match the waveguide so it operates in a travelling wave mode. By adjusting the penetration depth of the tapered pin, different surface electric field enhancements can be obtained. The setup will be used to study the rf breakdown rate dependence on power flow in the waveguide for a constant maximum surface electric field on the pin. Two groups of pins have been designed. The Q of one group is different and very low. The other has a similar Q. With the test of the two groups of pins, we should be able to discern how the net power flow and Q affect the breakdown. Furthermore, we will apply an electron beam treatment to the pins to study its effect on breakdown. Overall, these experiments should be very helpful in understanding rf breakdown phenomena and could significantly benefit the design of high gradient accelerator structures.

  13. Fabrication and characterization of chalcogenide glass photonic crystal waveguides.

    PubMed

    Suzuki, Keijiro; Hamachi, Yohei; Baba, Toshihiko

    2009-12-07

    We report on the fabrication of chalcogenide glass (Ag-As(2)Se(3)) photonic crystal waveguides and the first detailed characterization of the linear and nonlinear optical properties. The waveguides, fabricated by e-beam lithography and ICP etching exhibit typical transmission spectra of photonic crystal waveguides, and exhibit high optical nonlinearity. Nonlinear phase shift of 1.5pi through self-phase modulation is observed at 0.78 W input peak power in a 400 microm long device. The effective nonlinear parameter gamma(eff) estimated from this result reaches 2.6 x 10(4) W(-1)m(-1). Four-wave mixing is also observed in the waveguide, while two-photon absorption at optical communication wavelengths is sufficiently small and the corresponding figure of merit is larger than 11.

  14. Optical Device, System, and Method of Generating High Angular Momentum Beams

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy A. (Inventor); Matsko, Andrey B. (Inventor); Strekalov, Dmitry V. (Inventor); Grudinin, Ivan S. (Inventor); Maleki, Lute (Inventor)

    2009-01-01

    An optical device, optical system, and method of generating optical beams having high angular momenta are provided. The optical device includes a whispering gallery mode resonator defining a resonator radius and an elongated wavegWde having a length defined between a first end and a second end of the waveguide. The waveguide defines a waveguide radius which increases at least along a portion of the length of the waveguide in a direction from the first end to the second end. The waveguide radius at the first end of the waveguide is smaller than the resonator radius and the resonator is integrally formed with the first end of the waveguide.

  15. Complete achromatic optical switching between two waveguides with a sign flip of the phase mismatch

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Rangelov, Andon A.; Kyoseva, Elica

    2014-11-01

    We present a two-waveguide coupler which realizes complete achromatic all-optical switching. The coupling of the waveguides has a hyperbolic-secant shape, while the phase mismatch has a sign flip at the maximum of the coupling. We derive an analytic solution for the electric field propagation using coupled-mode theory and show that the light switching is robust against small to moderate variations in the coupling strength and phase mismatch. Thus, we realize an achromatic light switching between the two waveguides. We further consider the extended case of three coupled waveguides in an array and pay special attention to the case of equal bidirectional achromatic light beam splitting.

  16. Low-loss slot waveguides with silicon (111) surfaces realized using anisotropic wet etching

    NASA Astrophysics Data System (ADS)

    Debnath, Kapil; Khokhar, Ali; Boden, Stuart; Arimoto, Hideo; Oo, Swe; Chong, Harold; Reed, Graham; Saito, Shinichi

    2016-11-01

    We demonstrate low-loss slot waveguides on silicon-on-insulator (SOI) platform. Waveguides oriented along the (11-2) direction on the Si (110) plane were first fabricated by a standard e-beam lithography and dry etching process. A TMAH based anisotropic wet etching technique was then used to remove any residual side wall roughness. Using this fabrication technique propagation loss as low as 3.7dB/cm was realized in silicon slot waveguide for wavelengths near 1550nm. We also realized low propagation loss of 1dB/cm for silicon strip waveguides.

  17. Nonlinear Quantum Optics in a Waveguide: Distinct Single Photons Strongly Interacting at the Single Atom Level

    SciTech Connect

    Kolchin, Pavel; Oulton, Rupert F.; Zhang Xiang

    2011-03-18

    We propose a waveguide-QED system where two single photons of distinct frequency or polarization interact strongly. The system consists of a single ladder-type three level atom coupled to a waveguide. When both optical transitions are coupled strongly to the waveguide's mode, we show that a control photon tuned to the upper transition induces a {pi} phase shift and tunneling of a probe photon tuned to the otherwise reflective lower transition. Furthermore, the system exhibits single photon scattering by a classical control beam. Waveguide-QED schemes could be an alternative to high quality cavities or dense atomic ensembles in quantum information processing.

  18. Anomalous light propagation and diffraction control in waveguide arrays

    NASA Astrophysics Data System (ADS)

    Braeuer, Andreas H.; Streppel, Ulrich; Pertsch, Thomas; Peschel, Ulf; Lederer, Falk L.

    2002-11-01

    The understanding of light propagation primarily derives from studies of isotropic media. The law of refraction predicts that the tilt of a beam traversing an interface between two media will monotonously grow with the angle of incidence. The law of diffraction predicts beam spreading being completely determined by the ratio of wavelength and width, only slightly affected by the refractive index and independent of the tilt. In this paper, we demonstrate anomalies in light refraction and diffraction in evanescently coupled waveguide arrays ('discrete' refraction and diffraction). We have studied the propagation of beams in these arrays. It turned out that refraction and diffraction exhibit strong anomalies as they depend periodically on the initial beam tilt. In contrast to isotropic systems we found that transverse energy transport cannot exceed a certain maximum velocity and that the diffractive spreading depends on the direction of propagation, i.e., by varying the angle of incidence, size and sign of diffraction can be controlled and it can even be arrested. For particular initial tilts the array can undo beam spreading. The experiments were performed on homogeneous arrays of 75 waveguides in an inorganic-organic polymer on thermally oxidized silicon wafers. The 6 cm long samples were fabricated by UV-lithography on 4" wafers. Each waveguide provided low loss single mode waveguiding (<0.5 dB/cm) at λ= 633 nm. The uniform separation of adjacent guides was chosen for efficient evanescent coupling. The theoretical explanation of the measured effects was done based on coupled mode theory.

  19. Optical waveguides and structures for short haul optical communication channels within printed circuit boards

    NASA Astrophysics Data System (ADS)

    Riegel, Nicholas J.

    Optical waveguides have shown promising results for use within printed circuit boards. These optical waveguides have higher bandwidth than traditional copper transmission systems and are immune to electromagnetic interference. Design parameters for these optical waveguides are needed to ensure an optimal link budget. Modeling and simulation methods are used to determine the optimal design parameters needed in designing the waveguides. As a result, optical structures necessary for incorporating optical waveguides into printed circuit boards are designed and optimized. Embedded siloxane polymer waveguides are investigated for their use in optical printed circuit boards. This material was chosen because it has low absorption, high temperature stability, and can be deposited using common processing techniques. Two sizes of waveguides are investigated, 50 mum multimode and 4 - 9 mum single mode waveguides. A beam propagation method is developed for simulating the multimode and single mode waveguide parameters. The attenuation of simulated multimode waveguides are able to match the attenuation of fabricated waveguides with a root mean square error of 0.192 dB. Using the same process as the multimode waveguides, parameters needed to ensure a low link loss are found for single mode waveguides including maximum size, minimum cladding thickness, minimum waveguide separation, and minimum bend radius. To couple light out-of-plane to a transmitter or receiver, a structure such as a vertical interconnect assembly (VIA) is required. For multimode waveguides the optimal placement of a total internal reflection mirror can be found without prior knowledge of the waveguide length. The optimal placement is found to be either 60 microm or 150 microm away from the end of the waveguide depending on which metric a designer wants to optimize the average output power, the output power variance, or the maximum possible power loss. For single mode waveguides a volume grating coupler is

  20. Waveguiding properties of individual electrospun polymer nanofibers

    NASA Astrophysics Data System (ADS)

    Ishii, Yuya; Kaminose, Ryohei; Fukuda, Mitsuo

    2013-09-01

    Optical circuits are needed to achieve high-speed, high-capacity information processing. An optical waveguide is an essential element in optical circuits. Electrospun polymer fibers have diameters in the nanometer range and high aspect ratios, so they are prime candidates for small waveguides. In this work, we fabricate uniform electrospun polymer nanofibers and characterize their optical waveguiding properties. Poly(methyl methacrylate) (PMMA) solutions of different concentration that contain a small amount of Nile Blue A perchlorate (NBA) are electrospun. Uniform PMMA/NBA nanofibers are obtained from the 10 wt% solution. The fibers are covered with transparent cladding and their ends cut vertically. A laser beam with a wavelength of 533 nm is irradiated onto the fiber from the direction vertical to the fiber axis so that it scans along the fiber. Photoluminescence (PL) at the end face of individual fibers is then measured. The PL intensity decreases with increasing distance (d) between the end face of a fiber and irradiating point of the laser beam as ~exp(-αd) with a loss coefficient (α). Measurements of five individual fibers reveal α is in the range of 17-75 cm-1.

  1. Optical branching effect in Ti:LiNbO3 waveguides: near-field pattern studies.

    PubMed

    Jerominek, H; Delisle, C; Tremblay, R

    1986-03-01

    The paper presents a detailed study of a single optical beam splitting into several beams (the branching effect) in photorefractive sensitive Ti:LiNbO3 optical slab waveguides. The near-field patterns of the multibeam structures are presented for different values of optical power coupled into TE guided modes of different orders. The process of partial recovery of the optically damaged waveguide (the partial shrinking of the multibeam bundle created) is also described.

  2. Shift multiplexing in a compact holographic storage system by using planar waveguide referencing

    NASA Astrophysics Data System (ADS)

    Yi, Tao; Zhang, Jiasen; Yan, Lifen; Gong, Qihuang

    2005-01-01

    We propose a shift multiplexing method for a compact holographic volume storage system by using planar waveguide referencing. In the method, a planar waveguide is used to steer the reference beam and shift multiplexing is implemented by shifting the recording medium. We measure the diffraction efficiencies with respect to the shift distance of the medium for different widths of the waveguide. The selectivity of the storage system can be about 1.0 μm when the width of the waveguide is 0.05 mm. Multiple holograms are stored with a spatial separation of 2.5 μm. By using the planar waveguide, a high storage density can be achieved. As the planar waveguide is already commonly used in integrated optical systems, the whole storage system can become more compact and simpler.

  3. A Simple Optical Waveguide Experiment.

    ERIC Educational Resources Information Center

    Phelps, J.; Sambles, J. R.

    1989-01-01

    Describes a thin film rectangular dielectric waveguide and its laboratory use. Discusses the theory of uniaxial thin film waveguides with mathematical expressions and the laboratory procedures for a classroom experiment with diagrams. (Author/YP)

  4. Cyclotron resonance maser experiment in a nondispersive waveguide

    SciTech Connect

    Jerby, E.; Shahadi, A.; Drori, R.

    1996-06-01

    A cyclotron-resonance maser (CRM) oscillator experiment in which a spiraling electron beam interacts with a transverse electromagnetic wave in a nondispersive waveguide is presented. The experiment employs a low-energy low-current electron beam in a two-wire (Lecher type) waveguide. The microwave output frequency is tuned in this experiment by the axial magnetic field in the range 3.5--6.0 GHz. A second harmonic emission is observed at {approximately}7 GHz. CRM theory shows that in a free-space TEM-mode interaction, the gain might be canceled due to the equal and opposite effects of the axial (Weibel) and the azimuthal bunching mechanisms. This balance is violated in the large transverse velocity regime (V{sub {perpendicular}} {much_gt} V{sub z}) in which the experiment operates. The tunability measurements of the CRM oscillator experiment in the nondispersive waveguide are discussed in view of the CRM theory.

  5. Waveguide Harmonic Generator for the SIM

    NASA Technical Reports Server (NTRS)

    Chang, Daniel; Poberezhskiy, Ilya; Mulder, Jerry

    2008-01-01

    A second-harmonic generator (SHG) serves as the source of the visible laser beam in an onboard calibration scheme for NASA's planned Space Interferometry Mission (SIM), which requires an infrared laser beam and a visible laser beam coherent with the infrared laser beam. The SHG includes quasi-phase-matched waveguides made of MgO-doped, periodically poled lithium niobate, pigtailed with polarization- maintaining optical fibers. Frequency doubling by use of such waveguides affords the required combination of coherence and sufficient conversion efficiency for the intended application. The spatial period of the poling is designed to obtain quasi-phase- matching at a nominal middle excitation wavelength of 1,319.28 nm. The SHG is designed to operate at a warm bias (ambient temperature between 20 and 25 C) that would be maintained in its cooler environment by use of electric heaters; the heater power would be adjusted to regulate the temperature precisely and thereby maintain the required precision of the spatial period. At the state of development at the time of this reporting, the SHG had been packaged and subjected to most of its planned space-qualification tests.

  6. Performance test of a plate-type ultrasonic waveguide sensor in sodium

    NASA Astrophysics Data System (ADS)

    Joo, Young-Sang; Bae, Jin-Ho; Kim, Hoe-Woong; Kim, Jong-Bum

    2013-01-01

    A plate-type ultrasonic waveguide sensor that uses the A0-mode leaky Lamb waves has been developed for under-sodium viewing of the reactor core and in-vessel structures in the sodiumcooled fast reactor. A new ultrasonic waveguide sensor that has beryllium (Be) and nickel (Ni) coating layers on its surfaces is proposed for the enhancement of the ultrasonic beam radiation and wetting capabilities in sodium. The sodium test facility with a glove box system and a sodium test loop has been designed and constructed to carry out the performance test of the developed ultrasonic waveguide sensor in a sodium environment. A 1.7 m long ultrasonic waveguide sensor with beryllium and nickel coating layers was designed and manufactured. The performance tests were carried out to evaluate the ultrasonic beam radiation characteristics and C-scan imaging resolution of the plate-type ultrasonic waveguide sensor in sodium.

  7. Efficient waveguide coupler based on metal materials

    NASA Astrophysics Data System (ADS)

    Wu, Wenjun; Yang, Junbo; Chang, Shengli; Zhang, Jingjing; Lu, Huanyu

    2015-10-01

    Because of the diffraction limit of light, the scale of optical element stays in the order of wavelength, which makes the interface optics and nano-electronic components cannot be directly matched, thus the development of photonics technology encounters a bottleneck. In order to solve the problem that coupling of light into the subwavelength waveguide, this paper proposes a model of coupler based on metal materials. By using Surface Plasmon Polaritons (SPPs) wave, incident light can be efficiently coupled into waveguide of diameter less than 100 nm. This paper mainly aims at near infrared wave band, and tests a variety of the combination of metal materials, and by changing the structural parameters to get the maximum coupling efficiency. This structure splits the plane incident light with wavelength of 864 nm, the width of 600 nm into two uniform beams, and separately coupled into the waveguide layer whose width is only about 80 nm, and the highest coupling efficiency can reach above 95%. Using SPPs structure will be an effective method to break through the diffraction limit and implement photonics device high-performance miniaturization. We can further compress the light into small scale fiber or waveguide by using the metal coupler, and to save the space to hold more fiber or waveguide layer, so that we can greatly improve the capacity of optical communication. In addition, high-performance miniaturization of the optical transmission medium can improve the integration of optical devices, also provide a feasible solution for the photon computer research and development in the future.

  8. Polishing and testing of the 3.4 m diameter f/1.5 primary mirror of the INO telescope

    NASA Astrophysics Data System (ADS)

    Korhonen, Tapio; Keinänen, Perttu; Pasanen, Mikko; Darudi, Ahmad; Maxwell, Jonathan

    2016-07-01

    Polishing and testing methods used in the manufacture of the 3.4 m primary mirror of the Iranian National Observatory (INO) telescope are described and the test results of the finished mirror are presented. Mirror lapping and polishing was performed using several rectangular non-rotating tools arranged in a linear array across the mirror radius. Each tool is equipped with two computer controlled force actuators for regulating the surface pressure and removal efficiency during the lapping and polishing operations. The same tool system was used from the lapping phase to the end of the final polishing. The principal optical test method was the interferometric Hartmann test with the aid of a two component null lens in the mirror center of curvature. Mirror measurements were made also with pentaprism test to verify its correct conic constant. The mirror was finished to extremely good surface accuracy and smoothness.

  9. Fabricating Slotted-Waveguide Arrays From Sheet Metal

    NASA Technical Reports Server (NTRS)

    Brown, W. C.

    1983-01-01

    Low-cost lightweight waveguides formed from rolls of aluminum. Array formed from sheared, punched, and bent aluminum sheets. Sheets alined with punched jig holes and joined by laser-beam or resistance spot welding. Process permits use of thin metal to reduce raw material costs and mass. Also holds closer tolerances than usually attained in sheet-metal work.

  10. Nonlinear Landau-Zener tunneling in coupled waveguide arrays

    SciTech Connect

    Khomeriki, Ramaz

    2010-07-15

    The possibility of direct observation of the nonlinear Landau-Zener tunneling effect with a device consisting of two waveguide arrays connected to a tilted reduced refractive index barrier is discussed. Numerical simulations on this realistic setup are interpreted via a simplified double-well system and different asymmetric tunneling scenarios are predicted varying just the injected beam intensity.

  11. Actively coupled optical waveguides

    NASA Astrophysics Data System (ADS)

    Alexeeva, N. V.; Barashenkov, I. V.; Rayanov, K.; Flach, S.

    2014-01-01

    We consider light propagation through a pair of nonlinear optical waveguides with absorption, placed in a medium with power gain. The active medium boosts the in-phase component of the overlapping evanescent fields of the guides, while the nonlinearity of the guides couples it to the damped out-of-phase component creating a feedback loop. As a result, the structure exhibits stable stationary and oscillatory regimes in a wide range of gain-loss ratios. We show that the pair of actively coupled (AC) waveguides can act as a stationary or integrate-and-fire comparator sensitive to tiny differences in their input powers.

  12. Transforming two-dimensional guided light using nonmagnetic metamaterial waveguides

    NASA Astrophysics Data System (ADS)

    Viaene, Sophie; Ginis, Vincent; Danckaert, Jan; Tassin, Philippe

    2016-02-01

    Almost a decade ago, transformation optics established a geometrical perspective to describe the interaction of light with structured matter, enhancing our understanding and control of light. However, despite their huge technological relevance in applications such as optical circuitry, optical detection, and actuation, guided electromagnetic waves along dielectric waveguides have not yet benefited from the flexibility and conceptual simplicity of transformation optics. Indeed, transformation optics inherently imposes metamaterials not only inside the waveguide's core but also in the surrounding substrate and cladding. Here we restore the two-dimensional nature of guided electromagnetic waves by introducing a thickness variation on an anisotropic dielectric core according to alternative two-dimensional equivalence relations. Our waveguides require metamaterials only inside the core with the additional advantage that the metamaterials need not be magnetic and, hence, our purely dielectric waveguides are low loss. We verify the versatility of our theory with full wave simulations of three crucial functionalities: beam bending, beam splitting, and lensing. Our method opens up the toolbox of transformation optics to a plethora of waveguide-based devices.

  13. Experiments in transmission of free electron laser radiation by flexible waveguides

    NASA Astrophysics Data System (ADS)

    Gannot, Israel; Waynant, Ronald W.; Dror, Jacob; Inberg, Alexandra; Croitoru, Nathan I.

    1996-04-01

    The free electron laser (FEL) is a unique laser which is tunable over a wide segment of the spectrum. Its tunability can open a wide range of applications in medicine -- both surgical and diagnostic. A delivery device such as a waveguide or a fiber, flexible enough, which will be coupled to its outlet, will enable maneuvering the beam conveniently at the operating site. The greatest obstacle for such a fiber or waveguide is the high peak power of several MWatts that characterize the beam and the wide range of wavelengths. Flexible hollow waveguides made of either a fused silica or a Teflon tubing, internally coated with reflecting/refracting layers, were used in experiments at 3 FEL centers in the U.S. A segment of the mid IR spectrum (between 6 and 7 micrometers). Results of the beam shape (both temporal and spatial) and transmission measurements have proven the potential of this waveguide for transmission of FEL radiation.

  14. Spatiotemporal dynamics of counterpropagating Airy beams

    PubMed Central

    Wiersma, Noémi; Marsal, Nicolas; Sciamanna, Marc; Wolfersberger, Delphine

    2015-01-01

    We analyse theoretically the spatiotemporal dynamics of two incoherent counterpropagating Airy beams interacting in a photorefractive crystal under focusing conditions. For a large enough nonlinearity strength the interaction between the two Airy beams leads to light-induced waveguiding. The stability of the waveguide is determined by the crystal length, the nonlinearity strength and the beam’s intensities and is improved when comparing to the situation using Gaussian beams. We further identify the threshold above which the waveguide is no longer static but evolves dynamically either time-periodically or even chaotically. Above the stability threshold, each Airy-soliton moves erratically between privileged output positions that correspond to the spatial positions of the lobes of the counterpropagating Airy beam. These results suggest new ways of creating dynamically varying waveguides, optical logic gates and chaos-based computing. PMID:26315530

  15. Periodically structured plasmonic waveguides

    NASA Astrophysics Data System (ADS)

    Saj, W. M.; Foteinopoulou, S.; Kafesaki, M.; Soukoulis, C. M.; Economou, E. N.

    2008-04-01

    We study surface plasmon polariton (SPP) guiding structures, which are a modification of the Metal-Insulator-Metal (MIM) waveguide. The designs are constructed by introducing a periodic modulation in a MIM waveguide, with a glass core and silver claddings. This periodic modulation is created either by causing periodic indentations in the silver slabs encompassing the glass core, or by increasing the glass spacer material in certain periodic locations. Our objective is to achieve long range sub-wavelength waveguiding with vast dispersion engineering capabilities. We employ the Finite Difference Time Domain Method (FDTD) with the Auxiliary Differential Equation method (ADE) for the calculation of the dispersion relation of the guided modes, as well as the real time propagation suggests that the guiding mechnism in the examined structures is based on the electromagnetic (EM) couping between the slit plasmon modes. These - depending on the design - exist in the grooves between the silver plates or in the larger areas of the glass core spacer. Put it different, the guiding mechanism in the examined SPP waveguide designs is analogous to the EM energy transfer along metallic nanoparticle chains.

  16. Design of arrayed waveguide gratings for optical wavelength division multiplexing

    NASA Astrophysics Data System (ADS)

    Lam, Jane C.

    1998-12-01

    With the ever increasing demand on transmission capacity, it is important to utilize the bandwidth of existing fiber through optical wavelength division multiplexing. An arrayed waveguide grating offers a compact and stable solution that can function both as a multiplexer and a demultiplexer. The basic structure of the device consists of two star couplers connected by an array of waveguides to form a grating. The device can be scaled to support a large number of narrowly spaced wavelength channels. The major focus of this thesis is on developing the tools and concepts for the design and analysis of such devices. A simple linear systems model, that includes the discrete grating properties, waveguide mode field profiles for the waveguide grating array, and the Fourier transform operation of the star couplers, is introduced to study the transmission characteristics. A modified finite difference beam propagation method (BPM) for cylindrical coordinates is formulated for analysis of the radially diverging/converging waveguide array when the waveguides are close enough for mutual coupling. The combination of BPM with the linear systems model forms the basis for simulation of the whole device. Factors that contribute to the performance of the device in terms of channel uniformity, crosstalk level, sensitivity of center wavelength, wavelength dispersion and polarization effects are considered. Issues that related to the layout geometry are also examined. The predictions of our analysis are confirmed by the design and testing of a five-channel arrayed waveguide grating device based on SiO2/Si planar waveguide technology. It is designed for use with a multi-wavelength VCSEL array centered at 850 nm. Experimental results show good agreement with simulation.

  17. Generation of radially-polarized terahertz pulses for coupling into coaxial waveguides.

    PubMed

    Navarro-Cía, Miguel; Wu, Jiang; Liu, Huiyun; Mitrofanov, Oleg

    2016-12-12

    Coaxial waveguides exhibit no dispersion and therefore can serve as an ideal channel for transmission of broadband THz pulses. Implementation of THz coaxial waveguide systems however requires THz beams with radially-polarized distribution. We demonstrate the launching of THz pulses into coaxial waveguides using the effect of THz pulse generation at semiconductor surfaces. We find that the radial transient photo-currents produced upon optical excitation of the surface at normal incidence radiate a THz pulse with the field distribution matching the mode of the coaxial waveguide. In this simple scheme, the optical excitation beam diameter controls the spatial profile of the generated radially-polarized THz pulse and allows us to achieve efficient coupling into the TEM waveguide mode in a hollow coaxial THz waveguide. The TEM quasi-single mode THz waveguide excitation and non-dispersive propagation of a short THz pulse is verified experimentally by time-resolved near-field mapping of the THz field at the waveguide output.

  18. Generation of radially-polarized terahertz pulses for coupling into coaxial waveguides

    PubMed Central

    Navarro-Cía, Miguel; Wu, Jiang; Liu, Huiyun; Mitrofanov, Oleg

    2016-01-01

    Coaxial waveguides exhibit no dispersion and therefore can serve as an ideal channel for transmission of broadband THz pulses. Implementation of THz coaxial waveguide systems however requires THz beams with radially-polarized distribution. We demonstrate the launching of THz pulses into coaxial waveguides using the effect of THz pulse generation at semiconductor surfaces. We find that the radial transient photo-currents produced upon optical excitation of the surface at normal incidence radiate a THz pulse with the field distribution matching the mode of the coaxial waveguide. In this simple scheme, the optical excitation beam diameter controls the spatial profile of the generated radially-polarized THz pulse and allows us to achieve efficient coupling into the TEM waveguide mode in a hollow coaxial THz waveguide. The TEM quasi-single mode THz waveguide excitation and non-dispersive propagation of a short THz pulse is verified experimentally by time-resolved near-field mapping of the THz field at the waveguide output. PMID:27941845

  19. Generation of radially-polarized terahertz pulses for coupling into coaxial waveguides

    NASA Astrophysics Data System (ADS)

    Navarro-Cía, Miguel; Wu, Jiang; Liu, Huiyun; Mitrofanov, Oleg

    2016-12-01

    Coaxial waveguides exhibit no dispersion and therefore can serve as an ideal channel for transmission of broadband THz pulses. Implementation of THz coaxial waveguide systems however requires THz beams with radially-polarized distribution. We demonstrate the launching of THz pulses into coaxial waveguides using the effect of THz pulse generation at semiconductor surfaces. We find that the radial transient photo-currents produced upon optical excitation of the surface at normal incidence radiate a THz pulse with the field distribution matching the mode of the coaxial waveguide. In this simple scheme, the optical excitation beam diameter controls the spatial profile of the generated radially-polarized THz pulse and allows us to achieve efficient coupling into the TEM waveguide mode in a hollow coaxial THz waveguide. The TEM quasi-single mode THz waveguide excitation and non-dispersive propagation of a short THz pulse is verified experimentally by time-resolved near-field mapping of the THz field at the waveguide output.

  20. Optical waveguide taps on silicon CMOS circuits

    NASA Astrophysics Data System (ADS)

    Stenger, Vincent E.; Beyette, Fred R., Jr.

    2000-11-01

    As silicon CMOS circuit technology is scaled beyond the GHz range, both chipmakers and board makers face increasingly difficult challenges in implementing high speed metal interconnects. Metal traces are limited in density-speed performance due to the skin effect, electrical conductivity, and cross talk. Optical based interconnects have higher available bandwidth by virtue of the extremely high carrier frequencies of optical signals (> 100 THz). For this work, an effort has been made to determine an optimal optical tap receiver design for integration with commercial CMOS processes. Candidate waveguide tap technologies were considered in terms of optical loss, bandwidth, economy, and CMOS process compatibility. A new device, which is based on a variation of the multimode interference effect, has been found to be especially promising. BeamProp simulation results show nearly zero excess optical loss for the design, and up to 70% coupling into a 25 micrometer traveling wave CMOS photodetector device. Single-mode waveguides make the design readily compatible with wavelength multiplexing/demultiplexing elements. Polymer waveguide materials are targeted for fabrication due to planarization properties, low cost, broad index control, and poling abilities for modulation/tuning functions. Low cost, silicon CMOS based processing makes the new tap technology especially suitable for computer chip and board level interconnects, as well as metro fiber-to-the- home/desk telecommunications applications.

  1. Enhanced second-harmonic generation by means of high-power confinement in a photovoltaic soliton-induced waveguide.

    PubMed

    Lou, Cibo; Xu, Jingjun; Qiao, Haijun; Zhang, Xinzheng; Chen, Yunlin; Chen, Zhigang

    2004-05-01

    We present the first experimental demonstration of enhanced second-harmonic generation (SHG) by means of power confinement with a femtosecond laser in a photovoltaic soliton-induced waveguide. A dark spatial soliton created with a weak cw laser beam in a photovoltaic lithium niobate crystal induces an efficient waveguide for SHG, leading to a 60% enhancement of the conversion efficiency.

  2. Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing.

    PubMed

    Okhrimchuk, A G; Shestakov, A V; Khrushchev, I; Mitchell, J

    2005-09-01

    Depressed cladding waveguides have been formed in laser crystals by a tightly focused beam of a femtosecond laser. A laser based on a depressed cladding waveguide in a neodymium-doped YAG crystal has been demonstrated for what is believed to be the first time.

  3. Experimental investigation of plasmofluidic waveguides

    SciTech Connect

    Ku, Bonwoo; Kwon, Min-Suk; Shin, Jin-Soo

    2015-11-16

    Plasmofluidic waveguides are based on guiding light which is strongly confined in fluid with the assistance of a surface plasmon polariton. To realize plasmofluidic waveguides, metal-insulator-silicon-insulator-metal (MISIM) waveguides, which are hybrid plasmonic waveguides fabricated using standard complementary metal-oxide-semiconductor technology, are employed. The insulator of the MISIM waveguide is removed to form 30-nm-wide channels, and they are filled with fluid. The plasmofluidic waveguide has a subwavelength-scale mode area since its mode is strongly confined in the fluid. The waveguides are experimentally characterized for different fluids. When the refractive index of the fluid is 1.440, the plasmofluidic waveguide with 190-nm-wide silicon has propagation loss of 0.46 dB/μm; the coupling loss between it and an ordinary silicon photonic waveguide is 1.79 dB. The propagation and coupling losses may be reduced if a few fabrication-induced imperfections are removed. The plasmofluidic waveguide may pave the way to a dynamically phase-tunable ultracompact device.

  4. Gap plasmon excitation in plasmonic waveguide using Si waveguide

    NASA Astrophysics Data System (ADS)

    Okuda, Koji; Kamada, Shun; Okamoto, Toshihiro; Haraguchi, Masanobu

    2016-08-01

    Plasmonic waveguides have attracted considerable attention for application in highly integrated optical circuits since they can confine light to areas smaller than the diffraction limit. In this context, in order to realize a highly integrated optical circuit, we fabricate and evaluate the optical characteristics of a poly(methyl methacrylate) junction positioned between Si and plasmonic waveguides. For the plasmonic waveguide, we employ a gap plasmonic waveguide in which the energy of the plasmonic wave can be confined in order to reduce the scattering loss at the junction. By experimental measurement, we determine the coupling efficiency between the Si and gap plasmonic waveguides and the propagation length at the gap plasmonic waveguide to be 52.4% and 11.1 µm, respectively. These values agree with those obtained by the three-dimensional finite-difference time-domain simulation. We believe that our findings can significantly contribute to the development of highly integrated optical circuits.

  5. Phonon waveguides for electromechanical circuits.

    PubMed

    Hatanaka, D; Mahboob, I; Onomitsu, K; Yamaguchi, H

    2014-07-01

    Nanoelectromechanical systems (NEMS), utilizing localized mechanical vibrations, have found application in sensors, signal processors and in the study of macroscopic quantum mechanics. The integration of multiple mechanical elements via electrical or optical means remains a challenge in the realization of NEMS circuits. Here, we develop a phonon waveguide using a one-dimensional array of suspended membranes that offers purely mechanical means to integrate isolated NEMS resonators. We demonstrate that the phonon waveguide can support and guide mechanical vibrations and that the periodic membrane arrangement also creates a phonon bandgap that enables control of the phonon propagation velocity. Furthermore, embedding a phonon cavity into the phonon waveguide allows mobile mechanical vibrations to be dynamically switched or transferred from the waveguide to the cavity, thereby illustrating the viability of waveguide-resonator coupling. These highly functional traits of the phonon waveguide architecture exhibit all the components necessary to permit the realization of all-phononic NEMS circuits.

  6. Microwave waveguide manifold and method

    DOEpatents

    Staehlin, John H.

    1987-12-01

    A controllably electrically coupled, physically intersecting plural waveguide manifold assembly wherein the intersecting waveguide elements are fabricated in integral unitary relationship from a single piece of metal in order to avoid the inaccuracies and difficult-to-control fabrication steps associated with uniting separate waveguide elements into a unitary structure. An X-band aluminum airborne radar manifold example is disclosed, along with a fabrication sequence for the manifold and the electrical energy communicating apertures joining the manifold elements.

  7. Microwave waveguide manifold and method

    DOEpatents

    Staehlin, John H.

    1987-01-01

    A controllably electrically coupled, physically intersecting plural waveguide manifold assembly wherein the intersecting waveguide elements are fabricated in integral unitary relationship from a single piece of metal in order to avoid the inaccuracies and difficult-to-control fabrication steps associated with uniting separate waveguide elements into a unitary structure. An X-band aluminum airborne radar manifold example is disclosed, along with a fabrication sequence for the manifold and the electrical energy communicating apertures joining the manifold elements.

  8. Ultrafast laser fabrication of low-loss waveguides in chalcogenide glass with 0.65 dB/cm loss.

    PubMed

    McMillen, Ben; Zhang, Botao; Chen, Kevin P; Benayas, Antonio; Jaque, Daniel

    2012-05-01

    This Letter reports on the fabrication of low-loss waveguides in gallium-lanthanum-sulfide chalcogenide glasses using an ultrafast laser. Spatial beam shaping and temporal pulse width tuning were used to optimize the guided mode profiles and optical loss of laser-written waveguides. Highly symmetric single-mode waveguides guiding at 1560 nm with a loss of 0.65  dB/cm were fabricated using 1.5 ps laser pulses. This Letter suggests a pathway to produce high quality optical waveguides in substrates with strong nonlinearity using the ultrafast laser direct writing technique.

  9. Analysis of Helical Waveguide.

    DTIC Science & Technology

    1985-12-23

    tube Efficiency Helix structure Backward wave oscillation Gain 19. ABSTRACT (Continue on reverse if necessary and identofy by block number) The...4,vailabilitY CCdes -vai aidIorDist spec a ." iii "- -. .5- S.. . ANALYSIS OF HELICAL WAVEGUIDE I. INTRODUCTION High power (- 10 kW) and broadband ...sys- tems. The frequency range of interest is 60-100 GHz. In this frequency range, the conventional slow wave circuits such as klystrons and TWTs have

  10. Investigation of Truncated Waveguides

    NASA Technical Reports Server (NTRS)

    Lourie, Nathan P.; Chuss, David T.; Henry, Ross M.; Wollack, Edward J.

    2013-01-01

    The design, fabrication, and performance of truncated circular and square waveguide cross-sections are presented. An emphasis is placed upon numerical and experimental validation of simple analytical formulae that describe the propagation properties of these structures. A test component, a 90-degree phase shifter, was fabricated and tested at 30 GHz. The concepts explored can be directly applied in the design, synthesis and optimization of components in the microwave to sub-millimeter wavebands.

  11. Micropore and nanopore fabrication in hollow antiresonant reflecting optical waveguides

    PubMed Central

    Holmes, Matthew R.; Shang, Tao; Hawkins, Aaron R.; Rudenko, Mikhail; Measor, Philip; Schmidt, Holger

    2011-01-01

    We demonstrate the fabrication of micropore and nanopore features in hollow antiresonant reflecting optical waveguides to create an electrical and optical analysis platform that can size select and detect a single nanoparticle. Micropores (4 μm diameter) are reactive-ion etched through the top SiO2 and SiN layers of the waveguides, leaving a thin SiN membrane above the hollow core. Nanopores are formed in the SiN membranes using a focused ion-beam etch process that provides control over the pore size. Openings as small as 20 nm in diameter are created. Optical loss measurements indicate that micropores did not significantly alter the loss along the waveguide. PMID:21922035

  12. Photonic Waveguide Choke Joint with Absorptive Loading

    NASA Technical Reports Server (NTRS)

    Wollack, Edward J. (Inventor); U-Yen, Kongpop (Inventor); Chuss, David T. (Inventor)

    2016-01-01

    A photonic waveguide choke includes a first waveguide flange member having periodic metal tiling pillars, a dissipative dielectric material positioned within an area between the periodic metal tiling pillars and a second waveguide flange member disposed to be coupled with the first waveguide flange member and in spaced-apart relationship separated by a gap. The first waveguide flange member has a substantially smooth surface, and the second waveguide flange member has an array of two-dimensional pillar structures formed therein.

  13. Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses.

