Science.gov

Sample records for 34-motor vehicle management

  1. 41 CFR 102-34.85 - What motor vehicles require motor vehicle identification?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false What motor vehicles require motor vehicle identification? 102-34.85 Section 102-34.85 Public Contracts and Property Management... 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles Motor Vehicle...

  2. 41 CFR 102-34.85 - What motor vehicles require motor vehicle identification?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false What motor vehicles require motor vehicle identification? 102-34.85 Section 102-34.85 Public Contracts and Property Management... 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles Motor Vehicle...

  3. 30 CFR 18.34 - Motors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Motors. 18.34 Section 18.34 Mineral Resources... PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.34 Motors. Explosion-proof electric motor assemblies intended for use in approved equipment in...

  4. 30 CFR 18.34 - Motors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Motors. 18.34 Section 18.34 Mineral Resources... PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.34 Motors. Explosion-proof electric motor assemblies intended for use in approved equipment in...

  5. 30 CFR 18.34 - Motors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Motors. 18.34 Section 18.34 Mineral Resources... PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.34 Motors. Explosion-proof electric motor assemblies intended for use in approved equipment in...

  6. 30 CFR 18.34 - Motors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.34 Motors. Explosion-proof electric motor assemblies intended for use in approved equipment in underground...) Small motors (alternating- and direct-current). Motors having internal free volume not exceeding...

  7. 30 CFR 18.34 - Motors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Motors. 18.34 Section 18.34 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.34 Motors. Explosion-proof electric...

  8. 41 CFR 102-34.50 - What size motor vehicles may we obtain?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false What size motor vehicles... Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Obtaining Fuel Efficient Motor Vehicles § 102-34.50 What size motor vehicles may we obtain?...

  9. 41 CFR 102-34.50 - What size motor vehicles may we obtain?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false What size motor vehicles... Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Obtaining Fuel Efficient Motor Vehicles § 102-34.50 What size motor vehicles may we obtain?...

  10. 41 CFR 102-34.100 - Where is motor vehicle identification displayed?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Where is motor vehicle... Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles Motor Vehicle Identification § 102-34.100 Where...

  11. 41 CFR 102-34.100 - Where is motor vehicle identification displayed?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Where is motor vehicle... Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles Motor Vehicle Identification § 102-34.100 Where...

  12. 41 CFR 102-34.255 - What are motor vehicle replacement standards?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false What are motor vehicle... Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Replacement of Motor Vehicles § 102-34.255 What are motor vehicle replacement standards?...

  13. 41 CFR 102-34.255 - What are motor vehicle replacement standards?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false What are motor vehicle... Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Replacement of Motor Vehicles § 102-34.255 What are motor vehicle replacement standards?...

  14. Intelligent Vehicle Health Management

    NASA Technical Reports Server (NTRS)

    Paris, Deidre E.; Trevino, Luis; Watson, Michael D.

    2005-01-01

    As a part of the overall goal of developing Integrated Vehicle Health Management systems for aerospace vehicles, the NASA Faculty Fellowship Program (NFFP) at Marshall Space Flight Center has performed a pilot study on IVHM principals which integrates researched IVHM technologies in support of Integrated Intelligent Vehicle Management (IIVM). IVHM is the process of assessing, preserving, and restoring system functionality across flight and ground systems (NASA NGLT 2004). The framework presented in this paper integrates advanced computational techniques with sensor and communication technologies for spacecraft that can generate responses through detection, diagnosis, reasoning, and adapt to system faults in support of INM. These real-time responses allow the IIVM to modify the affected vehicle subsystem(s) prior to a catastrophic event. Furthermore, the objective of this pilot program is to develop and integrate technologies which can provide a continuous, intelligent, and adaptive health state of a vehicle and use this information to improve safety and reduce costs of operations. Recent investments in avionics, health management, and controls have been directed towards IIVM. As this concept has matured, it has become clear the INM requires the same sensors and processing capabilities as the real-time avionics functions to support diagnosis of subsystem problems. New sensors have been proposed, in addition, to augment the avionics sensors to support better system monitoring and diagnostics. As the designs have been considered, a synergy has been realized where the real-time avionics can utilize sensors proposed for diagnostics and prognostics to make better real-time decisions in response to detected failures. IIVM provides for a single system allowing modularity of functions and hardware across the vehicle. The framework that supports IIVM consists of 11 major on-board functions necessary to fully manage a space vehicle maintaining crew safety and mission

  15. 41 CFR 102-34.90 - What motor vehicle identification must we display on Government motor vehicles?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles Motor... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What motor...

  16. 41 CFR 102-34.90 - What motor vehicle identification must we display on Government motor vehicles?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles Motor... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false What motor...

  17. 41 CFR 102-34.105 - Before we sell a motor vehicle, what motor vehicle identification must we remove?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles Motor... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Before we sell a...

  18. 41 CFR 102-34.105 - Before we sell a motor vehicle, what motor vehicle identification must we remove?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles Motor... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Before we sell a...

  19. 41 CFR 102-34.90 - What motor vehicle identification must we display on Government motor vehicles?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles Motor... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What motor...

  20. 41 CFR 102-34.105 - Before we sell a motor vehicle, what motor vehicle identification must we remove?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles Motor... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Before we sell a...

  1. 41 CFR 102-34.120 - Do we need to register Government motor vehicles?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Government motor vehicles? 102-34.120 Section 102-34.120 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles License Plates § 102-34.120 Do we need...

  2. 41 CFR 102-34.315 - How do we obtain fuel for Government motor vehicles?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for Government motor vehicles? 102-34.315 Section 102-34.315 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Motor Vehicle Fueling § 102-34.315 How do we obtain fuel for...

  3. 41 CFR 102-34.50 - What size motor vehicles may we obtain?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Obtaining Fuel Efficient Motor Vehicles § 102-34.50 What size motor vehicles may we obtain? (a... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What size motor...

  4. 41 CFR 102-34.20 - What motor vehicles are not covered by this part?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT General Provisions § 102-34.20 What motor vehicles are not covered by this part? Motor... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What motor vehicles...

  5. 41 CFR 102-34.260 - May we replace a Government-owned motor vehicle sooner?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Government-owned motor vehicle sooner? 102-34.260 Section 102-34.260 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Replacement of Motor Vehicles § 102-34.260 May we replace a...

  6. 41 CFR 102-34.300 - How do we dispose of a domestic fleet motor vehicle?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... domestic fleet motor vehicle? 102-34.300 Section 102-34.300 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Disposal of Motor Vehicles § 102-34.300 How do we dispose of a...

  7. 41 CFR 102-34.120 - Do we need to register Government motor vehicles?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Government motor vehicles? 102-34.120 Section 102-34.120 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles License Plates § 102-34.120 Do we need...

  8. 41 CFR 102-34.260 - May we replace a Government-owned motor vehicle sooner?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Government-owned motor vehicle sooner? 102-34.260 Section 102-34.260 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Replacement of Motor Vehicles § 102-34.260 May we replace a...

  9. 41 CFR 102-34.200 - What is official use of Government motor vehicles?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Government motor vehicles? 102-34.200 Section 102-34.200 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Official Use of Government Motor Vehicles § 102-34.200 What is official use...

  10. 41 CFR 102-34.50 - What size motor vehicles may we obtain?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Obtaining Fuel Efficient Motor Vehicles § 102-34.50 What size motor vehicles may we obtain? (a... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false What size motor...

  11. 41 CFR 102-34.315 - How do we obtain fuel for Government motor vehicles?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... for Government motor vehicles? 102-34.315 Section 102-34.315 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Motor Vehicle Fueling § 102-34.315 How do we obtain fuel for...

  12. 41 CFR 102-34.100 - Where is motor vehicle identification displayed?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles Motor Vehicle Identification § 102-34.100 Where is... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Where is motor...

  13. 41 CFR 102-34.255 - What are motor vehicle replacement standards?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Replacement of Motor Vehicles § 102-34.255 What are motor vehicle replacement standards? Motor... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false What are motor...

  14. 41 CFR 102-34.255 - What are motor vehicle replacement standards?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Replacement of Motor Vehicles § 102-34.255 What are motor vehicle replacement standards? Motor... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What are motor...

  15. 41 CFR 102-34.260 - May we replace a Government-owned motor vehicle sooner?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Government-owned motor vehicle sooner? 102-34.260 Section 102-34.260 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Replacement of Motor Vehicles § 102-34.260 May we replace a...

  16. 41 CFR 102-34.20 - What motor vehicles are not covered by this part?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT General Provisions § 102-34.20 What motor vehicles are not covered by this part? Motor... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What motor vehicles...

  17. 41 CFR 102-34.120 - Do we need to register Government motor vehicles?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Government motor vehicles? 102-34.120 Section 102-34.120 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles License Plates § 102-34.120 Do we need...

  18. 41 CFR 102-34.230 - How am I responsible for protecting Government motor vehicles?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... protecting Government motor vehicles? 102-34.230 Section 102-34.230 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Official Use of Government Motor Vehicles § 102-34.230 How am...

  19. 41 CFR 102-34.300 - How do we dispose of a domestic fleet motor vehicle?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... domestic fleet motor vehicle? 102-34.300 Section 102-34.300 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Disposal of Motor Vehicles § 102-34.300 How do we dispose of a...

  20. 41 CFR 102-34.200 - What is official use of Government motor vehicles?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Government motor vehicles? 102-34.200 Section 102-34.200 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Official Use of Government Motor Vehicles § 102-34.200 What is official use...

  1. 41 CFR 102-34.200 - What is official use of Government motor vehicles?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Government motor vehicles? 102-34.200 Section 102-34.200 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Official Use of Government Motor Vehicles § 102-34.200 What is official use...

  2. 41 CFR 102-34.230 - How am I responsible for protecting Government motor vehicles?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... protecting Government motor vehicles? 102-34.230 Section 102-34.230 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Official Use of Government Motor Vehicles § 102-34.230 How am...

  3. 41 CFR 102-34.255 - What are motor vehicle replacement standards?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Replacement of Motor Vehicles § 102-34.255 What are motor vehicle replacement standards? Motor... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What are motor...

  4. 41 CFR 102-34.20 - What motor vehicles are not covered by this part?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT General Provisions § 102-34.20 What motor vehicles are not covered by this part? Motor... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false What motor vehicles...

  5. 41 CFR 102-34.100 - Where is motor vehicle identification displayed?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles Motor Vehicle Identification § 102-34.100 Where is... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Where is motor...

  6. 41 CFR 102-34.100 - Where is motor vehicle identification displayed?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles Motor Vehicle Identification § 102-34.100 Where is... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Where is motor...

  7. 41 CFR 102-34.315 - How do we obtain fuel for Government motor vehicles?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for Government motor vehicles? 102-34.315 Section 102-34.315 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Motor Vehicle Fueling § 102-34.315 How do we obtain fuel for...

  8. 41 CFR 102-34.50 - What size motor vehicles may we obtain?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Obtaining Fuel Efficient Motor Vehicles § 102-34.50 What size motor vehicles may we obtain? (a... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What size motor...

  9. 41 CFR 102-34.230 - How am I responsible for protecting Government motor vehicles?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... protecting Government motor vehicles? 102-34.230 Section 102-34.230 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Official Use of Government Motor Vehicles § 102-34.230 How am...

  10. 41 CFR 102-34.215 - May Government contractors use Government motor vehicles?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... contractors use Government motor vehicles? 102-34.215 Section 102-34.215 Public Contracts and Property... PROPERTY 34-MOTOR VEHICLE MANAGEMENT Official Use of Government Motor Vehicles § 102-34.215 May Government contractors use Government motor vehicles? Yes, Government contractors may use Government motor vehicles...

  11. 41 CFR 102-34.215 - May Government contractors use Government motor vehicles?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... contractors use Government motor vehicles? 102-34.215 Section 102-34.215 Public Contracts and Property... PROPERTY 34-MOTOR VEHICLE MANAGEMENT Official Use of Government Motor Vehicles § 102-34.215 May Government contractors use Government motor vehicles? Yes, Government contractors may use Government motor vehicles...

  12. 41 CFR 102-34.270 - How long must we keep a Government-owned motor vehicle?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Government-owned motor vehicle? 102-34.270 Section 102-34.270 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Replacement of Motor Vehicles § 102-34.270 How long must we keep...

  13. 41 CFR 102-34.270 - How long must we keep a Government-owned motor vehicle?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Government-owned motor vehicle? 102-34.270 Section 102-34.270 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Replacement of Motor Vehicles § 102-34.270 How long must we keep...

  14. 41 CFR 102-34.270 - How long must we keep a Government-owned motor vehicle?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Government-owned motor vehicle? 102-34.270 Section 102-34.270 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Replacement of Motor Vehicles § 102-34.270 How long must we keep...

  15. 41 CFR 102-34.270 - How long must we keep a Government-owned motor vehicle?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false How long must we keep a... 34-MOTOR VEHICLE MANAGEMENT Replacement of Motor Vehicles § 102-34.270 How long must we keep a Government-owned motor vehicle? You must keep a Government-owned motor vehicle for at least the years...

  16. 41 CFR 102-34.270 - How long must we keep a Government-owned motor vehicle?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false How long must we keep a... 34-MOTOR VEHICLE MANAGEMENT Replacement of Motor Vehicles § 102-34.270 How long must we keep a Government-owned motor vehicle? You must keep a Government-owned motor vehicle for at least the years...

  17. 41 CFR 102-34.315 - How do we obtain fuel for Government motor vehicles?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false How do we obtain fuel for Government motor vehicles? 102-34.315 Section 102-34.315 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Motor...

  18. 41 CFR 102-34.315 - How do we obtain fuel for Government motor vehicles?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false How do we obtain fuel for Government motor vehicles? 102-34.315 Section 102-34.315 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Motor...

  19. 41 CFR 102-34.215 - May Government contractors use Government motor vehicles?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Official Use of Government Motor Vehicles § 102-34.215 May Government... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false May...

  20. 41 CFR 102-34.280 - What State inspections must we have for Government motor vehicles?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Scheduled Maintenance of Motor Vehicles § 102-34.280 What State... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false What State...

  1. 41 CFR 102-34.110 - Must Government motor vehicles use Government license plates?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles License Plates § 102-34.110... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Must Government...

  2. 41 CFR 102-34.110 - Must Government motor vehicles use Government license plates?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles License Plates § 102-34.110... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Must Government...

  3. 41 CFR 102-34.155 - What are the types of motor vehicle identification exemptions?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles Identification Exemptions... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What are the types...

  4. 41 CFR 102-34.40 - Who must comply with motor vehicle fuel efficiency requirements?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Obtaining Fuel Efficient Motor Vehicles § 102-34.40 Who must comply... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Who must comply...

  5. 41 CFR 102-34.110 - Must Government motor vehicles use Government license plates?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles License Plates § 102-34.110... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Must Government...

  6. 41 CFR 102-34.40 - Who must comply with motor vehicle fuel efficiency requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Obtaining Fuel Efficient Motor Vehicles § 102-34.40 Who must comply... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Who must comply...

  7. 41 CFR 102-34.215 - May Government contractors use Government motor vehicles?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Official Use of Government Motor Vehicles § 102-34.215 May Government... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false May...

  8. 41 CFR 102-34.280 - What State inspections must we have for Government motor vehicles?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Scheduled Maintenance of Motor Vehicles § 102-34.280 What State... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What State...

  9. 41 CFR 102-34.280 - What State inspections must we have for Government motor vehicles?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Scheduled Maintenance of Motor Vehicles § 102-34.280 What State... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What State...

  10. 41 CFR 102-34.215 - May Government contractors use Government motor vehicles?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Official Use of Government Motor Vehicles § 102-34.215 May Government... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false May...

  11. 41 CFR 102-34.155 - What are the types of motor vehicle identification exemptions?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles Identification Exemptions... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false What are the types...

  12. 41 CFR 102-34.40 - Who must comply with motor vehicle fuel efficiency requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Obtaining Fuel Efficient Motor Vehicles § 102-34.40 Who must comply... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Who must comply...

  13. 41 CFR 102-34.155 - What are the types of motor vehicle identification exemptions?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles Identification Exemptions... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What are the types...

  14. 41 CFR 102-34.175 - What motor vehicles have an unlimited exemption from displaying U.S. Government license plates...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles Identification Exemptions § 102-34.175 What motor... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What motor vehicles...

  15. 41 CFR 102-34.175 - What motor vehicles have an unlimited exemption from displaying U.S. Government license plates...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles Identification Exemptions § 102-34.175 What motor... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false What motor vehicles...

  16. 41 CFR 102-34.175 - What motor vehicles have an unlimited exemption from displaying U.S. Government license plates...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles Identification Exemptions § 102-34.175 What motor... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What motor vehicles...

  17. 41 CFR 102-34.40 - Who must comply with motor vehicle fuel efficiency requirements?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Who must comply with motor vehicle fuel efficiency requirements? 102-34.40 Section 102-34.40 Public Contracts and Property... PROPERTY 34-MOTOR VEHICLE MANAGEMENT Obtaining Fuel Efficient Motor Vehicles § 102-34.40 Who must...

  18. 41 CFR 102-34.40 - Who must comply with motor vehicle fuel efficiency requirements?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Who must comply with motor vehicle fuel efficiency requirements? 102-34.40 Section 102-34.40 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE...

  19. 41 CFR 102-34.70 - What do we do with completed calculations of our fleet vehicle acquisitions?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Obtaining Fuel Efficient Motor Vehicles § 102-34.70... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false What do we do...

  20. 41 CFR 102-34.225 - How are Federal employees disciplined for misuse of Government motor vehicles?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Official Use of Government Motor Vehicles... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false How are...

  1. 41 CFR 102-34.60 - How do we calculate the average fuel economy for Government motor vehicles?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Obtaining Fuel Efficient Motor Vehicles § 102-34.60... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false How do we calculate...

  2. 41 CFR 102-34.60 - How do we calculate the average fuel economy for Government motor vehicles?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Obtaining Fuel Efficient Motor Vehicles § 102-34.60... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false How do we calculate...

  3. 41 CFR 102-34.195 - Must we submit a report concerning motor vehicles exempted under this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Must we submit a...

  4. 41 CFR 102-34.70 - What do we do with completed calculations of our fleet vehicle acquisitions?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Obtaining Fuel Efficient Motor Vehicles § 102-34.70... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What do we do...

  5. 41 CFR 102-34.80 - Where may we obtain help with our motor vehicle acquisition plans?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Obtaining Fuel Efficient Motor Vehicles § 102-34.80 Where may we... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Where may we obtain...

  6. 41 CFR 102-34.195 - Must we submit a report concerning motor vehicles exempted under this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Must we submit a...

  7. 41 CFR 102-34.70 - What do we do with completed calculations of our fleet vehicle acquisitions?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Obtaining Fuel Efficient Motor Vehicles § 102-34.70... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false What do we do...

  8. 41 CFR 102-34.130 - How do we display U.S. Government license plates on Government motor vehicles?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles License... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false How do we display...

  9. 41 CFR 102-34.305 - What forms do we use to transfer ownership when selling a motor vehicle?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Disposal of Motor Vehicles § 102-34.305 What forms... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What forms do we use...

  10. 41 CFR 102-34.60 - How do we calculate the average fuel economy for Government motor vehicles?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Obtaining Fuel Efficient Motor Vehicles § 102-34.60... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false How do we calculate...

  11. 41 CFR 102-34.80 - Where may we obtain help with our motor vehicle acquisition plans?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Obtaining Fuel Efficient Motor Vehicles § 102-34.80 Where may we... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Where may we obtain...

  12. 41 CFR 102-34.130 - How do we display U.S. Government license plates on Government motor vehicles?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles License... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false How do we display...

  13. 41 CFR 102-34.80 - Where may we obtain help with our motor vehicle acquisition plans?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Obtaining Fuel Efficient Motor Vehicles § 102-34.80 Where may we... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Where may we obtain...

  14. 41 CFR 102-34.225 - How are Federal employees disciplined for misuse of Government motor vehicles?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Official Use of Government Motor Vehicles... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false How are...

  15. 41 CFR 102-34.305 - What forms do we use to transfer ownership when selling a motor vehicle?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Disposal of Motor Vehicles § 102-34.305 What forms... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false What forms do we use...

  16. 41 CFR 102-34.130 - How do we display U.S. Government license plates on Government motor vehicles?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles License... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false How do we display...

  17. 41 CFR 102-34.195 - Must we submit a report concerning motor vehicles exempted under this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Must we submit a...

  18. 41 CFR 102-34.305 - What forms do we use to transfer ownership when selling a motor vehicle?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Disposal of Motor Vehicles § 102-34.305 What forms... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What forms do we use...

  19. 41 CFR 102-34.225 - How are Federal employees disciplined for misuse of Government motor vehicles?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Official Use of Government Motor Vehicles... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false How are...

  20. 41 CFR 102-34.95 - What motor vehicle identification must the Department of Defense (DOD) display on motor vehicles...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-34.95 Section 102-34.95 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What motor...

  1. 41 CFR 102-34.95 - What motor vehicle identification must the Department of Defense (DOD) display on motor vehicles...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...-34.95 Section 102-34.95 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What motor...

  2. 41 CFR 102-34.95 - What motor vehicle identification must the Department of Defense (DOD) display on motor vehicles...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-34.95 Section 102-34.95 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false What motor...

  3. 41 CFR 102-34.60 - How do we calculate the average fuel economy for Government motor vehicles?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Obtaining Fuel Efficient Motor Vehicles § 102-34.60... average fuel economy for Government motor vehicles as follows: (a) Because there are so many motor vehicle... cylinder automatic transmission pick-up trucks, EPA rating: 24.3 mpg, plus (B) 150 Six cylinder...

  4. 41 CFR 102-34.325 - What type of fuel do I use in Government motor vehicles?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false What type of fuel do I use in Government motor vehicles? 102-34.325 Section 102-34.325 Public Contracts and Property... PROPERTY 34-MOTOR VEHICLE MANAGEMENT Motor Vehicle Fueling § 102-34.325 What type of fuel do I use...

  5. 41 CFR 102-34.80 - Where may we obtain help with our motor vehicle acquisition plans?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... PROPERTY 34-MOTOR VEHICLE MANAGEMENT Obtaining Fuel Efficient Motor Vehicles § 102-34.80 Where may we... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Where may we obtain help with our motor vehicle acquisition plans? 102-34.80 Section 102-34.80 Public Contracts and...

  6. 41 CFR 102-34.325 - What type of fuel do I use in Government motor vehicles?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false What type of fuel do I use in Government motor vehicles? 102-34.325 Section 102-34.325 Public Contracts and Property... PROPERTY 34-MOTOR VEHICLE MANAGEMENT Motor Vehicle Fueling § 102-34.325 What type of fuel do I use...

  7. 41 CFR 102-34.80 - Where may we obtain help with our motor vehicle acquisition plans?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Where may we obtain help with our motor vehicle acquisition plans? 102-34.80 Section 102-34.80 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE...

  8. 41 CFR 102-34.290 - What forms do I use to report a crash involving a domestic fleet motor vehicle?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Motor Vehicle Crash Reporting § 102-34.290 What... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false What forms do I use...

  9. 41 CFR 102-34.265 - May we keep a Government-owned motor vehicle even though the standard permits replacement?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Replacement of Motor Vehicles § 102-34... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false May we keep a...

  10. 41 CFR 102-34.265 - May we keep a Government-owned motor vehicle even though the standard permits replacement?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Replacement of Motor Vehicles § 102-34... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false May we keep a...

  11. 41 CFR 102-34.220 - What does GSA do if it learns of unofficial use of a Government motor vehicle?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Official Use of Government Motor Vehicles § 102-34... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What does GSA do if...

  12. 41 CFR 102-34.220 - What does GSA do if it learns of unofficial use of a Government motor vehicle?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Official Use of Government Motor Vehicles § 102-34... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false What does GSA do if...

  13. 41 CFR 102-34.320 - What Government-issued charge cards may I use to purchase fuel and motor vehicle related services?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Motor Vehicle Fueling § 102-34... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What...

  14. 41 CFR 102-34.220 - What does GSA do if it learns of unofficial use of a Government motor vehicle?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Official Use of Government Motor Vehicles § 102-34... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What does GSA do if...

  15. 41 CFR 102-34.265 - May we keep a Government-owned motor vehicle even though the standard permits replacement?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Replacement of Motor Vehicles § 102-34... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false May we keep a...

  16. 41 CFR 102-34.290 - What forms do I use to report a crash involving a domestic fleet motor vehicle?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Motor Vehicle Crash Reporting § 102-34.290 What... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What forms do I use...

  17. 41 CFR 102-34.320 - What Government-issued charge cards may I use to purchase fuel and motor vehicle related services?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Motor Vehicle Fueling § 102-34... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What...

  18. 41 CFR 102-34.320 - What Government-issued charge cards may I use to purchase fuel and motor vehicle related services?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Motor Vehicle Fueling § 102-34... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false What...

  19. 41 CFR 102-34.185 - What license plates do we use on motor vehicles that are exempt from motor vehicle identification...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Section 102-34.185 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What license plates...

  20. 41 CFR 102-34.185 - What license plates do we use on motor vehicles that are exempt from motor vehicle identification...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 102-34.185 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false What license plates...

  1. 41 CFR 102-34.185 - What license plates do we use on motor vehicles that are exempt from motor vehicle identification...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Section 102-34.185 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What license plates...

  2. 41 CFR 102-34.75 - Who is responsible for monitoring our compliance with fuel economy standards for motor vehicles...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Obtaining Fuel Efficient Motor... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Who is responsible for monitoring our compliance with fuel economy standards for motor vehicles we obtain? 102-34.75 Section...

  3. Energy management and vehicle synthesis

    NASA Technical Reports Server (NTRS)

    Czysz, P.; Murthy, S. N. B.

    1995-01-01

    The major drivers in the development of launch vehicles for the twenty-first century are reduction in cost of vehicles and operations, continuous reusability, mission abort capability with vehicle recovery, and readiness. One approach to the design of such vehicles is to emphasize energy management and propulsion as being the principal means of improvements given the available industrial capability and the required freedom in selecting configuration concept geometries. A methodology has been developed for the rational synthesis of vehicles based on the setting up and utilization of available data and projections, and a reference vehicle. The application of the methodology is illustrated for a single stage to orbit (SSTO) with various limits for the use of airbreathing propulsion.

  4. 41 CFR 102-34.75 - Who is responsible for monitoring our compliance with fuel economy standards for motor vehicles...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....75 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Obtaining Fuel Efficient Motor... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Who is responsible...

  5. 41 CFR 102-34.75 - Who is responsible for monitoring our compliance with fuel economy standards for motor vehicles...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....75 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Obtaining Fuel Efficient Motor... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Who is responsible...

  6. 41 CFR 102-34.190 - What special requirements apply to exempted motor vehicles using District of Columbia or State...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Section 102-34.190 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What...

  7. 41 CFR 102-34.190 - What special requirements apply to exempted motor vehicles using District of Columbia or State...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Section 102-34.190 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What...

  8. 41 CFR 102-34.75 - Who is responsible for monitoring our compliance with fuel economy standards for motor vehicles...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....75 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Obtaining Fuel Efficient Motor... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Who is responsible...

  9. 41 CFR 102-34.190 - What special requirements apply to exempted motor vehicles using District of Columbia or State...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 102-34.190 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false What...

  10. 41 CFR 102-34.325 - What type of fuel do I use in Government motor vehicles?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...; or (2) Such gasoline is not available locally. (c) You must use alternative fuels in alternative fuel... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What type of fuel do I... PROPERTY 34-MOTOR VEHICLE MANAGEMENT Motor Vehicle Fueling § 102-34.325 What type of fuel do I use...

  11. 41 CFR 102-34.325 - What type of fuel do I use in Government motor vehicles?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; or (2) Such gasoline is not available locally. (c) You must use alternative fuels in alternative fuel... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false What type of fuel do I... PROPERTY 34-MOTOR VEHICLE MANAGEMENT Motor Vehicle Fueling § 102-34.325 What type of fuel do I use...

  12. 41 CFR 102-34.325 - What type of fuel do I use in Government motor vehicles?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; or (2) Such gasoline is not available locally. (c) You must use alternative fuels in alternative fuel... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What type of fuel do I... PROPERTY 34-MOTOR VEHICLE MANAGEMENT Motor Vehicle Fueling § 102-34.325 What type of fuel do I use...

  13. The ground vehicle manager's associate

    NASA Technical Reports Server (NTRS)

    Edwards, Gary R.; Burnard, Robert H.; Bewley, William L.; Bullock, Bruce L.

    1994-01-01

    An overview of MAX, a software framework for manager's associate systems, is presented. MAX is used to develop and execute a problem-solving strategy for the task planning of semi-autonomous agents with the assistance of human performance. This paper describes the use of MAX in the supervisory management of robotic vehicles as they explore a planetary surface.

  14. Vehicle health management technology needs

    NASA Technical Reports Server (NTRS)

    Hammond, Walter E.; Jones, W. G.

    1992-01-01

    Background material on vehicle health management (VHM) and health monitoring/control is presented. VHM benefits are described and a list of VHM technology needs that should be pursued is presented. The NASA funding process as it impacts VHM technology funding is touched upon, and the VHM architecture guidelines for generic launch vehicles are described. An example of a good VHM architecture, design, and operational philosophy as it was conceptualized for the National Launch System program is presented. Consideration is given to the Strategic Avionics Technology Working Group's role in VHM, earth-to-orbit, and space vehicle avionics technology development considerations, and some actual examples of VHM benefits for checkout are given.

  15. 41 CFR 102-34.70 - What do we do with completed calculations of our fleet vehicle acquisitions?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false What do we do with completed calculations of our fleet vehicle acquisitions? 102-34.70 Section 102-34.70 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR...

  16. 41 CFR 102-34.60 - How do we calculate the average fuel economy for Government motor vehicles?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false How do we calculate the average fuel economy for Government motor vehicles? 102-34.60 Section 102-34.60 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR...

  17. 41 CFR 102-34.115 - Can official U.S. Government license plates be used on motor vehicles not owned or leased by the...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 102-34.115 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Can official...

  18. 41 CFR 102-34.115 - Can official U.S. Government license plates be used on motor vehicles not owned or leased by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 102-34.115 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Can official...

  19. 41 CFR 102-34.205 - May I use a Government motor vehicle for transportation between my residence and place of...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....205 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Official Use of Government... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false May I use a...

  20. 41 CFR 102-34.205 - May I use a Government motor vehicle for transportation between my residence and place of...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....205 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Official Use of Government... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false May I use a...

  1. 41 CFR 102-34.250 - Do Federal employees in Government motor vehicles have to use all safety devices and follow all...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 102-34.250 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Official Use of... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Do Federal employees...

  2. 41 CFR 102-34.205 - May I use a Government motor vehicle for transportation between my residence and place of...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....205 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Official Use of Government... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false May I use a...

  3. 41 CFR 102-34.250 - Do Federal employees in Government motor vehicles have to use all safety devices and follow all...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 102-34.250 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Official Use of... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Do Federal employees...

  4. 41 CFR 102-34.115 - Can official U.S. Government license plates be used on motor vehicles not owned or leased by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 102-34.115 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Can official...

  5. 41 CFR 102-34.250 - Do Federal employees in Government motor vehicles have to use all safety devices and follow all...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 102-34.250 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Official Use of... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Do Federal employees...

  6. Electric vehicle energy management system

    NASA Astrophysics Data System (ADS)

    Alaoui, Chakib

    This thesis investigates and analyzes novel strategies for the optimum energy management of electric vehicles (EVs). These are aimed to maximize the useful life of the EV batteries and make the EV more practical in order to increase its acceptability to market. The first strategy concerns the right choice of the batteries for the EV according to the user's driving habits, which may vary. Tests conducted at the University of Massachusetts Lowell battery lab show that the batteries perform differently from one manufacturer to the other. The second strategy was to investigate the fast chargeability of different batteries, which leads to reduce the time needed to recharge the EV battery pack. Tests were conducted again to prove that only few battery types could be fast charged. Test data were used to design a fast battery charger that could be installed in an EV charging station. The third strategy was the design, fabrication and application of an Electric Vehicle Diagnostic and Rejuvenation System (EVDRS). This system is based on Mosfet Controlled Thyristors (MCTs). It is capable of quickly identifying any failing battery(s) within the EV pack and rejuvenating the whole battery pack without dismantling them and unloading them. A novel algorithm to rejuvenate Electric Vehicle Sealed Lead Acid Batteries is described. This rejuvenation extends the useful life of the batteries and makes the EV more competitive. The fourth strategy was to design a thermal management system for EV, which is crucial to the safe operation, and the achievement of normal/optimal performance of, electric vehicle (EV) batteries. A novel approach for EV thermal management, based on Pettier-Effect heat pumps, was designed, fabricated and tested in EV. It shows the application of this type of technology for thermal management of EVs.

  7. Sensor Technology for Integrated Vehicle Health Management of Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Prosser, W. H.; Brown, T. L.; Woodard, S. E.; Fleming, G. A.; Cooper, E. G.

    2002-01-01

    NASA is focusing considerable efforts on technology development for Integrated Vehicle Health Management systems. The research in this area is targeted toward increasing aerospace vehicle safety and reliability, while reducing vehicle operating and maintenance costs. Onboard, real-time sensing technologies that can provide detailed information on structural integrity are central to such a health management system. This paper describes a number of sensor technologies currently under development for integrated vehicle health management. The capabilities, current limitations, and future research needs of these technologies are addressed.

  8. Integrated Vehicle Thermal Management for Advanced Vehicle Propulsion Technologies

    SciTech Connect

    Bennion, K.; Thornton, M.

    2010-04-01

    A critical element to the success of new propulsion technologies that enable reductions in fuel use is the integration of component thermal management technologies within a viable vehicle package. Vehicle operation requires vehicle thermal management systems capable of balancing the needs of multiple vehicle systems that may require heat for operation, require cooling to reject heat, or require operation within specified temperature ranges. As vehicle propulsion transitions away from a single form of vehicle propulsion based solely on conventional internal combustion engines (ICEs) toward a wider array of choices including more electrically dominant systems such as plug-in hybrid electric vehicles (PHEVs), new challenges arise associated with vehicle thermal management. As the number of components that require active thermal management increase, so do the costs in terms of dollars, weight, and size. Integrated vehicle thermal management is one pathway to address the cost, weight, and size challenges. The integration of the power electronics and electric machine (PEEM) thermal management with other existing vehicle systems is one path for reducing the cost of electric drive systems. This work demonstrates techniques for evaluating and quantifying the integrated transient and continuous heat loads of combined systems incorporating electric drive systems that operate primarily under transient duty cycles, but the approach can be extended to include additional steady-state duty cycles typical for designing vehicle thermal management systems of conventional vehicles. The work compares opportunities to create an integrated low temperature coolant loop combining the power electronics and electric machine with the air conditioning system in contrast to a high temperature system integrated with the ICE cooling system.

  9. Nanofluids for vehicle thermal management.

    SciTech Connect

    Choi, S. U.-S.; Yu, W.; Hull, J. R.; Zhang, Z. G.; Lockwood, F. E.; Energy Technology; The Valvoline Co.

    2003-01-01

    Applying nanotechnology to thermal engineering, ANL has addressed the interesting and timely topic of nanofluids. We have developed methods for producing both oxide and metal nanofluids, studied their thermal conductivity, and obtained promising results: (1) Stable suspensions of nanoparticles can be achieved. (2) Nanofluids have significantly higher thermal conductivities than their base liquids. (3) Measured thermal conductivities of nanofluids are much greater than predicted. For these reasons, nanofluids show promise for improving the design and performance of vehicle thermal management systems. However, critical barriers to further development and application of nanofluid technology are agglomeration of nanoparticles and oxidation of metallic nanoparticles. Therefore, methods to prevent particle agglomeration and degradation are required.

