Science.gov

Sample records for 36-amino acid peptide

  1. Protection efficacy of the Brucella abortus ghost vaccine candidate lysed by the N-terminal 24-amino acid fragment (GI24) of the 36-amino acid peptide PMAP-36 (porcine myeloid antimicrobial peptide 36) in murine models

    PubMed Central

    KWON, Ae Jeong; MOON, Ja Young; KIM, Won Kyong; KIM, Suk; HUR, Jin

    2016-01-01

    Brucella abortus cells were lysed by the N-terminal 24-amino acid fragment (GI24) of the 36-amino acid peptide PMAP-36 (porcine myeloid antimicrobial peptide 36). Next, the protection efficacy of the lysed fragment as a vaccine candidate was evaluated. Group A mice were immunized with sterile PBS, group B mice were intraperitoneally (ip) immunized with 3 × 108 colony-forming units (CFUs) of B. abortus strain RB51, group C mice were immunized ip with 3 × 108 cells of the B. abortus vaccine candidate, and group D mice were orally immunized with 3 × 109 cells of the B. abortus vaccine candidate. Brucella lipopolysaccharide (LPS)-specific serum IgG titers were considerably higher in groups C and D than in group A. The levels of interleukin (IL)-4, IL-10, tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ) were significantly higher in groups B–D than in group A. After an ip challenge with B. abortus 544, only group C mice showed a significant level of protection as compared to group A. Overall, these results show that ip immunization with a vaccine candidate lysed by GI24 can effectively protect mice from systemic infection with virulent B. abortus. PMID:27349900

  2. Borinic acid catalysed peptide synthesis.

    PubMed

    El Dine, Tharwat Mohy; Rouden, Jacques; Blanchet, Jérôme

    2015-11-18

    The catalytic synthesis of peptides is a major challenge in the modern organic chemistry hindered by the well-established use of stoichiometric coupling reagents. Herein, we describe for the first time that borinic acid is able to catalyse this reaction under mild conditions with an improved activity compared to our recently developed thiophene-based boronic acid. This catalyst is particularly efficient for peptide bond synthesis affording dipeptides in good yields without detectable racemization.

  3. Nanotechnology for delivery of peptide nucleic acids (PNAs).

    PubMed

    Gupta, Anisha; Bahal, Raman; Gupta, Meera; Glazer, Peter M; Saltzman, W Mark

    2016-10-28

    Over the past three decades, peptide nucleic acids have been employed in numerous chemical and biological applications. Peptide nucleic acids possess enormous potential because of their superior biophysical properties, compared to other oligonucleotide chemistries. However, for therapeutic applications, intracellular delivery of peptide nucleic acids remains a challenge. In this review, we summarize the progress that has been made in delivering peptide nucleic acids to intracellular targets. In addition, we emphasize recent nanoparticle-based strategies for efficient delivery of conventional and chemically-modified peptides nucleic acids.

  4. Glutamic Acid Selective Chemical Cleavage of Peptide Bonds.

    PubMed

    Nalbone, Joseph M; Lahankar, Neelam; Buissereth, Lyssa; Raj, Monika

    2016-03-04

    Site-specific hydrolysis of peptide bonds at glutamic acid under neutral aqueous conditions is reported. The method relies on the activation of the backbone amide chain at glutamic acid by the formation of a pyroglutamyl (pGlu) imide moiety. This activation increases the susceptibility of a peptide bond toward hydrolysis. The method is highly specific and demonstrates broad substrate scope including cleavage of various bioactive peptides with unnatural amino acid residues, which are unsuitable substrates for enzymatic hydrolysis.

  5. Fmoc/Trt-amino acids: comparison to Fmoc/tBu-amino acids in peptide synthesis.

    PubMed

    Barlos, K; Gatos, D; Koutsogianni, S

    1998-03-01

    Model peptides containing the nucleophilic amino acids Trp and Met have been synthesized with the application of Fmoc/Trt- and Fmoc/tBu-amino acids, for comparison. The deprotection of the peptides synthesized using Fmoc/Trt-amino acids in all cases leads to crude peptides of higher purity than that of the same peptides synthesized using Fmoc/tBu-amino acids.

  6. Peptide and amino acid separation with nanofiltration membranes

    SciTech Connect

    Tsuru, Toshinori; Shutou, Takatoshi; Nakao, Shin-Ichi; Kimura, Shoji )

    1994-05-01

    Several nanofiltration membranes [UTC-20, 60 (Toray Industries), NF-40 (Film-Tech Corporation), Desal-5, G-20 (Desalination Systems), and NTR-7450 (Nitto Electric Industrial Co.)] were applied to separate amino acids and peptides on the basis of charge interaction with the membranes since most of them contain charged functional groups. Nanofiltration membranes having a molecular weight cutoff (MWCO) below 300 (UTC-20, 60, NF-40 and Desal-5) were not suitable for separation of amino acids. On the other hand, separation of amino acids and peptides with nanofiltration membranes having a MWCO around 2000-3000 (NTR-7450 and G-20) was satisfactory based on a charge effect mechanism; charged amino acids and peptides were rejected while neutral amino acids and peptides permeated through the membranes. Separation of peptides having different isoelectric points with nanofiltration membranes was possible by adjusting the pH. 15 refs., 11 figs., 4 tabs.

  7. BIOACTIVE PROTEINS, PEPTIDES, AND AMINO ACIDS FROM MACROALGAE(1).

    PubMed

    Harnedy, Pádraigín A; FitzGerald, Richard J

    2011-04-01

    Macroalgae are a diverse group of marine organisms that have developed complex and unique metabolic pathways to ensure survival in highly competitive marine environments. As a result, these organisms have been targeted for mining of natural biologically active components. The exploration of marine organisms has revealed numerous bioactive compounds that are proteinaceous in nature. These include proteins, linear peptides, cyclic peptides and depsipeptides, peptide derivatives, amino acids, and amino acid-like components. Furthermore, some species of macroalgae have been shown to contain significant levels of protein. While some protein-derived bioactive peptides have been characterized from macroalgae, macroalgal proteins currently still represent good candidate raw materials for biofunctional peptide mining. This review will provide an overview of the important bioactive amino-acid-containing compounds that have been identified in macroalgae. Moreover, the potential of macroalgal proteins as substrates for the generation of biofunctional peptides for utilization as functional foods to provide specific health benefits will be discussed.

  8. Fatty acid conjugation enhances the activities of antimicrobial peptides.

    PubMed

    Li, Zhining; Yuan, Penghui; Xing, Meng; He, Zhumei; Dong, Chuanfu; Cao, Yongchang; Liu, Qiuyun

    2013-04-01

    Antimicrobial peptides are small molecules that play a crucial role in innate immunity in multi-cellular organisms, and usually expressed and secreted constantly at basal levels to prevent infection, but local production can be augmented upon an infection. The clock is ticking as rising antibiotic abuse has led to the emergence of many drug resistance bacteria. Due to their broad spectrum antibiotic and antifungal activities as well as anti-viral and anti-tumor activities, efforts are being made to develop antimicrobial peptides into future microbial agents. This article describes some of the recent patents on antimicrobial peptides with fatty acid conjugation. Potency and selectivity of antimicrobial peptide can be modulated with fatty acid tails of variable length. Interaction between membranes and antimicrobial peptides was affected by fatty acid conjugation. At concentrations above the critical miscelle concentration (CMC), propensity of solution selfassembly hampered binding of the peptide to cell membranes. Overall, fatty acid conjugation has enhanced the activities of antimicrobial peptides, and occasionally it rendered inactive antimicrobial peptides to be bioactive. Antimicrobial peptides can not only be used as medicine but also as food additives.

  9. Amino Acid and Peptide Immobilization on Oxidized Nanocellulose: Spectroscopic Characterization

    PubMed Central

    Barazzouk, Saïd; Daneault, Claude

    2012-01-01

    In this work, oxidized nanocellulose (ONC) was synthesized and chemically coupled with amino acids and peptides using a two step coupling method at room temperature. First, ONC was activated by N-ethyl-N’-(3-dimethylaminopropyl) carbodiimide hydrochloride, forming a stable active ester in the presence of N-hydroxysuccinimide. Second, the active ester was reacted with the amino group of the amino acid or peptide, forming an amide bond between ONC and the grafted molecule. Using this method, the intermolecular interaction of amino acids and peptides was avoided and uniform coupling of these molecules on ONC was achieved. The coupling reaction was very fast in mild conditions and without alteration of the polysaccharide. The coupling products (ONC-amino acids and ONC-peptides) were characterized by transmission electron microscopy and by the absorption, emission, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) spectroscopic techniques.

  10. Peptide nucleic acid probes with charged photocleavable mass markers

    PubMed Central

    Ball, Rachel J; Green, Philip S; Gale, Nittaya; Langley, G John

    2010-01-01

    Halogen-labelled peptide organic acid (HPOA) monomers have been synthesised and incorporated into sequence-specific peptide nucleic acid (PNA) probes. Three different types of probe have been prepared; the unmodified PNA probe, the PNA probe with a mass marker, and the PNA probe with photocleavable mass marker. All three types of probe have been used in model studies to develop a mass spectrometry-based hybridisation assay for detection of point mutations in DNA. PMID:21687524

  11. Fragmentation reactions of deprotonated peptides containing aspartic acid

    NASA Astrophysics Data System (ADS)

    Harrison, Alex G.; Young, Alex B.

    2006-09-01

    The fragmentation reactions of deprotonated peptides containing aspartic acid have been elucidated using MS2 and MS3 experiments and accurate mass measurements where necessary. The disposition of labile (N and O bonded) hydrogens in the fragmentation products has been studied by exchanging the labile hydrogens for deuterium whereby the [MD]- ion is formed on electrospray ionization. [alpha]-Aspartyl and [beta]-aspartyl dipeptides give very similar fragment ion spectra on collisional activation, involving for both species primarily formation of the y1 ion and loss of H2O from [MH]- followed by further fragmentation, thus precluding the distinction of the isomeric species by negative ion tandem mass spectrometry. Dipeptides of sequence HXxxAspOH give characteristic spectra different from the [alpha]- and [beta]-isomers. For larger peptides containing aspartic acid a common fragmentation reaction involves nominal cleavage of the NC bond N-terminal to the aspartic acid residue to form a c ion (deprotonated amino acid amide (c1) or peptide amide (cn)) and the complimentary product involving elimination of a neutral amino acid amide or peptide amide. When aspartic acid is in the C-terminal position this fragmentation reaction occurs from the [MH]- ion while when the aspartic acid is not in the C-terminal position the fragmentation reaction occurs mainly from the [MHH2O]- ion. The products of this NC bond cleavage reaction serve to identify the position of the aspartic acid residue in the peptide.

  12. Histidine-lysine peptides as carriers of nucleic acids.

    PubMed

    Leng, Qixin; Goldgeier, Lisa; Zhu, Jingsong; Cambell, Patricia; Ambulos, Nicholas; Mixson, A James

    2007-03-01

    With their biodegradability and diversity of permutations, peptides have significant potential as carriers of nucleic acids. This review will focus on the sequence and branching patterns of peptide carriers composed primarily of histidines and lysines. While lysines within peptides are important for binding to the negatively charged phosphates, histidines are critical for endosomal lysis enabling nucleic acids to reach the cytosol. Histidine-lysine (HK) polymers by either covalent or ionic bonds with liposomes augment transfection compared to liposome carriers alone. More recently, we have examined peptides as sole carriers of nucleic acids because of their intrinsic advantages compared to the bipartite HK/liposome carriers. With a protocol change and addition of a histidine-rich tail, HK peptides as sole carriers were more effective than liposomes alone in several cell lines. While four-branched polymers with a primary repeating sequence pattern of -HHK- were more effective as carriers of plasmids, eight-branched polymers with a sequence pattern of -HHHK- were more effective as carriers of siRNA. Compared to polyethylenimine, HK carriers of siRNA and plasmids had reduced toxicity. When injected intravenously, HK polymers in complex with plasmids encoding antiangiogenic proteins significantly decreased tumor growth. Furthermore, modification of HK polymers with polyethylene glycol and vascular-specific ligands increased specificity of the polyplex to the tumor by more than 40-fold. Together with further development and insight on the structure of HK polyplexes, HK peptides may prove to be useful as carriers of different forms of nucleic acids both in vitro and in vivo.

  13. Chiral separation of amino acids and peptides by capillary electrophoresis.

    PubMed

    Wan, H; Blomberg, L G

    2000-04-14

    Chiral separation of amino acids and peptides by capillary electrophoresis (CE) is reviewed regarding the separation principles of different approaches, advantages and limitations, chiral recognition mechanisms and applications. The direct approach details various chiral selectors with an emphasis on cyclodextrins and their derivatives, antibiotics and chiral surfactants as the chiral selectors. The indirect approach deals with various chiral reagents applied for diastereomer formation and types of separation media such as micelles and polymeric pseudo-stationary phases. Many derivatization reagents used for high sensitivity detection of amino acids and peptides are also discussed and their characteristics are summarized in tables. A large number of relevant examples is presented illustrating the current status of enantiomeric and diastereomeric separation of amino acids and peptides. Strategies to enhance the selectivity and optimize separation parameters by the application of experimental designs are described. The reversal of enantiomeric elution order and the effects of organic modifiers on the selectivity are illustrated in both direct and indirect methods. Some applications of chiral amino acid and peptide analysis, in particular, regarding the determination of trace enantiomeric impurities, are given. This review selects more than 200 articles published between 1988 and 1999.

  14. How Amino Acids and Peptides Shaped the RNA World

    PubMed Central

    van der Gulik, Peter T.S.; Speijer, Dave

    2015-01-01

    The “RNA world” hypothesis is seen as one of the main contenders for a viable theory on the origin of life. Relatively small RNAs have catalytic power, RNA is everywhere in present-day life, the ribosome is seen as a ribozyme, and rRNA and tRNA are crucial for modern protein synthesis. However, this view is incomplete at best. The modern protein-RNA ribosome most probably is not a distorted form of a “pure RNA ribosome” evolution started out with. Though the oldest center of the ribosome seems “RNA only”, we cannot conclude from this that it ever functioned in an environment without amino acids and/or peptides. Very small RNAs (versatile and stable due to basepairing) and amino acids, as well as dipeptides, coevolved. Remember, it is the amino group of aminoacylated tRNA that attacks peptidyl-tRNA, destroying the bond between peptide and tRNA. This activity of the amino acid part of aminoacyl-tRNA illustrates the centrality of amino acids in life. With the rise of the “RNA world” view of early life, the pendulum seems to have swung too much towards the ribozymatic part of early biochemistry. The necessary presence and activity of amino acids and peptides is in need of highlighting. In this article, we try to bring the role of the peptide component of early life back into focus. We argue that an RNA world completely independent of amino acids never existed. PMID:25607813

  15. The bioactive acidic serine- and aspartate-rich motif peptide.

    PubMed

    Minamizaki, Tomoko; Yoshiko, Yuji

    2015-01-01

    The organic component of the bone matrix comprises 40% dry weight of bone. The organic component is mostly composed of type I collagen and small amounts of non-collagenous proteins (NCPs) (10-15% of the total bone protein content). The small integrin-binding ligand N-linked glycoprotein (SIBLING) family, a NCP, is considered to play a key role in bone mineralization. SIBLING family of proteins share common structural features and includes the arginine-glycine-aspartic acid (RGD) motif and acidic serine- and aspartic acid-rich motif (ASARM). Clinical manifestations of gene mutations and/or genetically modified mice indicate that SIBLINGs play diverse roles in bone and extraskeletal tissues. ASARM peptides might not be primary responsible for the functional diversity of SIBLINGs, but this motif is suggested to be a key domain of SIBLINGs. However, the exact function of ASARM peptides is poorly understood. In this article, we discuss the considerable progress made in understanding the role of ASARM as a bioactive peptide.

  16. Kojic Acid Peptide: A New Compound with Anti-Tyrosinase Potential

    PubMed Central

    Singh, Birendra Kumar; Park, Seok Hoon; Lee, Hyang-Bok; Goo, Young-Aae; Kim, Hyoung Shik; Cho, Seung Hee; Lee, Jeong Hun; Ahn, Ghe Whan; Kim, Jin Pyo; Kang, Su Myoung

    2016-01-01

    Background Kojic acid was used for decades in the cosmetic industry as an antimelanogenic agent. However, there are two major drawbacks of Kojic acid, one is cytotoxicity and second are instability on storage. These limitations led the scientist to synthesize the active Kojic acid peptides. Objective In the present study, we synthesize and investigate the effect of five Kojic acid peptides to overcome the limitation of Kojic acid. Methods The peptide was analyzed and purified by high-performance liquid chromatography and matrix-assisted laser desorption ionization time of flight mass spectroscopy. Further, the tyrosinase activities of the Kojic acid and Kojic acid peptides were compared. The toxicity was measured and the melanin content is recorded in B16F10 mouse melanoma cells. Results Maximum tyrosinase activity was measured by Kojic acid peptides. Therefore, Kojic acid peptides were subjected to melanin assay and cytotoxicity assay and finally the stability of the Kojic acid peptide was measured. Conclusion It was observed that this newly synthesized Kojic acid peptide is stable and potent to inhibit the tyrosinase activity and melanin content of B16F10 mouse melanoma cells without exhibiting cell toxicity. Together, these preliminary results suggest that a further exploration is being needed to establish Kojic acid peptide as antimelanogenic agent. PMID:27746633

  17. The nature of peptide interactions with acid end-group PLGAs and facile aqueous-based microencapsulation of therapeutic peptides

    PubMed Central

    Sophocleous, Andreas M.; Desai, Kashappa-Goud H.; Mazzara, J. Maxwell; Tong, Ling; Cheng, Ji-Xin; Olsen, Karl F.; Schwendeman, Steven P.

    2013-01-01

    An important poorly understood phenomenon in controlled-release depots involves the strong interaction between common cationic peptides and low Mw free acid end-group poly(lactic-co-glycolic acids) (PLGAs) used to achieve continuous peptide release kinetics. The kinetics of peptide sorption to PLGA was examined by incubating peptide solutions of 0.2-4 mM octreotide or leuprolide acetate salts in 0.1 M HEPES buffer, pH 7.4, with polymer particles or films at 4-37 °C for 24 h. The extent of absorption/loading of peptides in PLGA particles/films was assayed by two-phase extraction and amino acid analysis. Confocal Raman microspectroscopy and stimulated Raman scattering (SRS) and laser scanning confocal imaging techniques were used to examine peptide penetration in the polymer phase. The release of sorbed peptide from leuprolide-PLGA particles was evaluated both in vitro (PBST + 0.02% sodium azide, 37 °C) and in vivo (male Sprague-Dawley rats). We found that when the PLGA-COOH chains are sufficiently mobilized, therapeutic peptides not only bind at the surface, a common belief to date, but can also internalized and distributed throughout the polymer phase at physiological temperature forming a salt with low-molecular weight PLGA-COOH. Importantly, absorption of leuprolide into low MW PLGA-COOH particles yielded ~17 wt% leuprolide loading in the polymer (i.e., ~70% of PLGA-COOH acids occupied), and the absorbed peptide was released from the polymer for > 2 weeks in a controlled fashion in vitro and as indicated by sustained testosterone suppression in male Sprague-Dawley rats. This new approach, which bypasses the traditional encapsulation method and associated production cost, opens up the potential for facile production of low-cost controlled-release injectable depots for leuprolide and related peptides. PMID:24021356

  18. Molecular self-assembly using peptide nucleic acids.

    PubMed

    Berger, Or; Gazit, Ehud

    2017-01-01

    Peptide nucleic acids (PNAs) are extensively studied for the control of genetic expression since their design in the 1990s. However, the application of PNAs in nanotechnology is much more recent. PNAs share the specific base-pair recognition characteristic of DNA together with material-like properties of polyamides, both proteins and synthetic polymers, such as Kevlar and Nylon. The first application of PNA was in the form of PNA-amphiphiles, resulting in the formation of either lipid integrated structures, hydrogels or fibrillary assemblies. Heteroduplex DNA-PNA assemblies allow the formation of hybrid structures with higher stability as compared with pure DNA. A systematic screen for minimal PNA building blocks resulted in the identification of guanine-containing di-PNA assemblies and protected guanine-PNA monomer spheres showing unique optical properties. Finally, the co-assembly of PNA with thymine-like three-faced cyanuric acid allowed the assembly of poly-adenine PNA into fibers. In summary, we believe that PNAs represent a new and important family of building blocks which converges the advantages of both DNA- and peptide-nanotechnologies.

  19. Amino acid sequence of atrial natriuretic peptides in human coronary sinus plasma.

    PubMed

    Yandle, T; Crozier, I; Nicholls, G; Espiner, E; Carne, A; Brennan, S

    1987-07-31

    Two atrial natriuretic peptides were purified from pooled human coronary sinus plasma by Sep-Pak extraction, immunoaffinity chromatography and reverse phase HPLC. The amino acid sequences of the two peptides were homologous with 99-126 human atrial natriuretic peptide (hANP) and 106-126 hANP, the latter being most probably linked to 99-105 ANP by the disulphide bond. The molar ratio of the peptides in plasma, as assessed by radioimmunoassay was 10:3.

  20. Di-heterometalation of thiol-functionalized peptide nucleic acids

    PubMed Central

    Joshi, Tanmaya; Patra, Malay; Spiccia, Leone; Gasser, Gilles

    2013-01-01

    As a proof-of-principle, two hetero-bimetallic PNA oligomers containing a ruthenium(II) polypyridyl and a cyclopentadienyl manganese tricarbonyl complex have been prepared by serial combination of solid-phase peptide coupling and in-solution thiol chemistry. Solid-phase N-terminus attachment of Ru(II)-polypyridyl carboxylic acid derivative, C1, onto the thiol-functionalized PNA backbone (H-a-a-g-t-c-t-g-c-linker-cys-NH2) has been performed by standard peptide coupling method. As two parallel approaches, the strong affinity of thiols for maleimide and haloacetyl group has been exploited for subsequent post-SPPS addition of cymantrene-based organometallic cores, C2 and C3. Michael-like addition and thioether ligation of thiol functionalized PNA1 (H-gly-a-a-g-t-c-t-g-c-linker-cys-NH2) and PNA2 (C1-a-a-g-t-c-t-g-c-linker-cys-NH2) to cymantrene maleimide and chloroacetyl derivatives, C2 and C3, respectively, has been performed. The synthesized ruthenium(II)-cymantrenyl PNA oligomers have been characterized by mass spectrometry (ESI-MS) and IR spectroscopy. The distinct Mn-CO vibrational IR stretches, between 1,924–2,074 cm−1, have been used as markers to confirm the presence of cymantrenyl units in the PNA sequences and the purity of the HPLC-purified PNA thioethers assessed using LC-MS. PMID:23422249

  1. Synthesis of hybrid hydrazino peptides: protected vs unprotected chiral α-hydrazino acids.

    PubMed

    Suć, Josipa; Jerić, Ivanka

    2015-01-01

    Peptidomimetics based on hydrazino derivatives of α-amino acids represent an important class of peptidic foldamers with promising biological activities, like protease inhibition and antimicrobial activity. However, the lack of straightforward method for the synthesis of optically pure hydrazino acids and efficient incorporation of hydrazino building blocks into peptide sequence hamper wider exploitation of hydrazino peptidomimetics. Here we described the utility of N (α)-benzyl protected and unprotected hydrazino derivatives of natural α-amino acids in synthesis of peptidomimetics. While incorporation of N (α)-benzyl-hydrazino acids into peptide chain and deprotection of benzyl moiety proceeded with difficulties, unprotected hydrazino acids allowed fast and simple construction of hybrid peptidomimetics.

  2. Pyrrolidinyl peptide nucleic acid homologues: effect of ring size on hybridization properties.

    PubMed

    Mansawat, Woraluk; Vilaivan, Chotima; Balázs, Árpád; Aitken, David J; Vilaivan, Tirayut

    2012-03-16

    The effect of ring size of four- to six-membered cyclic β-amino acid on the hybridization properties of pyrrolidinyl peptide nucleic acid with an alternating α/β peptide backbone is reported. The cyclobutane derivatives (acbcPNA) show the highest T(m) and excellent specificity with cDNA and RNA.

  3. New mechanisms that regulate Saccharomyces cerevisiae short peptide transporter achieve balanced intracellular amino acid concentrations.

    PubMed

    Melnykov, Artem V

    2016-01-01

    The budding yeast Saccharomyces cerevisiae is able to take up large quantities of amino acids in the form of di- and tripeptides via a short peptide transporter, Ptr2p. It is known that PTR2 can be induced by certain peptides and amino acids, and the mechanisms governing this upregulation are understood at the molecular level. We describe two new opposing mechanisms of regulation that emphasize potential toxicity of amino acids: the first is upregulation of PTR2 in a population of cells, caused by amino acid secretion that accompanies peptide uptake; the second is loss of Ptr2p activity, due to transporter internalization following peptide uptake. Our findings emphasize the importance of proper amino acid balance in the cell and extend understanding of peptide import regulation in yeast.

  4. Desalted duck egg white peptides promote calcium uptake by counteracting the adverse effects of phytic acid.

    PubMed

    Hou, Tao; Liu, Weiwei; Shi, Wen; Ma, Zhili; He, Hui

    2017-03-15

    The structure of the desalted duck egg white peptides-calcium chelate was characterized by fluorescence spectroscopy, fourier transform infrared spectroscopy, and dynamic light scattering. Characterization results showed structural folding and aggregation of amino acids or oligopeptides during the chelation process. Desalted duck egg white peptides enhanced the calcium uptake in the presence of oxalate, phosphate and zinc ions in Caco-2 monolayers. Animal model indicated that desalted duck egg white peptides effectively enhanced the mineral absorption and counteracted the deleterious effects of phytic acid. These findings suggested that desalted duck egg white peptides might promote calcium uptake in three pathways: 1) desalted duck egg white peptides bind with calcium to form soluble chelate and avoid precipitate; 2) the chelate is absorbed as small peptides by enterocyte; and 3) desalted duck egg white peptides regulate the proliferation and differentiation of enterocytes through the interaction with transient receptor potential vanilloid 6 calcium channel.

  5. Comparative studies of adhesion peptides based on l- or d-amino acids.

    PubMed

    Nikitin, Sergey; Palmer, Daniel; Meldal, Morten; Diness, Frederik

    2016-10-01

    Detailed studies comparing solid-supported l- or d-amino acid adhesion peptides based on the sequence KLHRIRA were performed. Stability towards proteases and levels of cellular adhesion to the otherwise inert surface of PEGA resin were compared by using fluorescently labelled peptides. A clear difference in the peptide stability towards cleavage by subtilisin, trypsin, or papain was observed. However, all of the on-bead peptides provided an optimal surface for cell adhesion and proliferation. In long-term experiments, these properties were still found to be similar on the resins modified either with l- or with d-amino acids and unaffected by the nature of their fluorescence labelling at either terminus. These results support that the more accessible l-amino acids can be utilized for cell adhesion experiments and confirm the nonspecific interaction mechanism of cell binding to these peptides on the bead surface. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  6. Mutual Amino Acid Catalysis in Salt-Induced Peptide Formation Supports this Mechanism's Role in Prebiotic Peptide Evolution

    NASA Astrophysics Data System (ADS)

    Suwannachot, Yuttana; Rode, Bernd M.

    1999-10-01

    The presence of some amino acids and dipeptides under the conditions of the salt-induced peptide formation reaction (aqueous solution at 85 °C, Cu(II) and NaCl) has been found to catalyze the formation of homopeptides of other amino acids, which are otherwise produced only in traces or not at all by this reaction. The condensation of Val, Leu and Lys to form their homodipeptides can occur to a considerable extent due to catalytic effects of other amino acids and related compounds, among which glycine, histidine, diglycine and diketopiperazine exhibit the most remarkable activity. These findings also lead to a modification of the table of amino acid sequences preferentially formed by the salt-induced peptide formation (SIPF) reaction, previously used for a comparison with the sequence preferences in membrane proteins of primitive organisms

  7. Isolation and nature of intracellular alpha-aminoadipic acid-containing peptides from Paecilomyces persicinus P-10.

    PubMed Central

    Eriquez, L A; Pisano, M A

    1979-01-01

    Small intracellular peptides containing alpha-aminoadipic acid, cysteine, and a valine moiety were obtained from mycelia of Paecilomyces persicinus P-10 by ethanol or trichloroacetic acid extraction. After performic acid oxidation and ion-exchange chromatography, analysis of the peptide fractions by two-dimensional thin-layer electrophoresis and chromatography revealed the presence of three related peptides, as sulfonic acid derivatives, each containing alpha-aminoadipic acid. Each peptide was isolated in chromatographically pure form by semipreparative thin-layer electrophoresis and chromatography. The purified peptides were subjected to differential hydrolysis, dansylation, and combined dansylation-phenylisothiocyanate sequence analysis. Based on these studies, the structures of the isolated peptides were determined to be (i) glycl-delta-(alpha-aminoadipyl)-cysteinyl-beta-hydroxyvaline, (ii) glycyl-delta-(alpha-aminoadipyl)-cysteinylvaline, and (iii) delta-(alpha-aminoadipyl)-cysteinylvaline. The peptides isolated from Paecilomyces are similar to the alpha-aminoadipic acid-cysteine-valine moiety complex peptides isolated from Cephalosporium. PMID:574371

  8. Phospholipid conjugate for intracellular delivery of peptide nucleic acids

    PubMed Central

    Shen, Gang; Fang, Huafeng; Song, Yinyin; Bielska, Agata A.; Wang, Zhenghui; Taylor, John-Stephen A.

    2009-01-01

    Peptide nucleic acids (PNAs) have a number of attractive features that have made them an ideal choice for antisense and antigene-based tools, probes and drugs, but their poor membrane permeability has limited their application as therapeutic or diagnostic agents. Herein we report a general method for the synthesis of phospholipid-PNAs (LP-PNAs), and compare the effect of non-cleavable lipids and bioreductively cleavable lipids (L and LSS) and phospholipid (LP) on the splice-correcting bioactivity of a PNA bearing the cell penetrating Arg9 group (PNA-R9). While the three constructs show similar and increasing bioactivity at 1–3 μM, the activity of LP-PNA-R9 continues to increase from 4–6 μM while the activity of L-PNA-R9 remains constant and LSS-PNA-R9 decreases rapidly in parallel with their relative cytotoxicity. The activity of both LP-PNA-R9 and L-PNA-R9 were found to dramatically increase with chloroquine, as expected for an endocytotic entry mechanism. Both constructs were also found to have CMC values of 1.0 and 4.5 μM in 150 mM NaCl, pH 7 water, suggesting that micelle formation may play a hitherto unrecognized role in modulating toxicity and/or facilitating endocytosis. PMID:19678628

  9. Supramolecular control of self-assembling terthiophene-peptide conjugates through the amino acid side chain

    SciTech Connect

    Lehrman, Jessica A.; Cui, Honggang; Tsai, Wei-Wen; Moyer, Tyson J.; Stupp, Samuel I.

    2013-07-30

    The self-assembly of oligothiophene–peptide conjugates can be directed through the systematic variation of the peptide sequence into different nanostructures, including flat spicules, nanotubes, spiral sheets, and giant, flat sheets. Furthermore, the assembly of these molecules is not controlled by steric interactions between the amino acid side chains.

  10. Cyclic Sulfamidate Enabled Syntheses of Amino Acids, Peptides, Carbohydrates, and Natural Products

    EPA Science Inventory

    This article reviews the emergence of cyclic sulfamidates as versatile intermediatesfor the synthesis of unnatural amino acids, chalcogen peptides, modified sugars, drugs and drug candidates, and important natural products.

  11. Peptide nucleic acid probe for protein affinity purification based on biotin-streptavidin interaction and peptide nucleic acid strand hybridization.

    PubMed

    Tse, Jenny; Wang, Yuanyuan; Zengeya, Thomas; Rozners, Eriks; Tan-Wilson, Anna

    2015-02-01

    We describe a new method for protein affinity purification that capitalizes on the high affinity of streptavidin for biotin but does not require dissociation of the biotin-streptavidin complex for protein retrieval. Conventional reagents place both the selectively reacting group (the "warhead") and the biotin on the same molecule. We place the warhead and the biotin on separate molecules, each linked to a short strand of peptide nucleic acid (PNA), synthetic polymers that use the same bases as DNA but attached to a backbone that is resistant to attack by proteases and nucleases. As in DNA, PNA strands with complementary base sequences hybridize. In conditions that favor PNA duplex formation, the warhead strand (carrying the tagged protein) and the biotin strand form a complex that is held onto immobilized streptavidin. As in DNA, the PNA duplex dissociates at moderately elevated temperature; therefore, retrieval of the tagged protein is accomplished by a brief exposure to heat. Using iodoacetate as the warhead, 8-base PNA strands, biotin, and streptavidin-coated magnetic beads, we demonstrate retrieval of the cysteine protease papain. We were also able to use our iodoacetyl-PNA:PNA-biotin probe for retrieval and identification of a thiol reductase and a glutathione transferase from soybean seedling cotyledons.

  12. Systematic studies of the mass spectrometric properties of alkaline earth metal cationized amino acids and peptides

    NASA Astrophysics Data System (ADS)

    Küjckelmann, Ulrich; Müller, Dietrich; Weber, Carsten

    1997-07-01

    The results of a systematic study of the gas phase interactions of α-amino acids and peptides (4-15 amino acids) with alkaline earth metals, observed with mass spectrometric techniques, are presented. Furthermore, a model for the cationization with calcium at the C-terminal amino acid arginine in rotaviral polypeptides is presented.

  13. Efficacy of peptide nucleic acid and selected conjugates against specific cellular pathologies of amyotrophic lateral sclerosis.

    PubMed

    Browne, Elisse C; Parakh, Sonam; Duncan, Luke F; Langford, Steven J; Atkin, Julie D; Abbott, Belinda M

    2016-04-01

    Cellular studies have been undertaken on a nonamer peptide nucleic acid (PNA) sequence, which binds to mRNA encoding superoxide dismutase 1, and a series of peptide nucleic acids conjugated to synthetic lipophilic vitamin analogs including a recently prepared menadione (vitamin K) analog. Reduction of both mutant superoxide dismutase 1 inclusion formation and endoplasmic reticulum stress, two of the key cellular pathological hallmarks in amyotrophic lateral sclerosis, by two of the prepared PNA oligomers is reported for the first time.

  14. Antimicrobial Peptides Containing Unnatural Amino Acid Exhibit Potent Bactericidal Activity against ESKAPE Pathogens

    DTIC Science & Technology

    2013-01-01

    Antimicrobial peptides containing unnatural amino acid exhibit potent bactericidal activity against ESKAPE pathogens R. P. Hicks a, J. J. Abercrombie...tic classes, membrane-disruptors and non -membrane-disrup- tors.30,31 Five different mechanisms have been proposed at one time or another to explain...DATES COVERED - 4. TITLE AND SUBTITLE Antimicrobial Peptides Containing Unnatural Amino Acid Exhibit Potent Bactericidal Activity Against

  15. Simultaneous separation of acid and basic bioactive peptides by electrodialysis with ultrafiltration membrane.

    PubMed

    Poulin, Jean-François; Amiot, Jean; Bazinet, Laurent

    2006-05-29

    beta-Lactoglobulin (beta-lg), one of the major whey components, can release by enzymatic hydrolysis different bioactive peptidic sequences according to the enzyme used. However, these protein hydrolysates have to be fractionated to obtain peptides in a more purified form. The aim of the present work was to evaluate the feasibility of separating peptides from a beta-lg hydrolysate using an ultrafiltration (UF) membrane stacked in an electrodialysis (ED) cell and to study the effect of pH on the migration of basic/cationic and acid/anionic peptides in the ED configuration. Electrodialysis with ultrafiltration membrane (EDUF) appeared to be a selective method of separation since amongst a total of 40 peptides in the raw hydrolysate, only 13 were recovered in the separated adjacent solutions (KCl 1 and KCl 2). Amongst these 13 migrating peptides, 3 acid/anionic peptides migrated only in one compartment (KCl 1), while 3 basic/cationic peptides migrated only in the second compartment (KCl 2) and that whatever the pH conditions of the hydrolysate solution. Furthermore, the highest migration was obtained for the ACE-inhibitory peptide beta-lg 142-148, with a value of 10.75%. The integrity of the UF membrane was kept and EDUF would minimize the fouling of UF membrane.

  16. CycloPs: generating virtual libraries of cyclized and constrained peptides including nonnatural amino acids.

    PubMed

    Duffy, Fergal J; Verniere, Mélanie; Devocelle, Marc; Bernard, Elise; Shields, Denis C; Chubb, Anthony J

    2011-04-25

    We introduce CycloPs, software for the generation of virtual libraries of constrained peptides including natural and nonnatural commercially available amino acids. The software is written in the cross-platform Python programming language, and features include generating virtual libraries in one-dimensional SMILES and three-dimensional SDF formats, suitable for virtual screening. The stand-alone software is capable of filtering the virtual libraries using empirical measurements, including peptide synthesizability by standard peptide synthesis techniques, stability, and the druglike properties of the peptide. The software and accompanying Web interface is designed to enable the rapid generation of large, structurally diverse, synthesizable virtual libraries of constrained peptides quickly and conveniently, for use in virtual screening experiments. The stand-alone software, and the Web interface for evaluating these empirical properties of a single peptide, are available at http://bioware.ucd.ie .

  17. Installing amino acids and peptides on N-heterocycles under visible-light assistance.

    PubMed

    Jin, Yunhe; Jiang, Min; Wang, Hui; Fu, Hua

    2016-02-02

    Readily available natural α-amino acids are one of nature's most attractive and versatile building blocks in synthesis of natural products and biomolecules. Peptides and N-heterocycles exhibit various biological and pharmaceutical functions. Conjugation of amino acids or peptides with N-heterocycles provides boundless potentiality for screening and discovery of diverse biologically active molecules. However, it is a great challenge to install amino acids or peptides on N-heterocycles through formation of carbon-carbon bonds under mild conditions. In this article, eighteen N-protected α-amino acids and three peptides were well assembled on phenanthridine derivatives via couplings of N-protected α-amino acid and peptide active esters with substituted 2-isocyanobiphenyls at room temperature under visible-light assistance. Furthermore, N-Boc-proline residue was successfully conjugated with oxindole derivatives using similar procedures. The simple protocol, mild reaction conditions, fast reaction, and high efficiency of this method make it an important strategy for synthesis of diverse molecules containing amino acid and peptide fragments.

  18. Installing amino acids and peptides on N-heterocycles under visible-light assistance

    PubMed Central

    Jin, Yunhe; Jiang, Min; Wang, Hui; Fu, Hua

    2016-01-01

    Readily available natural α-amino acids are one of nature’s most attractive and versatile building blocks in synthesis of natural products and biomolecules. Peptides and N-heterocycles exhibit various biological and pharmaceutical functions. Conjugation of amino acids or peptides with N-heterocycles provides boundless potentiality for screening and discovery of diverse biologically active molecules. However, it is a great challenge to install amino acids or peptides on N-heterocycles through formation of carbon-carbon bonds under mild conditions. In this article, eighteen N-protected α-amino acids and three peptides were well assembled on phenanthridine derivatives via couplings of N-protected α-amino acid and peptide active esters with substituted 2-isocyanobiphenyls at room temperature under visible-light assistance. Furthermore, N-Boc-proline residue was successfully conjugated with oxindole derivatives using similar procedures. The simple protocol, mild reaction conditions, fast reaction, and high efficiency of this method make it an important strategy for synthesis of diverse molecules containing amino acid and peptide fragments. PMID:26830014

  19. Formation of Amino Acid Thioesters for Prebiotic Peptide Synthesis: Catalysis By Amino Acid Products

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    The origin of life can be described as a series of events in which a prebiotic chemical process came increasingly under the control of its catalytic products. In our search for this prebiotic process that yielded catalytic takeover products (such as polypeptides), we have been investigating a reaction system that generates peptide-forming amino acid thioesters from formaldehyde, glycolaldehyde, and ammonia in the presence of thiols. As shown below, this model process begins by aldol condensation of formaldehyde and glycolaldehyde to give trioses and releases. These sugars then undergo beta-dehydration yielding their respective alpha-ketoaldehydes. Addition of ammonia to the alpha-ketoaldehydes yields imines which can either: (a) rearrange in the presence of thesis to give amino acid thioesters or (be react with another molecule of aldehyde to give imidazoles. This 'one-pot' reaction system operates under mild aqueous conditions, and like modem amino acid biosynthesis, uses sugar intermediates which are converted to products by energy-yielding redox reactions. Recently, we discovered that amino acids, such as the alanine reaction product, catalyze the first and second steps of the process. In the presence of ammonia the process also generates other synthetically useful products, like the important biochemical -- pyruvic acid.

  20. Molecular mechanics and dynamics studies on the interaction of gallic acid with collagen-like peptides

    NASA Astrophysics Data System (ADS)

    Madhan, B.; Thanikaivelan, P.; Subramanian, V.; Raghava Rao, J.; Unni Nair, Balachandran; Ramasami, T.

    2001-10-01

    Molecular modelling approaches have been used to understand the interaction of collagen-like peptides with gallic acid, which mimic vegetable tanning processes involved in protein stabilization. Several interaction sites have been identified and the binding energies of the complexes have been calculated. The calculated binding energies for various geometries are in the range 6-13 kcal/mol. It is found that some complexes exhibit hydrogen bonding, and electrostatic interaction plays a dominant role in the stabilization of the peptide by gallic acid. The π-OH type of interaction is also observed in the peptide stabilization. Molecular dynamics (MD) simulation for 600 ps revealed the possibility of hydrogen bonding between the collagen-like peptide and gallic acid.

  1. Noninvasive molecular imaging of MYC mRNA expression in human breast cancer xenografts with a [99mTc]peptide-peptide nucleic acid-peptide chimera.

    PubMed

    Tian, Xiaobing; Aruva, Mohan R; Qin, Wenyi; Zhu, Weizhu; Sauter, Edward R; Thakur, Mathew L; Wickstrom, Eric

    2005-01-01

    Human estrogen receptor-positive breast cancer cells typically display elevated levels of Myc protein due to overexpression of MYC mRNA, and elevated insulin-like growth factor 1 receptor (IGF1R) due to overexpression of IGF1R mRNA. We hypothesized that scintigraphic detection of MYC peptide nucleic acid (PNA) probes with an IGF1 peptide loop on the C-terminus, and a [99mTc]chelator peptide on the N-terminus, could measure levels of MYC mRNA noninvasively in human IGF1R-overexpressing MCF7 breast cancer xenografts in nude mice. We prepared the chelator-MYC PNA-IGF1 peptide, as well as a 4-nt mismatch PNA control, by solid-phase synthesis. We imaged MCF7 xenografts scintigraphically and measured the distribution of [99mTc]probes by scintillation counting of dissected tissues. MCF7 xenografts in nude mice were visualized at 4 and 24 h after tail vein administration of the [99mTc]PNA probe specific for MYC mRNA, but not with the mismatch control. The [99mTc]probes distributed normally to the kidneys, livers, tumors, and other tissues. Molecular imaging of oncogene mRNAs in solid tumors with radiolabel-PNA-peptide chimeras might provide additional genetic characterization of preinvasive and invasive breast cancers.

  2. Activation of carboxyl group with cyanate: peptide bond formation from dicarboxylic acids.

    PubMed

    Danger, Grégoire; Charlot, Solenne; Boiteau, Laurent; Pascal, Robert

    2012-06-01

    The reaction of cyanate with C-terminal carboxyl groups of peptides in aqueous solution was considered as a potential pathway for the abiotic formation of peptide bonds under the condition of the primitive Earth. The catalytic effect of dicarboxylic acids on cyanate hydrolysis was definitely attributed to intramolecular nucleophilic catalysis by the observation of the 1H-NMR signal of succinic anhydride when reacting succinic acid with KOCN in aqueous solution (pH 2.2-5.5). The formation of amide bonds was noticed when adding amino acids or amino acid derivatives into the solution. The reaction of N-acyl aspartic acid derivatives was observed to proceed similarly and the scope of the cyanate-promoted reaction was analyzed from the standpoint of prebiotic peptide formation. The role of cyanate in activating peptide C-terminus constitutes a proof of principle that intramolecular reactions of adducts of peptides C-terminal carboxyl groups with activating agents represent a pathway for peptide activation in aqueous solution, the relevance of which is discussed in connexion with the issue of the emergence of homochirality.

  3. Amino Acid- vs. Peptide-Odorants: Responses of Individual Olfactory Receptor Neurons in an Aquatic Species

    PubMed Central

    Hassenklöver, Thomas; Pallesen, Lars P.; Schild, Detlev; Manzini, Ivan

    2012-01-01

    Amino acids are widely used waterborne olfactory stimuli proposed to serve as cues in the search for food. In natural waters the main source of amino acids is the decomposition of proteins. But this process also produces a variety of small peptides as intermediate cleavage products. In the present study we tested whether amino acids actually are the natural and adequate stimuli for the olfactory receptors they bind to. Alternatively, these olfactory receptors could be peptide receptors which also bind amino acids though at lower affinity. Employing calcium imaging in acute slices of the main olfactory epithelium of the fully aquatic larvae of Xenopus laevis we show that amino acids, and not peptides, are more effective waterborne odorants. PMID:23300867

  4. Synthesis and biological properties of amino acids and peptides containing a tetrazolyl moiety

    NASA Astrophysics Data System (ADS)

    Popova, E. A.; Trifonov, R. E.

    2015-09-01

    Literature data published mainly in the last 15 years on the synthesis and biological properties of amino acid analogues and derivatives containing tetrazolyl moieties are analyzed. Tetrazolyl analogues and derivatives of amino acids and peptides are shown to be promising for medicinal chemistry. Being polynitrogen heterocyclic systems comprising four endocyclic nitrogen atoms, tetrazoles can behave as acids and bases and form strong hydrogen bonds with proton donors (more rarely, with acceptors). They have high metabolic stability and are able to penetrate biological membranes. The review also considers the synthesis and properties of linear and cyclic peptides based on modified amino acids incorporating a tetrazolyl moiety. A special issue is the discussion of the biological properties of tetrazole-containing amino acids and peptides, which exhibit high biological activity and can be used to design new drugs. The bibliography includes 200 references.

  5. A toy model of prebiotic peptide evolution: the possible role of relative amino acid abundances.

    PubMed

    Polanco, Carlos; Buhse, Thomas; Samaniego, José Lino; Castañón González, Jorge Alberto

    2013-01-01

    This paper presents a mathematical-computational toy model based on the assumed dynamic principles of prebiotic peptide evolution. Starting from a pool of amino acid monomers, the model describes in a generalized manner the generation of peptides and their sequential information. The model integrates the intrinsic and dynamic key elements of the initiation of biopolymerization, such as the relative amino acid abundances and polarities, as well as the oligomer reversibility, i.e. fragmentation and recombination, and peptide self-replication. Our modeling results suggest that the relative amino acid abundances, as indicated by Miller-Urey type electric discharge experiments, played a principal role in the early sequential information of peptide profiles. Moreover, the computed profiles display an astonishing similarity to peptide profiles observed in so-called biological common ancestors found in the following three microorganisms; E. coli, M. jannaschii, and S. cereviasiae. The prebiotic peptide fingerprint was obtained by the so-called polarity index method that was earlier reported as a tool for the identification of cationic amphipathic antibacterial short peptides.

  6. Analysis of Endogenous D-Amino Acid-Containing Peptides in Metazoa

    PubMed Central

    Bai, Lu; Sheeley, Sarah; Sweedler, Jonathan V.

