Science.gov

Sample records for 355-nm laser pulses

  1. Lead extraction by selective operation of a nanosecond-pulsed 355nm laser

    NASA Astrophysics Data System (ADS)

    Herzog, Amir; Bogdan, Stefan; Glikson, Michael; Ishaaya, Amiel A.; Love, Charles

    2016-03-01

    Lead extraction (LE) is necessary for patients who are suffering from a related infection, or in opening venous occlusions that prevent the insertion of additional lead. In severe cases of fibrous encapsulation of the lead within a vein, laser-based cardiac LE has become one of the foremost methods of removal. In cases where the laser radiation (typically at 308 nm wavelength) interacts with the vein wall rather than with the fibrotic lesion, severe injury and subsequent bleeding may occur. Selective tissue ablation was previously demonstrated by a laser operating in the UV regime; however, it requires the use of sensitizers (e.g.: tetracycline). In this study, we present a preliminary examination of efficacy and safety aspects in the use of a nanosecond-pulsed solid-state laser radiation, at 355 nm wavelength, guided in a catheter consisting of optical fibers, in LE. Specifically, we demonstrate a correlation between the tissue elasticity and the catheter advancement rate, in ex-vivo experiments. Our results indicate a selectivity property for specific parameters of the laser radiation and catheter design. The selectivity is attributed to differences in the mechanical properties of the fibrotic tissue and a normal vein wall, leading to a different photomechanical response of the tissue's extracellular matrix. Furthermore, we performed successful in-vivo animal trials, providing a basic proof of concept for using the suggested scheme in LE. Selective operation using a 355 nm laser may reduce the risk of blood vessel perforation as well as the incidence of major adverse events.

  2. Two-millijoule, 1-kHz, 355-nm picosecond laser pulse generation in LiBO crystal

    NASA Astrophysics Data System (ADS)

    Chen, Liyuan; Bai, Zhenxu; Pan, Yunlong; Chen, Meng; Li, Gang

    2013-08-01

    A third-harmonic-generation picosecond pulse with several millijoules per pulse at 355 nm has been achieved by nonlinear optical materials LiB3O5 (LBO). The single pulse energy of third harmonic was up to 2 mJ at the repetition rate of 1 kHz. The conversion efficiency was up to 33.3% from 1064 to 355 nm with the M2 factor of 2.4. The system is based on a Nd:YAG regenerative amplifier with a simple double-pass post-amplifier.

  3. Morphology And Microstructure in Fused Silica Induced By High Fluence Ultraviolet 3omega (355 Nm) Laser Pulses

    SciTech Connect

    Wong, J.; Ferriera, J.L.; Lindsey, E.F.; Haupt, D.L.; Hutcheon, I.D.; Kinney, J.H.

    2007-08-08

    The morphology and microstructure induced in high quality fused silica by UV (355 nm) laser pulses at high fluence (10-45 J/cm{sup 2}) have been investigated using a suite of microscopic and spectroscopic tools. The laser beam has a near-Gaussian profile with a 1/e{sup 2} diameter of 0.98 mm at the sample plane and a pulse length FWHM (full width at half maximum) of 7.5 ns. The damage craters consist of a molten core region (thermal explosion), surrounded by a near concentric region of fractured material. The latter arises from propagation of lateral cracks induced by the laser-generated shock waves, which also compact the crater wall, {approx} 10 {micro}m thick and {approx} 20% higher in density. The size of the damage crater varies with laser fluence, number of pulses, and laser irradiation history. In the compaction layer, there is no detectable change in the Si/O stoichiometry to within {+-} 1.6% and no crystalline nano-particles of Si were observed. Micro- (1-10 {micro}m) and nano- (20-200 nm) cracks are found, however. A lower valence Si{sup 3+} species on the top 2-3 nm of the compaction layer is evident from the Si 2p XPS. The results are used to construct a physical model of the damage crater and to gain critical insight into laser damage process.

  4. Short pulse width UV laser at 355 nm based on pulse LD side-pumped ceramic Nd:YAG and BBO electro-optical Q-switched

    NASA Astrophysics Data System (ADS)

    Bai, Y.; Chen, X. M.; Lu, B. L.; Ren, Z. Y.; Bai, J. T.

    2012-02-01

    355 nm UV laser was obtained with a pulse width of less than 5 ns and a peak power at megawatt level by adopting the 808 nm pulse laser diode (LD) side-pumped ceramic Nd:YAG and BBO crystal electrooptical Q-switched. The single-pulse energy was measured to be 24.3 mJ with 4.86 ns pulse width and 5.11 MW peak power at a repetition rate of 1Hz under a 120 A pump current. Using a volume of beam splitting mirrors, wavelength outputs at 1064, 532, and 355 nm pulse laser was obtained simultaneously with a respective average output power of 656.6, 357.1, and 260.5 mW, the beam quality factor M 2 are ( M {/x - 1064 2} = 5.83, M {/y - 1064 2} = 5.61), ( M {/x - 532 2} = 4.25, M {/y - 532 2} = 4.08) and ( M {/x - 355 2} = 6.32, M {/y - 355 2} = 6.15), corresponding to a conversion efficiency at 11% from 1064 to 355 nm.

  5. Selective photothermolysis of cutaneous pigmentation by Q-switched Nd: YAG laser pulses at 1064, 532, and 355 nm

    SciTech Connect

    Anderson, R.R.; Margolis, R.J.; Watenabe, S.; Flotte, T.; Hruza, G.J.; Dover, J.S.

    1989-07-01

    Exposure of skin to nanosecond-domain laser pulses affects the pigmentary system by a process called selective photothermolysis, in which melanosomes and pigmented cells are preferentially altered. Due to the broad absorption spectrum of melanin, this effect may occur with wavelengths that penetrate to vastly different depths within tissue, potentially producing different biologic responses. The effects of single near-ultraviolet (355 nm), visible (532 nm), and near infrared (1064 nm) pulses of 10-12 nsec duration were determined in guinea pig skin using gross, histologic, and electron microscopic observations. Threshold response in pigmented skin was a transient immediate ash-white discoloration, requiring 0.11, 0.20, and 1.0 J/cm2, at 355, 532, and 1064 nm, respectively. At each wavelength, melanosomes were ruptured within keratinocytes and melanocytes, with cytoplasmic and nuclear alterations. Delayed epidermal depigmentation occurred, followed by gradual repigmentation. Deep follicular cells were altered only at 532 and 1064 nm, which produced permanent leukotrichia. The action spectrum for threshold response was consistent with mechanisms implied by selective photothermolysis. These data may be useful for consideration of treatment for cutaneous pigmentation abnormalities or unwanted follicular pigmentation, or both.

  6. High-Beam-Quality All-Solid-State 355 nm Ultraviolet Pulsed Laser Based on a Master-Oscillator Power-Amplifier System Pumped at 888 nm

    NASA Astrophysics Data System (ADS)

    Hong, Hailong; Liu, Qiang; Huang, Lei; Gong, Mali

    2012-09-01

    An efficient all-solid-state 355 nm ultraviolet laser based on an 888 nm pumped master-oscillator power-amplifier (MOPA) system is presented. Due to the high beam quality of the fundamental wave being superior to 1.15 (M2) under all pump powers and pulse repetition frequencies (PRFs), the UV laser has the advantage of being able to operate continuously from zero to maximum power. The maximum green and UV output powers were 45.9 W at 50 kHz and 24.3 W at 65 kHz with the corresponding conversion efficiencies from IR-to-green and IR-to-UV of 66.0% and 34.1%, respectively.

  7. Highest-speed dicing of thin silicon wafers with nanosecond-pulse 355nm q-switched laser source using line-focus fluence optimization technique

    NASA Astrophysics Data System (ADS)

    Bovatsek, James M.; Patel, Rajesh S.

    2010-02-01

    Due to current and future anticipated widespread use of thin silicon wafers in the microelectronics industry, there is a large and growing interest in laser-based wafer dicing solutions. As the wafers become thinner, the laser advantage over saw dicing increases in terms of both the speed and yield of the process. Furthermore, managing the laser heat input during the dicing process becomes more important with increasingly thin wafers and with increasingly narrow saw streets. In this work, shaped-beam laser-cutting of thin (100 μm and below) silicon is explored with Newport / Spectra- Physics Pulseo 20-W nanosecond-pulse 355-nm DPSS q-switched laser system. Optimal process conditions for cutting various depths in silicon are determined, with particular emphasis on fluence optimization for a narrow-kerf cutting process. By shaping the laser beam into a line focus, the optimal fluence for machining the silicon can be achieved while at the same time utilizing the full output power of the laser source. In addition, by adjusting the length of the laser line focus, the absolute fastest speed for various cutting depths is realized. Compared to a circular beam, a dramatic improvement in process efficiency is observed.

  8. Maskless pattern transfer using 355 nm laser

    NASA Astrophysics Data System (ADS)

    Gabran, S. R. I.; Mansour, R. R.; Salama, M. M. A.

    2012-05-01

    Low power near-ultraviolet laser can be employed in various pattern transfer techniques such as maskless lithography and organic film ablation. Laser maskless lithography allows rapid prototyping using thin as well as thick photoresist films. Non-photosensitive organic films can be patterned by laser ablation, and this technique is applied in creating micro-molds for metal deposition using electroplating and electroless deposition. This paper presents experimental results, a quantitative study and modeling of laser maskless processing using desktop Nd:YAG laser system using four different photoresists. Process variables were experimentally optimized to identify the appropriate laser parameters that would yield reliable and reproducible patterns. A finite element thermal model of the ablation process was created to investigate the effects of different substrate materials on the process quality.

  9. Measurement of Laser Damage Threshold of 355-nm Antireflection Coating

    NASA Astrophysics Data System (ADS)

    Tamura, Shigeharu; Kimura, Saburo; Sato, Yoshiyuki; Otani, Minoru; Yoshida, Hidetsugu; Yoshida, Kunio

    1989-06-01

    The laser damage thresholds of various types of antireflection (AR) coatings for an UV (355-nm) laser system were measured. Among them, the coatings consisting of two low-index materials, SiO2 and MgF2, had the highest average thresholds: 2.1 J/cm2 on fused silica substrates and 2.6 J/cm2 on sapphire substrates. The SiO2/MgF2 coating is hopeful for UV laser component.

  10. Analysis of Cervical Supernatant Samples Luminescence Using 355 nm Laser

    NASA Astrophysics Data System (ADS)

    Vaitkuviene, A.; Gegzna, V.; Kurtinaitiene, R.; Stanikunas, R.; Rimiene, J.; Vaitkus, J.

    2010-05-01

    The biomarker discovery for accurate detection and diagnosis of cervical carcinoma and its malignant precursors represents one of the current challenges in clinical medicine. Laser induced autofluorescence spectra in cervical smear content were fitted to predict the cervical epithelium diagnosis as a lab off "optical biopsy" method. Liquid PAP supernatant sediment dried on Quartz plate spectroscopy was performed by 355 nm Nd YAG microlaser STA-1 (Standa, Ltd). For comparison a liquid supernatant spectroscopy was formed by laboratory "Perkin Elmer LS 50B spetrometer at 290, 300, 310 nm excitations. Analysis of spectrum was performed by approximation using the multi-peaks program with Lorentz functions for the liquid samples and with Gaussian functions for the dry samples. Ratio of spectral components area to the area under whole experimental curve (SPP) was calculated. The spectral components were compared by averages of SPP using Mann-Whitney U-test in histology groups. Results. Differentiation of Normal and HSIL/CIN2+ cases in whole supernatant could be performed by stationary laboratory lamp spectroscopy at excitation 290 nm and emission >379 nm with accuracy AUC 0,69, Sens 0,72, Spec 0,65. Differentiation Normal versus HSIL/CIN2+ groups in dried enriched supernatant could be performed by 355 nm microlaser excitation at emission 405-424 nm with accuracy (AUC 0,96, Sens 0,91, Spec 1.00). Diagnostic algorithm could be created for all histology groups differentiation under 355 nm excitation. Microlaser induced "optical biopsy "looks promising method for cervical screening at the point of care.

  11. Compact efficient diode-end-pumped intracavity frequency-tripled Nd:YAG 355 nm laser

    NASA Astrophysics Data System (ADS)

    Zuo, C. H.; Zhang, B. T.; Liu, Y. B.; Yang, J. F.; Huang, H. T.; Liu, S. D.; He, J. L.

    2010-08-01

    A compact efficient diode-end-pumped acousto-optically Q-switched intracavity-frequency-tripled Nd:YAG 355 nm ultraviolet laser was realized. Intracavity sub-resonators with anti-reflection and high-reflection coated mirrors were used to get higher efficiency of third harmonic generation. With two LBO crystals used in frequency doubling and tripling processes respectively, greater than 1.2 W 355 nm average output power was obtained under the absorbed pump power of 10 W and the repetition rate of 5 kHz. The corresponding pump-to-ultraviolet conversion efficiency was determined to be as high as 12%. At 5 kHz, the minimize pulse width was obtained to be 14.2 ns with the peak power of 16.9 kW and single pulse energy of 240 μJ. The instability of the 355 nm laser was measured to be less than 4.2% at an output power of 0.9 W within half an hour operation.

  12. Selective ablation of pit and fissure caries from occlusal surfaces using λ=355-nm laser pulses and air-abrasion demonstrated using PS-OCT and near-IR imaging

    NASA Astrophysics Data System (ADS)

    Ross, Steven T.; Fan, Kenneth; Fried, Daniel

    2006-02-01

    Several past studies have suggested that lasers with and without added chromophores can be used for the selective removal of dental caries from stained pit and fissures in preparation for composite sealant placement with minimal damage to sound, unstained tooth structure. Polarization sensitive optical coherence tomography (PS-OCT) is a new nondestructive imaging technology that can be used to acquire images of caries lesions in occlusal surfaces. PSOCT is ideally suited to measure the caries depth and severity before and after selective removal from occlusal surfaces. In this study, λ=355-nm laser pulses of 5-ns duration at irradiation intensities ranging from 0.5-1.3 J/cm2 were scanned across tooth surfaces to selectively remove decayed enamel with and without the addition of India ink. PS-OCT images were acquired before and after removal. The laser removal was also compared to air abrasion in order to compare selectivity of these two conservative caries removal technologies.

  13. High power 355 nm diode-pumped solid-state laser

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Cheng, Chee Yuen; Peng, Xiaoyuan; Yong, Saw Soon

    2015-07-01

    This paper reported a high-power diode-pumped solid-state laser for material processing applications with a target of more than 60 ns pulse width at 355 nm. As known, long pulse width IR laser (around 70-100 ns) is difficult to get high conversion efficiency to UV since the peak power is more than 2 times lower than 20-30 ns laser. However, the unique long pulse width characteristic makes the laser an ideal tool for flexible PCB drilling with 30-50 μm holes and for cutting portable devices. Up to 52.2% IR to UV conversion efficiency was obtained by our novel intra-cavity harmonic generation cavity design. A 9.3W UV output at 30 kHz was demonstrated with compact intra-cavity sum frequency design. Special conduction cooling-designed LD side-pumped module provided 17.8 W fundamental IR output power with AOM q-switching. The UV output pulse width is 76 ns at 30 kHz and 140 ns at 70 kHz. The type I and type II phase matching LBOs were used for intra-cavity harmonic generations of 355 nm. The output characteristics of the IR and the harmonic generations varying with the pulse repetition rate were also investigated. The experimental results are in agreement with the theoretical modelling. This system will also be useful for many material processing applications such as PCB cutting and wafer scribing.

  14. Safety of cornea and iris in ocular surgery with 355-nm lasers

    NASA Astrophysics Data System (ADS)

    Wang, Jenny; Chung, Jae Lim; Schuele, Georg; Vankov, Alexander; Dalal, Roopa; Wiltberger, Michael; Palanker, Daniel

    2015-09-01

    A recent study showed that 355-nm nanosecond lasers cut cornea with similar precision to infrared femtosecond lasers. However, use of ultraviolet wavelength requires precise assessment of ocular safety to determine the range of possible ophthalmic applications. In this study, the 355-nm nanosecond laser was evaluated for corneal and iris damage in rabbit, porcine, and human donor eyes as determined by minimum visible lesion (MVL) observation, live/dead staining of the endothelium, and apoptosis assay. Single-pulse damage to the iris was evaluated on porcine eyes using live/dead staining. In live rabbits, the cumulative median effective dose (ED50) for corneal damage was 231 J/cm2, as seen by lesion observation. Appearance of endothelial damage in live/dead staining or apoptosis occurred at higher radiant exposure of 287 J/cm2. On enucleated rabbit and porcine corneas, ED50 was 87 and 52 J/cm2, respectively, by MVL, and 241 and 160 J/cm2 for endothelial damage. In human eyes, ED50 for MVL was 110 J/cm2 and endothelial damage at 453 J/cm2. Single-pulse iris damage occurred at ED50 of 208 mJ/cm2. These values determine the energy permitted for surgical patterns and can guide development of ophthalmic laser systems. Lower damage threshold in corneas of enucleated eyes versus live rabbits is noted for future safety evaluation.

  15. Scaling of laser-induced contamination growth at 266nm and 355nm

    NASA Astrophysics Data System (ADS)

    Ließmann, M.; Jensen, L.; Balasa, I.; Hunnekuhl, M.; Büttner, A.; Weßels, P.; Neumann, J.; Ristau, D.

    2015-11-01

    The growth of laser-induced contamination (LIC) on optical components in extraterrestrial missions is a known issue especially for the UV spectral region. The Laser Zentrum Hannover e.V. is responsible for the development of a pulsed laser-system operating at a wavelength of 266 nm for the ExoMars mission and for the qualification of used optics and materials regarding LIC. In this context, toluene was utilized which is an often used model contaminant in LIC studies. Test cycles based on the application of the two UV wavelengths 355 nm and 266 nm on fused silica substrates and ARcoated optics are conducted and the observed contamination effects are compared. This scaling allows for a rough estimate of the destructive influence of LIC on space optics degradation at 266 nm. Further tests will be performed with materials integrated into the ExoMars-laser-head under near-operation environmental conditions.

  16. High-power 355 nm ultraviolet lasers operating at ultrahigh repetition rate

    NASA Astrophysics Data System (ADS)

    Chen, H.; Liu, Q.; Yan, P.; Gong, M.

    2013-02-01

    In this letter, we demonstrate a novel 355 nm ultraviolet (UV) laser operating at ultrahigh repetition rate from 300 kHz to 1 MHz. The hybrid fiber-MOPA-bulk amplifiers based IR source exhibits a high average power of 105 W with near-diffraction-limited beam quality, narrow linewidth and high polarization extinction ratio. Two-cascaded LBO crystals are employed for high efficiency frequency tripling, and a maximum 43.7 W of average UV power is achieved at 400 kHz, corresponding to a conversion efficiency as high as 41.6%. The pulse duration of the UV pulse can be tuned from 5 to 10 ns with good pulse peak stability (better than 2.2% (RMS)).

  17. An efficient and compact laser-diode end-pumped intracavity frequency-tripled Nd: YVO 4 355 nm laser

    NASA Astrophysics Data System (ADS)

    Huang, Hai-Tao; Zhang, Bai-Tao; He, Jing-Liang; Yang, Jian-Fei; Dong, Xiao-Long; Xu, Jin-Long; Zuo, Chun-Hua; Zhao, Shuang

    2009-07-01

    By exploiting the intracavity frequency conversion configuration, a diode end-pumped acousto-optic (AO) Q-switched Nd:YVO 4 355 nm laser was demonstrated in this paper. Two LBO crystals were inserted in the cavity to realize the frequency tripling operation, a cascade of the second harmonic generation (SHG) and sum frequency mixing (SFM). Under the absorbed pump power of 13 W, the maximum average output power at 355 nm was obtained to be 1.32 W at the repetition frequency of 17 kHz, with the optical-to-optical conversion efficiency of 10.2%. The corresponding pulse width was 10.2 ns, with the energy of a single pulse and corresponding peak power estimated to be 77.6 μJ and 7.61 kW, respectively.

  18. 355nm DPSS UV laser micro-processing for the semiconductor and electronics industry

    NASA Astrophysics Data System (ADS)

    Zhang, Fei; Duan, Jun; Zeng, XiaoYan; Li, XiangYou

    2010-02-01

    During the last decade, diode-pumped solid state (DPSS) lasers have been gained wider application in semiconductor and electronics industry due to the advantages of high efficiency, low operating cost, good beam quality and flexibility as well as miniature size. Now, 355nm DPSS UV laser has increasingly been adopted in micro-processing application for both semiconductor and electronics industry where both micro-processing quality and precision of high-density, multilayer and multi-material components are in a strong demand. Our works on typical applications of 355nm DPSS UV laser micro-processing both semiconducting and electronic materials have been introduced in this paper, including drilling (200μm blind holes in 4-layer FPC), cutting (coverlay, CCL, FPC, 0.6mm silicon), and etching (ITO-glass). The effects of the processing parameters (pulse energy, frequency, peak power, scanning speed and focal plane position as well as processing modes) on the micro-processing quality and precision have been investigated and analyzed. By optimizing the processing parameters, the blind drilling depth to the second copper layer can be controlled accurately and the roughness Sq 1.33μm on the second copper surface can be achieved. A high quality and size precision (position precision 20μm) cutting edge without charring, burrs and micro-cracks as well as with very small heat affected zone (HAZ) can be also obtained. When etching function film, the etching width is less than 20 micron, and the etching speed is more than 500mm/s.

  19. High-power picosecond 355 nm laser based on La₂CaB₁₀O₁₉ crystal.

    PubMed

    Li, Kai; Zhang, Ling; Xu, Degang; Zhang, Guochun; Yu, Haijuan; Wang, Yuye; Shan, Faxian; Wang, Lirong; Yan, Chao; Wu, Yicheng; Lin, Xuechun; Yao, Jianquan

    2014-06-01

    Third harmonic generation experiments were performed on a type-I phase-matching La2CaB10O19 crystal cut at θ=49.4° and φ=0.0° with dimensions of 4.0  mm×4.0  mm×17.6  mm. A 1064 nm laser with a maximum average power of 35.2 W was employed as the fundamental light source, which has a pulse width of 10 picoseconds and a pulse repetition rate of 80 MHz. A type-I noncritical phase-matching LBO crystal was used to generate 532 nm lasers. By investigating a series of focusing lens combinations, a picosecond 355 nm laser of 5.3 W was obtained, which is the highest power of picosecond 355 nm laser based on a La2CaB10O19 crystal so far. The total conversion efficiency from 1064 to 355 nm was up to 15.1%. PMID:24876039

  20. Comparison of high repetition rate Q-switched 355nm ultraviolet lasers with EOM and AOM

    NASA Astrophysics Data System (ADS)

    Lu, Tingting; Li, Xiaolei; Zang, Huaguo; Zhu, Xiaolei

    2013-05-01

    Two kinds of Q-switched ultraviolet lasers using an acousto-optic modulator and an electro-optic modulator in the same cavity structure are demonstrated, with type I phase-matched LBO as second harmonic generation crystal and type II phase-matched LBO as third harmonic generation crystal. For acousto-optic Q-switched UV laser-a maximum average power of 6.3W with the shortest pulse width of 12 ns was obtained at the repetition rate of 22 kHz when the pump power reached 52.4 W. The optical conversion efficiency was up to 12%. Then we used a La3Ga5SiO14 crystal electro-optic modulator to replace the acousto-optic modulator. The 1.29W output power at 355nm wavelength was obtained at the repetition rate of 10 kHz when the pump power was increased to 20.4W, and the UV laser pulse width was as short as 9.6ns.The optical conversion efficiency was up to 6.3%.

  1. Laser-induced damage of fused silica at 355 nm initiated at scratches

    NASA Astrophysics Data System (ADS)

    Salleo, Alberto; Genin, Francois Y.; Yoshiyama, J. M.; Stolz, Christopher J.; Kozlowski, Mark R.

    1998-04-01

    Scratches of measured width were produced on the surface of a IV grade fused silica window using a diamond tip. Two scratch morphologies were observed: plastic and brittle. The scratches were irradiated with a 355 nm laser pulse. The laser-induced damage threshold (LIDT) of the unscratched output surface was 15 J/cm2 at 3-ns. The LIDT of the scratched surface as a function of scratch width was then measured for both input and output surface scratches. Input surface scratches of width smaller than 10 micrometers did not influence the LIDT of the silica window. On the output surface, 7 $mUm wide scratches lowered the LIDT by a factor of two. For larger scratches, the LIDT reached an asymptotic value of 5 J/cm2 on both input and output surface. Possible reasons for this LIDT drop could be electric field enhancement in the cracks below the scratch, the presence of contamination particles in the scratch, or the weakening of the material because of existing mechanical flaws.

  2. 39.1 μJ picosecond ultraviolet pulses at 355 nm with 1 MHz repeat rate.

    PubMed

    Zhu, Peng; Li, Daijun; Liu, Qingyong; Chen, Jun; Fu, Shaojun; Shi, Peng; Du, Keming; Loosen, Peter

    2013-11-15

    Based on our reliable high-power picosecond laser source with high beam qualities, we designed a compact and efficient third harmonic generation scheme by cascading a frequency doubling and a sum frequency generation using LBO as the nonlinear material. A maximum output of 39.1 W with a repeat rate of 1 MHz at 355 nm was obtained, which implied a pulse energy of 39.1 μJ, which was the highest picosecond UV pulse energy with an all-solid-state setup so far. The total conversion efficiency from infrared to UV was up to 46%. And the output UV has excellent beam qualities with an M-square factor less than 1.1. PMID:24322114

  3. Compact efficient diode-end-pumped intracavity frequency-tripled Nd:YVO4 355 nm laser

    NASA Astrophysics Data System (ADS)

    Dong, X.-L.; Tang, H.-Y.; Zhang, B.-T.; Huang, H.-T.; Yang, J.-F.; Liu, S.-D.

    2010-08-01

    A compact efficient diode-end-pumped acousto-optically Q-switched intracavity-frequency-tripled Nd:YVO4 355 μm ultraviolet laser was realized. Intracavity sub-resonators with anti-reflection and high-reflection coated mirrors were used to get higher efficiency of third harmonic generation. With two LBO crystals used in frequency doubling and tripling processes, greater than 1.46 W 355 nm average output power was obtained under the absorbed pump power of 13.9 W and the repetition rate of 10 kHz. The corresponding pump-to-ultraviolet conversion efficiency was determined to be as high as 10.5%. At 10 kHz, the minimize pulse width was obtained to be 12 ns with the peak power of 10.4 kW and single pulse energy of 146 μJ.

  4. Picosecond laser texturization of mc-silicon for photovoltaics: A comparison between 1064 nm, 532 nm and 355 nm radiation wavelengths

    NASA Astrophysics Data System (ADS)

    Binetti, Simona; Le Donne, Alessia; Rolfi, Andrea; Jäggi, Beat; Neuenschwander, Beat; Busto, Chiara; Frigeri, Cesare; Scorticati, Davide; Longoni, Luca; Pellegrino, Sergio

    2016-05-01

    Self-organized surface structures were produced by picosecond laser pulses on multi-crystalline silicon for photovoltaic applications. Three different laser wavelengths were employed (i.e. 1064 nm, 532 nm and 355 nm) and the resulting morphologies were observed to effectively reduce the reflectivity of the samples after laser irradiation. Besides, a comparative study of the laser induced subsurface damage generated by the three different wavelengths was performed by confocal micro-Raman, photoluminescence and transmission electron microscopy. The results of both the structural and optical characterization showed that the mc-Si texturing performed with the laser at 355 nm provides surface reflectivity between 11% and 8% over the spectral range from 400 nm to 1 μm, while inducing the lowest subsurface damage, located above the depletion region of the p-n junction.

  5. Thin film contamination effects on laser-induced damage of fused silica surfaces at 355 nm

    SciTech Connect

    Burnham, A. K.; Cordillot, C.; Fornier, A.; Genin, F. Y.; Rubenchick, A. M.; Schirmann, D.; Yoshiyama, J.

    1998-07-28

    Fused silica windows were artificially contaminated to estimate the resistance of target chamber debris shields against laser damage during NIF operation. Uniform contamination thin films (1 to 5 nm thick) were prepared by sputtering various materials (Au, Al, Cu, and B4C). The loss of transmission of the samples was first measured. They were then tested at 355 nm in air with an 8-ns Nd:YAG laser. The damage morphologies were characterized by Nomarski optical microscopy and SEM. Both theory and experiments showed that metal contamination for films as thin as 1 nm leads to a substantial loss of transmission. The laser damage resistance dropped very uniformly across the entire surface (e.g. 6 J/cm2 for 5 nm of Cu). The damage morphology characterization showed that contrary to clean silica, metal coated samples did not produce pits on the surface. B4C coated silica, on the other hand, led to a higher density of such damage pits. A model for light absorption in the thin film was coupled with a simple heat deposition and diffusion model to perform preliminary theoretical estimates of damage thresholds. The estimates of the loss due to light absorption and reflection pointed out significant .differences between metals (e.g. Al and Au). The damage threshold predictions were in qualitative agreement with experimental measurements.

  6. High-power picoseconds 355 nm laser by third harmonic generation based on CsB3O5 crystal

    NASA Astrophysics Data System (ADS)

    Guo, L.; Wang, G. L.; Zhang, H. B.; Cui, D. F.; Wu, Y. C.; Lu, L.; Zhang, J. Y.; Huang, J. Y.; Xu, Z. Y.

    2007-07-01

    We report on the high average power third harmonic generation (THG) of a mode-locked picosecond laser in a CsB3O5 (CBO) crystal. The picosecond laser beam at 1064 nm is produced by a home-made 30 W master oscillator power-amplifier (MOPA) Nd:YVO4 laser system. The maximum THG output at 355 nm is up to 5.4 W. We also investigate the phase matching angle at different temperatures. During high power operation, the temperature of the CBO crystal is set at a high temperature of more than 100 °C. The THG system has shown a fine long-term stability for more than two months of operation.

  7. Characteristics of plasma plume expansion from Al target induced by oblique incidence of 1064 and 355 nm nanosecond Nd : YAG laser

    NASA Astrophysics Data System (ADS)

    Liu, Tianhang; Gao, Xun; Hao, Zuoqiang; Liu, Zehao; Lin, Jingquan

    2013-12-01

    Evolution of a plasma plume from an Al target ablated with a nanosecond 1064 and 355 nm laser respectively under oblique incidence in air is studied using the time-resolved shadowgraph imaging technique. The characteristics of plasma plume expansion with different focusing conditions (focal point on, ahead of and after the target surface) are experimentally investigated. Experimental results show that the evolution of the plasma plume is strongly influenced by air breakdown which occurs prior to the laser beam reaching the target. Without the occurrence of air breakdown, the temporal evolution of the Al plasma plume with both UV and IR ablation laser wavelengths shows the plume expansion with an ellipsoid-shaped plume front travelling mainly against the incoming laser beam due to the formation of a laser-supported detonation wave at the initial stage of laser ablation, and then the shape of the plume front turns into a sphere. Experimental results also show that a higher portion of the laser pulse energy reaches the target surface at UV laser wavelength than that of an IR laser due to the higher penetrating ability of the UV laser wavelength to the plasma.

  8. Photosensitivity of a diamond detector to laser radiation in the 220 - 355-nm region

    SciTech Connect

    Lipatov, E I; Panchenko, Aleksei N; Tarasenko, Viktor F; Shein, J; Krishnan, M

    2001-12-31

    The photosensitivity of detectors of laser radiation based on the natural type IIa diamond (Alameda Applied Sciences Corporation, USA) are studied at the wavelengths 222, 308, 337, and 353 nm. The limiting intensities (0.5 - 4 MW cm{sup -2}) of UV laser radiation are determined at which the detectors operate in a linear regime. (laser applications and other topics in quantum electronics)

  9. Low-cost 7 mW CW 355-nm diode-pumped intracavity frequency-tripled microchip laser

    NASA Astrophysics Data System (ADS)

    Aubert, Nicolas; Georges, Thierry; Chauzat, Corinne; Le Bras, Raymond; Féron, Patrice

    2006-02-01

    Low noise CW milliWatt scale UV lasers are needed for many analysis applications in the semiconductor and the biological fields. Intracavity tripling has been widely used to improve the UV output power of Q-switched or modelocked lasers, but no efficient diode-pumped CW UV laser was ever reported. One of the key to success is the use of a monolithic laser structure which both eliminates the birefringence interference issue and facilitates the single frequency operation. The monolithic structure is obtained by optically contacting crystals. It does not require any alignment, reduces the manufacturing cost and improves reliability. The optimization of the amplifying medium and doubling and tripling crystals involves as many parameters as pump absorption, thermal lens, cavity length, 1064 nm mode size, walk-off, acceptance angles, polarizations, phases... The interplay between these parameters will be discussed. Finally, several amplifying media (Nd:YAG and Nd:YVO 4), doubling crystals (KTP, KNbO 3, BBO, BiBO and LBO) and tripling crystals (BBO, BiBO, LBO) were tested. With a 2.4W 808 nm diode pump, several configurations have led to low noise 355 nm single frequency operation exceeding 5 mW. We believe that this power can still be improved.

  10. Film analysis employing subtarget effect using 355 nm Nd-YAG laser-induced plasma at low pressure

    NASA Astrophysics Data System (ADS)

    Hedwig, Rinda; Budi, Wahyu Setia; Abdulmadjid, Syahrun Nur; Pardede, Marincan; Suliyanti, Maria Margaretha; Lie, Tjung Jie; Kurniawan, Davy Putra; Kurniawan, Koo Hendrik; Kagawa, Kiichiro; Tjia, May On

    2006-12-01

    The applicability of spectrochemical analysis for liquid and powder samples of minute amount in the form of thin film was investigated using ultraviolet Nd-YAG laser (355 nm) and low-pressure ambient air. A variety of organic samples such as commercial black ink usually used for stamp pad, ginseng extract, human blood, liquid milk and ginseng powder was prepared as film deposited on the surface of an appropriate hard substrate such as copper plate or glass slide. It was demonstrated that in all cases studied, good quality spectra were obtained with very low background and free from undesirable contamination by the substrate elements, featuring ppm or even sub-ppm sensitivity and worthy of application for quantitative analysis of organic samples. The proper preparation of the films was found to be crucial in achieving the high quality spectra. It was further shown that much inferior results were obtained when the atmospheric-pressure (101 kPa) operating condition of laser-induced breakdown spectroscopy or the fundamental wavelength of the Nd-YAG laser was employed due to the excessive or improper laser ablation process.

  11. Photolysis of formic acid at 355 nm

    NASA Astrophysics Data System (ADS)

    Martinez, Denhi; Bautista, Teonanacatl; Guerrero, Alfonso; Alvarez, Ignacio; Cisneros, Carmen

    2015-05-01

    Formic acid is well known as a food additive and recently an application on fuel cell technology has emerged. In this work we have studied the dissociative ionization process by multiphoton absorption of formic acid molecules at 355nm wavelength photons, using TOF spectrometry in reflectron mode (R-TOF). Some of the most abundant ionic fragments produced are studied at different settings of the laser harmonic generator. The dependence of the products on these conditions is reported. This work was supported by CONACYT Project 165410 and PAPIIT IN102613 and IN101215.

  12. Possible Evidence of Amide Bond Formation Between Sinapinic Acid and Lysine-Containing Bacterial Proteins by Matrix-Assisted Laser Desorption/Ionization (MALDI) at 355 nm

    NASA Astrophysics Data System (ADS)

    Fagerquist, Clifton K.; Sultan, Omar; Carter, Michelle Q.

    2012-12-01

    We previously reported the apparent formation of matrix adducts of 3,5-dimethoxy-4-hydroxy-cinnamic acid (sinapinic acid or SA) via covalent attachment to disulfide bond-containing proteins (HdeA, Hde, and YbgS) from bacterial cell lysates ionized by matrix-assisted laser desorption/ionization (MALDI) time-of-flight-time-of-flight tandem mass spectrometry (TOF-TOF-MS/MS) and post-source decay (PSD). We also reported the absence of adduct formation when using α-cyano-4-hydroxycinnamic acid (CHCA) matrix. Further mass spectrometric analysis of disulfide-intact and disulfide-reduced over-expressed HdeA and HdeB proteins from lysates of gene-inserted E. coli plasmids suggests covalent attachment of SA occurs not at cysteine residues but at lysine residues. In this revised hypothesis, the attachment of SA is preceded by formation of a solid phase ammonium carboxylate salt between SA and accessible lysine residues of the protein during sample preparation under acidic conditions. Laser irradiation at 355 nm of the dried sample spot results in equilibrium retrogradation followed by nucleophilic attack by the amine group of lysine at the carbonyl group of SA and subsequent amide bond formation and loss of water. The absence of CHCA adducts suggests that the electron-withdrawing effect of the α-cyano group of this matrix may inhibit salt formation and/or amide bond formation. This revised hypothesis is supported by dissociative loss of SA (-224 Da) and the amide-bound SA (-206 Da) from SA-adducted HdeA and HdeB ions by MS/MS (PSD). It is proposed that cleavage of the amide-bound SA from the lysine side-chain occurs via rearrangement involving a pentacyclic transition state followed by hydrogen abstraction/migration and loss of 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-ynal (-206 Da).

  13. Initiation Identification in Fused Silica 355-nm Optics

    SciTech Connect

    Wall, M; Plitzko, J; Fluss, M J

    2002-01-04

    Thermo-mechanical surface damage initiation and growth in fused-silica 3{omega} (355nm) optics are important performance and cost issues for high-power lasers (fluences of 4-14 J/cm{sup 2}) in the few ns pulse length regime. We are working to characterize and identify the extrinsic origins of damage initiation; impurities, particulates, and manufacturing defects. We have performed a materials characterization survey approach using transmission electron microscopy to identify the chemistry and morphology of particles, and structural defects. TEM offers high chemical or elemental specificity and small analytical spot size yielding complementary materials characterization data and powerful clues to manufacturing improvements. We will report on our characterization of the near surface of one commercially manufactures fused silica optic, where the results indicate both the efficacy and potential value of this approach.

  14. Possible evidence of amide bond formation between sinapinic acid and lysine-containing bacterial proteins by matrix-assisted laser desorption/ionization (MALDI) at 355 nm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We previously reported the apparent formation of matrix adducts of 3,5-dimethoxy-4-hydroxy-cinnamic acid (sinapinic acid or SA) via covalent attachment to disulfide bond-containing proteins (HdeA, HdeB and YbgS) from bacterial cell lysates ionized by matrix-assisted laser desorption/ionization (MALD...

  15. Use of the selected overlap LIDAR experiment (SOLEX) system with the 248 nm krypton fluoride and the 355 nm neodymium:yttrium aluminum garnet lasers for the calibration of LIDAR systems for water vapor determination

    NASA Astrophysics Data System (ADS)

    Mensah, Francis Emmanuel Tofodji

    Water vapor is one of the most important atmospheric variables that play a key role in air quality, global warming, climate change and hurricane formation. In this dissertation, use was made of two laser systems, the 248-nm KrF laser and the 355 nm Nd-YAG laser, with the use of Raman scattering to measure water vapor in the atmosphere. These two systems have been calibrated more accurately, using the LIDAR approach named SOLEX (Selected Overlap LIDAR Experiment). All the experiments were carried out at the Howard University Beltsville campus located on a 107 acre research site, at Beltsville, MD, 15 miles from downtown Washington DC, near the National Agricultural Research Center (NARC), and the NASA Goddard Space Flight Center (GSFC). The geographical coordinates are: 39°04.01'N latitude, and 76°52.31'W longitude. The receiver system used during these experiments is a 30" (76.2 cm), f/ 9 Cassegranian telescope, while the detector system uses a prism spectrometer (Beckman), with a 2-meter, double-fold optical path and a variable slit width is placed at the image plane of the telescope. With the use of the SOLEX system, this dissertation provides an accurate calibration of the two LIDAR Systems for water vapor measurement in the troposphere at the following ranges: 83.7 ft, 600 ft, 800 ft, 1000 ft and 1080 ft. Data analysis shows a pretty high sensitivity of the LIDAR system for water vapor measurement and the efficiency of the SOLEX method.

  16. Wind Measurements with a 355 nm Molecular Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Chen, Huailin; Li, Steven X.

    2000-01-01

    A Doppler lidar system based on the molecular double edge technique is described. The system is mounted in a modified van to allow deployment in field operations. The lidar operates with a tripled Nd:YAG laser at 355 nm, a 45cm aperture telescope and a matching azimuth-over-elevation scanner to allow full sky access. Validated atmospheric wind profiles have been measured from 1.8 km to 35 km with a 178 m vertical resolution. The range dependent rms deviation of the horizontal wind speed is 0.4 - 6 m/s. The results of wind speed and direction are in good agreement with balloon sonde wind measurements made simultaneously at the same location.

  17. Submicrometer-Resolution Mapping of Ultraweak 355-nm Absorption in HfO2 Monolayers Using Photothermal Heterodyne Imaging

    SciTech Connect

    Papernov, S.; Tait, A.; Bittle, W.; Schmid, A.W.; Oliver, J.B.; Kupinski, P.

    2011-02-01

    Nanosecond-pulse UV-laser-damage initiation in multilayer coatings comprised from metal oxide as a high-index component, and silica oxide as a low-index material, is strongly linked to metal oxide. The nature of the absorbing species and their physical properties remain unknown because of extremely small sizes. Previous experimental evidence provided by high-resolution mapping of damage morphology points to a few-nanometer scale of these absorbers. This work demonstrates submicrometer mapping of 355-nm absorption in HfO2 monolayers using a recently developed photothermal heterodyne imaging technique. Comparison of absorption maps with spatial distribution of UV pulsed-laser–induced damage morphology allows one to better estimate the size and densities of nanoscale absorbing defects in hafnia thin films. Possible defect-formation mechanisms are discussed.

  18. Laser cutting of carbon fiber reinforced plastics (CFRP) by UV pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Niino, Hiroyuki; Kurosaki, Ryozo

    2011-03-01

    In this paper, we report on a micro-cutting of carbon fiber reinforced plastics (CFRP) by nanosecond-pulsed laser ablation with a diode-pumped solid state UV laser (DPSS UV laser, λ= 355nm). A well-defined cutting of CFRP which were free of debris and thermal-damages around the grooves, were performed by the laser ablation with a multiple-scanpass irradiation method. CFRP is a high strength composite material with a lightweight, and is increasingly being used various applications. UV pulsed laser ablation is suitable for laser cutting process of CFRP materials, which drastically reduces a thermal damage at cut regions.

  19. Narrow linewidth picosecond pulsed laser with mega-watt peak power at UV wavelength

    SciTech Connect

    Liu, Yun; Huang, Chunning; Deibele, Craig Edmond

    2013-01-01

    We demonstrate a master oscillator power amplifier (MOPA) burst mode laser system to generate 66 ps/402.5 MHz pulses with mega-watt peak power at 355 nm. The seed laser is based on a direct electro-optic modulation of a fiber laser output. A very high extinction ratio (45 dB) has been achieved by using an adaptive bias control. The multi-stage Nd:YAG amplifier system allows a uniformly temporal shaping of macropulses with tunable pulse duration. The light output form the amplifier is converted to 355 nm and over 1 MW UV peak power is obtained when the laser is operating in a 5- s/10-Hz macropulse mode. The laser output has a transform limited spectrum bandwidth with a very narrow linewidth of individual laser mode. The immediate application of the laser system is the laser assisted hydrogen ion beam stripping for the Spallation Neutron Source (SNS).

  20. Photoionization of Nitromethane at 355nm and 266nm

    NASA Astrophysics Data System (ADS)

    Martínez, Denhi; Betancourt, Francisco; Poveda, Juan Carlos; Guerrero, Alfonso; Cisneros, Carmen; Álvarez, Ignacio

    2014-05-01

    Nitromethane is one of the high-yield clean liquid fuels, i.e., thanks to the oxygen contained in nitromethane, much less atmospheric oxygen is burned compared to hydrocarbons such as gasoline, making the nitromethane an important prototypical energetic material, the understanding of its chemistry is relevant in other fields such as atmospheric chemistry or biochemistry. In this work we present the study of photoionization dynamics by multiphoton absorption with 355 nm and 266 nm wavelength photons, using time of flight spectrometry in reflectron mode (R-TOF). Some of the observed ion products appear for both wavelength and other only in one of them; both results were compared with preview observations and new ions were detected. This work is supported by CONACYT grant 165410 and DGAPA-UNAM grants IN-107-912 and IN-102-613.

  1. Plasma and Cavitation Dynamics during Pulsed Laser Microsurgery in vivo

    SciTech Connect

    Hutson, M. Shane; Ma Xiaoyan

    2007-10-12

    We compare the plasma and cavitation dynamics underlying pulsed laser microsurgery in water and in fruit fly embryos (in vivo)--specifically for nanosecond pulses at 355 and 532 nm. We find two key differences. First, the plasma-formation thresholds are lower in vivo --especially at 355 nm--due to the presence of endogenous chromophores that serve as additional sources for plasma seed electrons. Second, the biological matrix constrains the growth of laser-induced cavitation bubbles. Both effects reduce the disrupted region in vivo when compared to extrapolations from measurements in water.

  2. Laser ablation of CFRP using picosecond laser pulses at different wavelengths from UV to IR

    NASA Astrophysics Data System (ADS)

    Wolynski, Alexander; Herrmann, Thomas; Mucha, Patrick; Haloui, Hatim; L'huillier, Johannes

    Laser processing of carbon fibre reinforced plastics (CFRP) has a great industrial relevance for high performance structural parts in airplanes, machine tools and cars. Through-holes drilled by nanosecond laser pulses show thermal induced molten layers and voids. Recently, picosecond lasers have demonstrated the ability to drill high-efficient and high-quality rivet through-holes. In this paper a high-power picosecond laser system operating at different wavelengths (355 nm, 532 nm and 1064 nm) has been used for CFRP ablation experiments to study the influence of different laser parameters in terms of machining quality and processing time.

  3. Double-Edge Molecular Measurement of Lidar Wind Profiles at 355 nm

    NASA Technical Reports Server (NTRS)

    Flesia, Cristina; Korb, C. Laurence; Hirt, Christian; Einaudi, Franco (Technical Monitor)

    2000-01-01

    We built a direct detection Doppler lidar based on the double-edge molecular technique and made the first molecular based wind measurements using the eyesafe 355 nm wavelength. Three etalon bandpasses are obtained with Step etalons on a single pair of etalon plates. Long-term frequency drift of the laser and the capacitively stabilized etalon is removed by locking the etalon to the laser frequency. We use a low angle design to avoid polarization effects. Wind measurements of 1 to 2 m/s accuracy are obtained to 10 km altitude with 5 mJ of laser energy, a 750s integration, and a 25 cm telescope. Good agreement is obtained between the lidar and rawinsonde measurements.

  4. Energy Dependent Processing of Fiber Reinforced Plastics with Ultra Short Laser Pulses

    NASA Astrophysics Data System (ADS)

    Schilling, N.; Lasagni, A.; Klotzbach, U.

    In this paper the processing of a fiber reinforced plastic consisting of glass fibers embedded in polypropylene with ultra short laser systems is shown. Focus of the study is on the dependence of working wavelength (1064 nm, 532 nm and 355 nm) and pulse duration (500 fs to 10 ps) on the laser ablation characteristic of the treated material. Depending on the energy density and the material properties, two different process regions could be identified.

  5. Synthesis of Nickel Nanomaterial by Pulsed Laser Ablation in Liquid Medium and its Characterization

    SciTech Connect

    Gopal, R.; Singh, S. C.; Swarnkar, R. K.; Singh, M. K.; Agarwal, A.

    2009-06-29

    Laser ablation of nickel nanoparticles suspended in double deionized water has been studied using Nd:YAG laser (355 nm) with energy 30 mJ/pulse. Produced nanoparticles are analyzed by UV-visible absorption spectroscopy at certain interval (0, 20, 40, 60 minute). The particles are characterized by Transmission Electron Microscopy (TEM), and X-ray Diffraction (XRD). TEM image shows that particles have crystal like structure and these particles are in the range of 20 nm to 50 nm.

  6. Synthesis of Nickel Nanomaterial by Pulsed Laser Ablation in Liquid Medium and its Characterization

    NASA Astrophysics Data System (ADS)

    Gopal, R.; Singh, M. K.; Agarwal, A.; Singh, S. C.; Swarnkar, R. K.

    2009-06-01

    Laser ablation of nickel nanoparticles suspended in double deionized water has been studied using Nd:YAG laser (355 nm) with energy 30 mJ/pulse. Produced nanoparticles are analyzed by UV-visible absorption spectroscopy at certain interval (0, 20, 40, 60 minute). The particles are characterized by Transmission Electron Microscopy (TEM), and X-ray Diffraction (XRD). TEM image shows that particles have crystal like structure and these particles are in the range of 20 nm to 50 nm.

  7. Pulsed multiwavelength laser ranging system. Ph.D. Thesis - Maryland Univ.

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.

    1982-01-01

    A pulsed multiwavelength laser ranging system for measuring atmospheric delay was built and tested, and its theoretical performance limits were calculated. The system uses a dye modelocked ND:YAG laser, which transmits 70 psec wide pulses simultaneously at 1064, 532, and 355 nm. The differential delay of the 1064 and 355 nm pulses is measured by a specially calibrated waveform digitizer to estimate the dry atmospheric delay. The delay time of the 532 nm pulse is used to measure the target distance. Static crossed field photomultipliers are used as detectors for all wavelengths. Theoretical analysis shows that path curvature and atmospheric turbulence are fundamental limits to the ranging accuracy of both single and multicolor systems operating over horizontal paths. For two color systems, an additional error is caused by the uncertainty in the path averaged water vapor. The standard deviation of the multicolor instrument's timing measurements is directly proportional to the laser pulse width plus photomultiplier jitter divided by the square root of the received photoelectron number. The prototype system's maximum range is km, which is limited by atmospheric and system transmission losses at 355 nm. System signal detection and false alarm calculations are also presented.

  8. High power UV generation at 355 nm by means of extracavity frequency conversion of a high repetition rate Innoslab MOPA system

    NASA Astrophysics Data System (ADS)

    Gronloh, Bastian; Höfer, Marco; Wester, Rolf; Hoffmann, Hans-Dieter

    2009-02-01

    An Innoslab based Nd:YV04 MOPA system with pulse energy of 7.25 mJ at 40 kHz repetition rate and pulse duration of 11.4 ns has been used for third harmonics generation in Lithium Triborate (LBO) crystals. We report UV pulses of 8.9 ns duration at pulse energy of 1.65 mJ, which means an average power of 66 W. We have been able to show UV beam qualities (M2) of 1.7/2.4 (stable/instable direction with 90/10 knife edge method), while IR beam quality is 1.8/5.2. A sinc2-shape transversal distribution of beam intensity has been used in instable direction of the Innoslab MOPA system for conversion. Due to high average power and short pulse length at 355 nm the laser meets the demands for high-throughput micro material processing as stereolithography or edge isolation of solar cells. The thermal dependence of the conversion efficiency (due to heating power of the beam) has been investigated theoretically, using a time resolved numerical simulation model for the nonlinear process in both LBO crystals. Scaling effects of the absorption coefficients of LBO and the pulse power on the conversion efficiency are presented in this article.

  9. Nanosecond pulsed laser generation of holographic structures on metals

    NASA Astrophysics Data System (ADS)

    Wlodarczyk, Krystian L.; Ardron, Marcus; Weston, Nick J.; Hand, Duncan P.

    2016-03-01

    A laser-based process for the generation of phase holographic structures directly onto the surface of metals is presented. This process uses 35ns long laser pulses of wavelength 355nm to generate optically-smooth surface deformations on a metal. The laser-induced surface deformations (LISDs) are produced by either localized laser melting or the combination of melting and evaporation. The geometry (shape and dimension) of the LISDs depends on the laser processing parameters, in particular the pulse energy, as well as on the chemical composition of a metal. In this paper, we explain the mechanism of the LISDs formation on various metals, such as stainless steel, pure nickel and nickel-chromium Inconel® alloys. In addition, we provide information about the design and fabrication process of the phase holographic structures and demonstrate their use as robust markings for the identification and traceability of high value metal goods.

  10. Morphological effects of nanosecond- and femtosecond-pulsed laser ablation on human middle ear ossicles

    NASA Astrophysics Data System (ADS)

    Ilgner, Justus F. R.; Wehner, Martin M.; Lorenzen, Johann; Bovi, Manfred; Westhofen, Martin

    2006-01-01

    We evaluate the feasibility of nanosecond-pulsed and femtosecond-pulsed lasers for otologic surgery. The outcome parameters are cutting precision (in micrometers), ablation rate (in micrometers per second), scanning speed (in millimeters per second), and morphological effects on human middle ear ossicles. We examine single-spot ablations by a nanosecond-pulsed, frequency-tripled Nd:YAG laser (355 nm, beam diameter 10µm, pulse rate 2 kHz, power 250 mW) on isolated human mallei. A similar system (355 nm, beam diameter 20µm, pulse rate 10 kHz, power 160-1500 mW) and a femtosecond-pulsed CrLi:SAF-Laser (850 nm, pulse duration 100 fs, pulse energy 40 µJ, beam diameter 36 µm, pulse rate 1 kHz) are coupled to a scanner to perform bone surface ablation over a defined area. In our setups 1 and 2, marginal carbonization is visible in all single-spot ablations of 1-s exposures and longer: With an exposure time of 0.5 s, precise cutting margins without carbonization are observed. Cooling with saline solution result is in no carbonization at 1500 mW and a scan speed of 500 mm/s. Our third setup shows no carbonization but greater cutting precision, although the ablation volume is lower. Nanosecond- and femtosecond-pulsed laser systems bear the potential to increase cutting precision in otologic surgery.

  11. Drilling rate of five metals with picosecond laser pulses at 355, 532, and 1064 nm

    NASA Astrophysics Data System (ADS)

    Spiro, Alex; Lowe, Mary; Pasmanik, Guerman

    2012-06-01

    Experimental results on picosecond laser processing of aluminum, nickel, stainless steel, molybdenum, and tungsten are described. Hole drilling is employed for comparative analysis of processing rates in an air environment. Drilling rates are measured over a wide range of laser fluences (0.05-20 J/cm2). Experiments with picosecond pulses at 355 nm are carried out for all five metals and in addition at 532 nm, and 1064 nm for nickel. A comparison of drilling rate with 6-ps and 6-ns pulses at 355 nm is performed. The dependence of drilling rate on laser fluence measured with picosecond pulses demonstrates two logarithmic regimes for all five metals. To determine the transition from one regime to another, a critical fluence is measured and correlated with the thermal properties of the metals. The logarithmic regime at high-fluence range with UV picosecond pulses is reported for the first time. The energy efficiency of material removal for the different regimes is evaluated. The results demonstrate that UV picosecond pulses can provide comparable quality and higher processing rate compared with literature data on ablation with near-IR femtosecond lasers. A significant contribution of two-photon absorption to the ablation process is suggested to explain high processing rate with powerful UV picosecond pulses.

  12. Wavelength conversion with excimer lasers

    SciTech Connect

    Booker, J.; Eichner, L.; Storz, R.H.; Bucksbaum, P.H.; Freeman, R.R.

    1983-01-01

    Harmonic generation was studied using a high powered, ultrashort pulse KrF excimer laser. Third, fifth, and seventh harmonic outputs were observed at 82.8 nm, 49.7 nm, and 35.5 nm. The nonlinear interaction took place at the intersection of the laser focus with a pulsed, supersonic gas jet expansion.

  13. Pulsed laser micromachining of Mg-Cu-Gd bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Lin, Hsuan-Kai; Lee, Ching-Jen; Hu, Ting-Ting; Li, Chun-Han; Huang, J. C.

    2012-06-01

    Micromachining of Mg-based bulk metallic glasses (BMGs) is performed using two kinds of pulsed nanosecond lasers: a 355 nm ultraviolet (UV) laser and a 1064 nm infrared (IR) laser. Precision machining on the micrometer scale and the preservation of amorphous or short-range order characteristics are important for the application of BMGs in micro-electro-mechanical systems. A higher micromachining rate is achieved using the UV laser than using the IR laser due to a better absorption rate of the former by Mg-based BMGs and a higher photon energy. The cutting depth of Mg-based BMGs ranges from 1 to 80 μm depending on the laser parameters. By appropriate adjustment of the laser power and scan speed, successful machining of the Mg-based BMG with preservation of the amorphous phase is achieved after the laser irradiation process. Short-pulse laser cutting represents a suitable alternative for machining of micro components.

  14. Narrow linewidth picosecond UV pulsed laser with mega-watt peak power.

    PubMed

    Huang, Chunning; Deibele, Craig; Liu, Yun

    2013-04-01

    We demonstrate a master oscillator power amplifier (MOPA) burst mode laser system that generates 66 ps/402.5 MHz pulses with mega-watt peak power at 355 nm. The seed laser consists of a single frequency fiber laser (linewidth < 5 KHz), a high bandwidth electro-optic modulator (EOM), a picosecond pulse generator, and a fiber based preamplifier. A very high extinction ratio (45 dB) has been achieved by using an adaptive bias control of the EOM. The multi-stage Nd:YAG amplifier system allows a uniformly temporal shaping of the macropulse with a tunable pulse duration. The light output from the amplifier is converted to 355 nm, and over 1 MW peak power is obtained when the laser is operating in a 5-μs/10-Hz macropulse mode. The laser output has a transform-limited spectrum with a very narrow linewidth of individual longitudinal modes. The immediate application of the laser system is the laser-assisted hydrogen ion beam stripping for the Spallation Neutron Source (SNS). PMID:23572001

  15. Soft X-Ray Optics by Pulsed Laser Deposition

    NASA Technical Reports Server (NTRS)

    Fernandez, Felix E.

    1996-01-01

    Mo/Si and C/Co multilayers for soft x-ray optics were designed for spectral regions of interest in possible applications. Fabrication was effected by Pulsed Laser Deposition using Nd:YAG (355 nm) or excimer (248 nm) lasers in order to evaluate the suitability of this technique. Results for Mo/Si structures were not considered satisfactory due mainly to problems with particulate production and target surface modification during Si ablation. These problems may be alleviated by a two-wavelength approach, using separate lasers for each target. Results for C/Co multilayers are much more encouraging, since indication of good layering was observed for extremely thin layers. We expect to continue investigating this possibility. In order to compete with traditional PVD techniques, it is necessary to achieve film coverage uniformity over large enough areas. It was shown that this is feasible, and novel means of achieving it were devised.

  16. Flexible interference ablation using fibers to split and deliver laser pulses for direct plasmonic nanopatterning

    NASA Astrophysics Data System (ADS)

    Lin, Yuanhai; Zhang, Xinping

    2014-09-01

    Optical fibers are used to achieve a flexible interference ablation scheme, where the bundled end of fibers functions as a beam splitter and the fibers are used to deliver 5-ns ultraviolet laser pulses at 355 nm. The divergent beams from the free ends of fibers are overlapped onto the film of colloidal gold nanoparticles. A single-pulse single-shot exposure process leads to removal of the gold nanoparticles within the bright interference fringes. Gold nanogratings are produced on glass substrates coated with indium tin oxide after an annealing process at 400 °C. Fano coupling between plasmon and waveguide resonance modes was observed.

