Science.gov

Sample records for 351-nm laser system

  1. Optimization of Laser-Damage Resistance of Evaporated Hafnia Films at 351 nm

    SciTech Connect

    Oliver, J.B.; Papernov, S.; Schmid, A.W.; Lambropoulos, J.C.

    2009-04-07

    A systematic study was undertaken to improve the laser-damage resistance of multilayer high-reflector coatings for use at 351 nm on the OMEGA EP Laser System. A series of hafnium dioxide monolayer films deposited by electron-beam evaporation with varying deposition rates and oxygen backfill pressures were studied using transmission electron microscopy (TEM), x-ray diffraction (XRD), and refractive index modeling. These exhibit microstructural changes for sufficiently slow deposition rates and high oxygen backfill pressures, resulting in an absence of crystalline inclusions and a lower refractive index. Hafnia monolayers exhibited laser-damage resistance as high as 12 J/cm^2 at 351 nm with a 0.5-ns pulse. This process was utilized in the fabrication of reduced electric-field-type multilayer high-reflector coatings. Measured laser-damage thresholds as high as 16.63 J/cm^2 were achieved under identical test conditions, an exceptional improvement relative to historical damage thresholds of the order of 3 to 5 J/cm^2.

  2. Modeling of filamentation damage induced in silica by 351-nm laser pulses

    SciTech Connect

    Milam, D.; Manes, K.R.; Williams, W.H.

    1996-10-17

    A major risk factor that must be considered in design of the National Ignition Facility is the possibility for catastrophic self-focusing of the 351-nm beam in the silica optical components that are in the final section of the laser. Proposed designs for the laser are analyzed by the beam-propagation code PROP92. A 351-nm self-focusing experiment, induction of tracking damage, was done to provide data for validation of this code. The measured self-focusing lengths were correctly predicted by the code.

  3. CO2-Laser Polishing for Reduction of 351-nm Surface Damage Initiation in Fused Silica

    SciTech Connect

    Brusasco, R M; Penetrante, B M; Butler, J A; Maricle, S M; Peterson, J E

    2001-11-01

    We have applied a carbon dioxide (CO{sub 2}) raster scanning laser polishing technique on two types of fused silica flat optics to determine the efficacy of CO{sub 2}-laser polishing as a method to increase the 351-nm laser damage resistance of optic surfaces. R-on-1 damage test results show that the fluence for any given 355-nm damage probability is 10-15 J/cm{sup 2} higher (at 3 ns pulse length, scaled) for the CO{sub 2}-laser polished samples. Poor quality and good quality surfaces respond to the treatment such that their surface damage resistance is brought to approximately the same level. Surface stress and the resultant effect on wavefront quality remain key technology issues that would need to be addressed for a robust deployment.

  4. Subsurface defects of fused silica optics and laser induced damage at 351 nm.

    PubMed

    Hongjie, Liu; Jin, Huang; Fengrui, Wang; Xinda, Zhou; Xin, Ye; Xiaoyan, Zhou; Laixi, Sun; Xiaodong, Jiang; Zhan, Sui; Wanguo, Zheng

    2013-05-20

    Many kinds of subsurface defects are always present together in the subsurface of fused silica optics. It is imperfect that only one kind of defects is isolated to investigate its impact on laser damage. Therefore it is necessary to investigate the impact of subsurface defects on laser induced damage of fused silica optics with a comprehensive vision. In this work, we choose the fused silica samples manufactured by different vendors to characterize subsurface defects and measure laser induced damage. Contamination defects, subsurface damage (SSD), optical-thermal absorption and hardness of fused silica surface are characterized with time-of-flight secondary ion mass spectrometry (TOF-SIMS), fluorescence microscopy, photo-thermal common-path interferometer and fully automatic micro-hardness tester respectively. Laser induced damage threshold and damage density are measured by 351 nm nanosecond pulse laser. The correlations existing between defects and laser induced damage are analyzed. The results show that Cerium element and SSD both have a good correlation with laser-induced damage thresholds and damage density. Research results evaluate process technology of fused silica optics in China at present. Furthermore, the results can provide technique support for improving laser induced damage performance of fused silica.

  5. Long-term laser induced contamination tests of optical elements under vacuum at 351nm

    NASA Astrophysics Data System (ADS)

    Leinhos, Uwe; Mann, Klaus; Bayer, Armin; Dette, Jens-Oliver; Schöneck, Matthias; Endemann, Martin; Wernham, Denny; Petazzi, Federico; Tighe, Adrian; Alves, Jorge; Thibault, Dominique

    2010-11-01

    Photon-induced contamination of optical surfaces is a major obstacle for space-bound laser applications. At Laser-Laboratorium Göttingen, a setup was developed that allows monitoring transmission, reflection and fluorescence of laser-irradiated optical components under well-controlled vacuum conditions, in order to assess their possible optical degradation due to radiation-induced contaminant deposition in orbit. In cooperation with the European Space Agency ESA optical elements for the ADM-Aelolus mission were investigated. In order to perform global wind-profile observation based on Doppler-LIDAR, the satellite ADM-Aelolus will be launched in 2011 and injected into an orbit 400 km above Earth's surface. ADM-Aeolus will be the first satellite ever that is equipped with a UV-laser (emitting at a wavelength of 355 nm) and a reflector telescope. For both high-reflecting mirrors and an anti-reflective coated windows long-term irradiation tests (up to 500 million laser pulses per test run) were performed at a base pressure < 10-9 mbar, using a XeF excimer laser (λ=351 nm, repetition rate 1kHz). At this, samples of polymers used inside the satellite (insulators for cabling, adhesives, etc.) were installed into the chamber, and the interaction of their degassing with the sample surfaces under laser irradiation was investigated. Optical degradation associated with contaminant adsorption was detected on the irradiated sample sites as a function of various parameters, including pulse repetition rate, view factor and coating material

  6. Loss of transmittance in fluoropolymer films due to laser-induced damage at 1053 and 351-nm

    SciTech Connect

    Whitman, P.; Milam, D.; Norton, M.; Sell, W.

    1997-12-01

    Thick fluoropolymer films are being evaluated as a potential `disposable` debris shield to protect high-peak-power laser optics from x-ray and target debris generated in inertial-confinement fusion-ignition experiments, Two obstacles to implementation are optical uniformity and damage threshold. To understand the damage characteristics, transmittance of single 1053- or 351-nm laser pulses has been measured for commercial fluoropolymer films in vacuum. Samples were tested at fluences up to 105 J/cm2 at 1053-nm and 13 J/cm2 at 351-nm. Both the total transmitted energy for a single shot and the temporal energy transmittance profile during the shot were measured as a function of fluence. In addition, the total focusable transmitted energy was recorded for 351 -nm pulses. Results show that transmittance decreases slowly during a single-pulse irradiation, allowing much of the energy to be transmitted at fluences which cause noticeable degradation to the film. The film transmits greater than 90% of the 351-nm energy delivered in a beam with spatial average fluence of 8 J/cm2 with modulation up to 15 J/cm2. For 1053-nm laser light, the films do not begin to exhibit noticeable transmittance loss until average fluences exceed 40 J/cm2.

  7. Methods for Mitigating Growth of Laser-Initiated Surface Damage on Fused Silcia Optics at 351nm

    SciTech Connect

    Hrubesh, L W; Norton, M A; Molander, W A; Donohue, E E; Maricle, S M; Penetrante, B M; Brusasco, R M; Grundler, W; Butler, J A; Carr, J W; Hill, R M; Summers, L J; Feit, M D; Rubenchik, A; Key, M H; Wegner, P J; Burnham, A K; Hackel, L A; Kozlowski, M R

    2001-12-12

    We report a summary of the surface damage, growth mitigation effort at 351nm for polished fused silica optics. The objective was to experimentally validate selected methods that could be applied to pre-initiated or retrieved-from-service optics, to stop further damage growth. A specific goal was to obtain sufficient data and information on successful methods for fused silica optics to select a single approach for processing large aperture, fused-silica optics used in high-peak-power laser applications. This paper includes the test results and the evaluation thereof, for several mitigation methods for fused silica surfaces. The mitigation methods tested in this study are wet chemical etching, cold plasma etching, CW-CO{sub 2} laser processing, and micro-flame torch processing. We found that CW-CO{sub 2} laser processing produces the most significant and consistent results to halt laser-induced surface damage growth on fused silica. We recorded successful mitigation of the growth of laser-induced surface damage sites as large as 0.5mm diameter, for 1000 shots at 351nm and fluences in the range of 8 to 13J/cm{sup 2}, {approx}11ns pulse length. We obtained sufficient data for elimination of damage growth using CO{sub 2} laser processing on sub-aperture representative optics, to proceed with application to large aperture ({approx}40 x 40cm{sup 2}) fused silica.

  8. UV Laser Conditioning for Reduction of 351-nm Damage Initiation in Fused Silica

    SciTech Connect

    Brusasco, R M; Penetrante, B M; Peterson, J E; Maricle, S M; Menapace, J A

    2001-12-20

    This paper describes the effect of 355-nm laser conditioning on the concentration of UV-laser-induced surface damage sites on large-aperture fused silica optics. We will show the effect of various 355-nm laser conditioning methodologies on the reduction of surface-damage initiation in fused silica samples that have varying qualities of polishing. With the best, generally available fused silica optic, we have demonstrated that 355-nm laser conditioning can achieve up to 10x reduction in surface damage initiation concentration in the fluence range of 10-14 J/cm{sup 2} (355-nm {at} 3 ns).

  9. Performance of Bare and Sol-Gel Coated DKDP Crystal Surfaces Exposed to Multiple 351-nm Laser Pulses in Vacuum and Air

    SciTech Connect

    Whitman, P K; Norton, M; Nostrand, M; Molander, W; Nelson, A; Engelhard, M; Gasper, D; Baer, D; Siekhaus, W; Auerbach, J; Demos, S; Staggs, M; Burnham, A

    2001-12-19

    We have investigated the surface degradation of bare and sol-gel coated deuterated potassium dihydrogen phosphate (DKDP) crystals when exposed to 351-nm laser pulses in atmospheric air and nitrogen and at pressures ranging from atmospheric down to 10{sup -5} Torr vacuum. Optical microscopy, surface topography, surface chemical analyses, 351-nm pumped photoemission maps, and photometry results have been used to characterize these samples. We report the occurrence of two potentially linked surface degradation phenomena: the development of increased photoemission and the development of unacceptable surface roughening in the region exposed to the beam in vacuum. We note no degradation for surfaces exposed in air or nitrogen at pressures exceeding 1 torr. Diamond-turned DKDP surfaces show a ubiquitous, low-intensity photoemission signature before exposure to any laser fluence. The observed reduction of this emission signal as a function of operating pressure and accumulated laser energy when crystals are exposed to 351-nm laser pulses in air can be correlated with the removal of surface carbon.

  10. The effect of pulse duration on the growth rate of laser-induced damage sites at 351 nm on fused silica surfaces

    SciTech Connect

    Negres, R A; Norton, M A; Liao, Z M; Cross, D A; Bude, J D; Carr, C W

    2009-10-29

    Past work in the area of laser-induced damage growth has shown growth rates to be primarily dependent on the laser fluence and wavelength. More recent studies suggest that growth rate, similar to the damage initiation process, is affected by a number of additional parameters including pulse duration, pulse shape, site size, and internal structure. In this study, we focus on the effect of pulse duration on the growth rate of laser damage sites located on the exit surface of fused silica optics. Our results demonstrate, for the first time, a significant dependence of growth rate at 351 nm on pulse duration from 1 ns to 15 ns as {tau}{sup 0.3} for sites in the 50-100 {micro}m size range.

  11. Laser-induced ablation of polymers using a patterned dopant generated from a leuco-dye precursor via flood exposure: A ``portable conformable mask'' approach to laser ablation of PMMA at 351 nm

    NASA Astrophysics Data System (ADS)

    Holtz, S.; Bargon, J.

    1995-05-01

    A two-stage laser ablation process is described, which initially generates a laser-light absorbing image from a conventional photolithographic mask via a UV-flood exposure step. For this purpose a colorless precursor of a dye, i.e., its leuco form, is imbedded into the polymer to be ablated as a dopant. For poly(methyl methacrylate) as such a polymer, triphenylmethanol, the leuco precursor for the corresponding triphenylmethyl dye represents a good choice for ablation with excimer lasers operating at the wavelength 351 nm. In this fashion conventional masks and exposure tools of UV-photolithography may be used in combination with laser ablation. The resulting images are characterized by a good contrast and reasonably sharp contours. The photochemical mechanism and additional aspects of this two-step process, which resembles the “portable conformal mask” approach of photolithography, are outlined.

  12. Performance of Thin Borosilicate Glass Sheets at 351-nm

    SciTech Connect

    Whitman, P K; Hahn, D; Soules, T; Norton, M; Dixit, S; Donohue, G; Folta, J; Hollingsworth, W; Mainschein-Cline, M

    2004-11-11

    Previously, we reported preliminary results for commercial thin borosilicate glass sheets evaluated for use as a frequently-replaced optic to separate the radiation and contamination produced by the inertial confinement fusion experiments in the National Ignition Facility target chamber from the expensive precision laser optics which focus and shape the 351-nm laser beam. The goal is identification of low cost substrates that can deliver acceptable beam energy and focal spots to the target. The two parameters that dominate the transmitted beam quality are the transmitted wave front error and 351-nm absorption. Commercial materials and fabrication processes have now been identified which meet the beam energy and focus requirements for all of the missions planned for the National Ignition Facility. We present the first data for use of such an optic on the National Ignition Facility laser.

  13. Photodissociation Dynamics of 2-BROMOETHYLNITRITE at 351 NM and C-C Bond Fission in the β - Radical Product

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Chhantyal-Pun, Rabi; Brynteson, Matt D.; Miller, Terry A.; Butler, Laurie J.

    2013-06-01

    We used a crossed laser-molecular beam scattering experiment to investigate the primary photodissociation channels of bromoethylnitrite at 351 nm. Only the O-NO bond fission channel forming the β -bromoethoxy radical and NO, no HBr photoelimination, was detected upon 351 nm photoexcitation,. The subsequent decomposition of the highly vibrational excited β -bromoethoxy radical to formaldehyde + CH{_2}Br was also investigated.

  14. Investigation of Fluorescence Microscopy as a Tool for Noninvasive Detection and Imaging of Damage Precursors at 351-nm

    SciTech Connect

    Demos, S G; Nostrand, M C; Staggs, M; Carr, C W; Hahn, D; Kozlowski, M R; Sheehan, L; Battersby, C; Burnham, A

    2001-11-01

    This work is an experimental investigation to evaluate the potential of fluorescence microscopy as a tool to detect surface contamination as well as reveal surface damage precursors on DKDP and SIO{sub 2} optics. To achieve these technical objectives, microscopic imaging systems were built that also incorporated in-situ damage testing capabilities. Fluorescence imaging experiments were performed using 351-nm laser excitation while damage testing was performed at relatively high laser fluences. The experimental results demonstrated the potential of this technique to address the aforementioned technical issues.

  15. First results from simultaneous 527 nm and 351 nm probe beam interactions in a long scalelength plasma

    NASA Astrophysics Data System (ADS)

    Moody, J. D.; MacKinnon, A.; Glenzer, S. H.; Froula, D.; Gregori, G.; Berger, R. L.; Campbell, K.; Divol, L.; Dixit, S.; Suter, L. J.; Williams, E. A.; Bahr, R.; Seka, W.

    2002-11-01

    We investigate the stimulated Raman and Brillouin backscattered light from simultaneous 527 nm and 351 nm probe beams incident on a long scalelength ignition-like plasma. These experiments are important for both determining backscattering physics mechanisms and for evaluating laser power loss expected in planned ignition experiments. The plasma is formed using 18 kJ of 351 nm light from the Omega laser in a 1 ns pulse incident on a gas-filled balloon target. The two probe beams, which are delayed 0.5 ns relative to the plasma forming beams, are separated by 42^rc, have vacuum intensity of <= 7 × 10^14 W/cm^2 and may or may not intersect in the plasma. Self-Thomson scattered light from the 527 nm beam is used to determine the plasma temperatures. We find that in a CH plasma, beam intersection leads to about a factor of 2 increase in the SRS from the 351 nm beam compared to no intersection. Beam intersection does not change the SBS backscattering level studied with a CO2 plasma. We describe the experimental results and simulations using the LASNEX hydrodynamic code and the pF3D laser-plasma wave propagation code. Work performed under the auspicies of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract number W--7405--ENG--48.

  16. Rayleigh Laser Guide Star Systems: Application to the University of Illinois Seeing Improvement System

    NASA Astrophysics Data System (ADS)

    Thompson, Laird A.; Teare, Scott W.

    2002-09-01

    Laser guide stars created by Rayleigh scattering provide a reasonable means to monitor atmospheric wavefront distortions for real-time correction by adaptive optics systems. Because of the λ-4 wavelength dependence of Rayleigh scattering, short-wavelength lasers are a logical first choice for astronomical laser guide star systems, and in this paper we describe the results from a sustained experimental effort to integrate into an adaptive optics system a 351 nm Rayleigh laser guide star created at an altitude of 20 km (above mean sea level) at the Mount Wilson 2.5 m telescope. In addition to providing obvious scientific benefits, the 351 nm laser guide star projected by the University of Illinois Seeing Improvement System is ``stealth qualified'' in terms of the Federal Aviation Administration and airplane avoidance. Because of the excellent return signal at the wavefront sensor, there is no doubt that future applications will be found for short-wavelength Rayleigh-scattered laser guide stars.

  17. Nonlinear absorption properties of DKDP crystal at 263 nm and 351 nm

    NASA Astrophysics Data System (ADS)

    Chai, Xiangxu; Zhu, Qihua; Feng, Bin; Li, Fuquan; Feng, Xi; Wang, Fang; Han, Wei; Wang, Liquan

    2017-02-01

    At the wavelength of 263 nm and 351 nm, the nonlinear absorption curves of 66% deuterated DKDP crystal were measured in the geometries of beam polarizing along the optics axis (E∥Z) and perpendicular to it (E⊥Z). The results indicate that the nonlinear absorption in the E⊥Z geometry is stronger than that in the E∥Z geometry. The nonlinear absorptions at 263 nm and 351 nm are identified to two- and three-photon absorption, respectively. The theoretical fits to the experimental data yields the two-photon absorption coefficients of 0.32 ± 0.03 cm/GW (E⊥Z geometry) and 0.17 ± 0.02 cm/GW (E∥Z geometry) at 263 nm, and the three-photon absorption coefficients of (8.1 ± 1.1) × 10-4 cm3/GW2 (E⊥Z geometry) and (2.2 ± 0.5) × 10-4 cm3/GW2 (E∥Z geometry) at 351 nm.

  18. The National Ignition Facility: the World's Largest Optics and Laser System

    SciTech Connect

    Moses, E I; Campbell, J H; Stolz, C J; Wuest, C R

    2003-01-27

    The National Ignition Facility, a center for the study of high energy density plasma physics and fusion energy ignition, is currently under construction at the Lawrence Livermore National Laboratory. The heart of the NIF is a frequency tripled, flashlamp-pumped Nd:glass laser system comprised of 192 independent laser beams. The laser system is capable of generating output energies of 1.8MJ at 351nm and at peak powers of 500 TW in a flexible temporal pulse format. A description of the NIF laser system and its major components is presented. We also discuss the manufacture of nearly 7500 precision large optics required by the NIF including data on the manufactured optical quality vs. specification. In addition, we present results from an on-going program to improve the operational lifetime of optics exposed to high fluence in the 351-nm section of the laser.

  19. Oxalyl chloride, ClC(O)C(O)Cl: UV/vis spectrum and Cl atom photolysis quantum yields at 193, 248, and 351 nm.

    PubMed

    Ghosh, Buddhadeb; Papanastasiou, Dimitrios K; Burkholder, James B

    2012-10-28

    Oxalyl chloride, (ClCO)(2), has been used as a Cl atom photolytic precursor in numerous laboratory kinetic and photochemical studies. In this study, the UV/vis absorption spectrum of (ClCO)(2) and the Cl atom quantum yields in its photolysis at 193, 248, and 351 nm are reported. The UV∕vis spectrum was measured between 200 and 450 nm at 296 K using diode array spectroscopy in conjunction with an absolute cross section obtained at 213.9 nm. Our results are in agreement with the spectrum reported by Baklanov and Krasnoperov [J. Phys. Chem. A 105, 97-103 (2001)], which was obtained at 11 discrete wavelengths between 193.3 and 390 nm. Cl atom quantum yields, Φ(λ), were measured using pulsed laser photolysis coupled with time resolved atomic resonance fluorescence detection of Cl. The UV photolysis of (ClCO)(2) has been shown in previous studies to occur via an impulsive three-body dissociation mechanism, (COCl)(2) + hv → ClCO* + Cl + CO (2), where the excited ClCO radical, ClCO*, either dissociates or stabilizes ClCO* → Cl + CO (3a), → ClCO (3b). ClCO is thermally unstable at the temperatures (253-298 K) and total pressures (13-128 Torr) used in our experiments ClCO + M → Cl + CO + M (4) leading to the formation of a secondary Cl atom that was resolvable in the Cl atom temporal profiles obtained in the 248 and 351 nm photolysis of (ClCO)(2). Φ(193 nm) was found to be 2.07 ± 0.37 independent of bath gas pressure (25.8-105.7 Torr, N(2)), i.e., the branching ratio for channel 2a or the direct formation of 2Cl + 2CO in the photolysis of (ClCO)(2) is >0.95. At 248 nm, the branching ratio for channel 2a was determined to be 0.79 ± 0.15, while the total Cl atom yield, i.e., following the completion of reaction (4), was found to be 1.98 ± 0.26 independent of bath gas pressure (15-70 Torr, N(2)). Φ(351 nm) was found to be pressure dependent between 7.8 and 122.4 Torr (He, N(2)). The low-pressure limit of the total Cl atom quantum yield, Φ(0)(351 nm), was 2

  20. Oxalyl chloride, ClC(O)C(O)Cl: UV/vis spectrum and Cl atom photolysis quantum yields at 193, 248, and 351 nm

    SciTech Connect

    Ghosh, Buddhadeb; Papanastasiou, Dimitrios K.; Burkholder, James B.

    2012-10-28

    Oxalyl chloride, (ClCO){sub 2}, has been used as a Cl atom photolytic precursor in numerous laboratory kinetic and photochemical studies. In this study, the UV/vis absorption spectrum of (ClCO){sub 2} and the Cl atom quantum yields in its photolysis at 193, 248, and 351 nm are reported. The UV/vis spectrum was measured between 200 and 450 nm at 296 K using diode array spectroscopy in conjunction with an absolute cross section obtained at 213.9 nm. Our results are in agreement with the spectrum reported by Baklanov and Krasnoperov [J. Phys. Chem. A 105, 97-103 (2001)], which was obtained at 11 discrete wavelengths between 193.3 and 390 nm. Cl atom quantum yields, {Phi}({lambda}), were measured using pulsed laser photolysis coupled with time resolved atomic resonance fluorescence detection of Cl. The UV photolysis of (ClCO){sub 2} has been shown in previous studies to occur via an impulsive three-body dissociation mechanism, (COCl){sub 2}+ hv{yields} ClCO*+ Cl + CO (2), where the excited ClCO radical, ClCO*, either dissociates or stabilizes ClCO*{yields} Cl + CO (3a), {yields} ClCO (3b). ClCO is thermally unstable at the temperatures (253-298 K) and total pressures (13-128 Torr) used in our experiments ClCO + M {yields} Cl + CO + M (4) leading to the formation of a secondary Cl atom that was resolvable in the Cl atom temporal profiles obtained in the 248 and 351 nm photolysis of (ClCO){sub 2}. {Phi}(193 nm) was found to be 2.07 {+-} 0.37 independent of bath gas pressure (25.8-105.7 Torr, N{sub 2}), i.e., the branching ratio for channel 2a or the direct formation of 2Cl + 2CO in the photolysis of (ClCO){sub 2} is >0.95. At 248 nm, the branching ratio for channel 2a was determined to be 0.79 {+-} 0.15, while the total Cl atom yield, i.e., following the completion of reaction (4), was found to be 1.98 {+-} 0.26 independent of bath gas pressure (15-70 Torr, N{sub 2}). {Phi}(351 nm) was found to be pressure dependent between 7.8 and 122.4 Torr (He, N{sub 2}). The low

  1. Absorption Cross Sections of 2-Nitrophenol in the 295-400 nm Region and Photolysis of 2-Nitrophenol at 308 and 351 nm.

    PubMed

    Sangwan, Manuvesh; Zhu, Lei

    2016-12-22

    2-Nitrophenol is an important component of "brown carbon" in the atmosphere. Photolysis is its dominant gas phase removal process. We have determined the gas phase absorption cross sections of 2-nitrophenol in the 295-400 nm region by using cavity ring-down spectroscopy. 2-Nitrophenol exhibits a broad absorption band over the wavelength region studied, with the peak absorption located at 345 nm. Absorption cross section values range between (2.86 ± 0.18) × 10(-18) and (2.63 ± 0.31) × 10(-20) cm(2)/molecule over the 295-400 nm range. We have investigated the HONO, NO2, and OH formation channels following the gas phase photolysis of 2-nitrophenol at 308 and 351 nm. Direct NO2 formation was not observed. HONO and OH are direct products from 2-nitrophenol photolysis. The average OH quantum yields from the photolysis of 0.5, 1.0, and 2.0 mTorr of 2-nitrophenol are 0.69 ± 0.07 and 0.70 ± 0.07 at 308 and 351 nm. The average HONO quantum yields are 0.34 ± 0.09 and 0.39 ± 0.07 at 308 and 351 nm. The OH and HONO quantum yields are independent of nitrogen carrier gas pressure in the 20-600 Torr range. Oxidant formation rate constants from 2-nitrophenol photolysis have been calculated. Discussions have been made concerning the role of 2-nitrophenol gas phase photolysis in the formation of atmospheric oxidants in regions of high anthropogenic emissions.

  2. Developing Magnetorheological Finishing (MRF) Technology for the Manufacture of Large-Aperture Optics in Megajoule Class Laser Systems

    SciTech Connect

    Menapace, J A

    2010-10-27

    Over the last eight years we have been developing advanced MRF tools and techniques to manufacture meter-scale optics for use in Megajoule class laser systems. These systems call for optics having unique characteristics that can complicate their fabrication using conventional polishing methods. First, exposure to the high-power nanosecond and sub-nanosecond pulsed laser environment in the infrared (>27 J/cm{sup 2} at 1053 nm), visible (>18 J/cm{sup 2} at 527 nm), and ultraviolet (>10 J/cm{sup 2} at 351 nm) demands ultra-precise control of optical figure and finish to avoid intensity modulation and scatter that can result in damage to the optics chain or system hardware. Second, the optics must be super-polished and virtually free of surface and subsurface flaws that can limit optic lifetime through laser-induced damage initiation and growth at the flaw sites, particularly at 351 nm. Lastly, ultra-precise optics for beam conditioning are required to control laser beam quality. These optics contain customized surface topographical structures that cannot be made using traditional fabrication processes. In this review, we will present the development and implementation of large-aperture MRF tools and techniques specifically designed to meet the demanding optical performance challenges required in large-aperture high-power laser systems. In particular, we will discuss the advances made by using MRF technology to expose and remove surface and subsurface flaws in optics during final polishing to yield optics with improve laser damage resistance, the novel application of MRF deterministic polishing to imprint complex topographical information and wavefront correction patterns onto optical surfaces, and our efforts to advance the technology to manufacture large-aperture damage resistant optics.

  3. The commissioning of the advanced radiographic capability laser system: experimental and modeling results at the main laser output

    NASA Astrophysics Data System (ADS)

    Di Nicola, J. M.; Yang, S. T.; Boley, C. D.; Crane, J. K.; Heebner, J. E.; Spinka, T. M.; Arnold, P.; Barty, C. P. J.; Bowers, M. W.; Budge, T. S.; Christensen, K.; Dawson, J. W.; Erbert, G.; Feigenbaum, E.; Guss, G.; Haefner, C.; Hermann, M. R.; Homoelle, D.; Jarboe, J. A.; Lawson, J. K.; Lowe-Webb, R.; McCandless, K.; McHale, B.; Pelz, L. J.; Pham, P. P.; Prantil, M. A.; Rehak, M. L.; Rever, M. A.; Rushford, M. C.; Sacks, R. A.; Shaw, M.; Smauley, D.; Smith, L. K.; Speck, R.; Tietbohl, G.; Wegner, P. J.; Widmayer, C.

    2015-02-01

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is the first of a kind megajoule-class laser with 192 beams capable of delivering over 1.8 MJ and 500TW of 351nm light [1], [2]. It has been commissioned and operated since 2009 to support a wide range of missions including the study of inertial confinement fusion, high energy density physics, material science, and laboratory astrophysics. In order to advance our understanding, and enable short-pulse multi-frame radiographic experiments of dense cores of cold material, the generation of very hard x-rays above 50 keV is necessary. X-rays with such characteristics can be efficiently generated with high intensity laser pulses above 1017 W/cm² [3]. The Advanced Radiographic Capability (ARC) [4] which is currently being commissioned on the NIF will provide eight, 1 ps to 50 ps, adjustable pulses with up to 1.7 kJ each to create x-ray point sources enabling dynamic, multi-frame x-ray backlighting. This paper will provide an overview of the ARC system and report on the laser performance tests conducted with a stretched-pulse up to the main laser output and their comparison with the results of our laser propagation codes.

  4. Heterodyne laser spectroscopy system

    DOEpatents

    Wyeth, Richard W.; Paisner, Jeffrey A.; Story, Thomas

    1989-01-01

    A heterodyne laser spectroscopy system utilizes laser heterodyne techniques for purposes of laser isotope separation spectroscopy, vapor diagnostics, processing of precise laser frequency offsets from a reference frequency and the like, and provides spectral analysis of a laser beam.

  5. Heterodyne laser spectroscopy system

    DOEpatents

    Wyeth, Richard W.; Paisner, Jeffrey A.; Story, Thomas

    1990-01-01

    A heterodyne laser spectroscopy system utilizes laser heterodyne techniques for purposes of laser isotope separation spectroscopy, vapor diagnostics, processing of precise laser frequency offsets from a reference frequency, and provides spectral analysis of a laser beam.

  6. Comprehensive de novo peptide sequencing from MS/MS pairs generated through complementary collision induced dissociation and 351 nm ultraviolet photodissociation.

    PubMed

    Horton, Andrew Pitchford; Robotham, Scott A; Cannon, Joe R; Holden, Dustin D; Marcotte, Edward M; Brodbelt, Jennifer S

    2017-02-24

    We describe a strategy for de novo peptide sequencing based on matched pairs of tandem mass spectra (MS/MS) obtained by collision induced dissociation (CID) and 351 nm ultraviolet photodissociation (UVPD). Each precursor ion is isolated twice with the mass spectrometer switching between CID and UVPD activation modes to obtain a complementary MS/MS pair. To interpret these paired spectra, we modified the UVnovo de novo sequencing software to automatically learn from and interpret fragmentation spectra, provided a representative set of training data. This machine learning procedure, using random forests, synthesizes information from one or multiple complementary spectra, such as the CID/UVPD pairs, into peptide fragmentation site predictions. In doing so, the burden of fragmentation model definition shifts from programmer to machine and opens up the model parameter space for inclusion of nonobvious features and interactions. This spectral synthesis also serves to transform distinct types of spectra into a common representation for subsequent activation-independent processing steps. Then, independent from precursor activation constraints, UVnovo's de novo sequencing procedure generates and scores sequence candidates for each precursor. We demonstrate the combined experimental and computational approach for de novo sequencing using whole cell E. coli lysate. In benchmarks on the CID/UVPD data, UVnovo assigned correct full-length sequences to 83% of the spectral pairs of doubly charged ions with high-confidence database identifications. Considering only top-ranked de novo predictions, 70% of the pairs were deciphered correctly. This de novo sequencing performance exceeds that of PEAKS and PepNovo on the CID spectra and that of UVnovo on CID or UVPD spectra alone. As presented here, the methods for paired CID/UVPD spectral acquisition and interpretation constitute a powerful workflow for high-throughput and accurate de novo peptide sequencing.

  7. A System for Measuring Defect Induced Beam Modulation on Inertial Confinement Fusion-class Laser Optics

    SciTech Connect

    Runkel, M; Hawley-Fedder, R; Widmayer, C; Williams, W; Weinzapfel, C; Roberts, D

    2005-10-18

    A multi-wavelength laser based system has been constructed to measure defect induced beam modulation (diffraction) from ICF class laser optics. The Nd:YLF-based modulation measurement system (MMS) uses simple beam collimation and imaging to capture diffraction patterns from optical defects onto an 8-bit digital camera at 1053, 527 and 351 nm. The imaging system has a field of view of 4.5 x 2.8 mm{sup 2} and is capable of imaging any plane from 0 to 30 cm downstream from the defect. The system is calibrated using a 477 micron chromium dot on glass for which the downstream diffraction patterns were calculated numerically. Under nominal conditions the system can measure maximum peak modulations of approximately 7:1. An image division algorithm is used to calculate the peak modulation from the diffracted and empty field images after the baseline residual light background is subtracted from both. The peak modulation can then be plotted versus downstream position. The system includes a stage capable of holding optics up to 50 pounds with x and y translation of 40 cm and has been used to measure beam modulation due to solgel coating defects, surface digs on KDP crystals, lenslets in bulk fused silica and laser damage sites mitigated with CO{sub 2} lasers.

  8. Mitigation of Laser Damage Growth in Fused Silica NIF Optics with a Galvanometer Scanned Carbon Dioxide Laser

    SciTech Connect

    Bass, I L; Draggoo, V; Guss, G M; Hackel, R P; Norton, M A

    2006-04-06

    Economic operation of the National Ignition Facility at the Lawrence Livermore National Laboratory depends on controlling growth of laser damage in the large, high cost optics exposed to UV light at 351 nm. Mitigation of the growth of damage sites on fused silica surfaces greater than several hundred microns in diameter has been previously reported by us using galvanometer scanning of a tightly focused 10.6 {micro}m CO{sub 2} laser spot over an area encompassing the laser damage. Further investigation revealed that fused silica vapor re-deposited on the surface as ''debris'' led to laser damage at unexpectedly low fluences when exposed to multiple laser shots at 351 nm. Additionally, laser power and spatial mode fluctuations in the mitigation laser led to poor repeatability of the process. We also found that the shape of the mitigation pit could produce downstream intensification that could damage other NIF optics. Modifications were made to both the laser system and the mitigation process in order to address these issues. Debris was completely eliminated by these changes, but repeatability and downstream intensification issues still persist.

  9. Laser beam monitoring system

    DOEpatents

    Weil, Bradley S.; Wetherington, Jr., Grady R.

    1985-01-01

    Laser beam monitoring systems include laser-transparent plates set at an angle to the laser beam passing therethrough and light sensor for detecting light reflected from an object on which the laser beam impinges.

  10. Laser satellite power systems

    SciTech Connect

    Walbridge, E.W.

    1980-01-01

    A laser satellite power system (SPS) converts solar power captured by earth-orbiting satellites into electrical power on the earth's surface, the satellite-to-ground transmission of power being effected by laser beam. The laser SPS may be an alternative to the microwave SPS. Microwaves easily penetrate clouds while laser radiation does not. Although there is this major disadvantage to a laser SPS, that system has four important advantages over the microwave alternative: (1) land requirements are much less, (2) radiation levels are low outside the laser ground stations, (3) laser beam sidelobes are not expected to interfere with electromagnetic systems, and (4) the laser system lends itself to small-scale demonstration. After describing lasers and how they work, the report discusses the five lasers that are candidates for application in a laser SPS: electric discharge lasers, direct and indirect solar pumped lasers, free electron lasers, and closed-cycle chemical lasers. The Lockheed laser SPS is examined in some detail. To determine whether a laser SPS will be worthy of future deployment, its capabilities need to be better understood and its attractiveness relative to other electric power options better assessed. First priority should be given to potential program stoppers, e.g., beam attenuation by clouds. If investigation shows these potential program stoppers to be resolvable, further research should investigate lasers that are particularly promising for SPS application.

  11. Single-mode Rayleigh-Taylor growth-rate measurements with the OMEGA laser system

    SciTech Connect

    Knauer, J. P.; Verdon, C. P.; Meyerhofer, D. D.; Boehly, T. R.; Bradley, D. K.; Smalyuk, V. A.; Ofer, D.; McKenty, P. W.; Glendinning, S. G.; Kalantar, D. H.; Watt, R. G.; Gobby, P. L.; Willi, O.; Taylor, R. J.

    1997-04-15

    The results from a series of single-mode Rayleigh-Taylor (RT) instability growth experiments performed on the OMEGA laser system using planar targets are reported. Planar targets with imposed mass perturbations were accelerated using five to six 351-nm laser beams overlapped with total intensities up to 2.5x10{sup 14} W/cm{sup 2}. Experiments were performed with both 3-ns ramp and 3-ns flat-topped temporal pulse shapes. The use of distributed phase plates and smoothing by spectral dispersion resulted in a laser-irradiation nonuniformity of 4%-7% over a 600-{mu}m-diam region defined by the 90% intensity contour. The temporal growth of the modulation in optical depth was measured using through-foil radiography and was detected with an x-ray framing camera for CH targets with and without a foam buffer. The growth of both 31-{mu}m and 60-{mu}m wavelength perturbations was found to be in good agreement with ORCHID simulations when the experimental details, including noise, were included. The addition of a 30-mg/cc, 100-{mu}m-thick polystyrene foam buffer layer resulted in reduced growth of the 31-{mu}m perturbation and essentially unchanged growth for the 60-{mu}m case when compared to targets without foam.

  12. Single-mode Rayleigh-Taylor growth-rate measurements with the OMEGA laser system

    NASA Astrophysics Data System (ADS)

    Knauer, J. P.; Verdon, C. P.; Meyerhofer, D. D.; Boehly, T. R.; Bradley, D. K.; Smalyuk, V. A.; Ofer, D.; McKenty, P. W.; Glendinning, S. G.; Kalantar, D. H.; Watt, R. G.; Gobby, P. L.; Willi, O.; Taylor, R. J.

    1997-04-01

    The results from a series of single-mode Rayleigh-Taylor (RT) instability growth experiments performed on the OMEGA laser system using planar targets are reported. Planar targets with imposed mass perturbations were accelerated using five to six 351-nm laser beams overlapped with total intensities up to 2.5×1014W/cm2. Experiments were performed with both 3-ns ramp and 3-ns flat-topped temporal pulse shapes. The use of distributed phase plates and smoothing by spectral dispersion resulted in a laser-irradiation nonuniformity of 4%-7% over a 600-μm-diam region defined by the 90% intensity contour. The temporal growth of the modulation in optical depth was measured using through-foil radiography and was detected with an x-ray framing camera for CH targets with and without a foam buffer. The growth of both 31-μm and 60-μm wavelength perturbations was found to be in good agreement with ORCHID simulations when the experimental details, including noise, were included. The addition of a 30-mg/cc, 100-μm-thick polystyrene foam buffer layer resulted in reduced growth of the 31-μm perturbation and essentially unchanged growth for the 60-μm case when compared to targets without foam.

  13. Single-mode Rayleigh-Taylor growth-rate measurements with the OMEGA laser system

    SciTech Connect

    Knauer, J.P.; Verdon, C.P.; Meyerhofer, D.D.; Boehly, T.R.; Bradley, D.K.; Smalyuk, V.A.; Ofer, D.; McKenty, P.W.; Glendinning, S.G.; Kalantar, D.H.; Watt, R.G.; Gobby, P.L.; Willi, O.; Taylor, R.J.

    1997-04-01

    The results from a series of single-mode Rayleigh-Taylor (RT) instability growth experiments performed on the OMEGA laser system using planar targets are reported. Planar targets with imposed mass perturbations were accelerated using five to six 351-nm laser beams overlapped with total intensities up to 2.5{times}10{sup 14}W/cm{sup 2}. Experiments were performed with both 3-ns ramp and 3-ns flat-topped temporal pulse shapes. The use of distributed phase plates and smoothing by spectral dispersion resulted in a laser-irradiation nonuniformity of 4{percent}{endash}7{percent} over a 600-{mu}m-diam region defined by the 90{percent} intensity contour. The temporal growth of the modulation in optical depth was measured using through-foil radiography and was detected with an x-ray framing camera for CH targets with and without a foam buffer. The growth of both 31-{mu}m and 60-{mu}m wavelength perturbations was found to be in good agreement with {ital ORCHID} simulations when the experimental details, including noise, were included. The addition of a 30-mg/cc, 100-{mu}m-thick polystyrene foam buffer layer resulted in reduced growth of the 31-{mu}m perturbation and essentially unchanged growth for the 60-{mu}m case when compared to targets without foam. {copyright} {ital 1997 American Institute of Physics.}

  14. Laser material processing system

    DOEpatents

    Dantus, Marcos

    2015-04-28

    A laser material processing system and method are provided. A further aspect of the present invention employs a laser for micromachining. In another aspect of the present invention, the system uses a hollow waveguide. In another aspect of the present invention, a laser beam pulse is given broad bandwidth for workpiece modification.

  15. Laser cutting system

    SciTech Connect

    Dougherty, Thomas J

    2015-03-03

    A workpiece cutting apparatus includes a laser source, a first suction system, and a first finger configured to guide a workpiece as it moves past the laser source. The first finger includes a first end provided adjacent a point where a laser from the laser source cuts the workpiece, and the first end of the first finger includes an aperture in fluid communication with the first suction system.

  16. Infrared laser system

    DOEpatents

    Cantrell, Cyrus D.; Carbone, Robert J.; Cooper, Ralph

    1982-01-01

    An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture.

  17. Infrared laser system

    DOEpatents

    Cantrell, Cyrus D.; Carbone, Robert J.; Cooper, Ralph S.

    1977-01-01

    An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture.

  18. MRF Applications: On the Road to Making Large-Aperture Ultraviolet Laser Resistant Continuous Phase Plates for High-Power Lasers

    SciTech Connect

    Menapace, J A; Davis, P J; Steele, W A; Hachkowski, M R; Nelson, A; Xin, K

    2006-10-26

    Over the past two years we have developed MRF tools and procedures to manufacture large-aperture (430 X 430 mm) continuous phase plates (CPPs) that are capable of operating in the infrared portion (1053 nm) of high-power laser systems. This is accomplished by polishing prescribed patterns of continuously varying topographical features onto finished plano optics using MRF imprinting techniques. We have been successful in making, testing, and using large-aperture CPPs whose topography possesses spatial periods as low as 4 mm and surface peak-to-valleys as high as 8.6 {micro}m. Combining this application of MRF technology with advanced MRF finishing techniques that focus on ultraviolet laser damage resistance makes it potentially feasible to manufacture large-aperture CPPs that can operate in the ultraviolet (351 nm) without sustaining laser-induced damage. In this paper, we will discuss the CPP manufacturing process and the results of 351-nm/3-nsec equivalent laser performance experiments conducted on large-aperture CPPs manufactured using advanced MRF protocols.

  19. Laser-Damage-Resistant Photoalignment Layers for High-Peak-Power Liquid Crystal Device Applications

    SciTech Connect

    Marshall, K.L.; Gan, J.; Mitchell, G.; Papernov, S.; Rigatti, A.L.; Schmid, A.W.; Jacobs, S.D.

    2008-10-23

    Large-aperture liquid crystal (LC) devices have been in continuous use since 1995 as polarization control devices in the 40-TW, 351-nm, 60-beam OMEGA Nd:glass laser system at the University of Rochester’s Laboratory for Laser Energetics. The feasibility of using a noncontacting alignment method for high-peak-power LC laser optics by irradiation of a linearly photopolymerizable polymer with polarized UV light was recently investigated. These materials were found to have surprisingly large laser-damage thresholds at 1054 nm, approaching that of bare fused silica (30 to 60 J/cm^2). Their remarkable laser-damage resistance and ease in scalability to large apertures of these photoalignment materials, along with the ability to produce multiple alignment states by photolithographic patterning, opens new doorways for their application in LC devices for optics, photonics, and high-peak-power laser applications.

  20. Laser rocket system analysis

    NASA Technical Reports Server (NTRS)

    Jones, W. S.; Forsyth, J. B.; Skratt, J. P.

    1979-01-01

    The laser rocket systems investigated in this study were for orbital transportation using space-based, ground-based and airborne laser transmitters. The propulsion unit of these systems utilizes a continuous wave (CW) laser beam focused into a thrust chamber which initiates a plasma in the hydrogen propellant, thus heating the propellant and providing thrust through a suitably designed nozzle and expansion skirt. The specific impulse is limited only by the ability to adequately cool the thruster and the amount of laser energy entering the engine. The results of the study showed that, with advanced technology, laser rocket systems with either a space- or ground-based laser transmitter could reduce the national budget allocated to space transportation by 10 to 345 billion dollars over a 10-year life cycle when compared to advanced chemical propulsion systems (LO2-LH2) of equal capability. The variation in savings depends upon the projected mission model.

  1. The Geoscience Laser Altimeter System Laser Transmitter

    NASA Technical Reports Server (NTRS)

    Afzal, R. S.; Dallas, J. L.; Yu, A. W.; Mamakos, W. A.; Lukemire, A.; Schroeder, B.; Malak, A.

    2000-01-01

    The Geoscience Laser Altimeter System (GLAS), scheduled to launch in 2001, is a laser altimeter and lidar for tile Earth Observing System's (EOS) ICESat mission. The laser transmitter requirements, design and qualification test results for this space- based remote sensing instrument are presented.

  2. Precision laser aiming system

    DOEpatents

    Ahrens, Brandon R.; Todd, Steven N.

    2009-04-28

    A precision laser aiming system comprises a disrupter tool, a reflector, and a laser fixture. The disrupter tool, the reflector and the laser fixture are configurable for iterative alignment and aiming toward an explosive device threat. The invention enables a disrupter to be quickly and accurately set up, aligned, and aimed in order to render safe or to disrupt a target from a standoff position.

  3. Correlation of Laser-Induced Damage to Phase Objects in Bulk Fused Silica

    SciTech Connect

    Nostrand, M C; Cerjan, C J; Johnson, M A; Suratwala, T I; Weiland, T L; Sell, W D; Vickers, J L; Luthi, R L; Stanley, J R; Parham, T G; Thorsness, C B

    2004-11-10

    The Optical Sciences Laser (OSL) Upgrade facility, described in last year's proceedings, is a kJ-class, large aperture (100cm{sup 2}) laser system that can accommodate prototype optical components for large-scale inertial confinement fusion lasers. High-energy operation of such lasers is often limited by damage to the optical components. Recent experiments on the OSL Upgrade facility using fused silica components at 4 J/cm{sup 2} (351-nm, 3-ns) have created output surface and bulk damage sites that have been correlated to phase objects in the bulk of the material. Optical Path Difference (OPD) measurements of the phase defects indicate the probability of laser-induced damage is strongly dependent on OPD.

  4. Photodynamic therapy laser system

    NASA Astrophysics Data System (ADS)

    Shu, Xiaoqin; Lin, Qing; Wang, Feng; Shu, Chao; Wang, Jianhua

    2009-08-01

    Photodynamic therapy (PDT) treatment is a new treatment for tumour and Dermatology. With the successful development of the second-generation photosensitizer and the significant manifestations in clinics, PDT has shown a more extensive application potentials. To activate the photosensitizer, in this paper, we present a GaAs-based diode laser system with a wavelength of 635 nm. In this system, to prolong the working life-time of the diode lasers, we use specific feedback algorithm to control the current and the temperature of the diode laser with high precision. The clinic results show an excellent effect in the treatment of Condyloma combined with 5-ALA.

  5. Single-mode, Rayleigh-Taylor growth-rate measurements on the OMEGA laser system

    NASA Astrophysics Data System (ADS)

    Knauer, J. P.; Betti, R.; Bradley, D. K.; Boehly, T. R.; Collins, T. J. B.; Goncharov, V. N.; McKenty, P. W.; Meyerhofer, D. D.; Smalyuk, V. A.; Verdon, C. P.; Glendinning, S. G.; Kalantar, D. H.; Watt, R. G.

    2000-01-01

    The results from a series of single-mode, Rayleigh-Taylor (RT) instability growth experiments performed on the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] using planar targets are reported. Planar targets with imposed mass perturbations were accelerated using five or six 351 nm laser beams overlapped with total intensities up to 2.5×1014 W/cm2. Experiments were performed with both 3 ns ramp and 3 ns flat-topped temporal pulse shapes. The use of distributed phase plates and smoothing by spectral dispersion resulted in a laser-irradiation nonuniformity of 4%-7% over a 600 μm diam region defined by the 90% intensity contour. The temporal growth of the modulation in optical depth was measured using throughfoil radiography and was detected with an x-ray framing camera for CH targets. Two-dimensional (2-D) hydrodynamic simulations (ORCHID) [R. L. McCrory and C. P. Verdon, in Inertial Confinement Fusion (Editrice Compositori, Bologna, 1989), pp. 83-124] of the growth of 20, 31, and 60 μm wavelength perturbations were in good agreement with the experimental data when the experimental details, including noise, were included. The amplitude of the simulation optical depth is in good agreement with the experimental optical depth; therefore, great care must be taken when the growth rates are compared to dispersion formulas. Since the foil's initial condition just before it is accelerated is not that of a uniformly compressed foil, the optical density measurement does not accurately reflect the amplitude of the ablation surface but is affected by the initial nonuniform density profile.

  6. Single-mode, Rayleigh-Taylor growth-rate measurements on the OMEGA laser system

    SciTech Connect

    Knauer, J. P.; Betti, R.; Bradley, D. K.; Boehly, T. R.; Collins, T. J. B.; Goncharov, V. N.; McKenty, P. W.; Meyerhofer, D. D.; Smalyuk, V. A.; Verdon, C. P.

    2000-01-01

    The results from a series of single-mode, Rayleigh-Taylor (RT) instability growth experiments performed on the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] using planar targets are reported. Planar targets with imposed mass perturbations were accelerated using five or six 351 nm laser beams overlapped with total intensities up to 2.5x10{sup 14} W/cm{sup 2}. Experiments were performed with both 3 ns ramp and 3 ns flat-topped temporal pulse shapes. The use of distributed phase plates and smoothing by spectral dispersion resulted in a laser-irradiation nonuniformity of 4%-7% over a 600 {mu}m diam region defined by the 90% intensity contour. The temporal growth of the modulation in optical depth was measured using throughfoil radiography and was detected with an x-ray framing camera for CH targets. Two-dimensional (2-D) hydrodynamic simulations (ORCHID) [R. L. McCrory and C. P. Verdon, in Inertial Confinement Fusion (Editrice Compositori, Bologna, 1989), pp. 83-124] of the growth of 20, 31, and 60 {mu}m wavelength perturbations were in good agreement with the experimental data when the experimental details, including noise, were included. The amplitude of the simulation optical depth is in good agreement with the experimental optical depth; therefore, great care must be taken when the growth rates are compared to dispersion formulas. Since the foil's initial condition just before it is accelerated is not that of a uniformly compressed foil, the optical density measurement does not accurately reflect the amplitude of the ablation surface but is affected by the initial nonuniform density profile. (c) 2000 American Institute of Physics.

  7. Underwater laser detection system

    NASA Astrophysics Data System (ADS)

    Gomaa, Walid; El-Sherif, Ashraf F.; El-Sharkawy, Yasser H.

    2015-02-01

    The conventional method used to detect an underwater target is by sending and receiving some form of acoustic energy. But the acoustic systems have limitations in the range resolution and accuracy; while, the potential benefits of a laserbased underwater target detection include high directionality, high response, and high range accuracy. Lasers operating in the blue-green region of the light spectrum(420 : 570nm)have a several applications in the area of detection and ranging of submersible targets due to minimum attenuation through water ( less than 0.1 m-1) and maximum laser reflection from estimated target (like mines or submarines) to provide a long range of detection. In this paper laser attenuation in water was measured experimentally by new simple method by using high resolution spectrometer. The laser echoes from different targets (metal, plastic, wood, and rubber) were detected using high resolution CCD camera; the position of detection camera was optimized to provide a high reflection laser from target and low backscattering noise from the water medium, digital image processing techniques were applied to detect and discriminate the echoes from the metal target and subtract the echoes from other objects. Extraction the image of target from the scattering noise is done by background subtraction and edge detection techniques. As a conclusion, we present a high response laser imaging system to detect and discriminate small size, like-mine underwater targets.

  8. Ultra-fast laser system

    DOEpatents

    Dantus, Marcos; Lozovoy, Vadim V

    2014-01-21

    A laser system is provided which selectively excites Raman active vibrations in molecules. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and remote sensing.

  9. Laser angle measurement system

    NASA Technical Reports Server (NTRS)

    Pond, C. R.; Texeira, P. D.; Wilbert, R. E.

    1980-01-01

    The design and fabrication of a laser angle measurement system is described. The instrument is a fringe counting interferometer that monitors the pitch attitude of a model in a wind tunnel. A laser source and detector are mounted above the mode. Interference fringes are generated by a small passive element on the model. The fringe count is accumulated and displayed by a processor in the wind tunnel control room. Optical and electrical schematics, system maintenance and operation procedures are included, and the results of a demonstration test are given.

  10. Robotic Laser Coating Removal System

    DTIC Science & Technology

    2008-08-01

    completion of this evaluation a 6 kW CO2 laser from Rofin -Sinar was selected for use in the RLCRS. This laser provided the highest quality laser ...DATA AND ASSUMPTIONS................................................................B-1 iii LIST OF FIGURES Page Figure 1. Six kW CO2 laser ...for proposal (RFP) that was distributed throughout the laser industry. In response to this RFP, 15 laser systems (nine CO2 , three Nd:YAG, and three

  11. Coherent laser vision system

    SciTech Connect

    Sebastion, R.L.

    1995-10-01

    The Coherent Laser Vision System (CLVS) is being developed to provide precision real-time 3D world views to support site characterization and robotic operations and during facilities Decontamination and Decommissioning. Autonomous or semiautonomous robotic operations requires an accurate, up-to-date 3D world view. Existing technologies for real-time 3D imaging, such as AM laser radar, have limited accuracy at significant ranges and have variability in range estimates caused by lighting or surface shading. Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no-moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic to coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system.

  12. Laser autostereoscopic projection system

    NASA Astrophysics Data System (ADS)

    Wang, Yuchang; Huang, Junejei

    2013-09-01

    The current autostereoscopic projection system is accomplished by array projectors. It is easy to realize optically but has a drawback with size. Another type is to place the shutter on the screen. It saves the volume but reduces the efficiency depending on how many views are produced. The shutter in the lens aperture has the same efficiency problem, too. To overcome these problems, a full HD autostereoscopic projector based on the lens aperture switching type is proposed. It has RGB laser sources and can produce 16-views or even higher stereoscopic images. This system removes the shutter in the lens aperture by the opti-mechanism itself. The specific light on the lens aperture coming from the point on the DMD is reflected to different angles. The proper angle of light is generated in the object side by the relay and folding system. The UHP lamps or the LED rays are difficult to constrain in a relative small cone angle. For this reason, the laser is applied to the design. The very small etendue of the laser is good for this architecture. The rays are combined by dichroic filter from RGB laser sources then forming and expanding to the mirror. The mirror is synchronized with DMD by the DSP control system. The images of different views are generated by DMD and specific position of the mirror. By the double lenticular screen, the lens aperture is imaged to the observer's viewing zone and the 3D scene is created.

  13. Laser security systems

    NASA Astrophysics Data System (ADS)

    Kolev, Ivan S.; Stoeva, Ivelina S.

    2004-06-01

    This report presents the development of single-beam barrier laser security system. The system utilizes the near infrared (IR) range λ=(850-900)nm. The security system consists of several blocks: Transmitter; Receiver; Logical Unit; Indication; Power Supply. There are four individually software programmable security zones Z1 - Z4. The control logic is implemented on a PIC16F84 MCU. The infrared beam is a pulse pack, coded and modulated in the transmitter with frequency of 36 kHz. The receiver demodulates and decodes the beam. The software for the MCU is developed along with the electrical circuits of the security system.

  14. Laser system preset unit

    DOEpatents

    Goodwin, William L.

    1977-01-01

    An electronic circuit is provided which may be used to preset a digital display unit of a Zeeman-effect layer interferometer system which derives distance measurements by comparing a reference signal to a Doppler signal generated at the output of the interferometer laser head. The circuit presets dimensional offsets in the interferometer digital display by electronically inducing a variation in either the Doppler signal or the reference signal, depending upon the direction of the offset, to achieve the desired display preset.