    2010-01-01

    Peptides are chiral molecules with their structure determined by the composition and configuration of their amino acid building blocks. The naturally occurring amino acids, except glycine, possess two chiral forms. This allows the formation of multiple peptide diastereomers that have the same sequence. Although living organisms use L-amino acids to make proteins, a group of D-amino acid-containing peptides (DAACPs) has been discovered in animals that have at least one of their residues isomerized to the D-form via an enzyme-catalyzed process. In many cases, the biological functions of these peptides are enhanced due to this structural conversion. These DAACPs are different from those known to occur in bacterial cell wall and antibiotic peptides, the latter of which are synthesized in a ribosome-independent manner. DAACPs have now also been identified in a number of distinct groups throughout the Metazoa. Their serendipitous discovery has often resulted from discrepancies observed in bioassays or in chromatographic behavior between natural peptide fractions and peptides synthesized according to a presumed all-L sequence. Because this L-to-D post-translational modification is subtle and not detectable by most sequence determination approaches, it is reasonable to suspect that many studies have overlooked this change; accordingly, DAACPs may be more prevalent than currently thought. Although diastereomer separation techniques developed with synthetic peptides in recent years have greatly aided in the discovery of natural DAACPs, there is a need for new, more robust methods for naturally complex samples. In this review, a brief history of DAACPs in animals is presented, followed by discussion of a variety of analytical methods that have been used for diastereomeric separation and detection of peptides. PMID:20490347

  7. The Prebiotic Synthesis of Ethylenediamine Monoacetic Acid, The Repeating Unit of Peptide Nucleic Acids

    NASA Technical Reports Server (NTRS)

    Nelson, Kevin E.; Miller, Stanley L.

    1992-01-01

    The polymerization of ribonucleic acids or their precursors constitutes an important event in prebiotic chemistry. The various problems using ribonucleotides to make RNA suggest that there may have been a precursor. An attractive possibility are the peptide nucleic acids (PNA). PNAs are nucleotide analogs that make use of a polymer of ethylenediamine monoacetic acid (EDMA or 2-amninoethyl glycine) with the bases attached by an acetic acid. EDMA is an especially attractive alternative to the ribose phosphate or deoxyribose phosphate backbone because it contains no chiral centers and is potentially prebiotic, but there is no reported prebiotic synthesis. We have synthesized both EDMA and ethylenediamine diacetic acid (EDDA) from the prebiotic compounds ethylenediamine, formaldehyde, and hydrogen cyanide. The yields of EDMA range from 11 to 79% along with some sEDDA and uEDDA. These reactions work with concentrations of 10(exp -1)M and as low as 10(exp -4)M, and the reaction is likely to be effective at even lower concentrations. Ethylenediamine is a likely prebiotic compound, but it has not yet been demonstrated, although compounds such as ethanolamine and cysteamine have been proven to be prebiotic. Under neutral pH and heating at l00 C, EDMA is converted to the lactam, monoketopiperazine (MKP). The cyclization occurs and has an approximate ratio of MKP/EDMA = 3 at equilibrium. We have measured the solubilities of EDMA center dot H20 as 6.4 m, EDMA center dot HCl center dot H20 as 13.7 m, and EDMA center dot 2HCl center dot H20 as 3.4 m. These syntheses together with the high solubility of EDMA suggest that EDMA would concentrate in drying lagoons and might efficiently form polymers. Given the instability of ribose and the poor polymerizability of nucleotides, the prebiotic presence of EDMA and the possibility of its polymerization raises the possibility that PNAs are the progenitors of present day nucleic acids. A pre-RNA world may have existed in which PNAs or

  8. A method for the 32P labeling of peptides or peptide nucleic acid oligomers

    NASA Technical Reports Server (NTRS)

    Kozlov, I. A.; Nielsen, P. E.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1998-01-01

    A novel approach to the radioactive labeling of peptides and PNA oligomers is described. It is based on the conjugation of a deoxynucleoside 3'-phosphate with the terminal amine of the substrate, followed by phosphorylation of the 5'-hydroxyl group of the nucleotide using T4 polynucleotide kinase and [gamma-32P]ATP.

  9. Peptide nucleic acid (PNA): a model structure for the primordial genetic material?

    PubMed

    Nielsen, P E

    1993-12-01

    It is proposed that the primordial genetic material could have been peptide nucleic acids, i.e., DNA analogues having a peptide backbone. PNA monomers based on the amino acid, alpha, gamma-diaminobutyric acid or ornithine are suggested as compounds that could have been formed in the prebiotic soup. Finally, the possibility of a PNA/RNA world is presented, in which PNA constitutes the stable genetic material, while RNA which may be polymerized using the PNA as template accounts for enzymatic activities including PNA replication.

  10. The enthalpies of formation and sublimation of amino acids and peptides

    NASA Astrophysics Data System (ADS)

    Sagadeev, E. V.; Gimadeev, A. A.; Barabanov, V. P.

    2010-02-01

    The experimental enthalpies of formation of L-amino acids and peptides were analyzed using the additive scheme and group contributions. Group contributions to the enthalpies of formation were calculated (increment denotations corresponded to the Benson-Buss symbols). The thermochemical characteristics of a wide range of amino acids and their derivatives were calculated.

  11. Site-Specific Characterization of d-Amino Acid Containing Peptide Epimers by Ion Mobility Spectrometry

    PubMed Central

    2013-01-01

    Traditionally, the d-amino acid containing peptide (DAACP) candidate can be discovered by observing the differences of biological activity and chromatographic retention time between the synthetic peptides and naturally occurring peptides. However, it is difficult to determine the exact position of d-amino acid in the DAACP candidates. Herein, we developed a novel site-specific strategy to rapidly and precisely localize d-amino acids in peptides by ion mobility spectrometry (IMS) analysis of mass spectrometry (MS)-generated epimeric fragment ions. Briefly, the d/l-peptide epimers were separated by online reversed-phase liquid chromatography and fragmented by collision-induced dissociation (CID), followed by IMS analysis. The epimeric fragment ions resulting from d/l-peptide epimers exhibit conformational differences, thus showing different mobilities in IMS. The arrival time shift between the epimeric fragment ions was used as criteria to localize the d-amino acid substitution. The utility of this strategy was demonstrated by analysis of peptide epimers with different molecular sizes, [d-Trp]-melanocyte-stimulating hormone, [d-Ala]-deltorphin, [d-Phe]-achatin-I, and their counterparts that contain all-l amino acids. Furthermore, the crustacean hyperglycemia hormones (CHHs, 8.5 kDa) were isolated from the American lobster Homarus americanus and identified by integration of MS-based bottom-up and top-down sequencing approaches. The IMS data acquired using our novel site-specific strategy localized the site of isomerization of l- to d-Phe at the third residue of the CHHs from the N-terminus. Collectively, this study demonstrates a new method for discovery of DAACPs using IMS technique with the ability to localize d-amino acid residues. PMID:24328107

  12. Predicting three-dimensional conformations of peptides constructed of only glycine, alanine, aspartic acid, and valine.

    PubMed

    Oda, Akifumi; Fukuyoshi, Shuichi

    2015-06-01

    The GADV hypothesis is a form of the protein world hypothesis, which suggests that life originated from proteins (Lacey et al. 1999; Ikehara 2002; Andras 2006). In the GADV hypothesis, life is thought to have originated from primitive proteins constructed of only glycine, alanine, aspartic acid, and valine ([GADV]-proteins). In this study, the three-dimensional (3D) conformations of randomly generated short [GADV]-peptides were computationally investigated using replica-exchange molecular dynamics (REMD) simulations (Sugita and Okamoto 1999). Because the peptides used in this study consisted of only 20 residues each, they could not form certain 3D structures. However, the conformational tendencies of the peptides were elucidated by analyzing the conformational ensembles generated by REMD simulations. The results indicate that secondary structures can be formed in several randomly generated [GADV]-peptides. A long helical structure was found in one of the hydrophobic peptides, supporting the conjecture of the GADV hypothesis that many peptides aggregated to form peptide multimers with enzymatic activity in the primordial soup. In addition, these results indicate that REMD simulations can be used for the structural investigation of short peptides.

  13. Predicting Three-Dimensional Conformations of Peptides Constructed of Only Glycine, Alanine, Aspartic Acid, and Valine

    NASA Astrophysics Data System (ADS)

    Oda, Akifumi; Fukuyoshi, Shuichi

    2015-06-01

    The GADV hypothesis is a form of the protein world hypothesis, which suggests that life originated from proteins (Lacey et al. 1999; Ikehara 2002; Andras 2006). In the GADV hypothesis, life is thought to have originated from primitive proteins constructed of only glycine, alanine, aspartic acid, and valine ([GADV]-proteins). In this study, the three-dimensional (3D) conformations of randomly generated short [GADV]-peptides were computationally investigated using replica-exchange molecular dynamics (REMD) simulations (Sugita and Okamoto 1999). Because the peptides used in this study consisted of only 20 residues each, they could not form certain 3D structures. However, the conformational tendencies of the peptides were elucidated by analyzing the conformational ensembles generated by REMD simulations. The results indicate that secondary structures can be formed in several randomly generated [GADV]-peptides. A long helical structure was found in one of the hydrophobic peptides, supporting the conjecture of the GADV hypothesis that many peptides aggregated to form peptide multimers with enzymatic activity in the primordial soup. In addition, these results indicate that REMD simulations can be used for the structural investigation of short peptides.

  14. REACTION OF AMINO-ACIDS AND PEPTIDE BONDS WITH FORMALDEHYDE AS MEASURED BY CHANGES IN THE ULTRA-VIOLET SPECTRA,

    DTIC Science & Technology

    AMINO ACIDS , CHEMICAL REACTIONS), (*PEPTIDES, CHEMICAL REACTIONS), (*FORMALDEHYDE, CHEMICAL REACTIONS), (*ULTRAVIOLET SPECTROSCOPY, PROTEINS), ABSORPTION SPECTRA, CHEMICAL BONDS, AMIDES, CHEMICAL EQUILIBRIUM, REACTION KINETICS

  15. Peptide modules for overcoming barriers of nucleic acids transport to cells.

    PubMed

    Egorova, Anna A; Kiselev, Anton V

    2016-01-01

    Absence of safe and efficient methods of nucleic acids delivery is one of the major issues which limits the development of human gene therapy. Highly efficient viral vectors raise questions due to safety reasons. Among non-viral vectors peptide-based carriers can be considered as good candidates for the development of "artificial viruses"--multifunctional polyplexes that mimic viruses. Suggested strategy to obtain multifunctionality is to combine several peptide modules into one modular carrier. Different kinds of peptide modules are needed for successful overcoming barriers of nucleic acids transport into the cells. Design of such modules and establishment of structure-function relationships are issues of importance to researchers working in the field of nucleic acids delivery.

  16. Effect of Fatty Acid Conjugation on Antimicrobial Peptide Activity

    DTIC Science & Technology

    2004-12-01

    killing mechanism of antimicrobial peptides makes them an interesting alternative to traditional antibiotics, as target bacteria may be less able...C14-AKK and C16-AKK to within a 7% error are 220 and 16mM respectively. Since amphipathicity is requisite for antimicrobial action KAK is not...Schnaare, 2000: Antimicrobial evaluation of N-alkyl betaines and N-alkyl-N,N-dimethylamine oxides with variations in chain length. Antimicrobial Agents

  17. Targeting pre-miRNA by Peptide Nucleic Acids

    PubMed Central

    Avitabile, Concetta; Saviano, Michele; D'Andrea, Luca; Bianchi, Nicoletta; Fabbri, Enrica; Brognara, Eleonora; Gambari, Roberto; Romanelli, Alessandra

    2012-01-01

    PNAs conjugated to carrier peptides have been employed for the targeting of miRNA precursor, with the aim to develop molecules able to interfere in the pre-miRNA processing. The capability of the molecules to bind pre-miRNA has been tested in vitro by fluorescence assayes on Thiazole Orange labeled molecules and in vivo, in K562 cells, evaluating the amount of miRNA produced after treatment of cells with two amounts of PNAs. PMID:22699795

  18. Effects of Acidic Peptide Size and Sequence on Trivalent Praseodymium Adduction and Electron Transfer Dissociation Mass Spectrometry.

    PubMed

    Commodore, Juliette J; Cassady, Carolyn J

    2017-02-07

    Using the lanthanide ion praseodymium, Pr(III), metallated ion formation and electron transfer dissociation (ETD) were studied for 25 biological and model acidic peptides. For chain lengths of seven or more residues, even highly acidic peptides that can be difficult to protonate by electrospray ionization will metallate and undergo abundant ETD fragmentation. Peptides composed of predominantly acidic residues form only the deprotonated ion, [M + Pr - H](2+) ; this ion yields near complete ETD sequence coverage for larger peptides. Peptides with a mixture of acidic and neutral residues, generate [M + Pr](3+) , which cleaves between every residue for many peptides. Acidic peptides that contain at least one residue with a basic side chain also produce the protonated ion, [M + Pr + H](4+) ; this ion undergoes the most extensive sequence coverage by ETD. Primarily metallated and non-metallated c- and z-ions form for all peptides investigated. Metal adducted product ions are only present when at least half of the peptide sequence can be incorporated into the ion; this suggests that the metal ion simultaneously attaches to more than one acidic site. The only site consistently lacking dissociation is at the N-terminal side of a proline residue. Increasing peptide chain length generates more backbone cleavage for metal-peptide complexes with the same charge state. For acidic peptides with the same length, increasing the precursor ion charge state from 2+ to 3+ also leads to more cleavage. The results of this study indicate that highly acidic peptides can be sequenced by ETD of complexes formed with Pr(III).

  19. Hydrocarbon double-stapling remedies the proteolytic instability of a lengthy peptide therapeutic.

    PubMed

    Bird, Gregory H; Madani, Navid; Perry, Alisa F; Princiotto, Amy M; Supko, Jeffrey G; He, Xiaoying; Gavathiotis, Evripidis; Sodroski, Joseph G; Walensky, Loren D

    2010-08-10

    The pharmacologic utility of lengthy peptides can be hindered by loss of bioactive structure and rapid proteolysis, which limits bioavailability. For example, enfuvirtide (Fuzeon, T20, DP178), a 36-amino acid peptide that inhibits human immunodeficiency virus type 1 (HIV-1) infection by effectively targeting the viral fusion apparatus, has been relegated to a salvage treatment option mostly due to poor in vivo stability and lack of oral bioavailability. To overcome the proteolytic shortcomings of long peptides as therapeutics, we examined the biophysical, biological, and pharmacologic impact of inserting all-hydrocarbon staples into an HIV-1 fusion inhibitor. We find that peptide double-stapling confers striking protease resistance that translates into markedly improved pharmacokinetic properties, including oral absorption. We determined that the hydrocarbon staples create a proteolytic shield by combining reinforcement of overall alpha-helical structure, which slows the kinetics of proteolysis, with complete blockade of peptide cleavage at constrained sites in the immediate vicinity of the staple. Importantly, double-stapling also optimizes the antiviral activity of HIV-1 fusion peptides and the antiproteolytic feature extends to other therapeutic peptide templates, such as the diabetes drug exenatide (Byetta). Thus, hydrocarbon double-stapling may unlock the therapeutic potential of natural bioactive polypeptides by transforming them into structurally fortified agents with enhanced bioavailability.

  20. Calcium Binding to Amino Acids and Small Glycine Peptides in Aqueous Solution: Toward Peptide Design for Better Calcium Bioavailability.

    PubMed

    Tang, Ning; Skibsted, Leif H

    2016-06-01

    Deprotonation of amino acids as occurs during transfer from stomach to intestines during food digestion was found by comparison of complex formation constants as determined electrochemically for increasing pH to increase calcium binding (i) by a factor of around 6 for the neutral amino acids, (ii) by a factor of around 4 for anions of the acidic amino acids aspartic and glutamic acid, and (iii) by a factor of around 5.5 for basic amino acids. Optimized structures of the 1:1 complexes and ΔHbinding for calcium binding as calculated by density functional theory (DFT) confirmed in all complexes a stronger calcium binding and shorter calcium-oxygen bond length in the deprotonated form. In addition, the stronger calcium binding was also accompanied by a binding site shift from carboxylate binding to chelation by α-amino group and carboxylate oxygen for leucine, aspartate, glutamate, alanine, and asparagine. For binary amino acid mixtures, the calcium-binding constant was close to the predicted geometric mean of the individual amino acid binding constants indicating separate binding of calcium to two amino acids when present together in solution. At high pH, corresponding to conditions for calcium absorption, the binding affinity increased in the order Lys < Arg < Cys < Gln < Gly ∼ Ala < Asn < His < Leu < Glu< Asp. In a series of glycine peptides, calcium-binding affinity was found to increase in the order Gly-Leu ∼ Gly-Gly < Ala-Gly < Gly-His ∼ Gly-Lys-Gly < Glu-Cys-Gly < Gly-Glu, an ordering confirmed by DFT calculations for the dipeptides and which also accounted for large synergistic effects in calcium binding for up to 6 kJ/mol when compared to the corresponding amino acid mixtures.

  1. Predicting anticancer peptides with Chou's pseudo amino acid composition and investigating their mutagenicity via Ames test.

    PubMed

    Hajisharifi, Zohre; Piryaiee, Moien; Mohammad Beigi, Majid; Behbahani, Mandana; Mohabatkar, Hassan

    2014-01-21

    Cancer is an important reason of death worldwide. Traditional cytotoxic therapies, such as radiation and chemotherapy, are expensive and cause severe side effects. Currently, design of anticancer peptides is a more effective way for cancer treatment. So there is a need to develop a computational method for predicting the anticancer peptides. In the present study, two methods have been developed to predict these peptides using support vector machine (SVM) as a powerful machine learning algorithm. Classifiers have been applied based on the concept of Chou's pseudo-amino acid composition (PseAAC) and local alignment kernel. Since a number of HIV-1 proteins have cytotoxic effect, therefore we predicted the anticancer effect of HIV-1 p24 protein with these methods. After the prediction, mutagenicity of 2 anticancer peptides and 2 non-anticancer peptides was investigated by Ames test. Our results show that, the accuracy and the specificity of local alignment kernel based method are 89.7% and 92.68%, respectively. The accuracy and specificity of PseAAC-based method are 83.82% and 85.36%, respectively. By computational analysis, out of 22 peptides of p24 protein, 4 peptides are anticancer and 18 are non-anticancer. In the Ames test results, it is clear that anticancer peptides (ARP788.8 and ARP788.21) are not mutagenic. Therefore the results demonstrate that the described computation methods are useful to identify potential anticancer peptides, which are worthy of further experimental validation and 2 peptides (ARP788.8 and ARP788.21) of HIV-1 p24 protein can be used as new anticancer candidates without mutagenicity.

  2. Peptide nucleic acid (PNA): A model structure for the primordial genetic material?

    NASA Astrophysics Data System (ADS)

    Nielsen, Peter Egil

    1993-12-01

    It is proposed that the primordial genetic material could have been peptide nucleic aicds,i.e., DNA analogues having a peptide backbone. PNA momomers based on the amino acid, α, γ-diaminobutyric acid or ornithine are suggested as compounds that could have been formed in the prebiotic soup. Finally, the possibility of a PNA/RNA world is presented, in which PNA constitutes the stable genetic material, while RNA which may be polymerized using the PNA as template accounts for enzymatic activities including PNA replication.

  3. [Antiaggregation activity of arachidonic acid conjugates with neurotropic peptides proglyprol and semax].

    PubMed

    Bezuglov, V V; Gretskaia, N M; Vasil'eva, T M; Petrukhina, G N; Andreeva, L A; Miasoedov, N F; Makarov, V A

    2014-01-01

    The influence two original derivatives of a therapeutically important peptide, bearing arachidonic acid residue with semax and proglyprol, upon platelet aggregation have been studied in vitro. It is established that both derivatives, in contrast to the parent peptide, possess moderate anti-aggregant properties and produce a dose-dependent decrease in the interplatelet interaction induced by ADP, epinephrine, and arachidonic acid within the concentration range of 0.018 - 1.8 mM. This activity was more pronounced for arachidonoylsemax in comparison with arachidonoylproglyprol.

  4. Peptide interfacial biomaterials improve endothelial cell adhesion and spreading on synthetic polyglycolic acid materials.

    PubMed

    Huang, Xin; Zauscher, Stefan; Klitzman, Bruce; Truskey, George A; Reichert, William M; Kenan, Daniel J; Grinstaff, Mark W

    2010-06-01

    Resorbable scaffolds such as polyglycolic acid (PGA) are employed in a number of clinical and tissue engineering applications owing to their desirable property of allowing remodeling to form native tissue over time. However, native PGA does not promote endothelial cell adhesion. Here we describe a novel treatment with hetero-bifunctional peptide linkers, termed "interfacial biomaterials" (IFBMs), which are used to alter the surface of PGA to provide appropriate biological cues. IFBMs couple an affinity peptide for the material with a biologically active peptide that promotes desired cellular responses. One such PGA affinity peptide was coupled to the integrin binding domain, Arg-Gly-Asp (RGD), to build a chemically synthesized bimodular 27 amino acid peptide that mediated interactions between PGA and integrin receptors on endothelial cells. Quartz crystal microbalance with dissipation monitoring (QCMD) was used to determine the association constant (K (A) 1 x 10(7) M(-1)) and surface thickness (~3.5 nm). Cell binding studies indicated that IFBM efficiently mediated adhesion, spreading, and cytoskeletal organization of endothelial cells on PGA in an integrin-dependent manner. We show that the IFBM peptide promotes a 200% increase in endothelial cell binding to PGA as well as 70-120% increase in cell spreading from 30 to 60 minutes after plating.

  5. Synthesis of lipoic acid-peptide conjugates and their effect on collagen and melanogenesis.

    PubMed

    Lu, Chichong; Kim, Bo Mi; Lee, Duckhee; Lee, Min Hee; Kim, Jin Hwa; Pyo, Hyeong-Bae; Chai, Kyu Yun

    2013-11-01

    We report new examples of lipoic acid (LA)-peptide conjugates, their potential as codrugs having anti-melanogenic and anti-aging properties was evaluated. These multifunctional molecules were prepared by linking lipophilic moiety (LA) to the pentapeptide KTTKS. The inhibitory effect of LA-peptide conjugates on melanin synthesis and tyrosinase activity is stronger than that of LA or the pentapeptide alone. Importantly, the conjugates display no cytotoxicity at a high concentration. LA-KTTKS and LA-PEG-KTTKS also inhibit UV-induced matrix metalloproteinase-1 expression up to 49.5% and 69.5% at 0.5 mM, respectively. LA-peptide conjugates stimulate collagen biosynthesis in fibroblasts more efficiently than their parent molecules do. These data suggest that LA-peptide conjugates may have cosmeceutical application as anti-melanogenic and anti-aging agents.

  6. Surface Functionalization of Piezoelectric Aluminum Nitride with Selected Amino Acid and Peptides

    NASA Astrophysics Data System (ADS)

    Chan, Edmund Ho Man

    In the present contribution, we elaborate on the covalent attachment of the amino acid cysteine and selected cysteine-bearing peptides, in aqueous buffered media, onto AlN surfaces modified with adlayers of one of our homemade bifunctional alkyltrichlorosilane cross-linking molecules bearing the benzenethiosulfonate head group. Surface characterizations confirmed the successful covalent immobilization of cysteine in buffered media, whereas the attachment of the peptides proved to be difficult as the undesired partial destruction of the adlayer on AlN by hydrolysis in aqueous/buffered solvent systems, which was confirmed in a separate study, appeared to have interfered with the covalent attachment and resulted in one of the peptides failing to immobilize. Future directions from this will focus on optimizing the solvent conditions for the cysteine/peptide immobilizations and the implementation of the surface chemistry to the covalent functionalization of AlN with biologically significant protein fragments, among them the antigen-binding fragment of antibodies.

  7. Oxidative diversification of amino acids and peptides by small-molecule iron catalysis

    NASA Astrophysics Data System (ADS)

    Osberger, Thomas J.; Rogness, Donald C.; Kohrt, Jeffrey T.; Stepan, Antonia F.; White, M. Christina

    2016-09-01

    Secondary metabolites synthesized by non-ribosomal peptide synthetases display diverse and complex topologies and possess a range of biological activities. Much of this diversity derives from a synthetic strategy that entails pre- and post-assembly oxidation of both the chiral amino acid building blocks and the assembled peptide scaffolds. The vancomycin biosynthetic pathway is an excellent example of the range of oxidative transformations that can be performed by the iron-containing enzymes involved in its biosynthesis. However, because of the challenges associated with using such oxidative enzymes to carry out chemical transformations in vitro, chemical syntheses guided by these principles have not been fully realized in the laboratory. Here we report that two small-molecule iron catalysts are capable of facilitating the targeted C-H oxidative modification of amino acids and peptides with preservation of α-centre chirality. Oxidation of proline to 5-hydroxyproline furnishes a versatile intermediate that can be transformed to rigid arylated derivatives or flexible linear carboxylic acids, alcohols, olefins and amines in both monomer and peptide settings. The value of this C-H oxidation strategy is demonstrated in its capacity for generating diversity: four ‘chiral pool’ amino acids are transformed to twenty-one chiral unnatural amino acids representing seven distinct functional group arrays; late-stage C-H functionalizations of a single proline-containing tripeptide furnish eight tripeptides, each having different unnatural amino acids. Additionally, a macrocyclic peptide containing a proline turn element is transformed via late-stage C-H oxidation to one containing a linear unnatural amino acid.

  8. Oxidative diversification of amino acids and peptides by small-molecule iron catalysis.

    PubMed

    Osberger, Thomas J; Rogness, Donald C; Kohrt, Jeffrey T; Stepan, Antonia F; White, M Christina

    2016-09-08

    Secondary metabolites synthesized by non-ribosomal peptide synthetases display diverse and complex topologies and possess a range of biological activities. Much of this diversity derives from a synthetic strategy that entails pre- and post-assembly oxidation of both the chiral amino acid building blocks and the assembled peptide scaffolds. The vancomycin biosynthetic pathway is an excellent example of the range of oxidative transformations that can be performed by the iron-containing enzymes involved in its biosynthesis. However, because of the challenges associated with using such oxidative enzymes to carry out chemical transformations in vitro, chemical syntheses guided by these principles have not been fully realized in the laboratory. Here we report that two small-molecule iron catalysts are capable of facilitating the targeted C-H oxidative modification of amino acids and peptides with preservation of α-centre chirality. Oxidation of proline to 5-hydroxyproline furnishes a versatile intermediate that can be transformed to rigid arylated derivatives or flexible linear carboxylic acids, alcohols, olefins and amines in both monomer and peptide settings. The value of this C-H oxidation strategy is demonstrated in its capacity for generating diversity: four 'chiral pool' amino acids are transformed to twenty-one chiral unnatural amino acids representing seven distinct functional group arrays; late-stage C-H functionalizations of a single proline-containing tripeptide furnish eight tripeptides, each having different unnatural amino acids. Additionally, a macrocyclic peptide containing a proline turn element is transformed via late-stage C-H oxidation to one containing a linear unnatural amino acid.

  9. Characterization of bioactive RGD peptide immobilized onto poly(acrylic acid) thin films by plasma polymerization

    NASA Astrophysics Data System (ADS)

    Seo, Hyun Suk; Ko, Yeong Mu; Shim, Jae Won; Lim, Yun Kyong; Kook, Joong-Ki; Cho, Dong-Lyun; Kim, Byung Hoon

    2010-11-01

    Plasma surface modification can be used to improve the surface properties of commercial pure Ti by creating functional groups to produce bioactive materials with different surface topography. In this study, a titanium surface was modified with acrylic acid (AA) using a plasma treatment and immobilized with bioactive arginine-glycine-aspartic acid (RGD) peptide, which may accelerate the tissue integration of bone implants. Both terminals containing the -NH2 of RGD peptide sequence and -COOH of poly(acrylic acid) (PAA) thin film were combined with a covalent bond in the presence of 1-ethyl-3-3-dimethylaminopropyl carbodiimide (EDC). The chemical structure and morphology of AA film and RGD immobilized surface were investigated by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR), atomic force microscopy (AFM), and scanning electron microscopy (SEM). All chemical analysis showed full coverage of the Ti substrate with the PAA thin film containing COOH groups and the RGD peptide. The MC3T3-E1 cells were cultured on each specimen, and the cell alkaline phosphatase (ALP) activity were examined. The surface-immobilized RGD peptide has a significantly increased the ALP activity of MC3T3-E1 cells. These results suggest that the RGD peptide immobilization on the titanium surface has an effect on osteoblastic differentiation of MC3T3-E1 cells and potential use in osteo-conductive bone implants.

  10. Lactobacillus gasseri requires peptides, not proteins or free amino acids, for growth in milk.

    PubMed

    Arakawa, K; Matsunaga, K; Takihiro, S; Moritoki, A; Ryuto, S; Kawai, Y; Masuda, T; Miyamoto, T

    2015-03-01

    Lactobacillus gasseri is a widespread commensal lactic acid bacterium inhabiting human mucosal niches and has many beneficial effects as a probiotic. However, L. gasseri is difficult to grow in milk, which hurts usability for the food industry. It had been previously reported that supplementation with yeast extract or proteose peptone, including peptides, enables L. gasseri to grow well in milk. In this study, our objective was to confirm peptide requirement of L. gasseri and evaluate efficacy of peptide release by enzymatic proteolysis on growth of L. gassei in milk. Three strains of L. gasseri did not grow well in modified DeMan, Rogosa, Sharpe broth without any nitrogen sources (MRS-N), but addition of a casein-derived peptide mixture, tryptone, promoted growth. In contrast, little effect was observed after adding casein or a casein-derived amino acid mixture, casamino acids. These results indicate that L. gasseri requires peptides, not proteins or free amino acids, among milk-derived nitrogen sources for growth. Lactobacillus gasseri JCM 1131T hardly had growth capacity in 6 kinds of milk-based media: bovine milk, human milk, skim milk, cheese whey, modified MRS-N (MRSL-N) supplemented with acid whey, and MRSL-N supplemented with casein. Moreover, treatment with digestive proteases, particularly pepsin, to release peptides made it grow well in each milk-based medium. The pepsin treatment was the most effective for growth of strain JCM 1131T in skim milk among the tested food-grade proteases such as trypsin, α-chymotrypsin, calf rennet, ficin, bromelain, and papain. As well as strain JCM 1131T, pepsinolysis of milk improved growth of other L. gasseri strains and some strains of enteric lactobacilli such as Lactobacillus crispatus, Lactobacillus gallinarum, Lactobacillus johnsonii, and Lactobacillus reuteri. These results suggest that some relatives of L. gasseri also use peptides as desirable nitrogen sources, and that milk may be a good supplier of nutritious

  11. Synthesis of peptides from amino acids and ATP with lysine-rich proteinoid

    NASA Technical Reports Server (NTRS)

    Nakashima, T.; Fox, S. W.

    1980-01-01

    The paper examines the synthesis of peptides from aminoacids and ATP with a lysine-rich protenoid. The latter in aqueous solution catalyzes the formation of peptides from free amino acids and ATP; this catalytic activity is not found in acidic protenoids, even though the latter contain a basic aminoacid. The pH optimum for the synthesis is about 11, but it is appreciable below 8 and above 13. Temperature data indicate an optimum at 20 C or above, with little increase in rate up to 60 C. Pyrophosphate can be used instead of ATP, but the yields are lower. The ATP-aided syntheses of peptides in aqueous solution occur with several types of proteinous aminoacids.

  12. Antimicrobial peptides incorporating non-natural amino acids as agents for plant protection.

    PubMed

    Ng-Choi, Iteng; Soler, Marta; Güell, Imma; Badosa, Esther; Cabrefiga, Jordi; Bardaji, Eduard; Montesinos, Emilio; Planas, Marta; Feliu, Lidia

    2014-04-01

    The control of plant pathogens is mainly based on copper compounds and antibiotics. However, the use of these compounds has some limitations. They have a high environmental impact and the use of antibiotics is not allowed in several countries. Moreover, resistance has been developed to these pathogens. The identification of new agents able to fight plant pathogenic bacteria and fungi will represent an alternative to currently used antibiotics or pesticides. Antimicrobial peptides are widely recognized as promising candidates, however naturally occurring sequences present drawbacks that limit their development. These include susceptibility to protease degradation and low bioavailability. To overcome these problems, research has focused on the introduction of unnatural amino acids into lead peptide sequences. In particular, we have improved the biological profile of antimicrobial peptides active against plant pathogenic bacteria and fungi by incorporating triazolyl, biaryl and D-amino acids into their sequence. These modifications and their influence on the biological activity are summarized.

  13. Release of free amino acids upon oxidation of peptides and proteins by hydroxyl radicals.

    PubMed

    Liu, Fobang; Lai, Senchao; Tong, Haijie; Lakey, Pascale S J; Shiraiwa, Manabu; Weller, Michael G; Pöschl, Ulrich; Kampf, Christopher J

    2017-03-01

    Hydroxyl radical-induced oxidation of proteins and peptides can lead to the cleavage of the peptide, leading to a release of fragments. Here, we used high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) and pre-column online ortho-phthalaldehyde (OPA) derivatization-based amino acid analysis by HPLC with diode array detection and fluorescence detection to identify and quantify free amino acids released upon oxidation of proteins and peptides by hydroxyl radicals. Bovine serum albumin (BSA), ovalbumin (OVA) as model proteins, and synthetic tripeptides (comprised of varying compositions of the amino acids Gly, Ala, Ser, and Met) were used for reactions with hydroxyl radicals, which were generated by the Fenton reaction of iron ions and hydrogen peroxide. The molar yields of free glycine, aspartic acid, asparagine, and alanine per peptide or protein varied between 4 and 55%. For protein oxidation reactions, the molar yields of Gly (∼32-55% for BSA, ∼10-21% for OVA) were substantially higher than those for the other identified amino acids (∼5-12% for BSA, ∼4-6% for OVA). Upon oxidation of tripeptides with Gly in C-terminal, mid-chain, or N-terminal positions, Gly was preferentially released when it was located at the C-terminal site. Overall, we observe evidence for a site-selective formation of free amino acids in the OH radical-induced oxidation of peptides and proteins, which may be due to a reaction pathway involving nitrogen-centered radicals.

  14. Distinguishing Aspartic and Isoaspartic Acids in Peptides by Several Mass Spectrometric Fragmentation Methods

    NASA Astrophysics Data System (ADS)

    DeGraan-Weber, Nick; Zhang, Jun; Reilly, James P.

    2016-12-01

    Six ion fragmentation techniques that can distinguish aspartic acid from its isomer, isoaspartic acid, were compared. MALDI post-source decay (PSD), MALDI 157 nm photodissociation, tris(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPP) charge tagging in PSD and photodissociation, ESI collision-induced dissociation (CID), electron transfer dissociation (ETD), and free-radical initiated peptide sequencing (FRIPS) with CID were applied to peptides containing either aspartic or isoaspartic acid. Diagnostic ions, such as the y-46 and b+H2O, are present in PSD, photodissociation, and charge tagging. c•+57 and z-57 ions are observed in ETD and FRIPS experiments. For some molecules, aspartic and isoaspartic acid yield ion fragments with significantly different intensities. ETD and charge tagging appear to be most effective at distinguishing these residues.

  15. 2-Chlorotrityl chloride resin. Studies on anchoring of Fmoc-amino acids and peptide cleavage.

    PubMed

    Barlos, K; Chatzi, O; Gatos, D; Stavropoulos, G

    1991-06-01

    The esterification of 2-chlorotrityl chloride resin with Fmoc-amino acids in the presence of DIEA is studied under various conditions. High esterification yields are obtained using 0.6 equiv. Fmoc-amino acid/mmol resin in DCM or DCE, in 25 min, at room temperature. The reaction proceeds without by product formation even in the case of Fmoc-Asn and Fmoc-Gln. The quantitative and easy cleavage of amino acids and peptides from 2-chlorotrityl resin, by using AcOH/TFE/DCM mixtures, is accomplished within 15-60 min at room temperature, while t-butyl type protecting groups remain unaffected. Under these exceptionally mild conditions 2-chlorotrityl cations generated during the cleavage of amino acids and peptides from resin do not attack the nucleophilic side chains of Trp, Met, and Tyr.

  16. Negative Ion In-Source Decay Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry for Sequencing Acidic Peptides

    NASA Astrophysics Data System (ADS)

    McMillen, Chelsea L.; Wright, Patience M.; Cassady, Carolyn J.

    2016-05-01

    Matrix-assisted laser desorption/ionization (MALDI) in-source decay was studied in the negative ion mode on deprotonated peptides to determine its usefulness for obtaining extensive sequence information for acidic peptides. Eight biological acidic peptides, ranging in size from 11 to 33 residues, were studied by negative ion mode ISD (nISD). The matrices 2,5-dihydroxybenzoic acid, 2-aminobenzoic acid, 2-aminobenzamide, 1,5-diaminonaphthalene, 5-amino-1-naphthol, 3-aminoquinoline, and 9-aminoacridine were used with each peptide. Optimal fragmentation was produced with 1,5-diaminonphthalene (DAN), and extensive sequence informative fragmentation was observed for every peptide except hirudin(54-65). Cleavage at the N-Cα bond of the peptide backbone, producing c' and z' ions, was dominant for all peptides. Cleavage of the N-Cα bond N-terminal to proline residues was not observed. The formation of c and z ions is also found in electron transfer dissociation (ETD), electron capture dissociation (ECD), and positive ion mode ISD, which are considered to be radical-driven techniques. Oxidized insulin chain A, which has four highly acidic oxidized cysteine residues, had less extensive fragmentation. This peptide also exhibited the only charged localized fragmentation, with more pronounced product ion formation adjacent to the highly acidic residues. In addition, spectra were obtained by positive ion mode ISD for each protonated peptide; more sequence informative fragmentation was observed via nISD for all peptides. Three of the peptides studied had no product ion formation in ISD, but extensive sequence informative fragmentation was found in their nISD spectra. The results of this study indicate that nISD can be used to readily obtain sequence information for acidic peptides.

  17. Selected Lactic Acid Bacteria Synthesize Antioxidant Peptides during Sourdough Fermentation of Cereal Flours

    PubMed Central

    Coda, Rossana; Pinto, Daniela; Gobbetti, Marco

    2012-01-01

    A pool of selected lactic acid bacteria was used for the sourdough fermentation of various cereal flours with the aim of synthesizing antioxidant peptides. The radical-scavenging activity of water/salt-soluble extracts (WSE) from sourdoughs was significantly (P < 0.05) higher than that of chemically acidified doughs. The highest activity was found for whole wheat, spelt, rye, and kamut sourdoughs. Almost the same results were found for the inhibition of linoleic acid autoxidation. WSE were subjected to reverse-phase fast protein liquid chromatography. Thirty-seven fractions were collected and assayed in vitro. The most active fractions were resistant to further hydrolysis by digestive enzymes. Twenty-five peptides of 8 to 57 amino acid residues were identified by nano-liquid chromatography-electrospray ionization-tandem mass spectrometry. Almost all of the sequences shared compositional features which are typical of antioxidant peptides. All of the purified fractions showed ex vivo antioxidant activity on mouse fibroblasts artificially subjected to oxidative stress. This study demonstrates the capacity of sourdough lactic acid bacteria to release peptides with antioxidant activity through the proteolysis of native cereal proteins. PMID:22156436

  18. Recognition of core and flanking amino acids of MHC class II-bound peptides by the T cell receptor.

    PubMed

    Sant'Angelo, Derek B; Robinson, Eve; Janeway, Charles A; Denzin, Lisa K

    2002-09-01

    CD4 T cells recognize peptides bound to major histocompatibility complex (MHC) class II molecules. Most MHC class II molecules have four binding pockets occupied by amino acids 1, 4, 6, and 9 of the minimal peptide epitope, while the residues at positions 2, 3, 5, 7, and 8 are available to interact with the T cell receptor (TCR). In addition MHC class II bound peptides have flanking residues situated outside of this peptide core. Here we demonstrate that the flanking residues of the conalbumin peptide bound to I-A(k) have no effect on recognition by the D10 TCR. To study the role of peptide flanks for recognition by a second TCR, we determined the MHC and TCR contacting amino acids of the I-A(b) bound Ealpha peptide. The Ealpha peptide is shown to bind I-A(b) using four alanines as anchor residues. TCR recognition of Ealpha peptides with altered flanking residues again suggested that, in general, no specific interactions occurred with the peptide flanks. However, using an HLA-DM-mediated technique to measure peptide binding to MHC class II molecules, we found that the peptide flanking residues contribute substantially to MHC binding.

  19. A peptide targeted against phosphoprotein and leader RNA interaction inhibits growth of Chandipura virus -- an emerging rhabdovirus.

    PubMed

    Roy, Arunava; Chakraborty, Prasenjit; Polley, Smarajit; Chattopadhyay, Dhrubajyoti; Roy, Siddhartha

    2013-11-01

    The fatal illness caused by Chandipura virus (CHPV), an emerging pathogen, presently lacks any therapeutic option. Previous research suggested that interaction between the virally encoded phosphoprotein (P) and the positive sense leader RNA (le-RNA) may play an important role in the viral lifecycle. In this report, we have identified a β-sheet/loop motif in the C-terminal domain of the CHPV P protein as essential for this interaction. A synthetic peptide encompassing this motif and spanning a continuous stretch of 36 amino acids (Pep208-243) was found to bind the le-RNA in vitro and inhibit CHPV growth in infected cells. Furthermore, a stretch of three amino acid residues at position 217-219 was identified as essential for this interaction, both in vitro and in infected cells. siRNA knockdown-rescue experiments demonstrated that these three amino acid residues are crucial for the leader RNA binding function of P protein in the CHPV life cycle. Mutations of these three amino acid residues render the peptide completely ineffective against CHPV. Effect of inhibition of phosphoprotein-leader RNA interaction on viral replication was assayed. Peptide Pep208-243 tagged with a cell penetrating peptide was found to inhibit CHPV replication as ascertained by real time RT-PCR. The specific inhibition of viral growth observed using this peptide suggests a new possibility for designing of anti-viral agents against Mononegavirale group of human viruses.

  20. Laser ion beam photodissociation studies of model amino acids and peptides

    SciTech Connect

    Techlenburg, R.E. Jr.; Miller, M.N.; Russell, D.H. )

    1989-02-15

    Visible (458-514.5 nm) and uv (333-385 nm) photodissociation of the (M + H){sup +} ions of dinitrophenyl (DNP) derivatized amino acids and peptides is reported. Photoexcitation of the DNP peptides by a visible proton results in fragmentation of the peptide chain with little fragmentation within the chromophore. Conversely, uv photoexcitation of the DNP peptides results in fragmentation of the chromophore as well as the peptide chain, but loss of NO or NO{sub 2} (within the chromophore) often dominates the photofragment ion spectrum. These results are rationalized with particular emphasis on energy-selective dissociation channels of large ionic systems. DNP-leucine and DNP-isoleucine (M + H){sup +} can be differentiated on the basis of photodissociation reactions which yield distonic radical cations. The rate of dissociation of photoexcited ions of DNP peptides is shown to decrease with increasing molecular weight (degrees of freedom). Lastly, comparisons between photodissociation and collision-induced dissociation as a structural probe are presented. 55 refs., 8 figs., 3 tabs.

  1. Single amino acid fingerprinting of the human antibody repertoire with high density peptide arrays.

    PubMed

    Weber, Laura K; Palermo, Andrea; Kügler, Jonas; Armant, Olivier; Isse, Awale; Rentschler, Simone; Jaenisch, Thomas; Hubbuch, Jürgen; Dübel, Stefan; Nesterov-Mueller, Alexander; Breitling, Frank; Loeffler, Felix F

    2017-04-01

    The antibody species that patrol in a patient's blood are an invaluable part of the immune system. While most of them shield us from life-threatening infections, some of them do harm in autoimmune diseases. If we knew exactly all the antigens that elicited all the antibody species within a group of patients, we could learn which ones correlate with immune protection, are irrelevant, or do harm. Here, we demonstrate an approach to this question: First, we use a plethora of phage-displayed peptides to identify many different serum antibody binding peptides. Next, we synthesize identified peptides in the array format and rescreen the serum used for phage panning to validate antibody binding peptides. Finally, we systematically vary the sequence of validated antibody binding peptides to identify those amino acids within the peptides that are crucial for binding "their" antibody species. The resulting immune fingerprints can then be used to trace them back to potential antigens. We investigated the serum of an individual in this pipeline, which led to the identification of 73 antibody fingerprints. Some fingerprints could be traced back to their most likely antigen, for example the immunodominant capsid protein VP1 of enteroviruses, most likely elicited by the ubiquitous poliovirus vaccination. Thus, with our approach, it is possible, to pinpoint those antibody species that correlate with a certain antigen, without any pre-information. This can help to unravel hitherto enigmatic diseases.

  2. Antimicrobial Peptides Targeting Gram-negative Pathogens, Produced and Delivered by Lactic Acid Bacteria

    PubMed Central

    Volzing, Katherine; Borrero, Juan; Sadowsky, Michael J.; Kaznessis, Yiannis N.

    2014-01-01

    We present results of tests with recombinant Lactococcus lactis that produce and secrete heterologous antimicrobial peptides with activity against Gram-negative pathogenic Escherichia coli and Salmonella. In an initial screening, the activities of numerous candidate antimicrobial peptides, made by solid state synthesis, were assessed against several indicator pathogenic E. coli and Salmonella strains. Peptides A3APO and Alyteserin were selected as top performers based on high antimicrobial activity against the pathogens tested and on significantly lower antimicrobial activity against L. lactis. Expression cassettes containing the signal peptide of the protein Usp45 fused to the codon optimized sequence of mature A3APO and Alyteserin were cloned under the control of a nisin-inducible promoter nisA and transformed into L. lactis IL1403. The resulting recombinant strains were induced to express and secrete both peptides. A3APO- and Alyteserin-containing supernatants from these recombinant L. lactis inhibited the growth of pathogenic E. coli and Salmonella by up to 20-fold, while maintaining the host’s viability. This system may serve as a model for the production and delivery of antimicrobial peptides by lactic acid bacteria to target Gram-negative pathogenic bacteria populations. PMID:23808914

  3. HIV-1 enhancing effect of prostatic acid phosphatase peptides is reduced in human seminal plasma.

    PubMed

    Martellini, Julie A; Cole, Amy L; Svoboda, Pavel; Stuchlik, Olga; Chen, Li-Mei; Chai, Karl X; Gangrade, Bhushan K; Sørensen, Ole E; Pohl, Jan; Cole, Alexander M

    2011-01-20

    We recently reported that HIV-1 infection can be inhibited by innate antimicrobial components of human seminal plasma (SP). Conversely, naturally occurring peptidic fragments from the SP-derived prostatic acid phosphatase (PAP) have been reported to form amyloid fibrils called "SEVI" and enhance HIV-1 infection in vitro. In order to understand the biological consequence of this proviral effect, we extended these studies in the presence of human SP. PAP-derived peptides were agitated to form SEVI and incubated in the presence or absence of SP. While PAP-derived peptides and SEVI alone were proviral, the presence of 1% SP ablated their proviral activity in several different anti-HIV-1 assays. The anti-HIV-1 activity of SP was concentration dependent and was reduced following filtration. Supraphysiological concentrations of PAP peptides and SEVI incubated with diluted SP were degraded within hours, with SP exhibiting proteolytic activity at dilutions as high as 1:200. Sub-physiological concentrations of two prominent proteases of SP, prostate-specific antigen (PSA) and matriptase, could degrade physiological and supraphysiological concentrations of PAP peptides and SEVI. While human SP is a complex biological fluid, containing both antiviral and proviral factors, our results suggest that PAP peptides and SEVI may be subject to naturally occurring proteolytic components capable of reducing their proviral activity.