    PubMed

    Okhrimchuk, Andrey; Mezentsev, Vladimir; Shestakov, Alexander; Bennion, Ian

    2012-02-13

    A depressed cladding waveguide with record low loss of 0.12 dB/cm is inscribed in YAG:Nd(0.3at.%) crystal by femtosecond laser pulses with an elliptical beam waist. The waveguide is formed by a set of parallel tracks which constitute the depressed cladding. It is a key element for compact and efficient CW waveguide laser operating at 1064 nm and pumped by a multimode laser diode. Special attention is paid to mechanical stress resulting from the inscription process. Numerical calculation of mode distribution and propagation loss with the elasto-optical effect taken into account leads to the conclusion that the depressed cladding is a dominating factor in waveguide mode formation, while the mechanical stress only slightly distorts waveguide modes.

  14. Waveguides fabricated by femtosecond laser exploiting both depressed cladding and stress-induced guiding core.

    PubMed

    Dong, Ming-Ming; Wang, Cheng-Wei; Wu, Zheng-Xiang; Zhang, Yang; Pan, Huai-Hai; Zhao, Quan-Zhong

    2013-07-01

    We report on the fabrication of stress-induced optical channel waveguides and waveguide splitters with laser-depressed cladding by femtosecond laser. The laser beam was focused into neodymium doped phosphate glass by an objective producing a destructive filament. By moving the sample along an enclosed routine in the horizontal plane followed by a minor descent less than the filament length in the vertical direction, a cylinder with rarified periphery and densified center region was fabricated. Lining up the segments in partially overlapping sequence enabled waveguiding therein. The refractive-index contrast, near- and far-field mode distribution and confocal microscope fluorescence image of the waveguide were obtained. 1-to-2, 1-to-3 and 1-to-4 splitters were also machined with adjustable splitting ratio. Compared with traditional femtosecond laser writing methods, waveguides prepared by this approach showed controllable mode conduction, strong field confinement, large numerical aperture, low propagation loss and intact core region.

  15. Impressing technology of optical Bragg's gratings on planar optical sol-gel waveguides

    NASA Astrophysics Data System (ADS)

    Pustelny, T.; Zielonka, I.; Tyszkiewicz, C.; Karasiński, P.; Pustelny, B.

    2006-06-01

    The aim of the presented investigations was to develop a technique of producing Bragg's grating couplers on planar waveguides. Waveguides are obtained by means of the sol-gel technology. The introduction of a light beam into the structure of the waveguide is in the case of planar or strip optical systems always an essential technical problem, requiring simple and reproducible solutions without extending excessively the waveguide structure. The paper presents a technology of producing grating couplers by impressing the pattern of the network while forming the planar waveguide structure applying the sol-gel method. Some remarks concerning the sol-gel technology are also presented. The results of investigations on grating couplers obtained in such a way have been discussed, too. Attention has been drawn to the possibility of using such structures in optoelectronic sensors, particularly gas sensors, including sensors of water vapour as well as toxic gases.

  16. Folded waveguide coupler

    DOEpatents

    Owens, Thomas L.

    1988-03-01

    A resonant cavity waveguide coupler for ICRH of a magnetically confined plasma. The coupler consists of a series of inter-leaved metallic vanes disposed withn an enclosure analogous to a very wide, simple rectangular waveguide that has been "folded" several times. At the mouth of the coupler, a polarizing plate is provided which has coupling apertures aligned with selected folds of the waveguide through which rf waves are launched with magnetic fields of the waves aligned in parallel with the magnetic fields confining the plasma being heated to provide coupling to the fast magnetosonic wave within the plasma in the frequency usage of from about 50-200 mHz. A shorting plate terminates the back of the cavity at a distance approximately equal to one-half the guide wavelength from the mouth of the coupler to ensure that the electric field of the waves launched through the polarizing plate apertures are small while the magnetic field is near a maximum. Power is fed into the coupler folded cavity by means of an input coaxial line feed arrangement at a point which provides an impedance match between the cavity and the coaxial input line.

  17. Cup Cylindrical Waveguide Antenna

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto J.; Darby, William G.; Kory, Carol L.; Lambert, Kevin M.; Breen, Daniel P.

    2008-01-01

    The cup cylindrical waveguide antenna (CCWA) is a short backfire microwave antenna capable of simultaneously supporting the transmission or reception of two distinct signals having opposite circular polarizations. Short backfire antennas are widely used in mobile/satellite communications, tracking, telemetry, and wireless local area networks because of their compactness and excellent radiation characteristics. A typical prior short backfire antenna contains a half-wavelength dipole excitation element for linear polarization or crossed half-wavelength dipole elements for circular polarization. In order to achieve simultaneous dual circular polarization, it would be necessary to integrate, into the antenna feed structure, a network of hybrid components, which would introduce significant losses. The CCWA embodies an alternate approach that entails relatively low losses and affords the additional advantage of compactness. The CCWA includes a circular cylindrical cup, a circular disk subreflector, and a circular waveguide that serves as the excitation element. The components that make it possible to obtain simultaneous dual circular polarization are integrated into the circular waveguide. These components are a sixpost polarizer and an orthomode transducer (OMT) with two orthogonal coaxial ports. The overall length of the OMT and polarizer (for the nominal middle design frequency of 2.25 GHz) is about 11 in. (approximately equal to 28 cm), whereas the length of a commercially available OMT and polarizer for the same frequency is about 32 in. (approximately equal to 81 cm).

  18. Waveguide mutually pumped phase conjugators.

    PubMed

    James, S W; Youden, K E; Jeffrey, P M; Eason, R W; Chandler, P J; Zhang, L; Townsend, P D

    1993-09-20

    The operation of the bridge mutually pumped phase conjugator is reported in a planar waveguide structure in photorefractive BaTiO(3). The waveguide was fabricated by the technique of ion implantation, using 1.5-MeVH(+) ions at a dose of 10(16) ions/cm(2). An order of magnitude decrease in response time is observed in the waveguide as compared with typical values obtained in bulk crystals, probably as a result of a combination of the optical confinement within the waveguide and possible modification of the charge-transport properties induced by the implantation process.

  19. Magnetic routing of light-induced waveguides

    NASA Astrophysics Data System (ADS)

    Izdebskaya, Yana; Shvedov, Vladlen; Assanto, Gaetano; Krolikowski, Wieslaw

    2017-02-01

    Among photofunctional materials that can be employed to control the propagation of light by modifying their properties, soft dielectrics such as nematic liquid crystals (NLCs) stand out for their large all-optical response. Through reorientation, the molecular distribution of NLCs can be modified by the electric field of light, permitting functional operations and supporting self-localized light beams or spatial optical solitons. To date, the generation and routing of such solitons have been limited by the boundary conditions employed to tailor the properties of NLCs in planar cells or capillaries. Here we report on spatial solitons in bulk NLCs with no lateral anchoring, where the application of an external magnetic field effectively controls the direction of propagation and the angular steering of the self-trapped wavepackets. Our results entail a completely new approach to the routing of self-localized beams and light-induced waveguides in three dimensions, without the usual limitations imposed by transverse boundary conditions.

  20. Magnetic routing of light-induced waveguides

    PubMed Central

    Izdebskaya, Yana; Shvedov, Vladlen; Assanto, Gaetano; Krolikowski, Wieslaw

    2017-01-01

    Among photofunctional materials that can be employed to control the propagation of light by modifying their properties, soft dielectrics such as nematic liquid crystals (NLCs) stand out for their large all-optical response. Through reorientation, the molecular distribution of NLCs can be modified by the electric field of light, permitting functional operations and supporting self-localized light beams or spatial optical solitons. To date, the generation and routing of such solitons have been limited by the boundary conditions employed to tailor the properties of NLCs in planar cells or capillaries. Here we report on spatial solitons in bulk NLCs with no lateral anchoring, where the application of an external magnetic field effectively controls the direction of propagation and the angular steering of the self-trapped wavepackets. Our results entail a completely new approach to the routing of self-localized beams and light-induced waveguides in three dimensions, without the usual limitations imposed by transverse boundary conditions. PMID:28198374

  1. Study of waveguide crosstalk in silicon photonics integrated circuits

    NASA Astrophysics Data System (ADS)

    Donzella, Valentina; Talebi Fard, Sahba; Chrostowski, Lukas

    2013-10-01

    Silicon photonics is going trough a terrific expansion driven by several applications, from chip wiring to integrated sensors and telecommunications. Some applications, e.g. intra and inter chip connections and sensing, require long parallel waveguides for wiring or for connecting grating couplers (GCs) to devices situated in sensing micro-channels. In well packed photonics chips there are often long wiring waveguides parallel for several mm, so loss can be caused by light coupled back and forth between them (cross-talk), by scattering, wall roughness, mode mismatch, etc. This work aims to investigate cross-talk for long parallel waveguides, and to propose methods to reduce cross-talk loss when high integration density is required. We have designed and fabricated about 200 testing structures exploiting e-beam on silicon on insulator (SOI) chip, in order to test several parameters and to find out dominant loss mechanisms. All devices have been tested and measured using an automatic optical bench, in the wavelength range between 1500-1600 nm. Achieved results are promising, since they allow for comparing cross-talk for short as well as long interaction lengths (up to 5 mm), different waveguide width pairs, several separation distances, and for TE and TM polarization. For smaller gaps, having not symmetric pair of waveguides is very beneficial, since it results in a lower power coupling, e.g. about 20/14 dB of crosstalk reduction for TE/TM waveguides after 5 mm of propagation and gap of 0.5 μm. This can be very useful for the design of integrated photonics chips requiring high-density packaging of devices and waveguides.

  2. Waveguide sensors for liquid using gapped optical fibers

    NASA Astrophysics Data System (ADS)

    Baba, Kazutaka; Chiba, Keita

    2014-03-01

    A waveguide sensor using a gapped optical fiber for measurements of refractive index and absorptance of liquid has been theoretically investigated. The gap formed in the single mode optical fiber is filled with the liquid whose optical characteristics are to be measured. An optical loss of the gapped optical fiber depends on the refractive index and absorptance of the liquid in the gap. The optical loss becomes smaller with the refractive index of the liquid as the light beam greatly expands in the media with smaller refractive index because of diffraction. On the other hand, the optical loss becomes larger with the absorptance of the liquid. Therefore, the refractive index and absorptance can be measured by using two waveguide sensors with different gap width. In the previous work, we investigated the theoretical characteristics of the sensors by using the two-dimensional slab waveguide for simplification. In this work, we have derived an equation for evaluation of the optical losses by approximating the fundamental mode in the optical fiber by a Gaussian function for practical use. And we clearly show the relationship between the optical loss and the refractive index of liquid filled into the gap for various gapped optical waveguides. The optical loss more greatly changes in the gaped optical fiber in comparison with the gaped slab waveguide. We have designed a saccharimeter for the liquid with Brix scale 0-20% by using the gapped waveguide. For example, the optimum gap widths are evaluated as 1.8 mm for the spot sizes of 0.01 mm. We have also designed waveguide sensor for measurements of not only refractive index but also absorptance of liquid.

  3. Continuous leaky-wave scanning using periodically modulated spoof plasmonic waveguide

    PubMed Central

    Kong, Gu Sheng; Ma, Hui Feng; Cai, Ben Geng; Cui, Tie Jun

    2016-01-01

    The plasmonic waveguide made of uniform corrugated metallic strip can support and guide spoof surface plasmon polaritons (SSPPs) with high confinements. Here, we propose periodically-modulated plasmonic waveguide composed of non-uniform corrugated metallic strip to convert SSPPs to radiating waves, in which the main beam of radiations can steer continuously as the frequency changes. To increase the radiation efficiency of the periodically-modulated plasmonic waveguide at the broadside, an asymmetrical plasmonic waveguide is further presented to reduce the reflections and realize continuous leaky-wave scanning. Both numerical simulations and experimental results show that the radiation efficiency can be improved greatly and the main beam of leaky-wave radiations can steer from the backward quadrant to the forward quadrant, passing through the broadside direction, which generally is difficult to be realized by the common leaky-wave antennas. PMID:27404740

  4. Metal slit array Fresnel lens for wavelength-scale optical coupling to nanophotonic waveguides.

    PubMed

    Jung, Young Jin; Park, Dongwon; Koo, Sukmo; Yu, Sunkyu; Park, Namkyoo

    2009-10-12

    We propose a novel metal slit array Fresnel lens for wavelength-scale optical coupling into a nanophotonic waveguide. Using the plasmonic waveguide structure in Fresnel lens form, a much wider beam acceptance angle and wavelength-scale working distance of the lens was realized compared to a conventional dielectric Fresnel lens. By applying the plasmon waveguide dispersion relation to a phased antenna array model, we also develop and analyze design rules and parameters for the suggested metal slit Fresnel lens. Numerical assessment of the suggested structure shows excellent coupling efficiency (up to 59%) of the 10 mum free-space Gaussian beam to the 0.36 mum Si waveguide within a working distance of a few mum.

  5. Electro-optic polymer waveguide fabricated using electric-field-assisted chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Tatsuura, Satoshi; Sotoyama, Wataru; Yoshimura, Tetsuzo

    1992-04-01

    The paper describes the fabrication of an electrooptic (EO) polymer channel waveguide using a new technique, electric-field-assisted chemical vapor deposition. A polymer film is deposited from epoxy and nonlinear optical (NLO) aliphatic amine, using chemical vapor deposition under an electric field applied by slit electrodes on a thermally oxidized Si wafer at room temperature. A clear propagating He-Ne laser beam is observed along the electrode gap. The propagated beam's near field pattern is bright for the TE mode, but very weak for the TM mode. This indicates the NLO side groups' in-plane alignment and the fabrication of a channel waveguide. The EO coefficient of this waveguide, measured in a Mach-Zehnder interferometer, is r(11) of about 0.1 pm/V. The polymer channel waveguide, which is poled at room temperature after film deposition, shows no EO response. This means NLO molecules are actually aligned during polymerizing, not after.

  6. Corrugated Waveguide Mode Content Analysis Using Irradiance Moments

    PubMed Central

    Jawla, Sudheer K.; Shapiro, Michael A.; Idei, Hiroshi; Temkin, Richard J.

    2015-01-01

    We present a novel, relatively simple method for determining the mode content of the linearly polarized modes of a corrugated waveguide using the moments of the intensity pattern of the field radiated from the end of the waveguide. This irradiance moment method is based on calculating the low-order irradiance moments, using measured intensity profiles only, of the radiated field from the waveguide aperture. Unlike the phase retrieval method, this method does not use or determine the phase distribution at the waveguide aperture. The new method was benchmarked numerically by comparison with sample mode mixtures. The results predict less than ±0.7% error bar in the retrieval of the mode content. The method was also tested using high-resolution experimental data from beams radiated from 63.5 mm and 19 mm corrugated waveguides at 170 and 250 GHz, respectively. The results showed a very good agreement of the mode content retrieved using the irradiance moment method versus the phase retrieval technique. The irradiance moment method is most suitable for cases where the modal power is primarily in the fundamental HE11 mode, with <8% of the power in high-order modes. PMID:25821260

  7. Ridge waveguide laser in Nd:LiNbO3 by Zn-diffusion and femtosecond-laser structuring

    NASA Astrophysics Data System (ADS)

    Martínez de Mendívil, Jon; del Hoyo, Jesús; Solís, Javier; Lifante, Ginés

    2016-12-01

    Ridge waveguide lasers have been fabricated on Nd3+ doped LiNbO3 crystals. The fs-laser writing technique was used to define ridge structures on a gradient-index planar waveguide fabricated by Zn-diffusion. This planar waveguide was formed in a z-cut LiNbO3 substrate homogeneously doped with a 0.23% of Nd3+ ions. To obtain lateral light confinement, the surface was then micromachined using a multiplexed femtosecond laser writing beam, forming the ridge structures. By butting two mirrors at the channel waveguide end-facets, forming a waveguide laser cavity, TM-polarized laser action at 1085 nm was achieved by end-fire TM-pumping at 815 nm. The waveguide laser shows a threshold of 31 mW, with a 7% of slope efficiency.

  8. Coherence filtering and revivals in x-ray waveguides: a communication-modes approach.

    PubMed

    Pelliccia, Daniele; Paganin, David M

    2014-08-01

    Waveguides for short-wavelength x-rays have been successfully employed for microbeam and nanobeam production and microscopy experiments. The coherence of hard x-ray sources is generally poor, and therefore the spatial coherence filtering characteristics of waveguides have been attractive for high-resolution microscopy experiments. To quantify the spatial coherence filtering properties of a waveguide, we here report a theoretical study of the propagation of a partially coherent beam in a waveguide in the paraxial approximation. By propagating the cross-spectral density function associated with the partially coherent field, we quantify in detail the evolution of the spatial coherence as the beam proceeds along the waveguide. The propagation is efficiently accomplished using the communication-modes formalism. The generality of the approach makes it suitable to study more complex phenomena such as the second-order Talbot self-imaging effect and coherence revivals in waveguides. Numerical results are shown for waveguides illuminated by partially coherent hard x-rays.

  9. Integration of a terahertz quantum cascade laser with a hollow waveguide

    DOEpatents

    Wanke, Michael C [Albuquerque, NM; Nordquist, Christopher D [Albuquerque, NM

    2012-07-03

    The present invention is directed to the integration of a quantum cascade laser with a hollow waveguide on a chip to improve both the beam pattern and manufacturability. By coupling the QCL output into a single-mode rectangular waveguide the radiation mode structure can be known and the propagation, manipulation, and broadcast of the QCL radiation can then be entirely controlled by well-established rectangular waveguide techniques. By controlling the impedance of the interface, enhanced functions, such as creating amplifiers, efficient coupling to external cavities, and increasing power output from metal-metal THz QCLs, are also enabled.

  10. Optical interference logic in silicon-on-insulator waveguides

    NASA Astrophysics Data System (ADS)

    Wheeler, Dana C.; Hall, Douglas C.

    2006-02-01

    A novel means of realizing optical logic with passive silicon-on-insulator (SOI) waveguide elements is proposed and modeled. Using what we call interference logic (IL), information is encoded and manipulated in the complex domain by properly setting the amplitude and phase of information inputs through specially designed waveguide structures, with the resulting wave interference used to compute the desired function output. We demonstrate that any arbitrary Boolean logic function can be realized in any physical system in which interference occurs. In this work, optical interference logic utilizing constructive and destructive interference of 1.55 micron light waves in multi-mode interference (MMI) couplers fabricated with SOI rib waveguides is described. Defining a vector representation of the complex information, a numerical function minimization algorithm is employed to compute the optimum input vector manipulations needed to realize a given operation's truth table. As such, with the definition of an output amplitude detection threshold separating "0" and "1" results, logic operations can be performed. A digital 2 x 1 multiplexer (MUX) is implemented in a single 4 x 1 MMI coupler where 1 of the 4 inputs serves as a reference input beam. With an input spacing of 40 micron, the 2 x 1 multiplexer has an overall dimension of 160 micron x 2.25 cm. Simple varied-dimension waveguide elements are used to adjust input wave amplitude and phase. To confirm and optimize the designs, device operation is simulated using 2D beam propagation method (BPM).

  11. Hollow waveguide cavity ringdown spectroscopy

    NASA Technical Reports Server (NTRS)

    Dreyer, Chris (Inventor); Mungas, Greg S. (Inventor)

    2012-01-01

    Laser light is confined in a hollow waveguide between two highly reflective mirrors. This waveguide cavity is used to conduct Cavity Ringdown Absorption Spectroscopy of loss mechanisms in the cavity including absorption or scattering by gases, liquid, solids, and/or optical elements.

  12. Finite element analysis of a variable optical attenuator based on s-shape polymer waveguide

    NASA Astrophysics Data System (ADS)

    Wan, Jing; Wu, Lingxun; Xue, Fenglan; Hu, Jian; Fu, Yanjun; Zhang, Wei; Hu, Fangren

    2016-01-01

    A variable optical attenuator (VOA) based on S-shape polymer waveguide is demonstrated at the wavelength λ = 1.55 micron. The VOA consists of straight input and output waveguides, an S-shape waveguide and a pair of deposited electrodes. The cladding material of S waveguide is Poly (methyl methacrylate/disperse red 1) (PMMA/DR1) and the core material of S waveguide is SiON. The refractive index of the polymer cladding at S waveguide is modified by the applied electric voltage. Light scatters at the S waveguide and the VOA has large energy loss in the original state at voltage-off. In the voltage-on state, the refractive index of the polymer of the S waveguide reduces, and energy loss changes as the voltage increases. The attenuation of the VOA can be controled and adjusted by the applied voltage. The beam propagation method(BPM) and finite element analysis are employed to simulate and analyse the VOA. The results show that the VOA has large variable attenuation range of 45.2dB and low insertion loss of 0.8dB.

  13. Optical waveguides in TiO₂ formed by He ion implantation.

    PubMed

    Bi, Zhuan-Fang; Wang, Lei; Liu, Xiu-Hong; Zhang, Shao-Mei; Dong, Ming-Ming; Zhao, Quan-Zhong; Wu, Xiang-Long; Wang, Ke-Ming

    2012-03-12

    We report on the formation and the optical properties of the planar and ridge optical waveguides in rutile TiO₂ crystal by He+ ion implantation combined with micro-fabrication technologies. Planar optical waveguides in TiO₂ are fabricated by high-energy (2.8 MeV) He+-ion implantation with a dose of 3 × 10¹⁶ ions/cm² and triple low energies (450, 500, 550) keV He+-ion implantation with all fluences of 2 × 10¹⁶ ions/cm² at room temperature. The guided modes were measured by a modal 2010 prism coupler at wavelength of 1539 nm. There are damage profiles in ion-implanted waveguides by Rutherford backscattering (RBS)/channeling measurements. The refractive-index profile of the 2.8 MeV He+-implanted waveguide was analyzed based on RCM (Reflected Calculation Method). Also ridge waveguides were fabricated by femtosecond laser ablation on 2.8 MeV ion implanted planar waveguide and Ar ion beam etching on the basis of triple keV ion implanted planar waveguide, separately. The loss of the ridge waveguide was estimated. The measured near-field intensity distributions of the planar and ridge modes are all shown.

  14. Photonic integration using asymmetric twin-waveguides

    NASA Astrophysics Data System (ADS)

    Studenkov, Pavel V.

    A novel approach to fabrication of monolithic photonic integrated circuits based on the asymmetric twin- waveguide (ATG) structure is proposed and demonstrated. In contrast to the conventional integration methods relying on semiconductor regrowth, the ATG approach requires only one epitaxy step, while the integrated devices are defined by post-growth patterning. The ATG structure contains two evanescently coupled waveguide layers separated by a cladding layer. The upper layer provides optical gain for the active devices such as lasers and semiconductor optical amplifiers. The transparent lower layer is used to make waveguides and optical interconnects on the chip. Thus the ATG represents a versatile integration platform for cost- effective fabrication of photonic integrated circuits, similar in some respects to the electronic CMOS platform. Light propagation and coupling in the ATG structure are analyzed using the beam propagation method to optimize the layer design. It is shown that the asymmetric refractive index profile eliminates undesirable optical coupling between the waveguide layers. At the interfaces between the active and passive devices, lateral tapers are used to induce vertical coupling of light with a coupling loss of typically <1 dB. Therefore various integrated devices can be separately optimized to achieve performance close to that of the conventional discrete components. The design of taper couplers is described in detail, and their performance is experimentally verified. Using the ATG approach, several integrated devices were fabricated in the InGaAsP/InP material system for λ = 1.55 μm wavelength operation. Lasers and semiconductor optical amplifiers with integrated waveguides were characterized to test the integration approach. Single-frequency, distributed Bragg reflector (DBR) lasers achieved output power of 11 mW with a 40 dB side-mode suppression ratio. A DBR laser with integrated electroabsorption modulator had a 24 dB extinction ratio

  15. Laser fabrication of photorefractive Bragg reflectors, asymmetric waveguides and void arrays in glass

    NASA Astrophysics Data System (ADS)

    Itoh, Kazuyoshi; Watanabe, Wataru; Li, Yan; Yamada, Kazuhiro; Nishii, Junji

    2002-11-01

    We have been studying the refractive index changes and vacancies that are induced in silica glass by the irradiation of ultrashort laser pulses. By scanning the laser beam in the glass we can form 3-D shape of waveguides, arrays of tiny vacancies, called voids, and long holes with microscopic diameters. In this paper, we report on the asymmetry of the waveguide formed by linearly polarized ultrashort pulses. The formation of the photo-induced waveguide is normally accompanied by the filamentation, the self-trapping of laser beam due to nonlinear optical effects. The asymmetric cross-section of the waveguide structures explains properly the illusory birefringence of photo-induced waveguides observed earlier. The cross-sectional forms of the waveguides were observed by polishing and etching the cross-psections. We also report the possibility of forming asymmetric shapes of voids. The asymmetry of voids results from the beam profile. We controlled the profile by inserting apertures before the focusing lens. The asymmetry leads to the polarization dependence of diffraction from the array of voids. We also report on the formation of Bragg grating in glass. The Bragg gratings were formed in soda-lime glass. We succeeded in forming a series of three Bragg gratings. The formation of grating inside glass was confirmed by diffraction experiments and chemical etching of polished cross-sections.

  16. Initial results for a 170 GHz high power ITER waveguide component test stand

    NASA Astrophysics Data System (ADS)

    Bigelow, Timothy; Barker, Alan; Dukes, Carl; Killough, Stephen; Kaufman, Michael; White, John; Bell, Gary; Hanson, Greg; Rasmussen, Dave

    2014-10-01

    A high power microwave test stand is being setup at ORNL to enable prototype testing of 170 GHz cw waveguide components being developed for the ITER ECH system. The ITER ECH system will utilize 63.5 mm diameter evacuated corrugated waveguide and will have 24 >150 m long runs. A 170 GHz 1 MW class gyrotron is being developed by Communications and Power Industries and is nearing completion. A HVDC power supply, water-cooling and control system has been partially tested in preparation for arrival of the gyrotron. The power supply and water-cooling system are being designed to operate for >3600 second pulses to simulate the operating conditions planned for the ITER ECH system. The gyrotron Gaussian beam output has a single mirror for focusing into a 63.5 mm corrugated waveguide in the vertical plane. The output beam and mirror are enclosed in an evacuated duct with absorber for stray radiation. Beam alignment with the waveguide is a critical task so a combination of mirror tilt adjustments and a bellows for offsets will be provided. Analysis of thermal patterns on thin witness plates will provide gyrotron mode purity and waveguide coupling efficiency data. Pre-prototype waveguide components and two dummy loads are available for initial operational testing of the gyrotron. ORNL is managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under Contract DE-AC-05-00OR22725.

  17. Optical properties of CdS nanocrystallites embedded in (Si 0.2Ti 0.8)O 2 sol-gel waveguide

    NASA Astrophysics Data System (ADS)

    Juodkazis, S.; Bernstein, E.; Plenet, J. C.; Bovier, C.; Dumas, J.; Mugnier, J.; Vaitkus, J. V.

    1998-03-01

    We report on the implementation of a two-grating coupler technique for measurement of repopulation of deep traps in CdS nanocrystallites embedded in a (Si 0.2Ti 0.8)O 2 waveguiding glass layer of high refractive index. A sol-gel process is used to produce this waveguide. The low attenuation (˜1 dB/cm) of the waveguide allows to in- and out-couple light by surface relief gratings embossed on the top layer of the waveguide. The spectral region of waveguiding (≈700 nm) that was studied corresponds to the deep trap spectral position in CdS. The waveguiding beam is used as a probe beam and we used the third harmonics of a YLF:Nd laser (347 nm) as a pump. The influence of bimolecular recombination on repopulation of deep traps is demonstrated. The linear recombination time as well as bimolecular and Auger coefficients are determined.

  18. Seismic Waveguide of Metamaterials

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Hoon; Das, Mukunda P.

    We developed a new method of an earthquake-resistant design to support conventional aseismic system using acoustic metamaterials. The device is an attenuator of a seismic wave that reduces the amplitude of the wave exponentially. Constructing a cylindrical shell-type waveguide composed of many Helmholtz resonators that creates a stop-band for the seismic frequency range, we convert the seismic wave into an attenuated one without touching the building that we want to protect. It is a mechanical way to convert the seismic energy into sound and heat.

  19. Experiments on folded waveguide gyro-TWT amplifier

    SciTech Connect

    Choi, J.J.; Park, G.S.; Ganguly, A.K.; Armstrong, C.M.; Calise, F.; Lobas, D.

    1995-12-31

    Experiments on a folded waveguide gyro-TWT amplifier are underway to demonstrate high power (> 50kW), broadband (BW > 15%), Ka-band radiation amplification. The interaction circuit is a periodic, H-plane bend, transverse folded waveguide employed with a high power axis-encircling electron beam. The electron beam with a large transverse momentum is produced by an advanced triple-pole-piece center-post electron gun designed by Litton for NRL millimeter wave gyro-amplifier experiments. For a proof-of-principle experiment, a low gain 12 period circuit is built and tested. A mode coalescing of the first stop-band predicted by an equivalent circuit model and a 3-D electromagnetic code is verified from experimental measurements. Measurement show a return loss of > {minus}15 dB over the frequency bandwidth of > 20%. Experimental data are presented and compared with slow-time scale non-linear code simulations.

  20. Liquid microlenses and waveguides from bulk nematic birefringent profiles.

    PubMed

    Čančula, Miha; Ravnik, Miha; Muševič, Igor; Žumer, Slobodan

    2016-09-19

    We demonstrate polarization-selective microlensing and waveguiding of laser beams by birefringent profiles in bulk nematic fluids using numerical modelling. Specifically, we show that radial escaped nematic director profiles with negative birefringence focus and guide light with radial polarization, whereas the opposite - azimuthal - polarization passes through unaffected. A converging lens is realized in a nematic with negative birefringence, and a diverging lens in a positive birefringence material. Tuning of such single-liquid lenses by an external low-frequency electric field and by adjusting the profile and intensity of the beam itself is demonstrated, combining external control with intrinsic self-adaptive focusing. Escaped radial profiles of birefringence are shown to act as single-liquid waveguides with a single distinct eigenmode and low attenuation. Finally, this work is an approach towards creating liquid photonic elements for all-soft matter photonics.

  1. Folded waveguide gyrotron traveling-wave-tube amplifier

    SciTech Connect

    Choi, J.J.; Armstrong, C.M.; Ganguly, A.K.; Calise, F.

    1995-03-01

    A compact, low cost gyrotron traveling-wave-tube (gyro-TWT) amplifier capable of producing high-power, broadband, millimeter wave radiation is reported. The interaction circuit is a periodic, magnetic field plane (H plane) bend, transverse folded waveguide employed with a high-power axis-encircling electron beam. Transverse beam modulation and wave amplification in the folded waveguide gyro-TWT are observed in both linear theory and large signal simulations. Calculations from an equivalent circuit model and a three-dimensional electromagnetic code predict a mode coalescing of the first stop-band in a periodic structure. The mode coalescing is verified from experimental measurements. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  2. Integrated optic waveguide devices

    NASA Technical Reports Server (NTRS)

    Ramer, O. G.

    1980-01-01

    Integrated optic waveguide circuits with a phase bias and modulator on the same chip were designed, fabricated, and tested for use in a fiber-optic rotation sensor (gyro) under development. Single mode fiber-optic pigtails were permanently coupled to the four ports of the chip. The switch format was based on coherent coupling between waveguides formed in Z-cut LiNbO3. The control of the coupling was achieved by electro-optically varying the phase propagation constants of each guide. Fiber-to-chip interfacing required the development of appropriate fixturing and manipulation techniques to achieve the close tolerance needed for high coupling efficiency between a fiber with an approximately 5 micron m core and a channel guide with a roughly 2 micron m by 5 micron m cross section. Switch and chip performance at 0.85 micron m is discussed as well as potential improvements related to insertion loss reduction, switching voltages, and suppression of Li2O out-diffusion.

  3. Josephson vortices as flexible waveguides for terahertz waves

    NASA Astrophysics Data System (ADS)

    Gulevich, D. R.; Savel'ev, Sergey; Yampol'skii, V. A.; Kusmartsev, F. V.; Nori, Franco

    2008-09-01

    We propose using the Josephson vortices (fluxons) as adjustable and malleable waveguides of electromagnetic radiation. Our theoretical and numerical calculations show that electromagnetic waves can propagate along the Josephson vortices and always follow the vortex lines. By changing external parameters, such as electric currents or magnetic fields, the shape and configuration of the guiding vortex lines can be controlled. We describe the design of a multifunctional three-terminal device that controls the transmission (redirecting or splitting) of a beam of electromagnetic waves.

  4. Dielectric THz waveguides

    NASA Astrophysics Data System (ADS)

    Dupuis, Alexandre

    In this thesis we have explored a wide variety of dielectric waveguides that rely on many different waveguiding mechanisms to guide THz (far-infrared) radiation. We have explored both theoretically and experimentally a large number of waveguide designs with the aim of reducing propagation and bending losses. The different waveguides can be classified into two fundamentally different strategies for reducing the propagation loss: small-core single-mode evanescent-field fibers or large hollow-core multi-mode tubes. Our focus was first set on exploring the small-core evanescent-field fiber strategy for reducing propagation losses. Following initial theoretical work in our group, much effort was spent on the fabrication and measurement of evanescent porous subwavelength diameter plastic fibers, in an attempt to further reduce the propagation losses. The fabrication of such fibers is a challenge and many novel techniques were devised to enable fiber drawing without hole collapse. The first method sealed the holes of an assembly of polymer tubes and lead to fibers of relatively low porosity (˜25% air within the core) due to reduction in hole size during fiber drawing. The second method was a novel sacrificial polymer technique whereby drawing a completely solid fiber prevented any hole collapse and the subsequent dissolution of the sacrificial polymer revealed the holes in the fiber. The third method was a combination of preform casting using glass molds and drawing with pressurized air within the holes. This led to fibers of record porosity (86% air). The measurement of these porous fibers began with a collaboration with a group from the university of Sherbrooke. At the time, the only available detector was a frequency integrating liquid-helium-cooled bolometer (powermeter). A novel directional coupler method for measuring the losses of subwavelength fibers was developed whereby an evanescent coupler is formed by bringing a probe fiber in proximity to the sample fiber

  5. Laterally tapered undercut active waveguide fabricated by simple wet etching method for vertical waveguide directional coupler.

    PubMed

    Lin, Fang-Zheng; Chiu, Yi-Jen; Tsai, Shun-An; Wu, Tsu-Hsiu

    2008-05-26

    A novel structure, namely a laterally tapered undercut active-waveguide (LTUAWG) for an optical spot-size converter (SSC) is proposed and demonstrated in this paper. Using a selectively undercut-etching-active-region (UEAR) on a laterally tapered ridge to define a LTUAWG, a vertical waveguide directional coupler (VWGDC) can be fabricated simply by a wet etching-based technique. The VWGDC comprises a top LTUAWG and a bottom passive waveguide (PWG). An electroabsorption modulator (EAM) is monolithically integrated with a LTUAWG-VWGDC serving as the connecting active waveguide (AWG) and the optical transmission testing device. Through a loss budget analysis on an EAM-integrated VWGDC, an optical mode transfer loss of -1.6 dB is observed between the PWG and the AWG. By comparing the reverse directions of optical excitation, the identical optical transmission relations with bias are observed, further verifying the high efficiency properties in a SSC. Optical misalignment tolerance is employed to test the two transferred optical modes. 1dB misalignment tolerance of +/-2.9 microm (horizontal) and +/-2.2 microm (vertical) is obtained from the PWG, which is better than the value of +/-1.9 microm (horizontal) and +/-1.6 microm (vertical) from the AWG. Far-field angle measurement shows 6.0 degrees (horizontal) 9.3 degrees (vertical) and 11 degrees (horizontal) x 20 degrees (vertical) for the PWG and the AWG, respectively, exhibiting the capability of a mode transformer. All of these measurements are also examined by a 3D beam propagation method (BPM) showing quite consistent results. In this wet etching technique, no regrowth is needed during processing. Furthermore, UEAR processing controlled by in situ monitoring can lead to a simple way for submicron-size processing, showing that a highly reliable processing technique can thus be expected. A low cost of fabrication can also be realized, indicating that this method can be potentially used in optoelectronic integration.

  6. Scintillator Waveguide For Sensing Radiation

    DOEpatents

    Bliss, Mary; Craig, Richard A.; Reeder; Paul L.

    2003-04-22

    The present invention is an apparatus for detecting ionizing radiation, having: a waveguide having a first end and a second end, the waveguide formed of a scintillator material wherein the therapeutic ionizing radiation isotropically generates scintillation light signals within the waveguide. This apparatus provides a measure of radiation dose. The apparatus may be modified to permit making a measure of location of radiation dose. Specifically, the scintillation material is segmented into a plurality of segments; and a connecting cable for each of the plurality of segments is used for conducting scintillation signals to a scintillation detector.

  7. Prism coupling into clad uniform optical waveguides

    SciTech Connect

    Revelli, J.F.; Sarid, D.

    1980-07-01

    The theory of prism coupling into multilayered dielectric slab waveguides is presented. In addition to including the possibility of high index cladding, the present theory also extends the region of validity of previously reported work to cover the regime of ''strong coupling''. The limiting conditions for validity of the present theory are that both ..cap alpha../sub m//k and ..cap alpha../sub m/ +- p/k be much smaller than either unity or vertical-bar..beta../sub m/-..beta../sub m/ +- pvertical-bar, where m is the mode under consideration, ..cap alpha../sub m/ is the leakage of that mode, and vertical-bar..beta../sub m/-..beta../sub m/ +- pvertical-bar is the separation of the effective indices of adjacent modes. A numerical example is presented in which the coupling efficiency into a uniform or slab waveguide with ..delta..n=0.002 is calculated for various cladding thicknesses with a cladding index of 2.5. The introduction of cladding is found to reduce coupling efficiency in this example due to increased phase mismatch between the incident and ''ideal'' beams.