  15. Development of a laser damage growth mitigation process, based on CO2 laser micro processing, for the Laser MegaJoule fused silica optics

    NASA Astrophysics Data System (ADS)

    Doualle, Thomas; Gallais, Laurent; Monneret, Serge; Bouillet, Stephane; Bourgeade, Antoine; Ameil, Christel; Lamaignère, Laurent; Cormont, Philippe

    2016-12-01

    In the context of high power laser systems, the laser damage resistance of fused silica surfaces at 351 nm in the nanosecond regime is a major concern. Under successive nanosecond laser irradiations, an initiated damage can grow which can make the component unsuitable. The localized CO2 laser processing has demonstrated its ability to mitigate (stopping) laser damage growth. In order to mitigate large damage sites (millimetric), a method based on fast microablation of silica has been proposed by Bass et al. [Bass et al., Proc. SPIE 7842, 784220 (2010)]. This is accomplished by scanning of the CO2 laser spot with a fast galvanometer beam scanner to form a crater with a typical conical shape. The objective of the present work is to develop a similar fast micro-ablation process for application to the Laser MegaJoule optical components. We present in this paper the developed experimental system and process. We describe also the characterization tools used in this study for shape measurements which are critical for the application. Experimental and numerical studies of the downstream intensifications, resulting of cone formation on the fused silica surface, are presented. The experimental results are compared to numerical simulations for different crater shape in order to find optimal process conditions to minimize the intensifications in the LMJ configuration. We show the laser damage test experimental conditions and procedures to evaluate the laser damage resistance of the mitigated sites and discuss the efficiency of the process for our application.

  16. Laser multiplexing system

    DOEpatents

    Johnson, Steve A.; English, Jr., Ronald Edward; White, Ronald K.

    2001-01-01

    A plurality of copper lasers, as radiant power sources, emits a beam of power carrying radiation. A plurality of fiber injection assemblies receives power from the plurality of copper lasers and injects such power into a plurality of fibers for individually transmitting the received power to a plurality of power-receiving devices. The power-transmitting fibers of the system are so arranged that power is delivered therethrough to each of the power-receiving devices such that, even if a few of the radiant power sources and/or fibers fail, the power supply to any of the power receiving devices will not completely drop to zero but will drop by the same proportionate amount.

  17. Electron temperature and average density in spherical laser-produced plasmas - Ultraviolet plasma spectroscopy

    NASA Technical Reports Server (NTRS)

    Goldsmith, S.; Seely, J. F.; Feldman, U.; Behring, W. E.; Cohen, L.

    1985-01-01

    The average values of the electron temperature Te and the electron density Ne in the corona plasmas of spherically irradiated high-Z targets have been estimated. Targets composed of the elements Cu through Br, Rb, and Mo were irradiated using the fundamental (1.06 microns) and the frequency-tripled (351 nm) output of the Omega laser system. Spectra were recorded in the wavelength region 15-200 A. Using various extreme ultraviolet spectroscopic techniques, it is found that for the case of a Mo plasma produced by frequency-tripled laser irradiation, Te = 2600 + or - 600 eV and Ne is greater than 6 x 10 to the 20th/cu cm. This is consistent with a 'flux limit' smaller than 0.1. The estimated values of Te and Ne are lower in the corona plasmas produced using the fundamental (1.06 micron) irradiation.

  18. Laser system using ultra-short laser pulses

    DOEpatents

    Dantus, Marcos; Lozovoy, Vadim V.; Comstock, Matthew

    2009-10-27

    A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal.

  19. Lunar Laser Communication System

    DTIC Science & Technology

    2014-10-01

    an uplink rate to the moon 5000 times that of radio tech- nology. The LLCS, flown aboard NASA’s Lunar Atmosphere and Dust Environment Explorer...NASA’s Lunar Atmosphere and Dust Envi- ronment Explorer spacecraft. Above, the LLCS’s ground terminal was deployed at White Sands, N.M., for the...OCT 2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Lunar Laser Communication System 5a. CONTRACT NUMBER 5b

  20. Compact laser amplifier system

    DOEpatents

    Carr, R.B.

    1974-02-26

    A compact laser amplifier system is described in which a plurality of face-pumped annular disks, aligned along a common axis, independently radially amplify a stimulating light pulse. Partially reflective or lasing means, coaxially positioned at the center of each annualar disk, radially deflects a stimulating light directed down the common axis uniformly into each disk for amplification, such that the light is amplified by the disks in a parallel manner. Circumferential reflecting means coaxially disposed around each disk directs amplified light emission, either toward a common point or in a common direction. (Official Gazette)

  1. Laser system for isotope separation

    NASA Astrophysics Data System (ADS)

    Shirayama, Shimpey; Mikatsura, Takefumi; Ueda, Hiroaki; Konagai, Chikara

    1990-06-01

    Atomic vapor laser isotope separation (AVLIS) is regarded as the most promising method to obtain srightly enriched economical nuclear fuel for a nuclear power plant. However, achieving a high power laser seems to be the bottle neck in its industrialization. In 1985, after successful development of high power lasers, the U.S. announced that AVLIS would be used for future methods of uranium enrichment. In Japan , Laser Atomic Separation Enrichment Research Associates of Japan (LASER-J), a joint Japanese utility companies research organization, was founded in April, 1987, to push a development program for laser uranium enrichment. Based on research results obtained from Japanese National Labs, and Universities , Laser-J is now constructing an AVLIS experimental facility at Tokai-mura. It is planned to have a 1-ton swu capacity per year in 1991. Previous to the experimental facility construction , Toshiba proceeded with the preliminary testing of an isotope separation system, under contract with Laser-J. Since the copper vapor laser (CVL) and the dye laser (DL) form a good combination , which can obtain high power tunable visible lights ,it is suitable to resonate uranium atoms. The laser system was built and was successfully operated in Toshiba for two years. The system consist of three copper vapor lasers , three dye lasers and appropriate o Atomic vapor laser isotope separation (AVLIS) is regarded as the most promising method to obtain srightly enriched economical nuclear fuel for a nuclear power plant. However, achieving a high power laser seems to be the bottle neck in its industrialization. In 1985, after successful development of high power lasers, the U.S. announced that AVLIS would be used for future methods of uranium enrichment. In Japan , Laser Atomic Separation Enrichment Research Associates of Japan (LASER-J) , a joint Japanese utility companies research organization , was founded in April, 1987, to push a development program for laser uranium enrichment

  2. Laser interlock system

    SciTech Connect

    Woodruff, Steven D; Mcintyre, Dustin L

    2015-01-13

    A method and device for providing a laser interlock having a first optical source, a first beam splitter, a second optical source, a detector, an interlock control system, and a means for producing dangerous optical energy. The first beam splitter is optically connected to the first optical source, the first detector and the second optical source. The detector is connected to the interlock control system. The interlock control system is connected to the means for producing dangerous optical energy and configured to terminate its optical energy production upon the detection of optical energy at the detector from the second optical source below a predetermined detector threshold. The second optical source produces an optical energy in response to optical energy from the first optical source. The optical energy from the second optical source has a different wavelength, polarization, modulation or combination thereof from the optical energy of the first optical source.

  3. Laser system using regenerative amplifier

    DOEpatents

    Emmett, J.L.

    1980-03-04

    High energy laser system is disclosed using a regenerative amplifier, which relaxes all constraints on laser components other than the intrinsic damage level of matter, so as to enable use of available laser system components. This can be accomplished by use of segmented components, spatial filters, at least one amplifier using solid state or gaseous media, and separated reflector members providing a long round trip time through the regenerative cavity, thereby allowing slower switching and adequate time to clear the spatial filters, etc. The laser system simplifies component requirements and reduces component cost while providing high energy output. 10 figs.

  4. Development of laser transmission system

    NASA Astrophysics Data System (ADS)

    Song, Jiawu; Zhang, Yulan; Yang, Jiandong; Zhang, Xinming

    1998-08-01

    This paper discusses a light transfer system of therapeutic machine using carbon-dioxide laser. This system is based on imitating human being arm motion principle, consists of optical cardans mainly and can move in three-D space freely. Through it carbon-dioxide laser (which wavelength is 10.6 micrometer) is reflected, focused or diverged and transferred to the different therapeutic part of body to realize the purpose of cutting operation, gasification, cauterization and irradiation. This system includes an indicating system using He-Ne laser, by which carbon-dioxide laser can arrive therapeutic part accurately. This system possesses some advantages e.g. an accurate transfer, large moving range, small power consumption, high power density and easy operation. At present the occupancy in home market of this kind laser transfer system products is over 95%. Some products have been exported to other countries.

  5. Reflex ring laser amplifier system

    DOEpatents

    Summers, Mark A.

    1985-01-01

    A laser pulse is injected into an unstable ring resonator-amplifier structure. Inside this resonator the laser pulse is amplified, spatially filtered and magnified. The laser pulse is recirculated in the resonator, being amplified, filtered and magnified on each pass. The magnification is chosen so that the beam passes through the amplifier in concentric non-overlapping regions similar to a single pass MOPA. After a number of passes around the ring resonator the laser pulse is spatially large enough to exit the ring resonator system by passing around an output mirror.

  6. Multiple pass laser amplifier system

    DOEpatents

    Brueckner, Keith A.; Jorna, Siebe; Moncur, N. Kent

    1977-01-01

    A laser amplification method for increasing the energy extraction efficiency from laser amplifiers while reducing the energy flux that passes through a flux limited system which includes apparatus for decomposing a linearly polarized light beam into multiple components, passing the components through an amplifier in delayed time sequence and recombining the amplified components into an in phase linearly polarized beam.

  7. Laser optical displacement system

    NASA Astrophysics Data System (ADS)

    Starritt, Larry W.; Matthews, Larryl K.

    1995-04-01

    The current quality of our nations bridges is on a decline. There are roughly half a million highway bridges in the United States and out of the half a million more than 200,000 are deficient. With catastrophic failure of bridges causing the loss of life and property, the need for bridge inspection and maintenance is evident. When the Silver Bridge that crossed the Ohio River collapsed in December 1967, 46 people were killed. The failure to prevent the disaster was attributed to the poor inspection techniques used by the bridge inspectors. Current inspection techniques depend on humans being able to recognize structural imperfections without the aid of instrumentation. The Federal-Aid Highway Act of 1968 mandated both national bridge inspection standards and training for bridge inspectors. This act has encouraged the development of instruments that would allow inspectors to perform more complete inspections of bridges. To improve the quality of inspection and data, there is a great need for proven methods and instruments used to acquire data. The Laser Optical Displacement System (L.O.D.S.) developed at New Mexico State University by the Optical and Materials Science Lab is such a device. The L.O.D.S. has been tested and proven in both laboratory situations and in the field. This paper describes some of the methods that are now being used to measure deflections in bridges. Then, a description of the development and application of the L.O.D.S. unit is given.

  8. Swept Frequency Laser Metrology System

    NASA Technical Reports Server (NTRS)

    Zhao, Feng (Inventor)

    2010-01-01

    A swept frequency laser ranging system having sub-micron accuracy that employs multiple common-path heterodyne interferometers, one coupled to a calibrated delay-line for use as an absolute reference for the ranging system. An exemplary embodiment uses two laser heterodyne interferometers to create two laser beams at two different frequencies to measure distance and motions of target(s). Heterodyne fringes generated from reflections off a reference fiducial X(sub R) and measurement (or target) fiducial X(sub M) are reflected back and are then detected by photodiodes. The measured phase changes Delta phi(sub R) and Delta phi (sub m) resulting from the laser frequency swept gives target position. The reference delay-line is the only absolute reference needed in the metrology system and this provides an ultra-stable reference and simple/economical system.

  9. System integration for laser restructuring

    NASA Astrophysics Data System (ADS)

    Moreno, Wilfrido A.; Saini, Nitin; Acon, Otto

    1995-09-01

    The Center for Microelectronics Research (CMR) at the University of South Florida has pursued the development of new technologies in the area of high density interconnects. The laser restructuring of electronic circuits, fabricated using standard Very Large Scale Integration (VLSI) process techniques, is an excellent alternative for custom programming of electronic circuits that allows for low cost and quick turn around of the restructured parts. A Laser System for restructuring Electronic Systems has been integrated using state of the art hardware components. This Laser System is fully computer controlled using a newly developed Microsoft Windows based software application running on a 486-66 MHz IBM compatible computer. The laser system consists of a high energy 5 watt Argon CW laser, a 2 watt double frequency pulsed Nd:YAG laser, a blocking shutter, electro-optic shutter (EOS), optic delivery system, a high precision x-y translation stage, and a video camera system used to observe the surface under laser processing. All the system components are mounted on granite table installed on four self leveling pneumatic legs for a vibration free process environment. The z-axis mechanisms consists of a stepper motor based translation stage for automatic focus controls. All control software was written using C++ programming language utilizing the power of readily available plug in boards which provide resources such as: counters, timers, image processing and IEEE-488 interfacing for remote laser control. The control environment exhibits a high degree of consistency with widely accepted visually programmed graphical 'point- and-click' interfaces.

  10. Nova laser alignment control system

    SciTech Connect

    Van Arsdall, P.J.; Holloway, F.W.; McGuigan, D.L.; Shelton, R.T.

    1984-03-29

    Alignment of the Nova laser requires control of hundreds of optical components in the ten beam paths. Extensive application of computer technology makes daily alignment practical. The control system is designed in a manner which provides both centralized and local manual operator controls integrated with automatic closed loop alignment. Menudriven operator consoles using high resolution color graphics displays overlaid with transport touch panels allow laser personnel to interact efficiently with the computer system. Automatic alignment is accomplished by using image analysis techniques to determine beam references points from video images acquired along the laser chain. A major goal of the design is to contribute substantially to rapid experimental turnaround and consistent alignment results. This paper describes the computer-based control structure and the software methods developed for aligning this large laser system.

  11. Laser beam alignment system

    DOEpatents

    Kasner, William H.; Racki, Daniel J.; Swenson, Clark E.

    1984-01-01

    A plurality of pivotal reflectors direct a high-power laser beam onto a workpiece, and a rotatable reflector is movable to a position wherein it intercepts the beam and deflects a major portion thereof away from its normal path, the remainder of the beam passing to the pivotal reflectors through an aperture in the rotating reflector. A plurality of targets are movable to positions intercepting the path of light traveling to the pivotal reflectors, and a preliminary adjustment of the latter is made by use of a low-power laser beam reflected from the rotating reflector, after which the same targets are used to make a final adjustment of the pivotal reflectors with the portion of the high-power laser beam passed through the rotating reflector.

  12. Guidance system for laser targets

    DOEpatents

    Porter, Gary D.; Bogdanoff, Anatoly

    1978-01-01

    A system for guiding charged laser targets to a predetermined focal spot of a laser along generally arbitrary, and especially horizontal, directions which comprises a series of electrostatic sensors which provide inputs to a computer for real time calculation of position, velocity, and direction of the target along an initial injection trajectory, and a set of electrostatic deflection means, energized according to a calculated output of said computer, to change the target trajectory to intercept the focal spot of the laser which is triggered so as to illuminate the target of the focal spot.

  13. Laser system of extended range

    NASA Technical Reports Server (NTRS)

    Lehr, C. G.

    1972-01-01

    A pulsed laser system was developed for range measurements from the earth to retroreflecting satellites at distances up to that of the moon. The system has a transportable transmitter unit that can be moved from one location to another. This unit consists of a 0.2 m coude refractor and a high radiance, neodymium-glass, frequency doubled laser that operates in a single transverse mode. It can be used for lunar or distant satellite ranging at any observatory that has a telescope with an aperture diameter of about 1.5 m for the detection of the laser return pulses. This telescope is utilized in the same manner customarily employed for the observation of celestial objects. A special photometric package and the associated electronics are provided for laser ranging.

  14. Laser Pyro System Standardization and Man Rating

    NASA Technical Reports Server (NTRS)

    Brown, Christopher W.

    2004-01-01

    This viewgraph presentation reviews an X-38 laser pyro system standardization system designed for a new manned rated program. The plans to approve this laser initiation system and preliminary ideas for this system are also provided.

  15. Underwater laser imaging system (UWLIS)

    SciTech Connect

    DeLong, M.

    1994-11-15

    Practical limitations with underwater imaging systems area reached when the noise in the back scattered radiation generated in the water between the imaging system and the target obscures the spatial contrast and resolution necessary for target discovery and identification. The advent of high power lasers operating in the blue-green portion of the visible spectrum (oceanic transmission window) has led to improved experimental illumination systems for underwater imaging. Range-gated and synchronously scanned devices take advantage of the unique temporal and spatial coherence properties of laser radiation, respectively, to overcome the deleterious effects of common volume back scatter.

  16. High brightness laser systems incorporating advanced laser bars

    NASA Astrophysics Data System (ADS)

    Strohmaier, Stephan; Vethake, Thilo; Gottdiener, Mark; Wunderlin, Jens; Negoita, Viorel; Li, Yufeng; Barnowski, Tobias; Gong, Tim; An, Haiyan; Treusch, Georg

    2013-02-01

    The performance of high power and high brightness systems has been developing and is developing fast. In the multi kW regime both very high spatial and spectral brightness systems are emerging. Also diode laser pumped and direct diode lasers are becoming the standard laser sources for many applications. The pump sources for thin Disk Laser systems at TRUMPF Photonics enabled by high power and efficiency laser bars are becoming a well established standard in the industry with over two thousand 8 kW Disk Laser pumps installed in TruDisk systems at the customer site. These systems have proven to be a robust and reliable industrial tool. A further increase in power and efficiency of the bar can be easily used to scale the TruDisk output power without major changes in the pump source design. This publication will highlight advanced laser systems in the multi kW range for both direct application and solid state laser pumping using specifically tailored diode laser bars for high spatial and/or high spectral brightness. Results using wavelength stabilization techniques suitable for high power CW laser system applications will be presented. These high power and high brightness diode laser systems, fiber coupled or in free space configuration, depending on application or customer need, typically operate in the range of 900 to 1070 nm wavelength.

  17. Heterodyne laser instantaneous frequency measurement system

    DOEpatents

    Wyeth, Richard W.; Johnson, Michael A.; Globig, Michael A.

    1990-01-01

    A heterodyne laser instantaneous frequency measurement system is disclosed. The system utilizes heterodyning of a pulsed laser beam with a continuous wave laser beam to form a beat signal. The beat signal is processed by a controller or computer which determines both the average frequency of the laser pulse and any changes or chirp of the frequency during the pulse.

  18. Heterodyne laser instantaneous frequency measurement system

    DOEpatents

    Wyeth, Richard W.; Johnson, Michael A.; Globig, Michael A.

    1989-01-01

    A heterodyne laser instantaneous frequency measurement system is disclosed. The system utilizes heterodyning of a pulsed laser beam with a continuous wave laser beam to form a beat signal. The beat signal is processed by a controller or computer which determines both the average frequency of the laser pulse and any changes or chirp of th frequency during the pulse.

  19. ARGOS laser system mechanical design

    NASA Astrophysics Data System (ADS)

    Deysenroth, M.; Honsberg, M.; Gemperlein, H.; Ziegleder, J.; Raab, W.; Rabien, S.; Barl, L.; Gässler, W.; Borelli, J. L.

    2014-07-01

    ARGOS, a multi-star adaptive optics system is designed for the wide-field imager and multi-object spectrograph LUCI on the LBT (Large Binocular Telescope). Based on Rayleigh scattering the laser constellation images 3 artificial stars (at 532 nm) per each of the 2 eyes of the LBT, focused at a height of 12 km (Ground Layer Adaptive Optics). The stars are nominally positioned on a circle 2' in radius, but each star can be moved by up to 0.5' in any direction. For all of these needs are following main subsystems necessary: 1. A laser system with its 3 Lasers (Nd:YAG ~18W each) for delivering strong collimated light as for LGS indispensable. 2. The Launch system to project 3 beams per main mirror as a 40 cm telescope to the sky. 3. The Wave Front Sensor with a dichroic mirror. 4. The dichroic mirror unit to grab and interpret the data. 5. A Calibration Unit to adjust the system independently also during day time. 6. Racks + platforms for the WFS units. 7. Platforms and ladders for a secure access. This paper should mainly demonstrate how the ARGOS Laser System is configured and designed to support all other systems.

  20. Laser-Initiated Free Radical Chain Reactions: Synthesis Of Hydroperoxides

    NASA Astrophysics Data System (ADS)

    Bray, R. G.; Chou, M. S.

    1984-05-01

    We have investigated the advantages of using laser-initiation for the synthesis of cumenehydroperoxide and t-butylhydroperoxide. Laser-initiation significantly improves the oxidation rates of cumene in the liquid phase and iso-butane in the vapor phase (using HBr promoters) with moderate photoefficiencies (418 and 490 respectively). The primary effect of laser-initiation is to reduce the induction period of the reaction. For the oxidation of cumene the beneficial effect of laser initiation is strongly dependent on laser wavelength, alternately enhancing (at 351 nm) or inhibiting (at 249 nm) the oxidation rate. For isobutane oxidation, laser-initiation also minimizes the HBr depletion rate relative to oxidation rate.

  1. Tunable Molecular Lasers.

    DTIC Science & Technology

    1986-09-01

    Lett. 2, 64-66 (1978). 13. R. Burnham, "Discharge pumped mercuric halide dissociation lasers," Appl. Phys. Lett. 33, 156-159 (1978). 14. W. L. Nighan...University of Illinois. The goal of this research program was two-fold: 1) to develop new sources of tunable coherent radiation in the visible and...efficiency for converting XeF radiation (X - 351 nm) into blue-green output is 23% which corresponds to a photon conversion efficiency of approximately 1/3

  2. Ultra-broadband hybrid infrared laser system

    NASA Astrophysics Data System (ADS)

    Budilova, O. V.; Ionin, A. A.; Kinyaevskiy, I. O.; Klimachev, Yu. M.; Kotkov, A. A.; Kozlov, A. Yu.

    2016-03-01

    A hybrid IR laser system consisting of molecular gas lasers with frequency conversion of laser radiation in a solid-state converter (nonlinear crystal) was developed. One of these gas lasers is a carbon monoxide laser operating in multi-line or single-line mode. Another one is a carbon dioxide laser operating in multi-line mode. The two lasers operate under Q-switching with a joint rotating mirror. Due to sum- and difference-frequency generation in nonlinear crystals, the laser system emits within wavelength range from 2.5 to 16.6 μm. The laser system emitting radiation over such an extremely wide wavelength range (2.7 octaves) is of interest for remote sensing and other applications connected with laser beam propagation in the atmosphere.

  3. Reflex ring laser amplifier system

    DOEpatents

    Summers, M.A.

    1983-08-31

    The invention is a method and apparatus for providing a reflex ring laser system for amplifying an input laser pulse. The invention is particularly useful in laser fusion experiments where efficient production of high-energy and high power laser pulses is required. The invention comprises a large aperture laser amplifier in an unstable ring resonator which includes a combination spatial filter and beam expander having a magnification greater than unity. An input pulse is injected into the resonator, e.g., through an aperture in an input mirror. The injected pulse passes through the amplifier and spatial filter/expander components on each pass around the ring. The unstable resonator is designed to permit only a predetermined number of passes before the amplified pulse exits the resonator. On the first pass through the amplifier, the beam fills only a small central region of the gain medium. On each successive pass, the beam has been expanded to fill the next concentric non-overlapping region of the gain medium.

  4. Parametric infrared tunable laser system

    NASA Technical Reports Server (NTRS)

    Garbuny, M.; Henningsen, T.; Sutter, J. R.

    1980-01-01

    A parametric tunable infrared laser system was built to serve as transmitter for the remote detection and density measurement of pollutant, poisonous, or trace gases in the atmosphere. The system operates with a YAG:Nd laser oscillator amplifier chain which pumps a parametric tunable frequency converter. The completed system produced pulse energies of up to 30 mJ. The output is tunable from 1.5 to 3.6 micrometers at linewidths of 0.2-0.5 /cm (FWHM), although the limits of the tuning range and the narrower line crystals presently in the parametric converter by samples of the higher quality already demonstrated is expected to improve the system performance further.

  5. Geoscience laser altimeter system - stellar reference system

    SciTech Connect

    Millar, Pamela S.; Sirota, J. Marcos

    1998-01-15

    GLAS is an EOS space-based laser altimeter being developed to profile the height of the Earth's ice sheets with {approx}15 cm single shot accuracy from space under NASA's Mission to Planet Earth (MTPE). The primary science goal of GLAS is to determine if the ice sheets are increasing or diminishing for climate change modeling. This is achieved by measuring the ice sheet heights over Greenland and Antarctica to 1.5 cm/yr over 100 kmx100 km areas by crossover analysis (Zwally 1994). This measurement performance requires the instrument to determine the pointing of the laser beam to {approx}5 urad (1 arcsecond), 1-sigma, with respect to the inertial reference frame. The GLAS design incorporates a stellar reference system (SRS) to relate the laser beam pointing angle to the star field with this accuracy. This is the first time a spaceborne laser altimeter is measuring pointing to such high accuracy. The design for the stellar reference system combines an attitude determination system (ADS) with a laser reference system (LRS) to meet this requirement. The SRS approach and expected performance are described in this paper.

  6. Underwater laser imaging system (UWLIS)

    SciTech Connect

    DeLong, M.L.; Kulp, T.J.

    1995-03-10

    Practical limitations of underwater imaging systems are reached when the noise in the back scattered radiation generated in the water between the imaging system and the target obscures the spatial contrast and the resolution necessary for target discovery and identification. The advent of high power lasers operating in the oceanic transmission window of the visible spectrum (blue-green portion) has led to improved experimental illumination systems for underwater imaging The properties of laser bearm in range-gated and synchronously scanned devices take advantage of the unique temporal and spatial coherence effect of common volume back scatter to reduce or eliminate noise, increase signal to noise levels. Synchronously scanned systems rely on the highly collimated nature of the laser beam for spatial rejection of common volume back scatter. A synchronous, raster-scanning underwater laser imaging system (UWLIS) has been developed at Lawrence liver-more National Laboratory. The present UWLIS system differs from earlier synchronous scanners in its ability to scan in two dimensions at conventional video frame rate (30 Hz). The imaging performance of the present UWLIS was measured at distances of up to 6.3 AL (at a physical distance of 15.2 meters) during an in-water tank test and 4.5 to 5.0 AL (at a physical distance of 30 meters) during open water oceanic testing. The test results indicate that the UWLIS system is already capable of extending the underwater imaging range beyond that of conventional floodlight illuminated SIT cameras. The real or near real time frame rates of the UWLIS make possible operations in a mode in which the platform speed is randomly varied. This is typical of the operational environment in which the platform is often maneuvered above and around rugged seafloor terrain`s and obstacles.

  7. Laser power conversion system analysis, volume 2

    NASA Technical Reports Server (NTRS)

    Jones, W. S.; Morgan, L. L.; Forsyth, J. B.; Skratt, J. P.

    1979-01-01

    The orbit-to-ground laser power conversion system analysis investigated the feasibility and cost effectiveness of converting solar energy into laser energy in space, and transmitting the laser energy to earth for conversion to electrical energy. The analysis included space laser systems with electrical outputs on the ground ranging from 100 to 10,000 MW. The space laser power system was shown to be feasible and a viable alternate to the microwave solar power satellite. The narrow laser beam provides many options and alternatives not attainable with a microwave beam.

  8. Fiber laser coupled optical spark delivery system

    DOEpatents

    Yalin, Azer; Willson, Bryan; Defoort, Morgan; Joshi, Sachin; Reynolds, Adam

    2008-03-04

    A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

  9. Laser System Reliability

    DTIC Science & Technology

    1977-03-01

    NEALE CAPT. RANDALL D. GODFREY CAPT. JOHN E. ACTON HR. DAVE B. LEMMING (ASD) :,^ 19 . ••^w**** SECTION III RELIABILITY PREDICTION...Dete Exchange Program) failure rate date bank. In addition, some data have been obtained from Hughes. Rocketdyne , Garrett, and the AFWL’s APT Failure...Central Ave, Suite 306, Albuq, NM 87108 R/M Systems, Inc (Dr. K. Blemel), 10801 Lomas 81vd NE, Albuquerque, NM 87112 Rocketdyne 01 v, Rockwell

  10. High power laser perforating tools and systems

    SciTech Connect

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2014-04-22

    ystems devices and methods for the transmission of 1 kW or more of laser energy deep into the earth and for the suppression of associated nonlinear phenomena. Systems, devices and methods for the laser perforation of a borehole in the earth. These systems can deliver high power laser energy down a deep borehole, while maintaining the high power to perforate such boreholes.

  11. Navigated Pattern Laser System versus Single-Spot Laser System for Postoperative 360-Degree Laser Retinopexy

    PubMed Central

    2016-01-01

    Purpose. To compare three 360°-laser retinopexy (LRP) approaches (using navigated pattern laser system, single-spot slit-lamp (SL) laser delivery, and single-spot indirect ophthalmoscope (IO) laser delivery) in regard to procedure duration, procedural pain score, technical difficulties, and the ability to achieve surgical goals. Material and Methods. Eighty-six rhegmatogenous retinal detachment patients (86 eyes) were included in this prospective randomized study. The mean procedural time, procedural pain score (using 4-point Verbal Rating Scale), number of laser burns, and achievement of the surgical goals were compared between three groups (pattern LRP (Navilas® laser system), 36 patients; SL-LRP, 28 patients; and IO-LRP, 22 patients). Results. In the pattern LRP group, the amount of time needed for LRP and pain level were statistically significantly lower, whereas the number of applied laser burns was higher compared to those in the SL-LRP group and in the IO-LRP group. In the pattern LRP, SL-LRP, and IO-LRP groups, surgical goals were fully achieved in 28 (77.8%), 17 (60.7%), and 13 patients (59.1%), respectively (p > 0.05). Conclusion. The navigated pattern approach allows improving the treatment time and pain in postoperative 360° LRP. Moreover, 360° pattern LRP is at least as effective in achieving the surgical goal as the conventional (slit-lamp or indirect ophthalmoscope) approaches with a single-spot laser. PMID:28070417

  12. Airborne laser sensors and integrated systems

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark A.; Gardi, Alessandro; Ramasamy, Subramanian

    2015-11-01

    The underlying principles and technologies enabling the design and operation of airborne laser sensors are introduced and a detailed review of state-of-the-art avionic systems for civil and military applications is presented. Airborne lasers including Light Detection and Ranging (LIDAR), Laser Range Finders (LRF), and Laser Weapon Systems (LWS) are extensively used today and new promising technologies are being explored. Most laser systems are active devices that operate in a manner very similar to microwave radars but at much higher frequencies (e.g., LIDAR and LRF). Other devices (e.g., laser target designators and beam-riders) are used to precisely direct Laser Guided Weapons (LGW) against ground targets. The integration of both functions is often encountered in modern military avionics navigation-attack systems. The beneficial effects of airborne lasers including the use of smaller components and remarkable angular resolution have resulted in a host of manned and unmanned aircraft applications. On the other hand, laser sensors performance are much more sensitive to the vagaries of the atmosphere and are thus generally restricted to shorter ranges than microwave systems. Hence it is of paramount importance to analyse the performance of laser sensors and systems in various weather and environmental conditions. Additionally, it is important to define airborne laser safety criteria, since several systems currently in service operate in the near infrared with considerable risk for the naked human eye. Therefore, appropriate methods for predicting and evaluating the performance of infrared laser sensors/systems are presented, taking into account laser safety issues. For aircraft experimental activities with laser systems, it is essential to define test requirements taking into account the specific conditions for operational employment of the systems in the intended scenarios and to verify the performance in realistic environments at the test ranges. To support the

  13. Laser docking system flight experiment

    NASA Technical Reports Server (NTRS)

    Erwin, Harry O.

    1986-01-01

    Experiments necessary in the development of the Laser Docking System (LDS) are described. The LDS would be mounted in the Orbiter payload bay, along with a grid connected by fiber optic link to a computer in the cabin. The tests would be performed to aid in the design of an operational sensor which could track a passive target accurately enough to permit soft docking. Additional data would be gained regarding the LDS performance in space, the effects of Orbiter RCS plume impingement on the target, and refinements needed for the flight hardware. A working model which includes an IR laser steered by galvanometer-driven motors for bouncing beams off retroreflectors mounted on targets is described, together with a 300 ft long indoor test facility. Tests on Orbiter flights would first be in a wholly automatic mode and then in a man-in-the-loop mode.

  14. Relative ion expansion velocity in laser-produced plasmas

    NASA Technical Reports Server (NTRS)

    Goldsmith, S.; Moreno, J. C.; Griem, H. R.; Cohen, Leonard; Richardson, M. C.

    1988-01-01

    The spectra of highly ionized titanium, Ti XIII through Ti XXI, and C VI Lyman lines were excited in laser-produced plasmas. The plasma was produced by uniformly irradiating spherical glass microballoons coated with thin layers of titanium and parylene. The 24-beam Omega laser system produced short, 0.6 ns, and high-intensity, 4 x 10 to the 14th W/sq cm, laser pulses at a wavelength of 351 nm. The measured wavelength for the 2p-3s Ti XIII resonance lines had an average shift of + 0.023 A relative to the C VI and Ti XX spectral lines. No shift was found between the C VI, Ti XIX, and Ti XX lines. The shift is attributed to a Doppler effect, resulting from a difference of (2.6 + or - 0.2) x 10 to the 7th cm/s in the expansion velocities of Ti XIX and Ti XX ions compared to Ti XIII ions.

  15. Laser light backscatter from intermediate and high Z plasmas

    NASA Astrophysics Data System (ADS)

    Berger, R. L.; Constantin, C.; Divol, L.; Meezan, N.; Froula, D. H.; Glenzer, S. H.; Suter, L. J.; Niemann, C.

    2006-09-01

    In experiments at the Omega Laser Facility [J. M. Soures et al., Fusion Technol. 30, 492 (1996)], stimulated Brillouin backscatter (SBS) from gasbags filled with krypton and xenon gases was ten times lower than from CO2-filled gasbags with similar electron densities. The SBS backscatter was a 1%-5% for both 527 and 351nm interaction beams at an intensity of ˜1015W /cm2. The SRS backscatter was less than 1%. The 351nm interaction beam is below the threshold for filamentation and the SBS occurs in the density plateau between the blast waves. Inverse bremsstrahlung absorption of the incident and SBS light account for the lower reflectivity from krypton than from CO2. The 527nm interaction beam filaments in the blowoff plasma before the beam propagates through the blast wave, where it is strongly absorbed. Thus, most of the 527nm SBS occurs in the flowing plasma outside the blast waves.

  16. Precision laser automatic tracking system.

    PubMed

    Lucy, R F; Peters, C J; McGann, E J; Lang, K T

    1966-04-01

    A precision laser tracker has been constructed and tested that is capable of tracking a low-acceleration target to an accuracy of about 25 microrad root mean square. In tracking high-acceleration targets, the error is directly proportional to the angular acceleration. For an angular acceleration of 0.6 rad/sec(2), the measured tracking error was about 0.1 mrad. The basic components in this tracker, similar in configuration to a heliostat, are a laser and an image dissector, which are mounted on a stationary frame, and a servocontrolled tracking mirror. The daytime sensitivity of this system is approximately 3 x 10(-10) W/m(2); the ultimate nighttime sensitivity is approximately 3 x 10(-14) W/m(2). Experimental tests were performed to evaluate both dynamic characteristics of this system and the system sensitivity. Dynamic performance of the system was obtained, using a small rocket covered with retroreflective material launched at an acceleration of about 13 g at a point 204 m from the tracker. The daytime sensitivity of the system was checked, using an efficient retroreflector mounted on a light aircraft. This aircraft was tracked out to a maximum range of 15 km, which checked the daytime sensitivity of the system measured by other means. The system also has been used to track passively stars and the Echo I satellite. Also, the system tracked passively a +7.5 magnitude star, and the signal-to-noise ratio in this experiment indicates that it should be possible to track a + 12.5 magnitude star.

  17. High power laser apparatus and system

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr.; Brandhorst, H. W., Jr. (Inventor)

    1975-01-01

    A high-power, continuous-wave laser was designed for use in power transmission and energy-collecting systems, and for producing incoherent light for pumping a laser material. The laser has a high repetitive pulsing rate per unit time, resulting in a high-power density beam. The laser is composed of xenon flash tubes powered by fast-charging capacitors flashed in succession by a high-speed motor connected to an automobile-type distributor.

  18. Laser Doppler And Range Systems For Spacecraft

    NASA Technical Reports Server (NTRS)

    Kinman, P. W.; Gagliardi, R. M.

    1990-01-01

    Report discusses two types of proposed laser systems containing active transponders measuring distance (range) and line-of-sight velocity (via Doppler effect) between deep space vehicle and earth-orbiting satellite. Laser system offers diffraction advantage over microwave system. Delivers comparable power to distant receiver while using smaller transmitting and receiving antennas and less-powerful transmitter. Less subject to phase scintillations caused by passage through such inhomogeneous media as solar corona. One type of system called "incoherent" because range and Doppler measurements do not require coherence with laser carrier signals. Other type of system called "coherent" because successful operation requires coherent tracking of laser signals.

  19. Fission fragment excited laser system

    DOEpatents

    McArthur, David A.; Tollefsrud, Philip B.

    1976-01-01

    A laser system and method for exciting lasing action in a molecular gas lasing medium which includes cooling the lasing medium to a temperature below about 150 K and injecting fission fragments through the lasing medium so as to preferentially excite low lying vibrational levels of the medium and to cause population inversions therein. The cooled gas lasing medium should have a mass areal density of about 5 .times. 10.sup.-.sup.3 grams/square centimeter, relaxation times of greater than 50 microseconds, and a broad range of excitable vibrational levels which are excitable by molecular collisions.

  20. Fused Silica Final Optics for Inertial Fusion Energy: Radiation Studies and System-Level Analysis

    SciTech Connect

    Latkowski, Jeffery F.; Kubota, Alison; Caturla, Maria J.; Dixit, Sham N.; Speth, Joel A.; Payne, Stephen A.

    2003-06-15

    The survivability of the final optic, which must sit in the line of sight of high-energy neutrons and gamma rays, is a key issue for any laser-driven inertial fusion energy (IFE) concept. Previous work has concentrated on the use of reflective optics. Here, we introduce and analyze the use of a transmissive final optic for the IFE application. Our experimental work has been conducted at a range of doses and dose rates, including those comparable to the conditions at the IFE final optic. The experimental work, in conjunction with detailed analysis, suggests that a thin, fused silica Fresnel lens may be an attractive option when used at a wavelength of 351 nm. Our measurements and molecular dynamics simulations provide convincing evidence that the radiation damage, which leads to optical absorption, not only saturates but that a 'radiation annealing' effect is observed. A system-level description is provided, including Fresnel lens and phase plate designs.

  1. Laser spark distribution and ignition system

    DOEpatents

    Woodruff, Steven; McIntyre, Dustin L.

    2008-09-02

    A laser spark distribution and ignition system that reduces the high power optical requirements for use in a laser ignition and distribution system allowing for the use of optical fibers for delivering the low peak energy pumping pulses to a laser amplifier or laser oscillator. An optical distributor distributes and delivers optical pumping energy from an optical pumping source to multiple combustion chambers incorporating laser oscillators or laser amplifiers for inducing a laser spark within a combustion chamber. The optical distributor preferably includes a single rotating mirror or lens which deflects the optical pumping energy from the axis of rotation and into a plurality of distinct optical fibers each connected to a respective laser media or amplifier coupled to an associated combustion chamber. The laser spark generators preferably produce a high peak power laser spark, from a single low power pulse. The laser spark distribution and ignition system has application in natural gas fueled reciprocating engines, turbine combustors, explosives and laser induced breakdown spectroscopy diagnostic sensors.

  2. Laser fiber optics ordnance initiation system

    NASA Technical Reports Server (NTRS)

    Yang, L. C.

    1976-01-01

    Recent progress on system development in the laser initiation of explosive devices is summarized. The topics included are: development of compact free-running mode and Q-switched lasers, development of low-loss fiber optic bundles and connectors, study of nuclear radiation effects on the system, characterization of laser initiation sensitivities of insensitive high explosives, and the design methods used to achieve attractive system weight and cost savings. Direction for future work is discussed.

  3. Multiplex electric discharge gas laser system

    NASA Technical Reports Server (NTRS)

    Laudenslager, James B. (Inventor); Pacala, Thomas J. (Inventor)

    1987-01-01

    A multiple pulse electric discharge gas laser system is described in which a plurality of pulsed electric discharge gas lasers are supported in a common housing. Each laser is supplied with excitation pulses from a separate power supply. A controller, which may be a microprocessor, is connected to each power supply for controlling the application of excitation pulses to each laser so that the lasers can be fired simultaneously or in any desired sequence. The output light beams from the individual lasers may be combined or utilized independently, depending on the desired application. The individual lasers may include multiple pairs of discharge electrodes with a separate power supply connected across each electrode pair so that multiple light output beams can be generated from a single laser tube and combined or utilized separately.

  4. Laser beam modeling in optical storage systems

    NASA Technical Reports Server (NTRS)

    Treptau, J. P.; Milster, T. D.; Flagello, D. G.

    1991-01-01

    A computer model has been developed that simulates light propagating through an optical data storage system. A model of a laser beam that originates at a laser diode, propagates through an optical system, interacts with a optical disk, reflects back from the optical disk into the system, and propagates to data and servo detectors is discussed.

  5. LLE (Laboratory for Laser Energetics) Review: Quarterly report, January--March 1997. Volume 70

    SciTech Connect

    1997-06-01

    This volume of the LLE Review includes an article on the status of the optics on the OMEGA laser system after the first 18 months of operation. A vigorous program to monitor the performance of the optics has been followed since the inception of the OMEGA laser. The article presents results from these observations and defines the various types of possible damage. Many of the optics have not damaged, such as the frequency-conversion crystals, polarizers, calorimeters, and liquid crystal optics. The most significant damage has been sustained by the fused-silica spatial filter lenses. There has been no evidence of any propagation of damage downstream of damage optics. Other highlights of research presented here are: The development of a single-beam, ponderomotive optical trap for energetic free electrons. A description of the new diode-pumped Nd:YLF master oscillator for the OMEGA laser. Simulations of heat transfer from localized absorbing defects to the host coating material in HfO{sub 2}/SiO{sub 2} 351-nm high reflectors. An experimental study of target performance and mixing in titanium-doped target implosions on OMEGA. A theoretical calculation of the dephasing time of an electron accelerated by a laser pulse. Separate abstracts have been indexed into the energy database from articles in this volume.

  6. Damage resistant optics for a mega-joule solid-state laser

    NASA Astrophysics Data System (ADS)

    Campbell, J. H.; Rainer, F.; Kozlowski, M. R.; Wolfe, C. R.; Thomas, I.; Milanovich, F.

    1990-12-01

    Research on Inertial Confinement Fusion (ICF) has progressed rapidly in the past several years. As a consequence, LLNL is developing plans to upgrade the current 120 kJ solid state (Nd3+ phosphate glass) Nova laser to a 1.5 to 2 megajoule system with the goal of achieving fusion ignition. The design of the planned Nova Upgrade is briefly discussed. Because of recent improvements in the damage resistance of optical materials it is now technically and economically feasible to build a megajoule-class solid state laser. Specifically, the damage threshold of Nd(+3)-doped phosphate laser glass, multilayer dielectric coatings, and non-linear optical crystals (e.g., KDP) have been dramatically improved. These materials now meet the fluence requirements for a 1.5 to 2 MJ Nd(+3)-glass laser operating at 1054 and 351 nm and at a pulse length of 3 ns. The recent improvements in damage thresholds are reviewed; threshold data at both 1064 and 355 nm and the measured pulse length scaling are presented.

  7. The National Ignition Facility: Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies

    SciTech Connect

    Moses, E I

    2002-01-11

    The National Ignition Facility (NIF), currently under construction at the University of California's Lawrence Livermore National Laboratory is a $2.25B stadium-sized facility containing a 192-beam, 1.8-Megajoule, 500-Terawatt, 351-nm laser system. NIF is being built by the National Nuclear Security Agency and when completed will be the world's largest laser system, providing a national center to study inertial confinement fusion and the physics of extreme energy densities and pressures. In NIF up to 192 energetic laser beams will compress small fusion targets to conditions where they will ignite and burn, liberating more energy than is required to initiate the fusion reactions. NIF experiments will allow the study of physical processes at temperatures approaching 100 million K and 100 billion times atmospheric pressure. These conditions exist naturally only in the interior of stars and in nuclear weapons explosions. In the course of designing the world's most energetic laser system, a number of significant technology breakthroughs have been achieved. Research is also underway to develop a shorter pulse capability on NIF for high power applications. We discuss here the technology challenges and solutions that have made NIF possible along with enhancements to NIF's design that could lead to exawatt power levels.

  8. The National Ignition Facility: Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies

    SciTech Connect

    Moses, E I; Wuest, C R

    2002-10-16

    The National Ignition Facility (NIF), currently under construction at the University of California's Lawrence Livermore National Laboratory, is a stadium-sized facility containing a 192-beam, 1.8-Megajoule, 500-Terawatt, 351-nm laser system and a 10-meter diameter target chamber with room for nearly 100 experimental diagnostics. NIF is being built by the National Nuclear Security Administration and when completed will be the world's largest laser experimental system, providing a national center to study inertial confinement fusion and the physics of matter at extreme energy densities and pressures. NIF will provide 192 energetic laser beams that will compress small fusion targets to conditions where they will ignite and burn, liberating more energy than is required to initiate the fusion reactions. NIF experiments will allow the study of physical processes at temperatures approaching 100 million K and 100 billion times atmospheric pressure. These conditions exist naturally only in the interior of stars and in nuclear weapons explosions. In the course of designing the world's most energetic laser system, a number of significant technology breakthroughs have been achieved. Research is also underway to develop a shorter pulse capability on NIF for very high power and extreme electromagnetic field research and applications. We discuss here the technology challenges and solutions that have made NIF possible, along with enhancements to NIF's design that could lead to near-exawatt power levels.

  9. Dynamically variable spot size laser system

    NASA Technical Reports Server (NTRS)

    Gradl, Paul R. (Inventor); Hurst, John F. (Inventor); Middleton, James R. (Inventor)

    2012-01-01

    A Dynamically Variable Spot Size (DVSS) laser system for bonding metal components includes an elongated housing containing a light entry aperture coupled to a laser beam transmission cable and a light exit aperture. A plurality of lenses contained within the housing focus a laser beam from the light entry aperture through the light exit aperture. The lenses may be dynamically adjusted to vary the spot size of the laser. A plurality of interoperable safety devices, including a manually depressible interlock switch, an internal proximity sensor, a remotely operated potentiometer, a remotely activated toggle and a power supply interlock, prevent activation of the laser and DVSS laser system if each safety device does not provide a closed circuit. The remotely operated potentiometer also provides continuous variability in laser energy output.

  10. Master-Oscillator/Power-Amplifier Laser System

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Krainak, Michael A.; Unger, Glenn L.

    1994-01-01

    Master-oscillator/power-amplifier (MOPA) laser system operates in continuous-wave mode or in amplitude-modulation (e.g., pulse) mode by modulation of oscillator current. Power amplifier is laser-diode-pumped neodymium:yttrium lithium fluoride (Nd:YLF) laser; oscillator is laser diode. Offers relatively high efficiency and power. Because drive current to oscillator modulated, external electro-optical modulator not needed. Potential uses include free-space optical communications, coded laser ranging, and generation of high-power, mode-locked pulses.

  11. Copper vapor laser acoustic thermometry system

    DOEpatents

    Galkowski, Joseph J.

    1987-01-01

    A copper vapor laser (CVL) acoustic thermometry system is disclosed. The invention couples an acoustic pulse a predetermined distance into a laser tube by means of a transducer and an alumina rod such that an echo pulse is returned along the alumina rod to the point of entry. The time differential between the point of entry of the acoustic pulse into the laser tube and the exit of the echo pulse is related to the temperature at the predetermined distance within the laser tube. This information is processed and can provide an accurate indication of the average temperature within the laser tube.

  12. A prospectus on airborne laser mapping systems

    NASA Technical Reports Server (NTRS)

    Link, L. E.; Krabill, W. B.; Swift, R. N.

    1983-01-01

    Airborne laser systems have demonstrated enormous potential for topographic and bathymetric mapping. Both profiling and scanning systems have been evaluated for terrain elevation mapping, stream valley cross-section determination, and nearshore bottom profiling. Performance of the laser systems has been impressive and for some applications matches current operational accuracy requirements. Determining the position of individual laser measurements remains a constraint for most applications. Laser technology constrains some terrain and bathymetric applications, particularly for water penetration and frequency of measurements for high-spatial resolution over large areas.

  13. A laser-powered flight transportation system

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.; Sun, K. C.; Jones, W. S.

    1978-01-01

    Laser energy transmitted from a solar-power satellite via a set of relay satellites is used to power a cruising air transport; i.e., a laser-powered airplane. The result is a nearly fuelless pollution-free flight transportation system which is cost competitive with the fuel-conservative airplane of the future. The major components of this flight system include a laser-power satellite, relay satellites, laser-powered turbofans, and a conventional airframe. The relay satellites are orbiting optical systems which intercept the beam from a power satellite and refocus and redirect the beam to its next target.

  14. Laser Systems for Orbital Debris Removal

    SciTech Connect

    Rubenchik, A. M.; Barty, C. P. J.; Beach, R. J.; Erlandson, A. C.; Caird, J. A.

    2010-10-08

    The use of a ground based laser for space debris cleaning was investigated by the ORION project in 1996. Since that study the greatest technological advance in the development of high energy pulsed laser systems has taken place within the NIF project at LLNL. The proposed next laser system to follow the NIF at LLNL will be a high rep rate version of the NIF based on diode-pumping rather than flashlamp excitation; the so called 'LIFE' laser system. Because a single 'LIFE' beamline could be built up in a few year time frame, and has performance characteristics relevant to the space debris clearing problem, such a beamline could enable a near term demonstration of space debris cleaning. Moreover, the specifics of debris cleaning make it possible to simplify the LIFE laser beyond what is required for a fusion drive laser, and so substantially reduce its cost. Starting with the requirements for laser intensity on the target, and then considering beam delivery, we will flow back the laser requirements needed for space debris cleaning. Using these derived requirements we will then optimize the pulse duration, the operational regime, and the output pulse energy of the laser with a focus of simplifying its overall design. Anticipated simplifications include operation in the heat capacity regime, eliminating cooling requirements on the laser gain slabs, and relaxing B-integral and birefrigence requirements.

  15. Laser Systems for Orbital Debris Removal

    SciTech Connect

    Rubenchik, A M; Barty, C P; Beach, R J; Erlandson, A C; Caird, J A

    2010-02-05

    The use of a ground based laser for space debris cleaning was investigated by the ORION project in 1996. Since that study the greatest technological advance in the development of high energy pulsed laser systems has taken place within the NIF project at LLNL. The proposed next laser system to follow the NIF at LLNL will be a high rep rate version of the NIF based on diode-pumping rather than flashlamp excitation; the so called 'LIFE' laser system. Because a single 'LIFE' beamline could be built up in a few year time frame, and has performance characteristics relevant to the space debris clearing problem, such a beamline could enable a near term demonstration of space debris cleaning. Moreover, the specifics of debris cleaning make it possible to simplify the LIFE laser beyond what is required for a fusion drive laser, and so substantially reduce its cost. Starting with the requirements for laser intensity on the target, and then considering beam delivery, we will flow back the laser requirements needed for space debris cleaning. Using these derived requirements we will then optimize the pulse duration, the operational regime, and the output pulse energy of the laser with a focus of simplifying its overall design. Anticipated simplifications include operation in the heat capacity regime, eliminating cooling requirements on the laser gain slabs, and relaxing B-integral and birefrigence requirements.

  16. Microprocessor-Controlled Laser Balancing System

    NASA Technical Reports Server (NTRS)

    Demuth, R. S.

    1985-01-01

    Material removed by laser action as part tested for balance. Directed by microprocessor, laser fires appropriate amount of pulses in correct locations to remove necessary amount of material. Operator and microprocessor software interact through video screen and keypad; no programing skills or unprompted system-control decisions required. System provides complete and accurate balancing in single load-and-spinup cycle.

  17. Downstream Intensification Effects Associated with CO2 Laser Mitigation of Fused Silica

    SciTech Connect

    Matthews, M J; Bass, I L; Guss, G M; Widmayer, C C; Ravizza, F L

    2007-10-29

    Mitigation of 351nm laser-induced damage sites on fused silica exit surfaces by selective CO{sub 2} treatment has been shown to effectively arrest the exponential growth responsible for limiting the lifetime of optics in high-fluence laser systems. However, the perturbation to the optical surface profile following the mitigation process introduces phase contrast to the beam, causing some amount of downstream intensification with the potential to damage downstream optics. Control of the laser treatment process and measurement of the associated phase modulation is essential to preventing downstream 'fratricide' in damage-mitigated optical systems. In this work we present measurements of the surface morphology, intensification patterns and damage associated with various CO{sub 2} mitigation treatments on fused silica surfaces. Specifically, two components of intensification pattern, one on-axis and another off-axis can lead to damage of downstream optics and are related to rims around the ablation pit left from the mitigation process. It is shown that control of the rim structure around the edge of typical mitigation sites is crucial in preventing damage to downstream optics.

  18. Laser Based Information Systems (Selected Pages),

    DTIC Science & Technology

    1986-05-22

    CO lasers . Microwaves, 1967, M* 7. 85. W e I s s P. F., T o h n s o n R. E. Laser tracking wiht automatic reacquisi- tion capability. Appl. Optics, 1968, Vol. 7, M* 6. I it 313 lab- Now - ...DIVISIONCD LASER BASED INFORMATION SYSTEMS (Selected Pages) bDTIC L.Z. Kriksunov EL’, %N16 86 4. I’, Approved for public release; Distribution...HUMAN TRANSLATION FTD-ID(RS)T-0563-85 22 May 1986 MICROFICHE NR: FTD-86-C-O01863 LASER BASED INFORMATION SYSTEMS (Selected Pages) By: L.Z.

  19. Noise sources in laser radar systems.

    PubMed

    Letalick, D; Renhorn, I; Steinvall, O; Shapiro, J H

    1989-07-01

    To understand the fundamental limit of performance with a given laser radar system, the phase noise of a testbed laser radar has been investigated. Apart from the phase noise in the transmitter laser and the local oscillator laser, additional phase noise was introduced by vibrations caused by fans in power supplies and cooling systems. The stability of the mechanical structure of the platform was also found to be of great importance. Furthermore, a model for the signal variations from diffuse targets has been developed. This model takes into account the stray light, the speckle decorrelation, and Doppler shift due to moving targets.

  20. The Theory of Random Laser Systems

    SciTech Connect

    Jiang, Xunya

    2001-01-01

    Studies of random laser systems are a new direction with promising potential applications and theoretical interest. The research is based on the theories of localization and laser physics. So far, the research shows that there are random lasing modes inside the systems which is quite different from the common laser systems. From the properties of the random lasing modes, they can understand the phenomena observed in the experiments, such as multi-peak and anisotropic spectrum, lasing mode number saturation, mode competition and dynamic processes, etc. To summarize, this dissertation has contributed the following in the study of random laser systems: (1) by comparing the Lamb theory with the Letokhov theory, the general formulas of the threshold length or gain of random laser systems were obtained; (2) they pointed out the vital weakness of previous time-independent methods in random laser research; (3) a new model which includes the FDTD method and the semi-classical laser theory. The solutions of this model provided an explanation of the experimental results of multi-peak and anisotropic emission spectra, predicted the saturation of lasing modes number and the length of localized lasing modes; (4) theoretical (Lamb theory) and numerical (FDTD and transfer-matrix calculation) studies of the origin of localized lasing modes in the random laser systems; and (5) proposal of using random lasing modes as a new path to study wave localization in random systems and prediction of the lasing threshold discontinuity at mobility edge.

  1. Coatings for high energy applications. The Nova laser

    SciTech Connect

    Wirtenson, G.R.