  4. Aromatic amino acids providing characteristic motifs in the Raman and SERS spectroscopy of peptides.

    PubMed

    Wei, Fang; Zhang, Dongmao; Halas, Naomi J; Hartgerink, Jeffrey D

    2008-07-31

    Raman and surface-enhanced Raman spectroscopies (SERS) are potentially important tools in the characterization of biomolecules such as proteins and DNA. In this work, SERS spectra of three cysteine-containing aromatic peptides: tryptophan-cysteine, tyrosine-cysteine, and phenylalanine-cysteine, bound to Au nanoshell substrates, were obtained, and compared to their respective normal Raman spectra. While the linewidths of the SERS peaks are significantly broadened (up to 70%), no significant spectral shifts (<6 cm (-1)) of the major Stokes modes were observed between the two modalities. We show that the Raman and SERS spectra of penetratin, a cell-penetrating peptide oligomer, can be comprised quite reliably from the spectra of its constituent aromatic amino acids except in the backbone regions where the spectral intensities are critically dependent on the length and conformations of the probed molecules. From this study we conclude that, together with protein backbone groups, aromatic amino acid residues provide the overwhelmingly dominant features in the Raman and SERS spectra of peptides and proteins when present. It follows that the Raman modes of these three small constructed peptides may likely apply to the assignment of Raman and SERS features in the spectra of other peptides and proteins.

  5. Oxidative diversification of amino acids and peptides by small-molecule iron catalysis

    PubMed Central

    Osberger, Thomas J.; Rogness, Donald C.; Kohrt, Jeffrey T.; Stepan, Antonia F.; White, M. Christina

    2016-01-01

    Secondary metabolites synthesized by nonribosomal peptide synthetases (NRPSs) display diverse and complex topologies and possess an impressive range of biological activities1,2 Much of this diversity derives from a synthetic strategy that entails the oxidation of both the chiral amino acid building blocks and the assembled peptide scaffolds pre-3 and post-assembly2. The vancomycin biosynthetic pathway is an excellent example of the range of oxidative transformations that can be performed by the iron-containing enzymes involved in its biosynthesis.4 However, because of the challenges associated with using such oxidative enzymes to carry out chemical transformations in vitro, chemical syntheses guided by these principles have not been fully realized outside of nature.5 In this manuscript, we report that two small-molecule iron catalysts are capable of facilitating the targeted C—H oxidative modification of amino acids and peptides with preservation of α-center chirality. Oxidation of proline to 5-hydroxyproline furnishes a versatile intermediate that can be transformed to rigid arylated derivatives or flexible linear carboxylic acids, alcohols, olefins, and amines in both monomer and peptide settings. The value of this C—H oxidation strategy is demonstrated in its capacity for generating diversity: four 'chiral pool' amino acids are transformed to twenty-one chiral unnatural amino acids (UAAs) representing seven distinct functional group arrays; late-stage C—H functionalizations of a single proline-containing tripeptide furnish eight tripeptides, each having different UAAs. Additionally, a macrocyclic peptide containing a proline turn element is transformed via late-stage C—H oxidation to one containing a linear UAA. PMID:27479323

  6. Second virial coefficient determination of a therapeutic peptide by self-interaction chromatography.

    PubMed

    Payne, Robert W; Nayar, Rajiv; Tarantino, Ralph; Del Terzo, Sam; Moschera, John; Di, Jie; Heilman, David; Bray, Brian; Manning, Mark Cornell; Henry, Charles S

    2006-01-01

    Self-interaction of macromolecules has been shown to play an important role in a number of physical processes, including crystallization, solubility, viscosity, and aggregation. Peptide self-interaction is not as well studied as for larger proteins, but should play an equally important role. The osmotic second virial coefficient, B, can be used to quantify peptide and protein self-interaction. B values are typically measured using static light scattering (SLS). Peptides, however, do not scatter enough light to allow such measurements. This study describes the first use of self-interaction chromatography (SIC) for the measurement of peptide B values because SIC does not have the molecular size limitations of SLS. In the present work, SIC was used to measure B for enfuvirtide, a 36-amino acid therapeutic peptide, as a function of salt concentration, salt type, and pH. B was found to correlate strongly with solubility and apparent molecular weight. In general, the solubility of enfuvirtide increases with pH from 6 to 10 and decreases as the salt concentration increases from 0 to 0.5M for three different salts. The effect of peptide concentration on B was also investigated and shown to have a significant effect, but only at high concentrations (>80 mg/mL).

  7. Interaction of cationic peptides with lipoteichoic acid and gram-positive bacteria.

    PubMed

    Scott, M G; Gold, M R; Hancock, R E

    1999-12-01

    Compounds with antiendotoxin properties have been extensively studied for their potential as therapeutic agents for sepsis attributable to gram-negative bacteria. However, with the increasing incidence of gram-positive sepsis, there is interest in identifying compounds with a broad spectrum of action against both gram-positive and gram-negative bacteria. A series of synthetic alpha-helical cationic peptides related to bee melittin and silk moth cecropin have previously been shown to bind lipopolysaccharide (LPS) with high affinity, inhibit LPS-induced tumor necrosis factor alpha (TNF-alpha) production in vitro and in vivo, and kill gram-negative bacteria. In this study, we analyzed whether these peptides were active against gram-positive bacteria; whether they could bind to lipoteichoic acid (LTA), the major proinflammatory structure on gram-positive bacteria; and whether they could block the ability of LTA to promote the release of cytokines by the RAW 264.7 murine macrophage cell line. We found that the cationic peptides demonstrated moderate growth-inhibitory activity toward gram-positive bacteria. In addition, the peptides bound LTA with high affinity. This correlated with the ability of the peptides to block LTA-induced production of TNF and interleukin-6 by RAW 264.7 cells but did not correlate with their ability to kill the bacteria. The peptides also effectively inhibited LTA-induced TNF production in a whole human blood assay. The peptides were also able to partly block the ability of heat-killed Staphylococcus aureus, as well as soluble products of live S. aureus, to stimulate cytokine production by macrophages. Our results indicate that these cationic peptides may be useful to prevent sepsis and inflammation caused by both gram-negative and gram-positive bacteria.

  8. Stable Isotope Peptide Mass Spectrometry To Decipher Amino Acid Metabolism in Dehalococcoides Strain CBDB1

    PubMed Central

    Marco-Urrea, Ernest; Seifert, Jana; von Bergen, Martin

    2012-01-01

    Dehalococcoides species are key players in the anaerobic transformation of halogenated solvents at contaminated sites. Here, we analyze isotopologue distributions in amino acid pools from peptides of Dehalococcoides strain CBDB1 after incubation with 13C-labeled acetate or bicarbonate as a carbon source. The resulting data were interpreted with regard to genome annotations to identify amino acid biosynthesis pathways. In addition to using gas chromatography-mass spectrometry (GC-MS) for analyzing derivatized amino acids after protein hydrolysis, we introduce a second, much milder method, in which we directly analyze peptide masses after tryptic digest and peptide fragments by nano-liquid chromatography-electrospray ionization-tandem mass spectrometry (nano-LC-ESI-MS/MS). With this method, we identify isotope incorporation patterns for 17 proteinaceous amino acids, including proline, cysteine, lysine, and arginine, which escaped previous analyses in Dehalococcoides. Our results confirmed lysine biosynthesis via the α-aminoadipate pathway, precluding lysine formation from aspartate. Similarly, the isotopologue pattern obtained for arginine provided biochemical evidence of its synthesis from glutamate. Direct peptide MS/MS analysis of the labeling patterns of glutamine and asparagine, which were converted to glutamate and aspartate during protein hydrolysis, gave biochemical evidence of their precursors and confirmed glutamate biosynthesis via a Re-specific citrate synthase. By addition of unlabeled free amino acids to labeled cells, we show that in strain CBDB1 none of the 17 tested amino acids was incorporated into cell mass, indicating that they are all synthesized de novo. Our approach is widely applicable and provides a means to analyze amino acid metabolism by studying specific proteins even in mixed consortia. PMID:22661690

  9. Entropy reduction in unfolded peptides (and proteins) due to conformational preferences of amino acid residues.

    PubMed

    Schweitzer-Stenner, Reinhard; Toal, Siobhan E

    2014-11-07

    As established by several groups over the last 20 years, amino acid residues in unfolded peptides and proteins do not exhibit the unspecific random distribution as assumed by the classical random coil model. Individual amino acid residues in small peptides were found to exhibit different conformational preferences. Here, we utilize recently obtained conformational distributions of guest amino acid residues in GxG peptides to estimate their conformational entropy, which we find to be significantly lower than the entropy of an assumed random coil like distribution. Only at high temperature do backbone entropies approach random coil like values. We utilized the obtained backbone entropies of the investigated amino acid residues to estimate the loss of conformational entropy caused by a coil → helix transition and identified two subsets of amino acid residues for which the thus calculated entropy losses correlate well with the respective Gibbs energy of helix formation obtained for alanine based host-guest systems. Calculated and experimentally derived entropic losses were found to be in good agreement. For most of the amino acid residues investigated entropic losses derived from our GxG distributions correlate very well with corresponding values recently obtained from MD simulations biased by conformational propensities derived from truncated coil libraries. Both, conformational entropy and the entropy of solvation exhibit a strong, residue specific temperature dependence, which can be expected to substantially affect the stability of unfolded states. Altogether, our results provide strong evidence for the notion that conformational preferences of amino acid residues matter with regard to the thermodynamics of peptide and protein folding.

  10. The Unexpected Advantages of Using D-Amino Acids for Peptide Self-Assembly into Nanostructured Hydrogels for Medicine

    PubMed Central

    Melchionna, Michele; Styan, Katie E.; Marchesan, Silvia

    2016-01-01

    Self-assembled peptide hydrogels have brought innovation to the medicinal field, not only as responsive biomaterials but also as nanostructured therapeutic agents or as smart drug delivery systems. D-amino acids are typically introduced to increase the peptide enzymatic stability. However, there are several reports of unexpected effects on peptide conformation, self-assembly behavior, cytotoxicity and even therapeutic activity. This mini-review discusses all the surprising twists of heterochiral self-assembled peptide hydrogels, and delineates emerging key findings to exploit all the benefits of D-amino acids in this novel medicinal area. PMID:26876522

  11. Question 1: Peptide nucleic acids and the origin and homochirality of life.

    PubMed

    Nielsen, Peter E

    2007-10-01

    The possibilities of pseudo peptide DNA mimics like PNA (peptide nucleic acid) having a role for the prebiotic origin of life prior to an RNA world is discussed. In particular a scenario is proposed in which protocells with an achiral genetic material through several generations stepwise is converted into a chiral genetic material, e.g., by incorporation of RNA units. Provided that a sufficiently large sequence space is occupied, a selection process based on catalytic function in which a single cell (first common ancestor) has a definite evolutionary advantage, selection of this cell would by contingency also lock it into homochirality.

  12. Applications of hydrophilic interaction chromatography to amino acids, peptides, and proteins.

    PubMed

    Periat, Aurélie; Krull, Ira S; Guillarme, Davy

    2015-02-01

    This review summarizes the recent advances in the analysis of amino acids, peptides, and proteins using hydrophilic interaction chromatography. Various reports demonstrate the successful analysis of amino acids under such conditions. However, a baseline resolution of the 20 natural amino acids has not yet been published and for this reason, there is often a need to use mass spectrometry for detection to further improve selectivity. Hydrophilic interaction chromatography is also recognized as a powerful technique for peptide analysis, and there are a lot of papers showing its applicability for proteomic applications (peptide mapping). It is expected that its use for peptide mapping will continue to grow in the future, particularly because this analytical strategy can be combined with reversed-phase liquid chromatography, in a two-dimensional setup, to reach very high resolving power. Finally, the interest in hydrophilic interaction chromatography for intact proteins analysis is less evident due to possible solubility issues and a lack of suitable hydrophilic interaction chromatography stationary phases. To date, it has been successfully employed only for the characterization of membrane proteins, histones, and the separation of glycosylated isoforms of an intact glycoprotein. From our point of view, the number of hydrophilic interaction chromatography columns compatible with intact proteins (higher upper temperature limit, large pore size, etc.) is still too limited.

  13. Stabilization Effect of Amino Acid Side Chains in Peptide Assemblies on Graphite Studied by Scanning Tunneling Microscopy.

    PubMed

    Guo, Yuanyuan; Hou, Jingfei; Zhang, Xuemei; Yang, Yanlian; Wang, Chen

    2017-02-03

    An analysis is presented of the effects of amino acid side chains on peptide assemblies in ambient conditions on a graphite surface. The molecularly resolved assemblies of binary peptides are examined with scanning tunneling microscopy. A comparative analysis of the assembly structures reveals that the lamellae width has an appreciable dependence on the peptide sequence, which could be considered as a manifestation of a stabilizing effect of side-chain moieties of amino acids with high (phenylalanine) and low (alanine, asparagine, histidine and aspartic acid) propensities for aggregation. These amino acids are representative for the chemical structures involving the side chains of charged (histidine and aspartic acid), aromatic (phenylalanine), hydrophobic (alanine), and hydrophilic (asparagine) amino acids. These results might provide useful insight for understanding the effects of sequence on the assembly of surface-bound peptides.

  14. Enhancement of acid tolerance in Zymomonas mobilis by a proton-buffering peptide.

    PubMed

    Baumler, David J; Hung, Kai F; Bose, Jeffrey L; Vykhodets, Boris M; Cheng, Chorng M; Jeong, Kwang-Cheol; Kaspar, Charles W

    2006-07-01

    A portion of the cbpA gene from Escherichia coli K-12 encoding a 24 amino acid proton-buffering peptide (Pbp) was cloned via the shuttle vector pJB99 into E. coli JM105 and subsequently into Zymomonas mobilis CP4. Expression of Pbp was confirmed in both JM105 and CP4 by HPLC. Z. mobilis CP4 carrying pJB99-2 (Pbp) exhibited increased acid tolerance (p < 0.05) in acidified TSB (HCl [pH 3.0] or acetic acid [pH 3.5]), glycine-HCl buffer (pH 3.0), and sodium acetate-acetic acid buffer (pH 3.5) in comparison to the parent strain (CP4) and CP4 with pJB99 (control plasmid). Although the expression of Pbp influenced survival at a low pH, the minimum growth pH was unaffected. Growth of Z. mobilis in the presence of ampicillin also significantly increased acid tolerance by an unknown mechanism. Results from this study demonstrate that the production of a peptide with a high proportion of basic amino acids can contribute to protection from low pH and weak organic acids such as acetic acid.

  15. Mass spectral study of hybrid peptides derived from (R)-aminoxy ester and [beta]-amino acids: The influence of aminoxy peptide bond (CO-NH-O) on peptide fragmentation under electrospray ionization conditions

    NASA Astrophysics Data System (ADS)

    Ramesh, V.; Ramesh, M.; Srinivas, R.; Sharma, G. V. M.; Manohar, V.

    2009-04-01

    A new class of Boc-protected aminoxy hybrid peptides containing repeats of [beta]-hAla-(R)-Ama-, and [beta]-Caa-(R)-Ama- ([beta]-hAla = [beta]3-(S)-hAlanine, (R)-Ama = (R)-aminoxy ester, and [beta]-Caa = (R)-C-linked carbo-[beta]3-amino acid) have been studied by electrospray ionization (ESI) ion-trap and quadrupole time-of-flight tandem mass spectrometry (Q-TOF MS/MS) of their protonated, cationized, and negative ions. MS3 CID of protonated aminoxy peptides of [beta]-hAla-(R)-Ama- yield intense [beta]-amino acid characteristic retro-Mannich fragmentation. The bn+ and [bn-methyl imine]+ (n = 3, 5) ions formed by cleavage of aminoxy peptide bond (CO-NH-O) are more intense than bn+ (n = 2, 4) formed by that of peptide bond (CO-NH-C) cleavage. Another characteristic ion observed is due to loss of H3NO from yn+ ions. The cationized (Li+, and Na+) peptides dissociate differently compared to protonated peptides. Intense cationized cn and zn ions are formed due to the cleavage of N-O bond. The deprotonated peptides also show abundant cn- and zn- ions (n = 1, 3, 5) and do not form any yn- ions. All these results clearly indicate the influence of aminoxy peptide bond on fragmentation of these hybrid peptides.

  16. [Amino acid and peptide derivatives of the tylosin family of macrolide antibiotics modified at the aldehyde group].

    PubMed

    Sumbatian, N V; Kuznetsova, I V; Karpenko, V V; Fedorova, N V; Chertkov, V A; Korshunova, G A; Bogdanov, A A

    2010-01-01

    Fourteen new functionally active amino acid and peptide derivatives of the antibiotics tylosin, desmycosin, and 5-O-mycaminosyltylonolide were synthesized in order to study the interaction of the growing polypeptide chain with the ribosomal tunnel. The conjugation of various amino acids and peptides with a macrolide aldehyde group was carried out by two methods: direct reductive amination with the isolation of the intermediate Schiff bases or through binding via oxime using the preliminarily obtained derivatives of 2-aminooxyacetic acid.

  17. Properties of synthetic ferrihydrite as an amino acid adsorbent and a promoter of peptide bond formation.

    PubMed

    Matrajt, G; Blanot, D

    2004-03-01

    Ferrihydrite, an iron oxide hydroxide, is found in all kinds of environments, from hydrothermal hot springs to extraterrestrial materials. It has been shown that this material is nanoporous, and because of its high surface area, it has outstanding adsorption properties and in some cases catalysis properties. In this work we studied the adsorption properties of ferrihydrite with respect to amino acids. Samples of pure ferrihydrite were synthesised and exposed to solutions of amino acids including both proteinaceous and non-proteinaceous species. These experiments revealed important characteristics of this mineral as both an adsorbent of amino acids and a promoter of peptide bond formation.

  18. Tritium labeling of amino acids and peptides with liquid and solid tritium

    SciTech Connect

    Peng, C.T.; Hua, R.L.; Souers, P.C.; Coronado, P.R.

    1988-01-01

    Amino acids and peptides were labeled with liquid and solid tritium at 21 K and 9 K. At these low temperatures radiation degradation is minimal, and tritium incorporation increases with tritium concentration and exposure time. Ring saturation in L-phenyl-alanine does not occur. Peptide linkage in oligopeptides is stable toward tritium. Deiodination in 3-iodotyrosine and 3,5-diiodotyrosine occurs readily and proceeds in steps by losing one iodine atom at a time. Nickel and noble metal supported catalysts when used as supports for dispersion of the substrate promote tritium labeling at 21 K. Our study shows that both liquid and solid tritium are potentially useful agents for labeling peptides and proteins. 11 refs., 1 fig., 3 tabs.

  19. Tritium labeling of amino acids and peptides with liquid and solid tritium

    SciTech Connect

    Souers, P.C.; Coronado, P.R.; Peng, C.T.; Hua, R.L.

    1988-01-01

    Amino acids and peptides were labeled with liquid and solid tritium at 21/degree/K and 9/degree/K. At these low temperatures radiation degradation is minimal, and tritium incorporation increases with tritium concentration and exposure time. Ring saturation in L-phenylalanine does not occur. Peptide linkage in oligopeptides is stable toward tritium. Deiodination in 3-iodotyrosine and 3,5-diiodotyrosine occurs readily and proceeds in steps by losing one iodine atom at a time. Nickel and noble metal supported catalysts when used as supports for dispersion of the substrate promote tritium labeling at 21 K. Our study shows that both liquid and solid tritiums are potentially useful agents for labeling peptides and proteins.

  20. Biological Activity of Aminophosphonic Acids and Their Short Peptides

    NASA Astrophysics Data System (ADS)

    Lejczak, Barbara; Kafarski, Pawel

    The biological activity and natural occurrence of the aminophosphonic acids were described half a century ago. Since then the chemistry and biology of this class of compounds have developed into the separate field of phosphorus chemistry. Today it is well acknowledged that these compounds possess a wide variety of promising, and in some cases commercially useful, physiological activities. Thus, they have found applications ranging from agrochemical (with the herbicides glyphosate and bialaphos being the most prominent examples) to medicinal (with the potent antihypertensive fosinopril and antiosteoporetic bisphosphonates being examples).

  1. Role of Amino Acid Insertions on Intermolecular Forces between Arginine Peptide Condensed DNA Helices

    PubMed Central

    DeRouchey, Jason E.; Rau, Donald C.

    2011-01-01

    In spermatogenesis, chromatin histones are replaced by arginine-rich protamines to densely compact DNA in sperm heads. Tight packaging is considered necessary to protect the DNA from damage. To better understand the nature of the forces condensing protamine-DNA assemblies and their dependence on amino acid content, the effect of neutral and negatively charged amino acids on DNA-DNA intermolecular forces was studied using model peptides containing six arginines. We have previously observed that the neutral amino acids in salmon protamine decrease the net attraction between protamine-DNA helices compared with the equivalent homo-arginine peptide. Using osmotic stress coupled with x-ray scattering, we have investigated the component attractive and repulsive forces that determine the net attraction and equilibrium interhelical distance as a function of the chemistry, position, and number of the amino acid inserted. Neutral amino acids inserted into hexa-arginine increase the short range repulsion while only slightly affecting longer range attraction. The amino acid content alone of salmon protamine is enough to rationalize the forces that package DNA in sperm heads. Inserting a negatively charged amino acid into hexa-arginine dramatically weakens the net attraction. Both of these observations have biological implications for protamine-DNA packaging in sperm heads. PMID:21994948

  2. Lactic Acid Bacteria as Cell Factories for the Generation of Bioactive Peptides.

    PubMed

    Brown, Lucia; Pingitore, Esteban Vera; Mozzi, Fernanda; Saavedra, Lucila; Villegas, Josefina M; Hebert, Elvira M

    2017-01-01

    There is a growing interest in the incorporation of functional foods in the daily diet to achieve health promotion and disease risk reduction. Numerous studies have focused on the production of biologically active peptides as nutraceuticals and functional food ingredients due to their health benefits. These short peptides, displaying antihypertensive, antioxidant, mineral binding, immunomodulatory and antimicrobial activities are hidden in a latent state within the primary sequences of food proteins requiring enzymatic proteolysis for their release. While microbial fermentation is one of the major and economically most convenient processes used to generate bioactive peptides, lactic acid bacteria (LAB) are widely used as starter cultures for the production of diverse fermented foods. This article reviews the current knowledge on LAB as cell factories for the production of bioactive peptides from a variety of food protein sources. These microorganisms depend on a complex proteolytic system to ensure successful fermentation processes. In the dairy industry, LAB containing cell envelope-associated proteinases (CEPs) are employed as biocatalysts for the first step of casein breakdown releasing bioactive peptides during milk fermentation. A better understanding of the functionality and regulation of the proteolytic system of LAB opens up future opportunities for the production of novel food-derived compounds with potential health-promoting properties.

  3. Transporters for ammonium, amino acids and peptides are expressed in pitchers of the carnivorous plant Nepenthes.

    PubMed

    Schulze, W; Frommer, W B; Ward, J M

    1999-03-01

    Insect capture and digestion contribute substantially to the nitrogen budget of carnivorous plants. In Nepenthes, insect-derived nitrogenous compounds are imported from the pitcher fluid and transported throughout the plant via the vascular tissue to support growth. Import and distribution of nutrients may require transmembrane nitrogen transporters. Representatives of three classes of genes encoding transporters for the nitrogenous compounds ammonium, amino acids and peptides were identified in Nepenthes pitchers. The expression at the cellular level of an ammonium transporter gene, three amino acid transporter genes, and one peptide transporter gene were investigated in the insect trapping organs of Nepenthes. Expression of the ammonium transporter gene NaAMT1 was detected in the head cells of digestive glands in the lower part of the pitcher where NaAMT1 may function in ammonium uptake from the pitcher fluid. One amino acid transporter gene, NaAAP1, was expressed in bundle sheath cells surrounding the vascular tissue. To understand the locations where transmembrane transport could be required within the pitcher, symplasmic and apoplasmic continuity was probed using fluorescent dyes. Symplasmic connections were not found between cortical cells and vascular bundles. Therefore, the amino acid transporter encoded by NaAAP1 may be involved in transport of amino acids into the vascular tissue. In contrast, expression of the peptide transporter gene NaNTR1 was detected in phloem cells of the vascular tissue within pitchers. NaNTR1 may function in the export of nitrogen from the pitcher by loading peptides into the phloem.

  4. Nucleic Acid-Peptide Complex Phase Controlled by DNA Hybridization

    NASA Astrophysics Data System (ADS)

    Vieregg, Jeffrey; Lueckheide, Michael; Leon, Lorraine; Marciel, Amanda; Tirrell, Matthew

    When polyanions and polycations are mixed, counterion release drives formation of polymer-rich complexes that can either be solid (precipitates) or liquid (coacervates) depending on the properties of the polyelectrolytes. These complexes are important in many fields, from encapsulation of industrial polymers to membrane-free segregation of biomolecules such as nucleic acids and proteins. Condensation of long double-stranded DNA has been studied for several decades, but comparatively little attention has been paid to the polyelectrolyte behavior of oligonucleotides. We report here studies of DNA oligonucleotides (10 - 88 nt) complexed with polylysine (10 - 100 aa). Unexpectedly, we find that the phase of the resulting complexes is controlled by the hybridization state of the nucleic acid, with double-stranded DNA forming precipitates and single-stranded DNA forming coacervates. Stability increases with polyelectrolyte length and decreases with solution salt concentration, with complexes of the longer double-stranded polymers undergoing precipitate/coacervate/soluble transitions as ionic strength is increased. Mixing coacervates formed by complementary single-stranded oligonucleotides results in precipitate formation, raising the possibility of stimulus-responsive material design.

  5. Characterisation of neuroprotective efficacy of modified poly-arginine-9 (R9) peptides using a neuronal glutamic acid excitotoxicity model.

    PubMed

    Edwards, Adam B; Anderton, Ryan S; Knuckey, Neville W; Meloni, Bruno P

    2017-02-01

    In a recent study, we highlighted the importance of cationic charge and arginine residues for the neuroprotective properties of poly-arginine and arginine-rich peptides. In this study, using cortical neuronal cultures and an in vitro glutamic acid excitotoxicity model, we examined the neuroprotective efficacy of different modifications to the poly-arginine-9 peptide (R9). We compared an unmodified R9 peptide with R9 peptides containing the following modifications: (i) C-terminal amidation (R9-NH2); (ii) N-terminal acetylation (Ac-R9); (iii) C-terminal amidation with N-terminal acetylation (Ac-R9-NH2); and (iv) C-terminal amidation with D-amino acids (R9D-NH2). The three C-terminal amidated peptides (R9-NH2, Ac-R9-NH2, and R9D-NH2) displayed neuroprotective effects greater than the unmodified R9 peptide, while the N-terminal acetylated peptide (Ac-R9) had reduced efficacy. Using the R9-NH2 peptide, neuroprotection could be induced with a 10 min peptide pre-treatment, 1-6 h before glutamic acid insult, or when added to neuronal cultures up to 45 min post-insult. In addition, all peptides were capable of reducing glutamic acid-mediated neuronal intracellular calcium influx, in a manner that reflected their neuroprotective efficacy. This study further highlights the neuroprotective properties of poly-arginine peptides and provides insight into peptide modifications that affect efficacy.

  6. Systematic amino acid substitutions improved efficiency of GD2-peptide mimotope vaccination against neuroblastoma.

    PubMed

    Bleeke, Matthias; Fest, Stefan; Huebener, Nicole; Landgraf, Christiane; Schraven, Burkhart; Gaedicke, Gerhard; Volkmer, Rudolf; Lode, Holger N

    2009-11-01

    The likelihood of identifying peptides of sufficient quality for the development of effective cancer vaccines by screening of phage display libraries is low. Here, we introduce the sequential application of systematic amino acid substitution by SPOT synthesis. After the substitution of two amino acids within the sequence of a phage display-derived mimotope of disialoganglioside GD2 (mimotope MA), the novel mimotope C3 showed improved GD2 mimicry in vitro. Peptide vaccination with the C3 mimotope induced an 18-fold increased anti-GD2 serum response associated with reduction of primary tumour growth and spontaneous metastasis in contrast to MA mimotope controls in a syngeneic neuroblastoma model. In summary, SPOT provides an ideal optimisation tool for the development of phage display-derived cancer vaccines.

  7. [Use of peptide bioregulators in intoxication with the herbicide 2,4-dichlorophenoxyacetic acid].

    PubMed

    Lebedeva, S N; Zhamsaranova, S D

    2004-01-01

    The paper shows it promising to use peptide bioregulators--fractions obtained from the cattle immune system (thymus, spleen, and lymph nodes) during immunotherapy for intoxication experimentally caused by the herbicide 2,4-dichlorophenoxyacetic acid. Oral administration of the fractions in a dose of 0.1 mg/kg body weight eliminated the suppressive effect of the herbicide on murine cellular and humoral immune reactions, which manifested by the recovery of the studied parameters to those in control animals.

  8. Assessing the Chemical Accuracy of Protein Structures via Peptide Acidity

    PubMed Central

    Anderson, Janet S.; Hernández, Griselda; LeMaster, David M.

    2012-01-01

    Although the protein native state is a Boltzmann conformational ensemble, practical applications often require a representative model from the most populated region of that distribution. The acidity of the backbone amides, as reflected in hydrogen exchange rates, is exquisitely sensitive to the surrounding charge and dielectric volume distribution. For each of four proteins, three independently determined X-ray structures of differing crystallographic resolution were used to predict exchange for the static solvent-exposed amide hydrogens. The average correlation coefficients range from 0.74 for ubiquitin to 0.93 for Pyrococcus furiosus rubredoxin, reflecting the larger range of experimental exchange rates exhibited by the latter protein. The exchange prediction errors modestly correlate with the crystallographic resolution. MODELLER 9v6-derived homology models at ~60% sequence identity (36% identity for chymotrypsin inhibitor CI2) yielded correlation coefficients that are ~0.1 smaller than for the cognate X-ray structures. The most recently deposited NOE-based ubiquitin structure and the original NMR structure of CI2 fail to provide statistically significant predictions of hydrogen exchange. However, the more recent RECOORD refinement study of CI2 yielded predictions comparable to the X-ray and homology model-based analyses. PMID:23182463

  9. Development of SI-traceable C-peptide certified reference material NMIJ CRM 6901-a using isotope-dilution mass spectrometry-based amino acid analyses.

    PubMed

    Kinumi, Tomoya; Goto, Mari; Eyama, Sakae; Kato, Megumi; Kasama, Takeshi; Takatsu, Akiko

    2012-07-01

    A certified reference material (CRM) is a higher-order calibration material used to enable a traceable analysis. This paper describes the development of a C-peptide CRM (NMIJ CRM 6901-a) by the National Metrology Institute of Japan using two independent methods for amino acid analysis based on isotope-dilution mass spectrometry. C-peptide is a 31-mer peptide that is utilized for the evaluation of β-cell function in the pancreas in clinical testing. This CRM is a lyophilized synthetic peptide having the human C-peptide sequence, and contains deamidated and pyroglutamylated forms of C-peptide. By adding water (1.00 ± 0.01) g into the vial containing the CRM, the C-peptide solution in 10 mM phosphate buffer saline (pH 6.6) is reconstituted. We assigned two certified values that represent the concentrations of total C-peptide (mixture of C-peptide, deamidated C-peptide, and pyroglutamylated C-peptide) and C-peptide. The certified concentration of total C-peptide was determined by two amino acid analyses using pre-column derivatization liquid chromatography-mass spectrometry and hydrophilic chromatography-mass spectrometry following acid hydrolysis. The certified concentration of C-peptide was determined by multiplying the concentration of total C-peptide by the ratio of the relative area of C-peptide to that of the total C-peptide measured by liquid chromatography. The certified value of C-peptide (80.7 ± 5.0) mg/L represents the concentration of the specific entity of C-peptide; on the other hand, the certified value of total C-peptide, (81.7 ± 5.1) mg/L can be used for analyses that does not differentiate deamidated and pyroglutamylated C-peptide from C-peptide itself, such as amino acid analyses and immunochemical assays.

  10. Investigating the inclusion properties of aromatic amino acids complexing beta-cyclodextrins in model peptides.

    PubMed

    Caso, Jolanda Valentina; Russo, Luigi; Palmieri, Maddalena; Malgieri, Gaetano; Galdiero, Stefania; Falanga, Annarita; Isernia, Carla; Iacovino, Rosa

    2015-10-01

    Cyclodextrins are commonly used as complexing agents in biological, pharmaceutical, and industrial applications since they have an effect on protein thermal and proteolytic stability, refolding yields, solubility, and taste masking. β-cyclodextrins (β-CD), because of their cavity size are a perfectly suited complexing agent for many common guest moieties. In the case of peptide-cyclodextrin and protein-cyclodextrin host-guest complexes the aromatic amino acids are reported to be the principal responsible of the interaction. For these reasons, we have investigated the inclusion properties of nine designed tripeptides, obtained permuting the position of two L-alanines (Ala, A) with that of one L-tryptophan (Trp, W), L-phenylalanine (Phe, F), or L-tyrosine (Tyr, Y), respectively. Interestingly, the position of the aromatic side-chain in the sequence appears to modulate the β-CD:peptide binding constants, determined via UV-Vis and NMR spectroscopy, which in turn assumes values higher than those reported for the single amino acid. The tripeptides containing a tyrosine showed the highest binding constants, with the central position in the Ac-AYA-NH2 peptide becoming the most favorite for the interaction. A combined NMR and Molecular Docking approach permitted to build detailed complex models, highlighting the stabilizing interactions of the neighboring amino acids backbone atoms with the upper rim of the β-CD.

  11. Acid-base titration of melanocortin peptides: evidence of Trp rotational conformers interconversion.

    PubMed

    Fernandez, Roberto M; Vieira, Renata F F; Nakaie, Clóvis R; Lamy, M Teresa; Ito, Amando S

    2005-01-01

    Tryptophantime-resolved fluorescence was used to monitor acid-base titration properties of alpha-melanocyte stimulating hormone (alpha-MSH) and the biologically more potent analog [Nle4, D-Phe7]alpha -MSH (NDP-MSH), labeled or not with the paramagnetic amino acid probe 2,2,6,6-tetramthylpiperidine-N-oxyl-4-amino-4-carboxylic acid (Toac). Global analysis of fluorescence decay profiles measured in the pH range between 2.0 and 11.0 showed that, for each peptide, the data could be well fitted to three lifetimes whose values remained constant. The less populated short lifetime component changed little with pH and was ascribed to Trp g+ chi1 rotamer, in which electron transfer deactivation predominates over fluorescence. The long and intermediate lifetime preexponential factors interconverted along that pH interval and the result was interpreted as due to interconversion between Trp g- and trans chi1 rotamers, driven by conformational changes promoted by modifications in the ionization state of side-chain residues. The differences in the extent of interconversion in alpha-MSH and NDP-MSH are indicative of structural differences between the peptides, while titration curves suggest structural similarities between each peptide and its Toac-labeled species, in aqueous solution. Though less sensitive than fluorescence, the Toac electron spin resonance (ESR) isotropic hyperfine splitting parameter can also monitor the titration of side-chain residues located relatively far from the probe.

  12. Remote Enantioselection Transmitted by an Achiral Peptide Nucleic Acid Backbone

    NASA Technical Reports Server (NTRS)

    Kozlov, Igor A.; Orgel, Leslie E.; Nielsen, Peter E.

    2000-01-01

    short homochiral segment of DNA into a PNA helix could have guaranteed that the next short segment of DNA to be incorporated would have the same handedness as the first. Once two segments of the same handedness were present, the probability that a third segment would have the same handedness would increase, and so on. Evolution could then slowly dilute out the PNA part. This scenario would ultimately allow the formation of a chiral oligonucleotide by processes that are largely resistant to enantiomeric crossinhibition. It is important to note that the ligation of homochiral dinucleotides on a nucleic acid template would probably be at least as enantiospecific as the reaction that we have studied. The disadvantage of using chiral monomers as components of a replicating system arises from the difficulty of generating a first long homochiral template from a racemic mixture of monomers, although results of experiments designed to overcome this difficulty by employing homochiral tetramers have been reported.l l The probability of obtaining a homochiral n-mer from achiral substrates is approximately 1P-I if the nontemplate-directed extension of the primer is not enantioselective. Hence, it would be very hard to get started with a homochiral 40-mer, for example. No such difficulty exists in a scenario that originates with an achiral genetic material and in which the incorporation of very few chiral monomers in this achiral background gradually progresses towards homochirality. It seems possible that some PNA sequences could act as catalysts, analogous to ribozymes, even though PNA lacks clear metal binding sites. Although such catalysts could not be enantioselective, the incorporation of as few as two chiral nucleotides could then impose chiral specificity on the system. Furthermore, such patch chimeras could help to bridge the gap in catalytic potential between PNA and RNA, while guaranteeing enantioselectivity.

  13. Application of hydrophilic interaction chromatography retention coefficients for predicting peptide elution with TFA and methanesulfonic acid ion-pairing reagents.

    PubMed

    Wujcik, Chad E; Tweed, Joseph; Kadar, Eugene P

    2010-03-01

    Hydrophilic retention coefficients for 17 peptides were calculated based on retention coefficients previously published for TSKgel silica-60 and were compared with the experimental elution profile on a Waters Atlantis HILIC silica column using TFA and methanesulfonic acid (MSA) as ion-pairing reagents. Relative peptide retention could be accurately determined with both counter-ions. Peptide retention and chromatographic behavior were influenced by the percent acid modifier used with increases in both retention and peak symmetry observed at increasing modifier concentrations. The enhancement of net peptide polarity through MSA pairing shifted retention out by nearly five-fold for the earliest eluting peptide, compared with TFA. Despite improvements in retention and efficiency (N(eff)) for MSA over TFA, a consistent reduction in calculated selectivity (alpha) was observed. This result is believed to be attributed to the stronger polar contribution of MSA masking and diminishing the underlying influence of the amino acid residues of each associated peptide. Finally, post-column infusion of propionic acid and acetic acid was evaluated for their potential to recover signal intensity for TFA and MSA counter-ions for LC-ESI-MS applications. Acetic acid generally yielded more substantial signal improvements over propionic acid on the TFA system while minimal benefits and some further reductions were noted with MSA.

  14. Formation pathways and opioid activity data for 3-hydroxypyridinium compounds derived from glucuronic acid and opioid peptides by Maillard processes.

    PubMed

    Horvat, Stefica; Roscić, Maja; Lemieux, Carole; Nguyen, Thi M-D; Schiller, Peter W

    2007-07-01

    The kinetics of formation and identity of the reaction products of the glucuronic acid with three representative opioid peptides were investigated in vitro. Peptides were conjugated with glucuronic acid either in solution or under dry-heating conditions. From the incubations performed in solution N-(1-deoxy-D-fructofuranos-1-yluronic acid)-peptide derivatives (Amadori compounds) were isolated, whereas from the dry-heated reactions products containing the 3-hydroxypyridinium moiety at the N-terminal of the peptide chain were obtained. Experiments performed under mild dry-heating conditions (40 degrees C) in model systems based on Leu-enkephalin and glucuronic acid, and in environment of either 40% or 75% relative humidity, revealed that the higher level of humidity promoted a process that enhanced 3-hydroxypyridinium compound generation. The mechanism of 3-hydroxypyridinium formation is discussed. In comparison with their respective parent peptides, the N-(1-deoxy-D-fructofuranosyl-uronic acid) derivatives of the opioid peptides showed three- to 11-fold lower mu- and delta-receptor-binding affinities and agonist potencies in the functional assays, likely as a consequence of the steric bulk introduced at the N-terminal amino group. The further decrease in opioid activity observed with the 3-hydroxypyridinium-containing peptides may be due to the lower pK(a) of the 3-hydroxypyridinium moiety and to delocalization of the positive charge in the pyridinium ring system.

  15. Anticoagulant Effects of Heparin Complexes with Prolyl-Glycine Peptide and Glycine and Proline Amino Acids.

    PubMed

    Grigorieva, M E; Obergan, T Yu; Maystrenko, E S; Kalugina, M D

    2016-05-01

    The study demonstrates the formation of heparin complexes with prolyl-glycine peptide and proline and glycine amino acids. The method was developed for in vitro production of these complexes at 1:1 dipeptide to heparin molar ratio and 2:1 amino acid to heparin molar ratio. These complexes, unlike the constituents, proline and glycine, exhibited significant anticoagulant, antiplatelet, and fibrin-depolymerization activities of varying degree in vitro and in vivo. The heparin-dipeptide complex produced maximum effect. The dipeptide by itself also showed anticoagulant properties, but less pronounced than in the complex with heparin.

  16. Synthesis and characterization of a peptide nucleic acid conjugated to a D-peptide analog of insulin-like growth factor 1 for increased cellular uptake.

    PubMed

    Basu, S; Wickstrom, E

    1997-01-01

    DNA therapeutics show great potential for gene-specific, nontoxic therapy of a wide variety of diseases. The deoxyribose phosphate backbone of DNA has been modified in a number of ways to improve nuclease stability and cell membrane permeability. Recently, a new DNA derivative with an amide backbone instead of a deoxyribose phosphate backbone, peptide nucleic acid (PNA), has shown tremendous potential as an antisense agent. Although PNAs hybridize very strongly and specifically to RNA and DNA, they are taken up by cells very poorly, limiting their potential as nucleic acid binding agents. To improve cellular uptake of a PNA sequence, it was conjugated to a D-amino acid analog of insulin-like growth factor 1 (IGF1), which binds selectively to the cell surface receptor for insulin-like growth factor 1 (IGF1R). The IGF1 D-peptide analog was assembled on (4-methylbenzhydryl)amine resin, and then the PNA was extended as a continuation of the peptide. The conjugate and control sequences were radiolabeled with 14C or fluorescently labeled with fluorescein isothiocyanate. Cellular uptake of the PNA-peptide conjugate, a control with two alanines in the peptide, and a control PNA without the peptide segment were studied in murine BALB/c 3T3 cells, which express low levels of murine IGF1R, in p6 cells, which are BALB/c 3T3 cells which overexpress a transfected human IGF1R gene, and in human Jurkat cells, which do not express IGF1R, as a negative control. The specific PNA-peptide conjugate displayed much higher uptake than the control PNA, but only in cells expressing IGF1R. This approach may allow cell-specific and tissue-specific application of PNAs as gene-regulating agents in vivo.

  17. Amino acid sequence of homologous rat atrial peptides: natriuretic activity of native and synthetic forms.

    PubMed Central

    Seidah, N G; Lazure, C; Chrétien, M; Thibault, G; Garcia, R; Cantin, M; Genest, J; Nutt, R F; Brady, S F; Lyle, T A

    1984-01-01

    A substance called atrial natriuretic factor (ANF), localized in secretory granules of atrial cardiocytes, was isolated as four homologous natriuretic peptides from homogenates of rat atria. The complete sequence of the longest form showed that it is composed of 33 amino acids. The three other shorter forms (2-33, 3-33, and 8-33) represent amino-terminally truncated versions of the 33 amino acid parent molecule as shown by analysis of sequence, amino acid composition, or both. The proposed primary structure agrees entirely with the amino acid composition and reveals no significant sequence homology with any known protein or segment of protein. The short form ANF-(8-33) was synthesized by a multi-fragment condensation approach and the synthetic product was shown to exhibit specific activity comparable to that of the natural ANF-(3-33). PMID:6232612

  18. Ribosomal Synthesis of Macrocyclic Peptides in Vitro and in Vivo Mediated by Genetically Encoded Amino-Thiol Unnatural Amino Acids

    PubMed Central

    Frost, John R.; Jacob, Nicholas T.; Papa, Louis J.; Owens, Andrew E.

    2015-01-01

    A versatile method for orchestrating the formation of side-chain-to-tail cyclic peptides from ribosomally derived polypeptide precursors is reported. Upon ribosomal incorporation into intein-containing precursor proteins, designer unnatural amino acids bearing side-chain 1,3- or 1,2-aminothiol functionalities are able to promote the cyclization of a downstream target peptide sequence via a C-terminal ligation/ring contraction mechanism. Using this approach, peptide macrocycles of variable size and composition could be generated in a pH-triggered manner in vitro, or directly in living bacterial cells. This methodology furnishes a new platform for the creation and screening of genetically encoded libraries of conformationally constrained peptides. This strategy was applied to identify and isolate a low micromolar streptavidin binder (KD = 1.1 µM) from a library of cyclic peptides produced in E. coli, thereby illustrating its potential toward aiding the discovery of functional peptide macrocycles. PMID:25933125

  19. Acetylation dictates the morphology of nanophase biosilica precipitated by a 14-amino acid leucine-lysine peptide.

    PubMed

    Lutz, Helmut; Jaeger, Vance; Bonn, Mischa; Pfaendtner, Jim; Weidner, Tobias

    2017-02-01

    N-terminal acetylation is a commonly used modification technique for synthetic peptides, mostly applied for reasons of enhanced stability, and in many cases regarded as inconsequential. In engineered biosilification - the controlled deposition of silica for nanotechnology applications by designed peptides - charged groups often play a deciding role. Here we report that changing the charge by acetylation of a 14-amino acid leucine-lysine (LK) peptide dramatically changes the morphology of precipitated biosilica; acetylated LK peptides produce nano-spheres, whereas nano-wires are precipitated by the same peptide in a non-acetylated form. By using interface-specific vibrational spectroscopy and coarse-grained molecular simulations, we show that this change in morphology is not the result of modified peptide-silica interactions, but rather caused by the stabilization of the hydrophobic core of peptide aggregates created by the removal of a peptide charge upon acetylation. These results should raise awareness of the potential impact of N-terminal modifications in peptide applications. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  20. The Perseus Exobiology mission on MIR: behaviour of amino acids and peptides in Earth orbit.

    PubMed

    Boillot, F; Chabin, A; Buré, C; Venet, M; Belsky, A; Bertrand-Urbaniak, M; Delmas, A; Brack, A; Barbier, B

    2002-08-01

    Leucine, alpha-methyl leucine and two peptides were exposed to space conditions on board the MIR station during the Perseus-Exobiology mission. This long duration space mission was aimed at testing the delivery of prebiotic building blocks. During this mission, two amino acids (leucine and alpha-methyl leucine) and two peptides (leucine-diketopiperazine and trileucine thioethylester) were exposed in Earth orbit for three months. Basalt, clay and meteorite powder were also mixed with the samples in order to simulate the effects of potential meteorite protection. Analysis of the material after the flight did not reveal any racemization or polymerisation but did provide information regarding photochemical pathways for the degradation of leucine and of the tripeptide. Amino acids appeared to be more sensitive to UV radiation than peptides, the cyclic dipeptide being found to be as particularly resistant. Meteorite powder which exhibits the highest absorption in Vacuum UltraViolet (VUV) afforded the best protection to the organic molecules whereas montmorillonite clay, almost transparent in VUV, was the least efficient. By varying the thickness of the meteorite, we found that the threshold for efficient protection against radiation was about 5 microm. The possible exogenous origin of biological building blocks is discussed with respect to the stability to the molecules and the nature of the associated minerals.

  1. Identification of a cDNA encoding a parathyroid hormone-like peptide from a human tumor associated with humoral hypercalcemia of malignancy

    SciTech Connect

    Mangin, M.; Webb, A.C.; Dreyer, B.E.; Posillico, J.T.; Ikeda, K.; Weir, E.C.; Stewart, A.F.; Bander, N.H.; Milstone, L.; Barton, D.E.