  8. Complete power concentration into a single waveguide in large-scale waveguide array lenses

    PubMed Central

    Catrysse, Peter B.; Liu, Victor; Fan, Shanhui

    2014-01-01

    Waveguide array lenses are waveguide arrays that focus light incident on all waveguides at the input side into a small number of waveguides at the output side. Ideal waveguide array lenses provide complete (100%) power concentration of incident light into a single waveguide. While of great interest for several applications, ideal waveguide array lenses have not been demonstrated for practical arrays with large numbers of waveguides. The only waveguide arrays that have sufficient degrees of freedom to allow for the design of an ideal waveguide array lens are those where both the propagation constants of the individual waveguides and the coupling constants between the waveguides vary as a function of space. Here, we use state-of-the-art numerical methods to demonstrate complete power transfer into a single waveguide for waveguide array lenses with large numbers of waveguides. We verify this capability for more than a thousand waveguides using a spatial coupled mode theory. We hereby extend the state-of-art by more than two orders of magnitude. We also demonstrate for the first time a physical design for an ideal waveguide array lens. The design is based on an aperiodic metallic waveguide array and focuses ~100% of the incident light into a deep-subwavelength focal spot. PMID:25319203

  9. Coplanar waveguide supercomponents

    NASA Astrophysics Data System (ADS)

    Yeo, Mike

    The application of coplanar-waveguide (CPWG) technology to develop rugged compact high-performance electronic components for use in military receivers and similar equipment is described and illustrated with diagrams and photographs of typical CPWG implementations. The operating principles and characteristics of CPWGs are reviewed; the advantages and limitations of stripline, microstrip, and CPWG technologies are listed in a table and compared; and the inherently good isolation, the ease of making series and shunt connections, and the flexibility of ground-plane spacing of CPWGs are emphasized. The CPWG-based components shown include a Ku-band dual downconverter with 17 different functional circuits, an antenna switching unit with switches, driver, couplers, and ferrite devices; and two mixed-media multifunction hybrid components.

  10. Whispering-mode waveguide

    NASA Astrophysics Data System (ADS)

    Kurnit, N. A.

    Properties of a relatively new type of waveguide structure of potential use of confining infrared radiation to a small mode volume over long path lengths are reviewed. A single guiding surface with curvature radius rho and band radius R allows propagation of a near-grazing incidence whispering mode of transverse width approximately (lambda square root of rho R/pi) sup 1/2 and radial width approximately 1/2 (sq lambda R)/sup 1/3. For sufficiently large rho, the loss per revolution for TE mode propagation is approximately pi A/sub N/, where A/sub N/ is the normal-incidence reflection loss. Results on a number of prototype structures in general agreement with these considerations are described.

  11. Nonlinear Waves in Waveguides

    NASA Astrophysics Data System (ADS)

    Leble, Sergei B.

    S.B. Leble's book deals with nonlinear waves and their propagation in metallic and dielectric waveguides and media with stratification. The underlying nonlinear evolution equations (NEEs) are derived giving also their solutions for specific situations. The reader will find new elements to the traditional approach. Various dispersion and relaxation laws for different guides are considered as well as the explicit form of projection operators, NEEs, quasi-solitons and of Darboux transforms. Special points relate to: 1. the development of a universal asymptotic method of deriving NEEs for guide propagation; 2. applications to the cases of stratified liquids, gases, solids and plasmas with various nonlinearities and dispersion laws; 3. connections between the basic problem and soliton- like solutions of the corresponding NEEs; 4. discussion of details of simple solutions in higher- order nonsingular perturbation theory.

  12. Waveguide properties of the asymmetric collision between two bright spatial solitons in Kerr media.

    PubMed

    Martínez, D Ramírez; Otero, M M Méndez; Carrasco, M L Arroyo; Castillo, M D Iturbe

    2012-11-19

    In this work, we numerically characterize the waveguide properties of the asymmetric collision between two bright spatial solitons in a nonlinear Kerr media. The results demonstrate that the energy carried by a probe beam guided by one soliton can be transferred after the collision to the waveguide created by the other soliton depending on the initial separation between the solitons, the angle of their collision, and in some cases, the particular soliton that initially guides the probe beam. The observed behavior is equivalent to that obtained for the symmetrical collision when there is an initial relative phase between the solitons.

  13. Waveguides for performing enzymatic reactions

    DOEpatents

    Levene; Michael J. , Korlach; Jonas , Turner; Stephen W. , Craighead; Harold G. , Webb; Watt W.

    2007-11-06

    The present invention is directed to a method and an apparatus for analysis of an analyte. The method involves providing a zero-mode waveguide which includes a cladding surrounding a core where the cladding is configured to preclude propagation of electromagnetic energy of a frequency less than a cutoff frequency longitudinally through the core of the zero-mode waveguide. The analyte is positioned in the core of the zero-mode waveguide and is then subjected, in the core of the zero-mode wave guide, to activating electromagnetic radiation of a frequency less than the cut-off frequency under conditions effective to permit analysis of the analyte in an effective observation volume which is more compact than if the analysis were carried out in the absence of the zero-mode waveguide.

  14. Multiscaffold DNA Origami Nanoparticle Waveguides

    PubMed Central

    2013-01-01

    DNA origami templated self-assembly has shown its potential in creating rationally designed nanophotonic devices in a parallel and repeatable manner. In this investigation, we employ a multiscaffold DNA origami approach to fabricate linear waveguides of 10 nm diameter gold nanoparticles. This approach provides independent control over nanoparticle separation and spatial arrangement. The waveguides were characterized using atomic force microscopy and far-field polarization spectroscopy. This work provides a path toward large-scale plasmonic circuitry. PMID:23841957

  15. Optical Waveguide Scattering Reduction. II.

    DTIC Science & Technology

    1980-12-01

    FAD-AOAR 815 BATTELLEWCOLUMBUS LABS ON F/S 20/6 OPTICAL WAVEGUIDE SCATTER ING REDUC TION. II.(U) 7 DEC 80 0 W VAHEY, N F HARTMAN, R C SHERMAN F3361... OPTICAL WAVEGUIDE SCATTERING REDUCTION II M BATTELLE COLUMBUS LABORATORIES 505 KING AVENUE COLUMBUS, OHIO 43201 DTIC ELECTEf MAY 12 198111 December...reviewed and is approved for publication. DOUGLAS AWIWILLE, Project Engineer KENNETH R. HUTCHINSON, Chief Electro- Optics Techniques and Electro- Optics

  16. As₂S₃-silica double-nanospike waveguide for mid-infrared supercontinuum generation.

    PubMed

    Xie, Shangran; Tani, Francesco; Travers, John C; Uebel, Patrick; Caillaud, Celine; Troles, Johann; Schmidt, Markus A; Russell, Philip St J

    2014-09-01

    A double-nanospike As2S3-silica hybrid waveguide structure is reported. The structure comprises nanotapers at input and output ends of a step-index waveguide with a subwavelength core (1 μm in diameter), with the aim of increasing the in-coupling and out-coupling efficiency. The design of the input nanospike is numerically optimized to match both the diameter and divergence of the input beam, resulting in efficient excitation of the fundamental mode of the waveguide. The output nanospike is introduced to reduce the output beam divergence and the strong endface Fresnel reflection. The insertion loss of the waveguide is measured to be ∼2  dB at 1550 nm in the case of free-space in-coupling, which is ∼7  dB lower than the previously reported single-nanospike waveguide. By pumping a 3-mm-long waveguide at 1550 nm using a 60-fs fiber laser, an octave-spanning supercontinuum (from 0.8 to beyond 2.5 μm) is generated at 38 pJ input energy.

  17. Generation of very high pressure pulses with 1-bit time reversal in a solid waveguide

    NASA Astrophysics Data System (ADS)

    Montaldo, Gabriel; Roux, Phillippe; Derode, Arnaud; Negreira, Carlos; Fink, Mathias

    2001-12-01

    The use of piezoelectric transducer arrays has opened up the possibility of electronic steering and focusing of acoustic beams to track kidney stones. However, owing to the limited pressure delivered by each transducer (typically 10 bar), the number of transducers needed to reach an amplitude at the focus on the order of 1000 bars is typically of some hundreds of elements. We present here a new solution based on 1-bit time reversal in a solid waveguide to obtain, with a small number of transducers, a very high amplitude pulse in tissues located in front of the waveguide. The idea is to take advantage of the temporal dispersion in the waveguide to create, after time reversal, a temporally recompressed pulse with a stronger amplitude. The aim of this work is threefold: first, we experimentally demonstrate 1-bit time reversal between a point source in water and several transducers fastened to one section of a finite-length cylindrical waveguide. Second, we numerically and experimentally study the temporal and spatial focusing at the source as a function of the characteristics of the ``solid waveguide-time reversal mirror (TRM)'' system: length and diameter of the guide, number of transducers of the TRM. Last, we show that the instantaneous power delivered in water at the focus of the solid waveguide is much higher than the power directly transmitted into water from a classically focused transducer. The combination of 1-bit time reversal and a solid waveguide leads to shock wave lithotripsy with low-power electronics.

  18. Rotated waveplates in integrated waveguide optics

    PubMed Central

    Corrielli, Giacomo; Crespi, Andrea; Geremia, Riccardo; Ramponi, Roberta; Sansoni, Linda; Santinelli, Andrea; Mataloni, Paolo; Sciarrino, Fabio; Osellame, Roberto

    2014-01-01

    Controlling and manipulating the polarization state of a light beam is crucial in applications ranging from optical sensing to optical communications, both in the classical and quantum regime, and ultimately whenever interference phenomena are to be exploited. In addition, many of these applications present severe requirements of phase stability and greatly benefit from a monolithic integrated-optics approach. However, integrated devices that allow arbitrary transformations of the polarization state are very difficult to produce with conventional lithographic technologies. Here we demonstrate waveguide-based optical waveplates, with arbitrarily rotated birefringence axis, fabricated by femtosecond laser pulses. To validate our approach, we exploit this component to realize a compact device for the quantum state tomography of two polarization-entangled photons. This work opens perspectives for integrated manipulation of polarization-encoded information with relevant applications ranging from integrated polarimetric sensing to quantum key distribution. PMID:24963757

  19. MHD waveguides in space plasma

    SciTech Connect

    Mazur, N. G.; Fedorov, E. N.; Pilipenko, V. A.

    2010-07-15

    The waveguide properties of two characteristic formations in the Earth's magnetotail-the plasma sheet and the current (neutral) sheet-are considered. The question of how the domains of existence of different types of MHD waveguide modes (fast and slow, body and surface) in the (k, {omega}) plane and their dispersion properties depend on the waveguide parameters is studied. Investigation of the dispersion relation in a number of particular (limiting) cases makes it possible to obtain a fairly complete qualitative pattern of all the branches of the dispersion curve. Accounting for the finite size of perturbations across the wave propagation direction reveals new additional effects such as a change in the critical waveguide frequencies, the excitation of longitudinal current at the boundaries of the sheets, and a change in the symmetry of the fundamental mode. Knowledge of the waveguide properties of the plasma and current sheets can explain the occurrence of preferred frequencies in the low-frequency fluctuation spectra in the magnetotail. In satellite observations, the type of waveguide mode can be determined from the spectral properties, as well as from the phase relationships between plasma oscillations and magnetic field oscillations that are presented in this paper.

  20. Cr:ZnSe planar waveguide mid-IR laser

    NASA Astrophysics Data System (ADS)

    Willimas, J. E.; Martyshkin, D. V.; Fedorov, V. V.; Moskalev, I. S.; Camata, R. P.; Mirov, S. B.

    2011-02-01

    Middle infrared (mid-IR) chromium-doped zinc selenide (Cr:ZnSe) bulk lasers have attracted a lot of attention due to their unique combination of optical and laser properties facilitating a wide range of potential scientific, industrial, and medical applications. Utilization of thin film waveguide geometry enabling good thermal management and control of beam quality is a viable pathway for compact chip-integrated optical laser design. Cr:ZnSe thin films are also promising as saturable absorbers and mode-lockers of the cavities of solid state lasers operating over 1.3-2.1 μm. We recently reported the first successful demonstration of mid-IR Cr:ZnSe planar waveguide lasing at 2.6 μm under gain-switched short-pulse (5 ns) 1.56 μm excitation as well as the passive Q-switching of the cavity of a fiber-pumped Er:YAG laser operating at 1645 nm using a highly doped Cr:ZnSe thin film. PLD grown Cr:ZnSe waveguide were fabricated on sapphire substrates (Cr:ZnSe/sapphire) with chromium concentration of 1018-1019 cm-3. Further development of mid-IR lasing in the Cr:ZnSe planar waveguide under continuous wave excitation were investigated. In addition, deposition of Cr:ZnSe-based thin film structures on n-type GaAs substrates were also investigated for possible mid-IR electroluminescence.

  1. Use of CO2 laser flexible waveguides during laparoscopic cholecystectomy

    NASA Astrophysics Data System (ADS)

    Lanzafame, Raymond J.

    1992-06-01

    Laparoscopic cholecystectomy has revolutionized the management of symptomatic cholelithiasis and cholecystitis. Although electrosurgery devices are used by a majority of surgeons, laser technology is a valued addition to the armamentarium of the skilled laser laparoscopist. A variety of fiberoptic capable wavelengths have been applied successfully during this procedure. Use of the CO2 laser for this purpose has lagged due to difficulties encountered with free-beam and rigid waveguide dissections via the laparoscope. Recent developments in flexible waveguide technology have the potential to expand the role of the CO2 laser for laparoscopic cholecystectomy and other procedures. Twelve laparoscopic cholecystectomies were performed using Luxar (Bothell, WA) flexible microwaveguides of various configurations. In each case, dissection of the gallbladder from the gallbladder bed was accomplished with acceptable speed and hemostasis. There were no complications. Shortcomings include coupling and positioning with an articulated arm and occasional clogging of some waveguide tips with debris. Modifications of this technology are suggested. Flexible waveguides make the CO2 laser a practical alternative for surgical laparoscopy.

  2. Design of optical channel waveguides in SiO2 by ion implantation

    NASA Astrophysics Data System (ADS)

    De los Reyes, H.; Lizarraga-Medina, E. G.; Salazar, D.; Rangel-Rojo, R.; Vázquez, G. V.; Oliver, A.; Achenbach, S.; Börner, M.; Márquez, H.

    2015-08-01

    Design of straight and S-bend optical channel waveguides based on silver ion implantation in SiO2 substrates is presented. 3D Beam Propagation Method (BPM) calculations are used for the design of the waveguides based on step index profiles produced from a sequential multiple ion implantation process. An analysis of modal optical confinement was done by means of the Effective Index Method (EIM) for selecting the right dimensions of the channel waveguides. Core index values between 1.4623-1.4662 are obtained, depending on the fluence, are considered. Depth and width for the waveguides were chosen to provide single mode operation. Bending losses are determined as function of bending radius, refractive index change (Δn), and wavelength.

  3. Fabricating fluorinated polyimide optical waveguide by CO2 laser direct-writing

    NASA Astrophysics Data System (ADS)

    Jin, Xi; Zhu, Daqing; Zeng, Xiaoyan

    2008-12-01

    Fluorinated polyimide waveguides were fabricated by CO2 laser direct-writing. The poly(amic acid) micro-region exposed by CO2 laser beam was measured with FT-IR micro-spectroscopy. The FT-IR spectra indicated that the laser imidized polyimide was semicrystalline, and the imidization degree of scanned micro-region increased with the rising of output laser power. The increased aspect ratio of waveguide and smoothness of surface can be achieved by increasing the pre-cured temperature (below 120 °C) and writing rate, and optimizing laser power and the distance between the lens and the annular aperture. The guided light was clearly confined to the core of the fabricated waveguide, which means this technique can be used for fluorinated polyimide waveguide fabrication.

  4. Biocompatible silk step-index optical waveguides

    PubMed Central

    Applegate, Matthew B.; Perotto, Giovanni; Kaplan, David L.; Omenetto, Fiorenzo G.

    2015-01-01

    Biocompatible optical waveguides were constructed entirely of silk fibroin. A silk film (n=1.54) was encapsulated within a silk hydrogel (n=1.34) to form a robust and biocompatible waveguide. Such waveguides were made using only biologically and environmentally friendly materials without the use of harsh solvents. Light was coupled into the silk waveguides by direct incorporation of a glass optical fiber. These waveguides are extremely flexible, and strong enough to survive handling and manipulation. Cutback measurements showed propagation losses of approximately 2 dB/cm. The silk waveguides were found to be capable of guiding light through biological tissue. PMID:26600988

  5. Waveguide harmonic damper for klystron amplifier.

    SciTech Connect

    Kang, Y.

    1998-10-27

    A waveguide harmonic damper was designed for removing the harmonic frequency power from the klystron amplifiers of the APS linac. Straight coaxial probe antennas are used in a rectangular waveguide to form a damper. A linear array of the probe antennas is used on a narrow wall of the rectangular waveguide for damping klystron harmonics while decoupling the fundamental frequency in dominent TE{sub 01} mode. The klystron harmonics can exist in the waveguide as waveguide higher-order modes above cutoff. Computer simulations are made to investigate the waveguide harmonic damping characteristics of the damper.

  6. Magnetic beam position monitor

    SciTech Connect

    Varfolomeev, A.A.; Ivanchenkov, S.N.; Khlebnikov, A.S.

    1995-12-31

    Many nondestructive beam position monitors are known. However, these devices can not be used for DC particle beam diagnostics. We investigated a method of beam diagnostics applicable for the operative control of DC high power e-beam inside closed waveguide. A design of the detector for determination of{open_quote} center of mass {close_quote} position of DC particle beam was developed. It was shown that the monitor can be used as a nondestructive method for the beam position control in resonators. Magnetic field of the particle beam outside a resonator is used. The detector consists of the steel yokes and magnetic field sensors. The sensors measure magnetic fluxes in the steel yokes fixed outside the resonator. When the particle beam changes its position, these magnetic fluxes also change. Beam displacement sensitivity of the monitor depends on the steel yoke dimensions. The detector sensitivity is equal to 1 Gauss/mm for the conditions adequate to the FOM-FEM project.

  7. Effects of beryllium coating layer on performance of the ultrasonic waveguide sensor.

    PubMed

    Joo, Young-Sang; Bae, Jin-Ho; Kim, Jong-Bum; Kim, Jin-Yeon

    2013-02-01

    Under-sodium viewing is one of the critical technical issues and requirements for the in-service inspection of the sodium-cooled fast reactor (SFR) that is currently under development. The waveguide sensor that uses leaky A(0) mode Lamb waves has shown its potential for high-resolution viewing/scanning of the reactor core and in-vessel structures. However, a few problems arise under a liquid sodium environment due to high sound speed in liquid sodium and dispersion in the long waveguide plate, which simultaneously deteriorate the reconstructed C-scan images. This paper proposes coating the surface of the waveguide sensor plate with a thin layer of material that has a very high ultrasonic wave velocity. It is shown that this coating layer can largely reduce the size (width) and radiation angle of the acoustic beam from the waveguide sensor. This paper precisely analyzes the effects of coating parameters on the beam quality. The proposed idea is validated through ultrasonic experiments in which the radiation beam profiles and group velocities in waveguide sensors with different surface treatments are measured and compared.

  8. Simplified flangeless unisex waveguide coupler assembly

    DOEpatents

    Michelangelo, Dimartino; Moeller, Charles P.

    1993-01-01

    A unisex coupler assembly is disclosed capable of providing a leak tight coupling for waveguides with axial alignment of the waveguides and rotational capability. The sealing means of the coupler assembly are not exposed to RF energy, and the coupler assembly does not require the provision of external flanges on the waveguides. In a preferred embodiment, O ring seals are not used and the coupler assembly is, therefore, bakeable at a temperature up to about 150.degree. C. The coupler assembly comprises a split collar which clamps around the waveguides and a second collar which fastens to the split collar. The split collar contains an inner annular groove. Each of the waveguides is provided with an external annular groove which receives a retaining ring. The split collar is clamped around one of the waveguides with the inner annular groove of the split collar engaging the retaining ring carried in the external annular groove in the waveguide. The second collar is then slipped over the second waveguide behind the annular groove and retaining ring therein and the second collar is coaxially secured by fastening means to the split collar to draw the respective waveguides together by coaxial force exerted by the second collar against the retaining ring on the second waveguide. A sealing ring is placed against an external sealing surface at a reduced external diameter end formed on one waveguide to sealingly engage a corresponding sealing surface on the other waveguide as the waveguides are urged toward each other.

  9. Simplified flangeless unisex waveguide coupler assembly

    DOEpatents

    Michelangelo, D.; Moeller, C.P.

    1993-05-04

    A unisex coupler assembly is disclosed capable of providing a leak tight coupling for waveguides with axial alignment of the waveguides and rotational capability. The sealing means of the coupler assembly are not exposed to RF energy, and the coupler assembly does not require the provision of external flanges on the waveguides. In a preferred embodiment, O ring seals are not used and the coupler assembly is, therefore, bakeable at a temperature up to about 150 C. The coupler assembly comprises a split collar which clamps around the waveguides and a second collar which fastens to the split collar. The split collar contains an inner annular groove. Each of the waveguides is provided with an external annular groove which receives a retaining ring. The split collar is clamped around one of the waveguides with the inner annular groove of the split collar engaging the retaining ring carried in the external annular groove in the waveguide. The second collar is then slipped over the second waveguide behind the annular groove and retaining ring therein and the second collar is coaxially secured by fastening means to the split collar to draw the respective waveguides together by coaxial force exerted by the second collar against the retaining ring on the second waveguide. A sealing ring is placed against an external sealing surface at a reduced external diameter end formed on one waveguide to sealingly engage a corresponding sealing surface on the other waveguide as the waveguides are urged toward each other.

  10. Spiral laser beams in inhomogeneous media.

    PubMed

    Mahalov, Alex; Suazo, Erwin; Suslov, Sergei K

    2013-08-01

    Explicit solutions of the inhomogeneous paraxial wave equation in a linear and quadratic approximation are applied to wave fields with invariant features, such as oscillating laser beams in a parabolic waveguide and spiral light beams in varying media. A similar effect of superfocusing of particle beams in a thin monocrystal film, harmonic oscillations of cold trapped atoms, and motion in magnetic field are also mentioned.

  11. Integration of a waveguide self-electrooptic effect device and a vertically coupled interconnect waveguide

    DOEpatents

    Vawter, G. Allen

    2008-02-26

    A self-electrooptic effect device ("SEED") is integrated with waveguide interconnects through the use of vertical directional couplers. Light initially propagating in the interconnect waveguide is vertically coupled to the active waveguide layer of the SEED and, if the SEED is in the transparent state, the light is coupled back to the interconnect waveguide.

  12. Phased waveguide array with fixed tuning elements

    SciTech Connect

    Motley, R.W.; Bernabei, S.; Hooke, W.M.; Paoloni, F.J.

    1980-04-01

    The waveguide grill excites both penetrating lower hybrid waves and surface plasma waves. Quarter wavelength tuning elements attached to the sides of a twin waveguide are shown to reduce the surface wave component by a factor of approx. 3..

  13. Slotted Polyimide-Aerogel-Filled-Waveguide Arrays

    NASA Technical Reports Server (NTRS)

    Rodriguez-Solis, Rafael A.; Pacheco, Hector L.; Miranda, Felix A.; Meador, Mary Ann B.

    2013-01-01

    Polyimide aerogels were considered to serve as a filling for millimeter-wave waveguides. While these waveguides present a slightly higher loss than hollow waveguides, they have less losses than Duroid substrate integrated waveguides (less than 0.15 dB at Ka-band, in a 20 mm section), and exhibit an order of magnitude of mass reduction when compared to commercial waveguides. A Ka-band slotted aerogel-filled-waveguide array was designed, which provided the same gain (9 dBi) as its standard waveguide counterpart, and a slotted aerogel-filled-waveguide array using folded-slots was designed for comparison, obtaining a gain of 9 dB and a bandwidth of 590 MHz.

  14. Optical panel system including stackable waveguides

    DOEpatents

    DeSanto, Leonard; Veligdan, James T.

    2007-11-20

    An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, wherein each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.

  15. Optical panel system including stackable waveguides

    DOEpatents

    DeSanto, Leonard; Veligdan, James T.

    2007-03-06

    An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, wherein each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.

  16. Widely tunable short-infrared thulium and holmium doped fluorozirconate waveguide chip lasers.

    PubMed

    Lancaster, D G; Gross, S; Withford, M J; Monro, T M

    2014-10-20

    We report widely tunable (≈ 260 nm) Tm(3+) and Ho(3+) doped fluorozirconate (ZBLAN) glass waveguide extended cavity lasers with close to diffraction limited beam quality (M(2) ≈ 1.3). The waveguides are based on ultrafast laser inscribed depressed claddings. A Ti:sapphire laser pumped Tm(3+)-doped chip laser continuously tunes from 1725 nm to 1975 nm, and a Tm(3+)-sensitized Tm(3+):Ho(3+) chip laser displays tuning across both ions evidenced by a red enhanced tuning range of 1810 to 2053 nm. We also demonstrate a compact 790 nm diode laser pumped Tm(3+)-doped chip laser which tunes from 1750 nm to 1998 nm at a 14% incident slope efficiency, and a beam quality of M(2) ≈ 1.2 for a large mode-area waveguide with 70 µm core diameter.

  17. WGM-Resonator/Tapered-Waveguide White-Light Sensor Optics

    NASA Technical Reports Server (NTRS)

    Stekalov, Dmitry; Maleki, Lute; Matsko, Andrey; Savchenkov, Anatoliy; Iltchenko, Vladimir

    2007-01-01

    Theoretical and experimental investigations have demonstrated the feasibility of compact white-light sensor optics consisting of unitary combinations of (1) low-profile whispering-gallery-mode (WGM) resonators and (2) tapered rod optical waveguides. These sensors are highly wavelength-dispersive and are expected to be especially useful in biochemical applications for measuring absorption spectra of liquids. These sensor optics exploit the properties of a special class of non-diffracting light beams that are denoted Bessel beams because their amplitudes are proportional to Bessel functions of the radii from their central axes. High-order Bessel beams can have large values of angular momentum. In a sensor optic of this type, a low-profile WGM resonator that supports modes having large angular momenta is used to generate high-order Bessel beams. As used here, "low-profile" signifies that the WGM resonator is an integral part of the rod optical waveguide but has a radius slightly different from that of the adjacent part(s).

  18. Methods and apparatus for vertical coupling from dielectric waveguides

    DOEpatents

    Yaacobi, Ami; Cordova, Brad Gilbert

    2014-06-17

    A frequency-chirped nano-antenna provides efficient sub-wavelength vertical emission from a dielectric waveguide. In one example, this nano-antenna includes a set of plasmonic dipoles on the opposite side of a SiYV.sub.4 waveguide from a ground plane. The resulting structure, which is less than half a wavelength long, emits a broadband beam (e.g., >300 nm) that can be coupled into an optical fiber. In some embodiments, a diffractive optical element with unevenly shaped regions of high- and low-index dielectric material collimates the broadband beam for higher coupling efficiency. In some cases, a negative lens element between the nano-antenna and the diffractive optical element accelerates the emitted beam's divergence (and improves coupling efficiency), allowing for more compact packaging. Like the diffractive optical element, the negative lens element includes unevenly shaped regions of high- and low-index dielectric material that can be designed to compensate for aberrations in the beam emitted by the nano-antenna.

  19. Planar waveguide sensor of ammonia

    NASA Astrophysics Data System (ADS)

    Rogoziński, Roman; Tyszkiewicz, Cuma; Karasiński, Paweł; Izydorczyk, Weronika

    2015-12-01

    The paper presents the concept of forming ammonia sensor based on a planar waveguide structure. It is an amplitude sensor produced on the basis of the multimode waveguide. The technological base for this kind of structure is the ion exchange method and the sol-gel method. The planar multimode waveguide of channel type is produced in glass substrate (soda-lime glass of Menzel-Glaser company) by the selective Ag+↔Na+ ion exchange. On the surface of the glass substrate a porous (~40%) silica layer is produced by the sol-gel method. This layer is sensitized to the presence of ammonia in the surrounding atmosphere by impregnation with Bromocresol Purple (BCP) dye. Therefore it constitutes a sensor layer. Spectrophotometric tests carried out showed about 50% reduction of cross-transmission changes of such sensor layer for a wave λ=593 nm caused by the presence of 25% ammonia water vapor in its ambience. The radiation source used in this type of sensor structure is a light emitting diode LED. The gradient channel waveguide is designed for frontal connection (optical glue) with a standard multimode telecommunications waveguide 62.5/125μm.

  20. Loop coupled resonator optical waveguides.

    PubMed

    Song, Junfeng; Luo, Lian-Wee; Luo, Xianshu; Zhou, Haifeng; Tu, Xiaoguang; Jia, Lianxi; Fang, Qing; Lo, Guo-Qiang

    2014-10-06

    We propose a novel coupled resonator optical waveguide (CROW) structure that is made up of a waveguide loop. We theoretically investigate the forbidden band and conduction band conditions in an infinite periodic lattice. We also discuss the reflection- and transmission- spectra, group delay in finite periodic structures. Light has a larger group delay at the band edge in a periodic structure. The flat band pass filter and flat-top group delay can be realized in a non-periodic structure. Scattering matrix method is used to calculate the effects of waveguide loss on the optical characteristics of these structures. We also introduce a tunable coupling loop waveguide to compensate for the fabrication variations since the coupling coefficient of the directional coupler in the loop waveguide is a critical factor in determining the characteristics of a loop CROW. The loop CROW structure is suitable for a wide range of applications such as band pass filters, high Q microcavity, and optical buffers and so on.

  1. Development of Leaky Wave Antennas for Layered Ridge Dielectric Waveguide

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Katehi, Linda P. B.

    1993-01-01

    The millimeter wave, especially above 100 GHz, and the submillimeter wave frequency spectrum offers the possibility for narrow-beam, high-resolution antennas which are critical for high definition radars required for space debris tracking, airport ground avoidance radars, and missile tracking. In addition, the frequency which most atmospheric constituents may be detected lie in this part of the frequency spectrum. Therefore, the development of electronic components for millimeter/submillimeter wave passive sensors is required for environmental monitoring of the Earth's atmosphere. Typical microwave transmission lines such as microstrip and coplanar waveguide rely on two or more electrical conductors to concentrate and guide the electromagnetic energy. Unfortunately, the surface resistance of the conductors increases as the square root of frequency. In addition, the circuit dimensions must be decreased with increasing frequency to maintain a single mode transmission line which further increases the conductor loss. An alternative family of transmission lines are formed from two or more insulating materials and rely on the differences in the permittivities between the two materials to guide the wave. No metal conductors are required although some dielectric waveguides do utilize a metallic ground plane to facilitate the interconnections of active electrical elements or to reduce the transmission line size. Examples of such transmission lines are image guides, insulated image guides, trapped image guides, ridge guide, and layered ridge dielectric waveguide (LRDW). Although most dielectric waveguides have dimensions on the order of lambda to provide sufficient field confinement, the LRDW has been shown to provide good field confinement for electrically small lines. This offers an advantage in circuit integration. It has been shown that a periodic array of metallic strips placed either along or on top of a dielectric waveguide forms an effective radiator. This antenna is

  2. Slotted Polyimide-Aerogel-Filled-Waveguide Arrays

    NASA Technical Reports Server (NTRS)

    Rodriguez-Solis, Rafael A.; Pacheco, Hector L.; Miranda, Felix A.; Meador, Mary Ann B.

    2013-01-01

    This presentation discussed the potential advantages of developing Slotted Waveguide Arrays using polyimide aerogels. Polyimide (PI) aerogels offer great promise as an enabling technology for lightweight aerospace antenna systems. PI aerogels are highly porous solids possessing low density and low dielectric permittivity combined with good mechanical properties. For slotted waveguide array applications, there are significant advantages in mass that more than compensate for the slightly higher loss of the aerogel filled waveguide when compared to state of practice commercial waveguide.

  3. Bending loss of terahertz pipe waveguides.

    PubMed

    Lu, Jen-Tang; Hsueh, Yu-Chun; Huang, Yu-Ru; Hwang, Yuh-Jing; Sun, Chi-Kuang

    2010-12-06

    We present an experimental study on the bending loss of terahertz (THz) pipe waveguide. Bending loss of pipe waveguides is investigated for various frequencies, polarizations, core diameters, cladding thicknesses, and cladding materials. Our results indicate that the pipe waveguides with lower guiding loss suffer lower bending loss due to stronger mode confinement. The unexpected low bending loss in the investigated simple leaky waveguide structure promises variety of flexible applications.

  4. Investigation of semiconductor clad optical waveguides

    NASA Technical Reports Server (NTRS)

    Batchman, T. E.; Carson, R. F.

    1985-01-01

    A variety of techniques have been proposed for fabricating integrated optical devices using semiconductors, lithium niobate, and glasses as waveguides and substrates. The use of glass waveguides and their interaction with thin semiconductor cladding layers was studied. Though the interactions of these multilayer waveguide structures have been analyzed here using glass, they may be applicable to other types of materials as well. The primary reason for using glass is that it provides a simple, inexpensive way to construct waveguides and devices.

  5. Coupled ridge waveguide distributed feedback quantum cascade laser arrays

    SciTech Connect

    Liu, Ying-Hui; Zhang, Jin-Chuan Yan, Fang-Liang; Liu, Feng-Qi Zhuo, Ning; Wang, Li-Jun; Liu, Jun-Qi; Wang, Zhan-Guo

    2015-04-06

    A coupled ridge waveguide quantum cascade laser (QCL) array consisting of fifteen elements with parallel integration was presented. In-phase fundamental mode operation in each element is secured by both the index-guided nature of the ridge and delicate loss management by properly designed geometries of the ridges and interspaces. Single-lobe lateral far-field with a nearly diffraction limited beam pattern was obtained. By incorporating a one-dimensional buried distributed feedback grating, the in-phase-operating coupled ridge waveguide QCL design provides an efficient solution to obtaining high output power and stable single longitudinal mode emission. The simplicity of this structure and fabrication process makes this approach attractive to many practical applications.

  6. Excitation of leaky modes in a system of coupled waveguides

    SciTech Connect

    Usievich, B A; Nurligareev, J Kh; Sychugov, V A; Golant, K M

    2007-06-30

    A system of coupled single-mode waveguides with the number M of guided modes lower than the number N of single-mode waveguides is studied. Leaky modes in this system are investigated in detail. It is shown, in particular, that these modes can be excited by light incident on the side surface of the system when the reflection coefficient vanishes. It is found that the angular dependence of the coefficient of reflection from the side surface of the system can be used to refine the dispersion curve for leaky modes. It is shown that light incident at a grazing angle can propagate in the system in the direction considerably different from the propagation direction of a beam incident from a substrate, even in the case of a small difference in the refractive indices. (fiber and integrated optics)

  7. A submillimeter tripler using a quasi-waveguide structure

    NASA Technical Reports Server (NTRS)

    Erickson, Neal R.; Cortes-Medellin, German

    1992-01-01

    A new type of frequency multiplier structure is being developed which is suitable for application at frequencies above 1 THz. This structure preserves some of the properties of waveguide for mode control, yet is not truly single mode. The device resembles a sectoral horn, with a varactor diode mounted near the throat. Input and output coupling are through the same aperture, requiring a quasi-optical diplexer. Initial tests are directed at building a tripler at 500 GHz, for comparison with waveguide structures. The diplexer is a blazed diffraction grating with appropriate focusing optics. Model studies show that the impedance match to a varactor should be good, and initial tests of the beam patterns of the prototype indicate that optical coupling efficiency should be very high. The structure also has the potential for use as a fundamental mixer, or as a third harmonic mixer.

  8. Experimental demonstration of linearly polarized 2-10  μm supercontinuum generation in a chalcogenide rib waveguide.

    PubMed

    Yu, Yi; Gai, Xin; Ma, Pan; Vu, Khu; Yang, Zhiyong; Wang, Rongping; Choi, Duk-Yong; Madden, Steve; Luther-Davies, Barry

    2016-03-01

    This Letter reports the production of a supercontinuum extending from ≈2  μm to >10  μm generated using a chalcogenide buried rib waveguide pumped with 330 femtosecond pulses at 4.184 μm. This is, to the best of our knowledge, the broadest mid-infrared supercontinuum generated in any planar waveguide platform. Because the waveguide is birefringent, quasi-single-mode, and uses an optimized dispersion design, the supercontinuum is linearly polarized with an extinction ratio >100. Dual beam spectrophotometry is performed easily using this source.

  9. Room-temperature continuous wave laser oscillations in Nd:YAG ceramic waveguides produced by carbon ion implantation

    NASA Astrophysics Data System (ADS)

    Tan, Y.; Zhang, C.; Chen, F.; Liu, F.-Q.; Jaque, D.; Lu, Q.-M.