    1986-01-01

    The combined requirements of energy density, multiple wavelength, and aperture make the coatings for the Nova Inertial Confinement Fusion (ICF) laser unique. This ten beam neodymium glass laser system, built at the Lawrence Livermore National Laboratory (LLNL), has over a thousand major optical components; some larger than one meter in diameter and weighing 380 Kg. The laser operates at 1054 nm and can be frequency doubled to 527 nm or tripled to 351 nm by means of full aperture potassium dihydrogen phosphate (KDP) crystal arrays. The 1.0 nsec fluence varies along the laser chain, sometimes reaching values as high as 16 J/cm/sup 2/ at the input lens to one of the spatial filters. The design specifications of this massive optical system were changed several times as the state-of-the-art advanced. Each change required redesign of the optical coatings even as vendors were preparing for production runs. Frequency conversion to include shorter wavelengths mandated the first major coating redesign and was followed almost immediately by a second redesign to reduce solarization effects in borosilicate crown glass. The conventional thermal evaporation process although successful for the deposition of mirror coatings, was not able to produce antireflection coatings able to survive the locally high chain fluences. As a consequence it became necessary to develop another technique. Solution produced coatings were developed having transmissions exceeding 99% per part and damage threshold values equal to the bare substrate. The unique requirement of the Nova laser necessitated special deposition and metrology equipment. These programmatic developments will be reviewed in the context of the cooperative working relationship developed between LLNL and its vendors. It was this excellent relationship which has enabled LLNL to obtain these highly specialized coatings for the Nova laser.

  2. Coatings for high energy applications. The Nova laser

    NASA Astrophysics Data System (ADS)

    Wirtenson, G. R.

    The combined requirements of energy density, multiple wavelength, and aperture make the coatings for the Nova Inertial Confinement Fusion (ICF) laser unique. This ten beam neodymium glass laser system, built at the Lawrence Livermore National Laboratory (LLNL), has over a thousand major optical components; some larger than one meter in diameter and weighing 380 Kg. The laser operates at 1054 nm and can be frequency doubled to 527 nm or tripled to 351 nm by means of full aperture potassium dihydrogen phosphate (KDP) crystal arrays. The 1.0 nsec fluence varies along the laser chain, sometimes reaching values as high as 16 J/cm(2) at the input lens to one of the spatial filters. The design specifications of this massive optical system were changed several times as the state-of-the-art advanced. Each change required redesign of the optical coatings even as vendors were preparing for production runs. Frequency conversion to include shorter wavelengths mandated the first major coating redesign and was followed almost immediately by a second redesign to reduce solarization effects in borosilicate crown glass. The conventional thermal evaporation process although successful for the deposition of mirror coatings, was not able to produce antireflection coatings able to survive the locally high chain fluences. As a consequence it became necessary to develop another technique. Solution produced coatings were developed having transmissions exceeding 99% per part and damage threshold values equal to the bare substrate. The unique requirement of the Nova laser necessitated special deposition and metrology equipment. These programmatic developments will be reviewed in the context of the cooperative working relationship developed between LLNL and its vendors. It was this excellent relationship which has enabled LLNL to obtain these highly specialized coatings for the Nova laser.

  3. Application of laser Doppler velocimeter to chemical vapor laser system

    NASA Technical Reports Server (NTRS)

    Gartrell, Luther R.; Hunter, William W., Jr.; Lee, Ja H.; Fletcher, Mark T.; Tabibi, Bagher M.

    1993-01-01

    A laser Doppler velocimeter (LDV) system was used to measure iodide vapor flow fields inside two different-sized tubes. Typical velocity profiles across the laser tubes were obtained with an estimated +/-1 percent bias and +/-0.3 to 0.5 percent random uncertainty in the mean values and +/-2.5 percent random uncertainty in the turbulence-intensity values. Centerline velocities and turbulence intensities for various longitudinal locations ranged from 13 to 17.5 m/sec and 6 to 20 percent, respectively. In view of these findings, the effects of turbulence should be considered for flow field modeling. The LDV system provided calibration data for pressure and mass flow systems used routinely to monitor the research laser gas flow velocity.

  4. Laser system to detonate explosive devices

    NASA Technical Reports Server (NTRS)

    Menichelli, V. J.; Yang, L. C.

    1974-01-01

    Detonating system is not affected by electromagnetic interference. System includes laser source, Q-switch, and optical fiber connected to explosive device. Fiber can be branched out and connected to several devices for simultaneous detonation.

  5. Laser Image Contrast Enhancement System

    NASA Technical Reports Server (NTRS)

    Kurtz, Robert L. (Inventor); Holmes, Richard R. (Inventor); Witherow, William K. (Inventor)

    2002-01-01

    An optical image enhancement system provides improved image contrast in imaging of a target in high temperature surroundings such as a furnace. The optical system includes a source of vertically polarized light such as laser and a beam splitter for receiving the light and directing the light toward the target. A retardation plate is affixed to a target-facing surface of the beam splitter and a vertical polarizer is disposed along a common optical path with the beam splitter between the retardation plate and the target. A horizontal polarizer disposed in the common optical path, receives light passing through a surface of the beam splitter opposed to the target-facing surface. An image detector is disposed at one end of the optical path. A band pass filter having a band pass filter characteristic matching the frequency of the vertically polarized light source is disposed in the path between the horizontal polarizer and the image detector. The use of circular polarization, together with cross polarizers, enables the reflected light to be passed to the detector while blocking thermal radiation.

  6. Determination of laser damage initiation probability and growth on fused silica scratches

    SciTech Connect

    Norton, M A; Carr, C W; Cross, D A; Negres, R A; Bude, J D; Steele, W A; Monticelli, M V; Suratwala, T I

    2010-10-26

    Current methods for the manufacture of optical components inevitably leaves a variety of sub-surface imperfections including scratches of varying lengths and widths on even the finest finishes. It has recently been determined that these finishing imperfections are responsible for the majority of laser-induced damage for fluences typically used in ICF class lasers. We have developed methods of engineering subscale parts with a distribution of scratches mimicking those found on full scale fused silica parts. This much higher density of scratches provides a platform to measure low damage initiation probabilities sufficient to describe damage on large scale optics. In this work, damage probability per unit scratch length was characterized as a function of initial scratch width and post fabrication processing including acid-based etch mitigation processes. The susceptibility of damage initiation density along scratches was found to be strongly affected by the post etching material removal and initial scratch width. We have developed an automated processing procedure to document the damage initiations per width and per length of theses scratches. We show here how these tools can be employed to provide predictions of the performance of full size optics in laser systems operating at 351 nm. In addition we use these tools to measure the growth rate of a damage site initiated along a scratch and compare this to the growth measured on an isolated damage site.

  7. Laser measuring system for large machine tools

    NASA Astrophysics Data System (ADS)

    Wessel, L. E.; Brazys, D.

    1982-08-01

    With development of the Laser Interferometer, it was envisioned that older existing machine tools could be up-graded by retrofitting them with laser Interferometer Measuring Systems. The Laser Interferometer provides the machine tool industry with a high accuracy length standard. The accuracy of the Interferometer is determined by the laser wave length which is known within 0.5 parts per million. This degree of accuracy is more than adequate for most machine tool measuring, calibration and inspection requirements. In conclusion, the Laser Measuring System presently available is not recommended for general implementation at this time. Results of this work indicate that the equipment and installation cost are very high and pay back would be very slow. Also, the reliability of the electronic components is in need of improvement. The system requires frequent realignment and maintenance due to it's lack of toleration to "Shop Floor' conditions.

  8. Active polarimeter optical system laser hazard analysis.

    SciTech Connect

    Augustoni, Arnold L.

    2005-07-01

    A laser hazard analysis was performed for the SNL Active Polarimeter Optical System based on the ANSI Standard Z136.1-2000, American National Standard for Safe Use of Lasers and the ANSI Standard Z136.6-2000, American National Standard for Safe Use of Lasers Outdoors. The Active Polarimeter Optical System (APOS) uses a pulsed, near-infrared, chromium doped lithium strontium aluminum fluoride (Cr:LiSAF) crystal laser in conjunction with a holographic diffuser and lens to illuminate a scene of interest. The APOS is intended for outdoor operations. The system is mounted on a height adjustable platform (6 feet to 40 feet) and sits atop a tripod that points the beam downward. The beam can be pointed from nadir to as much as 60 degrees off of nadir producing an illuminating spot geometry that can vary from circular (at nadir) to elliptical in shape (off of nadir). The JP Innovations crystal Cr:LiSAF laser parameters are presented in section II. The illuminating laser spot size is variable and can be adjusted by adjusting the separation distance between the lens and the holographic diffuser. The system is adjusted while platform is at the lowest level. The laser spot is adjusted for a particular spot size at a particular distance (elevation) from the laser by adjusting the separation distance (d{sub diffuser}) to predetermined values. The downward pointing angle is also adjusted before the platform is raised to the selected operation elevation.

  9. Smithsonian Astrophysical Observatory laser tracking systems

    NASA Technical Reports Server (NTRS)

    Pearlman, M. R.; Lanham, N. W.; Lehr, C. G.; Wohn, J.

    1977-01-01

    The four SAO laser satellite-ranging systems, located in Brazil, Peru, Australia, and Arizona, have been in operation for more than five years and have provided ranging data at accuracy levels of a meter or better. The paper examines system hardware (laser transmitter, the electronics, mount, photoreceiver, minicomputer, and station timing) and software (prediction program, calibration programs, and data handling and quick-look programs) and also considers calibration, station operation, and system performance.

  10. High energy chemical laser system

    DOEpatents

    Gregg, D.W.; Pearson, R.K.

    1975-12-23

    A high energy chemical laser system is described wherein explosive gaseous mixtures of a reducing agent providing hydrogen isotopes and interhalogen compounds are uniformly ignited by means of an electrical discharge, flash- photolysis or an electron beam. The resulting chemical explosion pumps a lasing chemical species, hydrogen fluoride or deuterium fluoride which is formed in the chemical reaction. The generated lasing pulse has light frequencies in the 3- micron range. Suitable interhalogen compounds include bromine trifluoride (BrF$sub 3$), bromine pentafluoride (BrF$sub 5$), chlorine monofluoride (ClF), chlorine trifluoride (ClF$sub 3$), chlorine pentafluoride (ClF$sub 5$), iodine pentafluoride (IF$sub 5$), and iodine heptafluoride (IF$sub 7$); and suitable reducing agents include hydrogen (H$sub 2$), hydrocarbons such as methane (CH$sub 4$), deuterium (D$sub 2$), and diborane (B$sub 2$H$sub 6$), as well as combinations of the gaseous compound and/or molecular mixtures of the reducing agent.

  11. Space Applications Industrial Laser System (SAILS)

    NASA Technical Reports Server (NTRS)

    Mccay, T. D.; Bible, J. B.; Mueller, R. E.

    1993-01-01

    A program is underway to develop a YAG laser based materials processing workstation to fly in the cargo bay of the Space Shuttle. This workstation, called Space Applications Industrial Laser System (SAILS), will be capable of cutting and welding steel, aluminum, and Inconel alloys of the type planned for use in constructing the Space Station Freedom. As well as demonstrating the ability of a YAG laser to perform remote (fiber-optic delivered) repair and fabrication operations in space, fundamental data will be collected on these interactions for comparison with terrestrial data and models. The flight system, scheduled to fly in 1996, will be constructed as three modules using standard Get-Away-Special (GAS) canisters. The first module holds the laser head and cooling system, while the second contains a high peak power electrical supply. The third module houses the materials processing workstation and the command and data acquisition subsystems. The laser head and workstation cansisters are linked by a fiber-optic cable to transmit the laser light. The team assembled to carry out this project includes Lumonics Industrial Products (laser), Tennessee Technological University (structural analysis and fabrication), Auburn University Center for Space Power (electrical engineering), University of Waterloo (low-g laser process consulting), and CSTAR/UTSI (data acquisition, control, software, integration, experiment design). This report describes the SAILS program and highlights recent activities undertaken at CSTAR.

  12. Space Applications Industrial Laser System (SAILS)

    NASA Astrophysics Data System (ADS)

    McCay, T. D.; Bible, J. B.; Mueller, R. E.

    1993-10-01

    A program is underway to develop a YAG laser based materials processing workstation to fly in the cargo bay of the Space Shuttle. This workstation, called Space Applications Industrial Laser System (SAILS), will be capable of cutting and welding steel, aluminum, and Inconel alloys of the type planned for use in constructing the Space Station Freedom. As well as demonstrating the ability of a YAG laser to perform remote (fiber-optic delivered) repair and fabrication operations in space, fundamental data will be collected on these interactions for comparison with terrestrial data and models. The flight system, scheduled to fly in 1996, will be constructed as three modules using standard Get-Away-Special (GAS) canisters. The first module holds the laser head and cooling system, while the second contains a high peak power electrical supply. The third module houses the materials processing workstation and the command and data acquisition subsystems. The laser head and workstation cansisters are linked by a fiber-optic cable to transmit the laser light. The team assembled to carry out this project includes Lumonics Industrial Products (laser), Tennessee Technological University (structural analysis and fabrication), Auburn University Center for Space Power (electrical engineering), University of Waterloo (low-g laser process consulting), and CSTAR/UTSI (data acquisition, control, software, integration, experiment design). This report describes the SAILS program and highlights recent activities undertaken at CSTAR.

  13. Laser Threat Analysis System (LTAS)

    NASA Astrophysics Data System (ADS)

    Pfaltz, John M.; Richardson, Christina E.; Ruiz, Abel; Barsalou, Norman; Thomas, Robert J.

    2002-11-01

    LTAS is a totally integrated modeling and simulation environment designed for the purpose of ascertaining the susceptibility of Air Force pilots and air crews to optical radiation threats. Using LTAS, mission planners can assess the operational impact of optically directed energy weapons and countermeasures. Through various scenarios, threat analysts are able to determine the capability of laser threats and their impact on operational missions including the air crew's ability to complete their mission effectively. Additionally, LTAS allows the risk of laser use on training ranges and the requirement for laser protection to be evaluated. LTAS gives mission planners and threat analysts complete control of the threat environment including threat parameter control and placement, terrain mapping (line-of-site), atmospheric conditions, and laser eye protection (LEP) selection. This report summarizes the design of the final version of LTAS, and the modeling methodologies implemented to accomplish analysis.

  14. Microoptoelectromechanical system (MOEMS) based laser

    SciTech Connect

    Hutchinson, Donald P.

    2003-11-04

    A method for forming a folded laser and associated laser device includes providing a waveguide substrate, micromachining the waveguide substrate to form a folded waveguide structure including a plurality of intersecting folded waveguide paths, forming a single fold mirror having a plurality of facets which bound all ends of said waveguide paths except those reserved for resonator mirrors, and disposing a pair of resonator mirrors on opposite sides of the waveguide to form a lasing cavity. A lasing material is provided in the lasing cavity. The laser can be sealed by disposing a top on the waveguide substrate. The laser can include a re-entrant cavity, where the waveguide substrate is disposed therein, the re-entrant cavity including the single fold mirror.

  15. Magnetically switched power supply system for lasers

    NASA Technical Reports Server (NTRS)

    Pacala, Thomas J. (Inventor)

    1987-01-01

    A laser power supply system is described in which separate pulses are utilized to avalanche ionize the gas within the laser and then produce a sustained discharge to cause the gas to emit light energy. A pulsed voltage source is used to charge a storage device such as a distributed capacitance. A transmission line or other suitable electrical conductor connects the storage device to the laser. A saturable inductor switch is coupled in the transmission line for containing the energy within the storage device until the voltage level across the storage device reaches a predetermined level, which level is less than that required to avalanche ionize the gas. An avalanche ionization pulse generating circuit is coupled to the laser for generating a high voltage pulse of sufficient amplitude to avalanche ionize the laser gas. Once the laser gas is avalanche ionized, the energy within the storage device is discharged through the saturable inductor switch into the laser to provide the sustained discharge. The avalanche ionization generating circuit may include a separate voltage source which is connected across the laser or may be in the form of a voltage multiplier circuit connected between the storage device and the laser.

  16. Target isolation system, high power laser and laser peening method and system using same

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd A.; Harris, Fritz

    2007-11-06

    A system for applying a laser beam to work pieces, includes a laser system producing a high power output beam. Target delivery optics are arranged to deliver the output beam to a target work piece. A relay telescope having a telescope focal point is placed in the beam path between the laser system and the target delivery optics. The relay telescope relays an image between an image location near the output of the laser system and an image location near the target delivery optics. A baffle is placed at the telescope focal point between the target delivery optics and the laser system to block reflections from the target in the target delivery optics from returning to the laser system and causing damage.

  17. Pulse shaping on the Nova laser system

    SciTech Connect

    Lawson, J.K.; Speck, D.R.; Bibeau, C.; Weiland, T.L.

    1989-02-06

    Inertial confinement fusion requires temporally shaped pulses to achieve high gain efficiency. Recently, we demonstrated the ability to produce complex temporal pulse shapes at high power at 0.35 microns on the Nova laser system. 2 refs., 2 figs.

  18. Atmospheric propagation properties of various laser systems

    NASA Astrophysics Data System (ADS)

    Pitz, Greg A.; Glass, Sara; Kamer, Brian; Klennert, Wade L.; Hostutler, David A.

    2012-06-01

    Atmospheric propagation properties of various laser systems, including diode pumped alkali lasers (DPALs) and the Chemical Oxygen Iodine Laser (COIL), are of importance. However, there appears to be a lack of highly accurate transmission characteristics of these systems associated with their operating conditions. In this study laser propagation of the rubidium-based DPAL and the COIL has been simulated utilizing integrated cavity output spectroscopy. This technique allowed for the simulation of laser propagation approaching distances of 3 kilometers on a test stand only 35 cm long. The spectral output from these simulations was compared to the HITRAN database with excellent agreement. The spectral prole and proximity of the laser line to the atmospheric absorbers is shown. These low pressure spectral proles were then extrapolated to higher pressures using an in-house hyperne model. These models allowed for the comparison of proposed systems and their output spectral prole. The diode pumped rubidium laser at pressures under an atmosphere has been shown to interact with only one water absorption feature, but at pressures approaching 7 atmospheres the D1 transition may interact with more than 6 water lines depending on resonator considerations. Additionally, a low pressure system may have some slight control of the overlap of the output prole with the water line by changing the buer gases.

  19. The TileCal Laser Calibration System

    NASA Astrophysics Data System (ADS)

    Giangiobbe, Vincent; ATLAS Tile Calorimeter Group

    TileCal is the central hadronic calorimeter of the ATLAS detector operating at LHC. It is a sampling calorimeter whose active material is made of scintillating plastic tiles. Scintillation light is read by photomultipliers. A Laser system is used to monitor their gain stability. During dedicated calibration runs the Laser system sends via long optical fibers, a monitored amount of light simultaneously to all the ≈10000 photomultipliers of TileCal. This note describes two complementary methods to measure the stability of the photomultipliers gain using the Laser calibration runs. The results of validation tests are presented for both methods and theirrespective performances and limitations are discussed.

  20. Laser power conversion system analysis, volume 1

    NASA Technical Reports Server (NTRS)

    Jones, W. S.; Morgan, L. L.; Forsyth, J. B.; Skratt, J. P.

    1979-01-01

    The orbit-to-orbit laser energy conversion system analysis established a mission model of satellites with various orbital parameters and average electrical power requirements ranging from 1 to 300 kW. The system analysis evaluated various conversion techniques, power system deployment parameters, power system electrical supplies and other critical supplies and other critical subsystems relative to various combinations of the mission model. The analysis show that the laser power system would not be competitive with current satellite power systems from weight, cost and development risk standpoints.

  1. Laser Based 3D Volumetric Display System

    DTIC Science & Technology

    1993-03-01

    Literature, Costa Mesa, CA July 1983. 3. "A Real Time Autostereoscopic Multiplanar 3D Display System", Rodney Don Williams, Felix Garcia, Jr., Texas...8217 .- NUMBERS LASER BASED 3D VOLUMETRIC DISPLAY SYSTEM PR: CD13 0. AUTHOR(S) PE: N/AWIU: DN303151 P. Soltan, J. Trias, W. Robinson, W. Dahlke 7...laser generated 3D volumetric images on a rotating double helix, (where the 3D displays are computer controlled for group viewing with the naked eye

  2. Laser traffic control system upgrades for Maunakea

    NASA Astrophysics Data System (ADS)

    Stomski, Paul J.; Campbell, Randy; Cumming, Tom; Kackley, Russell; Kwok, Shui; Thomas, Jim

    2016-07-01

    The Maunakea Laser Traffic Control System (LTCS) has been in use since 2002 providing a mechanism to prevent the laser guide star or Rayleigh scatter from a laser propagated from one telescope from interfering with science observations at any of the other telescopes that share the mountain. LTCS has also been adopted at several other astronomical sites around the world to address that same need. In 2014 the stakeholders on Maunakea began the process of improving LTCS capability to support common observing techniques with enhanced First On Target (FoT) equity. The planned improvements include support for non-sidereal observing, laser checkout at zenith, dynamic field of view size, dithering, collision calculations even when a facility is not laser impacted, multiple alert severity levels, and software refactoring. The design of these improvements was completed in early 2015, and implementation is expected to be completed in 2016. This paper describes the Maunakea LTCS collaboration and the design of these planned improvements.

  3. Solid state laser systems for space application

    NASA Technical Reports Server (NTRS)

    Kay, Richard B.

    1994-01-01

    Since the last report several things have happened to effect the research effort. In laser metrology, measurements using Michelson type interferometers with an FM modulated diode laser source have been performed. The discrete Fourier transform technique has been implemented. Problems associated with this technique as well as the overall FM scheme were identified. The accuracy of the technique is not at the level we would expect at this point. We are now investigating the effect of various types of noise on the accuracy as well as making changes to the system. One problem can be addressed by modifying the original optical layout. Our research effort was also expanded to include the assembly and testing of a diode pumped\\Nd:YAG laser pumped\\Ti sapphire laser for possible use in sounding rocket applications. At this stage, the diode pumped Nd:YAG laser has been assembled and made operational.

  4. Laser and solar-photovoltaic space power systems comparison. II.

    NASA Technical Reports Server (NTRS)

    De Young, R. J.; Stripling, J.; Enderson, T. M.; Humes, D. H.; Davis, W. T.

    1984-01-01

    A comparison of total system cost is made between solar photovoltaic and laser/receiver systems. The laser systems assume either a solar-pumped CO2 blackbody transfer laser with MHD receiver or a solar pumped liquid neodymium laser with a photovoltaic receiver. Total system costs are less for the laser systems below 300 km where drag is significant. System costs are highly dependent on altitude.

  5. Repetitive output laser system and method using target reflectivity

    DOEpatents

    Johnson, Roy R.

    1978-01-01

    An improved laser system and method for implosion of a thermonuclear fuel pellet in which that portion of a laser pulse reflected by the target pellet is utilized in the laser system to initiate a succeeding target implosion, and in which the energy stored in the laser system to amplify the initial laser pulse, but not completely absorbed thereby, is used to amplify succeeding laser pulses initiated by target reflection.

  6. Long range laser traversing system

    NASA Technical Reports Server (NTRS)

    Caudill, L. O. (Inventor)

    1974-01-01

    The relative azimuth bearing between first and second spaced terrestrial points which may be obscured from each other by intervening terrain is measured by placing at one of the points a laser source for projecting a collimated beam upwardly in the vertical plane. The collimated laser beam is detected at the second point by positioning the optical axis of a receiving instrument for the laser beam in such a manner that the beam intercepts the optical axis. In response to the optical axis intercepting the beam, the beam is deflected into two different ray paths by a beam splitter having an apex located on the optical axis. The energy in the ray paths is detected by separate photoresponsive elements that drive logic networks for proving indications of: (1) the optical axis intercepting the beam; (2) the beam being on the left of the optical axis and (3) the beam being on the right side of the optical axis.

  7. Automated retinal robotic laser system instrumentation

    NASA Astrophysics Data System (ADS)

    Barrett, Steven F.; Wright, Cameron H. G.; Jerath, Maya R.; Lewis, R. Stephen, II; Dillard, Bryan C.; Rylander, Henry G., III; Welch, Ashley J.

    1995-05-01

    Researchers at the University of Texas at Austin's Biomedical Engineering Laser Laboratory investigating the medical applications of lasers have worked toward the development of a retinal robotic laser system. The ultimate goal of this ongoing project is to precisely place and control the depth of laser lesions for the treatment of various retinal diseases such as diabetic retinopathy and retinal tears. Researchers at the USAF Academy's Department of Electrical Engineering have also become involved with this research due to similar interests. Separate low speed prototype subsystems have been developed to control lesion depth using lesion reflectance feedback parameters and lesion placement using retinal vessels as tracking landmarks. Both subsystems have been successfully demonstrated in vivo on pigmented rabbits using an argon continuous wave laser. Work is ongoing to build a prototype system to simultaneously control lesion depth and placement. The instrumentation aspects of the prototype subsystems were presented at SPIE Conference 1877 in January 1993. Since then our efforts have concentrated on combining the lesion depth control subsystem and the lesion placement subsystem into a single prototype capable of simultaneously controlling both parameters. We have designed this combined system CALOSOS for Computer Aided Laser Optics System for Ophthalmic Surgery. An initial CALOSOS prototype design is provided. We have also investigated methods to improve system response time. The use of high speed non-standard frame rate CCD cameras and high speed local bus frame grabbers hosted on personal computers are being investigated. A review of system testing in vivo to date is provided in SPIE Conference proceedings 2374-49 (Novel Applications of Lasers and Pulsed Power, Dual-Use Applications of Lasers: Medical session).

  8. Laser beam control and diagnostic systems for the copper-pumped dye laser system at Lawrence Livermore National Laboratory

    SciTech Connect

    Bliss, E.S.; Peterson, R.L.; Salmon, J.T.; Thomas, R.A.

    1992-11-01

    The laser system described in the previous paper is used for experiments in which success requires tight tolerances on beam position, direction, and wavefront. Indeed, the optimum performance of the laser itself depends on careful delivery of copper laser light to the dye amplifiers, precise propagation of dye laser beams through restricted amplifier apertures, and accurate monitoring of laser power at key locations. This paper describes the alignment systems, wavefront correction systems, and laser diagnostics systems which ensure that the control requirements of both the laser and associated experiments are met. Because laser isotope separation processes utilize more than one wavelength, these systems monitor and control multiple wavelengths simultaneously.

  9. Fast Offset Laser Phase-Locking System

    NASA Technical Reports Server (NTRS)

    Shaddock, Daniel; Ware, Brent

    2008-01-01

    Figure 1 shows a simplified block diagram of an improved optoelectronic system for locking the phase of one laser to that of another laser with an adjustable offset frequency specified by the user. In comparison with prior systems, this system exhibits higher performance (including higher stability) and is much easier to use. The system is based on a field-programmable gate array (FPGA) and operates almost entirely digitally; hence, it is easily adaptable to many different systems. The system achieves phase stability of less than a microcycle. It was developed to satisfy the phase-stability requirement for a planned spaceborne gravitational-wave-detecting heterodyne laser interferometer (LISA). The system has potential terrestrial utility in communications, lidar, and other applications. The present system includes a fast phasemeter that is a companion to the microcycle-accurate one described in High-Accuracy, High-Dynamic-Range Phase-Measurement System (NPO-41927), NASA Tech Briefs, Vol. 31, No. 6 (June 2007), page 22. In the present system (as in the previously reported one), beams from the two lasers (here denoted the master and slave lasers) interfere on a photodiode. The heterodyne photodiode output is digitized and fed to the fast phasemeter, which produces suitably conditioned, low-latency analog control signals which lock the phase of the slave laser to that of the master laser. These control signals are used to drive a thermal and a piezoelectric transducer that adjust the frequency and phase of the slave-laser output. The output of the photodiode is a heterodyne signal at the difference between the frequencies of the two lasers. (The difference is currently required to be less than 20 MHz due to the Nyquist limit of the current sampling rate. We foresee few problems in doubling this limit using current equipment.) Within the phasemeter, the photodiode-output signal is digitized to 15 bits at a sampling frequency of 40 MHz by use of the same analog

  10. New Electronic-Transition Laser Systems. Part 1. Electron Pumped Systems. Part 2. Chemically Pumped Systems

    DTIC Science & Technology

    1976-12-01

    laser development . There has not yet been a demonstration of gain in a visible chemical laser systems, and it appears unlikely that practical lasers of this type will be developed in the near future. Substantial progress has been made

  11. Satellite Power Systems (SPS) laser studies. Volume 1: Laser environmental impact study

    NASA Technical Reports Server (NTRS)

    Beverly, R. E., III

    1980-01-01

    The environmental impact of space to Earth power transmission using space borne laser subsystems is emphasized. A laser system is defined, estimates of relevant efficiencies for laser power generation and atmospheric transmission are developed, and a comparison is made to a microwave system. Ancillary issues, such as laser beam spreading, safety and security, mass and volume estimates and technology growth are considered.

  12. Localized CO2 Laser Treatment for Mitigation of 3(omega) Damage Growth in Fused Silica

    SciTech Connect

    Brusasco, R M; Penetrante, B M; Butler, J A; Hrubesh, L W

    2001-12-07

    A technique for inhibiting the growth of laser-induced surface damage on fused silica, initiated and propagated at the 351 nm laser wavelength, has been investigated. The technique exposes the damage sites to single pulses of a CO{sub 2} laser operating at the 10.6 {micro}m wavelength at or near beam focus. This method results in a very localized treatment of the laser damage site and modifies the site such that laser damage does not propagate further. A laser damage site initiated with a single pulse of 355 nm laser light at {approx} 45 J cm{sup -2} and 7.5 ns pulse duration grows rapidly upon further illumination at 8 J cm{sup -2} with 100% probability. Treatment of these sites with single pulses of 10.6 {micro}m laser light for one second at a power level of between 17 and 37 Watts with a beam diameter of 5 mm alters the damage site such that it does not grow with subsequent 351 nm laser illumination at 8 J cm{sup -2} 10 ns pulse duration for > 1000 shots. The technique has been found to be 100% effective at stopping the growth of the laser damage.

  13. Experimental nonlinear laser systems: Bigger data for better science?

    SciTech Connect

    Kane, D. M.; Toomey, J. P.; McMahon, C.; Noblet, Y.; Argyris, A.; Syvridis, D.

    2014-10-06

    Bigger data is supporting knowledge discovery in nonlinear laser systems as will be demonstrated with examples from three semiconductor laser based systems – one with optical feedback, a photonic integrated circuit (PIC) chaotic laser and a frequency shifted feedback laser system.

  14. 100-J UV laser for dynamic compression research

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Fochs, S. F.; Bromage, J.; Broege, D.; Cuffney, R.; Currier, Z.; Dorrer, C.; Ehrich, B.; Engler, J.; Guardalben, M.; Kephalos, N.; Marozas, J.; Roides, R.; Zuegel, J.

    2016-03-01

    A 100-J, 351-nm laser has been developed for the Dynamic Compression Sector located at the Advanced Photon Source. This laser will drive shocks in solid-state materials which will be probed by picosecond x-ray pulses available from the synchrotron source. The laser utilizes a state-of-the-art fiber front end providing pulse lengths up to 20 ns with pulse shapes tailored to optimize shock trajectories. A diode-pumped Nd:glass regenerative amplifier is followed by a four-pass, flash-lamp-pumped rod amplifier. The regenerative amplifier is designed to produce up to 20 mJ with high stability. The final amplifier uses a six-pass, 15-cm, Nd:glass disk amplifier based on an OMEGA laser design. A KDP Type-II/Type-II frequency tripler configuration converts the 1053-nm laser output to a wavelength of 351 nm and the ultraviolet beam is image relayed to the target chamber. Smoothing by Spectral Dispersion and polarization smoothing have been optimized to produce uniform shocks in the materials to be tested. Custom control software collects all diagnostic information and provides a central location for all aspects of laser operation.

  15. X-ray laser system, x-ray laser and method

    DOEpatents

    London, Richard A.; Rosen, Mordecai D.; Strauss, Moshe

    1992-01-01

    Disclosed is an x-ray laser system comprising a laser containing generating means for emitting short wave length radiation, and means external to said laser for energizing said generating means, wherein when the laser is in an operative mode emitting radiation, the radiation has a transverse coherence length to width ratio of from about 0.05 to 1. Also disclosed is a method of adjusting the parameters of the laser to achieve the desired coherence length to laser width ratio.

  16. High-energy laser plasma diagnostic system

    NASA Astrophysics Data System (ADS)

    Zhao, Mingjun M.; Aye, Tin M.; Fruehauf, Norbert; Savant, Gajendra D.; Erwin, Daniel A.; Smoot, Brayton E.; Loose, Richard W.

    2000-07-01

    This paper describes the development of a non-contact diagnosis system for analyzing the plasma density profile, temperature profile, and ionic species of a high energy laser-generated plasma. The system was developed by Physical Optics Corporation in cooperation with the U.S. Army Space and Missile Defense Command, High Energy Laser Systems Test Facility at White Sands Missile Range, New Mexico. The non- contact diagnostic system consists of three subsystems: an optical fiber-based interferometer, a plasma spectrometer, and a genetic algorithm-based fringe-image processor. In the interferometer subsystem, the transmitter and the receiver are each packaged as a compact module. A narrow notch filter rejects strong plasma light, passing only the laser probing beam, which carries the plasma density information. The plasma spectrum signal is collected by an optical fiber head, which is connected to a compact spectrometer. Real- time genetic algorithm-based data processing/display permits instantaneous analysis of the plasma characteristics. The research effort included design and fabrication of a vacuum chamber, and high-energy laser plasma generation. Compactness, real-time operation, and ease of use make the laser plasma diagnosis system well suited for dual use applications such as diagnosis of electric arc and other industrial plasmas.

  17. Investigation of an automated cleaning system for LMJ coating sol-gel process

    NASA Astrophysics Data System (ADS)

    Lavastre, E.; Fontaine, S.; Bergez, R.; Wender, P.; Cormont, P.; Pellegrini, C.; Beaurain, L.; Belleville, P.

    2008-09-01

    The French Commission for Atomic Energy is currently involved in a project which consists in the construction of a 2MJ/500TW (351nm) laser, so called LMJ (Megajoule-class laser) devoted to Inertial Confinement Fusion (ICF) research in France[1]. For this high power lasers, the sol-gel process[2] has been selected for 95% of laser optical coated area because of room temperature and atmospheric pressure conditions with guarantee for high optical and laser induced damage threshold (LIDT) performances at a low cost compared to conventional vacuum deposition processes. The production rate of sol-gel coatings for the LMJ optical components will require an automated cleaning surface step during sol-gel process. We are investigating a spraying system and wash cycles compatible with the two sol-gel deposition methods: dip and laminar-flow coating. The challenge is to achieve the same cleaned optical surfaces as manual process without using organic solvents. Therefore the main specifications of the cleaning quality are the following ones: a high surface energy over all optical sides (up to 400×400 mm2 area) and no degradation of polished sides (surface defects and LIDT). We present the metrologies carried out and the first results obtained from different wash cycles. These one mainly consist in measurement of contact angles, defects inspections under specific lighting conditions and LIDT tests. Several parameters of wash cycles have been investigated such as washing and rinsing temperatures, water quality, type and concentration of detergents, wettability effects...

  18. Laser tracking system with automatic reacquisition capability.

    PubMed

    Johnson, R E; Weiss, P F

    1968-06-01

    A laser based tracking system is described that has the capability of automatically performing an acquisition search to locate the target. This work is intended for precision launch phase tracking of the Saturn V launch vehicle. System tracking accuracies limited only by the atmosphere have been demonstrated, as has acquisition over a 1 degrees x 1 degrees field of view.

  19. A Modular Laser Graphics Projection System

    NASA Astrophysics Data System (ADS)

    Newswanger, Craig D.

    1984-05-01

    WED Enterprises has designed and built a modular projection system for the presentation of animated laser shows. This system was designed specifically for use in Disney theme shows. Its modular design allows it to be adapted to many show situations with simple hardware and software adjustments. The primary goals were superior animation, long life, low maintenance and stand alone operation.

  20. Injection mode-locking Ti-sapphire laser system

    DOEpatents

    Hovater, James Curtis; Poelker, Bernard Matthew

    2002-01-01

    According to the present invention there is provided an injection modelocking Ti-sapphire laser system that produces a unidirectional laser oscillation through the application of a ring cavity laser that incorporates no intracavity devices to achieve unidirectional oscillation. An argon-ion or doubled Nd:YVO.sub.4 laser preferably serves as the pump laser and a gain-switched diode laser serves as the seed laser. A method for operating such a laser system to produce a unidirectional oscillating is also described.

  1. The National Ignition Facility: Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies

    SciTech Connect

    Wuest, C

    2001-10-29

    The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory (LLNL) is a 192-beam, 1.8-megajoule, 500-terawatt, 351-nm laser for inertial confinement fusion (ICF) and high-energy-density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency (NNSA) to provide an experimental test bed for the U.S. Stockpile Stewardship Program to ensure the country's nuclear deterrent without underground nuclear testing. The experimental program will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% will be dedicated to basic science research. Laser hardware is modularized into line replaceable units (LRUs) such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by a distributed computer control system of nearly 60,000 control points. The supervisory control room presents facility-wide status and orchestrates experiments using operating parameters predicted by physics models. A network of several hundred front-end processors (FEPs) implements device control. The object-oriented software system is implemented in the Ada and Java languages and emphasizes CORBA distribution of reusable software objects. NIF is currently scheduled to provide first light in 2004 and will be completed in 2008.

  2. Airborne space laser communication system and experiments

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Ming; Zhang, Li-zhong; Meng, Li-Xin

    2015-11-01

    Airborne space laser communication is characterized by its high speed, anti-electromagnetic interference, security, easy to assign. It has broad application in the areas of integrated space-ground communication networking, military communication, anti-electromagnetic communication. This paper introduce the component and APT system of the airborne laser communication system design by Changchun university of science and technology base on characteristic of airborne laser communication and Y12 plan, especially introduce the high communication speed and long distance communication experiment of the system that among two Y12 plans. In the experiment got the aim that the max communication distance 144Km, error 10-6 2.5Gbps - 10-7 1.5Gbps capture probability 97%, average capture time 20s. The experiment proving the adaptability of the APT and the high speed long distance communication.

  3. Laser system with partitioned prism

    SciTech Connect

    Nettleton, J. E.; Barr, D. N.

    1985-03-26

    An array of optical frequency-sensitive elements such as diffraction gratings or interference filters are arranged in a row, and the optical path of the laser cavity can be directed to include one of these elements. A partitioned optical prism consisting of a triangular portion and one or more paralleogramatic portions are used to direct the path. Between the portions are piezoelectric elements which, when energized, expand to provide an air gap between the portions and to allow total reflection of an optical ray at the surface of the prism next to the gap.

  4. Injection locked oscillator system for pulsed metal vapor lasers

    DOEpatents

    Warner, Bruce E.; Ault, Earl R.

    1988-01-01

    An injection locked oscillator system for pulsed metal vapor lasers is disclosed. The invention includes the combination of a seeding oscillator with an injection locked oscillator (ILO) for improving the quality, particularly the intensity, of an output laser beam pulse. The present invention includes means for matching the first seeder laser pulses from the seeding oscillator to second laser pulses of a metal vapor laser to improve the quality, and particularly the intensity, of the output laser beam pulse.

  5. Laser-SPS systems analysis and environmental impact assessment

    NASA Technical Reports Server (NTRS)

    Beverly, R. E., III

    1980-01-01

    The systems feasibility and environmental impact of replacing the microwave transmitters on the Satellite Power System with laser transmitters are examined. The lasers suggested are two molecular-gas electric-discharge lasers (EDL's), namely the CO and CO2 lasers. Calculations are made on system efficiency, atmospheric transmission efficiency, and laser beam spreading. It is found that the present satellite concept using lasers is far too inefficient and massive to be economically viable. However, the safety issues associated with laser power transmission appear tractable, and no effects could be identified which present a real danger of serious injury to the environment, although certain phenomena deserve closer scrutiny.

  6. The global light system laser station prototype

    NASA Astrophysics Data System (ADS)

    Hunt, Patrick R.

    2015-08-01

    We describe the design and fabrication of a prototype Global Light System (GLS) laser station for the JEM-EUSO project. The GLS will consist of a network of ground-based Ultraviolet (UV) light-emitting diodes (LEDs) and steered lasers to monitor and calibrate the cosmic ray detector planned for install on the International Space Station (ISS). The GLS units will generate optical signatures in the atmosphere that are comparable to tracks from cosmic ray extensive air showers (EASs). Unlike an EAS, the number, time, energy, location and direction (for lasers) of GLS events can be specified as JEM-EUSO passes 400 km overhead. Laser tracks from the GLS prototype will be recorded by prototype detectors in ground-to-ground tests. Distant tracks with low angular speed are of particular interest because these are the types of EAS tracks that will be measured by JEM-EUSO. To do these ground-to-ground tests, the prototype detectors will need to measure the laser through the atmosphere at low elevation viewing angles. The beam energy can be adjusted from 1 to 90 mJ to compensate for this additional atmospheric attenuation. The frequency-tripled Nd:YAG laser produces 355 nm (7 ns pulse) light. This wavelength is near the center of the UV EAS fluorescence spectrum. The system is housed in a utility trailer that can be transported by a small truck for domestic campaigns or shipped in an industry standard 20 foot container for global deployment. In operation mode, the laser platform inside the trailer is isolated mechanically to maintain beam pointing accuracy. A retractable two stage steering head can point in any direction above the horizon. A slip ring eliminates cable wrap problems. The GLS prototype will be used to test the EUSO-TA detector and will also be used in preflight tests of the EUSO-balloon payload planned for a super pressure balloon mission.

  7. Laser-induced damage measurements on phase-unifying mirrors for XeF excimer laser cavities

    NASA Astrophysics Data System (ADS)

    Protopapa, Maria Lucia; Perrone, Maria Rita; Piegari, Angela M.; Andre, Bernard; Ravel, Guillaume

    2004-02-01

    Mirrors with a graded reflectance profile have been used for many years in unstable cavities for improving the optical quality of the laser output beams. All the variable reflectivity mirrors are realized with multilayer-coatings containing one or more profiled layers inside the stack. They generally exhibit high reflectance in the central area and very low reflectance in the external area. In particular, phase-unifying (PU) mirrors are graded mirrors properly designed in order to obtain a low wave-front distortion in the transmitted laser beam. In this paper, the laser damage resistance properties of a PU mirror designed for XeF excimer lasers (351 nm) have been studied. The laser-induced damage threshold has been measured by a XeF laser on the high and low reflectivity areas. A correlation between the damage threshold values and the standing wave electric field profile, which settles inside the two coating structures during laser irradiation, has been found.

  8. COHERENT LASER VISION SYSTEM (CLVS) OPTION PHASE

    SciTech Connect

    Robert Clark

    1999-11-18

    The purpose of this research project was to develop a prototype fiber-optic based Coherent Laser Vision System (CLVS) suitable for DOE's EM Robotic program. The system provides three-dimensional (3D) vision for monitoring situations in which it is necessary to update the dimensional spatial data on the order of once per second. The system has total immunity to ambient lighting conditions.

  9. Kinetic modelling of krypton fluoride laser systems

    SciTech Connect

    Jancaitis, K.S.

    1983-11-01

    A kinetic model has been developed for the KrF* rare gas halide laser system, specifically for electron-beam pumped mixtures of krypton, fluorine, and either helium or argon. The excitation produced in the laser gas by the e-beam was calculated numerically using an algorithm checked by comparing the predicted ionization yields in the pure rare gases with their experimental values. The excitation of the laser media by multi-kilovolt x-rays was also modeled and shown to be similar to that produced by high energy electrons. A system of equations describing the transfer of the initial gas excitation into the laser upper level was assembled using reaction rate constants from both experiment and theory. A one-dimensional treatment of the interaction of the laser radiation with the gas was formulated which considered spontaneous and stimulated emission and absorption. The predictions of this model were in good agreement with the fluorescence signals and gain and absorption measured experimentally.

  10. Laser beam shaping and packaging system

    NASA Astrophysics Data System (ADS)

    Luo, Daxin; Zhao, Baiqin

    2012-10-01

    This paper presents a semiconductor laser beam shaping system, that can collimate the irradiance profile effectively and package the laser diode(LD) at the same time. Due to the semiconductor LD is a kind of line source, a particular ellipsoidal lens is designed after both the fast-axis and the slow-axis of the laser beam analyzed. Geometrical optics analysis based on the ray tracing method is done and the formulas to calculate the shape of the lens are given. Both the theoretical and experimental result show that the laser beam system works effectively; the divergence angle is reduced to less than 0.5 degree in the fast-axial direction and 1.8 degree in the slow-axial direction. In addition, it is the same process that makes the laser beam shaper and packages the LD by using epoxy resin, which simplifies the manufacturing process and reduces the LD volume greatly. Because of the advantages of small volume, low-cost, high rigidity and easy fabrication, the shaper is of great value in the field of semiconductor LD applications.

  11. Backscatter Reduction Using Combined Spatial, Temporal, and Polarization Beam Smoothing in a Long-Scale-length Laser Plasma

    SciTech Connect

    Moody, J. D.; MacGowan, B. J.; Rothenberg, J. E.; Berger, R. L.; Divol, L.; Glenzer, S. H.; Kirkwood, R. K.; Williams, E. A.; Young, P. E.

    2001-03-26

    Spatial, temporal, and polarization smoothing schemes are combined for the first time to reduce to a few percent the total stimulated backscatter of a NIF-like probe laser beam (2x10{sup 15} W/cm{sup 2}, 351 nm, f/8) in a long-scale-length laser plasma. Combining temporal and polarization smoothing reduces simulated Brillouin scattering and simulated Raman scattering (SRS) up to an order of magnitude although neither smoothing scheme by itself is uniformly effective. The results agree with trends observed in simulations performed with the laser-plasma interaction code F3D simulations [R.L. Berger et al., Phys. Plasma 6, 1043 (1999)].

  12. The design of laser scanning galvanometer system

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoling; Zhou, Bin; Xie, Weihao; Zhang, Yuangeng

    2015-02-01

    In this paper, we designed the laser scanning galvanometer system according to our requirements. Based on scanning range of our laser scanning galvanometer system, the design parameters of this system were optimized. During this work, we focused on the design of the f-θ field lens. An optical system of patent lens in the optical manual book, which had three glasses structure, was used in our designs. Combining the aberration theory, the aberration corrections and image quality evaluations were finished using Code V optical design software. An optimum f-θ field lens was designed, which had focal length of 434 mm, pupil diameter of 30 mm, scanning range of 160 mm × 160 mm, and half field angle of 18°×18°. At the last, we studied the influences of temperature changes on our system.

  13. Systems analysis on laser beamed power

    NASA Technical Reports Server (NTRS)

    Zeiders, Glenn W., Jr.

    1993-01-01

    The NASA SELENE power beaming program is intended to supply cost-effective power to space assets via Earth-based lasers and active optics systems. Key elements of the program are analyzed, the overall effort is reviewed, and recommendations are presented.

  14. Monolithically integrated absolute frequency comb laser system

    SciTech Connect

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  15. Dye system for dye laser applications

    DOEpatents

    Hammond, Peter R.

    1991-01-01

    A dye of the DCM family, [2-methyl-6-[2-(1,2,3,4-tetrahydro-1-methyl-6-quinolinyl)ethenyl]-4H-pyran -4-ylidene]-propanedinitrile, dissolved in 2-phenoxyethanol, is non-mutagenic, stable and efficient, particularly in a pumped continuous wave laser system.

  16. Investigations of a Dual Seeded 1178 nm Raman Laser System

    DTIC Science & Technology

    2016-01-14

    20 W. Because of the linewidth broadening, a co-pumped second Stokes Raman laser system is not useful for the sodium guidestar laser application...pumped second Stokes Raman laser system is not useful for the sodium guidestar laser application which requires narrow linewidth. Keywords: Raman...resonator, linewidth broadening, fiber Bragg grating bandwidth 1. INTRODUCTION Current narrow linewidth sodium guidestar lasers are either

  17. Method and system for powering and cooling semiconductor lasers

    SciTech Connect

    Telford, Steven J; Ladran, Anthony S

    2014-02-25

    A semiconductor laser system includes a diode laser tile. The diode laser tile includes a mounting fixture having a first side and a second side opposing the first side and an array of semiconductor laser pumps coupled to the first side of the mounting fixture. The semiconductor laser system also includes an electrical pulse generator thermally coupled to the diode bar and a cooling member thermally coupled to the diode bar and the electrical pulse generator.

  18. The study of laser beam riding guided system based on 980nm diode laser

    NASA Astrophysics Data System (ADS)

    Qu, Zhou; Xu, Haifeng; Sui, Xin; Yang, Kun

    2015-10-01

    With the development of science and technology, precision-strike weapons has been considered to be important for winning victory in military field. Laser guidance is a major method to execute precision-strike in modern warfare. At present, the problems of primary stage of Laser guidance has been solved with endeavors of countries. Several technical aspects of laser-beam riding guided system have been mature, such as atmosphere penetration of laser beam, clutter inhibition on ground, laser irradiator, encoding and decoding of laser beam. Further, laser beam quality, equal output power and atmospheric transmission properties are qualified for warfare situation. Riding guidance instrument is a crucial element of Laser-beam riding guided system, and is also a vital element of airborne, vehicle-mounted and individual weapon. The optical system mainly consist of sighting module and laser-beam guided module. Photoelectric detector is the most important sensing device of seeker, and also the key to acquire the coordinate information of target space. Currently, in consideration of the 1.06 u m of wavelength applied in all the semi-active laser guided weapons systems, lithium drifting silicon photodiode which is sensitive to 1.06 u m of wavelength is used in photoelectric detector. Compared to Solid and gas laser, diode laser has many merits such as small volume, simple construction, light weight, long life, low lost and easy modulation. This article introduced the composition and operating principle of Laser-beam riding guided system based on 980 nm diode laser, and made a analysis of key technology; for instance, laser irradiator, modulating disk of component, laser zooming system. Through the use of laser diode, Laser-beam riding guided system is likely to have smaller shape and very light.

  19. Transition of the BELLA PW laser system towards a collaborative research facility in laser plasma science

    NASA Astrophysics Data System (ADS)

    Toth, Csaba; Evans, Dave; Gonsalves, Anthony J.; Kirkpatrick, Mark; Magana, Art; Mannino, Greg; Mao, Hann-Shin; Nakamura, Kei; Riley, Joe R.; Steinke, Sven; Sipla, Tyler; Syversrud, Don; Ybarrolaza, Nathan; Leemans, Wim P.

    2017-03-01

    The advancement of Laser-Plasma Accelerators (LPA) requires systematic studies with ever increasing precision and reproducibility. A key component of such a research endeavor is a facility that provides reliable, well characterized laser sources, flexible target systems, and comprehensive diagnostics of the laser pulses, the interaction region, and the produced electron beams. The Berkeley Lab Laser Accelerator (BELLA), a PW laser facility, now routinely provides high quality focused laser pulses for high precision experiments. A description of the commissioning process, the layout of the laser systems, the major components of the laser and radiation protection systems, and a summary of early results are given. Further scientific plans and highlights of operational experience that serve as the basis for transition to a collaborative research facility in high-peak power laser-plasma interaction research are reviewed.

  20. Demonstration of high sensitivity laser ranging system

    NASA Technical Reports Server (NTRS)

    Millar, Pamela S.; Christian, Kent D.; Field, Christopher T.

    1994-01-01

    We report on a high sensitivity semiconductor laser ranging system developed for the Gravity and Magnetic Earth Surveyor (GAMES) for measuring variations in the planet's gravity field. The GAMES laser ranging instrument (LRI) consists of a pair of co-orbiting satellites, one which contains the laser transmitter and receiver and one with a passive retro-reflector mounted in an drag-stabilized housing. The LRI will range up to 200 km in space to the retro-reflector satellite. As the spacecraft pair pass over the spatial variations in the gravity field, they experience along-track accelerations which change their relative velocity. These time displaced velocity changes are sensed by the LRI with a resolution of 20-50 microns/sec. In addition, the pair may at any given time be drifting together or apart at a rate of up to 1 m/sec, introducing a Doppler shift into the ranging signals. An AlGaAs laser transmitter intensity modulated at 2 GHz and 10 MHz is used as fine and medium ranging channels. Range is measured by comparing phase difference between the transmit and received signals at each frequency. A separate laser modulated with a digital code, not reported in this paper, will be used for coarse ranging to unambiguously determine the distance up to 200 km.

  1. Laser-jamming effectiveness analysis of combined-fiber lasers for airborne defense systems.

    PubMed

    Jie, Xu; Shanghong, Zhao; Rui, Hou; Shengbao, Zhan; Lei, Shi; Jili, Wu; Shaoqiang, Fang; Yongjun, Li

    2008-12-20

    The laser-jamming effectiveness of combined fiber lasers for airborne defense systems is analyzed in detail. Our preliminary experimental results are proof of the concept of getting a high-power laser through a beam combination technique. Based on combined fiber lasers, the jamming effectiveness of four-quadrant guidance and imaging guidance systems are evaluated. The simulation results have proved that for a four-quadrant guidance system, the tracking system takes only two seconds to complete tracking, and the new tracking target is the jamming laser; for the imaging guidance system, increasing the power of the jamming laser or the distance between the target and the jamming laser are both efficient ways to achieve a successful laser jamming.

  2. Redundant Strapdown Laser Gyro Navigation System

    NASA Technical Reports Server (NTRS)

    Mcpherson, B. W.; Walls, B. F.; White, J. B.

    1976-01-01

    For the last several years, NASA has pursued the development of low-cost high-reliability inertial navigation systems that would satisfy a broad spectrum of future space and avionics missions. Two specific programs have culminated in the construction of a Redundant Strapdown Laser Gyro Navigation System. These two programs were for development of a space ultrareliable modular computer (SUMC) and a redundant laser gyro inertial measurement unit (IMU). The SUMC is a digital computer that employs state-of-the-art large-scale integrated circuits configured in a functional modular breakdown. The redundant laser gyro IMU is a six-pack strapdown sensor package in a dodecahedron configuration which uses six laser gyros to provide incremental angular positions and six accelerometers for linear velocity outputs. The sensor arrangement allows automatic accommodation of two failures; a third failure can be tolerated provided it can be determined. The navigation system also includes redundant power supplies, built-in test-equipment (BITE) circuits for failure detection, and software which provides for navigation, redundancy management, and automatic calibration and alignment.

  3. Preliminary comparison of laser and solar space power systems

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.; Tepper, W. D.; Conway, E. J.; Humes, D. H.

    1983-01-01

    Four laser receiver systems are compared to onboard solar photovoltaic power generation for spacecraft electrical requirements. The laser photovoltaic and laser MHD receivers were found to be lighter than a comparable planar solar photovoltaic system. The laser receiver also shows less drag at lower altitudes. Panel area is also reduced for the laser receiver allowing fewer Shuttle trips for construction. Finally, it is shown that a 1 megawatt laser and receiver system might be constructed with less weight than a comparable planar solar photovoltaic system.

  4. Spaceborne CO2 laser communications systems

    NASA Technical Reports Server (NTRS)

    Mcelroy, J. H.; Mcavoy, N.; Johnson, E. H.; Goodwin, F. E.; Peyton, B. J.

    1975-01-01

    Projections of the growth of earth-sensing systems for the latter half of the 1980's show a data transmission requirement of 300 Mbps and above. Mission constraints and objectives lead to the conclusion that the most efficient technique to return the data from the sensing satellite to a ground station is through a geosynchronous data relay satellite. Of the two links that are involved (sensing satellite to relay satellite and relay satellite to ground), a laser system is most attractive for the space-to-space link. The development of CO2 laser systems for space-to-space applications is discussed with the completion of a 300 Mpbs data relay receiver and its modification into a transceiver. The technology and state-of-the-art of such systems are described in detail.

  5. A simplified 461-nm laser system using blue laser diodes and a hollow cathode lamp for laser cooling of Sr.

    PubMed

    Shimada, Yosuke; Chida, Yuko; Ohtsubo, Nozomi; Aoki, Takatoshi; Takeuchi, Makoto; Kuga, Takahiro; Torii, Yoshio

    2013-06-01

    We develop a simplified light source at 461 nm for laser cooling of Sr without frequency-doubling crystals but with blue laser diodes. An anti-reflection coated blue laser diode in an external cavity (Littrow) configuration provides an output power of 40 mW at 461 nm. Another blue laser diode is used to amplify the laser power up to 110 mW by injection locking. For frequency stabilization, we demonstrate modulation-free polarization spectroscopy of Sr in a hollow cathode lamp. The simplification of the laser system achieved in this work is of great importance for the construction of transportable optical lattice clocks.