  17. Stable, high-power, Yb-fiber-based, picosecond ultraviolet generation at 355 nm using BiB3O6.

    PubMed

    Chaitanya Kumar, S; Sanchez Bautista, E; Ebrahim-Zadeh, M

    2015-02-01

    We report a stable, high-power, high-repetition-rate, picosecond ultraviolet (UV) source at 355 nm based on single-pass sum-frequency generation of a mode-locked Yb-fiber laser at 1064 nm in the nonlinear crystal BiB3O6. By performing single-pass second-harmonic generation (SHG) in a 30-mm-long LiB3O5 crystal, up to 9.1 W of average green power at 532 nm is obtained at a single-pass SHG efficiency of 54%. The generated green pulses have a duration of 16.2 ps at a repetition rate of 79.5 MHz, with a passive power stability better than 0.5% rms and a pointing stability <12  μrad over 1 h, in high beam quality. The green radiation is then sum-frequency-mixed with the fundamental in a 10-mm-long BiB3O6 crystal, providing as much as 1.2 W of average UV power, at an infrared-to-UV conversion efficiency of 7.2%, with a passive power stability better than 0.4% rms over 3 h and a pointing stability <45  μrad over 1 h, in TEM00 spatial profile. PMID:25680058

  18. Active photo-physical processes in the pulsed UV nanosecond laser exposure of photostructurable glass ceramic materials

    NASA Astrophysics Data System (ADS)

    Livingston, Frank E.; Adams, Paul M.; Helvajian, Henry

    2004-10-01

    We have performed experiments in which sample coupons of a commercial photostructurable glass ceramic (PSGC) material have been carefully exposed to various photon doses by pulsed UV nanosecond lasers at λ = 266 nm and λ = 355 nm. Following UV laser irradiation, the samples were analyzed by optical transmission spectroscopy to investigate the latent image and identify the photo-induced trapped (defect) state. The irradiated samples were thermally processed and the quenching of this trapped state and the concurrent growth of a spectral band associated with the formation of nanometer-scale metallic clusters was then observed using optical transmission spectroscopy. The results show that exposure at λ = 266 nm generates a defect state distribution that is markedly broader compared with the defect state distribution that is generated via λ = 355 nm excitation. The defect concentration formed with λ = 266 nm radiation is also much larger compared with the defect concentration associated with λ = 355 nm exposure. The results reveal that the metallic cluster concentration saturates with increasing laser irradiance, while the defect state concentration does not saturate. These studies have identified two precursor states of the exposed PSGC material that are tractable via spectroscopic techniques and could be used to refine the laser exposure and thermal processing of PSGC materials.

  19. Two-color short-pulse laser altimeter measurements of ocean surface backscatter.

    PubMed

    Abshire, J B; McGarry, J F

    1987-04-01

    The timing and correlation properties of pulsed laser backscatter from the ocean surface have been measured with a two-color short-pulse laser altimeter. The Nd: YAG laser transmitted 70-and 35-ps wide pulses simultaneously at 532 and 355 nm at nadir, and the time-resolved returns were recorded by a receiver with 800-ps response time. The time-resolved backscatter measured at both 330- and 1291-m altitudes showed little pulse broadening due to the submeter laser spot size. The differential delay of the 355- and 532-nm backscattered waveforms were measured with a rms error of ~75 ps. The change in aircraft altitudes also permitted the change in atmospheric pressure to be estimated by using the two-color technique. PMID:20454319

  20. Wavelength dependence of repetitive-pulse laser-induced damage threshold in beta-BaB2O4.

    PubMed

    Kouta, H

    1999-01-20

    The dependence on wavelength of repetitive-pulse (10 Hz, 8-10 ns) laser-induced damage on beta barium metaborate (BBO) has been investigated. The thresholds of dielectric breakdown in bulk crystal have been found to be 0.3 GW/cm(2) at 266 nm, 0.9 GW/cm(2) at 355 nm, 2.3 GW/cm(2) at 532 nm, and 4.5 GW/cm(2) at 1064 nm. Results indicate two-photon absorption at 266 and 355 nm, which helps to produce an avalanche effect that causes breakdown at each of the four wavelengths tested. Neither the BBO refractive indices nor the absorption spectrum change until breakdown occurs. PMID:18305644

  1. Fluorescence of silicon nanoparticles prepared by nanosecond pulsed laser

    SciTech Connect

    Liu, Chunyang Sui, Xin; Yang, Fang; Ma, Wei; Li, Jishun; Xue, Yujun; Fu, Xing

    2014-03-15

    A pulsed laser fabrication method is used to prepare fluorescent microstructures on silicon substrates in this paper. A 355 nm nanosecond pulsed laser micromachining system was designed, and the performance was verified and optimized. Fluorescence microscopy was used to analyze the photoluminescence of the microstructures which were formed using the pulsed laser processing technique. Photoluminescence spectra of the microstructure reveal a peak emission around 500 nm, from 370 nm laser irradiation. The light intensity also shows an exponential decay with irradiation time, which is similar to attenuation processes seen in porous silicon. The surface morphology and chemical composition of the microstructure in the fabricated region was also analyzed with multifunction scanning electron microscopy. Spherical particles are produced with diameters around 100 nm. The structure is compared with porous silicon. It is likely that these nanoparticles act as luminescence recombination centers on the silicon surface. The small diameter of the particles modifies the band gap of silicon by quantum confinement effects. Electron-hole pairs recombine and the fluorescence emission shifts into the visible range. The chemical elements of the processed region are also changed during the interaction between laser and silicon. Oxidation and carbonization play an important role in the enhancement of fluorescence emission.

  2. Morphological effects of nanosecond- and femtosecond-pulsed laser ablation on human middle ear ossicles

    NASA Astrophysics Data System (ADS)

    Ilgner, Justus F.; Wehner, Martin; Lorenzen, Johann; Bovi, Manfred; Westhofen, Martin

    2004-07-01

    Introduction: Since the early 1980's, a considerable number of different laser systems have been introduced into reconstructive middle ear surgery. Depending on the ablation mode, however, pressure transients or thermal load to inner ear structures continue to be subject to discussion. Material and methods: We examined single spot ablations by a nanosecond-pulsed, frequency-tripled Nd:YAG-Laser (355 nm, beam diameter 10 μm, pulse rate 2 kHz, power 250 mW) on isolated human mallei. In a second set-up, a similar system (355 nm, beam diameter 20 μm, pulse rate 10 kHz, power 160-1500 mW) was coupled to a scanner to examine the morphology of bone surface ablation over an area of 1mm2. A third set-up employed a femtosecond-pulsed CrLiSAF-Oscillator (850 nm, pulse duration 100 fs, pulse energy 40μJ, beam diameter 36 μm, pulse rate 1 kHz) to compare these results with the former and with those obtained from a commercially available Er:YAG laser for ear surgery (Zeiss ORL E, 2940 nm, single pulse, energy 10-25 mJ). Results: In set-up 1 and 2, thermal effects in terms of marginal carbonization were visible in all single spot ablations of 1 s and longer. With ablations of 0.5 seconds, precise cutting margins with preservation of surrounding tissue could be observed. Cooling with saline solution resulted in no carbonization at 1500 mW and a scan speed of 500 mm/s. Set-up 3 equally showed no carbonization, although scanning times were longer and ablation less pronounced. Conclusion: Ultrashort pulsed laser systems could potentially aid further refinement of reconstructive microsurgery of the middle ear.

  3. High power amplification of a tailored-pulse fiber laser

    NASA Astrophysics Data System (ADS)

    Saby, Julien; Sangla, Damien; Caplette, Stéphane; Boula-Picard, Reynald; Drolet, Mathieu; Reid, Benoit; Salin, François

    2013-02-01

    We demonstrate the amplification of a 1064nm pulse-programmable fiber laser with Large Pitch Rod-Type Fibers of various Mode field diameters from 50 to 70 μm. We have developed a high power fiber amplifier at 1064nm delivering up to 100W/1mJ at 15ns pulses and 30W/300μJ at 2ns with linearly polarized and diffraction limited output beam (M²<1.2). The specific seeder from ESI - Pyrophotonics Lasers used in the experiment allowed us to obtain tailored-pulse programmable on demand at the output from 2ns to 600ns for various repetition rates from 10 to 500 kHz. We could demonstrate square pulses or any other shapes (also multi-pulses) whatever the repetition rate or the pulse duration. We also performed frequency conversion with LBO crystals leading to 50W at 532nm and 25W at 355nm with a diffraction limited output. Similar experiments performed at 1032nm are also reported.

  4. The growth of nanostructured Cu2ZnSnS4 films by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Che Sulaiman, Nurul Suhada; Nee, Chen Hon; Yap, Seong Ling; Lee, Yen Sian; Tou, Teck Yong; Yap, Seong Shan

    2015-11-01

    In this work, we investigated on the growth of Cu2ZnSnS4 films by using pulsed Nd:YAG laser (355 nm) ablation of a quaternary Cu2ZnSnS4 target. Depositions were performed at laser fluence from 0.5 to 4 J cm-2. The films were grown at substrate temperature from 27 °C to 300 °C onto glass and silicon substrates. The dependence of the film morphology, composition, and optical properties are studied and discussed with respect to laser fluence and substrate temperature. Composition analysis from energy dispersive X-ray spectral results show that CZTS films with composition near stoichiometric were obtained at an optimized fluence at 2 J cm-2 by 355 nm laser where the absorption coefficient is >104 cm-1, and optical band gap from a Tauc plot was ∼1.9 eV. At high fluence, Cu and Sn rich droplets were detected which affect the overall quality of the films. The presence of the droplets was associated to the high degree of preferential and subsurface melting on the target during high fluence laser ablation. Crystallinity and optical band gap (1.5 eV) were improved when deposition was performed at substrate temperature of 100 °C.

  5. Influence of pulsed Nd3+ : YAG laser beam profile and wavelength on microscribing of copper and aluminum thin films

    NASA Astrophysics Data System (ADS)

    Nammi, Srinagalakshmi; Vasa, Nilesh J.; Balaganesan, G.; Gupta, Sanjay; Mathur, Anil C.

    2015-10-01

    Evenly spaced conductive grids of copper and aluminum thin films on polyimide substrate are used for parabolic reflector antennas aboard telecommunications satellites. Laser microscribing of thin films using a flat-top and Gaussian laser beam profile is analyzed with 95% overlapping of the diameter of the laser spot. Laser scribing is performed using the Q-switched Nd3+: YAG (355, 532 nm) laser. The influence of laser irradiation and beam shape on the scribed microchannel width, depth, and surface characteristics is experimentally analyzed using a noncontact optical profilometer and scanning electron microscope (SEM). Laser scribing using a flat-top profile produced near rectangular microchannels in copper thin films. Using the Gaussian profile, the probability of melting is greater than vaporization as observed using SEM images; this melt pool plays a prominent role in resolidification at the edges. The depth of the scribe channel is observed to be 20% higher for the 532-nm wavelength compared to the 355-nm wavelength. The effect of different environments such as air, water, and vacuum on the channel depth and quality is reported. The response of aluminum and copper thin films for high fluences is also studied. Thermal modeling of the laser-material interaction has been attempted by assuming the plasma electron temperature as the laser ablation temperature for modeling the recession rate and depth for a single laser pulse. Model results agree with experimental data showing greater depth for 532 nm compared to 355 nm.

  6. Laser pulse stacking method

    DOEpatents

    Moses, Edward I.

    1992-01-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter.

  7. Laser pulse stacking method

    DOEpatents

    Moses, E.I.

    1992-12-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter. 2 figs.

  8. Selective removal of composite sealants with near-UV laser pulses

    NASA Astrophysics Data System (ADS)

    Louie, Tiffany M.; Jones, Robert S.; Sarma, Anupama V.; Fried, Daniel

    2004-05-01

    It is often necessary to replace pit and fissure sealants and composite restorations. This task is complicated by the necessity for complete removal of the remaining composite to enable suitable adhesion of new composite. Previous studies have shown that lasers pulses from a frequency-tripled Nd:YAG laser (355-nm) can selectively remove residual composite after orthodontic bracket removal on enamel surfaces. UV laser light is preferentially absorbed by polymeric resins and the organic content of the tooth enamel. The objective of this study was to determine if such laser pulses are suitable for selective removal of the old composite from pit and fissure sealants and restorations without damaging surrounding sound tissues. Optical coherence tomography was used to acquire optical cross sections of the occlusal topography and peripheral tooth structure non-destructively before application of the sealants, after sealant application, and after sealant removal with 355-nm laser pulses with intensities ranging from 0-10 J/cm2. Thermocouples were used to monitor the temperature in the pulp chamber during composite removal under clinically relevant ablation rates, i.e., 30 Hz and 30 mJ per laser pulse. At an irradiation intensity of 1.3 J/cm2 pit and fissure sealants were completely removed without visible damage to the underlying enamel. At intensities above 1.5 J/cm2, the laser removes the resin layer while at the same time preferentially etching the surface of the enamel. Temperature excursions in the pulp chamber of extracted teeth was limited to less than 5°C if air-cooling was used during the rapid removal (1-2 min) of sealants, water-cooling was not needed. This is the first presentation of a method for the selective removal of composite restorative materials without damage to the underlying sound tooth structure.

  9. Laser fusion pulse shape controller

    DOEpatents

    Siebert, Larry D.

    1977-01-01

    An apparatus for controlling the pulse shape, i.e., the pulse duration and intensity pattern, of a pulsed laser system, and which is particularly well adapted for controlling the pellet ignition pulse in a laser-driven fusion reaction system. The apparatus comprises a laser generator for providing an optical control pulse of the shape desired, a pulsed laser triggered by the control pulse, and a plurality of optical Kerr-effect gates serially disposed at the output of the pulsed laser and selectively triggered by the control pulse to pass only a portion of the pulsed laser output generally corresponding in shape to the control pulse.

  10. Submicro foaming in biopolymers by UV pulsed laser irradiation

    NASA Astrophysics Data System (ADS)

    Oujja, Mohamed; Rebollar, Esther; Gaspard, Solenne; Abrusci, Concepción; Catalina, Fernando; Lazare, Sylvain; Castillejo, Marta

    2006-05-01

    Microstructuring of polymers and biopolymers is of application in medical technology and biotechnology. Using different fabrication techniques three-dimensionally shaped and micro structured constructs can be developed for drug release and tissue engineering. As an alternative method, laser microstructuring offers a series of advantages including high resolution capability, low heat deposition in the substrate and high level of flexibility. In this work we present evidence of laser microfoam formation in collagen and gelatine by nanosecond pulsed laser irradiation in the UV at 248 and 266 nm. Irradiation at 355 nm produces melting followed by resolidification of the substrate, whereas irradiation at 532 and 1064 nm induces the formation of craters of irregular contours. Single pulse irradiation of a collagen film with an homogenized KrF microbeam yields a 20 μm thick expanded layer, which displays the interesting features of a nanofibrous 3-dimensional network with open cells. In gelatine, irradiation at 248 and 266 nm produces similar morphological modifications. The effect of the structural properties of the substrate on the laser induced microfoam is studied by comparing gelatines differing in gel strength (Bloom values 225 and 75) and in crosslinking degree. While results are discussed on the basis of thermal and photomechanical mechanisms and of the role played by the water content of the substrates, it is thought that such structures could have a biomimic function in future 3D cell culture devices for research.

  11. Soft x ray optics by pulsed laser deposition

    NASA Technical Reports Server (NTRS)

    Fernandez, Felix E.

    1994-01-01

    A series of molybdenum thin film depositions by PLD (Pulsed Laser Deposition) have been carried out, seeking appropriate conditions for multilayer fabrication. Green (532 nm) and UV (355 nm) light pulses, in a wide range of fluences, were used. Relatively large fluences (in comparison with Si) are required to cause evaporation of molybdenum. The optical penetration depths and reflectivities for Mo at these two wavelengths are comparable, which means that results should be, and do appear to be similar for equal fluences. For all fluences above threshold used, a large number of incandescent particles is ejected by the target (either a standard Mo sputtering target or a Mo sheet were tried), together with the plasma plume. Most of these particles are clearly seen to bounce off the substrate. The films were observed with light microscopy using Nomarski and darkfield techniques. There is no evidence of large debris. Smooth films plus micron-sized droplets are usually seen. The concentration of these droplets embedded in the film appears not to vary strongly with the laser fluence employed. Additional characterization with SEM and XRD is under way.

  12. Magneto-absorption effects in magnetic-field assisted laser ablation of silicon by UV nanosecond pulses

    NASA Astrophysics Data System (ADS)

    Farrokhi, H.; Gruzdev, V.; Zheng, H. Y.; Rawat, R. S.; Zhou, W.

    2016-06-01

    A constant magnetic field can significantly improve the quality and speed of ablation by nanosecond laser pulses. These improvements are usually attributed to the confinement of laser-produced plasma by the magnetic field and specific propagation effects in the magnetized plasma. Here we report a strong influence of constant axial magnetic field on the ablation of silicon by 20-ns laser pulses at wavelength 355 nm, which results in an increase of ablation depth by a factor of 1.3 to 69 depending on laser parameters and magnitude of the magnetic field. The traditional plasma effects do not explain this result, and magneto-absorption of silicon is proposed as one of the major mechanisms of the significant enhancement of ablation.

  13. Nanofabrication with Pulsed Lasers

    NASA Astrophysics Data System (ADS)

    Kabashin, A. V.; Delaporte, Ph.; Pereira, A.; Grojo, D.; Torres, R.; Sarnet, Th.; Sentis, M.

    2010-03-01

    An overview of pulsed laser-assisted methods for nanofabrication, which are currently developed in our Institute (LP3), is presented. The methods compass a variety of possibilities for material nanostructuring offered by laser-matter interactions and imply either the nanostructuring of the laser-illuminated surface itself, as in cases of direct laser ablation or laser plasma-assisted treatment of semiconductors to form light-absorbing and light-emitting nano-architectures, as well as periodic nanoarrays, or laser-assisted production of nanoclusters and their controlled growth in gaseous or liquid medium to form nanostructured films or colloidal nanoparticles. Nanomaterials synthesized by laser-assisted methods have a variety of unique properties, not reproducible by any other route, and are of importance for photovoltaics, optoelectronics, biological sensing, imaging and therapeutics.

  14. Nanofabrication with Pulsed Lasers

    PubMed Central

    2010-01-01

    An overview of pulsed laser-assisted methods for nanofabrication, which are currently developed in our Institute (LP3), is presented. The methods compass a variety of possibilities for material nanostructuring offered by laser–matter interactions and imply either the nanostructuring of the laser-illuminated surface itself, as in cases of direct laser ablation or laser plasma-assisted treatment of semiconductors to form light-absorbing and light-emitting nano-architectures, as well as periodic nanoarrays, or laser-assisted production of nanoclusters and their controlled growth in gaseous or liquid medium to form nanostructured films or colloidal nanoparticles. Nanomaterials synthesized by laser-assisted methods have a variety of unique properties, not reproducible by any other route, and are of importance for photovoltaics, optoelectronics, biological sensing, imaging and therapeutics. PMID:20672069

  15. Pulsed gas laser

    DOEpatents

    Anderson, Louis W.; Fitzsimmons, William A.

    1978-01-01

    A pulsed gas laser is constituted by Blumlein circuits wherein space metal plates function both as capacitors and transmission lines coupling high frequency oscillations to a gas filled laser tube. The tube itself is formed by spaced metal side walls which function as connections to the electrodes to provide for a high frequency, high voltage discharge in the tube to cause the gas to lase. Also shown is a spark gap switch having structural features permitting a long life.

  16. Pulsed atomic soliton laser

    SciTech Connect

    Carr, L.D.; Brand, J.

    2004-09-01

    It is shown that simultaneously changing the scattering length of an elongated, harmonically trapped Bose-Einstein condensate from positive to negative and inverting the axial portion of the trap, so that it becomes expulsive, results in a train of self-coherent solitonic pulses. Each pulse is itself a nondispersive attractive Bose-Einstein condensate that rapidly self-cools. The axial trap functions as a waveguide. The solitons can be made robustly stable with the right choice of trap geometry, number of atoms, and interaction strength. Theoretical and numerical evidence suggests that such a pulsed atomic soliton laser can be made in present experiments.

  17. Pulsed laser kinetic studies of liquids under high pressure

    NASA Astrophysics Data System (ADS)

    Eyring, E. M.

    1993-06-01

    Experiments have been developed for measuring the rates of chemical reactions liquids and in supercritical CO2. A pulsed (Q-switch) Nd:YAG laser at 355 nm was the pump beam for laser flash photolysis studies of molybdenum and tungsten hexacarbonyls undergoing ligand displacement reactions by bidentate chelating agents such as 2,2'-bipyridine in toluene. Experiments were carried out at 0.1 to 150 MPa. In the case of molybdenum complexes, the reaction mechanism for thermal ring closure is found from activation volumes to change from associative interchange to dissociative interchange as substituents on the 2,2'-bipyridine ligands become bulkier. In a similar study of more rigid, substituted phenanthroline bidentate ligands it was found that substituent bulkiness had little effect on the thermal ring closure mechanism. Similar high pressure flash photolysis experiments with tungsten hexacarbonyl have also been completed. The concentration dependence of the fluorescence and nonradiative decay quantum yields for cresyl violet in several solvents has been reported as well as stability constants for the complexation of lithium ion by four different crown ethers dissolved in a room temperature molten salt.

  18. Pulsed laser kinetic studies of liquids under high pressure

    SciTech Connect

    Eyring, E.M.

    1993-06-21

    Experiments have been developed for measuring the rates of chemical reactions liquids and in supercritical Co[sub 2]. A pulsed (Q-switch) Nd:YAG laser at 355 nm was the pump beam for laser flash photolysis studies of molybdenum and tungsten hexacarbonyls undergoing ligand displacement reactions by bidentate chelating agents such as 2,2[prime]-bipyridine in toluene. Experiments were carried out at 0.1 to 150 MPa. In the case of molybdenum complexes, the reaction mechanism for thermal ring closure is found from activation volumes to change from associative interchange to dissociative interchange as substituents on the 2,2[prime]-bipyridine ligands become bulkier. In a similar study of more rigid, substituted phenanthroline bidentate ligands it was found that substituent bulkiness had little effect on the thermal ring closure mechanism. Similar high pressure flash photolysis experiments with tungsten hexacarbonyl have also been completed. The concentration dependence of the fluorescence and nonradiative decay quantum yields for cresyl violet in several solvent have been reported as well as stability constants for the complexation of lithium ion by four different crown ethers dissolved in a room temperature molten salt.

  19. Pulsed inductive HF laser

    NASA Astrophysics Data System (ADS)

    Razhev, A. M.; Churkin, D. S.; Kargapol'tsev, E. S.; Demchuk, S. V.

    2016-03-01

    We report the results of experimentally investigated dependences of temporal, spectral and spatial characteristics of an inductive HF-laser generation on the pump conditions. Gas mixtures H2 – F2(NF3 or SF66) and He(Ne) – H2 – F2(NF3 or SF6) were used as active media. The FWHM pulse duration reached 0.42 μs. This value corresponded to a pulsed power of 45 kW. For the first time, the emission spectrum of an inductive HF laser was investigated, which consisted of seven groups of bands with centres around the wavelengths of 2732, 2736, 2739, 2835, 2837, 2893 and 2913 nm. The cross section profile of the laser beam was a ring with a diameter of about 20 mm and width of about 5 mm. Parameters of laser operation in the repetitively pulsed regime were sufficiently stable. The amplitude instability of light pulses was no greater than 5% – 6%.

  20. Laser pulse sampler

    DOEpatents

    Vann, Charles

    1998-01-01

    The Laser Pulse Sampler (LPS) measures temporal pulse shape without the problems of a streak camera. Unlike the streak camera, the laser pulse directly illuminates a camera in the LPS, i.e., no additional equipment or energy conversions are required. The LPS has several advantages over streak cameras. The dynamic range of the LPS is limited only by the range of its camera, which for a cooled camera can be as high as 16 bits, i.e., 65,536. The LPS costs less because there are fewer components, and those components can be mass produced. The LPS is easier to calibrate and maintain because there is only one energy conversion, i.e., photons to electrons, in the camera.

  1. Laser pulse sampler

    DOEpatents

    Vann, C.

    1998-03-24

    The Laser Pulse Sampler (LPS) measures temporal pulse shape without the problems of a streak camera. Unlike the streak camera, the laser pulse directly illuminates a camera in the LPS, i.e., no additional equipment or energy conversions are required. The LPS has several advantages over streak cameras. The dynamic range of the LPS is limited only by the range of its camera, which for a cooled camera can be as high as 16 bits, i.e., 65,536. The LPS costs less because there are fewer components, and those components can be mass produced. The LPS is easier to calibrate and maintain because there is only one energy conversion, i.e., photons to electrons, in the camera. 5 figs.

  2. Effect of particle size on the UV pulsed-laser scribing in computational fluid dynamics-based simulations

    NASA Astrophysics Data System (ADS)

    Park, Kwan-Woo; Na, Suck-Joo

    2010-06-01

    A computational model for UV pulsed-laser scribing of silicon target is presented and compared with experimental results. The experiments were performed with a high-power Q-switched diode-pumped solid state laser which was operated at 355 nm. They were conducted on n-type 500 μm thick silicon wafers. The scribing width and depth were measured using scanning electron microscopy. The model takes into account major physics, such as heat transfer, evaporation, multiple reflections, and Rayleigh scattering. It also considers the attenuation and redistribution of laser energy due to Rayleigh scattering. Especially, the influence of the average particle sizes in the model is mainly investigated. Finally, it is shown that the computational model describing the laser scribing of silicon is valid at an average particle size of about 10 nm.

  3. Laser pulse detector

    DOEpatents

    Mashburn, D.N.; Akerman, M.A.

    1979-08-13

    A laser pulse detector is provided which is small and inexpensive and has the capability of detecting laser light of any wavelength with fast response (less than 5 nanoseconds rise time). The laser beam is focused onto the receiving end of a graphite rod coaxially mounted within a close-fitting conductive, open-end cylindrical housing so that ablation and electric field breakdown of the resulting plasma occurs due to a bias potential applied between the graphite rod and housing. The pulse produced by the breakdown is transmitted through a matched impedance coaxial cable to a recording device. The cable is connected with its central lead to the graphite rod and its outer conductor to the housing.

  4. Laser pulse detector

    DOEpatents

    Mashburn, Douglas N.; Akerman, M. Alfred

    1981-01-01

    A laser pulse detector is provided which is small and inexpensive and has the capability of detecting laser light of any wavelength with fast response (less than 5 nanoseconds rise time). The laser beam is focused onto the receiving end of a graphite rod coaxially mounted within a close-fitting conductive, open-end cylindrical housing so that ablation and electric field breakdown of the resulting plasma occurs due to a bias potential applied between the graphite rod and housing. The pulse produced by the breakdown is transmitted through a matched impedance coaxial cable to a recording device. The cable is connected with its central lead to the graphite rod and its outer conductor to the housing.

  5. Laser-drilled micro-hole arrays on polyurethane synthetic leather for improvement of water vapor permeability

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Wang, A. H.; Zheng, R. R.; Tang, H. Q.; Qi, X. Y.; Ye, B.

    2014-06-01

    Three kinds of lasers at 1064, 532 and 355 nm wavelengths respectively were adopted to construct micro-hole arrays on polyurethane (PU) synthetic leather with an aim to improve water vapor permeability (WVP) of PU synthetic leather. The morphology of the laser-drilled micro-holes was observed to optimize laser parameters. The WVP and slit tear resistance of the laser-drilled leather were measured. Results show that the optimized pulse energy for the 1064, 532 and 355 nm lasers are 0.8, 1.1 and 0.26 mJ, respectively. The diameters of the micro-holes drilled with the optimized laser pulse energy were about 20, 15 and 10 μm, respectively. The depths of the micro-holes drilled with the optimized pulse energy were about 21, 60 and 69 μm, respectively. Compared with the untreated samples, the highest WVP growth ratio was 38.4%, 46.8% and 53.5% achieved by the 1064, 532 and 355 nm lasers, respectively. And the highest decreasing ratio of slit tear resistance was 11.1%, 14.8%, and 22.5% treated by the 1064, 532 and 355 nm lasers, respectively. Analysis of the interaction mechanism between laser beams at three kinds of laser wavelengths and the PU synthetic leather revealed that laser micro-drilling at 355 nm wavelength displayed both photochemical ablation and photothermal ablation, while laser micro-drilling at 1064 and 532 nm wavelengths leaded to photothermal ablation only.

  6. CW-pulsed laser

    SciTech Connect

    Wert, J. C.

    1981-09-01

    An apparatus for generating a spatially coherent laser beam having both CW and pulsed modes is disclosed. The modes are generated in differing volumetric regions of a single gain medium excited by a continuous energy pump. The CW portion of the output beam passes from the gain medium through a partially transmissive output coupling. The pulsed modes in the output beam are created in the respective region of the gain medium when transition materials from a selected group are stimulated to undergo an abrupt change between their reflective and transmissive states. Either cavity dumped or Q-switched configurations can be created by selective and patterned location of the transition materials at the ends of the gain medium. Symmetric organization of the volumetric regions within the gain medium allows temporal superposition of the two modes while maintaining spatial distinctiveness within the laser beam generated.

  7. Pulsed laser microtomograph

    NASA Astrophysics Data System (ADS)

    Antonov, V. B.; Bonch-Bruevich, A. M.; Vasil'Ev, V. I.; Ionov, L. N.; Nikolaev, S. D.; Starobogatov, I. O.

    1994-12-01

    This paper describes a pulsed laser tomographic apparatus that has been implemented in practice and has a spatial resolution of 2-5 microns in the transverse direction and approximately 70 microns in the probe-radiation propagation direction. Experiments have been performed with model objects. Results have been obtained that confirm the possibility of early diagnosis of skin mycoses that cannot be diagnosed by existing methods.

  8. Optical system for Argus 355-nm 90-mm aperture target-illumination experiments

    SciTech Connect

    Johnson, B.C.; Boyd, R.; Hermes, G.; Hildum, J.S.; Linford, G.; Martin, W.E.

    1982-02-01

    The requirements of laser alignment, crystal tuning, target alignment, and laser beam diagnosis are provided by this optical system. Initial setup and preshot alignment techniques are discussed. Layout and operation are contrasted with the 532 nm target experiments.

  9. Laser beam pulse formatting method

    DOEpatents

    Daly, Thomas P.; Moses, Edward I.; Patterson, Ralph W.; Sawicki, Richard H.

    1994-01-01

    A method for formatting a laser beam pulse (20) using one or more delay loops (10). The delay loops (10) have a partially reflective beam splitter (12) and a plurality of highly reflective mirrors (14) arranged such that the laser beam pulse (20) enters into the delay loop (10) through the beam splitter (12) and circulates therein along a delay loop length (24) defined by the mirrors (14). As the laser beam pulse (20) circulates within the delay loop (10) a portion thereof is emitted upon each completed circuit when the laser beam pulse (20) strikes the beam splitter (12). The laser beam pulse (20) is thereby formatted into a plurality of sub-pulses (50, 52, 54 and 56). The delay loops (10) are used in combination to produce complex waveforms by combining the sub-pulses (50, 52, 54 and 56) using additive waveform synthesis.

  10. Laser beam pulse formatting method

    DOEpatents

    Daly, T.P.; Moses, E.I.; Patterson, R.W.; Sawicki, R.H.

    1994-08-09

    A method for formatting a laser beam pulse using one or more delay loops is disclosed. The delay loops have a partially reflective beam splitter and a plurality of highly reflective mirrors arranged such that the laser beam pulse enters into the delay loop through the beam splitter and circulates therein along a delay loop length defined by the mirrors. As the laser beam pulse circulates within the delay loop a portion thereof is emitted upon each completed circuit when the laser beam pulse strikes the beam splitter. The laser beam pulse is thereby formatted into a plurality of sub-pulses. The delay loops are used in combination to produce complex waveforms by combining the sub-pulses using additive waveform synthesis. 8 figs.

  11. Micro pulse laser radar

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D. (Inventor)

    1993-01-01

    An eye safe, compact, solid state lidar for profiling atmospheric cloud and aerosol scattering is disclosed. The transmitter of the micro pulse lidar is a diode pumped micro-J pulse energy, high repetition rate Nd:YLF laser. Eye safety is obtained through beam expansion. The receiver employs a photon counting solid state Geiger mode avalanche photodiode detector. Data acquisition is by a single card multichannel scaler. Daytime background induced quantum noise is controlled by a narrow receiver field-of-view and a narrow bandwidth temperature controlled interference filter. Dynamic range of the signal is limited to optical geometric signal compression. Signal simulations and initial atmospheric measurements indicate that micropulse lider systems are capable of detecting and profiling all significant cloud and aerosol scattering through the troposphere and into the stratosphere. The intended applications are scientific studies and environmental monitoring which require full time, unattended measurements of the cloud and aerosol height structure.

  12. Laser triggering of water switches in terrawatt-class pulse power accelerators.

    SciTech Connect

    Woodworth, Joseph Ray; Johnson, David Lee (Titan Pulse Sciences, San Leandro, CA); Wilkins, Frank (Bechtel Nevada, Las Vegas, NV); Van De Valde, David (EG&G Technical Services, Albuquerque, NM); Sarkisov, Gennady Sergeevich; Zameroski, Nathan D.; Starbird, Robert L.

    2005-12-01

    Focused Beams from high-power lasers have been used to command trigger gas switches in pulse power accelerators for more than two decades. This Laboratory-Directed Research and Development project was aimed at determining whether high power lasers could also command trigger water switches on high-power accelerators. In initial work, we determined that focused light from three harmonics of a small pulsed Nd:YAG laser at 1064 nm, 532 nm, and 355 nm could be used to form breakdown arcs in water, with the lowest breakdown thresholds of 110 J/cm{sup 2} or 14 GW/cm{sup 2} at 532 nm in the green. In laboratory-scale laser triggering experiments with a 170-kV pulse-charged water switch with a 3-mm anode-cathode gap, we demonstrated that {approx}90 mJ of green laser energy could trigger the gap with a 1-{sigma} jitter of less than 2ns, a factor of 10 improvement over the jitter of the switch in its self breaking mode. In the laboratory-scale experiments we developed optical techniques utilizing polarization rotation of a probe laser beam to measure current in switch channels and electric field enhancements near streamer heads. In the final year of the project, we constructed a pulse-power facility to allow us to test laser triggering of water switches from 0.6- MV to 2.0 MV. Triggering experiments on this facility using an axicon lens for focusing the laser and a switch with a 740 kV self-break voltage produced consistent laser triggering with a {+-} 16-ns 1-{sigma} jitter, a significant improvement over the {+-} 24-ns jitter in the self-breaking mode.

  13. High power ultrashort pulse lasers

    SciTech Connect

    Perry, M.D.

    1994-10-07

    Small scale terawatt and soon even petawatt (1000 terawatt) class laser systems are made possible by application of the chirped-pulse amplification technique to solid-state lasers combined with the availability of broad bandwidth materials. These lasers make possible a new class of high gradient accelerators based on the large electric fields associated with intense laser-plasma interactions or from the intense laser field directly. Here, we concentrate on the laser technology to produce these intense pulses. Application of the smallest of these systems to the production of high brightness electron sources is also introduced.

  14. High-power pulsed lasers

    SciTech Connect

    Holzrichter, J.F.

    1980-04-02

    The ideas that led to the successful construction and operation of large multibeam fusion lasers at the Lawrence Livermore Laboratory are reviewed. These lasers are based on the use of Nd:glass laser materials. However, most of the concepts are applicable to any laser being designed for fusion experimentation. This report is a summary of lectures given by the author at the 20th Scottish University Summer School in Physics, on Laser Plasma Interaction. This report includes basic concepts of the laser plasma system, a discussion of lasers that are useful for short-pulse, high-power operation, laser design constraints, optical diagnostics, and system organization.

  15. Laser system using ultra-short laser pulses

    SciTech Connect

    Dantus, Marcos; Lozovoy, Vadim V.; Comstock, Matthew

    2009-10-27

    A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal.

  16. Lasers for ultrashort light pulses

    SciTech Connect

    Herrmann, J.; Wilhelmi, B.

    1987-01-01

    The present rapid expansion of research work on picosecond lasers and their application makes it difficult to survey and comprehend the large number of publications in this field. This book aims to provide an introduction to the field starting with the very basic and moving on to an advanced level. Contents: Fundamentals of the interaction between light pulses and matter; Fundamentals of lasers for ultrashort light pulses; Methods of measurement; Active modelocking; Synchronously pumped lasers; Passive modelocking of dye lasers; Passive modelocking of solid state lasers; Nonstationary nonlinear optical processes; Ultrafast spectroscopy.

  17. Standoff detection of biological agents using laser induced fluorescence—a comparison of 294 nm and 355 nm excitation wavelengths

    PubMed Central

    Farsund, Øystein; Rustad, Gunnar; Skogan, Gunnar

    2012-01-01

    Standoff detection measuring the fluorescence spectra of seven different biological agents excited by 294 nm as well as 355 nm wavelength laser pulses has been undertaken. The biological warfare agent simulants were released in a semi-closed aerosol chamber at 210 m standoff distance and excited by light at either of the two wavelengths using the same instrument. Significant differences in several of the agents’ fluorescence response were seen at the two wavelengths. The anthrax simulants’ fluorescence responses were almost an order of magnitude stronger at the shorter wavelength excitation. However, most importantly, the fluorescence spectra were significantly more dissimilar at 294 nm than at 355 nm excitation with ~7 nm spectral resolution. This indicates that classification of the substances should be possible with a lower error rate for standoff detection using 294 nm rather than 355 nm excitation wavelength, or even better, utilizing both. PMID:23162732

  18. Nanostructuring of single-crystal silicon carbide by picosecond UV laser radiation

    SciTech Connect

    Barmina, E V; Serkov, A A; Shafeev, G A

    2013-12-31

    Surface nanostructures are produced on single-crystal 4H-SiC by laser ablation in water using a Nd : YAG laser (355-nm wavelength, 10-ps pulse duration) as a radiation source. The morphology of the nanostructured surface and the nanostructure size distribution are examined in relation to the energy density of the incident laser beam. The potential of the described process for improving the luminosity of light-emitting diodes on silicon carbide substrates is discussed. (letters)

  19. Synthesis of GaN nanocrystallites by pulsed laser ablation in pure nitrogen background gases

    NASA Astrophysics Data System (ADS)

    Yoshida, Takehito; Kakumoto, Soichiro; Sugimura, Akira; Umezu, Ikurou

    2011-09-01

    GaN is a promising material not only for electronic devices but also for photocatalysts. Synthesis of GaN nanocrystal is a key issue to improve performance for these applications. In the present study, GaN nanocrystallites have been synthesized by pulsed laser ablation (PLA), where safe and inactive pure N2 gases were used as reactive background gases. The third harmonics beam of a Q-switched Nd:YAG laser (355 nm, 10 mJ/pulse, 4 J/(cm2 pulse)) was used to ablate a sintered high purity GaN target. The deposition substrates were not heated. It was clarified that the formed GaN nanoparticles contained a hexagonal system with the wurtzite structure. The diameter of the nanocrystallites was about 10 nm, and showed only little dependence on the background gas pressure, while the porosity of the assembly of nanocrystallites and content of GaN nanocrystallites in the assembly increased with background gas pressure. Highly porous nanometer-sized GaN film obtained at higher gas pressure is considered to be candidate structures for the photocatalysts.

  20. Calorimeters for pulsed lasers: calibration.

    PubMed

    Thacher, P D

    1976-07-01

    A calibration technique is developed and tested in which a calorimeter used for single-shot laser pulse energy measurements is calibrated with reference to a cw power standard using a chopped cw laser beam. A pulsed laser is required only to obtain the relative time response of the calorimeter to a pulse. With precautions as to beam alignment and wavelength, the principal error of the technique is that of the cw standard. Calibration of two thermopiles with cone receivers showed -2.5% and -3.5% agreement with previous calibrations made by the National Bureau of Standards. PMID:20165270

  1. Mechanisms governing the interaction of metallic particles with nanosecond laser pulses.

    PubMed

    Demos, Stavros G; Negres, Raluca A; Raman, Rajesh N; Shen, Nan; Rubenchik, Alexander M; Matthews, Manyalibo J

    2016-04-01

    The interaction of nanosecond laser pulses at 1064- and 355-nm with micro-scale, nominally spherical metallic particles is investigated in order to elucidate the governing interaction mechanisms as a function of material and laser parameters. The experimental model used involves the irradiation of metal particles located on the surface of transparent plates combined with time-resolved imaging capable of capturing the dynamics of particle ejection, plume formation and expansion along with the kinetics of the dispersed material from the liquefied layer of the particle. The mechanisms investigated in this work are informative and relevant across a multitude of materials and irradiation geometries suitable for the description of a wide range of specific applications. The experimental results were interpreted using physical models incorporating specific processes to assess their contribution to the overall observed behaviors. Analysis of the experimental results suggests that the induced kinetic properties of the particle can be adequately described using the concept of momentum coupling introduced to explain the interaction of plane metal targets to large-aperture laser beams. The results also suggest that laser energy deposition on the formed plasma affects the energy partitioning and the material modifications to the substrate. PMID:27137063

  2. Persistent Conductivity in Post-Growth Doped ZnO Films Following Pulsed UV Laser Irradiation

    SciTech Connect

    Wang, Lisa J.; Exarhos, Gregory J.

    2010-12-30

    Solution and rf sputter deposited doped ZnO films were subjected to cumulative 4-nsec pulses of 355 nm light from a pulsed Nd:YAG laser at fluences between 5 and 150 mJ/cm2. Film densification, change in refractive index, and an increase in conductivity were observed following room temperature irradiation in air, a carbon monoxide reducing environment, or under vacuum. At fluences between 20 and 80 mJ/cm2, the films did not damage catastrophically under irradiation and high visible transparency persisted. The increase in conductivity is attributed to creation of oxygen vacancies and subsequent promotion of free carriers into the conduction band. Effects were most pronounced in films treated in vacuum. All treated films became insulating again upon equilibration in air at room temperature after several days. Films were characterized by means of UV-VIS-NIR transmission spectroscopy, Raman spectroscopy and Hall measurements. Analysis of interference fringes in measured transmission spectra allowed evaluation of optical properties. Raman measurements showed an increase of LO mode intensity with respect to TO mode intensity as the films became more conducting in accord with previous work. Results of this study are not only important for continued development of transparent conducting oxides, but also provide compelling evidence for the role of free carriers as initiators of the laser damage process in these wide bandgap metal oxide films.

  3. Dual-Laser-Pulse Ignition

    NASA Technical Reports Server (NTRS)

    Trinh, Huu; Early, James W.; Thomas, Matthew E.; Bossard, John A.

    2006-01-01

    A dual-pulse laser (DPL) technique has been demonstrated for generating laser-induced sparks (LIS) to ignite fuels. The technique was originally intended to be applied to the ignition of rocket propellants, but may also be applicable to ignition in terrestrial settings in which electric igniters may not be suitable.

  4. Pulsed Single Frequency Fiber Lasers

    NASA Astrophysics Data System (ADS)

    Jiang, Shibin

    2016-06-01

    Pulsed single frequency fiber lasers with mJ level near 1 micron, 1.55 micron and 2 micron wavelengths were demonstrated by using our proprietary highly doped fibers. These fiber lasers exhibit excellent long term stable operation with M2<1.2.

  5. Ultraviolet laser treatment of titanium surface

    NASA Astrophysics Data System (ADS)

    Balchev, Ivaylo; Minkovski, Nikolai; Dimitrov, Krasimir; Shipochka, Maria; Barbucha, Robert

    2016-02-01

    Interaction of a third harmonic of DPSS laser, wavelength 355 nm and pulse duration of 30 ns with titanium wafers was studied. It was investigated the structure of laser ablated titanium surface, depending on the laser beam scanning speed, and laser pulse frequency. The titanium surface modification was studied by scanning electron microscopy (SEM) and XPS (X- ray Photoelectron Spectroscopy). Nanosecond irradiation with ultraviolet light of Ti plate led to the formation of high porous granular structures consisting of agglomerated micro- and submicro- particles.

  6. Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2).

    PubMed

    Laurence, Ted A; Bude, Jeff D; Ly, Sonny; Shen, Nan; Feit, Michael D

    2012-05-01

    Surface laser damage limits the lifetime of optics for systems guiding high fluence pulses, particularly damage in silica optics used for inertial confinement fusion-class lasers (nanosecond-scale high energy pulses at 355 nm/3.5 eV). The density of damage precursors at low fluence has been measured using large beams (1-3 cm); higher fluences cannot be measured easily since the high density of resulting damage initiation sites results in clustering. We developed automated experiments and analysis that allow us to damage test thousands of sites with small beams (10-30 µm), and automatically image the test sites to determine if laser damage occurred. We developed an analysis method that provides a rigorous connection between these small beam damage test results of damage probability versus laser pulse energy and the large beam damage results of damage precursor densities versus fluence. We find that for uncoated and coated fused silica samples, the distribution of precursors nearly flattens at very high fluences, up to 150 J/cm2, providing important constraints on the physical distribution and nature of these precursors. PMID:22565775

  7. A method for the formation of Pt metal nanoparticle arrays using nanosecond pulsed laser dewetting

    NASA Astrophysics Data System (ADS)

    Owusu-Ansah, Ebenezer; Horwood, Corie A.; El-Sayed, Hany A.; Birss, Viola I.; Shi, Yujun J.

    2015-05-01

    Nanosecond pulsed laser dewetting of Pt thin films, deposited on a dimpled Ta (DT) surface, has been studied here in order to form ordered Pt nanoparticle (NP) arrays. The DT substrate was fabricated via a simple electrochemical anodization process in a highly concentrated H2SO4 and HF solution. Pt thin films (3-5 nm) were sputter coated on DT and then dewetted under vacuum to generate NPs using a 355 nm laser radiation (6-9 ns, 10 Hz). The threshold laser fluence to fully dewet a 3.5 nm thick Pt film was determined to be 300 mJ/cm2. Our experiments have shown that shorter irradiation times (≤60 s) produce smaller nanoparticles with more uniform sizes, while longer times (>60 s) give large nanoparticles with wider size distributions. The optimum laser irradiation time of 1 s (10 pulses) has led to the formation of highly ordered Pt nanoparticle arrays with an average nanoparticle size of 26 ± 3 nm with no substrate deformation. At the optimum condition of 1 s and 500 mJ/cm2, as many as 85% of the dewetted NPs were found neatly in the well-defined dimples. This work has demonstrated that pulsed laser dewetting of Pt thin films on a pre-patterned dimpled substrate is an efficient and powerful technique to produce highly ordered Pt nanoparticle arrays. This method can thus be used to produce arrays of other high-melting-point metal nanoparticles for a range of applications, including electrocatalysis, functionalized nanomaterials, and analytical purposes.

  8. Development of a passive doas system to retrieve atmospheric pollution columns in the 200 to 355 nm region.

    PubMed

    Mejía, Rubén Galicia; Vázquez, Josémanueldelarosa; Isakina, Suren Stolik; García, Edgard Moreno; Iglesias, Gustavo Sosa

    2013-01-01

    In recent years several techniques have been developed to measure and monitor the pollution of the air. Among these techniques, remote sensing using optical methods stands out due to several advantages for air quality control applications. A Passive Differential Optical Absorption Spectroscopy system that uses the ultraviolet region from 200 to 355 nm of the solar radiation is presented. The developed system is portable; therefore it is practical for real time and in situ measurements. The enhanced wavelength range of the system is intended to detect the ultraviolet light penetration in the Mexican Valley considering the solar zenith angle and the altitude. The system was applied to retrieve atmospheric SO2 columns emitted either by anthropogenic (power plant) or natural sources (volcano), reaching a detection limit of about 1 ppm. The measurement of the penetrating solar radiation on the earth surface at the UVC range is presented and the possibility to measure pollution traces of some contaminants as O3, NO2 and aromatic compounds in real time and in situ in the ultraviolet region is discussed. PMID:23369629

  9. Development of a passive doas system to retrieve atmospheric pollution columns in the 200 to 355 nm region

    PubMed Central

    2013-01-01

    In recent years several techniques have been developed to measure and monitor the pollution of the air. Among these techniques, remote sensing using optical methods stands out due to several advantages for air quality control applications. A Passive Differential Optical Absorption Spectroscopy system that uses the ultraviolet region from 200 to 355 nm of the solar radiation is presented. The developed system is portable; therefore it is practical for real time and in situ measurements. The enhanced wavelength range of the system is intended to detect the ultraviolet light penetration in the Mexican Valley considering the solar zenith angle and the altitude. The system was applied to retrieve atmospheric SO2 columns emitted either by anthropogenic (power plant) or natural sources (volcano), reaching a detection limit of about 1 ppm. The measurement of the penetrating solar radiation on the earth surface at the UVC range is presented and the possibility to measure pollution traces of some contaminants as O3, NO2 and aromatic compounds in real time and in situ in the ultraviolet region is discussed. PMID:23369629

  10. Influence of cerium on the pulsed UV nanosecond laser processing of photostructurable glass ceramic materials

    NASA Astrophysics Data System (ADS)

    Livingston, F. E.; Adams, P. M.; Helvajian, H.

    2005-07-01

    Photostructurable glass ceramic (PSGC) materials contain a sensitizer that is used to facilitate the optical exposure process. The primary role of the sensitizer is to absorb incident radiation and generate photoelectrons. With thermal treatment, these photoelectrons can then interact with nascent metal ions to induce the formation of metallic clusters and the precipitation of a soluble crystalline phase in the glass matrix. The photo-ionization efficiency of the sensitizer species is strongly dependent on its spectral absorption and oxidation state in the base glass. Stabilizing compounds are typically added to the glass matrix to maintain the photo-active oxidation state and promote efficient exposure. To investigate the effectiveness of the photo-initiator, we have conducted experiments in which sample coupons of a commercial PSGC material (Foturan™, Schott Corp., Germany) were carefully exposed to various photon doses by pulsed UV nanosecond lasers at λ = 266 nm and 355 nm. Foturan is a lithium aluminosilicate glass that contains trace amounts of cerium as the photosensitive agent (0.01-0.04 wt.% admixture Ce 2O 3). The photo-initiator efficiency was investigated by using samples with cerium and without cerium. The irradiation wavelengths were selected because they lie above and below the primary absorption band of the cerium photo-initiator. Optical transmission spectroscopy (OTS) was employed to identify and monitor the population density of the photo-induced trapped electron state as a function of incident laser irradiance. The irradiated samples were thermally processed and then analyzed again with OTS to measure the quenching of the trapped electron state and the concurrent growth of a spectral band associated with the formation of nanometer-scale metallic clusters. The growth of metallic clusters signifies the "fixing" of the exposure and permanent image formation in the glass. The OTS results reveal that for λ = 266 nm laser irradiation, at least two

  11. Coaxial short pulsed laser

    DOEpatents

    Nelson, M.A.; Davies, T.J.

    1975-08-01

    This invention relates to a laser system of rugged design suitable for use in a field environment. The laser itself is of coaxial design with a solid potting material filling the space between components. A reservoir is employed to provide a gas lasing medium between an electrode pair, each of which is connected to one of the coaxial conductors. (auth)

  12. Studying the mechanism of micromachining by short pulsed laser

    NASA Astrophysics Data System (ADS)

    Gadag, Shiva

    economical, because the micromachining rates are much higher than in the case of the ultra-short pulsed lasers. Hence, studying the mechanisms of micromachining by nanosecond pulsed laser of semiconductor silicon, transparent dielectric glass and quartz is undertaken for this research work. Laser drilling of an array of miniaturized micro holes is termed as laser micro via. A study of the effect of laser wavelengths, frequency, and energy of the pulses on the depth and diameter of craters and micro via are carried out using high resolution optical microscopy and a nano via 3D profiler. Analytical equations correlating depth and volume of the crater in terms of the optical absorption coefficient and ratio of peak applied to the threshold fluence for ablation of the silicon are derived. The depth of crater is scaled in terms of optical penetration depth times the ratio of crater diameter to the beam diameter. The shorter UV wavelengths are found to be more suitable for ablation of Si and SiO2 than longer IR wavelengths from the study of the absorption coefficient of Si varying with wavelength. Hence, the UV lasers (266 nm or 355 nm) are used for micromachining of Si and SiO2 involving cutting, cleaning, drilling and dicing, micro-milling and texturing of submicron size vertically oriented silicon wires for photovoltaic applications. The high density vertical wires are useful to grab a greater density of solar energy to generate more environmentally-friendly green power. The laser drilling of micro via can be typically of two types: (1) percussion drilling using a stationary laser beam with single or multiple pulses of the laser or (2) trepanned drilling of micro via by the circular motion of laser. Numerical simulation of dynamic drilling of laser micro via of silicon is performed, using control volume (FV) Fluent code in a Cartesian co-ordinate system. Total enthalpy formulation is used to simulate the phase change taking place during the laser ablation process from melting

  13. Short pulse free electron laser amplifier

    DOEpatents

    Schlitt, Leland G.; Szoke, Abraham

    1985-01-01

    Method and apparatus for amplification of a laser pulse in a free electron laser amplifier where the laser pulse duration may be a small fraction of the electron beam pulse duration used for amplification. An electron beam pulse is passed through a first wiggler magnet and a short laser pulse to be amplified is passed through the same wiggler so that only the energy of the last fraction, f, (f<1) of the electron beam pulse is consumed in amplifying the laser pulse. After suitable delay of the electron beam, the process is repeated in a second wiggler magnet, a third, . . . , where substantially the same fraction f of the remainder of the electron beam pulse is consumed in amplification of the given short laser pulse in each wiggler magnet region until the useful electron beam energy is substantially completely consumed by amplification of the laser pulse.

  14. Studying the mechanism of micromachining by short pulsed laser

    NASA Astrophysics Data System (ADS)

    Gadag, Shiva

    economical, because the micromachining rates are much higher than in the case of the ultra-short pulsed lasers. Hence, studying the mechanisms of micromachining by nanosecond pulsed laser of semiconductor silicon, transparent dielectric glass and quartz is undertaken for this research work. Laser drilling of an array of miniaturized micro holes is termed as laser micro via. A study of the effect of laser wavelengths, frequency, and energy of the pulses on the depth and diameter of craters and micro via are carried out using high resolution optical microscopy and a nano via 3D profiler. Analytical equations correlating depth and volume of the crater in terms of the optical absorption coefficient and ratio of peak applied to the threshold fluence for ablation of the silicon are derived. The depth of crater is scaled in terms of optical penetration depth times the ratio of crater diameter to the beam diameter. The shorter UV wavelengths are found to be more suitable for ablation of Si and SiO2 than longer IR wavelengths from the study of the absorption coefficient of Si varying with wavelength. Hence, the UV lasers (266 nm or 355 nm) are used for micromachining of Si and SiO2 involving cutting, cleaning, drilling and dicing, micro-milling and texturing of submicron size vertically oriented silicon wires for photovoltaic applications. The high density vertical wires are useful to grab a greater density of solar energy to generate more environmentally-friendly green power. The laser drilling of micro via can be typically of two types: (1) percussion drilling using a stationary laser beam with single or multiple pulses of the laser or (2) trepanned drilling of micro via by the circular motion of laser. Numerical simulation of dynamic drilling of laser micro via of silicon is performed, using control volume (FV) Fluent code in a Cartesian co-ordinate system. Total enthalpy formulation is used to simulate the phase change taking place during the laser ablation process from melting

  15. Photophysical properties of gatifloxacin in aqueous solution by laser flash photolysis and pulse radiolysis

    NASA Astrophysics Data System (ADS)

    Li, Haixia; Zhang, Peng; Liu, Yancheng; Tang, Ruizhi; Xing, Zhaoguo; Yao, Side; Fu, Haiying; Wang, Wenfeng

    2012-01-01

    GFX in water, at pH 7.0, shows intense absorption bands with peaks at 284 and 333 nm, ( ɛ=24,670 and 12,670 M -1 cm -1). Both the absorption and emission properties of GFX were pH-dependent; the p Ka values for the protonation equilibria of the ground state (5.7 and 8.9) and excited singlet state (3.6 and 7.5) of GFX were determined spectroscopically. GFX fluoresces weakly, with a maximum quantum yield for fluorescence emission (0.06) at pH 4.7. A series of experiments were performed to characterize the transient species of GFX in aqueous solution using laser flash photolysis and pulse radiolysis. GFX undergoes monophotonic photoionization with a quantum yield of 0.16 on a 355 nm laser excitation. This process leads to the formation of a long-lived cation radical with a maximum absorption at 380 nm. Triplet-triplet absorption had maximum absorption at 510 nm. The reaction of GFX with one-electron oxidant N3• was investigated and the bimolecular rate constant was determined to be 3.1×10 9 M -1 s -1.

  16. Pulsed DF laser effects study

    NASA Astrophysics Data System (ADS)

    Hall, R. B.; Maher, W. E.; Nichols, D. B.

    1981-07-01

    This study of DF laser interaction with materials investigated the amount of energy coupled to targets. Large focal spot dimensions were obtained with the Boeing photo-initiated 50-1 pulsed chemical laser with a stable resonator. Effects experiments emphasized metallic targets, especially aluminum. The single pulse coupling results yielded absorbed fluence values greater than those obtained with comparable energies at 10.6 micrometer wavelength. Ambient pressure and angle of incidence were varied. Research results also showed multiple-pulse effect at DF wavelength. Multiple-pulse thermal coupling experiments with aluminum demonstrated that, after 10 shots on the same spot, the coupled fluence per pulse doubled. Because of target melting and vaporization, both the intrinsic absorptivity and the plasma enhanced coupled fluence of succeeding pulses is greatly increased. In general, the multiple pulse effect is intensity-dependent and is small at either low or high intensities. Energy deposition was tested for uniformity by measuring the rises in temperature at five locations within the focal spot with an array of thermocouples.

  17. Ultrashort-pulse lasers machining

    SciTech Connect

    Banks, P S; Feit, M D; Nguyen, H T; Perry, M D, Stuart, B C

    1999-01-22

    A new type of material processing is enabled with ultrashort (t < 10 psec) laser pulses. Cutting, drilling, sculpting of all materials (biologic materials, ceramics, sapphire, silicon carbide, diamond, metals) occurs by new mechanisms which eliminate thermal shock or collateral damage. High precision machining to submicron tolerances is enabled resulting in high surface quality and negligible heat affected zone.

  18. Ultrashort-pulse laser machining

    SciTech Connect

    Banks, P S; Feit, M D; Nguyen, H T; Perry, M D; Rubenchik, A M; Sefcik, J A; Stuart, B C

    1998-09-01

    A new type of material processing is enabled with ultrashort (t < 10 ps) laser pulses. Cutting, drilling, sculpting of all materials (biologic materials, ceramics, sapphire, silicon carbide, diamond, metals) occurs by new mechanisms that eliminate thermal shock or collateral damage. High-precision machining to submicron tolerances is enabled resulting in high surface quality and negligible heat affected zone.

  19. Role of HfO2/SiO2 thin-film interfaces in near-ultraviolet absorption and pulsed laser damage

    DOE PAGESBeta

    Papernov, Semyon; Kozlov, Alexei A.; Oliver, James B.; Smith, Chris; Jensen, Lars; Guenster, Stefan; Maedebach, Heinrich; Ristau, Detlev

    2016-07-15

    Here, the role of thin-film interfaces in the near-ultraviolet (near-UV) absorption and pulsed laser-induced damage was studied for ion-beam-sputtered and electron-beam-evaporated coatings comprised from HfO2 and SiO2 thin-film pairs. To separate contributions from the bulk of the film and from interfacial areas, absorption and damage threshold measurements were performed for a one-wave (355-nm wavelength) thick, HfO2 single-layer film and for a film containing seven narrow HfO2 layers separated by SiO2 layers. The seven-layer film was designed to have a total optical thickness of HfO2 layers, equal to one wave at 355 nm and an E-field peak and average intensity similarmore » to a single-layer HfO2 film. Absorption in both types of films was measured using laser calorimetry and photothermal heterodyne imaging. The results showed a small contribution to total absorption from thin-film interfaces as compared to HfO2 film material. The relevance of obtained absorption data to coating near-UV, nanosecond-pulse laser damage was verified by measuring the damage threshold and characterizing damage morphology. The results of this study revealed a higher damage resistance in the seven-layer coating as compared to the single-layer HfO2 film in both sputtered and evaporated coatings. The results are explained through the similarity of interfacial film structure with structure formed during the codeposition of HfO2 and SiO2 materials.« less

  20. Nanosecond component in a femtosecond laser pulse

    SciTech Connect

    Shneider, M. N.; Semak, V. V.; Zhang Zhili

    2012-11-15

    Experimental and computational results show that the coherent microwave scattering from a laser-induced plasma can be used for measuring the quality of a fs laser pulse. The temporal dynamics of the microwave scattered signal from the fs-laser induced plasma can be related to the effect of nanosecond tail of the fs laser pulse.

  1. Pulse transformer for GaAs laser

    NASA Technical Reports Server (NTRS)

    Rutz, E. M.