    2011-06-01

    We report on the generation of continuous wave lasers at a wavelength of ˜1064 nm in a Nd:YAG ceramic waveguide at room temperature. The waveguide was fabricated by using 6 MeV carbon ion implantation at a fluence of 3×1014 ions/cm2. Laser operation has been realized with a slope efficiency as high as ˜11%. The pump threshold of an 808-nm laser beam for the waveguide laser oscillation is 19.5 mW.

  10. Simulation of self-organized waveguides for self-aligned coupling between micro- and nano-scale devices

    NASA Astrophysics Data System (ADS)

    Yoshimura, Tetsuzo

    2015-05-01

    We propose an optical coupling technique based on the reflective self-organized lightwave network (R-SOLNET), where optical devices with different core sizes are connected, for nano-scale-waveguide-based optical interconnects. Growth of R-SOLNET between a 3-μm-wide waveguide and a 600-nm-wide waveguide, on the core edge of which a luminescent target has been deposited, is simulated by the finite-difference time-domain method. The two waveguides are placed with gap distances ranging from 16 to 64 μm in a photopolymer with a refractive index that increases upon exposure to a write beam and luminescence. When a 400 nm wavelength write beam is introduced from the micro-scale waveguide, 470 nm luminescence is generated from the target. In the area where the write beam and the luminescence overlap, the refractive index increases rapidly. The write beam and the luminescence thus attract each other to merge into one through the self-focusing, forming a self-aligned coupling waveguide of R-SOLNET with a coupling loss of 1.5-1.8 dB, even when a lateral misalignment of 600 nm exists between them. This indicates that the R-SOLNET can be used as an optical solder to connect a micro-scale waveguide to a nano-scale waveguide. The optimum writing time required to attain the minimum coupling loss increases with increasing lateral misalignment. The dependence of the optimum writing time on the misalignment is reduced with increasing gap distance, and it almost vanishes when the distance is 64 μm, enabling unmonitored optical solder formation. R-SOLNET utilizing the two-photon photochemistry is briefly described as the next-generation SOLNET.

  11. Heuristic modelling of laser written mid-infrared LiNbO3 stressed-cladding waveguides.

    PubMed

    Nguyen, Huu-Dat; Ródenas, Airán; Vázquez de Aldana, Javier R; Martínez, Javier; Chen, Feng; Aguiló, Magdalena; Pujol, Maria Cinta; Díaz, Francesc

    2016-04-04

    Mid-infrared lithium niobate cladding waveguides have great potential in low-loss on-chip non-linear optical instruments such as mid-infrared spectrometers and frequency converters, but their three-dimensional femtosecond-laser fabrication is currently not well understood due to the complex interplay between achievable depressed index values and the stress-optic refractive index changes arising as a function of both laser fabrication parameters, and cladding arrangement. Moreover, both the stress-field anisotropy and the asymmetric shape of low-index tracks yield highly birefringent waveguides not useful for most applications where controlling and manipulating the polarization state of a light beam is crucial. To achieve true high performance devices a fundamental understanding on how these waveguides behave and how they can be ultimately optimized is required. In this work we employ a heuristic modelling approach based on the use of standard optical characterization data along with standard computational numerical methods to obtain a satisfactory approximate solution to the problem of designing realistic laser-written circuit building-blocks, such as straight waveguides, bends and evanescent splitters. We infer basic waveguide design parameters such as the complex index of refraction of laser-written tracks at 3.68 µm mid-infrared wavelengths, as well as the cross-sectional stress-optic index maps, obtaining an overall waveguide simulation that closely matches the measured mid-infrared waveguide properties in terms of anisotropy, mode field distributions and propagation losses. We then explore experimentally feasible waveguide designs in the search of a single-mode low-loss behaviour for both ordinary and extraordinary polarizations. We evaluate the overall losses of s-bend components unveiling the expected radiation bend losses of this type of waveguides, and finally showcase a prototype design of a low-loss evanescent splitter. Developing a realistic waveguide

  12. Dispersion compensation in slot photonic crystal waveguide

    NASA Astrophysics Data System (ADS)

    Plastun, Alexander; Konyukhov, Andrey

    2015-03-01

    Dispersion tailoring using photonic crystal cladding for slot waveguide is proposed. Numerical modeling based on the Maxwell equation for Te and TM modes of the photonic crystal is performed. Slot waveguide provide high intencity at the central area. Photonic crystal cladding of the slot waveguide allow us to compensate high values of the host glass dispersion.

  13. Rippled-beam free-electron laser

    SciTech Connect

    Carlsten, B.E.

    1997-10-01

    The authors describe a new microwave generation mechanism involving a scalloping annular electron beam. The beam interacts with the axial electric field of a TM{sub 0n} mode in a smooth circular waveguide through the axial free-electron laser interaction, in which the beam ripple period is synchronous with the phase slippage of the rf mode relative to the electron beam. Due to nonlinearities in the orbit equation, the interaction can be made autoresonant, where the phase and amplitude of the gain is independent of the beam energy.

  14. A general waveguide circuit theory

    NASA Astrophysics Data System (ADS)

    Marks, Roger B.; Williams, Dylan F.

    1992-10-01

    This work generalizes and extends the classical circuit theory of electromagnetic waveguides. Unlike the conventional theory, the present formulation applies to all waveguides composed of linear, isotropic material, even those involving lossy conductors and hybrid mode fields, in a fully rigorous way. Special attention is given to distinguishing the traveling waves, constructed with respect to a well-defined characteristic impedance, from a set of pseudo-waves, defined with respect to an arbitrary reference impedance. Matrices characterizing a linear circuit are defined, and relationships among them, some newly discovered, are derived. New ramifications of reciprocity are developed. Measurement of various network parameters is given extensive treatment.

  15. Hollow glass waveguides: New variations

    NASA Astrophysics Data System (ADS)

    Gibson, Daniel Joseph

    This study is an effort to develop new variations on the infrared silver-silver iodide hollow glass waveguide (HGW) with application specific properties. Four variations are presented: a HGW with a long, gradual taper, a HGW with a rectangular cross-section, curved HGW tips and a new all-dielectric hollow waveguide based on photonic bandgap guidance principles. A hollow glass waveguide tapered over its entire length offers ease of coupling at the proximal end and excellent flexibility at the distal end. Waveguides tapered from 1000 to 500 mum and 700 to 500 mum over 1.5 m were fabricated in this study. Compared to similarly sized non-tapered waveguides, laser losses for the tapered guides were high but decreased when bent. This behavior is contrary to that of non-tapered guides and an iterative ray tracing model was also developed to explain the observed loss characteristics of tapered hollow waveguides. Hollow glass waveguides with round profiles do not maintain the polarization state of the delivered radiation to any appreciable degree. HGWs with large- and small-aspect ratio rectangular cross sections were developed and shown to preserve polarization up to 96%, even when bent. The large aspect ratio guide was able to effectively rotate the transmitted polarization when twisted along its axis. Curved distal tips for medical and dental laser applications were developed by removing the low-OH silica fiber from commercially available stainless steel dental tips, and inserting HGWs of various sizes. The optical performances and heating profiles of the various configurations indicate the tips are suitable for certain medical applications, but the minimum bending radius is limited by the mechanical properties of the glass substrate. A small radii bending loss study confirms that propagating modes periodically couple as the radius of curvature is reduced. Through the application of the photonic bandgap (PBG) guidance, hollow waveguides can be made entirely from

  16. Waveguide Four-Wave Mixing

    DTIC Science & Technology

    1991-10-01

    PL-TR--91-1045 /’--"PL-TR-- AD-A243 555 91-1045 WAVEGUIDE FOUR -WAVE MIXING Thomas B. Simpson Jia-ming Liu JAYCOR San Diego, CA 92186-5154 October...Final Report; May 88 - Mar 91 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS WAVEGUIDE FOUR -WAVE MIXING C: F29601-88-C-0023 PE: 62601F PR: 3326 6. AUTHOR(S...for public release; distribution unlimited. 13. ABSTRACT (Maximum 200 words) This program has investigated four -wave mixing (4-win) in non- linear

  17. Design of a 300 GHz Band TWT with a Folded Waveguide Fabricated by Microelectromechanical Systems

    NASA Astrophysics Data System (ADS)

    Tsutaki, Kunio; Neo, Yoichiro; Mimura, Hidenori; Masuda, Norio; Yoshida, Mitsuru

    2016-12-01

    For future broadband wireless links, we have designed a 300 GHz band traveling wave tube (TWT) with a folded waveguide fabricated by microelectromechanical systems (MEMS). The TWT operates at a beam voltage of 12 kV and a beam current of 8.3 mA. The classical large signal simulation code predicts the output power greater than 1 W and gain larger than 20 dB over the bandwidth from 280 to 300 GHz.

  18. Tunable beam steering enabled by graphene metamaterials.

    PubMed

    Orazbayev, B; Beruete, M; Khromova, I

    2016-04-18

    We demonstrate tunable mid-infrared (MIR) beam steering devices based on multilayer graphene-dielectric metamaterials. The effective refractive index of such metamaterials can be manipulated by changing the chemical potential of each graphene layer. This can arbitrarily tailor the spatial distribution of the phase of the transmitted beam, providing mechanisms for active beam steering. Three different beam steerer (BS) designs are discussed: a graded-index (GRIN) graphene-based metamaterial block, an array of metallic waveguides filled with graphene-dielectric metamaterial and an array of planar waveguides created in a graphene-dielectric metamaterial block with a specific spatial profile of graphene sheets doping. The performances of the BSs are numerically analyzed, showing the tunability of the proposed designs for a wide range of output angles (up to approximately 70°). The proposed graphene-based tunable beam steering can be used in tunable transmitter/receiver modules for infrared imaging and sensing.

  19. Pit Distribution Design for Computer-Generated Waveguide Holography

    NASA Astrophysics Data System (ADS)

    Yagi, Shogo; Imai, Tadayuki; Ueno, Masahiro; Ohtani, Yoshimitsu; Endo, Masahiro; Kurokawa, Yoshiaki; Yoshikawa, Hiroshi; Watanabe, Toshifumi; Fukuda, Makoto

    2008-02-01

    Multilayered waveguide holography (MWH) is one of a number of page-oriented data multiplexing holographies that will be applied to optical data storage and three-dimensional (3D) moving images. While conventional volumetric holography using photopolymer or photorefractive materials requires page-by-page light exposure for recording, MWH media can be made by employing stamping and laminating technologies that are suitable for mass production. This makes devising an economical mastering technique for replicating holograms a key issue. In this paper, we discuss an approach to pit distribution design that enables us to replace expensive electron beam mastering with economical laser beam mastering. We propose an algorithm that avoids the overlapping of even comparatively large adjacent pits when we employ laser beam mastering. We also compensate for the angular dependence of the diffraction power, which strongly depends on pit shape, by introducing an enhancement profile so that a diffracted image has uniform intensity.

  20. Applications of subwavelength grating structures in silicon-on-insulator waveguides

    NASA Astrophysics Data System (ADS)

    Schmid, Jens H.; Bock, Przemek J.; Cheben, Pavel; Sinclair, William; García, Jaime; Janz, Siegfried; Lapointe, Jean; Aers, Geoffrey C.; Poitras, Daniel; Li, Yunhui; Lopinski, Gregory; Delâge, André; Densmore, Adam; Lamontagne, Boris; Ma, Rubin; Xu, Dan-Xia

    2010-02-01

    We discuss several applications of both resonant and non-resonant subwavelength gratings (SWGs) for silicon photonics. We present results of evanescent field molecular sensing using the transverse magnetic mode of a 0.22 μm thick silicon slab waveguide with a resonant SWG, which couples a free space laser beam to the silicon waveguide mode. The optical readout of this configuration is almost identical to the established surface plasmon resonance sensing technology. Using calibrated sucrose solutions, we demonstrate a bulk refractive index sensitivity of 111 nm/RIU in good agreement with rigorous coupled wave analysis calculations. The binding of a monolayer of streptavidin protein on the waveguide surface is monitored in real time with a signal-to-noise ratio of ~500. In another application, non-resonant SWGs are used to create effective dielectric media with a refractive index that can be tuned between the values of silicon (3.48) and SU-8 polymer used for the cladding (1.58). For example, we present SWG waveguides with an effective core index of approximately 2.65, which exhibit lower propagation loss than photonic wire waveguides of similar dimensions. We use these SWG waveguides to demonstrate highly efficient fiber-chip couplers.

  1. High resolution TE&TM near infrared compact spectrometer based on waveguide grating structures

    NASA Astrophysics Data System (ADS)

    Martin, G.; Thomas, F.; Heidmann, S.; de Mengin, M.; Courjal, N.; Ulliac, G.; Morand, A.; Benech, P.; Kern, P.; Le Coarer, E...

    2015-05-01

    Integrated optics spectrometers can be essentially classified into two main families: based on Fourier transform or dispersed modes. In the first case, an interferogram generated inside an optical waveguide is sampled using nanodetectors, these scatter light into the detector that is in contact with the waveguide. A dedicated FFT processing is needed in order to recover the spectrum with high resolution but limited spectral range. Another way is to extract the optical signal confined in a waveguide using a surface grating and directly obtain the spectrum by means of a relay optics that generates the spectrum on the Fourier plane of the lens, where the detector is placed. Following this second approach, we present a high-resolution compact dispersive spectrometer (δλ =1.5nm at λ=1050nm) based on guided optics technology. The propagating signal is dispersed out of a waveguide thanks to a surface grating that lays along it. Focused Ion Beam technique is used to etch nano-grooves that act as individual scattering centers and constitute the surface grating along the waveguide. The waveguide is realized using X-cut, Ypropagating Lithium Niobate substrate, where the effective index for TE and TM guided modes is different. This results in a strong angular separation of TE and TM diffracted modes, allowing simultaneous detection of spectra for both polarizations. A simple relay optics, with limited optical aberrations, reimages the diffracted signal on the focal plane array, leading to a robust, easy to align instrument.

  2. Optofluidic waveguides written in hydrophobic silica aerogels with a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Yalizay, B.; Morova, Y.; Ozbakir, Y.; Jonas, A.; Erkey, C.; Kiraz, A.; Akturk, S.

    2015-02-01

    We present a new method to form liquid-core optofluidic waveguides inside hydrophobic silica aerogels. Due to their unique material properties, aerogels are very attractive for a wide variety of applications; however, it is very challenging to process them with traditional methods such as milling, drilling, or cutting because of their fragile structure. Therefore, there is a need to develop alternative processes for formation of complex structures within the aerogels without damaging the material. In our study, we used focused femtosecond laser pulses for high-precision ablation of hydrophobic silica aerogels. During the ablation, we directed the laser beam with a galvo-mirror system and, subsequently, focused the beam through a scanning lens on the surface of bulk aerogel which was placed on a three-axis translation stage. We succeeded in obtaining high-quality linear microchannels inside aerogel monoliths by synchronizing the motion of the galvo-mirror scanner and the translation stage. Upon ablation, we created multimode liquid-core optical waveguides by filling the empty channels inside low-refractive index aerogel blocks with highrefractive index ethylene glycol. In order to demonstrate light guiding and measure optical attenuation of these waveguides, we coupled light into the waveguides with an optical fiber and measured the intensity of transmitted light as a function of the propagation distance inside the channel. The measured propagation losses of 9.9 dB/cm demonstrate the potential of aerogel-based waveguides for efficient routing of light in optofluidic lightwave circuits.

  3. Corrugated Waveguide and Directional Coupler for CW 250-GHz Gyrotron DNP Experiments

    PubMed Central

    Woskov, Paul P.; Bajaj, Vikram S.; Hornstein, Melissa K.; Temkin, Richard J.; Griffin, Robert G.

    2007-01-01

    A 250-GHz corrugated transmission line with a directional coupler for forward and backward power monitoring has been constructed and tested for use with a 25-W continuous-wave gyrotron for dynamic nuclear polarization (DNP) experiments. The main corrugated line (22-mm internal diameter, 2.4-m long) connects the gyrotron output to the DNP probe input. The directional coupler, inserted approximately midway, is a four-port crossed waveguide beamsplitter design. Two beamsplitters, a quartz plate and ten-wire array, were tested with output coupling of 2.5% (−16 dB) at 250.6 GHz and 1.6% (−18 dB), respectively. A pair of mirrors in the DNP probe transferred the gyrotron beam from the 22-mm waveguide to an 8-mm helically corrugated waveguide for transmission through the final 0.58-m distance inside the NMR magnet to the sample. The transmission-line components were all cold tested with a 248 ± 4-GHz radiometer. A total insertion loss of 0.8 dB was achieved for HE11 -mode propagation from the gyrotron to the sample with only 1% insertion loss for the 22-mm-diameter waveguide. A clean Gaussian gyrotron beam at the waveguide output and reliable forward power monitoring were achieved for many hours of continuous operation. PMID:17901907

  4. Polymeric slot waveguide for photonics sensing

    NASA Astrophysics Data System (ADS)

    Chovan, J.; Uherek, F.

    2016-12-01

    Polymeric slot waveguide for photonics sensing was designed, simulated and studied in this work. The polymeric slot waveguide was designed on commercial Ormocer polymer platform and operates at visible 632.8 nm wavelength. Designed polymeric slot waveguide detects the refractive index change of the ambient material by evanescent field label-free techniques. The motivation for the reported work was to design a low-cost polymeric slot waveguide for sensing arms of integrated Mach-Zehnder interferometer optical sensor with reduced temperature dependency. The minimal dimensions of advanced sensing slot waveguide structure were designed for researcher direct laser writing fabrication by nonlinear two-photon polymerization. The normalized effective refractive index changes of TE and TM fundamental modes in polymeric slot waveguide and slab waveguides were compared. The sensitivity of the normalized effective refractive index changes of TE and TM fundamental modes on refractive index changes of the ambient material was investigated by glucose-water solutions.

  5. Optofluidic waveguides: II. Fabrication and structures

    PubMed Central

    Schmidt, Holger

    2011-01-01

    We review fabrication methods and common structures for optofluidic waveguides, defined as structures capable of optical confinement and transmission through fluid filled cores. Cited structures include those based on total internal reflection, metallic coatings, and interference based confinement. Configurations include optical fibers and waveguides fabricated on flat substrates (integrated waveguides). Some examples of optofluidic waveguides that are included in this review are Photonic Crystal Fibers (PCFs) and two-dimensional photonic crystal arrays, Bragg fibers and waveguides, and Anti Resonant Reflecting Optical Waveguides (ARROWs). An emphasis is placed on integrated ARROWs fabricated using a thin-film deposition process, which illustrates how optofluidic waveguides can be combined with other microfluidic elements in the creation of lab-on-a-chip devices. PMID:21603122

  6. About compensation the electronic beam dynamic stratification influence in super-power relativistic Cherenkov oscillators

    SciTech Connect

    Kurayev, Alexander A.; Rak, Alexey O.; Sinitsyn, Anatoly K.

    2011-07-01

    On the basis of the exact nonlinear theory relativistic TWT and BWO on irregular hollow waveguides with cathode filters-modulators with the account as propagating, and beyond cut-off waves, with the account of losses in walls of a waveguide and inhomogeneity directing an electronic beam magnetostatic fields finds out influence of dynamic stratification influence on efficiency of the generator. Possibility of almost fill compensation the electronic beam dynamic stratification influence on efficiency by optimization of an electronic beam arrangement in inhomogeneous high frequency and magnetic fields and characteristics of the irregular corrugated waveguide is shown. (author)

  7. Optical waveguides for chemical sensing

    NASA Astrophysics Data System (ADS)

    Burgess, Lloyd W.

    1992-07-01

    Possibilities of employing thin film optical waveguides for chemical analysis are reviewed. Particular attention is given to the use of integrated or planar optical elements in sensors which may be applied to continuous or in situ monitoring in biomedical, environmental, and chemical processes.

  8. Birefringence compensated arrayed waveguide grating

    NASA Astrophysics Data System (ADS)

    Zou, Jun; Xia, Xiang; Lang, Tingting; He, Jian-Jun

    2014-10-01

    In this paper we review our work on birefringence compensated arrayed waveguide grating. We elaborate on a birefringence compensation technique based on angled star couplers in arrayed waveguide grating (AWG) and discuss several demonstrations both in low-index-contrast and high-index-contrast material systems. A 16-channel AWG with 100GHz channel spacing for DWDM application is designed and fabricated in silica-based low-index-contrast waveguide. The experimental results confirm that the polarization-dependent wavelength shift (PDλ) can be tuned by varying the incident/diffraction angle at the star couplers and a birefringence-free property can be achieved without additional fabrication process as compared to conventional AWG. A further validation of this technique is demonstrated in high-index-contrast silicon-on-insulator waveguide, in combination with different diffraction orders for TE and TM polarizations. A birefringence compensated silicon nanowire AWG for CWDM optical interconnects is designed and fabricated. The theoretical and experimental results show that the PDλ can be reduced from 380-420nm to 0.5-3.5 nm, below 25% of the 3 dB bandwidth of the channel response in the wavelength range of 1500 to 1600nm.

  9. Polymer Waveguides for Quantum Information

    DTIC Science & Technology

    2005-01-01

    design, fabrication and testing of slab waveguides made of EO polymer and covers the initial phase of installation, testing and use of the spin ... coating system to make a few simple slabs with the anticipation of testing those for coupling and other processes.

  10. Polymer waveguides self-organized by two-photon photochemistry for self-aligned optical couplings with wide misalignment tolerances

    NASA Astrophysics Data System (ADS)

    Yoshimura, Tetsuzo; Takeda, Daisuke; Sato, Takuya; Kinugasa, Yoshihiko; Nawata, Hideyuki

    2016-03-01

    Self-organized optical waveguides formed in a photopolymer using two-photon photochemistry is proposed for self-aligned optical couplings involving nano-scale optical devices with wide tolerances in lateral misalignments. Simulations based on the finite-difference time-domain method revealed that on introducing a 400-nm write beam and a 780-nm write beam into the two-photon photopolymer respectively from two 600-nm-wide waveguides facing each other with 32 μm gap a self-aligned coupling waveguide called a two-photon self-organized lightwave network (SOLNET) is formed between the two waveguides. The lateral misalignment tolerance was found to be 3000 nm, which is five times larger than the misalignment limit of ~600 nm in waveguides formed by conventional one-photon photochemistry. Preliminary experiments demonstrated that the two-photon SOLNETs are formed between multimode optical fibers by introducing a 448-nm write beam and a 780-nm (or 856-nm) write beam from the fibers into a photosensitive organic/inorganic hybrid material, SUNCONNECT®, with doped camphorquinone (or biacetyl).

  11. On-chip positionable photonic waveguides for chip-to-chip optical interconnects

    NASA Astrophysics Data System (ADS)

    Peters, Tjitte-Jelte; Tichem, Marcel

    2016-05-01

    This paper reports on the progress related to a multichannel photonic alignment concept, aiming for sub-micrometer precision in the alignment of the waveguides of two photonic integrated circuits (PICs). The concept consists of two steps: chip-to-chip positioning and chip bonding provide a coarse alignment after which waveguide-to-waveguide positioning and fixing result in a fine alignment. For the waveguide-to-waveguide alignment, an alignment functionality is developed and integrated in one of the PICs, consisting of mechanically flexible waveguides and MEMS actuators. This paper reports on the fabrication and characterization of a mechanically flexible waveguide array that can be positioned by two out-of-plane actuators. Thermal actuators are integrated with mechanically flexible waveguide beams to enable positioning them with high precision. By adding a poly-Si pattern on top of SiO2 beams, an out-of-plane bimorph actuator can be realized. An analytical model enables estimating the curvature and the deflection of a single bimorph beam. Acquiring a small initial deflection while having a large motion range of the actuator proves to have conflicting demands on the poly-Si/SiO2 thickness ratio. In this paper, we show that suspended waveguide arrays with integrated alignment functionality have an initial deflection- they curl up- due to residual stress in the materials. The actuators can be operated using a driving voltage between 0V to 45V, corresponding to ~50mW. Using higher voltages brings the risk of permanently changing the material properties of the heaters. The actuators can accomplish an out-of-plane crossbar translation up to 6.5 μm at ~50mW as well as a rotation around the propagation direction of the light ranging from -0:1° to 0.1°. At a constant actuation power of ~50mW, the crossbar shows a drift in vertical deflection of 0.16 μm over a time of 30 min.

  12. Resonance modes filtering in structured x-ray waveguides

    NASA Astrophysics Data System (ADS)

    Bukreeva, Inna; Cedola, Alessia; Sorrentino, Andrea; Pelliccia, Daniele; Asadchikov, Viktor; Lagomarsino, Stefano

    2011-07-01

    We discuss the self-imaging effect that occurs in a multimode planar x-ray waveguide (WG) with a nanometer vacuum gap, where an additional longitudinal periodicity has been imposed by a periodical structure (a micron scale step-like grating) on the reflecting sidewalls. Taking into account the general Montgomery conditions and the particular case of Talbot effect, we show that this additional longitudinal periodicity, if suitably designed, can filter out the asymmetric and the high order resonance modes, providing a coherent beam at the exit, even if the WG is illuminated by an incoherent source.

  13. Microsphere-chain waveguides: Focusing and transport properties

    SciTech Connect

    Allen, Kenneth W. Astratov, Vasily N.; Darafsheh, Arash; Abolmaali, Farzaneh; Mojaverian, Neda; Limberopoulos, Nicholaos I.; Lupu, Anatole

    2014-07-14

    It is shown that the focusing properties of polystyrene microsphere-chain waveguides (MCWs) formed by sufficiently large spheres (D ≥ 20λ, where D is the sphere diameter and λ is the wavelength of light) scale with the sphere diameter as predicted by geometrical optics. However, this scaling behavior does not hold for mesoscale MCWs with D ≤ 10λ resulting in a periodical focusing with gradually reducing beam waists and in extremely small propagation losses. The observed effects are related to properties of nanojet-induced and periodically focused modes in such structures. The results can be used for developing focusing microprobes, laser scalpels, and polarization filters.

  14. Design of a Dielectric Rod Waveguide Antenna Array for Millimeter Waves

    NASA Astrophysics Data System (ADS)

    Rivera-Lavado, Alejandro; García-Muñoz, Luis-Enrique; Generalov, Andrey; Lioubtchenko, Dmitri; Abdalmalak, Kerlos-Atia; Llorente-Romano, Sergio; García-Lampérez, Alejandro; Segovia-Vargas, Daniel; Räisänen, Antti V.

    2017-01-01

    In this manuscript, the use of dielectric rod waveguide (DRW) antennas in the millimeter and sub-millimeter wave range is presented as a solution for covering two issues: getting more radiated power and filling a technological gap problem in the terahertz band, namely a fully electronic beam steering. A 4x4 element array working at 100 GHz fed by a rectangular waveguide is manufactured and measured for showing its capabilities. This topology can be used as a cost-affordable alternative to dielectric lenses in photomixer-based terahertz sources.

  15. Coherent propagation of white X-rays in a planar waveguide.

    PubMed

    Fuhse, Christian; Ollinger, Christoph; Kalbfleisch, Sebastian; Salditt, Tim

    2006-01-01

    The far-field diffraction pattern of a front-coupled planar waveguide supporting two guided modes has been measured using a white X-ray beam. Interference of the guided modes leads to a characteristic variation of the far-field diffraction pattern for different photon energies. The experiment verifies the predicted properties of the guided modes, shows that these modes superpose coherently, and demonstrates that the electromagnetic field downstream of the waveguide is significantly different from that expected for a hypothetical small slit of the same size.

  16. Low-loss hollow waveguide fibers for mid-infrared quantum cascade laser sensing applications.

    PubMed

    Patimisco, Pietro; Spagnolo, Vincenzo; Vitiello, Miriam S; Scamarcio, Gaetano; Bledt, Carlos M; Harrington, James A

    2013-01-21

    We report on single mode optical transmission of hollow core glass waveguides (HWG) coupled with an external cavity mid-IR quantum cascade lasers (QCLs). The QCL mode results perfectly matched to the hybrid HE(11) waveguide mode and the higher losses TE-like modes have efficiently suppressed by the deposited inner dielectric coating. Optical losses down to 0.44 dB/m and output beam divergence of ~5 mrad were measured. Using a HGW fiber with internal core size of 300 µm we obtained single mode laser transmission at 10.54 µm and successful employed it in a quartz enhanced photoacoustic gas sensor setup.

  17. Sharply bent hollow optical waveguides formed by an omni-directional reflector

    NASA Astrophysics Data System (ADS)

    Chiu, Hua-Kung; Hsu, Chih-Ming; Lo, Shih-Shou; Chen, Chii-Chang; Lee, Chien-Chieh

    2009-10-01

    In this work, we demonstrate theoretically and experimentally the air core bent optical waveguide composed of omni-directional reflectors on a silicon substrate. Amorphous silicon and silicon oxide are used for high index-contrast Bragg reflectors. The transmission efficiency of power for the bent optical waveguide with various bending angles of 1°-90° is calculated by the two-dimensional finite-difference time-domain method and the three-dimensional beam propagation method. The sample is measured using the end-butt method. The device exhibits a lower polarization dependent loss at the operation wavelength of 1550 nm.

  18. Waveguide ring coupling design of MOG

    NASA Astrophysics Data System (ADS)

    Ji, Xiang; Li, Zi-li; Chen, Yuan-you; Qin, Xiao-hu; Lv, Xin

    2010-10-01

    The key technology of micro optic gyroscopes (MOGs) is to fabricate low-loss waveguide and use coupling technology to form reciprocal structure. The main topic in this paper is to study the coupling structure of MOG's spiral-ring waveguide. Using for the reference of fiber's low-loss character, the fiber-preform project is chosen as optimization means. According to the singlemode conditions, the width and thickness of rectangle waveguide can be calculated. The bend loss waveguide can decrease by means of introducing an offset at the junction of two waveguides and etching groove at the outside of bend waveguide. In this article intersection waveguide is designed to reduce the difficulty of coupling processing. Light in-and-out port coupled at opposite side is choosen for machining easiness in experiment.What's more, the edge-coupling technology being put forward to keep light transmit along the same rotary direction. An efficient means is introduced, which uses angle 45°to reflect the light to couple two waveguide at inside-end or outside-end, and outside-end coupling is chosen for processing convenience in the design. In experiment, the waveguide be fabricated by thick photoresist AZ4620, etched by RIE, When the angle of wafer and ion is set 85°, the angle of one sidewall can be etched almost 45°. It's benefit to design the coupling structure of MOG's spiral-ring waveguide.

  19. Ultrafast modulators based on nonlinear photonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Liu, Zhifu; Li, Jianheng; Tu, Yongming; Ho, Seng-Tiong; Wessels, Bruce W.

    2011-03-01

    Nonlinear photonic crystal (PhC) waveguides are being developed for ultrafast modulators. To enable phase velocity matching we have investigated one- and two-dimensional structures. Photonic crystal (PhC) waveguides based on epitaxial barium titanate (BTO) thin film in a Si3N4/BTO/MgO multilayer structure were fabricated by electron beam lithography or focused ion beam (FIB) milling. For both one- and two-dimensional PhCs, simulation shows that sufficient refractive index contrast is achieved to form a stop band. For one-dimensional Bragg reflector, we measured its slow light properties and the group refractive index of optical wave. For a millimeter long waveguide a 27 nm wide stop band was obtained at 1550 nm. A slowing of the light was observed, the group refractive indices at the mid band gap and at the band edges were estimated to be between 8.0 and 12 for the transverse electric (TE) mode, and 6.9 and 13 for the transverse magnetic (TM) mode. For TE optical modes, the enhancement factor of EO coefficient ranges from 7 to 13, and for the TM mode, the factor ranges from 5.9 to 15. Measurements indicate that near velocity phase matching can be realized. Upon realizing the phase velocity matching condition, devices with a small foot print with bandwidths at 490 GHz can be attained. Two-dimensional PhC crystal with a hexagonal lattice was also investigated. The PhCs were fabricated from epitaxial BTO thin film multilayers using focused ion beam milling. The PhCs are based on BTO slab waveguide and air hole arrays defined within Si3N4 and BTO thin films. A refractive index contrast of 0.4 between the barium titanate thin film multilayers and the air holes enables strong light confinement. For the TE optical mode, the hexagonal photonic crystal lattice with a diameter of 155 nm and a lattice constant of 740 nm yields a photonic bandgap over the wavelength range from 1525 to 1575 nm. The transmission spectrum of the PhC waveguide exhibits stronger Fabry Perot

  20. Prebunched-beam free electron maser

    NASA Astrophysics Data System (ADS)

    Arbel, M.; Ben-Chaim, D.; Cohen, M.; Draznin, M.; Eichenbaum, A.; Gover, Abraham; Kleinman, H.; Kugel, A.; Pinhasi, Yosef; Witman, S.; Yakover, Y. M.

    1994-05-01

    The development status of a prebunched FEM is described. We are developing a 70 KeV FEM to allow high gain wideband operation and to enable variation of the degree of prebunching. We intend to investigate its operation as an amplifier and as an oscillator. Effects of prebunching, frequency variation, linear and nonlinear effects, will be investigated. The prebuncher consists of a Pierce e-gun followed by a beam modulating section. The prebunched beam is accelerated to 70 KeV and injected into a planar wiggler containing a waveguide. The results obtained to date will be presented. These include: characterization of the e-gun, e-beam transport to and through the wiggler, use of field modifying permanent magnets near the entrance and along the wiggler to obtain good e-beam transport through the wiggler, waveguide selection and characterization.

  1. Oxygen-implanted optical planar waveguides in Er/Yb-codoped silicate glasses for integrated laser generation

    NASA Astrophysics Data System (ADS)

    Liu, Chun-Xiao; Xu, Jun; Xu, Xiao-Li; Wu, Shu; Wei, Wei; Guo, Hai-Tao; Li, Wei-Nan; Peng, Bo

    2014-03-01

    Er3+/Yb3+-codoped silicate glasses are good candidates for the application of laser actions and signal amplification. Optical planar waveguides in Er/Yb-codoped silicate glasses are fabricated by 6.0-MeV oxygen-ion implantation with a dose of 6.0×1014 ions/cm2 at room temperature. The SRIM 2010 code is carried out to simulate the energy losses during the implantation process in order to obtain a better understanding of the waveguide formation. The guiding modes and near-field intensity distributions of the waveguide are characterized by the prism-coupling and end-face coupling methods. The refractive index profile and light propagation mode of the planar waveguide are numerically calculated by the reflectivity calculation method and finite difference beam propagation method. The waveguide has a "well+barrier" refractive index distribution and its optical loss is ˜1.02 dB/cm. The microluminescence and absorption investigation reveal that fluorescent and transmission properties in the waveguide are well preserved with respect to the bulk, suggesting promising potential for waveguide amplifiers and lasers.

  2. Study on the characteristics of novel optical phase array based on waveguide

    NASA Astrophysics Data System (ADS)

    Li, Li-jing; Ye, Jia-Yu; Chen, Wen

    2016-10-01

    A novel scheme of optical phase array(OPA) based on wave-guide is represented in this paper. Fiber paths is main design of system, the single mode fibers are used as transmission paths, photonic crystal fibers(PCF) are adopted as the output array, LiNbO3 wave-guide is used as the phase modulator. The system configuration have been given in the paper, performance of main device such as LiNbO3 wave-guide and PCF array are analyzed. According to the theory of OPA and electro-optical effect of LiNbO3 wave-guide, the feasibility of system have been demonstrated. By adjusting the phase shift of each LiNbO3 wave-guide, the beam deflection have been observed. Simulation experiments have been implemented to study the influence of its structure parameter on output diffraction characteristics. The results show that the inter-elements distance, the quantity of fiber core and arrangement of fiber core affect the beam steering quality including full width at half-maximum(FWHM), output intensity distribution and normalized amplitude distribution. The grating lobes can be suppressed by smaller distance, the beam scanning accuracy is improved by more units of fiber core. Then two-dimension arrangements of fiber core is analyzed. By adjusting the arrangements of the fiber core, the coupling coefficient and the coupling length between two fiber core in the PCF array are changed, which conduct the different output amplitude distribution. So the structure parameter of PCF array is main factor to the beam steering. With the development of craft for PCF, the research result will provide assistance for the design of OPA in the future.

  3. Wideband unbalanced waveguide power dividers and combiners

    SciTech Connect

    Halligan, Matthew; McDonald, Jacob Jeremiah; Strassner, II, Bernd H.

    2016-05-17

    The various technologies presented herein relate to waveguide dividers and waveguide combiners for application in radar systems, wireless communications, etc. Waveguide dividers-combiners can be manufactured in accordance with custom dimensions, as well as in accordance with waveguide standards such that the input and output ports are of a defined dimension and have a common impedance. Various embodiments are presented which can incorporate one or more septum(s), one or more pairs of septums, an iris, an input matching region, a notch located on the input waveguide arm, waveguide arms having stepped transformer regions, etc. The various divider configurations presented herein can be utilized in high fractional bandwidth applications, e.g., a fractional bandwidth of about 30%, and RF applications in the Ka frequency band (e.g., 26.5-40 GHz).