  6. A simplified 461-nm laser system using blue laser diodes and a hollow cathode lamp for laser cooling of Sr

    PubMed Central

    Shimada, Yosuke; Chida, Yuko; Ohtsubo, Nozomi; Aoki, Takatoshi; Takeuchi, Makoto; Kuga, Takahiro; Torii, Yoshio

    2013-01-01

    We develop a simplified light source at 461 nm for laser cooling of Sr without frequency-doubling crystals but with blue laser diodes. An anti-reflection coated blue laser diode in an external cavity (Littrow) configuration provides an output power of 40 mW at 461 nm. Another blue laser diode is used to amplify the laser power up to 110 mW by injection locking. For frequency stabilization, we demonstrate modulation-free polarization spectroscopy of Sr in a hollow cathode lamp. The simplification of the laser system achieved in this work is of great importance for the construction of transportable optical lattice clocks. PMID:23822327

  7. 21 CFR 884.6200 - Assisted reproduction laser system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Assisted reproduction laser system. 884.6200... (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Assisted Reproduction Devices § 884.6200 Assisted reproduction laser system. (a) Identification. The assisted reproduction laser system is a...

  8. 21 CFR 884.6200 - Assisted reproduction laser system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Assisted reproduction laser system. 884.6200... (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Assisted Reproduction Devices § 884.6200 Assisted reproduction laser system. (a) Identification. The assisted reproduction laser system is a...

  9. 21 CFR 884.6200 - Assisted reproduction laser system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Assisted reproduction laser system. 884.6200... (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Assisted Reproduction Devices § 884.6200 Assisted reproduction laser system. (a) Identification. The assisted reproduction laser system is a...

  10. 21 CFR 884.6200 - Assisted reproduction laser system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Assisted reproduction laser system. 884.6200... (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Assisted Reproduction Devices § 884.6200 Assisted reproduction laser system. (a) Identification. The assisted reproduction laser system is a...

  11. 21 CFR 884.6200 - Assisted reproduction laser system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Assisted reproduction laser system. 884.6200... (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Assisted Reproduction Devices § 884.6200 Assisted reproduction laser system. (a) Identification. The assisted reproduction laser system is a...

  12. Performance results on the laser portion of the Keck laser guide star system

    SciTech Connect

    Cooke, J B; Danforth, P M; Erbert, G V; Feldman, M; Friedman, H W; Gavel, D T; Jenkins, S L; Jones, H E; Kanz, V K; Kuklo, T; Newman, M J; Pierce, E L; Presta, R W; Salmon, J T; Thompson, G R; Wong, N J

    1998-09-29

    The Laser Guide Star (LGS) system for the Keck II, 10 m telescope consists of two separate but interconnected systems, the laser and the adaptive optics bench. The laser portion of the LGSl is a set of five frequency doubled YAG lasers pumping a master oscillator-power amplifier dye chain to produce up to 30 W of 589 p at 26 kHz of tuned light. Presently the laser system has been set up at the Keck facility in Waimea, HI and is undergoing test and evaluation. When it will be set up on the Keck II telescope, the pump lasers, dye master oscillator and associated control equipment will be located on the dome floor and the dye laser amplifiers, beam control system and diagnostics will be mounted directly on the telescope as shown in Fig. 1, Extensive use of fiber optics for both transmission of the oscillator pulse and the pump laser light has been used.

  13. Laser safety and hazard analysis for the temperature stabilized BSLT ARES laser system.

    SciTech Connect

    Augustoni, Arnold L.

    2003-08-01

    A laser safety and hazard analysis was performed for the temperature stabilized Big Sky Laser Technology (BSLT) laser central to the ARES system based on the 2000 version of the American National Standards Institute's (ANSI) Standard Z136.1, for Safe Use of Lasers and the 2000 version of the ANSI Standard Z136.6, for Safe Use of Lasers Outdoors. As a result of temperature stabilization of the BSLT laser the operating parameters of the laser had changed requiring a hazard analysis based on the new operating conditions. The ARES laser system is a Van/Truck based mobile platform, which is used to perform laser interaction experiments and tests at various national test sites.

  14. Space Applications of Industrial Laser Systems (SAILS)

    NASA Technical Reports Server (NTRS)

    Mueller, Robert E.; McCay, T. Dwayne; McCay, Mary Helen; Bible, Brice

    1995-01-01

    A program is under way to develop a YAG laser based materials processing workstation to fly in the cargo bay of the Space Shuttle. The system will be capable of cutting and welding steel, aluminum, and Inconel alloys of the type planned for use on Space Station Freedom. As well as demonstrating the ability of a YAG laser to perform remote (fiber-optic delivered) repair and fabrication operations in space, fundamental data will be collected on these interactions for comparison with terrestrial data and models. The flight system, scheduled to fly in 1995, will be constructed as two modules to fit into the standard Get Away Special (GAS) canisters. The first can holds the laser and its power supply, to be constructed by our industrial partner, Lumonics Industrial Processing Division. The second canister has the materials processing workstation and the command and data acquisition subsystems. These components will be provided by groups at the University of Tennessee Space Institute (UTSI) and the University of Waterloo. The cans are linked by a fiber-optic cable which transmits the beam from the laser head to the workstation.

  15. Space Applications of Industrial Laser Systems (SAILS)

    NASA Technical Reports Server (NTRS)

    Mueller, Robert E.; McCay, T. Dwayne; McCay, Mary Helen; Bible, Brice

    1992-01-01

    A program is under way to develop a YAG laser based materials processing workstation to fly in the cargo bay of the Space Shuttle. The system will be capable of cutting and welding steel, aluminum and Inconel alloys of the type planned for use on the Space Station Freedom. As well as demonstrating the ability of a YAG laser to perform remote (fiber-optic delivered) repair and fabrication operations in space, fundamental data will be collected on these interactions for comparison with terrestrial data and models. The flight system, scheduled to fly in 1995, will be constructed as two modules to fit into standard Get Away Special (GAS) canisters. The first can holds the laser and its power supply, to be constructed by our industrial partner, Lumonics Industrial Processing Division. The second canister has the materials processing workstation and the command and data acquisition subsystems. These components will be provided by groups at UTSI and the University of Waterloo. The cans are linked by a fiber-optic cable which transmits the beam from the laser head to the workstation.

  16. Solid state laser systems for space application

    NASA Technical Reports Server (NTRS)

    Kay, Richard B.

    1993-01-01

    Work on the development of an interferometric system for the purpose of absolute length determination commenced in January of this year. Our goal is to develop a system capable of measurements on the order of one meter with an accuracy of 1 part in 10 or greater. A modified Michelson bread board with stabilized laser diode source was assembled. Some preliminary measurements began using the tunable Santek laser in an FM modulation scheme. During this same period a literature search yielded a paper by Suematsu and Takeda which discusses a promising fourier transform technique for real time data analysis. We are in the process of evaluating this technique while we continue to change and upgrade the system configuration.

  17. Commercialization plan laser-based decoating systems

    SciTech Connect

    Freiwald, J.; Freiwald, D.A.

    1998-01-01

    F2 Associates Inc. (F2) is a small, high-technology firm focused on developing and commercializing environmentally friendly laser ablation systems for industrial-rate removal of surface coatings from metals, concrete, and delicate substrates such as composites. F2 has a contract with the US Department of Energy Federal Energy Technology Center (FETC) to develop and test a laser-based technology for removing contaminated paint and other contaminants from concrete and metal surfaces. Task 4.1 in Phase 2 of the Statement of Work for this DOE contract requires that F2 ``document its plans for commercializing and marketing the stationary laser ablation system. This document shall include a discussion of prospects for commercial customers and partners and may require periodic update to reflect changing strategy. This document shall be submitted to the DOE for review.`` This report is being prepared and submitted in fulfillment of that requirement. This report describes the laser-based technology for cleaning and coatings removal, the types of laser-based systems that have been developed by F2 based on this technology, and the various markets that are emerging for this technology. F2`s commercialization and marketing plans are described, including how F2`s organization is structured to meet the needs of technology commercialization, F2`s strategy and marketing approach, and the necessary steps to receive certification for removing paint from aircraft and DOE certification for D and D applications. The future use of the equipment built for the DOE contract is also discussed.

  18. Three-component laser anemometer measurement systems

    NASA Technical Reports Server (NTRS)

    Goldman, Louis J.

    1991-01-01

    A brief overview of the different laser anemometer (LA) optical designs available is presented. Then, the LA techniques that can be used to design a three-component measurement system for annular geometries are described. Some of the facility design considerations unique to these LA systems are also addressed. Following this, the facilities and the LA systems that were used to successfully measure the three components of velocity in the blading of annular-flow machines are reviewed. Finally, possible LA system enhancements and future research directions are presented.

  19. Phase Noise Comparision of Short Pulse Laser Systems

    SciTech Connect

    S. Zhang; S. V. Benson; J. Hansknecht; D. Hardy; G. Neil; Michelle D. Shinn

    2006-12-01

    This paper describes the phase noise measurement on several different mode-locked laser systems that have completely different gain media and configurations including a multi-kW free-electron laser. We will focus on the state of the art short pulse lasers, especially the drive lasers for photocathode injectors. A comparison between the phase noise of the drive laser pulses, electron bunches and FEL pulses will also be presented.

  20. Development of on-line laser power monitoring system

    NASA Astrophysics Data System (ADS)

    Ding, Chien-Fang; Lee, Meng-Shiou; Li, Kuan-Ming

    2016-03-01

    Since the laser was invented, laser has been applied in many fields such as material processing, communication, measurement, biomedical engineering, defense industries and etc. Laser power is an important parameter in laser material processing, i.e. laser cutting, and laser drilling. However, the laser power is easily affected by the environment temperature, we tend to monitor the laser power status, ensuring there is an effective material processing. Besides, the response time of current laser power meters is too long, they cannot measure laser power accurately in a short time. To be more precisely, we can know the status of laser power and help us to achieve an effective material processing at the same time. To monitor the laser power, this study utilize a CMOS (Complementary metal-oxide-semiconductor) camera to develop an on-line laser power monitoring system. The CMOS camera captures images of incident laser beam after it is split and attenuated by beam splitter and neutral density filter. By comparing the average brightness of the beam spots and measurement results from laser power meter, laser power can be estimated. Under continuous measuring mode, the average measuring error is about 3%, and the response time is at least 3.6 second shorter than thermopile power meters; under trigger measuring mode which enables the CMOS camera to synchronize with intermittent laser output, the average measuring error is less than 3%, and the shortest response time is 20 millisecond.

  1. High power laser workover and completion tools and systems

    SciTech Connect

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2014-10-28

    Workover and completion systems, devices and methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena. Systems and devices for the laser workover and completion of a borehole in the earth. These systems and devices can deliver high power laser energy down a deep borehole, while maintaining the high power to perform laser workover and completion operations in such boreholes deep within the earth.

  2. Laser beam riding guided system principle and design research

    NASA Astrophysics Data System (ADS)

    Qu, Zhou; Jin, Yi; Xu, Zhou; Xing, Hao

    2016-01-01

    With the development of science and technology, precision-strike weapons has been considered to be important for winning victory in military field. Laser guidance is a major method to execute precision-strike in modern warfare. At present, the problems of primary stage of Laser guidance has been solved with endeavors of countries. Several technical aspects of laser-beam riding guided system have been mature, such as atmosphere penetration of laser beam, clutter inhibition on ground, laser irradiator, encoding and decoding of laser beam. Further, laser beam quality, equal output power and atmospheric transmission properties are qualified for warfare situation. Riding guidance instrument is a crucial element of Laser-beam riding guided system, and is also a vital element of airborne, vehicle-mounted and individual weapon. The optical system mainly consist of sighting module and laser-beam guided module. Photoelectric detector is the most important sensing device of seeker, and also the key to acquire the coordinate information of target space. Currently, in consideration of the 1.06 u m of wavelength applied in all the semi-active laser guided weapons systems, lithium drifting silicon photodiode which is sensitive to 1.06 u m of wavelength is used in photoelectric detector. Compared to Solid and gas laser, diode laser has many merits such as small volume, simple construction, light weight, long life, low lost and easy modulation. This article introduced the composition and operating principle of Laser-beam riding guided system based on 980 nm diode laser, and made a analysis of key technology; for instance, laser irradiator, modulating disk of component, laser zooming system. Through the use of laser diode, Laser-beam riding guided system is likely to have smaller shape and very light.

  3. Optical diagnostics integrated with laser spark delivery system

    DOEpatents

    Yalin, Azer; Willson, Bryan; Defoort, Morgan; Joshi, Sachin; Reynolds, Adam

    2008-09-02

    A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

  4. Multiple beam laser cell micropatterning system

    NASA Astrophysics Data System (ADS)

    Narasimhan, Sriram V.; Goodwin, Richard L.; Borg, Thomas K.; Dawson, Darren M.; Gao, Bruce Z.

    2004-10-01

    The various cell mechanisms, including cell-cell interactions, in native tissue could be better understood by engineering a cell coculture with a micro environment that closely mimics the natural cell arrangement. To this end, we developed a cell micropatterning system that uses a weakly focused laser beam to trap individual cells at the center of the beam and propel them forward onto an appropriate substrate. The optimal methods of introducing different cell types to be patterned into the patterning system and preventing cells from randomly falling onto the pattern were issues to be addressed with this system. Here, we report the development of a multi-chamber, multi-beam laser cell micropatterning system, in which the delivery of specific cells into the beam can be controlled using secondary laser beams. This permits consecutive creation of a pattern involving multiple cell types at specific relative positions. As examples, various patterns of fibroblasts have been created on collagen coated coverslips. In addition, two asynchronously beating clusters of cardiomyocytes were connected with fibroblasts of cardiac origin, yielding a deeper insight into the electrophysiological role of fibroblasts in conduction of the action potentials among cardiomyocytes.

  5. ACTD Laser Line Scan System

    DTIC Science & Technology

    1997-09-30

    communications with a computer system in the MILVAN. For the ACTD a single board computer dedicated to the EOID Sensor will be inserted into GEM. This... single board computer will provide real time control of the EOID Sensor. Since the bandwidth of the microwave data link is smaller than the data rate of...EOID Sensor image data will be maintained in a circular buffer on the single board computer in GEM. Upon command, full resolution data from any segment

  6. Performance of laser based optical imaging system

    NASA Astrophysics Data System (ADS)

    Shah, Dhrupesh S.; Banerjee, Arup; Vora, Anup; Biswas, Amiya; Patel, Naimesh; Kurulkar, Amit; Dutt, Ashutosh

    2016-05-01

    Day night imaging application requires high dynamic range optical imaging system to detect targets of interest covering mid-day (>32000 Lux)[1], and moonless night ( 1mLux)[1] under clear sky- (visibility of >10km, atmospheric loss of <1dB/km) and hazy (visibility of >500m, atmospheric loss of >15dB/Km) conditions. Major governing factors for development of such camera systems are (i) covert imaging with ability to identify the target, (ii) imaging irrespective to the scene background, (iii) reliable operation , (iv) imaging capabilities in inclement weather conditions, (v) resource requirement vs availability power & mass, (vi) real-time data processing, (vii) self-calibration, and (viii) cost. Identification of optimum spectral band of interest is most important to meet these requirements. Conventional detection systems sensing in MWIR and LWIR band has certain draw backs in terms of target detection capabilities, susceptibility to background and huge thermo-mechanical resource requirement. Alternatively, range gated imaging camera system sensing in NIR/SWIR spectrum has shown significant potential to detect wide dynamic range targets. ToF Camera configured in NIR band has certain advantages in terms of Focal Plane Assembly (FPA) development with large format detectors and thermo-mechanical resource requirement compared to SWIR band camera configuration. In past, ToF camera systems were successfully configured in NIR spectrum using silicon based Electron Multiplying CCD (EMCCD), Intensifier CCD (ICCD) along with Gating device and pulsed laser source having emission in between 800nm to 900nm. However, these systems have a very low dynamic range and not suitable for clear sky mid-day conditions. Recently silicon based scientific grade CMOS image sensors have shown significant improvement in terms of high NIR responsivity and available in bigger formats (5MP or more), adequate Full well capacity for day time imaging (>30Ke), very low readout noise (<2e) required for

  7. CO2 laser ranging systems study

    NASA Technical Reports Server (NTRS)

    Filippi, C. A.

    1975-01-01

    The conceptual design and error performance of a CO2 laser ranging system are analyzed. Ranging signal and subsystem processing alternatives are identified, and their comprehensive evaluation yields preferred candidate solutions which are analyzed to derive range and range rate error contributions. The performance results are presented in the form of extensive tables and figures which identify the ranging accuracy compromises as a function of the key system design parameters and subsystem performance indexes. The ranging errors obtained are noted to be within the high accuracy requirements of existing NASA/GSFC missions with a proper system design.

  8. Laser Docking System Radar flight experiment

    NASA Technical Reports Server (NTRS)

    Erwin, Harry O.

    1986-01-01

    Flight experiments to verify the Laser Docking System Radar are discussed. The docking requirements are summarized, and the breadboarded hardware is described, emphasizing the two major scanning concepts being utilized: a mechanical scanning technique employing galvanometer beamsteerers and an electronic scanning technique using an image dissector. The software simulations used to apply hardware solutions to the docking requirements are briefly discussed, the tracking test bed is described, and the objectives of the flight experiment are reviewed.

  9. Optically pumped isotopic ammonia laser system

    DOEpatents

    Buchwald, Melvin I.; Jones, Claude R.; Nelson, Leonard Y.

    1982-01-01

    An optically pumped isotopic ammonia laser system which is capable of producing a plurality of frequencies in the middle infrared spectral region. Two optical pumping mechanisms are disclosed, i.e., pumping on R(J) and lasing on P(J) in response to enhancement of rotational cascade lasing including stimulated Raman effects, and, pumping on R(J) and lasing on P(J+2). The disclosed apparatus for optical pumping include a hole coupled cavity and a grating coupled cavity.

  10. Laser Obstacle Detection System Flight Testing

    DTIC Science & Technology

    2003-09-01

    without hazardous effect or adverse biological changes in the eye for a repetitively pulsed laser is the more restrictive of several MPE calculations...crossed above them. The LODS system detection ranges appeared not to be effected by sunlight from behind the aircraft. - Raw Data and Safety Line ...obstacles - Raw data and safety line detection ranges were similar to those at wire set 1 (900-1000 meters) and did not appear to be effected by the

  11. The Design and Implementation of the Integrated Timing System to be Used in the National Ignition Facility

    SciTech Connect

    Coutts, G.W.; Wiedwald, J.D.; Sewall, N.; Lagin, L.

    1999-12-07

    The National Ignition Facility, or NIF, currently under construction at the Lawrence Livermore National Laboratory will contain the world's most powerful laser. By the year 2003 the NIF laser will be a research tool allowing scientists a glimpse into plasma interactions that are equivalent to those found in the center of the sun. Every eight hours the NIF will generate 1.8 MJ of 351-nm light carried by 192 pulsed laser beams and focus it onto a pea-sized target. This will result in a fusion reaction between two isotopes of hydrogen, creating for a few hundred picoseconds stellar conditions. Synchronizing the beams and diagnosing the fusion reaction requires generation and delivery of over 1000 precisely timed triggers to a multitude of systems. The NIF Integrated Timing System (ITS) was developed to provide reliable, accurately timed triggers that allow each client system to operate independently during periods of shot preparation and maintenance, yet be coordinated to a few tens of picoseconds during the experiment. The ITS applies technologies developed for fiber communications and Two-Way Time Transfer, and integrates them by way of a computer communications network to achieve distributed control, dynamically configurable coordination and independent among timing channels, and integrated self-diagnostics.

  12. Laser Research and Development Studies for Laser Guide Star Systems

    SciTech Connect

    Pennington, D.; Beach, R.; Ebbers, C.; Erbert, G.; Nguyen, H.; Page, R.; Payne, S.; Perry, M.

    2000-02-23

    In this paper we consider two CW solid state laser approaches to a 589 nm LGS system. Both are based on the technique of sum-frequency generation, but differ in the cavity architecture. Both technologies are very promising and are worth of further consideration. This preliminary proposal is intended to encompass both designs. A down select shall be performed early in the project execution to focus on the most promising option. The two design options consist of: (1) A dual-frequency resonator with intra-cavity doubling in LB0 offers the promise of a simple architecture and may scale more easily to high power. This design has been shown to be highly reliable, efficient and high power when used in frequency-doubled Nd:YAG lasers for programs at LLNL and in commercial products. The challenge in this design is the demonstration of a high power13 18 nm oscillator with adequate suppression of the 1064 nm line. (2) A MOPA based design uses commercial low power oscillators to produce both wavelengths, then amplifies the wavelengths before doubling. This design requires the demonstration of a 1318 nm amplifier, though the design is scaled from a kW CW amplifier already delivered to a customer at a different wavelength. The design must also demonstrate high power scaling of sum-frequency generation in the relatively new nonlinear material, PPLN. The first step in the process would be to further evaluate the two conceptual options for technical feasibility, cost and constructability. Then a down selection to one design would be conducted. Finally, R&D on that design would then proceed. Minimal testing should be required for this selection. The majority of the funding received would be allocated to development of the design selected.

  13. Mathematical model for light scanning system based on circular laser

    NASA Astrophysics Data System (ADS)

    Xu, Peiquan; Yao, Shun; Lu, Fenggui; Tang, Xinhua; Zhang, Wei

    2005-11-01

    A novel light scanning system based on circular laser trajectory for welding robot is developed. With the help of image processing technique, intelligent laser welding could be realized. According to laser triangulation algorithm and Scheimpflug condition, mathematical model for circular laser vision is built. This scanning system projects circular laser onto welded seams and recovers the depth of the welded seams, escapes from shortcomings of less information, explains ambiguity and single tracking direction inherent in "spot" or "line" type laser trajectory. Three-dimensional (3D) model for welded seams could be recognized after depth recovery. The imaging error is investigated also.

  14. Operations of the laser traffic control system in Paranal

    NASA Astrophysics Data System (ADS)

    Santos, P.; Amico, P.; Summers, D.; Duhoux, P.; Arsenault, R.; Bierwirth, T.; Kuntschner, H.; Madec, P.-Y.; Pruemm, M.; Rejkuba, M.

    2016-07-01

    The Laser Traffic Control System (LTCS) of the Paranal Observatory is the first component of the Adaptive Optics Facility (AOF, [8]) entering routine operations: a laser beam avoidance tool to support operations of an observatory equipped with five lasers and several laser-sensitive instruments, providing real-time information about ongoing and future collisions. LTCS-Paranal interfaces with ESO's observing tools, OT and vOT. Altogether, this system allows the night operators to plan and execute their observations without worrying about possible collisions between the laser beam(s) and other lasersensitive equipment, aiming at a more efficient planning of the night, preventing time losses and laser-contaminated observations.

  15. LISP: a laser imaging simulation package for developing and testing laser vision systems

    NASA Astrophysics Data System (ADS)

    Wu, Kung C.

    1993-01-01

    The difficulties commonly encountered in developing laser imaging technologies are: (1) high cost of the laser system, and (2) time and cost involved in modeling and maneuvering a physical environment for the desired scenes. In contrast to the real imaging systems, computer generated laser images provide researchers with fast, accurate, cost-effective data for testing and developing algorithms. The laser imaging simulation package (LISP) described in this paper provides an interactive solid modeler that allows users to construct the artificial environment by various solid modelling techniques. Two fast ray tracing algorithms were developed and discussed in this paper for generating the near realistic laser data of any desired scene. These computer generated laser data facilitates the researchers in developing laser imaging algorithms. Thus, LISP not only provides an ideal testbed for developing and testing algorithms, but also an opportunity to explore the limitation of laser imaging applications.

  16. Hybrid high power femtosecond laser system

    NASA Astrophysics Data System (ADS)

    Trunov, V. I.; Petrov, V. V.; Pestryakov, E. V.; Kirpichnikov, A. V.

    2006-01-01

    Design of a high-power femtosecond laser system based on hybrid chirped pulse amplification (CPA) technique developed by us is presented. The goal of the hybrid principle is the use of the parametric and laser amplification methods in chirped pulse amplifiers. It makes it possible to amplify the low-cycle pulses with a duration of <= fs to terawatt power with a high contrast and high conversion efficiency of the pump radiation. In a created system the Ti:Sapphire laser with 10 fs pulses at 810 nm and output energy about 1-3 nJ will be used like seed source. The oscillator pulses were stretched to duration of about 500 ps by an all-reflective grating stretcher. Then the stretched pulses are injected into a nondegenerate noncollinear optical parametric amplifier (NOPA) on the two BBO crystals. After amplification in NOPA the residual pump was used in a bow-tie four pass amplifier with hybrid active medium (based on Al II0 3:Ti 3+ and BeAl IIO 4:Ti 3+ crystals). The final stage of the amplification system consists of two channels, namely NIR (820 nm) and short-VIS (410 nm). Numerical simulation has shown that the terawatt level of output power can be achieved also in a short-VIS channel at the pumping of the double-crystal BBO NOPA by the radiation of the fourth harmonic of the Nd:YAG laser at 266 nm. Experimentally parametric amplification in BBO crystals of 30-50 fs pulses were investigated and optimized using SPIDER technique and single-shot autocomelator for the realization of shortest duration 40 fs.

  17. Laser experimental system as teaching aid for demonstrating basic phenomena of laser feedback

    NASA Astrophysics Data System (ADS)

    Xu, Ling; Zhao, Shijie; Zhang, Shulian

    2015-03-01

    An experimental laser teaching system is developed to demonstrate laser feedback phenomena, which bring great harm to optical communication and benefits to precision measurement. The system consists of an orthogonally polarized He-Ne laser, a feedback mirror which reflects the laser output light into the laser cavity, and an optical attenuator which changes the intensity of the feedback light. As the feedback mirror is driven by a piezoelectric ceramic, the attenuator is adjusted and the feedback mirror is tilted, the system can demonstrate many basic laser feedback phenomena, including weak, moderate and strong optical feedback, multiple feedback and polarization flipping. Demonstrations of these phenomena can give students a better understanding about the intensity and polarization of lasers. The system is well designed and assembled, simple to operate, and provides a valuable teaching aid at an undergraduate level.

  18. Laser Doppler systems in atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Murty, S. S. R.

    1976-01-01

    The loss of heterodyne signal power for the Marshall Space Flight Center laser Doppler system due to the random changes in the atmospheric index of refraction is investigated. The current status in the physics of low energy laser propagation through turbulent atmosphere is presented. The analysis and approximate evaluation of the loss of the heterodyne signal power due to the atmospheric absorption, scattering, and turbulence are estimated for the conditions of the January 1973 flight tests. Theoretical and experimental signal to noise values are compared. Maximum and minimum values of the atmospheric attenuation over a two way path of 20 km range are calculated as a function of altitude using models of atmosphere, aerosol concentration, and turbulence.

  19. Compact laser illumination system for endoscopic interventions.

    PubMed

    Blase, Bastian

    2015-08-01

    External cold light sources as well as LEDs are commonly used for abdominal illumination in minimally invasive surgery. Still, both feature certain disadvantages. A new illumination system for endoscopes based on laser diodes is placed in the handle. No external light cables are needed. High conversion and coupling efficiencies and small package size allow for several diodes to be integrated, enabling color mixing and the adjustment of color temperatures. An optical module to collimate and combine the light is described. The heat to be dissipated is stored in a passive latent heat storage based on phase change materials surrounding the optical module. Thereby, operation time is considerably extended, as the handle's temperature is stabilized. To reduce the negative effect of coherent light on optical rough surfaces leading to patterns of spots, several devices for speckle reduction are developed and tested. By combining these components, an assembly of a powerful RGB laser light module for the integration in standard sized endoscopes is formed.

  20. Advanced laser stratospheric monitoring systems analyses

    NASA Technical Reports Server (NTRS)

    Larsen, J. C.

    1984-01-01

    This report describes the software support supplied by Systems and Applied Sciences Corporation for the study of Advanced Laser Stratospheric Monitoring Systems Analyses under contract No. NAS1-15806. This report discusses improvements to the Langley spectroscopic data base, development of LHS instrument control software and data analyses and validation software. The effect of diurnal variations on the retrieved concentrations of NO, NO2 and C L O from a space and balloon borne measurement platform are discussed along with the selection of optimum IF channels for sensing stratospheric species from space.

  1. Laser ablation system, and method of decontaminating surfaces

    DOEpatents

    Ferguson, Russell L.; Edelson, Martin C.; Pang, Ho-ming

    1998-07-14

    A laser ablation system comprising a laser head providing a laser output; a flexible fiber optic cable optically coupled to the laser output and transmitting laser light; an output optics assembly including a nozzle through which laser light passes; an exhaust tube in communication with the nozzle; and a blower generating a vacuum on the exhaust tube. A method of decontaminating a surface comprising the following steps: providing an acousto-optic, Q-switched Nd:YAG laser light ablation system having a fiber optically coupled output optics assembly; and operating the laser light ablation system to produce an irradiance greater than 1.times.10.sup.7 W/cm.sup.2, and a pulse width between 80 and 170 ns.

  2. Integrated laser/radar satellite ranging and tracking system

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.

    1974-01-01

    A laser satellite ranging system that is mounted upon and integrated with a microwave tracking radar is reported. The 1-pulse/sec ruby laser transmitter is attached directly to the radar's elevation axis and radiates through a new opening in the radar's parabolic dish. The laser photomultiplier tube receiver utilizes the radar's existing 20-cm diam f/11 boresight telescope and observes through a similar symmetrically located opening in the dish. The laser system possesses separate ranging system electronics but shares the radar's timing, computer, and data handling/recording systems. The basic concept of the laser/radar is outlined together with a listing of the numerous advantages over present singular laser range-finding systems. The developmental laser hardware is described along with preliminary range-finding results and expectations.

  3. Research on optical system of spaceborne laser target indicator

    NASA Astrophysics Data System (ADS)

    Jiang, Lun; Zhang, Li-zhong; Wang, Chao

    2016-10-01

    This paper introduces the overall schematic of space borne laser target indicator. The target is tracking by remote sensing imaging system and servo system, and pointing by laser emission system. The key parameters of remote sensing imaging system are optimal selected, including working distance, focal length, aperture, integration time and field view, then the system spectral, pulse width, peak power, beam divergence and direction accuracy of laser emission system are analyzed in this paper .We design a remote sense imaging system and a laser emission system, and the result shows that requirements are meet and may realize in reality. The overall design can realize the 500km orbital altitude with the space borne laser target indicator, which is required by laser pointing function for medium-sized ships.

  4. In-vitro laser anemometry blood flow systems

    NASA Astrophysics Data System (ADS)

    Liepsch, Dieter W.; Poll, Axel; Pflugbeil, Gottlieb

    1993-08-01

    Lasers are used in a wide variety of medical applications. While laser catheters have been developed for highly accurate velocity measurements these are invasive; noninvasive techniques are more desirable but not as precise. The laser is, however, a great tool for in vitro measurements. Several groups internationally are using the laser in the study of local velocity distribution in microscopic areas of specially constructed models. Laser Doppler anemometry is widely used to measure the local, time-dependent velocities, while phase Doppler anemometry has been developed to measure particle size, distribution and velocity. Most recently, laser analyzer techniques have been developed for analyzing the particle size of two phase flow systems. It has become increasingly important for physicians to visualize blood flow. In addition to the techniques mentioned above, several laser sheet techniques have been developed for precise measurements. This paper presents a short review of laser techniques and shows some applications especially for the laser-Doppler anemometer.

  5. Method and system for modulation of gain suppression in high average power laser systems

    DOEpatents

    Bayramian, Andrew James [Manteca, CA

    2012-07-31

    A high average power laser system with modulated gain suppression includes an input aperture associated with a first laser beam extraction path and an output aperture associated with the first laser beam extraction path. The system also includes a pinhole creation laser having an optical output directed along a pinhole creation path and an absorbing material positioned along both the first laser beam extraction path and the pinhole creation path. The system further includes a mechanism operable to translate the absorbing material in a direction crossing the first laser beam extraction laser path and a controller operable to modulate the second laser beam.

  6. Potential capabilities of aircraft laser landing systems.

    PubMed

    Kaloshin, G A; Matvienko, G G; Shishkin, S A; Anisimov, V I; Butuzov, V V; Zhukov, V V; Stolyarov, G V; Pasyuk, V P

    2016-10-20

    We present calculations of the efficiency of the laser landing system (LLS), based on determining the minimum required fluxes of scattered radiation from fixed extended landmarks (FELs), which are LLS indicators in the case of visual FEL detection under real operation conditions. It is shown that, when the meteorological visibility range Sm=800  m, for reliable detection of laser beams from the glissade slope group at ranges L∼1.0-1.6  km under nighttime conditions, the minimum required powers are Pmin=0.5  W for λ=0.52 and 0.64 μm, given deviations from the glissade path by the angle ϕ=0°-5°. The green and red rays are visible at distances L=1-1.2  km under twilight conditions. Our calculations corroborated the possibility of creating a new-generation laser-based LLS capable of ensuring aircraft landing under the conditions of International Civil Aviation Organization category 1 (decision height of 60 m at the minimum visibility equal 800 m).

  7. Helicopter Airborne Laser Positioning System (HALPS)

    NASA Technical Reports Server (NTRS)

    Eppel, Joseph C.; Christiansen, Howard; Cross, Jeffrey; Totah, Joseph

    1990-01-01

    The theory of operation, configuration, laboratory, and ground test results obtained with a helicopter airborne laser positioning system developed by Princeton University is presented. Unfortunately, due to time constraints, flight data could not be completed for presentation at this time. The system measures the relative position between two aircraft in three dimensions using two orthogonal fan-shaped laser beams sweeping across an array of four detectors. Specifically, the system calculates the relative range, elevation, and azimuth between an observation aircraft and a test helicopter with a high degree of accuracy. The detector array provides a wide field of view in the presence of solar interference due to compound parabolic concentrators and spectral filtering of the detector pulses. The detected pulses and their associated time delays are processed by the electronics and are sent as position errors to the helicopter pilot who repositions the aircraft as part of the closed loop system. Accuracies obtained in the laboratory at a range of 80 ft in the absence of sunlight were + or - 1 deg in elevation; +0.5 to -1.5 deg in azimuth; +0.5 to -1.0 ft in range; while elevation varied from 0 to +28 deg and the azimuth varied from 0 to + or - 45 deg. Accuracies in sunlight were approximately 40 deg (+ or - 20 deg) in direct sunlight.

  8. Development of a US Gravitational Wave Laser System for LISA

    NASA Technical Reports Server (NTRS)

    Camp, Jordan B.; Numata, Kenji

    2015-01-01

    A highly stable and robust laser system is a key component of the space-based LISA mission architecture.In this talk I will describe our plans to demonstrate a TRL 5 LISA laser system at Goddard Space Flight Center by 2016.The laser system includes a low-noise oscillator followed by a power amplifier. The oscillator is a low-mass, compact 10mW External Cavity Laser, consisting of a semiconductor laser coupled to an optical cavity, built by the laser vendorRedfern Integrated Optics. The amplifier is a diode-pumped Yb fiber with 2W output, built at Goddard. I will show noiseand reliability data for the full laser system, and describe our plans to reach TRL 5 by 2016.

  9. Solid-state coherent laser radar wind shear measuring systems

    NASA Technical Reports Server (NTRS)

    Huffaker, R. Milton

    1992-01-01

    Coherent Technologies, Inc. (CTI) was established in 1984 to engage in the development of coherent laser radar systems and subsystems with applications in atmospheric remote sensing, and in target tracking, ranging and imaging. CTI focuses its capabilities in three major areas: (1) theoretical performance and design of coherent laser radar system; (2) development of coherent laser radar systems for government agencies such as DoD and NASA; and (3) development of coherent laser radar systems for commercial markets. The topics addressed are: (1) 1.06 micron solid-state coherent laser radar system; (2) wind measurement using 1.06 micron system; and flashlamp-pumped 2.09 micron solid-state coherent laser radar system.

  10. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: LASER POWER MEASUREMENTS

    EPA Science Inventory

    Laser power abstract
    The reliability of the confocal laser-scanning microscope (CLSM) to obtain intensity measurements and quantify fluorescence data is dependent on using a correctly aligned machine that contains a stable laser power. The laser power test appears to be one ...

  11. Laser radar in a system perspective

    NASA Astrophysics Data System (ADS)

    Molebny, Vasyl; Kamerman, Gary; Steinvall, Ove

    2011-06-01

    As a result of recent achievements in the field of laser radars, new options are available for their operation as system components. In addition to complementing and cross-checking one another, system components can generate new synergetic values. In this article, we address various roles and functions that laser radar may perform in a complete system context. Special attention is paid to range-gated imaging ladars operating in conjunction with infrared 2D sensors providing target recognition/identification at long distances and under adverse conditions of natural illumination. The multi- or hyper-spectral features of passive IR or visible sensors may be complemented by multispectral, broadband, tunable or switchable 3D imaging ladar in order to exploit the differences in target reflectance and absorption. This option opens another possibility for multi-spectral, mid-IR ladar to differentiate targets of various types, or to enhance the visualization potential and to facilitate the scene description with small targets like mines or mine-like objects. The recently discovered specificity of Raman scattering in the perturbed sea water makes the long-standing efforts in submarine wake detection more viable. Furthermore, the combination of microwave radar and laser radar, when amplified with new achievements in the fourth generation dual-mode imaging sensors, creates the possibility of single payload configurations suitable for small platforms. Emphasis is also made of the efficiency of Doppler velocimetry for precise vehicle navigation, such as for advance cruise missile control or autonomous landing. Finally, recent advances in coherent micro-ladars for optical coherence tomography now permit the reconstruction of time resolved 3D (i.e., 4D) dynamics of blood flow in heart vessels.

  12. Laser and optical system for laser assisted hydrogen ion beam stripping at SNS

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Rakhman, A.; Menshov, A.; Webster, A.; Gorlov, T.; Aleksandrov, A.; Cousineau, S.

    2017-03-01

    Recently, a high-efficiency laser assisted hydrogen ion (H-) beam stripping was successfully carried out in the Spallation Neutron Source (SNS) accelerator. The experiment was not only an important step toward foil-less H- stripping for charge exchange injection, it also set up a first example of using megawatt ultraviolet (UV) laser source in an operational high power proton accelerator facility. This paper reports in detail the design, installation, and commissioning result of a macro-pulsed multi-megawatt UV laser system and laser beam transport line for the laser stripping experiment.

  13. 1047 nm laser diode master oscillator Nd:YLF power amplifier laser system

    NASA Technical Reports Server (NTRS)

    Yu, A. W.; Krainak, M. A.; Unger, G. L.

    1993-01-01

    A master oscillator power amplifier (MOPA) laser transmitter system at 1047 nm wavelength using a semiconductor laser diode and a diode pumped solid state (Nd:YLF) laser (DPSSL) amplifier is described. A small signal gain of 23 dB, a near diffraction limited beam, 1 Gbit/s modulation rates and greater than 0.6 W average power are achieved. This MOPA laser has the advantage of amplifying the modulation signal from the laser diode master oscillator (MO) with no signal degradation.

  14. Laser system for a subpicosecond electron linac.

    SciTech Connect

    Crowell, R. A.

    1998-09-25

    At the Argonne Chemistry Division efforts are underway to develop a sub-picosecond electron beam pulse radiolysis facility for chemical studies. The target output of the accelerator is to generate electron pulses that can be adjusted from 3nC in .6ps to 100nC in 45ps. In conjunction with development of the accelerator a state-of-the-art ultrafast laser system is under construction that will drive the linac's photocathode and provide probe pulses that are tunable from the UV to IR spectral regions.

  15. Atmospheric refraction errors in laser ranging systems

    NASA Technical Reports Server (NTRS)

    Gardner, C. S.; Rowlett, J. R.

    1976-01-01

    The effects of horizontal refractivity gradients on the accuracy of laser ranging systems were investigated by ray tracing through three dimensional refractivity profiles. The profiles were generated by performing a multiple regression on measurements from seven or eight radiosondes, using a refractivity model which provided for both linear and quadratic variations in the horizontal direction. The range correction due to horizontal gradients was found to be an approximately sinusoidal function of azimuth having a minimum near 0 deg azimuth and a maximum near 180 deg azimuth. The peak to peak variation was approximately 5 centimeters at 10 deg elevation and decreased to less than 1 millimeter at 80 deg elevation.

  16. Performance of the upgraded Orroral laser ranging system

    NASA Technical Reports Server (NTRS)

    Luck, John M.

    1993-01-01

    The topics discussed include the following: upgrade arrangements, system prior to 1991, elements of the upgrade, laser performance, timing system performance, pass productivity, system precision, system accuracy, telescope pointing and future upgrades and extensions.

  17. A modified pump laser system to pump the titanium sapphire laser

    NASA Technical Reports Server (NTRS)

    Petway, Larry B.

    1990-01-01

    As a result of the wide tunability of the titanium sapphire laser NASA has sited it to be used to perform differential absorption lidar (DIAL) measurements of H2O vapor in the upper and lower troposphere. The titanium sapphire laser can provide a spectrally narrow (0.3 to 1.0 pm), high energy (0.5 to 1.0 J) output at 727, 762, and 940 nm which are needed in the DIAL experiments. This laser performance can be obtained by addressing the line-narrowing issues in a master oscillator and the high energy requirement in a fundamental mode oscillator. By injection seeding, the single frequency property of the master oscillator can produce a line narrow high energy power oscillator. A breadboard model of the titanium sapphire laser that will ultimately be used in NASA lidar atmospheric sensing experiment is being designed. The task was to identify and solve any problem that would arise in the actual laser system. One such problem was encountered in the pump laser system. The pump laser that is designed to pump both the master oscillator and power oscillator is a Nd:YLF laser. Nd:YLF exhibits a number of properties which renders this material an attractive option to be used in the laser system. The Nd:YLF crystal is effectively athermal; it produces essentially no thermal lensing and thermally induced birefringence is generally insignificant in comparison to the material birefringence resulting from the uniaxial crystal structure. However, in application repeated fracturing of these laser rods was experience. Because Nd:YLF rods are not commercially available at the sizes needed for this application a modified pump laser system to replace the Nd:YLF laser rod was designed to include the more durable Nd:YAG laser rods. In this design, compensation for the thermal lensing effect that is introduced because of the Nd:YAG laser rods is included.

  18. Keck II laser guide star AO system and performance with the TOPTICA/MPBC laser

    NASA Astrophysics Data System (ADS)

    Chin, Jason C. Y.; Wizinowich, Peter; Wetherell, Ed; Lilley, Scott; Cetre, Sylvain; Ragland, Sam; Medeiros, Drew; Tsubota, Kevin; Doppmann, Greg; Otarola, Angel; Wei, Kai

    2016-07-01

    The Keck II Laser Guide Star (LGS) Adaptive Optics (AO) System was upgraded from a dye laser to a TOPTICA/MPBC Raman-Fibre Amplification (RFA) laser in December 2015. The W. M. Keck Observatory (WMKO) has been operating its AO system with a LGS for science since 2004 using a first generation 15 W dye laser. Using the latest diode pump laser technology, Raman amplification, and a well-tuned second harmonic generator (SHG), this Next Generation Laser (NGL) is able to produce a highly stable 589 nm laser beam with the required power, wavelength and mode quality. The beam's linear polarization and continuous wave format along with optical back pumping are designed to improve the sodium atom coupling efficiency over previously operated sodium-wavelength lasers. The efficiency and operability of the new laser has also been improved by reducing its required input power and cooling, size, and the manpower to operate and maintain it. The new laser has been implemented on the telescope's elevation ring with its electronics installed on a new Nasmyth sub-platform, with the capacity to support up to three laser systems for future upgrades. The laser is projected from behind the telescope's secondary mirror using the recently implemented center launch system (CLS) to reduce LGS spot size. We will present the new laser system and its performance with respect to power, stability, wavelength, spot size, optical repumping, polarization, efficiency, and its return with respect to pointing alignment to the magnetic field. Preliminary LGSAO performance is presented with the system returning to science operations. We will also provide an update on current and future upgrades at the WMKO.

  19. Applications of the 308-nm excimer laser in dermatology

    NASA Astrophysics Data System (ADS)

    Farkas, A.; Kemeny, L.

    2006-05-01

    Excimer lasers contain a mixture of a noble inert gas and a halogen, which form excited dimers only in the activated state. High-energy current is used to produce these dimers, which have a very short lifetime, and after their fast dissociation they release the excitation energy through ultraviolet photons. The application of these lasers proved to be successful in medicine, including the field of ophthalmology, cardiology, angiology, dentistry, orthopaedics, and, in recent years, dermatology. For medical purposes, the 193-nm argon fluoride, the 248-nm krypton fluoride, the 351-nm xenon fluoride, and the 308-nm xenon chloride lasers are used. Recently, the 308-nm xenon chloride laser has gained much attention as a very effective treatment modality in dermatological disorders. It was successfully utilized in psoriasis; later, it proved to be useful in handling other lightsensitive skin disorders and even in the treatment of allergic rhinitis. This review summarizes the possible applications of this promising tool in dermatology.

  20. The Results of Raster-Scan Laser Conditioning Studies on DKDP Triplers Using Nd: YAG and Excimer Lasers

    SciTech Connect

    Runkel, M; Neeb, K; Staggs, M; Auerbach, J; Burnham, A

    2001-11-01

    In this paper we present the results of damage tests performed at 1064 and 355-nm at 8-10 ns on conventional and rapid growth DKDP tripler crystals. The crystals were laser conditioned prior to damage testing by raster scanning using either Nd:YAG (1064 and 355 nm, 8-10ns) or excimer lasers at 248, 308 or 351 nm with pulse durations of approximately 30-47 ns. The results show that it is possible to attain increases in 355-nm damage probability fluences of 2X for excimer conditioning at 248 and 308 nm. However these wavelengths can induce absorption sufficient to induce bulk fracture by thermal shock when impurities such as arsenic, rubidium and sulfur are present in the crystals in sufficient quantity. Tests to evaluate the efficiency of 351-nm conditioning (XeF excimer) show improvements of 2X and that thermal fracture by induced absorption is not a problem. We also discuss our recent discovery that low fluence raster scanning at UV wavelengths leads to 1064-nm damage thresholds of over 100 J/cm{sup 2} (10-ns pulses).

  1. High power laser downhole cutting tools and systems

    DOEpatents

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2015-01-20

    Downhole cutting systems, devices and methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena. Systems and devices for the laser cutting operations within a borehole in the earth. These systems and devices can deliver high power laser energy down a deep borehole, while maintaining the high power to perform cutting operations in such boreholes deep within the earth.

  2. Stability design considerations for mirror support systems in ICF lasers

    SciTech Connect

    Tietbohl, G.L.; Sommer, S.C.

    1996-10-01

    Some of the major components of laser systems used for Inertial Confinement Fusion (ICF) are the large aperture mirrors which direct the path of the laser. These mirrors are typically supported by systems which consist of mirror mounts, mirror enclosures, superstructures, and foundations. Stability design considerations for the support systems of large aperture mirrors have been developed based on the experience of designing and evaluating similar systems at the Lawrence Livermore National Laboratory (LLNL). Examples of the systems developed at LLNL include Nova, the Petawatt laser, Beamlet, and the National Ignition Facility (NIF). The structural design of support systems of large aperture mirrors has typically been controlled by stability considerations in order for the large laser system to meet its performance requirements for alignment and positioning. This paper will discuss the influence of stability considerations and will provide guidance on the structural design and evaluation of mirror support systems in ICF lasers so that this information can be used on similar systems.

  3. State of the art of CO laser angioplasty system

    NASA Astrophysics Data System (ADS)

    Arai, Tsunenori; Mizuno, Kyoichi; Miyamoto, Akira; Sakurada, Masami; Kikuchi, Makoto; Kurita, Akira; Nakamura, Haruo; Takaoka, Hidetsugu; Utsumi, Atsushi; Takeuchi, Kiyoshi

    1994-07-01

    A unique percutaneous transluminal coronary angioplasty system new IR therapy laser with IR glass fiber delivery under novel angioscope guidance was described. Carbon monoxide (CO) laser emission of 5 mm in wavelength was employed as therapy laser to achieve precise ablation of atheromatous plaque with a flexible As-S IR glass fiber for laser delivery. We developed the first medical CO laser as well as As-S IR glass fiber cable. We also developed 5.5 Fr. thin angioscope catheter with complete directional manipulatability at its tip. The system control unit could manage to prevent failure irradiations and fiber damages. This novel angioplasty system was evaluated by a stenosis model of mongrel dogs. We demonstrated the usefulness of our system to overcome current issues on laser angioplasty using multifiber catheter with over-the-guidewire system.

  4. Laser Spectroscopy Investigations of Materials for Solid State Laser Systems.

    DTIC Science & Technology

    1988-02-01

    July 1987. R.C. Powell, A. Suchocki, G.D. Gilliland, and G.J. Quarles, "Four-Wave Mixing in Cr 3 +-Doped Laser Crystals: Ruby, Emerald , Alexandrite...34Spectroscopy and Four-Wave Mixing in Emerald ", Opt. Soc. Am. Meeting, Rochester, October 1987. G.D. Gilliland, R.C. Powell, and L. Esterowitz...University, May 1985. "Laser Spectroscopic Studies of Europium-Doped Glasses and Emerald ", G.J. Quarles, Ph.D. Thesis, Oklahoma State University, Dec

  5. Yb:FAP and related materials, laser gain medium comprising same, and laser systems using same

    DOEpatents

    Krupke, William F.; Payne, Stephen A.; Chase, Lloyd L.; Smith, Larry K.

    1994-01-01

    An ytterbium doped laser material remarkably superior to all others, including Yb:YAG, comprises Ytterbium doped apatite (Yb:Ca.sub.5 (PO.sub.4).sub.3 F) or Yb:FAP, or ytterbium doped crystals that are structurally related to FAP. The new laser material is used in laser systems pumped by diode pump sources having an output near 0.905 microns or 0.98 microns, such as InGaAs and AlInGaAs, or other narrowband pump sources near 0.905 microns or 0.98 microns. The laser systems are operated in either the conventional or ground state depletion mode.

  6. Multi-access laser communications transceiver system

    NASA Technical Reports Server (NTRS)

    Ross, Monte (Inventor); Lokerson, Donald C. (Inventor); Fitzmaurice, Michael W. (Inventor); Meyer, Daniel D. (Inventor)

    1993-01-01

    A satellite system for optical communications such as a multi-access laser transceiver system. Up to six low Earth orbiting satellites send satellite data to a geosynchronous satellite. The data is relayed to a ground station at the Earth's surface. The earth pointing geosynchronous satellite terminal has no gimbal but has a separate tracking mechanism for tracking each low Earth orbiting satellite. The tracking mechanism has a ring assembly rotatable about an axis coaxial with the axis of the field of view of the geosynchronous satellite and a pivotable arm mounted for pivotal movement on the ring assembly. An optical pickup mechanism at the end of each arm is positioned for optical communication with one of the orbiting satellites by rotation of the ring.

  7. Feedback stabilization system for pulsed single longitudinal mode tunable lasers

    DOEpatents

    Esherick, Peter; Raymond, Thomas D.

    1991-10-01

    A feedback stabilization system for pulse single longitudinal mode tunable lasers having an excited laser medium contained within an adjustable length cavity and producing a laser beam through the use of an internal dispersive element, including detection of angular deviation in the output laser beam resulting from detuning between the cavity mode frequency and the passband of the internal dispersive element, and generating an error signal based thereon. The error signal can be integrated and amplified and then applied as a correcting signal to a piezoelectric transducer mounted on a mirror of the laser cavity for controlling the cavity length.

  8. Laser scribing system for amorphous silicon solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Youliang; Shi, Yaling; Su, Xiaorong; Yan, Shuming; Xu, Hong

    1993-01-01

    In this paper, we describe a laser scribing system for the fabrication of a-Si solar cells. Additionally, we provide a theoretical analysis of the system. The system was used to scribe the TCO and a-Si films.

  9. Laser Doppler velocimetry for continuous flow solar-pumped iodine laser system

    NASA Technical Reports Server (NTRS)

    Tabibi, Bagher M.; Lee, Ja H.

    1991-01-01

    A laser Doppler velocimetry (LDV) system was employed to measure the flow velocity profile of iodide vapor inside laser tubes of 36 mm ID and 20 mm ID. The LDV, which was operated in the forward scatter mode used a low power (15 mW) He-Ne laser beam. Velocity ranges from 1 m/s was measured to within one percent accuracy. The flow velocity profile across the laser tube was measured and the intensity of turbulence was determined. The flow of iodide inside the laser tube demonstrated a mixture of both turbulence and laminar flow. The flowmeter used for the laser system previously was calibrated with the LDV and found to be in good agreement.

  10. Spectroscopic Investigation of Materials for Frequency Agile Laser Systems.

    DTIC Science & Technology

    1985-01-01

    fluorescence spectra and lifetimes of divalent Rh, Ru, Pt, and Ir ions in alkali halide crystals are measured using pulsed nitrogen laser excitation...AD-Ai5t 73t SPECTROSCOPIC INVESTIGRTION OF MATERIALS FOR FREQUENCY t/ AGILE LASER SYSTEMS(U) OKLAHOMA STATE UNIV STILLWATER DEPT OF PHYSICS R C...INVESTIGATION OF MATERIALS FOR FREQUENCY AGILE LASER SYSTEMS Richard C. Powell, Ph.D. Principal Investigator Department of Physics OKLAHOMA STATE UNIVERSITY

  11. Wind Tunnel Seeding Systems for Laser Velocimeters

    NASA Technical Reports Server (NTRS)

    Hunter, W. W., Jr. (Compiler); Nichols, C. E., Jr. (Compiler)

    1985-01-01

    The principal motivating factor for convening the Workshop on the Development and Application of Wind Tunnel Seeding Systems for Laser Velocimeters is the necessity to achieve efficient operation and, most importantly, to insure accurate measurements with velocimeter techniques. The ultimate accuracy of particle scattering based laser velocimeter measurements of wind tunnel flow fields depends on the ability of the scattering particle to faithfully track the local flow field in which it is embedded. A complex relationship exists between the particle motion and the local flow field. This relationship is dependent on particle size, size distribution, shape, and density. To quantify the accuracy of the velocimeter measurements of the flow field, the researcher has to know the scattering particle characteristics. In order to obtain optimum velocimeter measurements, the researcher is striving to achieve control of the particle characteristics and to verify those characteristics at the measurement point. Additionally, the researcher is attempting to achieve maximum measurement efficiency through control of particle concentration and location in the flow field.

  12. Development of Fiber-Based Laser Systems for LISA

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Camp, Jordan

    2010-01-01

    We present efforts on fiber-based laser systems for the LISA mission at the NASA Goddard Space Flight Center. A fiber-based system has the advantage of higher robustness against external disturbances and easier implementation of redundancies. For a master oscillator, we are developing a ring fiber laser and evaluating two commercial products, a DBR linear fiber laser and a planar-waveguide external cavity diode laser. They all have comparable performance to a traditional NPRO at LISA band. We are also performing reliability tests of a 2-W Yb fiber amplifier and radiation tests of fiber laser/amplifier components. We describe our progress to date and discuss the path to a working LISA laser system design.

  13. Lasers.

    ERIC Educational Resources Information Center

    Schewe, Phillip F.

    1981-01-01

    Examines the nature of laser light. Topics include: (1) production and characteristics of laser light; (2) nine types of lasers; (3) five laser techniques including holography; (4) laser spectroscopy; and (5) laser fusion and other applications. (SK)

  14. Mercury: The Los Alamos ICF KrF laser system

    SciTech Connect

    Czuchlewski, S.J.; York, G.W.; Bigio, I.J.; Brucker, J.; Hanson, D.; Honig, E.M.; Kurnit, N.; Leland, W.; McCown, A.W.; McLeod, J.; Rose, E.; Thomas, S.; Thompson, D.

    1993-01-19

    The Mercury KrF laser facility at Los Alamos is being built with the benefit of lessons learned from the Aurora system. An increased understanding of KrF laser engineering, and the designed implementation of system flexibility, will permit Mercury to serve as a tested for a variety of advanced KrF technology concepts.

  15. Speckle averaging system for laser raster-scan image projection

    DOEpatents

    Tiszauer, Detlev H.; Hackel, Lloyd A.

    1998-03-17

    The viewers' perception of laser speckle in a laser-scanned image projection system is modified or eliminated by the addition of an optical deflection system that effectively presents a new speckle realization at each point on the viewing screen to each viewer for every scan across the field. The speckle averaging is accomplished without introduction of spurious imaging artifacts.

  16. Comparison Of Laser And Waterjet Systems For Industrial Applications

    NASA Astrophysics Data System (ADS)

    Mosavi, Reza K.