    1976-01-01

    High-radiance gallium arsenide (GaAs) laser operating at room temperature is utilized in optical navigation system. For efficient transformer-to-laser impedance match, laser should be connected directly to pulse transformer secondary winding.

  2. Single mode pulsed dye laser oscillator

    DOEpatents

    Hackel, Richard P.

    1992-01-01

    A single mode pulsed dye laser oscillator is disclosed. The dye laser oscillator provides for improved power efficiency by reducing the physical dimensions of the overall laser cavity, which improves frequency selection capability.

  3. Single mode pulsed dye laser oscillator

    DOEpatents

    Hackel, R.P.

    1992-11-24

    A single mode pulsed dye laser oscillator is disclosed. The dye laser oscillator provides for improved power efficiency by reducing the physical dimensions of the overall laser cavity, which improves frequency selection capability. 6 figs.

  4. Effect of atmosphere on collinear double-pulse laser-induced breakdown spectroscopy

    SciTech Connect

    Andrew J. Effenberger, Jr.; Jill R. Scott

    2010-09-01

    Double pulse laser induced breakdown spectroscopy (DP-LIBS) has been shown to enhance LIBS spectra. Several researches have reported significant increases in signal-to-noise and or spectral intensity [1-4]. In addition to DP-LIBS, atmospheric conditions can also increase spectra intensity. For example, Iida [5] found that He and Ar both increase LIBS intensity compared to air at one 1 atm. It was also found that as the pressure was decreased to 100 Torr, LIBS intensity increased in Ar and air for single pulse (SP) LIBS. In this study, a collinear DP-LIBS scheme is used along with manipulation of the atmospheric conditions. The DP-LIBS scheme consists of a 355 nm ablative pulse fired into a sample contained in a vacuum chamber. A second analytical 1064 nm pulse is then fired 100 ns to 10 µs after and along the same path of the first pulse. Ar, He and air at pressures ranging from atmospheric pressure (630 Torr at elevation) to 10-5 Torr are introduced during DP-LIBS and SP-LIBS experiments. For a brass sample, a significant increase in spectral intensity of Cu and Zn lines were observed in DP-LIBS under Ar compared to DP-LIBS in air (Figure 1). It was also found that Cu and Zn lines acquired with SP-LIBS in Ar are nearly as intense as DP-LIBS in air. Signal-to-noise for lines from various samples will be reported for both DP-LIBS and SP-LIBS in Ar, He, and air at pressures ranging from 630 Torr to 10-5 Torr.

  5. Effect of Atmosphere on Collinear Double-Pulse Laser-Induced Breakdown Spectroscopy

    SciTech Connect

    Andrew J. Effenberger, Jr; Jill R. Scott

    2011-07-01

    Double pulse laser induced breakdown spectroscopy (DP-LIBS) has been shown to enhance LIBS spectra. Several researches have reported significant increases in signal-to-noise and or spectral intensity. In addition to DP-LIBS, atmospheric conditions can also increase spectra intensity. For example, He and Ar both increase LIBS intensity compared to air at one 1 atm. It was also found that as the pressure was decreased to 100 Torr, LIBS intensity increased in Ar and air for single pulse (SP) LIBS. In this study, a collinear DP-LIBS scheme is used along with manipulation of the atmospheric conditions. The DP-LIBS scheme consists of a 355 nm ablative pulse fired into a sample contained in a vacuum chamber. A second analytical 1064 nm pulse is then fired 100 ns to 10 {micro}s after and along the same path of the first pulse. Ar, He and air at pressures ranging from atmospheric pressure (630 Torr at elevation) to 10{sup -5} Torr are introduced during DP-LIBS and SP-LIBS experiments. For a brass sample, a significant increase in spectral intensity of Cu and Zn lines were observed in DP-LIBS under Ar compared to DP-LIBS in air. It was also found that Cu and Zn lines acquired with SP-LIBS in Ar are nearly as intense as DP-LIBS in air. Signal-to-noise for lines from various samples will be reported for both DP-LIBS and SP-LIBS in Ar, He, and air at pressures ranging from 630 Torr to 10{sup -5} Torr.

  6. BDS Thin Film UV Antireflection Laser Damage Competition

    SciTech Connect

    Stolz, C J

    2010-10-26

    UV antireflection coatings are a challenging coating for high power laser applications as exemplified by the use of uncoated Brewster's windows in laser cavities. In order to understand the current laser resistance of UV AR coatings in the industrial and university sectors, a double blind laser damage competition was performed. The coatings have a maximum reflectance of 0.5% at 355 nm at normal incidence. Damage testing will be performed using the raster scan method with a 7.5 ns pulse length on a single testing facility to facilitate direct comparisons. In addition to the laser resistance results, details of deposition processes and coating materials will also be shared.

  7. Investigation of Laser Parameters in Silicon Pulsed Laser Conduction Welding

    NASA Astrophysics Data System (ADS)

    Shayganmanesh, Mahdi; Khoshnoud, Afsaneh

    2016-03-01

    In this paper, laser welding of silicon in conduction mode is investigated numerically. In this study, the effects of laser beam characteristics on the welding have been studied. In order to model the welding process, heat conduction equation is solved numerically and laser beam energy is considered as a boundary condition. Time depended heat conduction equation is used in our calculations to model pulsed laser welding. Thermo-physical and optical properties of the material are considered to be temperature dependent in our calculations. Effects of spatial and temporal laser beam parameters such as laser beam spot size, laser beam quality, laser beam polarization, laser incident angle, laser pulse energy, laser pulse width, pulse repetition frequency and welding speed on the welding characteristics are assessed. The results show that how the temperature dependent thermo-physical and optical parameters of the material are important in laser welding modeling. Also the results show how the parameters of the laser beam influence the welding characteristics.

  8. Sum frequency generation of UV laser radiation at 266  nm in LBO crystal.

    PubMed

    Nikitin, D G; Byalkovskiy, O A; Vershinin, O I; Puyu, P V; Tyrtyshnyy, V A

    2016-04-01

    We report experimental results of generation at 266 nm in LBO crystal by frequency mixing of the fundamental (1064 nm) and third harmonic (355 nm) of ytterbium pulsed fiber laser radiation. Deep ultraviolet (DUV) output power of 3.3 W at 266 nm was achieved with 14% IR-to-DUV conversion efficiency. UV-induced bulk degradation of LBO crystals was observed and visualized by the dark field method. PMID:27192312

  9. Ultrashort-pulse laser calligraphy

    NASA Astrophysics Data System (ADS)

    Yang, Weijia; Kazansky, Peter G.; Shimotsuma, Yasuhiko; Sakakura, Masaaki; Miura, Kiyotaka; Hirao, Kazuyuki

    2008-10-01

    Control of structural modifications inside silica glass by changing the front tilt of an ultrashort pulse is demonstrated, achieving a calligraphic style of laser writing. The phenomena of anisotropic bubble formation at the boundary of an irradiated region and modification transition from microscopic bubbles formation to self-assembled form birefringence are observed, and the physical mechanisms are discussed. The results provide the comprehensive evidence that the light beam with centrosymmetric intensity distribution can produce noncentrosymmetric material modifications.

  10. Effects of Laser Wavelength and Fluence in Pulsed Laser Deposition of Ge Films

    SciTech Connect

    Yap, Seong Shan; Reenaas, Turid Worren; Siew, Wee Ong; Tou, Teck Yong; Ladam, Cecile

    2011-03-30

    Nanosecond lasers with ultra-violet, visible and infrared wavelengths: KrF (248 nm, 25 ns) and Nd:YAG (1064 nm, 532 nm, 355 nm, 5 ns) were used to ablate polycrystalline Ge target and deposit Ge films in vacuum (<10-6 Torr). Time-integrated optical emission spectra were obtained for laser fluence from 0.5-10 J/cm{sup 2}. Neutrals and ionized Ge species in the plasma plume were detected by optical emission spectroscopy. Ge neutrals dominated the plasma plume at low laser fluence while Ge{sup +} ions above some threshold fluence. The deposited amorphous thin-film samples consisted of particulates of size from nano to micron. The relation of the film properties and plume species at different laser fluence and wavelengths were discussed.

  11. Wakefield generation via two color laser pulses

    SciTech Connect

    Jha, Pallavi; Saroch, Akanksha; Kumar Verma, Nirmal

    2013-05-15

    The analytical study for the evolution of longitudinal as well as transverse electric wakefields, generated via passage of two color laser pulses through uniform plasma, has been presented in the mildly relativistic regime. The frequency difference between the two laser pulses is assumed to be equal to the plasma frequency, in the present analysis. The relative angle between the directions of polarization of the two laser pulses is varied and the wakefield amplitudes are compared. Further, the amplitude of the excited wakes by two color pulses are compared with those generated by a single laser pulse.

  12. Effects of laser energy and wavelength on the analysis of LiFePO₄ using laser assisted atom probe tomography

    DOE PAGESBeta

    Santhanagopalan, Dhamodaran; Schreiber, Daniel K.; Perea, Daniel E.; Martens, Richard L.; Janssen, Yuri; Khalifah, Peter; Meng, Ying Shirley

    2014-09-21

    The effects of laser wavelength (355 nm and 532 nm) and laser pulse energy on the quantitative analysis of LiFePO₄ by atom probe tomography are considered. A systematic investigation of ultraviolet (UV, 355 nm) and green (532 nm) laser assisted field evaporation has revealed distinctly different behaviors. With the use of a UV laser, the major issue was identified as the preferential loss of oxygen (up to 10 at%) while other elements (Li, Fe and P) were observed to be close to nominal ratios. Lowering the laser energy per pulse to 1 pJ/pulse from 50 pJ/pulse increased the observed oxygenmore » concentration to nearer its correct stoichiometry, which was also well correlated with systematically higher concentrations of ¹⁶O₂⁺ ions. Green laser assisted field evaporation led to the selective loss of Li (33% deficiency) and a relatively minor O deficiency. The loss of Li is likely a result of selective dc evaporation of Li between or after laser pulses. Comparison of the UV and green laser data suggests that the green wavelength energy was absorbed less efficiently than the UV wavelength because of differences in absorption at 355 and 532 nm for LiFePO₄. Plotting of multihit events on Saxey plots also revealed a strong neutral O₂ loss from molecular dissociation, but quantification of this loss was insufficient to account for the observed oxygen deficiency.« less

  13. Effects of laser energy and wavelength on the analysis of LiFePO₄ using laser assisted atom probe tomography

    SciTech Connect

    Santhanagopalan, Dhamodaran; Schreiber, Daniel K.; Perea, Daniel E.; Martens, Richard L.; Janssen, Yuri; Khalifah, Peter; Meng, Ying Shirley

    2014-09-21

    The effects of laser wavelength (355 nm and 532 nm) and laser pulse energy on the quantitative analysis of LiFePO₄ by atom probe tomography are considered. A systematic investigation of ultraviolet (UV, 355 nm) and green (532 nm) laser assisted field evaporation has revealed distinctly different behaviors. With the use of a UV laser, the major issue was identified as the preferential loss of oxygen (up to 10 at%) while other elements (Li, Fe and P) were observed to be close to nominal ratios. Lowering the laser energy per pulse to 1 pJ/pulse from 50 pJ/pulse increased the observed oxygen concentration to nearer its correct stoichiometry, which was also well correlated with systematically higher concentrations of ¹⁶O₂⁺ ions. Green laser assisted field evaporation led to the selective loss of Li (33% deficiency) and a relatively minor O deficiency. The loss of Li is likely a result of selective dc evaporation of Li between or after laser pulses. Comparison of the UV and green laser data suggests that the green wavelength energy was absorbed less efficiently than the UV wavelength because of differences in absorption at 355 and 532 nm for LiFePO₄. Plotting of multihit events on Saxey plots also revealed a strong neutral O₂ loss from molecular dissociation, but quantification of this loss was insufficient to account for the observed oxygen deficiency.

  14. Pulse shaping on the Nova laser system

    SciTech Connect

    Lawson, J.K.; Speck, D.R.; Bibeau, C.; Weiland, T.L.

    1989-02-06

    Inertial confinement fusion requires temporally shaped pulses to achieve high gain efficiency. Recently, we demonstrated the ability to produce complex temporal pulse shapes at high power at 0.35 microns on the Nova laser system. 2 refs., 2 figs.

  15. Effects of Laser Energy and Wavelength on the Analysis of LiFePO4 Using Laser Assisted Atom Probe Tomography

    SciTech Connect

    Santhanagopalan, Dhamodaran; Schreiber, Daniel K.; Perea, Daniel E.; Martens, Rich; Janssen, Yuri; Kalifah, Peter; Meng, Ying S.

    2015-01-21

    The effects of laser wavelength (355 nm and 532 nm) and laser pulse energy on the quantitative accuracy of atom probe tomography (APT) examinations of LiFePO4 (LFP) are considered. A systematic investigation of ultraviolet (UV, 355 nm) and green (532 nm) laser assisted APT of LFP has revealed distinctly different behaviors. With the use of UV laser the major issue was identified as the preferential loss of oxygen (up to 10 at. %) while other elements (Li, Fe and P) were observed to be close to nominal ratios. Lowering the laser energy per pulse to 1 pJ increased the observed oxygen concentration to near its correct stoichiometry and was well correlated with systematically higher concentrations of 16O2+ ions. This observation supports the premise that lower laser energies lead to a higher probability of oxygen molecule ionization. Conversely, at higher laser energies the resultant lower effective electric field reduces the probability of oxygen molecule ionization. Green laser assisted field evaporation led to the selective loss of Li (~50% deficiency) and correct ratios of the remaining elements, including the oxygen concentration. The loss of Li is explained by selective dc evaporation of lithium between laser pulses and relatively negligible oxygen loss as neutrals during green-laser pulsing. Lastly, plotting of multihit events on a Saxey plot for the straight-flight path data (green laser only) revealed a surprising dynamic recombination process for some molecular ions mid-flight.

  16. Experimental investigation and theoretical analysis of pulse repetition rate adjustable deep ultraviolet picosecond radiation by second harmonic generation in KBe2BO3F2

    NASA Astrophysics Data System (ADS)

    Xu, Zhi; Zhang, Fengfeng; Zhang, Shenjin; Wang, Zhimin; Yang, Feng; Xu, Fengliang; Peng, Qinjun; Cui, Dafu; Zhang, Jingyuan; Wang, Xiaoyang; Chen, Chuangtian; Xu, Zuyan

    2014-06-01

    We reported on an experimental investigation and theoretical analysis of pulse repetition rate (PRR) adjustable deep ultraviolet (DUV) picosecond (ps) radiation by second harmonic generation (SHG) in KBe2BO3F2 (KBBF) crystal. Third harmonic radiation at 355 nm of a ps Nd:YVO4 laser output with PRR of 200 kHz-1 MHz was employed as the pump source. The dependence of the 177.3 nm output power on the 355 nm pump power was measured at different PRRs, and the maximum 177.3 nm average output power of 695 μW was obtained at the PRR of 200 kHz. The measured data agreed well with the results of the ps KBBF SHG theoretical simulations. Using simulations, the pulse width and the spectral bandwidth of the generated radiation at 177.3 nm were estimated to be 5.88 ps and 7.84 pm, respectively.

  17. Photoemission using femtosecond laser pulses

    SciTech Connect

    Srinivasan-Rao, T.; Tsang, T.; Fischer, J.

    1991-10-01

    Successful operation of short wavelength FEL requires an electron bunch of current >100 A and normalized emittance < 1 mm-mrad. Recent experiments show that RF guns with photocathodes as the electron source may be the ideal candidate for achieving these parameters. To reduce the emittance growth due to space charge and RF dynamics effects, the gun may have to operate at high field gradient (hence at high RF frequency) and a spot size small compared to the aperture. This may necessitate the laser pulse duration to be in the subpicosecond regime to reduce the energy spread. We will present the behavior of metal photocathodes upon irradiation with femtosecond laser beams, comparison of linear and nonlinear photoemission, and scalability to high currents. Theoretical estimate of the intrinsic emittance at the photocathode in the presence of the anomalous heating of the electrons, and the tolerance on the surface roughness of the cathode material will be discussed.

  18. Short-pulse photolytic iodine laser

    NASA Astrophysics Data System (ADS)

    Tate, Ralph F.; Harris, Melvin; Anderson, Brian T.; Hager, Gordon D.

    2000-08-01

    A compact, short pulse photolytic iodine laser (PIL) system designed for use as a source in Raman conversion experiments is described. The single-shot, flashlamp-pumped laser outputs 10 Joules in a 3 microsecond(s) FWHM pulse at a wavelength of 1.315 micrometer and uses n-C3F7I as the renewable laser fuel. Laser design and performance characteristics are presented.

  19. Laser-induced fusion of human embryonic stem cells with optical tweezers

    NASA Astrophysics Data System (ADS)

    Chen, Shuxun; Cheng, Jinping; Kong, Chi-Wing; Wang, Xiaolin; Han Cheng, Shuk; Li, Ronald A.; Sun, Dong

    2013-07-01

    We report a study on the laser-induced fusion of human embryonic stem cells (hESCs) at the single-cell level. Cells were manipulated by optical tweezers and fused under irradiation with pulsed UV laser at 355 nm. Successful fusion was indicated by green fluorescence protein transfer. The influence of laser pulse energy on the fusion efficiency was investigated. The fused products were viable as gauged by live cell staining. Successful fusion of hESCs with somatic cells was also demonstrated. The reported fusion outcome may facilitate studies of cell differentiation, maturation, and reprogramming.

  20. Laser-induced fusion of human embryonic stem cells with optical tweezers

    SciTech Connect

    Chen Shuxun; Wang Xiaolin; Sun Dong; Cheng Jinping; Han Cheng, Shuk; Kong, Chi-Wing; Li, Ronald A.

    2013-07-15

    We report a study on the laser-induced fusion of human embryonic stem cells (hESCs) at the single-cell level. Cells were manipulated by optical tweezers and fused under irradiation with pulsed UV laser at 355 nm. Successful fusion was indicated by green fluorescence protein transfer. The influence of laser pulse energy on the fusion efficiency was investigated. The fused products were viable as gauged by live cell staining. Successful fusion of hESCs with somatic cells was also demonstrated. The reported fusion outcome may facilitate studies of cell differentiation, maturation, and reprogramming.

  1. Dynamic pulsing of a MOPA fiber laser

    NASA Astrophysics Data System (ADS)

    Romero, Rosa; Guerreiro, Paulo T.; Hendow, Sami T.; Salcedo, José R.

    2011-05-01

    Dynamic Pulsing is demonstrated using a pulsed MOPA fiber laser at 1064nm. The output of the MOPA laser is a pulsed profile consisting of a burst of closely spaced pulses. Tests were performed under several materials with pulse bursts ranging from 10ns to 1μs and operating from 500kHz down to single shot. In particular, percussion drilling in stainless steel is demonstrated showing improvements in quality and speed of the process. These profiles allow high flexibility and optimization of the process addressing the specificity of the end application. Dynamic Pulsing allows the same MOPA fiber laser to be used in diverse materials as well as different processes such us marking, drilling, scribing and engraving. The pulsed fiber laser used in this study is a MOPA-DY by Multiwave Photonics. It is based on a modulated seed laser followed by a series of fiber amplifiers and ending with an optically isolated collimator. This pulsed laser model has an output in such a way that each trigger produces a fast burst of pulses, with a repetition frequency within the burst of the order of tens of MHz. Within the burst it is possible to change the number of pulses, the individual pulse profile, burst pulse period and even to generate non-periodic burst pulse separations. The laser allows full freedom for all these combinations. The study here reported compares the impact of pulse peak power, number of pulses within a burst and the pulse burst period, on process quality (heat affected zone, debris, hole uniformity) and drilling yield.

  2. Analysis of Picosecond Pulsed Laser Melted Graphite

    DOE R&D Accomplishments Database

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M. S.; Huang, C. Y.; Malvezzi, A. M.; Bloembergen, N.

    1986-12-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm{sup -1} and the disorder-induced mode at 1360 cm{sup -1}, the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nanosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence.

  3. Investigation of UV Laser Triggered, Nanosecond, Surface Flashover Switches

    SciTech Connect

    Nunnally, W C; Neurath, R; Holmes, C; Sampayan, S; Caporaso, G

    2003-06-03

    Triggered, multi-channel, surface discharges or surface flashover switching have been investigated as a low inductance, low pulse rate switch for conducting large currents. This paper discusses the investigation of UV (355 nm) laser triggered, single channel, low inductance, ns closure and sub-ns jitter switches for applications in switching high dielectric constant, compact pulse forming lines into accelerator loads. The experimental arrangement for evaluating the switch performance and for measuring the high field dielectric constant of the pulse forming lines is presented. Experimental results of delay and jitter measurements versus optical energy on the flashover surface and dc electric field charge.

  4. Hematoporphyrin-sensitized degradation of deoxyribose and DNA in high intensity near-UV picosecond pulsed laser photolysis

    NASA Astrophysics Data System (ADS)

    Gantchev, Tsvetan G.; Grabner, Gotfried; Keskinova, Elka; Angelov, Dimitr; van Lier, Johan E.

    1995-01-01

    The photosensitized degradation of deoxyribose and DNA, using hematoporphyrin (HP) and picosecond laser pulses at high intensities (pulse duration 30 ps, λ exc = 355 nm, light intensity range 10 8-10 10W/cm 2) was studied. Aldehyde formation from 2-deoxy- D-ribose and long-chain double-stranded DNA, when analyzed as a function of light intensity, followed a non-linear dependence, suggesting the involvement of multiphoton light absorption by HP. The degradation mechanism was studied by analysis of the yield dependence on excitation intensity and the effect of added radical scavengers. The participation of OH radicals in the degradation process was confirmed by spin trapping techniques. At low light intensities added N 2O largely increased product formation, suggesting that HP photoionization predominates under these conditions. At higher intensities (I ≥ 3 GW/cm 2) the product yield was not affected by N 2O which, combined with spin trapping data, suggested that OH radical formation occurred, but that neither HP photoionization nor peroxy radical formation was involved. Single and double strand breaks in supercoiled plasmid DNA (pBR 322) confirmed the generation of OH or OH-like radicals during high-intensity excitation of HP. A mechanism involving a multistep excitation of HP, followed by resonance energy transfer to H 2O resulting in dissociation to yield OH and H atoms, is proposed.

  5. Experimental investigation of the structure and the dynamics of nanosecond laser-induced plasma in 1-atm argon ambient gas

    NASA Astrophysics Data System (ADS)

    Ma, Qianli; Motto-Ros, Vincent; Bai, Xueshi; Yu, Jin

    2013-11-01

    We have investigated the structure and the dynamics of the plasma induced on a metallic target in 1-atm argon ambient by a nanosecond laser pulse with irradiance in the range of 10 GW/cm2. The structure is revealed to be sensitively dependent on the laser wavelength. A layered structure of different species characterizes the plasma induced by ultraviolet 355 nm pulse, while an effective mixing between the ablation vapor and the shocked ambient gas is observed with infrared 1064 nm pulse. The absorption property of the shocked gas is found to be crucial for determining the structure of the plasma.

  6. Ultrashort Laser Pulses in Physics and Chemistry

    SciTech Connect

    Naskrecki, Ryszard

    2007-11-26

    Study of physical and chemical events accompanying light-matter interaction in pico- and femtosecond time scale have become possible with the use of ultrashort laser pulses. With the progress in generation of ultrashort laser pulses, the ultrafast optical spectroscopy, as a tool for dynamic study, is still evolving rapidly.

  7. Pulsed laser kinetic studies of liquids under high pressure. Final technical report, April 1, 1990--March 31, 1993

    SciTech Connect

    Eyring, E.M.

    1993-06-21

    Experiments have been developed for measuring the rates of chemical reactions liquids and in supercritical Co{sub 2}. A pulsed (Q-switch) Nd:YAG laser at 355 nm was the pump beam for laser flash photolysis studies of molybdenum and tungsten hexacarbonyls undergoing ligand displacement reactions by bidentate chelating agents such as 2,2{prime}-bipyridine in toluene. Experiments were carried out at 0.1 to 150 MPa. In the case of molybdenum complexes, the reaction mechanism for thermal ring closure is found from activation volumes to change from associative interchange to dissociative interchange as substituents on the 2,2{prime}-bipyridine ligands become bulkier. In a similar study of more rigid, substituted phenanthroline bidentate ligands it was found that substituent bulkiness had little effect on the thermal ring closure mechanism. Similar high pressure flash photolysis experiments with tungsten hexacarbonyl have also been completed. The concentration dependence of the fluorescence and nonradiative decay quantum yields for cresyl violet in several solvent have been reported as well as stability constants for the complexation of lithium ion by four different crown ethers dissolved in a room temperature molten salt.

  8. Optimized pulsed laser deposition by wavelength and static electric field control: The case of tetrahedral amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Patsalas, P.; Kaziannis, S.; Kosmidis, C.; Papadimitriou, D.; Abadias, G.; Evangelakis, G. A.

    2007-06-01

    We report on the application of a static (dc) electric field in the plume region during the pulsed Nd doped yttrium aluminum garnet laser deposition (PLD) of tetrahedral amorphous carbon (ta-C) films in vacuum ambient (pressure=10-4-10-3Pa), where the working pressure is exclusively due to ablation vapor. This approach is strikingly different from the plasma- or ion-beam-assisted PLD because the mean free path at this pressure is by far longer than the target to substrate distance. Thus, the electric field interacts with individual ionized species invoking ion acceleration and gas-phase reactions among different ionized species. These phenomena are clearly dependent on the laser wavelength (first, second, or third harmonic, λ =1064, 532, and 355nm, respectively) used for the ablation. We found that the application of the electric field causes surface smoothing (the roughness decreases from about 1to0.4nm) and faster deposition rate (from about 2to7nm/min) for the second and third harmonics. In addition, the phenomena are less intense in the case of the first harmonic due to the low concentration of ionized species in the plume. In addition, in the case of PLD using λ =532nm, the electric field improves the film's density (from 2.60to2.95g/cm3). The correlations found are discussed in terms of the ablated species and the deposition mechanisms of the ta-C.

  9. Laser direct writing of GaN-based light-emitting diodes—The suitable laser source for mesa definition

    NASA Astrophysics Data System (ADS)

    Moser, Rüdiger; Goßler, Christian; Kunzer, Michael; Köhler, Klaus; Pletschen, Wilfried; Brunne, Jens; Schwarz, Ulrich T.; Wagner, Joachim

    2013-03-01

    The development of a process chain allowing for rapid prototyping of GaN-based light-emitting diodes (LEDs) is presented, which does not rely on photolithography. Structuring of the epitaxial layers is realized by direct-writing laser ablation, allowing a flexible chip layout that can be changed rapidly and at low cost. Besides contact metallization and trench formation, mesa definition is the most critical processing step. For mesa formation and to expose the n-GaN contact layer, the epitaxial grown p-GaN layer together with the active region has to be removed completely without forming cracks or crystal defects in the n-GaN layer or the mesa sidewalls, which would cause sidewall leakage currents. In developing an appropriate laser ablation process that meets these requirements, three different laser systems have been employed in a comparative study. These are a frequency-tripled picosecond (ps) Nd:YVO4 laser emitting at a wavelength of 355 nm and a pulse length of 10 ps and two 20 nanosecond (ns) pulse length laser systems, operating at a wavelength of 248 nm (Excimer laser) and 355 nm (frequency-tripled Nd:YVO4 laser), respectively. First, the laser sources are compared regarding the morphological properties of the resulting laser trenches. Due to band filling effects resulting in optical bleaching of the GaN material when irradiating with ps-laser pulses at 355 nm, the resulting ablation process suffers from cracking. Laser ablation using ns-pulses at both 355 nm and 248 nm leads to crack-free material removal up to a well-defined depth. To keep reverse-bias leakage currents at a level comparable to that of conventional dry-etched mesa-LEDs, subsequent wet etching is essential to remove residues in the mesa-trenches irrespective of the laser source used. Besides wet etching, an additional annealing step has to be applied to mesa-trenches fabricated using ns- and ps-laser pulses at a wavelength of 355 nm. Due to the larger penetration depth at 355 nm, defects

  10. Flexible pulse-controlled fiber laser.

    PubMed

    Liu, Xueming; Cui, Yudong

    2015-01-01

    Controlled flexible pulses have widespread applications in the fields of fiber telecommunication, optical sensing, metrology, and microscopy. Here, we report a compact pulse-controlled all-fiber laser by exploiting an intracavity fiber Bragg grating (FBG) system as a flexible filter. The width and wavelength of pulses can be tuned independently by vertically and horizontally translating a cantilever beam, respectively. The pulse width of the laser can be tuned flexibly and accurately from ~7 to ~150 ps by controlling the bandwidth of FBG. The wavelength of pulse can be tuned precisely with the range of >20 nm. The flexible laser is precisely controlled and insensitive to environmental perturbations. This fiber-based laser is a simple, stable, and low-cost source for various applications where the width-tunable and/or wavelength-tunable pulses are necessary. PMID:25801546

  11. Flexible pulse-controlled fiber laser

    PubMed Central

    Liu, Xueming; Cui, Yudong

    2015-01-01

    Controlled flexible pulses have widespread applications in the fields of fiber telecommunication, optical sensing, metrology, and microscopy. Here, we report a compact pulse-controlled all-fiber laser by exploiting an intracavity fiber Bragg grating (FBG) system as a flexible filter. The width and wavelength of pulses can be tuned independently by vertically and horizontally translating a cantilever beam, respectively. The pulse width of the laser can be tuned flexibly and accurately from ~7 to ~150 ps by controlling the bandwidth of FBG. The wavelength of pulse can be tuned precisely with the range of >20 nm. The flexible laser is precisely controlled and insensitive to environmental perturbations. This fiber-based laser is a simple, stable, and low-cost source for various applications where the width-tunable and/or wavelength-tunable pulses are necessary. PMID:25801546

  12. Heating of solid targets with laser pulses

    NASA Technical Reports Server (NTRS)

    Bechtel, J. H.

    1975-01-01

    Analytical and numerical solutions to the heat-conduction equation are obtained for the heating of absorbing media with pulsed lasers. The spatial and temporal form of the temperature is determined using several different models of the laser irradiance. Both surface and volume generation of heat are discussed. It is found that if the depth of thermal diffusion for the laser-pulse duration is large compared to the optical-attenuation depth, the surface- and volume-generation models give nearly identical results. However, if the thermal-diffusion depth for the laser-pulse duration is comparable to or less than the optical-attenuation depth, the surface-generation model can give significantly different results compared to the volume-generation model. Specific numerical results are given for a tungsten target irradiated by pulses of different temporal durations and the implications of the results are discussed with respect to the heating of metals by picosecond laser pulses.

  13. Relativistic laser pulse compression in magnetized plasmas

    SciTech Connect

    Liang, Yun; Sang, Hai-Bo Wan, Feng; Lv, Chong; Xie, Bai-Song

    2015-07-15

    The self-compression of a weak relativistic Gaussian laser pulse propagating in a magnetized plasma is investigated. The nonlinear Schrödinger equation, which describes the laser pulse amplitude evolution, is deduced and solved numerically. The pulse compression is observed in the cases of both left- and right-hand circular polarized lasers. It is found that the compressed velocity is increased for the left-hand circular polarized laser fields, while decreased for the right-hand ones, which is reinforced as the enhancement of the external magnetic field. We find a 100 fs left-hand circular polarized laser pulse is compressed in a magnetized (1757 T) plasma medium by more than ten times. The results in this paper indicate the possibility of generating particularly intense and short pulses.

  14. Stimulated light forces using picosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Bloch, Immanuel; Goepfert, A.; Haubrich, D.; Lison, F.; Schuetze, R.; Wynands, Robert; Meschede, Dieter

    1997-05-01

    Using the stimulated force exerted by counterpropagating picosecond laser pulses from a mode-locked Ti:Sapphire laser we were able to focus a beam of laser-cooled cesium atoms along one dimension to about 57% of its original width in the detection zone. The force profile was measured outside and inside the overlap region of the pulses and found to be in agreement with an earlier theoretical prediction. A brief theoretical account of the interaction of atoms with pulsed laser light based on the optical Bloch equations is given.

  15. Nonlinear dynamics of additive pulse modelocked lasers

    SciTech Connect

    Sucha, G.; Bolton, S.R.; Chemla, D.S.

    1995-04-01

    Nonlinear dynamics have been studied in a number of modelocked laser systems, primarily in actively modelocked systems. However, less attention has been paid to the dynamics of passively modelocked laser systems. With the recent revolutionary advances in femtosecond modelocked laser technology, the understanding of instabilities and dynamics in passively modelocked lasers is an important issue. Here, the authors present experimental and numerical studies of the dynamics of an additive-pulse modelocked (APM) color-center laser.

  16. High Power Picosecond Laser Pulse Recirculation

    SciTech Connect

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P

    2010-04-12

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering based light sources. We demonstrate up to 36x average power enhancement of frequency doubled sub-millijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.

  17. Intense isolated attosecond pulse generation from relativistic laser plasmas using few-cycle laser pulses

    NASA Astrophysics Data System (ADS)

    Ma, Guangjin; Dallari, William; Borot, Antonin; Krausz, Ferenc; Yu, Wei; Tsakiris, George D.; Veisz, Laszlo

    2015-03-01

    We have performed a systematic study through particle-in-cell simulations to investigate the generation of attosecond pulse from relativistic laser plasmas when laser pulse duration approaches the few-cycle regime. A significant enhancement of attosecond pulse energy has been found to depend on laser pulse duration, carrier envelope phase, and plasma scale length. Based on the results obtained in this work, the potential of attaining isolated attosecond pulses with ˜100 μJ energy for photons >16 eV using state-of-the-art laser technology appears to be within reach.

  18. Intense isolated attosecond pulse generation from relativistic laser plasmas using few-cycle laser pulses

    SciTech Connect

    Ma, Guangjin; Dallari, William; Borot, Antonin; Tsakiris, George D.; Veisz, Laszlo; Krausz, Ferenc; Yu, Wei

    2015-03-15

    We have performed a systematic study through particle-in-cell simulations to investigate the generation of attosecond pulse from relativistic laser plasmas when laser pulse duration approaches the few-cycle regime. A significant enhancement of attosecond pulse energy has been found to depend on laser pulse duration, carrier envelope phase, and plasma scale length. Based on the results obtained in this work, the potential of attaining isolated attosecond pulses with ∼100 μJ energy for photons >16 eV using state-of-the-art laser technology appears to be within reach.

  19. Generation of laser pulse trains for tests of multi-pulse laser wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Shalloo, R. J.; Corner, L.; Arran, C.; Cowley, J.; Cheung, G.; Thornton, C.; Walczak, R.; Hooker, S. M.

    2016-09-01

    In multi-pulse laser wakefield acceleration (MP-LWFA) a plasma wave is driven by a train of low-energy laser pulses separated by the plasma period, an approach which offers a route to driving plasma accelerators with high efficiency and at high pulse repetition rates using emerging technologies such as fibre and thin-disk lasers. Whilst these laser technologies are in development, proof-of-principle tests of MP-LWFA require a pulse train to be generated from a single, high-energy ultrafast pulse. Here we demonstrate the generation of trains of up to 7 pulses with pulse separations in the range 150-170 fs from single 40 fs pulses produced by a Ti:sapphire laser.

  20. MOPA pulsed fiber laser for silicon scribing

    NASA Astrophysics Data System (ADS)

    Yang, Limei; Huang, Wei; Deng, Mengmeng; Li, Feng

    2016-06-01

    A 1064 nm master oscillator power amplifier (MOPA) pulsed fiber laser is developed with flexible control over the pulse width, repetition frequency and peak power, and it is used to investigate the dependence of mono-crystalline silicon scribe depth on the laser pulse width, scanning speed and repeat times. Experimental results indicate that long pulses with low peak powers lead to deep ablation depths. We also demonstrate that the ablation depth grows fast with the scanning repeat times at first and progressively tends to be saturated when the repeat times reach a certain level. A thermal model considering the laser pulse overlapping effect that predicts the silicon temperature variation and scribe depth is employed to verify the experimental conclusions with reasonably close agreement. These conclusions are of great benefits to the optimization of the laser material processing with high efficiency.

  1. Research on laser-removal of a deuterium deposit from a graphite sample

    NASA Astrophysics Data System (ADS)

    Kubkowska, M.; Skladnik-Sadowska, E.; Malinowski, K.; Sadowski, M. J.; Rosinski, M.; Gasior, P.

    2014-04-01

    The paper presents experimental results of investigation of a removal of deuterium deposits from a graphite target by means of pulsed laser beams. The sample was a part of the TEXTOR limiter with a deuterium-deposited layer. That target was located in the vacuum chamber, pumped out to 5×10-5 Torr, and it was irradiated with a Nd:YAG laser, which generated 3.5-ns pulses of energy of 0.5 J at λ1 = 1063 nm, or 0.1 J at λ3 = 355 nm.

  2. Relativistic plasma shutter for ultraintense laser pulses

    PubMed Central

    Reed, Stephen A.; Matsuoka, Takeshi; Bulanov, Stepan; Tampo, Motonobu; Chvykov, Vladimir; Kalintchenko, Galina; Rousseau, Pascal; Yanovsky, Victor; Kodama, Ryousuke; Litzenberg, Dale W.; Krushelnick, Karl; Maksimchuk, Anatoly

    2009-01-01

    A relativistic plasma shutter technique is proposed and tested to remove the sub-100 ps pedestal of a high-intensity laser pulse. The shutter is an ultrathin foil placed before the target of interest. As the leading edge of the laser ionizes the shutter material it will expand into a relativistically underdense plasma allowing for the peak pulse to propagate through while rejecting the low intensity pedestal. An increase in the laser temporal contrast is demonstrated by measuring characteristic signatures in the accelerated proton spectra and directionality from the interaction of 30 TW pulses with ultrathin foils along with supporting hydrodynamic and particle-in-cell simulations. PMID:19654882

  3. Design challenges for matrix assisted pulsed laser evaporation and infrared resonant laser evaporation equipment

    NASA Astrophysics Data System (ADS)

    Greer, James A.

    2011-11-01

    for several reasons. The first reason is that the polymer/solvent mix as well as the sample holder are both exposed to the humidity in the air which will coat the entire surface of the holder and target with water vapor. Some polymer and/or solvent materials may not react well with water vapor. Also, the layer of water vapor absorbed on the target surface may then absorb the incident laser radiation until it is removed from the surface. Thus, it may be unclear when the water vapor is fully removed from the polymer/solvent surface and the MAPLE deposition process actually occurs. This makes deposition of specific polymer thickness difficult to calculate. While it is well known that Quartz crystal microbalances do not work well for PLD of oxide materials it can be used for the deposition of MAPLE materials. However, with rastered laser beams the tooling factor becomes a dynamic number making interpretation of final thickness potentially difficult without careful pre-calibration. Another serious issue with the initial MAPLE process was related to the use of UV lasers such as an excimer operating at 193- or 248-nm or frequency tripled, Nd:YAG lasers at 355 nm. These lasers have high energy per photon (between about 6.4 to 3.5 eV) which can lead to a variety of deleterious photochemical mechanisms that can damage the polymer chains or organic structure. Such mechanisms can be direct photo-decomposition by photochemical bond breaking and photothermal effects. Alternative lasers, such as a Er:YAG laser operating at 2.9 microns produce photons with energy of ˜0.43 eV. Such longer wavelength lasers have been used for the IR-MAPLE process and may be very useful for future MAPLE systems. A third issue with the initial approach to MAPLE was that the process did not lend itself easily to growing multilayer films. Most standard pulsed laser deposition tools have "multi-target" carousels that allow for easy target changes and multilayer film growth. This is true for sputtering, MBE

  4. Injection locked oscillator system for pulsed metal vapor lasers

    DOEpatents

    Warner, Bruce E.; Ault, Earl R.

    1988-01-01

    An injection locked oscillator system for pulsed metal vapor lasers is disclosed. The invention includes the combination of a seeding oscillator with an injection locked oscillator (ILO) for improving the quality, particularly the intensity, of an output laser beam pulse. The present invention includes means for matching the first seeder laser pulses from the seeding oscillator to second laser pulses of a metal vapor laser to improve the quality, and particularly the intensity, of the output laser beam pulse.

  5. Pulse front tilt measurement of femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Dimitrov, Nikolay; Stoyanov, Lyubomir; Stefanov, Ivan; Dreischuh, Alexander; Hansinger, Peter; Paulus, Gerhard G.

    2016-07-01

    In this work we report experimental investigations of an intentionally introduced pulse front tilt on femtosecond laser pulses by using an inverted field correlator/interferometer. A reliable criterion for the precision in aligning (in principle) dispersionless systems for manipulating ultrashort pulses is developed, specifically including cases when the pulse front tilt is a result of a desired spatio-temporal coupling. The results obtained using two low-dispersion diffraction gratings are in good qualitative agreement with the data from a previously developed analytical model and from an independent interferometric measurement.

  6. Simulation of Double-Pulse Laser Ablation

    SciTech Connect

    Povarnitsyn, Mikhail E.; Khishchenko, Konstantin V.; Levashov, Pavel R.; Itina, Tatian E.

    2010-10-08

    We investigate the physical reasons of a strange decrease in the ablation depth observed in femtosecond double-pulse experiments with increasing delay between the pulses. Two ultrashort pulses of the same energy produce the crater which is less than that created by a single pulse. Hydrodynamic simulation shows that the ablation mechanism is suppressed when the delay between the pulses exceeds the electron-ion relaxation time. In this case, the interaction of the second laser pulse with the expanding target material leads to the formation of the second shock wave suppressing the rarefaction wave created by the first pulse. The modeling of the double-pulse ablation for different delays between pulses confirms this explanation.

  7. Power enhancement of burst-mode UV pulses using a doubly-resonant optical cavity

    SciTech Connect

    Rahkman, Abdurahim; Notcutt, Mark; Liu, Yun

    2015-11-24

    We report a doubly-resonant enhancement cavity (DREC) that can realize a simultaneous enhancement of two incoming laser beams at different wavelengths and different temporal structures. The double-resonance condition is theoretically analyzed and different DREC locking methods are experimentally investigated. Simultaneous locking of a Fabry-Perot cavity to both an infrared (IR, 1064 nm) and its frequency tripled ultraviolet (UV, 355 nm) pulses has been demonstrated by controlling the frequency difference between the two beams with a fiber optic frequency shifter. The DREC technique opens a new paradigm in the applications of optical cavities to power enhancement of burst-mode lasers with arbitrary macropulse width and repetition rate.

  8. Laser lithotripsy using double pulse technique

    NASA Astrophysics Data System (ADS)

    Helfmann, Juergen; Doerschel, Klaus; Mueller, Gerhard J.

    1990-07-01

    There are currntly several methods in the field of laser lithotripsy which operate not only at different wavelengths and pulse lengths but also with various types of optical front ends and various irrigation fluids'6. The methods can be divided into two main groups: First, those which utilize stone absorption and plasma formation on the stone surface to initiate stone fragmentation, such as dye lasers. Second, those which generate shock waves and caviatation in the surrounding fluid and which require additional means to produce aplasma (e.g. irrigation, focussing fiber end or metal surfaces). The pulsed Nd:YAG laser belongs to this group. The method presented here is the double pulse technique which is a combination of both methods. It uses two laser pulses with a short time delay transmitted by means of a fiber to destroy body concrements. The first pulse is the first harmonic of the Nd:YAG laser (532nm) which improves the coupling efficiency of the laser radiation with the stone. The second pulse is in the fundamental mode of the laser (1064 nm) delivering the high energy for the stone disruption.

  9. Fiber Laser Front Ends for High Energy, Short Pulse Lasers

    SciTech Connect

    Dawson, J; Messerly, M; Phan, H; Siders, C; Beach, R; Barty, C

    2007-06-21

    We are developing a fiber laser system for short pulse (1-10ps), high energy ({approx}1kJ) glass laser systems. Fiber lasers are ideal for these systems as they are highly reliable and enable long term stable operation.

  10. The role of film interfaces in near-ultraviolet absorption and pulsed-laser damage in ion-beam-sputtered coatings based on HfO2/SiO2 thin-film pairs

    DOE PAGESBeta

    Ristau, Detlev; Papernov, S.; Kozlov, A. A.; Oliver, J. B.; Smith, C.; Jensen, L.; Gunster, S.; Madebach, H.

    2015-11-23

    The role of thin-film interfaces in the near-ultraviolet absorption and pulsed-laser–induced damage was studied for ion-beam–sputtered and electron-beam–evaporated coatings comprised from HfO2 and SiO2 thin-film pairs. To separate contributions from the bulk of the film and from interfacial areas, absorption and damage-threshold measurements were performed for a one-wave (355-nm wavelength) thick, HfO2 single-layer film and for a film containing seven narrow HfO2 layers separated by SiO2 layers. The seven-layer film was designed to have a total optical thickness of HfO2 layers, equal to one wave at 355 nm and an E-field peak and average intensity similar to a single-layer HfO2more » film. Absorption in both types of films was measured using laser calorimetry and photothermal heterodyne imaging. The results showed a small contribution to total absorption from thin-film interfaces, as compared to HfO2 film material. The relevance of obtained absorption data to coating near-ultraviolet, nanosecond-pulse laser damage was verified by measuring the damage threshold and characterizing damage morphology. The results of this study revealed a higher damage resistance in the seven-layer coating as compared to the single-layer HfO2 film in both sputtered and evaporated coatings. Here, the results are explained through the similarity of interfacial film structure with structure formed during the co-deposition of HfO2 and SiO2 materials.« less

  11. The role of film interfaces in near-ultraviolet absorption and pulsed-laser damage in ion-beam-sputtered coatings based on HfO2/SiO2 thin-film pairs

    SciTech Connect

    Ristau, Detlev; Papernov, S.; Kozlov, A. A.; Oliver, J. B.; Smith, C.; Jensen, L.; Gunster, S.; Madebach, H.

    2015-11-23

    The role of thin-film interfaces in the near-ultraviolet absorption and pulsed-laser–induced damage was studied for ion-beam–sputtered and electron-beam–evaporated coatings comprised from HfO2 and SiO2 thin-film pairs. To separate contributions from the bulk of the film and from interfacial areas, absorption and damage-threshold measurements were performed for a one-wave (355-nm wavelength) thick, HfO2 single-layer film and for a film containing seven narrow HfO2 layers separated by SiO2 layers. The seven-layer film was designed to have a total optical thickness of HfO2 layers, equal to one wave at 355 nm and an E-field peak and average intensity similar to a single-layer HfO2 film. Absorption in both types of films was measured using laser calorimetry and photothermal heterodyne imaging. The results showed a small contribution to total absorption from thin-film interfaces, as compared to HfO2 film material. The relevance of obtained absorption data to coating near-ultraviolet, nanosecond-pulse laser damage was verified by measuring the damage threshold and characterizing damage morphology. The results of this study revealed a higher damage resistance in the seven-layer coating as compared to the single-layer HfO2 film in both sputtered and evaporated coatings. Here, the results are explained through the similarity of interfacial film structure with structure formed during the co-deposition of HfO2 and SiO2 materials.

  12. The role of film interfaces in near-ultraviolet absorption and pulsed-laser damage in ion-beam-sputtered coatings based on HfO2/SiO2 thin-films pairs

    SciTech Connect

    Papernov, S.; Kozlov, A. A.; Oliver, J. B.; Smith, C.; Jensen, L.; Ristau, D.; Gunster, S.; Madebach, H.

    2015-11-23

    Here, the role of thin-film interfaces in the near-ultraviolet absorption and pulsed-laser–induced damage was studied for ion-beam–sputtered and electron-beam–evaporated coatings comprised from HfO2 and SiO2 thin-film pairs. To separate contributions from the bulk of the film and from interfacial areas, absorption and damage-threshold measurements were performed for a one-wave (355-nm wavelength) thick, HfO2 single-layer film and for a film containing seven narrow HfO2 layers separated by SiO2 layers. The seven-layer film was designed to have a total optical thickness of HfO2 layers, equal to one wave at 355 nm and an E-field peak and average intensity similar to a single-layer HfO2 film. Absorption in both types of films was measured using laser calorimetry and Photothermal heterodyne imaging. The results showed a small contribution to total absorption from thin-film interfaces, as compared to HfO2 film material. The relevance of obtained absorption data to coating near-ultraviolet, nanosecond-pulse laser damage was verified by measuring the damage threshold and characterizing damage morphology. The results of this study revealed a higher damage resistance in the seven-layer coating as compared to the single-layer HfO2 film in both sputtered and evaporated coatings. The results are explained through the similarity of interfacial film structure with structure formed during the co-deposition of HfO2 and SiO2 materials.

  13. The role of film interfaces in near-ultraviolet absorption and pulsed-laser damage in ion-beam-sputtered coatings based on HfO2/SiO2 thin-films pairs

    DOE PAGESBeta

    Papernov, S.; Kozlov, A. A.; Oliver, J. B.; Smith, C.; Jensen, L.; Ristau, D.; Gunster, S.; Madebach, H.

    2015-11-23

    Here, the role of thin-film interfaces in the near-ultraviolet absorption and pulsed-laser–induced damage was studied for ion-beam–sputtered and electron-beam–evaporated coatings comprised from HfO2 and SiO2 thin-film pairs. To separate contributions from the bulk of the film and from interfacial areas, absorption and damage-threshold measurements were performed for a one-wave (355-nm wavelength) thick, HfO2 single-layer film and for a film containing seven narrow HfO2 layers separated by SiO2 layers. The seven-layer film was designed to have a total optical thickness of HfO2 layers, equal to one wave at 355 nm and an E-field peak and average intensity similar to a single-layermore » HfO2 film. Absorption in both types of films was measured using laser calorimetry and Photothermal heterodyne imaging. The results showed a small contribution to total absorption from thin-film interfaces, as compared to HfO2 film material. The relevance of obtained absorption data to coating near-ultraviolet, nanosecond-pulse laser damage was verified by measuring the damage threshold and characterizing damage morphology. The results of this study revealed a higher damage resistance in the seven-layer coating as compared to the single-layer HfO2 film in both sputtered and evaporated coatings. The results are explained through the similarity of interfacial film structure with structure formed during the co-deposition of HfO2 and SiO2 materials.« less

  14. Pulsed Laser Ablation of Soft Biological Tissues

    NASA Astrophysics Data System (ADS)

    Vogel, Alfred; Venugopalan, Vasan

    In this chapter we focus on the key elements that form our current understanding of the mechanisms of pulsed laser ablation of soft biological tissues. We present a conceptual framework providing mechanistic links between various ablation applications and the underlying thermodynamic and phase change processes [1]. We define pulsed laser ablation as the use of laser pulses with duration of ~1 ms or less for the incision or removal of tissue regardless of the photophysical or photochemical processes involved. However, we will confine this presentation to pulsed ablation performed on a tissue level that does not involve laser-induced plasma formation. Ablation processes within transparent tissues or cells resulting from non-linear absorption have been considered in reviews by Vogel and Venugopalan [1] and by Vogel and co-workers [2].

  15. Colliding Laser Pulses for Laser-Plasma Accelerator Injection Control

    SciTech Connect

    Plateau, G. R.; Geddes, C. G. R.; Matlis, N. H.; Mittelberger, D. E.; Nakamura, K.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.; Cormier-Michel, E.

    2010-11-04

    Decoupling injection from acceleration is a key challenge to achieve compact, reliable, tunable laser-plasma accelerators (LPA). In colliding pulse injection the beat between multiple laser pulses can be used to control energy, energy spread, and emittance of the electron beam by injecting electrons in momentum and phase into the accelerating phase of the wake trailing the driver laser pulse. At LBNL, using automated control of spatiotemporal overlap of laser pulses, two-pulse experiments showed stable operation and reproducibility over hours of operation. Arrival time of the colliding beam was scanned, and the measured timing window and density of optimal operation agree with simulations. The accelerator length was mapped by scanning the collision point.

  16. Colliding Laser Pulses for Laser-Plasma Accelerator Injection Control

    NASA Astrophysics Data System (ADS)

    Plateau, G. R.; Geddes, C. G. R.; Matlis, N. H.; Cormier-Michel, E.; Mittelberger, D. E.; Nakamura, K.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2010-11-01

    Decoupling injection from acceleration is a key challenge to achieve compact, reliable, tunable laser-plasma accelerators (LPA) [1, 2]. In colliding pulse injection the beat between multiple laser pulses can be used to control energy, energy spread, and emittance of the electron beam by injecting electrons in momentum and phase into the accelerating phase of the wake trailing the driver laser pulse [3, 4, 5, 6, 7]. At LBNL, using automated control of spatiotemporal overlap of laser pulses, two-pulse experiments showed stable operation and reproducibility over hours of operation. Arrival time of the colliding beam was scanned, and the measured timing window and density of optimal operation agree with simulations [8]. The accelerator length was mapped by scanning the collision point.

  17. The dynamics of compact laser pulses

    NASA Astrophysics Data System (ADS)

    Goto, S.; Tucker, R. W.; Walton, T. J.

    2016-07-01

    We discuss the use of a class of exact finite energy solutions to the vacuum source-free Maxwell equations as models for multi- and single cycle laser pulses in classical interaction with relativistic charged point particles. These compact solutions are classified in terms of their chiral content and their influence on particular charge configurations in space. The results of such classical interactions motivate a phenomenological quantum description of a propagating laser pulse in a medium in terms of an effective quantum Hamiltonian.

  18. Multiple laser pulse ignition method and apparatus

    DOEpatents

    Early, J.W.

    1998-05-26

    Two or more laser light pulses with certain differing temporal lengths and peak pulse powers can be employed sequentially to regulate the rate and duration of laser energy delivery to fuel mixtures, thereby improving fuel ignition performance over a wide range of fuel parameters such as fuel/oxidizer ratios, fuel droplet size, number density and velocity within a fuel aerosol, and initial fuel temperatures. 18 figs.

  19. Multiple laser pulse ignition method and apparatus

    DOEpatents

    Early, James W.

    1998-01-01

    Two or more laser light pulses with certain differing temporal lengths and peak pulse powers can be employed sequentially to regulate the rate and duration of laser energy delivery to fuel mixtures, thereby improving fuel ignition performance over a wide range of fuel parameters such as fuel/oxidizer ratios, fuel droplet size, number density and velocity within a fuel aerosol, and initial fuel temperatures.

  20. Pulsed lasers in dentistry: sense or nonsense?

    NASA Astrophysics Data System (ADS)

    Koort, Hans J.; Frentzen, Matthias

    1991-05-01

    The great interest in the field of laser applications in dentistry provokes the question, if all these new techniques may really fulfill advantages, which are expected after initial in-vitro studies. Whereas laser surgery of soft oral tissues has been developed to a standard method, laser treatment of dental hard tissues and the bone are attended with many unsolved problems. Different laser types, especially pulsed lasers in a wide spectrum of wavelengths have been proofed for dental use. Today neither the excimer lasers, emitting in the far uv-range from 193 to 351 nm, nor the mid-infrared lasers like Nd:YAG (1,064 μm), Ho:YAG (2,1 μm) and Er:YAG (2,96 μm) or the C02-laser (10,6 μm) show mechanism of interaction more carefully and faster than a preparation of teeth with diamond drillers. The laser type with the most precise and considerate treatment effects in the moment is the short pulsed (15 ns) ArF-excimer laser with a wavelength of 193 nm. However this laser type has not yet the effectivity of mechanical instruments and it needs a mirror system to deliver the radiation. Histological results point out, that this laser shows no significant pathological alterations in the adjacent tissues. Another interesting excimer laser, filled with XeCI and emitting at a wavelength of 308 nm has the advantage to be good to deliver through quartz fibers. A little more thermal influence is to be seen according to the longer wavelength. Yet the energy density, necessary to cut dental hard tissues will not be reached with the laser systems available now. Both the pulsed Er:YAG- (2,94 μm, pulse duration 250 s) and the Ho:YAG -laser (2,1 μm, pulse duration 250 μs) have an effective coupling of the laser energy to hydrogeneous tissues, but they do not work sufficient on healthy enamel and dentine. The influence to adjacent healthy tissue is not tolerable, especially in regard of the thermal damage dentine and pulp tissues. Moreover, like the 193 nm ArF-excimer laser

  1. Pulsed Laser Illumination of Photovoltaic Cells

    NASA Technical Reports Server (NTRS)

    Yater, Jane A.; Lowe, Roland; Jenkins, Philip; Landis, Geoffrey A.

    1994-01-01

    In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic array receivers to provide remote power. The induction FEL and the radio-frequency (RF) FEL both produce pulsed rather than continuous output. In this work, we investigate cell response to pulsed laser light which simulates the RF FEL format, producing 50 ps pulses at a frequency of 78 MHz. A variety of Si, GaAs, CaSb and CdInSe2 (CIS) solar cells are tested at average incident powers between 4 mW/sq cm and 425 mW/sq cm. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced by using a pulsed laser source compared to constant illumination at the same wavelength. Because the pulse separation is less than or approximately equal to the minority carrier lifetime, the illumination conditions are effectively those of a continuous wave laser. The time dependence of the voltage and current response of the cells are also measured using a sampling oscilloscope equipped with a high frequency voltage probe and current transformer. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments shows that the RF FEL pulse format yields much more efficient photovoltaic conversion of light than does an induction FEL pulse format.

  2. Pulse-shaping circuit for laser excitation

    NASA Technical Reports Server (NTRS)

    Laudenslager, J. B.; Pacala, T. J.

    1981-01-01

    Narrower, impedence-matched pulses initiate stabler electric discharges for gas lasers. Discharges are more efficient, more compact, capable of high repetition rate, and less expensive than conventional electron-beam apparatus, but gas tends to break down and form localized arcs. Pulse-shaping circuit compresses width of high-voltage pulses from relatively-slow rise-time voltage generator and gradually grades circuit impedance from inherent high impedance of generator to low impedence of gas.

  3. Feedback control of pulsed laser deposition processes

    NASA Astrophysics Data System (ADS)

    Laube, S. J. P.; Stark, E. F.

    1993-10-01

    Implementation of closed loop feedback on PLD (pulsed laser deposition) requires actuators and sensors. Improvements in quality and reproducibility of material depositions are achieved by actuating the process towards desired operating regions. Empirical relationships are experimentally determined for describing the complex dynamical interactions of laser parameters. Feedback control based on this description can then be implemented to reduce process disorder.

  4. PULSED LASER ABLATION OF CEMENT AND CONCRETE

    EPA Science Inventory

    Laser ablation was investigated as a means of removing radioactive contaminants from the surface and near-surface regions of concrete from nuclear facilities. We present the results of ablation tests on cement and concrete samples using a pulsed Nd:YAG laser with fiber optic beam...

  5. Pressure wave charged repetitively pulsed gas laser

    DOEpatents

    Kulkarny, Vijay A.

    1982-01-01

    A repetitively pulsed gas laser in which a system of mechanical shutters bracketing the laser cavity manipulate pressure waves resulting from residual energy in the cavity gas following a lasing event so as to draw fresh gas into the cavity and effectively pump spent gas in a dynamic closed loop.

  6. Modeling of pulsed lasers for remote sensing

    NASA Astrophysics Data System (ADS)

    Walsh, Brian M.; Barnes, Norman P.; Petros, Mulugeta; Yu, Jirong; Singh, Upendra N.

    2005-01-01

    Pulsed lasers are useful for remote sensing of wind and greenhouse gases to better understand the atmosphere and its impact on weather patterns and the environment. It is not always practical to develop and optimize new laser systems empirically due to the time and expense associated with such endeavors. A practical option is to use a laser model to predict various performance parameters and compare these with the needs required for a particular remote sensing application. This approach can be very useful in determining the efficacy of potential laser systems, saving both time and money before proceeding with the actual construction of a laser device. As a pedagogical example, the modeling of diode pumped Tm:Ho:YLF and Tm:Ho:LuLF lasers are examined. Tm:Ho lasers operating around 2.0 μm have been used for wind measurements such as clear air turbulence and wake vortices. The model predictions for the laser systems examined here are compared to the actual laser performance, validating the usefulness of the modeling approach. While Tm:Ho fluoride lasers are used as a pedagogical example, the model is applicable to any lanthanide series pulsed laser system. This provides a useful tool for investigating potential laser systems that meet the requirements desired for a variety of remote sensing applications.