    1988-01-01

    Humoral hypercalcemia of malignancy is a common paraneoplastic syndrome that appears to be mediated in many instances by a parathyroid hormone-like peptide. Poly(A)/sup +/ RNA from a human renal carcinoma associated with this syndrome was enriched by preparative electrophoresis and used to construct an enriched cDNA library in phage lambdagt10. The library was screened with a codon-preference oligonucleotide synthesized on the basis of a partial N-terminal amino acid sequence from a human tumor-derived peptide, and a 2.0 kilo-base cDNA was identified. The cDNA encodes a 177 amino acid protein consisting of a 36 amino acid leader sequence and a 141 amino acid mature peptide. The first 13 amino acids of the deduced sequence of the mature peptide display strong homology to human PTH, with complete divergence thereafter. RNA blot-hybridization analysis revealed multiple transcripts in mRNA from tumors associated with the humor syndrome and also in mRNA from normal human keratinocytes. Southern blot analysis of genomic DNA from humans and rodents revealed a simple pattern compatible with a single-copy gene. The gene has been mapped to chromosome 12.

  2. Programmable Multivalent Display of Receptor Ligands using Peptide Nucleic Acid Nanoscaffolds

    PubMed Central

    Englund, Ethan A.; Wang, Deyun; Fujigaki, Hidetsugu; Sakai, Hiroyasu; Micklitsch, Christopher M.; Ghirlando, Rodolfo; Martin-Manso, Gema; Pendrak, Michael L.; Roberts, David D.; Durell, Stewart R.; Appella, Daniel H.

    2012-01-01

    Multivalent effects dictate the binding affinity of multiple ligands on one molecular entity to receptors. Integrins are receptors that mediate cell attachment through multivalent binding to peptide sequences within the extracellular matrix, and overexpression promotes the metastasis of some cancers. Multivalent display of integrin antagonists enhances their efficacy, but current scaffolds have limited ranges and precision for the display of ligands. Here we present an approach to study multivalent effects across wide ranges of ligand number, density, and three-dimensional arrangement. Using L-lysine γ-substituted peptide nucleic acids, the multivalent effects of an integrin antagonist were examined over a range of 1 to 45 ligands. The optimal construct improves the inhibitory activity of the antagonist by two orders of magnitude against the binding of melanoma cells to the extracellular matrix in both in vitro and in vivo models. PMID:22233624

  3. A descriptor of amino acids: SVRG and its application to peptide quantitative structure-activity relationship.

    PubMed

    Tong, J; Che, T; Li, Y; Wang, P; Xu, X; Chen, Y

    2011-01-01

    In this work, a descriptor, SVRG (principal component scores vector of radial distribution function descriptors and geometrical descriptors), was derived from principal component analysis (PCA) of a matrix of two structural variables of coded amino acids, including radial distribution function index (RDF) and geometrical index. SVRG scales were then applied in three panels of peptide quantitative structure-activity relationships (QSARs) which were modelled by partial least squares regression (PLS). The obtained models with the correlation coefficient (R²(cum)), cross-validation correlation coefficient (Q²(LOO)) were 0.910 and 0.863 for 48 bitter-tasting dipeptides; 0.968 and 0.931 for 21 oxytocin analogues; and 0.992 and 0.954 for 20 thromboplastin inhibitors. Satisfactory results showed that SVRG contained much chemical information relating to bioactivities. The approach may be a useful structural expression methodology for studies on peptide QSAR.

  4. Design, synthesis and biological evaluation of novel non-peptide boronic acid derivatives as proteasome inhibitors.

    PubMed

    Ge, Ying; Li, Aibo; Wu, Jianwei; Feng, Haiwei; Wang, Letian; Liu, Hongwu; Xu, Yungen; Xu, Qingxiang; Zhao, Li; Li, Yuyan

    2017-03-10

    A novel series of non-peptide proteasome inhibitors bearing the 1, 4-naphthoquinone scaffold and boronic acid warhead was developed. In the biological evaluation on the chymotrypsin-like activity of human 20S proteasome, five compounds showed IC50 values in the nanomolar range. Docking experiments into the yeast 20S proteasome rationalized their biological activities and allowed further optimization of this interesting class of inhibitors. Within the cellular proliferation inhibition assay and western blot analysis, compound 3e demonstrated excellent anti-proliferative activity against solid tumor cells and clear accumulation of ubiquitinated cellular proteins. Furthermore, in the microsomal stability assay compound 3e demonstrated much improved metabolic stability compared to bortezomib, emerging as a promising lead compound for further design of non-peptide proteasome inhibitors.

  5. Site-Specific Pyrolysis Induced Cleavage at Aspartic Acid Residue in Peptides and Proteins

    PubMed Central

    Zhang, Shaofeng; Basile, Franco

    2011-01-01

    A simple and site-specific non-enzymatic method based on pyrolysis has been developed to cleave peptides and proteins. Pyrolytic cleavage was found to be specific and rapid as it induced a cleavage at the C-terminal side of aspartic acid in the temperature range of 220–250 °C in 10 seconds. Electrospray Ionization (ESI) mass spectrometry (MS) and tandem-MS (MS/MS) were used to characterize and identify pyrolysis cleavage products, confirming that sequence information is conserved after the pyrolysis process in both peptides and protein tested. This suggests that pyrolysis-induced cleavage at aspartyl residues can be used as a rapid protein digestion procedure for the generation of sequence specific protein biomarkers. PMID:17388620

  6. Formation of peptides from amino acids by single or multiple additions of ATP to suspensions of nucleoproteinoid microparticles

    NASA Technical Reports Server (NTRS)

    Nakashima, T.; Fox, S. W.

    1981-01-01

    The synthesis of peptides from individual amino acids or pairs of amino acids and ATP in the presence of catalysis by nucleoproteinoid microparticles is investigated. Experiments were performed with suspensions formed from the condensation of lysine-rich and acidic proteinoids with polyadenylic acid, to which were added glycine, phenylalanine, proline, lysine or glycine-phenylalanine mixtures, and ATP either at once or serially. Peptide yields are found to be greatest for equal amounts of acidic and basic proteinoids. The addition of imidazole is found to alter the preference of glycine-phenylalanine mixtures to form mixed heteropeptides rather than homopeptides. A rapid ATP decay in the peptide synthesis reaction is observed, and a greater yield is obtained for repeated small additions than for a single addition of ATP. The experimental system has properties similar to modern cells, and represents an organizational unit ready for the evolution of associated biochemical pathways.

  7. Synthesis of stable C-linked ferrocenyl amino acids and their use in solution-phase peptide synthesis.

    PubMed

    Philip, Anijamol T; Chacko, Shibin; Ramapanicker, Ramesh

    2015-12-01

    Incorporation of ferrocenyl group to peptides is an efficient method to alter their hydrophobicity. Ferrocenyl group can also act as an electrochemical probe when incorporated onto functional peptides. Most often, ferrocene is incorporated onto peptides post-synthesis via amide, ester or triazole linkages. Stable amino acids containing ferrocene as a C-linked side chain are potentially useful building units for the synthesis of ferrocene-containing peptides. We report here an efficient route to synthesize ferrocene-containing amino acids that are stable and can be used in peptide synthesis. Coupling of 2-ferrocenyl-1,3-dithiane and iodides derived from aspartic acid or glutamic acid using n-butyllithium leads to the incorporation of a ferrocenyl unit to the δ-position or ε-position of an α-amino acid. The reduction or hydrolysis of the dithiane group yields an alkyl or an oxo derivative. The usability of the synthesized amino acids is demonstrated by incorporating one of the amino acids in both C-terminus and N-terminus of tripeptides in solution phase.

  8. Peptides released from acid goat whey by a yeast-lactobacillus association isolated from cheese microflora.

    PubMed

    Didelot, Sandrine; Bordenave-Juchereau, Stephanie; Rosenfeld, Eric; Piot, Jean-Marie; Sannier, Frederic

    2006-05-01

    Seven lactobacilli and a variety of microflora extracted from twenty five commercial cheeses were grown on unsupplemented acid goat whey and screened for their capacity to hydrolyse whey proteins [alpha-lactalbumin (alpha-la) and beta-lactoglobulin (beta-lg)] and to generate peptides. Fermentations were performed aerobically or anaerobically at 37 degrees C using crude or pre-heated whey (10 min at 65, 75 or 85 degrees C). Under aerobic conditions, growth of lactobacilli was poor and protein hydrolysis did not occur. Anaerobic conditions slightly increased lactobacilli growth but neither beta-lg hydrolysis nor peptide generation were observed. More than 50% of alpha-la was digested into a truncated form of alpha-la (+/- 12 kDa) in crude whey and whey pre-heated at 65 degrees C. Twenty-five microflora extracted from raw milk cheeses were screened for their proteolytic activities on acid goat whey under the conditions previously described. Eight of them were able to hydrolyse up to 50% of alpha-la mainly during aerobic growth on crude or pre-heated whey. The corresponding hydrolysates were enriched in peptides. The hydrolysate involving microflora extracted from Comté cheese after or at 18 months ripening was the only one to exhibit hydrolysis of both alpha-la and beta-lg. Microbiological analysis showed that microorganisms originating from Comté cheese and capable of growth on unsupplemented whey consisted of Candida parapsilosis and Lactobacillus paracasei. Fermentation kinetic profiles suggested that peptides were released from alpha-la hydrolysis. The co-culture of both microorganisms was required for alpha-la hydrolysis that occurred concomitantly with the pH decrease. During whey fermentation, Cand. parapsilosis excrete at least one protease responsible for alpha-la hydrolysis, and Lb. paracasei is responsible for medium acidification that is required for protease activation.

  9. Solvation thermodynamics of amino acid side chains on a short peptide backbone

    SciTech Connect

    Hajari, Timir; Vegt, Nico F. A. van der

    2015-04-14

    The hydration process of side chain analogue molecules differs from that of the actual amino acid side chains in peptides and proteins owing to the effects of the peptide backbone on the aqueous solvent environment. A recent molecular simulation study has provided evidence that all nonpolar side chains, attached to a short peptide backbone, are considerably less hydrophobic than the free side chain analogue molecules. In contrast to this, the hydrophilicity of the polar side chains is hardly affected by the backbone. To analyze the origin of these observations, we here present a molecular simulation study on temperature dependent solvation free energies of nonpolar and polar side chains attached to a short peptide backbone. The estimated solvation entropies and enthalpies of the various amino acid side chains are compared with existing side chain analogue data. The solvation entropies and enthalpies of the polar side chains are negative, but in absolute magnitude smaller compared with the corresponding analogue data. The observed differences are large; however, owing to a nearly perfect enthalpy-entropy compensation, the solvation free energies of polar side chains remain largely unaffected by the peptide backbone. We find that a similar compensation does not apply to the nonpolar side chains; while the backbone greatly reduces the unfavorable solvation entropies, the solvation enthalpies are either more favorable or only marginally affected. This results in a very small unfavorable free energy cost, or even free energy gain, of solvating the nonpolar side chains in strong contrast to solvation of small hydrophobic or nonpolar molecules in bulk water. The solvation free energies of nonpolar side chains have been furthermore decomposed into a repulsive cavity formation contribution and an attractive dispersion free energy contribution. We find that cavity formation next to the peptide backbone is entropically favored over formation of similar sized nonpolar side

  10. Expression pattern of peptide and amino acid genes in digestive tract of transporter juvenile turbot ( Scophthalmus maximus L.)

    NASA Astrophysics Data System (ADS)

    Xu, Dandan; He, Gen; Mai, Kangsen; Zhou, Huihui; Xu, Wei; Song, Fei

    2016-04-01

    Turbot ( Scophthalmus maximus L.), a carnivorous fish species with high dietary protein requirement, was chosen to examine the expression pattern of peptide and amino acid transporter genes along its digestive tract which was divided into six segments including stomach, pyloric caeca, rectum, and three equal parts of the remainder of the intestine. The results showed that the expression of two peptide and eleven amino acid transporters genes exhibited distinct patterns. Peptide transporter 1 (PepT1) was rich in proximal intestine while peptide transporter 2 (PepT2) was abundant in distal intestine. A number of neutral and cationic amino acid transporters expressed richly in whole intestine including B0-type amino acid transporter 1 (B0AT1), L-type amino acid transporter 2 (LAT2), T-type amino acid transporter 1 (TAT1), proton-coupled amino acid transporter 1 (PAT1), y+L-type amino acid transporter 1 (y+LAT1), and cationic amino acid transporter 2 (CAT2) while ASC amino acid transporter 2 (ASCT2), sodium-coupled neutral amino acid transporter 2 (SNAT2), and y+L-type amino acid transporter 2 (y+LAT2) abundantly expressed in stomach. In addition, system b0,+ transporters (rBAT and b0,+AT) existed richly in distal intestine. These findings comprehensively characterized the distribution of solute carrier family proteins, which revealed the relative importance of peptide and amino acid absorption through luminal membrane. Our findings are helpful to understand the mechanism of the utilization of dietary protein in fish with a short digestive tract.

  11. Quantitative Analysis of Single Amino Acid Variant Peptides Associated with Pancreatic Cancer in Serum by an Isobaric Labeling Quantitative Method

    PubMed Central

    2015-01-01

    Single amino acid variations are highly associated with many human diseases. The direct detection of peptides containing single amino acid variants (SAAVs) derived from nonsynonymous single nucleotide polymorphisms (SNPs) in serum can provide unique opportunities for SAAV associated biomarker discovery. In the present study, an isobaric labeling quantitative strategy was applied to identify and quantify variant peptides in serum samples of pancreatic cancer patients and other benign controls. The largest number of SAAV peptides to date in serum including 96 unique variant peptides were quantified in this quantitative analysis, of which five variant peptides showed a statistically significant difference between pancreatic cancer and other controls (p-value < 0.05). Significant differences in the variant peptide SDNCEDTPEAGYFAVAVVK from serotransferrin were detected between pancreatic cancer and controls, which was further validated by selected reaction monitoring (SRM) analysis. The novel biomarker panel obtained by combining α-1-antichymotrypsin (AACT), Thrombospondin-1 (THBS1) and this variant peptide showed an excellent diagnostic performance in discriminating pancreatic cancer from healthy controls (AUC = 0.98) and chronic pancreatitis (AUC = 0.90). These results suggest that large-scale analysis of SAAV peptides in serum may provide a new direction for biomarker discovery research. PMID:25393578

  12. Highly efficient peptide formation from N-acetylaminoacyl-AMP anhydride and free amino acid

    NASA Technical Reports Server (NTRS)

    Mullins, D. W., Jr.; Lacey, J. C., Jr.

    1983-01-01

    The kinetics of formation of the N-blocked dipeptide, N-acetylglycylglycine, from N-acetylglycyl adenylate anhydride and glycine in aqueous solution at 25 C, and at various PH's are reported. The reaction is of interest in that over a physiologically relevant pH range (6-8), peptide synthesis proceeds more rapidly than hydrolysis, even at those pH's at which this compound becomes increasingly susceptible to base-catalyzed hydrolysis. Under similar conditions, the corresponding unblocked aminoacyl adenylate anhydrides are considerably more unstable, and undergo appreciable hydrlysis in the presence of free amino acid. Because N-blocked aminoacyl adenylate anhydrides serve as model compounds of peptidyl adenylate anhydrides, these results suggest that primitive amino acid polymerization systems may have operated by cyclic reactivation of the peptidyl carboxyl group, rather than that of the incoming amino acid.

  13. Stereochemical Sequence Ion Selectivity: Proline versus Pipecolic-acid-containing Protonated Peptides

    NASA Astrophysics Data System (ADS)

    Abutokaikah, Maha T.; Guan, Shanshan; Bythell, Benjamin J.

    2017-01-01

    Substitution of proline by pipecolic acid, the six-membered ring congener of proline, results in vastly different tandem mass spectra. The well-known proline effect is eliminated and amide bond cleavage C-terminal to pipecolic acid dominates instead. Why do these two ostensibly similar residues produce dramatically differing spectra? Recent evidence indicates that the proton affinities of these residues are similar, so are unlikely to explain the result [Raulfs et al., J. Am. Soc. Mass Spectrom. 25, 1705-1715 (2014)]. An additional hypothesis based on increased flexibility was also advocated. Here, we provide a computational investigation of the "pipecolic acid effect," to test this and other hypotheses to determine if theory can shed additional light on this fascinating result. Our calculations provide evidence for both the increased flexibility of pipecolic-acid-containing peptides, and structural changes in the transition structures necessary to produce the sequence ions. The most striking computational finding is inversion of the stereochemistry of the transition structures leading to "proline effect"-type amide bond fragmentation between the proline/pipecolic acid-congeners: R (proline) to S (pipecolic acid). Additionally, our calculations predict substantial stabilization of the amide bond cleavage barriers for the pipecolic acid congeners by reduction in deleterious steric interactions and provide evidence for the importance of experimental energy regime in rationalizing the spectra.

  14. In Vitro Assessment of a Peptide Nucleic Acid (PNA) - Peptide Conjugate Labeled With an Auger-Emitting Radionuclide for Prostate Cell Killing

    DTIC Science & Technology

    2005-02-01

    synthesis of a peptide nucleic acid (PNA) that has an Auger-emitter (1-125) incorporated. By design the PNA will bind with mRNA and DNA associated with...bind with cell surface gastrin -releasing peptide receptors and be internalized (3). Binding with mRNA and nuclear DNA specific to the insulin-like...route proposed to prepare 10 is shown in Figure 1 (compounds 1-10). This synthesis began with the preparation of the base-reactive intermediate 5

  15. Targeting Multidrug-resistant Staphylococci with an anti-rpoA Peptide Nucleic Acid Conjugated to the HIV-1 TAT Cell Penetrating Peptide

    PubMed Central

    Abushahba, Mostafa FN; Mohammad, Haroon; Seleem, Mohamed N

    2016-01-01

    Staphylococcus aureus infections present a serious challenge to healthcare practitioners due to the emergence of resistance to numerous conventional antibiotics. Due to their unique mode of action, peptide nucleic acids are novel alternatives to traditional antibiotics to tackle the issue of bacterial multidrug resistance. In this study, we designed a peptide nucleic acid covalently conjugated to the HIV-TAT cell penetrating peptide (GRKKKRRQRRRYK) in order to target the RNA polymerase α subunit gene (rpoA) required for bacterial genes transcription. We explored the antimicrobial activity of the anti-rpoA construct (peptide nucleic acid-TAT) against methicillin-resistant S. aureus, vancomycin-intermediate S. aureus, vancomycin-resistant S. aureus, linezolid-resistant S. aureus, and methicillin-resistant S. epidermidis in pure culture, infected mammalian cell culture, and in an in vivo Caenorhabditis elegans infection model. The anti-rpoA construct led to a concentration-dependent inhibition of bacterial growth (at micromolar concentrations) in vitro and in both infected cell culture and in vivo in C. elegans. Moreover, rpoA gene silencing resulted in suppression of its message as well as reduced expression of two important methicillin-resistant S. aureus USA300 toxins (α-hemolysin and Panton-Valentine leukocidin). This study confirms that rpoA gene is a potential target for development of novel antisense therapeutics to treat infections caused by methicillin-resistant S. aureus. PMID:27434684

  16. Importance of backbone angles versus amino acid configurations in peptide vibrational Raman optical activity spectra

    NASA Astrophysics Data System (ADS)

    Herrmann, Carmen; Ruud, Kenneth; Reiher, Markus

    2008-01-01

    In this work, we investigate whether the differential scattering of right- and left-circularly polarized light in peptide Raman optical activity spectra are uniquely dominated by the backbone conformation, or whether the configurations of the individual amino acid also play a significant role. This is achieved by calculating Raman optical activity spectra using density functional theory for four structurally related peptides with a common backbone conformation, but with different sequences of amino acid configurations. Furthermore, the ROA signals of the amide normal modes are decomposed into contributions from groups of individual atoms. It is found that the amino acid configuration has a considerable influence on the ROA peaks in the amide I, II, and III regions, although the local decomposition reveals that the side-chain atoms only contribute to those peaks directly in the case of the amide II vibrations. Furthermore, small changes in the amide normal modes may lead to large and irregular modifications in the ROA intensity differences, making it difficult to establish transferable ROA intensity differences even for structurally similar vibrations.

  17. Cα-C bond cleavage of the peptide backbone in MALDI in-source decay using salicylic acid derivative matrices.

    PubMed

    Asakawa, Daiki; Takayama, Mitsuo

    2011-07-01

    The use of 5-formylsalicylic acid (5-FSA) and 5-nitrosalicylic acid (5-NSA) as novel matrices for in-source decay (ISD) of peptides in matrix-assisted laser desorption/ionization (MALDI) is described. The use of 5-FSA and 5-NSA generated a- and x-series ions accompanied by oxidized peptides [M - 2 H + H](+). The preferential formation of a- and x-series ions was found to be dependent on the hydrogen-accepting ability of matrix. The hydrogen-accepting ability estimated from the ratio of signal intensity of oxidized product [M - 2 H + H](+) to that of non-oxidized protonated molecule [M + H](+) of peptide was of the order 5-NSA > 5-FSA > 5-aminosalicylic acid (5-ASA) ≒ 2,5-dihydroxyl benzoic acid (2,5-DHB) ≒ 0. The results suggest that the hydrogen transfer reaction from peptide to 5-FSA and 5-NSA occurs during the MALDI-ISD processes. The hydrogen abstraction from peptides results in the formation of oxidized peptides containing a radical site on the amide nitrogen with subsequent radical-induced cleavage at the Cα-C bond, leading to the formation of a- and x-series ions. The most significant feature of MALDI-ISD with 5-FSA and 5-NSA is the specific cleavage of the Cα-C bond of the peptide backbone without degradation of side-chain and post-translational modifications (PTM). The matrix provides a useful complementary method to conventional MALDI-ISD for amino acid sequencing and site localization of PTMs in peptides.

  18. Fluorescent amino acid undergoing excited state intramolecular proton transfer for site-specific probing and imaging of peptide interactions.

    PubMed

    Sholokh, Marianna; Zamotaiev, Oleksandr M; Das, Ranjan; Postupalenko, Viktoriia Y; Richert, Ludovic; Dujardin, Denis; Zaporozhets, Olga A; Pivovarenko, Vasyl G; Klymchenko, Andrey S; Mély, Yves

    2015-02-12

    Fluorescent amino acids bearing environment-sensitive fluorophores are highly valuable tools for site-selective probing of peptide/ligand interactions. Herein, we synthesized a fluorescent l-amino acid bearing the 4'-methoxy-3-hydroxyflavone fluorophore (M3HFaa) that shows dual emission, as a result of an excited state intramolecular proton transfer (ESIPT). The dual emission of M3HFaa was found to be substantially more sensitive to hydration as compared to previous analogues. By replacing the Ala30 and Trp37 residues of a HIV-1 nucleocapsid peptide, M3HFaa was observed to preserve the peptide structure and functions. Interaction of the labeled peptides with nucleic acids and lipid vesicles produced a strong switch in their dual emission, favoring the emission of the ESIPT product. This switch was associated with the appearance of long-lived fluorescence lifetimes for the ESIPT product, as a consequence of the rigid environment in the complexes that restricted the relative motions of the M3HFaa aromatic moieties. The strongest restriction and thus the longest fluorescence lifetimes were observed at position 37 in complexes with nucleic acids, where the probe likely stacks with the nucleobases. Based on the dependence of the lifetime values on the nature of the ligand and the labeled position, two-photon fluorescence lifetime imaging was used to identify the binding partners of the labeled peptides microinjected into living cells. Thus, M3HFaa appears as a sensitive tool for monitoring site selectively peptide interactions in solution and living cells.

  19. Sequence selective recognition of double-stranded RNA using triple helix-forming peptide nucleic acids.

    PubMed

    Zengeya, Thomas; Gupta, Pankaj; Rozners, Eriks

    2014-01-01

    Noncoding RNAs are attractive targets for molecular recognition because of the central role they play in gene expression. Since most noncoding RNAs are in a double-helical conformation, recognition of such structures is a formidable problem. Herein, we describe a method for sequence-selective recognition of biologically relevant double-helical RNA (illustrated on ribosomal A-site RNA) using peptide nucleic acids (PNA) that form a triple helix in the major grove of RNA under physiologically relevant conditions. Protocols for PNA preparation and binding studies using isothermal titration calorimetry are described in detail.

  20. Convenient and Scalable Synthesis of Fmoc-Protected Peptide Nucleic Acid Backbone

    PubMed Central

    Feagin, Trevor A.; Shah, Nirmal I.; Heemstra, Jennifer M.

    2012-01-01

    The peptide nucleic acid backbone Fmoc-AEG-OBn has been synthesized via a scalable and cost-effective route. Ethylenediamine is mono-Boc protected, then alkylated with benzyl bromoacetate. The Boc group is removed and replaced with an Fmoc group. The synthesis was performed starting with 50 g of Boc anhydride to give 31 g of product in 32% overall yield. The Fmoc-protected PNA backbone is a key intermediate in the synthesis of nucleobase-modified PNA monomers. Thus, improved access to this molecule is anticipated to facilitate future investigations into the chemical properties and applications of nucleobase-modified PNA. PMID:22848796

  1. Room temperature N-arylation of amino acids and peptides using copper(I) and β-diketone.

    PubMed

    Sharma, Krishna K; Sharma, Swagat; Kudwal, Anurag; Jain, Rahul

    2015-04-28

    A mild and efficient method for the N-arylation of zwitterionic amino acids, amino acid esters and peptides is described. The procedure provides the first room temperature synthesis of N-arylated amino acids and peptides using CuI as a catalyst, diketone as a ligand, and aryl iodides as coupling partners. The method is equally applicable for using relatively inexpensive aryl bromides as coupling partners at 80 °C. Using this procedure, electronically and sterically diverse aryl halides, containing reactive functional groups were efficiently coupled in good to excellent yields.

  2. Topical Delivery of Hyaluronic Acid into Skin using SPACE-peptide Carriers

    PubMed Central

    Chen, Ming; Gupta, Vivek; Anselmo, Aaron C.; Muraski, John A.; Mitragotri, Samir

    2014-01-01

    Topical penetration of macromolecules into skin is limited by their low permeability. Here, we report the use of a skin penetrating peptide, SPACE peptide, to enhance topical delivery of a macromolecule, hyaluronic acid (HA, MW: 200–325 kDa). The peptide was conjugated to phospholipids and used to prepare an ethosomal carrier system (~110 nm diameter), encapsulating HA. The SPACE-ethosomal system (SES) enhanced HA penetration into porcine skin in vitro by 7.8+/−1.1-fold compared to PBS. The system also enhanced penetration of HA in human skin in vitro, penetrating deep into the epidermis and dermis in skin of both species. In vivo experiments performed using SKH1 hairless mice also confirmed increased dermal penetration of HA using the delivery system; a 5-fold enhancement in penetration was found compared to PBS control. Concentrations of HA in skin were about 1000-fold higher than those in blood; confirming the localized nature of HA delivery into skin. The SPACE-ethosomal delivery system provides a formulation for topical delivery of macromolecules that are otherwise difficult to deliver into skin. PMID:24129342

  3. Black mamba venom peptides target acid-sensing ion channels to abolish pain.

    PubMed

    Diochot, Sylvie; Baron, Anne; Salinas, Miguel; Douguet, Dominique; Scarzello, Sabine; Dabert-Gay, Anne-Sophie; Debayle, Delphine; Friend, Valérie; Alloui, Abdelkrim; Lazdunski, Michel; Lingueglia, Eric

    2012-10-25

    Polypeptide toxins have played a central part in understanding physiological and physiopathological functions of ion channels. In the field of pain, they led to important advances in basic research and even to clinical applications. Acid-sensing ion channels (ASICs) are generally considered principal players in the pain pathway, including in humans. A snake toxin activating peripheral ASICs in nociceptive neurons has been recently shown to evoke pain. Here we show that a new class of three-finger peptides from another snake, the black mamba, is able to abolish pain through inhibition of ASICs expressed either in central or peripheral neurons. These peptides, which we call mambalgins, are not toxic in mice but show a potent analgesic effect upon central and peripheral injection that can be as strong as morphine. This effect is, however, resistant to naloxone, and mambalgins cause much less tolerance than morphine and no respiratory distress. Pharmacological inhibition by mambalgins combined with the use of knockdown and knockout animals indicates that blockade of heteromeric channels made of ASIC1a and ASIC2a subunits in central neurons and of ASIC1b-containing channels in nociceptors is involved in the analgesic effect of mambalgins. These findings identify new potential therapeutic targets for pain and introduce natural peptides that block them to produce a potent analgesia.

  4. Novel poly(ethylene-co-acrylic acid) nanofibrous biomaterials for peptide synthesis and biomedical applications.

    PubMed

    Xiang, Bei; Sun, Gang; Lam, Kit S; Xiao, Kai

    2010-10-01

    Poly(ethylene-co-acrylic acid) (PE-co-AA) fibers in sizes of 200-500 nm were prepared by using a novel melt-extrusion-extraction fabrication process. The thermoplastic nanofibers could be controllably dispersed and reassembled by a novel solvent exchange filtration method. The dispersed PE-co-AA nanofibers possess active surface areas and could directly conduct chemical reactions on surfaces. Surface modifications and organic synthesis on the nanofibers were proven effective and controllable after the dispersion. Multistep synthesis of biomolecules, such as peptide ligand HWRGWV against Fc portion of human IgG, was successful. The surface-anchored ligand has shown bioactivity through selective binding to and staining by human IgG-alkaline phosphatase conjugate. Another peptide, LXY3, a selective cyclic peptide ligand against alpha3beta1 integrin of MDA-MB-231 breast cancer cells, was also prepared on the surfaces of the dispersed nanofibers. The results showed that MDA-MB-231 cells were able to specifically bind to and grow on surfaces of the nanofibers that were functionalized with LXY3.

  5. Differentiating amino acid residues and side chain orientations in peptides using scanning tunneling microscopy.

    PubMed

    Claridge, Shelley A; Thomas, John C; Silverman, Miles A; Schwartz, Jeffrey J; Yang, Yanlian; Wang, Chen; Weiss, Paul S

    2013-12-11

    Single-molecule measurements of complex biological structures such as proteins are an attractive route for determining structures of the large number of important biomolecules that have proved refractory to analysis through standard techniques such as X-ray crystallography and nuclear magnetic resonance. We use a custom-built low-current scanning tunneling microscope to image peptide structures at the single-molecule scale in a model peptide that forms β sheets, a structural motif common in protein misfolding diseases. We successfully differentiate between histidine and alanine amino acid residues, and further differentiate side chain orientations in individual histidine residues, by correlating features in scanning tunneling microscope images with those in energy-optimized models. Beta sheets containing histidine residues are used as a model system due to the role histidine plays in transition metal binding associated with amyloid oligomerization in Alzheimer's and other diseases. Such measurements are a first step toward analyzing peptide and protein structures at the single-molecule level.

  6. Peptide bond formation does not involve acid-base catalysis by ribosomal residues.

    PubMed

    Bieling, Peter; Beringer, Malte; Adio, Sarah; Rodnina, Marina V

    2006-05-01

    Ribosomes catalyze the formation of peptide bonds between aminoacyl esters of transfer RNAs within a catalytic center composed of ribosomal RNA only. Here we show that the reaction of P-site formylmethionine (fMet)-tRNA(fMet) with a modified A-site tRNA substrate, Phelac-tRNA(Phe), in which the nucleophilic amino group is replaced with a hydroxyl group, does not show the pH dependence observed with small substrate analogs such as puromycin and hydroxypuromycin. This indicates that acid-base catalysis by ribosomal residues is not important in the reaction with the full-size substrate. Rather, the ribosome catalyzes peptide bond formation by positioning the tRNAs, or their 3' termini, through interactions with rRNA that induce and/or stabilize a pH-insensitive conformation of the active site and provide a preorganized environment facilitating the reaction. The rate of peptide bond formation with unmodified Phe-tRNA(Phe) is estimated to be >300 s(-1).

  7. Influence of the yeast strain on the changes of the amino acids, peptides and proteins during sparkling wine production by the traditional method.

    PubMed

    Martínez-Rodríguez, A J; Carrascosa, A V; Martín-Alvarez, P J; Moreno-Arribas, V; Polo, M C

    2002-12-01

    The influence of five yeast strains on the nitrogen fractions, amino acids, peptides and proteins, during 12 months of aging of sparkling wines produced by the traditional or Champenoise method, was studied. High-performance liquid chromatography (HPLC) techniques were used for analysis of the amino acid and peptide fractions. Proteins plus polypeptides were determined by the colorimetric Bradford method. Four main stages were detected in the aging of wines with yeast. In the first stage, a second fermentation took place; amino acids and proteins plus polypeptides diminished, and peptides were liberated. In the second stage, there was a release of amino acids and proteins, and peptides were degraded. In the third stage, the release of proteins and peptides predominated. In the fourth stage, the amino acid concentration diminished. The yeast strain used influenced the content of free amino acids and peptides and the aging time in all the nitrogen fractions.

  8. Fermentation of peptides and amino acids by a monensin-sensitive ruminal Peptostreptococcus.

    PubMed Central

    Chen, G J; Russell, J B

    1988-01-01

    A monensin-sensitive ruminal peptostreptococcus was able to grow rapidly (growth rate of 0.5/h) on an enzymatic hydrolysate of casein, but less than 23% of the amino acid nitrogen was ever utilized. When an acid hydrolysate was substituted for the enzymatic digest, more than 31% of the nitrogen was converted to ammonia and cell protein. Coculture experiments and synergisms with peptide-degrading strains of Bacteroides ruminicola and Streptococcus bovis indicated that the peptostreptococcus was unable to transport certain peptides or hydrolyze them extracellularly. Leucine, serine, phenylalanine, threonine, and glutamine were deaminated at rates of 349, 258, 102, 95, and 91 nmol/mg of protein per min, respectively. Deamination rates for some other amino acids were increased when the amino acids were provided as pairs of oxidized and reduced amino acids (Stickland reactions), but these rates were still less than 80 nmol/mg of protein per min. In continuous culture (dilution rate of 0.1/h), bacterial dry matter and ammonia production decreased dramatically at a pH of less than 6.0. When dilution rates were increased from 0.08 to 0.32/h (pH 7.0), ammonia production increased while production of bacterial dry matter and protein decreased. These rather peculiar kinetics resulted in a slightly negative estimate of maintenance energy and could not be explained by a change in fermentation products. Approximately 80% of the cell dry matter was protein. When corrections were made for cell composition, the yield of ATP was higher than the theoretical maximum value. It is possible that mechanisms other than substrate-level phosphorylation contributed to the energetics of growth. PMID:2975156

  9. Radical S-adenosyl methionine epimerases: regioselective introduction of diverse D-amino acid patterns into peptide natural products.

    PubMed

    Morinaka, Brandon I; Vagstad, Anna L; Helf, Maximilian J; Gugger, Muriel; Kegler, Carsten; Freeman, Michael F; Bode, Helge B; Piel, Jörn

    2014-08-04

    PoyD is a radical S-adenosyl methionine epimerase that introduces multiple D-configured amino acids at alternating positions into the highly complex marine peptides polytheonamide A and B. This novel post-translational modification contributes to the ability of the polytheonamides to form unimolecular minimalistic ion channels and its cytotoxic activity at picomolar levels. Using a genome mining approach we have identified additional PoyD homologues in various bacteria. Three enzymes were expressed in E. coli with their cognate as well as engineered peptide precursors and shown to introduce diverse D-amino acid patterns into all-L peptides. The data reveal a family of architecturally and functionally distinct enzymes that exhibit high regioselectivity, substrate promiscuity, and irreversible action and thus provide attractive opportunities for peptide engineering.

  10. Purification and amino acid composition of a peptide with molt-inhibiting activity from the lobster, Homarus americanus.

    PubMed

    Chang, E S; Bruce, M J; Newcomb, R W

    1987-01-01

    A peptide was isolated and purified from sinus glands of the lobster, Homarus americanus, that was able to decrease circulating titers of ecdysteroids and increase the molt interval of eyestalk-ablated juvenile lobsters. This molt-inhibiting activity was demonstrated to consist of two very closely related peptides by means of high-performance liquid chromatography and gel electrophoresis. By means of amino acid analyses, a molecular weight of approximately 8700 was obtained.

  11. Development of a method for environmentally friendly chemical peptide synthesis in water using water-dispersible amino acid nanoparticles

    PubMed Central

    2011-01-01

    Due to the vast importance of peptides in biological processes, there is an escalating need for synthetic peptides to be used in a wide variety of applications. However, the consumption of organic solvent is extremely large in chemical peptide syntheses because of the multiple condensation steps in organic solvents. That is, the current synthesis method is not environmentally friendly. From the viewpoint of green sustainable chemistry, we focused on developing an organic solvent-free synthetic method using water, an environmentally friendly solvent. Here we described in-water synthesis technology using water-dispersible protected amino acids. PMID:21867548

  12. Beta2-amino acids-syntheses, occurrence in natural products, and components of beta-peptides1,2.

    PubMed

    Lelais, Gérald; Seebach, Dieter

    2004-01-01

    Although they are less abundant than their alpha-analogues, beta-amino acids occur in nature both in free form and bound to peptides. Oligomers composed exclusively of beta-amino acids (so-called beta-peptides) might be the most thoroughly investigated peptidomimetics. Beside the facts that they are stable to metabolism, exhibit slow microbial degradation, and are inherently stable to proteases and peptidases, they fold into well-ordered secondary structures consisting of helices, turns, and sheets. In this respect, the most intriguing effects have been observed when beta2-amino acids are present in the beta-peptide backbone. This review gives an overview of the occurrence and importance of beta2-amino acids in nature, placing emphasis on the metabolic pathways of beta-aminoisobutyric acid (beta-Aib) and the appearance of beta2-amino acids as secondary metabolites or as components of more complex natural products, such as peptides, depsipeptides, lactones, and alkaloids. In addition, a compilation of the syntheses of both achiral and chiral beta2-amino acids is presented. While there are numerous routes to achiral beta2-amino acids, their EPC synthesis is currently the subject of many investigations. These include the diastereoselective alkylation and Mannich-type reactions of cyclic- or acyclic beta-homoglycine derivatives containing chiral auxiliaries, the Curtius degradation, the employment of transition-metal catalyzed reactions such as enantioselective hydrogenations, reductions, C-H insertions, and Michael-type additions, and the resolution of rac. beta2-amino acids, as well as several miscellaneous methods. In the last part of the review, the importance of beta2-amino acids in the formation of beta-peptide secondary structures is discussed.

  13. Information transfer from peptide nucleic acids to RNA by template-directed syntheses

    NASA Technical Reports Server (NTRS)

    Schmidt, J. G.; Nielsen, P. E.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1997-01-01

    Peptide nucleic acids (PNAs) are uncharged analogs of DNA and RNA in which the ribose-phosphate backbone is substituted by a backbone held together by amide bonds. PNAs are interesting as models of alternative genetic systems because they form potentially informational base paired helical structures. A PNA C10 oligomer has been shown to act as template for efficient formation of oligoguanylates from activated guanosine ribonucleotides. In a previous paper we used heterosequences of DNA as templates in sequence-dependent polymerization of PNA dimers. In this paper we show that information can be transferred from PNA to RNA. We describe the reactions of activated mononucleotides on heterosequences of PNA. Adenylic, cytidylic and guanylic acids were incorporated into the products opposite their complement on PNA, although less efficiently than on DNA templates.

  14. Preparation of surfactant-stabilized gold nanoparticle-peptide nucleic acid conjugates

    NASA Astrophysics Data System (ADS)

    Duy, Janice; Connell, Laurie B.; Eck, Wolfgang; Collins, Scott D.; Smith, Rosemary L.

    2010-09-01

    A simple, two-step method of producing stable and functional peptide nucleic acid (PNA)-conjugated gold nanoparticles using a surfactant stabilization step is presented. PNA are DNA analogs with superior chemical stability and target discrimination, but their use in metallic nanoparticle systems has been limited by the difficulty of producing stable colloids of nanoparticle-PNA conjugates. In this work, the nonionic surfactant Tween 20 (polyoxyethylene (20) sorbitan monolaurate) was used to sterically shield gold surfaces prior to the addition of thiolated PNA, producing conjugates which remain dispersed in solution and retain the ability to hybridize to complementary nucleic acid sequences. The conjugates were characterized using transmission electron microscopy, dynamic light scattering, and UV-visible absorbance spectroscopy. PNA attachment to gold nanoparticles was confirmed with an enzyme-linked immunoassay, while the ability of nanoparticle-bound PNA to hybridize to its complement was demonstrated using labeled DNA.

  15. Bioactive Molecules Released in Food by Lactic Acid Bacteria: Encrypted Peptides and Biogenic Amines

    PubMed Central

    Pessione, Enrica; Cirrincione, Simona

    2016-01-01

    Lactic acid bacteria (LAB) can produce a huge amount of bioactive compounds. Since their elective habitat is food, especially dairy but also vegetal food, it is frequent to find bioactive molecules in fermented products. Sometimes these compounds can have adverse effects on human health such as biogenic amines (tyramine and histamine), causing allergies, hypertensive crises, and headache. However, some LAB products also display benefits for the consumers. In the present review article, the main nitrogen compounds produced by LAB are considered. Besides biogenic amines derived from the amino acids tyrosine, histidine, phenylalanine, lysine, ornithine, and glutamate by decarboxylation, interesting peptides can be decrypted by the proteolytic activity of LAB. LAB proteolytic system is very efficient in releasing encrypted molecules from several proteins present in different food matrices. Alpha and beta-caseins, albumin and globulin from milk and dairy products, rubisco from spinach, beta-conglycinin from soy and gluten from cereals constitute a good source of important bioactive compounds. These encrypted peptides are able to control nutrition (mineral absorption and oxidative stress protection), metabolism (blood glucose and cholesterol lowering) cardiovascular function (antithrombotic and hypotensive action), infection (microbial inhibition and immunomodulation) and gut-brain axis (opioids and anti-opioids controlling mood and food intake). Very recent results underline the role of food-encrypted peptides in protein folding (chaperone-like molecules) as well as in cell cycle and apoptosis control, suggesting new and positive aspects of fermented food, still unexplored. In this context, the detailed (transcriptomic, proteomic, and metabolomic) characterization of LAB of food interest (as starters, biocontrol agents, nutraceuticals, and probiotics) can supply a solid evidence-based science to support beneficial effects and it is a promising approach as well to obtain

  16. Bioactive Molecules Released in Food by Lactic Acid Bacteria: Encrypted Peptides and Biogenic Amines.

    PubMed

    Pessione, Enrica; Cirrincione, Simona

    2016-01-01

    Lactic acid bacteria (LAB) can produce a huge amount of bioactive compounds. Since their elective habitat is food, especially dairy but also vegetal food, it is frequent to find bioactive molecules in fermented products. Sometimes these compounds can have adverse effects on human health such as biogenic amines (tyramine and histamine), causing allergies, hypertensive crises, and headache. However, some LAB products also display benefits for the consumers. In the present review article, the main nitrogen compounds produced by LAB are considered. Besides biogenic amines derived from the amino acids tyrosine, histidine, phenylalanine, lysine, ornithine, and glutamate by decarboxylation, interesting peptides can be decrypted by the proteolytic activity of LAB. LAB proteolytic system is very efficient in releasing encrypted molecules from several proteins present in different food matrices. Alpha and beta-caseins, albumin and globulin from milk and dairy products, rubisco from spinach, beta-conglycinin from soy and gluten from cereals constitute a good source of important bioactive compounds. These encrypted peptides are able to control nutrition (mineral absorption and oxidative stress protection), metabolism (blood glucose and cholesterol lowering) cardiovascular function (antithrombotic and hypotensive action), infection (microbial inhibition and immunomodulation) and gut-brain axis (opioids and anti-opioids controlling mood and food intake). Very recent results underline the role of food-encrypted peptides in protein folding (chaperone-like molecules) as well as in cell cycle and apoptosis control, suggesting new and positive aspects of fermented food, still unexplored. In this context, the detailed (transcriptomic, proteomic, and metabolomic) characterization of LAB of food interest (as starters, biocontrol agents, nutraceuticals, and probiotics) can supply a solid evidence-based science to support beneficial effects and it is a promising approach as well to obtain

  17. An extract of Gymnema sylvestre leaves and purified gymnemic acid inhibits glucose-stimulated gastric inhibitory peptide secretion in rats.

    PubMed

    Fushiki, T; Kojima, A; Imoto, T; Inoue, K; Sugimoto, E

    1992-12-01

    Gastric inhibitory peptide release into the portal vein in response to duodenal infusion of D-glucose was studied in the presence of a leaf extract of Gymnema sylvestre, purified gymnemic acid and inhibitors of some putative glucose sensors and carriers in the intestinal lumen. Intraduodenal infusion of D-glucose significantly increased the portal immunoreactive gastric inhibitory peptide concentration in a dose-dependent manner. The increase in the portal immunoreactive gastric inhibitory peptide induced by glucose was significantly depressed by concomitantly infused leaf extract of Gymnema sylvestre, purified gymnemic acid and phlorizin but not by cytochalasin B. Mannoheptulose, which inhibits glycolysis, and procaine and lidocaine, which inhibit the vagal glucoreceptor in the lumen, did not affect portal immunoreactive gastric inhibitory peptide concentrations. These results suggest that a glucose receptor, which interacts with the leaf extract of Gymnema sylvestre, purified gymnemic acid and phlorizin, exists for the release of immunoreactive gastric inhibitory peptide and that the glucose receptor for gastric inhibitory peptide release is not likely to be identical with a glucose transporter or a vagal glucoreceptor in the lumen.

  18. Bioplex technology: novel synthetic gene delivery pharmaceutical based on peptides anchored to nucleic acids.

    PubMed

    Simonson, Oscar E; Svahn, Mathias G; Törnquist, Elisabeth; Lundin, Karin E; Smith, C I E

    2005-01-01

    Non-viral gene delivery is an important approach in order to establish safe in vivo gene therapy in the clinic. Although viral vectors currently exhibit superior gene transfer efficacy, the safety aspect of viral gene delivery is a concern. In order to improve non-viral in vivo gene delivery we have designed a pharmaceutical platform called Bioplex (biological complex). The concept of Bioplex is to link functional entities via hybridising anchors, such as Peptide Nucleic Acids (PNA), directly to naked DNA. In order to promote delivery functional entities consisting of biologically active peptides or carbohydrates, are linked to the PNA anchor. The PNA acts as genetic glue and hybridises with DNA in a sequence specific manner. By using functional entities, which elicit receptor-mediated endocytosis, improved endosomal escape and enhance nuclear entry we wish to improve the transfer of genetic material into the cell. An important aspect is that the functional entities should also have tissue-targeting properties in vivo. Examples of functional entities investigated to date are the Simian virus 40 nuclear localisation signal to improve nuclear uptake and different carbohydrate ligands in order to achieve receptor specific uptake. The delivery system is also endowed with regulatory capability, since the release of functional entities can be controlled. The aim is to create a safe, pharmaceutically defined and stable delivery system for nucleic acids with enhanced transfection properties that can be used in the clinic.

  19. In situ synthesis of peptide nucleic acids in porous silicon for drug delivery and biosensing.

    PubMed

    Beavers, Kelsey R; Mares, Jeremy W; Swartz, Caleb M; Zhao, Yiliang; Weiss, Sharon M; Duvall, Craig L

    2014-07-16

    Peptide nucleic acids (PNA) are a unique class of synthetic molecules that have a peptide backbone and can hybridize with nucleic acids. Here, a versatile method has been developed for the automated, in situ synthesis of PNA from a porous silicon (PSi) substrate for applications in gene therapy and biosensing. Nondestructive optical measurements were performed to monitor single base additions of PNA initiated from (3-aminopropyl)triethoxysilane attached to the surface of PSi films, and mass spectrometry was conducted to verify synthesis of the desired sequence. Comparison of in situ synthesis to postsynthesis surface conjugation of the full PNA molecules showed that surface mediated, in situ PNA synthesis increased loading 8-fold. For therapeutic proof-of-concept, controlled PNA release from PSi films was characterized in phosphate buffered saline, and PSi nanoparticles fabricated from PSi films containing in situ grown PNA complementary to micro-RNA (miR) 122 generated significant anti-miR activity in a Huh7 psiCHECK-miR122 cell line. The applicability of this platform for biosensing was also demonstrated using optical measurements that indicated selective hybridization of complementary DNA target molecules to PNA synthesized in situ on PSi films. These collective data confirm that we have established a novel PNA-PSi platform with broad utility in drug delivery and biosensing.