  10. National launch strategy vehicle data management system

    NASA Technical Reports Server (NTRS)

    Cordes, David

    1990-01-01

    The national launch strategy vehicle data management system (NLS/VDMS) was developed as part of the 1990 NASA Summer Faculty Fellowship Program. The system was developed under the guidance of the Engineering Systems Branch of the Information Systems Office, and is intended for use within the Program Development Branch PD34. The NLS/VDMS is an on-line database system that permits the tracking of various launch vehicle configurations within the program development office. The system is designed to permit the definition of new launch vehicles, as well as the ability to display and edit existing launch vehicles. Vehicles can be grouped in logical architectures within the system. Reports generated from this package include vehicle data sheets, architecture data sheets, and vehicle flight rate reports. The topics covered include: (1) system overview; (2) initial system development; (3) supercard hypermedia authoring system; (4) the ORACLE database; and (5) system evaluation.

  11. Vehicle Safety. Managing Liability Series.

    ERIC Educational Resources Information Center

    Newby, Deborah, Ed.

    This monograph discusses the safety of vehicles owned, leased, maintained, and operated by colleges and universities. First, the risks by colleges and universities is discussed. First, the risks associated with college vehicles are outlined, including the liability that comes with staff/faculty and student drivers and such special concerns as…

  12. 76 FR 31545 - Federal Management Regulation; Motor Vehicle Management

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ... ADMINISTRATION 41 CFR Part 102-34 RIN 3090-AJ14 Federal Management Regulation; Motor Vehicle Management AGENCY...: The General Services Administration is proposing to amend the Federal Management Regulation (FMR) by....C. 553(a)(2) because it applies to agency management. However, this proposed rule is being...

  13. 76 FR 76622 - Federal Management Regulation; Motor Vehicle Management

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-08

    ... published in the Federal Register on June 1, 2011 (76 FR 31545). There were no comments. This regulatory... ADMINISTRATION 41 CFR Part 102-34 RIN 3090-AJ14 Federal Management Regulation; Motor Vehicle Management AGENCY... is amending the Federal Management Regulation (FMR) by revising current policy on the...

  14. Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)

    SciTech Connect

    Rugh, J. P.

    2013-07-01

    Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

  15. Hybrid Power Management-Based Vehicle Architecture

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2011-01-01

    Hybrid Power Management (HPM) is the integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications (s ee figure). The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The basic vehicle architecture consists of a primary power source, and possibly other power sources, that provides all power to a common energy storage system that is used to power the drive motors and vehicle accessory systems. This architecture also provides power as an emergency power system. Each component is independent, permitting it to be optimized for its intended purpose. The key element of HPM is the energy storage system. All generated power is sent to the energy storage system, and all loads derive their power from that system. This can significantly reduce the power requirement of the primary power source, while increasing the vehicle reliability. Ultracapacitors are ideal for an HPM-based energy storage system due to their exceptionally long cycle life, high reliability, high efficiency, high power density, and excellent low-temperature performance. Multiple power sources and multiple loads are easily incorporated into an HPM-based vehicle. A gas turbine is a good primary power source because of its high efficiency, high power density, long life, high reliability, and ability to operate on a wide range of fuels. An HPM controller maintains optimal control over each vehicle component. This flexible operating system can be applied to all vehicles to considerably improve vehicle efficiency, reliability, safety, security, and performance. The HPM-based vehicle architecture has many advantages over conventional vehicle architectures. Ultracapacitors have a much longer cycle life than batteries, which greatly improves system reliability, reduces life-of-system costs, and reduces environmental impact as ultracapacitors will probably never need to be

  16. Structural Health Management for Future Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Prosser, W. H.; Allison, S. G.; Woodard, S. E.; Wincheski, R. A.; Cooper, E. G.; Price, D. C.; Hedley, M.; Prokopenko, M.; Scott, D. A.; Tessler, A.

    2004-01-01

    Structural Health Management (SHM) will be of critical importance to provide the safety, reliability and affordability necessary for the future long duration space missions described in America's Vision for Space Exploration. Long duration missions to the Moon, Mars and beyond cannot be accomplished with the current paradigm of periodic, ground based structural integrity inspections. As evidenced by the Columbia tragedy, this approach is also inadequate for the current Shuttle fleet, thus leading to its initial implementation of on-board SHM sensing for impact detection as part of the return to flight effort. However, future space systems, to include both vehicles as well as structures such as habitation modules, will require an integrated array of onboard in-situ sensing systems. In addition, advanced data systems architectures will be necessary to communicate, store and process massive amounts of SHM data from large numbers of diverse sensors. Further, improved structural analysis and design algorithms will be necessary to incorporate SHM sensing into the design and construction of aerospace structures, as well as to fully utilize these sensing systems to provide both diagnosis and prognosis of structural integrity. Ultimately, structural integrity information will feed into an Integrated Vehicle Health Management (IVHM) system that will provide real-time knowledge of structural, propulsion, thermal protection and other critical systems for optimal vehicle management and mission control. This paper will provide an overview of NASA research and development in the area of SHM as well as to highlight areas of technology improvement necessary to meet these future mission requirements.

  17. Investigation of Integrated Vehicle Health Management Approaches

    NASA Technical Reports Server (NTRS)

    Paris, Deidre

    2005-01-01

    This report is to present the work that was performed during the summer in the Advance Computing Application office. The NFFP (NASA Faculty Fellow Program) had ten summer faculty members working on IVHM (Integrated Vehicle Health Management) technologies. The objective of this project was two-fold: 1) to become familiar with IVHM concepts and key demonstrated IVHM technologies; and 2) to integrate the research that has been performed by IVHM faculty members into the MASTLAB (Marshall Avionic Software Test Lab). IVHM is a NASA-wide effort to coordinate, integrate and apply advanced software, sensors and design technologies to increase the level of intelligence, autonomy, and health state of future vehicles. IVHM is an important concept because it is consistent with the current plan for NASA to go to the moon, mars, and beyond. In order for NASA to become more involved in deep exploration, avionic systems will need to be highly adaptable and autonomous.

  18. Integrated Vehicle Health Management (IVHM) Activities at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Fox, Jack

    2000-01-01

    Integrated Vehicle Health Management (IVHM) goals are to develop and integrate the technologies which can provide a continuous, intelligent, and adaptive health state of a vehicle and use this information to improve safety and reduce the costs of operations.

  19. Intelligent mission management for uninhabited aerial vehicles

    NASA Astrophysics Data System (ADS)

    Sullivan, Don; Totah, Joseph J.; Wegener, Steve S.; Enomoto, Francis Y.; Frost, Chad R.; Kaneshige, John; Frank, Jeremy E.

    2004-12-01

    The National Aeronautics and Space Administration (NASA), Aeronautics Research Mission Directorate, is developing Intelligent Mission Management (IMM) technology for Uninhabited Aerial Vehicles (UAV"s) under the Vehicle Systems Program"s Autonomous Robust Avionics Project. The objective of the project is to develop air vehicle and associated ground element technology to enhance mission success by increasing mission return and reducing mission risk. Unanticipated science targets, uncertain conditions and changing mission requirements can all influence a flight plan and may require human intervention during the flight; however, time delays and communications bandwidth limit opportunities for operator intervention. To meet these challenges, we will develop UAV-specific technologies enabling goal-directed autonomy, i.e. the ability to redirect the flight in response to current conditions and the current goals of the flight. Our approach divides goal-directed autonomy into two components, an on-board Intelligent Agent Architecture (IAA) and a ground based Collaborative Decision Environment (CDE). These technologies cut across all aspects of a UAV system, including the payload, inner- and outer-loop onboard control, and the operator"s ground station.

  20. Vehicle System Management Modeling in UML for Ares I

    NASA Technical Reports Server (NTRS)

    Pearson, Newton W.; Biehn, Bradley A.; Curry, Tristan D.; Martinez, Mario R.

    2011-01-01

    The Spacecraft & Vehicle Systems Department of Marshall Space Flight Center is responsible for modeling the Vehicle System Management for the Ares I vehicle which was a part of the now canceled Constellation Program. An approach to generating the requirements for the Vehicle System Management was to use the Unified Modeling Language technique to build and test a model that would fulfill the Vehicle System Management requirements. UML has been used on past projects (flight software) in the design phase of the effort but this was the first attempt to use the UML technique from a top down requirements perspective.

  1. Bee Venom Protects against Rotenone-Induced Cell Death in NSC34 Motor Neuron Cells.

    PubMed

    Jung, So Young; Lee, Kang-Woo; Choi, Sun-Mi; Yang, Eun Jin

    2015-09-01

    Rotenone, an inhibitor of mitochondrial complex I of the mitochondrial respiratory chain, is known to elevate mitochondrial reactive oxygen species and induce apoptosis via activation of the caspase-3 pathway. Bee venom (BV) extracted from honey bees has been widely used in oriental medicine and contains melittin, apamin, adolapin, mast cell-degranulating peptide, and phospholipase A₂. In this study, we tested the effects of BV on neuronal cell death by examining rotenone-induced mitochondrial dysfunction. NSC34 motor neuron cells were pretreated with 2.5 μg/mL BV and stimulated with 10 μM rotenone to induce cell toxicity. We assessed cell death by Western blotting using specific antibodies, such as phospho-ERK1/2, phospho-JNK, and cleaved capase-3 and performed an MTT assay for evaluation of cell death and mitochondria staining. Pretreatment with 2.5 μg/mL BV had a neuroprotective effect against 10 μM rotenone-induced cell death in NSC34 motor neuron cells. Pre-treatment with BV significantly enhanced cell viability and ameliorated mitochondrial impairment in rotenone-treated cellular model. Moreover, BV treatment inhibited the activation of JNK signaling and cleaved caspase-3 related to cell death and increased ERK phosphorylation involved in cell survival in rotenone-treated NSC34 motor neuron cells. Taken together, we suggest that BV treatment can be useful for protection of neurons against oxidative stress or neurotoxin-induced cell death. PMID:26402700

  2. Bee Venom Protects against Rotenone-Induced Cell Death in NSC34 Motor Neuron Cells

    PubMed Central

    Jung, So Young; Lee, Kang-Woo; Choi, Sun-Mi; Yang, Eun Jin

    2015-01-01

    Rotenone, an inhibitor of mitochondrial complex I of the mitochondrial respiratory chain, is known to elevate mitochondrial reactive oxygen species and induce apoptosis via activation of the caspase-3 pathway. Bee venom (BV) extracted from honey bees has been widely used in oriental medicine and contains melittin, apamin, adolapin, mast cell-degranulating peptide, and phospholipase A2. In this study, we tested the effects of BV on neuronal cell death by examining rotenone-induced mitochondrial dysfunction. NSC34 motor neuron cells were pretreated with 2.5 μg/mL BV and stimulated with 10 μM rotenone to induce cell toxicity. We assessed cell death by Western blotting using specific antibodies, such as phospho-ERK1/2, phospho-JNK, and cleaved capase-3 and performed an MTT assay for evaluation of cell death and mitochondria staining. Pretreatment with 2.5 μg/mL BV had a neuroprotective effect against 10 μM rotenone-induced cell death in NSC34 motor neuron cells. Pre-treatment with BV significantly enhanced cell viability and ameliorated mitochondrial impairment in rotenone-treated cellular model. Moreover, BV treatment inhibited the activation of JNK signaling and cleaved caspase-3 related to cell death and increased ERK phosphorylation involved in cell survival in rotenone-treated NSC34 motor neuron cells. Taken together, we suggest that BV treatment can be useful for protection of neurons against oxidative stress or neurotoxin-induced cell death. PMID:26402700

  3. Design of Flight Vehicle Management Systems

    NASA Technical Reports Server (NTRS)

    Meyer, George; Aiken, Edwin W. (Technical Monitor)

    1994-01-01

    As the operation of large systems becomes ever more dependent on extensive automation, the need for an effective solution to the problem of design and validation of the underlying software becomes more critical. Large systems possess much detailed structure, typically hierarchical, and they are hybrid. Information processing at the top of the hierarchy is by means of formal logic and sentences; on the bottom it is by means of simple scalar differential equations and functions of time; and in the middle it is by an interacting mix of nonlinear multi-axis differential equations and automata, and functions of time and discrete events. The lecture will address the overall problem as it relates to flight vehicle management, describe the middle level, and offer a design approach that is based on Differential Geometry and Discrete Event Dynamic Systems Theory.

  4. X-33/RLV System Health Management/Vehicle Health Management

    NASA Technical Reports Server (NTRS)

    Mouyos, William; Wangu, Srimal

    1998-01-01

    To reduce operations costs, Reusable Launch Vehicles (RLVS) must include highly reliable robust subsystems which are designed for simple repair access with a simplified servicing infrastructure, and which incorporate expedited decision-making about faults and anomalies. A key component for the Single Stage To Orbit (SSTO) RLV system used to meet these objectives is System Health Management (SHM). SHM incorporates Vehicle Health Management (VHM), ground processing associated with the vehicle fleet (GVHM), and Ground Infrastructure Health Management (GIHM). The primary objective of SHM is to provide an automated and paperless health decision, maintenance, and logistics system. Sanders, a Lockheed Martin Company, is leading the design, development, and integration of the SHM system for RLV and for X-33 (a sub-scale, sub-orbit Advanced Technology Demonstrator). Many critical technologies are necessary to make SHM (and more specifically VHM) practical, reliable, and cost effective. This paper will present the X-33 SHM design which forms the baseline for the RLV SHM, and it will discuss applications of advanced technologies to future RLVs. In addition, this paper will describe a Virtual Design Environment (VDE) which is being developed for RLV. This VDE will allow for system design engineering, as well as program management teams, to accurately and efficiently evaluate system designs, analyze the behavior of current systems, and predict the feasibility of making smooth and cost-efficient transitions from older technologies to newer ones. The RLV SHM design methodology will reduce program costs, decrease total program life-cycle time, and ultimately increase mission success.

  5. IVHM Framework for Intelligent Integration for Vehicle Health Management

    NASA Technical Reports Server (NTRS)

    Paris, Deidre; Trevino, Luis C.; Watson, Michael D.

    2005-01-01

    Integrated Vehicle Health Management (IVHM) systems for aerospace vehicles, is the process of assessing, preserving, and restoring system functionality across flight and techniques with sensor and communication technologies for spacecraft that can generate responses through detection, diagnosis, reasoning, and adapt to system faults in support of Integrated Intelligent Vehicle Management (IIVM). These real-time responses allow the IIVM to modify the affected vehicle subsystem(s) prior to a catastrophic event. Furthermore, this framework integrates technologies which can provide a continuous, intelligent, and adaptive health state of a vehicle and use this information to improve safety and reduce costs of operations. Recent investments in avionics, health management, and controls have been directed towards IIVM. As this concept has matured, it has become clear that IIVM requires the same sensors and processing capabilities as the real-time avionics functions to support diagnosis of subsystem problems. New sensors have been proposed, in addition to augment the avionics sensors to support better system monitoring and diagnostics. As the designs have been considered, a synergy has been realized where the real-time avionics can utilize sensors proposed for diagnostics and prognostics to make better real-time decisions in response to detected failures. IIVM provides for a single system allowing modularity of functions and hardware across the vehicle. The framework that supports IIVM consists of 11 major on-board functions necessary to fully manage a space vehicle maintaining crew safety and mission objectives. These systems include the following: Guidance and Navigation; Communications and Tracking; Vehicle Monitoring; Information Transport and Integration; Vehicle Diagnostics; Vehicle Prognostics; Vehicle Mission Planning, Automated Repair and Replacement; Vehicle Control; Human Computer Interface; and Onboard Verification and Validation. Furthermore, the presented

  6. Remotely Accessed Vehicle Traffic Management System

    NASA Astrophysics Data System (ADS)

    Al-Alawi, Raida

    2010-06-01

    The ever increasing number of vehicles in most metropolitan cities around the world and the limitation in altering the transportation infrastructure, led to serious traffic congestion and an increase in the travelling time. In this work we exploit the emergence of novel technologies such as the internet, to design an intelligent Traffic Management System (TMS) that can remotely monitor and control a network of traffic light controllers located at different sites. The system is based on utilizing Embedded Web Servers (EWS) technology to design a web-based TMS. The EWS located at each intersection uses IP technology for communicating remotely with a Central Traffic Management Unit (CTMU) located at the traffic department authority. Friendly GUI software installed at the CTMU will be able to monitor the sequence of operation of the traffic lights and the presence of traffic at each intersection as well as remotely controlling the operation of the signals. The system has been validated by constructing a prototype that resembles the real application.

  7. X-33/RLV System Health Management/ Vehicle Health Management

    NASA Technical Reports Server (NTRS)

    Garbos, Raymond J.; Mouyos, William

    1998-01-01

    To reduce operations cost, the RLV must include the following elements: highly reliable, robust subsystems designed for simple repair access with a simplified servicing infrastructure and incorporating expedited decision making about faults and anomalies. A key component for the Single Stage to Orbit (SSTO) RLV System used to meet these objectives is System Health Management (SHM). SHM deals with the vehicle component- Vehicle Health Management (VHM), the ground processing associated with the fleet (GVHM) and the Ground Infrastructure Health Management (GIHM). The objective is to provide an automated collection and paperless health decision, maintenance and logistics system. Many critical technologies are necessary to make the SHM (and more specifically VHM) practical, reliable and cost effective. Sanders is leading the design, development and integration of the SHM system for RLV and X-33 SHM (a sub-scale, sub-orbit Advanced Technology Demonstrator). This paper will present the X-33 SHM design which forms the baseline for RLV SHM. This paper will also discuss other applications of these technologies.

  8. Systems and methods for vehicle speed management

    DOEpatents

    Sujan, Vivek Anand; Vajapeyazula, Phani; Follen, Kenneth; Wu, An; Forst, Howard Robert

    2016-03-01

    Controlling a speed of a vehicle based on at least a portion of a route grade and a route distance divided into a plurality of route sections, each including at least one of a section grade and section length. Controlling the speed of the vehicle is further based on determining a cruise control speed mode for the vehicle for each of the plurality of route sections and determining a speed reference command of the vehicle based on at least one of the cruise control speed mode, the section length, the section grade, and a current speed.

  9. Physical context management for a motor vehicle

    DOEpatents

    Dixon, Kevin R.; Forsythe, James C.; Lippitt, Carl E.; Lippitt, legal representative, Lois Diane

    2009-10-27

    Computer software for and a method of enhancing safety for an operator of a motor vehicle comprising employing a plurality of sensors of vehicle and operator conditions, matching collective output from the sensors against a plurality of known dangerous conditions, and preventing certain activity of the operator if a known dangerous condition is detected.

  10. Plug-In Electric Vehicle Handbook for Fleet Managers (Brochure)

    SciTech Connect

    Not Available

    2012-04-01

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for fleet managers describes the basics of PEV technology, PEV benefits for fleets, how to select the right PEV, charging a PEV, and PEV maintenance.

  11. System and method of vehicle operating condition management

    DOEpatents

    Sujan, Vivek A.; Vajapeyazula, Phani; Follen, Kenneth; Wu, An; Moffett, Barty L.

    2015-10-20

    A vehicle operating condition profile can be determined over a given route while also considering imposed constraints such as deviation from time targets, deviation from maximum governed speed limits, etc. Given current vehicle speed, engine state and transmission state, the present disclosure optimally manages the engine map and transmission to provide a recommended vehicle operating condition that optimizes fuel consumption in transitioning from one vehicle state to a target state. Exemplary embodiments provide for offline and online optimizations relative to fuel consumption. The benefit is increased freight efficiency in transporting cargo from source to destination by minimizing fuel consumption and maintaining drivability.

  12. Vehicle health management for guidance, navigation and control systems

    NASA Technical Reports Server (NTRS)

    Radke, Kathleen; Frazzini, Ron; Bursch, Paul; Wald, Jerry; Brown, Don

    1993-01-01

    The objective of the program was to architect a vehicle health management (VHM) system for space systems avionics that assures system readiness for launch vehicles and for space-based dormant vehicles. The platforms which were studied and considered for application of VHM for guidance, navigation and control (GN&C) included the Advanced Manned Launch System (AMLS), the Horizontal Landing-20/Personnel Launch System (HL-20/PLS), the Assured Crew Return Vehicle (ACRV) and the Extended Duration Orbiter (EDO). This set was selected because dormancy and/or availability requirements are driving the designs of these future systems.

  13. A Hybrid Power Management (HPM) Based Vehicle Architecture

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2011-01-01

    Society desires vehicles with reduced fuel consumption and reduced emissions. This presents a challenge and an opportunity for industry and the government. The NASA John H. Glenn Research Center (GRC) has developed a Hybrid Power Management (HPM) based vehicle architecture for space and terrestrial vehicles. GRC's Electrical and Electromagnetics Branch of the Avionics and Electrical Systems Division initiated the HPM Program for the GRC Technology Transfer and Partnership Office. HPM is the innovative integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications. The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The basic vehicle architecture consists of a primary power source, and possibly other power sources, providing all power to a common energy storage system, which is used to power the drive motors and vehicle accessory systems, as well as provide power as an emergency power system. Each component is independent, permitting it to be optimized for its intended purpose. This flexible vehicle architecture can be applied to all vehicles to considerably improve system efficiency, reliability, safety, security, and performance. This unique vehicle architecture has the potential to alleviate global energy concerns, improve the environment, stimulate the economy, and enable new missions.

  14. Simulation of demand management and grid balancing with electric vehicles

    NASA Astrophysics Data System (ADS)

    Druitt, James; Früh, Wolf-Gerrit

    2012-10-01

    This study investigates the potential role of electric vehicles in an electricity network with a high contribution from variable generation such as wind power. Electric vehicles are modelled to provide demand management through flexible charging requirements and energy balancing for the network. Balancing applications include both demand balancing and vehicle-to-grid discharging. This study is configured to represent the UK grid with balancing requirements derived from wind generation calculated from weather station wind speeds on the supply side and National Grid data from on the demand side. The simulation models 1000 individual vehicle entities to represent the behaviour of larger numbers of vehicles. A stochastic trip generation profile is used to generate realistic journey characteristics, whilst a market pricing model allows charging and balancing decisions to be based on realistic market price conditions. The simulation has been tested with wind generation capacities representing up to 30% of UK consumption. Results show significant improvements to load following conditions with the introduction of electric vehicles, suggesting that they could substantially facilitate the uptake of intermittent renewable generation. Electric vehicle owners would benefit from flexible charging and selling tariffs, with the majority of revenue derived from vehicle-to-grid participation in balancing markets.

  15. Hybrid electric vehicle power management system

    DOEpatents

    Bissontz, Jay E.

    2015-08-25

    Level voltage levels/states of charge are maintained among a plurality of high voltage DC electrical storage devices/traction battery packs that are arrayed in series to support operation of a hybrid electric vehicle drive train. Each high voltage DC electrical storage device supports a high voltage power bus, to which at least one controllable load is connected, and at least a first lower voltage level electrical distribution system. The rate of power transfer from the high voltage DC electrical storage devices to the at least first lower voltage electrical distribution system is controlled by DC-DC converters.

  16. Thermal management concepts for higher efficiency heavy vehicles.

    SciTech Connect

    Wambsganss, M. W.

    1999-05-19

    Thermal management is a cross-cutting technology that directly or indirectly affects engine performance, fuel economy, safety and reliability, aerodynamics, driver/passenger comfort, materials selection, emissions, maintenance, and component life. This review paper provides an assessment of thermal management for large trucks, particularly as it impacts these features. Observations arrived at from a review of the state of the art for thermal management for over-the-road trucks are highlighted and commented on. Trends in the large truck industry, pertinent engine truck design and performance objectives, and the implications of these relative to thermal management, are presented. Finally, new thermal management concepts for high efficiency vehicles are described.

  17. Aerospace vehicle water-waste management

    NASA Technical Reports Server (NTRS)

    Pecoraro, J. N.

    1973-01-01

    The collection and disposal of human wastes, such as urine and feces, in a spacecraft environment are performed in an aesthetic and reliable manner to prevent degradation of crew performance. The waste management system controls, transfers, and processes materials such as feces, emesis, food residues, used expendables, and other wastes. The requirements, collection, transport, and waste processing are described.

  18. Vehicle Health Management Communications Requirements for AeroMACS

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Clements, Donna J.; Apaza, Rafael D.

    2012-01-01

    As the development of standards for the aeronautical mobile airport communications system (AeroMACS) progresses, the process of identifying and quantifying appropriate uses for the system is progressing. In addition to defining important elements of AeroMACS standards, indentifying the systems uses impacts AeroMACS bandwidth requirements. Although an initial 59 MHz spectrum allocation for AeroMACS was established in 2007, the allocation may be inadequate; studies have indicated that 100 MHz or more of spectrum may be required to support airport surface communications. Hence additional spectrum allocations have been proposed. Vehicle health management (VHM) systems, which can produce large volumes of vehicle health data, were not considered in the original bandwidth requirements analyses, and are therefore of interest in supporting proposals for additional AeroMACS spectrum. VHM systems are an emerging development in air vehicle safety, and preliminary estimates of the amount of data that will be produced and transmitted off an aircraft, both in flight and on the ground, have been prepared based on estimates of data produced by on-board vehicle health sensors and initial concepts of data processing approaches. This allowed an initial estimate of VHM data transmission requirements for the airport surface. More recently, vehicle-level systems designed to process and analyze VHM data and draw conclusions on the current state of vehicle health have been undergoing testing and evaluation. These systems make use of vehicle system data that is mostly different from VHM data considered previously for airport surface transmission, and produce processed system outputs that will be also need to be archived, thus generating additional data load for AeroMACS. This paper provides an analysis of airport surface data transmission requirements resulting from the vehicle level reasoning systems, within the context of overall VHM data requirements.

  19. Vehicle management and mission planning systems with shuttle applications

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A preliminary definition of a concept for an automated system is presented that will support the effective management and planning of space shuttle operations. It is called the Vehicle Management and Mission Planning System (VMMPS). In addition to defining the system and its functions, some of the software requirements of the system are identified and a phased and evolutionary method is recommended for software design, development, and implementation. The concept is composed of eight software subsystems supervised by an executive system. These subsystems are mission design and analysis, flight scheduler, launch operations, vehicle operations, payload support operations, crew support, information management, and flight operations support. In addition to presenting the proposed system, a discussion of the evolutionary software development philosophy that the Mission Planning and Analysis Division (MPAD) would propose to use in developing the required supporting software is included. A preliminary software development schedule is also included.

  20. Issues of in-vehicle ITS information management

    SciTech Connect

    Spelt, P.F.

    1997-12-01

    This paper presents issues associated with the introduction into road vehicles of multiple information sources related to the Intelligent Transportation System (ITS). Also, an argument is made for an In-Vehicle Information System (IVIS) to manage messages from the associated Intelligent Transportation System Services, as well as other information to be presented to the driver. The IVIS serves as the interface between the driver and all the information sources, including both input from and information display to the driver. Increasingly, aftermarket systems, such as routing and navigation aids, collision avoidance warning systems, yellow pages, can be added to vehicles to aid in travel and/or the conduct of business in the vehicle. The installation of multiple devices, each with its own driver interface, increases the likelihood of driver distraction and thus the risk of an accident. However, introduction of an IVIS raises a number of issues which relate to things such as proprietary messages, message prioritization across devices from different manufacturers, and safe access to the vehicle manufacturer`s proprietary data bus. These issues are the focus of this paper. Sections 1 and 2 of this paper present short summarizes of the efforts in a variety of areas related to in-vehicle information systems. In the first two sections, a summary of two Department of Transportation (DOT) initiatives is followed by a description of US standards development efforts. Next is a brief consideration of institutional, jurisdictional and legal issues associated with in-vehicle systems and the accompanying infrastructure. Section 3 of the paper is devoted to systems integration and driver interface engineering issues.

  1. Design distributed simulation platform for vehicle management system

    NASA Astrophysics Data System (ADS)

    Wen, Zhaodong; Wang, Zhanlin; Qiu, Lihua

    2006-11-01

    Next generation military aircraft requires the airborne management system high performance. General modules, data integration, high speed data bus and so on are needed to share and manage information of the subsystems efficiently. The subsystems include flight control system, propulsion system, hydraulic power system, environmental control system, fuel management system, electrical power system and so on. The unattached or mixed architecture is changed to integrated architecture. That means the whole airborne system is regarded into one system to manage. So the physical devices are distributed but the system information is integrated and shared. The process function of each subsystem are integrated (including general process modules, dynamic reconfiguration), furthermore, the sensors and the signal processing functions are shared. On the other hand, it is a foundation for power shared. Establish a distributed vehicle management system using 1553B bus and distributed processors which can provide a validation platform for the research of airborne system integrated management. This paper establishes the Vehicle Management System (VMS) simulation platform. Discuss the software and hardware configuration and analyze the communication and fault-tolerant method.

  2. 77 FR 39253 - Final Environmental Impact Statement on the Denali Park Road Vehicle Management Plan, Denali...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-02

    ... NATIONAL PARK SERVICE Final Environmental Impact Statement on the Denali Park Road Vehicle Management Plan... of the Final Environmental Impact Statement for the Denali Park Road Vehicle Management Plan. SUMMARY... Denali Park Road Vehicle Management Plan (Plan/FEIS), for Denali National Park and Preserve, Alaska....

  3. 78 FR 5494 - Off-Road Vehicle Management Plan, Draft Environmental Impact Statement, Lake Meredith National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-25

    ... National Park Service Off-Road Vehicle Management Plan, Draft Environmental Impact Statement, Lake Meredith...- Road Vehicle Management Plan (Plan), Lake Meredith National Recreation Area (LAMR), Texas. The Plan/DEIS evaluates the impacts of four alternatives that address off-road vehicle (ORV) management in...

  4. 48 CFR 52.251-2 - Interagency Fleet Management System Vehicles and Related Services.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Management System Vehicles and Related Services. 52.251-2 Section 52.251-2 Federal Acquisition Regulations... CLAUSES Text of Provisions and Clauses 52.251-2 Interagency Fleet Management System Vehicles and Related... to obtain interagency fleet management system vehicles and related services for use in...

  5. 48 CFR 52.251-2 - Interagency Fleet Management System Vehicles and Related Services.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Management System Vehicles and Related Services. 52.251-2 Section 52.251-2 Federal Acquisition Regulations... CLAUSES Text of Provisions and Clauses 52.251-2 Interagency Fleet Management System Vehicles and Related... to obtain interagency fleet management system vehicles and related services for use in...

  6. 48 CFR 52.251-2 - Interagency Fleet Management System Vehicles and Related Services.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Management System Vehicles and Related Services. 52.251-2 Section 52.251-2 Federal Acquisition Regulations... CLAUSES Text of Provisions and Clauses 52.251-2 Interagency Fleet Management System Vehicles and Related... to obtain interagency fleet management system vehicles and related services for use in...

  7. 48 CFR 52.251-2 - Interagency Fleet Management System Vehicles and Related Services.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Management System Vehicles and Related Services. 52.251-2 Section 52.251-2 Federal Acquisition Regulations... CLAUSES Text of Provisions and Clauses 52.251-2 Interagency Fleet Management System Vehicles and Related... to obtain interagency fleet management system vehicles and related services for use in...

  8. Commercial Aircraft Integrated Vehicle Health Management Study

    NASA Technical Reports Server (NTRS)

    Reveley, Mary S.; Briggs, Jeffrey L.; Evans, Joni K.; Jones, Sharon Monica; Kurtoglu, Tolga; Leone, Karen M.; Sandifer, Carl E.; Thomas, Megan A.

    2010-01-01

    Statistical data and literature from academia, industry, and other government agencies were reviewed and analyzed to establish requirements for fixture work in detection, diagnosis, prognosis, and mitigation for IVHM related hardware and software. Around 15 to 20 percent of commercial aircraft accidents between 1988 and 2003 involved inalftfnctions or failures of some aircraft system or component. Engine and landing gear failures/malfunctions dominate both accidents and incidents. The IVI vl Project research technologies were found to map to the Joint Planning and Development Office's National Research and Development Plan (RDP) as well as the Safety Working Group's National Aviation Safety Strategic. Plan (NASSP). Future directions in Aviation Technology as related to IVHlvl were identified by reviewing papers from three conferences across a five year time span. A total of twenty-one trend groups in propulsion, aeronautics and aircraft categories were compiled. Current and ftiture directions of IVHM related technologies were gathered and classified according to eight categories: measurement and inspection, sensors, sensor management, detection, component and subsystem monitoring, diagnosis, prognosis, and mitigation.

  9. Fuel-Cell-Powered Vehicle with Hybrid Power Management

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2010-01-01

    Figure 1 depicts a hybrid electric utility vehicle that is powered by hydrogenburning proton-exchange-membrane (PEM) fuel cells operating in conjunction with a metal hydride hydrogen-storage unit. Unlike conventional hybrid electric vehicles, this vehicle utilizes ultracapacitors, rather than batteries, for storing electric energy. This vehicle is a product of continuing efforts to develop the technological discipline known as hybrid power management (HPM), which is oriented toward integration of diverse electric energy-generating, energy-storing, and energy- consuming devices in optimal configurations. Instances of HPM were reported in five prior NASA Tech Briefs articles, though not explicitly labeled as HPM in the first three articles: "Ultracapacitors Store Energy in a Hybrid Electric Vehicle" (LEW-16876), Vol. 24, No. 4 (April 2000), page 63; "Photovoltaic Power Station With Ultracapacitors for Storage" (LEW- 17177), Vol. 27, No. 8 (August 2003), page 38; "Flasher Powered by Photovoltaic Cells and Ultracapacitors" (LEW-17246), Vol. 27, No. 10 (October 2003), page 37; "Hybrid Power Management" (LEW-17520), Vol. 29, No. 12 (December 2005), page 35; and "Ultracapacitor-Powered Cordless Drill" (LEW-18116-1), Vol. 31, No. 8 (August 2007), page 34. To recapitulate from the cited prior articles: The use of ultracapacitors as energy- storage devices lies at the heart of HPM. An ultracapacitor is an electrochemical energy-storage device, but unlike in a conventional rechargeable electrochemical cell or battery, chemical reactions do not take place during operation. Instead, energy is stored electrostatically at an electrode/electrolyte interface. The capacitance per unit volume of an ultracapacitor is much greater than that of a conventional capacitor because its electrodes have much greater surface area per unit volume and the separation between the electrodes is much smaller.

  10. 48 CFR 51.204 - Use of interagency fleet management system (IFMS) vehicles and related services.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... management system (IFMS) vehicles and related services. 51.204 Section 51.204 Federal Acquisition Regulations... system (IFMS) vehicles and related services. Contractors authorized to use interagency fleet management system (IFMS) vehicles and related services shall comply with the requirements of 41 CFR 101-39 and...

  11. 48 CFR 51.204 - Use of interagency fleet management system (IFMS) vehicles and related services.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... management system (IFMS) vehicles and related services. 51.204 Section 51.204 Federal Acquisition Regulations... system (IFMS) vehicles and related services. Contractors authorized to use interagency fleet management system (IFMS) vehicles and related services shall comply with the requirements of 41 CFR 101-39 and...

  12. 48 CFR 51.204 - Use of interagency fleet management system (IFMS) vehicles and related services.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... management system (IFMS) vehicles and related services. 51.204 Section 51.204 Federal Acquisition Regulations... system (IFMS) vehicles and related services. Contractors authorized to use interagency fleet management system (IFMS) vehicles and related services shall comply with the requirements of 41 CFR 101-39 and...