  7. Quantifying pulsed laser induced damage to graphene

    SciTech Connect

    Currie, Marc; Caldwell, Joshua D.; Bezares, Francisco J.; Robinson, Jeremy; Anderson, Travis; Chun, Hayden; Tadjer, Marko

    2011-11-21

    As an emerging optical material, graphene's ultrafast dynamics are often probed using pulsed lasers yet the region in which optical damage takes place is largely uncharted. Here, femtosecond laser pulses induced localized damage in single-layer graphene on sapphire. Raman spatial mapping, SEM, and AFM microscopy quantified the damage. The resulting size of the damaged area has a linear correlation with the optical fluence. These results demonstrate local modification of sp{sup 2}-carbon bonding structures with optical pulse fluences as low as 14 mJ/cm{sup 2}, an order-of-magnitude lower than measured and theoretical ablation thresholds.

  8. Laser pulse shaping for high gradient accelerators

    NASA Astrophysics Data System (ADS)

    Villa, F.; Anania, M. P.; Bellaveglia, M.; Bisesto, F.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Galletti, M.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Gatti, G.; Moreno, M.; Petrarca, M.; Pompili, R.; Vaccarezza, C.

    2016-09-01

    In many high gradient accelerator schemes, i.e. with plasma or dielectric wakefield induced by particles, many electron pulses are required to drive the acceleration of one of them. Those electron bunches, that generally should have very short duration and low emittance, can be generated in photoinjectors driven by a train of laser pulses coming inside the same RF bucket. We present the system used to shape and characterize the laser pulses used in multibunch operations at Sparc_lab. Our system gives us control over the main parameter useful to produce a train of up to five high brightness bunches with tailored intensity and time distribution.

  9. Pulse-to-pulse polarization-switching method for high-repetition-rate lasers

    NASA Astrophysics Data System (ADS)

    Hahne, Steffen; Johnston, Benjamin F.; Withford, Michael J.

    2007-02-01

    We report a method that enables dynamic switching of the pulse-to-pulse linear polarization orientation of a high-pulse-rate laser. The implications for laser micromachining, where polarization direction can be important, are also discussed.

  10. Pulsed solid state lasers for medicine

    NASA Astrophysics Data System (ADS)

    Kertesz, Ivan; Danileiko, A. Y.; Denker, Boris I.; Kroo, Norbert; Osiko, Vyacheslav V.; Prokhorov, Alexander M.

    1994-02-01

    The effect on living tissues of different pulsed solid state lasers: Nd:YAG ((lambda) equals 1.06 micrometers ) Er:glass (1.54 micrometers ), Ho:YAG (2.1 micrometers ) and Er:YAG (2.94 micrometers ) is compared with the continuous wave Nd:YAG- and CO2-lasers used in operating theaters. Portable Er:glass- and Er:YAG-lasers are developed for surgery/cosmetics and HIV-safe blood testing.

  11. Picosecond sources for sub-centimeter laser ranging

    NASA Technical Reports Server (NTRS)

    Krebs, Danny J.; Dallas, Joseph; Seery, Bernard D.

    1992-01-01

    Some of the tradeoffs involved in selecting a laser source for space-based laser ranging are outlined, and some of the recent developments in the laser field most relevant to space-based lasers for ranging and altimetry are surveyed. Laser pulse width and laser design are discussed. It is argued that, while doubled/tripled ND-host lasers are currently the best choice for laser ranging in two colors, they have the shortcoming that the atmospheric transmission at 355 nm is significantly poorer than it is at longer wavelengths which still have sufficient dispersion for two-color laser ranging. The life requirement appears to demand that laser diode pumping be used for space applications.

  12. Classical dynamics of free electromagnetic laser pulses

    NASA Astrophysics Data System (ADS)

    Goto, S.; Tucker, R. W.; Walton, T. J.

    2016-02-01

    We discuss a class of exact finite energy solutions to the vacuum source-free Maxwell field equations as models for multi- and single cycle laser pulses in classical interaction with relativistic charged test particles. These solutions are classified in terms of their chiral content based on their influence on particular charge configurations in space. Such solutions offer a computationally efficient parameterization of compact laser pulses used in laser-matter simulations and provide a potential means for experimentally bounding the fundamental length scale in the generalized electrodynamics of Bopp, Landé and Podolsky.

  13. Advances in generation of high-repetition-rate burst mode laser output.

    PubMed

    Jiang, Naibo; Webster, Matthew C; Lempert, Walter R

    2009-02-01

    It is demonstrated that the incorporation of variable pulse duration flashlamp power supplies into an Nd:YAG burst mode laser system results in very substantial increases in the realizable energy per pulse, the total pulse train length, and uniformity of the intensity envelope. As an example, trains of 20 pulses at burst frequencies of 50 and 20 kHz are demonstrated with individual pulse energy at 1064 nm of 220 and 400 mJ, respectively. Conversion efficiency to the second- (532 nm) and third- (355 nm) harmonic wavelengths of approximately 50% and 35-40%, respectively, is also achieved. Use of the third-harmonic output of the burst mode laser as a pump source for a simple, home built optical parametric oscillator (OPO) produces pulse trains of broadly wavelength tunable output. Sum-frequency mixing of OPO signal output at 622 nm with residual output from the 355 nm pump beam is shown to produce uniform bursts of tunable output at approximately 226 nm, with individual pulse energy of approximately 0.5 mJ. Time-correlated NO planar laser induced fluorescence (PLIF) image sequences are obtained in a Mach 3 wind tunnel at 500 kHz, representing, to our knowledge, the first demonstration of NO PLIF imaging at repetition rates exceeding tens of hertz. PMID:19183578

  14. Heat accumulation during pulsed laser materials processing.

    PubMed

    Weber, Rudolf; Graf, Thomas; Berger, Peter; Onuseit, Volkher; Wiedenmann, Margit; Freitag, Christian; Feuer, Anne

    2014-05-01

    Laser materials processing with ultra-short pulses allows very precise and high quality results with a minimum extent of the thermally affected zone. However, with increasing average laser power and repetition rates the so-called heat accumulation effect becomes a considerable issue. The following discussion presents a comprehensive analytical treatment of multi-pulse processing and reveals the basic mechanisms of heat accumulation and its consequence for the resulting processing quality. The theoretical findings can explain the experimental results achieved when drilling microholes in CrNi-steel and for cutting of CFRP. As a consequence of the presented considerations, an estimate for the maximum applicable average power for ultra-shorts pulsed laser materials processing for a given pulse repetition rate is derived. PMID:24921828

  15. Pulsed laser illumination of photovoltaic cells

    NASA Technical Reports Server (NTRS)

    Yater, Jane A.; Lowe, Roland A.; Jenkins, Phillip P.; Landis, Geoffrey A.

    1994-01-01

    In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic array receivers to provide remote power. Both the radio-frequency (RF) and induction FEL provide FEL produce pulsed rather than continuous output. In this work we investigate cell response to pulsed laser light which simulates the RF FEL format. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced compared to constant illumination at the same wavelength. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments indicates that the RF FEL pulse format yields more efficient photovoltaic conversion than does an induction FEL pulse format.

  16. Ejection of glass melts and generation of nanofibers from the back surface of a glass plate by pulsed UV laser irradiation

    NASA Astrophysics Data System (ADS)

    Itoh, Sho; Sakakura, Masaaki; Shimotsuma, Yasuhiko; Miura, Kiyotaka

    2016-03-01

    Several applications of glass nanofibers have been proposed for the past years. We found a new method for production of nanofibers with a diameter of 100 nm order from thin glass plates by irradiation with nanoseconds pulsed UV laser (wavelength is 355 nm). Although the generation of nanofibers from the back surface of a glass plate is convenient for continuous laser irradiation and collection of fibers, the details of the mechanism have not been elucidated yet. In this paper, we focused on the dynamics of ejection of glass melts that results in the formation of nanofibers, and investigated the mechanism of nanofiber generation. Based on the observation by a high-speed camera, we found that voids inside of the glass plate propagated in the laser propagation direction shot by shot, then, the void pushed the molten glass near the back surface. We also confirmed that the molten glass was ejected from the back surface of plates at a speed of 10-100 m/s. We assumed that the driving force is "recoil pressure", and compared the estimated pressure value from this experiment with that shown in the references. The value estimated by the relationship between pressure and momentum was 1.3 MPa, which was close to that reported in the past.

  17. High Power Pulsed Gas Lasers

    NASA Astrophysics Data System (ADS)

    Witteman, W. J.

    1987-09-01

    Gas lasers have shown to be capable of delivering tens of terrawatt aspeak power or tens of kilowatt as average power. The efficiencies of most high power gas lasers are relatively high compared with other types of lasers. For instance molecular lasers, oscillating on low lying vibrational levels, and excimer lasers may have intrinsic efficiencies above 10%.The wavelengths of these gas lasers cover the range from the far infrared to the ultra-violet region, say from 12000 to 193 nm. The most important properties are the scalability, optical homogeneity of the excited medium, and the relatively low price per watt of output power. The disadvantages may be the large size of the systems and the relatively narrow line width with limited tunability compared with solid state systems producing the same peak power. High power gas lasers group into three main categories depending on the waste-heat handling capacity.

  18. Overview of repetitively pulsed photolytic iodine lasers

    NASA Astrophysics Data System (ADS)

    Schlie, L. A. V.

    1996-02-01

    The performance of a repetitively pulsed, 70 joule, closed cycle 1.3 (mu) M photolytic atomic iodine laser with excellent beam quality (BQ equals 1.15) is presented. This BQ was exhibited in the fundamental mode from a M equals 3.1 confocal unstable resonator at a 0.5 Hz repetition rate. A closed cycle scrubber/laser fuel system consisting of a condensative- evaporative section, two Cu wool I2 reactor regions, and an internal turbo-blower enabled the laser to operate very reliably with low maintenance. The fuel system provided C3F7I gas at 10 - 60 torr absent of the photolytic quenching by-product I2. Using a turbo- molecular blower longitudinal flow velocities greater than 10 m/s were achieved through the 150 cm long by 7.5 multiplied by 7.5 cm2 cross sectional photolytic iodine gain region. In addition to the high laser output and excellent BQ, the resulting 8 - 12 microsecond laser pulse had a coherence length greater than 45 meters and polarization extinction ratio better than 100:1. Projections from this pulsed photolytic atomic iodine laser technology to larger energies, higher repetition rates, and variable pulse widths are discussed.

  19. Inductive gas line for pulsed lasers

    DOEpatents

    Benett, William J.; Alger, Terry W.

    1985-01-01

    A gas laser having a metal inlet gas feed line assembly shaped as a coil, to function as an electrical inductance and therefore high impedance to pulses of electric current applied to electrodes at opposite ends of a discharge tube of a laser, for example. This eliminates a discharge path for the laser through the inlet gas feed line. A ferrite core extends through the coil to increase the inductance of the coil and provide better electric isolation. By elimination of any discharge breakdown through the gas supply, efficiency is increased and a significantly longer operating lifetime of the laser is provided.

  20. Inductive gas line for pulsed lasers

    DOEpatents

    Benett, W.J.; Alger, T.W.

    1982-09-29

    A gas laser having a metal inlet gas feed line assembly shaped as a coil, to function as an electrical inductance and therefore high impedance to pulses of electric current applied to electrodes at opposite ends of a discharge tube of a laser, for example. This eliminates a discharge path for the laser through the inlet gas feed line. A ferrite core extends through the coil to increase the inductance of the coil and provide better electric isolation. By elimination of any discharge breakdown through the gas supply, efficiency is increased and a significantly longer operating lifetime of the laser is provided.

  1. Nonequilibrium Interlayer Transport in Pulsed Laser Deposition

    SciTech Connect

    Tischler, Jonathan Zachary; Eres, Gyula; Larson, Ben C; Rouleau, Christopher M; Zschack, P.; Lowndes, Douglas H

    2006-01-01

    We use time-resolved surface x-ray diffraction measurements with microsecond range resolution to study the growth kinetics of pulsed laser deposited SrTiO3. Time-dependent surface coverages corresponding to single laser shots were determined directly from crystal truncation rod intensity transients. Analysis of surface coverage evolution shows that extremely fast nonequilibrium interlayer transport, which occurs concurrently with the arrival of the laser plume, dominates the deposition process. A much smaller fraction of material, which is governed by the dwell time between successive laser shots, is transferred by slow, thermally driven interlayer transport processes.

  2. Ophthalmic applications of ultrashort pulsed lasers

    NASA Astrophysics Data System (ADS)

    Juhasz, Tibor; Spooner, Greg; Sacks, Zachary S.; Suarez, Carlos G.; Raksi, Ferenc; Zadoyan, Ruben; Sarayba, Melvin; Kurtz, Ronald M.

    2004-06-01

    Ultrashort laser pulses can be used to create high precision incision in transparent and translucent tissue with minimal damage to adjacent tissue. These performance characteristics meet important surgical requirements in ophthalmology, where femtosecond laser flap creation is becoming a widely used refractive surgery procedure. We summarize clinical findings with femtosecond laser flaps as well as early experiments with other corneal surgical procedures such as corneal transplants. We also review laser-tissue interaction studies in the human sclera and their consequences for the treatment of glaucoma.

  3. Cornea surgery with nanojoule femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Wang, Bagui; Riemann, Iris; Kobow, Jens

    2005-04-01

    We report on a novel optical method for (i) flap-generation in LASIK procedures as well as (ii) for flap-free intrastromal refractive surgery based on nanojoule femtosecond laser pulses. The near infrared 200 fs pulses for multiphoton ablation have been provided by ultracompact turn-key MHz laser resonators. LASIK flaps and intracorneal cavities have been realized with high precision within living New Zealand rabbits using the system FemtoCutO (JenLab GmbH, Jena, Germany) at 800 nm laser wavelength. Using low-energy sub-2 nJ laser pulses, collateral damage due to photodisruptive and self-focusing effects was avoided. The laser ablation system consists of fast galvoscanners, focusing optics of high numerical aperture as well as a sensitive imaging system and provides also the possibility of 3D multiphoton imaging of fluorescent cellular organelles and SHG signals from collagen. Multiphoton tomography of the cornea was used to determine the exact intratissue beam position and to visualize intraocular post-laser effects. The wound healing process has been investigated up to 90 days after instrastromal laser ablation by histological analysis. Regeneration of damaged collagen structures and the migration of inflammation cells have been detected.

  4. Pulsed laser illumination of photovoltaic cells

    NASA Technical Reports Server (NTRS)

    Yater, Jane A.; Lowe, Roland A.; Jenkins, Phillip P.; Landis, Geoffrey A.

    1995-01-01

    In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic receivers to provide remote power. Both the radio-frequency (RF) and induction FEL produce pulsed rather than continuous output. In this work we investigate cell response to pulsed laser light which simulates the RF FEL format. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced compared to constant illumination at the same wavelength. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments indicates that the RF FEL pulse format yields more efficient photovoltaic conversion than does an induction FEL format.

  5. Ultrashort laser pulse driven inverse free electron laser accelerator experiment

    NASA Astrophysics Data System (ADS)

    Moody, J. T.; Anderson, S. G.; Anderson, G.; Betts, S.; Fisher, S.; Tremaine, A.; Musumeci, P.

    2016-02-01

    In this paper we discuss the ultrashort pulse high gradient inverse free electron laser accelerator experiment carried out at the Lawrence Livermore National Laboratory which demonstrated gradients exceeding 200 MV /m using a 4 TW 100 fs long 800 nm Ti :Sa laser pulse. Due to the short laser and electron pulse lengths, synchronization was determined to be one of the main challenges in this experiment. This made necessary the implementation of a single-shot, nondestructive, electro-optic sampling based diagnostics to enable time-stamping of each laser accelerator shot with <100 fs accuracy. The results of this experiment are expected to pave the way towards the development of future GeV-class IFEL accelerators.

  6. Energy distribution of fast electrons accelerated by high intensity laser pulse depending on laser pulse duration

    NASA Astrophysics Data System (ADS)

    Kojima, Sadaoki; Arikawa, Yasunobu; Morace, Alessio; Hata, Masayasu; Nagatomo, Hideo; Ozaki, Tetsuo; Sakata, Shohei; Lee, Seung Ho; Matsuo, Kazuki; Farley Law, King Fai; Tosaki, Shota; Yogo, Akifumi; Johzaki, Tomoyuki; Sunahara, Atsushi; Sakagami, Hitoshi; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Fujioka, Shinsuke; Azechi, Hiroshi

    2016-05-01

    The dependence of high-energy electron generation on the pulse duration of a high intensity LFEX laser was experimentally investigated. The LFEX laser (λ = 1.054 and intensity = 2.5 – 3 x 1018 W/cm2) pulses were focused on a 1 mm3 gold cubic block after reducing the intensities of the foot pulse and pedestal by using a plasma mirror. The full width at half maximum (FWHM) duration of the intense laser pulse could be set to either 1.2 ps or 4 ps by temporally stacking four beams of the LFEX laser, for which the slope temperature of the high-energy electron distribution was 0.7 MeV and 1.4 MeV, respectively. The slope temperature increment cannot be explained without considering pulse duration effects on fast electron generation.

  7. Ultrashort pulsed laser technology development program

    NASA Astrophysics Data System (ADS)

    Manke, Gerald C.

    2014-10-01

    The Department of Navy has been pursuing a technology development program for advanced, all-fiber, Ultra Short Pulsed Laser (USPL) systems via Small Business Innovative Research (SBIR) programs. Multiple topics have been published to promote and fund research that encompasses every critical component of a standard USPL system and enable the demonstration of mJ/pulse class systems with an all fiber architecture. This presentation will summarize published topics and funded programs.

  8. Design challenges for matrix assisted pulsed laser evaporation and infrared resonant laser evaporation equipment

    NASA Astrophysics Data System (ADS)

    Greer, James A.

    2011-11-01

    for several reasons. The first reason is that the polymer/solvent mix as well as the sample holder are both exposed to the humidity in the air which will coat the entire surface of the holder and target with water vapor. Some polymer and/or solvent materials may not react well with water vapor. Also, the layer of water vapor absorbed on the target surface may then absorb the incident laser radiation until it is removed from the surface. Thus, it may be unclear when the water vapor is fully removed from the polymer/solvent surface and the MAPLE deposition process actually occurs. This makes deposition of specific polymer thickness difficult to calculate. While it is well known that Quartz crystal microbalances do not work well for PLD of oxide materials it can be used for the deposition of MAPLE materials. However, with rastered laser beams the tooling factor becomes a dynamic number making interpretation of final thickness potentially difficult without careful pre-calibration. Another serious issue with the initial MAPLE process was related to the use of UV lasers such as an excimer operating at 193- or 248-nm or frequency tripled, Nd:YAG lasers at 355 nm. These lasers have high energy per photon (between about 6.4 to 3.5 eV) which can lead to a variety of deleterious photochemical mechanisms that can damage the polymer chains or organic structure. Such mechanisms can be direct photo-decomposition by photochemical bond breaking and photothermal effects. Alternative lasers, such as a Er:YAG laser operating at 2.9 microns produce photons with energy of ˜0.43 eV. Such longer wavelength lasers have been used for the IR-MAPLE process and may be very useful for future MAPLE systems. A third issue with the initial approach to MAPLE was that the process did not lend itself easily to growing multilayer films. Most standard pulsed laser deposition tools have "multi-target" carousels that allow for easy target changes and multilayer film growth. This is true for sputtering, MBE

  9. Polyethylene welding by pulsed visible laser irradiation

    NASA Astrophysics Data System (ADS)

    Torrisi, L.; Caridi, F.; Visco, A. M.; Campo, N.

    2011-01-01

    Laser welding of plastics is a relatively new process that induces locally a fast polymer heating. For most applications, the process involves directing a pulsed beam of visible light at the weld joint by going through one of the two parts. This is commonly referred to as “through transmission visible laser welding”. In this technique, the monochromatic visible light source uses a power ns pulsed laser in order to irradiate the joint through one part and the light is absorbed in the vicinity of the other part. In order to evaluate the mechanical resistance of the welded joint, mass quadrupole spectrometry, surface profilometry, microscopy techniques and mechanical shear tests were employed. The welding effect was investigated as a function of the laser irradiation time, nature of the polyethylene materials and temperature.

  10. Ceramic dentures manufactured with ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Werelius, Kristian; Weigl, Paul

    2004-06-01

    Conventional manufacturing of individual ceramic dental prosthesis implies a handmade metallic framework, which is then veneered with ceramic layers. In order to manufacture all-ceramic dental prosthesis a CAD/CAM system is necessary due to the three dimensional shaping of high strength ceramics. Most CAD/CAM systems presently grind blocks of ceramic after the construction process in order to create the prosthesis. Using high-strength ceramics, such as Hot Isostatic Pressed (HIP)-zirconia, this is limited to copings. Anatomically shaped fixed dentures have a sculptured surface with small details, which can't be created by existing grinding tools. This procedure is also time consuming and subject to significant loss in mechanical strength and thus reduced survival rate once inserted. Ultra-short laser pulses offer a possibility in machining highly complex sculptured surfaces out of high-strength ceramic with negligible damage to the surface and bulk of the ceramic. In order to determine efficiency, quality and damage, several laser ablation parameters such as pulse duration, pulse energy and ablation strategies were studied. The maximum ablation rate was found using 400 fs at high pulse energies. High pulse energies such as 200μJ were used with low damage in mechanical strength compared to grinding. Due to the limitation of available laser systems in pulse repetition rates and power, the use of special ablation strategies provide a possibility to manufacture fully ceramic dental prosthesis efficiently.

  11. Ultrashort pulse laser deposition of thin films

    DOEpatents

    Perry, Michael D.; Banks, Paul S.; Stuart, Brent C.

    2002-01-01

    Short pulse PLD is a viable technique of producing high quality films with properties very close to that of crystalline diamond. The plasma generated using femtosecond lasers is composed of single atom ions with no clusters producing films with high Sp.sup.3 /Sp.sup.2 ratios. Using a high average power femtosecond laser system, the present invention dramatically increases deposition rates to up to 25 .mu.m/hr (which exceeds many CVD processes) while growing particulate-free films. In the present invention, deposition rates is a function of laser wavelength, laser fluence, laser spot size, and target/substrate separation. The relevant laser parameters are shown to ensure particulate-free growth, and characterizations of the films grown are made using several diagnostic techniques including electron energy loss spectroscopy (EELS) and Raman spectroscopy.

  12. Compact pulsed laser having improved heat conductance

    NASA Technical Reports Server (NTRS)

    Yang, L. C. (Inventor)

    1977-01-01

    A highly efficient, compact pulsed laser having high energy to weight and volume ratios is provided. The laser utilizes a cavity reflector that operates as a heat sink and is essentially characterized by having a high heat conductivity, by being a good electrical insulator and by being substantially immune to the deleterious effects of ultra-violet radiation. Manual portability is accomplished by eliminating entirely any need for a conventional circulating fluid cooling system.

  13. Trident Pair Production in Strong Laser Pulses

    SciTech Connect

    Ilderton, Anton

    2011-01-14

    We calculate the trident pair production amplitude in a strong laser background. We allow for finite pulse durations, while still treating the laser fields nonperturbatively in strong-field QED. Our approach reveals explicitly the individual contributions of the one-step and two-step processes. We also expose the role gauge invariance plays in the amplitudes and discuss the relation between our results and the optical theorem.

  14. Ultrafast pulsed laser utilizing broad bandwidth laser glass

    DOEpatents

    Payne, Stephen A.; Hayden, Joseph S.

    1997-01-01

    An ultrafast laser uses a Nd-doped phosphate laser glass characterized by a particularly broad emission bandwidth to generate the shortest possible output pulses. The laser glass is composed primarily of P.sub.2 O.sub.5, Al.sub.2 O.sub.3 and MgO, and possesses physical and thermal properties that are compatible with standard melting and manufacturing methods. The broad bandwidth laser glass can be used in modelocked oscillators as well as in amplifier modules.

  15. Ultrafast pulsed laser utilizing broad bandwidth laser glass

    DOEpatents

    Payne, S.A.; Hayden, J.S.

    1997-09-02

    An ultrafast laser uses a Nd-doped phosphate laser glass characterized by a particularly broad emission bandwidth to generate the shortest possible output pulses. The laser glass is composed primarily of P{sub 2}O{sub 5}, Al{sub 2}O{sub 3} and MgO, and possesses physical and thermal properties that are compatible with standard melting and manufacturing methods. The broad bandwidth laser glass can be used in modelocked oscillators as well as in amplifier modules. 7 figs.

  16. Electromagnetic Pulses at Short-Pulse Laser Facilities

    SciTech Connect

    Brown, Jr., C G; Throop, A; Eder, D; Kimbrough, J

    2007-08-28

    Electromagnetic Pulse (EMP) is a known issue for short-pulse laser facilities, and will also be an issue for experiments using the advanced radiographic capability (ARC) at the National Ignition Facility (NIF). The ARC diagnostic uses four NIF beams that are compressed to picosecond durations for backlighting ignition capsules and other applications. Consequently, we are working to understand the EMP due to high-energy (MeV) electrons escaping from targets heated by short-pulse lasers. Our approach is to measure EMP in the Titan short-pulse laser at Lawrence Livermore National Laboratory (LLNL) and to employ that data to establish analysis and simulation capabilities. We have installed a wide variety of probes inside and outside the Titan laser chamber. We have high-frequency B-dots and D-dots, a photodiode, and fast current-viewing and integrating current transformers. The probe outputs are digitized by 10 and 20 Gsample/s oscilloscopes. The cables and oscilloscopes are well shielded to reduce noise. Our initial measurement campaign has yielded data useful mainly from hundreds of MHz to several GHz. We currently are supplementing our high-frequency probes with lower-frequency ones to obtain better low-frequency data. In order to establish analysis and simulation capabilities we are modeling the Titan facility using various commercial and LLNL numerical electromagnetic codes. We have simulated EMP generation by having a specified number of electrons leave the target and strike the chamber wall and other components in the chamber. This short impulse of electrons has a corresponding broad spectrum, exciting high-frequency structure in the resulting EMP. In this paper, we present results of our initial measurement campaign and comparisons between the measurements and simulations.

  17. Electromagnetic Pulses at Short-Pulse Laser Facilities

    SciTech Connect

    Brown, C G; Throop, A; Eder, D; Kimbrough, J

    2008-02-04

    Electromagnetic Pulse (EMP) is a known issue for short-pulse laser facilities, and will also be an issue for experiments using the advanced radiographic capability (ARC) at the National Ignition Facility (NIF). The ARC diagnostic uses four NIF beams that are compressed to picosecond durations for backlighting ignition capsules and other applications. Consequently, we are working to understand the EMP due to high-energy (MeV) electrons escaping from targets heated by short-pulse lasers. Our approach is to measure EMP in the Titan short-pulse laser at Lawrence Livermore National Laboratory (LLNL) and to employ that data to establish analysis and simulation capabilities. We have installed a wide variety of probes inside and outside the Titan laser chamber. We have high-frequency B-dot and D-dot probes, a photodiode, and fast current-viewing and integrating current transformers. The probe outputs are digitized by 10 and 20 Gsample/s oscilloscopes. The cables and oscilloscopes are well shielded to reduce noise. Our initial measurement campaign has yielded data useful mainly from several hundreds of MHz to several GHz. We currently are supplementing our high-frequency probes with lower-frequency ones to obtain better low-frequency data. In order to establish analysis and simulation capabilities we are modeling the Titan facility using various commercial and LLNL numerical electromagnetics codes. We have simulated EMP generation by having a specified number of electrons leave the target and strike the chamber wall and other components in the chamber. This short impulse of electrons has a correspondingly broad spectrum, exciting high-frequency structure in the resulting EMP. In this paper, we present results of our initial measurement campaign and comparisons between the measurements and simulations.

  18. Laser fabricated microchannels inside photostructurable glass-ceramic

    NASA Astrophysics Data System (ADS)

    Fernández-Pradas, J. M.; Serrano, D.; Serra, P.; Morenza, J. L.

    2009-03-01

    Microchannels have been fabricated by laser direct-write in photostructurable glass-ceramic (Foturan) for their application in 3D-microfluidic systems. A Nd:YAG laser delivering 10 ns pulses at 355 nm wavelength has been used for irradiation. Afterwards, thermal treatment and chemical etching have been required for channel formation. The kinetics of channel formation and the channel morphology have been studied by optical and electron microscopy. A minimum accumulated energy (pulse energy multiplied by the number of pulses in a same site) is required to induce channel formation. Channels with symmetric round apertures at both ends can be obtained when using low pulse energies. On the contrary, irradiation with too high energetic pulses produces direct material damage in Foturan and provokes the formation of non-symmetric channels. One millimetre long channels with a minimum radius of 15 μm can be opened through Foturan slides after 15 min of chemical etching.

  19. Lasers and Intense Pulsed Light Hidradenitis Suppurativa.

    PubMed

    Saunte, Ditte M; Lapins, Jan

    2016-01-01

    Lasers and intense pulsed light (IPL) treatment are useful for the treatment of hidradenitis suppurativa (HS). Carbon dioxide lasers are used for cutting or vaporization of the affected area. It is a effective therapy for the management of severe and recalcitrant HS with persistent sinus tract and scarring, and can be performed under local anesthesia. HS has a follicular pathogenesis. Lasers and IPL targeting the hair have been found useful in treating HS by reducing the numbers of hairs in areas with HS. The methods have few side effects, but the studies are preliminary and need to be repeated. PMID:26617364

  20. Thomson scattering in short pulse laser experiments

    SciTech Connect

    Hill, E. G.; Rose, S. J.

    2012-08-15

    Thomson scattering is well used as a diagnostic in many areas of high energy density physics. In this paper, we quantitatively demonstrate the practicality of using Thomson scattering as a diagnostic of short-pulse laser-plasma experiments in the regime, where the plasmas probed are at solid density and have temperatures of many hundreds of eV using a backlighter produced with an optical laser. This method allows a diagnosis both spatially and temporally of the density and temperature distributions in high energy density laser-plasma interactions which is independent from, and would act as a useful complement to, the existing spectroscopic methods.

  1. Chemically-Assisted Pulsed Laser-Ramjet

    SciTech Connect

    Horisawa, Hideyuki; Kaneko, Tomoki; Tamada, Kazunobu

    2010-10-13

    A preliminary study of a chemically-assisted pulsed laser-ramjet was conducted, in which chemical propellant such as a gaseous hydrogen/air mixture was utilized and detonated with a focused laser beam in order to obtain a higher impulse compared to the case only using lasers. CFD analysis of internal conical-nozzle flows and experimental measurements including impulse measurement were conducted to evaluate effects of chemical reaction on thrust performance improvement. From the results, a significant improvement in the thrust performances was confirmed with addition of a small amount of hydrogen to propellant air, or in chemically-augmented operation.

  2. Plasma mirrors for short pulse lasers

    SciTech Connect

    Yanovksy, V.P.; Perry, M.D.; Brown, C.G.; Feit, M.D.; Rubenchik, A.

    1997-06-11

    We show experimentally and theoretically that plasmas created by a sufficiently (1014 1015 2 short (<500 fs) intense W/cm ) laser pulse on the surface of dielectric material act as nearly perfect mirrors: reflecting p to 90% of the incident radiation with a wavefront quality equal to that of the initial solid surface.

  3. Pulse solid state lasers in aesthetic surgery

    NASA Astrophysics Data System (ADS)

    Dobryakov, Boris S.; Greben'kova, Ol'ga B.; Gulev, Valerii S.

    1996-04-01

    The emission of a pulse-periodic laser on alumo-ittrium garnet applied for preventive and medical treatment of a capsule contracture round implanted prostheses in xenoplastics is described in the present paper. The results obtained testify to a high efficiency of suggested method.

  4. Pulsed laser deposition: Prospects for commercial deposition of epitaxial films

    SciTech Connect

    Muenchausen, R.E.

    1999-03-01

    Pulsed laser deposition (PLD) is a physical vapor deposition (PVD) technique for the deposition of thin films. The vapor source is induced by the flash evaporation that occurs when a laser pulse of sufficient intensity (about 100 MW/cm{sup 2}) is absorbed by a target. In this paper the author briefly defines pulsed laser deposition, current applications, research directed at gaining a better understanding of the pulsed laser deposition process, and suggests some future directions to enable commercial applications.

  5. Temporal laser-pulse-shape effects in nonlinear Thomson scattering

    NASA Astrophysics Data System (ADS)

    Kharin, V. Yu.; Seipt, D.; Rykovanov, S. G.

    2016-06-01

    The influence of the laser-pulse temporal shape on the nonlinear Thomson scattering on-axis photon spectrum is analyzed in detail. Using the classical description, analytical expressions for the temporal and spectral structure of the scattered radiation are obtained for the case of symmetric laser-pulse shapes. The possibility of reconstructing the incident laser pulse from the scattered spectrum averaged over interference fringes in the case of high peak intensity and symmetric laser-pulse shape is discussed.

  6. Laser zona dissection using short-pulse ultraviolet lasers

    NASA Astrophysics Data System (ADS)

    Neev, Joseph; Tadir, Yona; Ho, Peter D.; Whalen, William E.; Asch, Richardo H.; Ord, Teri; Berns, Michael W.

    1992-06-01

    The interaction of pulsed ultraviolet radiation with the zona pellucida of human oocytes which had failed to fertilize in standard IVF cycles, was investigated. Two lasers were studied: a 100 ps pulsed Nd:YAG with a nonlinear crystal emitting light at 266 nm, and a 15 ns XeCl excimer laser with 308 nm radiation. Incisions in the zona were made by aiming the beam tangentially to the oocyte. The results indicate superior, high precision performance by the excimer laser creating trenches as narrow as 1 micrometers and as shallow as 1 micrometers . The incision size was found to be sensitive to the laser's energy and to the position of the microscope's objective focal plane, but relatively insensitive to the laser pulse repetition rate. Once the minimum spot size was defined by the system parameters, the laser beam was used to curve out any desired zona shape. This laser microsurgery technique as applied to partial zone dissection or zona drilling could prove very useful as a high-precision, non-contact method for treatments of low fertilization rate and for enhancing embryo implantation rates in patients undergoing IVF treatments.

  7. Pulse distortion and modulation instability in laser plasma interaction

    SciTech Connect

    Jha, Pallavi; Singh, Ram Gopal; Upadhyay, Ajay K.

    2009-01-15

    The present paper deals with the propagation of a short, intense, Gaussian laser pulse in plasma. Using a one dimensional model, a wave equation including finite pulse length and group velocity dispersion is set up and solved to obtain the intensity distribution across the laser pulse. It is shown that the pulse profile becomes asymmetric as it propagates through plasma. Further, the growth rate of modulation instability and range of unstable frequencies across the laser pulse have been derived and graphically analyzed.

  8. Hemifusion of cells using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Katchinskiy, Nir; Godbout, Roseline; Goez, Helly R.; Elezzabi, Abdulhakem Y.

    2015-03-01

    Attachment of single cells via hemifusion of cellular membranes using femtosecond laser pulses is reported in this manuscript. This is a method to attach single cells using sub-10 femtosecond laser pulses, with 800 nm central wavelength delivered from a Ti:Sapphire laser is described. A fluorescent dye, Calcein AM, was used to verify that the cell's cytoplasm did not migrate from a dyed cell to a non-dyed cell, in order to ascertain that the cells did not go through cell-fusion process. An optical tweezer was used in order to assess the mechanical integrity of the attached joint membranes. Hemifusion of cellular membranes was successful without initiating full cell fusion. Attachment efficiency of 95% was achieved, while the cells' viability was preserved. The attachment was performed via the delivery of one to two trains of sub-10 femtosecond laser pulses lasting 15 milliseconds each. An ultrafast reversible destabilization of the phospholipid molecules in the cellular membranes was induced due to a laser-induced ionization process. The inner phospholipid cell membrane remained intact during the attachment procedure, and cells' cytoplasm remained isolated from the surrounding medium. The unbounded inner phospholipid molecules bonded to the nearest free phospholipid molecule, forming a joint cellular membrane at the connection point. The cellular membrane hemifusion technique can potentially provide a platform for the creation of engineered tissue and cell cultures.

  9. Coiled Fiber Pulsed Laser Simulator

    2009-01-29

    This suite of codes simulates the transient output pulse from an optically-pumped coiled fiber amplifier. The input pulse is assumed to have a Gaussian time dependence and a spatial dependence that may be Gaussian or an eigenmode of the straight of bent fiber computed using bend10 or bend20. Only one field component is used (semivectorial approximation). The fully-spatially-dependent fiber gain profile is specified is subroutines "inversion" and "interp_inversion" and is presently read from a datamore » file, although other means of specifying fiber gain could be reallized through modification of these subroutines. The input pulse is propagated through the fiber, including the following physical effects: spatial and temporal gain saturation, self-focusing, bend losses, and confinement from a user-defined fiber index profile. The user can follow the propagation progress with 3D graphics that show an intensity profile via user-modifiable cutting planes through the time space axes. A restart capability is also included. Approximate solutions in the frequency domain may be obtained much faster using the auxilliary codes bendbpm10 (full vector), bendbpm20 (semivectoral), and bendbpm21 (semivectoral with gain sheet spproximation for gain and self-focusing). These codes all include bend loss and spatial (but not temporal) gain saturation.« less

  10. Coiled Fiber Pulsed Laser Simulator

    SciTech Connect

    Hadley, G. Ronald

    2009-01-29

    This suite of codes simulates the transient output pulse from an optically-pumped coiled fiber amplifier. The input pulse is assumed to have a Gaussian time dependence and a spatial dependence that may be Gaussian or an eigenmode of the straight of bent fiber computed using bend10 or bend20. Only one field component is used (semivectorial approximation). The fully-spatially-dependent fiber gain profile is specified is subroutines "inversion" and "interp_inversion" and is presently read from a data file, although other means of specifying fiber gain could be reallized through modification of these subroutines. The input pulse is propagated through the fiber, including the following physical effects: spatial and temporal gain saturation, self-focusing, bend losses, and confinement from a user-defined fiber index profile. The user can follow the propagation progress with 3D graphics that show an intensity profile via user-modifiable cutting planes through the time space axes. A restart capability is also included. Approximate solutions in the frequency domain may be obtained much faster using the auxilliary codes bendbpm10 (full vector), bendbpm20 (semivectoral), and bendbpm21 (semivectoral with gain sheet spproximation for gain and self-focusing). These codes all include bend loss and spatial (but not temporal) gain saturation.

  11. Enhanced subthreshold e+ e- production in short laser pulses.

    PubMed

    Titov, A I; Takabe, H; Kämpfer, B; Hosaka, A

    2012-06-15

    The emission of e+ e- pairs off a probe photon propagating through a polarized short-pulsed electromagnetic (e.g., laser) wave field is analyzed. A significant increase of the total cross section of pair production in the subthreshold region is found for decreasing laser pulse duration even in the case of moderate laser pulse intensities. PMID:23004244

  12. Aerosol Extinction and Single Scattering Albedo Downwind of the Summer 2008 California Wildfires Measured With Photoacoustic Spectrometers and Sunphotometers From 355 nm to 1047 nm.

    NASA Astrophysics Data System (ADS)

    Arnott, W. P.; Gyawali, M. S.; Arnold, I. J.

    2008-12-01

    Hundreds of wildfires in Northern California were sparked by lightning during the summer of 2008, resulting in downwind smoke for much of June and July associated with the flaming and smoldering stages of the fires. These fires are consistent with a growing trend towards increasing biomass burning worldwide. Climate impacts from the smoke depend critically on the smoke amount and aerosol optical properties. We report comparison of aerosol optics measurements in Reno Nevada made during the very smoky summer month of July with the relatively clean, average month of August. Photoacoustic instruments equipped with integrating nephelometers were used to measure aerosol light scattering and absorption at wavelengths of 355 nm, 405 nm, 532 nm, 870 nm, and 1047 nm. Total aerosol optical depth was measured with a sun photometer operating at 430nm, 470nm, 530nm, 660nm, 870nm and 950nm. A spectrometer based sun photometer with an operating range from 390nm to 880 nm was also used for a few days as well. These measurements document the intensity of the smoke optical impacts downwind. They are processed further to reveal a strong variation of the aerosol light absorption on wavelength, indicating the presence of light absorbing organic material and perhaps wavelength dependent absorption caused by black carbon particles coated with organic and inorganic particulate matter. On the day with most smoke in Reno (July 10, 2008) Angstrom coefficients for absorption as high as 3.6 were found for wavelengths of 405 nm and 870 nm, with the corresponding single scattering albedo near 0.92 at 405 nm. Aerosol optical depths of 3.5 were found for 430 nm on July 10th from the sun photometer measurements. A roughly fourfold increase in aerosol optical quantities was observed between the months of July and August 2008, attesting to the large average effects of biomass aerosols from the California wildfires.

  13. Group velocity and pulse lengthening of mismatched laser pulses in plasma channels

    SciTech Connect

    Schroeder, C. B.; Benedetti, C.; Esarey, E.; Tilborg, J. van; Leemans, W. P.

    2011-08-15

    Analytic solutions are presented to the non-paraxial wave equation describing an ultra-short, low-power, laser pulse propagating in a plasma channel. Expressions for the laser pulse centroid motion and laser group velocity are derived, valid for matched and mismatched propagation in a parabolic plasma channel, as well as in vacuum, for an arbitrary Laguerre-Gaussian laser mode. The group velocity of a mismatched laser pulse, for which the laser spot size is strongly oscillating, is found to be independent of propagation distance and significantly less than that of a matched pulse. Laser pulse lengthening of a mismatched pulse owing to laser mode slippage is examined and found to dominate over that due to dispersive pulse spreading for sufficiently long pulses. Analytic results are shown to be in excellent agreement with numerical solutions of the full Maxwell equations coupled to the plasma response. Implications for plasma channel diagnostics are discussed.

  14. Group velocity and pulse lengthening of mismatched laser pulses in plasma channels

    SciTech Connect

    Schroeder, Carl; Benedetti, Carlo; Esarey, Eric; van Tilborg, Jeroen; Leemans, Wim

    2011-07-07

    Analytic solutions are presented to the non-paraxial wave equation describing an ultra-short, low-power, laser pulse propagating in aplasma channel. Expressions for the laser pulse centroid motion and laser group velocity are derived, valid for matched and mismatchedpropagation in a parabolic plasma channel, as well as in vacuum, for an arbitrary Laguerre-Gaussian laser mode. The group velocity of amismatched laser pulse, for which the laser spot size is strongly oscillating, is found to be independent of propagation distance andsignificantly less than that of a matched pulse. Laser pulse lengthening of a mismatched pulse owing to laser mode slippage isexamined and found to dominate over that due to dispersive pulse spreading for sufficiently long pulses. Analytic results are shown tobe in excellent agreement with numerical solutions of the full Maxwell equations coupled to the plasma response. Implications for plasmachannel diagnostics are discussed.

  15. Phase Noise Comparision of Short Pulse Laser Systems

    SciTech Connect

    S. Zhang; S. V. Benson; J. Hansknecht; D. Hardy; G. Neil; Michelle D. Shinn

    2006-12-01

    This paper describes the phase noise measurement on several different mode-locked laser systems that have completely different gain media and configurations including a multi-kW free-electron laser. We will focus on the state of the art short pulse lasers, especially the drive lasers for photocathode injectors. A comparison between the phase noise of the drive laser pulses, electron bunches and FEL pulses will also be presented.

  16. Investigation of laser temporal pulse duration on Rayleigh scattering

    SciTech Connect

    Nee, T.A.; Roberts, J.R.

    1982-02-01

    Relative Rayleigh-scattering cross sections from nitrogen have been measured for various pulse durations and wavelengths of incident laser radiation. No pulse-duration dependence has been observed for laser pulses as short as 5 ns, and classical theory is found to be still valid over the pulse-width range (5< or =..delta..t< or =110 ns) of our observations.

  17. Nanosecond square pulse generation in fiber lasers with normal dispersion

    NASA Astrophysics Data System (ADS)

    Zhao, L. M.; Tang, D. Y.; Cheng, T. H.; Lu, C.

    2007-04-01

    We report on the generation of nanosecond square pulses in a passively mode-locked fiber ring laser made of purely normal dispersive fibers. Different to the noise-like pulse operation of the laser, the generated square pulses are stable and have no internal structures. We show that the formation of the square pulse is due to the combined action of the pulse peak clamping effect caused by the cavity and the almost linear pulse propagation in the normal dispersive fibers.

  18. Double nanosecond pulses generation in ytterbium fiber laser.

    PubMed

    Veiko, V P; Lednev, V N; Pershin, S M; Samokhvalov, A A; Yakovlev, E B; Zhitenev, I Yu; Kliushin, A N

    2016-06-01

    Double pulse generation mode for nanosecond ytterbium fiber laser was developed. Two sequential 60-200 ns laser pulses with variable delay between them were generated by acousto-optic modulator opening with continuous diode pumping. A custom radio frequency generator was developed to produce two sequential "opening" radio pulses with a delay of 0.2-1 μs. It was demonstrated that double pulse generation did not decrease the average laser power while providing the control over the laser pulse power profile. Surprisingly, a greater peak power in the double pulse mode was observed for the second laser pulse. Laser crater studies and plasma emission measurements revealed an improved efficiency of laser ablation in the double pulse mode. PMID:27370433

  19. Double nanosecond pulses generation in ytterbium fiber laser

    NASA Astrophysics Data System (ADS)

    Veiko, V. P.; Lednev, V. N.; Pershin, S. M.; Samokhvalov, A. A.; Yakovlev, E. B.; Zhitenev, I. Yu.; Kliushin, A. N.

    2016-06-01

    Double pulse generation mode for nanosecond ytterbium fiber laser was developed. Two sequential 60-200 ns laser pulses with variable delay between them were generated by acousto-optic modulator opening with continuous diode pumping. A custom radio frequency generator was developed to produce two sequential "opening" radio pulses with a delay of 0.2-1 μs. It was demonstrated that double pulse generation did not decrease the average laser power while providing the control over the laser pulse power profile. Surprisingly, a greater peak power in the double pulse mode was observed for the second laser pulse. Laser crater studies and plasma emission measurements revealed an improved efficiency of laser ablation in the double pulse mode.

  20. Pulsed Power for Solid-State Lasers

    SciTech Connect

    Gagnon, W; Albrecht, G; Trenholme, J; Newton, M

    2007-04-19

    Beginning in the early 1970s, a number of research and development efforts were undertaken at U.S. National Laboratories with a goal of developing high power lasers whose characteristics were suitable for investigating the feasibility of laser-driven fusion. A number of different laser systems were developed and tested at ever larger scale in pursuit of the optimum driver for laser fusion experiments. Each of these systems had associated with it a unique pulsed power option. A considerable amount of original and innovative engineering was carried out in support of these options. Ultimately, the Solid-state Laser approach was selected as the optimum driver for the application. Following this, the Laser Program at the Lawrence Livermore National Laboratory and the University of Rochester undertook aggressive efforts directed at developing the technology. In particular, at Lawrence Livermore National Laboratory, a series of laser systems beginning with the Cyclops laser and culminating in the present with the National Ignition Facility were developed and tested. As a result, a large amount of design information for solid-state laser pulsed power systems has been documented. Some of it is in the form of published papers, but most of it is buried in internal memoranda, engineering reports and LLNL annual reports. One of the goals of this book is to gather this information into a single useable format, such that it is easily accessed and understood by other engineers and physicists for use with future designs. It can also serve as a primer, which when seriously studied, makes the subsequent reading of original work and follow-up references considerably easier. While this book deals only with the solid-state laser pulsed power systems, in the bibliography we have included a representative cross section of papers and references from much of the very fine work carried out at other institutions in support of different laser approaches. Finally, in recent years, there has

  1. Post pulse shutter for laser amplifier

    DOEpatents

    Bradley, L.P.; Carder, B.M.; Gagnon, W.L.

    1981-03-17

    Disclosed are an apparatus and method for quickly closing off the return path for an amplified laser pulse at the output of an amplifier so as to prevent damage to amplifiers and other optical components appearing earlier in the chain by the return of an amplified pulse. The apparatus consists of a fast retropulse or post pulse shutter to suppress target reflection and/or beam return. This is accomplished by either quickly placing a solid across the light transmitting aperture of a component in the chain, such as a spatial filter pinhole, or generating and directing a plasma with sufficiently high density across the aperture, so as to, in effect, close the aperture to the returning amplified energy pulse. 13 figs.

  2. Post pulse shutter for laser amplifier

    DOEpatents

    Bradley, Laird P. [Livermore, CA; Carder, Bruce M. [Antioch, CA; Gagnon, William L. [Berkeley, CA

    1981-03-17

    Apparatus and method for quickly closing off the return path for an amplified laser pulse at the output of an amplifier so as to prevent damage to amplifiers and other optical components appearing earlier in the chain by the return of an amplified pulse. The apparatus consists of a fast retropulse or post pulse shutter to suppress target reflection and/or beam return. This is accomplished by either quickly placing a solid across the light transmitting aperture of a component in the chain, such as a spatial filter pinhole, or generating and directing a plasma with sufficiently high density across the aperture, so as to, in effect, close the aperture to the returning amplified energy pulse.

  3. Optical limiting of short laser pulses

    SciTech Connect

    Liu, J.-C.; Wang, C.-K.; Gel'mukhanov, Faris

    2007-11-15

    The dynamics of pulse propagation accompanied by harmonic generation, stimulated Raman scattering, amplified spontaneous emission, and superfluorescence is studied near the two-photon resonance. We explore the optical limiting of intense and short laser pulses. The numerical solutions of the coupled Bloch and Maxwell's equations for the 4,4{sup '}-bis(dimethylamino) stilbene molecule are compared with the two-photon area theorem. It is shown that the area theorem explains qualitatively the major dynamical properties of pulse propagation even if the propagation is accompanied by the generation of new fields. In agreement with the area theorem, we see that the conventional dependence of the transmittance on the propagation depth is not valid for intense pulses.

  4. Laser-supported detonation waves and pulsed laser propulsion

    SciTech Connect

    Kare, J.T.

    1989-01-01

    A laser thermal rocket uses the energy of a large remote laser, possibly ground-based, to heat an inert propellant and generate thrust. Use of a pulsed laser allows the design of extremely simple thrusters with very high performance compared to chemical rockets. The temperatures, pressures, and fluxes involved in such thrusters (10{sup 4} K, 10{sup 2} atmospheres, 10{sup 7} w/cm{sup 2}) typically result in the creation of laser-supported detonation (LSD) waves. The thrust cycle thus involves a complex set of transient shock phenomena, including laser-surface interactions in the ignition if the LSD wave, laser-plasma interactions in the LSD wave itself, and high-temperature nonequilibrium chemistry behind the LSD wave. The SDIO Laser Propulsion Program is investigating these phenomena as part of an overall effort to develop the technology for a low-cost Earth-to-orbit laser launch system. We will summarize the program's approach to developing a high performance thruster, the double-pulse planar thruster, and present an overview of some results obtained to date, along with a discussion of the many research questions still outstanding in this area. 16 refs., 7 figs.

  5. Laser-supported detonation waves and pulsed laser propulsion

    SciTech Connect

    Kare, J. )

    1990-07-30

    A laser thermal rocket uses the energy of a large remote laser, possibly ground-based, to heat an inert propellant and generate thrust. Use of a pulsed laser allows the design of extremely simple thrusters with very high performance compared to chemical rockets. The temperatures, pressures, and fluxes involved in such thrusters (10{sup 4} K, 10{sup 2} atmospheres, 10{sup 7} w/cm{sup 2}) typically result in the creation of laser-supported detonation (LSD) waves. The thrust cycle thus involves a complex set of transient shock phenomena, including laser-surface interactions in the ignition of the LSD wave, laser-plasma interactions in the LSD wave itself, and high-temperature nonequilibrium chemistry behind the LSD wave. The SDIO Laser Propulsion Program is investigating these phenomena as part of an overall effort to develop the technology for a low-cost Earth-to-orbit laser launch system. We will summarize the Program's approach to developing a high performance thruster, the double-pulse planar thruster, and present an overview of some results obtained to date, along with a discussion of the many research question still outstanding in this area.

  6. Multiple pulse resonantly enhanced laser plasma wakefield acceleration

    SciTech Connect

    Corner, L.; Walczak, R.; Nevay, L. J.; Dann, S.; Hooker, S. M.; Bourgeois, N.; Cowley, J.

    2012-12-21

    We present an outline of experiments being conducted at Oxford University on multiple-pulse, resonantly-enhanced laser plasma wakefield acceleration. This method of laser plasma acceleration uses trains of optimally spaced low energy short pulses to drive plasma oscillations and may enable laser plasma accelerators to be driven by compact and efficient fibre laser sources operating at high repetition rates.

  7. Graphene in Ultrafast and Ultrastrong Laser Pulses

    NASA Astrophysics Data System (ADS)

    Koochakikelardeh, Hamed; Apalkov, Vadym; Stockman, Mark

    2015-03-01

    We have shown that graphene subjected to an ultrafast (near-single-oscillation pulse) and strong (F ~ 1-3 V/Å) pulse exhibits fundamental behavior dramatically different from both insulators and metals. In such an ultrafast and ultrastrong field, the electron dynamics is coherent, in contrast to relatively long pulses (τ>100 fs) where the electron's dephasing becomes important leading to incoherent dynamics. Electron transfer from the valence band (VB) to the conduction band (CB) is deeply irreversible i.e., non-adiabatic, in which the residual CB population (after pulse ends) is close to the maximum one. The residual CB population as a function of wave vector is nonuniform with a few strongly localized spots near the Dirac points, at which the CB population is almost 100%. Furthermore, it is shown the direction of charge transfer depends on the pulse amplitude. Namely, at small pulse amplitude, <=1V/Å, the charge is transferred in the direction of the pulse maximum (positive transferred charge), while at large amplitude, >=1 V/Å, it is in opposite direction of the pulse maximum (negative transferred charge). Consequently, in terms of charge transport, graphene at small pulse intensities behaves as a dielectric while at large intensities acts as a metal. These femtosecond currents and charge transfer in graphene may provide fundamental basis for detection and calibration of ultrashort intense laser pulses and are promising for petahertz information processing. This work was supported by U.S. Office of Naval Research No. N00014-13-1-0649 and NSF Grant No. ECCS-1308473.

  8. Evaporation of solids by pulsed laser irradiation

    NASA Astrophysics Data System (ADS)

    Stafast, H.; Von Przychowski, M.

    The focused beam of a KrF laser (248 nm) has been applied to irradiate targets of Al 2O 3, SiC, graphite, Pb, Ni, Cr, quartz, and NaCl at variable laser energy flux is the range 0-13 J/cm 2. The amount of target material ejected into the vacuum (background pressure about 8 × 10 -4 Torr) was determined from the target weight before and after laser irradiation. The average number of particles (formula weight) evaporated per laser pulse and per unit of irradiated target area is non-linearly dependent on the laser energy flux. The evaporation of Al 2O 3, SiC, and graphite is showing a well-defined flux threshold while the vaporization of Pb, Ni and Cr is rising smoothly with increasing flux. With both groups of materials laser evaporation is monotonically increasing with the laser energy flux. NaCl and quartz, on the other hand, are showing an intermediate maximum in the laser vaporization efficiency.

  9. Pulse energy dependence of subcellular dissection by femtosecond laser pulses

    NASA Technical Reports Server (NTRS)

    Heisterkamp, A.; Maxwell, I. Z.; Mazur, E.; Underwood, J. M.; Nickerson, J. A.; Kumar, S.; Ingber, D. E.

    2005-01-01

    Precise dissection of cells with ultrashort laser pulses requires a clear understanding of how the onset and extent of ablation (i.e., the removal of material) depends on pulse energy. We carried out a systematic study of the energy dependence of the plasma-mediated ablation of fluorescently-labeled subcellular structures in the cytoskeleton and nuclei of fixed endothelial cells using femtosecond, near-infrared laser pulses focused through a high-numerical aperture objective lens (1.4 NA). We find that the energy threshold for photobleaching lies between 0.9 and 1.7 nJ. By comparing the changes in fluorescence with the actual material loss determined by electron microscopy, we find that the threshold for true material ablation is about 20% higher than the photobleaching threshold. This information makes it possible to use the fluorescence to determine the onset of true material ablation without resorting to electron microscopy. We confirm the precision of this technique by severing a single microtubule without disrupting the neighboring microtubules, less than 1 micrometer away. c2005 Optical Society of America.

  10. Comparison of amplified spontaneous emission pulse cleaners for use in chirped pulse amplification front end lasers

    SciTech Connect

    Dawson, J; Siders, C; Phan, H; Kanz, V; Barty, C

    2007-07-02

    We compare various schemes for removing amplified spontaneous emission from seed laser pulses. We focus on compact schemes that are compatible with fiber laser front end systems with pulse energies in the 10nJ-1{micro}J range and pulse widths in the 100fs-10ps range. Pre-pulse contrast ratios greater than 10{sup 9} have been measured.

  11. Laser-Material Interaction of Powerful Ultrashort Laser Pulses

    SciTech Connect

    Komashko, A

    2003-01-06

    Laser-material interaction of powerful (up to a terawatt) ultrashort (several picoseconds or shorter) laser pulses and laser-induced effects were investigated theoretically in this dissertation. Since the ultrashort laser pulse (USLP) duration time is much smaller than the characteristic time of the hydrodynamic expansion and thermal diffusion, the interaction occurs at a solid-like material density with most of the light energy absorbed in a thin surface layer. Powerful USLP creates hot, high-pressure plasma, which is quickly ejected without significant energy diffusion into the bulk of the material, Thus collateral damage is reduced. These and other features make USLPs attractive for a variety of applications. The purpose of this dissertation was development of the physical models and numerical tools for improvement of our understanding of the process and as an aid in optimization of the USLP applications. The study is concentrated on two types of materials - simple metals (materials like aluminum or copper) and wide-bandgap dielectrics (fused silica, water). First, key physical phenomena of the ultrashort light interaction with metals and the models needed to describe it are presented. Then, employing one-dimensional plasma hydrodynamics code enhanced with models for laser energy deposition and material properties at low and moderate temperatures, light absorption was self-consistently simulated as a function of laser wavelength, pulse energy and length, angle of incidence and polarization. Next, material response on time scales much longer than the pulse duration was studied using the hydrocode and analytical models. These studies include examination of evolution of the pressure pulses, effects of the shock waves, material ablation and removal and three-dimensional dynamics of the ablation plume. Investigation of the interaction with wide-bandgap dielectrics was stimulated by the experimental studies of the USLP surface ablation of water (water is a model of

  12. Influence of wavelength on laser doping and laser-fired contact processes for c-Si solar cells

    NASA Astrophysics Data System (ADS)

    Molpeceres, Carlos; Sánchez-Aniorte, María. Isabel; Morales, Miguel; Muñoz, David; Martín, Isidro; Ortega, Pablo; Colina, Mónica; Voz, Cristóbal; Alcubilla, Ramón

    2012-10-01

    This work investigates the influence of the laser wavelength on laser doping (LD) and laser-fired contact (LFC) formation in solar cell structures. We compare the results obtained using the three first harmonics (corresponding to wavelengths of 1064 nm, 532 nm and 355 nm) of fully commercial solid state laser sources with pulse width in the ns range. The discussion is based on the impact on the morphology and electrical characteristics of test structures. In the case of LFC the study includes the influence of different passivation layers and the assessment of the process quality through electrical resistance measurements of an aluminium single LFC point for the different wavelengths. Values for the normalized LFC resistance far below 1.0 mΩcm2 have been obtained, with better results at shorter wavelengths. To assess the influence of the laser wavelength on LD we have created n+ regions into p-type c-Si wafers, using a dry LD approach to define punctual emitters. J-V characteristics show exponential trends at mid-injection for a broad parametric window in all wavelengths, with local ideality factors well below 1.5. In both processes the best results have been obtained using green (532 nm) and, specially, UV (355 nm). This indicates that to minimize the thermal damage in the material is a clear requisite to obtain the best electrical performance, thus indicating that UV laser shows better potential to be used in high efficiency solar cells.