  20. Peptide nucleic acids rather than RNA may have been the first genetic molecule

    NASA Technical Reports Server (NTRS)

    Nelson, K. E.; Levy, M.; Miller, S. L.

    2000-01-01

    Numerous problems exist with the current thinking of RNA as the first genetic material. No plausible prebiotic processes have yet been demonstrated to produce the nucleosides or nucleotides or for efficient two-way nonenzymatic replication. Peptide nucleic acid (PNA) is a promising precursor to RNA, consisting of N-(2-aminoethyl)glycine (AEG) and the adenine, uracil, guanine, and cytosine-N-acetic acids. However, PNA has not yet been demonstrated to be prebiotic. We show here that AEG is produced directly in electric discharge reactions from CH(4), N(2), NH(3), and H(2)O. Electric discharges also produce ethylenediamine, as do NH(4)CN polymerizations. AEG is produced from the robust Strecker synthesis with ethylenediamine. The NH(4)CN polymerization in the presence of glycine leads to the adenine and guanine-N(9)-acetic acids, and the cytosine and uracil-N(1)-acetic acids are produced in high yield from the reaction of cyanoacetaldehyde with hydantoic acid, rather than urea. Preliminary experiments suggest that AEG may polymerize rapidly at 100 degrees C to give the polypeptide backbone of PNA. The ease of synthesis of the components of PNA and possibility of polymerization of AEG reinforce the possibility that PNA may have been the first genetic material.

  1. A non-canonical peptide synthetase adenylates 3-methyl-2-oxovaleric acid for auriculamide biosynthesis

    PubMed Central

    Braga, Daniel; Hoffmeister, Dirk

    2016-01-01

    Auriculamide is the first natural product known from the predatory bacterium Herpetosiphon aurantiacus. It is composed of three unusual building blocks, including the non-proteinogenic amino acid 3-chloro-L-tyrosine, the α-hydroxy acid L-isoleucic acid, and a methylmalonyl-CoA-derived ethane unit. A candidate genetic locus for auriculamide biosynthesis was identified and encodes four enzymes. Among them, the non-canonical 199 kDa four-domain nonribosomal peptide synthetase, AulA, is extraordinary in that it features two consecutive adenylation domains. Here, we describe the functional characterization of the recombinantly produced AulA. The observed activation of 3-methyl-2-oxovaleric acid by the enzyme supports the hypothesis that it participates in the biosynthesis of auriculamide. An artificially truncated version of AulA that lacks the first adenylation domain activated this substrate like the full-length enzyme which shows that the first adenylation domain is dispensable. Additionally, we provide evidence that the enzyme tolerates structural variation of the substrate. α-Carbon substituents significantly affected the substrate turnover. While all tested aliphatic α-keto acids were accepted by the enzyme and minor differences in chain size and branches did not interfere with the enzymatic activity, molecules with methylene α-carbons led to low turnover. Such enzymatic plasticity is an important attribute to help in the perpetual search for novel molecules and to access a greater structural diversity by mutasynthesis. PMID:28144348

  2. Conformational characterization of the 1-aminocyclobutane-1-carboxylic acid residue in model peptides.

    PubMed

    Gatos, M; Formaggio, F; Crisma, M; Toniolo, C; Bonora, G M; Benedetti, Z; Di Blasio, B; Iacovino, R; Santini, A; Saviano, M; Kamphuis, J

    1997-01-01

    A series of N- and C-protected, monodispersed homo-oligopeptides (to the dodecamer level) from the small-ring alicyclic C alpha, alpha-dialkylated glycine 1-aminocyclobutane-1-carboxylic acid (Ac4c) and two Ala/Ac4c tripeptides were synthesized by solution methods and fully characterized. The conformational preferences of all the model peptides were determined in deuterochloroform solution by FT-IR absorption and 1H-NMR. The molecular structures of the amino acid derivatives Z-Ac4c-OH and Z2-Ac4c-OH, the tripeptides Z-(Ac4c)3-OtBu, Z-Ac4c-(L-Ala)2-OMe and Z-L-Ala-Ac4c-L-Ala-OMe, and the tetrapeptide Z-(Ac4c)4-OtBu were determined in the crystal state by X-ray diffraction. The average geometry of the cyclobutyl moiety of the Ac4c residue was assessed and the tau(N-C alpha-C') bond angle was found to be significantly expanded from the regular tetrahedral value. The conformational data are strongly in favour of the conclusion that the Ac4c residue is an effective beta-turn and helix former. A comparison with the structural propensities of alpha-aminoisobutyric acid, the prototype of C alpha, alpha-dialkylated glycines, and the other extensively investigated members of the family of 1-aminocycloalkane-1-carboxylic acids (Acnc, with n = 3, 5-8) is made and the implications for the use of the Ac4c residue in conformationally constrained peptide analogues are briefly examined.

  3. Role of SbmA in the uptake of peptide nucleic acid (PNA)-peptide conjugates in E. coli.

    PubMed

    Ghosal, Anubrata; Vitali, Ally; Stach, James E M; Nielsen, Peter E

    2013-02-15

    Antisense PNA oligomers targeting essential genes (acpP or ftsZ) and conjugated to the delivery peptide L((KFF)(3)K) show complete growth inhibition of wild type E. coli strain (MG1655) with submicromolar MIC. In this study we show that resistant mutants generated against such PNA-peptide conjugates had disruptions in the region of sbmA, a gene encoding an inner membrane peptide transporter. The wild type sensitivity to the PNA conjugates was re-established in the resistance mutants by complementation with sbmA. Furthermore, deletion of sbmA in E. coli AS19, a strain that is sensitive to unmodified PNA, resulted in resistance to PNA. Finally, PNA conjugated with the corresponding non-biological H-D((KFF)(3)K) peptide retained antibacterial activity in sbmA deletion strains, whereas the same conjugate with a protease-sensitive linker did not. These results clearly identify SbmA as a carrier of naked PNA over the inner bacterial membrane and thereby infer that the peptide is transporting the PNA conjugates over the outer membrane. Strains lacking SbmA were used to screen novel peptide-PNA carriers that were SbmA-independent. Four such PNA-peptide conjugates, H-D((KFF)(3)K), H-(RFR)(4)-Ahx-βAla, H-(R-Ahx-R)(4)-Ahx-βAla, and H-(R-Ahx)(6)-βAla, were identified that utilize an alternative uptake mechanism but retain their antimicrobial potency. In addition SbmA is the first protein identified to recognize PNA.

  4. Radiolytic Modification of Sulfur Containing Acidic Amino Residues in Model Peptides: Fundamental Studies for Protein Footprinting

    SciTech Connect

    Xu,G.; Chance, M.

    2005-01-01

    Protein footprinting based on hydroxyl radical-mediated modification and quantitative mass spectroscopic analysis is a proven technique for examining protein structure, protein-ligand interactions, and structural allostery upon protein complex formation. The reactive and solvent-accessible amino acid side chains function as structural probes; however, correct structural analysis depends on the identification and quantification of all the relevant oxidative modifications within the protein sequence. Sulfur-containing amino acids are oxidized readily and the mechanisms of oxidation are particularly complex, although they have been extensively investigated by EPR and other spectroscopic methods. Here we have undertaken a detailed mass spectrometry study (using electrospray ionization mass spectrometry and tandem mass spectrometry) of model peptides containing cysteine (Cys-SH), cystine (disulfide bonded Cys), and methionine after oxidation using {gamma}-rays or synchrotron X-rays and have compared these results to those expected from oxidation mechanisms proposed in the literature. Radiolysis of cysteine leads to cysteine sulfonic acid (+48 Da mass shift) and cystine as the major products; other minor products including cysteine sulfinic acid (+32 Da mass shift) and serine (-16 Da mass shift) are observed. Radiolysis of cystine results in the oxidative opening of the disulfide bond and generation of cysteine sulfonic acid and sulfinic acid; however, the rate of oxidation is significantly less than that for cysteine. Radiolysis of methionine gives rise primarily to methionine sulfoxide (+16 Da mass shift); this can be further oxidized to methionine sulfone (+32 Da mass shift) or another product with a -32 Da mass shift likely due to aldehyde formation at the {gamma}-carbon. Due to the high reactivity of sulfur-containing amino acids, the extent of oxidation is easily influenced by secondary oxidation events or the presence of redox reagents used in standard proteolytic

  5. Slow peptide bond formation by proline and other N-alkylamino acids in translation

    PubMed Central

    Pavlov, Michael Y.; Watts, Richard E.; Tan, Zhongping; Cornish, Virginia W.; Ehrenberg, Måns; Forster, Anthony C.

    2009-01-01

    Proteins are made from 19 aa and, curiously, one N-alkylamino acid (“imino acid”), proline (Pro). Pro is thought to be incorporated by the translation apparatus at the same rate as the 19 aa, even though the alkyl group in Pro resides directly on the nitrogen nucleophile involved in peptide bond formation. Here, by combining quench-flow kinetics and charging of tRNAs with cognate and noncognate amino acids, we find that Pro incorporates in translation significantly more slowly than Phe or Ala and that other N-alkylamino acids incorporate much more slowly. Our results show that the slowest step in incorporation of N-alkylamino acids is accommodation/peptidyl transfer after GTP hydrolysis on EF-Tu. The relative incorporation rates correlate with expectations from organic chemistry, suggesting that amino acid sterics and basicities affect translation rates at the peptidyl transfer step. Cognate isoacceptor tRNAs speed Pro incorporation to rates compatible with in vivo, although still 3–6 times slower than Phe incorporation from Phe-tRNAPhe depending on the Pro codon. Results suggest that Pro is the only N-alkylamino acid in the genetic code because it has a privileged cyclic structure that is more reactive than other N-alkylamino acids. Our data on the variation of the rate of incorporation of Pro from native Pro-tRNAPro isoacceptors at 4 different Pro codons help explain codon bias not accounted for by the “tRNA abundance” hypothesis. PMID:19104062

  6. Hydration studies of electrospray ions from amino acids and small peptides

    NASA Astrophysics Data System (ADS)

    Nguyen, Chuong (Steve)

    This project was undertaken to gain a better understanding of the hydration behaviors of gas phase ions from solutions containing amino acids and peptides. In order to characterize their hydration behavior, the molecules of interest in solutions were first converted into gas phase ions by electrospray ionization (ESI). The completely desolvated ions were then deliberately dispersed into an inert bath gas, usually nitrogen, containing accurately known concentrations of solvent vapor. The resulting mixtures of ions and bath gas were subsequently passed into a vacuum chamber by way of an adiabatic supersonic free jet expansion. The cooling during that expansion caused solvation of the ions, the extent of which was determined by a quadrupole mass analyzer. Mass analysis of the solute ions in the absence of vapor showed peaks with the mass to charge ratios corresponding to the desolvated ions. On the other hand, mass spectrometric analyses of ions in the presence of solvent vapor showed sequences of peaks corresponding to the solvated ions with varying numbers of water molecules. The extent of the ion solvation was controlled by varying the concentration of solvent vapor in the bath gas. Two different scales were proposed for the evaluation of the relative affinities of amino acids for water molecules. One was based primarily on the assumption that the affinities of amino acids for water molecules are directly proportional to their gas phase solvation rate constants ( k). An alternative approach produced an affinity scale based on the extent of ion hydration occurred during the free jet expansion. It was found that the addition of a polar solvent vapor to the bath gas at low concentrations substantially enhanced the production of the bare solute ions from the evaporating charged droplets. This remarkable result not only provided a means to increase the ion production and thus detection sensitivity of mass spectrometric analyses, but also yielded important information

  7. Acidity and metal (Mg2+, Ca2+, Zn2+) affinity of L-γ-carboxyglutamic acid and its peptide analog

    NASA Astrophysics Data System (ADS)

    Remko, Milan; Broer, Ria; Remková, Anna; Van Duijnen, Piet Th.

    2014-10-01

    Density functional theory methods with the B3LYP and B97D functionals with triple-zeta 6-311++G(d,p) basis set have been used to study the acidity, basicity and metal affinity of L-γ-carboxyglutamic acid (GLA) and its peptide derivative [2-acetylamino-3-(methylamino)-3-oxopropyl]malonic acid (AMD-GLA). The Gibbs interaction energies of the GLA2-…M2+ and AMD-GLA2-…M2+ (M = Mg, Ca, Zn) complexes show an increasing binding affinity in the order Ca2+ < Mg2+ < Zn2+ The transition metal Zn2+ is most effectively recognized by the dianions of GLA and AMD-GLA. Of the dianions studied the AMD-GLA dianion is the strongest Lewis base. Computations that include the effect of solvation showed that in water the relative stability of GLA2-…M2+ and AMD-GLA2-…M2+ ionic bonds is rapidly diminished. The computed interaction Gibbs energy in water is small and negative.

  8. Ion-pair mediated transport of small model peptides in liquid phase micro extraction under acidic conditions.

    PubMed

    Reubsaet, J Léon E; Paulsen, Jonas V

    2005-02-01

    This paper discusses the behaviour of five small model peptides in a three phase (aqueous donor-organic-aqueous acceptor) liquid phase micro extraction system in relation to their physico-chemical properties (charge, hydrophobicity). It is proved that for all peptides transport over the organic phase is mediated by aliphatic sulphonic acids. Heptane-1-sulphonic acid gave the best overall recoveries. It appeared that peptides with hydrophobic properties (IPI) and a high number of positive charges (KYK) show good recoveries and are enriched in the acceptor phase. Variation in the pH (1.6-4.4) of the donor phase shows that there are peptide-dependent optimal pH-values for their recovery. Increasing pH in the acceptor phase shows that in most cases the recovery decreases due to decreased ion-pair mediated membrane transport. For KYK the partition between the organic phase and the aqueous acceptor-phase is also driven by the solubility in the aqueous acceptor phase. Increase of the ion strength of the acceptor phase did not affect the recovery of the peptides. Except for KYK, which showed decreased recovery when the ion strength increased. Another finding is that delocalisation of positive charge causes bad recovery, probably due to incomplete ion-pair-peptide complex formation.

  9. Design of protease-resistant myelin basic protein-derived peptides by cleavage site directed amino acid substitutions.

    PubMed

    Burster, Timo; Marin-Esteban, Viviana; Boehm, Bernhard O; Dunn, Shannon; Rotzschke, Olaf; Falk, Kirsten; Weber, Ekkehard; Verhelst, Steven H L; Kalbacher, Hubert; Driessen, Christoph

    2007-11-15

    Multiple Sclerosis (MS) is considered to be a T cell-mediated autoimmune disease. An attractive strategy to prevent activation of autoaggressive T cells in MS, is the use of altered peptide ligands (APL), which bind to major histocompatibility complex class II (MHC II) molecules. To be of clinical use, APL must be capable of resisting hostile environments including the proteolytic machinery of antigen presenting cells (APC). The current design of APL relies on cost- and labour-intensive strategies. To overcome these major drawbacks, we used a deductive approach which involved modifying proteolytic cleavage sites in APL. Cleavage site-directed amino acid substitution of the autoantigen myelin basic protein (MBP) resulted in lysosomal protease-resistant, high-affinity binding peptides. In addition, these peptides mitigated T cell activation in a similar fashion as conventional APL. The strategy outlined allows the development of protease-resistant APL and provides a universal design strategy to improve peptide-based immunotherapeutics.

  10. The Prebiotic C-Terminal Elongation of Peptides can be Initiated by N-Carbamoyl Amino Acids.

    PubMed

    Abou Mrad, Ninette; Ajram, Ghinwa; Rossi, Jean-Christophe; Boiteau, Laurent; Duvernay, Fabrice; Pascal, Robert; Danger, Gregoire

    2017-04-05

    The formation of peptides upon EDC promoted activation of N-carbamoylamino acids (CAA), was considered in the scope of our recent works on carbodiimide promoted C-terminus elongation of peptides in a prebiotic context. Thus EDC promoted activation of CAA derivatives of Tyr(Me) or Ala in dilute aqueous medium pH 5.5-6.5 in the presence of excess of AA, resulted in peptide formation via C-terminus activation / elongation. Kinetic results similar to those of EDC-mediated activation of N-acyl-AA lead us to postulate the formation of a 2-amino-5(4H)-oxazolone intermediate by cyclization of the activated CAA, in spite of the absence of epimerization occurred at CAA residues. Thus, in a prebiotic context, CAA may have played a similar role as N-acyl-AA in the initiation of C-terminus peptide elongation.

  11. Single Amino Acid Variation Underlies Species-Specific Sensitivity to Amphibian Skin-Derived Opioid-like Peptides.

    PubMed

    Vardy, Eyal; Sassano, Maria F; Rennekamp, Andrew J; Kroeze, Wesley K; Mosier, Philip D; Westkaemper, Richard B; Stevens, Craig W; Katritch, Vsevolod; Stevens, Raymond C; Peterson, Randall T; Roth, Bryan L

    2015-06-18

    It has been suggested that the evolution of vertebrate opioid receptors (ORs) follow a vector of increased functionality. Here, we test this idea by comparing human and frog ORs. Interestingly, some of the most potent opioid peptides known have been isolated from amphibian skin secretions. Here we show that such peptides (dermorphin and deltorphin) are highly potent in the human receptors and inactive in frog ORs. The molecular basis for the insensitivity of the frog ORs to these peptides was studied using chimeras and molecular modeling. The insensitivity of the delta OR (DOR) to deltorphin was due to variation of a single amino acid, Trp7.35, which is a leucine in mammalian DORs. Notably, Trp7.35 is completely conserved in all known DOR sequences from lamprey, fish, and amphibians. The deltorphin-insensitive phenotype was verified in fish. Our results provide a molecular explanation for the species selectivity of skin-derived opioid peptides.

  12. β-Amino acids containing peptides and click-cyclized peptide as β-turn mimics: a comparative study with 'conventional' lactam- and disulfide-bridged hexapeptides.

    PubMed

    Larregola, Maud; Lequin, Olivier; Karoyan, Philippe; Guianvarc'h, Dominique; Lavielle, Solange

    2011-09-01

    The increasing interest in click chemistry and its use to stabilize turn structures led us to compare the propensity for β-turn stabilization of different analogs designed as mimics of the β-turn structure found in tendamistat. The β-turn conformation of linear β-amino acid-containing peptides and triazole-cyclized analogs were compared to 'conventional' lactam- and disulfide-bridged hexapeptide analogs. Their 3D structures and their propensity to fold in β-turns in solution, and for those not structured in solution in the presence of α-amylase, were analyzed by NMR spectroscopy and by restrained molecular dynamics with energy minimization. The linear tetrapeptide Ac-Ser-Trp-Arg-Tyr-NH(2) and both the amide bond-cyclized, c[Pro-Ser-Trp-Arg-Tyr-D-Ala] and the disulfide-bridged, Ac-c[Cys-Ser-Trp-Arg-Tyr-Cys]-NH(2) hexapeptides adopt dominantly in solution a β-turn conformation closely related to the one observed in tendamistat. On the contrary, the β-amino acid-containing peptides such as Ac-(R)-β(3) -hSer-(S)-Trp-(S)-β(3) -hArg-(S)-β(3) -hTyr-NH(2) , and the triazole cyclic peptide, c[Lys-Ser-Trp-Arg-Tyr-βtA]-NH(2) , both specifically designed to mimic this β-turn, do not adopt stable structures in solution and do not show any characteristics of β-turn conformation. However, these unstructured peptides specifically interact in the active site of α-amylase, as shown by TrNOESY and saturation transfer difference NMR experiments performed in the presence of the enzyme, and are displaced by acarbose, a specific α-amylase inhibitor. Thus, in contrast to amide-cyclized or disulfide-bridged hexapeptides, β-amino acid-containing peptides and click-cyclized peptides may not be regarded as β-turn stabilizers, but can be considered as potential β-turn inducers.

  13. Gamma Peptide Nucleic Acids: As Orthogonal Nucleic Acid Recognition Codes for Organizing Molecular Self-Assembly.

    PubMed

    Sacui, Iulia; Hsieh, Wei-Che; Manna, Arunava; Sahu, Bichismita; Ly, Danith H

    2015-07-08

    Nucleic acids are an attractive platform for organizing molecular self-assembly because of their specific nucleobase interactions and defined length scale. Routinely employed in the organization and assembly of materials in vitro, however, they have rarely been exploited in vivo, due to the concerns for enzymatic degradation and cross-hybridization with the host's genetic materials. Herein we report the development of a tight-binding, orthogonal, synthetically versatile, and informationally interfaced nucleic acid platform for programming molecular interactions, with implications for in vivo molecular assembly and computing. The system consists of three molecular entities: the right-handed and left-handed conformers and a nonhelical domain. The first two are orthogonal to each other in recognition, while the third is capable of binding to both, providing a means for interfacing the two conformers as well as the natural nucleic acid biopolymers (i.e., DNA and RNA). The three molecular entities are prepared from the same monomeric chemical scaffold, with the exception of the stereochemistry or lack thereof at the γ-backbone that determines if the corresponding oligo adopts a right-handed or left-handed helix, or a nonhelical motif. These conformers hybridize to each other with exquisite affinity, sequence selectivity, and level of orthogonality. Recognition modules as short as five nucleotides in length are capable of organizing molecular assembly.

  14. Pipa carvalhoi skin secretion profiling: absence of peptides and identification of kynurenic acid as the major constitutive component.

    PubMed

    Mariano, Douglas Oscar Ceolin; Yamaguchi, Lydia Fumiko; Jared, Carlos; Antoniazzi, Marta Maria; Sciani, Juliana Mozer; Kato, Massuo Jorge; Pimenta, Daniel Carvalho

    2015-01-01

    The presence of peptides has been identified in all African pipid genera; nevertheless, little is known about skin secretion of South American frog genus Pipa. Skin secretion from captive and wild Pipa carvalhoi were obtained in the presence or absence of norepinephrine stimulation. The <10 kDa fraction was analyzed by liquid chromatography and mass spectrometry, searching for peptides. Chromatographic profiles show the presence of a major component in this secretion, regardless of the stimulation method (norepinephrine or mechanical stimulation) and the origin of the animal (captivity or wild), as well as in the absence of any stimulus. The general mass distribution profile in P. carvalhoi skin secretion shows numerous components below 800 Da. Moreover, no peptide could be identified, regardless of the chromatographic approach. The major component was purified and identified as kynurenic acid, an L-tryptophan derivative. P. carvalhoi does not secrete peptides as toxins in its skin. In addition, we here report that kynurenic acid is the main component of P. carvalhoi skin secretion. Although no biological activity was associated with kynurenic acid, we propose that this molecule is a pheromone that signals the presence of a co-specific in the shady environment in which this animal lives. In this study we demonstrate the absence of peptidic toxins in the skin secretion of P. carvalhoi, a break of paradigm in the pipid family.

  15. Rhizobins, a Group of Peptides in the Free-Amino-Acid Pool of the Soybean-Rhizobium System †

    PubMed Central

    Garay, Andrew S.; Ahlgren, Joy A.; Gonzalez, Mark A.; Stasney, Mark A.; Madtes, Paul C.

    1986-01-01

    Free-living Rhizobium (according to Bergey's Manual of Systematic Bacteriology, [1984, The Williams & Wilkins Co., Baltimore], Bradyrhizobium) japonicum was found to release a peptide into the nutrient media. Soybean nodules contained this peptide and exuded it into the soil. The name “rhizobin A” is suggested for this peptide. Nodules also contained another peptide, rhizobin B, as well as an unidentified, ninhydrin-positive compound, rhizobin C. The three peptides were confined to the free-amino-acid pool of the soluble fraction and eluted consecutively from a cation-exchange column. Rhizobin A was isolated in a highly purified form; its molecular mass was approximately 1,600 daltons as determined by Sephadex gel filtration and mass spectrometry. The amino-acid composition could be determined only approximately, because a long time was necessary for acid hydrolysis, possibly due to unusual linkages. The rhizobin concentration in soybean nodules continually increased during 50 days of growth, from 2 to approximately 400 μg/g (fresh weight). When combined nitrogen was added to nodulated soybean and subsequently removed, nitrogenase activity, nodulation, and nodule growth first decreased and then recovered. The relative amount of rhizobin A followed a similar pattern. Rhizobins were not detected in the roots, stems, and leaves of nodulated soybean plants. They were present in Lupinus nodules, but absent in alder nodules. PMID:16347004

  16. Effect of environment on the free and peptide amino acids in rice, wheat, and soybeans.

    PubMed

    Ahn, D J; Adeola, O; Nielsen, S S

    2001-01-01

    Controlled environments (CE) in which light, carbon dioxide, and nutrients are regulated are known to affect the chemical composition of plants. Controlled Ecological Life Support System (CELSS) environments are required for a Mars or lunar base where food resupply is both impractical and risky. Astronauts in a CELSS would need to grow and process edible biomass into foods. The complete nature of the changes in chemical composition of CE-grown plants is unknown but must be determined to ensure a safe and nutritionally adequate diet. In this article, we report the changes that occur in free and peptide-bound amino acids (AA) of select CELSS crops (rice, wheat, and soybean) grown in the field or in CE. The nonnitrate nonprotein nitrogen fraction was extracted and then analyzed for free and peptide AA. For grain or seeds, AA levels tended to increase from field to CE conditions; however, for vegetative material, AA levels remained the same or decreased from field to CE conditions. As such compositional changes are identified, researchers will be better able to design safe and nutritious diets for astronauts while minimizing needed energy and other resources.

  17. D-amino acid residue in a defensin-like peptide from platypus venom: effect on structure and chromatographic properties.

    PubMed

    Torres, Allan M; Tsampazi, Chryssanthi; Geraghty, Dominic P; Bansal, Paramjit S; Alewood, Paul F; Kuchel, Philip W

    2005-10-15

    The recent discovery that the natriuretic peptide OvCNPb (Ornithorhynchus venom C-type natriuretic peptide B) from platypus (Ornithorynchus anatinus) venom contains a D-amino acid residue suggested that other D-amino-acid-containing peptides might be present in the venom. In the present study, we show that DLP-2 (defensin-like peptide-2), a 42-amino-acid residue polypeptide in the platypus venom, also contains a D-amino acid residue, D-methionine, at position 2, while DLP-4, which has an identical amino acid sequence, has all amino acids in the L-form. These findings were supported further by the detection of isomerase activity in the platypus gland venom extract that converts DLP-4 into DLP-2. In the light of this new information, the tertiary structure of DLP-2 was recalculated using a new structural template with D-Met2. The structure of DLP-4 was also determined in order to evaluate the effect of a D-amino acid at position 2 on the structure and possibly to explain the large retention time difference observed for the two molecules in reverse-phase HPLC. The solution structures of the DLP-2 and DLP-4 are very similar to each other and to the earlier reported structure of DLP-2, which assumed that all amino acids were in the L-form. Our results suggest that the incorporation of the D-amino acid at position 2 has minimal effect on the overall fold in solution.

  18. Anionic magnetite nanoparticle conjugated with pyrrolidinyl peptide nucleic acid for DNA base discrimination

    NASA Astrophysics Data System (ADS)

    Khadsai, Sudarat; Rutnakornpituk, Boonjira; Vilaivan, Tirayut; Nakkuntod, Maliwan; Rutnakornpituk, Metha

    2016-09-01

    Magnetite nanoparticles (MNPs) were surface modified with anionic poly( N-acryloyl glycine) (PNAG) and streptavidin for specific interaction with biotin-conjugated pyrrolidinyl peptide nucleic acid (PNA). Hydrodynamic size ( D h) of PNAG-grafted MNPs varied from 334 to 496 nm depending on the loading ratio of the MNP to NAG in the reaction. UV-visible and fluorescence spectrophotometries were used to confirm the successful immobilization of streptavidin and PNA on the MNPs. About 291 pmol of the PNA/mg MNP was immobilized on the particle surface. The PNA-functionalized MNPs were effectively used as solid supports to differentiate between fully complementary and non-complementary/single-base mismatch DNA using the PNA probe. These novel anionic MNPs can be efficiently applicable for use as a magnetically guidable support for DNA base discrimination.

  19. Development of Peptide Nucleic Acid Probes for Detection of the HER2 Oncogene

    PubMed Central

    Song, Young K.; Evangelista, Jennifer; Aschenbach, Konrad; Johansson, Peter; Wen, Xinyu; Chen, Qingrong; Lee, Albert; Hempel, Heidi; Gheeya, Jinesh S.; Getty, Stephanie; Gomez, Romel; Khan, Javed

    2013-01-01

    Peptide nucleic acids (PNAs) have gained much interest as molecular recognition tools in biology, medicine and chemistry. This is due to high hybridization efficiency to complimentary oligonucleotides and stability of the duplexes with RNA or DNA. We have synthesized 15/16-mer PNA probes to detect the HER2 mRNA. The performance of these probes to detect the HER2 target was evaluated by fluorescence imaging and fluorescence bead assays. The PNA probes have sufficiently discriminated between the wild type HER2 target and the mutant target with single base mismatches. Furthermore, the probes exhibited excellent linear concentration dependence between 0.4 to 400 fmol for the target gene. The results demonstrate potential application of PNAs as diagnostic probes with high specificity for quantitative measurements of amplifications or over-expressions of oncogenes. PMID:23593123

  20. Enduracididine, a rare amino acid component of peptide antibiotics: Natural products and synthesis

    PubMed Central

    Atkinson, Darcy J; Naysmith, Briar J; Furkert, Daniel P

    2016-01-01

    Rising resistance to current clinical antibacterial agents is an imminent threat to global public health and highlights the demand for new lead compounds for drug discovery. One such potential lead compound, the peptide antibiotic teixobactin, was recently isolated from an uncultured bacterial source, and demonstrates remarkably high potency against a wide range of resistant pathogens without apparent development of resistance. A rare amino acid residue component of teixobactin, enduracididine, is only known to occur in a small number of natural products that also possess promising antibiotic activity. This review highlights the presence of enduracididine in natural products, its biosynthesis together with a review of analogues of enduracididine. Reported synthetic approaches to the cyclic guanidine structure of enduracididine are discussed, illustrating the challenges encountered to date in the development of efficient synthetic routes to facilitate drug discovery efforts inspired by the discovery of teixobactin. PMID:28144300

  1. Stability analysis of glutamic acid linked peptides coupled to NOTA through different chemical linkages.

    PubMed

    Lang, Lixin; Ma, Ying; Kiesewetter, Dale O; Chen, Xiaoyuan

    2014-11-03

    Glutamic acid is a commonly used linker to form dimeric peptides with enhanced binding affinity than their corresponding monomeric counterparts. We have previously labeled NOTA-Bn-NCS-PEG3-E[c(RGDyK)]2 (NOTA-PRGD2) [1] with [(18)F]AlF and (68)Ga for imaging tumor angiogenesis. The p-SCN-Bn-NOTA was attached to E[c(RGDyK)]2 [2] through a mini-PEG with a thiourea linkage, and the product [1] was stable at radiolabeling condition of 100 °C and pH 4.0 acetate buffer. However, when the same p-SCN-Bn-NOTA was directly attached to the α-amine of E[c(RGDfK)]2 [3], the product NOTA-Bn-NCS-E[c(RGDfK)]2 [4] became unstable under similar conditions and the release of monomeric c(RGDfK) [5] was observed. The purpose of this work was to use HPLC and LC-MS to monitor the decomposition of glutamic acid linked dimeric peptides and their NOTA derivatives. A c(RGDyK) [6] and bombesin (BBN) [7] heterodimer c(RGDyK)-E-BBN [8], and a dimeric bombesin E(BBN)2 [9], both with a glutamic acid as the linker, along with a model compound PhSCN-E[c(RGDfK)] [10] were also studied. All the compounds were dissolved in 0.5 M pH 4.0 acetate buffer at the concentration of 1 mg/mL, and 0.1 mL of each sample was heated at 100 °C for 10 min and the more stable compounds were heated for another 30 min. The samples at both time points were analyzed with analytical HPLC to monitor the decomposition of the heated samples. The samples with decomposition were further analyzed by LC-MS to determine the mass of products from the decomposition for possible structure elucidation. After 10 min heating, the obvious release of c(RGDfK) [5] was observed for NOTA-Bn-NCS-E[c(RGDfK)]2 [4] and Ph-SCN-E[c(RGDfK)] [10]. Little or no release of monomers was observed for the remaining samples at this time point. After further heating, the release of monomers was clearly observed for E[c(RGDyK)]2 [2], E[c(RGDfK)]2 [3], c(RGDyK)-E-BBN [8], and E(BBN)2 [9]. No decomposition or little decomposition was observed for NOTA

  2. Roles of d-Amino Acids on the Bioactivity of Host Defense Peptides

    PubMed Central

    Li, Hao; Anuwongcharoen, Nuttapat; Malik, Aijaz Ahmad; Prachayasittikul, Virapong; Wikberg, Jarl E. S.; Nantasenamat, Chanin

    2016-01-01

    Host defense peptides (HDPs) are positively-charged and amphipathic components of the innate immune system that have demonstrated great potential to become the next generation of broad spectrum therapeutic agents effective against a vast array of pathogens and tumor. As such, many approaches have been taken to improve the therapeutic efficacy of HDPs. Amongst these methods, the incorporation of d-amino acids (d-AA) is an approach that has demonstrated consistent success in improving HDPs. Although, virtually all HDP review articles briefly mentioned about the role of d-AA, however it is rather surprising that no systematic review specifically dedicated to this topic exists. Given the impact that d-AA incorporation has on HDPs, this review aims to fill that void with a systematic discussion of the impact of d-AA on HDPs. PMID:27376281

  3. Enhanced lubrication on tissue and biomaterial surfaces through peptide-mediated binding of hyaluronic acid

    NASA Astrophysics Data System (ADS)

    Singh, Anirudha; Corvelli, Michael; Unterman, Shimon A.; Wepasnick, Kevin A.; McDonnell, Peter; Elisseeff, Jennifer H.

    2014-10-01

    Lubrication is key for the efficient function of devices and tissues with moving surfaces, such as articulating joints, ocular surfaces and the lungs. Indeed, lubrication dysfunction leads to increased friction and degeneration of these systems. Here, we present a polymer-peptide surface coating platform to non-covalently bind hyaluronic acid (HA), a natural lubricant in the body. Tissue surfaces treated with the HA-binding system exhibited higher lubricity values, and in vivo were able to retain HA in the articular joint and to bind ocular tissue surfaces. Biomaterials-mediated strategies that locally bind and concentrate HA could provide physical and biological benefits when used to treat tissue-lubricating dysfunction and to coat medical devices.

  4. Enhanced lubrication on tissue and biomaterial surfaces through peptide-mediated binding of hyaluronic acid.

    PubMed

    Singh, Anirudha; Corvelli, Michael; Unterman, Shimon A; Wepasnick, Kevin A; McDonnell, Peter; Elisseeff, Jennifer H

    2014-10-01

    Lubrication is key for the efficient function of devices and tissues with moving surfaces, such as articulating joints, ocular surfaces and the lungs. Indeed, lubrication dysfunction leads to increased friction and degeneration of these systems. Here, we present a polymer-peptide surface coating platform to non-covalently bind hyaluronic acid (HA), a natural lubricant in the body. Tissue surfaces treated with the HA-binding system exhibited higher lubricity values, and in vivo were able to retain HA in the articular joint and to bind ocular tissue surfaces. Biomaterials-mediated strategies that locally bind and concentrate HA could provide physical and biological benefits when used to treat tissue-lubricating dysfunction and to coat medical devices.

  5. Site-Selective Binding of Nanoparticles to Double-Stranded DNA via Peptide Nucleic Acid "Invasion"

    SciTech Connect

    Stadler, A.L.; van der Lelie, D.; Sun, D.; Maye, M. M.; Gang, O.

    2011-04-01

    We demonstrate a novel method for by-design placement of nano-objects along double-stranded (ds) DNA. A molecular intercalator, designed as a peptide nucleic acid (PNA)-DNA chimera, is able to invade dsDNA at the PNA-side due to the hybridization specificity between PNA and one of the duplex strands. At the same time, the single-stranded (ss) DNA tail of the chimera, allows for anchoring of nano-objects that have been functionalized with complementary ssDNA. The developed method is applied for interparticle attachment and for the fabrication of particle clusters using a dsDNA template. This method significantly broadens the molecular toolbox for constructing nanoscale systems by including the most conventional not yet utilized DNA motif, double helix DNA.

  6. Adsorption of peptide nucleic acid and DNA decamers at electrically charged surfaces.

    PubMed Central

    Fojta, M; Vetterl, V; Tomschik, M; Jelen, F; Nielsen, P; Wang, J; Palecek, E

    1997-01-01

    Adsorption behavior of peptide nucleic acid (PNA) and DNA decamers (GTAGATCACT and the complementary sequence) on a mercury surface was studied by means of AC impedance measurements at a hanging mercury drop electrode. The nucleic acid was first attached to the electrode by adsorption from a 5-microliter drop of PNA (or DNA) solution, and the electrode with the adsorbed nucleic acid layer was then washed and immersed in the blank background electrolyte where the differential capacity C of the electrode double layer was measured as a function of the applied potential E. It was found that the adsorption behavior of the PNA with an electrically neutral backbone differs greatly from that of the DNA (with a negatively charged backbone), whereas the DNA-PNA hybrid shows intermediate behavior. At higher surface coverage PNA molecules associate at the surface, and the minimum value of C is shifted to negative potentials because of intermolecular interactions of PNA at the surface. Prolonged exposure of PNA to highly negative potentials does not result in PNA desorption, whereas almost all of the DNA is removed from the surface at these potentials. Adsorption of PNA decreases with increasing NaCl concentration in the range from 0 to 50 mM NaCl, in contrast to DNA, the adsorption of which increases under the same conditions. PMID:9129832

  7. Tetanus toxin production is triggered by the transition from amino acid consumption to peptides.

    PubMed

    Licona-Cassani, Cuauhtemoc; Steen, Jennifer A; Zaragoza, Nicolas E; Moonen, Glenn; Moutafis, George; Hodson, Mark P; Power, John; Nielsen, Lars K; Marcellin, Esteban

    2016-10-01

    Bacteria produce some of the most potent biomolecules known, of which many cause serious diseases such as tetanus. For prevention, billions of people and countless animals are immunised with the highly effective vaccine, industrially produced by large-scale fermentation. However, toxin production is often hampered by low yields and batch-to-batch variability. Improved productivity has been constrained by a lack of understanding of the molecular mechanisms controlling toxin production. Here we have developed a reproducible experimental framework for screening phenotypic determinants in Clostridium tetani under a process that mimics an industrial setting. We show that amino acid depletion induces production of the tetanus toxin. Using time-course transcriptomics and extracellular metabolomics to generate a 'fermentation atlas' that ascribe growth behaviour, nutrient consumption and gene expression to the fermentation phases, we found a subset of preferred amino acids. Exponential growth is characterised by the consumption of those amino acids followed by a slower exponential growth phase where peptides are consumed, and toxin is produced. The results aim at assisting in fermentation medium design towards the improvement of vaccine production yields and reproducibility. In conclusion, our work not only provides deep fermentation dynamics but represents the foundation for bioprocess design based on C. tetani physiological behaviour under industrial settings.

  8. Quantification of glycated N-terminal peptide of hemoglobin using derivatization for multiple functional groups of amino acids followed by liquid chromatography/tandem mass spectrometry.

    PubMed

    Sakaguchi, Yohei; Kinumi, Tomoya; Yamazaki, Taichi; Takatsu, Akiko

    2016-02-01

    A novel method of amino acid analysis using derivatization of multiple functional groups (amino, carboxyl, and phenolic hydroxyl groups) was applied to measure glycated amino acids in order to quantify glycated peptides and evaluate the degree of glycation of peptide. Amino and carboxyl groups of amino acids were derivatized with 1-bromobutane so that the hydrophobicities and basicities of the amino acids, including glycated amino acids, were improved. These derivatized amino acids could be detected with high sensitivity using LC-MS/MS. In this study, 1-deoxyfructosyl-VHLTPE and VHLTPE, which are N-terminal peptides of the β-chains of hemoglobin, were selected as target compounds. After reducing the peptide sample solution with sodium borohydride, the obtained peptides were hydrolyzed with hydrochloric acid. The released amino acids were then derivatized with 1-bromobutane and analyzed with LC-MS/MS. The derivatized amino acids, including glycated amino acids, could be separated using an octadecyl silylated silica column and good sharp peaks were detected. We show a confirmatory experiment that the proposed method can be applied to evaluate the degree of glycation of peptides, using mixtures of glycated and non-glycated peptide.

  9. Capric acid and hydroxypropylmethylcellulose increase the immunogenicity of nasally administered peptide vaccines.

    PubMed

    Nordone, Sushila K; Peacock, James W; Kirwan, Shaun M; Staats, Herman F

    2006-06-01

    Immunization by the nasal route is an established method for the induction of mucosal and systemic humoral and cell-mediated antigen-specific responses. However, the effectiveness of nasal immunization is often hampered by the need for increased doses of antigen. Bioadhesives and absorption enhancers were investigated for their ability to enhance immune responses in mice after nasal immunization with model HIV-1 peptide and protein immunogens. Two additives, hydroxypropylmethylcellulose (HPMC) and capric acid, consistently enhanced antigen-specific serum IgG endpoint titers under conditions in which antigen dose was limiting. Nasal immunization of mice with 20 microg of an HIV-1 peptide immunogen plus cholera toxin (CT) as adjuvant induced serum antipeptide IgG titers of 1:9.5log2 after four immunizations while the addition of CA or HPMC to the vaccine formulation increased serum antipeptide IgG titers to 1:15.4log2 and 1:17.6log2, respectively. When 5 microg recombinant HIV-1 gp41 was used as the immunogen, the addition of CA or HPMC to the vaccine formulation increased serum anti-gp41 IgG titers to 1:11.6log2 and 1:8.8log2, respectively, compared to 1:5.2log2 after three nasal immunizations with 5 microg gp41 + CT alone. Thus, HPMC and capric acid may be useful additives that increase the immunogenicity of nasally administered vaccines and permit less antigen to be used with each immunization.

  10. Electrostatic binding and hydrophobic collapse of peptide-nucleic acid aggregates quantified using force spectroscopy.

    PubMed

    Camunas-Soler, Joan; Frutos, Silvia; Bizarro, Cristiano V; de Lorenzo, Sara; Fuentes-Perez, Maria Eugenia; Ramsch, Roland; Vilchez, Susana; Solans, Conxita; Moreno-Herrero, Fernando; Albericio, Fernando; Eritja, Ramón; Giralt, Ernest; Dev, Sukhendu B; Ritort, Felix

    2013-06-25

    Knowledge of the mechanisms of interaction between self-aggregating peptides and nucleic acids or other polyanions is key to the understanding of many aggregation processes underlying several human diseases (e.g., Alzheimer's and Parkinson's diseases). Determining the affinity and kinetic steps of such interactions is challenging due to the competition between hydrophobic self-aggregating forces and electrostatic binding forces. Kahalalide F (KF) is an anticancer hydrophobic peptide that contains a single positive charge that confers strong aggregative properties with polyanions. This makes KF an ideal model to elucidate the mechanisms by which self-aggregation competes with binding to a strongly charged polyelectrolyte such as DNA. We use optical tweezers to apply mechanical forces to single DNA molecules and show that KF and DNA interact in a two-step kinetic process promoted by the electrostatic binding of DNA to the aggregate surface followed by the stabilization of the complex due to hydrophobic interactions. From the measured pulling curves we determine the spectrum of binding affinities, kinetic barriers, and lengths of DNA segments sequestered within the KF-DNA complex. We find there is a capture distance beyond which the complex collapses into compact aggregates stabilized by strong hydrophobic forces and discuss how the bending rigidity of the nucleic acid affects this process. We hypothesize that within an in vivo context, the enhanced electrostatic interaction of KF due to its aggregation might mediate the binding to other polyanions. The proposed methodology should be useful to quantitatively characterize other compounds or proteins in which the formation of aggregates is relevant.

  11. Incorporation of extra amino acids in peptide recognition probe to improve specificity and selectivity of an electrochemical peptide-based sensor.

    PubMed

    Zaitouna, Anita J; Maben, Alex J; Lai, Rebecca Y

    2015-07-30

    We investigated the effect of incorporating extra amino acids (AA) at the n-terminus of the thiolated and methylene blue-modified peptide probe on both specificity and selectivity of an electrochemical peptide-based (E-PB) HIV sensor. The addition of a flexible (SG)3 hexapeptide is, in particular, useful in improving sensor selectivity, whereas the addition of a highly hydrophilic (EK)3 hexapeptide has shown to be effective in enhancing sensor specificity. Overall, both E-PB sensors fabricated using peptide probes with the added AA (SG-EAA and EK-EAA) showed better specificity and selectivity, especially when compared to the sensor fabricated using a peptide probe without the extra AA (EAA). For example, the selectivity factor recorded in the 50% saliva was ∼2.5 for the EAA sensor, whereas the selectivity factor was 7.8 for both the SG-EAA and EK-EAA sensors. Other sensor properties such as the limit of detection and dynamic range were minimally affected by the addition of the six AA sequence. The limit of detection was 0.5 nM for the EAA sensor and 1 nM for both SG-EAA and EK-EAA sensors. The saturation target concentration was ∼200 nM for all three sensors. Unlike previously reported E-PB HIV sensors, the peptide probe functions as both the recognition element and antifouling passivating agent; this modification eliminates the need to include an additional antifouling diluent, which simplifies the sensor design and fabrication protocol.

  12. Sifuvirtide, a potent HIV fusion inhibitor peptide

    SciTech Connect

    Wang, Rui-Rui; Yang, Liu-Meng; Wang, Yun-Hua; Pang, Wei; Tam, Siu-Cheung; Tien, Po; Zheng, Yong-Tang

    2009-05-08

    Enfuvirtide (ENF) is currently the only FDA approved HIV fusion inhibitor in clinical use. Searching for more drugs in this category with higher efficacy and lower toxicity seems to be a logical next step. In line with this objective, a synthetic peptide with 36 amino acid residues, called Sifuvirtide (SFT), was designed based on the crystal structure of gp41. In this study, we show that SFT is a potent anti-HIV agent with relatively low cytotoxicity. SFT was found to inhibit replication of all tested HIV strains. The effective concentrations that inhibited 50% viral replication (EC{sub 50}), as determined in all tested strains, were either comparable or lower than benchmark values derived from well-known anti-HIV drugs like ENF or AZT, while the cytotoxic concentrations causing 50% cell death (CC{sub 50}) were relatively high, rendering it an ideal anti-HIV agent. A GST-pull down assay was performed to confirm that SFT is a fusion inhibitor. Furthermore, the activity of SFT on other targets in the HIV life cycle was also investigated, and all assays showed negative results. To further understand the mechanism of action of HIV peptide inhibitors, resistant variants of HIV-1{sub IIIB} were derived by serial virus passage in the presence of increasing doses of SFT or ENF. The results showed that there was cross-resistance between SFT and ENF. In conclusion, SFT is an ideal anti-HIV agent with high potency and low cytotoxicity, but may exhibit a certain extent of cross-resistance with ENF.

  13. Global analysis of myocardial peptides containing cysteines with irreversible sulfinic and sulfonic acid post-translational modifications.