  13. Supercapacitors for the energy management of electric vehicles

    NASA Astrophysics Data System (ADS)

    Faggioli, Eugenio; Rena, Piergeorgio; Danel, Veronique; Andrieu, X.; Mallant, Ronald; Kahlen, Hans

    The integration of the on-board energy source of an electrically propelled vehicle with a supercapacitor bank (SB) as a peak power unit, can lead to substantial benefits in terms of electric vehicle performances, battery life and energy economy. Different architectures may be envisaged, to be chosen according to technical-economical trade-off. A research activity, supported by the European Community in the frame of the Joule III program and titled `Development of Supercapacitors for Electric Vehicles' (contract JOE3-CT95-0001), has been in progress since the beginning of 1996. The partners involved are SAFT (project leader), Alcatel Alsthom Research (France), Centro Ricerche Fiat (Italy), University of Kaiserslautern (Germany), Danionics (DK) and ECN (Netherlands). Its objective is to develop a SB and its electronic control and to integrate them in two different full-scale traction systems, supplied, respectively, by sealed lead traction batteries and by a fuel cell system. Through the bench tests, it will be possible to evaluate the impact of the SB on both traction systems. In this paper, a project overview will be given; the power management strategy principles, the supercapacitor's control electronic devices, the system's architecture and the supercapacitor's requirements on the base of the simulation results, will be examined.

  14. Propulsion Integrated Vehicle Health Management Technology Experiment (PITEX) Conducted

    NASA Technical Reports Server (NTRS)

    Maul, William A.; Chicatelli, Amy K.; Fulton, Christopher E.

    2004-01-01

    The Propulsion Integrated Vehicle Health Management (IVHM) Technology Experiment (PITEX) is a continuing NASA effort being conducted cooperatively by the NASA Glenn Research Center, the NASA Ames Research Center, and the NASA Kennedy Space Center. It was a key element of a Space Launch Initiative risk-reduction task performed by the Northrop Grumman Corporation in El Segundo, California. PITEX's main objectives are the continued maturation of diagnostic technologies that are relevant to second generation reusable launch vehicle (RLV) subsystems and the assessment of the real-time performance of the PITEX diagnostic solution. The PITEX effort has considerable legacy in the NASA IVHM Technology Experiment for X-vehicles (NITEX) that was selected to fly on the X-34 subscale RLV that was being developed by Orbital Sciences Corporation. NITEX, funded through the Future-X Program Office, was to advance the technology-readiness level of selected IVHM technologies within a flight environment and to begin the transition of these technologies from experimental status into RLV baseline designs. The experiment was to perform realtime fault detection and isolation and suggest potential recovery actions for the X-34 main propulsion system (MPS) during all mission phases by using a combination of system-level analysis and detailed diagnostic algorithms.

  15. Development of Structural Health Management Technology for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Prosser, W. H.

    2003-01-01

    As part of the overall goal of developing Integrated Vehicle Health Management (IVHM) systems for aerospace vehicles, NASA has focused considerable resources on the development of technologies for Structural Health Management (SHM). The motivations for these efforts are to increase the safety and reliability of aerospace structural systems, while at the same time decreasing operating and maintenance costs. Research and development of SHM technologies has been supported under a variety of programs for both aircraft and spacecraft including the Space Launch Initiative, X-33, Next Generation Launch Technology, and Aviation Safety Program. The major focus of much of the research to date has been on the development and testing of sensor technologies. A wide range of sensor technologies are under consideration including fiber-optic sensors, active and passive acoustic sensors, electromagnetic sensors, wireless sensing systems, MEMS, and nanosensors. Because of their numerous advantages for aerospace applications, most notably being extremely light weight, fiber-optic sensors are one of the leading candidates and have received considerable attention.

  16. X-wing fly-by-wire vehicle management system

    NASA Technical Reports Server (NTRS)

    Fischer, Jr., William C. (Inventor)

    1990-01-01

    A complete, computer based, vehicle management system (VMS) for X-Wing aircraft using digital fly-by-wire technology controlling many subsystems and providing functions beyond the classical aircraft flight control system. The vehicle management system receives input signals from a multiplicity of sensors and provides commands to a large number of actuators controlling many subsystems. The VMS includes--segregating flight critical and mission critical factors and providing a greater level of back-up or redundancy for the former; centralizing the computation of functions utilized by several subsystems (e.g. air data, rotor speed, etc.); integrating the control of the flight control functions, the compressor control, the rotor conversion control, vibration alleviation by higher harmonic control, engine power anticipation and self-test, all in the same flight control computer (FCC) hardware units. The VMS uses equivalent redundancy techniques to attain quadruple equivalency levels; includes alternate modes of operation and recovery means to back-up any functions which fail; and uses back-up control software for software redundancy.

  17. Controls for Reusable Launch Vehicles During Terminal Area Energy Management

    NASA Technical Reports Server (NTRS)

    Driessen, Brian J.

    2005-01-01

    During the terminal energy management phase of flight (last of three phases) for a reusable launch vehicle, it is common for the controller to receive guidance commands specifying desired values for (i) the roll angle roll q(sub roll), (ii) the acceleration a(sub n) in the body negative z direction, -k(sub A)-bar, and (iii) omega(sub 3), the projection of onto the body-fixed axis k(sub A)-bar, is always indicated by guidance to be zero. The objective of the controller is to regulate the actual values of these three quantities, i.e make them close to the commanded values, while maintaining system stability.

  18. Development and prospect of unmanned aerial vehicles for agricultural production management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unmanned aerial vehicles have been developed and applied to support agricultural production management. Compared to piloted aircrafts, an Unmanned Aerial Vehicle (UAV) can focus on small crop fields in lower flight altitude than regular airplanes to perform site-specific management with high precisi...

  19. NREL Works to Increase Electric Vehicle Efficiency Through Enhanced Thermal Management (Fact Sheet)

    SciTech Connect

    Not Available

    2014-06-01

    Researchers at NREL are providing new insight into how heating and cooling systems affect the distance that electric vehicles can travel on a single charge. Electric vehicle range can be reduced by as much as 68% per charge because of climate-control demands. NREL engineers are investigating opportunities to change this dynamic and increase driving range by improving vehicle thermal management. NREL experts are collaborating with automotive industry partners to investigate promising thermal management technologies and strategies, including zone-based cabin temperature controls, advanced heating and air conditioning controls, seat-based climate controls, vehicle thermal preconditioning, and thermal load reduction technologies.

  20. Uncertainty management for aerial vehicles: Coordination, deconfliction, and disturbance rejection

    NASA Astrophysics Data System (ADS)

    Panyakeow, Prachya

    The presented dissertation aims to develop control algorithms that deal with three types of uncertainties managements. First, we examine the situation when unmanned aerial vehicles (UAVs) fly through uncertain environments that contain both stationary and moving obstacles. Moreover, a guarantee of collision avoidance is necessary when UAVs operate in close proximity of each other. Second, we look at the communication uncertainty among the network of cooperative UAVs and the efforts to establish and maintain the connectivity throughout their entire missions. Third, we explore the scenario when the aircraft flies through wind gust. The introduction of an appropriate control scheme to actively alleviate the gust loads can result into weight reduction and consequently lower the fuel cost. In the first part of this dissertation, we develop a deconfliction algorithm that guarantees collision avoidance between a pair of constant speed unicycle-type UAVs as well as convergence to the desired destination for each UAV in presence of static obstacles. We use a combination of navigation and swirling functions to direct the unicycle vehicles along the planned trajectories while avoiding inter-vehicle collisions. The main feature of our contribution is proposing means of designing a deconfliction algorithm for unicycle vehicles that more closely capture the dynamics of constant speed UAVs as opposed to double integrator models. Specifically, we consider the issue of UAV turn-rate constraints and proceed to explore the selection of key algorithmic parameters in order to minimize undesirable trajectories and overshoots induced by the avoidance algorithm. The avoidance and convergence analysis of the proposed algorithm is then performed for two cooperative UAVs and simulation results are provided to support the viability of the proposed framework for more general mission scenarios. For the uncertainty of the UAV network, we provides two approaches to establish connectivity among a

  1. Analysis and optimization of hybrid electric vehicle thermal management systems

    NASA Astrophysics Data System (ADS)

    Hamut, H. S.; Dincer, I.; Naterer, G. F.

    2014-02-01

    In this study, the thermal management system of a hybrid electric vehicle is optimized using single and multi-objective evolutionary algorithms in order to maximize the exergy efficiency and minimize the cost and environmental impact of the system. The objective functions are defined and decision variables, along with their respective system constraints, are selected for the analysis. In the multi-objective optimization, a Pareto frontier is obtained and a single desirable optimal solution is selected based on LINMAP decision-making process. The corresponding solutions are compared against the exergetic, exergoeconomic and exergoenvironmental single objective optimization results. The results show that the exergy efficiency, total cost rate and environmental impact rate for the baseline system are determined to be 0.29, ¢28 h-1 and 77.3 mPts h-1 respectively. Moreover, based on the exergoeconomic optimization, 14% higher exergy efficiency and 5% lower cost can be achieved, compared to baseline parameters at an expense of a 14% increase in the environmental impact. Based on the exergoenvironmental optimization, a 13% higher exergy efficiency and 5% lower environmental impact can be achieved at the expense of a 27% increase in the total cost.

  2. Integrated Vehicle Health Management (IVHM) for Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Baroth, Edmund C.; Pallix, Joan

    2006-01-01

    To achieve NASA's ambitious Integrated Space Transportation Program objectives, aerospace systems will implement a variety of new concept in health management. System level integration of IVHM technologies for real-time control and system maintenance will have significant impact on system safety and lifecycle costs. IVHM technologies will enhance the safety and success of complex missions despite component failures, degraded performance, operator errors, and environment uncertainty. IVHM also has the potential to reduce, or even eliminate many of the costly inspections and operations activities required by current and future aerospace systems. This presentation will describe the array of NASA programs participating in the development of IVHM technologies for NASA missions. Future vehicle systems will use models of the system, its environment, and other intelligent agents with which they may interact. IVHM will be incorporated into future mission planners, reasoning engines, and adaptive control systems that can recommend or execute commands enabling the system to respond intelligently in real time. In the past, software errors and/or faulty sensors have been identified as significant contributors to mission failures. This presentation will also address the development and utilization of highly dependable sohare and sensor technologies, which are key components to ensure the reliability of IVHM systems.

  3. 76 FR 45848 - Draft Environmental Impact Statement on a Denali Park Road Vehicle Management Plan for Denali...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-01

    ... National Park Service Draft Environmental Impact Statement on a Denali Park Road Vehicle Management Plan... availability of the Draft Environmental Impact Statement on a Denali Park Road Vehicle Management Plan for... Draft Environmental Impact Statement (DEIS) on a Denali Park Road Vehicle Management Plan for...

  4. 48 CFR 252.251-7001 - Use of Interagency Fleet Management System (IFMS) vehicles and related services.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Management System (IFMS) vehicles and related services. 252.251-7001 Section 252.251-7001 Federal Acquisition... Fleet Management System (IFMS) vehicles and related services. As prescribed in 251.205, use the following clause: Use of Interagency Fleet Management System (IFMS) Vehicles and Related Services (DEC...

  5. 48 CFR 252.251-7001 - Use of Interagency Fleet Management System (IFMS) vehicles and related services.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Management System (IFMS) vehicles and related services. 252.251-7001 Section 252.251-7001 Federal Acquisition... Fleet Management System (IFMS) vehicles and related services. As prescribed in 251.205, use the following clause: Use of Interagency Fleet Management System (IFMS) Vehicles and Related Services (DEC...

  6. 48 CFR 252.251-7001 - Use of Interagency Fleet Management System (IFMS) vehicles and related services.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Management System (IFMS) vehicles and related services. 252.251-7001 Section 252.251-7001 Federal Acquisition... Fleet Management System (IFMS) vehicles and related services. As prescribed in 251.205, use the following clause: Use of Interagency Fleet Management System (IFMS) Vehicles and Related Services (DEC...

  7. 48 CFR 252.251-7001 - Use of Interagency Fleet Management System (IFMS) vehicles and related services.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Management System (IFMS) vehicles and related services. 252.251-7001 Section 252.251-7001 Federal Acquisition... Fleet Management System (IFMS) vehicles and related services. As prescribed in 251.205, use the following clause: Use of Interagency Fleet Management System (IFMS) Vehicles and Related Services (DEC...

  8. Thermal management for heavy vehicles (Class 7-8 trucks)

    SciTech Connect

    Wambsganss, M.W.

    2000-04-03

    Thermal management is a crosscutting technology that has an important effect on fuel economy and emissions, as well as on reliability and safety, of heavy-duty trucks. Trends toward higher-horsepower engines, along with new technologies for reducing emissions, are substantially increasing heat-rejection requirements. For example, exhaust gas recirculation (EGR), which is probably the most popular near-term strategy for reducing NO{sub x} emissions, is expected to add 20 to 50% to coolant heat-rejection requirements. There is also a need to package more cooling in a smaller space without increasing costs. These new demands have created a need for new and innovative technologies and concepts that will require research and development, which, due to its long-term and high-risk nature, would benefit from government funding. This document outlines a research program that was recommended by representatives of truck manufacturers, engine manufacturers, equipment suppliers, universities, and national laboratories. Their input was obtained through personal interviews and a plenary workshop that was sponsored by the DOE Office of Heavy Vehicle Technologies and held at Argonne National Laboratory on October 19--20, 1999. Major research areas that received a strong endorsement by industry and that are appropriate for government funding were identified and included in the following six tasks: (1) Program management/coordination and benefits/cost analyses; (2) Advanced-concept development; (3) Advanced heat exchangers and heat-transfer fluids; (4) Simulation-code development; (5) Sensors and control components development; and (6) Concept/demonstration truck sponsorship.

  9. Clean Cities Plug-In Electric Vehicle Handbook for Fleet Managers

    SciTech Connect

    2012-04-01

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for fleet managers describes the basics of PEV technology, PEV benefits for fleets, how to select the right PEV, charging a PEV, and PEV maintenance.

  10. Development of Unmanned Aerial Vehicles for Site-Specific Crop Production Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unmanned Aerial Vehicles (UAV) have been developed and applied to support the practice of precision agriculture. Compared to piloted aircrafts, an Unmanned Aerial Vehicle can focus on much smaller crop fields with much lower flight altitude than regular airplanes to perform site-specific management ...

  11. Alternative Fuels and Advanced Vehicles: Resources for Fleet Managers (Clean Cities) (Presentation)

    SciTech Connect

    Brennan, A.

    2011-04-01

    A discussion of the tools and resources on the Clean Cities, Alternative Fuels and Advanced Vehicles Data Center, and the FuelEconomy.gov Web sites that can help vehicle fleet managers make informed decisions about implementing strategies to reduce gasoline and diesel fuel use.

  12. Vehicle Integrated Propulsion Research for the Study of Health Management Capabilities

    NASA Technical Reports Server (NTRS)

    Lekki, John D.; Simon, Donald L.; Hunter, Gary W.; Woike, Mary; Tokars, Roger P.

    2012-01-01

    Presentation on vehicle integrated propulsion research results and planning. This research emphasizes the testing of advanced health management sensors and diagnostics in an aircraft engine that is operated through multiple baseline and fault conditions.

  13. Thermal Management of Power Electronics and Electric Motors for Electric-Drive Vehicles (Presentation)

    SciTech Connect

    Narumanchi, S.

    2014-09-01

    This presentation is an overview of the power electronics and electric motor thermal management and reliability activities at NREL. The focus is on activities funded by the Department of Energy Vehicle Technologies Office Advanced Power Electronics and Electric Motors Program.

  14. Vehicle presence analysis for law enforcement applications and parking lot management

    NASA Astrophysics Data System (ADS)

    Lipetski, Yuriy; Sidla, Oliver

    2013-03-01

    The efficient and robust detection of the presence of vehicles in restricted parking areas is important for applications in law enforcement as well as for the enforcement of parking rules on private property. We present our work towards this goal aimed at the application of vehicle detection in urban environments. The method is to be suited for smart cameras which have to operate autonomously over extended periods of time. Our system is developed as part of a bigger research effort which combines onsite vehicle presence detection and an associated web management system which is intended to monitor, steer and reroute delivery vehicles.

  15. A Framework for Integration of IVHM Technologies for Intelligent Integration for Vehicle Management

    NASA Technical Reports Server (NTRS)

    Paris, Deidre E.; Trevino, Luis; Watson, Mike

    2005-01-01

    As a part of the overall goal of developing Integrated Vehicle Health Management (IVHM) systems for aerospace vehicles, the NASA Faculty Fellowship Program (NFFP) at Marshall Space Flight Center has performed a pilot study on IVHM principals which integrates researched IVHM technologies in support of Integrated Intelligent Vehicle Management (IIVM). IVHM is the process of assessing, preserving, and restoring system functionality across flight and ground systems (NASA NGLT 2004). The framework presented in this paper integrates advanced computational techniques with sensor and communication technologies for spacecraft that can generate responses through detection, diagnosis, reasoning, and adapt to system faults in support of IIVM. These real-time responses allow the IIVM to modify the effected vehicle subsystem(s) prior to a catastrophic event. Furthermore, the objective of this pilot program is to develop and integrate technologies which can provide a continuous, intelligent, and adaptive health state of a vehicle and use this information to improve safety and reduce costs of operations. Recent investments in avionics, health management, and controls have been directed towards IIVM. As this concept has matured, it has become clear the IIVM requires the same sensors and processing capabilities as the real-time avionics functions to support diagnosis of subsystem problems. New sensors have been proposed, in addition, to augment the avionics sensors to support better system monitoring and diagnostics. As the designs have been considered, a synergy has been realized where the real-time avionics can utilize sensors proposed for diagnostics and prognostics to make better real-time decisions in response to detected failures. IIVM provides for a single system allowing modularity of functions and hardware across the vehicle. The framework that supports IIVM consists of 11 major on-board functions necessary to fully manage a space vehicle maintaining crew safety and mission

  16. Thermal management in heavy vehicles : a review identifying issues and research requirements.

    SciTech Connect

    Wambsganss, M. W.

    1999-01-15

    Thermal management in heavy vehicles is cross-cutting because it directly or indirectly affects engine performance, fuel economy, safety and reliability, engine/component life, driver comfort, materials selection, emissions, maintenance, and aerodynamics. It follows that thermal management is critical to the design of large (class 6-8) trucks, especially in optimizing for energy efficiency and emissions reduction. Heat rejection requirements are expected to increase, and it is industry's goal to develop new, innovative, high-performance cooling systems that occupy less space and are lightweight and cost-competitive. The state of the art in heavy vehicle thermal management is reviewed, and issues and research areas are identified.

  17. Topology, Design, Analysis, and Thermal Management of Power Electronics for Hybrid Electric Vehicle Applications

    SciTech Connect

    Mi, C.; Peng, F. Z.; Kelly, K. J.; O'Keefe, M.; Hassani, V.

    2008-01-01

    Power electronics circuits play an important role in the success of electric, hybrid and fuel cell vehicles. Typical power electronics circuits in hybrid vehicles include electric motor drive circuits and DC/DC converter circuits. Conventional circuit topologies, such as buck converters, voltage source inverters and bidirectional boost converters are challenged by system cost, efficiency, controllability, thermal management, voltage and current capability, and packaging issues. Novel topologies, such as isolated bidirectional DC/DC converters, multilevel converters, and Z-source inverters, offer potential improvement to hybrid vehicle system performance, extended controllability and power capabilities. This paper gives an overview of the topologies, design, and thermal management, and control of power electronics circuits in hybrid vehicle applications.

  18. Evolution-based path planning and management for autonomous vehicles

    NASA Astrophysics Data System (ADS)

    Capozzi, Brian Joseph

    2001-07-01

    This dissertation describes an approach to adaptive path planning based on the problem solving capabilities witnessed in nature---namely the influence of natural selection in uncovering solutions to the characteristics of the environment. The competition for survival forces organisms to either respond to changes or risk being evolved out of the population. We demonstrate the applicability of this process to the problem of finding paths for an autonomous vehicle through a number of different static and dynamic environments. In doing so, we develop a number of different ways in which these paths can be modeled for the purposes of evolution. Through analysis and experimentation, we develop and reinforce a set of principles and conditions which must hold for the search process to be successful. Having demonstrated the viability of evolution as a guide for path planning, we discuss implications for on-line, real-time planning for autonomous vehicles.

  19. The K-1 reusable aerospace vehicle: managing to achieve low cost.

    NASA Astrophysics Data System (ADS)

    Mueller (HM), George E.; Lepore, Debra Facktor

    2000-03-01

    Kistler Aerospace Corporation is developing the world's first privately funded, fully reusable aerospace vehicle, the K-1. This vehicle represents a new implementation of proven technologies, designed by an elite, experienced team of engineers and managers and implemented by the best manufacturing capability in the United States. Kistler Aerospace expects to begin commercial operations of the K-1 in 2000. Market researchers predict that during the next decade telecommunications satellite ventures will require launch services for over 1,400 payloads to LEO. This prediction greatly exceeds the current available industry capacity. The K-1 was designed primarily to meet this anticipated growth in demand. Significant progress has been made in constructing the K-1 vehicle fleet. The fully reusable K-1 vehicle is designed to lower the cost of access to space, increase launch reliability, and reduce lead-time-to-launch requirements. The K-1 will offer significant cost benefits and aircraft type reliability based on a proven flight record.

  20. Development of battery management system for nickel-metal hydride batteries in electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Jung, Do Yang; Lee, Baek Haeng; Kim, Sun Wook

    Electric vehicle (EV) performance is very dependent on traction batteries. For developing electric vehicles with high performance and good reliability, the traction batteries have to be managed to obtain maximum performance under various operating conditions. Enhancement of battery performance can be accomplished by implementing a battery management system (BMS) that plays an important role in optimizing the control mechanism of charge and discharge of the batteries as well as monitoring the battery status. In this study, a BMS has been developed for maximizing the use of Ni-MH batteries in electric vehicles. This system performs several tasks: the control of charging and discharging, overcharge and over-discharge protection, the calculation and display of state-of-charge (SOC), safety, and thermal management. The BMS is installed in and tested in a DEV5-5 electric vehicle developed by Daewoo Motor Co. and the Institute for Advanced Engineering in Korea. Eighteen modules of a Panasonic nickel-metal hydride (Ni-MH) battery, 12 V, 95 A h, are used in the DEV5-5. High accuracy within a range of 3% and good reliability are obtained. The BMS can also improve the performance and cycle-life of the Ni-MH battery peak, as well as the reliability and the safety of the electric vehicles.

  1. An advanced energy management system for controlling the ultracapacitor discharge and improving the electric vehicle range

    NASA Astrophysics Data System (ADS)

    Armenta, Jesús; Núñez, Ciro; Visairo, Nancy; Lázaro, Isabel

    2015-06-01

    Over the last years issues regarding both the use and the improvement of energy management in electric vehicles have been highlighted by industry and academic fields. Some of the research has been focused on exploiting the ultracapacitor characteristics and on protecting the battery life. From this standpoint, this paper proposes an advanced energy management system based on the adequate discharge of the ultracapacitor bank in order to utilize all the energy available from the regenerative breaking. In this way, the energy consumption is reduced and the electric vehicle range is increased. This strategy, based on simple rules, takes advantage of the high power density of the ultracapacitor and prevents an overstress of the battery. The benefits are featured using three standard drive cycles for a 1550 kg electric vehicle via simulations.

  2. A Study of Vehicle Energy Management during Warming up Process Using VHDL-AMS Multi-domain Simulation

    NASA Astrophysics Data System (ADS)

    Tsuji, Kimitoshi; Kido, Yasunari; Abe, Takashi

    In this paper, by employing thermal characteristic modeling to the main components of the vehicle model for example, engine, transmission and battery, we examine the heat energy management and fuel consumption of the testing drive patterns especially during warming up process. The simulation data agree well with measurement data. Our vehicle simulation results provide VHDL-AMS validity for multi-domain energy management and the vehicle system planning.

  3. 48 CFR 252.251-7001 - Use of Interagency Fleet Management System (IFMS) vehicles and related services.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Use of Interagency Fleet... Fleet Management System (IFMS) vehicles and related services. As prescribed in 251.205, use the following clause: Use of Interagency Fleet Management System (IFMS) Vehicles and Related Services (DEC...

  4. Best Practices for Managing Medical Equipment and Supplies Stored in a Vehicle.

    PubMed

    McGoldrick, Mary

    2015-01-01

    Home care clinicians often have to transport supplies to patients' homes, and remove and transport items from the home after care is provided. This article will provide guidelines and best practices for the proper methods of managing and storing infection prevention and control supplies and regulated medical waste in a home care clinician's personal vehicle. PMID:26121507

  5. Thermal Management of Batteries in Advanced Vehicles Using Phase-Change Materials (Presentation)

    SciTech Connect

    Kim, G.-H.; Gonder, J.; Lustbader, J.; Pesaran, A.

    2007-12-01

    This Powerpoint presentation examines battery thermal management using PCM and concludes excellent performance in limiting peak temperatures at short period extensive battery use; although, vehicle designers will need to weigh the potential increase in mass and cost associated with adding PCM against the anticipated benefits.

  6. Display Device Color Management and Visual Surveillance of Vehicles

    ERIC Educational Resources Information Center

    Srivastava, Satyam

    2011-01-01

    Digital imaging has seen an enormous growth in the last decade. Today users have numerous choices in creating, accessing, and viewing digital image/video content. Color management is important to ensure consistent visual experience across imaging systems. This is typically achieved using color profiles. In this thesis we identify the limitations…

  7. Managing moral hazard in motor vehicle accident insurance claims.

    PubMed

    Ebrahim, Shanil; Busse, Jason W; Guyatt, Gordon H; Birch, Stephen

    2013-05-01

    Motor vehicle accident (MVA) insurance in Canada is based primarily on two different compensation systems: (i) no-fault, in which policyholders are unable to seek recovery for losses caused by other parties (unless they have specified dollar or verbal thresholds) and (ii) tort, in which policyholders may seek general damages. As insurance companies pay for MVA-related health care costs, excess use of health care services may occur as a result of consumers' (accident victims) and/or producers' (health care providers) behavior - often referred to as the moral hazard of insurance. In the United States, moral hazard is greater for low dollar threshold no-fault insurance compared with tort systems. In Canada, high dollar threshold or pure no-fault versus tort systems are associated with faster patient recovery and reduced MVA claims. These findings suggest that high threshold no-fault or pure no-fault compensation systems may be associated with improved outcomes for patients and reduced moral hazard. PMID:23639998

  8. Motor vehicle accidents: how should cirrhotic patients be managed?

    PubMed

    Kawaguchi, Takumi; Taniguchi, Eitaro; Sata, Michio

    2012-06-01

    Motor vehicle accidents (MVAs) are serious social issues worldwide and driver illness is an important cause of MVAs. Minimal hepatic encephalopathy (MHE) is a complex cognitive dysfunction with attention deficit, which frequently occurs in cirrhotic patients independent of severity of liver disease. Although MHE is known as a risk factor for MVAs, the impact of diagnosis and treatment of MHE on MVA-related societal costs is largely unknown. Recently, Bajaj et al demonstrated valuable findings that the diagnosis of MHE by rapid screening using the inhibitory control test (ICT), and subsequent treatment with lactulose could substantially reduce the societal costs by preventing MVAs. Besides the ICT and lactulose, there are various diagnostic tools and therapeutic strategies for MHE. In this commentary, we discussed a current issue of diagnostic tools for MHE, including neuropsychological tests. We also discussed the advantages of the other therapeutic strategies for MHE, such as intake of a regular breakfast and coffee, and supplementation with zinc and branched chain amino acids, on the MVA-related societal costs. PMID:22690067

  9. Real-Time Trajectory Assessment and Abort Management for the X-33 Vehicle

    NASA Technical Reports Server (NTRS)

    Moise, M. C.; McCarter, J. W.; Mulqueen, J.

    2000-01-01

    The X-33 is a flying testbed to evaluate technologies and designs for a reusable Single Stage To Orbit (SSTO) production vehicle. Although it is sub-orbital, it is trans-atmospheric. This paper will discuss the abort capabilities, both commanded and autonomous, available to the X-33. The cornerstone of the abort capabilities is the Performance Monitor (PM) and it's supporting software. PM is an on-board 3-DOF simulation, which evaluates the vehicle ability to execute the current trajectory. The Abort Manager evaluates the results from PM, and, when indicated, computes and implements an abort trajectory.

  10. A test manager's perspective of a test concept for a heavy lift vehicle

    NASA Technical Reports Server (NTRS)

    Pargeon, John I., Jr.

    1990-01-01

    The developmment of a test concept is a significant part of the advanced planning activities accomplished for the Initial Operational Test and Evaluation (IOT&E) of new systems. A test concept is generally viewed as a description, including rationale, of the test structure, evaluation methodology and management approach required to plan and conduct the IOT&E of a program such as a new heavy lift launch vehicle system. The test concept as presented in this paper is made up of an operations area, a test area, an evaluation area, and a management area. The description presented here is written from the perspective of one test manager, and represents his views of a possible framework of a test concept using examples for a potential IOT&E of a heavy lift launch vehicle.

  11. A test manager's perspective of a test concept for a heavy lift vehicle

    NASA Astrophysics Data System (ADS)

    Pargeon, John I., Jr.

    1990-09-01

    The developmment of a test concept is a significant part of the advanced planning activities accomplished for the Initial Operational Test and Evaluation (IOT&E) of new systems. A test concept is generally viewed as a description, including rationale, of the test structure, evaluation methodology and management approach required to plan and conduct the IOT&E of a program such as a new heavy lift launch vehicle system. The test concept as presented in this paper is made up of an operations area, a test area, an evaluation area, and a management area. The description presented here is written from the perspective of one test manager, and represents his views of a possible framework of a test concept using examples for a potential IOT&E of a heavy lift launch vehicle.

  12. Thru-life impacts of driver aggression, climate, cabin thermal management, and battery thermal management on battery electric vehicle utility

    NASA Astrophysics Data System (ADS)

    Neubauer, Jeremy; Wood, Eric

    2014-08-01

    Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but have a limited utility that is affected by driver aggression and effects of climate-both directly on battery temperature and indirectly through the loads of cabin and battery thermal management systems. Utility is further affected as the battery wears through life in response to travel patterns, climate, and other factors. In this paper we apply the National Renewable Energy Laboratory's Battery Lifetime Analysis and Simulation Tool for Vehicles (BLAST-V) to examine the sensitivity of BEV utility to driver aggression and climate effects over the life of the vehicle. We find the primary challenge to cold-climate BEV operation to be inefficient cabin heating systems, and to hot-climate BEV operation to be high peak on-road battery temperatures and excessive battery degradation. Active cooling systems appear necessary to manage peak battery temperatures of aggressive, hot-climate drivers, which can then be employed to maximize thru-life vehicle utility.

  13. Path planning and energy management of solar-powered unmanned ground vehicles

    NASA Astrophysics Data System (ADS)

    Kaplan, Adam

    Many of the applications pertinent to unmanned vehicles, such as environmental research and analysis, communications, and information-surveillance and reconnaissance, benefit from prolonged vehicle operation time. Conventional efforts to increase the operational time of electric-powered unmanned vehicles have traditionally focused on the design of energy-efficient components and the identification of energy efficient search patterns, while little attention has been paid to the vehicle's mission-level path plan and power management. This thesis explores the formulation and generation of integrated motion-plans and power-schedules for solar-panel equipped mobile robots operating under strict energy constraints, which cannot be effectively addressed through conventional motion planning algorithms. Transit problems are considered to design time-optimal paths using both Balkcom-Mason and Pseudo-Dubins curves. Additionally, a more complicated problem to generate mission plans for vehicles which must persistently travel between certain locations, similar to the traveling salesperson problem (TSP), is presented. A comparison between one of the common motion-planning algorithms and experimental results of the prescribed algorithms, made possible by use of a test environment and mobile robot designed and developed specifically for this research, are presented and discussed.

  14. Advanced traffic management systems and high-occupancy-vehicle systems. Transportation research record

    SciTech Connect

    1996-12-31

    ;Contents: Distributed Approach to Real-Time Control of Complex Signalized Networks; MULTIBAND-96: A Program for Variable-Bandwidth Progression Optimization of Multiarterial Traffic Networks; Determination of Timings in Signal Systems with Traffic-Actuated Controllers; Combined Model for Signal Control and Route Choice in Urbn Traffic Networks; Multivariate Optimization Strategies for Real-Time Traffic Control Signals; Implementation Vision for Distributed Control of Traffic Signal Subsystems; Current Developments in SCOOT: Version 3; Estimating Impact of Signal Hardware Improvements; Guidelines for Actuated Controllers in Coordinated Systems; Evaluation of Bus Priority Signal Strategies in Ann Arbor, Michigan; NETSIM-Based Approach to Evaluation of Bus Preemption Strategies; Simulation-Based Methodology for Evaluation of High-Occupancy-Vehicle Facilities; Predicting High-Occupancy-Vehicle Facility Demand; Evaluation of High-Occupancy-Vehicle Lanes on Long Island Expressway; Effect on Congestion and Motorcycle Safety of Motorcycle Travel on High-Occupancy-Vehicle Facilities in Virginia; Development of Arterial High-Occupancy-Vehicle Land Enforcement Techniques; Multiple-Interval Freeway Traffic Flow Forecasting; New Methodology for Smoothing Freeway Loop Detector Data: Introduction to Digital Filtering; Evaluation of Compliance Rates and Travel Time Calculation for Automatic Alternative Route Guidance Systems on Freeways; Algorithm for Controlling Spillback from Ramp Meters; Systemwide Analysis of Freeway Improvements; Transferability of Freeway Incident Detection Algorithms; Deriving Incident Management Measures Using Incident Probability Models and Simulation; and I-880 Field Experiment: Data-Base Development and Incident Delay Estimation Procedures.

  15. The NASA Integrated Vehicle Health Management Technology Experiment for X-37

    NASA Technical Reports Server (NTRS)

    Schwabacher, Mark; Samuels, Jeff; Brownston, Lee; Clancy, Daniel (Technical Monitor)

    2002-01-01

    The NASA Integrated Vehicle Health Management (IVHM) Technology Experiment for X-37 was intended to run IVHM software on-board the X-37 spacecraft. The X-37 is intended to be an unpiloted vehicle that would orbit the Earth for up to 21 days before landing on a runway. The objectives of the experiment were to demonstrate the benefits of in-flight IVHM to the operation of a Reusable Launch Vehicle, to advance the Technology Readiness Level of this IVHM technology within a flight environment, and to demonstrate that the IVHM software could operate on the Vehicle Management Computer. The scope of the experiment was to perform real-time fault detection and isolation for X-37's electrical power system and electro-mechanical actuators. The experiment used Livingstone, a software system that performs diagnosis using a qualitative, model-based reasoning approach that searches system-wide interactions to detect and isolate failures. Two of the challenges we faced were to make this research software more efficient so that it would fit within the limited computational resources that were available to us on the X-37 spacecraft, and to modify it so that it satisfied the X-37's software safety requirements. Although the experiment is currently unfunded, the development effort had value in that it resulted in major improvements in Livingstone's efficiency and safety. This paper reviews some of the details of the modeling and integration efforts, and some of the lessons that were learned.

  16. Attitudes and intentions of off-highway vehicle riders toward trail use: implications for forest managers

    USGS Publications Warehouse

    Kuehn, D.M.; D'Luhosch, P. D.; Luzadis, V.A.; Malmsheimer, R.W.; Schuster, R.M.