  4. Flattened dispersion in silicon slot waveguides.

    PubMed

    Zhang, Lin; Yue, Yang; Beausoleil, Raymond G; Willner, Alan E

    2010-09-13

    We propose a silicon strip/slot hybrid waveguide that produces flattened dispersion of 0 ± 16 ps/(nm∙km), over a 553-nm wavelength range, which is 20 times flatter than previous results. Different from previously reported slot waveguides, the strip/slot hybrid waveguide employs the mode transition from a strip mode to a slot mode to introduce unique waveguide dispersion. The flat dispersion profile is featured by three zero-dispersion wavelengths, which is obtained for the first time in on-chip silicon waveguides, to the best of our knowledge. The waveguide exhibits flattened dispersion from 1562-nm to 2115-nm wavelength, which is potentially useful for both telecom and mid-infrared applications.

  5. Plasmonic coaxial waveguide-cavity devices.

    PubMed

    Mahigir, Amirreza; Dastmalchi, Pouya; Shin, Wonseok; Fan, Shanhui; Veronis, Georgios

    2015-08-10

    We theoretically investigate three-dimensional plasmonic waveguide-cavity structures, built by side-coupling stub resonators that consist of plasmonic coaxial waveguides of finite length, to a plasmonic coaxial waveguide. The resonators are terminated either in a short or an open circuit. We show that the properties of these waveguide-cavity systems can be accurately described using a single-mode scattering matrix theory. We also show that, with proper choice of their design parameters, three-dimensional plasmonic coaxial waveguide-cavity devices and two-dimensional metal-dielectric-metal devices can have nearly identical transmission spectra. Thus, three-dimensional plasmonic coaxial waveguides offer a platform for practical implementation of two-dimensional metal-dielectric-metal device designs.

  6. Design of a 1 × 4 silicon-alumina wavelength demultiplexer based on multimode interference in slot waveguide structures

    NASA Astrophysics Data System (ADS)

    Malka, Dror; Sintov, Yoav; Zalevsky, Zeev

    2015-12-01

    In this paper we present 1 × 4 wavelength demultiplexer operating at 1.4 μm, 1.45 μm, 1.5 μm and 1.55 μm wavelengths, based on multimode interference (MMI) coupler in slot waveguide structure. Alumina was used as the slot material. The design is based on three cascaded 1 × 2 MMI demultiplexers. Tapered waveguide structures are being in the input/output of the MMI section, for reducing the excess loss. Since the slot waveguide encompasses true guided modes, confined by total internal reflections, there are no noticeable confinement losses. Full vectorial-beam propagation method (FV-BPM) and BPM simulations were used for optimizing the device parameters and assessing its performance. To the best of our knowledge it is the first time that a 1 × 4 demultiplexer is being implemented by a slot waveguide based MMI.

  7. TXRF spectrometry at ion beam excitation

    NASA Astrophysics Data System (ADS)

    Egorov, V.; Egorov, E.; Afanas’ef, M.

    2017-02-01

    The work presents short discussion of TXRF and PIXE methods peculiarities. Taking into account of these peculiarities we elaborate the experimental scheme for TXRF measurements at ion beam excitation of characteristical fluorescence. The scheme is built on base of the planar X-ray waveguide-resonator with specific design. Features of the new experimental method and possibilities of Sokol-3 ion beam analytical complex were used for the method application in real measurements.

  8. Digital waveguide adiabatic passage part 1: theory

    NASA Astrophysics Data System (ADS)

    Vaitkus, Jesse A.; Steel, M. J.; Greentree, Andrew D.

    2017-03-01

    Spatial adiabatic passage represents a new way to design integrated photonic devices. In conventional adiabatic passage designs require smoothly varying waveguide separations. Here we show modelling of adiabatic passage devices where the waveguide separation is varied digitally. Despite digitisation, our designs show robustness against variations in the input wavelength and refractive index contrast of the waveguides relative to the cladding. This approach to spatial adiabatic passage opens new design strategies and hence the potential for new photonics devices.

  9. Dispersion Characteristics of a Dielectric Loaded Waveguide,

    DTIC Science & Technology

    1984-07-30

    NATIONAL BUREAU OF STANOAODS-1963-A ., ’I A NSWC TR 84-338 00 In ’DISPERSION CHARACTERISTICS OF A SDIELECTRIC LOADED WAVEGUIDE By H. CROSBY J. CHOE Y...4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED DISPERSION CHARACTERISTICS OF A DIELECTRIC LOADED WAVEGUIDE S. PERFORMING ORG. REPORT...SUPPLEMENTARY NOTES S. KEY WORDS (Continue on reverse aide it necessary and Identify by block number) Dielectric Loaded Waveguide ) " Resonant Cavity) a

  10. Optical fiber having wave-guiding rings

    DOEpatents

    Messerly, Michael J.; Dawson, Jay W.; Beach, Raymond J.; Barty, Christopher P. J.

    2011-03-15

    A waveguide includes a cladding region that has a refractive index that is substantially uniform and surrounds a wave-guiding region that has an average index that is close to the index of the cladding. The wave-guiding region also contains a thin ring or series of rings that have an index or indices that differ significantly from the index of the cladding. The ring or rings enable the structure to guide light.

  11. Constitutive Parameter Measurement Using Double Ridge Waveguide

    DTIC Science & Technology

    2013-03-01

    CONSTITUTIVE PARAMETER MEASUREMENT USING DOUBLE RIDGE WAVEGUIDE THESIS Nathan J. Lehman, Captain, USAF AFIT-ENG-13-M-30 DEPARTMENT OF THE AIR FORCE...copyright protection in the United States. AFIT-ENG-13-M-30 CONSTITUTIVE PARAMETER MEASUREMENT USING DOUBLE RIDGE WAVEGUIDE THESIS Presented to the Faculty...PARAMETER MEASUREMENT USING DOUBLE RIDGE WAVEGUIDE Nathan J. Lehman, B.S.E.E. Captain, USAF Approved: Michael Havrilla, PhD (Chairman) Maj Milo Hyde, PhD

  12. Analysis of piezoelectric ultrasonic transducers attached to waveguides using waveguide finite elements.

    PubMed

    Loveday, Philip W

    2007-10-01

    A finite-element modeling procedure for computing the frequency response of piezoelectric transducers attached to infinite constant cross-section waveguides, as encountered in guided wave ultrasonic inspection, is presented. Two-dimensional waveguide finite elements are used to model the waveguide. Conventional three-dimensional finite elements are used to model the piezoelectric transducer. The harmonic forced response of the waveguide is used to obtain a dynamic stiffness matrix (complex and frequency dependent), which represents the waveguide in the transducer model. The electrical and mechanical frequency response of the transducer, attached to the waveguide, can then be computed. The forces applied to the waveguide are calculated and are used to determine the amplitude of each mode excited in the waveguide. The method is highly efficient compared to time integration of a conventional finite-element model of a length of waveguide. In addition, the method provides information about each mode that is excited in the waveguide. The method is demonstrated by modeling a sandwich piezoelectric transducer exciting a waveguide of rectangular cross section, although it could be applied to more complex situations. It is expected that the modeling method will be useful during the optimization of piezoelectric transducers for exciting specific wave propagation modes in waveguides.

  13. Ground-slot waveguide laser

    SciTech Connect

    Chenausky, P.; Drinkwater, E.H.; Laughman, L.M.

    1985-03-18

    A method of fabricating CO/sub 2/ waveguide-type lasers of the type comprising a slot formed in a broad surface of a hard ceramic material, comprising grinding the slot in a conventional surface grinding machine in two steps. The first step utilizes a coarse grinding wheel and the second a finer grinding wheel. The resultant laser cavity can produce high optical-power output when provided with RF excitation.

  14. Fluorescent immunosensors using planar waveguides

    NASA Astrophysics Data System (ADS)

    Herron, James N.; Caldwell, Karin D.; Christensen, Douglas A.; Dyer, Shellee; Hlady, Vladimir; Huang, P.; Janatova, V.; Wang, Hiabo K.; Wei, A. P.

    1993-05-01

    The goal of our research program is to develop competitive and sandwich fluoroimmunoassays with high sensitivity and fast response time, that do not require external reagents. Our approach to this problem is to employ an optical immunoassay based on total internal reflection fluorescence (TIRF). Specifically, monoclonal antibodies are immobilized on a planar waveguide. Total internal reflection of light in the planar waveguide sets up an evanescent field which extends about 2000 angstroms from the interface. In the competitive immunoassay, a fluorescent label is coupled to a small synthetic antigen which is packaged with the antibody. In the absence of analyte, the fluorescently labeled antigen binds to the antibody and is excited by the evanescent field. Upon the addition of analyte, the fluorescently labeled antigen molecules are displaced by unlabeled antigen molecules and diffuse out of the evanescent field. In the sandwich assay, a primary or `capture' antibody is immobilized on the planar waveguide, and a secondary or `tracer' antibody (which is labeled with a fluorescent dye) is added to the bulk solution. In the absence of analyte, the tracer antibody remains in solution and very little fluorescence is observed. However, upon addition of analyte, a `molecular sandwich' is formed on the waveguide, composed of: (1) the capture antibody; (2) the analyte; and (3) the tracer antibody. Once this sandwich forms, the tracer antibody is within the evanescent field and fluoresces. Fluorescence emission is detected by a charged- coupled device (CCD). Using this approach, we have developed a prototype immunosensor for the detection of human chorionic gonadotropin (hCG). This device meets our design goals and exhibits a sensitivity of 0.1 - 1 pmolar.

  15. RF window assembly comprising a ceramic disk disposed within a cylindrical waveguide which is connected to rectangular waveguides through elliptical joints

    SciTech Connect

    Tantawi, Sami G.; Dolgashev, Valery A.; Yeremian, Anahid D.

    2016-03-15

    A high-power microwave RF window is provided that includes a cylindrical waveguide, where the cylindrical waveguide includes a ceramic disk concentrically housed in a central region of the cylindrical waveguide, a first rectangular waveguide, where the first rectangular waveguide is connected by a first elliptical joint to a proximal end of the cylindrical waveguide, and a second rectangular waveguide, where the second rectangular waveguide is connected by a second elliptical joint to a distal end of the cylindrical waveguide.

  16. Optical lattice-like cladding waveguides by direct laser writing: fabrication, luminescence, and lasing.

    PubMed

    Nie, Weijie; He, Ruiyun; Cheng, Chen; Rocha, Uéslen; Rodríguez Vázquez de Aldana, Javier; Jaque, Daniel; Chen, Feng

    2016-05-15

    We report on the fabrication of optical lattice-like waveguide structures in an Nd:YAP laser crystal by using direct femtosecond laser writing. With periodically arrayed laser-induced tracks, the waveguiding cores can be located in either the regions between the neighbored tracks or the central zone surrounded by a number of tracks as outer cladding. The polarization of the femtosecond laser pulses for the inscription has been found to play a critical role in the anisotropic guiding behaviors of the structures. The confocal photoluminescence investigations reveal different stress-induced modifications of the structures inscribed by different polarization of the femtosecond laser beam, which are considered to be responsible for the refractive index changes of the structures. Under optical pump at 808 nm, efficient waveguide lasing at ∼1  μm wavelength has been realized from the optical lattice-like structure, which exhibits potential applications as novel miniature light sources.

  17. Observation of Wakefield Generation in Left-Handed Band of Metamaterial-Loaded Waveguide

    SciTech Connect

    Antipov, S.; Spentzouris, L.; Liu, W.; Gai, W.; Power, J. G.

    2009-01-22

    We report on a design of a TM-mode based metamaterial-loaded waveguide. Network analyzer measurements demonstrated a left-handed propagation region for the TM11 mode at around 10 GHz. A beamline experiment was performed with the metamaterial-loaded waveguide. In this experiment, a 6 MeV electron beam passes through the waveguide and generates a wakefield, via the Cherenkov radiation mechanism. We detected a signal in the left-handed frequency band at 10 GHz. This is an indirect demonstration of reverse Cherenkov radiation as discussed in several papers. Cherenkov radiation in artificially constructed materials (metamaterials, MTM) can provide unusual, engineered features that can be advantageous for particle detector design.

  18. Application of the theory of coupled waves for analysis of inclined reflectors in optical waveguides

    SciTech Connect

    Kolosovskii, E A; Tsarev, A V

    2008-09-30

    A new method for analysing the transmission and scattering of the guided TE mode in an inclined reflector located in an optical waveguide is proposed and studied. The reflection of an inhomogeneous optical beam from the inclined reflector is described semi-analytically for the first time by using the theory of coupled waves and taking into account the interrelation and transformation of energy between all the waves of the discrete and continuous spectra of the optical 2D-waveguide (even and odd guided, radiation, and evanescent waves). The results of calculations of the propagation of light through the inclined reflector in the form of a thin (10-500 nm) homogeneous strip obtained by our method and by the finite difference time domain (FDTD) method are in excellent quantitative agreement. The calculation rate of our method considerably (by one-two orders of magnitude) exceeds that of the FDTD method and our method has a better accuracy. (optical waveguides)

  19. Ultrasonic Waveguide Sensor Using a Leaky Lamb Wave for Under-Sodium Viewing

    NASA Astrophysics Data System (ADS)

    Joo, Young-Sang; Lee, Jae-Han

    2010-02-01

    A plate-type ultrasonic waveguide sensor using a leaky Lamb wave has been developed for the under-sodium viewing of a reactor core and in-vessel structures of a sodium-cooled fast reactor (SFR). An A0 Lamb wave mode is utilized in the waveguide sensor for the single mode generation and the effective radiation capability in a fluid. A radiation beam steering technique is presented which is achieved by the frequency tuning of the excitation pulse in the frequency range of the A0 Lamb wave mode which the group velocity is not dispersive and the phase velocity is dispersive. The long distance propagation ability and C-scan imaging performance have been demonstrated successfully by experimental feasibility tests of the waveguide sensor.

  20. Electooptic Fresnel lens-scanner with an array of channel waveguides.

    PubMed

    Takizawa, K

    1983-08-15

    A new type of beam scanner is discussed based on a 1-D Fresnel zone plate consisting of titanium-diffused channel waveguides on LiNbO3. By electrooptically controlling the guided-wave phase, both beam scanning and 1-D focusing are achieved without a condensing lens. It was experimentally confirmed using the scanner with twenty-one Fresnel zones that the beam spot with a diameter of approximately 50 microm at half-power level of diffraction pattern is scanned over a distance of +/-70 microm in the focal plane with an applied voltage of +/-40 V at 633 nm.

  1. Efficient Second Harmonic Generation in 3D Nonlinear Optical-Lattice-Like Cladding Waveguide Splitters by Femtosecond Laser Inscription

    NASA Astrophysics Data System (ADS)

    Nie, Weijie; Jia, Yuechen; Vázquez de Aldana, Javier R.; Chen, Feng

    2016-02-01

    Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 × 4 beam splitting. Second harmonic generation (SHG) of green light through these nonlinear waveguide beam splitter structures provides the capability for the compact visible laser emitting devices. With Type II phase matching of the fundamental wavelength (@ 1064 nm) to second harmonic waves (@ 532 nm), the frequency doubling has been achieved through this three-dimensional beam splitter. Under 1064-nm continuous-wave fundamental-wavelength pump beam, guided-wave SHG at 532 nm are measured with the maximum power of 0.65 mW and 0.48 mW for waveguide splitters (0.67 mW and 0.51 mW for corresponding straight channel waveguides), corresponding to a SH conversion efficiency of approximately ~14.3%/W and 13.9%/W (11.2%/W, 11.3%/W for corresponding straight channel waveguides), respectively. This work paves a way to fabricate compact integrated nonlinear photonic devices in a single chip with beam dividing functions.

  2. Efficient Second Harmonic Generation in 3D Nonlinear Optical-Lattice-Like Cladding Waveguide Splitters by Femtosecond Laser Inscription

    PubMed Central

    Nie, Weijie; Jia, Yuechen; Vázquez de Aldana, Javier R.; Chen, Feng

    2016-01-01

    Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 × 4 beam splitting. Second harmonic generation (SHG) of green light through these nonlinear waveguide beam splitter structures provides the capability for the compact visible laser emitting devices. With Type II phase matching of the fundamental wavelength (@ 1064 nm) to second harmonic waves (@ 532 nm), the frequency doubling has been achieved through this three-dimensional beam splitter. Under 1064-nm continuous-wave fundamental-wavelength pump beam, guided-wave SHG at 532 nm are measured with the maximum power of 0.65 mW and 0.48 mW for waveguide splitters (0.67 mW and 0.51 mW for corresponding straight channel waveguides), corresponding to a SH conversion efficiency of approximately ~14.3%/W and 13.9%/W (11.2%/W, 11.3%/W for corresponding straight channel waveguides), respectively. This work paves a way to fabricate compact integrated nonlinear photonic devices in a single chip with beam dividing functions. PMID:26924255

  3. Efficient Second Harmonic Generation in 3D Nonlinear Optical-Lattice-Like Cladding Waveguide Splitters by Femtosecond Laser Inscription.

    PubMed

    Nie, Weijie; Jia, Yuechen; Vázquez de Aldana, Javier R; Chen, Feng

    2016-02-29

    Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 × 4 beam splitting. Second harmonic generation (SHG) of green light through these nonlinear waveguide beam splitter structures provides the capability for the compact visible laser emitting devices. With Type II phase matching of the fundamental wavelength (@ 1064 nm) to second harmonic waves (@ 532 nm), the frequency doubling has been achieved through this three-dimensional beam splitter. Under 1064-nm continuous-wave fundamental-wavelength pump beam, guided-wave SHG at 532 nm are measured with the maximum power of 0.65 mW and 0.48 mW for waveguide splitters (0.67 mW and 0.51 mW for corresponding straight channel waveguides), corresponding to a SH conversion efficiency of approximately ~14.3%/W and 13.9%/W (11.2%/W, 11.3%/W for corresponding straight channel waveguides), respectively. This work paves a way to fabricate compact integrated nonlinear photonic devices in a single chip with beam dividing functions.

  4. Phase shift multiplication effect of all-optical analog to electromagnetically induced transparency in two micro-cavities side coupled to a waveguide system

    SciTech Connect

    Wang, Boyun; Wang, Tao Tang, Jian; Li, Xiaoming; Dong, Chuanbo

    2014-01-14

    We propose phase shift multiplication effect of all-optical analog to electromagnetically induced transparency in two photonic crystal micro-cavities side coupled to a waveguide system through external optical pump beams. With dynamically tuning the propagation phase of the line waveguide, the phase shift of the transmission spectrum in two micro-cavities side coupled to a waveguide system is doubled along with the phase shift of the line waveguide. π-phase shift and 2π-phase shift of the transmission spectrum are obtained when the propagation phase of the line waveguide is tuned to 0.5π-phase shift and π-phase shift, respectively. All observed schemes are analyzed rigorously through finite-difference time-domain simulations and the coupled-mode formalism. These results show a new direction to the miniaturization and the low power consumption of microstructure integration photonic devices in optical communication and quantum information processing.

  5. Mid-Infrared Spectroscopy Platform Based on GaAs/AlGaAs Thin-Film Waveguides and Quantum Cascade Lasers.

    PubMed

    Sieger, Markus; Haas, Julian; Jetter, Michael; Michler, Peter; Godejohann, Matthias; Mizaikoff, Boris

    2016-03-01

    The performance and versatility of GaAs/AlGaAs thin-film waveguide technology in combination with quantum cascade lasers for mid-infrared spectroscopy in comparison to conventional FTIR spectroscopy is presented. Infrared radiation is provided by a quantum cascade laser (QCL) spectrometer comprising four tunable QCLs providing a wavelength range of 5-11 μm (1925-885 cm(-1)) within a single collimated beam. Epitaxially grown GaAs slab waveguides serve as optical transducer for tailored evanescent field absorption analysis. A modular waveguide mounting accessory specifically designed for on-chip thin-film GaAs waveguides is presented serving as a flexible analytical platform in lieu of conventional attenuated total reflection (ATR) crystals uniquely facilitating macroscopic handling and alignment of such microscopic waveguide structures in real-world application scenarios.

  6. Mode Control and Tunability in Rf-Excited Carbon - Waveguide Lasers.

    NASA Astrophysics Data System (ADS)

    Hill, Christopher Alexander

    Available from UMI in association with The British Library. The first chapter describes some uses and advantages of the CO_2 waveguide laser, with a brief historical review. The rest of the thesis, apart from routine accounts of apparatus and summaries of parts of the literature, reports several pieces of original work. These have aimed mainly at a better understanding of waveguide laser models and at applying them in detail to real devices, with a general emphasis on the design of highly tunable cw CO_2 waveguide oscillators. Chapter 2 has a formal statement of passive waveguide transmission theory and suggests that some recent experimental work elsewhere can be explained by assuming that the wavefronts of EH_{1_{rm m} } guide modes are curved. Chapter 4 shows that the seminal paper on waveguide reflector EH_{11} coupling losses by Abrams (1972) contains an error which leads to predictions significantly different from those of Degnan and Hall (1973). It is resolved by introducing the correct phase shifts phi_{rm p }(z,R_{rm M} ) for the Laguerre-Gaussian beams reflected from a spherical mirror. The two methods of calculation (Gaussian -beam expansion and diffraction integral) are then seen to yield the same results. Also, chapter 4 contains a detailed review of published coupling loss theory for plane mirrors. Surprising errors and inconsistencies are revealed. Chapter 6 discusses the application of Rigrod -type modelling to waveguide gas lasers, especially those with significant distributed loss. It reports an attempt to characterize an rf-excited waveguide CO_2 laser whose waveguide losses are certainly significant. For another such laser (chapter 7) the dependence of gain on rf excitation frequency is confirmed. Chapter 8 develops a multimode model of a dual -Case I waveguide laser with one tilted mirror. This description fits many commercial lasers; if a diffraction grating is modelled as a lossy plane mirror with a wavelength-dependent tilt, it also fits many

  7. High-efficiency beam bending using graded photonic crystals.

    PubMed

    Oner, B B; Turduev, M; Kurt, H

    2013-05-15

    We explore beam-bending properties of graded index (GRIN) waveguide with hyperbolic secant profile. The transmission efficiency and bandwidth features are extracted for GRIN photonic crystal (PC) media composed of dielectric rods. Light guiding performance of the GRIN PC medium is analyzed for 90° and 180° waveguide bends. The finite-difference time-domain method is deployed to investigate the performance of the designed GRIN waveguides. By the help of proposed photonic configuration, bending of light is achieved with a high efficiency within a broad bandwidth, which promotes the use of GRIN PC structures for efficient light-bending purposes.

  8. Optical two-beam traps in microfluidic systems

    NASA Astrophysics Data System (ADS)

    Berg-Sørensen, Kirstine

    2016-08-01

    An attractive solution for optical trapping and stretching by means of two counterpropagating laser beams is to embed waveguides or optical fibers in a microfluidic system. The microfluidic system can be constructed in different materials, ranging from soft polymers that may easily be cast in a rapid prototyping manner, to hard polymers that could even be produced by injection moulding, or to silica in which waveguides may either be written directly, or with grooves for optical fibers. Here, we review different solutions to the system and also show results obtained in a polymer chip with DUV written waveguides and in an injection molded polymer chip with grooves for optical fibers.

  9. Some Characteristics of a Communication Satellite Multiple-Beam Antenna

    DTIC Science & Technology

    1975-01-28

    waveguide lens antenna illumin- ated by a planar array of 19 conical feed horns excited in the TE.... mode will have a minimum directive gain of 27.9...other phase shifter. This insures 6 + <j) w constant. IV. METHOD OF ANALYSIS The performance of a lens antenna with a multiple-feed horn array can... antenna , consisting of a waveguide lens antenna system excited by a variable beam-forming network capable of producing a wide range of radi- ation

  10. High efficiency Yb:YAG crystalline fiber-waveguide lasers.

    PubMed

    Mu, Xiaodong; Meissner, Stephanie; Meissner, Helmuth; Yu, Anthony W

    2014-11-01

    A laser diode (LD) cladding pumped single-mode 1030 nm laser has been demonstrated, in an adhesive-free bonded 40 μm core Yb:YAG crystalline fiber waveguide (CFW). A laser output power of 13.2 W at a wavelength of 1.03 μm has been achieved, for an input pump power of 39.5 W. The corresponded laser efficiency is 33.4%. The laser beam quality is confirmed to be near diffraction-limited, with a measured M2 = 1.02. A LD core pumped single-clad Yb:YAG CFW laser has also been demonstrated with a top-hat laser beam profile, with a laser output power of 28 W and a slope efficiency of 78%.

  11. Broadband indistinguishability from bright parametric downconversion in a semiconductor waveguide

    NASA Astrophysics Data System (ADS)

    Günthner, T.; Pressl, B.; Laiho, K.; Geßler, J.; Höfling, S.; Kamp, M.; Schneider, C.; Weihs, G.

    2015-12-01

    Parametric downconversion (PDC) in semiconductor Bragg-reflection waveguides (BRW) is routinely exploited for photon-pair generation in the telecommunication range. Contrary to many conventional PDC sources, BRWs offer possibilities to create spectrally broadband but nevertheless indistinguishable photon pairs in orthogonal polarizations that simultaneously incorporate high frequency entanglement. We explore the characteristics of co-propagating twin beams created in a type-II ridge BRW. Our PDC source is bright and efficient, serving as a benchmark of its performance and justifies its exploitation for further use in quantum photonics. We then examine the coalescence of the twin beams and investigate the effect of their inevitable multi-photon contributions on the observed photon bunching. Our results show that BRWs have a great potential for producing broadband indistinguishable photon pairs as well as multi-photon states.

  12. Optical coupling of bare optoelectronic components and flexographically printed polymer waveguides in planar optronic systems

    NASA Astrophysics Data System (ADS)

    Wang, Yixiao; Wolfer, Tim; Lange, Alex; Overmeyer, Ludger

    2016-05-01

    Large scale, planar optronic systems allowing spatially distributed functionalities can be well used in diverse sensor networks, such as for monitoring the environment by measuring various physical quantities in medicine or aeronautics. In these systems, mechanically flexible and optically transparent polymeric foils, e.g. polymethyl methacrylate (PMMA) and polyethylene terephthalate (PET), are employed as carrier materials. A benefit of using these materials is their low cost. The optical interconnections from light sources to light transmission structures in planar optronic systems occupy a pivotal position for the sensing functions. As light sources, we employ the optoelectronic components, such as edgeemitting laser diodes, in form of bare chips, since their extremely small structures facilitate a high integration compactness and ensure sufficient system flexibility. Flexographically printed polymer optical waveguides are deployed as light guiding structures for short-distance communication in planar optronic systems. Printing processes are utilized for this generation of waveguides to achieve a cost-efficient large scale and high-throughput production. In order to attain a high-functional optronic system for sensing applications, one of the most essential prerequisites is the high coupling efficiency between the light sources and the waveguides. Therefore, in this work, we focus on the multimode polymer waveguide with a parabolic cross-section and investigate its optical coupling with the bare laser diode. We establish the geometrical model of the alignment based on the previous works on the optodic bonding of bare laser diodes and the fabrication process of polymer waveguides with consideration of various parameters, such as the beam profile of the laser diode, the employed polymer properties of the waveguides as well as the carrier substrates etc. Accordingly, the optical coupling of the bare laser diodes and the polymer waveguides was simulated

  13. Integrated laser with low-loss high index-contrast waveguides for OEICs

    SciTech Connect

    Welty, R J; Bond, T C; Behymer, E; Pocha, M; Loomis, G; Wolfe, J; Vernon, S

    2004-11-22

    Photonic integrated circuits require the ability to integrate both lasers and waveguides with low absorption and coupling loss. This technology is being developed at LLNL for digital logic gates for optical key generation circuits to facilitate secure communications. Here, we demonstrate an approach of integrating InGaAs DQW edge emitting lasers (EEL) with electron beam evaporated dielectric waveguides. The EELs are defined by electron cyclotron resonance etching (ECR). This approach results in highly anisotropic etched mirrors with smooth etched features (sidewall rms roughness = 28 {angstrom}, surface rms roughness = 10 {angstrom}). The mirror is etched to form both the laser cavity and define the waveguide mesa, which accommodates a dielectric stack, where the core is aligned with the active region of the laser to achieve maximum vertical mode overlapping. The waveguides are based on SiO{sub 2}/Ta{sub 2}O{sub 5}/SiO{sub 2} which yields a high index contrast of 0.6, resulting in low loss guides ({approx}2-3dB/cm). The design of the interface has taken into account the waveguide transmission loss, air gap spacing and tilt between the laser and waveguide. The critical feature for this deposition technique is its required high directionality or minimal sidewall deposition and corner effects. In the butt coupled EEL/waveguide system we have measured a slope efficiency to be as high as 0.45 W/A. We have in conclusion demonstrated a technology that allows direct coupling of a dielectric optical interconnect to a semiconductor laser monolithically fabricated on the semiconductor substrate.

  14. Improved optical efficiency of bulk laser amplifiers with femtosecond written waveguides

    NASA Astrophysics Data System (ADS)

    Bukharin, Mikhail A.; Lyashedko, Andrey; Skryabin, Nikolay N.; Khudyakov, Dmitriy V.; Vartapetov, Sergey K.

    2016-04-01

    In the paper we proposed improved technique of three-dimensional waveguides writing with direct femtosecond laser inscription technology. The technique allows, for the first time of our knowledge, production of waveguides with mode field diameter larger than 200 μm. This result broadens field of application of femtosecond writing technology into bulk laser schemes and creates an opportunity to develop novel amplifiers with increased efficiency. We proposed a novel architecture of laser amplifier that combines free-space propagation of signal beam with low divergence and propagation of pump irradiation inside femtosecond written waveguide with large mode field diameter due to total internal reflection effect. Such scheme provides constant tight confinement of pump irradiation over the full length of active laser element (3-10 cm). The novel amplifier architecture was investigated numerically and experimentally in Nd:phosphate glass. Waveguides with 200 μm mode field diameter were written with high frequency femtosecond oscillator. Proposed technique of three-dimensional waveguides writing based on decreasing and compensation of spherical aberration effect due to writing in heat cumulative regime and dynamic pulse energy adjustment at different depths of writing. It was shown, that written waveguides could increase optical efficiency of amplifier up to 4 times compared with corresponding usual free-space schemes. Novelty of the results consists in technique of femtosecond writing of waveguides with large mode field diameter. Actuality of the results consists in originally proposed architecture allows to improve up to 4 times optical efficiency of conventional bulk laser schemes and especially ultrafast pulse laser amplifiers.

  15. Study of holographic grating in porous silicon optical waveguides

    NASA Astrophysics Data System (ADS)

    Jia, Zhenhong; Lü, Xiaoyi; Tu, Chuzhe

    2007-12-01

    It was found that the porosity of porous silicon has a maximum value under certain illumination intensity in our experiment. According to the experimental result, the grating was fabricated from porous silicon by controlling illumination intensity. As the refractive index of porous silicon decreases with an increase of the porosity, so the index distributing of porous silicon can be controlled by illumination intensity. A holographic process allows obtaining a mask of light on top layer during fabricating the multilayer porous silicon optical waveguides. The interference of two coherent Ar + laser beams produces at the sample surface bright parallel lines. The porosity is modulated in the plane. The effective deep of modulation is directly related to the penetration of the illuminating beam. We have developed an experimental setup that allows guide light at 1064nm incidents vertically into the grating in porous silicon optical waveguides. The diffractive efficiency of the first order diffraction light in TE and TM polarization are measured in our experiment respectively.

  16. Planar waveguides in neodymium-doped calcium niobium gallium garnet crystals produced by proton implantation

    NASA Astrophysics Data System (ADS)

    Chun-Xiao, Liu; Meng, Chen; Li-Li, Fu; Rui-Lin, Zheng; Hai-Tao, Guo; Zhi-Guang, Zhou; Wei-Nan, Li; She-Bao, Lin; Wei, Wei

    2016-04-01

    In this work, the fabrication and optical properties of a planar waveguide in a neodymium-doped calcium niobium gallium garnet (Nd:CNGG) crystal are reported. The waveguide is produced by proton (H+) implantation at 480 keV and a fluence of 1.0×1017 ions/cm2. The prism-coupling measurement is performed to obtain the dark mode of the waveguide at a wavelength of 632.8 nm. The reflectivity calculation method (RCM) is used to reconstruct the refractive index profile. The finite-difference beam propagation method (FD-BPM) is employed to calculate the guided mode profile of the waveguide. The stopping and range of ions in matter 2010 (SRIM 2010) code is used to simulate the damage profile induced by the ion implantation. The experimental and theoretical results indicate that the waveguide can confine the light propagation. Project supported by the National Natural Science Foundation of China (Grant Nos. 11405041, 61405240, 61077070, 61177086, 51002181, and 61177084), the Scientific Research Starting Foundation for New Teachers of Nanjing University of Posts and Telecommunications (NUPTSF) (Grant No. NY214159), and the Research Center of Optical Communications Engineering & Technology, Jiangsu Province, China (Grant No. ZSF0401).

  17. Field enhancement with plasmonic nano-antennas on silicon-based waveguides

    NASA Astrophysics Data System (ADS)

    Darvishzadeh-Varcheie, M.; Guclu, C.; Ragan, R.; Boyraz, O.; Capolino, F.

    2015-09-01

    Plasmonic nano antennas like dimers, have been investigated for their capability to provide a strong near-field enhancement when illuminated by external light. Traditionally these nano antennas, isolated or arrayed, are placed on a substrate and used in spectroscopy techniques. Surfaces made of such plasmonic nano antennas have been very useful for applications like surface enhanced Raman scattering in which it provides various orders of magnitude of enhanced sensitivity. These instruments however are not economic and are often not mobile since surfaces require an external beam illumination and the Raman scattering is detected by a large aperture microscope. The goal of this paper is to combine nano antennas made of gold dimers with integrated waveguide to make a spectrometer which has low cost and volume in comparison with the structure mentioned above. A technique in which optical plasmonic nano antennas are located in proximity of silicon nitride waveguide is proposed that is useful both for illumination and detection channels. The waveguide evanescent field, which is decaying outside of the waveguide, excites the dimer and causes it to resonate which results in a very strong electric field enhancement of approximately 25 times in the antenna gap. Also the coupling effect of dimer resonance on waveguide modes is investigated. To show the efficiency of the proposed structure, full wave analysis has been done and its results are compared with the multilayer structure case. The simulation results demonstrate that this structure can be designed and fabricated for the purpose of spectroscopy application.

  18. Optimal design of 850 nm 2×2 multimode interference polymer waveguide coupler by imprint technique

    NASA Astrophysics Data System (ADS)

    Shao, Yuchen; Han, Xiuyou; Han, Xiaonan; Lu, Zhili; Wu, Zhenlin; Teng, Jie; Wang, Jinyan; Morthier, Geert; Zhao, Mingshan

    2016-09-01

    A 2×2 optical waveguide coupler at 850 nm based on the multimode interference (MMI) structure with the polysilsesquioxanes liquid series (PSQ-Ls) polymer material and the imprint technique is presented. The influence of the structural parameters, such as the single mode condition, the waveguide spacing of input/output ports, and the width and length of the multimode waveguide, on the optical splitting performance including the excess loss and the uniformity is simulated by the beam propagation method. By inserting a taper section of isosceles trapezoid between the single mode and multimode waveguides, the optimized structural parameters for low excess loss and high uniformity are obtained with the excess loss of‒0.040 dB and the uniformity of‒0.007 dB. The effect of the structure deviations induced during the imprint process on the optical splitting performance at different residual layer thicknesses is also investigated. The analysis results provide useful instructions for the waveguide device fabrication.

  19. BEAM-BEAM 2003 SUMMARY.

    SciTech Connect

    FISCHER,W.SEN,T.

    2003-05-19

    This paper summarizes the presentations and discussions of the Beam-Beam'03 workshop, held in Montauk, Long Island, from May 19 to 23, 2003. Presentations and discussions focused on halo generation from beam-beam interactions; beam-beam limits, especially coherent limits and their effects on existing and future hadron colliders; beam-beam compensation techniques, particularly for long-range interactions; and beam-beam study tools in theory, simulation, and experiment.

  20. 1×2 demultiplexer for a light waveguide communications system based on a holographic grating

    NASA Astrophysics Data System (ADS)

    Ren, Xuechang; Zhang, Xiangsu; Wang, Canhui; Liu, Shou

    2009-05-01

    2-channel multiplexer/demultiplexer (Muxer/Demuxer) is a key component for bidirectional data traffics applied for optical communication. Up to date various types of Muxer/Demuxer have been proposed and demonstrated. A grating coupler diffracts light into substrates or waveguides, along which light beam propagates by total internal reflection. In addition, one can exploit the dispersive and filtering characteristics of gratings, for dropping or separating one or several wavelengths from one another. When a laser beam containing two wavelengths is striking the surface of the grating with an incident angle within certain range, four diffracted beams will be generated. If two diffracted beams, corresponding to different wavelengths, meet the condition of total internal reflection, they will propagate inside the glass substrate (performs as a waveguide). While the third one cannot meet total reflection condition, and the last one should become the evanescent wave. Therefore it can separate two signals and couple signals to different waveguides. These functions are suited for WDM application and directional couplers. For convenience sake, the visible lights at 458nm and 633nm were used as the incident laser beams. To give a simple sample for 1×2 demultiplexing system, a holographic grating was recorded, with the period around 441nm which was chose discretionally within the certain range. The primary experimental results indicate that the two-wavelength signal can be separated and coupled into the respective waveguide as long as the grating is recorded and operated complying with the certain condition. The average insertion loss and crosstalk of the device were presented in this paper.