    1986-07-01

    High power laser systems and high pressure waterjet systems are both emerging as non-conventional cutting tools, capable of increasing productivity and quality in the manufacture of a great number of products employing diverse material. It is often a confusing issue for the manufacturing engineer or production manager to decide which system would be most suited for his applications. This paper is intended to provide some insights into the engineering and economic aspects of laser systems versus waterjet systems.

  17. A Laser Stabilization System for Rydberg Atom Physics

    DTIC Science & Technology

    2015-09-06

    offset locking method which we did. For each system, a small amount of light from a 852 nm (780 nm) diode laser is picked off from the output beam ...this way, tunable sidebands, from 1-10 GHz, that are themselves modulated at .05-5 MHz, can be generated on the input laser beam . The light from the...phase modulation signal. This signal is fed back into the fast (10 MHz bandwidth) locking electronics of the diode laser system to lock the laser to

  18. Automatic alignment technology in high power laser system

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Dai, Wan-jun; Wang, Yuan-cheng; Lian, Bo; Yang, Ying; Yuan, Qiang; Deng, Xue-wei; Zhao, Jun-pu; Zhou, Wei

    2015-02-01

    The high power solid laser system is becoming larger and higher energy that requires the beam automatic alignment faster and higher precision to ensure safety running of laser system and increase the shooting success rate. This paper take SGIII laser facility for instance, introduce the basic principle of automatic alignment of large laser system. The automatic alignment based on digital image processing technology which use the imaging of seven-classes spatial filter pinholes for feedback to working. Practical application indicates that automatic alignment system of cavity mirror in SGIII facility can finish the work in 210 seconds of four bundles and will not exceed 270 seconds of all six bundles. The alignment precision promoted to 2.5% aperture from 8% aperture. The automatic alignment makes it possible for fast and safety running of lager laser system.

  19. Design of high-precision ranging system for laser fuze

    NASA Astrophysics Data System (ADS)

    Chen, Shanshan; Zhang, He; Xu, Xiaobin

    2016-10-01

    According to the problem of the high-precision ranging in the circumferential scanning probe laser proximity fuze, a new type of pulsed laser ranging system has been designed. The laser transmitting module, laser receiving module and ranging processing module have been designed respectively. The factors affecting the ranging accuracy are discussed. And the method of improving the ranging accuracy is studied. The high-precision ranging system adopts the general high performance microprocessor C8051FXXX as the core. And the time interval measurement chip TDC-GP21 was used to implement the system. A PCB circuit board was processed to carry on the experiment. The results of the experiment prove that a centimeter level accuracy ranging system has been achieved. The works can offer reference for ranging system design of the circumferential scanning probe laser proximity fuze.

  20. Pulsed excimer laser angioplasty of human cadaveric arteries.

    PubMed

    Farrell, E M; Higginson, L A; Nip, W S; Walley, V M; Keon, W J

    1986-02-01

    Laser angioplasty has been limited by the lack of precise control of thermal and acoustic vascular injury. Pulsed excimer lasers, by contrast, have a capacity to affect target tissue without heat dispersion or damage to surrounding structures. The ablative properties of three excimer wavelengths, krypton fluoride (249 nm), xenon chloride (308 nm), and xenon fluoride (351 nm), were investigated with the use of fresh human cadaveric normal and atherosclerotic femoral arteries. Light and electron microscopy demonstrated clean cuts with histologically normal edges. There was no evidence of either thermal or acoustic damage with any of the wavelengths studied. The depth of ablation varied directly with the number of pulses and inversely with tissue density while the incision width remained constant. The excimer laser appears to offer significant advantages over its conventional counterparts for the ablation of atherosclerotic plaque.

  1. Tunable near ultraviolet laser system from a frequency doubled alexandrite laser

    SciTech Connect

    Barnes, N.P.; Gettemy, D.J.; Johnson, T.M.

    1983-09-01

    A laser system which is capable of producing radiation tunable over the region from approximately 0.36-0.40 ..mu.. is described. The laser produces in excess of 5.0 mJ per pulse in a about 0.1 ..mu..s pulse length.

  2. Modeling and experiments with a subsea laser radar system

    NASA Astrophysics Data System (ADS)

    Bjarnar, Morten L.; Klepsvik, John O.; Nilsen, Jan E.

    1991-12-01

    Subsea laser radar has a potential for accurate 3-D imaging in water. A prototype system has been developed at Seatex A/S in Norway as a prestudy for the design of an underwater laser radar scanning system. Parallel to the experimental studies, a numerical radiometric model has been developed as an aid in the system design. This model simulates a raster scanning laser radar system for in-water use. Thus this parametric model allows for analysis and predictions of the performance of such a sensor system. Experiments have been conducted to test a prototype laser radar system. The experimental system tested uses a Q-switched, frequency doubled, Nd:YAG solid state laser operating at a wavelength of 532 nm, which is close to optimal for use in water due to the small light attenuation around this wavelength in seawater. The laser has an energy output of 6 (mu) J per pulse 1 kHz pulse repetition frequency (PRF) and the receiver aperture is approximately 17 cm2. The laser radar prototype was mounted onto an accurate pan and tilt unit in order to test the 3-D imaging capabilities. The ultimate goal of the development is to provide an optical 3-D imaging tool for distances comparable to high frequency sonars with a range capability of approximately 30 - 50 m. The results from these experiments are presented. The present implementation of the scanning laser radar model is described and some outputs from the simulation are shown.

  3. FY 2005 Quantum Cascade Laser Alignment System Final Report

    SciTech Connect

    Myers, Tanya L.; Cannon, Bret D.; Wojcik, Michael D.; Broocks, Bryan T.; Stewart, Timothy L.; Hatchell, Brian K.

    2006-01-11

    The Alignment Lasers Task of Pacific Northwest National Laboratory's (PNNL's) Remote Spectroscopy Project (Project PL211I) is a co-funded project between DOE NA-22 and a Classified Client. This project, which began in the second half of FY03, involved building and delivering a Quantum Cascade (QC) Laser Alignment System to be used for testing the pupil alignment of an infrared sensor by measuring the response from four pairs of diametrically opposed QC lasers. PNNL delivered the system in FY04 and provided technical assistance in FY05 culminating into a successful demonstration of the system. This project evolved from the Laser Development Task of PL211I, which is involved in developing novel laser technology to support development of advanced chemical sensors for detecting the proliferation of nuclear weapons. The laser systems are based on quantum cascade (QC) lasers, a new semiconductor source in the infrared. QC lasers can be tailored to emit light throughout the infrared region (3.5 ? 17 ?m) and have high output power and stability. Thus, these lasers provide an infrared source with superb power and spectral stability enabling them to be used for applications such as alignment and calibration in addition to chemical sensing.

  4. Motivations for laser detonator and firing system developments

    NASA Astrophysics Data System (ADS)

    Kennedy, James E.

    2006-08-01

    For ordnance system and testing applications in which safety is paramount, laser detonators and firing systems are strong candidates. Both low-power (1 W) and high-power (~1 MW) laser-driven explosive devices provide safety against stray current and electrostatic discharges, including lightning. This article addresses only one class of high-power laser-driven detonators that provide prompt detonation - the laser-driven analog of electrical exploding bridgewire (EBW) detonatorsm which we call a "laser EBW." Coupling of laser power into a plasma and then to the explosive powder will be described. Drawing upon current initiatives within DOE laboratories, this talk will emphasize similarities between high-power laser detonators and high-power electrical detonators in terms of firing power requirements and development of deonation. In explosive testing applications, laser detonators provide separation of noisy electrical firing systems from diagnostic sensors that may be embedded in an experimental assembly. Laser detonators can be made without any metallic content, and that is desirable for radiography experiments. Feasibility of reliable transmission of a firing pulse through optical fibers is a key element in applications for missile ordnance, warhead firing, and other mobile systems. The preparation and characterization of fibers, and their capabilities and limitations are also discussed briefly.

  5. High Average Power, High Energy Short Pulse Fiber Laser System

    SciTech Connect

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  6. Pulse-burst laser systems for fast Thomson scattering (invited)

    SciTech Connect

    Den Hartog, D. J.; Ambuel, J. R.; Holly, D. J.; Robl, P. E.; Borchardt, M. T.; Falkowski, A. F.; Harris, W. S.; Parke, E.; Reusch, J. A.; Stephens, H. D.; Yang, Y. M.

    2010-10-15

    Two standard commercial flashlamp-pumped Nd:YAG (YAG denotes yttrium aluminum garnet) lasers have been upgraded to ''pulse-burst'' capability. Each laser produces a burst of up to 15 2 J Q-switched pulses (1064 nm) at repetition rates of 1-12.5 kHz. Variable pulse-width drive (0.15-0.39 ms) of the flashlamps is accomplished by insulated gate bipolar transistor (IGBT) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, and up to four 2 J laser pulses during one flashlamp pulse. These lasers are used in the Thomson scattering plasma diagnostic system on the MST reversed-field pinch to record the dynamic evolution of the electron temperature profile and temperature fluctuations. To further these investigations, a custom pulse-burst laser system with a maximum pulse repetition rate of 250 kHz is now being commissioned.

  7. Pulse-burst laser systems for fast Thomson scattering (invited).

    PubMed

    Den Hartog, D J; Ambuel, J R; Borchardt, M T; Falkowski, A F; Harris, W S; Holly, D J; Parke, E; Reusch, J A; Robl, P E; Stephens, H D; Yang, Y M

    2010-10-01

    Two standard commercial flashlamp-pumped Nd:YAG (YAG denotes yttrium aluminum garnet) lasers have been upgraded to "pulse-burst" capability. Each laser produces a burst of up to 15 2 J Q-switched pulses (1064 nm) at repetition rates of 1-12.5 kHz. Variable pulse-width drive (0.15-0.39 ms) of the flashlamps is accomplished by insulated gate bipolar transistor (IGBT) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, and up to four 2 J laser pulses during one flashlamp pulse. These lasers are used in the Thomson scattering plasma diagnostic system on the MST reversed-field pinch to record the dynamic evolution of the electron temperature profile and temperature fluctuations. To further these investigations, a custom pulse-burst laser system with a maximum pulse repetition rate of 250 kHz is now being commissioned.

  8. Imaging System With Confocally Self-Detecting Laser.

    DOEpatents

    Webb, Robert H.; Rogomentich, Fran J.

    1996-10-08

    The invention relates to a confocal laser imaging system and method. The system includes a laser source, a beam splitter, focusing elements, and a photosensitive detector. The laser source projects a laser beam along a first optical path at an object to be imaged, and modulates the intensity of the projected laser beam in response to light reflected from the object. A beam splitter directs a portion of the projected laser beam onto a photodetector. The photodetector monitors the intensity of laser output. The laser source can be an electrically scannable array, with a lens or objective assembly for focusing light generated by the array onto the object of interest. As the array is energized, its laser beams scan over the object, and light reflected at each point is returned by the lens to the element of the array from which it originated. A single photosensitive detector element can generate an intensity-representative signal for all lasers of the array. The intensity-representative signal from the photosensitive detector can be processed to provide an image of the object of interest.

  9. A Medical Excimer Laser System For Corneal Surgery And Laser Angioplasty

    NASA Astrophysics Data System (ADS)

    Caro, R. G.; Muller, D. F.

    1987-03-01

    The authors report the design criteria and performance of the ExciMeda UV200 medical excimer laser system. A beam delivery system for controlled photoablative machining of variable power optical lenses in organic material is described. Some of the potential applications of this delivery system in corneal surgery are presented. The uses of the UV200 laser system in other areas of medical research are discussed and, in particular, its application i the field of laser angioplasty is outlined. There has been considerable interest recently in the use of excimer lasers in a variety of fields in medicine. The ultraviolet, high peak power beam emitted by an excimer laser has been shown to be capable of producing very clean and precise cuts in organic material. In particular, cuts can be made in biological material with minimal disturbance of the material adjacent to the cut. For example, tissue can be cut in such a way as to produce negligible charring or vacuolization in adjacent areas of the tissue. This is in marked contrast to the results when organic material is cut by a continuous wave laser such as an Argon ion laser, or c.w. CO2 laser. The potential applications in clinical settings which are suggested by this feature of the interaction of tissue with excimer laser radiation have been largely unrealized outside the laboratory as yet. A primary reason for this is that, until recently, excimer lasers have been available only in a form that was suitable for the scientific laboratory. These lasers required large amounts of space, were not mobile once installed, and required con nection to external sources of water cooling, vacuum exhaust, a high current electrical supply, and a variety of gas bottles including the gases F2 and C12. These systems were not designed with clinical applications in mind, and thus provided unnecessary performance features at the cost of added complexity. They also posed potential electrical and gaseous safety hazards not suitable for a

  10. Development of laser-based imaging systems for medical diagnostics

    NASA Astrophysics Data System (ADS)

    Witte, S.; Salumbides, M.; Peterman, E. J. G.; Brakenhoff, R.; van Dongen, G.; Toonen, R.; Mansvelder, H. D.; Groot, M. L.

    We present a laser system with high wavelength flexibility, suitable for nonlinear microscopy and optical coherence tomography, for visualization of disease-related morphological changes in vivo. A single-shot 2D OCT system is demonstrated.

  11. Lasers in tattoo and pigmentation control: role of the PicoSure® laser system

    PubMed Central

    Torbeck, Richard; Bankowski, Richard; Henize, Sarah; Saedi, Nazanin

    2016-01-01

    Background and objectives The use of picosecond lasers to remove tattoos has greatly improved due to the long-standing outcomes of nanosecond lasers, both clinically and histologically. The first aesthetic picosecond laser available for this use was the PicoSure® laser system (755/532 nm). Now that a vast amount of research on its use has been conducted, we performed a comprehensive review of the literature to validate the continued application of the PicoSure® laser system for tattoo removal. Study design and methods A PubMed search was conducted using the term “picosecond” combined with “laser”, “dermatology”, and “laser tattoo removal”. Results A total of 13 articles were identified, and ten of these met the inclusion criteria for this review. The majority of studies showed that picosecond lasers are an effective and safe treatment mode for the removal of tattoo pigments. Several studies also indicated potential novel applications of picosecond lasers in the removal of various tattoo pigments (eg, black, red, and yellow). Adverse effects were generally mild, such as transient hypopigmentation or blister formation, and were rarely more serious, such as scarring and/or textural change. Conclusion Advancements in laser technologies and their application in cutaneous medicine have revolutionized the field of laser surgery. Computational modeling provides evidence that the optimal pulse durations for tattoo ink removal are in the picosecond domain. It is recommended that the PicoSure® laser system continue to be used for safe and effective tattoo removal, including for red and yellow pigments. PMID:27194919

  12. System, Apparatus and Method Employing a Dual Head Laser

    NASA Technical Reports Server (NTRS)

    Coyle, Donald B. (Inventor); Stysley, Paul R. (Inventor); Poulios, Demetrios (Inventor)

    2015-01-01

    A system, apparatus and method employing a laser with a split-head, V-assembly gain material configuration. Additionally, the present invention is directed to techniques to better dissipate or remove unwanted energies in laser operations. The present invention is also directed to techniques for better collimated laser beams, with single spatial mode quality (TEM00), with improved efficiency, in extreme environments, such as in outer space.

  13. Integrated laser/radar satellite ranging and tracking system.

    PubMed

    Hoge, F E

    1974-10-01

    A laser satellite ranging system that is mounted upon and integrated with a microwave tracking radar is reported. The 1-pulse sec/ruby laser transmitter is attached directly to the radar's elevation axis and radiates through a new opening in the radar's parabolic dish. The laser photomultiplier tube receiver utilizes the radar's existing 20-cm diam f11 boresight telescope and observes through a similar symmetrically located opening in the dish. The laser system possesses separate ranging system electronics but shares the radar's timing, computer, and data handling[equation]recording systems. The basic concept of the laser[equation]radar is outlined together with a listing of the numerous advantages over present singular laser rangefinding systems. The developmental laser hardware is described along with preliminary rangefinding results and expectations. The prototype system was assembled to investigate the feasibility of such systems and aid in the development of detailed specifications for an operational system. Both the feasibility and desirability of such systems integrations have been adequately demonstrated.

  14. High performance distributed feedback fiber laser sensor array system

    NASA Astrophysics Data System (ADS)

    He, Jun; Li, Fang; Xu, Tuanwei; Wang, Yan; Liu, Yuliang

    2009-11-01

    Distributed feedback (DFB) fiber lasers have their unique properties useful for sensing applications. This paper presents a high performance distributed feedback (DFB) fiber laser sensor array system. Four key techniques have been adopted to set up the system, including DFB fiber laser design and fabrication, interferometric wavelength shift demodulation, digital phase generated carrier (PGC) technique and dense wavelength division multiplexing (DWDM). Experimental results confirm that a high dynamic strain resolution of 305 fɛ/√Hz (@ 1 kHz) has been achieved by the proposed sensor array system. And the multiplexing of eight channel DFB fiber laser sensor array has been demonstrated. The proposed DFB fiber laser sensor array system is suitable for ultra-weak signal detection, and has potential applications in the field of petroleum seismic explorations, earthquake prediction, and security.

  15. Nova laser system at ultra high fluence levels

    SciTech Connect

    Hunt, J.T.

    1985-01-01

    The Nova experimental facility consists of a ten arm laser system and five experimental stations and was completed in December 1984. Two of these stations are used for inertial confinement fusion (ICF) experiments and the other three are dedicated to doing large aperture (30 to 74 cm) laser experiments. The laser system is deployed in a master oscillator-power amplifier architecture and uses Nd: phosphate glass for the active medium. The fundamental wavelength of the system is 1.05 microns. Frequency converters constructed from potassium dihydrogen phosphate (KDP) crystals are located at the end of each of the ten arms and are used to produce high power frequency doubled (0.53 microns) and tripled (0.35 microns) beams for either ICF or laser experiments. Thus, the Nova laser system can produce high power beams with wavelengths ranging from the infrared to the ultraviolet.

  16. The 3D laser radar vision processor system

    NASA Technical Reports Server (NTRS)

    Sebok, T. M.

    1990-01-01

    Loral Defense Systems (LDS) developed a 3D Laser Radar Vision Processor system capable of detecting, classifying, and identifying small mobile targets as well as larger fixed targets using three dimensional laser radar imagery for use with a robotic type system. This processor system is designed to interface with the NASA Johnson Space Center in-house Extra Vehicular Activity (EVA) Retriever robot program and provide to it needed information so it can fetch and grasp targets in a space-type scenario.

  17. High average power solid state laser power conditioning system

    SciTech Connect

    Steinkraus, R.F.

    1987-03-03

    The power conditioning system for the High Average Power Laser program at Lawrence Livermore National Laboratory (LLNL) is described. The system has been operational for two years. It is high voltage, high power, fault protected, and solid state. The power conditioning system drives flashlamps that pump solid state lasers. Flashlamps are driven by silicon control rectifier (SCR) switched, resonant charged, (LC) discharge pulse forming networks (PFNs). The system uses fiber optics for control and diagnostics. Energy and thermal diagnostics are monitored by computers.

  18. Fiber Optically Coupled Eyesafe Laser Threat Warning System

    DTIC Science & Technology

    2000-05-11

    WARNING SYSTEM 11 MAY 2000 MSS SPECIALTY GROUP ON INFRARED COUNTERMEASURES NAVAL POSTGRADUATE SCHOOL, MONTEREY, CA PRESENTED BY: DR. AL TORRES...A Dates Covered (from... to) - Title and Subtitle Fiber Optically Coupled Eyesafe Laser Threat Warning System Contract Number Grant Number... WARNING SYSTEM (ESLTWS) PHASE II SBIR PROGRAM • CONCEPT: - TO DEVELOP A UNIQUE AND NOVEL EYE SAFE LASER THREAT WARNING RECEIVER SYSTEM. MUST BE

  19. Stimulated Brillouin scattering mirror system, high power laser and laser peening method and system using same

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.

    2007-04-24

    A laser system, such as a master oscillator/power amplifier system, comprises a gain medium and a stimulated Brillouin scattering SBS mirror system. The SBS mirror system includes an in situ filtered SBS medium that comprises a compound having a small negative non-linear index of refraction, such as a perfluoro compound. An SBS relay telescope having a telescope focal point includes a baffle at the telescope focal point which blocks off angle beams. A beam splitter is placed between the SBS mirror system and the SBS relay telescope, directing a fraction of the beam to an alternate beam path for an alignment fiducial. The SBS mirror system has a collimated SBS cell and a focused SBS cell. An adjustable attenuator is placed between the collimated SBS cell and the focused SBS cell, by which pulse width of the reflected beam can be adjusted.

  20. Improving laser system productivity through production line integration

    NASA Astrophysics Data System (ADS)

    Belforte, David A.

    1994-09-01

    Thousands of laser systems are employed profitably in a variety of industrial applications. These installations have proved successful for economic and technical reasons. And, in certain applications: ceramic scribing, resistor trimming, sheet metal cutting, and air foil drilling, for example, have become the industry standard. Most of these installations are free standing or, at best, part of an off-line manufacturing cell. Examples of laser systems fully integrated into a production line, where the laser process is synchronized with up and down stream manufacturing operation, are rare. The laser has been under utilized in its potential contribution to production line productivity. Current development in laser beam delivery: multiplexing, beam splitting and other distributed energy concepts make the laser an attractive option for just-in-time manufacturing operations. The reasons for this apparent neglect of the laser's full potential are reviewed in this paper, and suggestions for improvement of this situation are offered. Examples of fully integrated laser systems and their successful implementation are described and a forecast of changes in the way lasers contribute to improved productivity and profitability will be made.

  1. A semi-automatic 3D laser scan system design

    NASA Astrophysics Data System (ADS)

    Xiong, Hanwei; Pan, Ming; Zhang, Xiangwei

    2009-11-01

    Digital 3D models are now used everywhere, from traditional fields of industrial design, artistic design, to heritage conservation. Although laser scan is very useful to get densely samples of the objects, nowadays, such an instrument is expensive and always need to be connected to a computer with stable power supply, which prevent it from usage for fieldworks. In this paper, a new semi-automatic 3D laser scan method is proposed using two line laser sources. The planes projected from the laser sources are orthogonal, one of which is fixed relative to the camera, and the other can be rotated along a settled axis. Before scanning, the system must be calibrated, from which the parameters of the camera, the position of the fixed laser plane and the settled axis are introduced. In scanning process, the fixed laser plane and the camera form a conventional structured light system, and the 3d positions of the intersection curves of the fixed laser plane with the object can be computed. The other laser plane is rotated manually or mechanically, and its position can be determined from the cross point intersecting with the fixed laser plane on the object, so the coordinates of sweeping points can be obtained. The new system can be used without a computer (The data can be processed later), which make it suitable for fieldworks. A scanning case is given in the end.

  2. Laser metrology in food-related systems

    NASA Astrophysics Data System (ADS)

    Mendoza-Sanchez, Patricia; Lopez, Daniel; Kongraksawech, Teepakorn; Vazquez, Pedro; Torres, J. Antonio; Ramirez, Jose A.; Huerta-Ruelas, Jorge

    2005-02-01

    An optical system was developed using a low-cost semiconductor laser and commercial optical and electronic components, to monitor food processes by measuring changes in optical rotation (OR) of chiral compounds. The OR signal as a function of processing time and sample temperature were collected and recorded using a computer data acquisition system. System has been tested during two different processes: sugar-protein interaction and, beer fermentation process. To study sugar-protein interaction, the following sugars were used: sorbitol, trehalose and sucrose, and in the place of Protein, Serum Albumin Bovine (BSA, A-7906 Sigma-Aldrich). In some food processes, different sugars are added to protect damage of proteins during their processing, storage and/or distribution. Different sugar/protein solutions were prepared and heated above critical temperature of protein denaturation. OR measurements were performed during heating process and effect of different sugars in protein denaturation was measured. Higher sensitivity of these measurements was found compared with Differential Scanning Calorimetry, which needs higher protein concentration to study these interactions. The brewing fermentation process was monitored in-situ using this OR system and validated by correlation with specific density measurements and gas chromatography. This instrument can be implemented to monitor fermentation on-line, thereby determining end of process and optimizing process conditions in an industrial setting. The high sensitivity of developed OR system has no mobile parts and is more flexible than commercial polarimeters providing the capability of implementation in harsh environments, signifying the potential of this method as an in-line technique for quality control in food processing and for experimentation with optically active solutions.

  3. Dual-beam laser autofocusing system based on liquid lens

    NASA Astrophysics Data System (ADS)

    Zhang, Fumin; Yao, Yannan; Qu, Xinghua; Zhang, Tong; Pei, Bing

    2017-02-01

    A dual-beam laser autofocusing system is designed in this paper. The autofocusing system is based on a liquid lens with less moving parts and fast response time, which makes the system simple, reliable, compact and fast. A novel scheme "Time-sharing focus, fast conversion" is innovatively proposed. The scheme effectively solves the problem that the guiding laser and the working laser cannot focus at the same target point because of the existence of chromatic aberration. This scheme not only makes both guiding laser and working laser achieve optimal focusing in guiding stage and working stage respectively, but also greatly reduces the system complexity and simplifies the focusing process as well as makes autofocusing time of the working laser reduce to about 10 ms. In the distance range of 1 m to 30 m, the autofocusing spot size is kept under 4.3 mm at 30 m and just 0.18 mm at 1 m. The spot size is much less influenced by the target distance compared with the collimated laser with a micro divergence angle for its self-adaptivity. The dual-beam laser autofocusing system based on liquid lens is fully automatic, compact and efficient. It is fully meet the need of dynamicity and adaptivity and it will play an important role in a number of long-range control applications.

  4. Operation of the APS photoinjector drive laser system.

    SciTech Connect

    Li, Y.; Accelerator Systems Division

    2008-08-04

    The APS photoinjector drive laser system has been in operation since 1999 and is achieving a performance level exceeding the requirement of stable operation of the LEUTL FEL system. One remarkable number is the UV energy stability of better than 2% rms, sometimes less than 1% rms. This report summarizes the operation experience of the laser system and the improvements made along the way. We also outline the route of upgrade of the system and some frontier laser research and development opportunities in ultrabright electron beam generation.

  5. Updated laser safety & hazard analysis for the ARES laser system based on the 2007 ANSI Z136.1 standard.

    SciTech Connect

    Augustoni, Arnold L.

    2007-08-01

    A laser safety and hazard analysis was performed for the temperature stabilized Big Sky Laser Technology (BSLT) laser central to the ARES system based on the 2007 version of the American National Standards Institutes (ANSI) Standard Z136.1, for Safe Use of Lasers and the 2005 version of the ANSI Standard Z136.6, for Safe Use of Lasers Outdoors. The ARES laser system is a Van/Truck based mobile platform, which is used to perform laser interaction experiments and tests at various national test sites.

  6. Laser demonstration and performance characterization of optically pumped Alkali Laser systems

    NASA Astrophysics Data System (ADS)

    Sulham, Clifford V.

    Diode Pumped Alkali Lasers (DPALs) offer a promising approach for high power lasers in military applications that will not suffer from the long logistical trails of chemical lasers or the thermal management issues of diode pumped solid state lasers. This research focuses on characterizing a DPAL-type system to gain a better understanding of using this type of laser as a directed energy weapon. A rubidium laser operating at 795 nm is optically pumped by a pulsed titanium sapphire laser to investigate the dynamics of DPALs at pump intensities between 1.3 and 45 kW/cm2. Linear scaling as high as 32 times threshold is observed, with no evidence of second order kinetics. Comparison of laser characteristics with a quasi-two level analytic model suggests performance near the ideal steady-state limit, disregarding the mode mis-match. Additionally, the peak power scales linearly as high as 1 kW, suggesting aperture scaling to a few cm2 is sufficient to achieve tactical level laser powers. The temporal dynamics of the 100 ns pump and rubidium laser pulses are presented, and the continually evolving laser efficiency provides insight into the bottlenecking of the rubidium atoms in the 2P3/2 state. Lastly, multiple excited states of rubidium and cesium were accessed through two photon absorption in the red, yielding a blue and an IR photon through amplified stimulated emission. Threshold is modest at 0.3 mJ/pulse, and slope efficiencies increase dramatically with alkali concentrations and peak at 0.4%, with considerable opportunity for improvement. This versatile system might find applications for IR countermeasures or underwater communications.

  7. Precision CW laser automatic tracking system investigated

    NASA Technical Reports Server (NTRS)

    Lang, K. T.; Lucy, R. F.; Mcgann, E. J.; Peters, C. J.

    1966-01-01

    Precision laser tracker capable of tracking a low acceleration target to an accuracy of about 20 microradians rms is being constructed and tested. This laser tracking has the advantage of discriminating against other optical sources and the capability of simultaneously measuring range.

  8. Laser Beam Duct Pressure Controller System.

    DTIC Science & Technology

    the axial flow of a conditioning gas within the laser beam duct, by matching the time rate of change of the pressure of the flowing conditioning gas...to the time rate of change of the pressure in the cavity of an operably associated laser beam turret.

  9. Laser safety research and modeling for high-energy laser systems

    NASA Astrophysics Data System (ADS)

    Smith, Peter A.; Montes de Oca, Cecilia I.; Kennedy, Paul K.; Keppler, Kenneth S.

    2002-06-01

    The Department of Defense has an increasing number of high-energy laser weapons programs with the potential to mature in the not too distant future. However, as laser systems with increasingly higher energies are developed, the difficulty of the laser safety problem increases proportionally, and presents unique safety challenges. The hazard distance for the direct beam can be in the order of thousands of miles, and radiation reflected from the target may also be hazardous over long distances. This paper details the Air Force Research Laboratory/Optical Radiation Branch (AFRL/HEDO) High-Energy Laser (HEL) safety program, which has been developed to support DOD HEL programs by providing critical capability and knowledge with respect to laser safety. The overall aim of the program is to develop and demonstrate technologies that permit safe testing, deployment and use of high-energy laser weapons. The program spans the range of applicable technologies, including evaluation of the biological effects of high-energy laser systems, development and validation of laser hazard assessment tools, and development of appropriate eye protection for those at risk.

  10. Solid-state-based laser system as a replacement for Ar+ lasers.

    PubMed

    Beck, Tobias; Rein, Benjamin; Sörensen, Fabian; Walther, Thomas

    2016-09-15

    We report on a solid-state-based laser system at 1028 nm. The light is generated by a diode laser seeded ytterbium fiber amplifier. In two build-up cavities, its frequency is doubled and quadrupled to 514 nm and 257 nm, respectively. At 514 nm, the system delivers up to 4.7 W of optical power. In the fourth harmonic, up to 173 mW are available limited by the nonlinear crystal. The frequency of the laser is mode-hop-free tunable by 16 GHz in 10 ms in the UV. Therefore, the system is suitable as a low maintenance, efficient, and tunable narrowband replacement for frequency doubled Ar+ laser systems.

  11. Method for Ground-to-Satellite Laser Calibration System

    NASA Technical Reports Server (NTRS)

    Lukashin, Constantine (Inventor); Wielicki, Bruce A. (Inventor)

    2015-01-01

    The present invention comprises an approach for calibrating the sensitivity to polarization, optics degradation, spectral and stray light response functions of instruments on orbit. The concept is based on using an accurate ground-based laser system, Ground-to-Space Laser Calibration (GSLC), transmitting laser light to instrument on orbit during nighttime substantially clear-sky conditions. To minimize atmospheric contribution to the calibration uncertainty the calibration cycles should be performed in short time intervals, and all required measurements are designed to be relative. The calibration cycles involve ground operations with laser beam polarization and wavelength changes.

  12. Laser photovoltaic power system synergy for SEI applications

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Hickman, J. M.

    1991-01-01

    Solar arrays can provide reliable space power, but do not operate when there is no solar energy. Photovoltaic arrays can also convert laser energy with high efficiency. One proposal to reduce the required mass of energy storage required is to illuminate the photovoltaic arrays by a ground laser system. It is proposed to locate large lasers on cloud-free sites at one or more ground locations, and use large lenses or mirrors with adaptive optical correction to reduce the beam spread due to diffraction or atmospheric turbulence. During the eclipse periods or lunar night, the lasers illuminate the solar arrays to a level sufficient to provide operating power.

  13. Method for Ground-to-Space Laser Calibration System

    NASA Technical Reports Server (NTRS)

    Lukashin, Constantine (Inventor); Wielicki, Bruce A. (Inventor)

    2014-01-01

    The present invention comprises an approach for calibrating the sensitivity to polarization, optics degradation, spectral and stray light response functions of instruments on orbit. The concept is based on using an accurate ground-based laser system, Ground-to-Space Laser Calibration (GSLC), transmitting laser light to instrument on orbit during nighttime substantially clear-sky conditions. To minimize atmospheric contribution to the calibration uncertainty the calibration cycles should be performed in short time intervals, and all required measurements are designed to be relative. The calibration cycles involve ground operations with laser beam polarization and wavelength changes.

  14. Optical laser systems at the Linac Coherent Light Source

    DOE PAGES

    Minitti, Michael P.; Robinson, Joseph S.; Coffee, Ryan N.; ...

    2015-04-22

    Ultrafast optical lasers play an essential role in exploiting the unique capabilities of recently commissioned X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS). Pump–probe experimental techniques reveal ultrafast dynamics in atomic and molecular processes and reveal new insights in chemistry, biology, material science and high-energy-density physics. This manuscript describes the laser systems and experimental methods that enable cutting-edge optical laser/X-ray pump–probe experiments to be performed at LCLS.

  15. Laser cutting of irregular shape object based on stereo vision laser galvanometric scanning system

    NASA Astrophysics Data System (ADS)

    Qi, Li; Zhang, Yixin; Wang, Shun; Tang, Zhiqiang; Yang, Huan; Zhang, Xuping

    2015-05-01

    Irregular shape objects with different 3-dimensional (3D) appearances are difficult to be shaped into customized uniform pattern by current laser machining approaches. A laser galvanometric scanning system (LGS) could be a potential candidate since it can easily achieve path-adjustable laser shaping. However, without knowing the actual 3D topography of the object, the processing result may still suffer from 3D shape distortion. It is desirable to have a versatile auxiliary tool that is capable of generating 3D-adjusted laser processing path by measuring the 3D geometry of those irregular shape objects. This paper proposed the stereo vision laser galvanometric scanning system (SLGS), which takes the advantages of both the stereo vision solution and conventional LGS system. The 3D geometry of the object obtained by the stereo cameras is used to guide the scanning galvanometers for 3D-shape-adjusted laser processing. In order to achieve precise visual-servoed laser fabrication, these two independent components are integrated through a system calibration method using plastic thin film target. The flexibility of SLGS has been experimentally demonstrated by cutting duck feathers for badminton shuttle manufacture.

  16. Rugged TDLAS system for High Energy Laser atmospheric propagation characterization

    NASA Astrophysics Data System (ADS)

    Perram, Glen; Rice, Christopher

    2008-10-01

    An active remote sensing instrument for the characterization of atmospheric absorption, scattering, and scintillation at several key high energy laser wavelengths is in development. The instrument is based on narrow band tunable diode lasers fiber coupled to a 12'' Ritchey-Chretien transmit telescope and a second receive telescope with visible or near infrared imager. For example, tunable diode lasers have been used to obtain absorption spectra in the laboratory for the Cs D2 lines near 852 nm and the oxygen X-b lines near 760 nm, key to the Diode Pumped Alkali Laser (DPAL) concept. Absorbencies of less than 0.5% are observable. Applications will be assessed including effects to HEL atmospheric propagation from molecular and aerosol absorption and scattering, Cn2 estimation from atmospheric turbulence, hazardous chemical emission detection, and laser communication interception from side scattering. The system will soon be deployed to a military laser test range to characterize path lengths of greater than 1 km.

  17. Optical System Design and Integration of the Mercury Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Ramos-Izquierdo, Luis; Scott, V. Stanley, III; Schmidt, Stephen; Britt, Jamie; Mamakos, William; Trunzo, Raymond; Cavanaugh, John; Miller, Roger

    2005-01-01

    The Mercury Laser Altimeter (MLA). developed for the 2004 MESSENGER mission to Mercury, is designed to measure the planet's topography via laser ranging. A description of the MLA optical system and its measured optical performance during instrument-level and spacecraft-level integration and testing are presented.

  18. Compact confocal readout system for three-dimensional memories using a laser-feedback semiconductor laser.

    PubMed

    Nakano, Masaharu; Kawata, Yoshimasa

    2003-08-01

    We present a compact confocal readout system for three-dimensional optical memories that uses the thresholding property of a semiconductor laser for feedback light. The system has higher axial resolution than a conventional confocal system with a pinhole. We demonstrate readout results for data recorded in two recording layers with the developed system.

  19. Investigation of a Pulsed 1550 nm Fiber Laser System

    DTIC Science & Technology

    2015-12-15

    Jain 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT...14. ABSTRACT There is a strong need for a pulsed laser system at eye safe wavelengths for illuminator applications . High power pulsed 1550 nm fiber...system at eye safe wavelengths for illuminator applications . High power pulsed 1550 nm fiber lasers systems are able to generate, shaped, pulses at

  20. Ultrashort-pulse laser system for hard dental tissue procedures

    NASA Astrophysics Data System (ADS)

    Neev, Joseph; Da Silva, Luiz B.; Feit, Michael D.; Perry, Michael D.; Rubenchik, Alexander M.; Stuart, Brent C.

    1996-04-01

    In spite of intensive research, lasers have not replaced conventional tools in many hard tissue applications. Ultrashort pulse lasers offer several advantages in their highly per-pulse-efficient operation, negligible thermal and mechanical damage and low noise operation. Possible development of optimal laser systems to replace the high-speed dental drill is discussed. Applications of ultrashort pulse systems for dental procedures are outlined. Selection criteria and critical parameters are considered, and are compared to the conventional air-turbine drill and to long and short pulsed systems.

  1. Laser Communication Demonstration System (LSCS) and Future Mobile Satellite Services

    NASA Technical Reports Server (NTRS)

    Chen, C. -C.; Lesh, J. R.

    1995-01-01

    The Laser Communications Demonstration System (LCDS) is a proposed in-orbit demonstration of high data rate laser communications technology conceived jointly by NASA and U.S. industry. The program objectives are to stimulate industry development and to demonstrate the readiness of high data rate optical communications in Earth Orbit. For future global satellite communication systems using intersatellite links (ISLs), laser communications technology can offer reduced mass , reduced power requirements, and increased channel bandwidths without regulatory restraint. This paper provides comparisons with radio systems and status of the program.

  2. A design of atmospheric laser communication system based on semiconductor laser

    NASA Astrophysics Data System (ADS)

    Rao, Jionghui; Yao, Wenming; Wen, Linqiang

    2016-01-01

    This paper uses semiconductor laser with 905nm wave length as light source to design a set of short-distance atmospheric laser communication system. This system consists of laser light source, launch modulation circuit, detector, receiving and amplifying circuit and so on. First, this paper analyzes the factors which lead to the decrease of luminous power of laser communication link under the applicable environment-specific sea level, then this paper elicits the relationship of luminous power of receiving optical systems and distance, slant angle and divergence angle which departures from the laser beam axis by using gaussian beam geometric attenuation mode. Based on the two reasons that PPM modulation theory limits the transmission rate of PPM modulation, that is, this paper makes an analysis on repetition frequency and pulse width of laser, makes theoretical calculation for typical parameters of semiconductor laser and gets the repetition frequency which is 10KHz, pulse width is50ns, the transmission rate is 71.66 Kb/s, at this time, modulation digit is 9; then this paper selects frame synchronization code of PPM modulation and provides implementation method for test; lastly, programs language based on Verilog, uses the FPGA development board to realize PPM modulation code and does simulation test and hardware test. This paper uses APD as the detector of receiving and amplifying circuit. Then this paper designs optical receiving circuit such as amplifying circuit, analog-digital conversion circuit based on the characteristics of receipt.

  3. Gemini North Laser Guide Star System: operations and maintenance review

    NASA Astrophysics Data System (ADS)

    Oram, Richard J.; Fesquet, Vincent; Wyman, Robert; d'Orgeville, Celine

    2010-07-01

    The Gemini North telescope has been providing Laser Guide Star Adaptive Optics (LGS AO) regular science queue observations for worldwide astronomers since February 2007. In this paper we comment on the reliability of the Laser Guide Star Facility high-power solid-state laser during normal operations, and discuss progress made on various issues that will enable a "turn-key" operation mode for the laser system. In this effort to produce consistent, stable and controlled laser parameters (power, wavelength and beam quality) we completed a failure mode effect analysis of the laser system and sub systems that initiated a campaign of hardware upgrades and procedural improvements to the routine maintenance operations. These upgrades are discussed, including pump laser diode replacements, as well as sum frequency generation (SFG) crystal degradation along with our detailed plans to improve overall laser reliability, and availability. Finally, we provide an overview of normal operation procedures during LGS runs and present a snapshot of data accumulated over several years that describes the overall LGS AO observing efficiency at the Gemini North telescope.

  4. Control for laser hemangioma treatment system

    SciTech Connect

    Muckerheide, M.C.

    1982-02-23

    A laser is disclosed for directing a nominally 5 micron wavelength beam at a hemangioma or other variegated lesion. A fiber optic bundle for intercepting radiation reflected from the lesion at an intensity corresponding with the color intensity of the region at which the beam is directed. The output beam from the fiber optic bundle modulates a photodetector stage whose amplified output drives a galvanometer. The galvanometer shaft is coupled to the shaft of a potentiometer which is adjustable to regulate the laser power supply and, hence, the laser output energy level so laser beam energy is reduced when high absorption regions in the lesion are being scanned by the beam and increased as low absorption regions are being scanned.

  5. Focused laser lithographic system with sub-wavelength resolution based on vortex laser induced opacity of photochromic material.

    PubMed

    Wei, Zhen; Bai, Jian; Xu, Jianfeng; Wang, Chen; Yao, Yuan; Hu, Neibin; Liang, Yiyong; Wang, Kaiwei; Yang, Guoguang

    2014-12-01

    A focused laser lithographic system combines with vortex laser induced opacity of photochromic layer to write patterns with linewidth below wavelength. A photochromic layer is formed by coating the mixture of metanil yellow and aqueous PVA solution on the photoresist layer. In our system, the center of a lithographic laser with a 405 nm wavelength coincides with the center of vortex laser with a 532 nm wavelength. When a photochromic layer is illuminated by both lasers simultaneously, the absorbance for the lithographic laser decreases at the hollow region of the vortex laser but increases at its annular region, so that a transparent aperture for the lithographic laser is created and its size could be tuned by changing the power of vortex laser; therefore, the linewidth of written patterns is variable. Experimentally, using a 20× lens (NA = 0.4), this system condenses the linewidth of written patterns from 6614 to 350 nm.

  6. Combined laser ultrasonics, laser heating, and Raman scattering in diamond anvil cell system.

    PubMed

    Zinin, Pavel V; Prakapenka, Vitali B; Burgess, Katherine; Odake, Shoko; Chigarev, Nikolay; Sharma, Shiv K

    2016-12-01

    We developed a multi-functional in situ measurement system under high pressure equipped with a laser ultrasonics (LU) system, Raman device, and laser heating system (LU-LH) in a diamond anvil cell (DAC). The system consists of four components: (1) a LU-DAC system (probe and pump lasers, photodetector, and oscilloscope) and DAC; (2) a fiber laser, which is designed to allow precise control of the total power in the range from 2 to 100 W by changing the diode current, for heating samples; (3) a spectrometer for measuring the temperature of the sample (using black body radiation), fluorescence spectrum (spectrum of the ruby for pressure measurement), and Raman scattering measurements inside a DAC under high pressure and high temperature (HPHT) conditions; and (4) an optical system to focus laser beams on the sample and image it in the DAC. The system is unique and allows us to do the following: (a) measure the shear and longitudinal velocities of non-transparent materials under HPHT; (b) measure temperature in a DAC under HPHT conditions using Planck's law; (c) measure pressure in a DAC using a Raman signal; and (d) measure acoustical properties of small flat specimens removed from the DAC after HPHT treatment. In this report, we demonstrate that the LU-LH-DAC system allows measurements of velocities of the skimming waves in iron at 2580 K and 22 GPa.

  7. Organelle-specific injury to melanin-containing cells in human skin by pulsed laser irradiation

    SciTech Connect

    Murphy, G.F.; Shepard, R.S.; Paul, B.S.; Menkes, A.; Anderson, R.R.; Parrish, J.A.

    1983-12-01

    Physical models predict that ultraviolet laser radiation of appropriately brief pulses can selectively alter melanin-containing cellular targets in human skin. Skin of normal human volunteers was exposed to brief (20 nanosecond) 351-nm wave length pulses from a XeF excimer laser, predicting that those cells containing the greatest quantities of melanized melanosomes (lower half of the epidermis) would be selectively damaged. Transmission electron microscopy revealed the earliest cellular alteration to be immediate disruption of melanosomes, both within melanocytes and basal keratinocytes. This disruption was dose dependent and culminated in striking degenerative changes in these cells. Superficial keratinocytes and Langerhans cells were not affected. It was concluded that the XeF excimer laser is capable of organelle-specific injury to melanosomes. These findings may have important clinical implications in the treatment of both benign and malignant pigmented lesions by laser radiations of defined wave lengths and pulse durations.

  8. Polarization Loss Compensation in a Laser Transceiver System

    NASA Technical Reports Server (NTRS)

    Hoffman, Jeffrey M.; Page, Norman A.

    2006-01-01

    JPL is developing a polarization-based sky tracking laser transceiver system in which some mirror coatings produce significant polarization losses that vary with tracking angle. We describe a useful method for dynamically compensating these effects.

  9. Interferometer combines laser light source and digital counting system

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Measurement of small linear displacements in digital readouts with extreme accuracy and sensitivity is achieved by an interferometer. The instrument combines a digital electro-optical fringe-counting system and a laser light source.

  10. Optical response in a laser-driven quantum pseudodot system

    NASA Astrophysics Data System (ADS)

    Kilic, D. Gul; Sakiroglu, S.; Ungan, F.; Yesilgul, U.; Kasapoglu, E.; Sari, H.; Sokmen, I.

    2017-03-01

    We investigate theoretically the intense laser-induced optical absorption coefficients and refractive index changes in a two-dimensional quantum pseudodot system under an uniform magnetic field. The effects of non-resonant, monochromatic intense laser field upon the system are treated within the framework of high-frequency Floquet approach in which the system is supposed to be governed by a laser-dressed potential. Linear and nonlinear absorption coefficients and relative changes in the refractive index are obtained by means of the compact-density matrix approach and iterative method. The results of numerical calculations for a typical GaAs quantum dot reveal that the optical response depends strongly on the magnitude of external magnetic field and characteristic parameters of the confinement potential. Moreover, we have demonstrated that the intense laser field modifies the confinement and thereby causes remarkable changes in the linear and nonlinear optical properties of the system.

  11. Robust laser speckle recognition system for authenticity identification.

    PubMed

    Yeh, Chia-Hung; Sung, Po-Yi; Kuo, Chih-Hung; Yeh, Ruey-Nan

    2012-10-22

    This paper proposes a laser speckle recognition system for authenticity verification. Because of the unique imperfection surfaces of objects, laser speckle provides identifiable features for authentication. A Gabor filter, SIFT (Scale-Invariant Feature Transform), and projection were used to extract the features of laser speckle images. To accelerate the matching process, the extracted Gabor features were organized into an indexing structure using the K-means algorithm. Plastic cards were used as the target objects in the proposed system and the hardware of the speckle capturing system was built. The experimental results showed that the retrieval performance of the proposed method is accurate when the database contains 516 laser speckle images. The proposed system is robust and feasible for authenticity verification.

  12. Update on Modular Laser Launch System and Heat Exchanger Thruster

    NASA Astrophysics Data System (ADS)

    Kare, Jordin T.

    2011-11-01

    The heat-exchanger (HX) thruster and modular laser array provide a comparatively low-risk route to a ground-to-orbit laser launch system. Recently, the reference designs for the propulsion system, laser array, and overall launch system have evolved significantly. By combining a variable flow of dense propellant with the primary hydrogen propellant, the heat exchanger thruster can trade reduced Isp for increased thrust at liftoff, with minimal increase in tank mass. Single-mode CW fiber lasers up to 10 kW power allow a beam module to be built with off-the-shelf commercial lasers. Low-cost high-radiance laser diode arrays can deliver launch-level fluxes of 5-10 MW/m2 over tens of kilometers, sufficient to power a vehicle through the atmosphere, and high enough to hand off propulsion to a main laser array several hundred kilometers downrange. These and other enhancements enable a system design with a true single-stage vehicle in which the only component not yet demonstrated is the silicon-carbide heat exchanger itself.

  13. Spectroscopic and laser-induced damage properties of Fe2+-doped fluorophosphate glass, a new color-separation material

    NASA Astrophysics Data System (ADS)

    Fu, Lili; Ren, Wenyi; Liu, Chunxiao; Xu, Shennuo; Zheng, Ruilin; Wei, Wei; Zhang, Chunmin; Peng, Bo

    2013-10-01

    Fe2+-doped fluorophosphate glass (FEFG), a new color-separation material, is prepared by a melt-quenching method. The spectroscopic and laser-induced damage (LID) properties of FEFG are investigated by transmittance spectroscopy, LID tests, scanning electron microscopy, and Raman spectroscopy. Results show that the sample has intensive absorption (>85 %) at 1,053 nm and high transmittance (~86.5 %) at 351 nm after introducing 0.3 wt% Fe2O3. The LID thresholds of 0.3 wt% Fe2O3-doped FEFG sample irradiated by 351- and 1,053-nm lasers with 8 ns pulse width are 4.5 and 36.0 J/cm2, respectively. Thus, FEFG has laser-separation ability and can resist nanosecond laser irradiation, indicating that FEFG is a potential color-separation material for high-power lasers.

  14. Laser-produced plasma source system development

    NASA Astrophysics Data System (ADS)

    Fomenkov, Igor V.; Brandt, David C.; Bykanov, Alexander N.; Ershov, Alexander I.; Partlo, William N.; Myers, David W.; Böwering, Norbert R.; Vaschenko, Georgiy O.; Khodykin, Oleh V.; Hoffman, Jerzy R.; Vargas L., Ernesto; Simmons, Rodney D.; Chavez, Juan A.; Chrobak, Christopher P.

    2007-03-01

    This paper describes the development of laser produced plasma (LPP) technology as an EUV source for advanced scanner lithography applications in high volume manufacturing. EUV lithography is expected to succeed 193 nm immersion technology for critical layer patterning below 32 nm beginning with beta generation scanners in 2009. This paper describes the development status of subsystems most critical to the performance to meet joint scanner manufacturer requirements and semiconductor industry standards for reliability and economic targets for cost of ownership. The intensity and power of the drive laser are critical parameters in the development of extreme ultraviolet LPP lithography sources. The conversion efficiency (CE) of laser light into EUV light is strongly dependent on the intensity of the laser energy on the target material at the point of interaction. The total EUV light generated then scales directly with the total incident laser power. The progress on the development of a short pulse, high power CO2 laser for EUV applications is reported. The lifetime of the collector mirror is a critical parameter in the development of extreme ultra-violet LPP lithography sources. The deposition of target materials and contaminants, as well as sputtering of the collector multilayer coating and implantation of incident particles can reduce the reflectivity of the mirror substantially over the exposure time even though debris mitigation schemes are being employed. The results of measurements of high energy ions generated by a short-pulse CO2 laser on a laser-produced plasma EUV light source with Sn target are presented. Droplet generation is a key element of the LPP source being developed at Cymer for EUV lithography applications. The main purpose of this device is to deliver small quantities of liquid target material as droplets to the laser focus. The EUV light in such configuration is obtained as a result of creating a highly ionized plasma from the material of the

  15. Aircraft Detection System Ensures Free-Space Laser Safety

    NASA Technical Reports Server (NTRS)

    Smithgall, Brian; Wilson, Keith E.

    2004-01-01

    As scientists continue to explore our solar system, there are increasing demands to return greater volumes of data from smaller deep-space probes. Accordingly, NASA is studying advanced strategies based on free-space laser transmissions, which offer secure, high-bandwidth communications using smaller subsystems of much lower power and mass than existing ones. These approaches, however, can pose a danger to pilots in the beam path because the lasers may illuminate aircraft and blind them. Researchers thus are investigating systems that will monitor the surrounding airspace for aircraft that could be affected. This paper presents current methods for safe free space laser propagation.

  16. Profiling atmospheric water vapor using a fiber laser lidar system.

    PubMed

    De Young, Russell J; Barnes, Norman P

    2010-02-01

    A compact, lightweight, and efficient fiber laser lidar system has been developed to measure water vapor profiles in the lower atmosphere of Earth or Mars. The line narrowed laser consist of a Tm:germanate fiber pumped by two 792 nm diode arrays. The fiber laser transmits approximately 0.5 mJ Q- switched pulses at 5 Hz and can be tuned to water vapor lines near 1.94 microm with linewidth of approximately 20 pm. A lightweight lidar receiver telescope was constructed of carbon epoxy fiber with a 30 cm Fresnel lens and an advanced HgCdTe APD detector. This system has made preliminary atmospheric measurements.

  17. Yb:FAP and related materials, laser gain medium comprising same, and laser systems using same

    DOEpatents

    Krupke, W.F.; Payne, S.A.; Chase, L.L.; Smith, L.K.

    1994-01-18

    An ytterbium doped laser material remarkably superior to all others, including Yb:YAG, comprises ytterbium doped apatite (Yb:Ca[sub 5](PO[sub 4])[sub 3]F) or Yb:FAP, or ytterbium doped crystals that are structurally related to FAP. The new laser material is used in laser systems pumped by diode pump sources having an output near 0.905 microns or 0.98 microns, such as InGaAs and AlInGaAs, or other narrowband pump sources near 0.905 microns or 0.98 microns. The laser systems are operated in either the conventional or ground state depletion mode. 9 figures.

  18. Compact-range coordinate system established using a laser tracker.

    SciTech Connect

    Gallegos, Floyd H.; Bryce, Edwin Anthony

    2006-12-01

    Establishing a Cartesian coordinate reference system for an existing Compact Antenna Range using the parabolic reflector is presented. A SMX (Spatial Metrix Corporation) M/N 4000 laser-based coordinate measuring system established absolute coordinates for the facility. Electric field characteristics with positional movement correction are evaluated. Feed Horn relocation for alignment with the reflector axis is also described. Reference points are established for follow-on non-laser alignments utilizing a theodolite.

  19. NEW ACTIVE MEDIA AND ELEMENTS OF LASER SYSTEMS: Laser with resonators coupled by a dynamic hologram

    NASA Astrophysics Data System (ADS)

    Gerasimov, V. B.; Golyanov, A. V.; Luk'yanchuk, B. S.; Ogluzdin, Valerii E.; Rubtsova, I. L.; Sugrobov, V. A.; Khizhnyak, A. I.

    1987-11-01

    The nature of operation of a laser with a phase-conjugate mirror utilizing multibeam interaction was found to have a considerable influence on the coupling of its resonator to the resonator of a laser used to pump the mirror. A system of this kind with resonators coupled by a dynamic hologram exhibited "soft" lasing in the presence of a self-pumped phase-conjugate mirror.

  20. Laser System for Precise, Unambiguous Range Measurements

    NASA Technical Reports Server (NTRS)

    Dubovitsky, Serge; Lay, Oliver

    2005-01-01

    The Modulation Sideband Technology for Absolute Range (MSTAR) architecture is the basis of design of a proposed laser-based heterodyne interferometer that could measure a range (distance) as great as 100 km with a precision and resolution of the order of 1 nm. Simple optical interferometers can measure changes in range with nanometer resolution, but cannot measure range itself because interference is subject to the well-known integer-multiple-of-2 -radians phase ambiguity, which amounts to a range ambiguity of the order of 1 m at typical laser wavelengths. Existing rangefinders have a resolution of the order of 10 m and are therefore unable to resolve the ambiguity. The proposed MSTAR architecture bridges the gap, enabling nanometer resolution with an ambiguity range that can be extended to arbitrarily large distances. The MSTAR architecture combines the principle of the heterodyne interferometer with the principle of extending the ambiguity range of an interferometer by using light of two wavelengths. The use of two wavelengths for this purpose is well established in optical metrology, radar, and sonar. However, unlike in traditional two-color laser interferometry, light of two wavelengths would not be generated by two lasers. Instead, multiple wavelengths would be generated as sidebands of phase modulation of the light from a single frequency- stabilized laser. The phase modulation would be effected by applying sinusoidal signals of suitable frequencies (typically tens of gigahertz) to high-speed electro-optical phase modulators. Intensity modulation can also be used

  1. A compact field-portable double-pulse laser system to enhance laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Liu, Lei; Yan, Aidong; Huang, Sheng; Huang, Xi; Chen, Rongzhang; Lu, Yongfeng; Chen, Kevin

    2017-02-01

    This paper reports the development of a compact double-pulse laser system to enhance laser induced breakdown spectroscopy (LIBS) for field applications. Pumped by high-power vertical-surface emitting lasers, the laser system that produces 16 ns pulse at 12 mJ/pulse with total weight less than 10 kg is developed. The inter-pulse delay can be adjusted from 0 μ s with 0.5 μ s increment. Several LIBS experiments were carried out on NIST standard aluminum alloy samples. Comparing with the single-pulse LIBS, up to 9 times enhancement in atomic emission line was achieved with continuum background emission reduced by 70%. This has led to up to 10 times improvement in the limit of detection. Signal stability was also improved by 128% indicating that a more robust and accurate LIBS measurement can be achieved using a compact double-pulse laser system. This paper presents a viable and field deployable laser tool to dramatically improve the sensitivity and applicability of LIBS for a wide array of applications.