    2011-01-01

    Management of off-highway vehicles (OHV) in public forest areas requires up-to-date information about the attitudes and intentions of OHV riders toward trail use. A survey of 811 members of the New England Trail Riders Association was conducted in fall 2007; 380 questionnaires were completed and returned. Descriptive statistics and regressions were used to identify relationships between OHV rider attitudes, management preferences, and intentions toward two trail use-related behaviors (i.e., illegal use of trails by OHVs and the creation and/or use of unauthorized trails by OHV riders). Results reveal that the average responding association member has a negative attitude toward the two depreciative behaviors, intends to ride OHVs legally, and slightly prefers indirect over direct forms of management. Significant relationships between intentions and both attitudes and management preferences are identified. Policy and management implications and strategies are discussed. ?? 2011 by the Society of American Foresters.

  17. A fuzzy logic intelligent diagnostic system for spacecraft integrated vehicle health management

    NASA Technical Reports Server (NTRS)

    Wu, G. Gordon

    1995-01-01

    Due to the complexity of future space missions and the large amount of data involved, greater autonomy in data processing is demanded for mission operations, training, and vehicle health management. In this paper, we develop a fuzzy logic intelligent diagnostic system to perform data reduction, data analysis, and fault diagnosis for spacecraft vehicle health management applications. The diagnostic system contains a data filter and an inference engine. The data filter is designed to intelligently select only the necessary data for analysis, while the inference engine is designed for failure detection, warning, and decision on corrective actions using fuzzy logic synthesis. Due to its adaptive nature and on-line learning ability, the diagnostic system is capable of dealing with environmental noise, uncertainties, conflict information, and sensor faults.

  18. Development of integrated programs for Aerospace-vehicle Design (IPAD): Product program management systems

    NASA Technical Reports Server (NTRS)

    Isenberg, J. M.; Southall, J. W.

    1979-01-01

    The Integrated Programs for Aerospace Vehicle Design (IPAD) is a computing system to support company-wide design information processing. This document presents a brief description of the management system used to direct and control a product-oriented program. This document, together with the reference design process (CR 2981) and the manufacture interactions with the design process (CR 2982), comprises the reference information that forms the basis for specifying IPAD system requirements.

  19. Baseline knowledge on vehicle safety and head restraints among Fleet Managers in British Columbia Canada: a pilot study

    PubMed Central

    Desapriya, Ediriweera; Hewapathirane, D. Sesath; Peiris, Dinithi; Romilly, Doug; White, Marc

    2011-01-01

    Background: Whiplash is the most common injury type arising from motor vehicle collisions, often leading to long-term suffering and disability. Prevention of such injuries is possible through the use of appropriate, correctly positioned, vehicular head restraints. Objective: To survey the awareness and knowledge level of vehicle fleet managers in the province of British Columbia, Canada, on the topics of vehicle safety, whiplash injury, and prevention; and to better understand whether these factors influence vehicle purchase/lease decisions. Methods: A survey was administered to municipal vehicle fleet managers at a professional meeting (n = 27). Results: Although many respondents understood the effectiveness of vehicle head restraints in the prevention of whiplash injury, the majority rarely adjusted their own headrests. Fleet managers lacked knowledge about the seriousness of whiplash injuries, their associated costs for Canada’s healthcare system, and appropriate head restraint positions to mitigate such injuries. The majority of respondents indicated that fleet vehicle purchase/lease decisions within their organization did not factor whiplash prevention as an explicit safety priority. Conclusions: There is relatively little awareness and enforcement of whiplash prevention strategies among municipal vehicle fleet managers. PMID:21886279

  20. Application of Fault Management Theory to the Quantitative Selection of a Launch Vehicle Abort Trigger Suite

    NASA Technical Reports Server (NTRS)

    Lo, Yunnhon; Johnson, Stephen B.; Breckenridge, Jonathan T.

    2014-01-01

    This paper describes the quantitative application of the theory of System Health Management and its operational subset, Fault Management, to the selection of abort triggers for a human-rated launch vehicle, the United States' National Aeronautics and Space Administration's (NASA) Space Launch System (SLS). The results demonstrate the efficacy of the theory to assess the effectiveness of candidate failure detection and response mechanisms to protect humans from time-critical and severe hazards. The quantitative method was successfully used on the SLS to aid selection of its suite of abort triggers.

  1. Application of Fault Management Theory to the Quantitative Selection of a Launch Vehicle Abort Trigger Suite

    NASA Technical Reports Server (NTRS)

    Lo, Yunnhon; Johnson, Stephen B.; Breckenridge, Jonathan T.

    2014-01-01

    This paper describes the quantitative application of the theory of System Health Management and its operational subset, Fault Management, to the selection of Abort Triggers for a human-rated launch vehicle, the United States' National Aeronautics and Space Administration's (NASA) Space Launch System (SLS). The results demonstrate the efficacy of the theory to assess the effectiveness of candidate failure detection and response mechanisms to protect humans from time-critical and severe hazards. The quantitative method was successfully used on the SLS to aid selection of its suite of Abort Triggers.

  2. NASA Administrator Sean O'Keefe, left, learned about the Mach 10 X-43 research vehicle from manager

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA Administrator Sean O'Keefe left, learned about the Mach 10 X-43 research vehicle from manager, Joel Sitz during O'Keefe's visit to the NASA Dryden Flight Research Center, Edwards, California, January 31, 2002.

  3. Vehicle to Micro-Grid: Leveraging Existing Assets for Reliable Energy Management (Poster)

    SciTech Connect

    Simpson, M.; Markel, T.; O'Keefe, M.

    2010-12-01

    Fort Carson, a United States Army installation located south of Colorado Springs, Colorado, is seeking to be a net-zero energy facility. As part of this initiative, the base will be constructing a micro-grid that ties to various forms of renewable energy. To reduce petroleum consumption, Fort Carson is considering grid-connected vehicles (GCVs) such as pure electric trucks to replace some of its on-base truck fleet. As the availability and affordability of distributed renewable energy generation options increase, so will the GCV options (currently, three all-electric trucks are available on the GSA schedule). The presence of GCVs on-base opens up the possibility to utilize these vehicles to provide stability to the base micro-grid. This poster summarizes work to estimate the potential impacts of three electric vehicle grid interactions between the electric truck fleet and the Fort Carson micro-grid: 1) full-power charging without management, 2) full-power charging capability controlled by the local grid authority, and 3) full-power charge and discharge capability controlled by the local grid authority. We found that even at relatively small adoption rates, the control of electric vehicle charging at Fort Carson will aid in regulation of variable renewable generation loads and help stabilize the micro-grid.

  4. Longitudinal annoyance responses to a road traffic noise management strategy that reduced heavy vehicles at night.

    PubMed

    Brown, A L

    2015-01-01

    A traffic management strategy was designed to reduce trucks using an urban corridor. The intervention had potential to affect night-time truck flows, but did not target truck traffic in the day, or vehicles other than trucks at any hour. A two-year long panel study measured the community's response to this intervention, using five repeated measurements of response. There were significant reductions in the panel's response to noise, both for night-time annoyance and for interference with activities. This was remarkable given that noise monitoring showed that the intervention produced no change in conventional traffic noise indicators. However, there were measureable changes in the number of articulated truck movements at night, and the benefit can be attributed to reduction in the number of noise events from heavy vehicles. The parallel tracking of changes in reported noise effects and the numbers of heavy vehicles in the night hours in this longitudinal study provides strong support to the notion that noise effects at night depend on the number of noise events experienced, not only on the overall level of traffic noise. The latter appear to be unresponsive indicators by which to assess the noise-effect benefit of heavy vehicle reduction strategies. PMID:25618048

  5. Office of Inspector General audit report on vehicle fleet management at the Idaho National Engineering and Environmental Laboratory

    SciTech Connect

    1999-03-01

    In a prior report, Audit of Light Vehicle Fleet Management at the Idaho National Engineering Laboratory, WR-B-93-7, September 29, 1993, the Office of Inspector General (OIG) concluded that vehicle fleet operations might be done more cost effectively by the General Services Administration (GSA) than by Idaho Operations Office (Idaho) and its contractor. The report also concluded that a significant number of vehicles were underused and the fleet was too large. Accordingly, the report contained recommendations that a cost comparison study be conducted to ascertain the most economical and efficient method of managing fleet operations and that vehicle usage data be reviewed periodically by the contractor, with prompt reassignment or disposal of significantly underused vehicles. Thus, the purpose of this audit was to determine if action has been taken to implement recommendations in the prior report. Specifically, the objectives of the current audit were to determine whether a cost comparison had been performed and whether the fleet was still too large. In this report, the authors recommend that Idaho annually review individual vehicle use against mileage standards and promptly dispose of or reassign vehicles not meeting the standards. The authors also recommend that the Idaho Deputy Manager be provided a vehicle assignment report for review and approval.

  6. Integrated thermal and energy management of plug-in hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Shams-Zahraei, Mojtaba; Kouzani, Abbas Z.; Kutter, Steffen; Bäker, Bernard

    2012-10-01

    In plug-in hybrid electric vehicles (PHEVs), the engine temperature declines due to reduced engine load and extended engine off period. It is proven that the engine efficiency and emissions depend on the engine temperature. Also, temperature influences the vehicle air-conditioner and the cabin heater loads. Particularly, while the engine is cold, the power demand of the cabin heater needs to be provided by the batteries instead of the waste heat of engine coolant. The existing energy management strategies (EMS) of PHEVs focus on the improvement of fuel efficiency based on hot engine characteristics neglecting the effect of temperature on the engine performance and the vehicle power demand. This paper presents a new EMS incorporating an engine thermal management method which derives the global optimal battery charge depletion trajectories. A dynamic programming-based algorithm is developed to enforce the charge depletion boundaries, while optimizing a fuel consumption cost function by controlling the engine power. The optimal control problem formulates the cost function based on two state variables: battery charge and engine internal temperature. Simulation results demonstrate that temperature and the cabin heater/air-conditioner power demand can significantly influence the optimal solution for the EMS, and accordingly fuel efficiency and emissions of PHEVs.

  7. Simultaneous personnel and vehicle shift scheduling in the waste management sector

    SciTech Connect

    Ghiani, Gianpaolo; Guerriero, Emanuela; Manni, Andrea; Manni, Emanuele; Potenza, Agostino

    2013-07-15

    Highlights: • We consider the problem of simultaneously schedule personnel and vehicle shifts in the waste management sector. • We propose both an optimization model and a heuristic approach. • Important monetary savings can be achieved in the waste collection operations. - Abstract: Urban waste management is becoming an increasingly complex task, absorbing a huge amount of resources, and having a major environmental impact. The design of a waste management system consists in various activities, and one of these is related to the definition of shift schedules for both personnel and vehicles. This activity has a great incidence on the tactical and operational cost for companies. In this paper, we propose an integer programming model to find an optimal solution to the integrated problem. The aim is to determine optimal schedules at minimum cost. Moreover, we design a fast and effective heuristic to face large-size problems. Both approaches are tested on data from a real-world case in Southern Italy and compared to the current practice utilized by the company managing the service, showing that simultaneously solving these problems can lead to significant monetary savings.

  8. Research and technology goals and objectives for Integrated Vehicle Health Management (IVHM)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Integrated Vehicle Health Management (IVHM) is defined herein as the capability to efficiently perform checkout, testing, and monitoring of space transportation vehicles, subsystems, and components before, during, and after operational This includes the ability to perform timely status determination, diagnostics, and prognostics. IVHM must support fault-tolerant response including system/subsystem reconfiguration to prevent catastrophic failures; and IVHM must support the planning and scheduling of post-operational maintenance. The purpose of this document is to establish the rationale for IVHM and IVHM research and technology planning, and to develop technical goals and objectives. This document is prepared to provide a broad overview of IVHM for technology and advanced development activities and, more specifically, to provide a planning reference from an avionics viewpoint under the OAST Transportation Technology Program Strategic Plan.

  9. Application of Fault Management Theory to the Quantitative Selection of a Launch Vehicle Abort Trigger Suite

    NASA Technical Reports Server (NTRS)

    Lo, Yunnhon; Johnson, Stephen B.; Breckenridge, Jonathan T.

    2014-01-01

    The theory of System Health Management (SHM) and of its operational subset Fault Management (FM) states that FM is implemented as a "meta" control loop, known as an FM Control Loop (FMCL). The FMCL detects that all or part of a system is now failed, or in the future will fail (that is, cannot be controlled within acceptable limits to achieve its objectives), and takes a control action (a response) to return the system to a controllable state. In terms of control theory, the effectiveness of each FMCL is estimated based on its ability to correctly estimate the system state, and on the speed of its response to the current or impending failure effects. This paper describes how this theory has been successfully applied on the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program to quantitatively estimate the effectiveness of proposed abort triggers so as to select the most effective suite to protect the astronauts from catastrophic failure of the SLS. The premise behind this process is to be able to quantitatively provide the value versus risk trade-off for any given abort trigger, allowing decision makers to make more informed decisions. All current and planned crewed launch vehicles have some form of vehicle health management system integrated with an emergency launch abort system to ensure crew safety. While the design can vary, the underlying principle is the same: detect imminent catastrophic vehicle failure, initiate launch abort, and extract the crew to safety. Abort triggers are the detection mechanisms that identify that a catastrophic launch vehicle failure is occurring or is imminent and cause the initiation of a notification to the crew vehicle that the escape system must be activated. While ensuring that the abort triggers provide this function, designers must also ensure that the abort triggers do not signal that a catastrophic failure is imminent when in fact the launch vehicle can successfully achieve orbit. That is

  10. New latent heat storage system with nanoparticles for thermal management of electric vehicles

    NASA Astrophysics Data System (ADS)

    Javani, N.; Dincer, I.; Naterer, G. F.

    2014-12-01

    In this paper, a new passive thermal management system for electric vehicles is developed. A latent heat thermal energy storage with nanoparticles is designed and optimized. A genetic algorithm method is employed to minimize the length of the heat exchanger tubes. The results show that even the optimum length of a shell and tube heat exchanger becomes too large to be employed in a vehicle. This is mainly due to the very low thermal conductivity of phase change material (PCM) which fills the shell side of the heat exchanger. A carbon nanotube (CNT) and PCM mixture is then studied where the probability of nanotubes in a series configuration is defined as a deterministic design parameter. Various heat transfer rates, ranging from 300 W to 600 W, are utilized to optimize battery cooling options in the heat exchanger. The optimization results show that smaller tube diameters minimize the heat exchanger length. Furthermore, finned tubes lead to a higher heat exchanger length due to more heat transfer resistance. By increasing the CNT concentration, the optimum length of the heat exchanger decreases and makes the improved thermal management system a more efficient and competitive with air and liquid thermal management systems.

  11. Development of an on-board charge and discharge management system for electric-vehicle batteries

    NASA Astrophysics Data System (ADS)

    Alzieu, J.; Gagnol, P.; Smimite, H.

    To improve the service quality of its electric-vehicle (EV) fleet (≈500 vehicles) and master the behaviour of the valve-regulated lead/acid (VRLA) batteries, which power the major part of it, Electricité de France (EDF) has developed an on-board battery-management system. Information on the operating battery behaviour is given to the driver. Overdischarges can then be avoided. Rapid charging of VRLA batteries is monitored. The main available functions of this device are: (i) battery life recording, short- and long-term information storage is available; (ii) charge monitoring, communication with a 23 kW charger is established through an ISO 9141 interface; a fast-charging algorithm for VRLA batteries has been developed and up to 50% of the range can be returned to the EV in 20 min; (iii) battery management during driving, 'orange' and 'red' alarms related to the depth-of-discharge help the driver to manage the driving; cell overdischarges can then be avoided; (iv) maintenance, the faulty groups of cells are identified; (v) gauge (state-of-charge indicator), this function requires mid-term R and D; for the moment, only charged and discharged Ah are indicated but when more accurate state-of-charge prediction algorithms are available, the software will be up-graded.

  12. Autonomous Underwater Vehicle Data Management and Metadata Interoperability for Coastal Ocean Studies

    NASA Astrophysics Data System (ADS)

    McCann, M. P.; Ryan, J. P.; Chavez, F. P.; Rienecker, E.

    2004-12-01

    Data from over 1000 km of Autonomous Underwater Vehicle (AUV) surveys of Monterey Bay have been collected and cataloged in an ocean observatory data management system. The Monterey Bay Aquarium Institute's AUV is equipped with a suite of instruments that include a conductivity, temperature, depth (CTD) instrument, transmissometers, a fluorometer, a nitrate sensor, and an inertial navigation system. Data are logged on the vehicle and upon completion of a survey XML descriptions of the data are submitted to the Shore Side Data System (SSDS). Instrument data are then processed on shore to apply calibrations and produce scientifically useful data products. The SSDS employs a data model that tracks data from the instrument that created it through all the consuming processes that generate derived products. SSDS employs OPeNDAP and netCDF to provide data set interoperability at the data level. The core of SSDS is the metadata that is the catalog of these data sets and their relation to all other relevant data. The metadata is managed in a relational database and governed by a Enterprise Java Bean (EJB) server application. Cross-platform Java applications have been written to manage and visualize these data. A Java Swing application - the Hierarchical Ocean Observatory Visualization and Editing System (HOOVES) - has been developed to provide visualization of data set pedigree and data set variables. Because the SSDS data model is generalized according to "Data Producers" and "Data Containers" many different types of data can be represented in SSDS allowing for interoperability at a metadata level. Comparisons of appropriate data sets, whether they are from an autonomous underwater vehicle or from a fixed mooring are easily made using SSDS. The authors will present the SSDS data model and show examples of how the model helps organize data set metadata allowing for data discovery and interoperability. With improved discovery and interoperability the system is helping us

  13. 41 CFR 102-34.165 - What information must the limited exemption certification contain?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What information...

  14. Supervisory Power Management Control Algorithms for Hybrid Electric Vehicles. A Survey

    DOE PAGESBeta

    Malikopoulos, Andreas

    2014-03-31

    The growing necessity for environmentally benign hybrid propulsion systems has led to the development of advanced power management control algorithms to maximize fuel economy and minimize pollutant emissions. This paper surveys the control algorithms for hybrid electric vehicles (HEVs) and plug-in HEVs (PHEVs) that have been reported in the literature to date. The exposition ranges from parallel, series, and power split HEVs and PHEVs and includes a classification of the algorithms in terms of their implementation and the chronological order of their appearance. Remaining challenges and potential future research directions are also discussed.

  15. Integrated Vehicle Health Management Project-Modeling and Simulation for Wireless Sensor Applications

    NASA Technical Reports Server (NTRS)

    Wallett, Thomas M.; Mueller, Carl H.; Griner, James H., Jr.

    2009-01-01

    This paper describes the efforts in modeling and simulating electromagnetic transmission and reception as in a wireless sensor network through a realistic wing model for the Integrated Vehicle Health Management project at the Glenn Research Center. A computer model in a standard format for an S-3 Viking aircraft was obtained, converted to a Microwave Studio software format, and scaled to proper dimensions in Microwave Studio. The left wing portion of the model was used with two antenna models, one transmitting and one receiving, to simulate radio frequency transmission through the wing. Transmission and reception results were inconclusive.

  16. Management status of end-of-life vehicles and characteristics of automobile shredder residues in Korea.

    PubMed

    Kim, Ki-Heon; Joung, Hyun-Tae; Nam, Hoon; Seo, Yong-Chil; Hee Hong, John; Yoo, Tae-Wook; Lim, Bong-Soo; Park, Jin-Ho

    2004-01-01

    An end-of-life vehicle (ELV) is dismantled to recover and recycle any re-usable parts, then shipped to the shredding facility for further recovery of iron with any remaining Automobile Shredder Residue (ASR) to be considered as wastes and to be disposed of by either thermal treatment or landfill. Overall ELVs management status in Korea, including recycling resulting from the dismantling processes, was surveyed using some questionnaires given to dismantlers and other available information to provide some feasible means for future treatment. The averaged recycle rate in the dismantling stage showed a value of 44% and the rest of an ELV was then compressed and transported to shredding companies to recover mainly the iron content which averaged 38.7% of the mass of a new vehicle. The non-ferrous metals such as copper, antimony, zinc and aluminum accounted for only 1.5%. The Shredder dusts (SDs) were found to be composed of light and heavy fluffs and soil/dust and amounted to 15.8% based on the mass of a new vehicle. Dumping of fluff and inorganic residues into a landfill site, however, will be restricted when new regulations are implemented to reduce the disposal amount to less than 5% of a new car as done in European countries and Japan. The detailed characteristics of SDs were investigated to provide an idea of how to treat them in order to meet a future expected enforcement. PMID:15219911

  17. 76 FR 52690 - Final Environmental Impact Statement on Nabesna Off-Road Vehicle Management Plan, Wrangell-St...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-23

    ..., Wrangell-St. Elias National Park and Preserve AGENCY: National Park Service, Interior. ACTION: Notice of... (FEIS) on Off-Road Vehicle Management in the Nabesna District of Wrangell-St. Elias National Park and... from Bruce Rogers, Project Manager, Wrangell-St. Elias National Park and Preserve, PO Box 439,...

  18. Role of VEGF and VEGFR2 Receptor in Reversal of ALS-CSF Induced Degeneration of NSC-34 Motor Neuron Cell Line.

    PubMed

    Vijayalakshmi, K; Ostwal, Piyush; Sumitha, R; Shruthi, S; Varghese, Anu Mary; Mishra, Poojashree; Manohari, S Gowri; Sagar, B C; Sathyaprabha, T N; Nalini, A; Raju, T R; Alladi, Phalguni Anand

    2015-01-01

    Vascular endothelial growth factor (VEGF), the well-known angiogenic factor is both neurotrophic and neuroprotective. Altered VEGF signalling is implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), a fatal degenerative disease of motor neurons. We have shown earlier that VEGF protects NSC-34 motor neuronal cell line, when exposed to cerebrospinal fluid (CSF) from sporadic ALS patients (ALS-CSF). Here, we have investigated the consequences of ALS-CSF and VEGF supplementation on the VEGFR2 receptor and endogenous VEGF expression. ALS-CSF caused significant down-regulation of VEGFR2 as well as the Calbindin-D28K levels, but not endogenous VEGF. Exogenous supplementation restored the depletion of VEGFR2 and Calbindin-D28K with a concomitant up-regulation of endogenous VEGF. The up-regulated caspase 3 in the ALS-CSF group was reinstated to basal levels along with a significant reduction in the number of TUNEL-positive cells. Electron photomicrographs of ALS-CSF-exposed cells divulged presence of cytoplasmic vacuoles alongside severe damage to organelles like mitochondria, endoplasmic reticulum, etc. Substantial recovery of most of the damaged organelles was noted in response to VEGF supplementation. While the enhancement in endogenous VEGF levels highlights the autocrine functions, the up-regulation of VEGFR2 receptor emphasizes the paracrine functions of VEGF in modulating its neuroprotective effect against ALS-CSF. The revival of cellular organellar structure, increased calbindin expression and enhanced survival in response to VEGF supplementation consolidates the opinion that VEGF indeed has a therapeutic potential in sporadic ALS. PMID:24880751

  19. Tools for Designing Thermal Management of Batteries in Electric Drive Vehicles (Presentation)

    SciTech Connect

    Pesaran, A.; Keyser, M.; Kim, G. H.; Santhanagopalan, S.; Smith, K.

    2013-02-01

    Temperature has a significant impact on life, performance, and safety of lithium-ion battery technology, which is expected to be the energy storage of choice for electric drive vehicles (xEVs). High temperatures degrade Li-ion cells faster while low temperatures reduce power and energy capabilities that could have cost, reliability, range, or drivability implications. Thermal management of battery packs in xEVs is essential to keep the cells in the desired temperature range and also reduce cell-to-cell temperature variations, both of which impact life and performance. The value that the battery thermal management system provides in reducing battery life and improving performance outweighs its additional cost and complexity. Tools that are essential for thermal management of batteries are infrared thermal imaging, isothermal calorimetry, thermal conductivity meter and computer-aided thermal analysis design software. This presentation provides details of these tools that NREL has used and we believe are needed to design right-sized battery thermal management systems.

  20. A Generic Model Driven Approach for Safer Mission and Vehicle Management Software Design

    NASA Astrophysics Data System (ADS)

    Boudillet, O.; Person, T.; Genevoix, M.

    2012-01-01

    The purpose of a spacecraft, whether an observation or telecommunication satellite, a lander, a chaser as the ATV (Automated Transfer Vehicle) or a launcher is to perform a mission. A mission is composed of several modes, the number of modes being generally representative of the complexity of the mission assigned to the spacecraft. The Mission and Vehicle Management Software (MVMS) plays the role of an orchestra conductor that will internally control the proper behaviour of the spacecraft and all its avionics element inter-cooperation during its lifetime, and therefore the safety of the mission. The MVMS can either be one function of the main onboard software, or a fully piece of segregated software running on a dedicated processing unit or distributed on several hardware or functional nodes. This paper presents a generic design that can be used for low to medium complexity system, or, in case of highly complex systems, for the most critical MVMS functions. The design is model based oriented. SCADE Suite (from Esterel Technologies) has being selected for its very high adequacy for MVMS implementation and its capability to satisfy high safety requirements: The purpose is to make use of the autocoding facility offered by SCADE, knowing that a Criticality A (DO178B standard) certification kit is available for the generator.

  1. Energy management of a power-split plug-in hybrid electric vehicle based on genetic algorithm and quadratic programming

    NASA Astrophysics Data System (ADS)

    Chen, Zheng; Mi, Chris Chunting; Xiong, Rui; Xu, Jun; You, Chenwen

    2014-02-01

    This paper introduces an online and intelligent energy management controller to improve the fuel economy of a power-split plug-in hybrid electric vehicle (PHEV). Based on analytic analysis between fuel-rate and battery current at different driveline power and vehicle speed, quadratic equations are applied to simulate the relationship between battery current and vehicle fuel-rate. The power threshold at which engine is turned on is optimized by genetic algorithm (GA) based on vehicle fuel-rate, battery state of charge (SOC) and driveline power demand. The optimal battery current when the engine is on is calculated using quadratic programming (QP) method. The proposed algorithm can control the battery current effectively, which makes the engine work more efficiently and thus reduce the fuel-consumption. Moreover, the controller is still applicable when the battery is unhealthy. Numerical simulations validated the feasibility of the proposed controller.

  2. Structural Analysis Methods for Structural Health Management of Future Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Tessler, Alexander

    2007-01-01

    Two finite element based computational methods, Smoothing Element Analysis (SEA) and the inverse Finite Element Method (iFEM), are reviewed, and examples of their use for structural health monitoring are discussed. Due to their versatility, robustness, and computational efficiency, the methods are well suited for real-time structural health monitoring of future space vehicles, large space structures, and habitats. The methods may be effectively employed to enable real-time processing of sensing information, specifically for identifying three-dimensional deformed structural shapes as well as the internal loads. In addition, they may be used in conjunction with evolutionary algorithms to design optimally distributed sensors. These computational tools have demonstrated substantial promise for utilization in future Structural Health Management (SHM) systems.

  3. Mission and vehicle management and FDIR functions for GNC systems for rendezvous operations

    NASA Astrophysics Data System (ADS)

    Soppa, U.; Sommer, J.; Tobias, A.; Panicucci, M.; Olivier-Martin, L.

    1991-12-01

    In the forthcoming European scenarios of LEO (Low Earth Orbit), spacecraft will perform frequent complex rendezvous and proximity operations maneuvers. The ESA set up a RVD (Rendezvous and Docking) Proof of Concept program (RVD-POC) aimed at the definition and verification of RVD concepts that encompass those of the Hermes and Columbus projects. The approach to collision avoidance, in the scenarios covered by the RVD-POC, and the concepts defined for Mission and Vehicle Management (MVM) and Failure Detection Isolation and Recovery (FDIR) are described. The verification approach for these and other GNC related concepts, and the planned tests and expected results in the RVD-POC on these matters are presented.

  4. Adaptive frequency-separation-based energy management system for electric vehicles

    NASA Astrophysics Data System (ADS)

    Florescu, Adrian; Bacha, Seddik; Munteanu, Iulian; Bratcu, Antoneta Iuliana; Rumeau, Axel

    2015-04-01

    This paper deals with an adaptive frequency-based power sharing method between batteries and ultracapacitors (UC) as power sources within an electric vehicle. An adaptive frequency splitter is used for routing the low-frequency content of power demand into the battery and its high-frequency content into the UC system, taking profit from the UC as a peak power unit. Autonomy may thus be increased while preserving battery state of health and ensuring that UC voltage variations remain confined within certain desired range. Results obtained by real-time experiments on a dedicated test rig validate the proposed energy management approach and recommend it to be applied as power source coordination method to microgrids in general.

  5. Causal Factors and Adverse Events of Aviation Accidents and Incidents Related to Integrated Vehicle Health Management

    NASA Technical Reports Server (NTRS)

    Reveley, Mary S.; Briggs, Jeffrey L.; Evans, Joni K.; Jones, Sharon M.; Kurtoglu, Tolga; Leone, Karen M.; Sandifer, Carl E.

    2011-01-01

    Causal factors in aviation accidents and incidents related to system/component failure/malfunction (SCFM) were examined for Federal Aviation Regulation Parts 121 and 135 operations to establish future requirements for the NASA Aviation Safety Program s Integrated Vehicle Health Management (IVHM) Project. Data analyzed includes National Transportation Safety Board (NSTB) accident data (1988 to 2003), Federal Aviation Administration (FAA) incident data (1988 to 2003), and Aviation Safety Reporting System (ASRS) incident data (1993 to 2008). Failure modes and effects analyses were examined to identify possible modes of SCFM. A table of potential adverse conditions was developed to help evaluate IVHM research technologies. Tables present details of specific SCFM for the incidents and accidents. Of the 370 NTSB accidents affected by SCFM, 48 percent involved the engine or fuel system, and 31 percent involved landing gear or hydraulic failure and malfunctions. A total of 35 percent of all SCFM accidents were caused by improper maintenance. Of the 7732 FAA database incidents affected by SCFM, 33 percent involved landing gear or hydraulics, and 33 percent involved the engine and fuel system. The most frequent SCFM found in ASRS were turbine engine, pressurization system, hydraulic main system, flight management system/flight management computer, and engine. Because the IVHM Project does not address maintenance issues, and landing gear and hydraulic systems accidents are usually not fatal, the focus of research should be those SCFMs that occur in the engine/fuel and flight control/structures systems as well as power systems.

  6. A novel multimode hybrid energy storage system and its energy management strategy for electric vehicles

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Xu, Jun; Cao, Binggang; Zhou, Xuan

    2015-05-01

    This paper proposes a novel topology of multimode hybrid energy storage system (HESS) and its energy management strategy for electric vehicles (EVs). Compared to the conventional HESS, the proposed multimode HESS has more operating modes and thus it could in further enhance the efficiency of the system. The rule-based control strategy and the power-balancing strategy are developed for the energy management strategy to realize mode selection and power distribution. Generally, the DC-DC converter will operate at peak efficiency to convey the energy from the batteries to the UCs. Otherwise, the pure battery mode or the pure ultracapacitors (UCs) mode will be utilized without the DC-DC converter. To extend the battery life, the UCs have the highest priority to recycle the energy and the batteries are isolated from being recharged directly during regenerative braking. Simulations and experiments are established to validate the proposed multimode HESS and its energy management strategy. The results reveal that the energy losses in the DC-DC converter, the total energy consumption and the overall system efficiency of the proposed multimode HESS are improved compared to the conventional HESS.

  7. Parameters optimization for the energy management system of hybrid electric vehicle

    NASA Astrophysics Data System (ADS)

    Tseng, Chyuan-Yow; Hung, Yi-Hsuan; Tsai, Chien-Hsiung; Huang, Yu-Jen

    2007-12-01

    Hybrid electric vehicle (HEV) has been widely studied recently due to its high potential in reduction of fuel consumption, exhaust emission, and lower noise. Because of comprised of two power sources, the HEV requires an energy management system (EMS) to distribute optimally the power sources for various driving conditions. The ITRI in Taiwan has developed a HEV consisted of a 2.2L internal combustion engine (ICE), a 18KW motor/generator (M/G), a 288V battery pack, and a continuous variable transmission (CVT). The task of the present study is to design an energy management strategy of the EMS for the HEV. Due to the nonlinear nature and the fact of unknown system model of the system, a kind of simplex method based energy management strategy is proposed for the HEV system. The simplex method is a kind of optimization strategy which is generally used to find out the optimal parameters for un-modeled systems. The way to apply the simplex method for the design of the EMS is presented. The feasibility of the proposed method was verified by perform numerical simulation on the FTP75 drive cycles.

  8. Energy Management of Manned Boost-Glide Vehicles: A Historical Perspective

    NASA Technical Reports Server (NTRS)

    Day, Richard E.

    2004-01-01

    As flight progressed from propellers to jets to rockets, the propulsive energy grew exponentially. With the development of rocket-only boosted vehicles, energy management of these boost-gliders became a distinct requirement for the unpowered return to base, alternate landing site, or water-parachute landing, starting with the X-series rocket aircraft and terminating with the present-day Shuttle. The problem presented here consists of: speed (kinetic energy) - altitude (potential energy) - steep glide angles created by low lift-to-drag ratios (L/D) - distance to landing site - and the bothersome effects of the atmospheric characteristics varying with altitude. The primary discussion regards post-boost, stabilized glides; however, the effects of centrifugal and geopotential acceleration are discussed as well. The aircraft and spacecraft discussed here are the X-1, X-2, X-15, and the Shuttle; and to a lesser, comparative extent, Mercury, Gemini, Apollo, and lifting bodies. The footprints, landfalls, and methods developed for energy management are also described. The essential tools required for energy management - simulator planning, instrumentation, radar, telemetry, extended land or water range, Mission Control Center (with specialist controllers), and emergency alternate landing sites - were first established through development of early concepts and were then validated by research flight tests.

  9. Convergence of Vehicle and Infrastructure Data for Traffic and Demand Management

    SciTech Connect

    Young, Stanley E.

    2015-11-16

    The increasing availability of highly granular, vehicle trajectory data combined with ever increasing stores of roadway sensor data has provided unparalleled observability into the operation of our urban roadway networks. These data sources are quickly moving from research and prototype environments into full-scale commercial deployment and data offerings. The observability gained allows for increased control opportunities to enhance transportation mobility, safety and energy efficiency. The National Renewable Energy Laboratory (NREL) is involved in three initiatives to leverage these data for positive outcomes: 1) In 2015 NREL, in cooperation with industry and university partners, was awarded an ARPA-E research grant to research a control architecture to incentivize individual travelers toward more sustainable travel behavior. Based on real-time data on the traveler's destination and state of the system, the traveler is presented with route and/or mode choices and offered incentives to accept sustainable alternatives over less-sustainable ones. The project tests the extent to which small incentives can influence, or tip the balance toward more sustainable travel behavior. 2) Although commercial sources of travel time and speed have emerged in recent years based on vehicle probe data, volume estimates continue to rely primarily on historical count data factored for the time of day, day of week, and season of year. Real-time volume flows would enable better tools, simulation in the loop, and ultimately more effective control outcomes. NREL in cooperation with the University of Maryland and industry traffic data providers (INRIX, HERE and TomTom), are attempting to accelerate the timeframe to a viable real-time vehicle volume data feed based on probe data. 3) Signal control on urban arterials for years has had to rely on models rather than measured data to assess performance. High-resolution controller data and low-cost re-identification data now allows for direct

  10. 76 FR 55840 - Cape Hatteras National Seashore Proposed Rule: Off-Road Vehicle Management-Reopening of Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-09

    ... Seashore, North Carolina. (76 FR 39350) The 60-day public comment period for this proposal closed on... National Park Service 36 CFR Part 7 RIN 1024-AD85 Cape Hatteras National Seashore Proposed Rule: Off-Road... comment period for the proposed rule to manage off-road vehicle use at Cape Hatteras National Seashore...