  1. Scalar Product in the Space of Waveguide Modes of an Open Planar Waveguide

    NASA Astrophysics Data System (ADS)

    Sevastianov, A. L.; Sevastianov, L. A.; Tiutiunnik, A. A.; Nikolaev, N. E.

    2016-02-01

    To implement the method of adiabatic waveguide modes for modeling the propagation of polarized monochromatic electromagnetic radiation in irregular integrated optics structures it is necessary to expand the desired solution in basic adiabatic waveguide modes. This expansion requires the use of the scalar product in the space of waveguide vector fields of integrated optics waveguide. This work solves the first stage of this problem - the construction of the scalar product in the space of vector solutions of the eigenmode problem (classical and generalized) waveguide modes of an open planar waveguide. In constructing the mentioned sesquilinear form, we used the Lorentz reciprocity principle of waveguide modes and tensor form of the Ostrogradsky-Gauss theorem.

  2. Integration of epitaxially-grown InGaAs/GaAs quantum dot lasers with hydrogenated amorphous silicon waveguides on silicon.

    PubMed

    Yang, Jun; Bhattacharya, Pallab

    2008-03-31

    The monolithic integration of epitaxially-grown InGaAs/GaAs self-organized quantum dot lasers with hydrogenated amorphous silicon (a:Si-H) waveguides on silicon substrates is demonstrated. Hydrogenated amorphous silicon waveguides, formed by plasma-enhanced-chemical-vapor deposition (PECVD), exhibit a propagation loss of approximately 10 dB/cm at a wavelength of 1.05 microm. The laser-waveguide coupling, with coupling coefficient of 22%, is achieved through a 3.2 microm-width groove etched by focused-ion-beam (FIB) milling which creates high-quality etched GaAs facets.

  3. Optical planar waveguide in sodium-doped calcium barium niobate crystals by carbon ion implantation

    NASA Astrophysics Data System (ADS)

    Zhao, Jin-Hua; Qin, Xi-Feng; Wang, Feng-Xiang; Fu, Gang; Wang, Hui-Lin; Wang, Xue-Lin

    2013-07-01

    There is great interest in niobate crystals which belong to the tetragonal tungsten bronze (TTB) families owing to their intriguing properties. As one representative of such crystals, CBN (calcium barium niobate) has attracted rapidly growing attention. Because it has a higher Curie temperature than SBN (strontium barium niobate), possesses outstanding ferroelectric and it possesses optical properties. In addition, doped with sodium, CBN will show a higher Curie temperature than pure CBN. We report on the fabrication and characterization of optical planar waveguide in x-cut sodium-doped calcium barium niobate crystal by using C ion implantation. The guided-mode properties at the wavelength of 633 and 1539 nm are investigated through prism-coupling measurements, respectively. By applying direct end-face coupling arrangement, the near-field optical intensity distribution of waveguide modes is measured at 633 nm. For comparison, the modal profile of the same guided mode is also numerically calculated by the finite difference beam-propagation method via computer software BeamPROP. The transmission spectra of the waveguide before and after ion implantation treatments were investigated also. Our experiment results reveal that the waveguide could propagate light with transverse magnetic polarized direction only and it is assumed that the polarization selectivity of CBN crystal may responsible for this phenomenon.

  4. New microwave beam position monitors for the TESLA test facility—FEL

    NASA Astrophysics Data System (ADS)

    Kamps, T.; Lorenz, R.

    1998-12-01

    Beam-based alignment is essential for the operation of the SASE-FEL at the TESLA Test Facility Linac. In order to ensure the overlap of the photon beam and the electron beam, the position of the electron beam has to be measured along the undulator beamline with a high resolution. Due to the severe space limitations, a new microwave concept is being considered. It is based on special ridged waveguides coupling by small slots to the magnetic field of the electron beam. The four waveguides and slots of each monitor were split into two symmetric pairs separated in beam direction. All waveguides are about 35 degrees apart in azimuth from the horizontal axis and will be fabricated using electro-discharge machining (EDM). Waveguide-to-coax adaptors were designed to couple the signal of each waveguide into a coaxial cable. The goal is to measure the averaged position of a bunch train in a narrowband receiver with a center frequency of 12 GHz. A prototype of this monitor was built and tested on a testbench, as well as at the CLIC Test Facility at CERN. The paper summarizes the concept, the design, and further improvements of the waveguide monitor.

  5. Cooling Waveguide Flanges in Microwave Transmitters

    NASA Technical Reports Server (NTRS)

    Chen, B. C.; Hartop, R. W.

    1984-01-01

    Flang appendage circulates coolant for conductive heat removal. Flange appendage bore accomodates coolant tube. O-ring surrounds bore; when adjacent waveguide sections are bolted together, continuous conduit is formed for coolant. Pressure release groove in modified flange prevents coolant from entering waveguide should O'ring seal fail.

  6. Planar fluoride waveguides for amplifiers and lasers

    SciTech Connect

    Grishutkina, T E; Doroshenko, M E; Karasik, A Ya; Konyushkin, V A; Konyushkin, D V; Nakladov, A N; Osiko, V V; Tsvetkov, V B

    2015-08-31

    We have produced planar optical waveguides having a crystalline CaF{sub 2} – YF{sub 3} – NdF{sub 3} mixed yttrofluorite core and two reflective claddings in order to improve waveguide excitation efficiency. Under diode pumping, lasing has been achieved at a wavelength of 1064 nm with a slope efficiency near 15%. (lasers)

  7. Waveguide Transition for Submillimeter-Wave MMICs

    NASA Technical Reports Server (NTRS)

    Leong, Kevin M.; Deal, William R.; Radisic, Vesna; Mei, Xiaobing; Uyeda, Jansen; Lai, Richard; Fung, King Man; Gaier, Todd C.

    2009-01-01

    An integrated waveguide-to-MMIC (monolithic microwave integrated circuit) chip operating in the 300-GHz range is designed to operate well on high-permittivity semiconductor substrates typical for an MMIC amplifier, and allows a wider MMIC substrate to be used, enabling integration with larger MMICs (power amplifiers). The waveguide-to- CBCPW (conductor-backed coplanar waveguide) transition topology is based on an integrated dipole placed in the E-plane of the waveguide module. It demonstrates low loss and good impedance matching. Measurement and simulation demonstrate that the loss of the transition and waveguide loss is less than 1-dB over a 340-to-380-GHz bandwidth. A transition is inserted along the propagation direction of the waveguide. This transition uses a planar dipole aligned with the maximum E-field of the TE10 waveguide mode as an inter face between the waveguide and the MMIC. Mode conversion between the coplanar striplines (CPS) that feed the dipole and the CBCPW transmission line is accomplished using a simple air-bridge structure. The bottom side ground plane is truncated at the same reference as the top-side ground plane, leaving the end of the MMIC suspended in air.

  8. High temperature pressure coupled ultrasonic waveguide

    DOEpatents

    Caines, Michael J.

    1983-01-01

    A pressure coupled ultrasonic waveguide is provided to which one end may be attached a transducer and at the other end a high temperature material for continuous ultrasonic testing of the material. The ultrasonic signal is coupled from the waveguide into the material through a thin, dry copper foil.

  9. Capillary waveguide optrodes for Medical applications

    NASA Astrophysics Data System (ADS)

    Kieslinger, Dietmar; Weigl, Bernhard H.; Draxler, Sonja; Lippitsch, Max E.

    1997-01-01

    Glass capillaries with a chemically sensitive coating on the inner surface are used as optical sensors for medical diagnostics. The capillary simultaneously serves as a sample compartment, a sensor element, and an inhomogeneous optical waveguide. Different optical setups have been investigated and compared regarding its waveguiding properties.

  10. Near-field collimation of light carrying orbital angular momentum with bull's-eye-assisted plasmonic coaxial waveguides.

    PubMed

    Pu, Mingbo; Ma, Xiaoliang; Zhao, Zeyu; Li, Xiong; Wang, Yanqin; Gao, Hui; Hu, Chenggang; Gao, Ping; Wang, Changtao; Luo, Xiangang

    2015-07-10

    The orbital angular momentum (OAM) of light, as an emerging hotspot in optics and photonics, introduces many degrees of freedom for applications ranging from optical communication and quantum processing to micromanipulation. To achieve a high degree of integration, optical circuits for OAM light are essential, which are, however, challenging in the optical regime owing to the lack of well-developed theory. Here we provide a scheme to guide and collimate the OAM beam at the micro- and nano-levels. The coaxial plasmonic slit was exploited as a naturally occurring waveguide for light carrying OAM. Concentric grooves etched on the output surface of the coaxial waveguide were utilized as a plasmonic metasurface to couple the OAM beam to free space with greatly increased beam directivity. Experimental results at λ = 532 nm validated the novel transportation and collimating effect of the OAM beam. Furthermore, dynamic tuning of the topological charges was demonstrated by using a liquid crystal spatial light modulator (SLM).

  11. On-chip plasmonic waveguide optical waveplate

    PubMed Central

    Gao, Linfei; Huo, Yijie; Zang, Kai; Paik, Seonghyun; Chen, Yusi; Harris, James S.; Zhou, Zhiping

    2015-01-01

    Polarization manipulation is essential in almost every photonic system ranging from telecommunications to bio-sensing to quantum information. This is traditionally achieved using bulk waveplates. With the developing trend of photonic systems towards integration and miniaturization, the need for an on-chip waveguide type waveplate becomes extremely urgent. However, this is very challenging using conventional dielectric waveguides, which usually require complex 3D geometries to alter the waveguide symmetry and are also difficult to create an arbitrary optical axis. Recently, a waveguide waveplate was realized using femtosecond laser writing, but the device length is in millimeter range. Here, for the first time we propose and experimentally demonstrate an ultracompact, on-chip waveplate using an asymmetric hybrid plasmonic waveguide to create an arbitrary optical axis. The device is only in several microns length and produced in a flexible integratable IC compatible format, thus opening up the potential for integration into a broad range of systems. PMID:26507563

  12. Light propagation in periodically modulated complex waveguides

    NASA Astrophysics Data System (ADS)

    Nixon, Sean; Yang, Jianke

    2015-03-01

    Light propagation in optical waveguides with periodically modulated index of refraction and alternating gain and loss are investigated for linear and nonlinear systems. Based on a multiscale perturbation analysis, it is shown that for many non-parity-time- (PT -) symmetric waveguides, their linear spectrum is partially complex; thus light exponentially grows or decays upon propagation, and this growth or decay is not altered by nonlinearity. However, several classes of non-PT -symmetric waveguides are also identified to possess all-real linear spectrum. For PT -symmetric waveguides, phase transition is predicted analytically. In the nonlinear regime longitudinally periodic and transversely quasilocalized modes are found for PT -symmetric waveguides both above and below phase transition. These nonlinear modes are stable under evolution and can develop from initially weak initial conditions.

  13. Optical rogue waves generated on Gaussian background beam.

    PubMed

    Liu, Chong; Yang, Zhan-Ying; Zhao, Li-Chen; Xin, Guo-Guo; Yang, Wen-Li

    2014-02-15

    We study optical rogue waves (RWs) in a nonlinear graded-index waveguide with variable coefficients. An exact RW solution on Gaussian background beam is presented, in contrast to the previous studies about RWs, on plane wave background. It is shown that the characteristics of RWs are maintained on Gaussian background beam and that the beam's width is even a bit smaller than the RWs scale. These results may raise the possibility of related experiments and potential applications in nonlinear optics.

  14. Fluorometer with a quartz-rod waveguide-integrating sphere configuration to measure evanescent-field luminescence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A fluorometer was designed to measure evanescent-field luminescence. A quartz-rod waveguide (d = 2 mm) was installed coaxally inside a cylindrical flow-through cell (id = 2.3 mm, od = 6.3 mm, l = 116 mm). An excitation beam from a UV LED or a miniature xenon flashlamp was focused by a ball lens and ...

  15. Hybrid grapheme plasmonic waveguide modulators

    NASA Astrophysics Data System (ADS)

    Ansell, D.; Thackray, B. D.; Aznakayeva, D. E.; Thomas, P.; Auton, G. H.; Marshall, O. P.; Rodriguez, F. J.; Radko, I. P.; Han, Z.; Bozhevolnyi, S. I.; Grigorenko, A. N.

    2016-03-01

    The unique optical and electronic properties of graphene allow one to realize active optical devices. While several types of graphene-based photonic modulators have already been demonstrated, the potential of combining the versatility of graphene with sub-wavelength field confinement of plasmonic/metallic structures is not fully realized. Here we report fabrication and study of hybrid graphene-plasmonic modulators. We consider several types of modulators and identify the most promising one for light modulation at telecom and near-infrared. Our proof-of-concept results pave the way towards on-chip realization of efficient graphene-based active plasmonic waveguide devices for optical communications.

  16. Analysis/test correlation using VAWT-SDS on a step-relaxation test for the rotating Sandia 34 m test bed

    SciTech Connect

    Argueello, J.G.; Dohrmann, C.R.; Carne, T.G.; Veers, P.S.

    1993-11-01

    The combined analysis/test effort described in this paper compares predictions with measured data from a step-relaxation test in the absence of significant wind-driven aerodynamic loading. The process described here is intended to illustrate a method for validation of time domain codes for structural analysis of wind turbine structures. Preliminary analyses were performed to investigate the transient dynamic response that the rotating Sandia 34 m Vertical Axis Wind Turbine (VAWT) would undergo when one of the two blades was excited by step-relaxation. The calculations served two purposes. The first was for pretest planning to evaluate the relative importance of the various forces that would be acting on the structure during the test and to determine if the applied force in the step-relaxation would be sufficient to produce an excitation that was distinguishable from that produced by the aerodynamic loads. The second was to provide predictions that could subsequently be compared to the data from the test. The test was carried out specifically to help in the validation of the time-domain structural dynamics code, VAWT-SDS, which predicts the dynamic response of VAWTs subject to transient events. Post-test comparisons with the data were performed and showed a qualitative agreement between pretest predictions and measured response. However, they also showed that there was significantly more damping in the measurements than included in the predictions. Efforts to resolve this difference, including post-test analyses, were undertaken and are reported herein. The overall effort described in this paper represents a major step in the process of arriving at a validated structural dynamics code.

  17. A three-dimensional wide-angle BPM for optical waveguide structures.

    PubMed

    Ma, Changbao; Van Keuren, Edward

    2007-01-22

    Algorithms for effective modeling of optical propagation in three- dimensional waveguide structures are critical for the design of photonic devices. We present a three-dimensional (3-D) wide-angle beam propagation method (WA-BPM) using Hoekstra's scheme. A sparse matrix algebraic equation is formed and solved using iterative methods. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation, along with a technique for shifting the simulation window to reduce the dimension of the numerical equation and a threshold technique to further ensure its convergence. These techniques can ensure the implementation of iterative methods for waveguide structures by relaxing the convergence problem, which will further enable us to develop higher-order 3-D WA-BPMs based on Padé approximant operators.

  18. A watt-class 1-THz backward-wave oscillator based on sine waveguide

    SciTech Connect

    Xu Xiong; Wei Yanyu; Shen Fei; Yin Hairong; Xu Jin; Gong Yubin; Wang Wenxiang

    2012-01-15

    A novel backward wave oscillator was proposed by utilizing a concise sine waveguide slow-wave structure combined with sheet electron beam to operate at terahertz frequency band. First, the design method was described, and the dispersion curve and interaction impedance of the sine waveguide were calculated, then the device oscillation frequency and operating voltage were determined. Next, the circuit transmission losses were learned over the tunable frequency range. Finally, the particle-in-cell simulation method was applied to predict its signal generation performance. The investigation results show that, the backward wave oscillator can produce over 1.9 -W peak power output at the central operating frequency of 1-THz under 27-kV operating voltage and 5-mA beam current. And the interaction efficiency at 1-THz is more than 1.4% with a circuit length of 7.2-mm. It, therefore, will be considered as a promising watt-class terahertz radiation source.

  19. A proposed measurement of the reverse Cherenkov radiation effect in a metamaterial-loaded circular waveguide

    SciTech Connect

    Shchegolkov, Dmitry; Azad, Abul K; O' Hara, John F; Smirnova, Evgenya I

    2009-01-01

    The authors have recently proposed an experiment on verification of the Reverse Cherenkov Radiation (RCR) effect in a Left-Handed-Material-loaded waveguide. Applications of the RCR effect may range from novel higher-order-mode suppressors in microwave and millimeter-wave sources to improved particle detectors for satellite non-proliferation missions. The experimental configuration includes a circular waveguide filled with an artificial metamaterial with simultaneously negative permittivity and permeability, in which the electromagnetic wave with a frequency of 95 GHz will interact with an electron beam. They have demonstrated that for certain values of effective permittivity and permeability only the backward-propagating mode can be exited by the electron beam. At the conference they will present some newly developed metamaterial designs, which they plan to employ for producing the proper effective medium parameters for this experiment.

  20. Design and Characterization of a W-Band Folded-Waveguide Slow-Wave Structure

    NASA Astrophysics Data System (ADS)

    Sumathy, Murugan; Datta, Subrata Kumar

    2016-12-01

    A single-section slow-wave structure for a W-band folded-waveguide traveling-wave tube with operating bandwidth of around 4% was designed for delivering the output power of 50 W at the operating voltage of 13.5 kV and operating beam current of 80 mA. The design was carried out using analytical formulations and 3D electromagnetic simulations. The beam-wave interaction analysis was carried out using large signal Lagrangian analysis and particle-in-cell simulation. The folded-waveguide slow-wave structure along with input-output couplers and RF windows were fabricated. Cold test measurements were carried out for dispersion characteristics of the slow-wave structure and voltage standing-wave ratio and insertion loss characteristics of the RF window. The measured cold circuit parameters show close agreement with the analysis.

  1. Method of m-line spectroscopy, a good tool to determine and control the optical parameters of waveguide structures

    NASA Astrophysics Data System (ADS)

    Auguściuk, ElŻbieta

    2013-01-01

    Method of spectroscopy m-line is an accurate method for determination of the optical parameters of the planar and stripe waveguides. In this method, the laser beam is coupled to the waveguide (e.g. by the prism) in the form of discrete angles. If the layer of the solid or liquid material is deposited on the waveguide, the change in the coupling angle is observed. Modified method of the m-line spectroscopy allows for determination of the optical parameters of deposited layers with high accuracy. Moreover, modification of the waveguide structure obtained via deposition of consecutive layers and changes the ability to propagate not only in the same waveguide. Modified method of m-line spectroscopy has found many potential applications in various areas such as: technological control of the applied layers quality; modification of the light propagation in the waveguide structures; utilization in the preventive medicine for diabetic diseases; food-control of the level of nutrients in vegetables (e.g. sugar level in white beets).

  2. Femtosecond-laser inscribed double-cladding waveguides in Nd:YAG crystal: a promising prototype for integrated lasers.

    PubMed

    Liu, Hongliang; Chen, Feng; Vázquez de Aldana, Javier R; Jaque, D

    2013-09-01

    We report on the design and implementation of a prototype of optical waveguides fabricated in Nd:YAG crystals by using femtosecond-laser irradiation. In this prototype, two concentric tubular structures with nearly circular cross sections of different diameters have been inscribed in the Nd:YAG crystals, generating double-cladding waveguides. Under 808 nm optical pumping, waveguide lasers have been realized in the double-cladding structures. Compared with single-cladding waveguides, the concentric tubular structures, benefiting from the large pump area of the outermost cladding, possess both superior laser performance and nearly single-mode beam profile in the inner cladding. Double-cladding waveguides of the same size were fabricated and coated by a thin optical film, and a maximum output power of 384 mW and a slope efficiency of 46.1% were obtained. Since the large diameters of the outer claddings are comparable with those of the optical fibers, this prototype paves a way to construct an integrated single-mode laser system with a direct fiber-waveguide configuration.

  3. Ultralow loss cavities and waveguides scattering loss cancellation

    DOEpatents

    Rakich, Peter T

    2014-01-07

    A waveguide system includes a first waveguide having surface roughness along at least one surface and a second waveguide substantially identical to the first waveguide and having substantially identical surface roughness along a corresponding side. The first and second waveguides are separated from each other by a predermined distance and are configured to receive respective first and second light signals having antisymmetric modes. The predetermined distance between the first and second waveguide tends to cause cancellation of at least far-field polarization radiation emanating from the first and second waveguides and resulting from surface roughness.

  4. Beam-beam simulations for separated beams

    SciTech Connect

    Furman, Miguel A.

    2000-04-10

    We present beam-beam simulation results from a strong-strong gaussian code for separated beams for the LHC and RHIC. The frequency spectrum produced by the beam-beam collisions is readily obtained and offers a good opportunity for experimental comparisons. Although our results for the emittance blowup are preliminary, we conclude that, for nominal parameter values, there is no significant difference between separated beams and center-on-center collisions.

  5. Control of adiabatic light transfer in coupled waveguides with longitudinally varying detuning

    NASA Astrophysics Data System (ADS)

    Oukraou, Hassan; Vittadello, Laura; Coda, Virginie; Ciret, Charles; Alonzo, Massimo; Rangelov, Andon A.; Vitanov, Nikolay V.; Montemezzani, Germano

    2017-02-01

    We study adiabatic light transfer in systems of two coupled waveguides with spatially varying detuning of the propagation constants, providing an analogy to the quantum phenomena of rapid adiabatic passage (RAP) and two-state stimulated Raman adiabatic passage (two-state STIRAP). Experimental demonstration using a photoinduction technique confirms the robust and broadband character of the structures that act as broadband directional couplers and broadband beam splitters, respectively.

  6. Polarization rotation Bragg diffraction using Si wire waveguide grating and polarization rotator.

    PubMed

    Okayama, Hideaki; Onawa, Yosuke; Shimura, Daisuke; Yaegashi, Hiroki; Sasaki, Hironori

    2015-07-27

    We report polarization independent Bragg grating wavelength filter with high diffraction efficiency. A rib waveguide polarization rotator and antisymmetric grating structure for fundamental to first order diffraction are used to generate the polarization rotation Bragg diffraction. The diffraction efficiencies and peak wavelengths become the same for two orthogonal input polarizations. Strong diffraction is attained easily. The concept was verified by simulation and experiment. Polarization independent band-pass filter consisting of polarization beam splitter and polarization rotation Bragg diffraction was experimentally demonstrated.

  7. Design Methodology and Experimental Verification of Serpentine/Folded Waveguide TWTs

    DTIC Science & Technology

    2016-03-17

    serpentine amplifier, which embodies the design methodology described herein. Particular attention will be paid to the comparison between code ...segment. The width of waveguide measured in the page is a. demonstration. Thus, particular attention will be paid to the comparison between code prediction...are computed with the 3-D electromagnetic code ANALYST [17]. In the parametric study shown in Fig. 7, we keep p, b, and beam tunnel radius constant

  8. 7.8 GHz High Power Generation And Extraction With A Dielectric-loaded Waveguide

    SciTech Connect

    Gao, F.; Conde, M. E.; Gai, W.; Konecny, R.; Liu, W.; Power, J. G.; Yusof, Z.; Jing, C.; Wong, T.

    2009-01-22

    In this paper, we present updated results on power extraction testing of a 7.8 GHz dielectric loaded waveguide power extractor using both high charge single bunches and bunch trains. We have generated a 1.7 ns radio frequency (rf) pulse with 30 MW of power with a single 66 nC electron bunch. Then we have generated a pulse train of electron beam for rf generation of 10 ns and 22 ns rf pulses.

  9. 7.8GHz High power generation and extraction with a dielectric-loaded waveguide.

    SciTech Connect

    Conde, M. E.; Gai, W.; Konecny, R.; Power, J. G.; Gao, F.; Wong, T.; Yusof, Z.; High Energy Physics; Illinois Inst. of Tech.; Euclid Techlabs

    2009-01-01

    In this paper, we present updated results on power extraction testing of a 7.8 GHz dielectric loaded waveguide power extractor using both high charge single bunches and bunch trains. We have generated a 1.7 ns radio frequency (rf) pulse with 30 MW of power with a single 66 nC electron bunch. Then we have generated a pulse train of electron beam for rf generation of 10 ns and 22 ns rf pulses.

  10. Design for controllable optofluidic beam splitter

    NASA Astrophysics Data System (ADS)

    Tang, Xionggui; Liang, Shan; Li, Rujian

    2016-01-01

    A novel configuration for controllable optofluidic beam splitter is proposed, which consists of the asymmetric Y-branch waveguide and the microfluidic channel filled with fluid mixture. The beam propagation method (BPM) is employed to numerically investigate the optical performance of device in our layout. The simulated results demonstrate that arbitrary splitting ratio and low optical loss for both TE and TM mode can be easily achieved, with a low dependence of wavelength and polarization. Particularly, the optofluidic beam splitter has advantages such as compact structure and large fabrication tolerance. The proposed device provides a new way to manipulate the optical power splitting, and has wide potential applications in integrated optofluidic system.

  11. Waveguide-Based Biosensors for Pathogen Detection

    PubMed Central

    Mukundan, Harshini; Anderson, Aaron S.; Grace, W. Kevin; Grace, Karen M.; Hartman, Nile; Martinez, Jennifer S.; Swanson, Basil I.

    2009-01-01

    Optical phenomena such as fluorescence, phosphorescence, polarization, interference and non-linearity have been extensively used for biosensing applications. Optical waveguides (both planar and fiber-optic) are comprised of a material with high permittivity/high refractive index surrounded on all sides by materials with lower refractive indices, such as a substrate and the media to be sensed. This arrangement allows coupled light to propagate through the high refractive index waveguide by total internal reflection and generates an electromagnetic wave—the evanescent field—whose amplitude decreases exponentially as the distance from the surface increases. Excitation of fluorophores within the evanescent wave allows for sensitive detection while minimizing background fluorescence from complex, “dirty” biological samples. In this review, we will describe the basic principles, advantages and disadvantages of planar optical waveguide-based biodetection technologies. This discussion will include already commercialized technologies (e.g., Corning’s EPIC® Ô, SRU Biosystems’ BIND™, Zeptosense®, etc.) and new technologies that are under research and development. We will also review differing assay approaches for the detection of various biomolecules, as well as the thin-film coatings that are often required for waveguide functionalization and effective detection. Finally, we will discuss reverse-symmetry waveguides, resonant waveguide grating sensors and metal-clad leaky waveguides as alternative signal transducers in optical biosensing. PMID:22346727

  12. Plasmonic antennas hybridized with dielectric waveguides.

    PubMed

    Bernal Arango, Felipe; Kwadrin, Andrej; Koenderink, A Femius

    2012-11-27

    For the purpose of using plasmonics in an integrated scheme where single emitters can be probed efficiently, we experimentally and theoretically study the scattering properties of single nanorod gold antennas as well as antenna arrays placed on one-dimensional dielectric silicon nitride waveguides. Using real space and Fourier microscopy correlated with waveguide transmission measurements, we quantify the spectral properties, absolute strength, and directivity of scattering. The scattering processes can be well understood in the framework of the physics of dipolar objects placed on a planar layered environment with a waveguiding layer. We use the single plasmonic structures on top of the waveguide as dipolar building blocks for new types of antennas where the waveguide enhances the coupling between antenna elements. We report on waveguide hybridized Yagi-Uda antennas which show directionality in out-coupling of guided modes as well as directionality for in-coupling into the waveguide of localized excitations positioned at the feed element. These measurements together with simulations demonstrate that this system is ideal as a platform for plasmon quantum optics schemes as well as for fluorescence lab-on-chip applications.

  13. First order Bragg grating filters in silicon on insulator waveguides

    NASA Astrophysics Data System (ADS)

    Waugh, Peter Michael

    2008-08-01

    The subject of this project is the design; analysis, fabrication and characterisation of first order Bragg Grating optical filters in Silicon-on-Insulator (SOI) planar waveguides. It is envisaged that this work will result in the possibility of Bragg Grating filters for use in Silicon Photonics. It is the purpose of the work to create as far as is possible flat surface waveguides so as to facilitate Thermo-Optic tuning and also the incorporation into rib-waveguide Silicon Photonics. The spectral response of the shallow Bragg Gratings was modelled using Coupled Mode Theory (CMT) by way of RSoft Gratingmod TM. Also the effect of having a Bragg Grating with alternate layers of refractive index of 1.5 and 3.5 was simulated in order to verify that Silica and Silicon layered Bragg Gratings could be viable. A series of Bragg Gratings were patterned on 1.5 micron SOI at Philips in Eindhoven, Holland to investigate the variation of grating parameters with a) the period of the gratings b) the mark to space ratio of the gratings and c) the length of the region converted to Bragg Gratings (i.e. the number of grating period repetitions). One set of gratings were thermally oxidised at Philips in Eindhoven and another set were ion implanted with Oxygen ions at the Ion Beam Facility, University of Surrey, England. The gratings were tested and found to give transmission minima at approximately 1540 nanometres and both methods of creating flat surfaces were found to give similar minima. Atomic Force Microscopy was applied to the grating area of the as-implanted samples in the Advanced Technology Institute, University of Surrey, which were found to have surface undulations in the order of 60 nanometres.

  14. Application of Plasma Waveguides to High Energy Accelerators

    SciTech Connect

    Milchberg, Howard M

    2013-03-30

    The eventual success of laser-plasma based acceleration schemes for high-energy particle physics will require the focusing and stable guiding of short intense laser pulses in reproducible plasma channels. For this goal to be realized, many scientific issues need to be addressed. These issues include an understanding of the basic physics of, and an exploration of various schemes for, plasma channel formation. In addition, the coupling of intense laser pulses to these channels and the stable propagation of pulses in the channels require study. Finally, new theoretical and computational tools need to be developed to aid in the design and analysis of experiments and future accelerators. Here we propose a 3-year renewal of our combined theoretical and experimental program on the applications of plasma waveguides to high-energy accelerators. During the past grant period we have made a number of significant advances in the science of laser-plasma based acceleration. We pioneered the development of clustered gases as a new highly efficient medium for plasma channel formation. Our contributions here include theoretical and experimental studies of the physics of cluster ionization, heating, explosion, and channel formation. We have demonstrated for the first time the generation of and guiding in a corrugated plasma waveguide. The fine structure demonstrated in these guides is only possible with cluster jet heating by lasers. The corrugated guide is a slow wave structure operable at arbitrarily high laser intensities, allowing direct laser acceleration, a process we have explored in detail with simulations. The development of these guides opens the possibility of direct laser acceleration, a true miniature analogue of the SLAC RF-based accelerator. Our theoretical studies during this period have also contributed to the further development of the simulation codes, Wake and QuickPIC, which can be used for both laser driven and beam driven plasma based acceleration schemes. We

  15. Optical waveguide materials, structures, and dispersion modulation

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Liu, Jiaming; Lin, Jian; Li, Wenxiu; Xue, Xia; Huang, Anping; Xiao, Zhisong

    2016-11-01

    Optical waveguide is used in most integrated optic devices to confine and guide light in higher refractive index channels. The structures and materials of slot waveguides are reviewed in this paper. Coupled resonator optical waveguides (CROWs) can be used for a rotation sensor with compact size, low power consumption and low cost. The loss determines the ultimate sensitivity of CROW gyros. Resonator-based optical gyroscope's sensitivity for measuring rotation is enhanced via using the anomalous dispersion characteristic of superluminal light propagation, which can be also generated by using passive optical resonators.

  16. Waveguide optical isolator: a new design.

    PubMed

    Ando, K

    1991-03-20

    A new design of a thin film waveguide optical isolator is described. It is composed of a nonreciprocal mode converter by the Faraday effect, a reciprocal mode converter by the Cotton-Mouton effect, an integrated mirror, and TE-mode selectors. Its mode transfer matrices are derived. Numerical calculations show that wider tolerances of the film parameters and smaller dimensions are obtained compared with the ordinary tandem type waveguide isolators without the integrated mirror. This structure is free of the problem of the localized control of the directions of the magnetization, which has been required for the ordinary tandem type waveguide isolator.

  17. Waveguide-based optical chemical sensor

    SciTech Connect

    Grace, Karen M.; Swanson, Basil I.; Honkanen, Seppo

    2007-03-13

    The invention provides an apparatus and method for highly selective and sensitive chemical sensing. Two modes of laser light are transmitted through a waveguide, refracted by a thin film host reagent coating on the waveguide, and analyzed in a phase sensitive detector for changes in effective refractive index. Sensor specificity is based on the particular species selective thin films of host reagents which are attached to the surface of the planar optical waveguide. The thin film of host reagents refracts laser light at different refractive indices according to what species are forming inclusion complexes with the host reagents.

  18. Optical planar waveguide for cell counting

    NASA Astrophysics Data System (ADS)

    LeBlanc, John; Mueller, Andrew J.; Prinz, Adrian; Butte, Manish J.

    2012-01-01

    Low cost counting of cells has medical applications in screening, military medicine, disaster medicine, and rural healthcare. In this report, we present a shallow, buried, planar waveguide fabricated by potassium ion exchange in glass that enables low-cost and rapid counting of metal-tagged objects that lie in the evanescent field of the waveguide. Laser light transmitted through the waveguide was attenuated proportionately to the presence of metal-coated microstructures fabricated from photoresist. This technology enables the low-cost enumeration of cells from blood, urine, or other biofluids.

  19. Guided modes of elliptical metamaterial waveguides

    SciTech Connect

    Halterman, Klaus; Feng, Simin; Overfelt, P. L.

    2007-07-15

    The propagation of guided electromagnetic waves in open elliptical metamaterial waveguide structures is investigated. The waveguide contains a negative-index media core, where the permittivity {epsilon} and permeability {mu} are negative over a given bandwidth. The allowed mode spectrum for these structures is numerically calculated by solving a dispersion relation that is expressed in terms of Mathieu functions. By probing certain regions of parameter space, we find the possibility exists to have extremely localized waves that transmit along the surface of the waveguide.

  20. Three dimensional nonlinear analysis of a single-grating rectangular waveguide Cerenkov maser

    SciTech Connect

    Xie, Wenqiu; Wang, Zi-Cheng; Luo, Jirun; Zhao, Ding

    2015-04-15

    A three dimensional (3-D) nonlinear model for illustrating the beam-wave interaction in a single-grating rectangular waveguide sheet-beam Cerenkov maser is presented. The dynamical equations and the equations of motion are solved self-consistently to predict the device performance. Space-charge effects and Ohmic losses are considered in the model. A 1.03 THz backward wave oscillator and a 0.65 THz traveling wave tube are discussed as two illustrative examples.

  1. Ion-implantation and analysis for doped silicon slot waveguides

    NASA Astrophysics Data System (ADS)

    Deam, L.; Stavrias, N.; Lee, K. K.; McCallum, J. C.

    2012-10-01

    We have utilised ion implantation to fabricate silicon nanocrystal sensitised erbium-doped slot waveguide structures in a Si/SiO2/Si layered configuration and photoluminescence (PL) and Rutherford backscattering spectrometry (RBS) to analyse these structures. Slot waveguide structures in which light is confined to a nanometre-scale low-index region between two high-index regions potentially offer significant advantages for realisation of electrically-pumped Si devices with optical gain and possibly quantum optical devices. We are currently investigating an alternative pathway in which high quality thermal oxides are grown on silicon and ion implantation is used to introduce the Er and Si-ncs into the SiO2 layer. This approach provides considerable control over the Er and Si-nc concentrations and depth profiles which is important for exploring the available parameter space and developing optimised structures. RBS is well-suited to compositional analysis of these layered structures. To improve the depth sensitivity we have used a 1 MeV α beam and results indicate that a layered silicon-Er:SiO2/silicon structure has been fabricated as desired. In this paper structural results will be compared to Er photoluminescence profiles for samples processed under a range of conditions.

  2. Slow wave structures using twisted waveguides for charged particle applications

    DOEpatents

    Kang, Yoon W.; Fathy, Aly E.; Wilson, Joshua L.

    2012-12-11

    A rapidly twisted electromagnetic accelerating structure includes a waveguide body having a central axis, one or more helical channels defined by the body and disposed around a substantially linear central axial channel, with central portions of the helical channels merging with the linear central axial channel. The structure propagates electromagnetic waves in the helical channels which support particle beam acceleration in the central axial channel at a phase velocity equal to or slower than the speed of light in free space. Since there is no variation in the shape of the transversal cross-section along the axis of the structure, inexpensive mechanical fabrication processes can be used to form the structure, such as extrusion, casting or injection molding. Also, because the field and frequency of the resonant mode depend on the whole structure rather than on dimensional tolerances of individual cells, no tuning of individual cells is needed. Accordingly, the overall operating frequency may be varied with a tuning/phase shifting device located outside the resonant waveguide structure.

  3. Waveguide Stub Tuner Analysis for CEBAF Machine Application

    SciTech Connect

    Haipeng Wang; Michael Tiefenback

    2004-08-01

    Three-stub WR650 waveguide tuners have been used on the CEBAF superconducting cavities for two changes of the external quality factors (Qext): increasing the Qext from 3.4-7.6 x 10{sup 6} to 8 x 10{sup 6}6 on 5-cell cavities to reduce klystron power at operating gradients and decreasing the Qext from 1.7-2.4 x 10{sup 7} to 8 x 10{sup 6} on 7-cell cavities to simplify control of Lorenz Force detuning. To understand the reactive tuning effects in the machine operations with beam current and mechanical tuning, a network analysis model was developed. The S parameters of the stub tuner were simulated by MAFIA and measured on the bench. We used this stub tuner model to study tuning range, sensitivity, and frequency pulling, as well as cold waveguide (WG) and window heating problems. Detailed experimental results are compared against this model. Pros and cons of this stub tuner application are summarized.