    PubMed

    Paulech, Jana; Liddy, Kiersten A; Engholm-Keller, Kasper; White, Melanie Y; Cordwell, Stuart J

    2015-03-01

    Cysteine (Cys) oxidation is a crucial post-translational modification (PTM) associated with redox signaling and oxidative stress. As Cys is highly reactive to oxidants it forms a range of post-translational modifications, some that are biologically reversible (e.g. disulfides, Cys sulfenic acid) and others (Cys sulfinic [Cys-SO2H] and sulfonic [Cys-SO3H] acids) that are considered "irreversible." We developed an enrichment method to isolate Cys-SO2H/SO3H-containing peptides from complex tissue lysates that is compatible with tandem mass spectrometry (MS/MS). The acidity of these post-translational modification (pKa Cys-SO3H < 0) creates a unique charge distribution when localized on tryptic peptides at acidic pH that can be utilized for their purification. The method is based on electrostatic repulsion of Cys-SO2H/SO3H-containing peptides from cationic resins (i.e. "negative" selection) followed by "positive" selection using hydrophilic interaction liquid chromatography. Modification of strong cation exchange protocols decreased the complexity of initial flowthrough fractions by allowing for hydrophobic retention of neutral peptides. Coupling of strong cation exchange and hydrophilic interaction liquid chromatography allowed for increased enrichment of Cys-SO2H/SO3H (up to 80%) from other modified peptides. We identified 181 Cys-SO2H/SO3H sites from rat myocardial tissue subjected to physiologically relevant concentrations of H2O2 (<100 μm) or to ischemia/reperfusion (I/R) injury via Langendorff perfusion. I/R significantly increased Cys-SO2H/SO3H-modified peptides from proteins involved in energy utilization and contractility, as well as those involved in oxidative damage and repair.

  14. Observation of the side chain O-methylation of glutamic acid or aspartic acid containing model peptides by electrospray ionization-mass spectrometry.

    PubMed

    Atik, A Emin; Guray, Melda Z; Yalcin, Talat

    2017-03-15

    O-methylation of the side chains of glutamic acid (E) and aspartic acid (D) residues is generally observed modification when an acidified methanol/water (MeOH/dH2O) mixture is used as a solvent system during sample preparation for proteomic research. This chemical modification may result misidentification with endogenous protein methylation; therefore, a special care should be taken during sample handling prior to mass spectrometric analysis. In the current study, we systematically examined the extent of E/D methylation and C-terminus carboxyl group of synthetic model peptides in terms of different incubation temperatures, storage times, and added acid types as well as its percentages. To monitor these effects, C-terminus amidated and free acid forms of synthetic model peptides comprised of E or D residue(s) have been analyzed by electrospray ionization-mass spectrometry (ESI-MS). Additionally, LC-MS/MS experiments were performed to confirm the formation of methylated peptide product. The results showed that the rate of methylation was increased as the temperature increases along with prolong incubation times. Moreover, the extent of methylation was remarkably high when formic acid (FA) used as a protonation agent instead of acetic acid (AA). In addition, it was found that the degree of methylation was significantly decreased by lowering acid percentages in ESI solution. More than one acidic residue containing model peptides have been also used to explore the extent of multiple methylation reaction. Lastly, the ethanol (EtOH) and isopropanol (iPrOH) have been substituted separately with MeOH in sample preparation step to investigate the extent of esterification reaction under the same experimental conditions. However, in the positive perspective of view, this method can be used as a simple, rapid and cheap method for methylation of acidic residues under normal laboratory conditions.

  15. In Vitro and In Vivo Activities of Antimicrobial Peptides Developed Using an Amino Acid-Based Activity Prediction Method

    PubMed Central

    Wu, Xiaozhe; Wang, Zhenling; Li, Xiaolu; Fan, Yingzi; He, Gu; Wan, Yang; Yu, Chaoheng; Tang, Jianying; Li, Meng; Zhang, Xian; Zhang, Hailong; Xiang, Rong; Pan, Ying; Liu, Yan; Lu, Lian

    2014-01-01

    To design and discover new antimicrobial peptides (AMPs) with high levels of antimicrobial activity, a number of machine-learning methods and prediction methods have been developed. Here, we present a new prediction method that can identify novel AMPs that are highly similar in sequence to known peptides but offer improved antimicrobial activity along with lower host cytotoxicity. Using previously generated AMP amino acid substitution data, we developed an amino acid activity contribution matrix that contained an activity contribution value for each amino acid in each position of the model peptide. A series of AMPs were designed with this method. After evaluating the antimicrobial activities of these novel AMPs against both Gram-positive and Gram-negative bacterial strains, DP7 was chosen for further analysis. Compared to the parent peptide HH2, this novel AMP showed broad-spectrum, improved antimicrobial activity, and in a cytotoxicity assay it showed lower toxicity against human cells. The in vivo antimicrobial activity of DP7 was tested in a Staphylococcus aureus infection murine model. When inoculated and treated via intraperitoneal injection, DP7 reduced the bacterial load in the peritoneal lavage solution. Electron microscope imaging and the results indicated disruption of the S. aureus outer membrane by DP7. Our new prediction method can therefore be employed to identify AMPs possessing minor amino acid differences with improved antimicrobial activities, potentially increasing the therapeutic agents available to combat multidrug-resistant infections. PMID:24982064

  16. In vitro and in vivo activities of antimicrobial peptides developed using an amino acid-based activity prediction method.

    PubMed

    Wu, Xiaozhe; Wang, Zhenling; Li, Xiaolu; Fan, Yingzi; He, Gu; Wan, Yang; Yu, Chaoheng; Tang, Jianying; Li, Meng; Zhang, Xian; Zhang, Hailong; Xiang, Rong; Pan, Ying; Liu, Yan; Lu, Lian; Yang, Li

    2014-09-01

    To design and discover new antimicrobial peptides (AMPs) with high levels of antimicrobial activity, a number of machine-learning methods and prediction methods have been developed. Here, we present a new prediction method that can identify novel AMPs that are highly similar in sequence to known peptides but offer improved antimicrobial activity along with lower host cytotoxicity. Using previously generated AMP amino acid substitution data, we developed an amino acid activity contribution matrix that contained an activity contribution value for each amino acid in each position of the model peptide. A series of AMPs were designed with this method. After evaluating the antimicrobial activities of these novel AMPs against both Gram-positive and Gram-negative bacterial strains, DP7 was chosen for further analysis. Compared to the parent peptide HH2, this novel AMP showed broad-spectrum, improved antimicrobial activity, and in a cytotoxicity assay it showed lower toxicity against human cells. The in vivo antimicrobial activity of DP7 was tested in a Staphylococcus aureus infection murine model. When inoculated and treated via intraperitoneal injection, DP7 reduced the bacterial load in the peritoneal lavage solution. Electron microscope imaging and the results indicated disruption of the S. aureus outer membrane by DP7. Our new prediction method can therefore be employed to identify AMPs possessing minor amino acid differences with improved antimicrobial activities, potentially increasing the therapeutic agents available to combat multidrug-resistant infections.

  17. A bottom-up approach to build the hyperpolarizability of peptides and proteins from their amino acids.

    PubMed

    Duboisset, Julien; Deniset-Besseau, Ariane; Benichou, Emmanuel; Russier-Antoine, Isabelle; Lascoux, Noelle; Jonin, Christian; Hache, François; Schanne-Klein, Marie-Claire; Brevet, Pierre-François

    2013-08-29

    We experimentally demonstrate that some peptides and proteins lend themselves to an elementary analysis where their first hyperpolarizability can be decomposed into the coherent superposition of the first hyperpolarizability of their elementary units. We then show that those elementary units can be associated with the amino acids themselves in the case of nonaromatic amino acids and nonresonant second harmonic generation. As a case study, this work investigates the experimentally determined first hyperpolarizability of rat tail Type I collagen and compares it to that of the shorter peptide [(PPG)10]3, where P and G are the one-letter code for Proline and Glycine, respectively, and that of the triamino acid peptides PPG and GGG. An absolute value of (0.16 ± 0.01) × 10(-30) esu for the first hyperpolarizability of nonaromatic amino acids is then obtained by using the newly defined 0.087 × 10(-30) esu reference value for water. By using a collagen like model, the microscopic hyperpolarizability along the peptide bond can be evaluated at (0.7 ± 0.1) × 10(-30) esu.

  18. Bile acids induce glucagon-like peptide 2 secretion with limited effects on intestinal adaptation in early weaned pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early weaning is a stressful event characterized by a transient period of intestinal atrophy that may be mediated by reduced secretion of glucagon-like peptide (GLP) 2. We tested whether enterally fed bile acids or plant sterols could increase nutrient-dependent GLP-2 secretion and improve intestina...

  19. Formulation of pH responsive peptides as inhalable dry powders for pulmonary delivery of nucleic acids

    PubMed Central

    Liang, Wanling; Kwok, Philip C.L.; Chow, Michael Y.T.; Tang, Patricia; Mason, A. James; Chan, Hak-Kim; Lam, Jenny. K.W.

    2013-01-01

    Nucleic acids have the potential to be used as therapies or vaccines for many different types of disease but delivery remains the most significant challenge to their clinical adoption. pH responsive peptides containing either histidine or derivatives of 2,3-diaminopropionic acid (Dap) can mediate effective DNA transfection in lung epithelial cells with the latter remaining effective even in the presence of lung surfactant containing bronchoalveolar fluid (BALF), making this class of peptides attractive candidates for delivering nucleic acids to lung tissues. To further assess the suitability of pH responsive peptides for pulmonary delivery by inhalation, dry powder formulations of pH responsive peptides and plasmid DNA, with mannitol as carrier, were produced by either spray drying (SD) or spray freeze drying (SFD). The properties of the two types of powders were characterised and compared using scanning electron microscopy (SEM), next generation impaction (NGI), gel retardation and in vitro transfection via a twin-stage impinger (TSI) following aerosolisation by a dry powder inhaler (Osmohaler™). Although the aerodynamic performance and transfection efficacy of both powders were good, the overall performance revealed SD powders to have a number of advantages over SFD powders and are the more effective formulation with potential for efficient nucleic acid delivery through inhalation. PMID:23702276

  20. VCD studies on cyclic peptides assembled from L-α-amino acids and a trans-2-aminocyclopentane- or trans-2-aminocyclohexane carboxylic acid.

    PubMed

    Vass, E; Strijowski, U; Wollschläger, K; Mándity, I M; Szilvágyi, G; Jewgiński, M; Gaus, K; Royo, S; Majer, Z; Sewald, N; Hollósi, M

    2010-11-01

    The increasing interest in peptidomimetics of biological relevance prompted us to synthesize a series of cyclic peptides comprising trans-2-aminocyclohexane carboxylic acid (Achc) or trans-2-aminocyclopentane carboxylic acid (Acpc). NMR experiments in combination with MD calculations were performed to investigate the three-dimensional structure of the cyclic peptides. These data were compared to the conformational information obtained by electronic circular dichroism (ECD) and vibrational circular dichroism (VCD) spectroscopy. Experimental VCD spectra were compared to theoretical VCD spectra computed quantum chemically at B3LYP/6-31G(d) density functional theory (DFT) level. The good agreement between the structural features derived from the VCD spectra and the NMR-based structures underlines the applicability of VCD in studying the conformation of small cyclic peptides.

  1. Synthesis and Splice-Redirecting Activity of Branched, Arginine-Rich Peptide Dendrimer Conjugates of Peptide Nucleic Acid Oligonucleotides

    PubMed Central

    2010-01-01

    Arginine-rich cell-penetrating peptides have found excellent utility in cell and in vivo models for enhancement of delivery of attached charge-neutral PNA or PMO oligonucleotides. We report the synthesis of dendrimeric peptides containing 2- or 4-branched arms each having one or more R-Ahx-R motifs and their disulfide conjugation to a PNA705 splice-redirecting oligonucleotide. Conjugates were assayed in a HeLa pLuc705 cell assay for luciferase up-regulation and splicing redirection. Whereas 8-Arg branched peptide−PNA conjugates showed poor activity compared to a linear (R-Ahx-R)4−PNA conjugate, 2-branched and some 4-branched 12 and 16 Arg peptide−PNA conjugates showed activity similar to that of the corresponding linear peptide−PNA conjugates. Many of the 12- and 16-Arg conjugates retained significant activity in the presence of serum. Evidence showed that biological activity in HeLa pLuc705 cells of the PNA conjugates of branched and linear (R-Ahx-R) peptides is associated with an energy-dependent uptake pathway, predominantly clathrin-dependent, but also with some caveolae dependence. PMID:20879728

  2. Stability improvement of natural food colors: Impact of amino acid and peptide addition on anthocyanin stability in model beverages.

    PubMed

    Chung, Cheryl; Rojanasasithara, Thananunt; Mutilangi, William; McClements, David Julian

    2017-03-01

    Anthocyanins are prone to chemical degradation and color fading in the presence of vitamin C. The potential of three amino acids (l-phenylalanine, l-tyrosine, l-tryptophan) and a polypeptide (ε-poly-l-lysine) in prolonging the color stability of purple carrot anthocyanins (0.025%) in model beverages (0.05% l-ascorbic acid, citric acid, pH 3.0) stored at elevated temperature (40°C/7 days) was examined. In the absence of amino acids or peptides, anthocyanin degraded at first-order reaction rate. Addition of amino acids or peptide (0.1%) increased the color stability of anthocyanins, with the most significant improvement observed for l-tryptophan. The average half-life of anthocyanin color increased from 2 days to 6 days with l-tryptophan addition. Fluorescence quenching measurements revealed that the l-tryptophan interacted with anthocyanins mainly through hydrogen bonding, although some hydrophobic interaction may also have been involved. Overall, this study suggests that amino acid or peptide addition may prolong the color stability of anthocyanin in beverage products.

  3. Human renal carcinoma expresses two messages encoding a parathyroid hormone-like peptide: evidence for the alternative splicing of a single-copy gene.

    PubMed Central

    Thiede, M A; Strewler, G J; Nissenson, R A; Rosenblatt, M; Rodan, G A

    1988-01-01

    A peptide secreted by tumors associated with the clinical syndrome of humoral hypercalcemia of malignancy was recently purified from human renal carcinoma cell line 786-0. The N-terminal amino acid sequence of this peptide has considerable similarity with those of parathyroid hormone (PTH) and of peptides isolated from human breast and lung carcinoma (cell line BEN). In this study we obtained the nucleotide sequence of a 1595-base cDNA complementary to mRNA encoding the PTH-like peptide produced by 786-0 cells. The cDNA contains an open reading frame encoding a leader sequence of 36 amino acids and a 139-residue peptide, in which 8 of the first 13 residues are identical to the N terminus of PTH. Through the first 828 bases the sequence of this cDNA is identical with one recently isolated from a BEN cell cDNA library; however, beginning with base 829 the sequences diverge, shortening the open reading frame by 2 amino acids. Differential RNA blot analysis revealed that 786-0 cells express two major PTH-like peptide mRNAs with different 3' untranslated sequences, one of which hybridizes with the presently described sequence and the other one with that reported for the BEN cell PTH-like peptide cDNA. Primer-extension analysis of 786-0 poly(A)+ RNA together with Southern blot analysis of human DNA confirmed the presence of a single-copy gene coding for multiple mRNAs through alternate splicing. In addition, the 3' untranslated sequence of the cDNA described here has significant similarity to the c-myc protooncogene. Images PMID:3290897

  4. Nisin-induced expression of a recombinant antihypertensive peptide in dairy lactic acid bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peptides with antihypertensive activity have been identified from the enzymatic hydrolysis of bovine milk proteins. A 12-residue peptide (FFVAPFPEVFGK) shown to inhibit the angiotensin I-converting enzyme is released from the enzymatic breakdown of aS1-casein. A synthetic gene encoding this peptid...

  5. Partial d-amino acid substitution: Improved enzymatic stability and preserved Ab recognition of a MUC2 epitope peptide

    PubMed Central

    Tugyi, Regina; Uray, Katalin; Iván, Dóra; Fellinger, Erzsébet; Perkins, Alan; Hudecz, Ferenc

    2005-01-01

    The stability of an immunogen against enzymatic degradation is considered an important factor for the design of synthetic vaccines. For our studies, we have selected an epitope from the tandem-repeat unit of the high-molecular-weight MUC2 mucin glycoprotein, which can be underglycosylated in case of colon cancer. In this study, we prepared a MUC2 peptide containing the PTGTQ epitope of a MUC2 protein backbone-specific mAb 996 and its derivatives. In these peptides, the N- and C-terminal flanking regions were systematically substituted by up to three d-amino acids. Peptides prepared by solid-phase synthesis were tested for their mAb 996 binding in competitive ELISA experiments, and their stability was studied in serum and lysosomal preparation. Our data show that the epitope function of peptide 15TPTPTGTQTPT25 is retained even in the presence of two d-amino acid residues at its N-terminal flanking region and up to three at its C-terminal flanking region (tpTPTGTQtpt). Also, this partly d peptide shows high resistance against proteolytic degradation in diluted human serum and in lysosomal preparation. These findings suggest that, by appropriate combination of structural modifications (namely, d-amino acid substitution) in the flanks of an Ab epitope, it is feasible to construct a synthetic antigen with preserved recognition properties and high stability against enzymatic degradation. Peptides tPTPTGTQTpt and tpTPTGTQTpt derived from this study can be used for immunization experiments and as potential components of synthetic vaccines for tumor therapy. PMID:15630090

  6. Information transfer from DNA to peptide nucleic acids by template-directed syntheses

    NASA Technical Reports Server (NTRS)

    Schmidt, J. G.; Christensen, L.; Nielsen, P. E.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1997-01-01

    Peptide nucleic acids (PNAs) are analogs of nucleic acids in which the ribose-phosphate backbone is replaced by a backbone held together by amide bonds. PNAs are interesting as models of alternative genetic systems because they form potentially informational base paired helical structures. Oligocytidylates have been shown to act as templates for formation of longer oligomers of G from PNA G2 dimers. In this paper we show that information can be transferred from DNA to PNA. DNA C4T2C4 is an efficient template for synthesis of PNA G4A2G4 using G2 and A2 units as substrates. The corresponding synthesis of PNA G4C2G4 on DNA C4G2C4 is less efficient. Incorporation of PNA T2 into PNA products on DNA C4A2C4 is the least efficient of the three reactions. These results, obtained using PNA dimers as substrates, parallel those obtained using monomeric activated nucleotides.

  7. Progress in nanoparticulate systems for peptide, proteins and nucleic acid drug delivery.

    PubMed

    Slomkowski, Stanislaw; Gosecki, Mateusz

    2011-11-01

    Progress in many therapies, in particular in the therapies based on peptides, proteins and nucleic acids used as bioactive compounds, strongly depends on development of appropriate carriers which would be suitable for controlled delivery of the intact abovementioned compounds to required tissues, cells and intracellular compartments. This review presents last ten years' achievements and problems in development and application of synthetic polymer nanoparticulate carriers for oral, pulmonary and nasal delivery routes of oligopeptides and proteins. Whereas some traditional synthetic polymer carriers are only briefly recalled the main attention is concentrated on nanoparticles produced from functional copolymers mostly with hydroxyl, carboxyl and amino groups, suitable for immobilization of targeting moieties and for assuring prolonged circulation of nanoparticles in blood. Formulations of various nanoparticulate systems are described, including solid particles, polymer micelles, nanovesicles and nanogels, especially systems allowing drug release induced by external stimuli. Discussed are properties of these species, in particular stability in buffers and models of body fluids, loading with drugs and with drug models, drug release processes and results of biological studies. There are also discussed systems for gene delivery with special attention devoted to polymers suitable for compacting nucleic acids into nanoparticles as well as the relations between chemical structure of polymer carriers and ability of the latter for crossing cell membranes and for endosomal escape.

  8. Squaric Acid-Based Peptidic Inhibitors of Matrix Metalloprotease-1 (MMP-1)

    PubMed Central

    Onaran, M. Burak; Comeau, Anthony B.; Seto, Christopher T.

    2008-01-01

    A series of squaric acid-peptide conjugates were synthesized and evaluated as inhibitors of MMP-1. The cyclobut-3-enedione core was substituted at the 3-position with several functional groups, such as -N(alkyl)OH, -NHOH and –OH, that are designed to bind to the zinc atom in the active site of the metalloprotease. The 4-position of the cyclobut-3-enedione was derivatized with mono- or dipeptides that are designed to bind in the S1′ and S2′ subsites of the enzyme, and position the metal chelating group appropriately in the active site for binding to zinc. Positional scanning revealed that -N(Me)OH provided the highest level of inhibition among the chelating groups that were tested, and Leu-Tle-NHMe was the preferred amino acid sequence. A combination of these groups yielded an inhibitor with an IC50 value of 95 μM. For one inhibitor, conversion of one of the carbonyl groups on the cyclobut-3-enedione core to a thiocarbonyl group resulted in a 18-fold increase in potency, and yielded a compound with an IC50 value of 15 μM. PMID:16356002

  9. Synthesis and optical properties of pyrrolidinyl peptide nucleic acid carrying a clicked Nile red label

    PubMed Central

    Yotapan, Nattawut; Charoenpakdee, Chayan; Wathanathavorn, Pawinee; Ditmangklo, Boonsong

    2014-01-01

    Summary DNA or its analogues with an environment-sensitive fluorescent label are potentially useful as a probe for studying the structure and dynamics of nucleic acids. In this work, pyrrolidinyl peptide nucleic acid (acpcPNA) was labeled at its backbone with Nile red, a solvatochromic benzophenoxazine dye, by means of click chemistry. The optical properties of the Nile red-labeled acpcPNA were investigated by UV–vis and fluorescence spectroscopy in the absence and in the presence of DNA. In contrast to the usual quenching observed in Nile red-labeled DNA, the hybridization with DNA resulted in blue shifting and an enhanced fluorescence regardless of the neighboring bases. More pronounced blue shifts and fluorescence enhancements were observed when the DNA target carried a base insertion in close proximity to the Nile red label. The results indicate that the Nile red label is located in a more hydrophobic environment in acpcPNA–DNA duplexes than in the single-stranded acpcPNA. The different fluorescence properties of the acpcPNA hybrids of complementary DNA and DNA carrying a base insertion are suggestive of different interactions between the Nile red label and the duplexes. PMID:25246975

  10. Synthesis and optical properties of pyrrolidinyl peptide nucleic acid carrying a clicked Nile red label.

    PubMed

    Yotapan, Nattawut; Charoenpakdee, Chayan; Wathanathavorn, Pawinee; Ditmangklo, Boonsong; Wagenknecht, Hans-Achim; Vilaivan, Tirayut

    2014-01-01

    DNA or its analogues with an environment-sensitive fluorescent label are potentially useful as a probe for studying the structure and dynamics of nucleic acids. In this work, pyrrolidinyl peptide nucleic acid (acpcPNA) was labeled at its backbone with Nile red, a solvatochromic benzophenoxazine dye, by means of click chemistry. The optical properties of the Nile red-labeled acpcPNA were investigated by UV-vis and fluorescence spectroscopy in the absence and in the presence of DNA. In contrast to the usual quenching observed in Nile red-labeled DNA, the hybridization with DNA resulted in blue shifting and an enhanced fluorescence regardless of the neighboring bases. More pronounced blue shifts and fluorescence enhancements were observed when the DNA target carried a base insertion in close proximity to the Nile red label. The results indicate that the Nile red label is located in a more hydrophobic environment in acpcPNA-DNA duplexes than in the single-stranded acpcPNA. The different fluorescence properties of the acpcPNA hybrids of complementary DNA and DNA carrying a base insertion are suggestive of different interactions between the Nile red label and the duplexes.

  11. Single-molecule spectroscopy of amino acids and peptides by recognition tunnelling

    NASA Astrophysics Data System (ADS)

    Zhao, Yanan; Ashcroft, Brian; Zhang, Peiming; Liu, Hao; Sen, Suman; Song, Weisi; Im, Jongone; Gyarfas, Brett; Manna, Saikat; Biswas, Sovan; Borges, Chad; Lindsay, Stuart

    2014-06-01

    The human proteome has millions of protein variants due to alternative RNA splicing and post-translational modifications, and variants that are related to diseases are frequently present in minute concentrations. For DNA and RNA, low concentrations can be amplified using the polymerase chain reaction, but there is no such reaction for proteins. Therefore, the development of single-molecule protein sequencing is a critical step in the search for protein biomarkers. Here, we show that single amino acids can be identified by trapping the molecules between two electrodes that are coated with a layer of recognition molecules, then measuring the electron tunnelling current across the junction. A given molecule can bind in more than one way in the junction, and we therefore use a machine-learning algorithm to distinguish between the sets of electronic `fingerprints' associated with each binding motif. With this recognition tunnelling technique, we are able to identify D and L enantiomers, a methylated amino acid, isobaric isomers and short peptides. The results suggest that direct electronic sequencing of single proteins could be possible by sequentially measuring the products of processive exopeptidase digestion, or by using a molecular motor to pull proteins through a tunnel junction integrated with a nanopore.

  12. Disrupting Protein Expression with Peptide Nucleic Acids Reduces Infection by Obligate Intracellular Rickettsia

    PubMed Central

    Pelc, Rebecca S.; McClure, Jennifer C.; Kaur, Simran J.; Sears, Khandra T.; Rahman, M. Sayeedur; Ceraul, Shane M.

    2015-01-01

    Peptide Nucleic Acids (PNAs) are single-stranded synthetic nucleic acids with a pseudopeptide backbone in lieu of the phosphodiester linked sugar and phosphate found in traditional oligos. PNA designed complementary to the bacterial Shine-Dalgarno or start codon regions of mRNA disrupts translation resulting in the transient reduction in protein expression. This study examines the use of PNA technology to interrupt protein expression in obligate intracellular Rickettsia sp. Their historically intractable genetic system limits characterization of protein function. We designed PNA targeting mRNA for rOmpB from Rickettsia typhi and rickA from Rickettsia montanensis, ubiquitous factors important for infection. Using an in vitro translation system and competitive binding assays, we determined that our PNAs bind target regions. Electroporation of R. typhi and R. montanensis with PNA specific to rOmpB and rickA, respectively, reduced the bacteria’s ability to infect host cells. These studies open the possibility of using PNA to suppress protein synthesis in obligate intracellular bacteria. PMID:25781160

  13. Peptide Mass Fingerprinting and N-Terminal Amino Acid Sequencing of Glycosylated Cysteine Protease of Euphorbia nivulia Buch.-Ham.

    PubMed Central

    Badgujar, Shamkant B.; Mahajan, Raghunath T.

    2013-01-01

    A new cysteine protease named Nivulian-II has been purified from the latex of Euphorbia nivulia Buch.-Ham. The apparent molecular mass of Nivulian-II is 43670.846 Da (MALDI TOF/MS). Peptide mass fingerprint analysis revealed peptide matches to Maturase K (Q52ZV1_9MAGN) of Banksia quercifolia. The N-terminal sequence (DFPPNTCCCICC) showed partial homology with those of other cysteine proteinases of biological origin. This is the first paper to characterize a Nivulian-II of E. nivulia latex with respect to amino acid sequencing. PMID:23476742

  14. Identification and binding mechanism of phage displayed peptides with specific affinity to acid-alkali treated titanium.

    PubMed

    Sun, Yuhua; Tan, Jing; Wu, Baohua; Wang, Jianxin; Qu, Shuxin; Weng, Jie; Feng, Bo

    2016-10-01

    Acid-alkali treatment is one of means widely used for preparing bioactive titanium surfaces. Peptides with specific affinity to titanium surface modified by acid-alkali two-steps treatment were obtained via phage display technology. Out of the eight new unique peptides, titanium-binding peptide 54 displayed by monoclonal M13 phage at its pIII coat protein (TBP54-M13 phage) was proved to have higher binding affinity to the substrate. The binding interaction occurred at the domain from phenylalanine at position 1 to arginine at position 6 in the sequences of TBP54 (FAETHRGFHFSF) mainly via the reaction of these residues with the Ti surface. Together the coordination and electrostatic interactions controlled the specific binding of the phage to the substrate. The binding affinity was dependent on the surface basic hydroxyl group content. In addition, the phage showed a different interaction way with the Ti surface without acid-alkali treatment along with an impaired affinity. This study could provide more understanding of the interaction mechanism between the selected peptide and its specific substrate, and develop a promising method for the biofunctionalization of titanium.

  15. Assimilation of peptides and amino acids and dissimilation of lactate during submerged pure cultures of Penicillium camembertii and Geotrichum candidum.

    PubMed

    Aziza, M; Adour, L; Amrane, A

    2008-01-01

    The behavior of Penicillium camembertii and Geotrichum candidum growing in submerged pure cultures on simple (glutamate) or complex (peptones) substrates as nitrogen and carbon sources and an lactate as a second carbon source was examined. Similar to the behavior previously recorded on a simple substrate (glutamate), a clear differentiation between the carbon source and the energy source was also shown on peptones and lactate during P. camembertii growth, since throughout growth, lactate was only dissimilated, viz., used for energy supply by oxidation into CO2, whereas peptides and amino acids from peptones were used for carbon (and nitrogen) assimilation. Because of its deaminating activity, G. candidum preferred peptides and amino acids to lactate as energy sources, in addition to being assimilated as carbon and nitrogen sources. From this, on peptones and lactate, G. candidum grew faster than P. camembertii (0.19 and 0.08 g/l/h, respectively) by assimilating the most readily utilizable peptides and amino acids; however, owing to its lower proteolytic activity, the maximum biomass was lower than that of P. camembertii (3.7 and 5.5 g/l, respectively), for which continuous proteolysis and assimilation of peptides were shown.

  16. Unraveling the Mechanisms of Peptide-Mediated Delivery of Nucleic Acids Using Electron Microscopy.

    PubMed

    Margus, Helerin; Juks, Carmen; Pooga, Margus

    2015-01-01

    Cell-penetrating peptides (CPPs) are efficient non-viral delivery vectors for bioactive cargos, both in vitro and in vivo. Cargo molecules can be attached to CPPs either via covalent conjugation or by complex formation using co-incubation, which is typically used for charged molecules such as nucleic acids. The latter technique is efficiently used in case of CADY, MPG, Pep peptides, NickFects and PepFects that condense oligonucleotides (ONs) into nanoparticles, which efficiently enter cells and induce biological effects. Despite being highly promising candidates for developing new-generation medicines, CPPs' internalization mechanisms and intracellular trafficking are still far from being well-understood, and obtained data are often controversial. Transmission electron microscopy (TEM) is an informative and valuable tool for examining the mechanisms of CPP-ON nanoparticles. TEM enables to visualize nanoparticles or single molecules labeled with Nanogold™ tag, and follow their association with cells and intracellular localization. In this chapter, we present methods for preparation of CPP-ON nanoparticles for TEM analysis and for examination of their interactions with the plasma membrane, and subsequent cellular uptake either by direct translocation or endocytosis. In case of endocytosis, ONs have to be released from endosomes and reach their target site in nucleus or cytoplasm to reveal their activity. TEM enables to estimate when the endosomal escape begins, from which type of endosomal vesicles it occurs, whether the vesicles are broken, or nanocomplexes translocate across the membrane into cytosol. Since single ONs could be followed, the time-frame that is necessary for the splice-switching nucleotides to translocate into cell nucleus can be analyzed by TEM.

  17. Helix 69 of E. coli 23S ribosomal RNA as a peptide nucleic acid target.

    PubMed

    Kulik, Marta; Markowska-Zagrajek, Agnieszka; Wojciechowska, Monika; Grzela, Renata; Wituła, Tomasz; Trylska, Joanna

    2017-04-07

    A fragment of 23S ribosomal RNA (nucleotides 1906-1924 in E. coli), termed Helix 69, forms a hairpin that is essential for ribosome function. Helix 69 forms a conformationally flexible inter-subunit connection with helix 44 of 16S ribosomal RNA, and the nucleotide A1913 of Helix 69 influences decoding accuracy. Nucleotides U1911 and U1917 are post-transcriptionally modified with pseudouridines () and U1915 with 3-methyl-. We investigated Helix 69 as a target for a complementary synthetic oligonucleotide - peptide nucleic acid (PNA). We determined thermodynamic properties of Helix 69 and its complexes with PNA. We also verified the performance of PNA targeted at Helix 69 in inhibiting translation in cell-free extracts and growth of E. coli cells. First, we examined the interactions of a PNA oligomer complementary to the G1907-A1919 fragment of Helix 69 with the sequences corresponding to human and bacterial species (with or without pseudouridine modifications). PNA invades the Helix 69 hairpin creating stable complexes and PNA binding to the pseudouridylated bacterial sequence is stronger than to Helix 69 without any modifications. Second, we confirmed the binding of PNA to 23S rRNA and 70S ribosomes. Third, we verified the efficiency of translation inhibition of these PNA oligomers in the cell-free translation/transcription E. coli system, which turned out to be in a similar range as tetracycline. Next, we confirmed that PNA conjugated to the (KFF)3K transporter peptide inhibited E. coli growth in micromolar concentrations. Overall, targeting Helix 69 with PNA or other sequence-specific oligomers could be a promising way to inhibit bacterial translation.

  18. Delivery of Antisense Peptide Nucleic Acids to Cells by Conjugation with Small Arginine-Rich Cell-Penetrating Peptide (R/W)9

    PubMed Central

    Cordier, Céline; Boutimah, Fatima; Bourdeloux, Mathilde; Dupuy, Florian; Met, Elisabeth; Alberti, Patrizia; Loll, François; Chassaing, Gérard; Burlina, Fabienne; Saison-Behmoaras, Tula Ester

    2014-01-01

    Peptide nucleic acids (PNAs) are very attractive antisense and antigene agents, but these molecules are not passively taken into cells. Here, using a functional cell assay and fluorescent-based methods, we investigated cell uptake and antisense activity of a tridecamer PNA that targets the HIV-1 polypurine tract sequence delivered using the arginine-rich (R/W)9 peptide (RRWWRRWRR). At micromolar concentrations, without use of any transfection agents, almost 80% inhibition of the target gene expression was obtained with the conjugate in the presence of the endosomolytic agent chloroquine. We show that chloroquine not only induced escape from endosomes but also enhanced the cellular uptake of the conjugate. Mechanistic studies revealed that (R/W)9-PNA conjugates were internalized via pinocytosis. Replacement of arginines with lysines reduced the uptake of the conjugate by six-fold, resulting in the abolition of intracellular target inhibition. Our results show that the arginines play a crucial role in the conjugate uptake and antisense activity. To determine whether specificity of the interactions of arginines with cell surface proteoglycans result in the internalization, we used flow cytometry to examine uptake of arginine- and lysine-rich conjugates in wild-type CHO-K1 and proteoglycan-deficient A745 cells. The uptake of both conjugates was decreased by four fold in CHO-745 cells; therefore proteoglycans promote internalization of cationic peptides, irrespective of the chemical nature of their positive charges. Our results show that arginine-rich cell-penetrating peptides, especially (R/W)9, are a promising tool for PNA internalization. PMID:25127364

  19. Construction of peptides with nucleobase amino acids: design and synthesis of the nucleobase-conjugated peptides derived from HIV-1 Rev and their binding properties to HIV-1 RRE RNA.

    PubMed

    Takahashi, T; Hamasaki, K; Ueno, A; Mihara, H

    2001-04-01

    In order to develop a novel molecule that recognizes a specific structure of RNA, we have attempted to design peptides having L-alpha-amino acids with a nucleobase at the side chain (nucleobase amino acid (NBA)), expecting that the function of a nucleobase which can specifically recognize a base in RNA is regulated in a peptide conformation. In this study, to demonstrate the applicability of the NBA units in the peptide to RNA recognition, we designed and synthesized a variety of NBA-conjugated peptides, derived from HIV-1 Rev. Circular dichroism study revealed that the conjugation of the Rev peptide with an NBA unit did not disturb the peptide conformation. RNA-binding affinities of the designed peptides with RRE IIB RNA were dependent on the structure of the nucleobase moieties in the peptides. The peptide having the cytosine NBA at the position of the Asn40 site in the Rev showed a higher binding ability for RRE IIB RNA, despite the diminishing the Asn40 function. Furthermore, the peptide having the guanine NBA at the position of the Arg44 site, which is the most important residue for the RNA binding in the Rev, bound to RRE IIB RNA in an ability similar to Rev34-50 with native sequence. These results demonstrate that an appropriate NBA unit in the peptide plays an important role in the RNA binding with a specific contact such as hydrogen bonding, and the interaction between the nucleobase in the peptide and the base in the RNA can enhance the RNA-binding affinity and specificity.

  20. ArrayPitope: Automated Analysis of Amino Acid Substitutions for Peptide Microarray-Based Antibody Epitope Mapping

    PubMed Central

    Hansen, Christian Skjødt; Østerbye, Thomas; Marcatili, Paolo; Lund, Ole; Buus, Søren

    2017-01-01

    Identification of epitopes targeted by antibodies (B cell epitopes) is of critical importance for the development of many diagnostic and therapeutic tools. For clinical usage, such epitopes must be extensively characterized in order to validate specificity and to document potential cross-reactivity. B cell epitopes are typically classified as either linear epitopes, i.e. short consecutive segments from the protein sequence or conformational epitopes adapted through native protein folding. Recent advances in high-density peptide microarrays enable high-throughput, high-resolution identification and characterization of linear B cell epitopes. Using exhaustive amino acid substitution analysis of peptides originating from target antigens, these microarrays can be used to address the specificity of polyclonal antibodies raised against such antigens containing hundreds of epitopes. However, the interpretation of the data provided in such large-scale screenings is far from trivial and in most cases it requires advanced computational and statistical skills. Here, we present an online application for automated identification of linear B cell epitopes, allowing the non-expert user to analyse peptide microarray data. The application takes as input quantitative peptide data of fully or partially substituted overlapping peptides from a given antigen sequence and identifies epitope residues (residues that are significantly affected by substitutions) and visualize the selectivity towards each residue by sequence logo plots. Demonstrating utility, the application was used to identify and address the antibody specificity of 18 linear epitope regions in Human Serum Albumin (HSA), using peptide microarray data consisting of fully substituted peptides spanning the entire sequence of HSA and incubated with polyclonal rabbit anti-HSA (and mouse anti-rabbit-Cy3). The application is made available at: www.cbs.dtu.dk/services/ArrayPitope. PMID:28095436

  1. Primary structure of a histidine-rich proteolytic fragment of human ceruloplasmin. II. Amino acid sequence of the tryptic peptides.

    PubMed

    Kingston, I B; Kingston, B L; Putnam, F W

    1980-04-10

    Amino acid sequence studies of tryptic peptides isolated from a histidine-rich fragment (Cp F5) of human ceruloplasmin are described. Nineteen tryptic peptides were isolated from unmodified Cp F5 and five tryptic peptides were isolated from citraconylated Cp F5. These peptides, together with the cyanogen bromide fragments reported previously, allowed the assembly of the complete sequence of Cp F5. The fragment has 159 residues and a molecular weight of 18,650; it lacks carbohydrate, is rich in histidine, and contains 1 free cysteine that may be part of a copper-binding site. Human ceruloplasmin is a single polypeptide chain with a molecular weight of about 130,000 that is readily cleaved to large fragments by proteolytic enzymes; the relationships of Cp F5 to intact ceruloplasmin and to structural subunits earlier proposed is described. Cp F5 probably is an intact globular domain that is attached to the COOH-terminal end of ceruloplasmin by a labile interdomain peptide bond.

  2. Highly sensitive detection of influenza virus by boron-doped diamond electrode terminated with sialic acid-mimic peptide

    PubMed Central

    Matsubara, Teruhiko; Ujie, Michiko; Yamamoto, Takashi; Akahori, Miku; Einaga, Yasuaki; Sato, Toshinori

    2016-01-01

    The progression of influenza varies according to age and the presence of an underlying disease; appropriate treatment is therefore required to prevent severe disease. Anti-influenza therapy, such as with neuraminidase inhibitors, is effective, but diagnosis at an early phase of infection before viral propagation is critical. Here, we show that several dozen plaque-forming units (pfu) of influenza virus (IFV) can be detected using a boron-doped diamond (BDD) electrode terminated with a sialic acid-mimic peptide. The peptide was used instead of the sialyloligosaccharide receptor, which is the common receptor of influenza A and B viruses required during the early phase of infection, to capture IFV particles. The peptide, which was previously identified by phage-display technology, was immobilized by click chemistry on the BDD electrode, which has excellent electrochemical characteristics such as low background current and weak adsorption of biomolecules. Electrochemical impedance spectroscopy revealed that H1N1 and H3N2 IFVs were detectable in the range of 20–500 pfu by using the peptide-terminated BDD electrode. Our results demonstrate that the BDD device integrated with the receptor-mimic peptide has high sensitivity for detection of a low number of virus particles in the early phase of infection. PMID:27457924

  3. MALDI TOF/TOF-Based Approach for the Identification of d- Amino Acids in Biologically Active Peptides and Proteins.

    PubMed

    Koehbach, Johannes; Gruber, Christian W; Becker, Christian; Kreil, David P; Jilek, Alexander

    2016-05-06

    Several biologically active peptides contain a d- amino acid in a well-defined position, which is position 2 in all peptide epimers isolated to date from vertebrates and also some from invertebrates. The detection of such D- residues by standard analytical techniques is challenging. In tandem mass spectrometric (MS) analysis, although fragment masses are the same for all stereoisomers, peak intensities are known to depend on chirality. Here, we observe that the effect of a d- amino acid in the second N-terminal position on the fragmentation pattern in matrix assisted laser desorption time-of-flight spectrometry (MALDI-TOF/TOF MS) strongly depends on the peptide sequence. Stereosensitive fragmentation (SF) is correlated to a neighborhood effect, but the d- residue also exerts an overall effect influencing distant bonds. In a fingerprint analysis, multiple peaks can thus serve to identify the chirality of a sample in short time and potentially high throughput. Problematic variations between individual spots could be successfully suppressed by cospotting deuterated analogues of the epimers. By identifying the [d-Leu2] isomer of the predicted peptide GH-2 (gene derived bombininH) in skin secretions of the toad Bombina orientalis, we demonstrated the analytical power of SF-MALDI-TOF/TOF measurements. In conclusion, SF-MALDI-TOF/TOF MS combines high sensitivity, versatility, and the ability to complement other methods.

  4. Killing of Mycobacterium avium by Lactoferricin Peptides: Improved Activity of Arginine- and d-Amino-Acid-Containing Molecules

    PubMed Central

    Silva, Tânia; Magalhães, Bárbara; Maia, Sílvia; Gomes, Paula; Nazmi, Kamran; Bolscher, Jan G. M.; Rodrigues, Pedro N.; Bastos, Margarida

    2014-01-01

    Mycobacterium avium causes respiratory disease in susceptible individuals, as well as disseminated infections in immunocompromised hosts, being an important cause of morbidity and mortality among these populations. Current therapies consist of a combination of antibiotics taken for at least 6 months, with no more than 60% overall clinical success. Furthermore, mycobacterial antibiotic resistance is increasing worldwide, urging the need to develop novel classes of antimicrobial drugs. One potential and interesting alternative strategy is the use of antimicrobial peptides (AMP). These are present in almost all living organisms as part of their immune system, acting as a first barrier against invading pathogens. In this context, we investigated the effect of several lactoferrin-derived AMP against M. avium. Short peptide sequences from both human and bovine lactoferricins, namely, hLFcin1-11 and LFcin17-30, as well as variants obtained by specific amino acid substitutions, were evaluated. All tested peptides significantly inhibited the axenic growth of M. avium, the bovine peptides being more active than the human. Arginine residues were found to be crucial for the display of antimycobacterial activity, whereas the all-d-amino-acid analogue of the bovine sequence displayed the highest mycobactericidal activity. These findings reveal the promising potential of lactoferricins against mycobacteria, thus opening the way for further research on their development and use as a new weapon against mycobacterial infections. PMID:24709266

  5. MALDI TOF/TOF-Based Approach for the Identification of d- Amino Acids in Biologically Active Peptides and Proteins

    PubMed Central

    2016-01-01

    Several biologically active peptides contain a d- amino acid in a well-defined position, which is position 2 in all peptide epimers isolated to date from vertebrates and also some from invertebrates. The detection of such D- residues by standard analytical techniques is challenging. In tandem mass spectrometric (MS) analysis, although fragment masses are the same for all stereoisomers, peak intensities are known to depend on chirality. Here, we observe that the effect of a d- amino acid in the second N-terminal position on the fragmentation pattern in matrix assisted laser desorption time-of-flight spectrometry (MALDI-TOF/TOF MS) strongly depends on the peptide sequence. Stereosensitive fragmentation (SF) is correlated to a neighborhood effect, but the d- residue also exerts an overall effect influencing distant bonds. In a fingerprint analysis, multiple peaks can thus serve to identify the chirality of a sample in short time and potentially high throughput. Problematic variations between individual spots could be successfully suppressed by cospotting deuterated analogues of the epimers. By identifying the [d-Leu2] isomer of the predicted peptide GH-2 (gene derived bombininH) in skin secretions of the toad Bombina orientalis, we demonstrated the analytical power of SF-MALDI-TOF/TOF measurements. In conclusion, SF-MALDI-TOF/TOF MS combines high sensitivity, versatility, and the ability to complement other methods. PMID:26985971

  6. Analysis of peptide-protein binding using amino acid descriptors: prediction and experimental verification for human histocompatibility complex HLA-A0201.

    PubMed

    Guan, Pingping; Doytchinova, Irini A; Walshe, Valerie A; Borrow, Persephone; Flower, Darren R

    2005-11-17

    Amino acid descriptors are often used in quantitative structure-activity relationship (QSAR) analysis of proteins and peptides. In the present study, descriptors were used to characterize peptides binding to the human MHC allele HLA-A0201. Two sets of amino acid descriptors were chosen: 93 descriptors taken from the amino acid descriptor database AAindex and the z descriptors defined by Wold and Sandberg. Variable selection techniques (SIMCA, genetic algorithm, and GOLPE) were applied to remove redundant descriptors. Our results indicate that QSAR models generated using five z descriptors had the highest predictivity and explained variance (q2 between 0.6 and 0.7 and r2 between 0.6 and 0.9). Further to the QSAR analysis, 15 peptides were synthesized and tested using a T2 stabilization assay. All peptides bound to HLA-A0201 well, and four peptides were identified as high-affinity binders.

  7. Sequence dependent N-terminal rearrangement and degradation of peptide nucleic acid (PNA) in aqueous solution

    NASA Technical Reports Server (NTRS)

    Eriksson, M.; Christensen, L.; Schmidt, J.; Haaima, G.; Orgel, L.; Nielsen, P. E.

    1998-01-01

    The stability of the PNA (peptide nucleic acid) thymine monomer inverted question markN-[2-(thymin-1-ylacetyl)]-N-(2-aminoaminoethyl)glycine inverted question mark and those of various PNA oligomers (5-8-mers) have been measured at room temperature (20 degrees C) as a function of pH. The thymine monomer undergoes N-acyl transfer rearrangement with a half-life of 34 days at pH 11 as analyzed by 1H NMR; and two reactions, the N-acyl transfer and a sequential degradation, are found by HPLC analysis to occur at measurable rates for the oligomers at pH 9 or above. Dependent on the amino-terminal sequence, half-lives of 350 h to 163 days were found at pH 9. At pH 12 the half-lives ranged from 1.5 h to 21 days. The results are discussed in terms of PNA as a gene therapeutic drug as well as a possible prebiotic genetic material.

  8. Yeasts identification in microfluidic devices using peptide nucleic acid fluorescence in situ hybridization (PNA-FISH).