  11. Interval-parameter chance-constraint programming model for end-of-life vehicles management under rigorous environmental regulations.

    PubMed

    Simic, Vladimir

    2016-06-01

    As the number of end-of-life vehicles (ELVs) is estimated to increase to 79.3 million units per year by 2020 (e.g., 40 million units were generated in 2010), there is strong motivation to effectively manage this fast-growing waste flow. Intensive work on management of ELVs is necessary in order to more successfully tackle this important environmental challenge. This paper proposes an interval-parameter chance-constraint programming model for end-of-life vehicles management under rigorous environmental regulations. The proposed model can incorporate various uncertainty information in the modeling process. The complex relationships between different ELV management sub-systems are successfully addressed. Particularly, the formulated model can help identify optimal patterns of procurement from multiple sources of ELV supply, production and inventory planning in multiple vehicle recycling factories, and allocation of sorted material flows to multiple final destinations under rigorous environmental regulations. A case study is conducted in order to demonstrate the potentials and applicability of the proposed model. Various constraint-violation probability levels are examined in detail. Influences of parameter uncertainty on model solutions are thoroughly investigated. Useful solutions for the management of ELVs are obtained under different probabilities of violating system constraints. The formulated model is able to tackle a hard, uncertainty existing ELV management problem. The presented model has advantages in providing bases for determining long-term ELV management plans with desired compromises between economic efficiency of vehicle recycling system and system-reliability considerations. The results are helpful for supporting generation and improvement of ELV management plans. PMID:27039124

  12. The Role of Design-of-Experiments in Managing Flow in Compact Air Vehicle Inlets

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Miller, Daniel N.; Gridley, Marvin C.; Agrell, Johan

    2003-01-01

    It is the purpose of this study to demonstrate the viability and economy of Design-of-Experiments methodologies to arrive at microscale secondary flow control array designs that maintain optimal inlet performance over a wide range of the mission variables and to explore how these statistical methods provide a better understanding of the management of flow in compact air vehicle inlets. These statistical design concepts were used to investigate the robustness properties of low unit strength micro-effector arrays. Low unit strength micro-effectors are micro-vanes set at very low angles-of-incidence with very long chord lengths. They were designed to influence the near wall inlet flow over an extended streamwise distance, and their advantage lies in low total pressure loss and high effectiveness in managing engine face distortion. The term robustness is used in this paper in the same sense as it is used in the industrial problem solving community. It refers to minimizing the effects of the hard-to-control factors that influence the development of a product or process. In Robustness Engineering, the effects of the hard-to-control factors are often called noise , and the hard-to-control factors themselves are referred to as the environmental variables or sometimes as the Taguchi noise variables. Hence Robust Optimization refers to minimizing the effects of the environmental or noise variables on the development (design) of a product or process. In the management of flow in compact inlets, the environmental or noise variables can be identified with the mission variables. Therefore this paper formulates a statistical design methodology that minimizes the impact of variations in the mission variables on inlet performance and demonstrates that these statistical design concepts can lead to simpler inlet flow management systems.

  13. Development & optimization of a rule-based energy management strategy for fuel economy improvement in hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Asfoor, Mostafa

    The gradual decline of oil reserves and the increasing demand for energy over the past decades has resulted in automotive manufacturers seeking alternative solutions to reduce the dependency on fossil-based fuels for transportation. A viable technology that enables significant improvements in the overall energy conversion efficiencies is the hybridization of conventional vehicle drive systems. This dissertation builds on prior hybrid powertrain development at the University of Idaho. Advanced vehicle models of a passenger car with a conventional powertrain and three different hybrid powertrain layouts were created using GT-Suite. These different powertrain models were validated against a variety of standard driving cycles. The overall fuel economy, energy consumption, and losses were monitored, and a comprehensive energy analysis was performed to compare energy sources and sinks. The GT-Suite model was then used to predict the formula hybrid SAE vehicle performance. Inputs to this model were a numerically predicted engine performance map, an electric motor torque curve, vehicle geometry, and road load parameters derived from a roll-down test. In this case study, the vehicle had a supervisory controller that followed a rule-based energy management strategy to insure a proper power split during hybrid mode operation. The supervisory controller parameters were optimized using discrete grid optimization method that minimized the total amount of fuel consumed during a specific urban driving cycle with an average speed of approximately 30 [mph]. More than a 15% increase in fuel economy was achieved by adding supervisory control and managing power split. The vehicle configuration without the supervisory controller displayed a fuel economy of 25 [mpg]. With the supervisory controller this rose to 29 [mpg]. Wider applications of this research include hybrid vehicle controller designs that can extend the range and survivability of military combat platforms. Furthermore, the

  14. Intelligent neuroprocessors for in-situ launch vehicle propulsion systems health management

    NASA Technical Reports Server (NTRS)

    Gulati, S.; Tawel, R.; Thakoor, A. P.

    1993-01-01

    Efficacy of existing on-board propulsion systems health management systems (HMS) are severely impacted by computational limitations (e.g., low sampling rates); paradigmatic limitations (e.g., low-fidelity logic/parameter redlining only, false alarms due to noisy/corrupted sensor signatures, preprogrammed diagnostics only); and telemetry bandwidth limitations on space/ground interactions. Ultra-compact/light, adaptive neural networks with massively parallel, asynchronous, fast reconfigurable and fault-tolerant information processing properties have already demonstrated significant potential for inflight diagnostic analyses and resource allocation with reduced ground dependence. In particular, they can automatically exploit correlation effects across multiple sensor streams (plume analyzer, flow meters, vibration detectors, etc.) so as to detect anomaly signatures that cannot be determined from the exploitation of single sensor. Furthermore, neural networks have already demonstrated the potential for impacting real-time fault recovery in vehicle subsystems by adaptively regulating combustion mixture/power subsystems and optimizing resource utilization under degraded conditions. A class of high-performance neuroprocessors, developed at JPL, that have demonstrated potential for next-generation HMS for a family of space transportation vehicles envisioned for the next few decades, including HLLV, NLS, and space shuttle is presented. Of fundamental interest are intelligent neuroprocessors for real-time plume analysis, optimizing combustion mixture-ratio, and feedback to hydraulic, pneumatic control systems. This class includes concurrently asynchronous reprogrammable, nonvolatile, analog neural processors with high speed, high bandwidth electronic/optical I/O interfaced, with special emphasis on NASA's unique requirements in terms of performance, reliability, ultra-high density ultra-compactness, ultra-light weight devices, radiation hardened devices, power stringency

  15. Heat transfer and thermal management of electric vehicle batteries with phase change materials

    NASA Astrophysics Data System (ADS)

    Ramandi, M. Y.; Dincer, I.; Naterer, G. F.

    2011-07-01

    This paper examines a passive thermal management system for electric vehicle batteries, consisting of encapsulated phase change material (PCM) which melts during a process to absorb the heat generated by a battery. A new configuration for the thermal management system, using double series PCM shells, is analyzed with finite volume simulations. A combination of computational fluid dynamics (CFD) and second law analysis is used to evaluate and compare the new system against the single PCM shells. Using a finite volume method, heat transfer in the battery pack is examined and the results are used to analyse the exergy losses. The simulations provide design guidelines for the thermal management system to minimize the size and cost of the system. The thermal conductivity and melting temperature are studied as two important parameters in the configuration of the shells. Heat transfer from the surroundings to the PCM shell in a non-insulated case is found to be infeasible. For a single PCM system, the exergy efficiency is below 50%. For the second case for other combinations, the exergy efficiencies ranged from 30-40%. The second shell content did not have significant influence on the exergy efficiencies. The double PCM shell system showed higher exergy efficiencies than the single PCM shell system (except a case for type PCM-1). With respect to the reference environment, it is found that in all cases the exergy efficiencies decreased, when the dead-state temperatures rises, and the destroyed exergy content increases gradually. For the double shell systems for all dead-state temperatures, the efficiencies were very similar. Except for a dead-state temperature of 302 K, with the other temperatures, the exergy efficiencies for different combinations are well over 50%. The range of exergy efficiencies vary widely between 15 and 85% for a single shell system, and between 30-80% for double shell systems.

  16. Flight Demonstration of X-33 Vehicle Health Management System Components on the F/A-18 Systems Research Aircraft

    NASA Technical Reports Server (NTRS)

    Schweikhard, Keith A.; Richards, W. Lance; Theisen, John; Mouyos, William; Garbos, Raymond; Schkolnik, Gerald (Technical Monitor)

    1998-01-01

    The X-33 reusable launch vehicle demonstrator has identified the need to implement a vehicle health monitoring system that can acquire data that monitors system health and performance. Sanders, a Lockheed Martin Company, has designed and developed a commercial off-the-shelf (COTS)-based open architecture system that implements a number of technologies that have not been previously used in a flight environment. NASA Dryden Flight Research Center and Sanders teamed to demonstrate that the distributed remote health nodes, fiber optic distributed strain sensor, and fiber distributed data interface communications components of the X-33 vehicle health management (VHM) system could be successfully integrated and flown on a NASA F-18 aircraft. This paper briefly describes components of X-33 VHM architecture flown at Dryden and summarizes the integration and flight demonstration of these X-33 VHM components. Finally, it presents early results from the integration and flight efforts.

  17. Flight Demonstration of X-33 Vehicle Health Management System Components on the F/A-18 Systems Research Aircraft

    NASA Technical Reports Server (NTRS)

    Schweikhard, Keith A.; Richards, W. Lance; Theisen, John; Mouyos, William; Garbos, Raymond

    2001-01-01

    The X-33 reusable launch vehicle demonstrator has identified the need to implement a vehicle health monitoring system that can acquire data that monitors system health and performance. Sanders, a Lockheed Martin Company, has designed and developed a COTS-based open architecture system that implements a number of technologies that have not been previously used in a flight environment. NASA Dryden Flight Research Center and Sanders teamed to demonstrate that the distributed remote health nodes, fiber optic distributed strain sensor, and fiber distributed data interface communications components of the X-33 vehicle health management (VHM) system could be successfully integrated and flown on a NASA F-18 aircraft. This paper briefly describes components of X-33 VHM architecture flown at Dryden and summarizes the integration and flight demonstration of these X-33 VHM components. Finally, it presents early results from the integration and flight efforts.

  18. An Examination of Commercial Aviation Accidents and Incidents Related to Integrated Vehicle Health Management

    NASA Technical Reports Server (NTRS)

    Reveley, Mary S.; Briggs, Jeffrey L.; Thomas, Megan A.; Evans, Joni K.; Jones, Sharon M.

    2011-01-01

    The Integrated Vehicle Health Management (IVHM) Project is one of the four projects within the National Aeronautics and Space Administration's (NASA) Aviation Safety Program (AvSafe). The IVHM Project conducts research to develop validated tools and technologies for automated detection, diagnosis, and prognosis that enable mitigation of adverse events during flight. Adverse events include those that arise from system, subsystem, or component failure, faults, and malfunctions due to damage, degradation, or environmental hazards that occur during flight. Determining the causal factors and adverse events related to IVHM technologies will help in the formulation of research requirements and establish a list of example adverse conditions against which IVHM technologies can be evaluated. This paper documents the results of an examination of the most recent statistical/prognostic accident and incident data that is available from the Aviation Safety Information Analysis and Sharing (ASIAS) System to determine the causal factors of system/component failures and/or malfunctions in U.S. commercial aviation accidents and incidents.

  19. Energy management of electric and hybrid vehicles dependent on powertrain configuration

    NASA Astrophysics Data System (ADS)

    Varga, Bogdan Ovidiu

    2012-06-01

    Electric and hybrid vehicles are going to become the most reliable source of transport for future years. The CO2 and NOx targets in Euro 6 normative puts the producers of vehicles in a dilemma, whether to adapt the internal combustion engines further, or to develop hybrid or electric power trains that are going to reach the pollution limit of the future norms or to go below that. Before acting a well-developed strategy in determining the optimum power flow has to be developed by producers; CRUISE software is a tool with the unique and special characteristics to determine the optimum in this highly important area. Whether electric vehicle, electric vehicle with range extender or a hybrid with CVT or planetary gearbox, the complexity of the mathematical modules remains the same, giving the developer the possibility to create complex functions and distinctive characteristics for each component of the vehicle. With such a powerful tool it becomes extremely easy to evaluate the energy flow in all directions, from electric machine to the battery, from electric machine to the power generator, and from the electric machine to the internal combustion engine. Applying to the (Electric Vehicle, Electric Vehicle with Range Extender, Hybrid vehicle with CVT, Hybrid vehicle with planetary gear set) the ECE-15 in a virtual environment (urban driving cycle) the simulation results show a different usage, rate of storage and efficiency concerning the energy, this being dependent of the power train configuration in most part.

  20. Evaluation of some significant issues affecting trajectory and control management for air-breathing hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Hattis, Philip D.; Malchow, Harvey L.

    1992-01-01

    Horizontal takeoff airbreathing-propulsion launch vehicles require near-optimal guidance and control which takes into account performance sensitivities to atmospheric characteristics while satisfying physically-derived operational constraints. A generic trajectory/control analysis tool that deepens insight into these considerations has been applied to two versions of a winged-cone vehicle model. Information that is critical to the design and trajectory of these vehicles is derived, and several unusual characteristics of the airbreathing propulsion model are shown to have potentially substantial effects on vehicle dynamics.

  1. The Acquisition Process as a Vehicle for Enabling Knowledge Management in the Lifecycle of Complex Federal Systems

    NASA Technical Reports Server (NTRS)

    Stewart, Helen; Spence, Matt Chew; Holm, Jeanne; Koga, Dennis (Technical Monitor)

    2001-01-01

    This white paper explores how to increase the success and operation of critical, complex, national systems by effectively capturing knowledge management requirements within the federal acquisition process. Although we focus on aerospace flight systems, the principles outlined within may have a general applicability to other critical federal systems as well. Fundamental design deficiencies in federal, mission-critical systems have contributed to recent, highly visible system failures, such as the V-22 Osprey and the Delta rocket family. These failures indicate that the current mechanisms for knowledge management and risk management are inadequate to meet the challenges imposed by the rising complexity of critical systems. Failures of aerospace system operations and vehicles may have been prevented or lessened through utilization of better knowledge management and information management techniques.

  2. 48 CFR 51.204 - Use of interagency fleet management system (IFMS) vehicles and related services.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... system (IFMS) vehicles and related services shall comply with the requirements of 41 CFR 101-39 and 41 CFR 101-38.301-1 and the operator's packet furnished with each vehicle. See 41 CFR 101-6.4 for... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Use of interagency...

  3. Prognostic framing of stakeholders' subjectivities: a case of all-terrain vehicle management on state public lands.

    PubMed

    Asah, Stanley T; Bengston, David N; Wendt, Keith; DeVaney, Leif

    2012-01-01

    Management of all-terrain vehicle (ATV) use on Minnesota state forest lands has a contentious history and land managers are caught between ATV riders, non-motorized recreationists, private landowners, and environmental advocates. In this paper, we demonstrate the usefulness of framing distinct perspectives about ATV management on Minnesota state public forests, understand the structure of these management perspectives, identify areas of consensus and disagreement, specify which stakeholders hold the various perspectives, clarify stakeholder perceptions of other stakeholders, and explore the implications for ATV planning and management. Using Q methodology, three distinct perspectives about how we should or should not manage ATVs resulted from our analysis, labeled Expert Management, Multiple Use, and Enforcement and Balance. A surprising degree of unanimity among the three management perspectives was found. Although some of the areas of agreement would be difficult to implement, others would be relatively simple to put into place. We suggest that land managers focus on widely accepted management actions to ameliorate commonly recognized problems, which may ease tensions between stakeholders and make tackling the tougher issues easier. PMID:21984046

  4. Configuration and specifications of an Unmanned Aerial Vehicle (UAV) for early site specific weed management.

    PubMed

    Torres-Sánchez, Jorge; López-Granados, Francisca; De Castro, Ana Isabel; Peña-Barragán, José Manuel

    2013-01-01

    A new aerial platform has risen recently for image acquisition, the Unmanned Aerial Vehicle (UAV). This article describes the technical specifications and configuration of a UAV used to capture remote images for early season site- specific weed management (ESSWM). Image spatial and spectral properties required for weed seedling discrimination were also evaluated. Two different sensors, a still visible camera and a six-band multispectral camera, and three flight altitudes (30, 60 and 100 m) were tested over a naturally infested sunflower field. The main phases of the UAV workflow were the following: 1) mission planning, 2) UAV flight and image acquisition, and 3) image pre-processing. Three different aspects were needed to plan the route: flight area, camera specifications and UAV tasks. The pre-processing phase included the correct alignment of the six bands of the multispectral imagery and the orthorectification and mosaicking of the individual images captured in each flight. The image pixel size, area covered by each image and flight timing were very sensitive to flight altitude. At a lower altitude, the UAV captured images of finer spatial resolution, although the number of images needed to cover the whole field may be a limiting factor due to the energy required for a greater flight length and computational requirements for the further mosaicking process. Spectral differences between weeds, crop and bare soil were significant in the vegetation indices studied (Excess Green Index, Normalised Green-Red Difference Index and Normalised Difference Vegetation Index), mainly at a 30 m altitude. However, greater spectral separability was obtained between vegetation and bare soil with the index NDVI. These results suggest that an agreement among spectral and spatial resolutions is needed to optimise the flight mission according to every agronomical objective as affected by the size of the smaller object to be discriminated (weed plants or weed patches). PMID:23483997

  5. Configuration and Specifications of an Unmanned Aerial Vehicle (UAV) for Early Site Specific Weed Management

    PubMed Central

    Torres-Sánchez, Jorge; López-Granados, Francisca; De Castro, Ana Isabel; Peña-Barragán, José Manuel

    2013-01-01

    A new aerial platform has risen recently for image acquisition, the Unmanned Aerial Vehicle (UAV). This article describes the technical specifications and configuration of a UAV used to capture remote images for early season site- specific weed management (ESSWM). Image spatial and spectral properties required for weed seedling discrimination were also evaluated. Two different sensors, a still visible camera and a six-band multispectral camera, and three flight altitudes (30, 60 and 100 m) were tested over a naturally infested sunflower field. The main phases of the UAV workflow were the following: 1) mission planning, 2) UAV flight and image acquisition, and 3) image pre-processing. Three different aspects were needed to plan the route: flight area, camera specifications and UAV tasks. The pre-processing phase included the correct alignment of the six bands of the multispectral imagery and the orthorectification and mosaicking of the individual images captured in each flight. The image pixel size, area covered by each image and flight timing were very sensitive to flight altitude. At a lower altitude, the UAV captured images of finer spatial resolution, although the number of images needed to cover the whole field may be a limiting factor due to the energy required for a greater flight length and computational requirements for the further mosaicking process. Spectral differences between weeds, crop and bare soil were significant in the vegetation indices studied (Excess Green Index, Normalised Green-Red Difference Index and Normalised Difference Vegetation Index), mainly at a 30 m altitude. However, greater spectral separability was obtained between vegetation and bare soil with the index NDVI. These results suggest that an agreement among spectral and spatial resolutions is needed to optimise the flight mission according to every agronomical objective as affected by the size of the smaller object to be discriminated (weed plants or weed patches). PMID:23483997

  6. Vehicle electric power systems are under change!. Implications for design, monitoring and management of automotive batteries

    NASA Astrophysics Data System (ADS)

    Meissner, Eberhard; Richter, Gerolf

    New technical features, the demand for fuel economy, and the potential to reduce production and operational cost are leading to additional and more powerful electrical consumers and making the overall electrical demand in vehicles increase. Vehicle electrical architecture is performing an evolutionary change to improve the efficiency of production, distribution, control and storage of electrical energy in the vehicle. New battery designs with performance patterns designed for the new architectures are needed, and some of the new demands may even exceed the capability of lead/acid batteries. Single and dual battery systems offer a wide variety of applications when combined with intelligent means to keep the batteries in an appropriate operational window. Detection of state-of-charge (SOC) and state-of-health (SOH) is essential to help the battery to fulfil its role as a key element for vehicle functionality and safety.

  7. Energy management of power-split plug-in hybrid electric vehicles based on simulated annealing and Pontryagin's minimum principle

    NASA Astrophysics Data System (ADS)

    Chen, Zheng; Mi, Chunting Chris; Xia, Bing; You, Chenwen

    2014-12-01

    In this paper, an energy management method is proposed for a power-split plug-in hybrid electric vehicle (PHEV). Through analyzing the PHEV powertrain, a series of quadratic equations are employed to approximate the vehicle's fuel-rate, using battery current as the input. Pontryagin's Minimum Principle (PMP) is introduced to find the battery current commands by solving the Hamiltonian function. Simulated Annealing (SA) algorithm is applied to calculate the engine-on power and the maximum current coefficient. Moreover, the battery state of health (SOH) is introduced to extend the application of the proposed algorithm. Simulation results verified that the proposed algorithm can reduce fuel-consumption compared to charge-depleting (CD) and charge-sustaining (CS) mode.

  8. Assessment of the State of the Art of Integrated Vehicle Health Management Technologies as Applicable to Damage Conditions

    NASA Technical Reports Server (NTRS)

    Reveley, Mary S.; Kurtoglu, Tolga; Leone, Karen M.; Briggs, Jeffrey L.; Withrow, Colleen A.

    2010-01-01

    A survey of literature from academia, industry, and other Government agencies assessed the state of the art in current integrated vehicle health management (IVHM) aircraft technologies. These are the technologies that are used for assessing vehicle health at the system and subsystem level. This study reports on how these technologies are employed by major military and commercial platforms for detection, diagnosis, prognosis, and mitigation. Over 200 papers from five conferences from the time period of 2004 to 2009 were reviewed. Over 30 of these IVHM technologies are then mapped into the 17 different adverse event damage conditions identified in a previous study. This study illustrates existing gaps and opportunities for additional research by the NASA IVHM Project.

  9. Real-Time Rocket/Vehicle System Integrated Health Management Laboratory For Development and Testing of Health Monitoring/Management Systems

    NASA Technical Reports Server (NTRS)

    Aguilar, R.

    2006-01-01

    Pratt & Whitney Rocketdyne has developed a real-time engine/vehicle system integrated health management laboratory, or testbed, for developing and testing health management system concepts. This laboratory simulates components of an integrated system such as the rocket engine, rocket engine controller, vehicle or test controller, as well as a health management computer on separate general purpose computers. These general purpose computers can be replaced with more realistic components such as actual electronic controllers and valve actuators for hardware-in-the-loop simulation. Various engine configurations and propellant combinations are available. Fault or failure insertion capability on-the-fly using direct memory insertion from a user console is used to test system detection and response. The laboratory is currently capable of simulating the flow-path of a single rocket engine but work is underway to include structural and multiengine simulation capability as well as a dedicated data acquisition system. The ultimate goal is to simulate as accurately and realistically as possible the environment in which the health management system will operate including noise, dynamic response of the engine/engine controller, sensor time delays, and asynchronous operation of the various components. The rationale for the laboratory is also discussed including limited alternatives for demonstrating the effectiveness and safety of a flight system.

  10. The use of GPS for automatic vehicle location and fleet management - A reliable and economic system for the 90's

    NASA Astrophysics Data System (ADS)

    Denaro, Robert P.

    1991-01-01

    This paper offers an approach to an integrated automatic vehicle location (AVL) system that integrates GPS with communications links, auxiliary dead reckoning sensors, and modern workstation implementation of a control and location monitoring center. The actual implementation of this AVL system in a municipal bus operation is described, along with other fleet management applications. Then, further details are provided on Trimble's development of the AVL system that uses a deep integration where the dead reckoning subsystem is continually calibrated by the GPS measurements when GPS is available; then the dead reckoning continues alone with newly calibrated drift parameters when the GPS signal is interrupted.

  11. 41 CFR 102-34.345 - What records do we need to keep?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... developing and keeping adequate accounting and reporting procedures for Government motor vehicles. These will ensure accurate recording of inventory, cost, and operational data needed to manage and control motor... Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR...

  12. X-38 Prototype Technology Demonstrator for the Crew Return Vehicle (CRV) and Project Managers Bob Ba

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Bob Baron of the Dryden Flight Research Center (left) and Brian Anderson of the Johnson Space Flight Center (right) flank an X-38 prototype Crew Return Vehicle technology demonstrator under construction at the Johnson Space Center, Houston, Texas. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an

  13. 48 CFR 52.251-2 - Interagency Fleet Management System Vehicles and Related Services.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... vehicles and the use of related services by the Contractor shall be in accordance with 41 CFR 101-39 and 41 CFR 101-38.301-1. (End of clause) ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Interagency...

  14. Unmanned aerial vehicle: A unique platform for low-altitude remote sensing for crop management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unmanned aerial vehicles (UAV) provide a unique platform for remote sensing to monitor crop fields that complements remote sensing from satellite, aircraft and ground-based platforms. The UAV-based remote sensing is versatile at ultra-low altitude to be able to provide an ultra-high-resolution imag...

  15. Rangeland resource assessment, monitoring, and management using unmanned aerial vehicle-based remote sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Civilian applications of Unmanned Aerial Vehicles (UAV) have rapidly been expanding recently. Thanks to military development many civil UAVs come via the defense sector. Although numerous UAVs can perform civilian tasks, the regulations imposed by FAA in the national airspace system and military e...

  16. Optimal economy-based battery degradation management dynamics for fuel-cell plug-in hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Martel, François; Kelouwani, Sousso; Dubé, Yves; Agbossou, Kodjo

    2015-01-01

    This work analyses the economical dynamics of an optimized battery degradation management strategy intended for plug-in hybrid electric vehicles (PHEVs) with consideration given to low-cost technologies, such as lead-acid batteries. The optimal management algorithm described herein is based on discrete dynamic programming theory (DDP) and was designed for the purpose of PHEV battery degradation management; its operation relies on simulation models using data obtained experimentally on a physical PHEV platform. These tools are first used to define an optimal management strategy according to the economical weights of PHEV battery degradation and the secondary energy carriers spent to manage its deleterious effects. We then conduct a sensitivity study of the proposed optimization process to the fluctuating economic parameters associated with the fuel and energy costs involved in the degradation management process. Results demonstrate the influence of each parameter on the process's response, including daily total operating costs and expected battery lifetime, as well as establish boundaries for useful application of the method; in addition, they provide a case for the relevance of inexpensive battery technologies, such as lead-acid batteries, for economy-centric PHEV applications where battery degradation is a major concern.

  17. Prediction-based optimal power management in a fuel cell/battery plug-in hybrid vehicle

    NASA Astrophysics Data System (ADS)

    Bubna, Piyush; Brunner, Doug; Advani, Suresh G.; Prasad, Ajay K.

    A prediction-based power management strategy is proposed for fuel cell/battery plug-in hybrid vehicles with the goal of improving overall system operating efficiency. The main feature of the proposed strategy is that, if the total amount of energy required to complete a particular drive cycle can be reliably predicted, then the energy stored in the onboard electrical storage system can be depleted in an optimal manner that permits the fuel cell to operate in its most efficient regime. The strategy has been implemented in a vehicle power-train simulator called LFM which was developed in MATLAB/SIMULINK software and its effectiveness was evaluated by comparing it with a conventional control strategy. The proposed strategy is shown to provide significant improvement in average fuel cell system efficiency while reducing hydrogen consumption. It has been demonstrated with the LFM simulation that the prediction-based power management strategy can maintain a stable power request to the fuel cell thereby improving fuel cell durability, and that the battery is depleted to the desired state-of-charge at the end of the drive cycle. A sensitivity analysis has also been conducted to study the effects of inaccurate predictions of the remaining portion of the drive cycle on hydrogen consumption and the final battery state-of-charge. Finally, the advantages of the proposed control strategy over the conventional strategy have been validated through implementation in the University of Delaware's fuel cell hybrid bus with operational data acquired from onboard sensors.

  18. Thermal and energy battery management optimization in electric vehicles using Pontryagin's maximum principle

    NASA Astrophysics Data System (ADS)

    Bauer, Sebastian; Suchaneck, Andre; Puente León, Fernando

    2014-01-01

    Depending on the actual battery temperature, electrical power demands in general have a varying impact on the life span of a battery. As electrical energy provided by the battery is needed to temper it, the question arises at which temperature which amount of energy optimally should be utilized for tempering. Therefore, the objective function that has to be optimized contains both the goal to maximize life expectancy and to minimize the amount of energy used for obtaining the first goal. In this paper, Pontryagin's maximum principle is used to derive a causal control strategy from such an objective function. The derivation of the causal strategy includes the determination of major factors that rule the optimal solution calculated with the maximum principle. The optimization is calculated offline on a desktop computer for all possible vehicle parameters and major factors. For the practical implementation in the vehicle, it is sufficient to have the values of the major factors determined only roughly in advance and the offline calculation results available. This feature sidesteps the drawback of several optimization strategies that require the exact knowledge of the future power demand. The resulting strategy's application is not limited to batteries in electric vehicles.

  19. 75 FR 71730 - General Management Plan/Wilderness Study/Off-Road Vehicle Management Plan, Final Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ... Planning) and Director's Order Number 12 (Conservation Planning, Environmental Impact Analysis, and... development of the Preserve. Alternative B: The concept for management under alternative B would be to...

  20. A Vehicle Management End-to-End Testing and Analysis Platform for Validation of Mission and Fault Management Algorithms to Reduce Risk for NASAs Space Launch System

    NASA Technical Reports Server (NTRS)

    Trevino, Luis; Johnson, Stephen B.; Patterson, Jonathan; Teare, David

    2015-01-01

    The engineering development of the National Aeronautics and Space Administration's (NASA) new Space Launch System (SLS) requires cross discipline teams with extensive knowledge of launch vehicle subsystems, information theory, and autonomous algorithms dealing with all operations from pre-launch through on orbit operations. The nominal and off-nominal characteristics of SLS's elements and subsystems must be understood and matched with the autonomous algorithm monitoring and mitigation capabilities for accurate control and response to abnormal conditions throughout all vehicle mission flight phases, including precipitating safing actions and crew aborts. This presents a large and complex systems engineering challenge, which is being addressed in part by focusing on the specific subsystems involved in the handling of off-nominal mission and fault tolerance with response management. Using traditional model-based system and software engineering design principles from the Unified Modeling Language (UML) and Systems Modeling Language (SysML), the Mission and Fault Management (M&FM) algorithms for the vehicle are crafted and vetted in Integrated Development Teams (IDTs) composed of multiple development disciplines such as Systems Engineering (SE), Flight Software (FSW), Safety and Mission Assurance (S&MA) and the major subsystems and vehicle elements such as Main Propulsion Systems (MPS), boosters, avionics, Guidance, Navigation, and Control (GNC), Thrust Vector Control (TVC), and liquid engines. These model-based algorithms and their development lifecycle from inception through FSW certification are an important focus of SLS's development effort to further ensure reliable detection and response to off-nominal vehicle states during all phases of vehicle operation from pre-launch through end of flight. To test and validate these M&FM algorithms a dedicated test-bed was developed for full Vehicle Management End-to-End Testing (VMET). For addressing fault management (FM

  1. Long-term assessment of economic plug-in hybrid electric vehicle battery lifetime degradation management through near optimal fuel cell load sharing

    NASA Astrophysics Data System (ADS)

    Martel, François; Dubé, Yves; Kelouwani, Sousso; Jaguemont, Joris; Agbossou, Kodjo

    2016-06-01

    This work evaluates the performance of a plug-in hybrid electric vehicle (PHEV) energy management process that relies on the active management of the degradation of its energy carriers - in this scenario, a lithium-ion battery pack and a polymer electrolyte membrane fuel cell (PEMFC) - to produce a near economically-optimal vehicle operating profile over its entire useful lifetime. This solution is obtained through experimentally-supported PHEV models exploited by an optimal discrete dynamic programming (DDP) algorithm designed to efficiently process vehicle usage cycles over an extended timescale. Our results demonstrate the economic and component lifetime gains afforded by our strategy when compared with alternative rule-based PHEV energy management benchmarks.

  2. Necessity of Mutual Understandings in Supply Chain Management of Lithium-Ion Battery for Space Vehicle

    NASA Astrophysics Data System (ADS)

    Kiyokawa, T.; Nakajima, M.; Mori, Y.

    2012-01-01

    Application of Lithium Ion Battery (LIB) is getting growth these days in space industry. Through the supply chain of LIB, it is very important to establish deepen mutual understandings between space industry people and non-space industry people in order to meet requirements of space grade quality control. Furthermore, this approach has positive effects for safety handling and safety transportation. This paper explains necessity of mutual understandings based on the analysis of aviation incident report. The study is focused on its background and issues on each related industry. These contents are studied and discussed in the New Work Item Proposal of the International Standard of LIB for space vehicle.

  3. A Vehicle Management End-to-End Testing and Analysis Platform for Validation of Mission and Fault Management Algorithms to Reduce Risk for NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    Trevino, Luis; Patterson, Jonathan; Teare, David; Johnson, Stephen

    2015-01-01

    The engineering development of the new Space Launch System (SLS) launch vehicle requires cross discipline teams with extensive knowledge of launch vehicle subsystems, information theory, and autonomous algorithms dealing with all operations from pre-launch through on orbit operations. The characteristics of these spacecraft systems must be matched with the autonomous algorithm monitoring and mitigation capabilities for accurate control and response to abnormal conditions throughout all vehicle mission flight phases, including precipitating safing actions and crew aborts. This presents a large and complex system engineering challenge, which is being addressed in part by focusing on the specific subsystems involved in the handling of off-nominal mission and fault tolerance with response management. Using traditional model based system and software engineering design principles from the Unified Modeling Language (UML) and Systems Modeling Language (SysML), the Mission and Fault Management (M&FM) algorithms for the vehicle are crafted and vetted in specialized Integrated Development Teams (IDTs) composed of multiple development disciplines such as Systems Engineering (SE), Flight Software (FSW), Safety and Mission Assurance (S&MA) and the major subsystems and vehicle elements such as Main Propulsion Systems (MPS), boosters, avionics, Guidance, Navigation, and Control (GNC), Thrust Vector Control (TVC), and liquid engines. These model based algorithms and their development lifecycle from inception through Flight Software certification are an important focus of this development effort to further insure reliable detection and response to off-nominal vehicle states during all phases of vehicle operation from pre-launch through end of flight. NASA formed a dedicated M&FM team for addressing fault management early in the development lifecycle for the SLS initiative. As part of the development of the M&FM capabilities, this team has developed a dedicated testbed that

  4. A Vehicle Management End-to-End Testing and Analysis Platform for Validation of Mission and Fault Management Algorithms to Reduce Risk for NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    Trevino, Luis; Johnson, Stephen B.; Patterson, Jonathan; Teare, David

    2015-01-01

    The development of the Space Launch System (SLS) launch vehicle requires cross discipline teams with extensive knowledge of launch vehicle subsystems, information theory, and autonomous algorithms dealing with all operations from pre-launch through on orbit operations. The characteristics of these systems must be matched with the autonomous algorithm monitoring and mitigation capabilities for accurate control and response to abnormal conditions throughout all vehicle mission flight phases, including precipitating safing actions and crew aborts. This presents a large complex systems engineering challenge being addressed in part by focusing on the specific subsystems handling of off-nominal mission and fault tolerance. Using traditional model based system and software engineering design principles from the Unified Modeling Language (UML), the Mission and Fault Management (M&FM) algorithms are crafted and vetted in specialized Integrated Development Teams composed of multiple development disciplines. NASA also has formed an M&FM team for addressing fault management early in the development lifecycle. This team has developed a dedicated Vehicle Management End-to-End Testbed (VMET) that integrates specific M&FM algorithms, specialized nominal and off-nominal test cases, and vendor-supplied physics-based launch vehicle subsystem models. The flexibility of VMET enables thorough testing of the M&FM algorithms by providing configurable suites of both nominal and off-nominal test cases to validate the algorithms utilizing actual subsystem models. The intent is to validate the algorithms and substantiate them with performance baselines for each of the vehicle subsystems in an independent platform exterior to flight software test processes. In any software development process there is inherent risk in the interpretation and implementation of concepts into software through requirements and test processes. Risk reduction is addressed by working with other organizations such as S

  5. NASA Integrated Vehicle Health Management (NIVHM) A New Simulation Architecture. Part I; An Investigation

    NASA Technical Reports Server (NTRS)

    Sheppard, Gene

    2005-01-01

    The overall objective of this research is to explore the development of a new architecture for simulating a vehicle health monitoring system in support of NASA s on-going Integrated Vehicle Health Monitoring (IVHM) initiative. As discussed in NASA MSFC s IVHM workshop on June 29-July 1, 2004, a large number of sensors will be required for a robust IVHM system. The current simulation architecture is incapable of simulating the large number of sensors required for IVHM. Processing the data from the sensors into a format that a human operator can understand and assimilate in a timely manner will require a paradigm shift. Data from a single sensor is, at best, suspect and in order to overcome this deficiency, redundancy will be required for tomorrow s sensors. The sensor technology of tomorrow will allow for the placement of thousands of sensors per square inch. The major obstacle to overcome will then be how we can mitigate the torrent of data from raw sensor data to useful information to computer assisted decisionmaking.