  2. Flyer Velocity Characteristics of the Laser-Driven Miniflyer System

    SciTech Connect

    Gehr, R.J.; Harper, R.W.; Robbins, D.L.; Rupp, T.D.; Sheffield, S.A.; Stahl, D.B.

    1999-07-01

    The laser-driven MiniFlyer system is used to launch a small, thin flyer plate for impact on a target. Consequently, it is an indirect drive technique that de-couples the shock from the laser beam profile. The flyer velocity can be controlled by adjustment of the laser energy. The upper limits on the flyer velocity involve the ability of the substrate window to transmit the laser light without absorbing, reflecting, etc.; i.e., a maximum amount of laser energy is directly converted into kinetic energy of the flyer plate. We have investigated the use of sapphire, quartz, and BK-7 glass as substrate windows. In the past, a particular type of sapphire has been used for nearly all MiniFlyer experiments. Results of this study in terms of the performance of these window materials, based on flyer velocity, are discussed.

  3. Off-line-locked laser diode species monitor system

    NASA Technical Reports Server (NTRS)

    Lee, Jamine (Inventor); Goldstein, Neil (Inventor); Richtsmeier, Steven (Inventor); Bien, Fritz (Inventor); Gersh, Michael (Inventor)

    1995-01-01

    An off-line-locked laser diode species monitor system includes: reference means for including at least one known species having a first absorption wavelength; a laser source for irradiating the reference means and at least one sample species having a second absorption wavelength differing from the first absorption wavelength by a predetermined amount; means for locking the wavelength of the laser source to the first wavelength of the at least one known species in the reference means; a controller for defeating the means for locking and for displacing the laser source wavelength from said first absorption wavelength by said predetermined amount to the second absorption wavelength; and a sample detector device for determining laser radiation absorption at the second wavelength transmitted through the sample to detect the presence of the at least one sample species.

  4. Remote Operations of Laser Guide Star Systems: Gemini Observatory.

    NASA Astrophysics Data System (ADS)

    Oram, Richard J.; Fesquet, Vincent; Wyman, Robert; D'Orgeville, Celine

    2011-03-01

    The Gemini North telescope, equipped with a 14W laser, has been providing Laser Guide Star Adaptive Optics (LGS AO) regular science queue observations for worldwide astronomers since February 2007. The new 55W laser system for MCAO was installed on the Gemini South telescope in May 2010. In this paper, we comment on how Gemini Observatory developed regular remote operation of the Laser Guide Star Facility and high-power solid-state laser as routine normal operations. Fully remote operation of the LGSF from the Hilo base facility HBF was initially trialed and then optimized and became the standard operating procedure (SOP) for LGS operation in December 2008. From an engineering perspective remote operation demands stable, well characterized and base-lined equipment sets. In the effort to produce consistent, stable and controlled laser parameters (power, wavelength and beam quality) we completed a failure mode effect analysis of the laser system and sub systems that initiated a campaign of hardware upgrades and procedural improvements to the routine maintenance operations. Finally, we provide an overview of normal operation procedures during LGS runs and present a snapshot of data accumulated over several years that describes the overall LGS AO observing efficiency at the Gemini North telescope.

  5. Laser system for secondary cooling of {sup 87}Sr atoms

    SciTech Connect

    Khabarova, K Yu; Slyusarev, S N; Strelkin, S A; Belotelov, G S; Kostin, A S; Pal'chikov, Vitaly G; Kolachevsky, Nikolai N

    2012-11-30

    A laser system with a narrow generation line for secondary laser cooling of {sup 87}Sr atoms has been developed and investigated. It is planned to use ultracold {sup 87}Sr atoms loaded in an optical lattice in an optical frequency standard. To this end, a 689-nm semiconductor laser has been stabilised using an external reference ultrastable cavity with vibrational and temperature compensation near the critical point. The lasing spectral width was 80 Hz (averaging time 40 ms), and the frequency drift was at a level of 0.3 Hz s{sup -1}. Comparison of two independent laser systems yielded a minimum Allan deviation: 2 Multiplication-Sign 10{sup -14} for 300-s averaging. It is shown that this system satisfies all requirements necessary for secondary cooling of 87Sr atoms using the spectrally narrow {sup 1}S{sub 0} - {sup 3}P{sub 1} transition ({lambda} = 689 nm). (cooling of atoms)

  6. Spatial intensity profiling of an industrial laser welding system

    SciTech Connect

    Milewski, J.O.

    1991-12-31

    A investigation was conducted to devise a method to sense the laser beam intensity profile of an industrial laser welding system. The research focuses on monitoring methods and assessing locations within the system where data can be taken which reveal the relationship between the laser beam intensity profile and the input system parameters of the laser beam welding process. Emphasis has been placed on the configuration of a distributed computing environment to acquire, analyze and display the results of the sensed beam profile. Conventional image processing techniques are demonstrated. It was found that a distributed computing environment was useful for processing the large volumes of data generated by this process characterization method, and the distributed computing environment provided the computing power required for computationally intensive analysis and display techniques. The mathematical techniques used to discriminate one data set from another and relate the results to processing conditions are discussed.

  7. The airborne laser ranging system, its capabilities and applications

    NASA Technical Reports Server (NTRS)

    Kahn, W. D.; Degnan, J. J.; Englar, T. S., Jr.

    1982-01-01

    The airborne laser ranging system is a multibeam short pulse laser ranging system on board an aircraft. It simultaneously measures the distances between the aircraft and six laser retroreflectors (targets) deployed on the Earth's surface. The system can interrogate over 100 targets distributed over an area of 25,000 sq, kilometers in a matter of hours. Potentially, a total of 1.3 million individual range measurements can be made in a six hour flight. The precision of these range measurements is approximately + or - 1 cm. These measurements are used in procedure which is basically an extension of trilateration techniques to derive the intersite vector between the laser ground targets. By repeating the estimation of the intersite vector, strain and strain rate errors can be estimated. These quantities are essential for crustal dynamic studies which include determination and monitoring of regional strain in the vicinity of active fault zones, land subsidence, and edifice building preceding volcanic eruptions.

  8. Blue laser system for photo-dynamic therapy

    NASA Astrophysics Data System (ADS)

    Dabu, R.; Carstocea, B.; Blanaru, C.; Pacala, O.; Stratan, A.; Ursu, D.; Stegaru, F.

    2007-03-01

    A blue laser system for eye diseases (age related macular degeneration, sub-retinal neo-vascularisation in myopia and presumed ocular histoplasmosis syndrome - POHS) photo-dynamic therapy, based on riboflavin as photosensitive substance, has been developed. A CW diode laser at 445 nm wavelength was coupled through an opto-mechanical system to the viewing path of a bio-microscope. The laser beam power in the irradiated area is adjustable between 1 mW and 40 mW, in a spot of 3-5 mm diameter. The irradiation time can be programmed in the range of 1-19 minutes. Currently, the laser system is under clinic tests.

  9. Long distance high power optical laser fiber break detection and continuity monitoring systems and methods

    DOEpatents

    Rinzler, Charles C.; Gray, William C.; Faircloth, Brian O.; Zediker, Mark S.

    2016-02-23

    A monitoring and detection system for use on high power laser systems, long distance high power laser systems and tools for performing high power laser operations. In particular, the monitoring and detection systems provide break detection and continuity protection for performing high power laser operations on, and in, remote and difficult to access locations.

  10. Smart CO2 laser surgical system based on autodyne monitoring of laser-evaporated biotissues: first results in oncology

    NASA Astrophysics Data System (ADS)

    Dmitriev, A. K.; Varev, G. A.; Konovalov, A. N.; Kortunov, V. N.; Panchenko, V. Y.; Reshetov, I. V.; Matorin, O. V.; Maiboroda, V. F.; Ul'yanov, V. A.

    2005-08-01

    New method based on techniques of self-induced autodyne effect for diagnostics and control of laser-tissue evaporation by radiation of high-frequency pumped waveguide CO2 laser is developed. This method is used for creation of feed-back for smart CO2 laser surgical system of "Lancet" series. The results of medical testing of the smart laser surgical system are presented.

  11. High removal rate laser-based coating removal system

    DOEpatents

    Matthews, Dennis L.; Celliers, Peter M.; Hackel, Lloyd; Da Silva, Luiz B.; Dane, C. Brent; Mrowka, Stanley

    1999-11-16

    A compact laser system that removes surface coatings (such as paint, dirt, etc.) at a removal rate as high as 1000 ft.sup.2 /hr or more without damaging the surface. A high repetition rate laser with multiple amplification passes propagating through at least one optical amplifier is used, along with a delivery system consisting of a telescoping and articulating tube which also contains an evacuation system for simultaneously sweeping up the debris produced in the process. The amplified beam can be converted to an output beam by passively switching the polarization of at least one amplified beam. The system also has a personal safety system which protects against accidental exposures.

  12. Laser absorption spectroscopy system for vaporization process characterization and control

    SciTech Connect

    Galkowski, J.; Hagans, K.

    1993-09-07

    In support of the Lawrence Livermore National Laboratory`s (LLNL`s) Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) Program, a laser atomic absorption spectroscopy (LAS) system has been developed. This multi-laser system is capable of simultaneously measuring the line densities of {sup 238}U ground and metastable states, {sup 235}U ground and metastable states, iron, and ions at up to nine locations within the separator vessel. Supporting enrichment experiments that last over one hundred hours, this laser spectroscopy system is employed to diagnose and optimize separator system performance, control the electron beam vaporizer and metal feed systems, and provide physics data for the validation of computer models. As a tool for spectroscopic research, vapor plume characterization, vapor deposition monitoring, and vaporizer development, LLNL`s LAS laboratory with its six argon-ion-pumped ring dye lasers and recently added Ti:Sapphire and external-cavity diode-lasers has capabilities far beyond the requirements of its primary mission.

  13. Bench checkout equipment for spaceborne laser altimeter systems

    NASA Technical Reports Server (NTRS)

    Smith, James C.; Elman, Gregory C.; Christian, Kent D.; Cavanaugh, John F.; Ramos-Izquierdo, Luis; Hopf, Dan E.

    1993-01-01

    This paper addresses the requirements for testing and characterizing spaceborne laser altimeter systems. The Bench Checkout Equipment (BCE) system, test requirements, and flow-down traceability from the instrument system's functional requirements will also be presented. Mars Observer Laser Altimeter (MOLA) and the MOLA BCE are presented as representative of a 'typical' laser altimeter and its corresponding test system. The testing requirements of other or future laser altimeter systems may vary slightly due to the specific spacecraft interface and project requirements. MOLA, the first solid-state interplanetary laser altimeter, was designed to be operational in Mars orbit for two Earth years. MOLA transmits a 7.5 ns pulse at a wavelength of 1.064 microns with a 0.25 mr beam divergence and a pulse repetition rate of 10 Hz. The output energy is specified at 45 mj at the beginning of mapping orbit and 30 mj at the end of one Martian year. MOLA will measure the laser pulse transit time from the spacecraft to the Mars surface and return to a resolution of 1.5 meters.

  14. Laser System for Livermore's Mono Energetic Gamma-Ray Source

    SciTech Connect

    Gibson, D; Albert, F; Bayramian, A; Marsh, R; Messerly, M; Ebbers, C; Hartemann, F

    2011-03-14

    A Mono-energetic Gamma-ray (MEGa-ray) source, based on Compton scattering of a high-intensity laser beam off a highly relativistic electron beam, requires highly specialized laser systems. To minimize the bandwidth of the {gamma}-ray beam, the scattering laser must have minimal bandwidth, but also match the electron beam depth of focus in length. This requires a {approx}1 J, 10 ps, fourier-transform-limited laser system. Also required is a high-brightness electron beam, best provided by a photoinjector. This electron source requires a second laser system with stringent requirements on the beam including flat transverse and longitudinal profiles and fast rise times. Furthermore, these systems must be synchronized to each other with ps-scale accuracy. Using a novel hyper-dispersion compressor configuration and advanced fiber amplifiers and diode-pumped Nd:YAG amplifiers, we have designed laser systems that meet these challenges for the X-band photoinjector and Compton-scattering source being built at Lawrence Livermore National Laboratory.

  15. Optical materials for space based laser systems

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.; Armagan, G.; Byvik, C. E.; Albin, S.

    1989-01-01

    The design features and performance characteristics of a sensitized holmium laser applicable to differential lidar and Doppler windshear measurements are presented, giving attention to the optimal choice of sensitizing/activating dopant ions. This development of a 2-micron region eye-safe laser, where holmium is sensitized by either hulium or erbium, has called for interionic energy transfer processes whose rate will not result in gain-switched pulses that are excessively long for atmospheric lidar and Doppler windshear detection. The application of diamond films for optical component hardening is noted.

  16. Laser illuminator and optical system for disk patterning

    DOEpatents

    Hackel, Lloyd A.; Dane, C. Brent; Dixit, Shamasundar N.; Everett, Mathew; Honig, John

    2000-01-01

    Magnetic recording media are textured over areas designated for contact in order to minimize friction with data transducing heads. In fabricating a hard disk, an aluminum nickel-phosphorous substrate is polished to a specular finish. A mechanical means is then used to roughen an annular area intended to be the head contact band. An optical and mechanical system allows thousands of spots to be generated with each laser pulse, allowing the textured pattern to be rapidly generated with a low repetition rate laser and an uncomplicated mechanical system. The system uses a low power laser, a beam expander, a specially designed phase plate, a prism to deflect the beam, a lens to transmit the diffraction pattern to the far field, a mechanical means to rotate the pattern and a trigger system to fire the laser when sections of the pattern are precisely aligned. The system generates an annular segment of the desired pattern with which the total pattern is generated by rotating the optical system about its optic axis, sensing the rotational position and firing the laser as the annular segment rotates into the next appropriate position. This marking system can be integrated into a disk sputtering system for manufacturing magnetic disks, allowing for a very streamlined manufacturing process.

  17. Q-Switched Raman laser system

    DOEpatents

    George, E. Victor

    1985-01-01

    Method and apparatus for use of a Raman or Brillouin switch together with a conventional laser and a saturable absorber that is rapidly bleached at a predetermined frequency .nu.=.nu..sub.0, to ultimately produce a Raman or Brillouin pulse at frequency .nu.=.nu..sub.0 .+-..nu..sub.Stokes.

  18. The laser lightning rod system: thunderstorm domestication.

    PubMed

    Ball, L M

    1974-10-01

    An unusual application of the laser, namely protection of life and property from lightning, is described. The device relies on multiphoton ionization in mode-locked beams, rather than on collisional (avalanche) electron production. Feasibility is demonstrated numerically, and relevant principles explained. A method of mobile deployment is mentioned, by which economic (as opposed to scientific) feasibility might be achieved.

  19. Q-switched Raman laser system

    DOEpatents

    George, E.V.

    Method and apparatus for use of a Raman or Brillouin switch together with a conventional laser and a saturable absorber that is rapidly bleached at a predeterimined frequency nu = nu/sub O/, to ultimately produce a Raman or Brillouin pulse at frequency nu = nu/sub O/ +- nu /sub Stokes/.

  20. Criteria for the evaluation of laser solar energy converter systems

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1985-01-01

    Assuming that a parabolic insolation-collection mirror-based solar pumped laser has a collector and heat emitter whose weights are proportional to their areas, and that the weight of the laser is negligible by comparison, the output power/unit weight can be expressed in terms of the efficiencies and working temperatures of the system. This ratio appears to be several times higher for an IBr laser than for one operating on C3F7I, because the solar utilization efficiency is greater for the former despite its lower working temperature.

  1. Criteria for the evaluation of laser solar energy converter systems

    NASA Astrophysics Data System (ADS)

    Harries, W. L.

    1985-10-01

    Assuming that a parabolic insolation-collection mirror-based solar pumped laser has a collector and heat emitter whose weights are proportional to their areas, and that the weight of the laser is negligible by comparison, the output power/unit weight can be expressed in terms of the efficiencies and working temperatures of the system. This ratio appears to be several times higher for an IBr laser than for one operating on C3F7I, because the solar utilization efficiency is greater for the former despite its lower working temperature.

  2. Wing tip vortex measurements with laser Doppler systems

    NASA Technical Reports Server (NTRS)

    Fuller, C. E., III

    1973-01-01

    The vortex velocity field produced by a rectangular wing in a subsonic wind tunnel was measured using two laser Doppler velocimeter systems. One system made three dimensional mean velocity measurements and the other made one dimensional turbulence measurements. The systems and test procedures are described and comparisons of the measurements are made. The data defined a strong spiral motion in the vortex formation process.

  3. A picosecond beam-timing system for the OMEGA laser

    DOE PAGES

    Donaldson, W. R.; Katz, J.; Huff, R.; ...

    2016-05-27

    Here, a timing system is demonstrated for the OMEGA Laser System that guarantees all 60 beams will arrive on target simultaneously with a root mean square variability of 4 ps. The system relies on placing a scattering sphere at the target position to couple the UV light from each beam into a single photodetector.

  4. Laser system for space debris cleaning

    NASA Astrophysics Data System (ADS)

    Rubenchik, A. M.; Erlandson, A. C.; Liedahl, D.

    2012-07-01

    Starting with intensity requirements for producing efficient ablation thrust, then applying orbital mechanics and taking beam transport into account, we have determined the laser pulse energy and the number of pulses required for removing orbital debris. Our calculations show that a ground-based, diode-pumped, gas-cooled multi-slab laser, that uses only modest extensions of existing technology, would be capable of removing most small debris from low-earth orbit, when used with a 3-m-diameter beam director. Such a laser would also be capable of moving large debris into orbits that avoid high-value satellites and of even removing large debris from orbit, by illuminating the debris over several encounters. The laser design we propose uses diode-pumped, Nd:glass, gas-cooled amplifiers with 25-cm square apertures. When operating at the laser fundamental wavelength of 1054 nm, each beamline would produce ˜ 8kJ/4ns pulses at 15 Hz. Two such beamlines, combined using established polarization-combining methods, would be sufficient for orbital debris cleaning. Alternatively, when operating at the second harmonic of 527 nm, each beamline would produce ˜ 7 kJ/4 ns pulses. Due to reduced beam divergence and a smaller beam diameter at the debris, a single harmonically-converted beamline can be useful. We estimate that the first-of-a-kind beamline could be deployed within 4-5 years of project start at a cost of 100-150M. Later beamlines would require less development and engineering costs and would have substantially lower overall cost.

  5. Stereo vision based hand-held laser scanning system design

    NASA Astrophysics Data System (ADS)

    Xiong, Hanwei; Xu, Jun; Wang, Jinming

    2011-11-01

    Although 3D scanning system is used more and more broadly in many fields, such computer animate, computer aided design, digital museums, and so on, a convenient scanning device is expansive for most people to afford. In another hand, imaging devices are becoming cheaper, a stereo vision system with two video cameras cost little. In this paper, a hand held laser scanning system is design based on stereo vision principle. The two video cameras are fixed tighter, and are all calibrated in advance. The scanned object attached with some coded markers is in front of the stereo system, and can be changed its position and direction freely upon the need of scanning. When scanning, the operator swept a line laser source, and projected it on the object. At the same time, the stereo vision system captured the projected lines, and reconstructed their 3D shapes. The code markers are used to translate the coordinate system between scanned points under different view. Two methods are used to get more accurate results. One is to use NURBS curves to interpolate the sections of the laser lines to obtain accurate central points, and a thin plate spline is used to approximate the central points, and so, an exact laser central line is got, which guards an accurate correspondence between tow cameras. Another way is to incorporate the constraint of laser swept plane on the reconstructed 3D curves by a PCA (Principle Component Analysis) algorithm, and more accurate results are obtained. Some examples are given to verify the system.

  6. Stabilized master laser system for differential absorption lidar.

    PubMed

    Dinovitser, Alex; Hamilton, Murray W; Vincent, Robert A

    2010-06-10

    Wavelength accuracy and stability are key requirements for differential absorption lidar (DIAL). We present a control and timing design for the dual-stabilized cw master lasers in a pulsed master-oscillator power-amplifier configuration, which forms a robust low-cost water-vapor DIAL transmitter system. This design operates at 823 nm for water-vapor spectroscopy using Fabry-Perot-type laser diodes. However, the techniques described could be applied to other laser technologies at other wavelengths. The system can be extended with additional off-line or side-line wavelengths. The on-line master laser is locked to the center of a water absorption line, while the beat frequency between the on-line and the off-line is locked to 16 GHz using only a bandpass microwave filter and low-frequency electronics. Optical frequency stabilities of the order of 1 MHz are achieved.

  7. Q-Switched Nd: YAG Laser Micro-Machining System

    SciTech Connect

    Messaoud, S.; Allam, A.; Siserir, F.; Bouceta, Y.; Kerdja, T.; Ouadjaout, D.

    2008-09-23

    In this paper, we present the design of a low cost Q-switched Nd: YAG laser micro-machining system for photo masks fabrication. It consists of: Nd:YAG laser source, beam delivery system, X-Y table, PC, The CCD camera and TV monitor. The synchronization between the laser source and the X-Y table is realised by NI PCI-7342, the two axis MID-7602 and LabVIEW based program. The first step of this work consists of engraving continuous and discontinuous lines on a thin film metal with a 100 {mu}m resolution by using the YG 980 Quantel Q-switched Nd:YAG laser.

  8. A Direct Diode Laser System Using a Planar Lightwave Circuit

    NASA Astrophysics Data System (ADS)

    Hasegawa, Kazuo; Matsubara, Hiroyuki; Ichikawa, Tadashi; Maeda, Mitsutoshi; Ito, Hiroshi

    2008-08-01

    In this paper we propose a direct diode laser (DDL) system consisting of laser diode (LD) bars, a planar lightwave circuit (PLC), and an optical fiber. We have developed a PLC as an optical power combiner and an LD mounting technology that is suitable for coupling to the PLC. A DDL system is presented that consists of six LD-PLC optical modules for the laser-welding of highly heat-resistant plastics. The total output power is in the 200 W class, with a spot diameter of 5.52 mm for the major axis and 5.00 mm for the minor axis at a focal length of 50 mm. The total output efficiency is 60.9% from the laser diode to the welding torch.

  9. Mid-IR laser system for advanced neurosurgery

    NASA Astrophysics Data System (ADS)

    Klosner, M.; Wu, C.; Heller, D. F.

    2014-03-01

    We present work on a laser system operating in the near- and mid-IR spectral regions, having output characteristics designed to be optimal for cutting various tissue types. We provide a brief overview of laser-tissue interactions and the importance of controlling certain properties of the light beam. We describe the principle of operation of the laser system, which is generally based on a wavelength-tunable alexandrite laser oscillator/amplifier, and multiple Raman conversion stages. This configuration provides robust access to the mid-IR spectral region at wavelengths, pulse energies, pulse durations, and repetition rates that are attractive for neurosurgical applications. We summarize results for ultra-precise selective cutting of nerve sheaths and retinas with little collateral damage; this has applications in procedures such as optic-nerve-sheath fenestration and possible spinal repair. We also report results for cutting cornea, and dermal tissues.

  10. Acousto-optic laser projection systems for displaying TV information

    SciTech Connect

    Gulyaev, Yu V; Kazaryan, M A; Mokrushin, Yu M; Shakin, O V

    2015-04-30

    This review addresses various approaches to television projection imaging on large screens using lasers. Results are presented of theoretical and experimental studies of an acousto-optic projection system operating on the principle of projecting an image of an entire amplitude-modulated television line in a single laser pulse. We consider characteristic features of image formation in such a system and the requirements for its individual components. Particular attention is paid to nonlinear distortions of the image signal, which show up most severely at low modulation signal frequencies. We discuss the feasibility of improving the process efficiency and image quality using acousto-optic modulators and pulsed lasers. Real-time projectors with pulsed line imaging can be used for controlling high-intensity laser radiation. (review)

  11. The Lunar Laser OCTL Terminal (LLOT) Optical Systems

    NASA Technical Reports Server (NTRS)

    Roberts, W. Thomas; Wright, Malcolm W.

    2013-01-01

    The Lunar Laser OCTL Terminal is an auxiliary ground station terminal for the Lunar Laser Communication Demonstration (LLCD). The LLOT optical systems exercise modulation and beam divergence control over six 10-watt fiber-based laser transmitters at 1568 nanometers, which act as beacons for pointing of the space-based terminal. The LLOT design transmits these beams from distinct sub-apertures of the F/76 OCTL telescope at divergences ranging from 110 microrad to 40 microrad. LLOT also uses the same telescope aperture to receive the downlink signal at 1550 nanometers from the spacecraft terminal. Characteristics and control of the beacon lasers, methods of establishing and maintaining beam alignment, beam zoom system design, co-registration of the transmitted beams and the receive field of view, transmit/receive isolation, and downlink signal manipulation and control are discussed.

  12. NASA three-laser airborne differential absorption lidar system electronics

    NASA Technical Reports Server (NTRS)

    Allen, R. J.; Copeland, G. D.

    1984-01-01

    The system control and signal conditioning electronics of the NASA three laser airborne differential absorption lidar (DIAL) system are described. The multipurpose DIAL system was developed for the remote measurement of gas and aerosol profiles in the troposphere and lower stratosphere. A brief description and photographs of the majority of electronics units developed under this contract are presented. The precision control system; which includes a master control unit, three combined NASA laser control interface/quantel control units, and three noise pulse discriminator/pockels cell pulser units; is described in detail. The need and design considerations for precision timing and control are discussed. Calibration procedures are included.

  13. Battery-driven miniature LDA system with semiconductor laser diode

    NASA Astrophysics Data System (ADS)

    Damp, S.

    1988-06-01

    A one-component miniature system with dimensions of 11 by 4 by 4 cubic centimeters for laser-Doppler anemometry (LDA) is described. As power supply a 12V battery or any other source with the capability to drive a current up to 200mA can be used. The system contains the whole electronics to drive the used laser diode is a safe way. The electronics to amplify and buffer the LDA-signal which is received by a PIN-diode is included. The output of the system can directly fit a filterbank for example. Possible applications in rough environments are mentioned. Measurements show the reliability of the system.

  14. Diode laser satellite systems for beamed power transmission

    NASA Technical Reports Server (NTRS)

    Williams, M. D.; Kwon, J. H.; Walker, G. H.; Humes, D. H.

    1990-01-01

    A power system composed of an orbiting laser satellite and a surface-based receiver/converter is described. Power is transmitted from the satellite to the receiver/converter by laser beam. The satellite components are: (1) solar collector; (2) blackbody; (3) photovoltaic cells; (4) heat radiators; (5) laser system; and (6) transmission optics. The receiver/converter components are: receiver dish; lenticular lens; photocells; and heat radiator. Although the system can be adapted to missions at many locations in the solar system, only two are examined here: powering a lunar habitat; and powering a lunar rover. Power system components are described and their masses, dimensions, operating powers, and temperatures, are estimated using known or feasible component capabilities. The critical technologies involved are discussed and other potential missions are mentioned.

  15. Experiment of space laser communication based on adaptive optics system

    NASA Astrophysics Data System (ADS)

    Xiong, Zhun; Ai, Yong; Chen, Jin; Chen, Erhu; Wu, Yunyun

    2011-11-01

    The adaptive optics(AO) technology is adopted in the demo experiment of indoor space laser communication system. In transmit terminal, 650nm beacon and 1550nm signal beam with OOK modulation propagate through atmosphere turbulence simulator which simulate the laser's propagation in real atmosphere conditions. The AO system corrects real time wave-front information. In received terminal, signal intensity is collected and the bit error rate(BER) is recorded. Experiment data is obtained in different status of the AO system. Combined with signal beam wave-front reconstructed and image quality of far-field laser spot, results show that the received average power of communication system increases when using the AO system to correct low-order aberration. Also it rejects signal fading and makes the BER lower.

  16. Experiment of space laser communication based on adaptive optics system

    NASA Astrophysics Data System (ADS)

    Xiong, Zhun; Ai, Yong; Chen, Jin; Chen, Erhu; Wu, Yunyun

    2012-02-01

    The adaptive optics(AO) technology is adopted in the demo experiment of indoor space laser communication system. In transmit terminal, 650nm beacon and 1550nm signal beam with OOK modulation propagate through atmosphere turbulence simulator which simulate the laser's propagation in real atmosphere conditions. The AO system corrects real time wave-front information. In received terminal, signal intensity is collected and the bit error rate(BER) is recorded. Experiment data is obtained in different status of the AO system. Combined with signal beam wave-front reconstructed and image quality of far-field laser spot, results show that the received average power of communication system increases when using the AO system to correct low-order aberration. Also it rejects signal fading and makes the BER lower.

  17. Wavelength stabilized multi-kW diode laser systems

    NASA Astrophysics Data System (ADS)

    Köhler, Bernd; Unger, Andreas; Kindervater, Tobias; Drovs, Simon; Wolf, Paul; Hubrich, Ralf; Beczkowiak, Anna; Auch, Stefan; Müntz, Holger; Biesenbach, Jens

    2015-03-01

    We report on wavelength stabilized high-power diode laser systems with enhanced spectral brightness by means of Volume Holographic Gratings. High-power diode laser modules typically have a relatively broad spectral width of about 3 to 6 nm. In addition the center wavelength shifts by changing the temperature and the driving current, which is obstructive for pumping applications with small absorption bandwidths. Wavelength stabilization of high-power diode laser systems is an important method to increase the efficiency of diode pumped solid-state lasers. It also enables power scaling by dense wavelength multiplexing. To ensure a wide locking range and efficient wavelength stabilization the parameters of the Volume Holographic Grating and the parameters of the diode laser bar have to be adapted carefully. Important parameters are the reflectivity of the Volume Holographic Grating, the reflectivity of the diode laser bar as well as its angular and spectral emission characteristics. In this paper we present detailed data on wavelength stabilized diode laser systems with and without fiber coupling in the spectral range from 634 nm up to 1533 nm. The maximum output power of 2.7 kW was measured for a fiber coupled system (1000 μm, NA 0.22), which was stabilized at a wavelength of 969 nm with a spectral width of only 0.6 nm (90% value). Another example is a narrow line-width diode laser stack, which was stabilized at a wavelength of 1533 nm with a spectral bandwidth below 1 nm and an output power of 835 W.

  18. Ring-laser gyroscope system using dispersive element(s)

    NASA Technical Reports Server (NTRS)

    Smith, David D. (Inventor)

    2010-01-01

    A ring-laser gyroscope system includes a ring-laser gyroscope (RLG) and at least one dispersive element optically coupled to the RLG's ring-shaped optical path. Each dispersive element has a resonant frequency that is approximately equal to the RLG's lasing frequency. A group index of refraction defined collectively by the dispersive element(s) has (i) a real portion that is greater than zero and less than one, and (ii) an imaginary portion that is less than zero.

  19. Design and performance of a laser guide star system for the Keck II telescope

    SciTech Connect

    Friedman, H. W., LLNL

    1998-05-18

    A laser system to generate sodium-layer guide stars has been designed, built and delivered to the Keck Observatory in Hawaii. The system uses frequency doubled YAG lasers to pump liquid dye lasers and produces 20 W of average power. The design and performance results of this laser system are presented.

  20. Measurement of optical scattered power from laser-induced shallow pits on silica

    SciTech Connect

    Feigenbaum, Eyal; Nielsen, Norman; Matthews, Manyalibo J.

    2015-10-01

    We describe a model for far-field scattered power and irradiance by a silica glass slab with a shallow-pitted exit surface and is experimentally validated. The comparison to the model is performed using a precisely micromachined ensemble of ~11 μm wide laser ablated shallow pits producing 1% of the incident beam scatter in a 10 mrad angle. This series of samples with damage initiations and laser-induced shallow pits resulting from 351 nm, 5 ns pulsed laser cleaning of metal microparticles at different fluences between 2 J/cm2 and 11 J/cm2 are characterized as well and found in good agreement with model predictions.

  1. Measurement of optical scattered power from laser-induced shallow pits on silica

    DOE PAGES

    Feigenbaum, Eyal; Nielsen, Norman; Matthews, Manyalibo J.

    2015-10-01

    We describe a model for far-field scattered power and irradiance by a silica glass slab with a shallow-pitted exit surface and is experimentally validated. The comparison to the model is performed using a precisely micromachined ensemble of ~11 μm wide laser ablated shallow pits producing 1% of the incident beam scatter in a 10 mrad angle. This series of samples with damage initiations and laser-induced shallow pits resulting from 351 nm, 5 ns pulsed laser cleaning of metal microparticles at different fluences between 2 J/cm2 and 11 J/cm2 are characterized as well and found in good agreement with model predictions.

  2. Laser-driven electron beamlines generated by coupling laser-plasma sources with conventional transport systems

    NASA Astrophysics Data System (ADS)

    Antici, P.; Bacci, A.; Benedetti, C.; Chiadroni, E.; Ferrario, M.; Rossi, A. R.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Serafini, L.

    2012-08-01

    Laser-driven electron beamlines are receiving increasing interest from the particle accelerator community. In particular, the high initial energy, low emittance, and high beam current of the plasma based electron source potentially allow generating much more compact and bright particle accelerators than what conventional accelerator technology can achieve. Using laser-generated particles as injectors for generating beamlines could significantly reduce the size and cost of accelerator facilities. Unfortunately, several features of laser-based particle beams need still to be improved before considering them for particle beamlines and thus enable the use of plasma-driven accelerators for the multiple applications of traditional accelerators. Besides working on the plasma source itself, a promising approach to shape the laser-generated beams is coupling them with conventional accelerator elements in order to benefit from both a versatile electron source and a controllable beam. In this paper, we perform start-to-end simulations to generate laser-driven beamlines using conventional accelerator codes and methodologies. Starting with laser-generated electrons that can be obtained with established multi-hundred TW laser systems, we compare different options to capture and transport the beams. This is performed with the aim of providing beamlines suitable for potential applications, such as free electron lasers. In our approach, we have analyzed which parameters are critical at the source and from there evaluated different ways to overcome these issues using conventional accelerator elements and methods. We show that electron driven beamlines are potentially feasible, but exploiting their full potential requires extensive improvement of the source parameters or innovative technological devices for their transport and capture.

  3. Direct laser diode welding system with anti-reflection unit

    NASA Astrophysics Data System (ADS)

    Nagayasu, Doukei; Wang, Jing-bo

    2003-11-01

    A high power laser diode system for welding is widely known. However, the reliability and the reasonability are required by an industrial market. Reliability, especially lifetime, mainly depends on the temperature of laser diode (LD) and it might be rise if LD would receive reflection from welding point. This paper conducted the measurement of the reflection during welding by applying 1/4 wavelength plate and PBS. Results indicated the reflection during welding was inevitable. We developed a prototype high power laser diode system, which equipped an anti-reflection unit, to improve the reliability. The system traveled 3m/min and its bead width was 1.2 mm for 1.5 mm Al (A5052) under the spot size 2.7 x 0.6 mm FWHM. Additionally, we started to develop fast and slow collimation lenses for LD to realize a reasonale price for system The brief evaluation of fast collimation lenses was also reported.

  4. Novel atmospheric extinction measurement techniques for aerospace laser system applications

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark

    2013-01-01

    Novel techniques for laser beam atmospheric extinction measurements, suitable for manned and unmanned aerospace vehicle applications, are presented in this paper. Extinction measurements are essential to support the engineering development and the operational employment of a variety of aerospace electro-optical sensor systems, allowing calculation of the range performance attainable with such systems in current and likely future applications. Such applications include ranging, weaponry, Earth remote sensing and possible planetary exploration missions performed by satellites and unmanned flight vehicles. Unlike traditional LIDAR methods, the proposed techniques are based on measurements of the laser energy (intensity and spatial distribution) incident on target surfaces of known geometric and reflective characteristics, by means of infrared detectors and/or infrared cameras calibrated for radiance. Various laser sources can be employed with wavelengths from the visible to the far infrared portions of the spectrum, allowing for data correlation and extended sensitivity. Errors affecting measurements performed using the proposed methods are discussed in the paper and algorithms are proposed that allow a direct determination of the atmospheric transmittance and spatial characteristics of the laser spot. These algorithms take into account a variety of linear and non-linear propagation effects. Finally, results are presented relative to some experimental activities performed to validate the proposed techniques. Particularly, data are presented relative to both ground and flight trials performed with laser systems operating in the near infrared (NIR) at λ = 1064 nm and λ = 1550 nm. This includes ground tests performed with 10 Hz and 20 kHz PRF NIR laser systems in a large variety of atmospheric conditions, and flight trials performed with a 10 Hz airborne NIR laser system installed on a TORNADO aircraft, flying up to altitudes of 22,000 ft.

  5. Measurement system with high accuracy for laser beam quality.

    PubMed

    Ke, Yi; Zeng, Ciling; Xie, Peiyuan; Jiang, Qingshan; Liang, Ke; Yang, Zhenyu; Zhao, Ming

    2015-05-20

    Presently, most of the laser beam quality measurement system collimates the optical path manually with low efficiency and low repeatability. To solve these problems, this paper proposed a new collimated method to improve the reliability and accuracy of the measurement results. The system accuracy controlled the position of the mirror to change laser beam propagation direction, which can realize the beam perpendicularly incident to the photosurface of camera. The experiment results show that the proposed system has good repeatability and the measuring deviation of M2 factor is less than 0.6%.

  6. Fiber optic coherent laser radar 3d vision system

    SciTech Connect

    Sebastian, R.L.; Clark, R.B.; Simonson, D.L.

    1994-12-31

    Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic of coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system.

  7. Infrared Laser System for Extended Area Monitoring of Air Pollution

    NASA Technical Reports Server (NTRS)

    Snowman, L. R.; Gillmeister, R. J.

    1971-01-01

    An atmospheric pollution monitoring system using a spectrally scanning laser has been developed by the General Electric Company. This paper will report on an evaluation of a breadboard model, and will discuss applications of the concept to various ambient air monitoring situations. The system is adaptable to other tunable lasers. Operating in the middle infrared region, the system uses retroreflectors to measure average concentrations over long paths at low, safe power levels. The concept shows promise of meeting operational needs in ambient air monitoring and providing new data for atmospheric research.

  8. The Green Bank Telescope Laser Metrology Computer Control System

    NASA Astrophysics Data System (ADS)

    Creager, Ramón E.

    To use the 100-meter Green Bank Telescope at millimeter wavelengths, the antenna surface must be continuously adjusted to compensate for environmental effects. The metrology system, comprising a network of infrared laser rangers, has been developed to measure the position of the surface to an accuracy of 50 microns. The metrology computer control system is described here. The embedded systems which point the 18 lasers and take range measurements are based on Intel x86 computers. The central control of these computers is done using a Pentium PC running Windows NT. Engineering displays of the data are produced by piping the data in real-time to Microsoft Excel.

  9. Numerical control system of battery welding with pulsed YAG laser

    NASA Astrophysics Data System (ADS)

    Zhang, Guoshun; Yang, Zhaoxia; Zhang, Taishi; Wei, Zhigang; Li, Chaoyang

    1999-09-01

    This article briefly introduces the pulse YAG laser welding system, a new research achievement of my section. This system can weld the electric pole, the holly board and other aluminum parts of lithium battery, and the process of loading, unloading, compressing and welding can be completed automatically. Moreover, the software proprietary of the system is very good, and its interface is friendly too. In order to achieve optimum welding effect, we have designed special laser discharging waveform. Its rise delay time, fall delay time, and width are all designed specially. With this special technology, the welding spot we get is smooth like mirror, and the welding intensity can be controlled conveniently.

  10. A laser imaging system for helicopter avoidance obstacle

    NASA Astrophysics Data System (ADS)

    Wang, WeiRan; Yuan, HongChun; Jin, Yuan

    2006-09-01

    Rotorcraft flying in low-altitude is endangered by power lines or telephone wires. The development of automated tools that can detect obstacles in the flight path and warn the crew would significantly reduce the workload of pilot and increase the safety. Detection and warning are rudimental demand and desire for Helicopter Avoidance Obstacle System (HAOS). And that, An advanced HAOS may be capable of classifying thin obstacles and enhanced vision with distances of obstacles. A laser 3D imaging system for helicopter avoidance obstacle (HAO) had been developed successfully. The laser 3D imaging helicopter avoidance obstacle system can not only detect thin obstacles but also catch more information of all objects of the area in front of the helicopter as possible. Then the information is transformed into intuitionist 3D image modality. In this paper, special features and characteristic of the laser imaging system for HAO are analyzed and discussed. Several design gist for this system are proposed. Especially, the developed zero backlash imaging technology and real-time dynamic imaging synchronizing with radar space scanning are described. The technique implementation problem and the system structure are given as well. Finally, the results of system ground test are presented. The ground test of the developed laser imaging system has demonstrated that the developed imaging system performance can achieve and satisfy commendably the requirements of the mission to prevent "wire strike".

  11. Laser comminution of submerged samples

    SciTech Connect

    Mariella, R. Jr.; Rubenchik, A.; Norton, M.; Donohue, G.

    2013-07-07

    With the long-term goal in mind of investigating possible designs for a 'universal, solid-sample comminution technique' for elemental analysis of debris and rubble, we have studied pulsed-laser ablation of solid samples that were submerged in water. Using 351-nm, 15-ns laser pulses with energy between 1 J and 0.35 J, intensities between 500 MW/cm{sup 2} and 30 MW/cm{sup 2}, and samples of broken rock [quartzite] and concrete debris, we have observed conditions in which the laser-driven process can remove material from the solid target substrate, dissolving it and/or converting it into ultrafine particles in a controlled manner. Our study used impure, non-metallic substrates and investigated both the rate of material removal as well as the size distribution of particles that were ablated from the process. We studied ablation at lower regimes of intensity and fluence [below 100 MW/cm{sup 2} and 0.4 J/cm{sup 2}, respectively] than has previously attracted attention and discovered that there appears to be a new regime for energy-efficient material removal [Q* < 4000 J/g, for quartzite and <2000 J/g for concrete] and for the generation of ultrafine particles.

  12. Compact laser molecular beam epitaxy system using laser heating of substrate for oxide film growth

    NASA Astrophysics Data System (ADS)

    Ohashi, S.; Lippmaa, M.; Nakagawa, N.; Nagasawa, H.; Koinuma, H.; Kawasaki, M.

    1999-01-01

    A high-temperature, oxygen compatible, and compact laser molecular beam epitaxy (laser MBE) system has been developed. The 1.06 μm infrared light from a continuous wave neodymium-doped yttrium aluminum garnet (Nd:YAG) laser was used to achieve a wide range and rapid control of substrate temperature in ultrahigh vacuum and at up to 1 atm oxygen pressure. The maximum usable temperature was limited to 1453 °C by the melting point of the nickel sample holder. To our knowledge, this is the highest temperature reported for pulsed laser deposition of oxide films. The efficient laser heating combined with temperature monitoring by a pyrometer and feedback control of the Nd:YAG laser power by a personal computer made it possible to regulate the substrate temperature accurately and to achieve high sample heating and cooling rates. The oxygen pressure and ablation laser triggering were also controlled by the computer. The accurate growth parameter control was combined with real-time in situ surface structure monitoring by reflection high energy electron diffraction to investigate oxide thin film growth in detail over a wide range of temperatures, oxygen partial pressures, and deposition rates. We have demonstrated the performance of this system by the fabrication of homoepitaxial SrTiO3 films as well as heteroepitaxial Sr2RuO4, and SrRuO3 films on SrTiO3 substrates at temperatures of up to 1300 °C. This temperature was high enough to change the film growth mode from layer by layer to step flow.

  13. Apparatus, system, and method for laser-induced breakdown spectroscopy

    SciTech Connect

    Effenberger, Jr., Andrew J; Scott, Jill R; McJunkin, Timothy R

    2014-11-18

    In laser-induced breakdown spectroscopy (LIBS), an apparatus includes a pulsed laser configured to generate a pulsed laser signal toward a sample, a constructive interference object and an optical element, each located in a path of light from the sample. The constructive interference object is configured to generate constructive interference patterns of the light. The optical element is configured to disperse the light. A LIBS system includes a first and a second optical element, and a data acquisition module. The data acquisition module is configured to determine an isotope measurement based, at least in part, on light received by an image sensor from the first and second optical elements. A method for performing LIBS includes generating a pulsed laser on a sample to generate light from a plasma, generating constructive interference patterns of the light, and dispersing the light into a plurality of wavelengths.

  14. Tunable solid state laser system for dermatology applications

    NASA Astrophysics Data System (ADS)

    Azar, Zion; Bank, Alexander; Donskoy, Dmitri M.; Nechitailo, Vladimir S.

    1994-12-01

    The Q-switched Nd:YAG laser is the most recent in a series of pulsed laser systems for plastic surgery. The 532 nm wavelength has been shown to be absorbed by a variety of chromophores. These include tattoo pigments, oxygenated hemoglobin and melanin-containing epidermal cells. A simple multi-line solid state laser module pumped by double-frequency Q- switched YAG laser is presented. This solid state multi-line module enables tuning of the wavelength in the yellow spectral range to 560 nm or to 580 nm for dermatology applications. Conversion efficiency in excess of 70% was achieved at 10 Hz pulse repetition frequency and output energy per pulse of approximately 200 mJ.

  15. Nd:YAG development for spaceborne laser ranging system

    NASA Technical Reports Server (NTRS)

    Harper, L. L.; Logan, K. E.; Williams, R. H.; Stevens, D. A.

    1979-01-01

    The results of the development of a unique modelocked laser device to be utilized in future NASA space-based, ultraprecision laser ranger systems are summarized. The engineering breadboard constructed proved the feasibility of the pump-pulsed, actively modelocked, PTM Q-switched Nd:YAG laser concept for the generation of subnanosecond pulses suitable for ultra-precision ranging. The laser breadboard also included a double-pass Nd:YAG amplifier and provision for a Type II KD*P frequency doubler. The specific technical accomplishment was the generation of single 150 psec, 20-mJ pulses at 10 pps at a wavelength of 1.064 micrometers with 25 dB suppression of pre-and post-pulses.

  16. Stretchers and compressors for ultra-high power laser systems

    SciTech Connect

    Yakovlev, I V

    2014-05-30

    This review is concerned with pulse stretchers and compressors as key components of ultra-high power laser facilities that take advantage of chirped-pulse amplification. The potentialities, characteristics, configurations and methods for the matching and alignment of these devices are examined, with particular attention to the history of the optics of ultra-short, ultra-intense pulses before and after 1985, when the chirped-pulse amplification method was proposed, which drastically changed the view of the feasibility of creating ultra-high power laser sources. The review is intended primarily for young scientists and experts who begin to address the amplification and compression of chirped pulses, experts in laser optics and all who are interested in scientific achievements in the field of ultra-high power laser systems. (review)

  17. Multimode lasers as analogs of complex biological systems (a survey)

    NASA Astrophysics Data System (ADS)

    Danilov, O. B.; Rosanov, N. N.; Solov'ev, N. A.; Soms, L. N.

    2016-04-01

    Simulating the activity of complex biological systems, in particular, the human brain, is a topical problem the solution of which is necessary both for understanding their functioning and for developing new classes of computational system based on operating principles of the brain. Some features and analogies that can be found in the operation of laser systems and brain and used for developing new generation computational systems are discussed. The appropriateness of such analogies is justified by the fact that both laser systems and the brain are open (interacting with the environment) dissipative spatially distributed nonlinear systems. Therefore, laser optical systems and, in particular, systems with dissipative optical solitons offer an opportunity to experimentally and theoretically model some important cognitive brain functions. One of particularities of the brain operation is the ability to manipulate images. Proceeding from this, in this work, problems related to generation and amplification with laser of spatial structures (images), as well as to amplification of signals coming to it from outside are discussed.

  18. Stability design of support systems in ICF lasers

    NASA Astrophysics Data System (ADS)

    Zhu, M. Z.; Wu, W. K.; Chen, G.; Zhan, H.; Xu, Y. L.; Chen, X. J.

    2016-10-01

    Within Inertial Confinement Fusion (ICF) laser systems, many independent laser beams are required to be positioned on target with a very high degree of accuracy until shots are complete. Optical elements that are capable of moving a laser beam on the target must meet the pointing error budget. Optical elements are typically supported by systems which consist of mounts, mount frames, support structures, and foundation. The stability design for support systems in ICF laser have been developed based on the designing and evaluating experience of ShenGuangIII (SGIII). This paper will provide the methodology of position error budget. The stability allocation is developed for evaluating the performance of support systems when they are subjected to multiple sources of excitations that can cause the motion of optical elements during alignment procedures and before shots. The vibrational stability design considerations of support systems are discussed on the fundamental frequency, ambient random vibration, and modal damping. The support structures of optical elements are the relatively large and massive hybrid structure of reinforced concrete and steel frame or vessels. While the reinforced concrete portions provide optical elements stability, the steel portions afford design flexibility. Finite element analyses of ambient random vibration are typically performed to evaluate the vibrational stability performances of support systems. Finally, this paper describes the ambient random vibration and beam pointing error measurements of SGIII. The measurements show the support systems of SGIII meet design requirement. These information can be used on similar systems.

  19. Direct laser additive fabrication system with image feedback control

    DOEpatents

    Griffith, Michelle L.; Hofmeister, William H.; Knorovsky, Gerald A.; MacCallum, Danny O.; Schlienger, M. Eric; Smugeresky, John E.

    2002-01-01

    A closed-loop, feedback-controlled direct laser fabrication system is disclosed. The feedback refers to the actual growth conditions obtained by real-time analysis of thermal radiation images. The resulting system can fabricate components with severalfold improvement in dimensional tolerances and surface finish.

  20. Laser rangefinders for autonomous intelligent cruise control systems

    NASA Astrophysics Data System (ADS)

    Journet, Bernard A.; Bazin, Gaelle

    1998-01-01

    THe purpose of this paper is to show to what kind of application laser range-finders can be used inside Autonomous Intelligent Cruise Control systems. Even if laser systems present good performances the safety and technical considerations are very restrictive. As the system is used in the outside, the emitted average output power must respect the rather low level of 1A class. Obstacle detection or collision avoidance require a 200 meters range. Moreover bad weather conditions, like rain or fog, ar disastrous. We have conducted measurements on laser rangefinder using different targets and at different distances. We can infer that except for cooperative targets low power laser rangefinder are not powerful enough for long distance measurement. Radars, like 77 GHz systems, are better adapted to such cases. But in case of short distances measurement, range around 10 meters, with a minimum distance around twenty centimeters, laser rangefinders are really useful with good resolution and rather low cost. Applications can have the following of white lines on the road, the target being easily cooperative, detection of vehicles in the vicinity, that means car convoy traffic control or parking assistance, the target surface being indifferent at short distances.

  1. Noncontact laser fiber delivery system for endoscopic medical applications

    NASA Astrophysics Data System (ADS)

    Denisov, Nikolay A.; Griffin, Stephen E.

    1999-02-01

    The objective of the study was to design and to investigate laser fiber delivery system for treatment of obstructed human internal tubular organs using endoscopic techniques. This system eliminates the main disadvantages of both applied contact and non-contact probes, namely surface contamination with concomitant hydrothermal probe deterioration and large beam divergence with poor energy density, respectively. Proposed silica or sapphire probes produce quasi-collimated beam with specific outside diameter and power distribution. To provide comparative analysis of laser delivery systems' optical properties with non-contact endoscopic probes 'steady beam distance' (SBD) and 'steady beam ratio' (SBR) coefficients are proposed. The calculation results are presented in the form of the plots of the SBR - coefficients and SBDs for a 2.0 mm specific outside beam diameter versus laser wavelength, delivery fiber core diameter and its numerical aperture for both probe material. Additionally, the cross power distributions along the SBD were studied. Results obtained could provide a useful tool to designers of non-contact fiber delivery systems intended for a variety of medical applications, including endoscopic surgery with cw or pulse laser tissue irradiation, skin de-epithelialization, laser-induced fluorescence and photodynamic therapy.

  2. Airborne laser systems for atmospheric sounding in the near infrared

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark A.; Jia, Huamin; Zammit-Mangion, David

    2012-06-01

    This paper presents new techniques for atmospheric sounding using Near Infrared (NIR) laser sources, direct detection electro-optics and passive infrared imaging systems. These techniques allow a direct determination of atmospheric extinction and, through the adoption of suitable inversion algorithms, the indirect measurement of some important natural and man-made atmospheric constituents, including Carbon Dioxide (CO2). The proposed techniques are suitable for remote sensing missions performed by using aircraft, satellites, Unmanned Aerial Vehicles (UAV), parachute/gliding vehicles, Roving Surface Vehicles (RSV), or Permanent Surface Installations (PSI). The various techniques proposed offer relative advantages in different scenarios. All are based on measurements of the laser energy/power incident on target surfaces of known geometric and reflective characteristics, by means of infrared detectors and/or infrared cameras calibrated for radiance. Experimental results are presented relative to ground and flight trials performed with laser systems operating in the near infrared (NIR) at λ = 1064 nm and λ = 1550 nm. This includes ground tests performed with 10 Hz and 20 KHz PRF NIR laser systems in a variety of atmospheric conditions, and flight trials performed with a 10 Hz airborne NIR laser system installed on a TORNADO aircraft, flying up to altitudes of 22,000 ft above ground level. Future activities are planned to validate the atmospheric retrieval algorithms developed for CO2 column density measurements, with emphasis on aircraft related emissions at airports and other high air-traffic density environments.

  3. Examining laser triangulation system performance using a software simulation

    NASA Astrophysics Data System (ADS)

    Collier, Jeffery S.; Nurre, Joseph H.

    1999-03-01

    The invention of the laser diode, the microcomputer and the CCD camera have made possible the new technology of triangulation measurement systems. Current applications range from scanning the insides of old pipes, to a vision tool for the blind. As such, it is important that techniques be developed to minimize the error in laser triangulation measurement systems. Due to the nonlinear nature of the problem and the fact that error is dependent on an ever changing and vast number of subjects, a computer simulation was written to examine the trade-off between occlusion and data quality. A computer simulation allows for a large amount of flexibility. The software gives the user the ability to calculate the error for a given triangulation configuration without having to build and test the actual hardware. This paper describes and demonstrates the use of the simulator. Limitless laser triangulation systems can be modeled and most subjects represented in CAD files can be used in the computer simulation.

  4. Relay telescope for high power laser alignment system

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.

    2006-09-19

    A laser system includes an optical path having an intracavity relay telescope with a telescope focal point for imaging an output of the gain medium between an image location at or near the gain medium and an image location at or near an output coupler for the laser system. A kinematic mount is provided within a vacuum chamber, and adapted to secure beam baffles near the telescope focal point. An access port on the vacuum chamber is adapted for allowing insertion and removal of the beam baffles. A first baffle formed using an alignment pinhole aperture is used during alignment of the laser system. A second tapered baffle replaces the alignment aperture during operation and acts as a far-field baffle in which off angle beams strike the baffle a grazing angle of incidence, reducing fluence levels at the impact areas.

  5. Current status of Kumgang laser system

    NASA Astrophysics Data System (ADS)

    Kong, Hong Jin; Park, Sangwoo; Ahn, HeeKyung; Lee, Hwihyeong; Oh, Jungsuk; Kim, Jom Sool

    2015-02-01

    In KAIST, Kumgang laser is being developed for demonstration of the kW level coherent beam combination using stimulated Brillouin scattering phase conjugation mirrors. It will combine 4 modules of DPSSL rod amplifier which produces 1 kW output power. It is composed of the single frequency front-end, pre-amplifier module, and main amplifier. The output powers of the pre-amp and main amplifier module are 200 W (20 mJ @ 10 kHz / 10 ns) and 1.07kW (107 mJ @ 10 kHz / 10 ns), respectively.

  6. Laser Tracker III: Sandia National Laboratories` third generation laser tracking system

    SciTech Connect

    Patrick, D.L.