  13. Laser cutting of titanium with pulsed and modulated pulsed Nd:YAG lasers

    NASA Astrophysics Data System (ADS)

    Maher, Warren; Tong, Kwok-On

    1998-05-01

    Recent test results demonstrate the differences between laser cutting of Ti with different pulsed formats at 1.06 micrometer wavelength. The precision Laser Machining (PLM) consortium is dedicated to investigating improved processing obtained with the use of diode-pumped Nd:YAG lasers having high beam quality and high average power. One of the PLM lasers developed at TRW was used to determine the best parameters for laser cutting 0.034' Ti. Average power was available up to 340 W. Pulse repetition rates were 322 Hz with pulse lengths of 454 microseconds, while the modulated laser output had a 142 kHz micropulse train within the pulse envelope. Beam quality was sufficient to permit a 100 micrometer spot size to be used with f/10 focusing. Ar assist gas was used. At each setting of the laser average power the cutting tests usually were tried at 11 different speeds, up to 3'/second. The highest speed for which cutting is possible at a given average power is the threshold speed for that power. The cut specimens were evaluated for dross for a variety of rear surface Ar cross flow conditions. Each cut specimen also was evaluated for excess heating indicated by metallurgical and/or surface chemistry changes. Cutting at speeds above a critical minimum speed for each setting of laser average power greatly reduces degradation due to excess heating. Good cutting is possible between the threshold speed and this minimum speed (both a function of average power). Data for threshold and minimum speed were obtained for the pulsed and the modulated pulsed laser output. These tests also determined evidence of optimum conditions for cutting with a rear cross flow of Ar that substantially eliminates rear surface dross on the edge of the kerf. The quality of the cut edge was evaluated by inspection of its polished cross-section.

  14. Black anneal marking with pulsed fiber lasers

    NASA Astrophysics Data System (ADS)

    Murphy, T.; Harrison, P.; Norman, S.

    2015-07-01

    High contrast marking of metals is used in a wide range of industries. Fiber laser marking of these metals provides non-contact marking with no consumables, offering many advantages over traditional methods of metal marking. The laser creates a permanent mark on the material surface combining heat and oxygen with no noticeable ablation. The focussed beam of the fiber laser in combination with precision control of the heat input is able to treat small areas of the material surface evenly and consistently, which is critical for producing black anneal marks. The marks are highly legible which is ideal for marking serial numbers or small data matrices where traceability is required. This paper reports the experimental study for producing black anneal marks on various grades of stainless steel using fiber lasers. The influence of metal surface finish, beam quality, spot size diameter and pulse duration are investigated for producing both smooth and decorative anneal marks.

  15. Pulse Compression Techniques for Laser Generated Ultrasound

    NASA Technical Reports Server (NTRS)

    Anastasi, R. F.; Madaras, E. I.

    1999-01-01

    Laser generated ultrasound for nondestructive evaluation has an optical power density limit due to rapid high heating that causes material damage. This damage threshold limits the generated ultrasound amplitude, which impacts nondestructive evaluation inspection capability. To increase ultrasound signal levels and improve the ultrasound signal-to-noise ratio without exceeding laser power limitations, it is possible to use pulse compression techniques. The approach illustrated here uses a 150mW laser-diode modulated with a pseudo-random sequence and signal correlation. Results demonstrate the successful generation of ultrasonic bulk waves in aluminum and graphite-epoxy composite materials using a modulated low-power laser diode and illustrate ultrasound bandwidth control.

  16. GEOS-1 laser pulse return shape analysis

    NASA Technical Reports Server (NTRS)

    Felsentreger, T. L.

    1972-01-01

    An attempt has been made to predict the shape of the laser return pulse from the corner cube retroreflectors on the GEOS-1 spacecraft. The study is geometrical only, and neglects factors such as optical interference, atmospheric perturbations, etc. A function giving the intensity of the return signal at any given time has been derived. In addition, figures are given which show the predicted return pulse shape as a function of time, the angle between the beam and the spin axis, and an in-plane angle (designating the orientation of the intersection of the planar waves with the plane of the corner cubes).

  17. Nanosecond laser ablation for pulsed laser deposition of yttria

    NASA Astrophysics Data System (ADS)

    Sinha, Sucharita

    2013-09-01

    A thermal model to describe high-power nanosecond pulsed laser ablation of yttria (Y2O3) has been developed. This model simulates ablation of material occurring primarily through vaporization and also accounts for attenuation of the incident laser beam in the evolving vapor plume. Theoretical estimates of process features such as time evolution of target temperature distribution, melt depth and ablation rate and their dependence on laser parameters particularly for laser fluences in the range of 6 to 30 J/cm2 are investigated. Calculated maximum surface temperatures when compared with the estimated critical temperature for yttria indicate absence of explosive boiling at typical laser fluxes of 10 to 30 J/cm2. Material ejection in large fragments associated with explosive boiling of the target needs to be avoided when depositing thin films via the pulsed laser deposition (PLD) technique as it leads to coatings with high residual porosity and poor compaction restricting the protective quality of such corrosion-resistant yttria coatings. Our model calculations facilitate proper selection of laser parameters to be employed for deposition of PLD yttria corrosion-resistive coatings. Such coatings have been found to be highly effective in handling and containment of liquid uranium.

  18. A Simulation of Laser Ablation During the Laser Pulse

    NASA Astrophysics Data System (ADS)

    Suzuki, Motoyuki; Ventzek, Peter L. G.; Sakai, Y.; Date, H.; Tagashira, H.; Kitamori, K.

    1996-10-01

    Charge damage considerations in plasma assisted etching are prompting the development of neutral beam sources. Already, anisotropic etching of has been demonstrated by neutral beams generated by exhausting heated ecthing gases into vacuum via a nozzle. Laser ablation of condensed etching gases may also be an attractive alternative means of generating neutral beams. Laser ablation coupled with electrical breakdown of the ablation plume may afford some degree of control over a neutral beam's dissociation fraction and ion content. Results from a Monte Carlo simulation of the laser ablation plume as it expands into vacuum at time-scales during the laser pulse will be presented. The model includes both heavy particle interactions and photochemistry. In particular, the influence of the initial particle angular distribution on the beam spread will be demonstrated as will the relationship between laser beam energy and initial ionization and dissociation fraction.

  19. Pulse-burst laser systems for fast Thomson scattering (invited).

    PubMed

    Den Hartog, D J; Ambuel, J R; Borchardt, M T; Falkowski, A F; Harris, W S; Holly, D J; Parke, E; Reusch, J A; Robl, P E; Stephens, H D; Yang, Y M

    2010-10-01

    Two standard commercial flashlamp-pumped Nd:YAG (YAG denotes yttrium aluminum garnet) lasers have been upgraded to "pulse-burst" capability. Each laser produces a burst of up to 15 2 J Q-switched pulses (1064 nm) at repetition rates of 1-12.5 kHz. Variable pulse-width drive (0.15-0.39 ms) of the flashlamps is accomplished by insulated gate bipolar transistor (IGBT) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, and up to four 2 J laser pulses during one flashlamp pulse. These lasers are used in the Thomson scattering plasma diagnostic system on the MST reversed-field pinch to record the dynamic evolution of the electron temperature profile and temperature fluctuations. To further these investigations, a custom pulse-burst laser system with a maximum pulse repetition rate of 250 kHz is now being commissioned. PMID:21033868

  20. Pulse-burst laser systems for fast Thomson scattering (invited)

    SciTech Connect

    Den Hartog, D. J.; Ambuel, J. R.; Holly, D. J.; Robl, P. E.; Borchardt, M. T.; Falkowski, A. F.; Harris, W. S.; Parke, E.; Reusch, J. A.; Stephens, H. D.; Yang, Y. M.

    2010-10-15

    Two standard commercial flashlamp-pumped Nd:YAG (YAG denotes yttrium aluminum garnet) lasers have been upgraded to ''pulse-burst'' capability. Each laser produces a burst of up to 15 2 J Q-switched pulses (1064 nm) at repetition rates of 1-12.5 kHz. Variable pulse-width drive (0.15-0.39 ms) of the flashlamps is accomplished by insulated gate bipolar transistor (IGBT) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, and up to four 2 J laser pulses during one flashlamp pulse. These lasers are used in the Thomson scattering plasma diagnostic system on the MST reversed-field pinch to record the dynamic evolution of the electron temperature profile and temperature fluctuations. To further these investigations, a custom pulse-burst laser system with a maximum pulse repetition rate of 250 kHz is now being commissioned.

  1. Nanosecond pulsed laser blackening of copper

    NASA Astrophysics Data System (ADS)

    Tang, Guang; Hourd, Andrew C.; Abdolvand, Amin

    2012-12-01

    Nanosecond (12 ns) pulsed laser processing of copper at 532 nm resulted in the formation of homogenously distributed, highly organized microstructures. This led to the fabrication of large area black copper substrates with absorbance of over 97% in the spectral range from 250 nm to 750 nm, and a broadband absorbance of over 80% between 750 nm and 2500 nm. Optical and chemical analyses of the fabricated black metal are presented and discussed. The employed laser is an industrially adaptable source and the presented technique for fabrication of black copper could find applications in broadband thermal radiation sources, solar energy absorbers, irradiative heat transfer devices, and thermophotovoltaics.

  2. Photoswitches operating upon ns pulsed laser irradiation

    NASA Astrophysics Data System (ADS)

    Athanassiou, A.; Lakiotaki, K.; Kalyva, M.; Georgiou, S.; Fotakis, C.

    2005-07-01

    We present a potential photoswitch, which undergoes reversible mechanical actuation induced exclusively by photons. The photoswitch is a polymer-based film doped with spiropyran photochromic molecules. It undergoes repeatable mechanical cycles controlled by ns laser pulses of specific wavelengths. The polymer matrix is mechanically activated due to particular photoisomerization processes of the incorporated photochromic molecules, resulting in its contraction and lengthening in a highly controllable manner. We present herein the way that the switching time of this novel photoswitch depends on different laser parameters such as the energy and the repetition rate.

  3. Pulsed laser deposition of pseudowollastonite coatings.

    PubMed

    Fernández-Pradas, J M; Serra, P; Morenza, J L; De Aza, P N

    2002-05-01

    Pseudowollastonite (alpha-CaSiO3) is a bioactive ceramic material that induces direct bone growth. A process to obtain pseudowollastonite coatings that may be applied to implants is described and evaluated in this work. The coatings were first deposited on titanium alloy by laser ablation with a pulsed Nd:YAG laser tripled in frequency. After deposition, they were submitted to a soft laser treatment with a continuous wave Nd:YAG infrared laser. Coatings were characterised by X-ray diffractometry, Raman spectroscopy, scanning electron microscopy and energy dispersive spectroscopy before and after the laser treatment. As-deposited coatings are composed of pseudowollastonite and amorphous material. They have a porous structure of gathered grains and poor cohesion. After the laser treatment the coatings crystallinity and cohesion are improved. The laser treatment also makes the coatings dense and well adhered to the substrate. Therefore, this two-step process has been demonstrated as a valuable method to coat titanium implants with pseudowollastonite. PMID:11996047

  4. High voltage pulse generators for use in laser systems

    SciTech Connect

    Dymoke-Bradshaw, A.K.L.; Hares, J.D.; Kellett, P.A.

    1995-12-31

    Solid state pulse generators with controlled multi-kilovolt outputs are now production items. The range of applications within the field of lasers has increased so that they can control laser pulse width and shape, cavity dumping and seeding, stage isolation and coherence reduction for smoothing irradiation. Such pulse generators can now be built with embedded computer systems for remote control, interrogation and diagnosis of pulser parameters. Diagnostic equipment to monitor laser beam profiles with respectable time resolution also employs these pulse generators.

  5. Short-pulse Laser Capability on the Mercury Laser System

    SciTech Connect

    Ebbers, C; Armstrong, P; Bayramian, A; Barty, C J; Bibeau, C; Britten, J; Caird, J; Campbell, R; Chai, B; Crane, J; Cross, R; Erlandson, A; Fei, Y; Freitas, B; Jovanovic, I; Liao, Z; Molander, B; Schaffers, K; Stuart, B; Sutton, S; Ladran, T; Telford, S; Thelin, P; Utterback, E

    2006-06-22

    Applications using high energy ''petawatt-class'' laser drivers operating at repetition rates beyond 0.01 Hz are only now being envisioned. The Mercury laser system is designed to operate at 100 J/pulse at 10 Hz. We investigate the potential of configuring the Mercury laser to produce a rep-rated, ''petawatt-class'' source. The Mercury laser is a prototype of a high energy, high repetition rate source (100 J, 10 Hz). The design of the Mercury laser is based on the ability to scale in energy through scaling in aperture. Mercury is one of several 100 J, high repetition rate (10 Hz) lasers sources currently under development (HALNA, LUCIA, POLARIS). We examine the possibility of using Mercury as a pump source for a high irradiance ''petawatt-class'' source: either as a pump laser for an average power Ti:Sapphire laser, or as a pump laser for OPCPA based on YCa{sub 4}O(BO{sub 3}){sub 3} (YCOB), ideally producing a source approaching 30 J /30 fs /10 Hz--a high repetition rate petawatt. A comparison of the two systems with nominal configurations and efficiencies is shown in Table 1.

  6. Mirrorlike pulsed laser deposited tungsten thin film

    SciTech Connect

    Mostako, A. T. T.; Khare, Alika; Rao, C. V. S.

    2011-01-15

    Mirrorlike tungsten thin films on stainless steel substrate deposited via pulsed laser deposition technique in vacuum (10{sup -5} Torr) is reported, which may find direct application as first mirror in fusion devices. The crystal structure of tungsten film is analyzed using x-ray diffraction pattern, surface morphology of the tungsten films is studied with scanning electron microscope and atomic force microscope. The film composition is identified using energy dispersive x-ray. The specular and diffuse reflectivities with respect to stainless steel substrate of the tungsten films are recorded with FTIR spectra. The thickness and the optical quality of pulsed laser deposition deposited films are tested via interferometric technique. The reflectivity is approaching about that of the bulk for the tungsten film of thickness {approx}782 nm.

  7. Mirrorlike pulsed laser deposited tungsten thin film.

    PubMed

    Mostako, A T T; Rao, C V S; Khare, Alika

    2011-01-01

    Mirrorlike tungsten thin films on stainless steel substrate deposited via pulsed laser deposition technique in vacuum (10(-5) Torr) is reported, which may find direct application as first mirror in fusion devices. The crystal structure of tungsten film is analyzed using x-ray diffraction pattern, surface morphology of the tungsten films is studied with scanning electron microscope and atomic force microscope. The film composition is identified using energy dispersive x-ray. The specular and diffuse reflectivities with respect to stainless steel substrate of the tungsten films are recorded with FTIR spectra. The thickness and the optical quality of pulsed laser deposition deposited films are tested via interferometric technique. The reflectivity is approaching about that of the bulk for the tungsten film of thickness ∼782 nm. PMID:21280810

  8. Pulse switching for high energy lasers

    NASA Technical Reports Server (NTRS)

    Laudenslager, J. B.; Pacala, T. J. (Inventor)

    1981-01-01

    A saturable inductor switch for compressing the width and sharpening the rise time of high voltage pulses from a relatively slow rise time, high voltage generator to an electric discharge gas laser (EDGL) also provides a capability for efficient energy transfer from a high impedance primary source to an intermediate low impedance laser discharge network. The switch is positioned with respect to a capacitive storage device, such as a coaxial cable, so that when a charge build-up in the storage device reaches a predetermined level, saturation of the switch inductor releases or switches energy stored in the capactive storage device to the EDGL. Cascaded saturable inductor switches for providing output pulses having rise times of less than ten nanoseconds and a technique for magnetically biasing the saturable inductor switch are disclosed.

  9. Optical reprogramming with ultrashort femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Breunig, Hans G.; Batista, Ana; König, Karsten

    2015-03-01

    The use of sub-15 femtosecond laser pulses in stem cell research is explored with particular emphasis on the optical reprogramming of somatic cells. The reprogramming of somatic cells into induced pluripotent stem (iPS) cells can be evoked through the ectopic expression of defined transcription factors. Conventional approaches utilize retro/lenti-viruses to deliver genes/transcription factors as well as to facilitate the integration of transcription factors into that of the host genome. However, the use of viruses may result in insertional mutations caused by the random integration of genes and as a result, this may limit the use within clinical applications due to the risk of the formation of cancer. In this study, a new approach is demonstrated in realizing non-viral reprogramming through the use of ultrashort laser pulses, to introduce transcription factors into the cell so as to generate iPS cells.

  10. Magnetic Colloids By Pulsed Laser Ablation

    NASA Astrophysics Data System (ADS)

    Pandey, B. K.; Singh, M. K.; Agarwal, A.; Gopal, R.

    2011-06-01

    Colloidal magnetic nanoparticles have been successfully synthesized by nano second pules laser ablation of a cobalt slice immersed in liquid (distilled water) medium. The focused output of 1064 nm wavelength of pulsed Nd: YAG laser operating at 40 mJ/pulse is used for ablation. The liquid enviorment allows formation of colloids with nanoparticles in uniform particle diameter. Synchrotron X-ray powder diffraction (XRD) is used for the study of structural property of synthesized nanoparticles. The magnetic properties of cobalt nanoparticles are also investigated. The coercivity of is found to be 73 Oe. The optical properties have been determined by UV-visible absorption spectroscopy and band gap found to be 2.16 and 3.60 eV.

  11. Pulsed laser damage to optical fibers

    SciTech Connect

    Allison, S.W.; Gillies, G.T.; Magnuson, D.W.; Pagano, T.S.

    1985-10-01

    This paper describes some observations of pulsed laser damage to optical fibers with emphasis on a damage mode characterized as a linear fracture along the outer core of a fiber. Damage threshold data are presented which illustrate the effects of the focusing lens, end-surface preparation, and type of fiber. An explanation based on fiber-beam misalignment is given and is illustrated by a simple experiment and ray trace.

  12. Laser pulse stretcher method and apparatus

    DOEpatents

    Hawkins, Jon K.; Williams, William A.

    1990-01-01

    The output of an oscillator stage of a laser system is monitored by a photocell which is coupled to a feedback section to control a Pockels Cell and change the light output of the oscillator stage. A synchronizing pulse is generated in timed relation to the initiation of operation of the oscillator stage and is applied to a forward feed section which cooperates with the feedback section to maintain the light output constant for an extended time interval.

  13. Rectangular Pulsed Laser-Electromagnetic Hybrid Accelerator

    SciTech Connect

    Kishida, Yoshiaki; Katayama, Masahiro; Horisawa, Hideyuki

    2010-10-13

    Experimental investigation of impulse-bit and propellant consumption rate, or mass shot, per single pulse discharge was conducted to characterize the thrust performance of the rectangular laser-electromagnetic hybrid acceleration thruster with various propellant materials. From the result, alumina propellant showed significantly superior performance. The largest values of the measured impulse-bit, specific impulse and thrust efficiency were 49 {mu}Nsec, 6,200 sec and 22%, respectively.

  14. Fragmentation process induced by microsecond laser pulses during lithotripsy

    NASA Astrophysics Data System (ADS)

    Rink, K.; Delacrétaz, G.; Salathé, R. P.

    1992-07-01

    A fiber optic stress sensing technique is applied to evaluate the fragmentation mechanism for pulsed dye-laser lithotripsy. We demonstrate for the first time that the fragmentation process with microsecond laser pulses originates from the shock wave induced by the cavitation bubble collapse. This shock occurs some hundreds of microseconds after the laser pulse. The shock induced by the plasma expansion, which occurs during laser irradiation, has a minor effect.

  15. Observation of Laser-Pulse Shortening in Nonlinear Plasma Waves

    SciTech Connect

    Faure, J.; Glinec, Y.; Santos, J.J.; Ewald, F.; Rousseau, J.-P.; Malka, V.; Kiselev, S.; Pukhov, A.; Hosokai, T.

    2005-11-11

    We have measured the temporal shortening of an ultraintense laser pulse interacting with an underdense plasma. When interacting with strongly nonlinear plasma waves, the laser pulse is shortened from 38{+-}2 fs to the 10-14 fs level, with a 20% energy efficiency. The laser ponderomotive force excites a wakefield, which, along with relativistic self-phase modulation, broadens the laser spectrum and subsequently compresses the pulse. This mechanism is confirmed by 3D particle in cell simulations.

  16. Observation of laser-pulse shortening in nonlinear plasma waves.

    PubMed

    Faure, J; Glinec, Y; Santos, J J; Ewald, F; Rousseau, J-P; Kiselev, S; Pukhov, A; Hosokai, T; Malka, V

    2005-11-11

    We have measured the temporal shortening of an ultraintense laser pulse interacting with an underdense plasma. When interacting with strongly nonlinear plasma waves, the laser pulse is shortened from 38 +/- 2 fs to the 10-14 fs level, with a 20% energy efficiency. The laser ponderomotive force excites a wakefield, which, along with relativistic self-phase modulation, broadens the laser spectrum and subsequently compresses the pulse. This mechanism is confirmed by 3D particle in cell simulations. PMID:16384066

  17. Nonlinear optical dynamics and Eu3+ spectral holeburning in strontium barium niobate thin film grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Liu, H.; Liu, G. K.; Li, S. T.; Beitz, J. V.; Fernandez, F. E.

    2002-01-01

    Optical quality SrxBa1-xNb2O6 (SBN) thin films, both undoped and Eu3+-doped, of thickness less than 0.5 μm have been successfully grown on fused quartz substrates using a pulsed laser deposition technique. Optical properties of these films were characterized in high-resolution spectroscopic experiments in time and frequency domains. For undoped SBN thin films, broadband emission in the UV region extending to the visible was observed following excitation at 355 nm. This emission is attributed to exciton luminescence of the SBN film. Nonlinear optical response in the picosecond regime and the third-order nonlinear susceptibility, χ(3), were studied using degenerate four-wave-mixing methods. In transverse alignment, χ(3) is enhanced by two orders of magnitude in comparison with its bulk counterpart. A thermal annealing process, monitored via changes in spectral properties of Eu3+, was employed to convert the as-grown amorphous film into a polycrystalline film. High-resolution spectroscopic measurements in the frequency domain were conducted on a 200-nm-thick film of Eu3+-doped SBN. Our spectroscopic results suggest that Eu3+ ions may substitute for Nb, thereby occupying a normally six-fold coordinated lattice site. At liquid helium temperature, spectral holes in the 7F0-5D0 optical transition were burned in the thermally annealed films. Typical observed hole widths were 70-100 MHz and hole depths were as large as 30% of the peak fluorescence intensity.

  18. Generation of ultrahigh intensity laser pulses

    NASA Astrophysics Data System (ADS)

    Fisch, N. J.; Malkin, V. M.

    2003-05-01

    Mainly due to the method of chirped pulse amplification, laser intensities have grown remarkably during recent years. However, the attaining of very much higher powers is limited by the material properties of gratings. These limitations might be overcome through the use of plasma, which is an ideal medium for processing very high power and very high total energy. A plasma can be irradiated by a long pump laser pulse, carrying significant energy, which is then quickly depleted in the plasma by a short counterpropagating pulse. This counterpropagating wave effect has already been employed in Raman amplifiers using gases or plasmas at low laser power. Of particular interest here are the new effects which enter in high power regimes. These new effects can be employed so that one high-energy optical system can be used like a flashlamp in what amounts to pumping the plasma, and a second low-power optical system can be used to extract quickly the energy from the plasma and focus it precisely. The combined system can be very compact. Thus, focused intensities more than 1025 W/cm2 can be contemplated using existing optical elements. These intensities are several orders of magnitude higher than what is currently available through chirped pump amplifiers.

  19. Laser pulse modulation instabilities in plasma channels

    PubMed

    Sprangle; Hafizi; Penano

    2000-04-01

    In this paper the modulational instability associated with propagation of intense laser pulses in a partially stripped, preformed plasma channel is analyzed. In general, modulation instabilities are caused by the interplay between (anomalous) group velocity dispersion and self-phase modulation. The analysis is based on a systematic approach that includes finite-perturbation-length effects, nonlinearities, group velocity dispersion, and transverse effects. To properly include the radial variation of both the laser field and plasma channel, the source-dependent expansion method for analyzing the wave equation is employed. Matched equilibria for a laser beam propagating in a plasma channel are obtained and analyzed. Modulation of a uniform (matched) laser beam equilibrium in a plasma channel leads to a coupled pair of differential equations for the perturbed spot size and laser field amplitude. A general dispersion relation is derived and solved. Surface plots of the spatial growth rate as a function of laser beam power and the modulation wave number are presented. PMID:11088236

  20. Short Pulse Experimental Capability at the Nike Laser Facility

    NASA Astrophysics Data System (ADS)

    Weaver, J. L.; Chan, Y.; Gardner, J.; Giuliani, J.; Karasik, M.; Kehne, D.; Mostovych, A.; Obenschain, S.; Velikovich, A.; Schmitt, A.; Serlin, V.; Aglitskiy, Y.; Metzler, N.; Smyth, Z.; Terrell, S.

    2004-11-01

    Recent simulations demonstrated high gain for direct drive pellets compressed by a laser pulse incorporating a short pulse prior to the main pulse. Theoretical work has also shown that a short prepulse can create a tailored density profile that reduces the initial instability growth due to laser imprinting. A new short pulse (0.35-0.75 ns FWHM)is being added to the Nike KrF laser system to facilitate hydrodynamic experiments with short prepulses. This capability has been incorporated into the initial stages of the laser system and the propagation of these pulses through the angularly multiplexed amplifiers is being studied. Measurements of pulse shape and energy will be compared to simulations using the KrF physics code Orestes for the next to last amplifier of the laser system, the 20 cm x 20 cm e-beam pumped laser cell. The effects of amplified spontaneous emission (ASE) upon individual output pulses will be also discussed.

  1. Pulsed-discharge carbon dioxide lasers

    NASA Technical Reports Server (NTRS)

    Willetts, David V.

    1990-01-01

    The purpose is to attempt a general introduction to pulsed carbon dioxide lasers of the kind used or proposed for laser radar applications. Laser physics is an excellent example of a cross-disciplinary topic, and the molecular spectroscopy, energy transfer, and plasma kinetics of the devices are explored. The concept of stimulated emission and population inversions is introduced, leading on to the molecular spectroscopy of the CO2 molecule. This is followed by a consideration of electron-impact pumping, and the pertinent energy transfer and relaxation processes which go on. Since the devices are plasma pumped, it is necessary to introduce a complex subject, but this is restricted to appropriate physics of glow discharges. Examples of representative devices are shown. The implications of the foregoing to plasma chemistry and gas life are discussed.

  2. Pulsed Nd-YAG laser in endodontics

    NASA Astrophysics Data System (ADS)

    Ragot-Roy, Brigitte; Severin, Claude; Maquin, Michel

    1994-12-01

    The purpose of this study was to establish an operative method in endodontics. The effect of a pulsed Nd:YAG laser on root canal dentin has been examined with a scanning electron microscope. Our first experimentation was to observe the impacts carried out perpendicularly to root canal surface with a 200 micrometers fiber optic in the presence of dye. Secondarily, the optical fiber was used as an endodontic instrument with black dye. The irradiation was performed after root canal preparation (15/100 file or 40/100 file) or directly into the canal. Adverse effects are observed. The results show that laser irradiation on root canal dentin surfaces induces a nonhomogeneous modified dentin layer, melted and resolidified dentin closed partially dentinal tubules. The removal of debris is not efficient enough. The laser treatment seems to be indicated only for endodontic and periapical spaces sterilization after conventional root canal preparation.

  3. [Effect of pulsed CO2-laser irradiation on bone tissue].

    PubMed

    Kholodnov, S E

    1985-01-01

    Different dynamic effects on biological tissue caused by pulsed laser radiation are described. It is shown that the parameters of these effects which take place on the bone tissue affected by pulsed CO2-laser radiation are directly dependent on the parameters of these pulses and may be predicted for any concrete application. PMID:3931698

  4. Electron beam switched discharge for rapidly pulsed lasers

    DOEpatents

    Pleasance, Lyn D.; Murray, John R.; Goldhar, Julius; Bradley, Laird P.

    1981-01-01

    Method and apparatus for electrical excitation of a laser gas by application of a pulsed voltage across the gas, followed by passage of a pulsed, high energy electron beam through the gas to initiate a discharge suitable for laser excitation. This method improves upon current power conditioning techniques and is especially useful for driving rare gas halide lasers at high repetition rates.

  5. Ultrashort-pulse laser generated nanoparticles of energetic materials

    DOEpatents

    Welle, Eric J.; Tappan, Alexander S.; Palmer, Jeremy A.

    2010-08-03

    A process for generating nanoscale particles of energetic materials, such as explosive materials, using ultrashort-pulse laser irradiation. The use of ultrashort laser pulses in embodiments of this invention enables one to generate particles by laser ablation that retain the chemical identity of the starting material while avoiding ignition, deflagration, and detonation of the explosive material.

  6. Pulsed laser deposition: the road to hybrid nanocomposites coatings and novel pulsed laser adaptive technique.

    PubMed

    Serbezov, Valery

    2013-01-01

    The applications of Pulsed Laser Deposition (PLD) for producing nanoparticles, nanostructures and nanocomposites coatings based on recently developed laser ablating techniques and their convergence are being reviewed. The problems of in situ synthesis of hybrid inorganic-organic nanocomposites coatings by these techniques are being discussed. The novel modification of PLD called Pulsed Laser Adaptive Deposition (PLAD) technique is presented. The in situ synthesized inorganic/organic nanocomposites coatings from Magnesium (Mg) alloy/Rhodamine B and Mg alloy/ Desoximetasone by PLAD are described. The trends, applications and future development of discussed patented methods based on the laser ablating technologies for producing hybrid nanocomposite coatings have also been discussed in this review. PMID:22747717

  7. Measurement Issues In Pulsed Laser Propulsion

    SciTech Connect

    Sinko, John E.; Scharring, Stefan; Eckel, Hans-Albert; Roeser, Hans-Peter; Sasoh, Akihiro

    2010-05-06

    Various measurement techniques have been used throughout the over 40-year history of laser propulsion. Often, these approaches suffered from inconsistencies in definitions of the key parameters that define the physics of laser ablation impulse generation. Such parameters include, but are not limited to the pulse energy, spot area, imparted impulse, and ablated mass. The limits and characteristics of common measurement techniques in each of these areas will be explored as they relate to laser propulsion. The idea of establishing some standardization system for laser propulsion data is introduced in this paper, so that reported results may be considered and studied by the general community with more certain understanding of particular merits and limitations. In particular, it is the intention to propose a minimum set of requirements a literature study should meet. Some international standards for measurements are already published, but modifications or revisions of such standards may be necessary for application to laser ablation propulsion. Issues relating to development of standards will be discussed, as well as some examples of specific experimental circumstances in which standardization would have prevented misinterpretation or misuse of past data.

  8. Generation of intense 25-fsec pulses by a pulsed laser system

    SciTech Connect

    Angel, G.; Gagel, R.; Laubereau, A. )

    1989-09-15

    A pulsed femtosecond dye laser is demonstrated with relaxed stability requirements, improved output reproducibility, and significant pulse shortening. Starting with a sequence of {approx}350 pump pulses of a Nd:glass laser (repetition rate 6 Hz, duration 1.3 psec), pulses of 25 fsec and 10 nJ are generated at 566 nm. A non-colliding-pulse, mode-locked ring laser is used with dispersion compensation and the dyes Rhodamine 6G, DQOCI, and DTCI. The evolution of the pulse parameters as a function of cavity round trips is investigated.

  9. Investigation of Fe:ZnSe laser in pulsed and repetitively pulsed regimes

    SciTech Connect

    Velikanov, S D; Zaretskiy, N A; Zotov, E A; Maneshkin, A A; Chuvatkin, R S; Yutkin, I M; Kozlovsky, V I; Korostelin, Yu V; Krokhin, O N; Podmar'kov, Yu P; Savinova, S A; Skasyrsky, Ya K; Frolov, M P

    2015-01-31

    The characteristics of a Fe:ZnSe laser pumped by a single-pulse free-running Er : YAG laser and a repetitively pulsed HF laser are presented. An output energy of 4.9 J is achieved in the case of liquid-nitrogen cooling of the Fe{sup 2+}:ZnSe active laser element longitudinally pumped by an Er:YAG laser with a pulse duration of 1 ms and an energy up to 15 J. The laser efficiency with respect to the absorbed energy is 47%. The output pulse energy at room temperature is 53 mJ. The decrease in the output energy is explained by a strong temperature dependence of the upper laser level lifetime and by pulsed heating of the active element. The temperature dependence of the upper laser level lifetime is used to determine the pump parameters needed to achieve high pulse energies at room temperature. Stable repetitively-pulsed operation of the Fe{sup 2+}:ZnSe laser at room temperature with an average power of 2.4 W and a maximum pulse energy of 14 mJ is achieved upon pumping by a 1-s train of 100-ns HF laser pulses with a repetition rate of 200 Hz. (lasers)

  10. Pulsed laser fluorometry for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Saunders, G. C.; Martin, J. C.; Jett, J. H.; Wilder, M. E.; Martinez, A.; Bentley, B. F.; Lopez, J.; Hutson, L.

    A compact pulsed laser fluorometer has been incorporated into a continuous flow system developed to detect acetylcholinesterase (AChE) inhibitors and/or primary amine compounds in air and water. A pulsed nitrogen laser pumped dye laser excites fluorescent reactants which flow continuously through a quartz flow cell. Data are collected, analyzed, and displayed using a Macintosh II personal computer. For detection of cholinesterase inhibitors the fluorogenic substrate N methylindoxyl acetate is used to monitor the activity of immobilized enzyme. Presence of inhibitors results in a decrease of steady state fluorescence. Detection of compounds containing primary amines is based on their reaction with fluorescamine to rapidly produce intensely fluorescent products. Compounds of interest to our research were amino acids, peptides, and proteins. An increase in steady state fluorescence could be cause to evaluate the reasons for the change. The detection limit of the protein, bovine serum albumin (BSA) in water, is 10 ppT. Nebulized BSA concentrated by the LANL air sampler can be detected at sub ppT original air concentration.

  11. Pulsed laser fluorometry for environmental monitoring

    SciTech Connect

    Saunders, G. C.; Martin, J. C.; Jett, J. H.; Wilder, M. E.; Martinez, A.; Bentley, B. F.; Lopez, J.; Hutson, L.

    1990-01-01

    A compact pulsed laser fluorometer has been incorporated into a continuous flow system developed to detect acetylcholinesterase (AChE) inhibitors and/or primary amine compounds in air and water. A pulsed nitrogen laser pumped dye laser excites fluorescent reactants which flow continuously through a quartz flow cell. Data are collected, analyzed, and displayed using a Macintosh II personal computer. For detection of cholinesterase inhibitors the fluorogenic substrate N methylindoxyl acetate is used to monitor the activity of immobilized enzyme. Presence of inhibitors results in a decrease of steady state fluorescence. Detection of compounds containing primary amines is based on their reaction with fluorescamine to rapidly produce intensely fluorescent products. Compounds of interest to our research were amino acids, peptides, and proteins. An increase in steady state fluorescence could be cause to evaluate the reasons for the change. The detection limit of the protein, bovine serum albumin (BSA) in water is 10 ppT. Nebulized BSA concentrated by the LANL air sampler can be detected at sub ppT original air concentration. 16 refs., 14 figs., 3 tabs.

  12. Laser wakefield acceleration by petawatt ultrashort laser pulses

    SciTech Connect

    Gorbunov, L.M.; Kalmykov, S.Yu.; Mora, P.

    2004-12-07

    An ultra-short (about 30 fs) petawatt laser pulse focused in a wide focal spot (about 100{mu}m) in rarefied plasma (n0 {approx} 1017cm-3) excites a nonlinear plasma wakefield which can accelerate injected electrons up to a GeV energy without pulse channelling. In these conditions, the laser pulse with an over-critical power for relativistic self-focusing propagates as in vacuum. The nonlinear quasi-plane wake plasma wave, whose amplitude and phase velocity vary along the laser path, effectively traps and accelerates injected electrons with a wide range of initial energies. Electrons accelerated along two Rayleigh lengths (about eight centimeters) gain the energy up to 1 GeV. In particular, the electrons trapped from quite a long ({tau}b {approx} 330 fs) non-resonant electron beamlet of 1 MeV particles eventually form a low emittance bunch with the energies in the range 900 {+-} 50 MeV. All these conclusions follow from the two-dimensional simulations performed in cylindrical geometry by fully relativistic time-averaged particle code WAKE.

  13. Controlling electron injection in laser plasma accelerators using multiple pulses

    SciTech Connect

    Matlis, N. H.; Geddes, C. G. R.; Plateau, G. R.; Esarey, E.; Schroeder, C.; Bruhwiler, D.; Cormier-Michel, E.; Chen, M.; Yu, L.; Leemans, W. P.

    2012-12-21

    Use of counter-propagating pulses to control electron injection in laser-plasma accelerators promises to be an important ingredient in the development of stable devices. We discuss the colliding pulse scheme and associated diagnostics.

  14. Pulsed thrust measurements using laser interferometry

    NASA Astrophysics Data System (ADS)

    Cubbin, E. A.; Ziemer, J. K.; Choueiri, E. Y.; Jahn, R. G.

    1997-06-01

    An optical interferometric proximeter system (IPS) for measuring thrust and impulse bit of pulsed electric thrusters was developed. Unlike existing thrust stands, the IPS-based thrust stand offers the advantage of a single system that can yield electromagnetic interference-free, high accuracy (<2% error) thrust measurements within a very wide range of impulses (100 μN s to above 10 N s) covering the impulse range of all known pulsed plasma thrusters. In addition to pulsed thrusters, the IPS is theoretically shown to be capable of measuring steady-state thrust values as low as 20 μN for microthrusters such as the field emission electric propulsion thruster. The IPS-based thrust stand relies on measuring the dynamic response of a swinging arm using a two-sensor laser interferometer with 10 nm position accuracy. The wide application of the thrust stand is demonstrated with thrust measurements of an ablative pulsed plasma thruster and a quasi-steady magnetoplasmadynamic thruster.

  15. Optimizing chirped laser pulse parameters for electron acceleration in vacuum

    SciTech Connect

    Akhyani, Mina; Jahangiri, Fazel; Niknam, Ali Reza; Massudi, Reza

    2015-11-14

    Electron dynamics in the field of a chirped linearly polarized laser pulse is investigated. Variations of electron energy gain versus chirp parameter, time duration, and initial phase of laser pulse are studied. Based on maximizing laser pulse asymmetry, a numerical optimization procedure is presented, which leads to the elimination of rapid fluctuations of gain versus the chirp parameter. Instead, a smooth variation is observed that considerably reduces the accuracy required for experimentally adjusting the chirp parameter.

  16. Laser generation of subnanosecond sound pulses in liquids

    NASA Astrophysics Data System (ADS)

    Vodopianov, K. L.; Kulevskii, L. A.; Mikhalevich, V. G.; Rodin, A. M.

    1986-07-01

    Laser generation of intense sound pulses of subnanosecond duration is observed for the first time. Use is made of hydroxyl-containing liquids with hydrogen bonds such as water, ethanol and glycerine which possess very high light absorption coefficients at the laser wavelength of 2.94 microns. When using ultrashort laser pulses (tau = 80 ps) with energies reaching 60 microjoules, sound pressure pulses 0.75 ns in duration with amplitudes reaching 20 kbar (in water) were obtained.

  17. Cloning assay thresholds on cells exposed to ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Riemann, Iris; Fischer, Peter; Becker, Thomas P.; Oehring, Hartmut; Halbhuber, Karl-Juergen

    1999-06-01

    The influence of the peak power, laser wavelength and the pulse duration of near infrared ultrashort laser pulses on the reproduction behavior of Chinese hamster ovary (CHO) cells has been studied. In particular, we determined the cloning efficiency of single cell pairs after exposure to ultrashort laser pulses with an intensity in the range of GW/cm2 and TW/cm2. A total of more than 3500 non- labeled cells were exposed to a highly focused scanning beam of a multiphoton laser microscope with 60 microsecond(s) pixel dwell time per scan. The beam was provided by a tunable argon ion laser pumped mode-locked 76 MHz Titanium:Sapphire laser as well as by a compact solid-state laser based system (Vitesse) at a fixed wavelength of 800 nm. Pulse duration (tau) was varied in the range of 100 fs to 4 ps by out-of- cavity pulse-stretching units consisting of SF14 prisms and blazed gratings. Within an optical (laser power) window CHO cells could be scanned for hours without severe impact on reproduction behavior, morphology and vitality. Ultrastructural studies reveal that mitochondria are the major targets of intense destructive laser pulses. Above certain laser power P thresholds, CHO cells started to delay or failed to undergo cell division and, in part, to develop uncontrolled cell growth (giant cell formation). The damage followed a P2/(tau) relation which is typical for a two- photon excitation process. Therefore, cell damage was found to be more pronounced at shorter pulses. Due to the same P2/(tau) relation for the efficiency of fluorescence excitation, two-photon microscopy of living cells does not require extremely short femtosecond laser pulses nor pulse compression units. Picosecond as well as femtosecond lasers can be used as efficient light sources in safe two photon fluorescence microscopy. Only in three photon fluorescence microscopy, femtosecond laser pulses are advantageous over picosecond pulses.

  18. Laser Doppler and Pulsed Laser Velocimetry in Fluid Mechanics

    NASA Astrophysics Data System (ADS)

    Coupland, Jeremy M.

    Since the introduction of the laser in the late 1960s, optical metrology has made a major impact in many branches of engineering. This is nowhere more apparent than in the field of fluid mechanics where laser technology has revolutionised the way in which fluid flows are studied. The light scattered from small seeding particles following the flow contains information relating to the particle position and velocity. The coherence characteristics and high power densities achievable with a laser source allow well-defined regions of flow to be investigated in a largely non-intrusive manner and on a spatial and temporal scale commensurate with he flow field of interest. This review outlines the laser-based methods of velocimetry that are now available to the fluid dynamicist and discusses their practical application. Laser Doppler velocimetry provides a means to produce time-resolved measurements of fluid velocity at a single point in the flow. The optical design of instruments of this type is addressed with reference to spatial resolution and light gathering performance. Typical Doppler signals produced at both high and low particle concentrations are analysed and signal processing techniques are briefly discussed. Pulsed laser velocimeters use imaging optics to record the position of seeding particles at two or more instants and provide information concerning the instantaneous structure of the flow field. The optical configurations and analysis procedures used for planar velocity measurements are described and whole-field three-dimensional velocity measurements using holographic techniques are introduced.

  19. Optical penetration sensor for pulsed laser welding

    DOEpatents

    Essien, Marcelino; Keicher, David M.; Schlienger, M. Eric; Jellison, James L.

    2000-01-01

    An apparatus and method for determining the penetration of the weld pool created from pulsed laser welding and more particularly to an apparatus and method of utilizing an optical technique to monitor the weld vaporization plume velocity to determine the depth of penetration. A light source directs a beam through a vaporization plume above a weld pool, wherein the plume changes the intensity of the beam, allowing determination of the velocity of the plume. From the velocity of the plume, the depth of the weld is determined.

  20. Pulsed laser deposition of zeolitic membranes

    SciTech Connect

    Peachey, N.M.; Dye, R.C.; Ries, P.D.

    1995-02-01

    The pulsed laser deposition of zeolites to form zeolitic thin films is described. Films were grown using both mordenite and faujasite targets and were deposited on various substrates. The optimal films were obtained when the target and substrate were separated by 5 cm. These films are comprised of small crystallites embedded in an amorphous matrix. Transmission electron microscopy reveals that the amorphous material is largely porous and that the pores appear to be close to the same size as the parent zeolite. Zeolotic thin films are of interest for sensor, gas separation, and catalytic applications.

  1. Uncooled pulsed zinc oxide semiconductor laser

    NASA Astrophysics Data System (ADS)

    Bogdankevich, O. V.; Darznek, S. A.; Zverev, M. M.; Kostin, N. N.; Krasavina, E. M.

    1985-02-01

    An optimized ZnO laser which operates at ambient temperature without cooling is reported, along with extension of the design to form a multielement high-power laser. ZnO single crystal plane-parallel wafers 0.22 mm thick, covered with total and semi-transparent coatings, were exposed to a 200 keV electron beam with a 10 nsec pulse and a current density up to 1 kA/sq cm. No damage was observed in the crystals at saturation. A 7 percent maximum efficiency at a reflection coefficient (RC) of 0.4 was associated with a maximum output of 25 kW and a light power density of 3 MW/sq cm. Cementing a ZnO wafer to a sapphire substrate, applying the same type of coatings and working with a RC of 0.6 yielded a maximum power of 300 kW/sq cm.

  2. Development of short pulse soft x-ray lasers

    SciTech Connect

    Da Silva, L.B.; MacGowan, B.J.; Koch, J.A.; Mrowka, S.; Matthews, D.L.; Eder, D.; London, R.

    1993-02-01

    X-ray lasers with pulse duration shorter than 20 ps allow the possibility of imaging laser produced plasmas with {mu}m resolution. In addition, the high peak brightness of these new sources will allow us to study nonlinear optics in the xuv region. In this paper we will describe our efforts to produce collisionally pumped short pulse x-ray lasers. Initial results, which have produced {approximately} 45 ps (FWHM) x-ray lasers, using a double pulse irradiation technique are presented along with a discussion of the prospects for reducing the pulse width.

  3. Precise micromachining of materials using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Garasz, K.; Tański, M.; Barbucha, R.; Kocik, M.

    2015-06-01

    We present the results of the experimental parametric study on efficiency, accuracy and quality of femtosecond laser micromachining of different materials. The laser micromachining process was performed with a solid-state Yb:KYW laser. The laser generates 500 fs pulses of three different wavelengths, repetition rate from 100 to 900 kHz and output power up to 50 W. This allows to perform a complex research for a wide range of parameters and materials. Laser micromachining is a process based on a laser ablation phenomenon, i.e. total evaporation of material from the target surface during laser irradiation. It is the most precise method of material removal. Applying a femtosecond laser in the process, allows the use of ultra short pulses, with a duration of 10-15 seconds, while maintaining a high laser power. The concentration of energy within a single pulse is sufficiently high to cause the detachment of particles from the irradiated target without any thermal interactions with the surrounding material. Therefore, the removal of the material occurs only in the laser focus. This allows to avoid most of the unwanted effects of the heat affected zone (HAZ). It has been established, that the quality of laser ablation process using femtosecond pulses is much higher than while using the long pulsed lasers (i.e. nanosecond). The use of femtosecond laser pulses creates therefore an attractive opportunity for high quality micromachining of many groups of materials.

  4. A high repetition rate (1 kHz) microcrystal laser for high throughput atmospheric pressure MALDI-quadrupole-time-of-flight mass spectrometry.

    PubMed

    McLean, John A; Russell, William K; Russell, David H

    2003-02-01

    Sample throughput has been increased in many areas of proteomics, but the last significant advance in lasers used for matrix-assisted laser desorption/ionization (MALDI) was the introduction of cartridge-type N2 lasers (337 nm, 4-ns pulse widths, 1-30-Hz repetition rates) more than a decade ago. This report describes the application of a 1-kHz repetition rate Nd:YAG laser (355 nm, <500-ps pulse widths) for atmospheric pressure MALDI-QqTOFMS, and data obtained are compared to a conventional nitrogen laser. For example, the signal intensity for angiotensin II using the 1-kHz laser was in some cases enhanced by a factor of 80 and high-quality data could be obtained in as little as 1 s. PMID:12585497

  5. Noncontact microsurgery of living cell membrane using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Ilina, I. V.; Ovchinnikov, A. V.; Sitnikov, D. S.; Chefonov, O. V.; Agranat, M. B.; Mikaelyan, A. S.

    2013-06-01

    Near-infrared femtosecond laser pulses were applied to initiate reversible permeabilization of cell membrane and inject extrinsic substances into the target cells. Successful laser-based injection of a membrane impermeable dye, as well as plasmid DNA was demonstrated.

  6. Long pulse chemical laser. Final technical report

    SciTech Connect

    Bardon, R.L.; Breidenthal, R.E.; Buonadonna, V.R.

    1989-02-01

    This report covers the technical effort through February, 1989. This effort was directed towards the technology associated with the development of a large scale, long pulse DF-CO{sub 2} chemical laser. Optics damage studies performed under Task 1 assessed damage thresholds for diamond-turned salt windows. Task 2 is a multi-faceted task involving the use of PHOCL-50 for laser gain measurements, LTI experiments, and detector testing by LANL personnel. To support these latter tests, PHOCL-50 was upgraded with Boeing funding to incorporate a full aperture outcoupler that increased its energy output by over a factor of 3, to a full kilojoule. The PHOCL-50 carbon block calorimeter was also recalibrated and compared with the LANL Scientech meter. Cloud clearing studies under Task 3 initially concentrated on delivering a Boeing built Cloud Simulation Facility to LANL, and currently involves design of a Cold Cloud Simulation Facility. A Boeing IRAD funded theoretical study on cold cloud clearing revealed that ice clouds may be easier to clear then warm clouds. Task 4 involves the theoretical and experimental study of flow system design as related to laser beam quality. Present efforts on this task are concentrating on temperature gradients induced by the gas filling process. General support for the LPCL field effort is listed under Task 5, with heavy emphasis on assuring reliable operation of the Boeing built Large Slide Valve and other device related tests. The modification of the PHOCL-50 system for testing long pulse DF (4{mu}m only) chemical laser operation is being done under Task 6.

  7. Pulsed laser surface hardening of ferrous alloys.

    SciTech Connect

    Xu, Z.; Reed, C. B.; Leong, K. H.; Hunter, B. V.

    1999-09-30

    A high power pulsed Nd:YAG laser and special optics were used to produce surface hardening on 1045 steel and gray cast iron by varying the process parameters. Unlike CO{sub 2} lasers, where absorptive coatings are required, the higher absorptivity of ferrous alloys at the Nd:YAG laser wavelength eliminates the necessity of applying a coating before processing. Metallurgical analysis of the treated tracks showed that very fine and hard martensitic microstructure (1045 steel) or inhomogeneous martensite (gray cast iron) were obtained without surface melting, giving maximum hardness of HRC 61 and HRC 40 for 1045 steel and gray cast iron respectively. The corresponding maximum case depths for both alloys at the above hardness are 0.6 mm. Gray cast iron was more difficult to harden without surface melting because of its lower melting temperature and a significantly longer time-at-temperature required to diffuse carbon atoms from the graphite flakes into the austenite matrix during laser heating. The thermal distortion was characterized in term of flatness changes after surface hardening.

  8. Cloning assay thresholds on cells exposed to ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Riemann, Iris; Fischer, Peter; Becker, Thomas P.; Oehring, Hartmut; Halbhuber, Karl-Juergen

    1999-06-01

    The influence of the peak power, laser wavelength and the pulse duration of near infrared (NIR) ultrashort laser pulses on the reproduction behavior of Chinese hamster ovary (CHO) cells has been studied. In particular we determined the cloning efficiency of single cell pairs after exposure to ultrashort laser pulses with an intensity in the range of GW/cm2 and TW/cm2. A total of more than 3500 non- labeled cells were exposed to a highly focused scanning beam of a multiphoton laser microscope with 60 microsecond pixel dwell time per scan. The beam was provided by a tunable argon ion laser pumped mode-locked 76 MHz Titanium:Sapphire laser as well as by a compact solid-state laser based system (Vitesse) at a fixed wavelength of 800 nm. Pulse duration (tau) was varied in the range of 100 fs to 4 ps by out-of-cavity pulse- stretching units consisting of SF14 prisms and blazed gratings. Within an optical (laser power) window CHO cells could be scanned for hours without severe impact on reproduction behavior, morphology and vitality. Ultrastructural studies reveal that mitochondria are the major targets of intense destructive laser pulses. Above certain laser power P thresholds, CHO cells started to delay or failed to undergo cell division and, in part, to develop uncontrolled cell growth (giant cell formation). The damage followed a P2/(tau) relation which is typical for a two-photon excitation process. Therefore, cell damage was found to be more pronounced at shorter pulses. Due to the same P2/(tau) relation for the efficiency of fluorescence excitation, two- photon microscopy of living cells does not require extremely short femtosecond laser pulses nor pulse compression units. Picosecond as well as femtosecond layers can be used as efficient light sources in safe two photon fluorescence microscopy. Only in three photon fluorescence microscopy, femtosecond laser pulses are advantageous over picosecond pulses.

  9. 25 years of pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Lorenz, Michael; Ramachandra Rao, M. S.

    2014-01-01

    It is our pleasure to introduce this special issue appearing on the occasion of the 25th anniversary of pulsed laser deposition (PLD), which is today one of the most versatile growth techniques for oxide thin films and nanostructures. Ever since its invention, PLD has revolutionized the research on advanced functional oxides due to its ability to yield high-quality thin films, multilayers and heterostructures of a variety of multi-element material systems with rather simple technical means. We appreciate that the use of lasers to deposit films via ablation (now termed PLD) has been known since the 1960s after the invention of the first ruby laser. However, in the first two decades, PLD was something of a 'sleeping beauty' with only a few publications per year, as shown below. This state of hibernation ended abruptly with the advent of high T c superconductor research when scientists needed to grow high-quality thin films of multi-component high T c oxide systems. When most of the conventional growth techniques failed, the invention of PLD by T (Venky) Venkatesan clearly demonstrated that the newly discovered high-T c superconductor, YBa2Cu3O7-δ , could be stoichiometrically deposited as a high-quality nm-thin film with PLD [1]. As a remarkable highlight of this special issue, Venkatesan gives us his very personal reminiscence on these particularly innovative years of PLD beginning in 1986 [2]. After Venky's first paper [1], the importance of this invention was realized worldwide and the number of publications on PLD increased exponentially, as shown in figure 1. Figure 1. Figure 1. Published items per year with title or topic PLD. Data from Thomson Reuters Web of Knowledge in September 2013. After publication of Venky's famous paper in 1987 [1], the story of PLD's success began with a sudden jump in the number of publications, about 25 years ago. A first PLD textbook covering its basic understanding was soon published, in 1994, by Chrisey and Hubler [3]. Within a

  10. PHASE NOISE COMPARISON OF SHORT PULSE LASER SYSTEMS

    SciTech Connect

    Shukui Zhang; Stephen Benson; John Hansknecht; David Hardy; George Neil; Michelle D. Shinn

    2006-08-27

    This paper describes phase noise measurements of several different laser systems that have completely different gain media and configurations including a multi-kW free-electron laser. We will focus on state-of-the-art short pulse lasers, especially drive lasers for photocathode injectors. Phase noise comparison of the FEL drive laser, electron beam and FEL laser output also will be presented.

  11. Reshaping of intense laser pulse with a capillary

    SciTech Connect

    Cao Lihua; Yu Wei; Yu, M. Y.; Wang Xin; Gu Yuqiu; He, X. T.

    2009-09-15

    The reshaping of intense laser pulse by vacuum capillary is studied by particle-in-cell simulation. It is shown that as an intense laser pulse propagates from free space into a capillary, its profile is reshaped due to laser-plasma interaction near the entrance of capillary. As a result, the free-space mode is self-consistently converted into a capillary mode. Only the relatively low-intensity periphery of the reshaped pulse interacts with the capillary-wall plasma, so that the high-intensity center of the pulse can propagate in the narrow vacuum channel over a distance much larger than the Rayleigh length. The mechanism is then applied to reshape a radially imperfect laser pulse having two wings around the center spot. Most of the output light energy is concentrated in the center spot, and the wings are almost completely removed. That is, the quality of the laser pulse can be greatly improved by a capillary.

  12. Pulse-burst operation of standard Nd:YAG lasers

    NASA Astrophysics Data System (ADS)

    Den Hartog, D. J.; Ambuel, J. R.; Borchardt, M. T.; Reusch, J. A.; Robl, P. E.; Yang, Y. M.

    2010-05-01

    Two standard commercial flashlamp-pumped Nd:YAG lasers have been upgraded to "pulse-burst" capability. Each laser produces a burst of up to fifteen 2 J Q-switched pulses (1064 nm) at repetition rates 1-12.5 kHz. Variable pulse-width drive (0.15-0.39 ms) of the flashlamps is accomplished by IGBT (insulated gate bipolar transistor) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, and up to four 2 J laser pulses during one flashlamp pulse. These lasers are used in the Thomson scattering plasma diagnostic system on the MST reversed-field pinch to study the dynamic evolution of the electron temperature.

  13. Pulsed laser deposition of pepsin thin films

    NASA Astrophysics Data System (ADS)

    Kecskeméti, G.; Kresz, N.; Smausz, T.; Hopp, B.; Nógrádi, A.

    2005-07-01

    Pulsed laser deposition (PLD) of organic and biological thin films has been extensively studied due to its importance in medical applications among others. Our investigations and results on PLD of a digestion catalyzing enzyme, pepsin, are presented. Targets pressed from pepsin powder were ablated with pulses of an ArF excimer laser ( λ = 193 nm, FWHM = 30 ns), the applied fluence was varied between 0.24 and 5.1 J/cm 2. The pressure in the PLD chamber was 2.7 × 10 -3 Pa. The thin layers were deposited onto glass and KBr substrates. Our IR spectroscopic measurements proved that the chemical composition of deposited thin films is similar to that of the target material deposited at 0.5 and 1.3 J/cm 2. The protein digesting capacity of the transferred pepsin was tested by adapting a modified "protein cube" method. Dissolution of the ovalbumin sections proved that the deposited layers consisted of catalytically active pepsin.

  14. A Pulse-Burst Laser System for Thomson Scattering

    NASA Astrophysics Data System (ADS)

    den Hartog, D. J.; Borchardt, M. T.; Yang, Y. M.; Ambuel, J. R.; Holly, D. J.; Mattison, H. E.; Robl, P. E.

    2008-11-01

    A ``pulse-burst'' laser system is being constructed for addition to the Thomson scattering diagnostic on the MST reversed-field pinch. This laser will produce a burst of up to 200 approximately 1 J Q-switched pulses at repetition rates 5--250 kHz. The laser will operate at 1064 nm and is a master oscillator, power amplifier (MOPA) system. Variable pulse-width drive (0.1--20 ms) of the flashlamps is accomplished by IGBT switching of large electrolytic capacitor banks. In the near term, these flashlamp power supplies will be adapted to drive the flashlamps in the two existing commercial Nd:YAG lasers used for Thomson scattering on the MST RFP. This will enable these lasers to produce a burst of up to 40 pulses at repetition frequencies <= 1 kHz. The burst train of laser pulses will enable the study of Te and ne dynamics in a single MST shot.

  15. Production of picosecond, kilojoule, and petawatt laser pulses via Raman amplification of nanosecond pulses.

    PubMed

    Trines, R M G M; Fiúza, F; Bingham, R; Fonseca, R A; Silva, L O; Cairns, R A; Norreys, P A

    2011-09-01

    Raman amplification in plasma has been promoted as a means of compressing picosecond optical laser pulses to femtosecond duration to explore the intensity frontier. Here we show for the first time that it can be used, with equal success, to compress laser pulses from nanosecond to picosecond duration. Simulations show up to 60% energy transfer from pump pulse to probe pulse, implying that multikilojoule ultraviolet petawatt laser pulses can be produced using this scheme. This has important consequences for the demonstration of fast-ignition inertial confinement fusion. PMID:21981507

  16. Pulse-stretched Alexandrite laser for improved optical fiber reliability for laser lithotripsy

    NASA Astrophysics Data System (ADS)

    Simons, David; Koschmann, Eric C.

    1992-06-01

    Clinical data shows that short pulse duration lasers used in laser induced shock wave lithotripsy severely damage optical fibers on both the proximal and distal ends which is unsuitable for clinical use. An Alexandrite laser system has been developed that uses dynamic pulse stretching of the Q-switched laser pulse and improved optical fiber coupling to eliminate the fiber damage. The method of pulse stretching presented controls the laser output pulse energy from 50 to 150 millijoules and temporal shape from 0.5 to 1.5 microseconds. This yields effective fragmentation of calculi without damage to the optical fiber.