  6. End-of-Life Vehicles management: Italian material and energy recovery efficiency.

    PubMed

    Santini, Alessandro; Morselli, Luciano; Passarini, Fabrizio; Vassura, Ivano; Di Carlo, Salvatore; Bonino, Francesco

    2011-03-01

    Each European Member State must comply with Directive 2000/53/EC recycling and recovery targets by 2015, set to 85% and 95%, respectively. This paper reports a shredder campaign trial developed and performed in Italy at the beginning of 2008. It turns out to be the first assessment about the critical aspects belonging to the Italian End-of-Life Vehicles (ELVs) reverse supply chain involving 18 dismantling plants, a shredder plant and 630 ELV representatives of different categories of vehicles treated in Italy during 2006. This trial aims at improving the experimental knowledge related to ELVs added waste, pre-treatment, part reuse, recycling and final metal separation and car fluff disposal. Finally, the study also focuses on the calculation of the effective Italian ELV recycling rate, which results equal to 80.8%, and auto shredder residue (ASR) characterization. According to the results obtained in this work, ASR still contains up to 8% of metals and 40% of polymers that could be recovered. Moreover, physical-chemical analysis showed a Lower Heat Value of almost 20,000 kJ/kg and revealed the presence of pollutants such as heavy metals, mineral oils, PCBs and hydrocarbons. PMID:20943364

  7. Novel polymer composite having diamond particles and boron nitride platelets for thermal management of electric vehicle motors

    NASA Astrophysics Data System (ADS)

    Nakajima, Anri; Shoji, Atsushi; Yonemori, Kei; Seo, Nobuhide

    2016-02-01

    Thermal conductivities of silicone matrix polymers including fillers of diamond particles and/or hexagonal boron nitride (h-BN) platelets were systematically investigated in an attempt to find a thermal interface material (TIM) having high isotropic thermal conductivity and high electrical insulating ability to enable efficient heat dissipation from the motor coil ends of electric vehicles. The TIM with mixed fillers of diamond particles and h-BN platelets had a maximum thermal conductivity of 6.1 W m-1 K-1 that was almost isotropic. This is the highest value among the thermal conductivities of TIMs with silicone matrix polymer reported to date. The mechanism behind the thermal conductivity of the TIMs was also examined from the viewpoint of the change in the number of thermally conductive networks and/or a decrease in the thermal resistivity of junctions of neighboring diamond particles through the incorporation of h-BN platelets. The TIMs developed in this study will make it possible to manage the heat of electric motors and will help to popularize electric vehicles.

  8. Relative efficacy and interchangeability ofvarious clobetasol propionate vehicles in the management of steroid-responsive dermatoses

    PubMed Central

    Feldman, Steven R.

    2005-01-01

    Background: Topical corticosteroids have long been the cornerstone in thetreatment of steroid-responsive dermatoses. Despite the effectiveness of these formulations, there is a misperception that drugs delivered via ointments are more potent than those delivered via other vehicles. Potency, however, is a complex function of the physical and chemical properties of both the active ingredient and its vehicle. Studies have determined that newer vehicles (eg, lotions), particularly those in the super-high-potency class, not only heighten the ability of the active ingredient to penetrate skin but also are preferred by patients over ointments and creams. Objective: This review of the literature investigates the effectiveness andtolerability of a high-potency corticosteroid lotion compared with cream or emollient cream formulations in treating moderate to severe plaque-type psoriasis and atopic dermatitis. Methods: A literature search was conducted of US and international published clinical trials (1975 to November 2004) comparing all potencies of topical corticosteroid cream and lotion formulations using MEDLINE and the Web sites of individual dermatologic journals. No specific study designs were excluded from this search. Search terms included corticosteroid-responsive dermatoses, creams versus lotions, topical corticosteroid clinical trials, plaque-type psoriasis, atopic dermatitis, clobetasol propionate, drug bioavailability, Class I topical agents, and vasoconstriction. The primary diagnoses were moderate to severe plaque-type psoriasis and atopic dermatitis. Two unpublished clinical investigations comparing clobetasol propionate lotion 0.05% with clobetasol propionate cream 0.05% and emollient cream 0.05% in a total of 421 patients were also included. Results: In the 20 published and 2 unpublished trials identified and reviewed, the response rates were comparable between the lotion and cream formulations. In addition, in a psoriasis study, clobetasol lotion received

  9. Advanced Technology Vehicle Testing

    SciTech Connect

    James Francfort

    2003-11-01

    The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energy’s Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

  10. Montana's Clark Fork River Basin Task Force: A Vehicle for Integrated Water Resources Management?

    NASA Astrophysics Data System (ADS)

    Shively, David D.; Mueller, Gerald

    2010-11-01

    This article examines what is generally considered to be an unattainable goal in the western United States: integrated water resources management (IWRM). Specifically, we examine an organization that is quite unique in the West, Montana’s Clark Fork River Basin Task Force (Task Force), and we analyze its activities since its formation in 2001 to answer the question: are the activities and contributions of the Task Force working to promote a more strongly integrated approach to water resources management in Montana? After reviewing the concepts underlying IWRM, some of the issues that have been identified for achieving IWRM in the West, and the Montana system of water right allocation and issues it faces, we adapt Mitchell’s IWRM framework and apply it to the analysis of the Task Force’s activities in the context of IWRM. In evaluating the physical, interaction, and protocol/planning/policy components of IWRM, we find that the Task Force has been contributing to the evolution of Montana’s water resources management towards this framework, though several factors will likely continue to prevent its complete realization. The Task Force has been successful in this regard because of its unique nature and charge, and because of the authority and power given it by successive Montana legislatures. Also critical to the success of the organization is its ability to help translate into policy the outcomes of legal and quasi-judicial decisions that have impacted the state’s water resources management agency.

  11. Application of Fault Management Theory to the Quantitive Selection of a Launch Vehicle Abort Trigger Suite

    NASA Technical Reports Server (NTRS)

    Lo, Yunnhon; Johnson, Stephen B.; Breckenridge, Jonathan T.

    2014-01-01

    SHM/FM theory has been successfully applied to the selection of the baseline set Abort Triggers for the NASA SLS center dot Quantitative assessment played a useful role in the decision process ? M&FM, which is new within NASA MSFC, required the most "new" work, as this quantitative analysis had never been done before center dot Required development of the methodology and tool to mechanize the process center dot Established new relationships to the other groups ? The process is now an accepted part of the SLS design process, and will likely be applied to similar programs in the future at NASA MSFC ? Future improvements center dot Improve technical accuracy ?Differentiate crew survivability due to an abort, vs. survivability even no immediate abort occurs (small explosion with little debris) ?Account for contingent dependence of secondary triggers on primary triggers ?Allocate "? LOC Benefit" of each trigger when added to the previously selected triggers. center dot Reduce future costs through the development of a specialized tool ? Methodology can be applied to any manned/unmanned vehicle, in space or terrestrial

  12. Energy management of fuel cell/battery/supercapacitor hybrid power source for vehicle applications

    NASA Astrophysics Data System (ADS)

    Thounthong, Phatiphat; Raël, Stephane; Davat, Bernard

    This paper proposes a perfect energy source supplied by a polymer electrolyte membrane fuel cell (PEMFC) as a main power source and storage devices: battery and supercapacitor, for modern distributed generation system, particularly for future fuel cell vehicle applications. The energy in hybrid system is balanced by the dc bus voltage regulation. A supercapacitor module, as a high dynamic and high power density device, functions for supplying energy to regulate a dc bus voltage. A battery module, as a high energy density device, operates for supplying energy to a supercapacitor bank to keep it charged. A FC, as a slowest dynamic source in this system, functions to supply energy to a battery bank in order to keep it charged. Therefore, there are three voltage control loops: dc bus voltage regulated by a supercapacitor bank, supercapacitor voltage regulated by a battery bank, and battery voltage regulated by a FC. To authenticate the proposed control algorithm, a hardware system in our laboratory is realized by analog circuits and numerical calculation by dSPACE. Experimental results with small-scale devices (a PEMFC: 500-W, 50-A; a battery bank: 68-Ah, 24-V; and a supercapacitor bank: 292-F, 30-V, 500-A) corroborate the excellent control principle during motor drive cycle.

  13. The Use of Autonomous Underwater Vehicles for Deep-Reef Discovery and Benthic Characterization To Aid Conservation and Management

    NASA Astrophysics Data System (ADS)

    Rissolo, D.; Reed, J. K.; Auster, P. J.; Sherrell, A.; Dessner, M.; Purcell, M.; Packard, G.

    2012-12-01

    Recent exploratory research along the Atlantic coast of the US has demonstrated the utility of dual autonomous underwater vehicle (AUV) systems for side-scan surveys, multibeam mapping, and photo-imaging of deep-water habitat and octocoral gardens. The potential of the REMUS 6000 AUVs was demonstrated by mapping high-relief coral mounds in the Straits of Florida in the strong currents of the Gulf Stream, and the submarine canyons and seamounts off the Northeastern US coast. The key to protecting these slow-growing deep coral reefs and critical hard-bottom habitat is the ability to efficiently discover and map their locations, characterize their structure, and assess their condition. Data from these deepwater AUV surveys were used to inform the regional fishery management councils and NOAA NMFS for the management and potential protection of these vulnerable habitats. These projects were realized though the collaborative efforts of the Waitt Institute, Woods Hole Oceanographic Institution, Harbor Branch Oceanographic Institute, NOAA National Marine Fisheries Service, the Natural Resource Defense Council, and the University of Connecticut.

  14. Energy Management of the Multi-Mission Space Exploration Vehicle Using a Goal-Oriented Control System

    NASA Technical Reports Server (NTRS)

    Braman, Julia M. B.; Wagner, David A.

    2010-01-01

    Safe human exploration in space missions requires careful management of limited resources such as breathable air and stored electrical energy. Daily activities for astronauts must be carefully planned with respect to such resources, and usage must be monitored as activities proceed to ensure that they can be completed while maintaining safe resource margins. Such planning and monitoring can be complex because they depend on models of resource usage, the activities being planned, and uncertainties. This paper describes a system - and the technology behind it - for energy management of the NASA-Johnson Space Center's Multi-Mission Space Exploration Vehicles (SEV), that provides, in an onboard advisory mode, situational awareness to astronauts and real-time guidance to mission operators. This new capability was evaluated during this year's Desert RATS (Research and Technology Studies) planetary exploration analog test in Arizona. This software aided ground operators and crew members in modifying the day s activities based on the real-time execution of the plan and on energy data received from the rovers.

  15. Integration of health management and support systems is key to achieving cost reduction and operational concept goals of the 2nd generation reusable launch vehicle

    NASA Astrophysics Data System (ADS)

    Koon, Phillip L.; Greene, Scott

    2002-07-01

    Our aerospace customers are demanding that we drastically reduce the cost of operating and supporting our products. Our space customer in particular is looking for the next generation of reusable launch vehicle systems to support more aircraft like operation. To achieve this goal requires more than an evolution in materials, processes and systems, what is required is a paradigm shift in the design of the launch vehicles and the processing systems that support the launch vehicles. This paper describes the Automated Informed Maintenance System (AIM) we are developing for NASA's Space Launch Initiative (SLI) Second Generation Reusable Launch Vehicle (RLV). Our system includes an Integrated Health Management (IHM) system for the launch vehicles and ground support systems, which features model based diagnostics and prognostics. Health Management data is used by our AIM decision support and process aids to automatically plan maintenance, generate work orders and schedule maintenance activities along with the resources required to execute these processes. Our system will automate the ground processing for a spaceport handling multiple RLVs executing multiple missions. To accomplish this task we are applying the latest web based distributed computing technologies and application development techniques.

  16. Attitude control/momentum management and payload pointing in advanced space vehicles

    NASA Technical Reports Server (NTRS)

    Parlos, Alexander G.; Jayasuriya, Suhada

    1990-01-01

    The design and evaluation of an attitude control/momentum management system for highly asymmetric spacecraft configurations are presented. The preliminary development and application of a nonlinear control system design methodology for tracking control of uncertain systems, such as spacecraft payload pointing systems are also presented. Control issues relevant to both linear and nonlinear rigid-body spacecraft dynamics are addressed, whereas any structural flexibilities are not taken into consideration. Results from the first task indicate that certain commonly used simplifications in the equations of motions result in unstable attitude control systems, when used for highly asymmetric spacecraft configurations. An approach is suggested circumventing this problem. Additionally, even though preliminary results from the second task are encouraging, the proposed nonlinear control system design method requires further investigation prior to its application and use as an effective payload pointing system design technique.

  17. Management of Total Pressure Recovery, Distortion and High Cycle Fatigue in Compact Air Vehicle Inlets

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Baust, Henry D.; Agrell, Johan

    2002-01-01

    It is the purpose of this study to demonstrate the viability and economy of Response Surface Methods (RSM) and Robustness Design Concepts (RDC) to arrive at micro-secondary flow control installation designs that maintain optimal inlet performance over a range of the mission variables. These statistical design concepts were used to investigate the robustness properties of 'low unit strength' micro-effector installations. 'Low unit strength' micro-effectors are micro-vanes set at very low angles-of-incidence with very long chord lengths. They were designed to influence the near wall inlet flow over an extended streamwise distance, and their advantage lies in low total pressure loss and high effectiveness in managing engine face distortion.

  18. The use of Unmanned Aerial Vehicles in monitoring applications and management of natural hazards

    NASA Astrophysics Data System (ADS)

    Piras, Marco; Aicardi, Irene; Lingua, Andrea; Noardo, Francesca; Chiabrando, Filiberto

    2015-04-01

    In the last years following the damages derived by the climate change (such as flooding and so on) it is growing the necessity to monitor the watercourses with effective and quickly method, where low cost solutions are particularly interested. In some cases, it is essential to have information about the riverbed, the river banks and to analyze the springs and the way in which the water moves. For the terrestrial point of view this knowledge can be acquired through GNSS and topographic methods, but they are still too manually so that they are time-consuming with respect the acquisition of information about the entire area. Another possibility is to perform a laser scanner survey, but the most common instruments (economically sustainable) have some problems to acquire information of sub-water-layer. Moreover, terrestrial surveys from cameras (such as visible, thermic or hyperspectral sensors) can't always offer a useful view of the case study due to the fact that they have a limited range of possible points of acquisition. For these reasons, it can be more effective to have an aerial point of view of the river, for example using UAVs (Unmanned Aerial Vehicles), which have been experimented in these last years for environmental investigations. The proposed studies include photogrammetric and thermographic applications in order to investigate a new post-flooding riverbed arrangement and to identify some sub-riverbed springs inside a stream in order to monitor the behavior of two studied watercourses. The tests have been carried out with a customized low-cost mini-UAV based on the Mikrokopter Hexakopter solution embedded with a navigation system for the autonomous flight (GNSS/IMU) and with the possibility to house different kind of sensors, such as a camera, a GNSS receiver, a LiDAR sensor, a thermographic camera and more other sensors, but with the limitation of a 1.2 Kg payload. The most significant innovation is the possibility to perform quickly and economical

  19. Sulfur Management of NOx Adsorber Technology for Diesel Light-Duty Vehicle and Truck Applications

    SciTech Connect

    Fang, Howard L.; Wang, Jerry C.; Yu, Robert C.; Wan, C. Z.; Howden, Ken

    2003-10-01

    Sulfur poisoning from engine fuel and lube is one of the most recognizable degradation mechanisms of a NOx adsorber catalyst system for diesel emission reduction. Even with the availability of 15 ppm sulfur diesel fuel, NOx adsorber will be deactivated without an effective sulfur management. Two general pathways are currently being explored for sulfur management: (1) the use of a disposable SOx trap that can be replaced or rejuvenated offline periodically, and (2) the use of diesel fuel injection in the exhaust and high temperature de-sulfation approach to remove the sulfur poisons to recover the NOx trapping efficiency. The major concern of the de-sulfation process is the many prolonged high temperature rich cycles that catalyst will encounter during its useful life. It is shown that NOx adsorber catalyst suffers some loss of its trapping capacity upon high temperature lean-rich exposure. With the use of a disposable SOx trap to remove large portion of the sulfur poisons from the exhaust, the NOx adsorber catalyst can be protected and the numbers of de-sulfation events can be greatly reduced. Spectroscopic techniques, such as DRIFTS and Raman, have been used to monitor the underlying chemical reactions during NOx trapping/ regeneration and de-sulfation periods, and provide a fundamental understanding of NOx storage capacity and catalyst degradation mechanism using model catalysts. This paper examines the sulfur effect on two model NOx adsorber catalysts. The chemistry of SOx/base metal oxides and the sulfation product pathways and their corresponding spectroscopic data are discussed. SAE Paper SAE-2003-01-3245 {copyright} 2003 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed

  20. Using the Integrated Vehicle Health Management Research Test and Integration Plan Wiki to Identify Synergistic Test Opportunities

    NASA Technical Reports Server (NTRS)

    Koelfgen, Syri J.; Faber, James J.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) and the aviation industry have recognized a need for developing a method to identify and combine resources to carry out research and testing more efficiently. The Integrated Vehicle Health Management (IVHM) Research Test and Integration Plan (RTIP) Wiki is a tool that is used to visualize, plan, and accomplish collaborative research and testing. Synergistic test opportunities are developed using the RTIP Wiki, and include potential common resource testing that combines assets and personnel from NASA, industry, academia, and other government agencies. A research scenario is linked to the appropriate IVHM milestones and resources detailed in the wiki, reviewed by the research team members, and integrated into a collaborative test strategy. The scenario is then implemented by creating a test plan when appropriate and the research is performed. The benefits of performing collaborative research and testing are achieving higher Technology Readiness Level (TRL) test opportunities with little or no additional cost, improved quality of research, and increased communication among researchers. In addition to a description of the method of creating these joint research scenarios, examples of the successful development and implementation of cooperative research using the IVHM RTIP Wiki are given.

  1. Building Information Modelling (BIM) and Unmanned Aerial Vehicle (UAV) technologies in infrastructure construction project management and delay and disruption analysis

    NASA Astrophysics Data System (ADS)

    Vacanas, Yiannis; Themistocleous, Kyriacos; Agapiou, Athos; Hadjimitsis, Diofantos

    2015-06-01

    Time in infrastructure construction projects has always been a fundamental issue as early as from the inception of a project, during the construction process and often after the completion and delivery. In a typical construction contract time related matters such as the completion date and possible delays are among the most important issues that are dealt with by the contract provisions. In the event of delay there are usually provisions for extension of time award to the contractor with possible reimbursement for the extra cost and expenses caused by this extension of time to the contract duration. In the case the contractor is not entitled to extension of time, the owner will be possibly entitled to amounts as compensation for the time prohibited from using his development. Even in the event of completion within the time agreed, under certain circumstances a contractor may have claims for reimbursement for extra costs incurred due to induced acceleration measures he had to take in order to mitigate disruption effects caused to the progress of the works by the owner or his representatives. Depending on the size of the project and the agreement amount, these reimbursement sums may be extremely high. Therefore innovative methods with the exploitation of new technologies for effective project management for the avoidance of delays, delay analysis and mitigation measures are essential; moreover, methods for collecting efficiently information during the construction process so that disputes regarding time are avoided or resolved in a quick and fair manner are required. This paper explores the state of art for existing use of Building Information Modelling (BIM) and Unmanned Aerial Vehicles (UAV) technologies in the construction industry in general. Moreover the paper considers the prospect of using BIM technology in conjunction with the use of UAV technology for efficient and accurate as-built data collection and illustration of the works progress during an

  2. Vehicle Technologies Program Implementation

    SciTech Connect

    none,

    2009-06-19

    The Vehicle Technologies Program takes a systematic approach to Program implementation. Elements of this approach include the evaluation of new technologies, competitive selection of projects and partners, review of Program and project improvement, project tracking, and portfolio management and adjustment.

  3. 41 CFR 102-34.180 - What agencies have a special exemption from displaying U.S. Government license plates and motor...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of their vehicles? 102-34.180 Section 102-34.180 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles Identification Exemptions § 102-34.180...

  4. 41 CFR 102-34.180 - What agencies have a special exemption from displaying U.S. Government license plates and motor...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of their vehicles? 102-34.180 Section 102-34.180 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles Identification Exemptions § 102-34.180...

  5. 41 CFR 102-34.180 - What agencies have a special exemption from displaying U.S. Government license plates and motor...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of their vehicles? 102-34.180 Section 102-34.180 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles Identification Exemptions § 102-34.180...

  6. 41 CFR 102-34.140 - What records do we need to keep on U.S. Government license plates?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles License... central record of all U.S. Government license plates for Government motor vehicles. The GSA Fleet must also keep such a record for GSA Fleet vehicles. The record must: (a) Identify the motor vehicle...

  7. Capillary acquisition devices for high-performance vehicles: Executive summary. [evaluation of cryogenic propellant management techniques using the centaur launch vehicle

    NASA Technical Reports Server (NTRS)

    Blatt, M. H.; Bradshaw, R. D.; Risberg, J. A.

    1980-01-01

    Technology areas critical to the development of cryogenic capillary devices were studied. Passive cooling of capillary devices was investigated with an analytical and experimental study of wicking flow. Capillary device refilling with settled fluid was studied using an analytical and experimental program that resulted in successful correlation of a versatile computer program with test data. The program was used to predict Centaur D-1S LO2 and LH2 start basket refilling. Comparisons were made between the baseline Centaur D-1S propellant feed system and feed system alternatives including systems using capillary devices. The preferred concepts from the Centaur D-1S study were examined for APOTV and POTV vehicles for delivery and round trip transfer of payloads between LEO and GEO. Mission profiles were determined to provide propellant usage timelines and the payload partials were defined.

  8. Advanced Technology Vehicle Testing

    SciTech Connect

    James Francfort

    2004-06-01

    The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

  9. Soil Functional Zone Management: A Vehicle for Enhancing Production and Soil Ecosystem Services in Row-Crop Agroecosystems

    PubMed Central

    Williams, Alwyn; Kane, Daniel A.; Ewing, Patrick M.; Atwood, Lesley W.; Jilling, Andrea; Li, Meng; Lou, Yi; Davis, Adam S.; Grandy, A. Stuart; Huerd, Sheri C.; Hunter, Mitchell C.; Koide, Roger T.; Mortensen, David A.; Smith, Richard G.; Snapp, Sieglinde S.; Spokas, Kurt A.; Yannarell, Anthony C.; Jordan, Nicholas R.

    2016-01-01

    There is increasing global demand for food, bioenergy feedstocks and a wide variety of bio-based products. In response, agriculture has advanced production, but is increasingly depleting soil regulating and supporting ecosystem services. New production systems have emerged, such as no-tillage, that can enhance soil services but may limit yields. Moving forward, agricultural systems must reduce trade-offs between production and soil services. Soil functional zone management (SFZM) is a novel strategy for developing sustainable production systems that attempts to integrate the benefits of conventional, intensive agriculture, and no-tillage. SFZM creates distinct functional zones within crop row and inter-row spaces. By incorporating decimeter-scale spatial and temporal heterogeneity, SFZM attempts to foster greater soil biodiversity and integrate complementary soil processes at the sub-field level. Such integration maximizes soil services by creating zones of ‘active turnover’, optimized for crop growth and yield (provisioning services); and adjacent zones of ‘soil building’, that promote soil structure development, carbon storage, and moisture regulation (regulating and supporting services). These zones allow SFZM to secure existing agricultural productivity while avoiding or minimizing trade-offs with soil ecosystem services. Moreover, the specific properties of SFZM may enable sustainable increases in provisioning services via temporal intensification (expanding the portion of the year during which harvestable crops are grown). We present a conceptual model of ‘virtuous cycles’, illustrating how increases in crop yields within SFZM systems could create self-reinforcing feedback processes with desirable effects, including mitigation of trade-offs between yield maximization and soil ecosystem services. Through the creation of functionally distinct but interacting zones, SFZM may provide a vehicle for optimizing the delivery of multiple goods and services

  10. Soil Functional Zone Management: A Vehicle for Enhancing Production and Soil Ecosystem Services in Row-Crop Agroecosystems.

    PubMed

    Williams, Alwyn; Kane, Daniel A; Ewing, Patrick M; Atwood, Lesley W; Jilling, Andrea; Li, Meng; Lou, Yi; Davis, Adam S; Grandy, A Stuart; Huerd, Sheri C; Hunter, Mitchell C; Koide, Roger T; Mortensen, David A; Smith, Richard G; Snapp, Sieglinde S; Spokas, Kurt A; Yannarell, Anthony C; Jordan, Nicholas R

    2016-01-01

    There is increasing global demand for food, bioenergy feedstocks and a wide variety of bio-based products. In response, agriculture has advanced production, but is increasingly depleting soil regulating and supporting ecosystem services. New production systems have emerged, such as no-tillage, that can enhance soil services but may limit yields. Moving forward, agricultural systems must reduce trade-offs between production and soil services. Soil functional zone management (SFZM) is a novel strategy for developing sustainable production systems that attempts to integrate the benefits of conventional, intensive agriculture, and no-tillage. SFZM creates distinct functional zones within crop row and inter-row spaces. By incorporating decimeter-scale spatial and temporal heterogeneity, SFZM attempts to foster greater soil biodiversity and integrate complementary soil processes at the sub-field level. Such integration maximizes soil services by creating zones of 'active turnover', optimized for crop growth and yield (provisioning services); and adjacent zones of 'soil building', that promote soil structure development, carbon storage, and moisture regulation (regulating and supporting services). These zones allow SFZM to secure existing agricultural productivity while avoiding or minimizing trade-offs with soil ecosystem services. Moreover, the specific properties of SFZM may enable sustainable increases in provisioning services via temporal intensification (expanding the portion of the year during which harvestable crops are grown). We present a conceptual model of 'virtuous cycles', illustrating how increases in crop yields within SFZM systems could create self-reinforcing feedback processes with desirable effects, including mitigation of trade-offs between yield maximization and soil ecosystem services. Through the creation of functionally distinct but interacting zones, SFZM may provide a vehicle for optimizing the delivery of multiple goods and services in

  11. High power battery systems for hybrid vehicles

    NASA Astrophysics Data System (ADS)

    Corson, Donald W.

    Pure electric and hybrid vehicles have differing demands on the battery system of a vehicle. This results in correspondingly different demands on the battery management of a hybrid vehicle. Examples show the differing usage patterns. The consequences for the battery cells and the battery management are discussed. The importance of good thermal management is underlined.

  12. 41 CFR 102-34.330 - What is the Federal Fleet Report?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... reduced. The FFR is posted on GSA's Motor Vehicle Management Policy Internet Web site (http://www.gsa.gov... Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE... fiscal year and vehicle use and cost during the fiscal year. The FFR is compiled by GSA from...

  13. 41 CFR 102-34.330 - What is the Federal Fleet Report?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reduced. The FFR is posted on GSA's Motor Vehicle Management Policy Internet Web site (http://www.gsa.gov... Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE... fiscal year and vehicle use and cost during the fiscal year. The FFR is compiled by GSA from...

  14. 41 CFR 102-34.330 - What is the Federal Fleet Report?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... reduced. The FFR is posted on GSA's Motor Vehicle Management Policy Internet Web site (http://www.gsa.gov... Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE... fiscal year and vehicle use and cost during the fiscal year. The FFR is compiled by GSA from...

  15. 41 CFR 102-34.295 - To whom do we send crash reports?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Motor Vehicle Crash Reporting § 102-34.295 To whom do we send crash reports? Send crash reports as... agency directives. (b) If the motor vehicle is leased from GSA Fleet, report the crash to GSA...

  16. 41 CFR 102-34.135 - What do we do about a lost or stolen license plate?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles License Plates § 102-34.135... Government Motor Vehicle Registration System. (b) District of Columbia or State license plates. Report...

  17. Optimal Design of Integrated Systems Health Management (ISHM) Systems for improving safety in NASA's Exploration Vehicles: A Two-Level Multidisciplinary Design Approach

    NASA Technical Reports Server (NTRS)

    Mehr, Ali Farhang; Tumer, Irem; Barszcz, Eric

    2005-01-01

    Integrated Vehicle Health Management (ISHM) systems are used to detect, assess, and isolate functional failures in order to improve safety of space systems such as Orbital Space Planes (OSPs). An ISHM system, as a whole, consists of several subsystems that monitor different components of an OSP including: Spacecraft, Launch Vehicle, Ground Control, and the International Space Station. In this research, therefore, we propose a new methodology to design and optimize ISHM as a distributed system with multiple disciplines (that correspond to different subsystems of OSP safety). A paramount amount of interest has been given in the literature to the multidisciplinary design optimization of problems with such architecture (as will be reviewed in the full paper).

  18. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Galitsky, Christina; Worrell, Ernst

    2008-01-01

    The motor vehicle industry in the U.S. spends about $3.6 billion on energy annually. In this report, we focus on auto assembly plants. In the U.S., over 70 assembly plants currently produce 13 million cars and trucks each year. In assembly plants, energy expenditures is a relatively small cost factor in the total production process. Still, as manufacturers face an increasingly competitive environment, energy efficiency improvements can provide a means to reduce costs without negatively affecting the yield or the quality of the product. In addition, reducing energy costs reduces the unpredictability associated with variable energy prices in today?s marketplace, which could negatively affect predictable earnings, an important element for publicly-traded companies such as those in the motor vehicle industry. In this report, we first present a summary of the motor vehicle assembly process and energy use. This is followed by a discussion of energy efficiency opportunities available for assembly plants. Where available, we provide specific primary energy savings for each energy efficiency measure based on case studies, as well as references to technical literature. If available, we have listed costs and typical payback periods. We include experiences of assembly plants worldwide with energy efficiency measures reviewed in the report. Our findings suggest that although most motor vehicle companies in the U.S. have energy management teams or programs, there are still opportunities available at individual plants to reduce energy consumption cost effectively. Further research on the economics of the measures for individual assembly plants, as part of an energy management program, is needed to assess the potential impact of selected technologies at these plants.

  19. Forestry Vehicle

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Power Pack II provides an economical means of moving a power source into remote roadless forest areas. It was developed by Prof. Miles and his associates, working in cooperation with the University of California's Department of Forestry. The team combined its own design of an all-terrain vehicle with a suspension system based on the NASA load equalization technology. Result is an intermediate-sized unit which carries a power source and the powered tools to perform a variety of forest management tasks which cannot be done economically with current equipment. Power Pack II can traverse very rough terrain and climb a 60 degree slope; any one of the wheels can move easily over an obstacle larger than itself. Work is being done on a more advanced Power Pack III.

  20. Battery Wear from Disparate Duty-Cycles: Opportunities for Electric-Drive Vehicle Battery Health Management; Preprint

    SciTech Connect

    Smith, K.; Earleywine, M.; Wood, E.; Pesaran, A.

    2012-10-01

    Electric-drive vehicles utilizing lithium-ion batteries experience wholly different degradation patterns than do conventional vehicles, depending on geographic ambient conditions and consumer driving and charging patterns. A semi-empirical life-predictive model for the lithium-ion graphite/nickel-cobalt-aluminum chemistry is presented that accounts for physically justified calendar and cycling fade mechanisms. An analysis of battery life for plug-in hybrid electric vehicles considers 782 duty-cycles from travel survey data superimposed with climate data from multiple geographic locations around the United States. Based on predicted wear distributions, opportunities for extending battery life including modification of battery operating limits, thermal and charge control are discussed.

  1. 41 CFR 102-34.295 - To whom do we send crash reports?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false To whom do we send crash reports? 102-34.295 Section 102-34.295 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Motor Vehicle Crash Reporting...

  2. 41 CFR 102-34.140 - What records do we need to keep on U.S. Government license plates?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles License... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What records do we...

  3. 41 CFR 102-34.285 - Where can we obtain help in setting up a maintenance program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Scheduled Maintenance of Motor Vehicles § 102-34.285 Where can we... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Where can we obtain...

  4. Development of an unmanned aerial vehicle-based remote sensing system for site-specific management in precision agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An Unmanned Aerial Vehicle (UAV) can be remotely controlled or fly autonomously based on pre-programmed flight plans or more complex dynamic automation systems. In agriculture, UAVs have been used for pest control and remote sensing. The objective of this research was to develop a UAV system to en...

  5. 41 CFR 102-34.135 - What do we do about a lost or stolen license plate?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles License Plates § 102-34.135...), local police, to GSA Fleet when a GSA Fleet leased motor vehicle is involved, and to the Federal... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false What do we do about...

  6. 41 CFR 102-34.5 - What does this part cover?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT... management and control of motor vehicles that the Government owns, leases commercially or leases through GSA... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What does this...

  7. 41 CFR 102-34.310 - How do we distribute the completed Standard Form 97?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false How do we distribute the... Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Disposal of Motor Vehicles § 102-34.310 How do we distribute the completed...

  8. 41 CFR 102-34.240 - Who pays for parking fees?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Official Use of Government Motor Vehicles § 102-34.240 Who pays for parking fees? You must pay... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Who pays for...

  9. 41 CFR 102-34.295 - To whom do we send crash reports?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Motor Vehicle Crash Reporting § 102-34.295 To whom do we send crash reports? Send crash reports as... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false To whom do we send...

  10. 41 CFR 102-34.245 - Who pays for parking fines?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Official Use of Government Motor Vehicles § 102-34.245 Who pays for parking fines? If you are... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Who pays for...

  11. 41 CFR 102-34.145 - How are U.S. Government license plates coded?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles License Plates § 102-34.145 How are U.S... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false How are U.S....

  12. 41 CFR 102-34.150 - How can we get a new license plate code designation?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles License Plates § 102-34.150... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false How can we get a...