    1995-03-01

    At Sandia Labs` Coyote Canyon Test Complex, it became necessary to develop a precision single station solution to provide time space position information (tspi) when tracking airborne test vehicles. Sandia`s first laser tracker came on line in 1968, replacing the fixed camera technique for producing trajectory data. This system shortened data reduction time from weeks to minutes. Laser Tracker 11 began operations in 1982, replacing the original tracker. It incorporated improved optics and electronics, with the addition of a microprocessor-based real-time control (rtc) system within the main servo loop. The rtc added trajectory prediction with the loss of adequate tracking signal and automatic control of laser beam divergence according to target range. Laser Tracker III, an even more advanced version of the systems, came on line in 1990. Unlike LTII, which is mounted in a trailer and must by moved by a tractor, LTIII is mounted on its own four-wheel drive carrier. This allows the system to be used at even the most remote locations. It also incorporated improved optics and electronics with the addition of absolute ranging, acquisition on the fly, and automatic transition from manual Joystick tracking to laser tracking for aircraft tests. LTIII provides a unique state of the art tracking capability for missile, rocket sled, aircraft, submunition, and parachute testing. Used in conjunction with LTII, the systems together can provide either simultaneous or extended range tracking. Mobility, accuracy, reliability, and cost effectiveness enable these systems to support a variety of testing at Department of Energy and Department of Defense ranges.

  7. Developmental Test of the Honeywell Laser Inertial Navigation System (LINS)

    DTIC Science & Technology

    1975-11-01

    navigation system. The system tested at the CIGTF contained an inertial sensor assembly which contained three ring laser gyros, arranged in an...alignment. The inertial sensor assembly is operated heaterless, thus elimininating the usual warm-up rc4uirement for conventional inertial system...continuous; 6900VA start up transient of 50 milli- seconds. LINS ENGINIEERING HARDWARE BASIC LtS FUN~CTIONiAL BlLOCK DIAGRAMl FIGURE 1. LIINS SYSTEM4 BLOCKt

  8. Lessons Learned from the Advanced Topographic Laser Altimeter System

    NASA Technical Reports Server (NTRS)

    Garrison, Matt; Patel, Deepak; Bradshaw, Heather; Robinson, Frank; Neuberger, Dave

    2016-01-01

    The ICESat-2 Advanced Topographic Laser Altimeter System (ATLAS) instrument is an upcoming Earth Science mission focusing on the effects of climate change. The flight instrument passed all environmental testing at GSFC (Goddard Space Flight Center) and is now ready to be shipped to the spacecraft vendor for integration and testing. This presentation walks through the lessons learned from design, hardware, analysis and testing perspective. ATLAS lessons learned include general thermal design, analysis, hardware, and testing issues as well as lessons specific to laser systems, two-phase thermal control, and optical assemblies with precision alignment requirements.

  9. Laser applications and system considerations in ocular imaging

    PubMed Central

    Elsner, Ann E.; Muller, Matthew S.

    2009-01-01

    We review laser applications for primarily in vivo ocular imaging techniques, describing their constraints based on biological tissue properties, safety, and the performance of the imaging system. We discuss the need for cost effective sources with practical wavelength tuning capabilities for spectral studies. Techniques to probe the pathological changes of layers beneath the highly scattering retina and diagnose the onset of various eye diseases are described. The recent development of several optical coherence tomography based systems for functional ocular imaging is reviewed, as well as linear and nonlinear ocular imaging techniques performed with ultrafast lasers, emphasizing recent source developments and methods to enhance imaging contrast. PMID:21052482

  10. A laser system to remotely sense bird movements

    NASA Technical Reports Server (NTRS)

    Korschgen, C. E.; Green, W. L.; Seasholtz, R. G.

    1983-01-01

    The design and operation of a laser detection system for migrating birds are presented. A battery-powered class-III laser (operating at 904 nm, pulse-repetition rate 5 kHz, pulse duration 100 nsec, and peak power 25 W) and a photodiode receiver are mounted on poles at height 10 m and distance 850 m and equipped with 135-mm f/2.8 collimating lenses; beam diameter at the receiver is 1.7 m. The microprocessor-controlled system is found to detect the passing of an object as small as 30 sq cm in cross section at a distance of 425 m.

  11. System requirements for laser power beaming to geosynchronous satellites

    SciTech Connect

    Neal, R.D.; McKechnie, T.S.; Neal, D.R.

    1994-03-01

    Geosynchronous satellites use solar arrays as their primary source of electrical power. During earth eclipse, which occurs 90 times each year, the satellites are powered by batteries, but the heavy charge-discharge cycle decreases their life expectancy. By beaming laser power to satellites during the eclipses, satellite life expectancy can be significantly increased. In this paper, the authors investigate the basic system parameters and trade-offs of using reactor pumped laser technology to beam power from the Nevada Test Site. A first order argument is used to develop a consistent set of requirements for such a system.

  12. Laser Communication Demonstration System (LCDS) and future mobile satellite services

    NASA Technical Reports Server (NTRS)

    Chen, Chien-Chung; Wilhelm, Michael D.; Lesh, James R.

    1995-01-01

    The Laser Communications Demonstration System (LCDS) is a proposed in-orbit demonstration of high data rate laser communications technology conceived jointly by NASA and U.S. industry. The program objectives are to stimulate industry development and to demonstrate the readiness of high data rate optical communications in Earth orbit. For future global satellite communication systems using intersatellite links, laser communications technology can offer reduced mass and power requirements and higher channel bandwidths without regulatory constraints. As currently envisioned, LCDS will consist of one or two orbiting laser communications terminals capable of demonstrating high data rate (greater than 750Mbps) transmission in a dynamic space environment. Two study teams led by Motorola and Ball Aerospace are currently in the process of conducting a Phase A/B mission definition study of LCDS under contracts with JPL/NASA. The studies consist of future application survey, concept and requirements definition, and a point design of the laser communications flight demonstration. It is planned that a single demonstration system will be developed based on the study results. The Phase A/B study is expected to be completed by the coming June, and the current results of the study are presented in this paper.

  13. Study and design on USB wireless laser communication system

    NASA Astrophysics Data System (ADS)

    Wang, Aihua; Zheng, Jiansheng; Ai, Yong

    2004-04-01

    We give the definition of USB wireless laser communication system (WLCS) and the brief introduction to the protocol of USB, the standard of hardware is also given. The paper analyses the hardware and software of USB WLCS. Wireless laser communication part and USB interface circuit part are discussed in detail. We also give the periphery design of the chip AN2131Q, the control circuit to realize the transformation from parallel port to serial bus, and the circuit of laser sending and receiving of laser communication part, which are simply, cheap and workable. And then the four part of software are analyzed as followed. We have consummated the ISR in the firmware frame to develop the periphery device of USB. We have debugged and consummated the 'ezload,' and the GPD of the drivers. Windows application performs functions and schedules the corresponding API functions to let the interface practical and beautiful. The system can realize USB wireless laser communication between computers, which distance is farther than 50 meters, and top speed can be bigger than 8 Mbps. The system is of great practical sense to resolve the issues of high-speed communication among increasing districts without fiber trunk network.

  14. The Injection Laser System on the National Ignition Facility

    SciTech Connect

    Bowers, M; Burkhart, S; Cohen, S; Erbert, G; Heebner, J; Hermann, M; Jedlovec, D

    2006-12-13

    The National Ignition Facility (NIF) is currently the largest and most energetic laser system in the world. The main amplifiers are driven by the Injection Laser System comprised of the master oscillators, optical preamplifiers, temporal pulse shaping and spatial beam formatting elements and injection diagnostics. Starting with two fiber oscillators separated by up to a few angstroms, the pulse is phase modulated to suppress SBS and enhance spatial smoothing, amplified, split into 48 individual fibers, and then temporally shaped by an arbitrary waveform generator. Residual amplitude modulation induced in the preamplifiers from the phase modulation is also precompensated in the fiber portion of the system before it is injected into the 48 pre-amplifier modules (PAMs). Each of the PAMs amplifies the light from the 1 nJ fiber injection up to the multi-joule level in two stages. Between the two stages the pre-pulse is suppressed by 60 dB and the beam is spatially formatted to a square aperture with precompensation for the nonuniform gain profile of the main laser. The input sensor package is used to align the output of each PAM to the main laser and acquire energy, power, and spatial profiles for all shots. The beam transport sections split the beam from each PAM into four main laser beams (with optical isolation) forming the 192 beams of the NIF. Optical, electrical, and mechanical design considerations for long term reliability and availability will be discussed.

  15. Amplification of Conically Diverging Laser Beams in the Gas Amplifier of the THL-100 Laser System

    NASA Astrophysics Data System (ADS)

    Ivanov, N. G.; Ivanov, M. V.; Losev, V. F.; Yastremskii, A. G.

    2016-11-01

    Amplification of conically diverging laser beams in the XeF(C-A) amplifier of the THL-100 hybrid laser system operating in the visible range (λ = 475 nm) is investigated experimentally and theoretically. Energies of 2 and 2.5 J are obtained experimentally and theoretically at the output from the XeF(C-A) amplifier for the chirped start pulse with energy of 0.8 mJ and duration of 2 ps. Patterns of changes of energy and spatial and temporal distribution of the amplified laser beam intensity are investigated theoretically. The maximal calculated energy density and the radiation pulse intensity are Wmax = 100 mJ/cm2 and Imax = 64 GW/cm2, respectively.

  16. Atmospheric transmission of CO2 laser radiation with application to laser Doppler systems

    NASA Technical Reports Server (NTRS)

    Murty, S. S. R.

    1975-01-01

    The molecular absorption coefficients of carbon dioxide, water vapor, and nitrous oxide are calculated at the P16, P18, P20, P22, and P24 lines of the CO2 laser for temperatures from 200 to 300 K and for pressures from 100 to 1100 mb. The temperature variation of the continuum absorption coefficient of water vapor is taken into account semi-empirically from Burch's data. The total absorption coefficient from the present calculations falls within + or - 20 percent of the results of McClatchey and Selby. The transmission loss which the CO2 pulsed laser Doppler system experiences was calculated for flight test conditions for the five P-lines. The total transmission loss is approximately 7 percent higher at the P16 line and 10 percent lower at the P24 line compared to the P20 line. Comparison of the CO2 laser with HF and DF laser transmission reveals the P2(8) line at 3.8 micrometers of the DF laser is much better from the transmission point of view for altitudes below 10 km.

  17. Laser beam shaping optical system design methods and their application in edge-emitting semiconductor laser-based LIDAR systems

    NASA Astrophysics Data System (ADS)

    Serkan, Mert

    LIDAR (Light Detection And Ranging) systems are employed for numerous applications such as remote sensing, military applications, optical data storage, display technology, and material processing. Furthermore, they are superior to other active remote sensing tools such as RADAR systems, considering their higher accuracy and more precise resolution due to their much shorter wavelengths and narrower beamwidth. Several types of lasers can be utilized as the radiation source of several LIDAR systems. Semiconductor laser-based LIDAR systems have several advantages such as low cost, compactness, broad range of wavelengths, and high PRFs (Pulse Repetition Frequency). However, semiconductor lasers have different origins and angles of divergence in the two transverse directions, resulting in the inherent astigmatism and elliptical beam shape. Specifically, elliptical beam shape is not desirable for several laser-based applications including LIDAR systems specifically designed to operate in the far-field region. In this dissertation, two mirror-based and two lens-based beam shapers are designed to circularize, collimate, and expand an edge-emitting semiconductor laser beam to a desired beam diameter for possible application in LIDAR systems. Additionally, most laser beams including semiconductor laser beams have Gaussian irradiance distribution. For applications that require uniform illumination of an extended target area, Gaussian irradiance distribution is undesirable. Therefore, a specific beam shaper is designed to transform the irradiance distribution from Gaussian to uniform in addition to circularizing, collimating, and expanding the semiconductor laser beam. For the design of beam shapers, aperture sizes of the surfaces are preset for desired power transmission and allowed diffraction level, surface parameters of the optical components and the distances between these surfaces are determined. Design equations specific to these beam shaping optical systems are

  18. An All-Solid-State High Repetiton Rate Titanium:Sapphire Laser System For Resonance Ionization Laser Ion Sources

    NASA Astrophysics Data System (ADS)

    Mattolat, C.; Rothe, S.; Schwellnus, F.; Gottwald, T.; Raeder, S.; Wendt, K.

    2009-03-01

    On-line production facilities for radioactive isotopes nowadays heavily rely on resonance ionization laser ion sources due to their demonstrated unsurpassed efficiency and elemental selectivity. Powerful high repetition rate tunable pulsed dye or Ti:sapphire lasers can be used for this purpose. To counteract limitations of short pulse pump lasers, as needed for dye laser pumping, i.e. copper vapor lasers, which include high maintenance and nevertheless often only imperfect reliability, an all-solid-state Nd:YAG pumped Ti:sapphire laser system has been constructed. This could complement or even replace dye laser systems, eliminating their disadvantages but on the other hand introduce shortcomings on the side of the available wavelength range. Pros and cons of these developments will be discussed.

  19. An All-Solid-State High Repetiton Rate Titanium:Sapphire Laser System For Resonance Ionization Laser Ion Sources

    SciTech Connect

    Mattolat, C.; Rothe, S.; Schwellnus, F.; Gottwald, T.; Raeder, S.; Wendt, K.

    2009-03-17

    On-line production facilities for radioactive isotopes nowadays heavily rely on resonance ionization laser ion sources due to their demonstrated unsurpassed efficiency and elemental selectivity. Powerful high repetition rate tunable pulsed dye or Ti:sapphire lasers can be used for this purpose. To counteract limitations of short pulse pump lasers, as needed for dye laser pumping, i.e. copper vapor lasers, which include high maintenance and nevertheless often only imperfect reliability, an all-solid-state Nd:YAG pumped Ti:sapphire laser system has been constructed. This could complement or even replace dye laser systems, eliminating their disadvantages but on the other hand introduce shortcomings on the side of the available wavelength range. Pros and cons of these developments will be discussed.

  20. Ideal Laser Beam Propagation through high temperature ignition hohlraum plasmas

    SciTech Connect

    Froula, D H; Divol, L; Meezan, N; Dixit, S; Moody, J D; Pollock, B B; Ross, J S; Glenzer, S H

    2006-09-20

    We demonstrate that a blue (3{omega}, 351 nm) laser beam with an intensity of 2 x 10{sup 15} W-cm{sup -2} propagates within the original beam cone through a 2-mm long, T{sub e}=3.5 keV high density (n{sub e} = 5 x 10{sup 20} cm{sup -3}) plasma. The beam produced less than 1% total backscatter; the resulting transmission is greater than 90%. Scaling of the electron temperature in the plasma shows that the plasma becomes transparent for uniform electron temperatures above 3 keV. These results are consistent with linear theory thresholds for both filamentation and backscatter instabilities inferred from detailed hydrodynamic simulations. This provides a strong justification for current inertial confinement fusion designs to remain below these thresholds.

  1. Receiver design, performance analysis, and evaluation for space-borne laser altimeters and space-to-space laser ranging systems

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic M.; Sun, Xiaoli; Field, Christopher T.

    1995-01-01

    This Interim report consists of a manuscript, 'Receiver Design for Satellite to Satellite Laser Ranging Instrument,' and copies of two papers we co-authored, 'Demonstration of High Sensitivity Laser Ranging System' and 'Semiconductor Laser-Based Ranging Instrument for Earth Gravity Measurements. ' These two papers were presented at the conference Semiconductor Lasers, Advanced Devices and Applications, August 21 -23, 1995, Keystone Colorado. The manuscript is a draft in the preparation for publication, which summarizes the theory we developed on space-borne laser ranging instrument for gravity measurements.

  2. Front-end system for Yb : YAG cryogenic disk laser

    SciTech Connect

    Perevezentsev, E A; Mukhin, I B; Kuznetsov, I I; Vadimova, O L; Palashov, O V

    2015-05-31

    A new front-end system for a cryogenic Yb : YAG laser is designed. The system consists of a femtosecond source, a stretcher and a regenerative amplifier with an output energy of 25 μJ at a pulse repetition rate of 49 kHz, a pulse duration of ∼2 ns and a bandwidth of ∼1.5 nm. After increasing the pump power of the regenerative amplifier, it is expected to achieve a pulse energy of ∼1 mJ at the input to cryogenic amplification stages, which will allow one to obtain laser pulses with a duration of several picoseconds at the output of the cryogenic laser after compression. (extreme light fields and their applications)

  3. Effects of turbulence on the geodynamic laser ranging system

    NASA Technical Reports Server (NTRS)

    Churnside, James H.

    1993-01-01

    The Geodynamic Laser Ranging System (GLRS) is one of several instruments being developed by the National Aeronautics and Space Administration (NASA) for implementation as part of the Earth Observing System in the mid-1990s (Cohen et al., 1987; Bruno et al., 1988). It consists of a laser transmitter and receiver in space and an array of retroreflectors on the ground. The transmitter produces short (100 ps) pulses of light at two harmonics (0.532 and 0.355 microns) of the Nd:YAG laser. These propagate to a retroreflector on the ground and return. The receiver collects the reflected light and measures the round-trip transit time. Ranging from several angles accurately determines the position of the retroreflector, and changes in position caused by geophysical processes can be monitored.

  4. Calibration technology in application of robot-laser scanning system

    NASA Astrophysics Data System (ADS)

    Ren, YongJie; Yin, ShiBin; Zhu, JiGui

    2012-11-01

    A system composed of laser sensor and 6-DOF industrial robot is proposed to obtain complete three-dimensional (3-D) information of the object surface. Suitable for the different combining ways of laser sensor and robot, a new method to calibrate the position and pose between sensor and robot is presented. By using a standard sphere with known radius as a reference tool, the rotation and translation matrices between the laser sensor and robot are computed, respectively in two steps, so that many unstable factors introduced in conventional optimization methods can be avoided. The experimental results show that the accuracy of the proposed calibration method can be achieved up to 0.062 mm. The calibration method is also implemented into the automated robot scanning system to reconstruct a car door panel.

  5. EFFECT OF LASER LIGHT ON MATTER. LASER PLASMAS: Laser damage resistance of a lithium niobate-tantalate bicrystal system

    NASA Astrophysics Data System (ADS)

    Skvortsov, L. A.; Stepantsov, E. S.

    1993-11-01

    The laser damage resistance of a bicrystal system prepared by solid-phase diffusive joining of specially prepared crystals of lithium niobate and lithium tantalate has been studied. This has been the first such study. The damage resistance of the interface is at least twice that of the lithium niobate surface. The damage resistance of the bicrystal is determined by the damage resistance of the lithium tantalate surface and is greater than 600 MW/cm2.

  6. Laser scanning system for object monitoring

    DOEpatents

    McIntyre, Timothy James [Knoxville, TN; Maxey, Lonnie Curtis [Powell, TN; Chiaro, Jr; John, Peter [Clinton, TN

    2008-04-22

    A laser scanner is located in a fixed position to have line-of-sight access to key features of monitored objects. The scanner rapidly scans pre-programmed points corresponding to the positions of retroreflecting targets affixed to the key features of the objects. The scanner is capable of making highly detailed scans of any portion of the field of view, permitting the exact location and identity of targets to be confirmed. The security of an object is verified by determining that the cooperative target is still present and that its position has not changed. The retroreflecting targets also modulate the reflected light for purposes of returning additional information back to the location of the scanner.

  7. First Results of the LCLS Laser-Heater System

    SciTech Connect

    Emma, P; Boyce, R.F.; Brachmann, A.; Carr, R.; Decker, F.-J.; Ding, Y.; Dowell, D.; Edstrom, S.; Frisch, J.; Gilevich, S.; Hays, G.; Hering, Ph.; Huang, Z.; Iverson, R.; Levashov, Y.; Loos, H.; Miahnahri, A.; Nuhn, H.-D.; Poling, B.; Ratner, D.; Spampinati, S.; /SLAC

    2011-12-16

    The Linac Coherent Light Source (LCLS) is an x-ray Free-Electron Laser (FEL) project that has just achieved its first lasing at 1.5 {angstrom} radiation wavelength. The very bright electron beam required to drive this FEL is susceptible to a microbunching instability in the magnetic bunch compressors that may increase the slice energy spread beyond the FEL tolerance. To control the slice energy spread and to suppress the microbunching instability, a laser heater (LH) system is installed in the LCLS injector area at 135 MeV, right before the RF deflector that is used for the time-resolved electron diagnostics. This unique component is used to add a small level of intrinsic energy spread to the electron beam in order to Landau damp the microbunching instability before it potentially breaks up the high brightness electron beam. The system was fully installed and tested in the fall of 2008, and effects of heating on the electron beam and the x-ray FEL were studied during the 2009 commissioning period. The laser heater system is composed of a 4-dipole chicane; a 9-period, planar, permanent-magnet, adjustable-gap undulator at the center of the chicane; one OTR screen on each side of the undulator for electron/laser spatial alignment; and an IR laser (up to 15-MW power) which co-propagates with the electron beam inside the undulator generating a 758-nm energy modulation along the bunch. The final two dipoles of the 4-dipole chicane time-smear this modulation leaving only a thermal-like intrinsic energy spread within the bunch. Table 1 lists the main parameters for this system. The very bright electron beam required for an x-ray free-electron laser (FEL), such as the LCLS, is susceptible to a microbunching instability in the magnetic bunch compressors, prior to the FEL undulator. The uncorrelated electron energy spread in the LCLS can be increased by an order of magnitude to provide strong Landau damping against the instability without degrading the FEL performance. To

  8. Receiver Design, Performance Analysis, and Evaluation for Space-Borne Laser Altimeters and Space-to-Space Laser Ranging Systems

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic M.; Sun, Xiaoli; Field, Christopher T.

    1996-01-01

    This progress report consists of two separate reports. The first one describes our work on the use of variable gain amplifiers to increase the receiver dynamic range of space borne laser altimeters such as NASA's Geoscience Laser Altimeter Systems (GLAS). The requirement of the receiver dynamic range was first calculated. A breadboard variable gain amplifier circuit was made and the performance was fully characterized. The circuit will also be tested in flight on board the Shuttle Laser Altimeter (SLA-02) next year. The second report describes our research on the master clock oscillator frequency calibration for space borne laser altimeter systems using global positioning system (GPS) receivers.

  9. Galvanometer beam-scanning system for laser fiber drawing.

    PubMed

    Oehrle, R C

    1979-02-15

    A major difficulty in using a laser to draw optical fibers from a glass preform has been uniformally distributing the laser's energy around the melt zone. Several systems have evolved in recent years, but to date the most successful technique has been the off-axis rotating lens system (RLS). The inability of this device to structure efficiently and dynamically the heat zone longitudinally along the preform has restricted its use to preform of less than 8-mm diameter. A new technique reported here employs two orthogonal mounted mirrors, driven by galvanometers to distribute the laser energy around the preform. This system can be retrofitted into the RLS to replace the rotating lens element. The new system, the galvanometer scanning system (GSS), operates at ten times the rotational speed of the RLS and can instantaneously modify the melt zone. The ability of the GSS to enlarge the melt zone reduces the vaporization rate at the surface of the preform permitting efficient use of higher laser power. Experiments i dicate that fibers can be drawn from significantly larger preforms by using the expanded heat zone provided by the GSS.

  10. High gain pre-amplifier laser beam quality evaluating system

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Yu, Jin; Zhao, Tianzhuo; Zhang, Xue; Fan, Zhongwei

    2011-06-01

    Designed a system for the high gain laser pre-amplifier to evaluate the image quality. The system uses 4f imaging principle and Kepler type telescope was choiced, it has two advantages: avert optical distortion and eliminate aberration in the measurement system. Combined with the location of the lens inside of pre-amplifier such as the spatial filter , the near field imaging structure was designed. The structure can be reduced to 11.9 times the beam image, and clearly passed the image to the CCD target surface. The location of first positive lens focus is the location of far field image. In this article, one laser pre-amplifier was measured. The average measured near field modulation M=1.34, the average measured far field diffraction limit is 2.94. Experiments show that the stability of measuring system is less than+/-5%, it can meet the measurement requirements of ICF laser pre-amplifier parameters. Use this system we can discover the problem during the design and installation. There is great meaning for develop of laser pre-amplifier in ICF for further.

  11. A 1-Joule laser for a 16-fiber injection system

    SciTech Connect

    Honig, J

    2004-04-06

    A 1-J laser was designed to launch light down 16, multi-mode fibers (400-{micro}m-core dia.). A diffractive-optic splitter was designed in collaboration with Digital Optics Corporation (DOC), and was delivered by DOC. Using this splitter, the energy injected into each fiber varied <1%. The spatial profile out of each fiber was such that there were no ''hot spots,'' a flyer could successfully be launched and a PETN pellet could be initiated. Preliminary designs of the system were driven by system efficiency where a pristine TEM{sub 00} laser beam would be required. The laser is a master oscillator, power amplifier (MOPA) consisting of a 4-mm-dia. Nd:YLF rod in the stable, q-switched oscillator and a 9.5-mm-dia. Nd:YLF rod in the double-passed amplifier. Using a TEM{sub 00} oscillator beam resulted in excellent transmission efficiencies through the fibers at lower energies but proved to be quite unreliable at higher energies, causing premature fiber damage, flyer plate rupture, stimulated Raman scattering (SRS), and stimulated Brillouin scattering (SBS). Upon further investigation, it was found that both temporal and spatial beam formatting of the laser were required to successfully initiate the PETN. Results from the single-mode experiments, including fiber damage, SRS and SBS losses, will be presented. In addition, results showing the improvement that can be obtained by proper laser beam formatting will also be presented.

  12. Remote Fiber Laser Cutting System for Dismantling Glass Melter - 13071

    SciTech Connect

    Mitsui, Takashi; Miura, Noriaki; Oowaki, Katsura; Kawaguchi, Isao; Miura, Yasuhiko; Ino, Tooru

    2013-07-01

    Since 2008, the equipment for dismantling the used glass melter has been developed in High-level Liquid Waste (HLW) Vitrification Facility in the Japanese Rokkasho Reprocessing Plant (RRP). Due to the high radioactivity of the glass melter, the equipment requires a fully-remote operation in the vitrification cell. The remote fiber laser cutting system was adopted as one of the major pieces of equipment. An output power of fiber laser is typically higher than other types of laser and so can provide high-cutting performance. The fiber laser can cut thick stainless steel and Inconel, which are parts of the glass melter such as casings, electrodes and nozzles. As a result, it can make the whole of the dismantling work efficiently done for a shorter period. Various conditions of the cutting test have been evaluated in the process of developing the remote fiber cutting system. In addition, the expected remote operations of the power manipulator with the laser torch have been fully verified and optimized using 3D simulations. (authors)

  13. Laser system for identification, tracking, and control of flying insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flying insects are common vectors for transmission of pathogens and inflict significant harm on humans in large parts of the developing world. Besides the direct impact to humans, these pathogens also cause harm to crops and result in agricultural losses. Here, we present a laser-based system that c...

  14. High-definition laser display system using multibeam scanning

    NASA Astrophysics Data System (ADS)

    Zhao, Zhenming; Li, Yongda; Lang, Baihe

    2000-10-01

    The design and principles of a high definition laser display system with multi-beam scanning are described. The system employs 4 laser beams each being composed of red, green and blue components. The four beams from one scanner are scanned simultaneously by a rotating polygonal mirror for horizontal deflection and by a galvanometer for vertical deflection. Compared with conventional single-beam scanning, the new design has the following advantages: 1) The rotational speed of the polygonal mirrors can be reduced by a factor of 4, which would improve the system performance and decrease the difficulties of the manufacture of the system. The size of the polygonal facet and, therefore, the laser beam diameter can be increased which would decrease the pixel diffusion. 2) The simultaneous operation of the 4 modulators would improve the horizontal resolution by a factor of 4. 3) For the same screen brightness, the single pixel power density can be reduced by a factor of 4 which would decrease the hazardous laser radiation.

  15. Television-and-Laser Range-Measuring System

    NASA Technical Reports Server (NTRS)

    Russell, J. Kevin

    1988-01-01

    Triangulation system measures angle between two lines of sight to point on object, determining distance to object. Amenable to automation. Includes automatically aimed rotatable mirrors and laser beam to define one of lines of sight. Adjusts automatically to bring two lines of sight into convergence at common point on object.

  16. System optimization of gasdynamic lasers, computer program user's manual

    NASA Technical Reports Server (NTRS)

    Otten, L. J., III; Saunders, R. C., III; Morris, S. J.

    1978-01-01

    The user's manual for a computer program that performs system optimization of gasdynamic lasers is provided. Detailed input/output formats are CDC 7600/6600 computers using a dialect of FORTRAN. Sample input/output data are provided to verify correct program operation along with a program listing.

  17. Study the encountering simulation system for laser fuze based on intensity attenuation and fiber delay

    NASA Astrophysics Data System (ADS)

    Chen, Huimin; Li, Ping; Guo, Weirong

    2010-10-01

    Laser fuze is a kind of proximity fuze developed with laser technology. A encountering simulation system for laser fuze based on environment simulator and fiber retarder is introduced in this paper. The system can simulate the process for the laser fuze to approach the target quickly, with consideration of changing light path and intensity caused by factors like environment and distance. It can be a reference for the future design of laser fuze.

  18. Ultra-stable clock laser system development towards space applications

    NASA Astrophysics Data System (ADS)

    Świerad, Dariusz; Häfner, Sebastian; Vogt, Stefan; Venon, Bertrand; Holleville, David; Bize, Sébastien; Kulosa, André; Bode, Sebastian; Singh, Yeshpal; Bongs, Kai; Rasel, Ernst Maria; Lodewyck, Jérôme; Le Targat, Rodolphe; Lisdat, Christian; Sterr, Uwe

    2016-09-01

    The increasing performance of optical lattice clocks has made them attractive for scientific applications in space and thus has pushed the development of their components including the interrogation lasers of the clock transitions towards being suitable for space, which amongst others requires making them more power efficient, radiation hardened, smaller, lighter as well as more mechanically stable. Here we present the development towards a space-compatible interrogation laser system for a strontium lattice clock constructed within the Space Optical Clock (SOC2) project where we have concentrated on mechanical rigidity and size. The laser reaches a fractional frequency instability of 7.9 × 10‑16 at 300 ms averaging time. The laser system uses a single extended cavity diode laser that gives enough power for interrogating the atoms, frequency comparison by a frequency comb and diagnostics. It includes fibre link stabilisation to the atomic package and to the comb. The optics module containing the laser has dimensions 60 × 45 × 8 cm3 and the ultra-stable reference cavity used for frequency stabilisation with its vacuum system takes 30 × 30 × 30 cm3. The acceleration sensitivities in three orthogonal directions of the cavity are 3.6 × 10‑10/g, 5.8 × 10‑10/g and 3.1 × 10‑10/g, where g ≈ 9.8 m/s2 is the standard gravitational acceleration.

  19. Ultra-stable clock laser system development towards space applications.

    PubMed

    Świerad, Dariusz; Häfner, Sebastian; Vogt, Stefan; Venon, Bertrand; Holleville, David; Bize, Sébastien; Kulosa, André; Bode, Sebastian; Singh, Yeshpal; Bongs, Kai; Rasel, Ernst Maria; Lodewyck, Jérôme; Le Targat, Rodolphe; Lisdat, Christian; Sterr, Uwe

    2016-09-26

    The increasing performance of optical lattice clocks has made them attractive for scientific applications in space and thus has pushed the development of their components including the interrogation lasers of the clock transitions towards being suitable for space, which amongst others requires making them more power efficient, radiation hardened, smaller, lighter as well as more mechanically stable. Here we present the development towards a space-compatible interrogation laser system for a strontium lattice clock constructed within the Space Optical Clock (SOC2) project where we have concentrated on mechanical rigidity and size. The laser reaches a fractional frequency instability of 7.9 × 10(-16) at 300 ms averaging time. The laser system uses a single extended cavity diode laser that gives enough power for interrogating the atoms, frequency comparison by a frequency comb and diagnostics. It includes fibre link stabilisation to the atomic package and to the comb. The optics module containing the laser has dimensions 60 × 45 × 8 cm(3); and the ultra-stable reference cavity used for frequency stabilisation with its vacuum system takes 30 × 30 × 30 cm(3). The acceleration sensitivities in three orthogonal directions of the cavity are 3.6 × 10(-10)/g, 5.8 × 10(-10)/g and 3.1 × 10(-10)/g, where g ≈ 9.8 m/s(2) is the standard gravitational acceleration.

  20. Ultra-stable clock laser system development towards space applications

    PubMed Central

    Świerad, Dariusz; Häfner, Sebastian; Vogt, Stefan; Venon, Bertrand; Holleville, David; Bize, Sébastien; Kulosa, André; Bode, Sebastian; Singh, Yeshpal; Bongs, Kai; Rasel, Ernst Maria; Lodewyck, Jérôme; Le Targat, Rodolphe; Lisdat, Christian; Sterr, Uwe

    2016-01-01

    The increasing performance of optical lattice clocks has made them attractive for scientific applications in space and thus has pushed the development of their components including the interrogation lasers of the clock transitions towards being suitable for space, which amongst others requires making them more power efficient, radiation hardened, smaller, lighter as well as more mechanically stable. Here we present the development towards a space-compatible interrogation laser system for a strontium lattice clock constructed within the Space Optical Clock (SOC2) project where we have concentrated on mechanical rigidity and size. The laser reaches a fractional frequency instability of 7.9 × 10−16 at 300 ms averaging time. The laser system uses a single extended cavity diode laser that gives enough power for interrogating the atoms, frequency comparison by a frequency comb and diagnostics. It includes fibre link stabilisation to the atomic package and to the comb. The optics module containing the laser has dimensions 60 × 45 × 8 cm3; and the ultra-stable reference cavity used for frequency stabilisation with its vacuum system takes 30 × 30 × 30 cm3. The acceleration sensitivities in three orthogonal directions of the cavity are 3.6 × 10−10/g, 5.8 × 10−10/g and 3.1 × 10−10/g, where g ≈ 9.8 m/s2 is the standard gravitational acceleration. PMID:27667640

  1. Peculiarities of radiation formation in laser systems for remote sensing

    NASA Astrophysics Data System (ADS)

    Panchenko, Yury N.; Andreev, M. V.; Losev, V. F.; Puchikin, A. V.

    2015-02-01

    The study results of a high-quality radiation formation in the UV and IR spectral ranges for using in lidar systems to detect the vapors of nitric oxide and complex molecules, including data radicals, are discussed. The influence of the existing cavity losses on the radiation formation in the dispersion cavity is studied.The development of KrF laser with a broad spectral band adjustment of 247.5-249.5 nm and high energy are presented about. The possibility of pulse formation with duration of 30 ns in CO2 laser is shown.

  2. Femtosecond Synchronization of Laser Systems for the LCLS

    SciTech Connect

    Byrd, John; Doolittle, Lawrence; Huang, Gang; Staples, John; Wilcox, Russell; Arthur, John; Frisch, Josef; White, William; /SLAC

    2012-08-24

    The scientific potential of femtosecond x-ray pulses at linac-driven free-electron lasers such as the Linac Coherent Light Source is tremendous. Time-resolved pump-probe experiments require a measure of the relative arrival time of each x-ray pulse with respect to the experimental pump laser. An optical timing system based on stabilized fiber links has been developed for the LCLS to provide this synchronization. Preliminary results show synchronization of the installed stabilized links at the sub-20-femtosecond level. We present details of the implementation at LCLS and potential for future development.

  3. An amplitude modulated laser system for distance and displacement measurement

    NASA Technical Reports Server (NTRS)

    Rogowski, Robert S.; Heyman, Joseph S.; Holben, Milford S., Jr.

    1986-01-01

    A laser distance and displacement measurement system is being developed to monitor small displacements in large space structures for strain analysis and structural control. The reflected laser beam is focused on a detector and the detected signal is mixed with the reference. Small displacements are indicated by a change in modulation frequency which is adjusted to maintain quadrature between the received signal and the reference signal from the voltage-controlled oscillator in a phase-locked loop. Measurement of absolute distance is accomplished by sweeping the modulation frequency from a quadrature lock point to an adjacent lock point.

  4. Z-Beamlet: a multikilojoule, terawatt-class laser system

    SciTech Connect

    Rambo, Patrick K.; Smith, Ian C.; Porter, John L. Jr.; Hurst, Michael J.; Speas, C. Shane; Adams, Richard G.; Garcia, Antonio J.; Dawson, Ellis; Thurston, Benjamin D.; Wakefield, Colleen; Kellogg, Jeff W.; Slattery, Michael J.; Ives III, Harry C.; Broyles, Robin S.; Caird, John A.; Erlandson, Alvin C.; Murray, James E.; Behrendt, William C.; Neilsen, Norman D.; Narduzzi, Joseph M

    2005-04-20

    A large-aperture (30-cm) kilojoule-class Nd:glass laser system known as Z-Beamlet has been constructed to perform x-ray radiography of high-energy-density science experiments conducted on the Z facility at Sandia National Laboratories, Albuquerque, New Mexico. The laser, operating with typical pulse durations from 0.3 to 1.5 ns, employs a sequence of successively larger multipass amplifiers to achieve up to 3-kJ energy at 1054 nm. Large-aperture frequency conversion and long-distance beam transport can provide on-target energies of up to 1.5 kJ at 527 nm.

  5. Portable Airborne Laser System Measures Forest-Canopy Height

    NASA Technical Reports Server (NTRS)

    Nelson, Ross

    2005-01-01

    (PALS) is a combination of laser ranging, video imaging, positioning, and data-processing subsystems designed for measuring the heights of forest canopies along linear transects from tens to thousands of kilometers long. Unlike prior laser ranging systems designed to serve the same purpose, the PALS is not restricted to use aboard a single aircraft of a specific type: the PALS fits into two large suitcases that can be carried to any convenient location, and the PALS can be installed in almost any local aircraft for hire, thereby making it possible to sample remote forests at relatively low cost. The initial cost and the cost of repairing the PALS are also lower because the PALS hardware consists mostly of commercial off-the-shelf (COTS) units that can easily be replaced in the field. The COTS units include a laser ranging transceiver, a charge-coupled-device camera that images the laser-illuminated targets, a differential Global Positioning System (dGPS) receiver capable of operation within the Wide Area Augmentation System, a video titler, a video cassette recorder (VCR), and a laptop computer equipped with two serial ports. The VCR and computer are powered by batteries; the other units are powered at 12 VDC from the 28-VDC aircraft power system via a low-pass filter and a voltage converter. The dGPS receiver feeds location and time data, at an update rate of 0.5 Hz, to the video titler and the computer. The laser ranging transceiver, operating at a sampling rate of 2 kHz, feeds its serial range and amplitude data stream to the computer. The analog video signal from the CCD camera is fed into the video titler wherein the signal is annotated with position and time information. The titler then forwards the annotated signal to the VCR for recording on 8-mm tapes. The dGPS and laser range and amplitude serial data streams are processed by software that displays the laser trace and the dGPS information as they are fed into the computer, subsamples the laser range and

  6. Ablative Laser Propulsion Using Multi-Layered Material Systems

    NASA Technical Reports Server (NTRS)

    Nehls, Mary; Edwards, David; Gray, Perry; Schneider, T.

    2002-01-01

    Experimental investigations are ongoing to study the force imparted to materials when subjected to laser ablation. When a laser pulse of sufficient energy density impacts a material, a small amount of the material is ablated. A torsion balance is used to measure the momentum produced by the ablation process. The balance consists of a thin metal wire with a rotating pendulum suspended in the middle. The wire is fixed at both ends. Recently, multi-layered material systems were investigated. These multi-layered materials were composed of a transparent front surface and opaque sub surface. The laser pulse penetrates the transparent outer surface with minimum photon loss and vaporizes the underlying opaque layer.

  7. Activity of respiratory system during laser irradiation of brain structures

    NASA Astrophysics Data System (ADS)

    Merkulova, N. A.; Sergeyeva, L. I.

    1984-06-01

    The performance of one of the principal links of the respiratory system, the respiratory center, was studied as a function of the exposure of the medulla oblongata and the sensomotor zone of the cerebral hemisphere cortex to low level laser irradiation in the red wavelength of the spectrum. Experiments were done on white rats under barbital anesthesia. Under such conditions a substantial effect was observed on the activity of the respiratory center. Laser light may display activating or inhibitory influences, in some cases the bilateral symmetry of the activity of the respiratory center is affected indicating deep changes in the integrative mechanism of the functioning of the right and left sides of the hemispheres. The laser beam effect depends on many factors: specific light properties, duration of the exposure, repetition of exposures, initial functional state of the CNS, etc.

  8. Numerical simulations of a diode laser BPH treatment system

    NASA Astrophysics Data System (ADS)

    London, Richard A.; Esch, Victor C.; Papademetriou, Stephanos

    1999-06-01

    Numerical simulations are presented of the laser-tissue interaction of a diode laser system for treating benign prostate hyperplasia. The numerical model includes laser light transport, heat transport, cooling due to blood perfusion, thermal tissue damage, and enthalpy of tissue damage. Comparisons of the stimulation results to clinical data are given. We report that a reasonable variation from a standard set of input data produces heating times which match those measured in the clinical trials. A general trend of decreasing damage volume with increasing heating time is described. We suggest that the patient-to-patient variability seen in the data can be explained by differences in fundamental biophysical properties such as the optical coefficients. Further work is identified, including the measurement and input to the model of several specific data parameters such as optical coefficients, blood perfusion cooling rate, and coagulation rates.

  9. The optimization of laser systems for photodynamic therapy of malignancies

    NASA Astrophysics Data System (ADS)

    Lim, Hyun S.; Lee, Sang Chan; Kim, Ju Ock

    2005-04-01

    In this paper, we optimized the PDT laser system to improve the therapy effects of malignancies. In order to optimizes, the variation of laser output and specific wavelength shift have to reduced. To improved the PDT therapy clincian require the diverse radiation mode which irradiate the tumor surface. Continuous wave mode that general application may causes tissue thermal damage not only to tumor tissue, but also to nomal tissue. Therefore, we suggested new technique for radiation method to improved PDT effects and prevented to the thermal effects for the tissue. In experimental we verified the stability of wavelength, laser output stability and proved the reduced thermal effects to the tissue using the pulse & burst radiation modes in vitro.

  10. Numerical simulations of a diode laser BPH treatment system

    SciTech Connect

    Esch, V; London, R A; Papademetriou, S

    1999-02-23

    Numerical simulations are presented of the laser-tissue interaction of a diode laser system for treating benign prostate hyperplasia. The numerical model includes laser light transport, heat transport, cooling due to blood perfusion, thermal tissue damage, and enthalpy of tissue damage. Comparisons of the simulation results to clinical data are given. We report that a reasonable variation from a standard set of input data produces heating times which match those measured in the clinical trials. A general trend of decreasing damage volume with increasing heating time is described. We suggest that the patient-to- patient variability seen in the data can be explained by differences in fundamental biophysical properties such as the optical coefficients. Further work is identified, including the measurement and input to the model of several specific data parameters such as optical coefficients, blood perfusion cooling rate, and coagulation rates.

  11. Bore-Sight Calibration of Multiple Laser Range Finders for Kinematic 3D Laser Scanning Systems.

    PubMed

    Jung, Jaehoon; Kim, Jeonghyun; Yoon, Sanghyun; Kim, Sangmin; Cho, Hyoungsig; Kim, Changjae; Heo, Joon

    2015-05-04

    The Simultaneous Localization and Mapping (SLAM) technique has been used for autonomous navigation of mobile systems; now, its applications have been extended to 3D data acquisition of indoor environments. In order to reconstruct 3D scenes of indoor space, the kinematic 3D laser scanning system, developed herein, carries three laser range finders (LRFs): one is mounted horizontally for system-position correction and the other two are mounted vertically to collect 3D point-cloud data of the surrounding environment along the system's trajectory. However, the kinematic laser scanning results can be impaired by errors resulting from sensor misalignment. In the present study, the bore-sight calibration of multiple LRF sensors was performed using a specially designed double-deck calibration facility, which is composed of two half-circle-shaped aluminum frames. Moreover, in order to automatically achieve point-to-point correspondences between a scan point and the target center, a V-shaped target was designed as well. The bore-sight calibration parameters were estimated by a constrained least squares method, which iteratively minimizes the weighted sum of squares of residuals while constraining some highly-correlated parameters. The calibration performance was analyzed by means of a correlation matrix. After calibration, the visual inspection of mapped data and residual calculation confirmed the effectiveness of the proposed calibration approach.

  12. Laser heated pedestal growth system commissioning and fiber processing

    NASA Astrophysics Data System (ADS)

    Buric, Michael; Yip, M. J.; Chorpening, Ben; Ohodnicki, Paul

    2016-05-01

    A new Laser Heated Pedestal Growth system was designed and fabricated using various aspects of effective legacy designs for the growth of single-crystal high-temperature-compatible optical fibers. The system is heated by a 100-watt, DC driven, CO2 laser with PID power control. Fiber diameter measurements are performed using a telecentric video system which identifies the molten zone and utilizes edge detection algorithms to report fiber-diameter. Beam shaping components include a beam telescope; along with gold-coated reflaxicon, turning, and parabolic focusing mirrors consistent with similar previous systems. The optical system permits melting of sapphire-feedstock up to 1.5mm in diameter for growth. Details regarding operational characteristics are reviewed and properties of single-crystal sapphire fibers produced by the system are evaluated. Aspects of the control algorithm efficacy will be discussed, along with relevant alternatives. Finally, some new techniques for in-situ processing making use of the laser-heating system are discussed. Ex-situ fiber modification and processing are also examined for improvements in fiber properties.

  13. A Remotely Deployed Laser System for Viewing/Metrology

    SciTech Connect

    Barry, R.E.; Herndon, J.N.; Menon, M.M.; Spampinato, P.T.

    1999-04-25

    A metrology system is being developed for in-vessel inspection of present day experimental, and next generation fusion reactors. It requires accurate measuring capability to verify sub-millimeter alignment of plasma-facing components in the reactor vessel. A metrology system capable of achieving such accuracy for next generation reactors must be compatible with the vessel environment of high gamma radiation, high vacuum, elevated temperature, and magnetic field. This environment requires that the system must be remotely deployed. A coherent, frequency modulated laser radar system that is capable of correcting for environmental vibration meets these requirements. The metrologyhiewing system consists of a compact laser transceiver optics module which is linked through fiber optics to the laser source and imaging units, that are located outside of the harsh environment. The deployment mechanism configured for a next generation reactor was telescopic-mast positioning system. This paper identifies the requirements for the metrology/viewing system having precision ranging and surface mapping capability, and discusses the results of various environmental tests.

  14. Land-Based Mobile Laser Scanning Systems: a Review

    NASA Astrophysics Data System (ADS)

    Puente, I.; González-Jorge, H.; Arias, P.; Armesto, J.

    2011-09-01

    Mobile mapping has been using various photogrammetric techniques for many years. In recent years, there has been an increase in the number of mobile mapping systems using laser scanners available in the market, partially because of the improvement in GNSS/INS performance for direct georeferencing. In this article, some of the most important land-based mobile laser scanning (MLS) systems are reviewed. Firstly, the main characteristics of MLS systems vs. airborne (ALS) and terrestrial laser scanning (TLS) systems are compared. Secondly, a short overview of the mobile mapping technology is also provided so that the reader can fully grasp the complexity and operation of these devices. As we put forward in this paper, a comparison of different systems is briefly carried out regarding specifications provided by the manufacturers. Focuses on the current research are also addressed with emphasis on the practical applications of these systems. Most of them have been utilized for data collection on road infrastructures or building façades. This article shows that MLS technology is nowadays well established and proven, since the demand has grown to the point that there are several systems suppliers offering their products to satisfy this particular market.

  15. Laser system for testing radiation imaging detector circuits

    NASA Astrophysics Data System (ADS)

    Zubrzycka, Weronika; Kasinski, Krzysztof

    2015-09-01

    Performance and functionality of radiation imaging detector circuits in charge and position measurement systems need to meet tight requirements. It is therefore necessary to thoroughly test sensors as well as read-out electronics. The major disadvantages of using radioactive sources or particle beams for testing are high financial expenses and limited accessibility. As an alternative short pulses of well-focused laser beam are often used for preliminary tests. There are number of laser-based devices available on the market, but very often their applicability in this field is limited. This paper describes concept, design and validation of laser system for testing silicon sensor based radiation imaging detector circuits. The emphasis is put on keeping overall costs low while achieving all required goals: mobility, flexible parameters, remote control and possibility of carrying out automated tests. The main part of the developed device is an optical pick-up unit (OPU) used in optical disc drives. The hardware includes FPGA-controlled circuits for laser positioning in 2 dimensions (horizontal and vertical), precision timing (frequency and number) and amplitude (diode current) of short ns-scale (3.2 ns) light pulses. The system is controlled via USB interface by a dedicated LabVIEW-based application enabling full manual or semi-automated test procedures.

  16. Tunable laser diode system for noninvasive blood glucose measurements

    NASA Astrophysics Data System (ADS)

    Olesberg, Jonathon T.; Arnold, Mark A.; Mermelstein, Carmen; Schmitz, Johannes; Wagner, Joachim

    2005-03-01

    Tight control of blood glucose levels has been shown to dramatically reduce the long-term complications of diabetes. Current invasive technology for monitoring glucose levels is effective but underutilized by people with diabetes because of the pain of repeated finger-sticks and the cost of reagent strips. Optical sensing of glucose could potentially allow more frequent monitoring and tighter glucose control for people with diabetes. The key to a successful optical non-invasive measurement of glucose is the collection of an optical spectrum with a very high signal-to-noise-ratio in a spectral region with significant glucose absorption. Unfortunately, the optical throughput of skin is very small due to absorption and scattering. To overcome these difficulties, we have developed a high-brightness tunable laser system for measurements in the 2.0-2.5 μm wavelength range. The system is based on a 2.3 micron wavelength, strained quantum-well laser diode incorporating GaInAsSb wells and AlGaAsSb barrier and cladding layers. Wavelength control is provided by coupling the laser diode to an external cavity that includes an acousto-optic tunable filter. Tuning ranges of greater than 110 nm have been obtained. Because the tunable filter has no moving parts, scans can be completed very quickly, typically in less than 10 ms. We describe the performance of the laser system and its potential for use in a non-invasive glucose sensor.

  17. Backscattering measuring system for optimization of intravenous laser irradiation dose

    NASA Astrophysics Data System (ADS)

    Rusina, Tatyana V.; Popov, V. D.; Melnik, Ivan S.; Dets, Sergiy M.

    1996-11-01

    Intravenous laser blood irradiation as an effective method of biostimulation and physiotherapy becomes a more popular procedure. Optimal irradiation conditions for each patient are needed to be established individually. A fiber optics feedback system combined with conventional intravenous laser irradiation system was developed to control of irradiation process. The system consists of He-Ne laser, fiber optics probe and signal analyzer. Intravenous blood irradiation was performed in 7 healthy volunteers and 19 patients with different diseases. Measurements in vivo were related to in vitro blood irradiation which was performed in the same conditions with force-circulated venous blood. Comparison of temporal variations of backscattered light during all irradiation procedures has shown a strong discrepancy on optical properties of blood in patients with various health disorders since second procedure. The best cure effect was achieved when intensity of backscattered light was constant during at least five minutes. As a result, the optical irradiation does was considered to be equal 20 minutes' exposure of 3 mW He-Ne laser light at the end of fourth procedure.

  18. System Model for MEMS based Laser Ultrasonic Receiver

    NASA Technical Reports Server (NTRS)

    Wilson, William C.

    2002-01-01

    A need has been identified for more advanced nondestructive Evaluation technologies for assuring the integrity of airframe structures, wiring, etc. Laser ultrasonic inspection instruments have been shown to detect flaws in structures. However, these instruments are generally too bulky to be used in the confined spaces that are typical of aerospace vehicles. Microsystems technology is one key to reducing the size of current instruments and enabling increased inspection coverage in areas that were previously inaccessible due to instrument size and weight. This paper investigates the system modeling of a Micro OptoElectroMechanical System (MOEMS) based laser ultrasonic receiver. The system model is constructed in software using MATLAB s dynamical simulator, Simulink. The optical components are modeled using geometrical matrix methods and include some image processing. The system model includes a test bench which simulates input stimuli and models the behavior of the material under test.

  19. MAPM: A coherent dual CO2 laser DIAL system

    NASA Technical Reports Server (NTRS)

    Grant, W. B.; Bogan, J. R.

    1986-01-01

    The Mobile Atmospheric Pollutant Mapping System (MAPM) is a dual CO2 laser DIAL system with heterodyne detection that is being developed for large distance range resolved measurement of organic solvent vapors and aerosol clouds. The components have been chosen to allow measurements to be made to distances of 6 to 7 km in a period of 20 to 30 s. The major components of the system are listed. MAPM is being integrated into a system and will be tested with several organic solvent gases and vapors in a remotely positioned sample chamber and with a free release of ethylene. Experimental results and system performance are discussed.

  20. Covariance analysis of the airborne laser ranging system

    NASA Technical Reports Server (NTRS)

    Englar, T. S., Jr.; Hammond, C. L.; Gibbs, B. P.

    1981-01-01

    The requirements and limitations of employing an airborne laser ranging system for detecting crustal shifts of the Earth within centimeters over a region of approximately 200 by 400 km are presented. The system consists of an aircraft which flies over a grid of ground deployed retroreflectors, making six passes over the grid at two different altitudes. The retroreflector baseline errors are assumed to result from measurement noise, a priori errors on the aircraft and retroreflector positions, tropospheric refraction, and sensor biases.

  1. Bore-Sight Calibration of Multiple Laser Range Finders for Kinematic 3D Laser Scanning Systems

    PubMed Central

    Jung, Jaehoon; Kim, Jeonghyun; Yoon, Sanghyun; Kim, Sangmin; Cho, Hyoungsig; Kim, Changjae; Heo, Joon

    2015-01-01

    The Simultaneous Localization and Mapping (SLAM) technique has been used for autonomous navigation of mobile systems; now, its applications have been extended to 3D data acquisition of indoor environments. In order to reconstruct 3D scenes of indoor space, the kinematic 3D laser scanning system, developed herein, carries three laser range finders (LRFs): one is mounted horizontally for system-position correction and the other two are mounted vertically to collect 3D point-cloud data of the surrounding environment along the system’s trajectory. However, the kinematic laser scanning results can be impaired by errors resulting from sensor misalignment. In the present study, the bore-sight calibration of multiple LRF sensors was performed using a specially designed double-deck calibration facility, which is composed of two half-circle-shaped aluminum frames. Moreover, in order to automatically achieve point-to-point correspondences between a scan point and the target center, a V-shaped target was designed as well. The bore-sight calibration parameters were estimated by a constrained least squares method, which iteratively minimizes the weighted sum of squares of residuals while constraining some highly-correlated parameters. The calibration performance was analyzed by means of a correlation matrix. After calibration, the visual inspection of mapped data and residual calculation confirmed the effectiveness of the proposed calibration approach. PMID:25946627

  2. Control system for high power laser drilling workover and completion unit

    DOEpatents

    Zediker, Mark S; Makki, Siamak; Faircloth, Brian O; DeWitt, Ronald A; Allen, Erik C; Underwood, Lance D

    2015-05-12

    A control and monitoring system controls and monitors a high power laser system for performing high power laser operations. The control and monitoring system is configured to perform high power laser operation on, and in, remote and difficult to access locations.

  3. Development and testing of a laser-based decontamination system

    NASA Astrophysics Data System (ADS)

    Anthofer, A.; Lippmann, W.; Hurtado, A.

    2013-06-01

    Decontamination of radioactive concrete surfaces may be necessary during operation or decommissioning of nuclear power plants. Usually only the upper layers of the concrete structure are contaminated and are removed using labor-intensive mechanical milling processes. Production of a large amount of dust, which can lead to secondary contamination, is inherent to these processes. Improvements in high-energy laser technology have now made it possible for laser radiation to be used in decontamination technologies for the removal of concrete layers. A decontamination unit comprising a diode laser with a beam power of 10 kW in continuous wave (CW) mode in combination with an autonomous manipulator was developed for use in nuclear plants. The laser beam melts the concrete surface to a depth of approximately 5 mm. Compressed air jets then detach the molten layer from the concrete surface and convey it to a suction system, with which it is transported to a collection container. Most of the radionuclides are trapped in the solidifying melt particles, which form an extremely stable effluent well suited to long-term storage. A relatively small amount of dust is generated in the process. Because there is no backlash during energy transfer, the laser device carrier can be designed to be lightweight and flexible. A specially developed manipulator that can move freely along walls and ceilings by means of suction plates is used for the carrier unit. This results in short setup times for preparing for use of the device and minimal personnel exposure to the radiation. Experiments were conducted on a concrete wall to demonstrate the functionality of the overall system in realistic conditions. An optimal ablation rate of 2.16 m²/h at an ablation depth of 1-5 mm was achieved. Today's commercially available diode lasers with powers higher than 50 kW enable ablation rates of >10 m²/h to be achieved and hence make these laser-based systems competitive alternatives to mechanical systems.