  17. Pulse-Burst Laser Systems for Thomson Scattering on MST

    NASA Astrophysics Data System (ADS)

    den Hartog, D. J.; Borchardt, M. T.; Harris, W. S.; Reusch, J. A.; Yang, Y. M.

    2009-11-01

    A new purpose-built ``pulse-burst'' laser system is being constructed for the Thomson scattering diagnostic on the MST reversed-field pinch. This new laser will produce a burst of 1--2 J Q-switched pulses at repetition rates 5--250 kHz. It will operate at 1064 nm and is a master oscillator, power amplifier (MOPA) system. Variable pulse-width drive (0.15--20 ms) of the flashlamps in this laser will be accomplished by IGBT switching of large electrolytic capacitor banks. A subset of these power supplies has already been constructed and is currently being used to drive the flashlamps in the two existing commercial Nd:YAG lasers used for Thomson scattering on MST. Each of these upgraded lasers now produces a burst of up to fifteen 2 J Q-switched pulses (1064 nm) at repetition rates 1--12.5 kHz. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, and up to four 2 J laser pulses during one flashlamp pulse. These lasers are currently being used to study the dynamic evolution of electron temperature in MST. The new purpose-built ``pulse-burst'' laser system will further expand this capability.

  18. Photoluminescence defects on subsurface layer of fused silica and its effects on laser damage performance

    NASA Astrophysics Data System (ADS)

    Liu, Hongjie; Huang, Jin; Wang, Fengrui; Zhou, Xinda; Jiang, Xiaodong; Wu, Weidong; Zheng, Wanguo

    2015-02-01

    Subsurface defects of polished fused silica optics are responsible for igniting laser damage in high power laser system. A non destructive measurement technique is developed to detect subsurface photoluminescence defects of fused silica. The fused silica samples polished by different vendors are applied to characterization of subsurface defects and measurement of damage performance. Subsurface photoluminescence defects of fused silica are evaluated by confocal fluorescence microscopy system. Laser induced damage threshold and damage density are measured by 355 nm nanosecond pulse laser. The results show a great differential subsurface quality of fused silica samples. Laser induced damage performance has a good correlation with subsurface defects. This paper shows a new non destructive measurement technique to detect photoluminescence defects on the subsurface layer of polished fused silica. It is very valuable to increasing laser damage performance and improving production-manufacturing engineering of optics.

  19. Quantitative correlation between facets defects of RDX crystals and their laser sensitivity.

    PubMed

    Yan, Zhonghua; Liu, Wei; Zhang, Chuanchao; Wang, Xuming; Li, Jinshan; Yang, Zongwei; Xiang, Xia; Huang, Ming; Tan, Bisheng; Zhou, Guorui; Liao, Wei; Li, Zhijie; Li, Li; Yan, Hongwei; Yuan, Xiaodong; Zu, Xiaotao

    2016-08-01

    In this work, the {210} facets of cyclotrimethylenetrinitramine (RDX) single crystals with different quality were studied by scanning electron microscopy and atomic force microscopy. Their laser sensitivity was then assessed using a direct laser ignition test irradiated with ultraviolet laser (wavelength: 355nm, pulse width: 6.4ns). Quantitative relationships between laser sensitivity and surface defects of RDX (210) and (2¯1¯0) facets were investigated. It is determined that the laser sensitivity exhibits significant correlation with the surface roughness, size of which is comparable with scales of laser wavelength. 3D FDTD simulations disclose that this relationship can be well explained with light intensity modulation effects induced by micro-defects on the initial plane wave. PMID:27054669

  20. Precision UV laser scribing for cleaving mirror facets of GaN-based laser diodes

    NASA Astrophysics Data System (ADS)

    Krüger, O.; Kang, J.-H.; Spevak, M.; Zeimer, U.; Einfeldt, S.

    2016-04-01

    Laser scribing with a nanosecond-pulsed UV laser operating at 355 nm was used to create precise perforation for die separation of GaN-based laser diodes. Machining depth of single- and multiple-pass scribing was investigated. For pulse energies between 1 and 45 µJ at a pulse repetition frequency of 20 kHz and single scan at 100 mm/min, scribe depths from 15 to 180 µm were obtained. Processing parameters were adjusted to minimize the formation of microcracks due to laser-induced local heating. By using the laser skip-and-scribe technique, the propagation of the cleavage plane could be controlled, irregular breaking could be minimized, and die yield could be improved. Smooth mirror facets with low density of terraces were formed by cleaving. In the vicinity of the laser-treated zone, no detrimental effects on the crystal quality of the multi-quantum wells could be detected by cathodoluminescence. The electro-optical characteristics of broad-area laser diodes fabricated by the laser-assisted process were similar to the ones fabricated using the conventional diamond-tip edge-scribing technique that suffers from low die yield. Our results demonstrate that nanosecond-pulsed UV laser scribing followed by cleaving is a powerful technique for the formation of mirror facets of GaN-based laser diodes.

  1. A new pulsed laser deposition technique: scanning multi-component pulsed laser deposition method.

    PubMed

    Fischer, D; de la Fuente, G F; Jansen, M

    2012-04-01

    The scanning multi-component pulsed laser deposition (PLD) method realizes uniform depositions of desired coatings by a modified pulsed laser deposition process, preferably with a femto-second laser-system. Multi-component coatings (single or multilayered) are thus deposited onto substrates via laser induced ablation of segmented targets. This is achieved via horizontal line-scanning of a focused laser beam over a uniformly moving target's surface. This process allows to deposit the desired composition of the coating simultaneously, starting from the different segments of the target and adjusting the scan line as a function of target geometry. The sequence and thickness of multilayers can easily be adjusted by target architecture and motion, enabling inter/intra layer concentration gradients and thus functional gradient coatings. This new, simple PLD method enables the achievement of uniform, large-area coatings. Case studies were performed with segmented targets containing aluminum, titanium, and niobium. Under the laser irradiation conditions applied, all three metals were uniformly ablated. The elemental composition within the rough coatings obtained was fixed by the scanned area to Ti-Al-Nb = 1:1:1. Crystalline aluminum, titanium, and niobium were found to coexist side by side at room temperature within the substrate, without alloy formation up to 600 °C. PMID:22559543

  2. A new pulsed laser deposition technique: Scanning multi-component pulsed laser deposition method

    SciTech Connect

    Fischer, D.; Jansen, M.; Fuente, G. F. de la

    2012-04-15

    The scanning multi-component pulsed laser deposition (PLD) method realizes uniform depositions of desired coatings by a modified pulsed laser deposition process, preferably with a femto-second laser-system. Multi-component coatings (single or multilayered) are thus deposited onto substrates via laser induced ablation of segmented targets. This is achieved via horizontal line-scanning of a focused laser beam over a uniformly moving target's surface. This process allows to deposit the desired composition of the coating simultaneously, starting from the different segments of the target and adjusting the scan line as a function of target geometry. The sequence and thickness of multilayers can easily be adjusted by target architecture and motion, enabling inter/intra layer concentration gradients and thus functional gradient coatings. This new, simple PLD method enables the achievement of uniform, large-area coatings. Case studies were performed with segmented targets containing aluminum, titanium, and niobium. Under the laser irradiation conditions applied, all three metals were uniformly ablated. The elemental composition within the rough coatings obtained was fixed by the scanned area to Ti-Al-Nb = 1:1:1. Crystalline aluminum, titanium, and niobium were found to coexist side by side at room temperature within the substrate, without alloy formation up to 600 deg. C.

  3. Amplifier similariton laser with extra-broad bandwidth output pulse

    NASA Astrophysics Data System (ADS)

    Korobko, D. A.; Okhotnikov, O. G.; Zolotovskii, I. O.

    2016-03-01

    We propose an advanced scheme of amplifier similariton laser providing an output pulse spectrum much wider than the gain bandwidth. The upgrade is an additional dispersive element introduced into the cavity to locally increase the peak pulse power. The proposed scheme demonstrates a drastic increase in the output pulse spectrum width, reduction of the pulse duration, and an increase in the output peak pulse power after compression.

  4. Stimulated brillouin backscatter of a short-pulse laser

    SciTech Connect

    Hinkel, D.E.; Williams, E.A.; Berger, R.L.

    1994-11-03

    Stimulated Brillouin backscattering (SBBS) from a short-pulse laser, where the pulse length is short compared to the plasma length, is found to be qualitatively different than in the long pulse regime, where the pulse length is long compared to the plasma length. We find that after an initial transient of order the laser pulse length transit time, the instability reaches a steady state in the variables x{prime} = x {minus} V{sub g}t, t{prime} = t, where V{sub g} is the pulse group velocity. In contrast, SBBS in a long pulse can be absolutely unstable and grows indefinitely, or until nonlinearities intervene. We find that the motion of the laser pulse induces Doppler related effects that substantially modify the backscattered spectrum at higher intensities, where the instability is strongly coupled (i.e. , has a growth rate large compared to the ion acoustic frequency).

  5. New methods of generation of ultrashort laser pulses for ranging

    NASA Technical Reports Server (NTRS)

    Jelinkova, Helena; Hamal, Karel; Kubecek, V.; Prochazka, Ivan

    1993-01-01

    To reach the millimeter satellite laser ranging accuracy, the goal for nineties, new laser ranging techniques have to be applied. To increase the laser ranging precision, the application of the ultrashort laser pulses in connection with the new signal detection and processing techniques, is inevitable. The two wavelength laser ranging is one of the ways to measure the atmospheric dispersion to improve the existing atmospheric correction models and hence, to increase the overall system ranging accuracy to the desired value. We are presenting a review of several nonstandard techniques of ultrashort laser pulses generation, which may be utilized for laser ranging: compression of the nanosecond pulses using stimulated Brillouin and Raman backscattering; compression of the mode-locked pulses using Raman backscattering; passive mode-locking technique with nonlinear mirror; and passive mode-locking technique with the negative feedback.

  6. Generation of ultrashort electron bunches by colliding laser pulses

    SciTech Connect

    Schroeder, C. B.; Lee, P. B.; Wurtele, J. S.; Esarey, E.; Leemans, W. P.

    1999-07-12

    A proposed laser-plasma based relativistic electron source [E. Esarey et al., Phys. Rev. Lett. 79, 2682 (1997)] using laser triggered injection of electrons is investigated. The source generates ultrashort electron bunches by dephasing and trapping background plasma electrons undergoing fluid oscillations in an excited plasma wake. The plasma electrons are dephased by colliding two counter-propagating laser pulses which generate a slow phase velocity beat wave. Laser pulse intensity thresholds for trapping and the optimal wake phase for injection are calculated. Numerical simulations of test particles, with prescribed plasma and laser fields, are used to verify analytic predictions and to study the longitudinal and transverse dynamics of the trapped plasma electrons. Simulations indicate that the colliding laser pulse injection scheme has the capability to produce relativistic femtosecond electron bunches with fractional energy spread of order a few percent and normalized transverse emittance less than 1 mm mrad using 1 TW injection laser pulses.

  7. Generation of ultrashort electron bunches by colliding laser pulses.

    PubMed

    Schroeder, C B; Lee, P B; Wurtele, J S; Esarey, E; Leemans, W P

    1999-05-01

    A proposed laser-plasma-based relativistic electron source [E. Esarey et al., Phys. Rev. Lett. 79, 2682 (1997)] using laser-triggered injection of electrons is investigated. The source generates ultrashort electron bunches by dephasing and trapping background plasma electrons undergoing fluid oscillations in an excited plasma wake. The plasma electrons are dephased by colliding two counterpropagating laser pulses which generate a slow phase velocity beat wave. Laser pulse intensity thresholds for trapping and the optimal wake phase for injection are calculated. Numerical simulations of test particles, with prescribed plasma and laser fields, are used to verify analytic predictions and to study the longitudinal and transverse dynamics of the trapped plasma electrons. Simulations indicate that the colliding laser pulse injection scheme has the capability to produce relativistic femtosecond electron bunches with fractional energy spread of order a few percent and normalized transverse emittance less than 1 mm mrad using 1 TW injection laser pulses. PMID:11969588

  8. Solitary Nanostructures Produced by Ultrashort Laser Pulse.

    PubMed

    Inogamov, Nail A; Zhakhovsky, Vasily V; Khokhlov, Viktor A; Petrov, Yury V; Migdal, Kirill P

    2016-12-01

    Laser-produced surface nanostructures show considerable promise for many applications while fundamental questions concerning the corresponding mechanisms of structuring are still debated. Here, we present a simple physical model describing those mechanisms happened in a thin metal film on dielectric substrate irradiated by a tightly focused ultrashort laser pulse. The main ingredients included into the model are (i) the film-substrate hydrodynamic interaction, melting and separation of the film from substrate with velocity increasing with increase of absorbed fluence; (ii) the capillary forces decelerating expansion of the expanding flying film; and (iii) rapid freezing into a solid state if the rate of solidification is comparable or larger than hydrodynamic velocities. The developed model and performed simulations explain appearance of microbump inside the focal spot on the film surface. The model follows experimental findings about gradual transformation of the bump from small parabolic to a conical shape and to the bump with a jet on its tip with increasing fluence. Disruption of the bump as a result of thinning down the liquid film to a few interatomic distances or due to mechanical break-off of solid film is described together with the jetting and formation of one or many droplets. Developed theory opens door for optimizing laser parameters for intended nanostructuring in applications. PMID:27044306

  9. Optical gene transfer by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Konig, Karsten; Riemann, Iris; Tirlapur, Uday K.

    2003-07-01

    Targeted transfection of cells is an important technique for gene therapy and related biomedical applications. We delineate how high-intensity (1012 W/cm2) near-infrared (NIR) 80 MHz nanojoule femtosecond laser pulses can create highly localised membrane perforations within a minute focal volume, enabling non-invasive direct transfection of mammalian cells with DNA. We suspended Chinese hamster ovarian (CHO), rat kangaroo kidney epithelial (PtK2) and rat fibroblast cells in 0.5 ml culture medium in a sterile miniaturized cell chamber (JenLab GmbH, Jena, Germany) containing 0.2 μg plasmid DNA vector pEGFP-N1 (4.7 kb), which codes for green fluorescent protein (GFP). The NIR laser beam was introduced into a femtosecond laser scanning microscope (JenLab GmbH, Jena, Germany; focussed on the edge of the cell membrane of a target cell for 16 ms. The integration and expression efficiency of EGFP were assessed in situ by two-photon fluorescence-lifetime imaging using time-correlated single photon counting. The unique capability to transfer foreign DNA safely and efficiently into specific cell types (including stem cells), circumventing mechanical, electrical or chemical means, will have many applications, such as targeted gene therapy and DNA vaccination.

  10. Solitary Nanostructures Produced by Ultrashort Laser Pulse

    NASA Astrophysics Data System (ADS)

    Inogamov, Nail A.; Zhakhovsky, Vasily V.; Khokhlov, Viktor A.; Petrov, Yury V.; Migdal, Kirill P.

    2016-04-01

    Laser-produced surface nanostructures show considerable promise for many applications while fundamental questions concerning the corresponding mechanisms of structuring are still debated. Here, we present a simple physical model describing those mechanisms happened in a thin metal film on dielectric substrate irradiated by a tightly focused ultrashort laser pulse. The main ingredients included into the model are (i) the film-substrate hydrodynamic interaction, melting and separation of the film from substrate with velocity increasing with increase of absorbed fluence; (ii) the capillary forces decelerating expansion of the expanding flying film; and (iii) rapid freezing into a solid state if the rate of solidification is comparable or larger than hydrodynamic velocities. The developed model and performed simulations explain appearance of microbump inside the focal spot on the film surface. The model follows experimental findings about gradual transformation of the bump from small parabolic to a conical shape and to the bump with a jet on its tip with increasing fluence. Disruption of the bump as a result of thinning down the liquid film to a few interatomic distances or due to mechanical break-off of solid film is described together with the jetting and formation of one or many droplets. Developed theory opens door for optimizing laser parameters for intended nanostructuring in applications.

  11. Glass drilling by longitudinally excited CO2 laser with short laser pulse

    NASA Astrophysics Data System (ADS)

    Uno, Kazuyuki; Yamamoto, Takuya; Akitsu, Tetsuya; Jitsuno, Takahisa

    2015-03-01

    We developed a longitudinally excited CO2 laser that produces a short laser pulse. The laser was very simple and consisted of a 45-cm-long alumina ceramic pipe with an inner diameter of 9 mm, a pulse power supply, a step-up transformer, a storage capacitance, and a spark-gap switch. The laser pulse had a spike pulse and a pulse tail. The energy of the pulse tail was controlled by adjusting medium gas. Using three types of CO2 laser pulse with the same spike-pulse energy and the different pulse-tail energy, the characteristics of the hole drilling of synthetic silica glass was investigated. Higher pulse-tail energy gave deeper ablation depth. In the short laser pulse with the spike-pulse energy of 1.2 mJ, the spike pulse width of 162 ns, the pulse-tail energy of 24.6 mJ, and the pulse-tail length of 29.6 μs, 1000 shots irradiation produced the ablation depth of 988 μm. In the hole drilling of synthetic silica glass by the CO2 laser, a crack-free process was realized.

  12. Pulse front adaptive optics: a new method for control of ultrashort laser pulses.

    PubMed

    Sun, Bangshan; Salter, Patrick S; Booth, Martin J

    2015-07-27

    Ultrafast lasers enable a wide range of physics research and the manipulation of short pulses is a critical part of the ultrafast tool kit. Current methods of laser pulse shaping are usually considered separately in either the spatial or the temporal domain, but laser pulses are complex entities existing in four dimensions, so full freedom of manipulation requires advanced forms of spatiotemporal control. We demonstrate through a combination of adaptable diffractive and reflective optical elements - a liquid crystal spatial light modulator (SLM) and a deformable mirror (DM) - decoupled spatial control over the pulse front (temporal group delay) and phase front of an ultra-short pulse was enabled. Pulse front modulation was confirmed through autocorrelation measurements. This new adaptive optics technique, for the first time enabling in principle arbitrary shaping of the pulse front, promises to offer a further level of control for ultrafast lasers. PMID:26367595

  13. Pulse laser ablation at water-air interface

    NASA Astrophysics Data System (ADS)

    Utsunomiya, Yuji; Kajiwara, Takashi; Nishiyama, Takashi; Nagayama, Kunihito; Kubota, Shiro

    2010-06-01

    We studied a new pulse laser ablation phenomenon on a liquid surface layer, which is caused by the difference between the refractive indices of the two materials involved. The present study was motivated by our previous study, which showed that laser ablation can occur at the interface between a transparent material and a gas or liquid medium when the laser pulse is focused through the transparent material. In this case, the ablation threshold fluence is reduced remarkably. In the present study, experiments were conducted in water and air in order to confirm this phenomenon for a combination of two fluid media with different refractive indices. This phenomenon was observed in detail by pulse laser shadowgraphy. A high-resolution film was used to record the phenomenon with a Nd:YAG pulse laser with 10-ns duration as a light source. The laser ablation phenomenon on the liquid surface layer caused by a focused Nd:YAG laser pulse with 1064-nm wavelength was found to be followed by the splashing of the liquid surface, inducing a liquid jet with many ligaments. The liquid jet extension velocity was around 1000 m/s in a typical case. The liquid jet decelerated drastically due to rapid atomization at the tips of the ligaments. The liquid jet phenomenon was found to depend on the pulse laser parameters such as the laser fluence on the liquid surface, laser energy, and laser beam pattern. The threshold laser fluence for the generation of a liquid jet was 20 J/cm2. By increasing the incident laser energy with a fixed laser fluence, the laser focused area increased, which eventually led to an increase in the size of the plasma column. The larger the laser energy, the larger the jet size and the longer the temporal behavior. The laser beam pattern was found to have significant effects on the liquid jet’s velocity, shape, and history.

  14. Clutter discrimination algorithm simulation in pulse laser radar imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-mei; Li, Huan; Guo, Hai-chao; Su, Xuan; Zhu, Fule

    2015-10-01

    Pulse laser radar imaging performance is greatly influenced by different kinds of clutter. Various algorithms are developed to mitigate clutter. However, estimating performance of a new algorithm is difficult. Here, a simulation model for estimating clutter discrimination algorithms is presented. This model consists of laser pulse emission, clutter jamming, laser pulse reception and target image producing. Additionally, a hardware platform is set up gathering clutter data reflected by ground and trees. The data logging is as clutter jamming input in the simulation model. The hardware platform includes a laser diode, a laser detector and a high sample rate data logging circuit. The laser diode transmits short laser pulses (40ns FWHM) at 12.5 kilohertz pulse rate and at 905nm wavelength. An analog-to-digital converter chip integrated in the sample circuit works at 250 mega samples per second. The simulation model and the hardware platform contribute to a clutter discrimination algorithm simulation system. Using this system, after analyzing clutter data logging, a new compound pulse detection algorithm is developed. This new algorithm combines matched filter algorithm and constant fraction discrimination (CFD) algorithm. Firstly, laser echo pulse signal is processed by matched filter algorithm. After the first step, CFD algorithm comes next. Finally, clutter jamming from ground and trees is discriminated and target image is produced. Laser radar images are simulated using CFD algorithm, matched filter algorithm and the new algorithm respectively. Simulation result demonstrates that the new algorithm achieves the best target imaging effect of mitigating clutter reflected by ground and trees.

  15. Evolution of chirped laser pulses in a magnetized plasma channel

    SciTech Connect

    Jha, Pallavi; Hemlata,; Mishra, Rohit Kumar

    2014-12-15

    The propagation of intense, short, sinusoidal laser pulses in a magnetized plasma channel has been studied. The wave equation governing the evolution of the radiation field is set up and a variational technique is used to obtain the equations describing the evolution of the laser spot size, pulse length and chirp parameter. Numerical methods are used to analyze the simultaneous evolution of these parameters. The effect of the external magnetic field on initially chirped as well as unchirped laser pulses on the spot size, pulse length and chirping has been analyzed.

  16. Controlling plasma channels through ultrashort laser pulse filamentation

    NASA Astrophysics Data System (ADS)

    Ionin, Andrey A.; Seleznev, Leonid V.; Sunchugasheva, Elena S.

    2013-10-01

    A review of studies fulfilled at the Lebedev Institute in collaboration with the Moscow State University and Institute of Atmospheric Optics in Tomsk (Siberia) on influence of various characteristics of ultrashort laser pulse on plasma channels formed under its filamentation is presented. Filamentation of high-power laser pulses with wavefront controlled by a deformable mirror, with cross-sections spatially formed by various diaphragms and with different wavelengths was experimentally and numerically studied. An application of plasma channels formed due to filamentation of ultrashort laser pulse including a train of such pulses for triggering and guiding electric discharge is discussed.

  17. Laser-generated ultrasonic pulse shapes at solid wedges.

    PubMed

    Pupyrev, Pavel D; Lomonosov, Alexey M; Mayer, Andreas P

    2016-08-01

    Laser pulses focused near the tip of an elastic wedge generate acoustic waves guided at its apex. The shapes of the acoustic wedge wave pulses depend on the energy and the profile of the exciting laser pulse and on the anisotropy of the elastic medium the wedge is made of. Expressions for the acoustic pulse shapes have been derived in terms of the modal displacement fields of wedge waves for laser excitation in the thermo-elastic regime and for excitation via a pressure pulse exerted on the surface. The physical quantity considered is the local inclination of a surface of the wedge, which is measured optically by laser-probe-beam deflection. Experimental results on pulse shapes in the thermo-elastic regime are presented and confirmed by numerical calculations. They pertain to an isotropic sharp-angle wedge with two wedge-wave branches and to a non-reciprocity phenomenon at rectangular silicon edges. PMID:27135188

  18. Laser Pulse-Stretching Using Multiple Optical Ring-Cavities

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Nguyen, Quang-Viet; Lee, Chi-Ming (Technical Monitor)

    2002-01-01

    We describe a simple and passive nanosecond-long (ns-long) laser 'pulse-stretcher' using multiple optical ring-cavities. We present a model of the pulse-stretching process for an arbitrary number of optical ring-cavities. Using the model, we optimize the design of a pulse-stretcher for use in a spontaneous Raman scattering excitation system that avoids laser-induced plasma spark problems. From the optimized design, we then experimentally demonstrate and verify the model with a 3-cavity pulse-stretcher system that converts a 1000 mJ, 8.4 ns-long input laser pulse into an approximately 75 ns-long (FWHM) output laser pulse with a peak power reduction of 0.10X, and an 83% efficiency.

  19. Ultrafast pulse lasers jump to macro applications

    NASA Astrophysics Data System (ADS)

    Griebel, Martin; Lutze, Walter; Scheller, Torsten

    2016-03-01

    Ultrafast Lasers have been proven for several micro applications, e.g. stent cutting, for many years. Within its development of applications Jenoptik has started to use ultrafast lasers in macro applications in the automotive industry. The JenLas D2.fs-lasers with power output control via AOM is an ideal tool for closed loop controlled material processing. Jenoptik enhanced his well established sensor controlled laser weakening process for airbag covers to a new level. The patented process enables new materials using this kind of technology. One of the most sensitive cover materials is genuine leather. As a natural product it is extremely inhomogeneous and sensitive for any type of thermal load. The combination of femtosecond pulse ablation and closed loop control by multiple sensor array opens the door to a new quality level of defined weakening. Due to the fact, that the beam is directed by scanning equipment the process can be split in multiple cycles additionally reducing the local energy input. The development used the 5W model as well as the latest 10W release of JenLas D2.fs and achieved amazing processing speeds which directly fulfilled the requirements of the automotive industry. Having in mind that the average cycle time of automotive processes is about 60s, trials had been done of processing weakening lines in genuine leather of 1.2mm thickness. Parameters had been about 15 cycles with 300mm/s respectively resulting in an average speed of 20mm/s and a cycle time even below 60s. First samples had already given into functional and aging tests and passed successfully.

  20. Wavelength Effects In Femtosecond Pulsed Laser Ablation And Deposition

    SciTech Connect

    Castillejo, Marta; Nalda, Rebeca de; Oujja, Mohamed; Sanz, Mikel

    2010-10-08

    Ultrafast pulsed laser irradiation of solid materials is highly attractive for the micro-and nanostructuring of substrates and for the fabrication of nanostructured deposits. Femtosecond laser pulses promote efficient material removal with reduced heat transfer and high deposition rates of nanometer scale particles free of microscopic particulates. Most of the studies to date have been performed with light pulses centered around the peak wavelength of the Titanium:Sapphire laser, around 800 nm. Analysis of the process over a broader range of wavelengths can provide important information about the processes involved and serve as experimental tests for advanced theoretical models. We report on our current investigations on the effect that laser wavelength of femtosecond pulses has on the superficial nanostructuring induced on biopolymer substrates, and on the characteristics of nanostructured deposits grown by pulsed laser deposition from semiconductor targets.

  1. Dark pulse generation in fiber lasers incorporating carbon nanotubes.

    PubMed

    Liu, H H; Chow, K K

    2014-12-01

    We demonstrate the generation of dark pulses from carbon nanotube (CNT) incorporated erbium-doped fiber ring lasers with net anomalous dispersion. A side-polished fiber coated with CNT layer by optically-driven deposition method is embedded into the laser in order to enhance the birefringence and nonlinearity of the laser cavity. The dual-wavelength domain-wall dark pulses are obtained from the developed CNT-incorporated fiber laser at a relatively low pump threshold of 50.6 mW. Dark pulses repeated at the fifth-order harmonic of the fundamental cavity frequency are observed by adjusting the intra-cavity polarization state. PMID:25606901

  2. Electron acceleration by a laser pulse in a plasma

    SciTech Connect

    McKinstrie, C.J.; Startsev, E.A.

    1996-08-01

    The acceleration of an electron by a circularly polarized laser pulse in a plasma is studied. It appears possible to increase significantly the energy of a preaccelerated electron. Although the pulse tends to generate a plasma wake, to which it loses energy, one can eliminate the wake by choosing the duration of the pulse judiciously. {copyright} {ital 1996 The American Physical Society.}

  3. Pulsed FM mode locking of a Nd:BEL laser.

    PubMed

    Godil, A A; Li, K D; Bloom, D M

    1991-08-15

    A novel but simple and practical mode locker was built and demonstrated for a diode-pumped Nd:BEL laser. Fast electrical pulses from a comb generator drive a LiNbO(3) crystal, which produces pulsed electro-optic phase modulation in the laser cavity. Stable mode-locked pulses of 7.5-ps duration were obtained at a repetition rate of 250 MHz. PMID:19776932

  4. Additive-pulse modelocking of non-cw neodymium lasers

    NASA Astrophysics Data System (ADS)

    Heinz, P.; Reuther, A.; Laubereau, A.

    1993-03-01

    Passive modelocking of several flash-lamp pumped neodymium lasers with electro-optic amplitude stabilization is demonstrated using a nonlinear Michelson interferometer. Improved performance is reported for the GSGG- YLF- and glass-laser as compared to the nonlinear absorber, with shorter pulse durations and smaller amplitude fluctuations, e.g. 5 μJ pulses for 460 ± 20 fs for Nd:glass. Evidence is obtained for multi-selfstability of the pulse energy.

  5. Tailoring the plasma channel generated by femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Wang, Haitao; Fan, Chengyu; Zhang, Pengfei; Jia, Wei

    2015-02-01

    By investigating the spatial and temporal variations of the propagating pulses, we have shown for the first time that the lattice waveguides can induce nonlinear effects to tailor the plasma channel generated by a femtosecond laser pulse. Different types of the spatiotemporal localized nonlinear light bullet’s propagating configurations have been predicted. By adjusting the parameters of the modulation potential, longer continuum filaments and reshaped laser pulses can be obtained, due to the focusing nonlinearity of the lattice modulation index.

  6. High energy protons generation by two sequential laser pulses

    SciTech Connect

    Wang, Xiaofeng; Shen, Baifei E-mail: zhxm@siom.ac.cn; Zhang, Xiaomei E-mail: zhxm@siom.ac.cn; Wang, Wenpeng; Xu, Jiancai; Yi, Longqing; Shi, Yin

    2015-04-15

    The sequential proton acceleration by two laser pulses of relativistic intensity is proposed to produce high energy protons. In the scheme, a relativistic super-Gaussian (SG) laser pulse followed by a Laguerre-Gaussian (LG) pulse irradiates dense plasma attached by underdense plasma. A proton beam is produced from the target and accelerated in the radiation pressure regime by the short SG pulse and then trapped and re-accelerated in a special bubble driven by the LG pulse in the underdense plasma. The advantages of radiation pressure acceleration and LG transverse structure are combined to achieve the effective trapping and acceleration of protons. In a two-dimensional particle-in-cell simulation, protons of 6.7 GeV are obtained from a 2 × 10{sup 22 }W/cm{sup 2} SG laser pulse and a LG pulse at a lower peak intensity.

  7. Optodynamic aspect of a pulsed laser ablation process

    NASA Astrophysics Data System (ADS)

    Hrovatin, Rok; Možina, Janez

    1995-02-01

    A study of a pulsed laser ablation process is presented from a novel, optodynamic aspect. By quantitative analysis of laser-induced bulk ultrasonic and blast waves in the air the ablation dynamics is characterized. In this way the influence of the laser pulse parameters and of the interacting material on the ablation process was assessed. By the analysis of the laser drilling process of thin layered samples the material influence was demonstrated. Besides the ultrasonic evaluation of the laser pulse power density the plasma shielding for 10 ns laser pulses was analyzed by the same method. All measurements were noncontact. Bulk waves in the solid and blast waves in the air were measured simultaneously, an interferometric and a probe beam deflection method were used, respectively.

  8. Nonlinear laser pulse response in a crystalline lens.

    PubMed

    Sharma, R P; Gupta, Pradeep Kumar; Singh, Ram Kishor; Strickland, D

    2016-04-01

    The propagation characteristics of a spatial Gaussian laser pulse have been studied inside a gradient-index structured crystalline lens with constant-density plasma generated by the laser-tissue interaction. The propagation of the laser pulse is affected by the nonlinearities introduced by the generated plasma inside the crystalline lens. Owing to the movement of plasma species from a higher- to a lower-temperature region, an increase in the refractive index occurs that causes the focusing of the laser pulse. In this study, extended paraxial approximation has been applied to take into account the evolution of the radial profile of the Gaussian laser pulse. To examine the propagation characteristics, variation of the beam width parameter has been observed as a function of the laser power and initial beam radius. The cavitation bubble formation, which plays an important role in the restoration of the elasticity of the crystalline lens, has been investigated. PMID:27192252

  9. Studies of Photosynthesis Using a Pulsed Laser

    PubMed Central

    De Vault, Don; Chance, Britton

    1966-01-01

    The rate of oxidation of cytochrome following absorption of a short pulse of light from a ruby laser in the photosynthetic bacterium Chromatium has been measured spectrophotometrically. The half-time is about 2 μsec at room temperature increasing to 2.3 msec at about 100°K and constant at the latter value to 35°K or below. The temperature dependence above 120°K corresponds to an activation energy of 3.3 kcal/mole; that below 100°K to less than 80 cal/mol: essentially a temperature-independent electron transport reaction. Since the slowness below 100°K indicates the presence of a barrier, the lack of activation energy is taken to mean penetration by quantum-mechanical “tunneling.” PMID:5972381

  10. Pulsed laser Doppler measurements of wind shear

    NASA Technical Reports Server (NTRS)

    Dimarzio, C.; Harris, C.; Bilbro, J. W.; Weaver, E. A.; Burnham, D. C.; Hallock, J. N.

    1979-01-01

    There is a need for a sensor at the airport that can remotely detect, identify, and track wind shears near the airport in order to assure aircraft safety. To determine the viability of a laser wind-shear system, the NASA pulsed coherent Doppler CO2 lidar (Jelalian et al., 1972) was installed in a semitrailer van with a rooftop-mounted hemispherical scanner and was used to monitor thunderstorm gust fronts. Wind shears associated with the gust fronts at the Kennedy Space Center (KSC) between 5 July and 4 August 1978 were measured and tracked. The most significant data collected at KSC are discussed. The wind shears were clearly visible in both real-time velocity vs. azimuth plots and in postprocessing displays of velocities vs. position. The results indicate that a lidar system cannot be used effectively when moderate precipitation exists between the sensor and the region of interest.

  11. Approaches to solar cell design for pulsed laser power receivers

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Landis, Geoffrey A.

    1993-01-01

    Using a laser to beam power from Earth to a photovoltaic receiver in space could be a technology with applications to many space missions. Extremely high average-power lasers would be required in a wavelength range of 700-1000 nm. However, high-power lasers inherently operate in a pulsed format. Existing solar cells are not well designed to respond to pulsed incident power. To better understand cell response to pulsed illumination at high intensity, the PC-1D finite-element computer model was used to analyze the response of solar cells to continuous and pulsed laser illumination. Over 50 percent efficiency was calculated for both InP and GaAs cells under steady-state illumination near the optimum wavelength. The time-dependent response of a high-efficiency GaAs concentrator cell to a laser pulse was modeled, and the effect of laser intensity, wavelength, and bias point was studied. Three main effects decrease the efficiency of a solar cell under pulsed laser illumination: series resistance, L-C 'ringing' with the output circuit, and current limiting due to the output inductance. The problems can be solved either by changing the pulse shape or designing a solar cell to accept the pulsed input. Cell design possibilities discussed are a high-efficiency, light-trapping silicon cell, and a monolithic, low-inductance GaAs cell.

  12. Electron beam-switched discharge for rapidly pulsed lasers

    DOEpatents

    Pleasance, L.D.; Murray, J.R.; Goldhar, J.; Bradley, L.P.

    1979-12-11

    A method and apparatus are designed for electrical excitation of a laser gas by application of a pulsed voltage across the gas, followed by passage of a pulsed, high energy electron beam through the gas to initiate a discharge suitable for laser excitation. This method improves upon current power conditioning techniques and is especially useful for driving rare gas halide lasers at high repetition rates.

  13. Multiphoton ionization of N2 by the third harmonic of a Nd:YAG laser - A new avenue for air diagnostics

    NASA Technical Reports Server (NTRS)

    Laufer, Gabriel; Krauss, Roland H.; Grinstead, Jay H.

    1991-01-01

    Laser-induced N2 ionization is accomplished using a commercially available Nd:YAG laser, and confirmed by means of ion-collection and spectral measurements. Neutral N2 is excited by six photons of the third harmonic frequency, or 355 nm, and is transformed to an ionized state. The radiation at 355 nm is separated from the fundamental and frequency-doubled Nd:YAG radiation to guarantee monochromatic incident radiation. Intense lines near 391.4 nm are found in the initial laser polarization and for a 90-degree rotation of polarization. The radiation at 391.4 nm is associated with an incoherent laser-induced flourescence process related to an ionized-state transition, and increases quadratically with laser power. A 45-mJ laser pulse focused to a diameter of 17 microns can produce an ion concentration of 3.25 x 10 to the 13th ions/cu cm. The large ion concentration and robust fluorescence signal make this technique an efficient method for time-of-flight velocimetry and in-flight testing.

  14. Dielectric breakdown induced by picosecond laser pulses

    NASA Technical Reports Server (NTRS)

    Smith, W. L.; Bechtel, J. H.; Bloembergen, N.

    1976-01-01

    The damage thresholds of transparent optical materials were investigated. Single picosecond pulses at 1.06 microns, 0.53 microns and 0.35 microns were obtained from a mode locked Nd-YAG oscillator-amplifier-frequency multiplier system. The pulses were Gaussian in space and time and permitted the determination of breakdown thresholds with a reproducibility of 15%. It was shown that the breakdown thresholds are characteristic of the bulk material, which included nine alkali halides, five different laser host materials, KDP, quartz, sapphire and calcium fluoride. The extension of the damage data to the ultraviolet is significant, because some indication was obtained that two- and three-photon absorption processes begin to play a role in determining the threshold. Throughout the visible region of the spectrum the threshold is still an increasing function of frequency, indicating that avalanche ionization is the dominant factor in determining the breakdown threshold. This was confirmed by a detailed study of the damage morphology with a high resolution microscope just above the threshold. The influence of self focusing is discussed, and evidence for beam distortion below the power threshold for complete self focusing is presented, confirming the theory of Marburger.

  15. Controlled electron injection into laser wakefields with a perpendicular injection laser pulse

    SciTech Connect

    Wang, W.-M.; Sheng, Z.-M.; Zhang, J.

    2008-11-17

    Electron injection into laser wakefields for acceleration by two orthogonally directed laser pulses is investigated theoretically. It is found that efficient injection occurs provided the two pulses are collinearly polarized, even if the injection pulse is much weaker than the pump pulse driving wakefields. Compared with the head-on colliding injection geometry, this scheme allows for a shorter propagation distance less than a Rayleigh length for the injection pulse, before its overlapping with the pump pulse. Moreover, it can generate electron beams stably with comparable low energy spread and emittance, as demonstrated by particle-in-cell simulations. The optimization of laser parameters is also investigated.

  16. Experimental and numerical analysis of crack-free DPSS laser dicing of borosilicate glass

    NASA Astrophysics Data System (ADS)

    Savriama, Guillaume; Semmar, Nadjib; Barreau, Laurent; Boulmer-Leborgne, Chantal

    2015-05-01

    We demonstrate the possibility of the crack-free laser dicing of borosilicate glass. The effect of a polymer layer is analyzed on the laser (diode-pumped solid-state, 355 nm, nanosecond) dicing capability of a commercial glass (Borofloat®33) for backend packaging. The main drawbacks concerned the brittleness of glass and photothermal ablation which induces thermal stresses responsible for chipping or cracks. It was assumed that a thick enough polymer would enhance the energy coupling between the beam and the target. The effect of pulse energy and speed on the scribing depth is provided in the present article. A numerical simulation using COMSOL® Multiphysics was performed in order to analyze the volume temperature distribution. It revealed that the temperature remained higher than the working point of glass (1,500 K) between two pulses. The viscosity is thus low between two pulses, and thermal stresses are diminished compared to the processing of raw glass samples.

  17. Precision ablation of dental enamel using a subpicosecond pulsed laser.

    PubMed

    Rode, A V; Gamaly, E G; Luther-Davies, B; Taylor, B T; Graessel, M; Dawes, J M; Chan, A; Lowe, R M; Hannaford, P

    2003-12-01

    In this study we report the use of ultra-short-pulsed near-infrared lasers for precision laser ablation of freshly extracted human teeth. The laser wavelength was approximately 800nm, with pulsewidths of 95 and 150fs, and pulse repetition rates of 1kHz. The laser beam was focused to an approximate diameter of 50microm and was scanned over the tooth surface. The rise in the intrapulpal temperature was monitored by embedded thermocouples, and was shown to remain below 5 degrees C when the tooth was air-cooled during laser treatment. The surface preparation of the ablated teeth, observed by optical and electron microscopy, showed no apparent cracking or heat effects, and the hardness and Raman spectra of the laser-treated enamel were not distinguishable from those of native enamel. This study indicates the potential for ultra-short-pulsed lasers to effect precision ablation of dental enamel. PMID:14738125

  18. Hemocompatible, pulsed laser deposited coatings on polymers.

    PubMed

    Lackner, Juergen M; Waldhauser, Wolfgang; Major, Roman; Major, Boguslaw; Bruckert, Franz

    2010-02-01

    State-of-the-art non-thrombogenic blood contacting surfaces are based on heparin and struggle with the problem of bleeding. However, appropriate blood flow characteristics are essential for clinical application. Thus, there is increasing demand to develop new coating materials for improved human body acceptance. Materials deposited by vacuum coating techniques would be an excellent alternative if the coating temperatures can be kept low because of the applied substrate materials of low temperature resistance (polymers). Most of the recently used plasma-based deposition techniques cannot fulfill this demand. However, adequate film structure and high adhesion can be reached by the pulsed laser deposition at room temperature, which was developed to an industrial-scaled process at Laser Center Leoben. Here, this process is described in detail and the resulting structural film properties are shown for titanium, titanium nitride, titanium carbonitride, and diamond-like carbon on polyurethane, titanium and silicon substrates. Additionally, we present the biological response of blood cells and the kinetic mechanism of eukaryote cell attachment. In conclusion, high biological acceptance and distinct differences for the critical delamination shear stress were found for the coatings, indicating higher adhesion at higher carbon contents. PMID:20128746

  19. Creation and control of single attosecond XUV pulse by few-cycle intense laser pulse

    NASA Astrophysics Data System (ADS)

    Carrera, Juan J.; Tong, X. M.; Chu, Shih-I.

    2006-05-01

    We present a theoretical investigation of the mechanisms responsible for the production of single atto-second pulse by using few-cycle intense laser pulses. The atto-second XUV spectral is calculated by accurately integrating the time- dependent Schr"odinger equation. The detailed mechanism for the production of the XUV pulse are also corroborated by analyzing the classical trajectories of the electron. Our study shows that the first return of the rescattering electron is responsible for the high energy atto-second pulse. Furthermore, we can optimize the production of atto-second XUV pulses by modifying the trajectory of the rescattering electron by tuning the laser field envelope.

  20. Material micromachining using a pulsed fiber laser platform with fine temporal nanosecond pulse shaping capability

    NASA Astrophysics Data System (ADS)

    Deladurantaye, Pascal; Gay, David; Cournoyer, Alain; Roy, Vincent; Labranche, Bruno; Levesque, Marc; Taillon, Yves

    2009-02-01

    We report on recent advances in laser material processing using a novel pulsed fiber laser platform providing pulse shape agility at the nanosecond time scale and at high repetition rates. The pulse shapes can be programmed with a time resolution of 2.5 ns and with an amplitude resolution of 10 bits. Depending on the desired laser performances, the pulses are generated either by directly modulating the drive current of a seed laser diode or by modulating the output of a seed laser diode operated in CW with electro-optic modulators. The pulses are amplified in an amplifier chain in a MOPA configuration. Advanced polarization maintaining LMA fiber designs enable output energy per pulse up to 60 μJ at 1064 nm at a repetition rate of 200 kHz with excellent beam quality (M2< 1.1) and narrow line widths suitable for efficient frequency conversion. Micro-milling experiments were carried out with stainless steel, in which processing microstructures of a few tens of microns in size usually represents a challenge, and aluminum, whose thermal conductivity is about 20 times higher than stainless steel. The results obtained with two metals having very different thermal properties using different pulse shapes with durations varying between 3 ns and 80 ns demonstrate the benefits of using lasers offering flexible pulse durations and controllable pulse intensity profiles for rapidly optimizing a process in different applications while using the same laser with respect to conventional methods based on pulsed laser with fixed pulse shapes. Numerous applications are envisioned in a near future, like the micromachining of multi-layered structures, in particular when working with the harmonics of the laser.

  1. Optical pulse generation using fiber lasers and integrated optics

    SciTech Connect

    Wilcox, R.B.; Browning, D.F.; Burkhart, S.C.; VanWonterghem, B.W.

    1995-03-27

    We have demonstrated an optical pulse forming system using fiber and integrated optics, and have designed a multiple-output system for a proposed fusion laser facility. Our approach is an advancement over previous designs for fusion lasers, and an unusual application of fiber lasers and integrated optics.

  2. [INVITED] Control of femtosecond pulsed laser ablation and deposition by temporal pulse shaping

    NASA Astrophysics Data System (ADS)

    Garrelie, Florence; Bourquard, Florent; Loir, Anne--Sophie; Donnet, Christophe; Colombier, Jean-Philippe

    2016-04-01

    This study explores the effects of temporal laser pulse shaping on femtosecond pulsed laser deposition (PLD). The potential of laser pulses temporally tailored on ultrafast time scales is used to control the expansion and the excitation degree of ablation products including atomic species and nanoparticles. The ablation plume generated by temporally shaped femtosecond pulsed laser ablation of aluminum and graphite targets is studied by in situ optical diagnostic methods. Taking advantage of automated pulse shaping techniques, an adaptive procedure based on spectroscopic feedback regulates the irradiance for the enhancement of typical plasma features. Thin films elaborated by unshaped femtosecond laser pulses and by optimized sequence indicate that the nanoparticles generation efficiency is strongly influenced by the temporal shaping of the laser irradiation. The ablation processes leading either to the generation of the nanoparticles either to the formation of plasma can be favored by using a temporal shaping of the laser pulse. Insights are given on the possibility to control the quantity of the nanoparticles. The temporal laser pulse shaping is shown also to strongly modify the laser-induced plasma contents and kinetics for graphite ablation. Temporal pulse shaping proves its capability to reduce the number of slow radicals while increasing the proportion of monomers, with the addition of ionized species in front of the plume. This modification of the composition and kinetics of plumes in graphite ablation using temporal laser pulse shaping is discussed in terms of modification of the structural properties of deposited Diamond-Like Carbon films (DLC). This gives rise to a better understanding of the growth processes involved in femtosecond-PLD and picosecond-PLD of DLC suggesting the importance of neutral C atoms, which are responsible for the subplantation process.

  3. Pulsed Laser Deposition of Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Brodoceanu, D.; Scarisoreanu, N. D.; Filipescu, M. (Morar); Epurescu, G. N.; Matei, D. G.; Verardi, P.; Craciun, F.; Dinescu, M.

    2004-10-01

    Pulsed Laser Deposition (PLD) emerged as an attractive technique for growth of thin films with different properties as metals, semiconductors, ferroelectrics, biocompatibles, polymers, etc., due to its important advantages: (i) the stoichiometric transfer of a complex composition from target to film and film crystallization at lower substrate temperature respect to other techniques (due to the high energy of species in the laser plasma); (ii) single step process, synthesis and deposition; (iii) creation in plasma of species impossible to be obtained by other processes; (iv) possibility of "in situ" heterostructure deposition using a multi-target system, etc. Simple or complex oxides are between the materials widely studied for their applications. PMN is the most known relaxor ferroelectric material: it exhibits a high dielectric constant value around the (diffuse) maximum phase transition temperature, of more than 35 000 in bulk form. Other oxides as lead zirconate titanate, Pb(ZrxTi1-x)O3 simple or La doped exhibit exceptional properties as large remanent polarization, high dielectric permittivity, high piezoelectric coefficient. SrBi2Ta2O9 (SBT) is characterized by a high "fatigue resistance" (constant remanent polarization until 1012 switching cycles), low imprint, and low leakage current. The physical properties of zirconium oxide (or zirconia) -- high strength, stability at high temperatures -- make it useful for applications involving gas sensors, corrosion or heat resistant mechanical parts, high refractive index optical coatings. Of particular interest is its use as an alternative gate dielectric in metal-oxide-semiconductor (MOS) devices or capacitor in dynamic random access memory (DRAM) chips. All these oxides have been deposited by laser ablation in oxygen reactive atmosphere and some of their properties will be presented in this paper.

  4. Fiber Optic Solutions for Short Pulse Lasers

    SciTech Connect

    Beach, R; Dawson, J; Liao, Z; Jovanovic, I; Wattellier, B; Payne, S; Barty, C P

    2003-01-29

    For applications requiring high beam quality radiation from efficient, compact and rugged sources, diffraction limited fiber lasers are ideal, and to date have been demonstrated at average CW power levels exceeding 100 W with near diffraction limited: output. For conventional single-core step-index single-mode fibers, this power level represents the sealing limit because of nonlinear and laser damage considerations. Higher average powers would exceed nonlinear process thresholds such as the Raman and stimulated Brillouin scattering limit, or else damage the fiber due to the high intensity level in the fiber's core. The obvious way to increase the average power capability of fibers is to increase the area of their core. Simply expanding the core dimensions of the fiber allows a straightforward power sealing due to enhanced nonlinear and power handling characteristics that scale directly with the core area. Femtosecond, chirped-pulse, fiber lasers with pulse energies greater than 1mJ have been demonstrated in the literature [2] using this technique. This output energy was still limited by the onset of stimulated Raman scattering. We have pursued an alternative and complimentary approach which is to reduce the intensity of light propagating in the core by distributing it more evenly across the core area via careful design of the refractive index profile [3]. We have also sought to address the primary issue that results from scaling the core. The enhanced power handling capability comes at the expense of beam quality, as increasing the core diameter in standard step index fibers permits multiple transverse modes to lase simultaneously. Although this problem of multimode operation can be mitigated to some extent by appropriately designing the fiber's waveguide structure, limitations such as bend radius loss, sensitivity to thermally induced perturbations of the waveguide structure, and refractive index control, all become more stringent as the core diameter grows

  5. A laser spectrometer and wavemeter for pulsed lasers

    NASA Technical Reports Server (NTRS)

    Mckay, J. A.; Laufer, P. M.; Cotnoir, L. J.

    1989-01-01

    The design, construction, calibration, and evaluation of a pulsed laser wavemeter and spectral analyzer are described. This instrument, called the Laserscope for its oscilloscope-like display of laser spectral structure, was delivered to NASA Langley Research Center as a prototype of a laboratory instrument. The key component is a multibeam Fizeau wedge interferometer, providing high (0.2 pm) spectral resolution and a linear dispersion of spectral information, ideally suited to linear array photodiode detectors. Even operating alone, with the classic order-number ambiguity of interferometers unresolved, this optical element will provide a fast, real-time display of the spectral structure of a laser output. If precise wavelength information is also desired then additional stages must be provided to obtain a wavelength measurement within the order-number uncertainty, i.e., within the free spectral range of the Fizeau wedge interferometer. A Snyder (single-beam Fizeau) wedge is included to provide this initial wavelength measurement. Difficulties in achieving the required wide-spectrum calibration limit the usefulness of this function.

  6. Measurements of Intense Femtosecond Laser Pulse Propagation in Air

    NASA Astrophysics Data System (ADS)

    Ting, Antonio

    2004-11-01

    Intense femtosecond pulses generated from chirped pulse amplification (CPA) lasers can deliver laser powers many times above the critical power for self-focusing in air. Catastrophic collapse of the laser pulse is usually prevented by the defocusing of the plasma column formed when the laser intensity gets above the threshold for multiphoton ionization. The resultant laser/plasma filament can extend many meters as the laser pulse propagates in the atmosphere. We have carried out a series of experiments both for understanding the formation mechanisms of the filaments and the nonlinear effects such as white light and harmonics generation associated with them. Many applications of these filaments such as remote atmospheric breakdown, laser induced electrical discharge and femtosecond laser material interactions require direct measurements of their characteristics. Direct measurements of these filaments had been difficult because the high laser intensity ( ˜10^13 W/cm^2) can damage practically any optical diagnostics. A novel technique was invented to obtain the first absolute measurements of laser energy, transverse profile, fluence and spectral content of the filaments. We are investigating a ``remote atmospheric breakdown'' concept of remotely sensing chemical and biological compounds. A short intense laser pulse can be generated at a remote position by using the group velocity dispersion (GVD) of the air to compress an initially long, frequency negatively chirped laser pulse to generate the air breakdown and filaments. We have observed that nonlinear contributions to the laser spectrum through self-phase modulation can lead to modification of the linear GVD compression. We have also observed the generation of ultraviolet (UV) radiations from these filaments in air and the induced fluorescence by the UV radiation of a surrogate biological agent. These and other results such as laser induced electrical discharges will be presented.

  7. Infrared and ultraviolet laser removal of crustose lichens on dolomite heritage stone

    NASA Astrophysics Data System (ADS)

    Sanz, Mikel; Oujja, Mohamed; Ascaso, Carmen; de los Ríos, Asunción; Pérez-Ortega, Sergio; Souza-Egipsy, Virginia; Wierzchos, Jacek; Speranza, Mariela; Cañamares, Maria Vega; Castillejo, Marta

    2015-08-01

    Laser removal of biodeteriogen layers warrants detailed studies due to the advantages it brings with respect to mechanical elimination or the use of biocides. We have investigated elimination of biological crusts on dolomite stones from heritage sites in central Spain. The samples were colonized by epilithic crustose lichens of different species, such as Caloplaca sp. and Verrucaria nigrescens. A comparative study was carried out by applying infrared (1064 nm) and ultraviolet (355 nm) nanosecond laser pulses and sequences pulses of the two wavelengths using a Q-switched Nd:YAG system. To detect anatomical and ultrastructural damage to the lichens, and to assess possible morphological and chemical changes on the underlying stone induced by laser irradiation, we used stereomicroscopy, scanning electron microscopy with backscattered electron imaging and Fourier transform Raman spectroscopy. The optimal conditions for removal of the colonization crust, while ensuring preservation of the lithic substrate, were obtained for dual infrared-ultraviolet sequential irradiation.

  8. Application of Yb:YAG short pulse laser system

    DOEpatents

    Erbert, Gaylen V.; Biswal, Subrat; Bartolick, Joseph M.; Stuart, Brent C.; Crane, John K.; Telford, Steve; Perry, Michael D.

    2004-07-06

    A diode pumped, high power (at least 20W), short pulse (up to 2 ps), chirped pulse amplified laser using Yb:YAG as the gain material is employed for material processing. Yb:YAG is used as the gain medium for both a regenerative amplifier and a high power 4-pass amplifier. A single common reflective grating optical device is used to both stretch pulses for amplification purposes and to recompress amplified pulses before being directed to a workpiece.

  9. Dephasing time of an electron accelerated by a laser pulse

    SciTech Connect

    McKinstrie, C.J.; Startsev, E.A.

    1997-08-01

    The trajectory and dephasing time of an electron accelerated by a circularly polarized laser pulse are determined analytically. The dephasing time is proportional to {gamma}{sub P}{sup 2}l, where {gamma}{sub P} is the Lorentz factor associated with the pulse speed and l is the pulse length. The residual dependence of the dephasing time on pulse intensity and electron injection energy is studied in detail. {copyright} {ital 1997} {ital The American Physical Society}

  10. 25 years of pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Lorenz, Michael; Ramachandra Rao, M. S.

    2014-01-01

    It is our pleasure to introduce this special issue appearing on the occasion of the 25th anniversary of pulsed laser deposition (PLD), which is today one of the most versatile growth techniques for oxide thin films and nanostructures. Ever since its invention, PLD has revolutionized the research on advanced functional oxides due to its ability to yield high-quality thin films, multilayers and heterostructures of a variety of multi-element material systems with rather simple technical means. We appreciate that the use of lasers to deposit films via ablation (now termed PLD) has been known since the 1960s after the invention of the first ruby laser. However, in the first two decades, PLD was something of a 'sleeping beauty' with only a few publications per year, as shown below. This state of hibernation ended abruptly with the advent of high T c superconductor research when scientists needed to grow high-quality thin films of multi-component high T c oxide systems. When most of the conventional growth techniques failed, the invention of PLD by T (Venky) Venkatesan clearly demonstrated that the newly discovered high-T c superconductor, YBa2Cu3O7-δ , could be stoichiometrically deposited as a high-quality nm-thin film with PLD [1]. As a remarkable highlight of this special issue, Venkatesan gives us his very personal reminiscence on these particularly innovative years of PLD beginning in 1986 [2]. After Venky's first paper [1], the importance of this invention was realized worldwide and the number of publications on PLD increased exponentially, as shown in figure 1. Figure 1. Figure 1. Published items per year with title or topic PLD. Data from Thomson Reuters Web of Knowledge in September 2013. After publication of Venky's famous paper in 1987 [1], the story of PLD's success began with a sudden jump in the number of publications, about 25 years ago. A first PLD textbook covering its basic understanding was soon published, in 1994, by Chrisey and Hubler [3]. Within a

  11. Generation of 1.5 cycle 0.3 TW laser pulses using a hollow-fiber pulse compressor.

    PubMed

    Park, Juyun; Lee, Jae-Hwan; Nam, Chang Hee

    2009-08-01

    Pulse compression in a differentially pumped neon-filled hollow fiber was used to generate high-power few-cycle laser pulses. The pulse compression process was optimized by adjusting gas pressure and laser chirp to produce the shortest laser pulses. Precise dispersion control enabled the generation of laser pulses with duration of 3.7 fs and energy of 1.2 mJ. This corresponds to an output of 1.5 cycle, 0.3 TW pulses at a 1 kHz repetition rate using positively chirped 33 fs laser pulses. PMID:19649091

  12. Generation of high-power nanosecond pulses from laser diode-pumped Nd:YAG lasers

    NASA Technical Reports Server (NTRS)

    Chan, Kinpui

    1988-01-01

    Simulation results are used to compare the pulse energy levels and pulse energy widths that can be achieved with LD-pumped Nd:YAG lasers for both the pulse-transmission mode (PTM) and pulse-reflection mode (PRM) Q-switching methods for pulse energy levels up to hundreds of microjoules and pulse widths as short as 1 ns. It is shown that high-power pulses with pulse widths as short as 1 ns can be generated with PTM Q-switched in LD-pumped Nd:YAG lasers. With the PRM Q-switching method, pulse widths as short as 2 ns and pulse energy at the level of a few hundred microjoules can also be achieved but require pumping with 8-10-mJ AlGaAs laser diode arrays.

  13. Short-pulse laser interactions with disordered materials and liquids

    SciTech Connect

    Phinney, L.M.; Goldman, C.H.; Longtin, J.P.; Tien, C.L.

    1995-12-31

    High-power, short-pulse lasers in the picosecond and subpicosecond range are utilized in an increasing number of technologies, including materials processing and diagnostics, micro-electronics and devices, and medicine. In these applications, the short-pulse radiation interacts with a wide range of media encompassing disordered materials and liquids. Examples of disordered materials include porous media, polymers, organic tissues, and amorphous forms of silicon, silicon nitride, and silicon dioxide. In order to accurately model, efficiently control, and optimize short-pulse, laser-material interactions, a thorough understanding of the energy transport mechanisms is necessary. Thus, fractals and percolation theory are used to analyze the anomalous diffusion regime in random media. In liquids, the thermal aspects of saturable and multiphoton absorption are examined. Finally, a novel application of short-pulse laser radiation to reduce surface adhesion forces in microstructures through short-pulse laser-induced water desorption is presented.