  13. 41 CFR 101-39.203 - Obtaining motor vehicles for short-term use.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.2-GSA Interagency Fleet Management... Fleet Management System (IFMS). Short-term use vehicles may be provided through Military...

  14. 41 CFR 101-39.203 - Obtaining motor vehicles for short-term use.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.2-GSA Interagency Fleet Management... Fleet Management System (IFMS). Short-term use vehicles may be provided through Military...

  15. 41 CFR 101-39.203 - Obtaining motor vehicles for short-term use.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.2-GSA Interagency Fleet Management... Fleet Management System (IFMS). Short-term use vehicles may be provided through Military...

  16. 41 CFR 101-39.203 - Obtaining motor vehicles for short-term use.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.2-GSA Interagency Fleet Management... Fleet Management System (IFMS). Short-term use vehicles may be provided through Military...

  17. Electric vehicles

    SciTech Connect

    Not Available

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  18. Optimization-based power management of hybrid power systems with applications in advanced hybrid electric vehicles and wind farms with battery storage

    NASA Astrophysics Data System (ADS)

    Borhan, Hoseinali

    Modern hybrid electric vehicles and many stationary renewable power generation systems combine multiple power generating and energy storage devices to achieve an overall system-level efficiency and flexibility which is higher than their individual components. The power or energy management control, "brain" of these "hybrid" systems, determines adaptively and based on the power demand the power split between multiple subsystems and plays a critical role in overall system-level efficiency. This dissertation proposes that a receding horizon optimal control (aka Model Predictive Control) approach can be a natural and systematic framework for formulating this type of power management controls. More importantly the dissertation develops new results based on the classical theory of optimal control that allow solving the resulting optimal control problem in real-time, in spite of the complexities that arise due to several system nonlinearities and constraints. The dissertation focus is on two classes of hybrid systems: hybrid electric vehicles in the first part and wind farms with battery storage in the second part. The first part of the dissertation proposes and fully develops a real-time optimization-based power management strategy for hybrid electric vehicles. Current industry practice uses rule-based control techniques with "else-then-if" logic and look-up maps and tables in the power management of production hybrid vehicles. These algorithms are not guaranteed to result in the best possible fuel economy and there exists a gap between their performance and a minimum possible fuel economy benchmark. Furthermore, considerable time and effort are spent calibrating the control system in the vehicle development phase, and there is little flexibility in real-time handling of constraints and re-optimization of the system operation in the event of changing operating conditions and varying parameters. In addition, a proliferation of different powertrain configurations may

  19. Assured Crew Return Vehicle

    NASA Technical Reports Server (NTRS)

    Stone, D. A.; Craig, J. W.; Drone, B.; Gerlach, R. H.; Williams, R. J.

    1991-01-01

    The developmental status is discussed regarding the 'lifeboat' vehicle to enhance the safety of the crew on the Space Station Freedom (SSF). NASA's Assured Crew Return Vehicle (ACRV) is intended to provide a means for returning the SSF crew to earth at all times. The 'lifeboat' philosophy is the key to managing the development of the ACRV which further depends on matrixed support and total quality management for implementation. The risk of SSF mission scenarios are related to selected ACRV mission requirements, and the system and vehicle designs are related to these precepts. Four possible ACRV configurations are mentioned including the lifting-body, Apollo shape, Discoverer shape, and a new lift-to-drag concept. The SCRAM design concept is discussed in detail with attention to the 'lifeboat' philosophy and requirements for implementation.

  20. 41 CFR 102-34.85 - What motor vehicles require motor vehicle identification?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What motor vehicles require motor vehicle identification? 102-34.85 Section 102-34.85 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL...

  1. 41 CFR 102-34.85 - What motor vehicles require motor vehicle identification?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false What motor vehicles require motor vehicle identification? 102-34.85 Section 102-34.85 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL...

  2. 41 CFR 102-34.85 - What motor vehicles require motor vehicle identification?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What motor vehicles require motor vehicle identification? 102-34.85 Section 102-34.85 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL...

  3. A probabilistic and multi-objective conceptual design methodology for the evaluation of thermal management systems on air-breathing hypersonic vehicles

    NASA Astrophysics Data System (ADS)

    Ordaz, Irian

    This thesis addresses the challenges associated with thermal management systems (TMS) evaluation and selection in the conceptual design of hypersonic, air-breathing vehicles with sustained cruise. The proposed methodology identifies analysis tools and techniques which allow the proper investigation of the design space for various thermal management technologies. The design space exploration environment and alternative multi-objective decision making technique defined as Pareto-based Joint Probability Decision Making (PJPDM) is based on the approximation of 3-D Pareto frontiers and probabilistic technology effectiveness maps. These are generated through the evaluation of a Pareto Fitness function and Monte Carlo analysis. In contrast to Joint Probability Decision Making (JPDM), the proposed PJPDM technique does not require preemptive knowledge of weighting factors for competing objectives or goal constraints which can introduce bias into the final solution. Preemptive bias in a complex problem can degrade the overall capabilities of the final design. The implementation of PJPDM in this thesis eliminates the need for the numerical optimizer which is required with JPDM in order to improve upon a solution. In addition, a physics-based formulation is presented for the quantification of TMS safety effectiveness corresponding to debris impact/damage and how it can be applied towards risk mitigation. Lastly, a formulation loosely based on non-preemptive Goal Programming with equal weighted deviations is provided for the resolution of the inverse design space. This key step helps link vehicle capabilities to TMS technology subsystems in a top-down design approach. The methodology provides the designer more knowledge up front to help make proper engineering decisions and assumptions in the conceptual design phase regarding which technologies show greatest promise, and how to guide future technology research.

  4. Descent vehicles

    NASA Technical Reports Server (NTRS)

    Popov, Y. I.

    1985-01-01

    The creation of descent vehicles marked a new stage in the development of cosmonautics, involving the beginning of manned space flight and substantial progress in space research on the distant bodies of the Solar System. This booklet describes these vehicles and their structures, systems, and purposes. It is intended for the general public interested in modern problems of space technology.

  5. Vehicle systems

    NASA Technical Reports Server (NTRS)

    Bales, Tom; Modlin, Tom; Suddreth, Jack; Wheeler, Tom; Tenney, Darrel R.; Bayless, Ernest O.; Lisagor, W. Barry; Bolstad, Donald A.; Croop, Harold; Dyer, J.

    1993-01-01

    Perspectives of the subpanel on expendable launch vehicle structures and cryotanks are: (1) new materials which provide the primary weight savings effect on vehicle mass/size; (2) today's investment; (3) typically 10-20 years to mature and fully characterize new materials.

  6. 41 CFR 109-38.204-50 - Records of exempted motor vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... motor vehicles. 109-38.204-50 Section 109-38.204-50 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 38-MOTOR EQUIPMENT MANAGEMENT...

  7. 41 CFR 109-38.204-50 - Records of exempted motor vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... motor vehicles. 109-38.204-50 Section 109-38.204-50 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 38-MOTOR EQUIPMENT MANAGEMENT...

  8. 41 CFR 109-38.204-50 - Records of exempted motor vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... motor vehicles. 109-38.204-50 Section 109-38.204-50 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 38-MOTOR EQUIPMENT MANAGEMENT...

  9. Space vehicle

    NASA Technical Reports Server (NTRS)

    Vonpragenau, G. L. (Inventor)

    1975-01-01

    A space vehicle having an improved ascent configuration for use in traveling in space is presented. Components of the vehicle are: (1) a winged orbiter having an elongater fuselage and rearwardly directed main engines fixed to the fuselage; (2) an elongated tank assembly of an improved configuration disposed forwardly of the fuselage and connected with the main engines of the vehicle for supplying liquid propellants; and (3) a booster stage comprising a pair of integrated solid rocket boosters connected with the orbiter immediately beneath the fuselage and extended in substantial parallelism.

  10. Credit-Based Systems as Vehicles for Change in Universities and Colleges. Managing Innovation and Change in Universities and Colleges.

    ERIC Educational Resources Information Center

    Allen, Robert; Layer, Geoff

    This book discusses organizational, management and professional dimensions of change as credit-based systems are introduced in higher education institutions in the United Kingdom. Credit-based systems are taken to mean the flexible academic structures based around the parallel but interrelated concepts of credit and modularity. They are being…

  11. Protocols for vegetation and habitat monitoring with unmanned aerial vehicles: linking research to management on US public lands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background/Question/Methods: Monitoring of the condition and trend of natural resources is critical for determining effectiveness of management actions and understanding ecosystem responses to broad-scale processes like climate change. While broad-scale remote sensing has generally improved the abi...

  12. SIG: Multiple Views on Safety-Critical Automation: Aircraft, Autonomous Vehicles, Air Traffic Management and Satellite Ground Segments Perspectives

    NASA Technical Reports Server (NTRS)

    Feary, Michael; Palanque, Philippe; Martinie, Célia; Tscheligi, Manfred

    2016-01-01

    This SIG focuses on the engineering of automation in interactive critical systems. Automation has already been studied in a number of (sub-) disciplines and application fields: design, human factors, psychology, (software) engineering, aviation, health care, games. One distinguishing feature of the area we are focusing on is that in the field of interactive critical systems properties such as reliability, dependability, fault tolerance are as important as usability, user experience or overall acceptance issues. The SIG targets at two problem areas: first the engineering of the user interaction with (partly-) autonomous systems: how to design, build and assess autonomous behavior, especially in cases where there is a need to represent on the user interface both autonomous and interactive objects. An example of such integration is the representation of an unmanned aerial vehicle (UAV) (where no direct interaction is possible), together with aircrafts (that have to be instructed by an air traffic controller to avoid the UAV). Second the design and engineering of user interaction in general for autonomous objects/systems (for example a cruise control in a car or an autopilot in an aircraft). The goal of the SIG is to raise interest in the CHI community on the general aspects of automation and to identify a community of researchers and practitioners interested in those increasingly prominent issues of interfaces towards (semi)-autonomous systems. The expected audience should be interested in addressing the issues of integration of mainly unconnected research domains to formulate a new joint research agenda.

  13. Hybrid Electric Vehicle Power Management Solutions Based on Isolated and Non-Isolated Configurations of MMCCC Converter

    SciTech Connect

    Khan, Faisal H; Tolbert, Leon M; Webb, William E

    2009-01-01

    This paper presents the various configurations of a multilevel modular capacitor-clamped converter (MMCCC), and it reveals many useful and new formations of the original MMCCC for transferring power in either an isolated or nonisolated manner. The various features of the original MMCCC circuit are best suited for a multibus system in future plug-in hybrid or fuel-cell-powered vehicles' drive train. The original MMCCC is capable of bidirectional power transfer using multilevel modular structure with capacitor-clamped topology. It has a nonisolated structure, and it offers very high efficiency even at partial loads. This circuit was modified to integrate single or multiple high-frequency transformers by using the intermediate voltage nodes of the converter. On the other hand, a special formation of the MMCCC can exhibit dc outputs offering limited isolation without using any isolation transformer. This modified version can produce a high conversion ratio from a limited number of components and has several useful applications in providing power to multiple low-voltage loads in a hybrid or electric automobile. This paper will investigate the origin of generating ac outputs from the MMCCC and shows how the transformer-free version can be modified to create limited isolation from the circuit. In addition, this paper will compare various modified forms of the MMCCC topology with existing dc-dc converter circuits from compactness and component utilization perspectives.

  14. 41 CFR 101-25.402 - Motor vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Motor vehicles. 101-25.402 Section 101-25.402 Public Contracts and Property Management Federal Property Management... Standards § 101-25.402 Motor vehicles. Replacement of motor vehicles shall be in accordance with...

  15. Robotic vehicle

    DOEpatents

    Box, W.D.

    1998-08-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendible appendages, each of which is radially extendible relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendible members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  16. Robotic vehicle

    DOEpatents

    Box, W.D.

    1997-02-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  17. Robotic vehicle

    DOEpatents

    Box, W. Donald

    1998-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  18. Robotic vehicle

    DOEpatents

    Box, W. Donald

    1997-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  19. 41 CFR 102-34.25 - To whom do “we”, “you”, and their variants refer?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false To whom do âweâ, âyouâ, and their variants refer? 102-34.25 Section 102-34.25 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT General Provisions...

  20. 41 CFR 102-34.25 - To whom do “we”, “you”, and their variants refer?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false To whom do âweâ, âyouâ, and their variants refer? 102-34.25 Section 102-34.25 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT General Provisions...

  1. 41 CFR 102-34.125 - Where may we obtain U.S. Government license plates?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Where may we obtain U.S. Government license plates? 102-34.125 Section 102-34.125 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying...

  2. 41 CFR 102-34.135 - What do we do about a lost or stolen license plate?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What do we do about a lost or stolen license plate? 102-34.135 Section 102-34.135 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying...

  3. 41 CFR 102-34.150 - How can we get a new license plate code designation?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false How can we get a new license plate code designation? 102-34.150 Section 102-34.150 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying...

  4. 41 CFR 102-34.275 - What kind of maintenance programs must we have?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What kind of maintenance programs must we have? 102-34.275 Section 102-34.275 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT...

  5. 41 CFR 102-34.330 - What is the Federal Fleet Report?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false What is the Federal Fleet Report? 102-34.330 Section 102-34.330 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Federal Fleet Report §...

  6. 41 CFR 102-34.55 - Are there fleet average fuel economy standards we must meet?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Are there fleet average fuel economy standards we must meet? 102-34.55 Section 102-34.55 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT...

  7. 41 CFR 102-34.160 - May we have a limited exemption from displaying U.S. Government license plates and other motor...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Section 102-34.160 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false May we have a...

  8. 41 CFR 102-34.160 - May we have a limited exemption from displaying U.S. Government license plates and other motor...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Section 102-34.160 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false May we have a...

  9. 41 CFR 102-34.160 - May we have a limited exemption from displaying U.S. Government license plates and other motor...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 102-34.160 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Identifying and... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false May we have a...

  10. 41 CFR 102-34.55 - Are there fleet average fuel economy standards we must meet?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Are there fleet average... PROPERTY 34-MOTOR VEHICLE MANAGEMENT Obtaining Fuel Efficient Motor Vehicles § 102-34.55 Are there fleet... that each executive agency meet the fleet average fuel economy standards in place as of January 1...

  11. 41 CFR 102-34.335 - How do I submit information to the General Services Administration (GSA) for the Federal Fleet...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Federal Fleet Report... through the Federal Automotive Statistical Tool (FAST), an Internet-based reporting tool. To find out how to submit motor vehicle data to GSA through FAST, consult the instructions from your agency...

  12. 41 CFR 102-34.335 - How do I submit information to the General Services Administration (GSA) for the Federal Fleet...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Federal Fleet Report... through the Federal Automotive Statistical Tool (FAST), an Internet-based reporting tool. To find out how to submit motor vehicle data to GSA through FAST, consult the instructions from your agency...

  13. 41 CFR 102-34.335 - How do I submit information to the General Services Administration (GSA) for the Federal Fleet...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Federal Fleet Report... through the Federal Automotive Statistical Tool (FAST), an Internet-based reporting tool. To find out how to submit motor vehicle data to GSA through FAST, consult the instructions from your agency...

  14. 41 CFR 102-34.65 - How may we request an exemption from the fuel economy standards?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false How may we request an exemption from the fuel economy standards? 102-34.65 Section 102-34.65 Public Contracts and Property... PROPERTY 34-MOTOR VEHICLE MANAGEMENT Obtaining Fuel Efficient Motor Vehicles § 102-34.65 How may we...

  15. 41 CFR 102-34.55 - Are there fleet average fuel economy standards we must meet?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Are there fleet average fuel economy standards we must meet? 102-34.55 Section 102-34.55 Public Contracts and Property... PROPERTY 34-MOTOR VEHICLE MANAGEMENT Obtaining Fuel Efficient Motor Vehicles § 102-34.55 Are there...

  16. 41 CFR 102-34.65 - How may we request an exemption from the fuel economy standards?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false How may we request an exemption from the fuel economy standards? 102-34.65 Section 102-34.65 Public Contracts and Property... PROPERTY 34-MOTOR VEHICLE MANAGEMENT Obtaining Fuel Efficient Motor Vehicles § 102-34.65 How may we...

  17. 41 CFR 102-34.55 - Are there fleet average fuel economy standards we must meet?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Are there fleet average fuel economy standards we must meet? 102-34.55 Section 102-34.55 Public Contracts and Property... PROPERTY 34-MOTOR VEHICLE MANAGEMENT Obtaining Fuel Efficient Motor Vehicles § 102-34.55 Are there...

  18. 41 CFR 102-34.65 - How may we request an exemption from the fuel economy standards?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false How may we request an exemption from the fuel economy standards? 102-34.65 Section 102-34.65 Public Contracts and Property... PROPERTY 34-MOTOR VEHICLE MANAGEMENT Obtaining Fuel Efficient Motor Vehicles § 102-34.65 How may we...

  19. 41 CFR 102-34.55 - Are there fleet average fuel economy standards we must meet?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Are there fleet average fuel economy standards we must meet? 102-34.55 Section 102-34.55 Public Contracts and Property... PROPERTY 34-MOTOR VEHICLE MANAGEMENT Obtaining Fuel Efficient Motor Vehicles § 102-34.55 Are there...

  20. Low-density lipoprotein as a potential vehicle for chemotherapeutic agents and radionucleotides in the management of gynecologic neoplasms

    SciTech Connect

    Gal, D.; Ohashi, M.; MacDonald, P.C.; Buchsbaum, H.J.; Simpson, E.R.

    1981-04-15

    Cholesterol metabolism was studied in cells from two established gynecologic cancer cell lines which were maintained in monolayer cultures. The cell lines were derived and established from poorly differentiated epidermoid cervical carcinoma and endometrial adenocarcinoma. The specific activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase, the rate-limiting enzyme of cholesterol de novo synthesis, in AC-258 cells was three times higher than that found in EC-50 cells. However, epidermoid cervical cancer cells metabolized low-density lipoprotein, the major transport vehicle for cholesterol in plasma, at a very high rate. This rate is fifteen times greater than the rate observed in fetal adrenal tissue and fifty times greater than the rate observed in nonneoplastic gynecologic tissue, each in organ culture. Both cancer cells in monolayer culture were shown to have specific receptors for LDL. These cancer cells demonstrate no defect in LDL metabolism, and lysosomal degradation of LDL was blocked by chloroquine. From the results of studies of specific binding of LDL in tissues obtained from nude mice it was demonstrated that membrane fractions prepared from EC-50 cells, after propagation in the mice, contained fifteen to thirty times more specific binding capacity for (125I)iodo-LDL than vital organs of the mouse, such as the liver, heart, lung, kidney, or brain. The results of these studies are suggestive that certain tumor cells might have a higher affinity for LDL than normal tissues and cytotoxic drugs or radionucleotides ligated to the LDL macromolecule may be utilized for the specific delivery of these agents.

  1. Low-density lipoprotein as a potential vehicle for chemotherapeutic agents and radionucleotides in the management of gynecologic neoplasms

    SciTech Connect

    Gal, D.; Ohashi, M.; MacDonald, P.C.; Buchsbaum, H.J.; Simpson, E.R.

    1981-04-15

    Cholesterol metabolism was studied in cells from two established gynecologic cancer cell lines which were maintained in monolayer cultures. The cell lines were derived and established from poorly differentiated epidermoid cervical carcinoma (EC-50) and endometrial adenocarcinoma (AC-258). The specific activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, the rate-limiting enzyme of cholesterol de novo synthesis, in AC-258 cells (1700 pmoles x mg-1 microsomal protein x min-1) was three times higher than that found in EC-50 cells (550 pmoles x mg-1 microsomal protein x min-1). However, epidermoid cervical cancer cells (EC-50) metabolized low-density lipoprotein (LDL), the major transport vehicle for cholesterol in plasma, at a very high rate (14,000 ng x mg-1 cell protein x 6 hours). This rate is fifteen times greater than the rate observed in fetal adrenal tissue and fifty times greater than the rate observed in nonneoplastic gynecologic tissue, each in organ culture. Both cancer cells (EC-50 and AC-258) in monolayer culture were shown to have specific receptors for LDL. These cancer cells demonstrate no defect in LDL metabolism, and lysosomal degradation of LDL was blocked by chloroquine. From the results of studies of specific binding of LDL in tissues obtained from nude mice it was demonstrated that membrane fractions prepared from EC-50 cells, after propagation in the mice, contained fifteen to thirty times more specific binding capacity for (125I)iodo-LDL than vital organs of the mouse, such as the liver, heart, lung, kidney, or brain. The results of these studies are suggestive that certain tumor cells might have a higher affinity for LDL than normal tissues and cytotoxic drugs or radionucleotides ligated to the LDL macromolecule may be utilized for the specific delivery of these agents.

  2. A theoretical and computational study of lithium-ion battery thermal management for electric vehicles using heat pipes

    NASA Astrophysics Data System (ADS)

    Greco, Angelo; Cao, Dongpu; Jiang, Xi; Yang, Hong

    2014-07-01

    A simplified one-dimensional transient computational model of a prismatic lithium-ion battery cell is developed using thermal circuit approach in conjunction with the thermal model of the heat pipe. The proposed model is compared to an analytical solution based on variable separation as well as three-dimensional (3D) computational fluid dynamics (CFD) simulations. The three approaches, i.e. the 1D computational model, analytical solution, and 3D CFD simulations, yielded nearly identical results for the thermal behaviours. Therefore the 1D model is considered to be sufficient to predict the temperature distribution of lithium-ion battery thermal management using heat pipes. Moreover, a maximum temperature of 27.6 °C was predicted for the design of the heat pipe setup in a distributed configuration, while a maximum temperature of 51.5 °C was predicted when forced convection was applied to the same configuration. The higher surface contact of the heat pipes allows a better cooling management compared to forced convection cooling. Accordingly, heat pipes can be used to achieve effective thermal management of a battery pack with confined surface areas.

  3. [Alternative fuel vehicles for clean cities]. Final report from the City of Philadelphia Managing Director`s Office

    SciTech Connect

    Hadalski, J.M.

    1995-09-30

    The City of Philadelphia was awarded a grant for the ``development of a Public Information Component for the Clean Cities Program involving alternative fuels usage within the city of Philadelphia and the surrounding counties in the Philadelphia region``. During the summer of 1993, it was felt that the public needed considerable information on the costs, benefits, emission data, conversion information, and infrastructure requirements. Embodied in the 1993 proposal was the notion that a model could be developed within some type of structure charged with the tasks of market introduction of alternative fuels in the Greater Philadelphia area in a concerted, comprehensive way. As originally envisioned, in executing this grant, the City had several objectives in mind. Among these were the following: the organizing of various media events to showcase alternative fuels usage; (2) to begin a networking process with fleet managers in the area; (3) to provide sources of information to fleet managers and others interested in, and concerned with the conversion to alternative fuels; (4) documentation on research and analysis associated with alternative fuels.

  4. Optimal Operation and Management for Smart Grid Subsumed High Penetration of Renewable Energy, Electric Vehicle, and Battery Energy Storage System

    NASA Astrophysics Data System (ADS)

    Shigenobu, Ryuto; Noorzad, Ahmad Samim; Muarapaz, Cirio; Yona, Atsushi; Senjyu, Tomonobu

    2016-04-01

    Distributed generators (DG) and renewable energy sources have been attracting special attention in distribution systems in all over the world. Renewable energies, such as photovoltaic (PV) and wind turbine generators are considered as green energy. However, a large amount of DG penetration causes voltage deviation beyond the statutory range and reverse power flow at interconnection points in the distribution system. If excessive voltage deviation occurs, consumer's electric devices might break and reverse power flow will also has a negative impact on the transmission system. Thus, mass interconnections of DGs has an adverse effect on both of the utility and the customer. Therefore, reactive power control method is proposed previous research by using inverters attached DGs for prevent voltage deviations. Moreover, battery energy storage system (BESS) is also proposed for resolve reverse power flow. In addition, it is possible to supply high quality power for managing DGs and BESSs. Therefore, this paper proposes a method to maintain voltage, active power, and reactive power flow at interconnection points by using cooperative controlled of PVs, house BESSs, EVs, large BESSs, and existing voltage control devices. This paper not only protect distribution system, but also attain distribution loss reduction and effectivity management of control devices. Therefore mentioned control objectives are formulated as an optimization problem that is solved by using the Particle Swarm Optimization (PSO) algorithm. Modified scheduling method is proposed in order to improve convergence probability of scheduling scheme. The effectiveness of the proposed method is verified by case studies results and by using numerical simulations in MATLAB®.

  5. Autonomous vehicles

    SciTech Connect

    Meyrowitz, A.L.; Blidberg, D.R.; Michelson, R.C. |

    1996-08-01

    There are various kinds of autonomous vehicles (AV`s) which can operate with varying levels of autonomy. This paper is concerned with underwater, ground, and aerial vehicles operating in a fully autonomous (nonteleoperated) mode. Further, this paper deals with AV`s as a special kind of device, rather than full-scale manned vehicles operating unmanned. The distinction is one in which the AV is likely to be designed for autonomous operation rather than being adapted for it as would be the case for manned vehicles. The authors provide a survey of the technological progress that has been made in AV`s, the current research issues and approaches that are continuing that progress, and the applications which motivate this work. It should be noted that issues of control are pervasive regardless of the kind of AV being considered, but that there are special considerations in the design and operation of AV`s depending on whether the focus is on vehicles underwater, on the ground, or in the air. The authors have separated the discussion into sections treating each of these categories.

  6. 41 CFR 102-34.30 - How do we request a deviation from the provisions of this part?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false How do we request a deviation from the provisions of this part? 102-34.30 Section 102-34.30 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE...

  7. 41 CFR 102-34.30 - How do we request a deviation from the provisions of this part?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false How do we request a deviation from the provisions of this part? 102-34.30 Section 102-34.30 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE...

  8. 41 CFR 102-34.140 - What records do we need to keep on U.S. Government license plates?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What records do we need to keep on U.S. Government license plates? 102-34.140 Section 102-34.140 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE...

  9. 41 CFR 102-34.65 - How may we request an exemption from the fuel economy standards?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false How may we request an exemption from the fuel economy standards? 102-34.65 Section 102-34.65 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE...

  10. 41 CFR 102-34.345 - What records do we need to keep?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Federal Fleet Report § 102-34.345 What records do we need to keep? You are responsible for... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false What records do we...

  11. 41 CFR 102-34.5 - What does this part cover?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false What does this part cover? 102-34.5 Section 102-34.5 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE...

  12. 41 CFR 102-34.5 - What does this part cover?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What does this part cover? 102-34.5 Section 102-34.5 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE...

  13. Aggregate vehicle travel forecasting model

    SciTech Connect

    Greene, D.L.; Chin, Shih-Miao; Gibson, R.

    1995-05-01

    This report describes a model for forecasting total US highway travel by all vehicle types, and its implementation in the form of a personal computer program. The model comprises a short-run, econometrically-based module for forecasting through the year 2000, as well as a structural, scenario-based longer term module for forecasting through 2030. The short-term module is driven primarily by economic variables. It includes a detailed vehicle stock model and permits the estimation of fuel use as well as vehicle travel. The longer-tenn module depends on demographic factors to a greater extent, but also on trends in key parameters such as vehicle load factors, and the dematerialization of GNP. Both passenger and freight vehicle movements are accounted for in both modules. The model has been implemented as a compiled program in the Fox-Pro database management system operating in the Windows environment.

  14. Hydrogen ICE Vehicle Testing Activities

    SciTech Connect

    J. Francfort; D. Karner

    2006-04-01

    The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energy’s FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

  15. Electric Vehicles at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Chesson, Bruce E.

    2007-01-01

    The story of how the transportation office began by introducing low speed electric cars (LSEV) to the fleet managers and employees. This sparked and interest in purchasing some of these LSEV and the usage on KSC. Transportation was approached by a vender of High Speed Electric Vehicle (HSEV) we decided to test the HSEV to see if they would meet our fleet vehicle needs. Transportation wrote a Space Act Agreement (SAA) for the loan of three Lithium Powered Electric vehicles for a one year test. The vehicles have worked very well and we have extended the test for another year. The use of HSEV has pushed for an independent Electric Vehicle Study to be performed to consider ways to effectively optimize the use of electric vehicles in replacement of gasoline vehicles in the KSC vehicle fleet. This will help the center to move closer to meeting the Executive Order 13423.

  16. Robotic vehicle

    DOEpatents

    Box, W.D.

    1994-03-15

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 11 figures.

  17. Robotic vehicle

    DOEpatents

    Box, W.D.

    1996-03-12

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 14 figs.

  18. Robotic vehicle

    DOEpatents

    Box, W. Donald

    1996-01-01

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  19. Robotic vehicle

    DOEpatents

    Box, W. Donald

    1994-01-01

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  20. 41 CFR 109-38.5103 - Motor vehicle utilization standards.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Motor vehicle... AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 38-MOTOR EQUIPMENT MANAGEMENT 38.51-Utilization of Motor Equipment § 109-38.5103 Motor vehicle utilization standards. (a) The following average utilization...

  1. 41 CFR 109-38.5103 - Motor vehicle utilization standards.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Motor vehicle... AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 38-MOTOR EQUIPMENT MANAGEMENT 38.51-Utilization of Motor Equipment § 109-38.5103 Motor vehicle utilization standards. (a) The following average utilization...

  2. 48 CFR 945.570-2 - Acquisition of motor vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Acquisition of motor vehicles. (a) The GSA Interagency Fleet Management System (GSA-IFMS) is the first source... vehicles. 945.570-2 Section 945.570-2 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACT... vehicles and light trucks. (g) The Office of Property Management, within the Headquarters...

  3. 48 CFR 945.570-2 - Acquisition of motor vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Acquisition of motor vehicles. (a) The GSA Interagency Fleet Management System (GSA-IFMS) is the first source... vehicles. 945.570-2 Section 945.570-2 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACT... vehicles and light trucks. (g) The Office of Property Management, within the Headquarters...

  4. Lightning Protection Guidelines for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Goodloe, C. C.

    1999-01-01

    This technical memorandum provides lightning protection engineering guidelines and technical procedures used by the George C. Marshall Space Flight Center (MSFC) Electromagnetics and Aerospace Environments Branch for aerospace vehicles. The overviews illustrate the technical support available to project managers, chief engineers, and design engineers to ensure that aerospace vehicles managed by MSFC are adequately protected from direct and indirect effects of lightning. Generic descriptions of the lightning environment and vehicle protection technical processes are presented. More specific aerospace vehicle requirements for lightning protection design, performance, and interface characteristics are available upon request to the MSFC Electromagnetics and Aerospace Environments Branch, mail code EL23.

  5. Battery/Heat Engine Vehicle Analysis

    1991-03-01

    MARVEL performs least-life-cycle-cost analyses of battery/heat engine/hybrid vehicle systems to determine the combination of battery and heat engine characteristics for different vehicle types and missions. Simplified models are used for the transmission, motor/generator, controller, and other vehicle components, while a rather comprehensive model is used for the battery. Battery relationships available include the Ragone curve, peak power versus specific energy and depth-of-discharge (DOD), cycle life versus DOD, effects of battery scale, and capacity recuperation duemore » to intermittent driving patterns. Energy management in the operation of the vehicle is based on the specified mission requirements, type and size of the battery, allowable DOD, size of the heat engine, and the management strategy employed. Several optional management strategies are available in MARVEL. The program can be used to analyze a pure electric vehicle, a pure heat engine vehicle, or a hybrid vehicle that employs batteries as well as a heat engine. Cost comparisons for these vehicles can be made on the same basis. Input data for MARVEL are contained in three files generated by the user using three preprocessors which are included. MVDATA processes vehicle specification and mission requirements information, while MBDATA creates a file containing specific peak power as a function of specific energy and DOD, and MPDATA produces the file containing vehicle velocity specification data based on driving cycle information.« less

  6. Reusable Launch Vehicle Technology Program

    NASA Technical Reports Server (NTRS)

    Freeman, Delma C., Jr.; Talay, Theodore A.; Austin, R. Eugene

    1996-01-01

    Industry/NASA Reusable Launch Vehicle (RLV) Technology Program efforts are underway to design, test, and develop technologies and concepts for viable commercial launch systems that also satisfy national needs at acceptable recurring costs. Significant progress has been made in understanding the technical challenges of fully reusable launch systems and the accompanying management and operational approaches for achieving a low-cost program. This paper reviews the current status of the Reusable Launch Vehicle Technology Program including the DC-XA, X-33 and X-34 flight systems and associated technology programs. It addresses the specific technologies being tested that address the technical and operability challenges of reusable launch systems including reusable cryogenic propellant tanks, composite structures, thermal protection systems, improved propulsion, and subsystem operability enhancements. The recently concluded DC-XA test program demonstrated some of these technologies in ground and flight tests. Contracts were awarded recently for both the X-33 and X-34 flight demonstrator systems. The Orbital Sciences Corporation X-34 flight test vehicle will demonstrate an air-launched reusable vehicle capable of flight to speeds of Mach 8. The Lockheed-Martin X-33 flight test vehicle will expand the test envelope for critical technologies to flight speeds of Mach 15. A propulsion program to test the X-33 linear aerospike rocket engine using a NASA SR-71 high speed aircraft as a test bed is also discussed. The paper also describes the management and operational approaches that address the challenge of new cost-effective, reusable launch vehicle systems.

  7. 41 CFR 109-38.903-50 - Reporting DOE motor vehicle data.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... vehicle data. 109-38.903-50 Section 109-38.903-50 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 38-MOTOR EQUIPMENT MANAGEMENT 38.9-Federal Motor Vehicle...

  8. 41 CFR 109-38.903-50 - Reporting DOE motor vehicle data.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... vehicle data. 109-38.903-50 Section 109-38.903-50 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 38-MOTOR EQUIPMENT MANAGEMENT 38.9-Federal Motor Vehicle...

  9. 41 CFR 109-38.903-50 - Reporting DOE motor vehicle data.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... vehicle data. 109-38.903-50 Section 109-38.903-50 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 38-MOTOR EQUIPMENT MANAGEMENT 38.9-Federal Motor Vehicle...

  10. Vehicle barrier

    DOEpatents

    Hirsh, Robert A.

    1991-01-01

    A vehicle security barrier which can be conveniently placed across a gate opening as well as readily removed from the gate opening to allow for easy passage. The security barrier includes a barrier gate in the form of a cable/gate member in combination with laterally attached pipe sections fixed by way of the cable to the gate member and lateral, security fixed vertical pipe posts. The security barrier of the present invention provides for the use of cable restraints across gate openings to provide necessary security while at the same time allowing for quick opening and closing of the gate areas without compromising security.

  11. Cosmeceutical vehicles.

    PubMed

    Epstein, Howard

    2009-01-01

    Consumers will pay a premium for high-performance skin and hair care products. The demand exists, and in return for the high cost, consumers expect the product to perform as claimed and to meet aesthetic standards beyond many products found in the mass market. To be successful in this highly competitive market, products must function as claimed or consumers will not repurchase. Effective contemporary high-end products must be properly formulated in nonirritating vehicles that consumers will perceive as elegant. PMID:19695476

  12. 41 CFR 109-38.105 - Agency purchase and lease of motor vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... lease of motor vehicles. 109-38.105 Section 109-38.105 Public Contracts and Property Management Federal... AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 38-MOTOR EQUIPMENT MANAGEMENT 38.1-Fuel Efficient Motor Vehicles § 109-38.105 Agency purchase and lease of motor vehicles. (a) DOE activities shall submit a...