    PubMed

    Ferreira, André M; Cruz-Moreira, Daniela; Cerqueira, Laura; Miranda, João M; Azevedo, Nuno F

    2017-03-01

    Peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) is a highly specific molecular method widely used for microbial identification. Nonetheless, and due to the detection limit of this technique, a time-consuming pre-enrichment step is typically required before identification. In here we have developed a lab-on-a-chip device to concentrate cell suspensions and speed up the identification process in yeasts. The PNA-FISH protocol was optimized to target Saccharomyces cerevisiae, a common yeast that is very relevant for several types of food industries. Then, several coin-sized microfluidic devices with different geometries were developed. Using Computational fluid dynamics (CFD), we modeled the hydrodynamics inside the microchannels and selected the most promising options. SU-8 structures were fabricated based on the selected designs and used to produce polydimethylsiloxane-based microchips by soft lithography. As a result, an integrated approach combining microfluidics and PNA-FISH for the rapid identification of S. cerevisiae was achieved. To improve fluid flow inside microchannels and the PNA-FISH labeling, oxygen plasma treatment was applied to the microfluidic devices and a new methodology to introduce the cell suspension and solutions into the microchannels was devised. A strong PNA-FISH signal was observed in cells trapped inside the microchannels, proving that the proposed methodology works as intended. The microfluidic designs and PNA-FISH procedure described in here should be easily adaptable for detection of other microorganisms of similar size.

  9. Diagnosis of bacterial vaginosis by a new multiplex peptide nucleic acid fluorescence in situ hybridization method

    PubMed Central

    Machado, António; Castro, Joana; Cereija, Tatiana; Almeida, Carina

    2015-01-01

    Bacterial vaginosis (BV) is one of most common vaginal infections. However, its diagnosis by classical methods reveals low specificity. Our goal was to evaluate the accuracy diagnosis of 150 vaginal samples with research gold standard methods and our Peptide Nucleic Acid (PNA) probes by Fluorescence in situ Hybridization (FISH) methodology. Also, we described the first PNA-FISH methodology for BV diagnosis, which provides results in approximately 3 h. The results showed a sensitivity of 84.6% (95% confidence interval (CI), from 64.3 to 95.0%) and a specificity of 97.6% (95% CI [92.6–99.4%]), demonstrating the higher specificity of the PNA-FISH method and showing false positive results in BV diagnosis commonly obtained by the classical methods. This methodology combines the specificity of PNA probes for Lactobacillus species and G. vaginalis visualization and the calculation of the microscopic field by Nugent score, allowing a trustful evaluation of the bacteria present in vaginal microflora and avoiding the occurrence of misleading diagnostics. Therefore, the PNA-FISH methodology represents a valuable alternative for BV diagnosis. PMID:25737820

  10. A peptide nucleic acid targeting nuclear RAD51 sensitizes multiple myeloma cells to melphalan treatment

    PubMed Central

    Alagpulinsa, David Abasiwani; Yaccoby, Shmuel; Ayyadevara, Srinivas; Shmookler Reis, Robert Joseph

    2015-01-01

    RAD51-mediated recombinational repair is elevated in multiple myeloma (MM) and predicts poor prognosis. RAD51 has been targeted to selectively sensitize and/or kill tumor cells. Here, we employed a peptide nucleic acid (PNA) to inhibit RAD51 expression in MM cells. We constructed a PNA complementary to a unique segment of the RAD51 gene promoter, spanning the transcription start site, and conjugated it to a nuclear localization signal (PKKKRKV) to enhance cellular uptake and nuclear delivery without transfection reagents. This synthetic construct, (PNArad51_nls), significantly reduced RAD51 transcripts in MM cells, and markedly reduced the number and intensity of de novo and melphalan-induced nuclear RAD51 foci, while increasing the level of melphalan-induced γH2AX foci. Melphalan alone markedly induced the expression of 5 other genes involved in homologous-recombination repair, yet suppression of RAD51 by PNArad51_nls was sufficient to synergize with melphalan, producing significant synthetic lethality of MM cells in vitro. In a SCID-rab mouse model mimicking the MM bone marrow microenvironment, treatment with PNArad51_nls ± melphalan significantly suppressed tumor growth after 2 weeks, whereas melphalan plus control PNArad4µ_nls was ineffectual. This study highlights the importance of RAD51 in myeloma growth and is the first to demonstrate that anti-RAD51 PNA can potentiate conventional MM chemotherapy. PMID:25996477

  11. Amyloid-β peptide (1-42) aggregation induced by copper ions under acidic conditions.

    PubMed

    Bin, Yannan; Li, Xia; He, Yonghui; Chen, Shu; Xiang, Juan

    2013-07-01

    It is well known that the aggregation of amyloid-β peptide (Aβ) induced by Cu²⁺ is related to incubation time, solution pH, and temperature. In this work, the aggregation of Aβ₁₋₄₂ in the presence of Cu²⁺ under acidic conditions was studied at different incubation time and temperature (e.g. 25 and 37°C). Incubation temperature, pH, and the presence of Cu²⁺ in Aβ solution were confirmed to alter the morphology of aggregation (fibrils or amorphous aggregates), and the morphology is pivotal for Aβ neurotoxicity and Alzheimer disease (AD) development. The results of atomic force microscopy (AFM) indicated that the formation of Aβ fibrous morphology is preferred at lower pH, but Cu²⁺ induced the formation of amorphous aggregates. The aggregation rate of Aβ was increased with the elevation of temperature. These results were further confirmed by fluorescence spectroscopy and circular dichroism spectroscopy and it was found that the formation of β-sheet structure was inhibited by Cu²⁺ binding to Aβ. The result was consistent with AFM observation and the fibrillation process was restrained. We believe that the local charge state in hydrophilic domain of Aβ may play a dominant role in the aggregate morphology due to the strong steric hindrance. This research will be valuable for understanding of Aβ toxicity in AD.

  12. Cell Penetrating Peptide Conjugated Chitosan for Enhanced Delivery of Nucleic Acid

    PubMed Central

    Layek, Buddhadev; Lipp, Lindsey; Singh, Jagdish

    2015-01-01

    Gene therapy is an emerging therapeutic strategy for the cure or treatment of a spectrum of genetic disorders. Nevertheless, advances in gene therapy are immensely reliant upon design of an efficient gene carrier that can deliver genetic cargoes into the desired cell populations. Among various nonviral gene delivery systems, chitosan-based carriers have gained increasing attention because of their high cationic charge density, excellent biocompatibility, nearly nonexistent cytotoxicity, negligible immune response, and ideal ability to undergo chemical conjugation. However, a major shortcoming of chitosan-based carriers is their poor cellular uptake, leading to inadequate transfection efficiency. The intrinsic feature of cell penetrating peptides (CPPs) for transporting diverse cargoes into multiple cell and tissue types in a safe manner suggests that they can be conjugated to chitosan for improving its transfection efficiency. In this review, we briefly discuss CPPs and their classification, and also the major mechanisms contributing to the cellular uptake of CPPs and cargo conjugates. We also discuss immense improvements for the delivery of nucleic acids using CPP-conjugated chitosan-based carriers with special emphasis on plasmid DNA and small interfering RNA. PMID:26690119

  13. Application of Peptide Nucleic Acid-based Assays Toward Detection of Somatic Mosaicism

    PubMed Central

    Hong, Christopher S; Yang, Chunzhang; Zhuang, Zhengping

    2016-01-01

    Peptide nucleic acids (PNAs) are synthetic oligonucleotides with many applications. Compared with DNA, PNAs bind their complementary DNA strand with higher specificity and strength, an attribute that can make it an effective polymerase chain reaction clamp. A growing body of work has demonstrated the utility of PNAs in detecting low levels of mutant DNA, particularly in the detection of circulating mutated tumor cells in the peripheral blood. The PNA-based assay has greater sensitivity than direct sequencing and is significantly more affordable and rapid than next-generation deep sequencing. We have previously demonstrated that PNAs can successfully detect somatic mosaicism in patients with suspected disease phenotypes. In this report, we detail our methodology behind PNA design and application. We describe our protocol for optimizing the PNA for sequencing use and for determining the sensitivity of the PNA-based assay. Lastly, we discuss the potential applications of our assay for future laboratory and clinical purposes and highlight the role of PNAs in the detection of somatic mosaicism. PMID:27115839

  14. Intracellular delivery of peptide nucleic acid and organic molecules using zeolite-L nanocrystals.

    PubMed

    Bertucci, Alessandro; Lülf, Henning; Septiadi, Dedy; Manicardi, Alex; Corradini, Roberto; De Cola, Luisa

    2014-11-01

    The design and synthesis of smart nanomaterials can provide interesting potential applications for biomedical purposes from bioimaging to drug delivery. Manufacturing multifunctional systems in a way to carry bioactive molecules, like peptide nucleic acids able to recognize specific targets in living cells, represents an achievement towards the development of highly selective tools for both diagnosis and therapeutics. This work describes a very first example of the use of zeolite nanocrystals as multifunctional nanocarriers to deliver simultaneously PNA and organic molecules into living cells. Zeolite-L nanocrystals are functionalized by covalently attaching the PNA probes onto the surface, while the channel system is filled with fluorescent guest molecules. The cellular uptake of the PNA/Zeolite-L hybrid material is then significantly increased by coating the whole system with a thin layer of biodegradable poly-L-lysine. The delivery of DAPI as a model drug molecule, inserted into the zeolite pores, is also demonstrated to occur in the cells, proving the multifunctional ability of the system. Using this zeolite nanosystem carrying PNA probes designed to target specific RNA sequences of interest in living cells could open new possibilities for theranostic and gene therapy applications.

  15. Quantitative rRNA-targeted solution-based hybridization assay using peptide nucleic acid molecular beacons.

    PubMed

    Li, Xu; Morgenroth, Eberhard; Raskin, Lutgarde

    2008-12-01

    The potential of a solution-based hybridization assay using peptide nucleic acid (PNA) molecular beacon (MB) probes to quantify 16S rRNA of specific populations in RNA extracts of environmental samples was evaluated by designing PNA MB probes for the genera Dechloromonas and Dechlorosoma. In a kinetic study with 16S rRNA from pure cultures, the hybridization of PNA MB to target 16S rRNA exhibited a higher final hybridization signal and a lower apparent rate constant than the hybridizations to nontarget 16S rRNAs. A concentration of 10 mM NaCl in the hybridization buffer was found to be optimal for maximizing the difference between final hybridization signals from target and nontarget 16S rRNAs. Hybridization temperatures and formamide concentrations in hybridization buffers were optimized to minimize signals from hybridizations of PNA MB to nontarget 16S rRNAs. The detection limit of the PNA MB hybridization assay was determined to be 1.6 nM of 16S rRNA. To establish proof for the application of PNA MB hybridization assays in complex systems, target 16S rRNA from Dechlorosoma suillum was spiked at different levels to RNA isolated from an environmental (bioreactor) sample, and the PNA MB assay enabled effective quantification of the D. suillum RNA in this complex mixture. For another environmental sample, the quantitative results from the PNA MB hybridization assay were compared with those from clone libraries.

  16. Efficient inhibition of miR-155 function in vivo by peptide nucleic acids

    PubMed Central

    Fabani, Martin M.; Abreu-Goodger, Cei; Williams, Donna; Lyons, Paul A.; Torres, Adrian G.; Smith, Kenneth G. C.; Enright, Anton J.; Gait, Michael J.; Vigorito, Elena

    2010-01-01

    MicroRNAs (miRNAs) play an important role in diverse physiological processes and are potential therapeutic agents. Synthetic oligonucleotides (ONs) of different chemistries have proven successful for blocking miRNA expression. However, their specificity and efficiency have not been fully evaluated. Here, we show that peptide nucleic acids (PNAs) efficiently block a key inducible miRNA expressed in the haematopoietic system, miR-155, in cultured B cells as well as in mice. Remarkably, miR-155 inhibition by PNA in primary B cells was achieved in the absence of any transfection agent. In mice, the high efficiency of the treatment was demonstrated by a strong overlap in global gene expression between B cells isolated from anti-miR-155 PNA-treated and miR-155-deficient mice. Interestingly, PNA also induced additional changes in gene expression. Our analysis provides a useful platform to aid the design of efficient and specific anti-miRNA ONs for in vivo use. PMID:20223773

  17. Human leukocyte antigen haplotype phasing by allele-specific enrichment with peptide nucleic acid probes

    PubMed Central

    Murphy, Nicholas M; Pouton, Colin W; Irving, Helen R

    2014-01-01

    Targeted capture of large fragments of genomic DNA that enrich for human leukocyte antigen (HLA) system haplotypes has utility in haematopoietic stem cell transplantation. Current methods of HLA matching are based on inference or familial studies of inheritance; and each approach has its own inherent limitations. We have designed and tested a probe–target-extraction method for capturing specific HLA haplotypes by hybridization of peptide nucleic acid (PNA) probes to alleles of the HLA-DRB1 gene. Short target fragments contained in plasmids were initially used to optimize the method followed by testing samples of genomic DNA from human subjects with preselected HLA haplotypes and obtained approximately 10% enrichment for the specific haplotype. When performed with high-molecular-weight genomic DNA, 99.0% versus 84.0% alignment match was obtained for the specific haplotype probed. The allele-specific target enrichment that we obtained can facilitate the elucidation of haplotypes between the 65 kb separating the HLA-DRB1 and the HLA-DQA1 genes, potentially spanning a total distance of at least 130 kb. Allele-specific target enrichment with PNA probes is a straightforward technique that has the capability to improve the resolution of DNA and whole genome sequencing technologies by allowing haplotyping of enriched DNA and crucially, retaining the DNA methylation profile. PMID:24936514

  18. DNA-Templated Polymerization of Side-Chain-Functionalized Peptide Nucleic Acid Aldehydes

    PubMed Central

    Kleiner, Ralph E.; Brudno, Yevgeny; Birnbaum, Michael E.; Liu, David R.

    2009-01-01

    The DNA-templated polymerization of synthetic building blocks provides a potential route to the laboratory evolution of sequence-defined polymers with structures and properties not necessarily limited to those of natural biopolymers. We previously reported the efficient and sequence-specific DNA-templated polymerization of peptide nucleic acid (PNA) aldehydes. Here, we report the enzyme-free, DNA-templated polymerization of side-chain-functionalized PNA tetramer and pentamer aldehydes. We observed that the polymerization of tetramer and pentamer PNA building blocks with a single lysine-based side chain at various positions in the building block could proceed efficiently and sequence-specifically. In addition, DNA-templated polymerization also proceeded efficiently and in a sequence-specific manner with pentamer PNA aldehydes containing two or three lysine side chains in a single building block to generate more densely functionalized polymers. To further our understanding of side-chain compatibility and expand the capabilities of this system, we also examined the polymerization efficiencies of 20 pentamer building blocks each containing one of five different side-chain groups and four different side-chain regio- and stereochemistries. Polymerization reactions were efficient for all five different side-chain groups and for three of the four combinations of side-chain regio- and stereochemistries. Differences in the efficiency and initial rate of polymerization correlate with the apparent melting temperature of each building block, which is dependent on side-chain regio- and stereochemistry, but relatively insensitive to side-chain structure among the substrates tested. Our findings represent a significant step towards the evolution of sequence-defined synthetic polymers and also demonstrate that enzyme-free nucleic acid-templated polymerization can occur efficiently using substrates with a wide range of side-chain structures, functionalization positions within each

  19. Electrochemical paper-based peptide nucleic acid biosensor for detecting human papillomavirus.

    PubMed

    Teengam, Prinjaporn; Siangproh, Weena; Tuantranont, Adisorn; Henry, Charles S; Vilaivan, Tirayut; Chailapakul, Orawon

    2017-02-01

    A novel paper-based electrochemical biosensor was developed using an anthraquinone-labeled pyrrolidinyl peptide nucleic acid (acpcPNA) probe (AQ-PNA) and graphene-polyaniline (G-PANI) modified electrode to detect human papillomavirus (HPV). An inkjet printing technique was employed to prepare the paper-based G-PANI-modified working electrode. The AQ-PNA probe baring a negatively charged amino acid at the N-terminus was immobilized onto the electrode surface through electrostatic attraction. Electrochemical impedance spectroscopy (EIS) was used to verify the AQ-PNA immobilization. The paper-based electrochemical DNA biosensor was used to detect a synthetic 14-base oligonucleotide target with a sequence corresponding to human papillomavirus (HPV) type 16 DNA by measuring the electrochemical signal response of the AQ label using square-wave voltammetry before and after hybridization. It was determined that the current signal significantly decreased after the addition of target DNA. This phenomenon is explained by the rigidity of PNA-DNA duplexes, which obstructs the accessibility of electron transfer from the AQ label to the electrode surface. Under optimal conditions, the detection limit of HPV type 16 DNA was found to be 2.3 nM with a linear range of 10-200 nM. The performance of this biosensor on real DNA samples was tested with the detection of PCR-amplified DNA samples from the SiHa cell line. The new method employs an inexpensive and disposable device, which easily incinerated after use and is promising for the screening and monitoring of the amount of HPV-DNA type 16 to identify the primary stages of cervical cancer.

  20. [A new SVRDF 3D-descriptor of amino acids and its application to peptide quantitative structure activity relationship].

    PubMed

    Tong, Jian-Bo; Zhang, Sheng-Wan; Cheng, Su-Li; Li, Gai-Xian

    2007-01-01

    To establish a new amino acid structure descriptor that can be applied to polypeptide quantitative structure activity relationship (QSAR) studies, a new descriptor, SVRDF, was derived from a principal components analysis of a matrix of 150 radial distribution function index of amino acids. The scale was then applied in three panels of peptide QSAR that were molded by partial least squares regression. The obtained models with the correlation coefficients (R2(cum)), cross-validation correlation coefficients (Q2(cum)) were 0.766 and 0.724 for 48 bitter tasting dipeptides; 0.941 and 0.811 for 21 oxytocin analogues; 0.996 and 0.919 for 20 thromboplastin inhibitors. Satisfactory results showed that information related to biological activity can be systemically expressed by SVRDF scales, which may be an useful structural expression methodology for the study of peptides QSAR.

  1. Localized surface plasmon resonance interfaces coated with poly[3-(pyrrolyl)carboxylic acid] for histidine-tagged peptide sensing.

    PubMed

    Tighilt, Fatma-Zohra; Subramanian, Palaniappan; Belhaneche-Bensemra, Naima; Boukherroub, Rabah; Gabouze, Noureddine; Sam, Sabrina; Szunerits, Sabine

    2011-10-21

    The paper reports on a novel localized surface plasmon resonance (LSPR) substrate architecture for the immobilization and detection of histidine-tagged peptides. The LSPR interface consists of an ITO (indium tin oxide) substrate coated with gold nanostructures. The latter are obtained by thermal deposition of a thin (2 nm thick) gold film followed by post-annealing at 500 °C. The LSPR interface was coated with poly[3-(pyrrolyl)carboxylic acid] thin films using electrochemical means. The ability of the LSPR interfaces coated with poly[3-(pyrrolyl)carboxylic acid] to chelate copper ions was investigated. Once loaded with metal ions, the modified LSPR interface was able to bind specifically to histidine-tagged peptides. The binding process was followed using LSPR.

  2. Folic Acid Inhibits Amyloid β-Peptide Production through Modulating DNA Methyltransferase Activity in N2a-APP Cells.

    PubMed

    Li, Wen; Jiang, Mingyue; Zhao, Shijing; Liu, Huan; Zhang, Xumei; Wilson, John X; Huang, Guowei

    2015-10-20

    Alzheimer's disease (AD) is a common neurodegenerative disease resulting in progressive dementia, and is a principal cause of dementia among older adults. Folate acts through one-carbon metabolism to support the methylation of multiple substrates. We hypothesized that folic acid supplementation modulates DNA methyltransferase (DNMT) activity and may alter amyloid β-peptide (Aβ) production in AD. Mouse Neuro-2a cells expressing human APP695 were incubated with folic acid (2.8-40 μmol/L), and with or without zebularine (the DNMT inhibitor). DNMT activity, cell viability, Aβ and DNMTs expression were then examined. The results showed that folic acid stimulated DNMT gene and protein expression, and DNMT activity. Furthermore, folic acid decreased Aβ protein production, whereas inhibition of DNMT activity by zebularine increased Aβ production. The results indicate that folic acid induces methylation potential-dependent DNMT enzymes, thereby attenuating Aβ production.

  3. Short communication: Measuring the angiotensin-converting enzyme inhibitory activity of an 8-amino acid (8mer) fragment of the C12 antihypertensive peptide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An eight amino acid fragment (PFPEVFGK) of a known milk protein-derived antihypertensive peptide was synthesized by microwave-assisted solid phase peptide synthesis and purified by reverse phase HPLC. Its ability to inhibit the angiotensin-converting enzyme was assessed and compared to that of the ...

  4. Radiation chemistry of amino acids, peptides and proteins in relation to the radiation sterilization of high-protein foods

    SciTech Connect

    Garrison, W. M.

    1981-12-01

    An important source of information on the question of whether or not toxic or other deleterious substances are formed in the radiation sterilization of foods is the chemical study of reaction products and reaction mechanisms in the radiolysis of individual food components. The present evaluation of the radiation chemistry of amino acids, peptides, and proteins outlines the various radiation-induced processes which lead to amino acid degradation and to the synthesis of amino acid derivatives of higher molecular weight. Among the latter are the ..cap alpha..,..cap alpha..'-diamino dicarboxylic acids which are formed as major products in the radiolysis of peptides both in aqueous solution and in the solid state. The ..cap alpha..,..cap alpha..'-diamino acids are of particular interest as irradiation products because they represent a class of compounds not normally encountered in plant and animal protein sources. Such compounds have, however, been isolated from certain types of bacteria and bacterial products. All of the available data strongly suggest that the ..cap alpha..,..cap alpha..'-diamino acids are produced in significant yield in the radiation sterilization of high protein foods. The importance of initiating extensive chemical and biological studies of these and of other high molecular weight products in irradiated food is emphasized.

  5. Porous Silicon and Polymer Nanocomposites for Delivery of Peptide Nucleic Acids as Anti-MicroRNA Therapies.

    PubMed

    Beavers, Kelsey R; Werfel, Thomas A; Shen, Tianwei; Kavanaugh, Taylor E; Kilchrist, Kameron V; Mares, Jeremy W; Fain, Joshua S; Wiese, Carrie B; Vickers, Kasey C; Weiss, Sharon M; Duvall, Craig L

    2016-09-01

    Self-assembled polymer/porous silicon nanocomposites overcome intracellular and systemic barriers for in vivo application of peptide nucleic acid (PNA) anti-microRNA therapeutics. Porous silicon (PSi) is leveraged as a biodegradable scaffold with high drug-cargo-loading capacity. Functionalization with a diblock polymer improves PSi nanoparticle colloidal stability, in vivo pharmacokinetics, and intracellular bioavailability through endosomal escape, enabling PNA to inhibit miR-122 in vivo.

  6. Tri-peptide reference structures for the calculation of relative solvent accessible surface area in protein amino acid residues.

    PubMed

    Topham, Christopher M; Smith, Jeremy C

    2015-02-01

    Relative amino acid residue solvent accessibility values allow the quantitative comparison of atomic solvent-accessible surface areas in different residue types and physical environments in proteins and in protein structural alignments. Geometry-optimised tri-peptide structures in extended solvent-exposed reference conformations have been obtained for 43 amino acid residue types at a high level of quantum chemical theory. Significant increases in side-chain solvent accessibility, offset by reductions in main-chain atom solvent exposure, were observed for standard residue types in partially geometry-optimised structures when compared to non-minimised models built from identical sets of proper dihedral angles abstracted from the literature. Optimisation of proper dihedral angles led most notably to marked increases of up to 54% in proline main-chain atom solvent accessibility compared to literature values. Similar effects were observed for fully-optimised tri-peptides in implicit solvent. The relief of internal strain energy was associated with systematic variation in N, C(α) and C(β) atom solvent accessibility across all standard residue types. The results underline the importance of optimisation of 'hard' degrees of freedom (bond lengths and valence bond angles) and improper dihedral angle values from force field or other context-independent reference values, and impact on the use of standardised fixed internal co-ordinate geometry in sampling approaches to the determination of absolute values of protein amino acid residue solvent accessibility. Quantum chemical methods provide a useful and accurate alternative to molecular mechanics methods to perform energy minimisation of peptides containing non-standard (chemically modified) amino acid residues frequently present in experimental protein structure data sets, for which force field parameters may not be available. Reference tri-peptide atomic co-ordinate sets including hydrogen atoms are made freely available.

  7. Visualization of the mycelia of wood-rotting fungi by fluorescence in situ hybridization using a peptide nucleic acid probe.

    PubMed

    Nakada, Yuji; Nakaba, Satoshi; Matsunaga, Hiroshi; Funada, Ryo; Yoshida, Makoto

    2013-01-01

    White rot fungus, Phanerochaete chrysosporium, and brown rot fungus, Postia placenta, grown on agar plates, were visualized by fluorescence in situ hybridization (FISH) using a peptide nucleic acid (PNA) probe. Mycelia grown on wood chips were also clearly detected by PNA-FISH following blocking treatment. To the best of our knowledge, this is the first report on the visualization of fungi in wood by FISH.

  8. Evaluation of the Influence of Amino Acid Composition on the Propensity for Collision-Induced Dissociation of Model Peptides Using Molecular Dynamics Simulations

    SciTech Connect

    Cannon, William R.; Taasevigen, Danny J.; Baxter, Douglas J.; Laskin, Julia

    2007-09-01

    The dynamical behavior of model peptides was evaluated with respect to their ability to form internal proton donor-acceptor pairs using molecular dynamics simulations. The proton donor-acceptor pairs are postulated to be prerequisites for peptide bond cleavage resulting in formation of b and y ions during low energy collision-induced dissociation in tandem mass spectrometry (MS/MS). The simulations for the polyalanine pentamer Ala5H+ were compared to experimental data from collision energy-resolved surface induced dissociation (SID) studies. The results of the simulation are insightful into the events that likely lead up to the fragmentation of peptides. 9-mer polyalanine-based model peptides were used to examine the dynamical effect of each of the 20 common amino acids on the probability to form donor-acceptor pairs at labile peptide bonds. A continuous range of probabilities was observed as a function of the substituted amino acid. However, the location of the peptide bond involved in the donor-acceptor pair plays a critical role in the dynamical behavior. This influence of position on the probability of forming a donor-acceptor pair would be hard to predict from statistical analyses on experimental spectra of aggregate, diverse peptides. In addition, the inclusion of basic side chains in the model peptides alters the probability of forming donor-acceptor pairs across the entire backbone. In this case there are still more ionizing protons than basic residues, but the side chains of the basic amino acids form stable hydrogen bond networks with the peptide carbonyl oxygens and thus act to prevent free access of “mobile protons” to labile peptide bonds. It is clear from the work that the identification of peptides from low-energy CID using automated computational methods should consider the location of the fragmenting bond as well as the amino acid composition.

  9. Synthetic amphibian peptides and short amino-acids derivatives against planktonic cells and mature biofilm of Providencia stuartii clinical strains.

    PubMed

    Ostrowska, Kinga; Kamysz, Wojciech; Dawgul, Małgorzata; Różalski, Antoni

    2014-01-01

    Over the last decade, the growing number of multidrug resistant strains limits the use of many of the currently available chemotherapeutic agents. Furthermore, bacterial biofilm, due to its complex structure, constitutes an effective barrier to conventional antibiotics. The in vitro activities of naturally occurring peptide (Citropin 1.1), chemically engineered analogue (Pexiganan), newly-designed, short amino-acid derivatives (Pal-KK-NH2, Pal-KKK-NH2, Pal-RRR-NH2) and six clinically used antimicrobial agents (Gatifloxacin, Ampicilin, Cefotaxime, Ceftriaxone, Cefuroxime and Cefalexin) were investigated against planktonic cells and mature biofilm of multidrug-resistant Providencia stuartii strains, isolated from urological catheters. The MICs, MBCs values were determined by broth microdilution technique. Inhibition of biofilm formation by antimicrobial agents as well as biofilm susceptibility assay were tested using a surrogate model based on the Crystal Violet method. The antimicrobial activity of amino-acids derivatives and synthetic peptides was compared to that of clinically used antibiotics. For planktonic cells, MICs of peptides and antibiotics ranged between 1 and 256 μg/ml and 256 and ≥ 2048 μg/ml, respectively. The MBCs values of Pexiganan, Citropin 1.1 and amino-acids derivatives were between 16 and 256 μg/ml, 64 and 256 μg/ml and 16 and 512 μg/ml, respectively. For clinically used antibiotics the MBCs values were above 2048 μg/ml. All of the tested peptides and amino-acids derivatives, showed inhibitory activity against P. stuartii biofilm formation, in relation to their concentrations. Pexiganan and Citropin 1.1 in concentration range 32 and 256 μg/ml caused both strong and complete suppression of biofilm formation. None of the antibiotics caused complete inhibition of biofilm formation process. The biofilm susceptibility assay verified the extremely poor antibiofilm activity of conventional antibiotics compared to synthetic peptides. The

  10. Antioxidative Peptides Derived from Enzyme Hydrolysis of Bone Collagen after Microwave Assisted Acid Pre-Treatment and Nitrogen Protection

    PubMed Central

    Lin, Yun-Jian; Le, Guo-Wei; Wang, Jie-Yun; Li, Ya-Xin; Shi, Yong-Hui; Sun, Jin

    2010-01-01

    This study focused on the preparation method of antioxidant peptides by enzymatic hydrolysis of bone collagen after microwave assisted acid pre-treatment and nitrogen protection. Phosphoric acid showed the highest ability of hydrolysis among the four other acids tested (hydrochloric acid, sulfuric acid and/or citric acid). The highest degree of hydrolysis (DH) was 9.5% using 4 mol/L phosphoric acid with a ratio of 1:6 under a microwave intensity of 510 W for 240 s. Neutral proteinase gave higher DH among the four protease tested (Acid protease, neutral protease, Alcalase and papain), with an optimum condition of: (1) ratio of enzyme and substrate, 4760 U/g; (2) concentration of substrate, 4%; (3) reaction temperature, 55 °C and (4) pH 7.0. At 4 h, DH increased significantly (P < 0.01) under nitrogen protection compared with normal microwave assisted acid pre-treatment hydrolysis conditions. The antioxidant ability of the hydrolysate increased and reached its maximum value at 3 h; however DH decreased dramatically after 3 h. Microwave assisted acid pre-treatment and nitrogen protection could be a quick preparatory method for hydrolyzing bone collagen. PMID:21151439

  11. Human immunodeficiency virus trans-activator of transcription peptide detection via ribonucleic acid aptamer on aminated diamond biosensor

    NASA Astrophysics Data System (ADS)

    Rahim Ruslinda, A.; Wang, Xianfen; Ishii, Yoko; Ishiyama, Yuichiro; Tanabe, Kyosuke; Kawarada, Hiroshi

    2011-09-01

    The potential of ribonucleic acid (RNA) as both informational and ligand binding molecule have opened a scenario in the development of biosensors. An aminated diamond-based RNA aptasensor is presented for human immunodeficiency virus (HIV) trans-activator of transcription (Tat) peptide protein detection that not only gives a labeled or label-free detection method but also provides a reusable platform for a simple, sensitive, and selective detection of proteins. The immobilized procedure was based on the binding interaction between positively charged amine terminated diamond and the RNA aptamer probe molecules with the negatively charged surface carboxylic compound linker molecule such as terephthalic acid.

  12. Chlorotoxin: A Helpful Natural Scorpion Peptide to Diagnose Glioma and Fight Tumor Invasion

    PubMed Central

    Dardevet, Lucie; Rani, Dipti; Abd El Aziz, Tarek; Bazin, Ingrid; Sabatier, Jean-Marc; Fadl, Mahmoud; Brambilla, Elisabeth; De Waard, Michel

    2015-01-01

    Chlorotoxin is a small 36 amino-acid peptide identified from the venom of the scorpion Leiurus quinquestriatus. Initially, chlorotoxin was used as a pharmacological tool to characterize chloride channels. While studying glioma-specific chloride currents, it was soon discovered that chlorotoxin possesses targeting properties towards cancer cells including glioma, melanoma, small cell lung carcinoma, neuroblastoma and medulloblastoma. The investigation of the mechanism of action of chlorotoxin has been challenging because its cell surface receptor target remains under questioning since two other receptors have been claimed besides chloride channels. Efforts on chlorotoxin-based applications focused on producing analogues helpful for glioma diagnosis, imaging and treatment. These efforts are welcome since gliomas are very aggressive brain cancers, close to impossible to cure with the current therapeutic arsenal. Among all the chlorotoxin-based strategies, the most promising one to enhance patient mean survival time appears to be the use of chlorotoxin as a targeting agent for the delivery of anti-tumor agents. Finally, the discovery of chlorotoxin has led to the screening of other scorpion venoms to identify chlorotoxin-like peptides. So far several new candidates have been identified. Only detailed research and clinical investigations will tell us if they share the same anti-tumor potential as chlorotoxin. PMID:25826056

  13. Influence of peptides and amino acids on fermentation rate and de novo synthesis of amino acids by mixed micro-organisms from the sheep rumen.

    PubMed

    Atasoglu, C; Valdés, C; Newbold, C J; Wallace, R J

    1999-04-01

    The influence of different N sources on fermentation rate and de novo amino acid synthesis by rumen micro-organisms was investigated in vitro using rumen fluid taken from four sheep receiving a mixed diet comprising (g/kg DM): grass hay 500, barley 299.5, molasses 100, fish meal 91, minerals and vitamins 9.5. Pancreatic casein hydrolysate (P; comprising mainly peptides with some free amino acids; 10 g/l), free amino acids (AA; casein acid hydrolysate + added cysteine and tryptophan; 10 g/l), or a mixture of L-proline, glycine, L-valine and L-threonine (M; 0.83 g/l each) were added to diluted (1:3, v/v), strained rumen fluid along with 15NH4Cl (A; 1.33 g/l) and 6.7 g/l of a mixture of starch, cellobiose and xylose (1:1:1, by weight). P and AA, but not M, stimulated net gas production after 4 and 8 h incubation (P < 0.05) in comparison with A alone. P increased microbial-protein synthesis (P < 0.05) compared with the other treatments. All of the microbial-N formed after 10 h was synthesized de novo from 15NH3 in treatment A, and the addition of pre-formed amino acids decreased the proportion to 0.37, 0.55, and 0.86 for P, AA, and M respectively. De novo synthesis of amino acids (0.29, 0.42 and 0.69 respectively) was lower than cell-N. Enrichment of alanine, glutamate and aspartate was slightly higher than that of other amino acids, while enrichment in proline was much lower, such that 0.83-0.95 of all proline incorporated into particulate matter was derived from pre-formed proline. Glycine, methionine, lysine, valine and threonine tended to be less enriched than other amino acids. The form in which the amino acids were supplied, as P or AA, had little influence on the pattern of de novo synthesis. When the concentration of peptides was decreased, the proportion of microbial-N formed from NH3 increased, so that at an initial concentration of 1 g peptides/l, similar to the highest reported ruminal peptide concentrations, 0.68 of cell-N was formed from NH3. Decreasing

  14. Evolutionary Importance of the Intramolecular Pathways of Hydrolysis of Phosphate Ester Mixed Anhydrides with Amino Acids and Peptides

    NASA Astrophysics Data System (ADS)

    Liu, Ziwei; Beaufils, Damien; Rossi, Jean-Christophe; Pascal, Robert

    2014-12-01

    Aminoacyl adenylates (aa-AMPs) constitute essential intermediates of protein biosynthesis. Their polymerization in aqueous solution has often been claimed as a potential route to abiotic peptides in spite of a highly efficient CO2-promoted pathway of hydrolysis. Here we investigate the efficiency and relevance of this frequently overlooked pathway from model amino acid phosphate mixed anhydrides including aa-AMPs. Its predominance was demonstrated at CO2 concentrations matching that of physiological fluids or that of the present-day ocean, making a direct polymerization pathway unlikely. By contrast, the occurrence of the CO2-promoted pathway was observed to increase the efficiency of peptide bond formation owing to the high reactivity of the N-carboxyanhydride (NCA) intermediate. Even considering CO2 concentrations in early Earth liquid environments equivalent to present levels, mixed anhydrides would have polymerized predominantly through NCAs. The issue of a potential involvement of NCAs as biochemical metabolites could even be raised. The formation of peptide-phosphate mixed anhydrides from 5(4H)-oxazolones (transiently formed through prebiotically relevant peptide activation pathways) was also observed as well as the occurrence of the reverse cyclization process in the reactions of these mixed anhydrides. These processes constitute the core of a reaction network that could potentially have evolved towards the emergence of translation.

  15. Evolutionary importance of the intramolecular pathways of hydrolysis of phosphate ester mixed anhydrides with amino acids and peptides.

    PubMed

    Liu, Ziwei; Beaufils, Damien; Rossi, Jean-Christophe; Pascal, Robert

    2014-12-11

    Aminoacyl adenylates (aa-AMPs) constitute essential intermediates of protein biosynthesis. Their polymerization in aqueous solution has often been claimed as a potential route to abiotic peptides in spite of a highly efficient CO2-promoted pathway of hydrolysis. Here we investigate the efficiency and relevance of this frequently overlooked pathway from model amino acid phosphate mixed anhydrides including aa-AMPs. Its predominance was demonstrated at CO2 concentrations matching that of physiological fluids or that of the present-day ocean, making a direct polymerization pathway unlikely. By contrast, the occurrence of the CO2-promoted pathway was observed to increase the efficiency of peptide bond formation owing to the high reactivity of the N-carboxyanhydride (NCA) intermediate. Even considering CO2 concentrations in early Earth liquid environments equivalent to present levels, mixed anhydrides would have polymerized predominantly through NCAs. The issue of a potential involvement of NCAs as biochemical metabolites could even be raised. The formation of peptide-phosphate mixed anhydrides from 5(4H)-oxazolones (transiently formed through prebiotically relevant peptide activation pathways) was also observed as well as the occurrence of the reverse cyclization process in the reactions of these mixed anhydrides. These processes constitute the core of a reaction network that could potentially have evolved towards the emergence of translation.

  16. Development of helix-stabilized cell-penetrating peptides containing cationic α,α-disubstituted amino acids as helical promoters.

    PubMed

    Yamashita, Hiroko; Misawa, Takashi; Oba, Makoto; Tanaka, Masakazu; Naito, Mikihiko; Kurihara, Masaaki; Demizu, Yosuke

    2017-03-15

    Cell-penetrating peptides (CPP) have attracted many scientists' attention as intracellular delivery tools due to their high cargo molecule transportation efficiency and low cytotoxicity. Therefore, in many research fields CPP, such as HIV-Tat and oligoarginine (Rn), are used to deliver hydrophilic drugs and biomolecules, including proteins, DNA, and RNA. We designed four types of CPP that contained cationic α,α-disubstituted amino acids (Api(C2Gu) and Api(C4Gu)) as helical promoters; i.e., 1-4 [FAM-β-Ala-(l-Arg-l-Arg-Xaa)3-(Gly)3-NH2 (1: Xaa=Api(C2Gu), 2: Xaa=Api(C4Gu)), 3: FAM-β-Ala-(l-Arg)8-Api(C2Gu)-(Gly)3-NH2, and 4: FAM-β-Ala-(l-Arg)5-Api(C2Gu)-(l-Arg)2-Api(C2Gu)-(Gly)3-NH2], and investigated their preferred secondary structures and cell membrane-penetrating ability. As a result, we found that the permeation efficiency of the CPP was affected by the number of helical promoters in their sequences. Specially, peptide 1, which contained three Api(C2Gu) residues, formed a stable helical structure and passed through the cell membrane more efficiently than the other peptides. Moreover, it was demonstrated that the spatial arrangement of the peptides' side chains also influenced their permeability and the helical stabilization of their main chains.

  17. Peptide Conformer Acidity Analysis of Protein Flexibility Monitored by Hydrogen Exchange†

    PubMed Central

    2009-01-01

    The amide hydrogens that are exposed to solvent in the high-resolution X-ray structures of ubiquitin, FK506-binding protein, chymotrypsin inhibitor 2, and rubredoxin span a billion-fold range in hydroxide-catalyzed exchange rates which are predictable by continuum dielectric methods. To facilitate analysis of transiently accessible amides, the hydroxide-catalyzed rate constants for every backbone amide of ubiquitin were determined under near physiological conditions. With the previously reported NMR-restrained molecular dynamics ensembles of ubiquitin (PDB codes 2NR2 and 2K39) used as representations of the Boltzmann-weighted conformational distribution, nearly all of the exchange rates for the highly exposed amides were more accurately predicted than by use of the high-resolution X-ray structure. More strikingly, predictions for the amide hydrogens of the NMR relaxation-restrained ensemble that become exposed to solvent in more than one but less than half of the 144 protein conformations in this ensemble were almost as accurate. In marked contrast, the exchange rates for many of the analogous amides in the residual dipolar coupling-restrained ubiquitin ensemble are substantially overestimated, as was particularly evident for the Ile 44 to Lys 48 segment which constitutes the primary interaction site for the proteasome targeting enzymes involved in polyubiquitylation. For both ensembles, “excited state” conformers in this active site region having markedly elevated peptide acidities are represented at a population level that is 102 to 103 above what can exist in the Boltzmann distribution of protein conformations. These results indicate how a chemically consistent interpretation of amide hydrogen exchange can provide insight into both the population and the detailed structure of transient protein conformations. PMID:19722680

  18. Spectral and biological evaluation of a synthetic antimicrobial peptide derived from 1-aminocyclohexane carboxylic acid.

    PubMed

    Abercrombie, J J; Leung, Kai P; Chai, Hanbo; Hicks, Rickey P

    2015-03-15

    Ac-GF(A6c)G(A6c)K(A6c)G(A6c)F(A6c)G(A6c)GK(A6c)KKKK-amide (A6c=1-aminocyclohexane carboxylic acid) is a synthetic antimicrobial peptide (AMP) that exhibits in vitro inhibitory activity against drug resistant strains of Staphylococcus aureus, Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterobacter aerogenes, and Enterococcus faecium at concentrations ranging from 10.9 to 43μM. Spectroscopic investigations were conducted to determine how this AMP interacts with simple membrane model systems in order to provide insight into possible mechanisms of action. CD and 2D-(1)H NMR experiments indicated this AMP on binding to SDS and DPC micelles adopts conformations with varying percentages of helical and random coil conformers. CD investigations in the presence of three phospholipid SUVs consisting of POPC, 4:1 POPC/POPG, and 60% POPE/21%POPG/19%POPC revealed: (1) The interactions occurring with POPC SUVs have minimal effect on the conformational diversity of the AMP yielding conformations similar to those observed in buffer. (2) The interactions with 4:1 POPC/POPG, and 60% POPE/21%POPG/19%POPC SUVs exhibited a greater influence on the percentage of different conformers contributing to the CD spectra. (3) The presence of a high of percentage of helical conformers was not observed in the presence of SUVs as was the case with micelles. This data indicates that the diversity of surface bound conformations adopted by this AMP are very different from the diversity of conformations adopted by this AMP on insertion into the lipid bilayer. CD spectra of this AMP in the presence of SUVs consisting of LPS isolated from P. aeruginosa, K. pneumoniae and Escherichia coli exhibited characteristics associated with various helical conformations.

  19. Isoxazole‐Derived Amino Acids are Bromodomain‐Binding Acetyl‐Lysine Mimics: Incorporation into Histone H4 Peptides and Histone H3

    PubMed Central

    Sekirnik (née Measures), Angelina R.; Hewings, David S.; Theodoulou, Natalie H.; Jursins, Lukass; Lewendon, Katie R.; Jennings, Laura E.; Rooney, Timothy P. C.; Heightman, Tom D.

    2016-01-01

    Abstract A range of isoxazole‐containing amino acids was synthesized that displaced acetyl‐lysine‐containing peptides from the BAZ2A, BRD4(1), and BRD9 bromodomains. Three of these amino acids were incorporated into a histone H4‐mimicking peptide and their affinity for BRD4(1) was assessed. Affinities of the isoxazole‐containing peptides are comparable to those of a hyperacetylated histone H4‐mimicking cognate peptide, and demonstrated a dependence on the position at which the unnatural residue was incorporated. An isoxazole‐based alkylating agent was developed to selectively alkylate cysteine residues in situ. Selective monoalkylation of a histone H4‐mimicking peptide, containing a lysine to cysteine residue substitution (K12C), resulted in acetyl‐lysine mimic incorporation, with high affinity for the BRD4 bromodomain. The same technology was used to alkylate a K18C mutant of histone H3. PMID:27264992

  20. Permeation of membranes by the neutral form of amino acids and peptides: relevance to the origin of peptide translocation

    NASA Technical Reports Server (NTRS)

    Chakrabarti, A. C.; Deamer, D. W.; Miller, S. L. (Principal Investigator)

    1994-01-01

    The flux of amino acids and other nutrient solutes such as phosphate across lipid bilayers (liposomes) is 10(5) slower than facilitated inward transport across biological membranes. This suggest that primitive cells lacking highly evolved transport systems would have difficulty transporting sufficient nutrients for cell growth to occur. There are two possible ways by which early life may have overcome this difficulty: (1) The membranes of the earliest cellular life-forms may have been intrinsically more permeable to solutes; or (2) some transport mechanism may have been available to facilitate transbilayer movement of solutes essential for cell survival and growth prior to the evolution of membrane transport proteins. Translocation of neutral species represents one such mechanism. The neutral forms of amino acids modified by methylation (creating protonated weak bases) permeate membranes up to 10(10) times faster than charged forms. This increased permeability when coupled to a transmembrane pH gradient can result in significantly increased rates of net unidirectional transport. Such pH gradients can be generated in vesicles used to model protocells that preceded and were presumably ancestral to early forms of life. This transport mechanism may still play a role in some protein translocation processes (e.g. for certain signal sequences, toxins and thylakoid proteins) in vivo.

  1. Conjugates of amino acids and peptides with 5-o-mycaminosyltylonolide and their interaction with the ribosomal exit tunnel.

    PubMed

    Shishkina, Anna; Makarov, Gennady; Tereshchenkov, Andrey; Korshunova, Galina; Sumbatyan, Nataliya; Golovin, Andrey; Svetlov, Maxim; Bogdanov, Alexey

    2013-11-20

    During protein synthesis the nascent polypeptide chain (NC) extends through the ribosomal exit tunnel (NPET). Also, the large group of macrolide antibiotics binds in the nascent peptide exit tunnel. In some cases interaction of NC with NPET leads to the ribosome stalling, a significant event in regulation of translation. In other cases NC-ribosome interactions lead to pauses in translation that play an important role in cotranslational folding of polypeptides emerging from the ribosome. The precise mechanism of NC recognition in NPET as well as factors that determine NC conformation in the ribosomal tunnel are unknown. A number of derivatives of the macrolide antibiotic 5-O-mycaminosyltylonolide (OMT) containing N-acylated amino acid or peptide residues were synthesized in order to study potential sites of NC-NPET interactions. The target compounds were prepared by conjugation of protected amino acids and peptides with the C23 hydroxyl group of the macrolide. These OMT derivatives showed high although varying abilities to inhibit the firefly luciferase synthesis in vitro. Three glycil-containing derivatives appeared to be strong inhibitors of translation, more potent than parental OMT. Molecular dynamics (MD) simulation of complexes of tylosin, OMT, and some of OMT derivatives with the large ribosomal subunit of E. coli illuminated a plausible reason for the high inhibitory activity of Boc-Gly-OMT. In addition, the MD study detected a new putative site of interaction of the nascent polypeptide chain with the NPET walls.