  4. An unsupervised learning algorithm for fatigue crack detection in waveguides

    NASA Astrophysics Data System (ADS)

    Rizzo, Piervincenzo; Cammarata, Marcello; Dutta, Debaditya; Sohn, Hoon; Harries, Kent

    2009-02-01

    Ultrasonic guided waves (UGWs) are a useful tool in structural health monitoring (SHM) applications that can benefit from built-in transduction, moderately large inspection ranges, and high sensitivity to small flaws. This paper describes an SHM method based on UGWs and outlier analysis devoted to the detection and quantification of fatigue cracks in structural waveguides. The method combines the advantages of UGWs with the outcomes of the discrete wavelet transform (DWT) to extract defect-sensitive features aimed at performing a multivariate diagnosis of damage. In particular, the DWT is exploited to generate a set of relevant wavelet coefficients to construct a uni-dimensional or multi-dimensional damage index vector. The vector is fed to an outlier analysis to detect anomalous structural states. The general framework presented in this paper is applied to the detection of fatigue cracks in a steel beam. The probing hardware consists of a National Instruments PXI platform that controls the generation and detection of the ultrasonic signals by means of piezoelectric transducers made of lead zirconate titanate. The effectiveness of the proposed approach to diagnose the presence of defects as small as a few per cent of the waveguide cross-sectional area is demonstrated.

  5. On a theory of two-beam mechanisms of charged particle acceleration in electrodynamic structures

    SciTech Connect

    Ostrovsky, A.O.

    1993-09-01

    This work is devoted to the theoretical studies of two-beam mechanisms of charged particle acceleration in electronic structures. The first section continues the outline of results of theoretical studies commenced in the intermediate report and considers the two-beam scheme of acceleration in the plasma waveguide. According to this scheme the strong current relativistic electron beam (REB) excites the intensive plasma waves accelerating the electrons of the second beam. The driving beam is assumed to be density-modulated. The preliminary modulation of the driving REB is shown to enhance substantially the acceleration efficiency of relativistic electrons of the driven beam. The second section deals with the two-beam acceleration in the vacuum corrugated waveguide. According to this scheme the excitation of electromagnetic waves and acceleration of driven beam electrons by them is accomplished under different Cherenkov resonances between the particles of beams and the corrugated waveguide field. The electromagnetic field in the periodic structure is known to be the superposition of spatial harmonics. With the small depth of the periodic nonuniformity the amplitudes of these harmonics decrease fast with their number increasing. Therefore, if the driving beam is in the Cherenkov resonance with the first spatial harmonic and the driven beam is in resonance with the zero space harmonic then the force accelerating the driven beam would be considerably bigger than the force decelerating the driving beam electrons.

  6. Waveguide silicon nitride grating coupler

    NASA Astrophysics Data System (ADS)

    Litvik, Jan; Dolnak, Ivan; Dado, Milan

    2016-12-01

    Grating couplers are one of the most used elements for coupling of light between optical fibers and photonic integrated components. Silicon-on-insulator platform provides strong confinement of light and allows high integration. In this work, using simulations we have designed a broadband silicon nitride surface grating coupler. The Fourier-eigenmode expansion and finite difference time domain methods are utilized in design optimization of grating coupler structure. The fully, single etch step grating coupler is based on a standard silicon-on-insulator wafer with 0.55 μm waveguide Si3N4 layer. The optimized structure at 1550 nm wavelength yields a peak coupling efficiency -2.6635 dB (54.16%) with a 1-dB bandwidth up to 80 nm. It is promising way for low-cost fabrication using complementary metal-oxide- semiconductor fabrication process.

  7. Waveguides having patterned, flattened modes

    SciTech Connect

    Messerly, Michael J.; Pax, Paul H.; Dawson, Jay W.

    2015-10-27

    Field-flattening strands may be added to and arbitrarily positioned within a field-flattening shell to create a waveguide that supports a patterned, flattened mode. Patterning does not alter the effective index or flattened nature of the mode, but does alter the characteristics of other modes. Compared to a telecom fiber, a hexagonal pattern of strands allows for a three-fold increase in the flattened mode's area without reducing the separation between its effective index and that of its bend-coupled mode. Hexagonal strand and shell elements prove to be a reasonable approximation, and, thus, to be of practical benefit vis-a-vis fabrication, to those of circular cross section. Patterned flattened modes offer a new and valuable path to power scaling.

  8. Multimode waveguide based directional coupler

    NASA Astrophysics Data System (ADS)

    Ahmed, Rajib; Rifat, Ahmmed A.; Sabouri, Aydin; Al-Qattan, Bader; Essa, Khamis; Butt, Haider

    2016-07-01

    The Silicon-on-Insulator (SOI) based platform overcomes limitations of the previous copper and fiber based technologies. Due to its high index difference, SOI waveguide (WG) and directional couplers (DC) are widely used for high speed optical networks and hybrid Electro-Optical inter-connections; TE00-TE01, TE00-TE00 and TM00-TM00 SOI direction couplers are designed with symmetrical and asymmetrical configurations to couple with TE00, TE01 and TM00 in a multi-mode semi-triangular ring-resonator configuration which will be applicable for multi-analyte sensing. Couplers are designed with effective index method and their structural parameters are optimized with consideration to coupler length, wavelength and polarization dependence. Lastly, performance of the couplers are analyzed in terms of cross-talk, mode overlap factor, coupling length and coupling efficiency.

  9. Broadband polarization beam splitter based on a tapered mismatched directional coupler

    NASA Astrophysics Data System (ADS)

    Chen, Daigao; Xiao, Xi; Wang, Lei; Liu, Wen; Yang, Qi

    2016-10-01

    We design and fabricate a broadband micro polarization beam splitter on SOI (Silicon-On-Insulator) substrate which is compatible with the 180 nm COMS process. The polarization splitter is based on mismatch coupling in which a tapered directional coupler structure with slowly varying waveguide width is used. The device is fabricated in Astar-IME silicon photonics platform. When the waveguide width of the wider port of the tapered waveguide is fixed at 550 nm, by sweeping the taper waveguide length in several waveguide width of the narrower port, the polarization splitter can realize high extinction ratios of the both polarizations in a broad wavelength range. When the waveguide width of the narrow port is 410 nm, the device can split the TE and TM polarizations in a 30 μm length with the extinction ratios of the both polarizations more than 15 dB over a wavelength range from 1500 nm to 1600 nm. The proposed polarization beam splitter is not sensitive to the fabrication error and has large tolerance. The polarization extinction ratios are still more than 10 dB in a wavelength range of 100 nm even if the waveguide width of the taper has a 50 nm fabrication error. Due to its simple structure and high performance, we believe this micro polarization beam splitter will be widely used in photonic integrated circuit, optical signal processing, and optical communication devices.

  10. Vector Helmholtz-Gauss and vector Laplace-Gauss beams.

    PubMed

    Bandres, Miguel A; Gutiérrez-Vega, Julio C

    2005-08-15

    We demonstrate the existence of vector Helmholtz-Gauss (vHzG) and vector Laplace-Gauss beams that constitute two general families of localized vector beam solutions of the Maxwell equations in the paraxial approximation. The electromagnetic components are determined starting from the scalar solutions of the two-dimensional Helmholtz and Laplace equations, respectively. Special cases of the vHzG beams are TE and TM Gaussian vector beams, nondiffracting vector Bessel beams, polarized Bessel-Gauss beams, modes in cylindrical waveguides and cavities, and scalar Helmholtz-Gauss beams. The general expression of the vHzG beams can be used straightforwardly to obtain vector Mathieu-Gauss and vector parabolic-Gauss beams, which to our knowledge have not yet been reported.

  11. Polymer and composite polymer slot waveguides

    NASA Astrophysics Data System (ADS)

    Hiltunen, Marianne; Fegadolli, William S.; Lira, Hugo L. R.; Vahimaa, Pasi; Hiltunen, Jussi; Aikio, Sanna; Almeida, Vilson R.; Karioja, Pentti

    2014-05-01

    A fully polymer slot Young interferometer operating at 633 nm wavelength was fabricated by using nanoimprint molding method. The phase response of the interference pattern was measured with several concentrations of glucose-water solutions, utilizing both TE and TM polarization states. The sensor was experimentally found to detect a bulk refractive index change of 6.4×10-6 RIU. Temperature dependency of silicon slot waveguide has been demonstrated to be reduced with composite slot waveguide structure. The slot filled with thermally stable polymer having negative thermo-optic coefficient showed nearly an athermal operation of silicon slot waveguide. Experimental results show that the slot waveguide geometry covered with Ormocomp has thermo-optical coefficient of 6 pm/K.

  12. Multistaged stokes injected Raman capillary waveguide amplifier

    DOEpatents

    Kurnit, Norman A.

    1980-01-01

    A multistaged Stokes injected Raman capillary waveguide amplifier for providing a high gain Stokes output signal. The amplifier uses a plurality of optically coupled capillary waveguide amplifiers and one or more regenerative amplifiers to increase Stokes gain to a level sufficient for power amplification. Power amplification is provided by a multifocused Raman gain cell or a large diameter capillary waveguide. An external source of CO.sub.2 laser radiation can be injected into each of the capillary waveguide amplifier stages to increase Raman gain. Devices for injecting external sources of CO.sub.2 radiation include: dichroic mirrors, prisms, gratings and Ge Brewster plates. Alternatively, the CO.sub.2 input radiation to the first stage can be coupled and amplified between successive stages.

  13. Photoreceptor waveguides and effective retinal image quality

    NASA Astrophysics Data System (ADS)

    Vohnsen, Brian

    2007-03-01

    Individual photoreceptor waveguiding suggests that the entire retina can be considered as a composite fiber-optic element relating a retinal image to a corresponding waveguided image. In such a scheme, a visual sensation is produced only when the latter interacts with the pigments of the outer photoreceptor segments. Here the possible consequences of photoreceptor waveguiding on vision are studied with important implications for the pupil-apodization method commonly used to incorporate directional effects of the retina. In the absence of aberrations, it is found that the two approaches give identical predictions for an effective retinal image only when the pupil apodization is chosen twice as narrow as suggested by the traditional Stiles-Crawford effect. In addition, phase variations in the retinal field due to ocular aberrations can delicately alter a waveguided image, and this may provide plausible justification for an improved visual sensation as compared with what should be expected on the grounds of a retinal image only.

  14. Radiation from Axisymmetric Waveguide Fed Horns

    NASA Technical Reports Server (NTRS)

    Chinn, G. C.; Hoppe, D. J.; Epp, L. W.

    1995-01-01

    Return losses and radiation patterns for axisymmetric waveguide fed horns are calculated with the finite element method (FEM) in conjunction with the method of moments (MoM) and the mode matching technique (MM).

  15. Flexible parylene-film optical waveguide arrays

    NASA Astrophysics Data System (ADS)

    Yamagiwa, S.; Ishida, M.; Kawano, T.

    2015-08-01

    Modulation of neuronal activities by light [e.g., laser or light-emitting diode] using optogenetics is a powerful tool for studies on neuronal functions in a brain. Herein, flexible thin-film optical waveguide arrays based on a highly biocompatible material of parylene are reported. Parylene-C and -N thin layers with the different refractive indices form the clad and the core of the waveguide, respectively, and neural recording microelectrodes are integrated to record optical stimuli and electrical recordings simultaneously using the same alignment. Both theoretical and experimental investigations confirm that light intensities of more than 90% can propagate in a bent waveguide with a curvature radius of >5 mm. The proposed flexible thin-film waveguide arrays with microelectrodes can be used for numerous spherical bio-tissues, including brain and spinal cord samples.

  16. Low-index discontinuity terahertz waveguides

    NASA Astrophysics Data System (ADS)

    Nagel, Michael; Marchewka, Astrid; Kurz, Heinrich

    2006-10-01

    A new type of dielectric THz waveguide based on recent approaches in the field of integrated optics is presented with theoretical and experimental results. Although the guiding mechanism of the low-index discontinuity (LID) THz waveguide is total internal reflection, the THz wave is predominantly confined in the virtually lossless low-index air gap within a high-index dielectric waveguide due to the continuity of electric flux density at the dielectric interface. Attenuation, dispersion and single-mode confinement properties of two LID structures are discussed and compared with other THz waveguide solutions. The new approach provides an outstanding combination of high mode confinement and low transmission losses currently not realizable with any other metal-based or photonic crystal approach. These exceptional properties might enable the breakthrough of novel integrated THz systems or endoscopy applications with sub-wavelength resolution.

  17. Optical waveguide device with an adiabatically-varying width

    DOEpatents

    Watts; Michael R. , Nielson; Gregory N.

    2011-05-10

    Optical waveguide devices are disclosed which utilize an optical waveguide having a waveguide bend therein with a width that varies adiabatically between a minimum value and a maximum value of the width. One or more connecting members can be attached to the waveguide bend near the maximum value of the width thereof to support the waveguide bend or to supply electrical power to an impurity-doped region located within the waveguide bend near the maximum value of the width. The impurity-doped region can form an electrical heater or a semiconductor junction which can be activated with a voltage to provide a variable optical path length in the optical waveguide. The optical waveguide devices can be used to form a tunable interferometer (e.g. a Mach-Zehnder interferometer) which can be used for optical modulation or switching. The optical waveguide devices can also be used to form an optical delay line.

  18. An Investigation of Dielectric Loaded Ridged Waveguide.

    DTIC Science & Technology

    1986-03-31

    propagation in any waveguide may be characterized by its field distribution. For homogeneous waveguides, modes are usually classified as TE (transverse...modes other than TE,,,.0 are characterized as LSE or LSM. Introduction of the ridge will cause distortion of the fields from true LSE or LSM nature...specify each of the LSE and LSM modes with any given mode characterized as the LSEm, mode or the LSM ,, mode. The first index m refers to the

  19. Broadband waveguide QED system on a chip

    SciTech Connect

    Quan Qimin; Bulu, Irfan; Loncar, Marko

    2009-07-15

    We demonstrate that a slot waveguide provides a broadband loss-free platform suitable for applications in quantum optics. We find that strong coupling between light quanta and a single quantum emitter placed in the waveguide slot can be achieved with efficiency higher than 96% and Purcell factor (spontaneous emission factor) larger than 200. The proposed system is a promising platform for quantum information processing and can be used to realize an efficient single photon source and optically addressable photon register.

  20. Effect of beam self-rotation on a Cerenkov free-electron laser

    SciTech Connect

    Mishra, G.

    1989-04-15

    At large beam currents, the beam space charge produces a radial electric field causing E x B rotation of the beam. As the beam travels through a partially dielectric loaded waveguide, it emits coherent Cerenkov radiation at frequencies ..omega.. = ..beta..v/sub b/+l(..omega../sub ..cap alpha..//..gamma../sub 0/), where l is the azimuthal mode number, ..omega../sub ..cap alpha../ is the angular frequency of rotation, and ..beta.. is the propagation constant.

  1. Enhancing optical isolator performance in nonreciprocal waveguide arrays.

    PubMed

    Levy, Miguel; Carroll, Turhan K; El-Ganainy, Ramy

    2015-01-01

    We investigate the operation of optical isolators based on magneto-optics waveguide arrays beyond the coupled mode analysis. Semi-vectorial beam propagation simulations demonstrate that evanescent tail coupling and the effects of radiation are responsible for degrading the device's performance. Our analysis suggests that these effects can be mitigated when the array size is scaled up. In addition, we propose the use of radiation blockers in order to offset some of these effects, and we show that they provide a dramatic improvement in performance. Finally, we also study the robustness of the system with respect to fabrication tolerances using the coupled mode theory. We show that small, random variations in the system's parameters tend to average out as the number of optical guiding channels increases.

  2. Towards new applications using capillary waveguides

    PubMed Central

    Stasio, Nicolino; Shibukawa, Atsushi; Papadopoulos, Ioannis N.; Farahi, Salma; Simandoux, Olivier; Huignard, Jean-Pierre; Bossy, Emmanuel; Moser, Christophe; Psaltis, Demetri

    2015-01-01

    In this paper we demonstrate the enhancement of the sensing capabilities of glass capillaries. We exploit their properties as optical and acoustic waveguides to transform them potentially into high resolution minimally invasive endoscopic devices. We show two possible applications of silica capillary waveguides demonstrating fluorescence and optical-resolution photoacoustic imaging using a single 330 μm-thick silica capillary. A nanosecond pulsed laser is focused and scanned in front of a capillary by digital phase conjugation through the silica annular ring of the capillary, used as an optical waveguide. We demonstrate optical-resolution photoacoustic images of a 30 μm-thick nylon thread using the water-filled core of the same capillary as an acoustic waveguide, resulting in a fully passive endoscopic device. Moreover, fluorescence images of 1.5 μm beads are obtained collecting the fluorescence signal through the optical waveguide. This kind of silica-capillary waveguide together with wavefront shaping techniques such as digital phase conjugation, paves the way to minimally invasive multi-modal endoscopy. PMID:26713182

  3. Optical properties of K9 glass waveguides fabricated by using carbon-ion implantation

    NASA Astrophysics Data System (ADS)

    Liu, Chun-Xiao; Wei, Wei; Fu, Li-Li; Zhu, Xu-Feng; Guo, Hai-Tao; Li, Wei-Nan; Lin, She-Bao

    2016-07-01

    K9 glass is a material with promising properties that make it attractive for optical devices. Ion implantation is a powerful technique to form waveguides with controllable depth and refractive index profile. In this work, optical planar waveguide structures were fabricated in K9 glasses by using 6.0-MeV C3+-ion implantation with a fluence of 1.0 × 1015 ions/cm2. The effective refractive indices of the guided modes were measured by using a prism-coupling system. The refractive index change in the ion-irradiated region was simulated by using the intensity calculation method. The modal intensity profile of the waveguide was calculated and measured by using the finite difference beam propagation method and the end-face coupling technique, respectively. The transmission spectra before and after the implantation showed that the main absorption band was not influenced by the low fluence dopants. The optical properties of the carbon-implanted K9 glass waveguides show promise for use as integrated photonic devices.

  4. Three dimensional fabrication of optical waveguiding elements for on-chip integration

    NASA Astrophysics Data System (ADS)

    Parsi Sreenivas, V. V.; Bülters, M.; Schröder, M.; Bergmann, R. B.

    2014-05-01

    We present micro polymer optical waveguide elements fabricated using femtosecond laser and two-photon absorption (TPA) process. The POWs are constructed by tightly focusing a laser beam in SU-8 based resists transparent to the laser wavelength for single-photon absorption. The TPA process enables the patterning of the resist in three dimensions at a resolution of 100-200 nm, which provides a high degree of freedom for POW designs. Using this technology, we provide a novel approach to fabricate Three dimensional Polymer Optical Waveguides (3D-POW) and coupling with single mode fibers in the visible wavelength regions. Our research is also focused on fabricating passive micro optical elements such as splitters, combiners and simple logical gates. For this reason we are aiming to achieve optimum coupling efficiency between the 3D-POW and fibers. The technology also facilitates 3D-POW fabrication independent of the substrate material. We present these fabrication techniques and designs, along with supporting numerical simulations and its transmission properties. With a length of 270 μm and polymer core diameter of 9 μm with air cladding, the waveguides possess a total loss of 12 dB. This value also includes the external in and out mode coupling and in continuously being improved upon by design optimization and simulations. We verify the overall feasibility of the design and coupling mechanisms that can be exploited to execute waveguide based optical functions such as filtering and logical operations.

  5. Radiation from laser-microplasma-waveguide interactions in the ultra-intense regime

    NASA Astrophysics Data System (ADS)

    Yi, Longqing; Pukhov, Alexander; Shen, Baifei

    2016-07-01

    When a high-contrast ultra-relativistic (>1020 W/cm2) laser beam enters a micro-sized plasma waveguide, the pulse energy is coupled into waveguide modes, which significantly modifies the interaction between the electrons and electromagnetic wave. Electrons pulled out from the walls of the waveguide form a dense helical bunch inside the channel and are efficiently accelerated by the transverse magnetic modes to hundreds of MeV. The asymmetry in the transverse electric and magnetic fields drives strong oscillations, which lead to the emission of bright, well-collimated, hard X-rays. In this paper, we present our study on the underlying physics in the aforementioned process using 3D particle-in-cell simulations. The mechanism of electron acceleration and the dependence of radiation properties on different laser plasma parameters are addressed. An analytic model and basic scalings for X-ray emission are also presented by considering the lowest optical modes in the waveguide, which is adequate to describe the basic phenomenon. In addition, the effects of high-order modes as well as laser polarization are also qualitatively discussed. The considered X-ray source has promising features, potentially making it a competitive candidate for a future tabletop synchrotron source.

  6. Sub-wavelength waveguide loaded by a complementary electric metamaterial for vacuum electron devices

    SciTech Connect

    Duan, Zhaoyun; Hummelt, Jason S.; Shapiro, Michael A. Temkin, Richard J.

    2014-10-15

    We report the electromagnetic properties of a waveguide loaded by complementary electric split ring resonators (CeSRRs) and the application of the waveguide in vacuum electronics. The S-parameters of the CeSRRs in free space are calculated using the HFSS code and are used to retrieve the effective permittivity and permeability in an effective medium theory. The dispersion relation of a waveguide loaded with the CeSRRs is calculated by two approaches: by direct calculation with HFSS and by calculation with the effective medium theory; the results are in good agreement. An improved agreement is obtained using a fitting procedure for the permittivity tensor in the effective medium theory. The gain of a backward wave mode of the CeSRR-loaded waveguide interacting with an electron beam is calculated by two methods: by using the HFSS model and traveling wave tube theory; and by using a dispersion relation derived in the effective medium model. Results of the two methods are in very good agreement. The proposed all-metal structure may be useful in miniaturized vacuum electron devices.

  7. Submicrometer-wide amorphous and polycrystalline anatase TiO2 waveguides for microphotonic devices.

    PubMed

    Bradley, Jonathan D B; Evans, Christopher C; Choy, Jennifer T; Reshef, Orad; Deotare, Parag B; Parsy, François; Phillips, Katherine C; Lončar, Marko; Mazur, Eric

    2012-10-08

    We demonstrate amorphous and polycrystalline anatase TiO(2) thin films and submicrometer-wide waveguides with promising optical properties for microphotonic devices. We deposit both amorphous and polycrystalline anatase TiO(2) using reactive sputtering and define waveguides using electron-beam lithography and reactive ion etching. For the amorphous TiO(2), we obtain propagation losses of 0.12 ± 0.02 dB/mm at 633 nm and 0.04 ± 0.01 dB/mm at 1550 nm in thin films and 2.6 ± 0.5 dB/mm at 633 nm and 0.4 ± 0.2 dB/mm at 1550 nm in waveguides. Using single-mode amorphous TiO(2) waveguides, we characterize microphotonic features including microbends and optical couplers. We show transmission of 780-nm light through microbends having radii down to 2 μm and variable signal splitting in microphotonic couplers with coupling lengths of 10 μm.

  8. Waveguide Structures for RF Undulators with Applications to FELs and Storage Rings

    SciTech Connect

    Yeddulla, M.; Geng, H.G.; Huang, Z.; Ma, Z.; Tantawi, S.G.; /SLAC

    2011-11-02

    RF undulators, suggested a long time ago, have the advantage of fast dynamic control of polarization, undulator strength and wavelength. However, RF undulators require very strong RF fields in order to produce radiation of the same order as conventional static devices. Very high power RF energy confined inside a waveguide or a cavity can provide the necessary RF fields to undulate the electron beam. However, the wall losses in the waveguide should be low enough to make it practically feasible as a CW or quasi CW undulator and, hence, competitive with static devices for applications to storage rings and FELs. Here we present various waveguide structures such as smooth walled and corrugated walled waveguides and various RF modes. We will show that there are some advantages in operating with higher order modes and also with hybrid modes in the corrugated guide. We will show that the RF power requirement for some of these modes will permit a quasi CW operation of the undulator, thus permitting its operation in a storage ring.

  9. Thermal lensing characterization of a high-radiance 946nm planar waveguide laser

    NASA Astrophysics Data System (ADS)

    Ng, S. P.; Mackenzie, J. I.

    2012-06-01

    We present the characterization of the in-plane thermal lens in a quasi-four-level Nd:YAG planar waveguide (PW) laser configured for high-radiance operation with an external stable-cavity. Our approach utilises the measurement of the laser's output irradiance distribution at the near- and far-field positions concurrently in order to obtain the "real time" beam propagation parameter and thus beam quality factor, M2. Coupled with the knowledge of the intra-cavity-thermal-lens- dependent beam sizes at an intra-cavity beam waist, the power dependent effective thermal lens focal length was characterized. A thermal lens focal length of >450 mm was obtained at all incident pump powers up to the maximum level of 87 W. This characterization enabled the build of a 29 W 946 nm PW laser with a record output radiance of 4.3 TWm-2sr-1.

  10. Hollow glass waveguide for mid-infrared applications

    NASA Astrophysics Data System (ADS)

    Rabii, Christopher Daniel

    This study is an effort to characterize the optical and mechanical properties of hollow glass waveguides (HGWs) with inner metallic and dielectric layers. The theoretical base behind the light-guiding principle of a hollow metallic waveguide has been extended to address the optical properties of dielectric-coated hollow metallic waveguides in both straight and bent configurations. The dependencies of attenuation on bore- size, bend radius, and transmitted mode are predicted by this analysis. HGWs with silver metallic layers and silver iodide dielectric films have been fabricated in bore sizes ranging from 250 /mu m to 1000 /mu m. The spectral response has been measured, and can be arbitrarily tailored lo show minimum loss at any wavelength between 2 and 11 /mu m. Spectroscopic analysis has been used to determine the uniformity and thickness variation in the dielectric layer. Process modifications have reduced this variation from 14% to approximately 1%. The effect of laser coupling condition has been modeled, and optimum coupling occurs for spot-size to bore-size ratios between 0.55 and 0.64. These theoretical predictions have been verified using laser loss measurements on 530, 700 and 1000 /mu m bore waveguides, with the largest bore showing the least sensitivity to launch condition. Continuous CO2 laser power has been transmitted through HGWs with 250, 320, 530, and 700 /mu m bore. The 250 and 320 /mu m sizes transmitted 35 and 50 W of input power respectively, while both larger sizes successfully transmitted 85 W. Similarly, the larger scores showed the ability to transmit high pulsed energy, up to 80 J. Laser loss has been shown to be sensitive to input laser beam quality, with most sensitivity observed for small bore waveguides. The preservation of low loss and spatial purity has been achieved by increasing the wall thickness of the substrate tubing. Losses above the theoretically predicted minimum values have been attributed to scattering from film roughness

  11. Light wheel confined in a purely dielectric composite waveguide.

    PubMed

    Ye, Yu Qian; Jin, Yi; He, Sailing

    2009-03-16

    A properly designed composite waveguide consisting of a one-dimensional photonic crystal waveguide and a conventional dielectric waveguide is proposed for the realization of a localized "light wheel". Light confinedly rotating between the two waveguides is numerically demonstrated and explained physically in detail. A delocalized "light wheel" is found at the band gap edge caused by contra-directional coupling between the two waveguides. Because of this delocalized "light wheel" , the composite waveguide can be used to trap light as a cavity, and a quality factor of 9 x 10(3) is achieved as an example. The present structure is completely dielectric and thus easy to realize with a low loss.

  12. Ion-exchanged glass waveguide technology: a review

    NASA Astrophysics Data System (ADS)

    Tervonen, Ari; West, Brian R.; Honkanen, Seppo

    2011-07-01

    We review the history and current status of ion exchanged glass waveguide technology. The background of ion exchange in glass and key developments in the first years of research are briefly described. An overview of fabrication, characterization and modeling of waveguides is given and the most important waveguide devices and their applications are discussed. Ion exchanged waveguide technology has served as an available platform for studies of general waveguide properties, integrated optics structures and devices, as well as applications. It is also a commercial fabrication technology for both passive and active wave-guide components.

  13. Fabrication of microchannels in fused silica using femtosecond Bessel beams

    SciTech Connect

    Yashunin, D. A.; Malkov, Yu. A.; Mochalov, L. A.; Stepanov, A. N.

    2015-09-07

    Extended birefringent waveguiding microchannels up to 15 mm long were created inside fused silica by single-pulse irradiation with femtosecond Bessel beams. The birefringent refractive index change of 2–4 × 10{sup −4} is attributed to residual mechanical stress. The microchannels were chemically etched in KOH solution to produce 15 mm long microcapillaries with smooth walls and a high aspect ratio of 1:250. Bessel beams provide higher speed of material processing compared to conventional multipulse femtosecond laser micromachining techniques and permit simple control of the optical axis direction of the birefringent waveguides, which is important for practical applications [Corrielli et al., “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5, 4249 (2014)].

  14. Magnonic beam splitter: The building block of parallel magnonic circuitry

    SciTech Connect

    Sadovnikov, A. V.; Grishin, S. V. Romanenko, D. V.; Sharaevskii, Yu. P.; Davies, C. S.; Kruglyak, V. V.; Nikitov, S. A.

    2015-05-11

    We demonstrate a magnonic beam splitter that works by inter-converting magnetostatic surface and backward-volume spin waves propagating in orthogonal sections of a T-shaped yttrium iron garnet structure. The inter-conversion is enabled by the overlap of the surface and volume spin wave bands. This overlap results from the demagnetising field induced along the transversely magnetised section(-s) of the structure and the quantization of the transverse wave number of the propagating spin waves (which are therefore better described as waveguide modes). In agreement with numerical micromagnetic simulations, our Brillouin light scattering imaging experiments reveal that, depending on the frequency, the incident fundamental waveguide magnonic modes may also be converted into higher order waveguide modes. The magnonic beam splitter demonstrated here is an important step towards the development of parallel logic circuitry of magnonics.

  15. High precision AlGaAsSb ridge-waveguide etching by in situ reflectance monitored ICP-RIE

    NASA Astrophysics Data System (ADS)

    Tran, N. T.; Breivik, Magnus; Patra, S. K.; Fimland, Bjørn-Ove

    2014-05-01

    GaSb-based semiconductor diode lasers are promising candidates for light sources working in the mid-infrared wavelength region of 2-5 μm. Using edge emitting lasers with ridge-waveguide structure, light emission with good beam quality can be achieved. Fabrication of the ridge waveguide requires precise etch stop control for optimal laser performance. Simulation results are presented that show the effect of increased confinement in the waveguide when the etch depth is well-defined. In situ reflectance monitoring with a 675 nm-wavelength laser was used to determine the etch stop with high accuracy. Based on the simulations of laser reflectance from a proposed sample, the etching process can be controlled to provide an endpoint depth precision within +/- 10 nm.

  16. Fabrication and evaluation of flexible Mach-Zehnder waveguide structure embedded in a poly(dimethylsiloxane) thin film using a proton microbeam

    NASA Astrophysics Data System (ADS)

    Parajuli, Raj Kumar; Saruya, Ryota; Akutzu, Naoki; Miura, Satoshi; Kada, Wataru; Kawabata, Shunsuke; Matsubara, Yoshinori; Satoh, Takahiro; Koka, Masashi; Yamada, Naoto; Kamiya, Tomihiro; Miura, Kenta; Hanaizumi, Osamu

    2016-06-01

    A flexible Mach-Zehnder (MZ) optical waveguide was fabricated in a poly(dimethylsiloxane) (PDMS) film by proton beam writing (PBW). A focused 750 keV proton microbeam was used to fabricate a 40 × 20 mm2 MZ optical waveguide structure with a width of 8 µm embedded in a PDMS film for the single-mode light propagation of infrared (IR) laser light. The structure was measured by ion-beam-induced luminescence (IBIL) analysis and the beam fluence was optimized according to the IBIL intensity obtained from the waveguide structure. The entire structure of the MZ waveguide functioned well, confirmed by observing the near-field pattern (NFP) with a tunable IR laser (1.55 µm) for different PDMS film conditions. The optical throughput measurements for different sample configurations were obtained under continuous mechanical stress and a relatively low optical loss was observed at an inclination angle of 16°. Our results suggest that the MZ waveguide can be used for optical interlink connections under continuous mechanical stress.

  17. Ultralow-loss waveguide crossings for the integration of microfluidics and optical waveguide sensors

    NASA Astrophysics Data System (ADS)

    Wang, Zheng; Yan, Hai; Wang, Zongxing; Zou, Yi; Yang, Chun-Ju; Chakravarty, Swapnajit; Subbaraman, Harish; Tang, Naimei; Xu, Xiaochuan; Fan, D. L.; Wang, Alan X.; Chen, Ray T.

    2015-03-01

    Integrating photonic waveguide sensors with microfluidics is promising in achieving high-sensitivity and cost-effective biological and chemical sensing applications. One challenge in the integration is that an air gap would exist between the microfluidic channel and the photonic waveguide when the micro-channel and the waveguide intersect. The air gap creates a path for the fluid to leak out of the micro-channel. Potential solutions, such as oxide deposition followed by surface planarization, would introduce additional fabrication steps and thus are ineffective in cost. Here we propose a reliable and efficient approach for achieving closed microfluidic channels on a waveguide sensing chip. The core of the employed technique is to add waveguide crossings, i.e., perpendicularly intersecting waveguides, to block the etched trenches and prevent the fluid from leaking through the air gap. The waveguide crossings offer a smooth interface for microfluidic channel bonding while bring negligible additional propagation loss (0.024 dB/crossing based on simulation). They are also efficient in fabrication, which are patterned and fabricated in the same step with waveguides. We experimentally integrated microfluidic channels with photonic crystal (PC) microcavity sensor chips on silicon-on-insulator substrate and demonstrated leak-free sensing measurement with waveguide crossings. The microfluidic channel was made from polydimethylsiloxane (PDMS) and pressure bonded to the silicon chip. The tested flow rates can be varied from 0.2 μL/min to 200 μL/min. Strong resonances from the PC cavity were observed from the transmission spectra. The spectra also show that the waveguide crossings did not induce any significant additional loss or alter the resonances.

  18. Composite optical waveguide composed of a tapered film of bromothymol blue evaporated onto a potassium ion-exchanged waveguide and its application as a guided wave absorption-based ammonia-gas sensor.

    PubMed

    Qi, Z M; Yimit, A; Itoh, K; Murabayashi, M; Matsuda, N; Takatsu, A; Kato, K

    2001-05-01

    For what is the first time to our knowledge, we have successfully evaporated a tapered film of bromothymol blue (BTB) onto a potassium ion-exchanged (PIE) waveguide to form a composite optical waveguide (COWG) for trace-ammonia detection. The BTB film has a high refractive index (1.69) and a smooth surface and is transparent to a 633-nm laser beam in air. In the COWG structure, the BTB film serves as a single-mode waveguide, and adiabatic transition of the TE(0) mode was realized between the BTB waveguide and the PIE waveguide with both BTB tapers. In the presence of ammonia, the BTB film changes color from yellow to blue, which causes absorption of the 633-nm guided wave. Our experimental results demonstrate that such a guided wave absorption-based ammonia-gas sensor is much more sensitive than one based on evanescent-wave absorption. A detection limit of part in 10(9) of ammonia has been realized for a BTB film-PIE glass COWG.

  19. Integrated optical waveguides and inertial focussing microfluidics in silica for microflow cytometry applications

    NASA Astrophysics Data System (ADS)

    Butement, Jonathan T.; Hunt, Hamish C.; Rowe, David J.; Sessions, Neil P.; Clark, Owain; Hua, Ping; Senthil Murugan, G.; Chad, John E.; Wilkinson, James S.

    2016-10-01

    A key challenge in the development of a microflow cytometry platform is the integration of the optical components with the fluidics as this requires compatible micro-optical and microfluidic technologies. In this work a microflow cytometry platform is presented comprising monolithically integrated waveguides and deep microfluidics in a rugged silica chip. Integrated waveguides are used to deliver excitation light to an etched microfluidic channel and also collect transmitted light. The fluidics are designed to employ inertial focussing, a particle positioning technique, to reduce signal variation by bringing the flowing particles onto the same plane as the excitation light beam. A fabrication process is described which exploits microelectronics mass production techniques including: sputtering, ICP etching and PECVD. Example devices were fabricated and the effectiveness of inertial focussing of 5.6 µm fluorescent beads was studied showing lateral and vertical confinement of flowing beads within the microfluidic channel. The fluorescence signals from flowing calibration beads were quantified demonstrating a CV of 26%. Finally the potential of this type of device for measuring the variation in optical transmission from input to output waveguide as beads flowed through the beam was evaluated.