  14. Prepulse effect on intense femtosecond laser pulse propagation in gas

    SciTech Connect

    Giulietti, Antonio; Tomassini, Paolo; Galimberti, Marco; Giulietti, Danilo; Gizzi, Leonida A.; Koester, Petra; Labate, Luca; Ceccotti, Tiberio; D'Oliveira, Pascal; Auguste, Thierry; Monot, Pascal; Martin, Philippe

    2006-09-15

    The propagation of an ultrashort laser pulse can be affected by the light reaching the medium before the pulse. This can cause a serious drawback to possible applications. The propagation in He of an intense 60-fs pulse delivered by a Ti:sapphire laser in the chirped pulse amplification (CPA) mode has been investigated in conditions of interest for laser-plasma acceleration of electrons. The effects of both nanosecond amplified spontaneous emission and picosecond pedestals have been clearly identified. There is evidence that such effects are basically of refractive nature and that they are not detrimental for the propagation of a CPA pulse focused to moderately relativistic intensity. The observations are fully consistent with numerical simulations and can contribute to the search of a stable regime for laser acceleration.

  15. Response of silicon solar cell to pulsed laser illumination

    NASA Technical Reports Server (NTRS)

    Willowby, D.; Alexander, D.; Edge, T.; Herren, K.

    1993-01-01

    The response of silicon solar cell(s) to pulsed laser illumination is discussed. The motivation was due to the interest of Earth to space/Moon power beaming applications. When this work began, it was not known if solar cells would respond to laser light with pulse lengths in the nanosecond range and a repetition frequency in the kHz range. This is because the laser pulse would be shorter than the minority carrier lifetime of silicon. A 20-nanosecond (ns) full width half max (FWHM) pulse from an aluminum-gallium/arsenide (Al-Ga-As) diode laser was used to illuminate silicon solar cells at a wavelength of 885 nanometers (nm). Using a high-speed digital oscilloscope, the response of the solar cells to individual pulses across various resistive loads was observed and recorded.

  16. Recent progress in picosecond pulse generation from semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Auyeung, J. C.; Johnston, A. R.

    1982-01-01

    This paper reviews the recent progress in producing picosecond optical pulses from semiconductor laser diodes. The discussion concentrates on the mode-locking of a semiconductor laser diode in an external resonator. Transform-limited optical pulses ranging from several picoseconds to subpicosecond durations have been observed with active and passive mode-locking. Even though continuing research on the influence of impurities and defects on the mode-locking process is still needed, this technique has good promise for being utilized in fiber-optic communication systems. Alternative methods of direct electrical and optical excitation to produce ultrashort laser pulses are also described. They can generate pulses of similar widths to those obtained by mode-locking. The pulses generated will find applications in laser ranging and detector response measurement.

  17. Investigation on a field description of the chirped laser pulse

    NASA Astrophysics Data System (ADS)

    Chen, H. Y.; Huang, S. J.; Song, Q.; Wang, P. X.

    2016-02-01

    Starting from a first-order approximate field description function for laser pulses, the method currently used to approximate chirped laser pulse (CLP) substitutes frequency and wave vector related variables with spatiotemporally varying functions. We investigated the error involved by calculating the relative deviation from Maxwell equations. Errors for the electric and magnetic fields are analyzed separately, and behaviors related to parameter changes (that is, in laser width, pulse duration and chirp parameter) were studied. Results show that aberration associated with currently used field-description functions for CLP increases monotonically with chirp parameter, and the deviation introduced by chirping is proportional to the relative frequency span of the laser. Simulations based on these functions will lead to considerable error, especially for laser pulses with large chirping.

  18. Laser Damage Lab

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Optical Damage Threshold Testing Instrumentation at NASA Langley Research Center. This work was sanctioned and funded by Code Q, R, & AE to develop a new standard for damage testing various types of optical materials and coatings. Laser Induced Damage Threshold (LIDT) testing is a destructive test procedure to determine the minimum applied laser energy level that will result in damage and is referred to as the damage threshold. The damage threshold is often the critical limitation in the section of optical materials for use in high-energy laser systems.The test station consists of diagnostic equipment, beam conditioning optical elements, an inspection microscope and three lasers: a high energy pulsed ND: Yag, which develops 650mJ at 10 hz and outputs three wavelengths which include 1.06m, 532nm and 355 nm; a Ti:sapphire laser which produces a continuum of laser output from 790nm to 900nm; and a alignment HeNe, which looks yellow when mixed with the 2nd harmonic ND:Yag laser. Laser sources are used to perform damage threshold testing at the specific wavelength of interest.

  19. Ponderomotive acceleration of electrons by a self focused laser pulse

    SciTech Connect

    Singh, Rohtash; Sharma, A. K.

    2010-12-15

    Ponderomotive acceleration of electrons by a short laser pulse undergoing relativistic self-focusing in a plasma is investigated. The saturation in nonlinear plasma permittivity causes periodic self-focusing of the laser. The periodicity lengths are different for different axial segments of the pulse. As a result, pulse shape is distorted. An electron initially on the laser axis and at the front of the self-focusing pulse gains energy from the pulse until it is run over by the pulse peak. By the time electron reaches the tail, if pulse begins diverging, the deceleration of the electron is slower and the electron is left with net energy gain. The electrons slightly off the laser axis see a radial ponderomotive force too. Initially, when they are accelerated by the pulse front the acceleration is strong as they are closer to the axis. When they see the tail of the pulse (after being run by the pulse), they are farther from the axis and the retardation ponderomotive force is weaker. Thus, there is net energy gain.

  20. Laser detection of remote targets applying chaotic pulse position modulation

    NASA Astrophysics Data System (ADS)

    Du, Pengfei; Geng, Dongxian; Wang, Wei; Gong, Mali

    2015-11-01

    Chaotic pulse position modulation (CPPM) has been successfully used in robust digital communication for years. We propose to adapt CPPM for laser detection of remote targets to address the issue of noise. Specified in a time-of-flight (TOF) consecutive laser ranging application scenario, the feasibility of laser detection applying CPPM for laser detection is experimentally investigated. The scheme including the adaptive design for laser detection and parameter settings with validation is introduced. Lab-based electrical experiment and a proof-of-concept outdoor TOF experiment are further conducted to verify the feasibility of laser ranging and detection using CPPM through comparison with traditional Lidar detection and other pulse interval patterns. According to experiments and the following analysis, laser ranging using CPPM is feasible and more robust than traditional laser ranging.

  1. Highly efficient pulse-periodic XeCl lasers

    SciTech Connect

    Dudarev, V V; Ivanov, N G; Konovalov, I N; Losev, V F; Pavlinskii, A V; Panchenko, Yu N

    2011-08-31

    The parameters of electric-discharge pulse-periodic XeCl lasers with a pulse duration of 25 - 40 ns, an energy of 0.2 - 0.7 J, and a pulse repetition rate up to 100 Hz have been investigated. It is shown that the total laser efficiency of 2.6 % and the maximum efficiency with respect to the stored energy of 3.8 % are obtained at a specific pump power of 2.8 - 3.3 MW cm{sup -3} and a discharge circuit inductance of 3.5 - 4 nH. (lasers)

  2. Research on intelligent detection and processing technology of laser pulse

    NASA Astrophysics Data System (ADS)

    Zhao, Haili; Jiang, Huilin

    2005-01-01

    Aimed at the influence of turbulent atmosphere effect on laser pulse detection, it discusses the key factors that affect the signal test in this paper. Based on it, the article also discusses two key techniques, namely, floating threshold value and AGC (Automatic Gain Control) technology in detail, especially about the technique of floating threshold value. According to discussion about intelligent detection technology of laser pulse, the system designs a low noise detecting unit of laser pulse, tests its performance by the experiment, and validates correctness of the results.

  3. Photon kinetic modeling of laser pulse propagation in underdense plasma

    SciTech Connect

    Reitsma, A. J. W.; Trines, R. M. G. M.; Bingham, R.; Cairns, R. A.; Mendonca, J. T.; Jaroszynski, D. A.

    2006-11-15

    This paper discusses photon kinetic theory, which is a description of the electromagnetic field in terms of classical particles in coordinate and wave number phase space. Photon kinetic theory is applied to the interaction of laser pulses with underdense plasma and the transfer of energy and momentum between the laser pulse and the plasma is described in photon kinetic terms. A comparison is made between a one-dimensional full wave and a photon kinetic code for the same laser and plasma parameters. This shows that the photon kinetic simulations accurately reproduce the pulse envelope evolution for photon frequencies down to the plasma frequency.

  4. High-charge energetic ions generated by intersecting laser pulses

    NASA Astrophysics Data System (ADS)

    Yang, L.; Deng, Z. G.; Yu, M. Y.; Wang, X. G.

    2016-08-01

    Ion acceleration from the interaction of two intersecting intense laser pulses with an overdense plasma is investigated using a three-dimensional particle-in-cell simulation. It is found that, comparing with the single-pulse case, the charge of the resulting energetic ion bunch can be increased by more than an order of magnitude without much loss of quality. Dependence of the ion charge on the interaction parameters, including separation distance and incidence angles of the lasers, is considered. It is shown that the charge of the accelerated ion bunch can be optimized by controlling the degree of laser overlapping. The improved performance can be attributed to the enhanced laser intensity as well as stochastic heating of the accelerated electrons. Since at present the intensity of readily available lasers is limited, the two pulse scheme should be useful for realizing higher laser intensity in order to achieve higher-energy target normal sheath acceleration ions.

  5. Generation of quasimonoenergetic electron bunches with 80-fs laser pulses.

    PubMed

    Hidding, B; Amthor, K-U; Liesfeld, B; Schwoerer, H; Karsch, S; Geissler, M; Veisz, L; Schmid, K; Gallacher, J G; Jamison, S P; Jaroszynski, D; Pretzler, G; Sauerbrey, R

    2006-03-17

    Highly collimated, quasimonoenergetic multi-MeV electron bunches were generated by the interaction of tightly focused, 80-fs laser pulses in a high-pressure gas jet. These monoenergetic bunches are characteristic of wakefield acceleration in the highly nonlinear wave breaking regime, which was previously thought to be accessible only by much shorter laser pulses in thinner plasmas. In our experiment, the initially long laser pulse was modified in underdense plasma to match the necessary conditions. This picture is confirmed by semianalytical scaling laws and 3D particle-in-cell simulations. Our results show that laser-plasma interaction can drive itself towards this type of laser wakefield acceleration even if the initial laser and plasma parameters are outside the required regime. PMID:16605744

  6. Pulse Splitting in Short Wavelength Seeded Free Electron Lasers

    SciTech Connect

    Labat, M.; Couprie, M. E.; Joly, N.; Bruni, C.

    2009-12-31

    We investigate a fundamental limitation occurring in vacuum ultraviolet and extreme ultraviolet seeded free electron lasers (FELs). For a given electron beam and undulator configuration, an increase of the FEL output energy at saturation can be obtained via an increase of the seed pulse duration. We put in evidence a complex spatiotemporal deformation of the amplified pulse, leading ultimately to a pulse splitting effect. Numerical studies of the Colson-Bonifacio FEL equations reveal that slippage length and seed laser pulse wings are core ingredients of the dynamics.

  7. Fabrication of a high-density nano-porous structure on polyimide by using ultraviolet laser irradiation

    NASA Astrophysics Data System (ADS)

    Ma, Yong-Won; Jeong, Myung Yung; Lee, Sang-Mae; Shin, Bo Sung

    2016-03-01

    A new approach for fabricating a high-density nano-porous structure on polyimide (PI) by using a 355-nm UV laser is presented here. When PI was irradiated by using a laser, debris that had electrical conductivity was generated. Accordingly, that debris caused electrical defects in the field of electronics. Thus, many researchers have tried to focus on a clean processing without debris. However, this study focused on forming a high density of debris so as to fabricate a nano-porous structure consisting of nanofibers on the PI film. A PI film with closed pores and open pores was successfully formed by using a chemical blowing agent (azodicarbonamide, CBA) in an oven. Samples were precured at 130 °C and cured at 205 °C in sequence so that the closed pores might not coalesce in the film. When the laser irradiated the PI film with closed pores, nanofibers were generated because polyimide was not completely decomposed by photochemical ablation. Our results indicated that a film with micro-closed pores, in conjunction with a 355-nm pulsed laser, can facilitate the fabrication of a high-density nano-porous structure.

  8. Light pressure acceleration with frequency-tripled laser pulse

    SciTech Connect

    Wang, Xiaofeng; Shen, Baifei E-mail: zhxm@siom.ac.cn; Zhang, Xiaomei E-mail: zhxm@siom.ac.cn; Ji, Liangliang; Wang, Wenpeng; Zhao, Xueyan; Xu, Jiancai; Yu, Yahong; Yi, Longqing; Shi, Yin; Xu, Tongjun; Zhang, Lingang

    2014-08-15

    Light pressure acceleration of ions in the interaction of the frequency-tripled (3ω) laser pulse and foil target is studied, and a promising method to increase accelerated ion energy is shown. Results show that at a constant laser energy, much higher ion energy peak value is obtained for 3ω laser compared with that using the fundamental frequency laser. The effect of energy loss during frequency conversion on ion acceleration is considered, which may slightly decrease the acceleration effect.

  9. Micromachining soda-lime glass by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Jia, Wei; Yu, Jian; Chai, Lu; Wang, Ching-Yue

    2015-08-01

    The physical process of forming a modified region in soda-lime glass was investigated using 1 kHz intense femtosecond laser pulses from a Ti: sapphire laser at 775 nm. Through the modifications induced by the femtosecond laser radiation using selective chemical etching techniques, we fabricated reproducible and defined microstructures and further studied their morphologies and etching properties. Moreover, a possible physical mechanism for the femtosecond laser modification in soda-lime glass was proposed.

  10. The multiple-pulse driver line on the OMEGA laser

    NASA Astrophysics Data System (ADS)

    Kosc, T. Z.; Kelly, J. H.; Hill, E. M.; Dorrer, C.; Waxer, L. J.; Donaldson, W. R.

    2015-02-01

    The multiple-pulse driver line (MPD) provides on-shot co-propagation of two separate pulse shapes in all 60 OMEGA beams at the Laboratory for Laser Energetics (LLE). The two co-propagating pulse shapes would typically be (1) a series of 100-ps "picket" pulses followed by (2) a longer square or shaped "drive" pulse. Smoothing by spectral dispersion (SSD), which increases the laser bandwidth, can be applied to either one of the two pulse shapes. Therefore, MPD allows for dynamic bandwidth reduction, where the bandwidth is applied only to the picket portion of a pulse shape. Since the use of SSD decreases the efficiency of frequency conversion from the IR to the UV, dynamic bandwidth reduction provides an increase in the drive-pulse energy. The design of the MPD required careful consideration of beam combination as well as the minimum pulse separation for two pulses generated by two separate sources. A new combined-pulse-shape diagnostic needed to be designed and installed after the last grating used for SSD. This new driver-line flexibility is built into the OMEGA front end as one component of the initiative to mitigate cross-beam energy transfer on target and to demonstrate hydro-equivalent ignition on the OMEGA laser at LLE.

  11. Generation of elliptically polarized nitrogen ion laser fields using two-color femtosecond laser pulses

    PubMed Central

    Li, Ziting; Zeng, Bin; Chu, Wei; Xie, Hongqiang; Yao, Jinping; Li, Guihua; Qiao, Lingling; Wang, Zhanshan; Cheng, Ya

    2016-01-01

    We experimentally investigate generation of nitrogen molecular ion () lasers with two femtosecond laser pulses at different wavelengths. The first pulse serves as the pump which ionizes the nitrogen molecules and excites the molecular ions to excited electronic states. The second pulse serves as the probe which leads to stimulated emission from the excited molecular ions. We observe that changing the angle between the polarization directions of the two pulses gives rise to elliptically polarized laser fields, which is interpreted as a result of strong birefringence of the gain medium near the wavelengths of the laser. PMID:26888182

  12. Deformation of ultra-short laser pulses by optical systems for laser scanners.

    PubMed

    Büsing, Lasse; Bonhoff, Tobias; Gottmann, Jens; Loosen, Peter

    2013-10-21

    Current experiments of processing glass with ultra-short laser pulses (< 1 ps) lead to scan angle depending processing results. This scan angle depending effect is examined by simulations of a common focusing lens for laser scanners. Due to dispersion, focusing lenses may cause pulse deformations and increase the pulse duration in the focal region. If the field angle of the incoming laser beam is variable, the pulse deformation may also vary as a function of the field angle. By ray tracing as well as wave optical simulations we investigate pulse deformations of optical systems for different scan angles. PMID:24150292

  13. Stabilizing laser energy density on a target during pulsed laser deposition of thin films

    DOEpatents

    Dowden, Paul C.; Jia, Quanxi

    2016-05-31

    A process for stabilizing laser energy density on a target surface during pulsed laser deposition of thin films controls the focused laser spot on the target. The process involves imaging an image-aperture positioned in the beamline. This eliminates changes in the beam dimensions of the laser. A continuously variable attenuator located in between the output of the laser and the imaged image-aperture adjusts the energy to a desired level by running the laser in a "constant voltage" mode. The process provides reproducibility and controllability for deposition of electronic thin films by pulsed laser deposition.

  14. Ablation characteristics of quantum square pulse mode dental erbium laser

    NASA Astrophysics Data System (ADS)

    Lukač, Nejc; Suhovršnik, Tomaž; Lukač, Matjaž; Jezeršek, Matija

    2016-01-01

    Erbium lasers are by now an accepted tool for performing ablative medical procedures, especially when minimal invasiveness is desired. Ideally, a minimally invasive laser cutting procedure should be fast and precise, and with minimal pain and thermal side effects. All these characteristics are significantly influenced by laser pulse duration, albeit not in the same manner. For example, high cutting efficacy and low heat deposition are characteristics of short pulses, while vibrations and ejected debris screening are less pronounced at longer pulse durations. We report on a study of ablation characteristics on dental enamel and cementum, of a chopped-pulse Er:YAG [quantum square pulse (QSP)] mode, which was designed to reduce debris screening during an ablation process. It is shown that in comparison to other studied standard Er:YAG and Er,Cr:YSGG laser pulse duration modes, the QSP mode exhibits the highest ablation drilling efficacy with lowest heat deposition and reduced vibrations, demonstrating that debris screening has a considerable influence on the ablation process. By measuring single-pulse ablation depths, we also show that tissue desiccation during the consecutive delivery of laser pulses leads to a significant reduction of the intrinsic ablation efficacy that cannot be fully restored under clinical settings by rehydrating the tooth using an external water spray.

  15. Over 0.5 MW green laser from sub-nanosecond giant pulsed microchip laser

    NASA Astrophysics Data System (ADS)

    Zheng, Lihe; Taira, Takunori

    2016-03-01

    A sub-nanosecond green laser with laser head sized 35 × 35 × 35 mm3 was developed from a giant pulsed microchip laser for laser processing on organic superconducting transistor with a flexible substrate. A composite monolithic Y3Al5O12 (YAG) /Nd:YAG/Cr4+:YAG/YAG crystal was designed for generating giant pulsed 1064 nm laser. A fibercoupled 30 W laser diode centered at 808 nm was used with pump pulse duration of 245 μs. The 532 nm green laser was obtained from a LiB3O5 (LBO) crystal with output energy of 150 μJ and pulse duration of 268 ps. The sub-nanosecond green laser is interesting for 2-D ablation patterns.

  16. High-pulse-repetition-rate HF laser with plate electrodes

    SciTech Connect

    Andramanov, A V; Kabaev, S A; Lazhintsev, B V; Nor-Arevyan, V A; Pisetskaya, A V; Selemir, Victor D

    2006-03-31

    A high-pulse-repetition-rate electric-discharge HF laser with inductive-capacitive discharge stabilisation in the active H{sub 2}-SF{sub 6}-He mixture is studied. The multisectional discharge gap with a total length of 250 mm is formed by pairs of anode-cathode plates arranged in a zigzag pattern. The width of the discharge gap between each pair of plates is {approx}1 mm and its height is {approx}12 mm. The laser-beam cross section at the output cavity mirror is {approx}9 mm x 11 mm. The maximum laser pulse energy and the maximum laser efficiency for the H{sub 2}-SF{sub 6} mixture are 14.3 mJ and 2.1%, respectively. The addition of He to the mixture reduced the laser pulse energy by 10%-15%. The maximum gas velocity in the gap between the electrodes achieves 20 m s{sup -1}. The limiting pulse repetition rate f{sub lim} for which a decrease in the laser pulse energy is still not observed is {approx}2kHz for the H{sub 2}-SF{sub 6} mixture and {approx}2.4kHz for the H{sub 2}-SF{sub 6}-He mixture. The average output power {approx}27 W is obtained for a pulse repetition rate of 2.4 kHz. (lasers)

  17. Acceleration Mechanism Of Pulsed Laser-Electromagnetic Hybrid Thruster

    SciTech Connect

    Horisawa, Hideyuki; Mashima, Yuki; Yamada, Osamu

    2011-11-10

    A fundamental study of a newly developed rectangular pulsed laser-electromagnetic hybrid thruster was conducted. Laser-ablation plasma in the thruster was induced through laser beam irradiation onto a solid target and accelerated by electrical means instead of direct acceleration only by using a laser beam. The performance of the thrusters was evaluated by measuring the ablated mass per pulse and impulse bit. As results, significantly high specific impulses up to 7,200 s were obtained at charge energies of 8.6 J. Moreover, from the Faraday cup measurement, it was confirmed that the speed of ions was accelerated with addition of electric energy.

  18. Synchronization of sub-picosecond electron and laser pulses

    SciTech Connect

    Rosenzweig, J. B.; Le Sage, G. P.

    1999-07-12

    Sub-picosecond laser-electron synchronization is required to take full advantage of the experimental possibilities arising from the marriage of modern high intensity lasers and high brightness electron beams in the same laboratory. Two particular scenarios stand out in this regard, injection of ultra-short electron pulses in short wavelength laser-driven plasma accelerators, and Compton scattering of laser photons from short electron pulses. Both of these applications demand synchronization, which is sub-picosecond, with tens of femtosecond synchronization implied for next generation experiments. The design of a microwave timing modulator system is now being investigated in more detail.

  19. Synchronization of sub-picosecond electron and laser pulses

    SciTech Connect

    Rosenzweig, J.B.; Le Sage, G.P.

    1999-07-01

    Sub-picosecond laser-electron synchronization is required to take full advantage of the experimental possibilities arising from the marriage of modern high intensity lasers and high brightness electron beams in the same laboratory. Two particular scenarios stand out in this regard, injection of ultra-short electron pulses in short wavelength laser-driven plasma accelerators, and Compton scattering of laser photons from short electron pulses. Both of these applications demand synchronization, which is sub-picosecond, with tens of femtosecond synchronization implied for next generation experiments. The design of a microwave timing modulator system is now being investigated in more detail. (AIP) {copyright} {ital 1999 American Institute of Physics.}

  20. Terahertz generation in plasmas using two-color laser pulses.

    PubMed

    Peñano, Joseph; Sprangle, Phillip; Hafizi, Bahman; Gordon, Daniel; Serafim, Philip

    2010-02-01

    We analyze the generation of terahertz radiation when an intense, short laser pulse is mixed with its frequency-doubled counterpart in plasma. The nonlinear coupling of the fundamental and the frequency-doubled laser pulses in plasma is shown to be characterized by a third order susceptibility which has a time dependence characteristic of the laser pulse durations. The terahertz generation process depends on the relative polarizations of the lasers and the terahertz frequency is omega approximately 1/tau(L), where tau(L) is the laser pulse duration. Since the laser pulse duration is typically in the picosecond or subpicosecond regime the resulting radiation is in the terahertz or multiterahertz regime. To obtain the third order susceptibility we solve the plasma fluid equations correct to third order in the laser fields, including both the relativistic and ponderomotive force terms. The relativistic and ponderomotive contributions to the susceptibility nearly cancel in the absence of electron collisions. Therefore, in this terahertz generation mechanism collisional effects play a critical role. Consistent with recent experimental observations, our model shows that (1) the terahertz field amplitude is proportional to I(1) square root I(2), where I(1) and I(2) are the intensities of the fundamental and second harmonic laser pulses, respectively, (2) the terahertz emission is maximized when the polarization of the laser beams and the terahertz are aligned, (3) for typical experimental parameters, the emitted terahertz field amplitude is on the order of tens of kilovolts/cm with duration comparable to that of the drive laser pulses, and (4) the direction of terahertz emission depends sensitively on experimental parameters. PMID:20365665

  1. Terahertz generation in plasmas using two-color laser pulses

    SciTech Connect

    Penano, Joseph; Sprangle, Phillip; Gordon, Daniel; Hafizi, Bahman; Serafim, Philip

    2010-02-15

    We analyze the generation of terahertz radiation when an intense, short laser pulse is mixed with its frequency-doubled counterpart in plasma. The nonlinear coupling of the fundamental and the frequency-doubled laser pulses in plasma is shown to be characterized by a third order susceptibility which has a time dependence characteristic of the laser pulse durations. The terahertz generation process depends on the relative polarizations of the lasers and the terahertz frequency is omegaapprox1/tau{sub L}, where tau{sub L} is the laser pulse duration. Since the laser pulse duration is typically in the picosecond or subpicosecond regime the resulting radiation is in the terahertz or multiterahertz regime. To obtain the third order susceptibility we solve the plasma fluid equations correct to third order in the laser fields, including both the relativistic and ponderomotive force terms. The relativistic and ponderomotive contributions to the susceptibility nearly cancel in the absence of electron collisions. Therefore, in this terahertz generation mechanism collisional effects play a critical role. Consistent with recent experimental observations, our model shows that (1) the terahertz field amplitude is proportional to I{sub 1}sq root(I{sub 2}), where I{sub 1} and I{sub 2} are the intensities of the fundamental and second harmonic laser pulses, respectively, (2) the terahertz emission is maximized when the polarization of the laser beams and the terahertz are aligned, (3) for typical experimental parameters, the emitted terahertz field amplitude is on the order of tens of kilovolts/cm with duration comparable to that of the drive laser pulses, and (4) the direction of terahertz emission depends sensitively on experimental parameters.

  2. Continuous and Pulsed THz generation with molecular gas lasers and photoconductive antennas gated by femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Cruz, Flavio C.; Nogueira, T.; Costa, Leverson F. L.; Jarschel, Paulo F.; Frateschi, Newton C.; Viscovini, Ronaldo C.; Vieira, Bruno R. B.; Guevara, Victor M. B.; Pereira, Daniel

    2008-04-01

    We report THz generation based on two systems: 1) continuous-wave (cw) laser generation in molecular gas lasers, and 2) short pulse generation in photoconductive antennas, gated by femtosecond near-infrared Ti:sapphire lasers. With the first system, we have generated tens of monochromatic cw laser lines over the last years, extending roughly from 40 microns to several hundred microns. This is done by optical pumping of gas lasers based on polar molecules such as methanol and its isotopes. In the second system, under development, pulsed THz radiation is generated by a photoconductive antenna built in a semi-insulating GaAs substrate excited by femtosecond pulses from a near-infrared (800 nm) Ti:sapphire laser.

  3. Pulse shape effect on rotational excitation and 2-D alignment alternation by elliptic laser pulses

    NASA Astrophysics Data System (ADS)

    Maan, Anjali; Ahlawat, Dharamvir Singh; Prasad, Vinod

    2016-04-01

    We examine theoretically the time-evolution of NAREX (non-adiabatic rotational excitation) and molecular 2-D alignment (2DA) interacting with a pair of elliptically polarized laser pulses. The pulse shapes taken are half-cycle pulse (HCP) and square pulse (SQP). By choosing the proper value of elliptically polarized field parameters, we demonstrate that efficient field-free 2DA alignment can be achieved. It is also shown that NAREX can be controlled by various laser parameters, out of which pulse shape plays the most significant role. The effect of pulse width along with elliptic parameter on probabilities of rotational states is also under concern. The delay time between the two pulses decides the maximum in 2DAs.

  4. Study of superalloy topography during ultrahigh intensity nanosecond ultraviolet laser ablation

    NASA Astrophysics Data System (ADS)

    Wu, Qihong; Jie, Jiansheng; Ma, Yurong; Yu, Qingxuan; Miao, Bin; Wang, Guanzhong; Liao, Yuan; Fang, Rongchuan; Chen, Xiangli; Wang, Kelvin

    2002-05-01

    We report on the topography of holes ablated by an ultrahigh intensity 355 and 266 nm laser with 8 ns pulse width in Ni-base superalloy Inconel 718. The origin of droplets, micropores, and microcracks on the surface of hole is identified. Qualitative differences in the characteristics of microcracks indicate that the dominant continuous microcracks result from thermal effects in 355 nm laser ablation, and the dominant island-chain microcrack result from photochemical effects in 266 nm laser ablation. In ultrahigh intensity laser ablation (>200 GW/cm2), the mechanical load on the surface is very significant to the resulting topography, and the grain boundary plays an important role in the origin of the micropores.

  5. The interaction of intense femtosecond laser pulses with solid targets

    SciTech Connect

    Klem, D.E.; Darrow, C.; Lane, S.; Perry, M.D.

    1992-12-30

    The absorption of 800 fsec Nd-glass laser pulses obliquely incident on solid targets is measured at intensities up to 10[sup 18] W/cm[sup 2]. The associated production of hard x-rays is also measured.

  6. The interaction of intense femtosecond laser pulses with solid targets

    SciTech Connect

    Klem, D.E.; Darrow, C.; Lane, S.; Perry, M.D.

    1992-12-30

    The absorption of 800 fsec Nd-glass laser pulses obliquely incident on solid targets is measured at intensities up to 10{sup 18} W/cm{sup 2}. The associated production of hard x-rays is also measured.

  7. Power Enhancement Cavity for Burst-Mode Laser Pulses

    SciTech Connect

    Liu, Yun

    2015-01-01

    We demonstrate a novel optical cavity scheme and locking method that can realize the power enhancement of picosecond UV laser pulses operating at a burst mode with arbitrary burst (macropulse) lengths and repetition rates.

  8. Femtosecond laser pulse train interaction with dielectric materials

    NASA Astrophysics Data System (ADS)

    Dematteo Caulier, O.; Mishchik, K.; Chimier, B.; Skupin, S.; Bourgeade, A.; Javaux Léger, C.; Kling, R.; Hönninger, C.; Lopez, J.; Tikhonchuk, V.; Duchateau, G.

    2015-11-01

    The interaction of trains of femtosecond microjoule laser pulses with dielectric materials by means of a multi-scale model is investigated. Theoretical predictions are directly confronted with experimental observations in soda-lime glass. It is shown that due to the low heat conductivity, a significant fraction of the laser energy can be accumulated in the absorption region. Depending on the pulse repetition rate, the material can be heated to high temperatures even though the single pulse energy is too low to induce a significant material modification. Regions heated above the glass transition temperature in the simulations correspond very well to zones of permanent material modifications observed in the experiments. It turns out that pulse-to-pulse variations of the laser absorption are negligible and of minor influence to permanent material modifications.

  9. Femtosecond laser pulse induced birefringence in optically isotropic glass.

    SciTech Connect

    Vawter, Gregory Allen; Luk, Ting Shan; Guo, Junpeng; Yang, Pin; Burns, George Robert

    2003-07-01

    We used a regeneratively amplified Ti:sapphire femtosecond laser to create optical birefringence in an isotropic glass medium. Between two crossed polarizers, regions modified by the femtosecond laser show bright transmission with respect to the dark background of the isotropic glass. This observation immediately suggests that these regions possess optical birefringence. The angular dependence of transmission through the laser-modified region is consistent with that of an optically birefringent material. Laser-induced birefringence is demonstrated in different glasses, including fused silica and borosilicate glass. Experimental results indicate that the optical axes of laser-induced birefringence can be controlled by the polarization direction of the femtosecond laser. The amount of laser-induced birefringence depends on the pulse energy level and number of accumulated pulses.

  10. Chirped pulse inverse free-electron laser vacuum accelerator

    DOEpatents

    Hartemann, Frederic V.; Baldis, Hector A.; Landahl, Eric C.

    2002-01-01

    A chirped pulse inverse free-electron laser (IFEL) vacuum accelerator for high gradient laser acceleration in vacuum. By the use of an ultrashort (femtosecond), ultrahigh intensity chirped laser pulse both the IFEL interaction bandwidth and accelerating gradient are increased, thus yielding large gains in a compact system. In addition, the IFEL resonance condition can be maintained throughout the interaction region by using a chirped drive laser wave. In addition, diffraction can be alleviated by taking advantage of the laser optical bandwidth with negative dispersion focusing optics to produce a chromatic line focus. The combination of these features results in a compact, efficient vacuum laser accelerator which finds many applications including high energy physics, compact table-top laser accelerator for medical imaging and therapy, material science, and basic physics.

  11. Nonlinear optical dynamics and Eu{sup 3+} spectral holeburning in strontium barium niobate thin film grown by pulsed laser deposition.

    SciTech Connect

    Liu, H.; Liu, G. K.; Li, S. T.; Fernandez, F. E.; Chemistry; Univ. of Puerto Rico

    2002-01-01

    Optical quality Sr{sub x}Ba{sub 1-x}Nb{sub 2}O{sub 6} (SBN) thin films, both undoped and Eu{sup 3 +} -doped, of thickness less than 0.5 {mu}m have been successfully grown on fused quartz substrates using a pulsed laser deposition technique. Optical properties of these films were characterized in high-resolution spectroscopic experiments in time and frequency domains. For undoped SBN thin films, broadband emission in the UV region extending to the visible was observed following excitation at 355 nm. This emission is attributed to exciton luminescence of the SBN film. Nonlinear optical response in the picosecond regime and the third-order nonlinear susceptibility, chi(3), were studied using degenerate four-wave-mixing methods. In transverse alignment, chi(3) is enhanced by two orders of magnitude in comparison with its bulk counterpart. A thermal annealing process, monitored via changes in spectral properties of Eu3 + , was employed to convert the as-grown amorphous film into a polycrystalline film. High-resolution spectroscopic measurements in the frequency domain were conducted on a 200-nm-thick film of Eu{sup 3 +}-doped SBN. Our spectroscopic results suggest that Eu{sup 3 +} ions may substitute for Nb, thereby occupying a normally six-fold coordinated lattice site. At liquid helium temperature, spectral holes in the {sup 7}F{sub 0}-{sup 5}D{sub 0} optical transition were burned in the thermally annealed films. Typical observed hole widths were 70-100 MHz and hole depths were as large as 30% of the peak fluorescence intensity.

  12. Laser shaping of a relativistic circularly polarized pulse by laser foil interaction

    SciTech Connect

    Zou, D. B.; Zhuo, H. B.; Yu, T. P.; Yang, X. H.; Shao, F. Q.; Ma, Y. Y.; Yin, Y.; Ouyang, J. M.; Ge, Z. Y.; Zhang, G. B.; Wang, P.

    2013-07-15

    Laser shaping of a relativistic circularly polarized laser pulse in ultra-intense laser thin-foil interaction is investigated by theoretical analysis and particle-in-cell simulations. It is found that the plasma foil as a nonlinear optical shutter has an obvious cut-out effect on the laser temporal and spatial profiles. Two-dimensional particle-in-cell simulations show that the high intensity part of a Gaussian laser pulse can be well extracted from the whole pulse. The transmitted pulse with longitudinal steep rise front and transverse super-Gaussian profile is thus obtained which would be beneficial for the radiation pressure acceleration regime. The Rayleigh-Taylor-like instability is observed in the simulations, which destroys the foil and results in the cut-out effect of the pulse in the rise front of a circularly polarized laser.

  13. Longitudinally excited CO2 laser with short laser pulse for hard tissue drilling

    NASA Astrophysics Data System (ADS)

    Uno, Kazuyuki; Hayashi, Hiroyuki; Akitsu, Tetsuya; Jitsuno, Takahisa

    2014-02-01

    We developed a longitudinally excited CO2 laser that produces a short laser pulse with a circular beam and a low divergence angle. The laser was very simple and consisted of a 45-cm-long alumina ceramic pipe with an inner diameter of 9 mm, a pulse power supply, a step-up transformer, a storage capacitance, and a spark-gap switch. The laser pulse had a spike pulse width of 103 ns and a pulse tail length of 32.6 μs. The beam cross-section was circular and the full-angle beam divergence was 1.7 mrad. The laser was used to drill ivory samples without carbonization at fluences of 2.3-7.1 J/cm2. The drilling depth of the dry ivory increased with the fluence. The drilling mechanism of the dry ivory was attributed to absorption of the laser light by the ivory.

  14. Reduction of the pulse duration of the ultrafast laser pulses of the Two-Photon Laser Scanning Microscopy (2PLSM)

    PubMed Central

    Reshak, Ali Hussain

    2008-01-01

    Background We provide an update of our two-photon laser scanning microscope by compressing or reducing the broadening of the pulse width of ultrafast laser pulses for dispersion precompensation, to enable the pulses to penetrate deeply inside the sample. Findings The broadening comes as the pulses pass through the optical elements. We enhanced and modified the quality and the sharpness of images by enhancing the resolution using special polarizer namely Glan Laser polarizer GL10. This polarizer consists of two prisms separated by air space. This air separation between the two prisms uses to delay the red wavelength when the light leaves the first prism to the air then to second prism. We note a considerable enhancing with using the GL polarizer, and we can see the details of the leaf structure in early stages when we trying to get focus through z-stacks of images in comparison to exactly the same measurements without using GL polarizer. Hence, with this modification we able to reduce the time of exposure the sample to the laser radiation thereby we will reduce the probability of photobleaching and phototoxicity. When the pulse width reduced, the average power of the laser pulses maintained at a constant level. Significant enhancement is found between the two kinds of images of the Two-Photon Excitation Fluorescence (TPEF). Conclusion In summary reduction the laser pulse width allowed to collect more diffraction orders which will used to form the images. The more diffraction orders the higher resolution images. PMID:18710492

  15. Short pulse dynamics in a linear cavity fiber laser

    NASA Astrophysics Data System (ADS)

    Razukov, Vadim A.; Melnikov, Leonid A.

    2016-04-01

    New suitable numerical scheme is proposed for simulation of dynamics of oppositely running pulses in a fiber laser with linear cavity. The proposed model allows to include various temporal and spatial effects which affect the laser dynamics. The pulse evolution in the fiber cavity with perfect reflectors at the fiber ends with accounting of fiber group velocity dispersion and self-phase modulation is demonstrated.

  16. Probing Molecular Dynamics at Attosecond Resolution with Femtosecond Laser Pulses

    NASA Astrophysics Data System (ADS)

    Tong, X. M.; Zhao, Z. X.; Lin, C. D.

    2003-12-01

    The kinetic energy distribution of D+ ions resulting from the interaction of a femtosecond laser pulse with D2 molecules is calculated based on the rescattering model. From analyzing the molecular dynamics, it is shown that the recollision time between the ionized electron and the D+2 ion can be read from the D+ kinetic energy peaks to attosecond accuracy. We further suggest that a more precise reading of the clock can be achieved by using shorter fs laser pulses (about 15fs).

  17. Dynamic model of target charging by short laser pulse interactions.

    PubMed

    Poyé, A; Dubois, J-L; Lubrano-Lavaderci, F; D'Humières, E; Bardon, M; Hulin, S; Bailly-Grandvaux, M; Ribolzi, J; Raffestin, D; Santos, J J; Nicolaï, Ph; Tikhonchuk, V

    2015-10-01

    A model providing an accurate estimate of the charge accumulation on the surface of a metallic target irradiated by a high-intensity laser pulse of fs-ps duration is proposed. The model is confirmed by detailed comparisons with specially designed experiments. Such a model is useful for understanding the electromagnetic pulse emission and the quasistatic magnetic field generation in laser-plasma interaction experiments. PMID:26565356

  18. Effect of pulse duty cycle on Inconel 718 laser welds

    NASA Technical Reports Server (NTRS)

    McCay, M. H.; McCay, T. D.; Dahotre, N. B.; Sharp, C. M.; Sedghinasab, A.; Gopinathan, S.

    1989-01-01

    Crack sensitive Inconel 718 was laser pulse welded using a 3.0 kW CO2 laser. Weld shape, structure, and porosity were recorded as a function of the pulse duty cycle. Within the matrix studied, the welds were found to be optimized at a high (17 ms on, 7 ms off) duty cycle. These welds were superior in appearance and lack of porosity to both low duty cycle and CW welds.

  19. Repetitively pulsed Cr:LiSAF laser for lidar applications

    SciTech Connect

    Shimada, Tsutomu; Early, J.W.; Lester, C.S.; Cockroft, N.J.

    1994-03-01

    A Cr:LiSAF laser has been successfully operated at time averaged powers up to 11 W and at pulse repetition rates to 12 Hz. During Q-switch operation, output energy as high as 450 mJ (32 ns FWHM) was obtained. Finally, line narrowed Q-switched pulses (< 0.1 nm) from the Cr:LiSAF laser were successfully used as a tunable light source for lidar to measure atmospheric water content.

  20. Dynamic model of target charging by short laser pulse interactions

    NASA Astrophysics Data System (ADS)

    Poyé, A.; Dubois, J.-L.; Lubrano-Lavaderci, F.; D'Humières, E.; Bardon, M.; Hulin, S.; Bailly-Grandvaux, M.; Ribolzi, J.; Raffestin, D.; Santos, J. J.; Nicolaï, Ph.; Tikhonchuk, V.

    2015-10-01

    A model providing an accurate estimate of the charge accumulation on the surface of a metallic target irradiated by a high-intensity laser pulse of fs-ps duration is proposed. The model is confirmed by detailed comparisons with specially designed experiments. Such a model is useful for understanding the electromagnetic pulse emission and the quasistatic magnetic field generation in laser-plasma interaction experiments.

  1. Filamentation of ultrashort laser pulses propagating in tenuous plasmas

    SciTech Connect

    Andreev, N. E.; Gorbunov, L. M.; Mora, P.; Ramazashvili, R. R.

    2007-08-15

    The filamentation of ultrashort laser pulses (shorter than a plasma period) propagating in tenuous plasmas is studied. In this regime relativistic and ponderomotive nonlinearities tend to cancel each other. Time-dependent residual nonlinear plasma response brings about the dynamical filamentation with the maximum unstable transverse wave number decreasing in the course of laser pulse propagation. Dynamics of a hot spot that seeds the filamentation instability is studied numerically and reveals a good agreement with the analytical results.

  2. Studies of a repetitively-pulsed laser powered thruster

    NASA Astrophysics Data System (ADS)

    Rosen, D. I.; Kemp, N. H.; Miller, M.

    1982-01-01

    In this report we present results of continuing analytical and experimental investigations carried out to evaluate the concept of pulsed laser propulsion. This advanced propulsion scheme, which has been the subject of several previous studies, involves supplying propellant energy by beaming short, repetitive laser pulses to a thruster from a remote laser power station. The concept offers the advantages of a remote power source, high specific impulse, high payload to total mass ratio (a consequence of the first two features) and moderate to high thrust (limited primarily by the average laser power available). The present research addresses questions related to thruster performance and optical design. In the thruster scheme under consideration, parabolic nozzle walls focus the incoming laser beam to yield breakdown in a propellant at the focal point of the parabola. The resulting high pressure plasma is characteristic of a detonation wave initiation by high power laser-induced breakdown. With a short laser pulse, the detonation wave quickly becomes a blast wave which propagates to the nozzle exit plane converting the high pressure of the gas behind it to a force on the nozzle wall. Propellant is fed to the focal region from a plenum chamber. The laser-induced blast wave stops the propellant flow through the throat until the pressure at the throat decays to the sonic pressure; then the propellant flow restarts. The process is repeated with each successive laser pulse.

  3. Monoenergetic Electronic Beam Production Using Dual Collinear Laser Pulses

    SciTech Connect

    Thomas, A. G. R.; Mangles, S. P. D.; Dangor, A. E.; Kamperidis, C.; Krushelnick, K.; Najmudin, Z.; Murphy, C. D.; Foster, P.; Lancaster, K. L.; Norreys, P. A.; Gallacher, J. G.; Jaroszynski, D. A.; Viskup, R.

    2008-06-27

    The production of monoenergetic electron beams by two copropagating ultrashort laser pulses is investigated both by experiment and using particle-in-cell simulations. By proper timing between guiding and driver pulses, a high-amplitude plasma wave is generated and sustained for longer than is possible with either of the laser pulses individually, due to plasma waveguiding of the driver by the guiding pulse. The growth of the plasma wave is inferred by the measurement of monoenergetic electron beams with low divergence that are not measured by using either of the pulses individually. This scheme can be easily implemented and may allow more control of the interaction than is available to the single pulse scheme.

  4. Nonsequential Double Ionization of Atoms in Strong Laser Pulses

    NASA Astrophysics Data System (ADS)

    Prauzner-Bechcicki, J. S.; Sacha, K.; Eckhardt, B.; Zakrzewski, J.

    2007-10-01

    It is now possible to produce laser pulses with reproducible pulse shape and controlled carrier envelope phase. It is discussed how that can be explored in double ionisation studies. To this end we solve numerically the Schrödinger equation for a limited dimensionality model which nevertheless treats electron repulsion qualitatively correctly and allows to study correlation effects due to the Coulomb repulsion.

  5. Nonlinear longitudinal compression of short laser pulses in the atmosphere

    SciTech Connect

    Yedierler, Burak

    2009-05-15

    Propagation of short and intense laser beams in the atmosphere is considered for the purpose of identifying the temporal compression. The conditions and validity of linear and nonlinear compression theories are discussed. The effects of chirping and pulse power in the preionization regime are deliberated. The fact that the linear theory cannot explain the pulse compression in the atmosphere is presented.

  6. High Average Power, High Energy Short Pulse Fiber Laser System

    SciTech Connect

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  7. Production, preparation, and performance of shaped ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Davis, Jennifer Case

    1999-09-01

    In the following pages, the current state-of-the art in the method and implementation of acousto-optic modulator (AOM) ultrafast laser pulse shaping is discussed. Since ultrafast laser technologies are relatively recent, many aspects of these pulses and their interaction with material systems (and in particular, optically dense systems) have yet to be well- characterized. Here, we make some headway in understanding the interaction between intense, shaped ultrafast pulses and optically dense media via computer simulations in which the Maxwell-Bloch coupled equations are solved numerically using a recursive algorithm. In one set of experiments, we studied the propagation of shaped ultrafast laser pulses through a cell filled with an optically dense sample of rubidium vapor. We soon found that the excited state dynamics in atomic rubidium change non-intuitively as different pulse shapes are applied. In this case, characterization of the excited state dynamics is important for illuminating the mechanisms involved in the commercial preparation of the spin-polarized noble gases used in MRI lung studies. Thus, theoretical modeling of the laser- material interaction via the Maxwell-Bloch coupled equations allows us to predict the interaction effects on both the material system and the propagating laser pulses. In other experiments we show (via computer simulations) that a series of shaped Raman pulses can excite arbitrary vibrational transitions in homonuclear diatomics. In these calculations, a blue-to-red frequency-swept (off- resonant) pump pulse and a red-to-blue Stokes pulse are employed to sequentially excite Δ v = 1 vibrational transitions in an anharmonic potential. Use of increasingly complicated models shows that despite rotational effects, such a pulse sequence should be effective in exciting certain diatomics into high vibrational states. Since highly (vibrationally) excited oxygen is a critical reagent in upper atmosphere energy transfer reactions with

  8. Power enhancement of burst-mode UV pulses using a doubly-resonant optical cavity

    DOE PAGESBeta

    Rahkman, Abdurahim; Notcutt, Mark; Liu, Yun

    2015-11-24

    We report a doubly-resonant enhancement cavity (DREC) that can realize a simultaneous enhancement of two incoming laser beams at different wavelengths and different temporal structures. The double-resonance condition is theoretically analyzed and different DREC locking methods are experimentally investigated. Simultaneous locking of a Fabry-Perot cavity to both an infrared (IR, 1064 nm) and its frequency tripled ultraviolet (UV, 355 nm) pulses has been demonstrated by controlling the frequency difference between the two beams with a fiber optic frequency shifter. The DREC technique opens a new paradigm in the applications of optical cavities to power enhancement of burst-mode lasers with arbitrarymore » macropulse width and repetition rate.« less

  9. Yb:YAG thin-disk chirped pulse amplification laser system for intense terahertz pulse generation.

    PubMed

    Ochi, Yoshihiro; Nagashima, Keisuke; Maruyama, Momoko; Tsubouchi, Masaaki; Yoshida, Fumiko; Kohno, Nanase; Mori, Michiaki; Sugiyama, Akira

    2015-06-01

    We have developed a 1 kHz repetition picosecond laser system dedicated for intense terahertz (THz) pulse generation. The system comprises a chirped pulse amplification laser equipped with a Yb:YAG thin-disk amplifier. At room temperature, the Yb:YAG thin-disk regenerative amplifier provides pulses having energy of over 10 mJ and spectral bandwidth of 1.2 nm. The pulse duration achieved after passage through a diffraction grating pair compressor was 1.3 ps. By employing this picosecond laser as a pump source, THz pulses having a peak frequency of 0.3 THz and 4 µJ of energy were generated by means of optical rectification in an Mg-doped LiNbO3 crystal. PMID:26072862

  10. The effect of the laser wavelength on collinear double pulse laser induced breakdown spectroscopy (DP-LIBS)

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Lin, Yanqing; Liu, Jing; Fan, Shuang; Xu, Zhuopin; Huang, Qing; Wu, Yuejin

    2016-05-01

    The pulsed lasers at wavelengths of 532 nm and 1064 nm were used as two beams of light for collinear double pulse laser induced breakdown spectroscopy (DP-LIBS). By changing the time sequence of two beams of different lasers, we studied the effect of the interval of two pulses of DP-LIBS on spectral signals compared with single pulsed (SP) LIBS.

  11. Fiber laser pumped high power mid-infrared laser with picosecond pulse bunch output.

    PubMed

    Wei, Kaihua; Chen, Tao; Jiang, Peipei; Yang, Dingzhong; Wu, Bo; Shen, Yonghang

    2013-10-21

    We report a novel quasi-synchronously pumped PPMgLN-based high power mid-infrared (MIR) laser with picosecond pulse bunch output. The pump laser is a linearly polarized MOPA structured all fiberized Yb fiber laser with picosecond pulse bunch output. The output from a mode-locked seed fiber laser was directed to pass through a FBG reflector via a circulator to narrow the pulse duration from 800 ps to less than 50 ps and the spectral FWHM from 9 nm to 0.15 nm. The narrowed pulses were further directed to pass through a novel pulse multiplier through which each pulse was made to become a pulse bunch composing of 13 sub-pulses with pulse to pulse time interval of 1.26 ns. The pulses were then amplified via two stage Yb fiber amplifiers to obtain a linearly polarized high average power output up to 85 W, which were then directed to pass through an isolator and to pump a PPMgLN-based optical parametric oscillator via quasi-synchronization pump scheme for ps pulse bunch MIR output. High MIR output with average power up to 4 W was obtained at 3.45 micron showing the feasibility of such pump scheme for ps pulse bunch MIR output. PMID:24150378

  12. Synchronization of Sub-Picosecond Electron and Laser Pulses

    SciTech Connect

    Rosenzweig, J.B.; Le Sage G.P.

    2000-08-15

    Sub-picosecond laser-electron synchronization is required to take full advantage of the experimental possibilities arising from the marriage of modern high intensity lasers and high brightness electron beams in the same laboratory. Two particular scenarios stand out in this regard, injection of ultra-short electron pulses in short wavelength laser-driven plasma accelerators, and Compton scattering of laser photons from short electron pulses. Both of these applications demand synchronization, which is subpicosecond, with tens of femtosecond synchronization implied for next-generation experiments. Typically, an RF electron accelerator is synchronized to a short pulse laser system by detecting the repetition signal of a laser oscillator, adjusted to an exact subharmonic of the linac RF frequency, and multiplying or phase locking this signal to produce the master RF clock. Pulse-to-pulse jitter characteristic of self-mode-locked laser oscillators represents a direct contribution to the ultimate timing jitter between a high intensity laser focus and electron beam at the interaction point, or a photocathode drive laser in an RF photoinjector. This timing jitter problem has been addressed most seriously in the context of the RF photoinjector, where the electron beam properties are sensitive functions of relative timing jitter. The timing jitter achieved in synchronized photocathode drive laser systems is near, or slightly below one picosecond. The ultimate time of arrival jitter of the beam at the photoinjector exit is typically a bit smaller than the photocathode drive-laser jitter due to velocity compression effects in the first RF cell of the gun. This tendency of the timing of the electron beam arrival at a given spatial point to lock to the RF lock is strongly reinforced by use of magnetic compression.

  13. ULTRASHORT LIGHT PULSES: Formation of subfemtosecond laser pulses in aperiodically poled nonlinear-optical crystals

    NASA Astrophysics Data System (ADS)

    Shutov, I. V.; Novikov, A. A.; Chirkin, A. S.

    2008-03-01

    The method of synthesis of ultrashort laser pulses in nonlinear aperiodically poled crystals based on the simultaneous generation of several higher optical harmonics is considered. The interaction of four waves with multiple frequencies involving three mutually coupled nonlinear three-frequency processes is studied. It is shown that by introducing intense laser radiation into a crystal, pulses of duration of the order of a few hundreds of attoseconds can be produced at the crystal output.

  14. Pulsed laser processing of electronic materials in micro/nanoscale

    NASA Astrophysics Data System (ADS)

    Hwang, David Jen

    2005-08-01

    Time-resolved pump-and-probe side-view imaging has been performed to investigate the energy coupling to the target specimen over a wide range of fluences. Plasmas generated during the laser ablation process are visualized and the decrease of the ablation efficiency in the high fluence regime (>10 J/cm2) is attributed to the strong interaction of the laser pulse with the laser-induced plasmas. The high intensity ultra-short laser pulses also trigger volumetric multi-photon absorption (MPA) processes that can be beneficial in applications such as three-dimensional bulk modification of transparent materials. Femtosecond laser pulses were used to fabricate straight and bent through-channels in the optical glass. Drilling was initiated from the rear surface to preserve consistent absorbing conditions of the laser pulse. Machining in the presence of a liquid solution assisted the debris ejection. Drilling process was further enhanced by introducing ultrasonic waves, thereby increasing the aspect ratio of drilled holes and improving the quality of the holes. In conventional lens focusing schemes, the minimum feature size is determined by the diffraction limit. Finer resolution is accomplished by combining pulsed laser radiation with Near-field Scanning Optical Microscopy (NSOM) probes. Short laser pulses are coupled to a fiber-based NSOM probes in order to ablate thin metal films. A detailed parametric study on the effects of probe aperture size, laser pulse energy, temporal width and environment gas is performed. The significance of lateral thermal diffusion is highlighted and the dependence of the ablation process on the imparted near-field distribution is revealed. As a promising application of laser ablation in nanoscale, laser induced breakdown spectroscopy (LIBS) system has been built up based on NSOM ablation configuration. NSOM-LIBS is demonstrated with nanosecond pulsed laser excitation on Cr sample. Far-field collecting scheme by top objective lens was chosen as

  15. Investigation of a pulsed dye laser under various pumping conditions

    SciTech Connect

    Nechaev, S.Y.

    1983-08-01

    An investigation was made of the influence of bilateral laser pumping in an almost longitudinal arrangement on the spectral and energy characteristics of a short-pulse laser utilizing rhodamine 6G. A considerable increase in efficiency over that for unilateral pumping was observed, together with a narrowing of the spectrum, in a dispersive resonator having a prism telescope and a grating.

  16. Laser-induced fluorescence monitoring of higher alkanes production from pure methane using non-oxidative processes.

    PubMed

    Gondal, M A; Dastgeer, A; Yamani, Zain H; Arfaj, A; Ali, M A

    2003-02-01

    A novel method for the study of non-oxidative methane conversion process into higher value hydrocarbon and hydrogen has been invented. The method involves the multiphoton dissociation of methane under the influence of the high power pulsed ultraviolet laser radiation at 355 nm wavelength at room temperature (293 K) and standard pressure (1 atm). The products generated as a result of methane conversion like ethane, ethylene, propane, propylene and isobutane are analyzed using an online gas chromatograph while the other species such as CH, CH(2) and C(2)H(2), atomic and molecular hydrogen are characterized by real-time laser-induced fluorescence technique for the first time. A typical 7% conversion of methane into ethane has been achieved using 80 mJ of laser irradiation at 355 nm. The important features of this method are that it is non-oxidative, does not require any catalyst, high temperatures or pressures, which is normally the case in conventional techniques for methane conversion. PMID:18968911

  17. Pulsed UV and ultrafast laser micromachining of surface structures

    NASA Astrophysics Data System (ADS)

    Apte, Paul; Sykes, Neil

    2015-07-01

    We describe and compare the cutting and patterning of various "difficult" materials using pulsed UV Excimer, picosecond and femtosecond laser sources. Beam delivery using both fast galvanometer scanners and scanning mask imaging are described. Each laser source has its own particular strengths and weaknesses, and the optimum choice for an application is also decided by financial constraints. With some materials notable improvements in process quality have been observed using femtosecond lasers compared to picosecond lasers, which makes for an interesting choice now that cost effective reliable femtosecond systems are increasingly available. By contrast Pulsed UV Excimer lasers offer different imaging characteristics similar to mask based Lithographic systems and are particularly suited to the processing of polymers. We discuss optimized beam delivery techniques for these lasers.

  18. Pulsed CO laser for isotope separation of uranium

    SciTech Connect

    Baranov, Igor Y.; Koptev, Andrey V.

    2012-07-30

    This article proposes a technical solution for using a CO laser facility for the industrial separation of uranium used in the production of fuel for nuclear power plants, employing a method of laser isotope separation of uranium with condensation repression in a free jet. The laser operation with nanosecond pulse irradiation can provide an acceptable efficiency in the separating unit and a high efficiency of the laser with the wavelength of 5.3 {mu}m. In the present work we also introduce a calculation model and define the parameters of a mode-locked CO laser with a RF discharge in the supersonic stream. The average pulsed CO laser power of 3 kW is sufficient for efficient industrial isotope separation of uranium in one stage.

  19. Precision machining of pig intestine using ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Beck, Rainer J.; Góra, Wojciech S.; Carter, Richard M.; Gunadi, Sonny; Jayne, David; Hand, Duncan P.; Shephard, Jonathan D.

    2015-07-01

    Endoluminal surgery for the treatment of early stage colorectal cancer is typically based on electrocautery tools which imply restrictions on precision and the risk of harm through collateral thermal damage to the healthy tissue. As a potential alternative to mitigate these drawbacks we present laser machining of pig intestine by means of picosecond laser pulses. The high intensities of an ultrafast laser enable nonlinear absorption processes and a predominantly nonthermal ablation regime. Laser ablation results of square cavities with comparable thickness to early stage colorectal cancers are presented for a wavelength of 1030 nm using an industrial picosecond laser. The corresponding histology sections exhibit only minimal collateral damage to the surrounding tissue. The depth of the ablation can be controlled precisely by means of the pulse energy. Overall, the application of ultrafast lasers to ablate pig intestine enables significantly improved precision and reduced thermal damage to the surrounding tissue compared to conventional techniques.

  20. Plasma detector for TEA CO2 laser pulse measurement

    NASA Astrophysics Data System (ADS)

    Ichikawa, Y.; Yamanaka, M.; Mitsuishi, A.; Fujita, S.; Yamanaka, T.; Yamanaka, C.; Tsunawaki, Y.; Iwasaki, T.; Takai, M.

    1983-10-01

    Laser-pulse evolution can be detected by measuring the emf generated by fast electrons in a laser-produced plasma when the laser radiation is focused onto a solid metal target in a vacuum. Using this phenomenon a 'plasma detector' is constructed, and its characteristics for the TEA CO2 laser radiation of intensity 10 to the 9th to 10 to the 10th W/sq cm are investigated experimentally. The plasma detector operates at room temperature and is strong against laser damages. For the evacuated plasma detector down to 0.1 torr, a maximum output voltage of 90 V and a rise time shorter than 1 ns are observed. The plasma detector, therefore, can be used as a power monitor for laser pulses and as a trigger voltage source.

  1. Feedback stabilization system for pulsed single longitudinal mode tunable lasers

    DOEpatents

    Esherick, Peter; Raymond, Thomas D.

    1991-10-01

    A feedback stabilization system for pulse single longitudinal mode tunable lasers having an excited laser medium contained within an adjustable length cavity and producing a laser beam through the use of an internal dispersive element, including detection of angular deviation in the output laser beam resulting from detuning between the cavity mode frequency and the passband of the internal dispersive element, and generating an error signal based thereon. The error signal can be integrated and amplified and then applied as a correcting signal to a piezoelectric transducer mounted on a mirror of the laser cavity for controlling the cavity length.