  4. Automatic control system design of laser interferometer

    NASA Astrophysics Data System (ADS)

    Lu, Qingjie; Li, Chunjie; Sun, Hao; Ren, Shaohua; Han, Sen

    2015-10-01

    There are a lot of shortcomings with traditional optical adjustment in interferometry, such as low accuracy, time-consuming, labor-intensive, uncontrollability, and bad repetitiveness, so we treat the problem by using wireless remote control system. Comparing to the traditional method, the effect of vibration and air turbulence will be avoided. In addition the system has some peculiarities of low cost, high reliability and easy operation etc. Furthermore, the switching between two charge coupled devices (CCDs) can be easily achieved with this wireless remote control system, which is used to collect different images. The wireless transmission is achieved by using Radio Frequency (RF) module and programming the controller, pulse width modulation (PWM) of direct current (DC) motor, real-time switching of relay and high-accuracy displacement control of FAULHABER motor are available. The results of verification test show that the control system has good stability with less than 5% packet loss rate, high control accuracy and millisecond response speed.

  5. Physico-technical background of metal vapor laser systems and their application in oncology

    NASA Astrophysics Data System (ADS)

    Armichev, A. V.; Ivanov, Andrei V.; Kazaryan, Mishik A.

    1996-01-01

    Some results of the copper and gold vapor lasers and of helium-cadmium lasers used in medical practice are presented. The most in medical use copper vapor laser is commonly applied for low-intensity laser therapy and endoscopic surgery. A universal capability of dye lasers oscillating in 600 - 670 red region for excitation of the preparates used in photodynamic therapy is demonstrated. The copper vapor lasers are shown also to effectively coagulate pre- tumor neoplasms. A new method of laser beams shaping fitted to tumor configuration basing on quantum optical systems including image brightness amplifiers is described. Variability of the irradiating beam contrast is displayed, including the contrast inversion. Possibilities of the copper vapor lasers use for tumors drugless phototherapy and the two-step and two-stage methods of the photodynamic therapy are discussed. Some Russian medical systems based on the copper vapor lasers and dye lasers pumped by them are specified in parameters.

  6. Effect of annealing on the laser induced damage of polished and CO2 laser-processed fused silica surfaces

    NASA Astrophysics Data System (ADS)

    Doualle, T.; Gallais, L.; Cormont, P.; Donval, T.; Lamaignère, L.; Rullier, J. L.

    2016-06-01

    We investigate the effect of different heat treatments on the laser-induced damage probabilities of fused silica samples. Isothermal annealing in a furnace is applied, with different temperatures in the range 700-1100 °C and 12 h annealing time, to super-polished fused silica samples. The surface flatness and laser damage probabilities at 3 ns, 351 nm are measured before and after the different annealing procedures. We have found a significant improvement of the initial laser damage probabilities of the silica surface after annealing at 1050 °C for 12 h. A similar study has been conducted on CO2 laser-processed sites on the surface of the samples. Before and after annealing, we have studied the morphology of the sites, the evolution of residual stress, and the laser-induced damage threshold measured at 351 nm, 3 ns. In this case, we observe that the laser damage resistance of the laser created craters can reach the damage level of the bare fused silica surface after the annealing process, with a complete stress relieve. The obtained results are then compared to the case of local annealing process by CO2 laser irradiation during 1 s, and we found similar improvements in both cases. The different results obtained in the study are compared to numerical simulations made with a thermo-mechanical model based on finite-element method that allows the simulation of the isothermal or the local annealing process, the evolution of stress and fictive temperature. The simulation results were found to be very consistent with experimental observations for the stresses evolution after annealing and estimation of the heat affected area during laser-processing based on the density dependence with fictive temperature. Following this work, the temperature for local annealing should reach 1330-1470 °C for an optimized reduction of damage probability and be below the threshold for material removal, whereas furnace annealing should be kept below the annealing point to avoid sample

  7. A laser velocimeter system for large-scale aerodynamic testing

    NASA Technical Reports Server (NTRS)

    Reinath, M. S.; Orloff, K. L.; Snyder, P. K.

    1984-01-01

    A unique laser velocimeter was developed that is capable of sensing two orthogonal velocity components from a variable remote distance of 2.6 to 10 m for use in the 40- by 80-Foot and 80- by 120-Foot Wind Tunnels and the Outdoor Aerodynamic Research Facility at Ames Research Center. The system hardware, positioning instrumentation, and data acquisition equipment are described in detail; system capabilities and limitations are discussed; and expressions for systematic and statistical accuracy are developed. Direct and coupled laboratory measurements taken with the system are compared with measurements taken with a laser velocimeter of higher spatial resolution, and sample data taken in the open circuit exhaust flow of a 1/50-scale model of the 80- by 120-Foot Wind Tunnel are presented.

  8. Holographic optical system for aberration corrections in laser Doppler velocimetry

    NASA Technical Reports Server (NTRS)

    Kim, R. C.; Case, S. K.; Schock, H. J.

    1985-01-01

    An optical system containing multifaceted holographic optical elements (HOEs) has been developed to correct for aberrations introduced by nonflat windows in laser Doppler velocimetry. The multifacet aberration correction approach makes it possible to record on one plate many sets of adjacent HOEs that address different measurement volume locations. By using 5-mm-diameter facets, it is practical to place 10-20 sets of holograms on one 10 x 12.5-cm plate, so that the procedure of moving the entire optical system to examine different locations may not be necessary. The holograms are recorded in dichromated gelatin and therefore are nonabsorptive and suitable for use with high-power argon laser beams. Low f-number optics coupled with a 90-percent efficient distortion-correcting hologram in the collection side of the system yield high optical efficiency.

  9. Tuning and scanning control system for high resolution alexandrite lasers

    NASA Technical Reports Server (NTRS)

    Smith, James C.; Schwemmer, Geary K.

    1988-01-01

    An alexandrite laser is spectrally narrowed and tuned by the use of three optical elements. Each element provides a successively higher degree of spectral resolution. The digitally controlled tuning and scanning control servo system simultaneously positions all three optical elements to provide continuous high resolution laser spectral tuning. The user may select manual, single, or continuous modes of automated scanning of ranges up to 3.00/cm and at scan rates up to 3.85/cm/min. Scanning over an extended range of up to 9.999/cm may be achieved if the highest resolution optic is removed from the system. The control system is also capable of being remotely operated by another computer or controller via standard RS-232 serial data link.

  10. Pulsed laser linescanner for a backscatter absorption gas imaging system

    DOEpatents

    Kulp, Thomas J.; Reichardt, Thomas A.; Schmitt, Randal L.; Bambha, Ray P.

    2004-02-10

    An active (laser-illuminated) imaging system is described that is suitable for use in backscatter absorption gas imaging (BAGI). A BAGI imager operates by imaging a scene as it is illuminated with radiation that is absorbed by the gas to be detected. Gases become "visible" in the image when they attenuate the illumination creating a shadow in the image. This disclosure describes a BAGI imager that operates in a linescanned manner using a high repetition rate pulsed laser as its illumination source. The format of this system allows differential imaging, in which the scene is illuminated with light at least 2 wavelengths--one or more absorbed by the gas and one or more not absorbed. The system is designed to accomplish imaging in a manner that is insensitive to motion of the camera, so that it can be held in the hand of an operator or operated from a moving vehicle.

  11. Laser interferometric system for six-axis motion measurement

    SciTech Connect

    Zhang Zhipeng; Menq, C.-H.

    2007-08-15

    This article presents the development of a precision laser interferometric system, which is designed to achieve six-axis motion measurement for real-time applications. By combining the advantage of the interferometer with a retroreflector and that of the interferometer with a plane mirror reflector, the system is capable of simultaneously measuring large transverse motions along and large rotational motions about three orthogonal axes. Based on optical path analysis along with the designed kinematics of the system, a closed form relationship between the six-axis motion parameters of the object being measured and the readings of the six laser interferometers is established. It can be employed as a real-time motion sensor for various six-axis motion control stages. A prototype is implemented and integrated with a six-axis magnetic levitation stage to illustrate its resolution and measurement range.

  12. Use of a novel tunable solid state disk laser as a diagnostic system for laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Paa, Wolfgang; Triebel, Wolfgang

    2004-09-01

    An all solid state disk laser system-named "Advanced Disk Laser (ADL)" -particularly tailored for laser induced fluorescence (LIF) in combustion processes is presented. The system currently under development comprises an Yb:YAG-seedlaser and a regenerative amplifier. Both are based on the disk laser concept as a new laser architecture. This allows a tunable, compact, efficient diode pumped solid state laser (DPSSL) system with repetition rates in the kHz region. After frequency conversion to the UV-spectral region via third and fourth harmonics generation, this laser-due to its unique properties such as single-frequency operation, wavelength tuneability and excellent beam profile-is well suited for excitation of small molecules such as formaldehyde, OH, NO or O2, which are characteristic for combustion processes. Using the method of planar laser induced fluorescence (PLIF) we observed concentration distributions of formaldehyde in cool and hot flames of a specially designed diethyl-ether burner. The images recorded with 1 kHz repetition rate allow visualizing the distribution of formaldehyde on a 1 ms time scale. This demonstrates for the first time the usability of this novel laser for LIF measurements and is the first step towards integration of the ADL into capsules for drop towers and the international space station.

  13. The injection laser system on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Bowers, Mark; Burkhart, Scott; Cohen, Simon; Erbert, Gaylen; Heebner, John; Hermann, Mark; Jedlovec, Don

    2007-02-01

    The National Ignition Facility (NIF) is currently the largest and most energetic laser system in the world. The main amplifiers are driven by the Injection Laser System comprised of the master oscillators, optical preamplifiers, temporal pulse shaping and spatial beam formatting elements and injection diagnostics. Starting with two fiber oscillators separated by up to a few angstroms, the pulse is phase modulated to suppress SBS and enhance spatial smoothing, amplified, split into 48 individual fibers, and then temporally shaped by an arbitrary waveform generator. Residual amplitude modulation induced in the preamplifiers from the phase modulation is also pre-compensated in the fiber portion of the system before it is injected into the 48 pre-amplifier modules (PAMs). Each of the PAMs amplifies the light from the 1 nJ fiber injection up to the multi-joule level in two stages. Between the two stages the pre-pulse is suppressed by 60 dB and the beam is spatially formatted to a square aperture with pre-compensation for the nonuniform gain profile of the main laser. The input sensor package is used to align the output of each PAM to the main laser and acquire energy, power, and spatial profiles for all shots. The beam transport sections split the beam from each PAM into four main laser beams (with optical isolation) forming the 192 beams of the NIF. Optical, electrical, and mechanical design considerations for long term reliability and availability will be discussed. Work performed under the auspices of the U. S. Department of Energy under contract W-7405-Eng-48.

  14. Geoscience Laser Altimeter System (GLAS) for the ICESat Mission

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Sun, Xiaoli; Ketchum, Eleanor A.; Millar, Pamela S.; Riris, Haris

    2002-01-01

    The Geoscience Laser Altimeter System (GLAS) is a new generation lidar and is the primary science payload for NASA's ICESat Mission. The GLAS design combines a 10 cm precision surface lidar with a sensitive dual wavelength cloud and aerosol lidar. GLAS will precisely measure the heights of the Earth's polar ice sheets, establish a grid of accurate height profiles of the Earth's land topography, and profile the vertical distribution of clouds and aerosols on a global scale. GLAS will be integrated onto a small spacecraft built by Ball Aerospace, and will be launched into a polar orbit with a 590-630 km altitude at an inclination of 94 degrees. ICESat is is currently planned to launch in winter 2002/03 and GLAS is designed to operate continuously in space for a minimum of 3 years. GLAS will measure the vertical distance from orbit to the Earth's surface with pulses from a ND:YAG laser at a 40 Hz rate. Each 6 nsec wide 1064 nm laser pulse is used to produce a single range measurement. On the surface, the laser footprints have 66 m diameter and approx. 170 m center-center spacings. The GLAS receiver uses a I m diameter telescope to detect laser backscatter and a Si APD to detect the 1064 nm signals. The detector's output is sampled by a digital ranging receiver, which records each transmitted pulse and surface echo waveform with 1 nsec (15 cm) resolution. Each echo pulse is digitized and is reported to ground with a record length of from 200 to 544 samples, depending on the spacecraft's location . The GLAS location and epoch times are measured by a precision GPS receiver carried on the ICESat spacecraft. Initial processing of the echo waveforms within GLAS permits discrimination between cloud and surface echoes for selecting appropriate waveform samples. This selection is guided by an on-board DEM which is used to set the boundaries for the echo pulse search algorithm. Subsequent ground-based echo pulse analysis, along with GPS-based clock frequency estimates, permit

  15. Controlling chaos in some laser systems via variable coupling and feedback time delays

    NASA Astrophysics Data System (ADS)

    Shahverdiev, E. M.

    2016-09-01

    We study numerically a system of two lasers cross-coupled optoelectronically with a time delay where the output intensity of each laser modulates the pump current of the other laser. We demonstrate control of chaos via variable coupling time delay by converting the laser intensity chaos to the steady-state. We also show that wavelength chaos in an electrically tunable distributed Bragg reflector (DBR) laser diode with a feedback loop that can be controlled via variable feedback time delay.

  16. A highly efficient, compact Yb:KYW laser for mobile precision systems

    SciTech Connect

    Kuznetsov, S A; Pivtsov, V S

    2014-05-30

    We have developed a promising scheme of a multimodediode-pumped ytterbium laser. The Yb:KYW laser in the cw regime demonstrates record-high differential (40%) and total optical (35%) efficiencies. Mode locking is realised, which allows the scheme to be used for the development of compact laser systems, such as mobile femtosecond precision synthesisers. The peculiarities of the laser operation and ways of further improving its efficiency are discussed. (lasers)

  17. Nova laser assurance-management system

    SciTech Connect

    Levy, A.J.

    1983-07-18

    In a well managed project, Quality Assurance is an integral part of the management activities performed on a daily basis. Management assures successful performance within budget and on schedule by using all the good business, scientific, engineering, quality assurance, and safety practices available. Quality assurance and safety practices employed on Nova are put in perspective by integrating them into the overall function of good project management. The Nova assurance management system was developed using the quality assurance (QA) approach first implemented at LLNL in early 1978. The LLNL QA program is described as an introduction to the Nova assurance management system. The Nova system is described pictorially through the Nova configuration, subsystems and major components, interjecting the QA techniques which are being pragmatically used to assure the successful completion of the project.

  18. System and Method for Generating a Frequency Modulated Linear Laser Waveform

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego F. (Inventor); Petway, Larry B. (Inventor); Amzajerdian, Farzin (Inventor); Barnes, Bruce W. (Inventor); Lockard, George E. (Inventor); Hines, Glenn D. (Inventor)

    2014-01-01

    A system for generating a frequency modulated linear laser waveform includes a single frequency laser generator to produce a laser output signal. An electro-optical modulator modulates the frequency of the laser output signal to define a linear triangular waveform. An optical circulator passes the linear triangular waveform to a band-pass optical filter to filter out harmonic frequencies created in the waveform during modulation of the laser output signal, to define a pure filtered modulated waveform having a very narrow bandwidth. The optical circulator receives the pure filtered modulated laser waveform and transmits the modulated laser waveform to a target.

  19. Compact beam transport system for free-electron lasers driven by a laser plasma accelerator

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Zhang, Tong; Wang, Dong; Huang, Zhirong

    2017-02-01

    Utilizing laser-driven plasma accelerators (LPAs) as a high-quality electron beam source is a promising approach to significantly downsize the x-ray free-electron laser (XFEL) facility. A multi-GeV LPA beam can be generated in several-centimeter acceleration distance, with a high peak current and a low transverse emittance, which will considerably benefit a compact FEL design. However, the large initial angular divergence and energy spread make it challenging to transport the beam and realize FEL radiation. In this paper, a novel design of beam transport system is proposed to maintain the superior features of the LPA beam and a transverse gradient undulator (TGU) is also adopted as an effective energy spread compensator to generate high-brilliance FEL radiation. Theoretical analysis and numerical simulations are presented based on a demonstration experiment with an electron energy of 380 MeV and a radiation wavelength of 30 nm.

  20. Comparison of different laser systems in the treatment of hypertrophic and atrophic scars and keloids

    NASA Astrophysics Data System (ADS)

    Scharschmidt, D.; Algermissen, Bernd; Willms-Jones, J.-C.; Philipp, Carsten M.; Berlien, Hans-Peter

    1997-12-01

    Different laser systems and techniques are used for the treatment of hypertrophic scars, keloids and acne scars. Significant criteria in selecting a suitable laser system are the scar's vascularization, age and diameter. Flashlamp- pumped dye-lasers, CO2-lasers with scanner, Argon and Nd:YAG-lasers are used. Telangiectatic scars respond well to argon lasers, erythematous scars and keloids to dye-laser treatment. Using interstitial Nd:YAG-laser vaporization, scars with a cross-section over 1 cm can generally be reduced. For the treatment of atrophic and acne scars good cosmetic results are achieved with a CO2-laser/scanner system, which allows a precise ablation of the upper dermis with low risk of side-effects.

  1. The Geoscience Laser Altimetry/Ranging System (GLARS)

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.; Degnan, J. J.; Bufton, J. L.; Garvin, J. B.; Abshire, J. B.

    1986-01-01

    The Geoscience Laser Altimetry Ranging System (GLARS) is a highly precise distance measurement system to be used for making extremely accurate geodetic observations from a space platform. It combines the attributes of a pointable laser ranging system making observations to cube corner retroreflectors placed on the ground with those of a nadir looking laser altimeter making height observations to ground, ice sheet, and oceanic surfaces. In the ranging mode, centimeter-level precise baseline and station coordinate determinations will be made on grids consisting of 100 to 200 targets separated by distances from a few tens of kilometers to about 1000 km. These measurements will be used for studies of seismic zone crustal deformations and tectonic plate motions. Ranging measurements will also be made to a coarser, but globally distributed array of retroreflectors for both precise geodetic and orbit determination applications. In the altimetric mode, relative height determinations will be obtained with approximately decimeter vertical precision and 70 to 100 meter horizontal resolution. The height data will be used to study surface topography and roughness, ice sheet and lava flow thickness, and ocean dynamics. Waveform digitization will provide a measure of the vertical extent of topography within each footprint. The planned Earth Observing System is an attractive candidate platform for GLARS since the GLAR data can be used both for direct analyses and for highly precise orbit determination needed in the reduction of data from other sensors on the multi-instrument platform. (1064, 532, and 355 nm)Nd:YAG laser meets the performance specifications for the system.

  2. Microfluidics-based laser cell-micropatterning system.

    PubMed

    Erdman, Nick; Schmidt, Lucas; Qin, Wan; Yang, Xiaoqi; Lin, Yongliang; DeSilva, Mauris N; Gao, Bruce Z

    2014-09-01

    The ability to place individual cells into an engineered microenvironment in a cell-culture model is critical for the study of in vivo relevant cell-cell and cell-extracellular matrix interactions. Microfluidics provides a high-throughput modality to inject various cell types into a microenvironment. Laser guided systems provide the high spatial and temporal resolution necessary for single-cell micropatterning. Combining these two techniques, the authors designed, constructed, tested and evaluated (1) a novel removable microfluidics-based cell-delivery biochip and (2) a combined system that uses the novel biochip coupled with a laser guided cell-micropatterning system to place individual cells into both two-dimensional (2D) and three-dimensional (3D) arrays. Cell-suspensions of chick forebrain neurons and glial cells were loaded into their respective inlet reservoirs and traversed the microfluidic channels until reaching the outlet ports. Individual cells were trapped and guided from the outlet of a microfluidic channel to a target site on the cell-culture substrate. At the target site, 2D and 3D pattern arrays were constructed with micron-level accuracy. Single-cell manipulation was accomplished at a rate of 150 μm s(-1) in the radial plane and 50 μm s(-1) in the axial direction of the laser beam. Results demonstrated that a single-cell can typically be patterned in 20-30 s, and that highly accurate and reproducible cellular arrays and systems can be achieved through coupling the microfluidics-based cell-delivery biochip with the laser guided system.

  3. Analysis of measurements for solid state laser remote lidar system

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin

    1995-01-01

    The merits of using lidar systems for remote measurements of various atmospheric processes such as wind, turbulence, moisture, and aerosol concentration are widely recognized. Although the lidar technology has progressed considerably over the past two decades, significant research particularly in the area of solid state lidars remains to be conducted in order to fully exploit this technology. The work performed by the UAH (University of Alabama in Huntsville) personnel under this Delivery Order concentrated on analyses of measurements required in support of solid state laser remote sensing lidar systems which are to be designed, deployed, and used to measure atmospheric processes and constituents. UAH personnel has studied and recommended to NASA/MSFC the requirements of the optical systems needed to characterize the detection devices suitable for solid state wavelengths and to evaluate various heterodyne detection schemes. The 2-micron solid state laser technology was investigated and several preliminary laser designs were developed and their performance for remote sensing of atmospheric winds and clouds from a spaceborne platform were specified. In addition to the laser source and the detector, the other critical technologies necessary for global wind measurements by a spaceborne solid state coherent lidar systems were identified to be developed and demonstrated. As part of this work, an analysis was performed to determine the atmospheric wind velocity estimation accuracy using the line-of-sight measurements of a scanning coherent lidar. Under this delivery order, a computer database of materials related to the theory, development, testing, and operation of lidar systems was developed to serve as a source of information for lidar research and development.

  4. Microfluidics-Based Laser Guided Cell-Micropatterning System

    PubMed Central

    Erdman, Nick; Schmidt, Lucas; Qin, Wan; Yang, Xiaoqi; Lin, Yongliang; DeSilva, Mauris N; Gao, Bruce Z.

    2014-01-01

    The ability to place individual cells into an engineered microenvironment in a cell-culture model is critical for the study of in vivo-relevant cell-cell and cell-extracellular matrix interactions. Microfluidics provides a high-throughput modality to inject various cell types into a microenvironment. Laser guided systems provide the high spatial and temporal resolution necessary for single-cell micropatterning. Combining these two techniques, the authors designed, constructed, tested, and evaluated 1) a novel removable microfluidics-based cell-delivery biochip and 2) a combined system that uses the novel biochip coupled with a laser guided cell-micropatterning system to place individual cells into both 2D and 3D arrays. Cell-suspensions of chick forebrain neurons and glial cells were loaded into their respective inlet reservoirs and traversed the microfluidic channels until reaching the outlet ports. Individual cells were trapped and guided from the outlet of a microfluidic channel to a target site on the cell-culture substrate. At the target site, 2D and 3D pattern arrays were constructed with micron-level accuracy. Single-cell manipulation was accomplished at a rate of 150 μm/s in the radial plane and 50 μm/s in the axial direction of the laser beam. Results demonstrated that a single-cell can typically be patterned in 20-30 seconds, and that highly accurate and reproducible cellular arrays and systems can be achieved through coupling the microfluidics-based cell-delivery biochip with the laser guided system. PMID:25190714

  5. System for obtaining smooth laser beams where intensity variations are reduced by spectral dispersion of the laser light (SSD)

    DOEpatents

    Skupsky, Stanley; Kessler, Terrance J.; Short, Robert W.; Craxton, Stephen; Letzring, Samuel A.; Soures, John

    1991-01-01

    In an SSD (smoothing by spectral dispersion) system which reduces the time-averaged spatial variations in intensity of the laser light to provide uniform illumination of a laser fusion target, an electro-optic phase modulator through which a laser beam passes produces a broadband output beam by imposing a frequency modulated bandwidth on the laser beam. A grating provides spatial and angular spectral dispersion of the beam. Due to the phase modulation, the frequencies ("colors") cycle across the beam. The dispersed beam may be amplified and frequency converted (e.g., tripled) in a plurality of beam lines. A distributed phase plate (DPP) in each line is irradiated by the spectrally dispersed beam and the beam is focused on the target where a smooth (uniform intensity) pattern is produced. The color cycling enhances smoothing and the use of a frequency modulated laser pulse prevents the formation of high intensity spikes which could damage the laser medium in the power amplifiers.

  6. Development of High Power Lasers for Materials Interactions

    SciTech Connect

    Hackel, L A

    2003-04-11

    The Lawrence Livermore National Laboratory (LLNL) has a long history of developing high power lasers for use in basic science and applications. The Laser Science and Technology Program (LS&T) at LLNL supports advanced lasers and optics development both for the National Ignition Facility (NIF) as well as for high power lasers and optics technology for a broader range of government, military and industrial applications. The NIF laser is currently under construction with the first of the 192 beamlines being activated. When finished NIF will have an output energy of 2 MJ at 351 nm. This system will be used for studies of high energy density physics, equation of state and inertial confinement fusion. It is now generally acknowledged that the future of laser missile defense lies with solid state lasers. The leading laser technology for theater missile defense is under development within the LS&T and funded by the US Army SMDC. This high average power technology is based on a solid state laser operated in a heat capacity mode. In the concept the heat producing lasing cycle is separated in time from the cooling cycle thus reducing thermal gradients and allowing significantly greater average output power. Under the current program, an LLNL developed laser has achieved a record setting 13 kW of average power in 20 second duration bursts. We have also performed target lethality experiments showing a previously unrecognized advantage of a pulsed laser format. The LLNL work is now focused on achieving improved output beam quality and in developing a 100 kW output with diode pumping of a large aperture crystal gain medium on a compact mobile platform. The Short Pulse Laser Group of LS&T has been developing high power short pulse laser systems for a number of applications. Of great importance is petawatt (10{sup 12} Watt) and greater power output to support experiments on the NIF. We are developing a system of 5 M class output and 5 to 10 ps pulse duration for generating intense

  7. Receiver design, performance analysis, and evaluation for space-borne laser altimeters and space-to-space laser ranging systems

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic M.; Sun, Xiaoli; Field, Christopher T.

    1994-01-01

    Accomplishments in the following areas of research are presented: receiver performance study of spaceborne laser altimeters and cloud and aerosol lidars; receiver performance analysis for space-to-space laser ranging systems; and receiver performance study for the Mars Environmental Survey (MESUR).

  8. Laser fresnel distance measuring system and method

    NASA Technical Reports Server (NTRS)

    Campbell, Jonathan W. (Inventor); Lehner, David L. (Inventor); Smalley, Larry L. (Inventor); Smith, legal representative, Molly C. (Inventor); Sanders, Alvin J. (Inventor); Earl, Dennis Duncan (Inventor); Allison, Stephen W. (Inventor); Smith, Kelly L. (Inventor)

    2008-01-01

    A method and system for determining range to a target are provided. A beam of electromagnetic energy is transmitted through an aperture in an opaque screen such that a portion of the beam passes through the aperture to generate a region of diffraction that varies as a function of distance from the aperture. An imaging system is focused on a target plane in the region of diffraction with the generated image being compared to known diffraction patterns. Each known diffraction pattern has a unique value associated therewith that is indicative of a distance from the aperture. A match between the generated image and at least one of the known diffraction patterns is indicative of a distance between the aperture and target plane.

  9. Laser Gyro Attitude Control System Feasibility Study.

    DTIC Science & Technology

    1987-04-24

    GYROS (Distinguishable by method used to circumvent lock-in phenomenon) M ECHANICAL DITHER ,. MAGNETIC MIRROR DILAG (MULTI-OSCILLATOR) Figure 1...by a multiple transit of a light beam within a closed optical cavity (a three- mirror system). The beam traverses the cavity continuously; after each...circulation a small fraction of the beam intensity is output at one of the mirrors . Each transit incurs a phase % %0 ? % o I" us ol *..~% % %~*,~*)*f

  10. Aberrations and focusability in large solid-state-laser systems

    SciTech Connect

    Simmons, W.W.

    1981-01-01

    Solid state lasers for fusion experiments must reliably deliver maximum power to small (approximately .5 mm) targets from stand-off focal distances of 1 m or more. This requirement places stringent limits upon the optical quality of the several major components - amplifiers, Faraday isolators, spatial filters - in each amplifier train. Residual static aberrations in optical components are transferred to the beam as it traverses the optical amplifier chain. Although individual components are typically less than lambda/20 for components less than 10 cm clear aperture; and less than lambda/10 for components less than 20 cm clear aperture; the large number of such components in optical series results in a wavefront error that may exceed one wave for modern solid state lasers. For pulse operation, the focal spot is additionally broadened by intensity dependent nonlinearities. Specific examples of the performance of large aperture components will be presented within the context of the Argus and Shiva laser systems, which are presently operational at Lawrence Livermore National Laboratory. Design requirements upon the larger aperture Nova laser components, up to 74 cm in clear aperture, will also be discussed; these pose a significant challenge to the optical industry.

  11. Performance Analysis of the Spaceborne Laser Ranging System

    NASA Technical Reports Server (NTRS)

    Kahn, W. D.; Vonbun, F. O.; Smith, D. E.; Englar, T. S.; Gibbs, B. P.

    1979-01-01

    The 'spaceborne laser ranging system' is a proposed short pulse laser on board an orbiting spacecraft. It measures the distances between the spacecraft and many laser retroreflectors (targets) deployed on the earth's surface. The precision of these range measurements was assumed to be about plus or minus 2 cm. These measurements were then used together with the orbital dynamics of the spacecraft to derive the intersite vector between the laser ground targets. The errors associated with this vector were on the order of 1 to 2 cm. The baseline distances determined range from 25 km to 1200 km. By repeating the measurements of the intersite vector, strain and strain rate errors were estimated. The realizable precision for intersite distance determination was estimated to be on the order of 0.5 cm at 300 km and about 1.5 cm at 1200 km. The corresponding inaccuracies for the intersite distances were larger, than is 1 cm and 3.5 cm respectively. The corresponding precision in the vertical direction was 1 cm and 3 cm.

  12. Laser Doppler velocimeter system simulation for sensing aircraft wake vortices

    NASA Technical Reports Server (NTRS)

    Thomson, J. A. L.; Meng, J. C. S.

    1974-01-01

    A hydrodynamic model of aircraft vortex wakes in an irregular wind shear field near the ground is developed and used as a basis for modeling the characteristics of a laser Doppler detection and vortex location system. The trailing vortex sheet and the wind shear are represented by discrete free vortices distributed over a two-dimensional grid. The time dependent hydrodynamic equations are solved by direct numerical integration in the Boussinesq approximation. The ground boundary is simulated by images, and fast Fourier Transform techniques are used to evaluate the vorticity stream function. The atmospheric turbulence was simulated by constructing specific realizations at time equal to zero, assuming that Kolmogoroff's law applies, and that the dissipation rate is constant throughout the flow field. The response of a simulated laser Doppler velocimeter is analyzed by simulating the signal return from the flow field as sensed by a simulation of the optical/electronic system.

  13. Multiwavelength fiber laser for the fiber link monitoring system

    NASA Astrophysics Data System (ADS)

    Peng, Peng-Chun; Lee, Wei-Yun; Wu, Shin-Shian; Hu, Hsuan-Lun

    2013-10-01

    This work proposes a novel fiber link monitoring system that uses a multiwavelength fiber laser for wavelength-division-multiplexed (WDM) passive optical network (PON). The multiwavelength fiber laser is based on an erbium-doped fiber amplifier (EDFA) and a semiconductor optical amplifier (SOA). Experimental results show the feasibility using the system to monitor a fiber link with a high and stable signal-to-noise ratio (SNR) of over 26 dB. The link quality of downstream signals as well as the fiber link on WDM channels can be monitored in real time. Favorable carrier-to-noise ratio (CNR), composite second-order (CSO), and composite triple beat (CTB) performance metrics were obtained for cable television (CATV) signals that were transported through 25 km of standard single-mode fiber (SMF).

  14. Two-Color Laser Speckle Shift Strain Measurement System

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret L.; Krasowski, Michael J.; Oberle, Lawrence G.; Greer, Lawrence C., III; Spina, Daniel; Barranger, John

    1996-01-01

    A two color laser speckle shift strain measurement system based on the technique of Yamaguchi was designed. The dual wavelength light output from an Argon Ion laser was coupled into two separate single-mode optical fibers (patchcords). The output of the patchcords is incident on the test specimen (here a structural fiber). Strain on the fiber, in one direction, is produced using an Instron 4502. Shifting interference patterns or speckle patterns will be detected at real-time rates using 2 CCD cameras with image processing performed by a hardware correlator. Strain detected in fibers with diameters from 21 microns to 143 microns is expected to be resolved to 15 mu epsilon. This system was designed to be compact and robust and does not require surface preparation of the structural fibers.

  15. A laser-based vision system for weld quality inspection.

    PubMed

    Huang, Wei; Kovacevic, Radovan

    2011-01-01

    Welding is a very complex process in which the final weld quality can be affected by many process parameters. In order to inspect the weld quality and detect the presence of various weld defects, different methods and systems are studied and developed. In this paper, a laser-based vision system is developed for non-destructive weld quality inspection. The vision sensor is designed based on the principle of laser triangulation. By processing the images acquired from the vision sensor, the geometrical features of the weld can be obtained. Through the visual analysis of the acquired 3D profiles of the weld, the presences as well as the positions and sizes of the weld defects can be accurately identified and therefore, the non-destructive weld quality inspection can be achieved.

  16. Optics designs and system MTF for laser scanning displays

    NASA Astrophysics Data System (ADS)

    Urey, Hakan; Nestorovic, Ned; Ng, Baldwin S.; Gross, Abraham A.

    1999-07-01

    The Virtual Retinal DisplayTM (VRDTM) technology is a new display technology being developed at Microvision Inc. The displayed image is scanned onto the viewer's retina using low- power red, green, and blue light sources. Microvision's proprietary miniaturized scanner designs make VRD system very well suited for head-mounted displays. In this paper we discuss some of the advantages of the VRD technology, various ocular designs for HMD and other applications, and details of constructing a system MTF budget for laser scanning systems that includes electronics, modulators, scanners, and optics.

  17. Laser system range calculations and the Lambert W function.

    PubMed

    Steinvall, Ove

    2009-02-01

    The knowledge of range performance versus atmospheric transmission, often given by the visibility, is critical for the design, use, and prediction of laser and passive electro-optic systems. I present a solution of the ladar-lidar equation based on Lambert's W function. This solution will reveal the dependence of the maximum range on the system and target parameters for different atmospheric attenuations and will also allow us to take the signal statistics into account by studying the influence on the threshold signal-to-noise ratio. The method is also applicable to many range calculations for passive systems where the atmospheric loss can be approximated by an exponential term.

  18. Laser-optical blade tip clearance measurement system

    NASA Technical Reports Server (NTRS)

    Barranger, J. P.; Ford, M. J.

    1979-01-01

    A laser-optical measurement system was developed to measure single blade tip clearances and average blade tip clearances between a rotor and its gas path seal in rotating component rigs and complete engines. The system is applicable to fan, compressor and turbine blade tip clearance measurements. The engine mounted probe is particularly suitable for operation in the extreme turbine environment. The measurement system consists of an optical subsystem, an electronic subsystem and a computing and graphic terminal. Bench tests and environmental tests were conducted to confirm operation at temperatures, pressures, and vibration levels typically encountered in an operating gas turbine engine.

  19. Ultrashort Laser Pulse Induced Electromagnetic Stress on Biological Macromolecular Systems.

    DTIC Science & Technology

    1979-11-01

    ULTRASHORT LASER PULSE INDUCED ~~~~~ ELECTROMAGNET IC STRESS ON BIOLOGICAL MACROMOLECULAR SYSTEMS Adam P. Bruckner , Ph.D. ( i~iiCJ. Michael ...AFSC, Brooks Air Force Base, Texas. Dr. John Taboada (RZL) was the Laboratory Project Scientjst..in...Charge When U.S. Goverrijie~t drawings...available to the general public , including foreignnations. Thi s technical report has been reviewed and is approved for publ i-cation. OHN TABOADA , Ph.D

  20. Qualification and Issues with Space Flight Laser Systems and Components

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Coyle, D. Barry; Canham, John S.; Leidecker, Henning W.

    2006-01-01

    The art of flight quality solid-state laser development is still relatively young, and much is still unknown regarding the best procedures, components, and packaging required for achieving the maximum possible lifetime and reliability when deployed in the harsh space environment. One of the most important issues is the limited and unstable supply of quality, high power diode arrays with significant technological heritage and market lifetime. Since Spectra Diode Labs Inc. ended their involvement in the pulsed array business in the late 1990's, there has been a flurry of activity from other manufacturers, but little effort focused on flight quality production. This forces NASA, inevitably, to examine the use of commercial parts to enable space flight laser designs. System-level issues such as power cycling, operational derating, duty cycle, and contamination risks to other laser components are some of the more significant unknown, if unquantifiable, parameters that directly effect transmitter reliability. Designs and processes can be formulated for the system and the components (including thorough modeling) to mitigate risk based on the known failures modes as well as lessons learned that GSFC has collected over the past ten years of space flight operation of lasers. In addition, knowledge of the potential failure modes related to the system and the components themselves can allow the qualification testing to be done in an efficient yet, effective manner. Careful test plan development coupled with physics of failure knowledge will enable cost effect qualification of commercial technology. Presented here will be lessons learned from space flight experience, brief synopsis of known potential failure modes, mitigation techniques, and options for testing from the system level to the component level.

  1. Qualification and Issues with Space Flight Laser Systems and Components

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Coyle, D. Barry; Canham, John S.; Leidecker, Henning W.

    2006-01-01

    The art of flight quality solid-state laser development is still relatively young, and much is still unknown regarding the best procedures, components, and packaging required for achieving the maximum possible lifetime and reliability when deployed in the harsh space environment. One of the most important issues is the limited and unstable supply of quality, high power diode arrays with significant technological heritage and market lifetime. Since Spectra Diode Labs Inc. ended their involvement in the pulsed array business in the late 199O's, there has been a flurry of activity from other manufacturers, but little effort focused on flight quality production. This forces NASA, inevitably, to examine the use of commercial parts to enable space flight laser designs. System-level issues such as power cycling, operational derating, duty cycle, and contamination risks to other laser components are some of the more significant unknown, if unquantifiable, parameters that directly effect transmitter reliability. Designs and processes can be formulated for the system and the components (including thorough modeling) to mitigate risk based on the known failures modes as well as lessons learned that GSFC has collected over the past ten years of space flight operation of lasers. In addition, knowledge of the potential failure modes related to the system and the components themselves can allow the qualification testing to be done in an efficient yet, effective manner. Careful test plan development coupled with physics of failure knowledge will enable cost effect qualification of commercial technology. Presented here will be lessons learned from space flight experience, brief synopsis of known potential failure modes, mitigation techniques, and options for testing from the system level to the component level.

  2. Qualification and issues with space flight laser systems and components

    NASA Astrophysics Data System (ADS)

    Ott, Melanie N.; Coyle, D. B.; Canham, John S.; Leidecker, Henning W., Jr.

    2006-02-01

    The art of flight quality solid-state laser development is still relatively young, and much is still unknown regarding the best procedures, components, and packaging required for achieving the maximum possible lifetime and reliability when deployed in the harsh space environment. One of the most important issues is the limited and unstable supply of quality, high power diode arrays with significant technological heritage and market lifetime. Since Spectra Diode Labs Inc. ended their involvement in the pulsed array business in the late 1990's, there has been a flurry of activity from other manufacturers, but little effort focused on flight quality production. This forces NASA, inevitably, to examine the use of commercial parts to enable space flight laser designs. System-level issues such as power cycling, operational derating, duty cycle, and contamination risks to other laser components are some of the more significant unknown, if unquantifiable, parameters that directly effect transmitter reliability. Designs and processes can be formulated for the system and the components (including thorough modeling) to mitigate risk based on the known failures modes as well as lessons learned that GSFC has collected over the past ten years of space flight operation of lasers. In addition, knowledge of the potential failure modes related to the system and the components themselves can allow the qualification testing to be done in an efficient yet, effective manner. Careful test plan development coupled with physics of failure knowledge will enable cost effect qualification of commercial technology. Presented here will be lessons learned from space flight experience, brief synopsis of known potential failure modes, mitigation techniques, and options for testing from the system level to the component level.

  3. Superconducting Magnet System for a Low Temperature Laser Scanning Microscope

    DTIC Science & Technology

    2006-09-22

    Our initial studies with the LTLSM bought with this equipment grant show that the intragrain critical current density crosses over with the...SUBTITLE 5a. CONTRACT NUMBER Superconducting Magnet System for a Low Temperature Laser Scanning Microscope 5b. GRANT NUMBER FA9550-05-1-0425 5c...ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Applied Superconductivity Center 1500 Engineering Drive University of Wisconsin -Madison Room 909

  4. Model JC-1 Laser System for Monitoring Atmospheric Pollution,

    DTIC Science & Technology

    2007-11-02

    differential absorption mode atmospheric pollution laser monitoring system, in which a phase locking technique and single board computer are used for...amplification 1 3. synchronous demodulation 2 4. phase locking amplification 2 5. single board computer 6. function logging Instrument 7. oscillator...were then fed into a DBJ-Z80 single - board computer to undergo a multiple averaging process before going through functional operation, and were logged

  5. Natural lasers and masers in the solar system

    NASA Technical Reports Server (NTRS)

    Mumma, Michael J.

    1993-01-01

    Population inversions have been found in the atmospheres of planets and comets, and amplification has been inferred for several cases. In this paper, I review the molecular systems that exhibit lasing and masing action, review the properties of atmospheres that permit these natural lasers and masers to exist, and give examples of their use as probes of remote regions. One potential future application is the possible communication over interstellar distances at GHz rates.

  6. The evolution of the laser: A systems perspective on science, technology and society

    NASA Astrophysics Data System (ADS)

    Deruiter, Willem

    The evolution of laser technology is addressed, and an attempt is made to correlate this evolution to the macrosociological theory of Juergen Habermas. The economic and social consequences of innovations are evaluated. Different laser applications are described. The evolution of the semiconductor laser is discussed. The evolution of optical telecommunication systems is outlined. The Habermas theory of communicative action, focussing on the theoretical distinction between 'system' and 'lifeworld,' is treated. The modified theory of Habermas is applied to the evolution of the laser. The embedding of a number of laser applications in the social context is discussed: laser isotope separation, compact disc players, and the Strategic Defense Initiative.

  7. Three-dimensional dental cast analyzing system using laser scanning.

    PubMed

    Kuroda, T; Motohashi, N; Tominaga, R; Iwata, K

    1996-10-01

    The purpose of this article is to introduce the outline of our newly developed three-dimensional dental cast analyzing system with laser scanning, and its preliminary clinical applications. The system is composed of a measuring device with a slit-ray laser projector and two sets of coupled charged devised video cameras, an image processing unit, a 16-bit personal computer as a controller, and an engineering workstation as a post processor. The dental cast is projected and scanned with a slit-ray laser beam. The raster coordinates of the target are determined with an image processor. Triangulation is applied to determine the location of each point. Generation of three-dimensional graphics of the dental cast takes approximately 40 minutes. About 90,000 sets of X, Y, Z coordinates are stored in the main memory of the microcomputer. The measurement error is less than 0.05 mm. Besides the conventional linear and angular measurements of the dental cast, we are also able to demonstrate the size of the palatal surface area and the volume of the oral cavity. The advantage of this system is that it facilitates the otherwise complicated and time-consuming mock surgery necessary for treatment planning in orthognathic surgery.

  8. Advanced wavefront measurement and analysis of laser system modeling

    SciTech Connect

    Wolfe, C.R.; Auerback, J.M.

    1994-11-15

    High spatial resolution measurements of the reflected or transmitted wavefronts of large aperture optical components used in high peak power laser systems is now possible. These measurements are produced by phase shifting interferometry. The wavefront data is in the form of 3-D phase maps that reconstruct the wavefront shape. The emphasis of this work is on the characterization of wavefront features in the mid-spatial wavelength range (from 0.1 to 10.0 mm) and has been accomplished for the first time. Wavefront structure from optical components with spatial wavelengths in this range are of concern because their effects in high peak power laser systems. At high peak power, this phase modulation can convert to large magnitude intensity modulation by non-linear processes. This can lead to optical damage. We have developed software to input the measured phase map data into beam propagation codes in order to model this conversion process. We are analyzing this data to: (1) Characterize the wavefront structure produced by current optical components, (2) Refine our understanding of laser system performance, (3) Develop a database from which future optical component specifications can be derived.

  9. Method and system for homogenizing diode laser pump arrays

    DOEpatents

    Bayramian, Andy J

    2013-10-01

    An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.

  10. Method and system for homogenizing diode laser pump arrays

    DOEpatents

    Bayramian, Andrew James

    2016-05-03

    An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.

  11. Laser beam centering and pointing system

    DOEpatents

    Rushford, Michael Charles

    2015-01-13

    An optical instrument aligns an optical beam without the need for physical intervention of the instrument within the apparatus or platforms from which the trajectory of the beam to be ascertained. The alignment apparatus and method enable the desired function to be realized without the placement of physical apertures or sensors directly in the path of the beam through the system whose spatial position and slope is to be sought. An image plane provides the observer with a pair of well-defined images that are indicative of the beam centering and pointing alignment parameters. The optical alignment can be realized without the need for referencing to an external or fixed set of coordinates or fiducials. The instrument can therefore service situations where adverse environments would otherwise prohibit the use of such instruments, including regions of high radiation, high temperature, vacuum and/or cryogenic atmospheres.

  12. Synthesis and analysis of precise spaceborne laser ranging systems, volume 2. [Spacelab payload

    NASA Technical Reports Server (NTRS)

    Paddon, E. A.

    1978-01-01

    The performance capabilities of specific shuttle-based laser ranging systems were evaluated, and interface and support requirements were determined. The preliminary design of a shuttle-borne laser ranging experiment developed as part of the Spacelab program is discussed.

  13. Airborne Laser Systems Testing and Analysis (essals et analyse des systemes laser embarques)

    DTIC Science & Technology

    2010-04-01

    4 EMT-2 Laser Spot Energy Measurement 5-11 Figure 5-5 PILASTER FRCT Target Construction 5-12 Figure 5-6 PILASTER FXDT Target Layout 5-13 Figure 5... energy has been optically collected, obstacle detection/classification is performed through an analog detection of the echoes and two successive analysis ... analysis (i.e., geometry, energy distribution, time analysis ), for the maximum number of pulses (spots) in a sequence, for the PHOENIX NIR camera; and

  14. Synchronization control for ultrafast laser parallel microdrilling system

    NASA Astrophysics Data System (ADS)

    Zhai, Zhongsheng; Kuang, Zheng; Ouyang, Jinlei; Liu, Dun; Perrie, Walter; Edwardson, Stuart P.; Dearden, Geoff

    2014-11-01

    Ultrafast lasers, emitting ultra-short pulses of light, generally of the order of femtoseconds to ten picoseconds, are widely used in micro-processing with the advantage of very little thermal damage. Parallel micro-processing is seen significant developments in laser fabrication, thanking to the spatial light modulator (SLM) which can concert single beam to multiple beams through computer generate holograms (CGHs). However, without synchronization control, on the conditions of changing different holograms or processing on large area beyond scanning galvo's ability, the fabrication will be interrupted constantly for changing holograms and moving the stages. Therefore, synchronization control is very important to improve the convenience and application of parallel micro-processing. A synchronization control method, carried out through two application software: SAMLight (or WaveRunner) and Labview, is presented in this paper. SAMLight is used to control the laser and the scanning galvo to implement microprocessing, and the developed program with Labview is used to control the SLM and motion stages. The synchronization signals, transmitted between the two software, are utilized by a National Instruments (NI) device USB-6008. Using optimal control methods, the synchronized system can easily and automatically accomplish complicated fabrications with minimum time. A multi-drilling application is provided to verify the affectivity of the synchronized control method. It uses multiple annular beams, generated by superimposing multi-beam CGH onto a diffractive axicon CGH, to drill multiple holes at one time, and it can automatically finish different patterns based on synchronization control. This drilling way is an optical trepanning and it avoids huge laser energy waste with attenuation. The multi-beam CGHs, generated by the Grating and Lens algorithm, are different for different patterns. The processing is over 200 times faster than traditional mechanical trepanning

  15. Shielding design for a laser-accelerated proton therapy system.

    PubMed

    Fan, J; Luo, W; Fourkal, E; Lin, T; Li, J; Veltchev, I; Ma, C-M

    2007-07-07

    In this paper, we present the shielding analysis to determine the necessary neutron and photon shielding for a laser-accelerated proton therapy system. Laser-accelerated protons coming out of a solid high-density target have broad energy and angular spectra leading to dose distributions that cannot be directly used for therapeutic applications. A special particle selection and collimation device is needed to generate desired proton beams for energy- and intensity-modulated proton therapy. A great number of unwanted protons and even more electrons as a side-product of laser acceleration have to be stopped by collimation devices and shielding walls, posing a challenge in radiation shielding. Parameters of primary particles resulting from the laser-target interaction have been investigated by particle-in-cell simulations, which predicted energy spectra with 300 MeV maximum energy for protons and 270 MeV for electrons at a laser intensity of 2 x 10(21) W cm(-2). Monte Carlo simulations using FLUKA have been performed to design the collimators and shielding walls inside the treatment gantry, which consist of stainless steel, tungsten, polyethylene and lead. A composite primary collimator was designed to effectively reduce high-energy neutron production since their highly penetrating nature makes shielding very difficult. The necessary shielding for the treatment gantry was carefully studied to meet the criteria of head leakage <0.1% of therapeutic absorbed dose. A layer of polyethylene enclosing the whole particle selection and collimation device was used to shield neutrons and an outer layer of lead was used to reduce photon dose from neutron capture and electron bremsstrahlung. It is shown that the two-layer shielding design with 10-12 cm thick polyethylene and 4 cm thick lead can effectively absorb the unwanted particles to meet the shielding requirements.

  16. Shielding design for a laser-accelerated proton therapy system

    NASA Astrophysics Data System (ADS)

    Fan, J.; Luo, W.; Fourkal, E.; Lin, T.; Li, J.; Veltchev, I.; Ma, C.-M.

    2007-07-01

    In this paper, we present the shielding analysis to determine the necessary neutron and photon shielding for a laser-accelerated proton therapy system. Laser-accelerated protons coming out of a solid high-density target have broad energy and angular spectra leading to dose distributions that cannot be directly used for therapeutic applications. A special particle selection and collimation device is needed to generate desired proton beams for energy- and intensity-modulated proton therapy. A great number of unwanted protons and even more electrons as a side-product of laser acceleration have to be stopped by collimation devices and shielding walls, posing a challenge in radiation shielding. Parameters of primary particles resulting from the laser-target interaction have been investigated by particle-in-cell simulations, which predicted energy spectra with 300 MeV maximum energy for protons and 270 MeV for electrons at a laser intensity of 2 × 1021 W cm-2. Monte Carlo simulations using FLUKA have been performed to design the collimators and shielding walls inside the treatment gantry, which consist of stainless steel, tungsten, polyethylene and lead. A composite primary collimator was designed to effectively reduce high-energy neutron production since their highly penetrating nature makes shielding very difficult. The necessary shielding for the treatment gantry was carefully studied to meet the criteria of head leakage <0.1% of therapeutic absorbed dose. A layer of polyethylene enclosing the whole particle selection and collimation device was used to shield neutrons and an outer layer of lead was used to reduce photon dose from neutron capture and electron bremsstrahlung. It is shown that the two-layer shielding design with 10-12 cm thick polyethylene and 4 cm thick lead can effectively absorb the unwanted particles to meet the shielding requirements.

  17. Sodium laser guide star system at Lawrence Livermore National Laboratory: System description and experimental results

    SciTech Connect

    Avicola, K.; Brase, J.; Morris, J.

    1994-03-02

    The architecture and major system components of the sodium-layer kw guide star system at LLNL will be described, and experimental results reported. The subsystems include the laser system, the beam delivery system including a pulse stretcher and beam pointing control, the beam director, and the telescope with its adaptive-optics package. The laser system is one developed for the Atomic Vapor Laser Isotope Separation (AVLIS) Program. This laser system can be configured in various ways in support of the AVLIS program objectives, and was made available to the guide star program at intermittent times on a non-interference basis. The first light transmitted into the sky was in July of 1992, at a power level of 1. 1 kW. The laser pulse width is about 32 ns, and the pulse repetition rate was 26 kHz for the 1. 1 kW configuration and 13 kHz for a 400 W configuration. The laser linewidth is tailored to match the sodium D{sub 2} absorption line, and the laser system has active control of beam pointing and wavefront quality. Because of the short pulse length the sodium transition is saturated and the laser power is not efficiently utilized. For this reason a pulse stretcher was developed, and the results of this effort will be reported. The beam is delivered via an evacuated pipe from the laser building to the guide star site, a distance of about 100 meters, and then launched vertically. A beam director provides the means to track the sky in the full AO system, but was not used in the experiments reported here. The return signal is collected by a 1/2 meter telescope with the AO package. This telescope is located 5 meters from the km launch tube. Smaller packages for photometry, wavefront measurement, and spot image and motion analysis have been used. Although the unavailability of the AVLIS laser precluded a full AO system demonstration, data supporting feasibility and providing input to the system design for a Lick Observatory AO system was obtained.

  18. Control, Filtering and System Identification for High Energy Lasers and Laser Communications

    DTIC Science & Technology

    2012-01-16

    LASERS AND LASER COMMUNICATIONS 5a. CONTRACT NUMBER I H ENERGY LASER AND LASER COMMUNICATIO S 5b. GRANT NUMBER FA9550-09-1-0542...wavefront prediction are being employed in an Air Force-sponsored SBIR to MZA Associates Corporation , Dayton, OH, for spatial-temporal control in adaptive optics. Point of contact: Dr. Matthew Whiteley, 937-684-4100 x101.

  19. Control electronics for a multi-laser/multi-detector scanning system

    NASA Technical Reports Server (NTRS)

    Kennedy, W.

    1980-01-01

    The Mars Rover Laser Scanning system uses a precision laser pointing mechanism, a photodetector array, and the concept of triangulation to perform three dimensional scene analysis. The system is used for real time terrain sensing and vision. The Multi-Laser/Multi-Detector laser scanning system is controlled by a digital device called the ML/MD controller. A next generation laser scanning system, based on the Level 2 controller, is microprocessor based. The new controller capabilities far exceed those of the ML/MD device. The first draft circuit details and general software structure are presented.

  20. Megahertz pulse-burst alexandrite laser diagnostic systems

    NASA Astrophysics Data System (ADS)

    Luff, Jon David

    Megahertz pulse-burst laser systems coupled with megahertz-rate framing cameras have proven (over the last ten years) to be very robust in imaging of high-speed reacting and nonreacting supersonic flows. These Nd:YAG systems produce 20--30 pulses (at variable rates from 500 kHz to 1 MHz) with 50--100 mJ/pulse (lambda = 1064nm) and have been used with narrow, spectral-linewidth, iodine, atomic filters to image turbulence in supersonic boundary layers with great success (when operating at lambda = 532nm). To extend this pulse-burst capability at other wavelengths (wavelengths outside of the 5--30 GHz tuning range of Nd:YAG: lambda = 1064 nm fundamental, and lambda = 532 nm second harmonic), two unique, tunable, megahertz-rate alexandrite laser systems were designed and built. This dissertation documents these two systems and discusses the potential for tunable, megahertz, pulse-burst systems that have more tuning range than Nd:YAG. These tunable alexandrite systems substantially extend the wavelength range of pulse-burst laser technology, but, to date, have pulse-energy limitations. Tunable from 710 nm to 800 nm (in the fundamental), these lasers provide researchers one laser to reach multiple molecular or atomic resonances with variable pulse-burst pulse separations. The molecular and atomic species of interest in reacting and nonreacting flows are presented in Chapter 1, providing a road-map for the development of these tunable lasers. This dissertation presents the design and development of these systems, including mode control, Herriott cell design for pulse separation, and the megahertz-tuning ringmaster-oscillator. Chapter 2 covers the physics of alexandrite as a solid-state, lamp-pumped, tunable medium and compares it to the tunability of Ti:sapphire. Chapter 3 and 4 present the pulse-burst alexandrite systems. The first system, built in Princeton's Applied Physics group (PAPG) (Chapter 3), produced 1-5 mJ total pulse-packet energy of 20--30 pulses, or