  20. A 2-D Microdisplay Using An Integrated Microresonating Waveguide Scanning System

    PubMed Central

    Hua, Wei-Shu; Tsui, Chi Leung; Soetanto, William; Wu, Wen-Jong; Wang, Wei-Chih

    2012-01-01

    Our research team has developed a MEMS based on a 2D micro image display device that can potentially overcome the size reduction limits while maintaining the high image resolution and field of view obtained by mirror based display systems. The basic design of the optical scanner includes a micro-fabricated polymer based cantilever waveguide that is electromechanically deflected by a 2D piezoelectric actuator. From the distal tip of the cantilever waveguide, a light beam is emitted and the direction of propagation is displaced along two orthogonal directions. The waveforms for the X-Y actuators and the LED light modulation are controlled using a field programmable gate array (FPGA). In this paper we will extend our display development by reporting more recent integration of components including actuators and light sources with a controller. Here we will describe the design, fabrication of the latest polymeric waveguide cantilever beam steering device driven by 2-D piezoelectric actuator using aerosol deposited PZT thick film actuators. The mechanical and optical design for the microresonating scanner will be discussed. In addition, the mechanical and optical performance of the 2-D scanner will be presented. PMID:26726320

  1. Pixel-Remapping Waveguide Addition to an Internally Sensed Optical Phased Array

    NASA Astrophysics Data System (ADS)

    Sibley, P.; Ward, R.; Roberts, L.; Francis, S.; Gross, S.; Shaddock, D.

    2016-09-01

    The optical phased array (OPA) system with internal phase sensing architecture being developed at the Australian National University has direct applications in tracking and manoeuvring of space debris from a ground-based continuous wave laser. The future effectiveness of this system is dependent on providing a high fill-factor for the emitter array as well as a collimated output in the far field. This is especially important when aiming for high power density incident on space debris and is currently governed by an unmodified single mode fiber to air interface at the final stage of the system. This research investigates the incorporation of a number of alternative optical head configurations, based on an output remapping waveguide. The waveguide will allow for control over the emitter separation, a key parameter in controlling the beam overlap and increasing the emitter fill factor. A remapping waveguide is designed for development with the 3D laser inscription process for a range of spatial configurations. Consideration is also given to a phase ambiguity issue with the feedback architecture and demonstration of the Gaussian Beam propagation simulations to which the experimental results will be compared is given.

  2. Planar waveguide light transmission modality for backward-mode photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Schellenberg, Mason W.; Whiteside, Paul J. D.; Hunt, Heather K.

    2016-03-01

    Prior research in photoacoustic tomography has consistently demonstrated its ability to image structures near the surface of tissue with a high degree of optical contrast. However, despite significant advancements in the field, there has been little to no development of clinical applications for photoacoustic tomography, principally due to the requirement for backwardmode operation, i.e., it must detect the photoacoustic signal on the same side of the tissue as the incident laser light. This results in the standard ultrasonic transducer occluding the path of the inciting laser beam. Therefore, developing a technique to deliver light into the tissue, while incorporating commonly available ultrasonic detection equipment without occluding the beam propagation or modifying the equipment in any way, would provide a significant benefit to the field, and potentially improve its clinical applicability. Here, we propose a new method to accomplish this aim, using planar optical waveguides that employ the optical tunneling phenomenon to transmit light directly into tissue (pig skin) through physical contact with the sample. A commercially available, 10MHz, unfocused ultrasonic transducer was positioned on the rear face of the waveguide and was used to detect photoacoustic signals generated within the tissue as the signals propagated perpendicularly through the waveguide substrate. Unlike alternative solutions to the occlusion problem, this modality does not necessitate the use of custom manufactured transducers, expensive dichroics, or additional laser systems, and thereby represents a viable approach for the easy implementation of photoacoustic tomography in a clinical setting.

  3. X-Band Multi-Beam Klystron Design and Progress Report

    SciTech Connect

    Jensen, Aaron; Neilson, Jeff; Tantawi, Sami

    2015-04-15

    Progress on the development of a 5MW 16 beam x-band multi-beam klystron is presented. The power from each of the 16 klystrons is combined using a matched waveguide network. Mechanical and electric models and simulations are discussed. The status of procuring and assembling parts is presented.

  4. Airy beam optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Aadhi, A.; Chaitanya, N. Apurv; Jabir, M. V.; Vaity, Pravin; Singh, R. P.; Samanta, G. K.

    2016-05-01

    Airy beam, a non-diffracting waveform, has peculiar properties of self-healing and self-acceleration. Due to such unique properties, the Airy beam finds many applications including curved plasma wave-guiding, micro-particle manipulation, optically mediated particle clearing, long distance communication, and nonlinear frequency conversion. However, many of these applications including laser machining of curved structures, generation of curved plasma channels, guiding of electric discharges in a curved path, study of nonlinear propagation dynamics, and nonlinear interaction demand Airy beam with high power, energy, and wavelength tunability. Till date, none of the Airy beam sources have all these features in a single device. Here, we report a new class of coherent sources based on cubic phase modulation of a singly-resonant optical parametric oscillator (OPO), producing high-power, continuous-wave (cw), tunable radiation in 2-D Airy intensity profile existing over a length >2 m. Based on a MgO-doped periodically poled LiNbO3 crystal pumped at 1064 nm, the Airy beam OPO produces output power more than 8 W, and wavelength tunability across 1.51–1.97 μm. This demonstration gives new direction for the development of sources of arbitrary structured beams at any wavelength, power, and energy in all time scales (cw to femtosecond).

  5. Airy beam optical parametric oscillator.

    PubMed

    Aadhi, A; Chaitanya, N Apurv; Jabir, M V; Vaity, Pravin; Singh, R P; Samanta, G K

    2016-05-04

    Airy beam, a non-diffracting waveform, has peculiar properties of self-healing and self-acceleration. Due to such unique properties, the Airy beam finds many applications including curved plasma wave-guiding, micro-particle manipulation, optically mediated particle clearing, long distance communication, and nonlinear frequency conversion. However, many of these applications including laser machining of curved structures, generation of curved plasma channels, guiding of electric discharges in a curved path, study of nonlinear propagation dynamics, and nonlinear interaction demand Airy beam with high power, energy, and wavelength tunability. Till date, none of the Airy beam sources have all these features in a single device. Here, we report a new class of coherent sources based on cubic phase modulation of a singly-resonant optical parametric oscillator (OPO), producing high-power, continuous-wave (cw), tunable radiation in 2-D Airy intensity profile existing over a length >2 m. Based on a MgO-doped periodically poled LiNbO3 crystal pumped at 1064 nm, the Airy beam OPO produces output power more than 8 W, and wavelength tunability across 1.51-1.97 μm. This demonstration gives new direction for the development of sources of arbitrary structured beams at any wavelength, power, and energy in all time scales (cw to femtosecond).

  6. Airy beam optical parametric oscillator

    PubMed Central

    Aadhi, A.; Chaitanya, N. Apurv; Jabir, M. V.; Vaity, Pravin; Singh, R. P.; Samanta, G. K.

    2016-01-01

    Airy beam, a non-diffracting waveform, has peculiar properties of self-healing and self-acceleration. Due to such unique properties, the Airy beam finds many applications including curved plasma wave-guiding, micro-particle manipulation, optically mediated particle clearing, long distance communication, and nonlinear frequency conversion. However, many of these applications including laser machining of curved structures, generation of curved plasma channels, guiding of electric discharges in a curved path, study of nonlinear propagation dynamics, and nonlinear interaction demand Airy beam with high power, energy, and wavelength tunability. Till date, none of the Airy beam sources have all these features in a single device. Here, we report a new class of coherent sources based on cubic phase modulation of a singly-resonant optical parametric oscillator (OPO), producing high-power, continuous-wave (cw), tunable radiation in 2-D Airy intensity profile existing over a length >2 m. Based on a MgO-doped periodically poled LiNbO3 crystal pumped at 1064 nm, the Airy beam OPO produces output power more than 8 W, and wavelength tunability across 1.51–1.97 μm. This demonstration gives new direction for the development of sources of arbitrary structured beams at any wavelength, power, and energy in all time scales (cw to femtosecond). PMID:27143582

  7. Cartesian beams.

    PubMed

    Bandres, Miguel A; Gutiérrez-Vega, Julio C

    2007-12-01

    A new and very general beam solution of the paraxial wave equation in Cartesian coordinates is presented. We call such a field a Cartesian beam. The complex amplitude of the Cartesian beams is described by either the parabolic cylinder functions or the confluent hypergeometric functions, and the beams are characterized by three parameters that are complex in the most general situation. The propagation through complex ABCD optical systems and the conditions for square integration are studied in detail. Applying the general expression of the Cartesian beams, we also derive two new and meaningful beam structures that, to our knowledge, have not yet been reported in the literature. Special cases of the Cartesian beams are the standard, elegant, and generalized Hermite-Gauss beams, the cosine-Gauss beams, the Lorentz beams, and the fractional order beams.

  8. Ion beam synthesis of planar opto-electronic devices

    NASA Astrophysics Data System (ADS)

    Polman, A.; Snoeks, E.; van den Hoven, G. N.; Brongersma, M. L.; Serna, R.; Shin, J. H.; Kik, P.; Radius, E.

    1995-12-01

    Photonic technology requires the modification and synthesis of new materials and devices for the generation, guiding, switching, multiplexing and amplification of light. This paper reviews how some of these devices may be made using ion beam synthesis. Special attention is paid to the fabrication of erbium-doped optical waveguides.

  9. Low-loss channel optical waveguide fabrication in Nd(3+)-doped silicate glasses by femtosecond laser direct writing.

    PubMed

    Li, Shi-Ling; Han, Peigao; Shi, Meng; Yao, Yicun; Hu, Bing; Wang, Mingwei; Zhu, Xiaonong

    2011-11-21

    Optical waveguides were fabricated in neodymium-doped silicate glass by using a low-repetition-rate (1 kHz) femtosecond laser inscription. Two different types of waveguide structure are fabricated. In the first, guiding occurs in the focal spot. In the second, guiding occurs in the region between the two filaments. The near-field intensity distribution, propagation loss, index profile reconstruction, and calculation of the modal intensity distribution by the beam propagation method of these waveguides are presented. On the basis of near-field intensity distribution of the light guided through the waveguides and the propagation loss measurement, the optimum writing conditions such as the pulse energy and scan velocity were determined. The waveguide written with 2.2 µJ pulse energy and 50 µm/s scan velocity shows strong guidance at 632.8 nm, with an index contrast of 7 × 10(-4) and a propagation loss of ~0.8 dB/cm.

  10. Untangled modes in multimode waveguides

    NASA Astrophysics Data System (ADS)

    Plöschner, Martin; Tyc, TomáÅ.¡; Čižmár, TomáÅ.¡

    2016-03-01

    Small, fibre-based endoscopes have already improved our ability to image deep within the human body. A novel approach introduced recently utilised disordered light within a standard multimode optical fibre for lensless imaging. Importantly, this approach brought very significant reduction of the instruments footprint to dimensions below 100 μm. The most important limitations of this exciting technology is the lack of bending flexibility - imaging is only possible as long as the fibre remains stationary. The only route to allow flexibility of such endoscopes is in trading-in all the knowledge about the optical system we have, particularly the cylindrical symmetry of refractive index distribution. In perfect straight step-index cylindrical waveguides we can find optical modes that do not change their spatial distribution as they propagate through. In this paper we present a theoretical background that provides description of such modes in more realistic model of real-life step-index multimode fibre taking into account common deviations in distribution of the refractive index from its ideal step-index profile. Separately, we discuss how to include the influence of fibre bending.

  11. Improved cooling design for high power waveguide system

    NASA Astrophysics Data System (ADS)

    Chen, W. C. J.; Hartop, R.

    1981-06-01

    Testing of X band high power components in a traveling wave resonator indicates that this improved cooling design reduces temperature in the waveguide and flange. The waveguide power handling capability and power transmission reliability is increased substantially.

  12. Improved cooling design for high power waveguide system

    NASA Technical Reports Server (NTRS)

    Chen, W. C. J.; Hartop, R.

    1981-01-01

    Testing of X band high power components in a traveling wave resonator indicates that this improved cooling design reduces temperature in the waveguide and flange. The waveguide power handling capability and power transmission reliability is increased substantially.

  13. Efficient beaming of self-collimated light from photonic crystals.

    PubMed

    Park, Jong-Moon; Lee, Sun-Goo; Park, Hae Yong; Kim, Jae-Eun

    2008-12-08

    We propose a novel structure for achieving highly efficient beaming of self-collimated light from two-dimensional photonic crystals. The finite-difference time-domain simulations show that both enhanced transmission and highly directional emission of self-collimated beams from photonic crystals are achieved by using the bending and splitting of self-collimated beams in photonic crystals, and also by introducing an antireflection coating-like photonic crystal collimator to the exit surface of the structure. This structure is potentially important for highly efficient coupling of self-collimated beams from photonic crystals into conventional optical fibers and photonic crystal waveguides.

  14. Single electron beam rf feedback free electron laser

    DOEpatents

    Brau, C.A.; Stein, W.E.; Rockwood, S.D.

    1981-02-11

    A free electron laser system and electron beam system for a free electron laser which uses rf feedback to enhance efficiency are described. Rf energy is extracted from a single electron beam by decelerating cavities and energy is returned to accelerating cavities using rf returns, such as rf waveguides, rf feedthroughs, resonant feedthroughs, etc. This rf energy is added to rf klystron energy to reduce the required input energy and thereby enhance energy efficiency of the system.

  15. Electro-optic switching based on a waveguide-ring resonator made of dielectric-loaded graphene plasmon waveguides

    NASA Astrophysics Data System (ADS)

    Qi, Zhe; Zhu, Zhi Hong; Xu, Wei; Zhang, Jian Fa; Cai Guo, Chu; Liu, Ken; Yuan, Xiao Dong; Qiao Qin, Shi

    2016-09-01

    We numerically demonstrate that electro-optic switching in the mid-infrared range can be realized using a waveguide-ring resonator made of dielectric-loaded graphene plasmon waveguides (DLGPWs). The numerical results are in good agreement with the results of physical analysis. The switching mechanism is based on dynamic modification of the resonant wavelengths of the ring resonator, achieved by varying the Fermi energy of a graphene sheet. The results reveal that a switching ratio of ∼24 dB can be achieved with only a 0.01 eV change in the Fermi energy. Such electrically controlled switching operation may find use in actively tunable integrated photonic circuits.

  16. Waveguides in Thin Film Polymeric Materials

    NASA Technical Reports Server (NTRS)

    Sakisov, Sergey; Abdeldayem, Hossin; Venkateswarlu, Putcha; Teague, Zedric

    1996-01-01

    Results on the fabrication of integrated optical components in polymeric materials using photo printing methods will be presented. Optical waveguides were fabricated by spin coating preoxidized silicon wafers with organic dye/polymer solution followed by soft baking. The waveguide modes were studied using prism coupling technique. Propagation losses were measured by collecting light scattered from the trace of a propagation mode by either scanning photodetector or CCD camera. We observed the formation of graded index waveguides in photosensitive polyimides after exposure of UV light from a mercury arc lamp. By using a theoretical model, an index profile was reconstructed which is in agreement with the profile reconstructed by the Wentzel-Kramers-Brillouin calculation technique using a modal spectrum of the waveguides. Proposed mechanism for the formation of the graded index includes photocrosslinking followed by UV curing accompanied with optical absorption increase. We also developed the prototype of a novel single-arm double-mode interferometric sensor based on our waveguides. It demonstrates high sensitivity to the chance of ambient temperature. The device can find possible applications in aeropropulsion control systems.

  17. Simple Broadband Circular Polarizer in Oversized Waveguide

    NASA Astrophysics Data System (ADS)

    Stange, Torsten

    2016-02-01

    In this paper, a possibility is shown to realize a simple waveguide polarizer producing nearly the same circular polarization over a broad frequency range up to an octave. It is based upon the combination of two smoothly squeezed oversized waveguides with different diameters. The principle is similar to an achromatic lens in optics, where two counteracting lenses with differently sloped wavelength dependencies of the refractive index are combined to compensate the dispersion in the desired wavelength range. Consequently, two different wavelengths of light are brought into focus at the same plane. A waveguide for the transmission of microwaves has a similar frequency dependence of the refractive index resulting in a frequency-dependent phase shift between two propagating waves polarized along the symmetry axes of a waveguide with an elliptical cross section. For this reason, an incident wave with a linear polarization between the axes of symmetry can be only converted into a circularly polarized wave over a limited frequency range. However, the diameter and the shape along two counteracting squeezed waveguides can be adjusted in such a way that the frequency dependence of the resultant phase shift is finally canceled out.

  18. MMICs with Radial Probe Transitions to Waveguides

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Chattopadhyay, Goutam; Pukala, David; Soria, Mary; Fung, King Man; Gaier, Todd; Radisic, Vesna; Lai, Richard

    2009-01-01

    A document presents an update on the innovation reported in Integrated Radial Probe Transition From MMIC to Waveguide (NPO-43957), NASA Tech Briefs Vol. 31, No. 5 (May 2007), page 38. To recapitulate: To enable operation or testing of a monolithic microwave integrated circuit (MMIC), it is necessary to mount the MMIC in a waveguide package that typically has cross-sectional waveguide dimensions of the order of a few hundred microns. A radial probe transition between an MMIC operating at 340 GHz and a waveguide had been designed (but not yet built and tested) to be fabricated as part of a monolithic unit that would include the MMIC. The radial probe could readily be integrated with an MMIC amplifier because the design provided for fabrication of the transition on a substrate of the same material (InP) and thickness (50 m) typical of substrates of MMICs that can operate above 300 GHz. As illustrated in the updated document by drawings, photographs, and plots of test data, the concept has now been realized by designing, fabricating, and testing several MMIC/radial- probe integrated-circuit chips and designing and fabricating a waveguide package to contain each chip.

  19. Stopping light by an air waveguide with anisotropic metamaterial cladding.

    PubMed

    Jiang, Tian; Zhao, Junming; Feng, Yijun

    2009-01-05

    We present a detailed study of oscillating modes in a slab waveguide with air core and anisotropic metamaterial cladding. It is shown that, under specific dielectric configurations, slow and even stopped electromagnetic wave can be supported by such an air waveguide. We propose a linearly tapped waveguide structure that could lead the propagating light to a complete standstill. Both the theoretical analysis and the proposed waveguide have been validated by full-wave simulation based on finite-difference time-domain method.

  20. Coupling characteristics between slot plasmonic mode and dielectric waveguide mode

    NASA Astrophysics Data System (ADS)

    Hu, Shuai; Liu, Fang; Wan, Ruiyuan; Huang, Yidong

    2010-12-01

    A hybrid coupler composed of a slot plasmonic waveguide and a dielectric waveguide is proposed and its coupling characteristics are analyzed. The simulation results show that the ultra-small mode of the slot plasmonic waveguide can be excited efficiently by the dielectric waveguide mode within the coupling length of just several microns, which provides an interface between the slot plasmonic devices and dielectric devices. Meanwhile, based on this hybrid the coupler, a highly integrated refractive index sensor could be realized.

  1. Capabilities of DLW for fabrication of planar waveguides in PDMS

    NASA Astrophysics Data System (ADS)

    Jandura, D.; Pudiš, D.; Gašo, P.

    2014-12-01

    In this paper, capabilities of the fabrication technology for planar waveguide structures and devices in polydimethylsiloxane (PDMS) are presented. Direct laser writing in combination with imprinting technique was used to pattern photoresist layer as a master for imprinting process. In the next step, PDMS waveguide structures as channel waveguide, Y-branch waveguide splitter and ring resonator were imprinted. Finally, optical and morphological properties of prepared devices were investigated by confocal microscopy and atomic force microscopy.

  2. Diffused waveguiding capillary tube with distributed feedback for a gas laser

    NASA Technical Reports Server (NTRS)

    Elachi, C. (Inventor)

    1976-01-01

    For use in a waveguide gas laser, a capillary tube of glass or ceramic has an inner surface defining a longitudinal capillary opening through which the laser gas flows. At least a portion of the inner surface is corrugated with corrugations or channels with a periodicity Lambda where Lambda = 1/2 Lambda, Lambda being the laser gas wavelength. The tube includes a diffused region extending outwardly from the opening. The diffused region of a depth d on the order of 1 Lambda to 3 Lambda acts as a waveguide for the waves, with the corrugations producing distributed feedback. The evanescent component of the waves traveling in the diffused region interact with the laser gas in the opening, gaining energy, and thereby amplifying the waves travelling in the diffused region, which exit the diffused region, surrounding the opening, as a beam of wavelength Lambda.

  3. Integrated plasmonic semi-circular launcher for dielectric-loaded surface plasmon-polariton waveguide.

    PubMed

    Li, Xiaowei; Huang, Lingling; Tan, Qiaofeng; Bai, Benfeng; Jin, Guofan

    2011-03-28

    A semi-circular plasmonic launcher integrated with dielectric-loaded surface plasmon-polaritons waveguide (DLSPPW) is proposed and analyzed theoretically, which can focus and efficiently couple the excited surface plasmon polaritons (SPPs) into the DLSPPW via the highly matched spatial field distribution with the waveguide mode in the focal plane. By tuning the incident angle or polarization of the illuminating beam, it is shown that the launcher may be conveniently used as a switch or a multiplexer that have potential applications in plasmonic circuitry. Furthermore, from an applicational point of view, it is analyzed how the coupling performance of the launcher can be further improved by employing multiple semi-circular slits.

  4. Design and analysis of optically pumped submillimeter waveguide maser amplifiers and oscillators

    NASA Technical Reports Server (NTRS)

    Galantowicz, T. A.

    1975-01-01

    The design and experimental measurements are described of an optically pumped far-infrared (FIR) waveguide maser; preliminary measurements on a FIR waveguide amplifier are presented. The FIR maser was found to operate satisfactorily in a chopped CW mode using either methanol (CH3OH) or acetonitrile (CH3CN) as the active molecule. Two other gases, difluoroethane and difluoroethylene, produced an unstable output with high threshold and low output power when operated in the chopped CW mode. Experimental measurements include FIR output versus cavity length, output beam pattern, output power versus pressure, and input power. The FIR output was the input to an amplifier which was constructed similar to the oscillator. An increase of 10% in output power was noted on the 118.8 microns line of methanol.

  5. Low-Loss Hollow Waveguide Fibers for Mid-Infrared Quantum Cascade Laser Sensing Applications

    PubMed Central

    Patimisco, Pietro; Spagnolo, Vincenzo; Vitiello, Miriam S.; Scamarcio, Gaetano; Bledt, Carlos M.; Harrington, James A.

    2013-01-01

    We report on single mode optical transmission of hollow core glass waveguides (HWG) coupled with an external cavity mid-IR quantum cascade lasers (QCLs). The QCL mode results perfectly matched to the hybrid HE11 waveguide mode and the higher losses TE-like modes have efficiently suppressed by the deposited inner dielectric coating. Optical losses down to 0.44 dB/m and output beam divergence of ∼5 mrad were measured. Using a HGW fiber with internal core size of 300 μm we obtained single mode laser transmission at 10.54 μm and successful employed it in a quartz enhanced photoacoustic gas sensor setup. PMID:23337336

  6. Generation and characterization of discrete spatial entanglement in multimode nonlinear waveguides

    NASA Astrophysics Data System (ADS)

    Jachura, Michał; Karpiński, Michał; Banaszek, Konrad; Bharadwaj, Divya; Lugani, Jasleen; Thyagarajan, K.

    2017-03-01

    We analyze theoretically spontaneous parametric down-conversion in a multimode nonlinear waveguide as a source of entangled pairs of spatial qubits, realized as superpositions of a photon in two orthogonal transverse modes of the waveguide. It is shown that, by exploiting intermodal dispersion, down-conversion into the relevant pairs of spatial modes can be selected by spectral filtering, which also provides means to fine tune the properties of the generated entangled state. We also discuss an inverting interferometer detecting the spatial parity of the input beam as a versatile tool to characterize properties of the generated state. A single-photon Wigner function obtained by a scan of the displaced parity can be used to identify the basis modes of a spatial qubit, whereas correlations between displaced parity measurements on two photons can directly verify quantum entanglement through a violation of Bell's inequalities.

  7. Waveguides in three-dimensional photonic bandgap materials for particle-accelerator on a chip architectures.

    PubMed

    Staude, Isabelle; McGuinness, Christopher; Frölich, Andreas; Byer, Robert L; Colby, Eric; Wegener, Martin

    2012-02-27

    The quest for less costly and more compact high-energy particle accelerators makes research on alternative acceleration mechanisms an important enterprise. From the multitude of suggested concepts, the photonic accelerator design by B. M. Cowan [Phys. Rev. ST Accel. Beams 11, 011301 (2008)] stands out by its distinct potential of creating an accelerator on a chip [Proposal E-163, SLAC (2001)]. Herein, electrons are accelerated by the axial electric field of a strongly confined optical mode of an air waveguide within a silicon-based three-dimensional photonic band-gap material. Using a combination of direct laser writing and silicon double inversion, we here present the first experimental realization of this complex structure. Optical spectroscopy provides unambiguous evidence for the existence of an accelerating waveguide mode with axial polarization.

  8. Fabrication of high-resolution gratings for polymeric optical waveguide devices

    NASA Astrophysics Data System (ADS)

    Shibata, Shinya; Sugihara, Okihiro; Kaino, Toshikuni; Okamoto, Naomichi

    2004-06-01

    High resolution gratings for the application of optical waveguide devices are fabricated using a series of photopolymers. The relief gratings were formed by the two-beam interference ablation technique using a third-harmonic generation of a Nd:YAG laser (355nm) onto polyimide and electrooptic polymer films. In polyimide films, the gratings with a period of 400nm and a depth of about 280nm were fabricated by the single-pulse irradiation. We tried to fabricate the gratings using a photoresist accompanied with wet development using an Ar+ laser (488nm). By wet development process, higher aspect and clearer periodical structure at a depth of 320nm and a period of nearly 500nm was realized. High diffraction efficiency of 55.4% was measured from the relief grating. We also replicated the grating to UV curable epoxy resin as an embossing master for the fabrication of waveguide devices.

  9. Analyzing the power coupled between partially coherent waveguide fields in different states of coherence.

    PubMed

    Withington, Stafford; Yassin, Ghassan

    2002-07-01

    A procedure is described for calculating the power coupled between partially coherent waveguide fields that are in different states of coherence. The method becomes important when it is necessary to calculate the power transferred from a distributed source S to a distributed load L through a length of multimode metallic, or dielectric, waveguide. It is shown that if the correlations between the transverse components of the electric and magnetic fields of S and L are described by coherence matrices M and M', respectively, then the normalized average power coupled between them is (eta) = Tr[MM']/Tr[M]Tr[M'], where Tr denotes the trace. When the modal impedances are equal, this expression for the coupled power reduces to an equation derived in a previous paper [J. Opt. Soc. Am. A 18, 3061 (2001)], by use of thermodynamic arguments, for the power coupled between partially coherent free-space beams.

  10. EEsoF MICAD and ACADEMY macro files for coplanar waveguide and finite ground plan coplanar waveguide

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.

    1995-01-01

    A collection of macro files is presented which when appended to either the EEsoF MICAD.ELE or EEsoF ACADEMY.ELE file permits the layout of coplanar waveguide and finite ground plane coplanar waveguide circuits.

  11. Photolithography fabrication of sol-gel ridge waveguides

    NASA Astrophysics Data System (ADS)

    Sara, Rahmani; Touam, Tahar; Blanchetiere, Chantal; Saddiki, Z.; Saravanamuttu, Kalaichelvi; Du, Xin M.; Chrostowski, Jacek; Andrews, Mark P.; Najafi, S. Iraj

    1998-07-01

    We report on fabrication of ridge waveguides in UV-light sensitive glass sol-gel thin films, deposited on silicon substrate, using a simple photolithography process. The single-layer films are prepared at low temperature and deep UV-light (DUV) is employed to make the waveguides. The effect of fabrication parameters on waveguide shape is investigated.

  12. Microminiature optical waveguide structure and method for fabrication

    DOEpatents

    Strand, O.T.; Deri, R.J.; Pocha, M.D.

    1998-12-08

    A method for manufacturing low-cost, nearly circular cross section waveguides comprises starting with a substrate material that a molten waveguide material can not wet or coat. A thin layer is deposited of an opposite material that the molten waveguide material will wet and is patterned to describe the desired surface-contact path pedestals for a waveguide. A waveguide material, e.g., polymer or doped silica, is deposited. A resist material is deposited and unwanted excess is removed to form pattern masks. The waveguide material is etched away to form waveguide precursors and the masks are removed. Heat is applied to reflow the waveguide precursors into near-circular cross-section waveguides that sit atop the pedestals. The waveguide material naturally forms nearly circular cross sections due to the surface tension effects. After cooling, the waveguides will maintain the round shape. If the width and length are the same, then spherical ball lenses are formed. Alternatively, the pedestals can be patterned to taper along their lengths on the surface of the substrate. This will cause the waveguides to assume a conical taper after reflowing by heat. 32 figs.

  13. Microminiature optical waveguide structure and method for fabrication

    DOEpatents

    Strand, Oliver T.; Deri, Robert J.; Pocha, Michael D.

    1998-01-01

    A method for manufacturing low-cost, nearly circular cross section waveguides comprises starting with a substrate material that a molten waveguide material can not wet or coat. A thin layer is deposited of an opposite material that the molten waveguide material will wet and is patterned to describe the desired surface-contact path pedestals for a waveguide. A waveguide material, e.g., polymer or doped silica, is deposited. A resist material is deposited and unwanted excess is removed to form pattern masks. The waveguide material is etched away to form waveguide precursors and the masks are removed. Heat is applied to reflow the waveguide precursors into near-circular cross-section waveguides that sit atop the pedestals. The waveguide material naturally forms nearly circular cross sections due to the surface tension effects. After cooling, the waveguides will maintain the round shape. If the width and length are the same, then spherical ball lenses are formed. Alternatively, the pedestals can be patterned to taper along their lengths on the surface of the substrate. This will cause the waveguides to assume a conical taper after reflowing by heat.

  14. Excitation of a Parallel Plate Waveguide by an Array of Rectangular Waveguides

    NASA Technical Reports Server (NTRS)

    Rengarajan, Sembiam

    2011-01-01

    This work addresses the problem of excitation of a parallel plate waveguide by an array of rectangular waveguides that arises in applications such as the continuous transverse stub (CTS) antenna and dual-polarized parabolic cylindrical reflector antennas excited by a scanning line source. In order to design the junction region between the parallel plate waveguide and the linear array of rectangular waveguides, waveguide sizes have to be chosen so that the input match is adequate for the range of scan angles for both polarizations. Electromagnetic wave scattered by the junction of a parallel plate waveguide by an array of rectangular waveguides is analyzed by formulating coupled integral equations for the aperture electric field at the junction. The integral equations are solved by the method of moments. In order to make the computational process efficient and accurate, the method of weighted averaging was used to evaluate rapidly oscillating integrals encountered in the moment matrix. In addition, the real axis spectral integral is evaluated in a deformed contour for speed and accuracy. The MoM results for a large finite array have been validated by comparing its reflection coefficients with corresponding results for an infinite array generated by the commercial finite element code, HFSS. Once the aperture electric field is determined by MoM, the input reflection coefficients at each waveguide port, and coupling for each polarization over the range of useful scan angles, are easily obtained. Results for the input impedance and coupling characteristics for both the vertical and horizontal polarizations are presented over a range of scan angles. It is shown that the scan range is limited to about 35 for both polarizations and therefore the optimum waveguide is a square of size equal to about 0.62 free space wavelength.

  15. Photonic hybrid assembly through flexible waveguides

    NASA Astrophysics Data System (ADS)

    Wörhoff, K.; Prak, A.; Postma, F.; Leinse, A.; Wu, K.; Peters, T. J.; Tichem, M.; Amaning-Appiah, B.; Renukappa, V.; Vollrath, G.; Balcells-Ventura, J.; Uhlig, P.; Seyfried, M.; Rose, D.; Santos, R.; Leijtens, X. J. M.; Flintham, B.; Wale, M.; Robbins, D.

    2016-05-01

    Fully automated, high precision, cost-effective assembly technology for photonic packages remains one of the main challenges in photonic component manufacturing. Next to the cost aspect the most demanding assembly task for multiport photonic integrated circuits (PICs) is the high-precision (±0.1 μm) alignment and fixing required for optical I/O in InP PICs, even with waveguide spot size conversion. In a European research initiative - PHASTFlex - we develop and investigate an innovative, novel assembly concept, in which the waveguides in a matching TriPleX interposer PIC are released during fabrication to make them movable. After assembly of both chips by flip-chip bonding on a common carrier, TriPleX based actuators and clamping functions position and fix the flexible waveguides with the required accuracy.

  16. Reconfigurable origami-inspired acoustic waveguides.

    PubMed

    Babaee, Sahab; Overvelde, Johannes T B; Chen, Elizabeth R; Tournat, Vincent; Bertoldi, Katia

    2016-11-01

    We combine numerical simulations and experiments to design a new class of reconfigurable waveguides based on three-dimensional origami-inspired metamaterials. Our strategy builds on the fact that the rigid plates and hinges forming these structures define networks of tubes that can be easily reconfigured. As such, they provide an ideal platform to actively control and redirect the propagation of sound. We design reconfigurable systems that, depending on the externally applied deformation, can act as networks of waveguides oriented along one, two, or three preferential directions. Moreover, we demonstrate that the capability of the structure to guide and radiate acoustic energy along predefined directions can be easily switched on and off, as the networks of tubes are reversibly formed and disrupted. The proposed designs expand the ability of existing acoustic metamaterials and exploit complex waveguiding to enhance control over propagation and radiation of acoustic energy, opening avenues for the design of a new class of tunable acoustic functional systems.

  17. Quantum interference between transverse spatial waveguide modes

    PubMed Central

    Mohanty, Aseema; Zhang, Mian; Dutt, Avik; Ramelow, Sven; Nussenzveig, Paulo; Lipson, Michal

    2017-01-01

    Integrated quantum optics has the potential to markedly reduce the footprint and resource requirements of quantum information processing systems, but its practical implementation demands broader utilization of the available degrees of freedom within the optical field. To date, integrated photonic quantum systems have primarily relied on path encoding. However, in the classical regime, the transverse spatial modes of a multi-mode waveguide have been easily manipulated using the waveguide geometry to densely encode information. Here, we demonstrate quantum interference between the transverse spatial modes within a single multi-mode waveguide using quantum circuit-building blocks. This work shows that spatial modes can be controlled to an unprecedented level and have the potential to enable practical and robust quantum information processing. PMID:28106036

  18. Alpha Radiation Effects on Silicon Oxynitride Waveguides

    SciTech Connect

    Morichetti, Francesco; Grillanda, Stefano; Manandhar, Sandeep; Shutthanandan, Vaithiyalingam; Kimerling, Lionel; Melloni, Andrea; Agarwal, Anuradha M.

    2016-09-21

    Photonic technologies are today of great interest for use in harsh environments, such as outer space, where they can potentially replace current communication systems based on radiofrequency components. However, very much alike to electronic devices, the behavior of optical materials and circuits can be strongly altered by high-energy and high-dose ionizing radiations. Here, we investigate the effects of alpha () radiation with MeV-range energy on silicon oxynitride (SiON) optical waveguides. Irradiation with a dose of 5×1015 cm-2 increases the refractive index of the SiON core by nearly 10-2, twice as much that of the surrounding silica cladding, leading to a significant increase of the refractive index contrast of the waveguide. The higher mode confinement induced by -radiation reduces the loss of tightly bent waveguides. We show that this increases the quality factor of microring resonators by 20%, with values larger than 105 after irradiation.

  19. High-Performance Flexible Waveguiding Photovoltaics

    PubMed Central

    Chou, Chun-Hsien; Chuang, Jui-Kang; Chen, Fang-Chung

    2013-01-01

    The use of flat-plane solar concentrators is an effective approach toward collecting sunlight economically and without sun trackers. The optical concentrators are, however, usually made of rigid glass or plastics having limited flexibility, potentially restricting their applicability. In this communication, we describe flexible waveguiding photovoltaics (FWPVs) that exhibit high optical efficiencies and great mechanical flexibility. We constructed these FWPVs by integrating poly-Si solar cells, a soft polydimethylsiloxane (PDMS) waveguide, and a TiO2-doped backside reflector. Optical microstructures that increase the light harvesting ability of the FWPVs can be fabricated readily, through soft lithography, on the top surface of the PDMS waveguide. Our optimized structure displayed an optical efficiency of greater than 42% and a certified power conversion efficiency (PCE) of 5.57%, with a projected PCE as high as approximately 18%. This approach might open new avenues for the harvesting of solar energy at low cost with efficient, mechanically flexible photovoltaics. PMID:23873225

  20. Reconfigurable origami-inspired acoustic waveguides

    PubMed Central

    Babaee, Sahab; Overvelde, Johannes T. B.; Chen, Elizabeth R.; Tournat, Vincent; Bertoldi, Katia

    2016-01-01

    We combine numerical simulations and experiments to design a new class of reconfigurable waveguides based on three-dimensional origami-inspired metamaterials. Our strategy builds on the fact that the rigid plates and hinges forming these structures define networks of tubes that can be easily reconfigured. As such, they provide an ideal platform to actively control and redirect the propagation of sound. We design reconfigurable systems that, depending on the externally applied deformation, can act as networks of waveguides oriented along one, two, or three preferential directions. Moreover, we demonstrate that the capability of the structure to guide and radiate acoustic energy along predefined directions can be easily switched on and off, as the networks of tubes are reversibly formed and disrupted. The proposed designs expand the ability of existing acoustic metamaterials and exploit complex waveguiding to enhance control over propagation and radiation of acoustic energy, opening avenues for the design of a new class of tunable acoustic functional systems. PMID:28138527