  2. Photonic crystal Fano laser: terahertz modulation and ultrashort pulse generation.

    PubMed

    Mork, J; Chen, Y; Heuck, M

    2014-10-17

    We suggest and analyze a laser with a mirror realized by Fano interference between a waveguide and a nanocavity. For small-amplitude modulation of the nanocavity resonance, the laser can be modulated at frequencies exceeding 1 THz, not being limited by carrier dynamics as for conventional lasers. For larger modulation, a transition from pure frequency modulation to the generation of ultrashort pulses is observed. The laser dynamics is analyzed by generalizing the field equation for conventional lasers to account for a dynamical mirror, described by coupled mode theory. PMID:25361259

  3. Ultrashort pulsed fiber laser welding and sealing of transparent materials.

    PubMed

    Huang, Huan; Yang, Lih-Mei; Liu, Jian

    2012-05-20

    In this paper, methods of welding and sealing optically transparent materials using an ultrashort pulsed (USP) fiber laser are demonstrated which overcome the limit of small area welding of optical materials. First, the interaction of USP fiber laser radiation inside glass was studied and single line welding results with different laser parameters were investigated. Then multiline scanning was used to obtain successful area bonding. Finally, complete four-edge sealing of fused silica substrates with a USP laser was demonstrated and the hermetic seal was confirmed by water immersion test. This laser microwelding technique can be extended to various applications in the semiconductor industry and precision optic manufacturing. PMID:22614601

  4. Note: external multipass optical trap for counterpropagating pulsed laser applications.

    PubMed

    Graul, J S; Ketsdever, A D; Andersen, G P; Lilly, T C

    2013-07-01

    Pulses from a 12 mJ, frequency doubled, 5 ns FWHM, pulsed Nd:YAG laser were split and injected into opposing sides of a symmetric 2.44 m (96 in.) optical ring trap. Using a Pockels cell, the counterpropagating pulses were "locked" into the trap for ≥50 round trips. This optical trap has potential applications ranging from established cavity processes, e.g., laser-based absorption spectroscopy and x-ray production, to new processes such as non-resonant optical lattice gas heating and time-resolved coherent Rayleigh-Brillouin scattering diagnostic studies. PMID:23902119

  5. Note: External multipass optical trap for counterpropagating pulsed laser applications

    NASA Astrophysics Data System (ADS)

    Graul, J. S.; Ketsdever, A. D.; Andersen, G. P.; Lilly, T. C.

    2013-07-01

    Pulses from a 12 mJ, frequency doubled, 5 ns FWHM, pulsed Nd:YAG laser were split and injected into opposing sides of a symmetric 2.44 m (96 in.) optical ring trap. Using a Pockels cell, the counterpropagating pulses were "locked" into the trap for ≥50 round trips. This optical trap has potential applications ranging from established cavity processes, e.g., laser-based absorption spectroscopy and x-ray production, to new processes such as non-resonant optical lattice gas heating and time-resolved coherent Rayleigh-Brillouin scattering diagnostic studies.

  6. Pulse Selection Control for the IR FEL Photocathode Drive Laser

    NASA Astrophysics Data System (ADS)

    Jordan, K.; Evans, R.; Garza, O.; Hill, R.; Shinn, M.; Song, J.; Venhaus, D.

    1997-05-01

    The method for current control of the photocathode source is described. This device allows remote control of drive laser output pulses for resulting beam currents of less than 1 microamp to full current of 5 milliamps. The low current modes are accomplished by counting discrete micropulses and gating electro-optical cells. The higher current modes are done by varying both the photons per pulse and the frequency of the laser output pulses. Programmable Logic Devices (PLDs) provide the choice in micropulses per macropulse and the macropulse frequency. All macropulses are line locked to 60 Hz and have the ability to be slewed through a line cycle in discrete steps.

  7. Toward attosecond electron pulses using ultra-intense lasers

    NASA Astrophysics Data System (ADS)

    Varin, Charles; Fortin, Pierre-Louis; Piché, Michel

    2008-06-01

    In many countries around the world, ultra-intense laser facilities are being built. These state-of-the-art lasers are intended for innovative medical and technological applications, as well as for basic experiments at the frontiers of fundamental science. Laser particle acceleration is a promising new endeavor. Recently developed schemes using radially polarized beams could help in reaching unprecedentedly short electron pulse durations, well in the attosecond range and potentially in the subattosecond range.

  8. Powerful 170-attosecond XUV pulses generated with few-cycle laser pulses and broadband multilayer optics

    NASA Astrophysics Data System (ADS)

    Schultze, M.; Goulielmakis, E.; Uiberacker, M.; Hofstetter, M.; Kim, J.; Kim, D.; Krausz, F.; Kleineberg, U.

    2007-07-01

    Single 170-as extreme ultraviolet (XUV) pulses delivering more than 106 photons/pulse at ~100 eV at a repetition rate of 3 kHz are produced by ionizing neon with waveform-controlled sub-5 fs near-infrared (NIR) laser pulses and spectrally filtering the emerging near-cutoff high-harmonic continuum with a broadband, chirped multilayer molybdenum silicon (Mo/Si) mirror.

  9. Short pulse generation by laser slicing at NSLSII

    SciTech Connect

    Yu, L.; Blednykh, A.; Guo, W.; Krinsky, S.; Li, Y.; Shaftan, T.; Tchoubar, O.; Wang, G.; Willeke, F.; Yang, L.

    2011-03-28

    We discuss an upgrade R&D project for NSLSII to generate sub-pico-second short x-ray pulses using laser slicing. We discuss its basic parameters and present a specific example for a viable design and its performance. Since the installation of the laser slicing system into the storage ring will break the symmetry of the lattice, we demonstrate it is possible to recover the dynamical aperture to the original design goal of the ring. There is a rapid growth of ultrafast user community interested in science using sub-pico-second x-ray pulses. In BNL's Short Pulse Workshop, the discussion from users shows clearly the need for a sub-pico-second pulse source using laser slicing method. In the proposal submitted following this workshop, NSLS team proposed both hard x-ray and soft x-ray beamlines using laser slicing pulses. Hence there is clearly a need to consider the R&D efforts of laser slicing short pulse generation at NSLSII to meet these goals.

  10. Development of pulse laser processing for mounting fiber Bragg grating

    SciTech Connect

    Nishimura, Aikihko; Shimada, Yukihiro; Yonemoto, Yukihiro; Suzuki, Hirokazu; Ishibashi, Hisayoshi

    2012-07-11

    Pulse laser processing has been developed for the application of industrial plants in monitoring and maintenance. Surface cleaning by nano-second laser ablation was demonstrated for decontamination of oxide layers of Cr contained steel. Direct writing by femtosecond processing induced a Bragg grating in optical fiber to make it a seismic sensor for structural health monitoring. Adhesive cement was used to fix the seismic sensor on the surface of reactor coolant pipe material. Pulse laser processing and its related technologies were presented to overcome the severe accidents of nuclear power plants.

  11. Mechanism study of skin tissue ablation by nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Fang, Qiyin

    Understanding the fundamental mechanisms in laser tissue ablation is essential to improve clinical laser applications by reducing collateral damage and laser pulse energy requirement. The motive of this dissertation is to study skin tissue ablation by nanosecond laser pulses in a wide spectral region from near-infrared to ultraviolet for a clear understanding of the mechanism that can be used to improve future design of the pulsed lasers for dermatology and plastic surgery. Multiple laser and optical configurations have been constructed to generate 9 to 12ns laser pulses with similar profiles at 1064. 532, 266 and 213nm for this study of skin tissue ablation. Through measurements of ablation depth as a function cf laser pulse energy, the 589nm spectral line in the secondary radiation from ablated skin tissue samples was identified as the signature of the occurrence of ablation. Subsequently, this spectral signature has been used to investigate the probabilistic process of the ablation near the threshold at the four wavelengths. Measurements of the ablation probability were conducted as a function of the electrical field strength of the laser pulse and the ablation thresholds in a wide spectral range from 1064nm to 213nm were determined. Histology analysis and an optical transmission method were applied in assessing of the ablation depth per pulse to study the ablation process at irradiance levels higher than threshold. Because more than 70% of the wet weight of the skin tissue is water, optical breakdown and backscattering in water was also investigated along with a nonlinear refraction index measurement using a z-scan technique. Preliminary studies on ablation of a gelatin based tissue phantom are also reported. The current theoretical models describing ablation of soft tissue ablation by short laser pulses were critically reviewed. Since none of the existing models was found capable of explaining the experimental results, a new plasma-mediated model was developed

  12. Development of pulse laser processing for mounting fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Nishimura, Aikihko; Shimada, Yukihiro; Yonemoto, Yukihiro; Suzuki, Hirokazu; Ishibashi, Hisayoshi

    2012-07-01

    Pulse laser processing has been developed for the application of industrial plants in monitoring and maintenance. Surface cleaning by nano-second laser ablation was demonstrated for decontamination of oxide layers of Cr contained steel. Direct writing by femtosecond processing induced a Bragg grating in optical fiber to make it a seismic sensor for structural health monitoring. Adhesive cement was used to fix the seismic sensor on the surface of reactor coolant pipe material. Pulse laser processing and its related technologies were presented to overcome the severe accidents of nuclear power plants.

  13. Interaction physics of multipicosecond Petawatt laser pulses with overdense plasma.

    PubMed

    Kemp, A J; Divol, L

    2012-11-01

    We study the interaction of intense petawatt laser pulses with overdense plasma over several picoseconds, using two- and three-dimensional kinetic particle simulations. Sustained irradiation with non-diffraction-limited pulses at relativistic intensities yields conditions that differ qualitatively from what is experimentally available today. Nonlinear saturation of laser-driven density perturbations at the target surface causes recurrent emissions of plasma, which stabilize the surface and keep absorption continuously high. This dynamics leads to the acceleration of three distinct groups of electrons up to energies many times the laser ponderomotive potential. We discuss their energy distribution for applications like the fast-ignition approach to inertial confinement fusion. PMID:23215393

  14. Energy Losses Estimation During Pulsed-Laser Seam Welding

    NASA Astrophysics Data System (ADS)

    Sebestova, Hana; Havelkova, Martina; Chmelickova, Hana

    2014-06-01

    The finite-element tool SYSWELD (ESI Group, Paris, France) was adapted to simulate pulsed-laser seam welding. Besides temperature field distribution, one of the possible outputs of the welding simulation is the amount of absorbed power necessary to melt the required material volume including energy losses. Comparing absorbed or melting energy with applied laser energy, welding efficiencies can be calculated. This article presents achieved results of welding efficiency estimation based on the assimilation both experimental and simulation output data of the pulsed Nd:YAG laser bead on plate welding of 0.6-mm-thick AISI 304 stainless steel sheets using different beam powers.

  15. Interaction of repetitively pulsed high energy laser radiation with matter

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, M.

    1986-05-01

    Laser target interaction processes and methods of improving the overall energy balance are discussed. This can be achieved with high repetition rate pulsed lasers even for initially highly reflecting materials, such as metals. Experiments were performed using a pulsed CO2 laser at mean powers up to 2 KW and repetition rates up to 100 Hz. The rates of temperature rise of aluminum for example are increased by more than a factor of 3 as compared to cw-radiation of comparable power density. Similar improvements are found for the overall absorptivities, that are increased by more than an order of magnitude.

  16. Propagation of intense laser pulses in strongly magnetized plasmas

    SciTech Connect

    Yang, X. H. Ge, Z. Y.; Xu, B. B.; Zhuo, H. B.; Ma, Y. Y.; Shao, F. Q.; Yu, W.; Xu, H.; Yu, M. Y.; Borghesi, M.

    2015-06-01

    Propagation of intense circularly polarized laser pulses in strongly magnetized inhomogeneous plasmas is investigated. It is shown that a left-hand circularly polarized laser pulse propagating up the density gradient of the plasma along the magnetic field is reflected at the left-cutoff density. However, a right-hand circularly polarized laser can penetrate up the density gradient deep into the plasma without cutoff or resonance and turbulently heat the electrons trapped in its wake. Results from particle-in-cell simulations are in good agreement with that from the theory.

  17. Controlling Plasma Channels through Ultrashort Laser Pulse Filamentation

    NASA Astrophysics Data System (ADS)

    Ionin, Andrey; Seleznev, Leonid; Sunchugasheva, Elena

    2013-09-01

    A review of studies fulfilled at the Lebedev Institute in collaboration with the Moscow State University and Institute of Atmospheric Optics in Tomsk on influence of various characteristics of ultrashort laser pulse on plasma channels formed under its filamentation is presented. Filamentation of high-power laser pulses with wavefront controlled by a deformable mirror, with cross-sections spatially formed by various diaphragms and with different wavelengths was experimentally and numerically studied. An application of plasma channels formed due to filamentation of ultrashort laser pulse including a train of such pulses for triggering and guiding long electric discharges is discussed. The research was supported by RFBR Grants 11-02-12061-ofi-m and 11-02-01100, and EOARD Grant 097007 through ISTC Project 4073 P

  18. Sudden perturbation of hydrogen atoms by intense ultrashort laser pulses

    SciTech Connect

    Lugovskoy, A. V.; Bray, I.

    2005-12-15

    We study theoretically how hydrogen atoms respond to intense ultrashort laser pulses of duration {tau} shorter than the inverse of the initial-state energy {epsilon}{sub i}{sup -1}. An analytical expression for the evolution operator S is derived up to the first order of the sudden perturbation approximation. This approximation treats the laser-atom interaction beyond the dipole approximation and yields S as a series in the small parameter {epsilon}{sub i}{tau}. It is shown that the effect of realistic laser pulses on atoms begins at the first order of {epsilon}{sub i}{tau}. Transitions between atomic (nlm) states of different m become possible due to the action of the pulse's magnetic field. Transitions between states of same m and arbitrary l become possible if the static Coulomb potential is taken into account during the pulse.

  19. Electrostrictive counterforce on fluid microdroplet in short laser pulse.

    PubMed

    Ellingsen, S Å; Brevik, I

    2012-06-01

    When a micrometer-sized fluid droplet is illuminated by a laser pulse, there is a fundamental distinction between two cases. If the pulse is short in comparison with the transit time for sound across the droplet, the disruptive optical Abraham-Minkowski radiation force is countered by electrostriction, and the net stress is compressive. In contrast, if the pulse is long on this scale, electrostriction is cancelled by elastic pressure and the surviving term of the electromagnetic force, the Abraham-Minkowski force, is disruptive and deforms the droplet. Ultrashort laser pulses are routinely used in modern experiments, and impressive progress has moreover been made on laser manipulation of liquid surfaces in recent times, making a theory for combining the two pertinent. We analyze the electrostrictive contribution analytically and numerically for a spherical droplet. PMID:22660076

  20. Electroporation visualized under a multishot pulsed laser fluorescence microscope system

    NASA Astrophysics Data System (ADS)

    Itoh, Hiroyasu; Yu, Irene I. K.; Hibino, Masahiro; Hayakawa, Tsuyoshi; Kinosita, Kazuhiko, Jr.

    1993-10-01

    We describe a new fluorescence microscope system, which is the third generation of our pulsed-laser microscope systems developed for the purpose of capturing rapid cellular phenomena. Time resolution of this latest version is supported by the combination of a Q- switched Nd:YAG laser producing a burst of 4 pulses and a large format framing camera. We obtain series images at intervals on the order of 10 microsecond(s) with exposure times of 30 ns. With this multi-shot pulsed laser fluorescence microscope system, we examined the behavior of the transmembrane potential in a sea urchin egg under an intense electric field. Irreversible process of cell electroporation was revealed in serial images taken under a single electric pulse of microsecond duration.

  1. High efficiency, high pulse energy fiber laser system

    NASA Astrophysics Data System (ADS)

    Bowers, Mark S.; Henrie, Jason; Garske, Megan; Templeman, Dan; Afzal, Robert

    2013-05-01

    We report a master-oscillator/power-amplifier laser system featuring a polarizing and coilable 40-micron-core Yb-doped photonic crystal fiber as the final-stage amplifier. The laser source generates 3.4 ns pulses at a repetition rate 19 kHz, with maximum pulse energy 1.2 mJ, maximum average power 22.8 W, near diffraction-limited (M2 < 1.1) beam quality, and 20% electrical to optical efficiency in a compact package. This pulsed-fiber laser flight system provides high pulse energy, average power, peak power, diffraction limited beam quality, and high efficiency all in a thermally and mechanically stable compact package.

  2. Xenon plasma sustained by pulse-periodic laser radiation

    SciTech Connect

    Rudoy, I. G.; Solovyov, N. G.; Soroka, A. M.; Shilov, A. O.; Yakimov, M. Yu.

    2015-10-15

    The possibility of sustaining a quasi-stationary pulse-periodic optical discharge (POD) in xenon at a pressure of p = 10–20 bar in a focused 1.07-μm Yb{sup 3+} laser beam with a pulse repetition rate of f{sub rep} ⩾ 2 kHz, pulse duration of τ ⩾ 200 μs, and power of P = 200–300 W has been demonstrated. In the plasma development phase, the POD pulse brightness is generally several times higher than the stationary brightness of a continuous optical discharge at the same laser power, which indicates a higher plasma temperature in the POD regime. Upon termination of the laser pulse, plasma recombines and is then reinitiated in the next pulse. The initial absorption of laser radiation in successive POD pulses is provided by 5p{sup 5}6s excited states of xenon atoms. This kind of discharge can be applied in plasma-based high-brightness broadband light sources.

  3. The efficiency of photovoltaic cells exposed to pulsed laser light

    NASA Technical Reports Server (NTRS)

    Lowe, R. A.; Landis, G. A.; Jenkins, P.

    1993-01-01

    Future space missions may use laser power beaming systems with a free electron laser (FEL) to transmit light to a photovoltaic array receiver. To investigate the efficiency of solar cells with pulsed laser light, several types of GaAs, Si, CuInSe2, and GaSb cells were tested with the simulated pulse format of the induction and radio frequency (RF) FEL. The induction pulse format was simulated with an 800-watt average power copper vapor laser and the RF format with a frequency-doubled mode-locked Nd:YAG laser. Averaged current vs bias voltage measurements for each cell were taken at various optical power levels and the efficiency measured at the maximum power point. Experimental results show that the conversion efficiency for the cells tested is highly dependent on cell minority carrier lifetime, the width and frequency of the pulses, load impedance, and the average incident power. Three main effects were found to decrease the efficiency of solar cells exposed to simulated FEL illumination: cell series resistance, LC 'ringing', and output inductance. Improvements in efficiency were achieved by modifying the frequency response of the cell to match the spectral energy content of the laser pulse with external passive components.

  4. The simulation of behaviors of photodetectors under pulsed laser irritation

    NASA Astrophysics Data System (ADS)

    Zheng, Xin; Cheng, Xiang-ai; Yu, Xiangyang; Qian, Le; Jiang, Tian

    2013-05-01

    Precise simulation of transient electrical behaviors of photodetectors under laser irradiation is becoming an increasingly concern. It not only can allow a detailed study and analysis of complex phenomena that cannot be carried out by experiments, but gives valuable information about the physical mechanisms which ultimately determine the response of the photodetectors. Finite difference numerical technique is adopted in the simulation to calculate the current response of photodetectors under pulsed laser irritation in this paper. To simulation the behaviors of photodetectors under pulsed laser irritation, the transport and trapping of carries and external circuit effects, including load resistance, junction capacitance, and parasitic capacitance, are considered. The basic equations governing the carrier behaviors are solved, including Poisson's equation, the carrier motion equations, and the carrier continuity equations. The simulated transient carrier density and velocities are present, as well as corresponding transient electric field distributions. The behaviors of electrons and holes and its contributions to the external current response are analyzed. Then a general and brief image of the transient progress of photodetectors under pulsed laser irritation is established. How the carrier is induced, transported, and trapped and whether they make any significant contribution to the external current response are discussed. Besides, bias dependent response is also studied. Higher bias will improver the behaviors of photodetectors under pulsed laser irritation. The simulated results and theory analysis will show valuable clue for future research on the behaviors of photodetectors irradiated by pulsed laser.

  5. The interaction of intense subpicosecond laser pulses with underdense plasmas

    SciTech Connect

    Coverdale, C.A.

    1995-05-11

    Laser-plasma interactions have been of interest for many years not only from a basic physics standpoint, but also for their relevance to numerous applications. Advances in laser technology in recent years have resulted in compact laser systems capable of generating (psec), 10{sup 16} W/cm{sup 2} laser pulses. These lasers have provided a new regime in which to study laser-plasma interactions, a regime characterized by L{sub plasma} {ge} 2L{sub Rayleigh} > c{tau}. The goal of this dissertation is to experimentally characterize the interaction of a short pulse, high intensity laser with an underdense plasma (n{sub o} {le} 0.05n{sub cr}). Specifically, the parametric instability known as stimulated Raman scatter (SRS) is investigated to determine its behavior when driven by a short, intense laser pulse. Both the forward Raman scatter instability and backscattered Raman instability are studied. The coupled partial differential equations which describe the growth of SRS are reviewed and solved for typical experimental laser and plasma parameters. This solution shows the growth of the waves (electron plasma and scattered light) generated via stimulated Raman scatter. The dispersion relation is also derived and solved for experimentally accessible parameters. The solution of the dispersion relation is used to predict where (in k-space) and at what frequency (in {omega}-space) the instability will grow. Both the nonrelativistic and relativistic regimes of the instability are considered.

  6. Laser hazard analysis for various candidate diode lasers associated with the high resolution pulsed scanner.

    SciTech Connect

    Augustoni, Arnold L.

    2004-10-01

    A laser hazard analysis and safety assessment was performed for each various laser diode candidates associated with the High Resolution Pulse Scanner based on the ANSI Standard Z136.1-2000, American National Standard for the Safe Use of Lasers. A theoretical laser hazard analysis model for this system was derived and an Excel{reg_sign} spreadsheet model was developed to answer the 'what if questions' associated with the various modes of operations for the various candidate diode lasers.

  7. Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses

    SciTech Connect

    Watanabe, Wataru; Onda, Satoshi; Tamaki, Takayuki; Itoh, Kazuyoshi; Nishii, Junji

    2006-07-10

    We report on the joining of dissimilar transparent materials based on localized melting and resolidification of the materials only around the focal volume due to nonlinear absorption of focused femtosecond laser pulses. We demonstrate the joining of borosilicate glass and fused silica, whose coefficients of thermal expansion are different. The joint strength and the transmittance through joint volume were investigated by varying the translation velocity of the sample and the pulse energy of the irradiated laser pulses.

  8. Cluster ion control by simultaneous irradiations of femtosecond laser and nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Kamada, H.; Hiratani, Y.; Toyoda, K.

    2002-09-01

    Generation of multiply charged ions and molecular ions have been investigated using simultaneous irradiation of high intensity and ultrashort pulse of Ti:sapphire laser and fourth harmonics of Q-switched nanosecond pulse of Nd:YAG laser on carbon targets [Morimoto et al., in: Proceedings of the 13th International Conference on High-Power Particles Beams (BEAMS2000),Vol. PB-89, Nagaoka, 2000, p. 359; Toyoda et al., in: Proceedings of the 8th International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference (GCL-HPL2000), Vol. P1.60, 2000, p. 101]. The ion current waveforms have been analyzed by means of time-of-flight (tof) mass measurement. Simultaneous irradiation of high intensity and ultrashort pulse of Ti:sapphire laser and fourth harmonics of Q-switched nanosecond pulse of Nd:YAG laser on carbon targets was found to generate molecular ions of carbon.

  9. Analysis of wavelength influence on a-Si crystallization processes with nanosecond laser sources

    NASA Astrophysics Data System (ADS)

    García, O.; García-Ballesteros, J. J.; Munoz-Martin, David; Núñez-Sánchez, S.; Morales, M.; Carabe, J.; Torres, I.; Gandía, J. J.; Molpeceres, C.

    2013-08-01

    In this work we present a detailed study of the wavelength influence in pulsed laser annealing of amorphous silicon thin films, comparing the results for material modification at different fluence regimes in the three fundamental harmonics of standard DPSS (diode pumped solid state) nanosecond laser sources, UV (355 nm), visible (532 nm) and IR (1064 nm). The crystalline fraction (% crystalline silicon) profiles resulted from irradiation of amorphous silicon thin film samples are characterized with MicroRaman techniques. A finite element numerical model (FEM) is developed in COMSOL to simulate the process. The crystalline fraction results and the local temperature evolution in the irradiated area are presented and analyzed in order to establish relevant correlation between theoretical and experimental results. For UV (355 nm) and visible (532 nm) wavelengths, the results of the numerical model are presented together with the experimental results, proving that the process can be easily predicted with an essentially physical model based on heat transport at different wavelengths and fluence regimes. The numerical model helps to establish the optimal operation fluence regime for the annealing process.

  10. Short-pulse, high-intensity lasers at Los Alamos

    SciTech Connect

    Taylor, A.J.; Roberts, J.P.; Rodriguez, G.; Fulton, R.D.; Kyrala, G.A.; Schappert, G.T.

    1994-03-01

    Advances in ultrafast lasers and optical amplifiers have spurred the development of terawatt-class laser systems capable of delivering focal spot intensities approaching 10{sup 20} W/cm{sup 2}. At these extremely high intensities, the optical field strength is more than twenty times larger than the Bohr electric field, permitting investigations of the optical properties of matter in a previously unexplored regime. The authors describe two laser systems for high intensity laser interaction experiments: The first is a terawatt system based on amplification of femtosecond pulses in XeCl which yields 250 mJ in 275 fs and routinely produces intensifies on target in excess of 10{sup 18} W/cm{sup 2}. The second system is based on chirped pulse amplification of 100-fs pulses in Ti:sapphire.

  11. Medical applications of ultra-short pulse lasers

    SciTech Connect

    Kim, B M; Marion, J E

    1999-06-08

    The medical applications for ultra short pulse lasers (USPLs) and their associated commercial potential are reviewed. Short pulse lasers offer the surgeon the possibility of precision cutting or disruption of tissue with virtually no thermal or mechanical damage to the surrounding areas. Therefore the USPL offers potential improvement to numerous existing medical procedures. Secondly, when USPLs are combined with advanced tissue diagnostics, there are possibilities for tissue-selective precision ablation that may allow for new surgeries that cannot at present be performed. Here we briefly review the advantages of short pulse lasers, examine the potential markets both from an investment community perspective, and from the view. of the technology provider. Finally nominal performance and cost requirements for the lasers, delivery systems and diagnostics and the present state of development will be addressed.

  12. Envelope evolution of a laser pulse in an active medium

    SciTech Connect

    Fisher, D.L.; Tajima, T.; Downer, M.C.; Siders, C.W.

    1994-11-01

    The authors show that the envelope velocity, v{sub env}, of a short laser pulse can, via propagation in an active medium, be made less than, equal to, or even greater than c, the vacuum phase velocity of light. Simulation results, based on moving frame propagation equations coupling the laser pulse, active medium and plasma, are presented, as well as equations that determines the design value of super- and sub-luminous v{sub env}. In this simulation the laser pulse evolves in time in a moving frame as opposed to their earlier work where the profile was fixed. The elimination of phase slippage and pump depletion effects in the laser wakefield accelerator is discussed as a particular application. Finally they discuss media properties necessary for an experimental realization of this technique.

  13. Device For Trapping Laser Pulses In An Optical Delay Line

    DOEpatents

    Yu, David U. L.; Bullock, Donald L.

    1997-12-23

    A device for maintaining a high-energy laser pulse within a recirculating optical delay line for a period time to optimize the interaction of the pulse with an electron beam pulse train comprising closely spaced electron micropulses. The delay line allows a single optical pulse to interact with many of the electron micropulses in a single electron beam macropulse in sequence and for the introduction of additional optical pulses to interact with the micropulses of additional electron beam macropulses. The device comprises a polarization-sensitive beam splitter for admitting an optical pulse to and ejecting it from the delay line according to its polarization state, a Pockels cell to control the polarization of the pulse within the delay line for the purpose of maintaining it within the delay line or ejecting it from the delay line, a pair of focusing mirrors positioned so that a collimated incoming optical pulse is focused by one of them to a focal point where the pulse interacts with the electron beam and then afterwards the pulse is recollimated by the second focusing mirror, and a timing device which synchronizes the introduction of the laser pulse into the optical delay line with the arrival of the electron macropulse at the delay line to ensure the interaction of the laser pulse with a prescribed number of electron micropulses in sequence. In a first embodiment of the invention, the principal optical elements are mounted with their axes collinear. In a second embodiment, all principal optical elements are mounted in the configuration of a ring.

  14. Intracavity frequency doubling of {mu}s alexandrite laser pulses

    SciTech Connect

    Brinkmann, R.; Schoof, K.

    1994-12-31

    Intracavity second harmonic generation (SHG) with a three mirror folded cavity configuration was investigated with a flashlamp pumped, Q-switched Alexandrite laser. The authors therefore used different nonlinear optical crystals to convert the fundamental 750 nm radiation into the near UV spectral ,range (3 75 nm). The laser pulses were stretched into the {mu}s time domain by an electronic feedback system regulating the losses of the resonator. They investigated the conversion efficiency for different pulse lengths as well as the effect of pulse-lengthening due to the nonlinearity of the intracavity losses introduced by the optical crystal used. Working with BBO-crystals, they were able to achieve a second harmonic output of 25 mJ per pulse at 375 mn with a temporal rectangular pulse of 1 {mu}s in length and a stable nearly gaussian shaped beam profile.

  15. Femtosecond pulsed laser ablation of GaAs

    NASA Astrophysics Data System (ADS)

    Trelenberg, T. W.; Dinh, L. N.; Saw, C. K.; Stuart, B. C.; Balooch, M.

    2004-01-01

    The properties of femtosecond-pulsed laser deposited GaAs nanoclusters were investigated. Nanoclusters of GaAs were produced by laser ablating a single crystal GaAs target in vacuum or in a buffer gas using a Ti-sapphire laser with a 150 fs minimum pulse length. For in-vacuum deposition, X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) revealed that the average cluster size was approximately 7 nm for laser pulse lengths between 150 fs and 25 ps. The average cluster size dropped to approximately 1.5 nm at a pulse length of 500 ps. It was also observed that film thickness decreased with increasing laser pulse length. A reflective coating, which accumulated on the laser admission window during ablation, reduced the amount of laser energy reaching the target for subsequent laser shots and developed more rapidly at longer pulse lengths. This observation indicates that non-stoichiometric (metallic) ablatants were produced more readily at longer pulse lengths. The angular distribution of ejected material about the target normal was well fitted to a bi-cosine distribution of cos 47 θ+ cos 4 θ for ablation in vacuum using 150 fs pulses. XPS and AES revealed that the vacuum-deposited films contained excess amorphous Ga or As in addition to the stoichiometric GaAs nanocrystals seen with XRD. However, films containing only the GaAs nanocrystals were produced when ablation was carried out in the presence of a buffer gas with a pressure in excess of 6.67 Pa. At buffer gas pressure on the order of 1 Torr, it was found that the stoichiometry of the ablated target was also preserved. These experiments indicate that both laser pulse length and buffer gas pressure play important roles in the formation of multi-element nanocrystals by laser ablation. The effects of gas pressure on the target's morphology and the size of the GaAs nanocrystals formed will also be discussed.

  16. Non-linear Compton Scattering in Short Laser Pulses

    NASA Astrophysics Data System (ADS)

    Krajewska, Katarzyna; Kamiński, Jerzy

    2012-06-01

    The generation of short X-ray laser pulses attracts a great deal of attention. One of mechanisms to achieve this goal is the non-linear Compton scattering at very high laser powers. The majority of previous works on the non-linear Compton scattering have been devoted to the case when the incident laser field is treated as a monochromatic plane wave. There is, however, recent interest in analyzing the effect of a pulsed laser field on the non-linear Compton scattering [1-4]. We study the process for different durations of the incident laser pulse and compare it with the results for both a plane wave laser field and a laser pulse train. [4pt] [1] M. Boca and V. Florescu, Phys. Rev. A 80, 053403 (2009).[0pt] [2] M. Boca and V. Florescu, Eur. Phys. J. D 61, 446 (2011).[0pt] [3] D. Seipt and B. Kämpfer, Phys. Rev. A 83, 022101 (2011).[0pt] [4] F. Mackenroth and A. Di Piazza, Phys. Rev. A 83, 032106 (2011).

  17. Generation of ultrashort electron bunches by colliding laser pulses

    SciTech Connect

    Schroeder, C.B.; Lee, P.B.; Wurtele, J.S.; Esarey, E.; Leemans, W.P.

    1999-07-01

    A proposed laser-plasma based relativistic electron source [E. Esarey {ital et al.}, Phys. Rev. Lett. {bold 79}, 2682 (1997)] using laser triggered injection of electrons is investigated. The source generates ultrashort electron bunches by dephasing and trapping background plasma electrons undergoing fluid oscillations in an excited plasma wake. The plasma electrons are dephased by colliding two counter-propagating laser pulses which generate a slow phase velocity beat wave. Laser pulse intensity thresholds for trapping and the optimal wake phase for injection are calculated. Numerical simulations of test particles, with prescribed plasma and laser fields, are used to verify analytic predictions and to study the longitudinal and transverse dynamics of the trapped plasma electrons. Simulations indicate that the colliding laser pulse injection scheme has the capability to produce relativistic femtosecond electron bunches with fractional energy spread of order a few percent and normalized transverse emittance less than 1 mm mrad using 1 TW injection laser pulses. {copyright} {ital 1999 American Institute of Physics.}

  18. Generation of ultrashort electron bunches by colliding laser pulses

    SciTech Connect

    Schroeder, C.B.; Lee, P.B.; Wurtele, J.S.; Esarey, E.; Leemans, W.P.

    1999-05-01

    A proposed laser-plasma-based relativistic electron source [E. Esarey {ital et al}., Phys. Rev. Lett. {bold 79}, 2682 (1997)] using laser-triggered injection of electrons is investigated. The source generates ultrashort electron bunches by dephasing and trapping background plasma electrons undergoing fluid oscillations in an excited plasma wake. The plasma electrons are dephased by colliding two counterpropagating laser pulses which generate a slow phase velocity beat wave. Laser pulse intensity thresholds for trapping and the optimal wake phase for injection are calculated. Numerical simulations of test particles, with prescribed plasma and laser fields, are used to verify analytic predictions and to study the longitudinal and transverse dynamics of the trapped plasma electrons. Simulations indicate that the colliding laser pulse injection scheme has the capability to produce relativistic femtosecond electron bunches with fractional energy spread of order a few percent and normalized transverse emittance less than 1 mm mrad using 1 TW injection laser pulses. {copyright} {ital 1999} {ital The American Physical Society}

  19. Fiber Laser Front Ends for High-Energy Short Pulse Lasers

    SciTech Connect

    Dawson, J W; Liao, Z M; Mitchell, S; Messerly, M; Beach, R; Jovanovic, I; Brown, C; Payne, S A; Barty, C J

    2005-01-18

    We are developing an all fiber laser system optimized for providing input pulses for short pulse (1-10ps), high energy ({approx}1kJ) glass laser systems. Fiber lasers are ideal solutions for these systems as they are highly reliable and once constructed they can be operated with ease. Furthermore, they offer an additional benefit of significantly reduced footprint. In most labs containing equivalent bulk laser systems, the system occupies two 4'x8' tables and would consist of 10's if not a 100 of optics which would need to be individually aligned and maintained. The design requirements for this application are very different those commonly seen in fiber lasers. High energy lasers often have low repetition rates (as low as one pulse every few hours) and thus high average power and efficiency are of little practical value. What is of high value is pulse energy, high signal to noise ratio (expressed as pre-pulse contrast), good beam quality, consistent output parameters and timing. Our system focuses on maximizing these parameters sometimes at the expense of efficient operation or average power. Our prototype system consists of a mode-locked fiber laser, a compressed pulse fiber amplifier, a ''pulse cleaner'', a chirped fiber Bragg grating, pulse selectors, a transport fiber system and a large flattened mode fiber amplifier. In our talk we will review the system in detail and present theoretical and experimental studies of critical components. We will also present experimental results from the integrated system.

  20. Multiple pulse thresholds in live eyes for ultrashort laser pulses in the near infrared

    NASA Astrophysics Data System (ADS)

    Stolarski, David J.; Cain, Clarence P.; Toth, Cynthia A.; Noojin, Gary D.; Rockwell, Benjamin A.

    1999-06-01

    Damage thresholds using multiple laser pulses to produce minimum visible lesions (MVL) in rhesus monkey eyes are reported for near-infrared (800 nm) at 130 femtoseconds. Previous studies by our research group using single pulses in the near-infrared (1060 nm) have determined damage thresholds and retinal spot size dependence. We report the first multiple pulse damage thresholds using femtosecond pulses. MVL thresholds at 1 hour and 24 hours postexposure were determined for 1, 100 and 1,000 pulses and we compare these with other reported multiple pulse thresholds. These new data will be added to the databank for retinal MVL's as a function of pulse repetition rate for this pulsewidth and a comparison will be made with the ANSI standard for multiple pulse exposures. Our measurements show that the retinal ED50 threshold/pulse in the paramacula decreases for increasing number of pulses. The MVL-ED50 at the threshold/pulse decreased by a factor of 4 (0.55 (mu) J to 0.13 (mu) J/pulse) for an increase from 1 to 100 pulses.

  1. Active lamp pulse driver circuit. [optical pumping of laser media

    NASA Technical Reports Server (NTRS)

    Logan, K. E. (Inventor)

    1983-01-01

    A flashlamp drive circuit is described which uses an unsaturated transistor as a current mode switch to periodically subject a partially ionized gaseous laser excitation flashlamp to a stable, rectangular pulse of current from an incomplete discharge of an energy storage capacitor. A monostable multivibrator sets the pulse interval, initiating the pulse in response to a flash command by providing a reference voltage to a non-inverting terminal of a base drive amplifier; a tap on an emitter resistor provides a feedback signal sensitive to the current amplitude to an inverting terminal of amplifier, thereby controlling the pulse amplitude. The circuit drives the flashlamp to provide a squarewave current flashlamp discharge.

  2. Pulse shaping effects on weld porosity in laser beam spot welds : contrast of long- & short- pulse welds.

    SciTech Connect

    Ellison, Chad M.; Perricone, Matthew J.; Faraone, Kevin M.; Norris, Jerome T.

    2007-10-01

    Weld porosity is being investigated for long-pulse spot welds produced by high power continuous output lasers. Short-pulse spot welds (made with a pulsed laser system) are also being studied but to a much small extent. Given that weld area of a spot weld is commensurate with weld strength, the loss of weld area due to an undefined or unexpected pore results in undefined or unexpected loss in strength. For this reason, a better understanding of spot weld porosity is sought. Long-pulse spot welds are defined and limited by the slow shutter speed of most high output power continuous lasers. Continuous lasers typically ramp up to a simmer power before reaching the high power needed to produce the desired weld. A post-pulse ramp down time is usually present as well. The result is a pulse length tenths of a second long as oppose to the typical millisecond regime of the short-pulse pulsed laser. This study will employ a Lumonics JK802 Nd:YAG laser with Super Modulation pulse shaping capability and a Lasag SLS C16 40 W pulsed Nd:YAG laser. Pulse shaping will include square wave modulation of various peak powers for long-pulse welds and square (or top hat) and constant ramp down pulses for short-pulse welds. Characterization of weld porosity will be performed for both pulse welding methods.

  3. Single And Double Pulse Irradiation And Comparison With Experimental Results

    SciTech Connect

    Fornarini, L.; Fantoni, R.; Colao, F.; Santagata, A.; Teghil, R.

    2009-09-27

    A theoretical model of laser ablation has been previously developed and applied to Laser Induced Breakdown Spectroscopy (LIBS) analysis of bronzes with the aim to improve quantitative results and to focus on problems arising in the interpretation of experimental data. The model describes laser-solid matter interaction, plume expansion, plasma formation and laser-plasma interaction. A two temperature approach has been also introduced to take into account the initial temperature dynamics of the alloy surface upon ultra-short laser irradiation. We examined various target compositions, typical of archaeological artworks, and different laser characteristics such as wavelength (355 nm, 530 nm, 1064 nm) and pulse duration (8 ns, 250 fs). In this work, the model has been extended to simulate double pulse LIBS configuration in order to clarify the mechanism involved in the process and for better interpreting the experimental data. Plasma composition, relevant parameters (temperature, electron density) and their kinetic evolutions have been measured. Results have been compared with the simulation obtained using the same irradiation conditions and set of targets.

  4. Pulse generation and preamplification for long pulse beamlines of Orion laser facility.

    PubMed

    Hillier, David I; Winter, David N; Hopps, Nicholas W

    2010-06-01

    We describe the pulse generation, shaping, and preamplification system for the nanosecond beamlines of the Orion laser facility. The system generates shaped laser pulses of up to approximately 1 J of 100 ps-5 ns duration with a programmable temporal profile. The laser has a 30th-power supergaussian spatial profile and is diffraction limited. The system is capable of imposing 2D smoothing by spectral dispersion upon the beam, which will produce a nonuniformity of 10% rms at the target. PMID:20517369

  5. Formation of plasmonic colloidal silver for flexible and printed electronics using laser ablation

    NASA Astrophysics Data System (ADS)

    Kassavetis, S.; Kaziannis, S.; Pliatsikas, N.; Avgeropoulos, A.; Karantzalis, A. E.; Kosmidis, C.; Lidorikis, E.; Patsalas, P.

    2015-05-01

    Laser ablation (LA) in liquids has been used for the development of various nanoparticles (NPs); among them, Ag NPs in aqueous solutions (usually produced by nanosecond (ns) LA) have attracted exceptional interest due to its strong plasmonic response. In this work, we present a comprehensive study of the LA of Ag in water, chloroform and toluene, with and without PVP, using a picosecond (ps) Nd:YAG laser and we consider a wide range of LA parameters such as the laser wavelength (1064, 532, 355 nm), the pulse energy (0.3-17 mJ) and the number of pulses. In addition, we consider the use of a secondary nanosecond laser beam for the refinement of the NPs size distribution. The optical properties of the NPs were evaluated by in situ optical transmittance measurements in the UV-vis spectral ranges. The morphology of the NPs and the formation of aggregates were investigated by Scanning Electron Microscopy and High-Resolution Transmission Electron Microscopy. The ps LA process resulted in the development of bigger Ag NPs, compared to the ns LA, compatible with the size requirements of the printed organic electronics technology. The optimum conditions for the ps LA of Ag in organic solvents include the use of the 355 nm beam at low pulse energy (<1 mJ); these conditions rendered isolated Ag nanoparticles manifesting strong and well defined surface plasmon resonance peak. The use of the secondary ns laser beam was proven to be able to refine the nanoparticles to intermediate size between those produced by the single ns or ps LA.

  6. Pulse-to-pulse interaction analysis and parameter optimization for future-generation ophthalmic laser systems

    NASA Astrophysics Data System (ADS)

    Tinne, N.; Kaune, B.; Bleeker, S.; Lubatschowski, H.; Krüger, A.; Ripken, T.

    2014-02-01

    The immediate pulse-to-pulse interaction becomes more and more important for future-generation high-repetition rate ophthalmic laser systems. Therefore, we investigated the interaction of two laser pulses with different spatial and temporal separation by time-resolved photography. There are various different characteristic interaction mechanisms which are divided into 11 interaction scenarios. Furthermore, the parameter range has been constricted regarding the medical application; here, the efficiency was optimized to a maximum jet velocity along the scanning axis with minimum applied pulse energy as well as unwanted side effects at the same time. In conclusion, these results are of great interest for the prospective optimization of the ophthalmic surgical process with future-generation fs-lasers.

  7. Two-photon fluorescence excitation spectroscopy by pulse shaping ultrabroad-bandwidth femtosecond laser pulses

    SciTech Connect

    Xu Bingwei; Coello, Yves; Lozovoy, Vadim V.; Dantus, Marcos

    2010-11-10

    A fast and automated approach to measuring two-photon fluorescence excitation (TPE) spectra of fluorophores with high resolution ({approx}2 nm ) by pulse shaping ultrabroad-bandwidth femtosecond laser pulses is demonstrated. Selective excitation in the range of 675-990 nm was achieved by imposing a series of specially designed phase and amplitude masks on the excitation pulses using a pulse shaper. The method eliminates the need for laser tuning and is, thus, suitable for non-laser-expert use. The TPE spectrum of Fluorescein was compared with independent measurements and the spectra of the pH-sensitive dye 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) in acidic and basic environments were measured for the first time using this approach.

  8. Intense isolated few-cycle attosecond XUV pulses from overdense plasmas driven by tailored laser pulses

    NASA Astrophysics Data System (ADS)

    Chen, Zi-Yu; Li, Xiao-Ya; Chen, Li-Ming; Li, Yu-Tong; Zhu, Wen-Jun

    2014-06-01

    A method to generate an intense isolated few-cycle attosecond XUV pulse is demonstrated using particle-in-cell simulations. When a tailored laser pulse with a sharp edge irradiates a foil target, a strong transverse net current can be excited, which emits a few-cycle XUV pulse from the target rear side. The isolated pulse is ultrashort in the time domain with a duration of several hundred attoseconds. It also has a narrow bandwidth in the spectral domain compared to other XUV sources of high-order harmonics. It has most energy confined around the plasma frequency and no low-harmonic orders below the plasma frequency. It is also shown that XUV pulse of peak field strength up to $ 8\\times 10^{12} $ V$\\mathrm{m}^{-1}$ can be produced. Without the need for pulse selecting and spectral filtering, such an intense few-cycle XUV pulse is better suited to a number of applications.

  9. Pulsed mononode dye laser developed for a geophysical application

    NASA Technical Reports Server (NTRS)

    Jegou, J. P.; Pain, T.; Megie, G.

    1986-01-01

    Following the extension of the lidar technique in the study of the atmosphere, the necessity of having a high power pulsed laser beam with a narrowed bandwidth and the possibility of selecting a particular wavelength within a certain spectral region arises. With the collaboration of others, a laser cavity using the multiwave Fizeau wedge (MWFW) was developed. Using the classical method of beam amplification with the aid of different stages, a new pulsed dye laser device was designed. The originality resides in the use of reflecting properties of the MFWF. Locally a plan wave coming with a particular angular incidence is reflected with a greater than unity coefficient; this is the consequence of the wedge angle which doubles the participation of every ray in the interferometric process. This dye laser operation and advantages are discussed. The feasibility of different geophysical applications envisageable with this laser is discussed.

  10. Pathogen reduction in human plasma using an ultrashort pulsed laser.

    PubMed

    Tsen, Shaw-Wei D; Kingsley, David H; Kibler, Karen; Jacobs, Bert; Sizemore, Sara; Vaiana, Sara M; Anderson, Jeanne; Tsen, Kong-Thon; Achilefu, Samuel

    2014-01-01

    Pathogen reduction is a viable approach to ensure the continued safety of the blood supply against emerging pathogens. However, the currently licensed pathogen reduction techniques are ineffective against non-enveloped viruses such as hepatitis A virus, and they introduce chemicals with concerns of side effects which prevent their widespread use. In this report, we demonstrate the inactivation of both enveloped and non-enveloped viruses in human plasma using a novel chemical-free method, a visible ultrashort pulsed laser. We found that laser treatment resulted in 2-log, 1-log, and 3-log reductions in human immunodeficiency virus, hepatitis A virus, and murine cytomegalovirus in human plasma, respectively. Laser-treated plasma showed ≥70% retention for most coagulation factors tested. Furthermore, laser treatment did not alter the structure of a model coagulation factor, fibrinogen. Ultrashort pulsed lasers are a promising new method for chemical-free, broad-spectrum pathogen reduction in human plasma. PMID:25372037

  11. Pathogen Reduction in Human Plasma Using an Ultrashort Pulsed Laser

    PubMed Central

    Tsen, Shaw-Wei D.; Kingsley, David H.; Kibler, Karen; Jacobs, Bert; Sizemore, Sara; Vaiana, Sara M.; Anderson, Jeanne; Tsen, Kong-Thon; Achilefu, Samuel

    2014-01-01

    Pathogen reduction is a viable approach to ensure the continued safety of the blood supply against emerging pathogens. However, the currently licensed pathogen reduction techniques are ineffective against non-enveloped viruses such as hepatitis A virus, and they introduce chemicals with concerns of side effects which prevent their widespread use. In this report, we demonstrate the inactivation of both enveloped and non-enveloped viruses in human plasma using a novel chemical-free method, a visible ultrashort pulsed laser. We found that laser treatment resulted in 2-log, 1-log, and 3-log reductions in human immunodeficiency virus, hepatitis A virus, and murine cytomegalovirus in human plasma, respectively. Laser-treated plasma showed ≥70% retention for most coagulation factors tested. Furthermore, laser treatment did not alter the structure of a model coagulation factor, fibrinogen. Ultrashort pulsed lasers are a promising new method for chemical-free, broad-spectrum pathogen reduction in human plasma. PMID:25372037

  12. Precisely tunable, narrow-band pulsed dye laser

    SciTech Connect

    Bhatia, P.S.; Keto, J.W.

    1996-07-01

    A narrow-band, precisely tunable dye laser pumped by an injection-seeded YAG laser is described. The laser achieves an output of 100 mJ/pulse and 40{percent} efficiency when one uses Rhodamine 6G dyes. The output pulse is Gaussian both in time and spatial profile. The laser oscillator employs an intracavity {acute e}talon that is repetitively pressure scanned over one free spectral range while the grating successively steps to consecutive {acute e}talon modes. We pressure scanned the {acute e}talon under computer control using a bellows. Methods are described for calibrating the tuning elements for absolute precision. We demonstrated that the laser has an absolute precision of {plus_minus}0.4 pm over a 1.0-nm scan. This accuracy is achievable over the wavelength range of a dye. {copyright} {ital 1996 Optical Society of America.}

  13. Experimental investigation of a unique airbreathing pulsed laser propulsion concept

    NASA Technical Reports Server (NTRS)

    Myrabo, L. N.; Nagamatsu, H. T.; Manka, C.; Lyons, P. W.; Jones, R. A.

    1991-01-01

    Investigations were conducted into unique methods of converting pulsed laser energy into propulsive thrust across a flat impulse surface under atmospheric conditions. The propulsion experiments were performed with a 1-micron neodymium-glass laser at the Space Plasma Branch of the Naval Research Laboratory. Laser-induced impulse was measured dynamically by ballistic pendulums and statically using piezoelectric pressure transducers on a stationary impulse surface. The principal goal was to explore methods for increasing the impulse coupling performance of airbreathing laser-propulsion engines. A magnetohydrodynamic thrust augmentation effect was discovered when a tesla-level magnetic field was applied perpendicular to the impulse surface. The impulse coupling coefficient performance doubled and continued to improve with increasing laser-pulse energies. The resultant performance of 180 to 200 N-s/MJ was found to be comparable to that of the earliest afterburning turbojets.

  14. Components for monolithic fiber chirped pulse amplification laser systems

    NASA Astrophysics Data System (ADS)

    Swan, Michael Craig

    The first portion of this work develops techniques for generating femtosecond-pulses from conventional fabry-perot laser diodes using nonlinear-spectral-broadening techniques in Yb-doped positive dispersion fiber ampliers. The approach employed an injection-locked fabry-perot laser diode followed by two stages of nonlinear-spectral-broadening to generate sub-200fs pulses. This thesis demonstrated that a 60ps gain-switched fabry-perot laser-diode can be injection-locked to generate a single-longitudinal-mode pulse and compressed by nonlinear spectral broadening to 4ps. Two problems have been identified that must be resolved before moving forward with this approach. First, gain-switched pulses from a standard diode-laser have a number of characteristics not well suited for producing clean self-phase-modulation-broadened pulses, such as an asymmetric temporal shape, which has a long pulse tail. Second, though parabolic pulse formation occurs for any arbitrary temporal input pulse profile, deviation from the optimum parabolic input results in extensively spectrally modulated self-phase-modulation-broadened pulses. In conclusion, the approach of generating self-phase-modulation-broadened pulses from pulsed laser diodes has to be modified from the initial approach explored in this thesis. The first Yb-doped chirally-coupled-core ber based systems are demonstrated and characterized in the second portion of this work. Robust single-mode performance independent of excitation or any other external mode management techniques have been demonstrated in Yb-doped chirally-coupled-core fibers. Gain and power efficiency characteristics are not compromised in any way in this novel fiber structure up to the 87W maximum power achieved. Both the small signal gain at 1064nm of 30.3dB, and the wavelength dependence of the small signal gain were comparable to currently deployed large-mode-area-fiber technology. The efficiencies of the laser and amplifier were measured to be 75% and 54

  15. Computational modeling of laser-plasma interactions: pulse self-modulation and energy transfer between intersecting laser pulses.

    PubMed

    Kupfer, Rotem; Barmashenko, Boris; Bar, Ilana

    2013-07-01

    The nonlinear interaction of intense femtosecond laser pulses with a self-induced plasma channel in air and the energy transfer between two intersecting laser pulses were simulated using the finite-difference time-domain particle-in-cell method. Implementation of a simple numerical code enabled modeling of various phenomena, including pulse self-modulation in the spatiotemporal and spectral domains, conical emission, and energy transfer between two intersecting laser beams. The mechanism for energy transfer was found to be related to a plasma waveguide array induced by Moiré patterns of the interfering electric fields. The simulation results provide a persuasive replication and explanation of previous experimental results, when carried out under comparable physical conditions, and lead to prediction of others. This approach allows us to further examine the effect of the laser and plasma parameters on the simulation results and to investigate the underlying physics. PMID:23944583

  16. Computational modeling of laser-plasma interactions: Pulse self-modulation and energy transfer between intersecting laser pulses

    NASA Astrophysics Data System (ADS)

    Kupfer, Rotem; Barmashenko, Boris; Bar, Ilana

    2013-07-01

    The nonlinear interaction of intense femtosecond laser pulses with a self-induced plasma channel in air and the energy transfer between two intersecting laser pulses were simulated using the finite-difference time-domain particle-in-cell method. Implementation of a simple numerical code enabled modeling of various phenomena, including pulse self-modulation in the spatiotemporal and spectral domains, conical emission, and energy transfer between two intersecting laser beams. The mechanism for energy transfer was found to be related to a plasma waveguide array induced by Moiré patterns of the interfering electric fields. The simulation results provide a persuasive replication and explanation of previous experimental results, when carried out under comparable physical conditions, and lead to prediction of others. This approach allows us to further examine the effect of the laser and plasma parameters on the simulation results and to investigate the underlying physics.

  17. Temporal pulse cleaning by a self-diffraction process for ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Xie, Na; Zhou, Kainan; Sun, Li; Wang, Xiaodong; Guo, Yi; Li, Qing; Su, Jingqin

    2014-11-01

    Applying the self-diffraction process to clean ultrashort laser pulses temporally is a recently developed effective way to temporal contrast enhancement. In this paper, we attempt to clean ultrashort laser pulses temporally by the self-diffraction process. Experiments were carried out to study the temporal contrast improvement in the front-end system of an ultraintense and ultrashort laser facility, i.e. the super intense laser for experiment on the extremes (SILEX-I). The results show that the maximum conversion efficiency of the first-order self-diffraction (SD1) pulse is 11%. The temporal contrast of the SD1 signal is improved by two orders of magnitude, i.e. to 103, for a 2.4-ns prepulse with initial contrast of ~10. For a 5.5 -ns prepulse with initial contrast of 2×103, the temporal contrast of the SD1 signal is improved by more than three orders of magnitude.

  18. Investigation of Early Plasma Evolution Induced by Ultrashort Laser Pulses

    PubMed Central

    Hu, Wenqian; Shin, Yung C.; King, Galen B.

    2012-01-01

    Early plasma is generated owing to high intensity laser irradiation of target and the subsequent target material ionization. Its dynamics plays a significant role in laser-material interaction, especially in the air environment1-11. Early plasma evolution has been captured through pump-probe shadowgraphy1-3 and interferometry1,4-7. However, the studied time frames and applied laser parameter ranges are limited. For example, direct examinations of plasma front locations and electron number densities within a delay time of 100 picosecond (ps) with respect to the laser pulse peak are still very few, especially for the ultrashort pulse of a duration around 100 femtosecond (fs) and a low power density around 1014 W/cm2. Early plasma generated under these conditions has only been captured recently with high temporal and spatial resolutions12. The detailed setup strategy and procedures of this high precision measurement will be illustrated in this paper. The rationale of the measurement is optical pump-probe shadowgraphy: one ultrashort laser pulse is split to a pump pulse and a probe pulse, while the delay time between them can be adjusted by changing their beam path lengths. The pump pulse ablates the target and generates the early plasma, and the probe pulse propagates through the plasma region and detects the non-uniformity of electron number density. In addition, animations are generated using the calculated results from the simulation model of Ref. 12 to illustrate the plasma formation and evolution with a very high resolution (0.04 ~ 1 ps). Both the experimental method and the simulation method can be applied to a broad range of time frames and laser parameters. These methods can be used to examine the early plasma generated not only from metals, but also from semiconductors and insulators. PMID:22806170

  19. Plasma mediated ablation of biological tissues with ultrashort laser pulses

    SciTech Connect

    Oraevsky, A.A. |; DaSilva, L.B.; Feit, M.D.

    1995-03-08

    Plasma mediated ablation of collagen gels and porcine cornea was studied at various laser pulse durations in the range from 350 fs to 1 ns at 1,053 nm wavelength. A time resolved stress detection technique was employed to measure transient stress profiles and amplitudes. Optical microscopy was used to characterize ablation craters qualitatively, while a wide band acoustic transducer helped to quantify tissue mechanical response and the ablation threshold. The ablation threshold was measured as a function of laser pulse duration and linear absorption coefficient. For nanosecond pulses the ablation threshold was found to have a strong dependence on the linear absorption coefficient of the material. As the pulse length decreased into the subpicosecond regime the ablation threshold became insensitive to the linear absorption coefficient. The ablation efficiency was found to be insensitive to both the laser pulse duration and the linear absorption coefficient. High quality ablation craters with no thermal or mechanical damage to surrounding material were obtained with 350 fs laser pulses. The mechanism of optical breakdown at the tissue surface was theoretically investigated. In the nanosecond regime, optical breakdown proceeds as an electron collisional avalanche ionization initiated by thermal seed electrons. These seed electrons are created by heating of the tissue by linear absorption. In the ultrashort pulse range, optical breakdown is initiated by the multiphoton ionization of the irradiated medium (6 photons in case of tissue irradiated at 1,053 nm wavelength), and becomes less sensitive to the linear absorption coefficient. The energy deposition profile is insensitive to both the laser pulse duration and the linear absorption coefficient.

  20. Short-pulse laser removal of organic coatings

    NASA Astrophysics Data System (ADS)

    Walters, Craig T.

    2000-08-01

    A major problem in the regular maintenance of aerospace systems is the removal of paint and other protective coatings from surfaces without polluting the atmosphere or endangering workers. Recent research has demonstrated that many organic coatings can be removed from surfaces efficiently using short laser pulses without the use of any chemical agents. The lasers employed in this study were repetitively-pulsed neodymium YAG devices operating at 1064 nm (15 - 30 ns, 10 - 20 Hz). The efficiency of removal can be cast in terms of an effective heat of ablation, Q* (kJ of laser energy incident per g of paint removed), although, for short pulses, the mechanism of removal is believed to be dominated more by thermo- mechanical or shock effects than by photo-ablation. Q* data were collected as a function of pulse fluence for several paint types. For many paint types, there was a fairly sharp threshold fluence per pulse near 1 J/cm2, above which Q* values dropped to levels which were a factor of four lower than those observed for long- pulse or continuous laser ablation of paint. In this regime, the coating is removed in fairly large particles or, in the case of one paint, the entire thickness of the coating was removed over the exposed area in one pulse. Hardware for implementing short-pulse laser paint stripping in the field is under development and will be highlighted in the presentation. Practical paint stripping rates achieved using the prototype hardware are presented for several paint types.