  13. 41 CFR 109-38.301-1.53 - Responsibilities of motor vehicle operators.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... motor vehicle operators. 109-38.301-1.53 Section 109-38.301-1.53 Public Contracts and Property... MANAGEMENT REGULATIONS AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 38-MOTOR EQUIPMENT MANAGEMENT 38.3-Official Use of Government Motor Vehicles § 109-38.301-1.53 Responsibilities of motor vehicle...

  14. 41 CFR 109-38.301-1.53 - Responsibilities of motor vehicle operators.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... motor vehicle operators. 109-38.301-1.53 Section 109-38.301-1.53 Public Contracts and Property... MANAGEMENT REGULATIONS AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 38-MOTOR EQUIPMENT MANAGEMENT 38.3-Official Use of Government Motor Vehicles § 109-38.301-1.53 Responsibilities of motor vehicle...

  15. 41 CFR 109-38.5105 - Motor vehicle local use objectives.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Motor vehicle local use..., TRANSPORTATION, AND MOTOR VEHICLES 38-MOTOR EQUIPMENT MANAGEMENT 38.51-Utilization of Motor Equipment § 109-38.5105 Motor vehicle local use objectives. (a) Individual motor vehicle utilization cannot always...

  16. 41 CFR 109-38.105 - Agency purchase and lease of motor vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... lease of motor vehicles. 109-38.105 Section 109-38.105 Public Contracts and Property Management Federal... AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 38-MOTOR EQUIPMENT MANAGEMENT 38.1-Fuel Efficient Motor Vehicles § 109-38.105 Agency purchase and lease of motor vehicles. (a) DOE activities shall submit a...

  17. 41 CFR 109-38.5105 - Motor vehicle local use objectives.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Motor vehicle local use..., TRANSPORTATION, AND MOTOR VEHICLES 38-MOTOR EQUIPMENT MANAGEMENT 38.51-Utilization of Motor Equipment § 109-38.5105 Motor vehicle local use objectives. (a) Individual motor vehicle utilization cannot always...

  18. 43 CFR 8365.1-3 - Vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Vehicles. 8365.1-3 Section 8365.1-3 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RECREATION PROGRAMS VISITOR SERVICES Rules of Conduct § 8365.1-3 Vehicles. (a)...

  19. 43 CFR 8365.2-4 - Vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Vehicles. 8365.2-4 Section 8365.2-4 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RECREATION PROGRAMS VISITOR SERVICES Rules of Conduct § 8365.2-4 Vehicles....

  20. 43 CFR 8365.2-4 - Vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Vehicles. 8365.2-4 Section 8365.2-4 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RECREATION PROGRAMS VISITOR SERVICES Rules of Conduct § 8365.2-4 Vehicles....

  1. 43 CFR 8365.1-3 - Vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Vehicles. 8365.1-3 Section 8365.1-3 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RECREATION PROGRAMS VISITOR SERVICES Rules of Conduct § 8365.1-3 Vehicles. (a)...

  2. On-board energy management for high-speed aerospace vehicles: System and component-level energy-based optimization and analysis

    NASA Astrophysics Data System (ADS)

    Taylor, Trent Matthew

    This dissertation addresses in detail three main topics for advancing the state-of-the-art in hypersonic aerospace systems: (1) the development of a synergistic method based on entropy generation in order to analyze, evaluate, and optimize vehicle performance, (2) the development and analysis of innovative unconventional flow-control methods for increasing vehicle performance utilizing entropy generation as a fundamental descriptor and predictor of performance, and (3) an investigation of issues arising when evaluating (predicting) actual flight vehicle performance using ground test facilities. Vehicle performance is analyzed beginning from fundamental considerations involving fluid and thermodynamic balance relationships. The results enable the use of entropy generation as the true "common currency" (single loss parameter) for systematic and consistent evaluation of performance losses across the vehicle as an integrated system. Innovative flow control methods are modeled using state of the art CFD codes in which the flow is energized in targeted local zones with emphasis on shock wave modification. Substantial drag reductions are observed such that drag can decrease to 25% of the baseline. Full vehicle studies are then conducted by comparing traditional and flow-controlled designs and very similar axial force is found with an accompanying increase in lift for the flow-control design to account for on-board energy-addition components. Finally, a full engine flowpath configuration is designed for computational studies of ground test performance versus actual flight performance with emphasis on understanding the effect of ground-based vitiate (test contaminant). It is observed that the presence of vitiate in the test medium can also have a significant first-order effect on ignition delay as well as the thermodynamic response to a given heat release in the fuel.

  3. 41 CFR 102-34.335 - How do I submit information to the General Services Administration (GSA) for the Federal Fleet...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... information to the General Services Administration (GSA) for the Federal Fleet Report (FFR)? 102-34.335... (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Federal Fleet Report... Fleet Report (FFR)? (a) Annually, agencies must submit to GSA the information needed to produce the...

  4. Rangeland monitoring with unmanned aerial vehicles (UAVs)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unmanned aerial vehicles (UAVs) have great potential for rangeland management applications, such as monitoring vegetation change, developing grazing strategies, determining rangeland health, and assessing remediation treatment effectiveness. UAVs have several advantages: they can be deployed quickly...

  5. 41 CFR 101-39.204 - Obtaining motor vehicles for indefinite assignment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.2-GSA Interagency Fleet Management... related services of the GSA Interagency Fleet Management System (IFMS) are provided to requesting...

  6. 41 CFR 101-39.204 - Obtaining motor vehicles for indefinite assignment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.2-GSA Interagency Fleet Management... related services of the GSA Interagency Fleet Management System (IFMS) are provided to requesting...

  7. 41 CFR 101-39.204 - Obtaining motor vehicles for indefinite assignment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.2-GSA Interagency Fleet Management... related services of the GSA Interagency Fleet Management System (IFMS) are provided to requesting...

  8. 41 CFR 101-39.204 - Obtaining motor vehicles for indefinite assignment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.2-GSA Interagency Fleet Management... related services of the GSA Interagency Fleet Management System (IFMS) are provided to requesting...

  9. 41 CFR 109-26.501 - Purchase of new motor vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Purchase of new motor vehicles. 109-26.501 Section 109-26.501 Public Contracts and Property Management Federal Property... motor vehicles....

  10. 41 CFR 109-26.501 - Purchase of new motor vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Purchase of new motor vehicles. 109-26.501 Section 109-26.501 Public Contracts and Property Management Federal Property... motor vehicles....

  11. Reusable Launch Vehicle Technology Program

    NASA Technical Reports Server (NTRS)

    Freeman, Delma C., Jr.; Talay, Theodore A.; Austin, R. Eugene

    1997-01-01

    Industry/NASA reusable launch vehicle (RLV) technology program efforts are underway to design, test, and develop technologies and concepts for viable commercial launch systems that also satisfy national needs at acceptable recurring costs. Significant progress has been made in understanding the technical challenges of fully reusable launch systems and the accompanying management and operational approaches for achieving a low cost program. This paper reviews the current status of the RLV technology program including the DC-XA, X-33 and X-34 flight systems and associated technology programs. It addresses the specific technologies being tested that address the technical and operability challenges of reusable launch systems including reusable cryogenic propellant tanks, composite structures, thermal protection systems, improved propulsion and subsystem operability enhancements. The recently concluded DC-XA test program demonstrated some of these technologies in ground and flight test. Contracts were awarded recently for both the X-33 and X-34 flight demonstrator systems. The Orbital Sciences Corporation X-34 flight test vehicle will demonstrate an air-launched reusable vehicle capable of flight to speeds of Mach 8. The Lockheed-Martin X-33 flight test vehicle will expand the test envelope for critical technologies to flight speeds of Mach 15. A propulsion program to test the X-33 linear aerospike rocket engine using a NASA SR-71 high speed aircraft as a test bed is also discussed. The paper also describes the management and operational approaches that address the challenge of new cost effective, reusable launch vehicle systems.

  12. Reusable launch vehicle technology program

    NASA Astrophysics Data System (ADS)

    Freeman, Delma C.; Talay, Theodore A.; Austin, R. Eugene

    Industry/NASA reusable launch vehicle (RLV) technology program efforts are underway to design, test, and develop technologies and concepts for viable commercial launch systems that also satisfy national needs at acceptable recurring costs. Significant progress has been made in understanding the technical challenges of fully reusable launch systems and the accompanying management and operational approaches for achieving a low-cost program. This paper reviews the current status of the RLV technology program including the DC-XA, X-33 and X-34 flight systems and associated technology programs. It addresses the specific technologies being tested that address the technical and operability challenges of reusable launch systems including reusable cryogenic propellant tanks, composite structures, thermal protection systems, improved propulsion, and subsystem operability enhancements. The recently concluded DC-XA test program demonstrated some of these technologies in ground and flight tests. Contracts were awarded recently for both the X-33 and X-34 flight demonstrator systems. The Orbital Sciences Corporation X-34 flight test vehicle will demonstrate an air-launched reusable vehicle capable of flight to speeds of Mach 8. The Lockheed-Martin X-33 flight test vehicle will expand the test envelope for critical technologies to flight speeds of Mach 15. A propulsion program to test the X-33 linear aerospike rocket engine using a NASA SR-71 high speed aircraft as a test bed is also discussed. The paper also describes the management and operational approaches that address the challenge of new cost-effective, reusable launch vehicle systems.

  13. 41 CFR 102-74.270 - Are vehicles required to display parking permits in parking facilities?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT Facility Management Parking Facilities § 102-74.270 Are vehicles required... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Are vehicles required...

  14. 41 CFR 102-74.270 - Are vehicles required to display parking permits in parking facilities?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT Facility Management Parking Facilities § 102-74.270 Are vehicles required... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Are vehicles required...

  15. 41 CFR 102-74.270 - Are vehicles required to display parking permits in parking facilities?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT Facility Management Parking Facilities § 102-74.270 Are vehicles required... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Are vehicles required...

  16. Unmanned aerial vehicles (UAVs) in pest management: Progress in the development of a UAV-deployed mating disruption system for Wisconsin cranberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unmanned aerial vehicles (UAVs) hold significant promise for agriculture. Currently, UAVs are being employed for various reconnaissance purposes (“eyes in the sky”), but not as pest control delivery systems. Research in Wisconsin cranberries is taking UAVs in a new direction. The Steffan and Luck La...

  17. Unmanned aerial vehicles (UAVs) in pest management: Progress in the development of a UAV-deployed mating disruption system for Wisconsin cranberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unmanned aerial vehicles (UAVs) represent a powerful new tool for agriculture. Currently, UAVs are used almost exclusively as crop reconnaissance devices (“eyes in the sky”), not as pest control delivery systems. Research in Wisconsin cranberries is taking UAVs in a new direction. The Steffan and Lu...

  18. Combination vehicle assembly

    SciTech Connect

    Silverman, M.J. Sr.

    1987-03-17

    A combination recreational vehicle assembly is described comprising: two vehicles of a different type, the vehicles comprising a first, leading vehicle having a steering mechanism for maneuvering the assembly and a drivable axle mechanism for propelling the assembly; an independently drivable second vehicle trailing the first vehicle comprising a standard road vehicle having a motor, and an axle mechanism for connecting the motor to the wheels of the second vehicle for providing power to the wheels of the vehicle. A gear means for selectively disconnecting the motor from the axle mechanism to place the vehicle in neutral, and a steering means for maneuvering the second vehicle when driven independently of the first vehicle are included; and a releasable mechanical drive connection between the second vehicle motor and the first vehicle axle mechanism to provide power for driving the assembly. The drive connection comprises a drive pinion projecting from the second vehicle motor to the front of the second vehicle, and a drive shaft projecting from the first vehicle axle mechanism to the rear of the first vehicle.

  19. 48 CFR 945.570-1 - Acquisition of motor vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... vehicles. (a) GSA Interagency Fleet Management System (GSA-IFMS) is the first source of supply for... vehicles. 945.570-1 Section 945.570-1 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACT... in accordance with 41 CFR 101-26.501. (d) Contractors shall submit all motor vehicle requirements...

  20. 48 CFR 945.570-1 - Acquisition of motor vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... vehicles. (a) GSA Interagency Fleet Management System (GSA-IFMS) is the first source of supply for... vehicles. 945.570-1 Section 945.570-1 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACT... in accordance with 41 CFR 101-26.501. (d) Contractors shall submit all motor vehicle requirements...

  1. Carlsbad Area Office vehicle safety program

    SciTech Connect

    1996-12-01

    The Carlsbad Area Office (CAO) Vehicle Safety Program (VSP) establishes the minimum requirements for CAO personnel to safely operate government vehicles and provides direction to effectively reduce the number of vehicle accidents, reduce the severity of vehicle accidents, and minimize vehicular property damage. This Program covers the operations of Government Services Administration (GSA) vehicles, rental or leased vehicles, and special purpose vehicles used at the Waste Isolation Pilot Plant (WIPP) in the performance of work. Additionally, this Program encourages CAO employees to use safe driving habits while operating their privately owned vehicles, motorcycles, or bicycles, or, as pedestrians, to be aware of the hazards associated with traffic in and around CAO facilities. Vehicle safety is a shared responsibility in this organization. At anytime a CAO employee witnesses an unsafe act relating to the operation of a motor vehicle, it is their responsibility to notify their Team Leader (TL) or Assistant Manager (AM), or contact the CAO Safety and Occupational Health Manager (SOHM). Employees are encouraged to participate in the Carlsbad Area Office Federal Employees Safety Committee (FESC) activities and goals in order to address vehicle safety concerns. The FESC is designed to be a forum for all federal employees to improve the health and safety of the organization. The VSP is an effective method of ensuring the health and safety of CAO employees during the operation of government vehicles. The human resources of the CAO are the most valuable assets of this organization and any lost manhours are difficult to replace. Safe driving habits and defensive driving methods should always be practiced to preserve the health and safety of all employees.

  2. 41 CFR 102-34.95 - What motor vehicle identification must the Department of Defense (DOD) display on motor vehicles...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false What motor vehicle identification must the Department of Defense (DOD) display on motor vehicles it owns or leases commercially? 102... identification must the Department of Defense (DOD) display on motor vehicles it owns or leases...

  3. 41 CFR 101-39.203 - Obtaining motor vehicles for short-term use.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.2-GSA Interagency Fleet Management... Fleet Management System (IFMS). Short-term use vehicles may be provided through Military Traffic... employee's designated post of duty. Arrangements for these vehicles will be made by the GSA IFMS...

  4. 41 CFR 101-39.203-1 - Obtaining motor vehicles while on temporary duty (TDY) travel.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Obtaining motor vehicles..., TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.2-GSA Interagency Fleet Management System Services § 101-39.203-1 Obtaining motor vehicles while on temporary duty (TDY) travel....

  5. 43 CFR 4740.1 - Use of motor vehicles or aircraft.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Use of motor vehicles or aircraft. 4740.1... MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING HORSES AND BURROS Motor Vehicles and Aircraft § 4740.1 Use of motor vehicles or...

  6. 75 FR 69700 - Final Environmental Impact Statement and Cape Hatteras National Seashore Off-Road Vehicle...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ... Vehicle Management Plan AGENCY: National Park Service, Interior. ACTION: Notice of Availability of a Final Environmental Impact Statement for the Cape Hatteras National Seashore Off-Road Vehicle Management Plan. SUMMARY... Cape Hatteras National Seashore (Seashore) Off-Road Vehicle Management Plan (Plan/ FEIS). The...

  7. Vehicle/engine integration. [orbit transfer vehicles

    NASA Technical Reports Server (NTRS)

    Cooper, L. P.; Vinopal, T. J.; Florence, D. E.; Michel, R. W.; Brown, J. R.; Bergeron, R. P.; Weldon, V. A.

    1984-01-01

    VEHICLE/ENGINE Integration Issues are explored for orbit transfer vehicles (OTV's). The impact of space basing and aeroassist on VEHICLE/ENGINE integration is discussed. The AOTV structure and thermal protection subsystem weights were scaled as the vehicle length and surface was changed. It is concluded that for increased allowable payload lengths in a ground-based system, lower length-to-diameter (L/D) is as important as higher mixture ration (MR) in the range of mid L/D ATOV's. Scenario validity, geometry constraints, throttle levels, reliability, and servicing are discussed in the context of engine design and engine/vehicle integration.

  8. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: "Mobile electricity" technologies, early California household markets, and innovation management

    NASA Astrophysics Data System (ADS)

    Williams, Brett David

    Starting from the premise that new consumer value must drive hydrogen-fuel-cell-vehicle (H2FCV) commercialization, a group of opportunities collectively called "Mobile Electricity" (Me-) is characterized. Me- redefines H2 FCVs as innovative products able to provide home recharging and mobile power, for example for tools, mobile activities, emergencies, and electric-grid-support services. To characterize such opportunities, this study first integrates and extends previous analyses of H2FCVs, plug-in hybrids, and vehicle-to-grid (V2G) power. It uses a new model to estimate zero-emission-power vs. zero-emission-driving tradeoffs, costs, and grid-support revenues for various electric-drive vehicle types and levels of infrastructure service. Next, the initial market potential for Me- enabled vehicles, such as H2FCVs and plug-in hybrids, is estimated by eliminating unlikely households from consideration for early adoption. 5.2 million of 33.9 million Californians in the 2000 Census live in households pre-adapted to Me-, 3.9 million if natural gas is required for home refueling. The possible sales base represented by this population is discussed. Several differences in demographic and other characteristics between the target market and the population as a whole are highlighted, and two issues related to the design of H2FCVs and their supporting infrastructure are discussed: vehicle range and home hydrogen refueling. These findings argue for continued investigation of this and similar target segments-which represent more efficient research populations for subsequent study by product designers and other decision-makers wishing to understand the early market dynamics facing Me- innovations. Next, Me-H2FCV commercialization issues are raised from the perspectives of innovation, product development, and strategic marketing. Starting with today's internalcombustion hybrids, this discussion suggests a way to move beyond the battery vs. fuel-cell zero-sum game and towards the

  9. Electric and hybrid vehicles

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Report characterizes state-of-the-art electric and hybrid (combined electric and heat engine) vehicles. Performance data for representative number of these vehicles were obtained from track and dynamometer tests. User experience information was obtained from fleet operators and individual owners of electric vehicles. Data on performance and physical characteristics of large number of vehicles were obtained from manufacturers and available literature.

  10. Remote vehicle controller

    NASA Astrophysics Data System (ADS)

    Schmitz, John J.

    1992-06-01

    A remote control system is disclosed for use with vehicles having radios. A first vehicle has a controller attached to the radio for use in sending signals to a second vehicle. The second, remotely controlled, vehicle has a receiver connected to the vehicle radio which receives commands from the first radio to effect the desired motion and action of the second vehicle. The receiver and controller have circuitry which allows them to be reprogrammed to function on various military vehicles and also be attached to the different radio systems in use by the U.S. Military.

  11. 78 FR 61380 - Notice of Renewal of Big Cypress National Preserve Off-Road Vehicle Advisory Committee Charter

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-03

    ... recommendations, alternatives and possible solutions to management of off-road vehicles at Big Cypress National...- Road Vehicle Management Plan, 2000. This plan guides the National Park Service in its management of... Environmental Policy Act. The Off-Road Vehicle Management Plan, 2000 (p. 29) states ``Under the proposed...

  12. 41 CFR 101-39.208 - Vehicles removed from defined areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.2-GSA Interagency Fleet Management System Services... 41 Public Contracts and Property Management 2 2014-07-01 2012-07-01 true Vehicles removed...

  13. 41 CFR 101-39.208 - Vehicles removed from defined areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.2-GSA Interagency Fleet Management System Services... 41 Public Contracts and Property Management 2 2012-07-01 2012-07-01 false Vehicles removed...

  14. 41 CFR 101-39.208 - Vehicles removed from defined areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.2-GSA Interagency Fleet Management System Services... 41 Public Contracts and Property Management 2 2013-07-01 2012-07-01 true Vehicles removed...

  15. 41 CFR 101-39.208 - Vehicles removed from defined areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.2-GSA Interagency Fleet Management System Services... 41 Public Contracts and Property Management 2 2011-07-01 2007-07-01 true Vehicles removed...

  16. 41 CFR 101-45.003 - Vehicle reconditioning.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS UTILIZATION AND DISPOSAL 45-SALE, ABANDONMENT, OR... 41 Public Contracts and Property Management 2 2012-07-01 2012-07-01 false Vehicle reconditioning... systems (electrical, fuel, cooling, etc.) to ensure that the vehicle will start and idle correctly...

  17. Road Weather and Connected Vehicles

    NASA Astrophysics Data System (ADS)

    Pisano, P.; Boyce, B. C.

    2015-12-01

    On average, there are over 5.8 M vehicle crashes each year of which 23% are weather-related. Weather-related crashes are defined as those crashes that occur in adverse weather or on slick pavement. The vast majority of weather-related crashes happen on wet pavement (74%) and during rainfall (46%). Connected vehicle technologies hold the promise to transform road-weather management by providing improved road weather data in real time with greater temporal and geographic accuracy. This will dramatically expand the amount of data that can be used to assess, forecast, and address the impacts that weather has on roads, vehicles, and travelers. The use of vehicle-based measurements of the road and surrounding atmosphere with other, more traditional weather data sources, and create road and atmospheric hazard products for a variety of users. The broad availability of road weather data from mobile sources will vastly improve the ability to detect and forecast weather and road conditions, and will provide the capability to manage road-weather response on specific roadway links. The RWMP is currently demonstrating how weather, road conditions, and related vehicle data can be used for decision making through an innovative Integrated Mobile Observations project. FHWA is partnering with 3 DOTs (MN, MI, & NV) to pilot these applications. One is a mobile alerts application called the Motorists Advisories and Warnings (MAW) and a maintenance decision support application. These applications blend traditional weather information (e.g., radar, surface stations) with mobile vehicle data (e.g., temperature, brake status, wiper status) to determine current weather conditions. These weather conditions, and other road-travel-relevant information, are provided to users via web and phone applications. The MAW provides nowcasts and short-term forecasts out to 24 hours while the EMDSS application can provide forecasts up to 72 hours in advance. The three DOTs have placed readers and external

  18. 36 CFR 212.81 - Use by over-snow vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Use by over-snow vehicles... TRAVEL MANAGEMENT Use by Over-Snow Vehicles § 212.81 Use by over-snow vehicles. (a) General. Use by over-snow vehicles on National Forest System roads and National Forest System trails and in areas...

  19. 36 CFR 212.81 - Use by over-snow vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Use by over-snow vehicles... TRAVEL MANAGEMENT Use by Over-Snow Vehicles § 212.81 Use by over-snow vehicles. (a) General. Use by over-snow vehicles on National Forest System roads and National Forest System trails and in areas...

  20. 36 CFR 212.81 - Use by over-snow vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Use by over-snow vehicles... TRAVEL MANAGEMENT Use by Over-Snow Vehicles § 212.81 Use by over-snow vehicles. (a) General. Use by over-snow vehicles on National Forest System roads and National Forest System trails and in areas...

  1. 36 CFR 212.81 - Use by over-snow vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Use by over-snow vehicles... TRAVEL MANAGEMENT Use by Over-Snow Vehicles § 212.81 Use by over-snow vehicles. (a) General. Use by over-snow vehicles on National Forest System roads and National Forest System trails and in areas...

  2. 36 CFR 212.81 - Use by over-snow vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Use by over-snow vehicles... TRAVEL MANAGEMENT Use by Over-Snow Vehicles § 212.81 Use by over-snow vehicles. (a) General. Use by over-snow vehicles on National Forest System roads and National Forest System trails and in areas...

  3. The cost of waste: Vehicle maintenance

    SciTech Connect

    Li, D.

    1996-06-01

    Most vehicle maintenance shop managers are unaware how much they spend annually on waste management and disposal. Many vehicle maintenance shops tend to focus on lowering production costs and improving productivity, and underestimate waste disposal costs. Waste management and raw material costs for the vehicle maintenance industry have increased slowly over the years, stimulating interest in source reduction and recycling. Many equipment manufacturers have met this demand by producing equipment for reducing and recycling wastes. Investing in pollution prevention equipment not only saves money, it improves a shop`s appearance and fosters a professional image that attracts customers. To identify the equipment that best meets the needs of a specific business, managers can implement cost-benefit analyses for pollution prevention equipment.

  4. Statistical Characterization of Medium-Duty Electric Vehicle Drive Cycles; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Prohaska, R.; Duran, A.; Ragatz, A.; Kelly, K.

    2015-05-03

    With funding from the U.S. Department of Energy’s Vehicle Technologies Office, the National Renewable Energy Laboratory (NREL) conducts real-world performance evaluations of advanced medium- and heavy-duty fleet vehicles. Evaluation results can help vehicle manufacturers fine-tune their designs and assist fleet managers in selecting fuel-efficient, low-emission vehicles that meet their economic and operational goals. In 2011, NREL launched a large-scale performance evaluation of medium-duty electric vehicles. With support from vehicle manufacturers Smith and Navistar, NREL research focused on characterizing vehicle operation and drive cycles for electric delivery vehicles operating in commercial service across the nation.

  5. A high-resolution vehicle emission inventory for China

    NASA Astrophysics Data System (ADS)

    Zheng, B.; Zhang, Q.; He, K.; Huo, H.; Yao, Z.; Wang, X.

    2012-12-01

    Developing high resolution emission inventory is an essential task for air quality modeling and management. However, current vehicle emission inventories in China are usually developed at provincial level and then allocated to grids based on various spatial surrogates, which is difficult to get high spatial resolution. In this work, we developed a new approach to construct a high-resolution vehicle emission inventory for China. First, vehicle population at county level were estimated by using the relationship between per-capita GDP and vehicle ownership. Then the Weather Research and Forecasting (WRF) model were used to drive the International Vehicle Emission (IVE) model to get monthly emission factors for each county. Finally, vehicle emissions by county were allocated to grids with 5-km horizon resolution by using high-resolution road network data. This work provides a better understanding of spatial representation of vehicle emissions in China and can benefit both air quality modeling and management with improved spatial accuracy.

  6. Management status of end-of-life vehicles and development strategies of used automotive electronic control components recycling industry in China.

    PubMed

    Wang, Junjun; Chen, Ming

    2012-11-01

    Recycling companies play a leading role in the system of end-of-life vehicles (ELVs) in China. Automotive manufacturers in China are rarely involved in recycling ELVs, and they seldom provide dismantling information for recycling companies. In addition, no professional shredding plant is available. The used automotive electronic control components recycling industry in China has yet to take shape because of the lack of supporting technology and profitable models. Given the rapid growth of the vehicle population and electronic control units in automotives in China, the used automotive electronic control components recycling industry requires immediate development. This paper analyses the current recycling system of ELVs in China and introduces the automotive product recycling technology roadmap as well as the recycling industry development goals. The strengths, weaknesses, opportunities and challenges of the current used automotive electronic control components recycling industry in China are analysed comprehensively based on the 'strengths, weaknesses, opportunities and threats' (SWOT) method. The results of the analysis indicate that this recycling industry responds well to all the factors and has good opportunities for development. Based on the analysis, new development strategies for the used automotive electronic control components recycling industry in accordance with the actual conditions of China are presented. PMID:22843351

  7. Vehicle positioning using image processing

    NASA Astrophysics Data System (ADS)

    Kaur, Amardeep; Watkins, Steve E.; Swift, Theresa M.

    2009-03-01

    An image-processing approach is described that detects the position of a vehicle on a bridge. A load-bearing vehicle must be carefully positioned on a bridge for quantitative bridge monitoring. The personnel required for setup and testing and the time required for bridge closure or traffic control are important management and cost considerations. Consequently, bridge monitoring and inspections are good candidates for smart embedded systems. The objectives of this work are to reduce the need for personnel time and to minimize the time for bridge closure. An approach is proposed that uses a passive target on the bridge and camera instrumentation on the load vehicle. The orientation of the vehicle-mounted camera and the target determine the position. The experiment used pre-defined concentric circles as the target, a FireWire camera for image capture, and MATLAB for computer processing. Various image-processing techniques are compared for determining the orientation of the target circles with respect to speed and accuracy in the positioning application. The techniques for determining the target orientation use algorithms based on using the centroid feature, template matching, color feature, and Hough transforms. Timing parameters are determined for each algorithm to determine the feasibility for real-time use in a position triggering system. Also, the effect of variations in the size and color of the circles are examined. The development can be combined with embedded sensors and sensor nodes for a complete automated procedure. As the load vehicle moves to the proper position, the image-based system can trigger an embedded measurement, which is then transmitted back to the vehicle control computer through a wireless link.

  8. Display integration for ground combat vehicles

    NASA Astrophysics Data System (ADS)

    Busse, David J.

    1998-09-01

    The United States Army's requirement to employ high resolution target acquisition sensors and information warfare to increase its dominance over enemy forces has led to the need to integrate advanced display devices into ground combat vehicle crew stations. The Army's force structure require the integration of advanced displays on both existing and emerging ground combat vehicle systems. The fielding of second generation target acquisition sensors, color digital terrain maps and high volume digital command and control information networks on these platforms define display performance requirements. The greatest challenge facing the system integrator is the development and integration of advanced displays that meet operational, vehicle and human computer interface performance requirements for the ground combat vehicle fleet. The subject of this paper is to address those challenges: operational and vehicle performance, non-soldier centric crew station configurations, display performance limitations related to human computer interfaces and vehicle physical environments, display technology limitations and the Department of Defense (DOD) acquisition reform initiatives. How the ground combat vehicle Program Manager and system integrator are addressing these challenges are discussed through the integration of displays on fielded, current and future close combat vehicle applications.

  9. Environmental effects of off-highway vehicles on Bureau of Land Management lands: A literature synthesis, annotated bibliographies, extensive bibliographies, and internet resources

    USGS Publications Warehouse

    Ouren, Douglas S.; Haas, Christopher; Melcher, Cynthia P.; Stewart, Susan C.; Ponds, Phadrea D.; Sexton, Natalie R.; Burris, Lucy; Fancher, Tammy; Bowen, Zachary H.

    2007-01-01

    This report and its associated appendixes compile and synthesize the results of a comprehensive literature and Internet search conducted in May 2006. The literature search was undertaken to uncover information regarding the effects of off-highway vehicle (OHV) use on land health, or “natural resource attributes,” and included databases archiving information from before OHVs came into existence to May 2006. Information pertaining to socioeconomic implications of OHV activities is included as well. The literature and Internet searches yielded approximately 700 peer-reviewed papers, magazine articles, agency and non-governmental reports, and internet websites regarding effects of OHV use as they relate to the Bureau of Land Management’s (BLM) standards of land health. Discussions regarding OHV effects are followed by brief syntheses of potential indicators of OHV effects, as well as OHV-effects mitigation, site-restoration techniques, and research needs.

  10. Broadband vehicle-to-vehicle communication using an extended autonomous cruise control sensor

    NASA Astrophysics Data System (ADS)

    Heddebaut, M.; Rioult, J.; Ghys, J. P.; Gransart, Ch; Ambellouis, S.

    2005-06-01

    For several years road vehicle autonomous cruise control (ACC) systems as well as anti-collision radar have been developed. Several manufacturers currently sell this equipment. The current generation of ACC sensors only track the first preceding vehicle to deduce its speed and position. These data are then used to compute, manage and optimize a safety distance between vehicles, thus providing some assistance to car drivers. However, in real conditions, to elaborate and update a real time driving solution, car drivers use information about speed and position of preceding and following vehicles. This information is essentially perceived using the driver's eyes, binocular stereoscopic vision performed through the windscreens and rear-view mirrors. Furthermore, within a line of vehicles, the frontal road perception of the first vehicle is very particular and highly significant. Currently, all these available data remain strictly on-board the vehicle that has captured the perception information and performed these measurements. To get the maximum effectiveness of all these approaches, we propose that this information be shared in real time with the following vehicles, within the convoy. On the basis of these considerations, this paper technically explores a cost-effective solution to extend the basic ACC sensor function in order to simultaneously provide a vehicle-to-vehicle radio link. This millimetre wave radio link transmits relevant broadband perception data (video, localization...) to following vehicles, along the line of vehicles. The propagation path between the vehicles uses essentially grazing angles of incidence of signals over the road surface including millimetre wave paths beneath the cars.

  11. 41 CFR 109-38.204-50 - Records of exempted motor vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... motor vehicles. 109-38.204-50 Section 109-38.204-50 Public Contracts and Property Management Federal... AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 38-MOTOR EQUIPMENT MANAGEMENT 38.2-Registration, Identification, and Exemptions § 109-38.204-50 Records of exempted motor vehicles. The Director, Office...

  12. 41 CFR 109-38.903-50 - Reporting DOE motor vehicle data.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Reporting DOE motor... AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 38-MOTOR EQUIPMENT MANAGEMENT 38.9-Federal Motor Vehicle Fleet Report § 109-38.903-50 Reporting DOE motor vehicle data. (a) DOE offices and designated...

  13. 41 CFR 109-38.903-50 - Reporting DOE motor vehicle data.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Reporting DOE motor... AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 38-MOTOR EQUIPMENT MANAGEMENT 38.9-Federal Motor Vehicle Fleet Report § 109-38.903-50 Reporting DOE motor vehicle data. (a) DOE offices and designated...

  14. 41 CFR 109-38.204-50 - Records of exempted motor vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... motor vehicles. 109-38.204-50 Section 109-38.204-50 Public Contracts and Property Management Federal... AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 38-MOTOR EQUIPMENT MANAGEMENT 38.2-Registration, Identification, and Exemptions § 109-38.204-50 Records of exempted motor vehicles. The Director, Office...

  15. 41 CFR 109-38.402-50 - Prompt disposal of replaced motor vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... replaced motor vehicles. 109-38.402-50 Section 109-38.402-50 Public Contracts and Property Management... REGULATIONS AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 38-MOTOR EQUIPMENT MANAGEMENT 38.4-Use and Replacement Standards § 109-38.402-50 Prompt disposal of replaced motor vehicles. A replaced motor...

  16. Solar space vehicle

    SciTech Connect

    Lee, R.E.

    1982-10-19

    This invention relates to space vehicle where solar energy is used to generate steam, which in turn, propels the vehicle in space. A copper boiler is provided and a novel solar radiation condensing means is used to focus the sunlight on said boiler. Steam generated in said boiler is exhausted to the environment to provide a thrust for the vehicle.

  17. Motor Vehicle Safety

    MedlinePlus

    ... from motor vehicle crashes. Trying to prevent these crashes is one part of motor vehicle safety. Here are some things you can do to be safer on the road: Make sure your vehicle is safe and in working order Use car seats for children Wear your seat belt Don' ...

  18. Automotive vehicle sensors

    SciTech Connect

    Sheen, S.H.; Raptis, A.C.; Moscynski, M.J.

    1995-09-01

    This report is an introduction to the field of automotive vehicle sensors. It contains a prototype data base for companies working in automotive vehicle sensors, as well as a prototype data base for automotive vehicle sensors. A market analysis is also included.

  19. Electric Vehicle Technician

    ERIC Educational Resources Information Center

    Moore, Pam

    2011-01-01

    With President Obama's goal to have one million electric vehicles (EV) on the road by 2015, the electric vehicle technician should have a promising and busy future. "The job force in the car industry is ramping up for a revitalized green car industry," according to Greencareersguide.com. An electric vehicle technician will safely troubleshoot and…

  20. Marine vehicle ride quality

    NASA Technical Reports Server (NTRS)

    Gornstein, R. J.; Shultz, W. M.; Stair, L. D.

    1972-01-01

    The effects of marine vehicle design on passenger exposure to vibration and discomfort are discussed. The ride quality of advanced marine vehicles is examined. as a basis for marine vehicle selection in modern water transport systems. The physiological effects of rough water on passengers are identified as requiring investigation in order to determine the acceptable limits.