  2. Amino Acid Chirality and Ferrocene Conformation Guided Self-Assembly and Gelation of Ferrocene-Peptide Conjugates.

    PubMed

    Adhikari, Bimalendu; Singh, Charanpreet; Shah, Afzal; Lough, Alan J; Kraatz, Heinz-Bernhard

    2015-08-03

    The self-assembly and gelation behavior of a series of mono- and disubstituted ferrocene (Fc)-peptide conjugates as a function of ferrocene conformation and amino acid chirality are described. The results reveal that ferrocene-peptide conjugates self-assemble into organogels by controlling the conformation of the central ferrocene core, through inter- versus intramolecular hydrogen bonding in the attached peptide chain(s). The chirality controlled assembling studies showed that two monosubstituted Fc conjugates FcCO-LFLFLA-OMe and FcCO-LFLFDA-OMe form gels with nanofibrillar network structures, whereas the other two diastereomers FcCO-DFLFLA-OMe and FcCO-LFDFLA-OMe exclusively produced straight nanorods and non-interconnected small fibers, respectively. This suggests the potential tuning of gelation behavior and nanoscale morphology by altering the chirality of constituted amino acids. The current study confirms the profound effect of diastereomerism and no influence of enantiomers on gelation. Correspondingly, the diastereomeric and enantiomeric Fc[CO-FFA-OMe]2 were constructed for the study of chirality-organized structures.

  3. Analgesic effects of mambalgin peptide inhibitors of acid-sensing ion channels in inflammatory and neuropathic pain.

    PubMed

    Diochot, Sylvie; Alloui, Abdelkrim; Rodrigues, Précillia; Dauvois, Mélodie; Friend, Valérie; Aissouni, Youssef; Eschalier, Alain; Lingueglia, Eric; Baron, Anne

    2016-03-01

    Mambalgins are 57-amino acid peptides isolated from snake venom that evoke naloxone-resistant analgesia after local (intraplantar) and central (intrathecal) injections through inhibition of particular subtypes of acid-sensing ion channels (ASICs). We now show that mambalgins also have an opioid-independent effect on both thermal and mechanical inflammatory pain after systemic intravenous (i.v.) administration and are effective against neuropathic pain. By combining the use of knockdown and knockout animals, we show the critical involvement of peripheral ASIC1b-containing channels, along with a contribution of ASIC1a-containing channels, in the i.v. effects of these peptides against inflammatory pain. The potent analgesic effect on neuropathic pain involves 2 different mechanisms depending on the route of administration, a naloxone-insensitive and ASIC1a-independent effect associated with i.v. injection and an ASIC1a-dependent and partially naloxone-sensitive effect associated with intrathecal injection. These data further support the role of peripheral and central ASIC1-containing channels in pain, demonstrate their participation in neuropathic pain, and highlight differences in the repertoire of channels involved in different pain conditions. They also strengthen the therapeutic potential of mambalgin peptides that are active in a broader range of experimental pain models and through i.v. systemic delivery.

  4. Adsorption of Amino Acids and Peptides on Metal and Oxide Surfaces in Water Environment: A Synthetic and Prospective Review.

    PubMed

    Costa, D; Savio, L; Pradier, C-M

    2016-07-28

    Amino acids and peptides are often used as "model" segments of proteins for studying their behavior in various types of environments, and/or elaborating functional surfaces. Indeed, though the protein behavior is much more complex than that of their isolated segments, knowledge of the binding mode as well as of the chemical structure of peptides on metal or oxide surfaces is a significant step toward the control of materials in a biological environment. Such knowledge has considerably increased in the past few years, thanks to the combination of advanced characterization techniques and of modeling methods. Investigations of biomolecule-surface interactions in water/solvent environments are quite numerous, but only in a few cases is it possible to reach an understanding of the molecule-(water)-surface interaction with a level of detail comparable to that of the UHV studies. This contribution aims at reviewing the recent data describing the amino acid and peptide interaction with metal or oxide surfaces in the presence of water.

  5. Site-directed and global incorporation of orthogonal and isostructural noncanonical amino acids into the ribosomal lasso peptide capistruin.

    PubMed

    Al Toma, Rashed S; Kuthning, Anja; Exner, Matthias P; Denisiuk, Alexander; Ziegler, Juliane; Budisa, Nediljko; Süssmuth, Roderich D

    2015-02-09

    Expansion of the structural diversity of peptide antibiotics was performed through two different methods. Supplementation-based incorporation (SPI) and stop-codon suppression (SCS) approaches were used for co-translational incorporation of isostructural and orthogonal noncanonical amino acids (ncAAs) into the lasso peptide capistruin. Two ncAAs were employed for the SPI method and five for the SCS method; each of them probing the incorporation of ncAAs in strategic positions of the molecule. Evaluation of the assembly by HR-ESI-MS proved more successful for the SCS method. Bio-orthogonal chemistry was used for post-biosynthetic modification of capistruin congener Cap_Alk10 containing the ncAA Alk (Nε-Alloc-L-lysine) instead of Ala. A second-generation Hoveyda-Grubbs catalyst was used for an in vitro metathesis reaction with Cap_Alk10 and an allyl alcohol, which offers options for post-biosynthetic modifications. The use of synthetic biology allows for the in vivo production of new peptide-based antibiotics from an expanded amino acid repertoire.

  6. Light-emitting self-assembled peptide nucleic acids exhibit both stacking interactions and Watson-Crick base pairing.

    PubMed

    Berger, Or; Adler-Abramovich, Lihi; Levy-Sakin, Michal; Grunwald, Assaf; Liebes-Peer, Yael; Bachar, Mor; Buzhansky, Ludmila; Mossou, Estelle; Forsyth, V Trevor; Schwartz, Tal; Ebenstein, Yuval; Frolow, Felix; Shimon, Linda J W; Patolsky, Fernando; Gazit, Ehud

    2015-04-01

    The two main branches of bionanotechnology involve the self-assembly of either peptides or DNA. Peptide scaffolds offer chemical versatility, architectural flexibility and structural complexity, but they lack the precise base pairing and molecular recognition available with nucleic acid assemblies. Here, inspired by the ability of aromatic dipeptides to form ordered nanostructures with unique physical properties, we explore the assembly of peptide nucleic acids (PNAs), which are short DNA mimics that have an amide backbone. All 16 combinations of the very short di-PNA building blocks were synthesized and assayed for their ability to self-associate. Only three guanine-containing di-PNAs-CG, GC and GG-could form ordered assemblies, as observed by electron microscopy, and these di-PNAs efficiently assembled into discrete architectures within a few minutes. The X-ray crystal structure of the GC di-PNA showed the occurrence of both stacking interactions and Watson-Crick base pairing. The assemblies were also found to exhibit optical properties including voltage-dependent electroluminescence and wide-range excitation-dependent fluorescence in the visible region.

  7. Light-emitting self-assembled peptide nucleic acids exhibit both stacking interactions and Watson-Crick base pairing

    NASA Astrophysics Data System (ADS)

    Berger, Or; Adler-Abramovich, Lihi; Levy-Sakin, Michal; Grunwald, Assaf; Liebes-Peer, Yael; Bachar, Mor; Buzhansky, Ludmila; Mossou, Estelle; Forsyth, V. Trevor; Schwartz, Tal; Ebenstein, Yuval; Frolow, Felix; Shimon, Linda J. W.; Patolsky, Fernando; Gazit, Ehud

    2015-05-01

    The two main branches of bionanotechnology involve the self-assembly of either peptides or DNA. Peptide scaffolds offer chemical versatility, architectural flexibility and structural complexity, but they lack the precise base pairing and molecular recognition available with nucleic acid assemblies. Here, inspired by the ability of aromatic dipeptides to form ordered nanostructures with unique physical properties, we explore the assembly of peptide nucleic acids (PNAs), which are short DNA mimics that have an amide backbone. All 16 combinations of the very short di-PNA building blocks were synthesized and assayed for their ability to self-associate. Only three guanine-containing di-PNAs—CG, GC and GG—could form ordered assemblies, as observed by electron microscopy, and these di-PNAs efficiently assembled into discrete architectures within a few minutes. The X-ray crystal structure of the GC di-PNA showed the occurrence of both stacking interactions and Watson-Crick base pairing. The assemblies were also found to exhibit optical properties including voltage-dependent electroluminescence and wide-range excitation-dependent fluorescence in the visible region.

  8. Purification and characterisation of a glutamic acid-containing peptide with calcium-binding capacity from whey protein hydrolysate.

    PubMed

    Huang, Shun-Li; Zhao, Li-Na; Cai, Xixi; Wang, Shao-Yun; Huang, Yi-Fan; Hong, Jing; Rao, Ping-Fan

    2015-02-01

    The bioavailability of dietary ionised calcium is affected by intestinal basic environment. Calcium-binding peptides can form complexes with calcium to improve its absorption and bioavailability. The aim of this study was focused on isolation and characterisation of a calcium-binding peptide from whey protein hydrolysates. Whey protein was hydrolysed using Flavourzyme and Protamex with substrate to enzyme ratio of 25:1 (w/w) at 49 °C for 7 h. The calcium-binding peptide was isolated by DEAE anion-exchange chromatography, Sephadex G-25 gel filtration and reversed phase high-performance liquid chromatography (RP-HPLC). A purified peptide of molecular mass 204 Da with strong calcium binding ability was identified on chromatography/electrospray ionisation (LC/ESI) tandem mass spectrum to be Glu-Gly (EG) after analysis and alignment in database. The calcium binding capacity of EG reached 67·81 μg/mg, and the amount increased by 95% compared with whey protein hydrolysate complex. The UV and infrared spectrometer analysis demonstrated that the principal sites of calcium-binding corresponded to the carboxyl groups and carbonyl groups of glutamic acid. In addition, the amino group and peptide amino are also the related groups in the interaction between EG and calcium ion. Meanwhile, the sequestered calcium percentage experiment has proved that EG-Ca is significantly more stable than CaCl2 in human gastrointestinal tract in vitro. The findings suggest that the purified dipeptide has the potential to be used as ion-binding ingredient in dietary supplements.

  9. Photomodulation of conformational states. I. Mono- and bicyclic peptides with (4-amino)phenylazobenzoic acid as backbone constituent.

    PubMed

    Renner, C; Behrendt, R; Spörlein, S; Wachtveitl, J; Moroder, L

    2000-12-01

    The thioredoxin reductase active-site fragment H-Ala-Cys-Ala-Thr-Cys-Asp-Gly-Phe-OH [134-141], which is known for its high tendency to assume an almost identical conformation as in the intact enzyme, was backbone cyclized with the photoresponsive (4-amino)phenylazobenzoic acid (APB) to produce a monocyclic and disulfide-bridged bicyclic APB-peptide. Light-induced reversible cis/trans isomerization occurs at identical extents in both the linear and the two cyclic forms. Nuclear magnetic resonance conformational analysis clearly revealed that in the bicyclic APB-peptide both as a trans- and cis-azo-isomer the constraints imparted by the bicyclic structure do not allow the molecule to relax into a defined low energy conformation, thus making the molecule a frustrated system that flip-flops between multiple conformational states. Conversely, the monocyclic APB peptide folds into a well-defined lowest energy structure as a trans-azo-isomer, which upon photoisomerization to the cis-azo configuration relaxes into a less restricted conformational space. First femtosecond spectroscopic analysis of the dynamics of the photoreaction confirm a fast first phase on the femtosecond time scale related to the cis/trans isomerization of the azobenzene moiety followed by a slower phase in the picosecond time scale that involves an adjustment of the peptide backbone. Due to the well- defined photoresponsive two-state transition of this monocyclic peptide molecule, it represents a model system well suited for studying the ultrafast dynamics of conformational transitions by time-resolved spectroscopy.

  10. Prospects of In vivo Incorporation of Non-canonical Amino Acids for the Chemical Diversification of Antimicrobial Peptides

    PubMed Central

    Baumann, Tobias; Nickling, Jessica H.; Bartholomae, Maike; Buivydas, Andrius; Kuipers, Oscar P.; Budisa, Nediljko

    2017-01-01

    The incorporation of non-canonical amino acids (ncAA) is an elegant way for the chemical diversification of recombinantly produced antimicrobial peptides (AMPs). Residue- and site-specific installation methods in several bacterial production hosts hold great promise for the generation of new-to-nature AMPs, and can contribute to tackle the ongoing emergence of antibiotic resistance in pathogens. Especially from a pharmacological point of view, desirable improvements span pH and protease resistance, solubility, oral availability and circulation half-life. Although the primary focus of this report is on ribosomally synthesized and post-translationally modified peptides (RiPPs), we have included selected cases of peptides produced by solid phase peptide synthesis to comparatively show the potential and impact of ncAA introduction. Generally speaking, the introduction of ncAAs in recombinant AMPs delivers novel levels of chemical diversification. Cotranslationally incorporated, they can take part in AMP biogenesis either through direction interaction with elements of the post-translational modification (PTM) machinery or as untargeted sites with unique physicochemical properties and chemical handles for further modification. Together with genetic libraries, genome mining and processing by PTM machineries, ncAAs present not a mere addition to this process, but a highly diverse pool of building blocks to significantly broaden the chemical space of this valuable class of molecules. This perspective summarizes new developments of ncAA containing peptides. Challenges to be resolved in order to reach large-scale pharmaceutical production of these promising compounds and prospects for future developments are discussed. PMID:28210246

  11. Synthesis of side chain N,N'-diaminoalkylated derivatives of basic amino acids for application in solid-phase peptide synthesis.

    PubMed

    Pitteloud, Jean-Philippe; Bionda, Nina; Cudic, Predrag

    2013-01-01

    Despite the enormous therapeutic potential, the clinical use of peptides has been limited by their poor bioavailability and low stability under physiological conditions. Hence, efforts have been undertaken to alter peptide structure in ways to improve their pharmacological properties. Inspired by the importance of basic amino acids in biological systems and the remarkable versatility displayed by lysine during the synthesis of complex peptide scaffolds, this chapter describes a simple procedure that enables rapid access to protected N,N'-diaminoalkylated basic amino acid building blocks suitable for standard solid-phase peptide synthesis. This procedure allows preparation of symmetrical, as well as unsymmetrical, dialkylated amino acid derivatives that can be further modified, enhancing their synthetic utility. The suitability of the synthesized branched basic amino acid building blocks for use in standard solid-phase peptide synthesis has been demonstrated by synthesis of an indolicidin analog in which the lysine residue was substituted with its synthetic polyamino derivate. The substitution provided indolicidin analog with increase net positive charge, more ordered secondary structure in biological membranes mimicking conditions, and enhanced antibacterial activity without altering hemolytic activity. Taking into consideration the increasing interest for peptides with unusual structural features due to their improved biological properties, the described synthesis of polyfunctional amino acid building blocks is of particular practical value.

  12. Increased stability and specificity through combined hybridization of peptide nucleic acid (PNA) and locked nucleic acid (LNA) to supercoiled plasmids for PNA-anchored "Bioplex" formation.

    PubMed

    Lundin, Karin E; Hasan, Maroof; Moreno, Pedro M; Törnquist, Elisabeth; Oprea, Iulian; Svahn, Mathias G; Simonson, E Oscar; Smith, C I Edvard

    2005-12-01

    Low cellular uptake and poor nuclear transfer hamper the use of non-viral vectors in gene therapy. Addition of functional entities to plasmids using the Bioplex technology has the potential to improve the efficiency of transfer considerably. We have investigated the possibility of stabilizing sequence-specific binding of peptide nucleic acid (PNA) anchored functional peptides to plasmid DNA by hybridizing PNA and locked nucleic acid (LNA) oligomers as "openers" to partially overlapping sites on the opposite DNA strand. The PNA "opener" stabilized the binding of "linear" PNA anchors to mixed-base supercoiled DNA in saline. For higher stability under physiological conditions, bisPNA anchors were used. To reduce nonspecific interactions when hybridizing highly cationic constructs and to accommodate the need for increased amounts of bisPNA when the molecules are uncharged, or negatively charged, we used both PNA and LNA oligomers as "openers" to increase binding kinetics. To our knowledge, this is the first time that LNA has been used together with PNA to facilitate strand invasion. This procedure allows hybridization at reduced PNA-to-plasmid ratios, allowing greater than 80% hybridization even at ratios as low as 2:1. Using significantly lower amounts of PNA-peptides combined with shorter incubation times reduces unspecific binding and facilitates purification.

  13. Need for accurate and standardized determination of amino acids and bioactive peptides for evaluating protein quality and potential health effects of foods and dietary supplements.

    PubMed

    Gilani, G Sarwar; Xiao, Chaowu; Lee, Nora

    2008-01-01

    Accurate standardized methods for the determination of amino acid in foods are required to assess the nutritional safety and compositional adequacy of sole source foods such as infant formulas and enteral nutritionals, and protein and amino acid supplements and their hydrolysates, and to assess protein claims of foods. Protein digestibility-corrected amino acid score (PDCAAS), which requires information on amino acid composition, is the official method for assessing protein claims of foods and supplements sold in the United States. PDCAAS has also been adopted internationally as the most suitable method for routine evaluation of protein quality of foods by the Food and Agriculture Organization/World Health Organization. Standardized methods for analysis of amino acids by ion-exchange chromatography have been developed. However, there is a need to develop validated methods of amino acid analysis in foods using liquid chromatographic techniques, which have replaced ion-exchange methods for quantifying amino acids in most laboratories. Bioactive peptides from animal and plant proteins have been found to potentially impact human health. A wide range of physiological effects, including blood pressure-lowering effects, cholesterol-lowering ability, antithrombotic effects, enhancement of mineral absorption, and immunomodulatory effects have been described for bioactive peptides. There is considerable commercial interest in developing functional foods containing bioactive peptides. There is also a need to develop accurate standardized methods for the characterization (amino acid sequencing) and quantification of bioactive peptides and to carry out dose-response studies in animal models and clinical trials to assess safety, potential allergenicity, potential intolerance, and efficacy of bioactive peptides. Information from these studies is needed for determining the upper safe levels of bioactive peptides and as the basis for developing potential health claims for bioactive

  14. Interaction of Peptide Transporter 1 With D-Glucose and L-Glutamic Acid; Possible Involvement of Taste Receptors.

    PubMed

    Arakawa, Hiroshi; Ohmachi, Taichi; Ichiba, Kiko; Kamioka, Hiroki; Tomono, Takumi; Kanagawa, Masahiko; Idota, Yoko; Hatano, Yasuko; Yano, Kentaro; Morimoto, Kaori; Ogihara, Takuo

    2016-01-01

    We investigated the influence of sweet and umami (savory) tastants on the intestinal absorption of cephalexin (CEX), a substrate of peptide transporter 1 (PEPT1, SLC15A1) in rats. After oral administration of glucose or mannitol to rats, CEX was administered together with a second dose of glucose or mannitol. Western blot analysis indicated that expression of PEPT1 in rat jejunum membrane was decreased by glucose, compared to mannitol. Furthermore, the maximum plasma concentration (Cmax) of orally administered CEX was reduced by glucose compared to mannitol. The effect of glucose was diminished by nifedipine, a L-type Ca(2+) channel blocker. We also found that Cmax of orally administered CEX was reduced by treatment with L-glutamic acid, compared to D-glutamic acid. Thus, excessive intake of glucose and L-glutamic acid may impair oral absorption of PEPT1 substrates.

  15. Gallotannins and Tannic Acid: First Chemical Syntheses and In Vitro Inhibitory Activity on Alzheimer's Amyloid β-Peptide Aggregation.

    PubMed

    Sylla, Tahiri; Pouységu, Laurent; Da Costa, Grégory; Deffieux, Denis; Monti, Jean-Pierre; Quideau, Stéphane

    2015-07-06

    The screening of natural products in the search for new lead compounds against Alzheimer's disease has unveiled several plant polyphenols that are capable of inhibiting the formation of toxic β-amyloid fibrils. Gallic acid based gallotannins are among these polyphenols, but their antifibrillogenic activity has thus far been examined using "tannic acid", a commercial mixture of gallotannins and other galloylated glucopyranoses. The first total syntheses of two true gallotannins, a hexagalloylglucopyranose and a decagalloylated compound whose structure is commonly used to depict "tannic acid", are now described. These depsidic gallotannins and simpler galloylated glucose derivatives all inhibit amyloid β-peptide (Aβ) aggregation in vitro, and monogalloylated α-glucogallin and a natural β-hexagalloylglucose are shown to be the strongest inhibitors.

  16. Role of Side Chains in β-Sheet Self-Assembly into Peptide Fibrils. IR and VCD Spectroscopic Studies of Glutamic Acid-Containing Peptides.

    PubMed

    Tobias, Fernando; Keiderling, Timothy A

    2016-05-10

    Poly(glutamic acid) at low pH self-assembles after incubation at higher temperature into fibrils composed of antiparallel sheets that are stacked in a β2-type structure whose amide carbonyls have bifurcated H-bonds involving the side chains from the next sheet. Oligomers of Glu can also form such structures, and isotope labeling has provided insight into their out-of-register antiparallel structure [ Biomacromolecules 2013 , 14 , 3880 - 3891 ]. In this paper we report IR and VCD spectra and transmission electron micrograph (TEM) images for a series of alternately sequenced oligomers, Lys-(Aaa-Glu)5-Lys-NH2, where Aaa was varied over a variety of polar, aliphatic, or aromatic residues. Their spectral and TEM data show that these oligopeptides self-assemble into different structures, both local and morphological, that are dependent on both the nature of the Aaa side chains and growth conditions employed. Such alternate peptides substituted with small or polar residues, Ala and Thr, do not yield fibrils; but with β-branched aliphatic residues, Val and Ile, that could potentially pack with Glu side chains, these oligopeptides do show evidence of β2-stacking. By contrast, for Leu, with longer side chains, only β1-stacking is seen while with even larger Phe side chains, either β-form can be detected separately, depending on preparation conditions. These structures are dependent on high temperature incubation after reducing the pH and in some cases after sonication of initial fibril forms and reincubation. Some of these fibrillar peptides, but not all, show enhanced VCD, which can offer evidence for formation of long, multistrand, often twisted structures. Substitution of Glu with residues having selected side chains yields a variety of morphologies, leading to both β1- and β2-structures, that overall suggests two different packing modes for the hydrophobic side chains depending on size and type.

  17. Self-assembled multicompartment liquid crystalline lipid carriers for protein, peptide, and nucleic acid drug delivery.

    PubMed

    Angelova, Angelina; Angelov, Borislav; Mutafchieva, Rada; Lesieur, Sylviane; Couvreur, Patrick

    2011-02-15

    Lipids and lipopolymers self-assembled into biocompatible nano- and mesostructured functional materials offer many potential applications in medicine and diagnostics. In this Account, we demonstrate how high-resolution structural investigations of bicontinuous cubic templates made from lyotropic thermosensitive liquid-crystalline (LC) materials have initiated the development of innovative lipidopolymeric self-assembled nanocarriers. Such structures have tunable nanochannel sizes, morphologies, and hierarchical inner organizations and provide potential vehicles for the predictable loading and release of therapeutic proteins, peptides, or nucleic acids. This Account shows that structural studies of swelling of bicontinuous cubic lipid/water phases are essential for overcoming the nanoscale constraints for encapsulation of large therapeutic molecules in multicompartment lipid carriers. For the systems described here, we have employed time-resolved small-angle X-ray scattering (SAXS) and high-resolution freeze-fracture electronic microscopy (FF-EM) to study the morphology and the dynamic topological transitions of these nanostructured multicomponent amphiphilic assemblies. Quasi-elastic light scattering and circular dichroism spectroscopy can provide additional information at the nanoscale about the behavior of lipid/protein self-assemblies under conditions that approximate physiological hydration. We wanted to generalize these findings to control the stability and the hydration of the water nanochannels in liquid-crystalline lipid nanovehicles and confine therapeutic biomolecules within these structures. Therefore we analyzed the influence of amphiphilic and soluble additives (e.g. poly(ethylene glycol)monooleate (MO-PEG), octyl glucoside (OG), proteins) on the nanochannels' size in a diamond (D)-type bicontinuous cubic phase of the lipid glycerol monooleate (MO). At body temperature, we can stabilize long-living swollen states, corresponding to a diamond cubic phase

  18. Evaluation of a D-amino-acid-containing fluorescence resonance energy transfer peptide library for profiling prokaryotic proteases.

    PubMed

    Kaman, Wendy E; Voskamp-Visser, Ingrid; de Jongh, Denise M C; Endtz, Hubert P; van Belkum, Alex; Hays, John P; Bikker, Floris J

    2013-10-01

    Bacterial proteases play an important role in a broad spectrum of processes, including colonization, proliferation, and virulence. In this respect, bacterial proteases are potential biomarkers for bacterial diagnosis and targets for novel therapeutic protease inhibitors. To investigate these potential functions, the authors designed and used a protease substrate fluorescence resonance energy transfer (FRET) library comprising 115 short d- and l-amino-acid-containing fluorogenic substrates as a tool to generate proteolytic profiles for a wide range of bacteria. Bacterial specificity of the d-amino acid substrates was confirmed using enzymes isolated from both eukaryotic and prokaryotic organisms. Interestingly, bacterial proteases that are known to be involved in housekeeping and nutrition, but not in virulence, were able to degrade substrates in which a d-amino acid was present. Using our FRET peptide library and culture supernatants from a total of 60 different bacterial species revealed novel, bacteria-specific, proteolytic profiles, although in-species variation was observed for Pseudomonas aeruginosa, Porphyromonas gingivalis, and Staphylococcus aureus. Overall, the specific characteristic of our substrate peptide library makes it a rapid tool to high-throughput screen for novel substrates to detect bacterial proteolytic activity.

  19. Sum Frequency Generation Vibrational Spectroscopy of Adsorbed Amino Acids, Peptides and Proteins of Hydrophilic and Hydrophobic Solid-Water Interfaces

    SciTech Connect

    Holinga IV, George Joseph

    2010-09-01

    Sum frequency generation (SFG) vibrational spectroscopy was used to investigate the interfacial properties of several amino acids, peptides, and proteins adsorbed at the hydrophilic polystyrene solid-liquid and the hydrophobic silica solid-liquid interfaces. The influence of experimental geometry on the sensitivity and resolution of the SFG vibrational spectroscopy technique was investigated both theoretically and experimentally. SFG was implemented to investigate the adsorption and organization of eight individual amino acids at model hydrophilic and hydrophobic surfaces under physiological conditions. Biointerface studies were conducted using a combination of SFG and quartz crystal microbalance (QCM) comparing the interfacial structure and concentration of two amino acids and their corresponding homopeptides at two model liquid-solid interfaces as a function of their concentration in aqueous solutions. The influence of temperature, concentration, equilibration time, and electrical bias on the extent of adsorption and interfacial structure of biomolecules were explored at the liquid-solid interface via QCM and SFG. QCM was utilized to quantify the biological activity of heparin functionalized surfaces. A novel optical parametric amplifier was developed and utilized in SFG experiments to investigate the secondary structure of an adsorbed model peptide at the solid-liquid interface.

  20. Biophysical and morphological studies on the dual interaction of non-octarepeat prion protein peptides with copper and nucleic acids.

    PubMed

    Chaves, Juliana A P; Sanchez-López, Carolina; Gomes, Mariana P B; Sisnande, Tháyna; Macedo, Bruno; de Oliveira, Vanessa End; Braga, Carolina A C; Rangel, Luciana P; Silva, Jerson L; Quintanar, Liliana; Cordeiro, Yraima

    2014-08-01

    Conversion of prion protein (PrP) to an altered conformer, the scrapie PrP (PrP(Sc)), is a critical step in the development of transmissible spongiform encephalopathies. Both Cu(II) and nucleic acid molecules have been implicated in this conversion. Full-length PrP can bind up to six copper ions; four Cu(II) binding sites are located in the octarepeat domain (residues 60-91), and His-96 and His-111 coordinate two additional copper ions. Experimental evidence shows that PrP binds different molecules, resulting in diverse cellular signaling events. However, there is little information about the interaction of macromolecular ligands with Cu(II)-bound PrP. Both RNA and DNA sequences can bind PrP, and this interaction results in reciprocal conformational changes. Here, we investigated the interaction of Cu(II) and nucleic acids with amyloidogenic non-octarepeat PrP peptide models (comprising human PrP residues 106-126 and hamster PrP residues 109-149) that retain His-111 as the copper-anchoring residue. The effect of Cu(II) and DNA or RNA sequences in the aggregation, conformation, and toxicity of PrP domains was investigated at low and neutral pH. Circular dichroism and EPR spectroscopy data indicate that interaction of the PrP peptides with Cu(II) and DNA occurs at pH 7. This dual interaction induces conformational changes in the peptides, modulating their aggregation, and affecting the morphology of the aggregated species, resulting in different cytotoxic effects. These results provide new insights into the role of Cu(II) and nucleic acid sequences in the structural conversion and aggregation of PrP, which are both critical events related to prion pathogenesis.

  1. Identification of Dekkera bruxellensis (Brettanomyces) from Wine by Fluorescence In Situ Hybridization Using Peptide Nucleic Acid Probes

    PubMed Central

    Stender, Henrik; Kurtzman, Cletus; Hyldig-Nielsen, Jens J.; Sørensen, Ditte; Broomer, Adam; Oliveira, Kenneth; Perry-O'Keefe, Heather; Sage, Andrew; Young, Barbara; Coull, James

    2001-01-01

    A new fluorescence in situ hybridization method using peptide nucleic acid (PNA) probes for identification of Brettanomyces is described. The test is based on fluorescein-labeled PNA probes targeting a species-specific sequence of the rRNA of Dekkera bruxellensis. The PNA probes were applied to smears of colonies, and results were interpreted by fluorescence microscopy. The results obtained from testing 127 different yeast strains, including 78 Brettanomyces isolates from wine, show that the spoilage organism Brettanomyces belongs to the species D. bruxellensis and that the new method is able to identify Brettanomyces (D. bruxellensis) with 100% sensitivity and 100% specificity. PMID:11157265

  2. Use of Peptide Nucleic Acid-Fluorescence In Situ Hybridization for Definitive, Rapid Identification of Five Common Candida Species▿

    PubMed Central

    Reller, Megan E.; Mallonee, Amanda B.; Kwiatkowski, Nicole P.; Merz, William G.

    2007-01-01

    We investigated a 2.5-h peptide nucleic acid-fluorescence in situ hybridization (PNA-FISH) assay with five Candida species-specific probes to identify Candida colonies and compared it to standard 2-h to 5-day phenotypic identification methods. Suspensions were made and slides were prepared and read for fluorescence per the manufacturer's instructions. Sensitivity was 99% (109/110), and specificity was 99% (129/130). PNA-FISH can rapidly identify those Candida species isolated most frequently. PMID:17804657

  3. Unexpectedly Enhanced Solubility of Aromatic Amino Acids and Peptides in an Aqueous Solution of Divalent Transition-Metal Cations

    NASA Astrophysics Data System (ADS)

    Shi, Guosheng; Dang, Yaru; Pan, Tingting; Liu, Xing; Liu, Hui; Li, Shaoxian; Zhang, Lijuan; Zhao, Hongwei; Li, Shaoping; Han, Jiaguang; Tai, Renzhong; Zhu, Yiming; Li, Jichen; Ji, Qing; Mole, R. A.; Yu, Dehong; Fang, Haiping

    2016-12-01

    We experimentally observed considerable solubility of tryptophan (Trp) in a CuCl2 aqueous solution, which could reach 2-5 times the solubility of Trp in pure water. Theoretical studies show that the strong cation-π interaction between Cu2 + and the aromatic ring in Trp modifies the electronic distribution of the aromatic ring to enhance significantly the water affinity of Trp. Similar solubility enhancement has also been observed for other divalent transition-metal cations (e.g., Zn2 + and Ni2 + ), another aromatic amino acid (phenylalanine), and three aromatic peptides (Trp-Phe, Phe-Phe, and Trp-Ala-Phe).

  4. An Orthogonal D2 O-Based Induction System that Provides Insights into d-Amino Acid Pattern Formation by Radical S-Adenosylmethionine Peptide Epimerases.

    PubMed

    Morinaka, Brandon I; Verest, Marjan; Freeman, Michael F; Gugger, Muriel; Piel, Jörn

    2017-01-16

    Radical S-adenosyl methionine peptide epimerases (RSPEs) are an enzyme family that accomplishes regiospecific and irreversible introduction of multiple d-configured residues into ribosomally encoded peptides. Collectively, RSPEs can generate diverse epimerization patterns in a wide range of substrates. Previously, the lack of rapid methods to localize epimerized residues has impeded efforts to investigate the function and applicative potential of RSPEs. An efficient mass spectrometry-based assay is introduced that permits characterization of products generated in E. coli. Applying this to a range of non-natural peptide-epimerase combinations, it is shown that the d-amino acid pattern is largely but not exclusively dictated by the core peptide sequence, while the epimerization order is dependent on the enzyme-leader pair. RSPEs were found to be highly promiscuous, which allowed for modular introduction of peptide segments with defined patterns.

  5. Evolutionary Importance of the Intramolecular Pathways of Hydrolysis of Phosphate Ester Mixed Anhydrides with Amino Acids and Peptides

    PubMed Central

    Liu, Ziwei; Beaufils, Damien; Rossi, Jean-Christophe; Pascal, Robert

    2014-01-01

    Aminoacyl adenylates (aa-AMPs) constitute essential intermediates of protein biosynthesis. Their polymerization in aqueous solution has often been claimed as a potential route to abiotic peptides in spite of a highly efficient CO2-promoted pathway of hydrolysis. Here we investigate the efficiency and relevance of this frequently overlooked pathway from model amino acid phosphate mixed anhydrides including aa-AMPs. Its predominance was demonstrated at CO2 concentrations matching that of physiological fluids or that of the present-day ocean, making a direct polymerization pathway unlikely. By contrast, the occurrence of the CO2-promoted pathway was observed to increase the efficiency of peptide bond formation owing to the high reactivity of the N-carboxyanhydride (NCA) intermediate. Even considering CO2 concentrations in early Earth liquid environments equivalent to present levels, mixed anhydrides would have polymerized predominantly through NCAs. The issue of a potential involvement of NCAs as biochemical metabolites could even be raised. The formation of peptide–phosphate mixed anhydrides from 5(4H)-oxazolones (transiently formed through prebiotically relevant peptide activation pathways) was also observed as well as the occurrence of the reverse cyclization process in the reactions of these mixed anhydrides. These processes constitute the core of a reaction network that could potentially have evolved towards the emergence of translation. PMID:25501391

  6. Near-UV Photodissociation of Tryptic Peptide Cation Radicals. Scope and Effects of Amino Acid Residues and Radical Sites

    NASA Astrophysics Data System (ADS)

    Nguyen, Huong T. H.; Tureček, František

    2017-02-01

    Peptide cation-radical fragment ions of the z-type, [●AXAR+], [●AXAK+], and [●XAR+], where X = A, C, D, E, F, G, H, K, L, M, N, P, Y, and W, were generated by electron transfer dissociation of peptide dications and investigated by MS3-near-ultraviolet photodissociation (UVPD) at 355 nm. Laser-pulse dependence measurements indicated that the ion populations were homogeneous for most X residues except phenylalanine. UVPD resulted in dissociations of backbone CO-NH bonds that were accompanied by hydrogen atom transfer, producing fragment ions of the [yn]+ type. Compared with collision-induced dissociation, UVPD yielded less side-chain dissociations even for residues that are sensitive to radical-induced side-chain bond cleavages. The backbone dissociations are triggered by transitions to second (B) excited electronic states in the peptide ion R-CH●-CONH- chromophores that are resonant with the 355-nm photon energy. Electron promotion increases the polarity of the B excited states, R-CH+-C●(O-)NH-, and steers the reaction to proceed by transfer of protons from proximate acidic Cα and amide nitrogen positions.

  7. Detection of DBD-carbamoyl amino acids in amino acid sequence and D/L configuration determination of peptides with fluorogenic Edman reagent 7-[(N,N-dimethylamino)sulfonyl]-2,1,3-benzoxadiazol-4-yl isothiocyanate.

    PubMed

    Huang, Y; Matsunaga, H; Toriba, A; Santa, T; Fukushima, T; Imai, K

    1999-06-01

    A method for amino acid sequence and D/L configuration identification of peptides by using fluorogenic Edman reagent 7-[(N, N-dimethylamino)sulfonyl]-2,1,3-benzoxadiazol-4-yl isothiocyanate (DBD-NCS) has been developed. This method was based on the Edman degradation principle with some modifications. A peptide or protein was coupled with DBD-NCS under basic conditions and then cyclized/cleaved to produce DBD-thiazolinone (TZ) derivative by BF3, a Lewis acid, which could significantly suppress the amino acid racemization. The liberated DBD-TZ amino acid was hydrolyzed to DBD-thiocarbamoyl (TC) amino acid under a weakly acidic condition and then oxidized by NaNO2/H+ to DBD-carbamoyl (CA) amino acid which was a stable and had a strong fluorescence intensity. The individual DBD-CA amino acids were separated on a reversed-phase high-performance liquid chromatography (RP-HPLC) for amino acid sequencing and their enantiomers were resolved on a chiral stationary-phase HPLC for identifying their D/L configurations. Combination of the two HPLC systems, the amino acid sequence and D/L configuration of peptides could be determined. This method will be useful for searching D-amino-acid-containing peptides in animals.

  8. A Peptide Mimetic of 5-Acetylneuraminic Acid-Galactose Binds with High Avidity to Siglecs and NKG2D

    PubMed Central

    Eggink, Laura L.; Spyroulias, Georgios A.; Jones, Norman G.; Hanson, Carl V.; Hoober, J. Kenneth

    2015-01-01

    We previously identified several peptide sequences that mimicked the terminal sugars of complex glycans. Using plant lectins as analogs of lectin-type cell-surface receptors, a tetravalent form of a peptide with the sequence NPSHPLSG, designated svH1C, bound with high avidity to lectins specific for glycans with terminal 5-acetylneuraminic acid (Neu5Ac)-galactose (Gal)/N-acetylgalactosamine (GalNAc) sequences. In this report, we show by circular dichroism and NMR spectra that svH1C lacks an ordered structure and thus interacts with binding sites from a flexible conformation. The peptide binds with high avidity to several recombinant human siglec receptors that bind preferentially to Neu5Ac(α2,3)Gal, Neu5Ac(α2,6)GalNAc or Neu5Ac(α2,8)Neu5Ac ligands. In addition, the peptide bound the receptor NKG2D, which contains a lectin-like domain that binds Neu5Ac(α2,3)Gal. The peptide bound to these receptors with a KD in the range of 0.6 to 1 μM. Binding to these receptors was inhibited by the glycoprotein fetuin, which contains multiple glycans that terminate in Neu5Ac(α2,3)Gal or Neu5Ac(α2,6)Gal, and by sialyllactose. Binding of svH1C was not detected with CLEC9a, CLEC10a or DC-SIGN, which are lectin-type receptors specific for other sugars. Incubation of neuraminidase-treated human peripheral blood mononuclear cells with svH1C resulted in binding of the peptide to a subset of the CD14+ monocyte population. Tyrosine phosphorylation of siglecs decreased dramatically when peripheral blood mononuclear cells were treated with 100 nM svH1C. Subcutaneous, alternate-day injections of svH1C into mice induced several-fold increases in populations of several types of immune cells in the peritoneal cavity. These results support the conclusion that svH1C mimics Neu5Ac-containing sequences and interacts with cell-surface receptors with avidities sufficient to induce biological responses at low concentrations. The attenuation of inhibitory receptors suggests that svH1C has

  9. The 4-pyridylmethyl ester as a protecting group for glutamic and aspartic acids: 'flipping' peptide charge states for characterization by positive ion mode ESI-MS.

    PubMed

    Garapati, Sriramya; Burns, Colin S

    2014-03-01

    Use of the 4-pyridylmethyl ester group for side-chain protection of glutamic acid residues in solid-phase peptide synthesis enables switching of the charge state of a peptide from negative to positive, thus making detection by positive ion mode ESI-MS possible. The pyridylmethyl ester moiety is readily removed from peptides in high yield by hydrogenation. Combining the 4-pyridylmethyl ester protecting group with benzyl ester protection reduces the number of the former needed to produce a net positive charge and allows for purification by RP HPLC. This protecting group is useful in the synthesis of highly acidic peptide sequences, which are often beset by problems with purification by standard RP HPLC and characterization by ESI-MS.

  10. Amino acid sequences of peptides from a tryptic digest of a urea-soluble protein fraction (U.S.3) from oxidized wool

    PubMed Central

    Corfield, M. C.; Fletcher, J. C.; Robson, A.

    1967-01-01

    1. A tryptic digest of the protein fraction U.S.3 from oxidized wool has been separated into 32 peptide fractions by cation-exchange resin chromatography. 2. Most of these fractions have been resolved into their component peptides by a combination of the techniques of cation-exchange resin chromatography, paper chromatography and paper electrophoresis. 3. The amino acid compositions of 58 of the peptides in the digest present in the largest amounts have been determined. 4. The amino acid sequences of 38 of these have been completely elucidated and those of six others partially derived. 5. These findings indicate that the parent protein in wool from which the protein fraction U.S.3 is derived has a minimum molecular weight of 74000. 6. The structures of wool proteins are discussed in the light of the peptide sequences determined, and, in particular, of those sequences in fraction U.S.3 that could not be elucidated. PMID:16742497

  11. Enzymatic characterization of peptidic materials isolated from aqueous solutions of ammonium cyanide (pH 9) and hydrocyanic acid (pH 6) exposed to ionizing radiation.

    PubMed

    Niketic, V; Draganić, Z; Nesković, S; Draganić, I

    1982-01-01

    The enzymatic digestion of some radiolytically produced peptidic materials was examined. The substrates were compounds isolated from 0.1 molar solutions of NH4CN (pH 9) and HCN (pH 6), after their exposure to gamma rays from a 60Co source (15-20 Mrad doses). Commercial proteolytic enzymes pronase and aminopeptidase M were used. The examined materials were of composite nature and proteolytic action was systematically observed after their subsequent purification. In some fractions the effect was found to be positive with up to 30% of peptide bonds cleaved with respect to the amino acid content. These findings support our previous conclusions on the free radical induced formation of peptidic backbones without the intervention of amino acids. Some side effects were also noted which might be of interest in observations on enzymatic cleavage of other composite peptidic materials of abiotic origin.

  12. Chemotaxis toward carbohydrates and peptides by mixed ruminal protozoa when fed, fasted, or incubated with polyunsaturated fatty acids.

    PubMed

    Diaz, H L; Karnati, S K R; Lyons, M A; Dehority, B A; Firkins, J L

    2014-01-01

    In contrast to the well-characterized chemotaxis and migratory behavior between the dorsal and ventral locations of the rumen by isotrichids, we hypothesized that chemotaxis toward soluble nutrients maintains entodiniomorphid protozoa in the particulate fraction. The objectives of these experiments were to compare the dose-responsive chemotaxis (1) toward different glucose concentrations when ruminal samples were harvested from fed versus fasted cows; (2) toward increasing concentrations of glucose compared with xylose when protozoa were harvested from a fed cow; (3) toward peptides of bacterial, protozoal, and soy origin; and (4) toward glucose when mixed ruminal protozoa were previously incubated for 0, 3, or 6h in the presence of emulsified polyunsaturated fatty acids (PUFA; Liposyn II, Hospira, Lake Forest, IL). In experiment 1, isotrichid protozoa decreased chemotaxis toward increasing glucose concentration when cows were fasted. Entodiniomorphids exhibited chemotaxis to similar concentrations of glucose as did isotrichids, but to a lesser magnitude of response. In experiment 2, xylose was chemotactic to both groups. Xylose might draw fibrolytic entodiniomorphid protozoa toward newly ingested feed. In contrast, even though isotrichids should not use xylose as an energy source, they were highly chemoattracted to xylose. In experiment 3, entodiniomorphids were not selectively chemoattracted toward bacterial or protozoal peptides compared with soy peptides. In experiment 4, despite isotrichid populations decreasing in abundance with increasing time of incubation in PUFA, chemotaxis to glucose remained unchanged. In contrast, entodiniomorphids recovered chemotaxis to glucose with increased time of PUFA incubation. Current results support isotrichid chemotaxis to sugars but also our hypothesis that a more moderate chemotaxis toward glucose and peptides explains how they swim in the fluid but pass from the rumen with the potentially digestible fraction of

  13. Calcium carbonate crystal growth beneath Langmuir monolayers of acidic β-hairpin peptides.

    PubMed

    Gong, Haofei; Yang, Yi; Pluntke, Manuela; Marti, Othmar; Majer, Zsuzsa; Sewald, Norbert; Volkmer, Dirk

    2014-11-28

    Four amphiphilic peptides with designed hairpin structure were synthesized and their monolayers were employed as model systems to study biologically inspired calcium carbonate crystallization. Langmuir monolayers of hairpin peptides were investigated by surface pressure area isotherms, surface potential isotherms, Brewster angle microscopy (BAM), atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectroscopy. A β-hairpin conformation was found for all peptides at the air-water interface although their packing arrangements seem to be different. Crystallization of calcium carbonate under these peptide monolayers was investigated at different surface pressures and growth times both by in situ optical microscopy, BAM and ex situ investigations such as scanning electron microscopy (SEM) and transmission electron microscopy (TEM). An amorphous calcium carbonate precursor was found at the initial crystallization stage. The crystallization process occurred in three stages. It starts from the nucleation of amorphous particles being a kinetically controlled process. Crystal nuclei subsequently aggregate to large particles and vaterite crystals start to form inside the amorphous layer, with the monolayer fluidity exerting an important role. The third process includes the re-crystallization of vaterite to calcite, which is thermodynamically controlled by monolayer structural factors including the monolayer flexibility and packing arrangement of the polar headgroups. Thus, the kinetic factors, monolayer fluidity and flexibility as well as structure factors govern the crystal morphology and polymorph distribution simultaneously and synergistically.

  14. Sea anemone peptide with uncommon β-hairpin structure inhibits acid-sensing ion channel 3 (ASIC3) and reveals analgesic activity.

    PubMed

    Osmakov, Dmitry I; Kozlov, Sergey A; Andreev, Yaroslav A; Koshelev, Sergey G; Sanamyan, Nadezhda P; Sanamyan, Karen E; Dyachenko, Igor A; Bondarenko, Dmitry A; Murashev, Arkadii N; Mineev, Konstantin S; Arseniev, Alexander S; Grishin, Eugene V

    2013-08-09

    Three novel peptides were isolated from the venom of the sea anemone Urticina grebelnyi. All of them are 29 amino acid peptides cross-linked by two disulfide bridges, with a primary structure similar to other sea anemone peptides belonging to structural group 9a. The structure of the gene encoding the shared precursor protein of the identified peptides was determined. One peptide, π-AnmTX Ugr 9a-1 (short name Ugr 9-1), produced a reversible inhibition effect on both the transient and the sustained current of human ASIC3 channels expressed in Xenopus laevis oocytes. It completely blocked the transient component (IC50 10 ± 0.6 μM) and partially (48 ± 2%) inhibited the amplitude of the sustained component (IC50 1.44 ± 0.19 μM). Using in vivo tests in mice, Ugr 9-1 significantly reversed inflammatory and acid-induced pain. The other two novel peptides, AnmTX Ugr 9a-2 (Ugr 9-2) and AnmTX Ugr 9a-3 (Ugr 9-3), did not inhibit the ASIC3 current. NMR spectroscopy revealed that Ugr 9-1 has an uncommon spatial structure, stabilized by two S-S bridges, with three classical β-turns and twisted β-hairpin without interstrand disulfide bonds. This is a novel peptide spatial structure that we propose to name boundless β-hairpin.

  15. An HLA-A3-binding prostate acid phosphatase-derived peptide can induce CTLs restricted to HLA-A2 and -A24 alleles.

    PubMed

    Terasaki, Yasunobu; Shichijo, Shigeki; Niu, Yamei; Komatsu, Nobukazu; Noguchi, Masanori; Todo, Satoru; Itoh, Kyogo

    2009-11-01

    We previously reported peptide vaccine candidates for HLA-A3 supertype (-A3, -A11, -A31, -A33)-positive cancer patients. In the present study, we examined whether those peptides can also induce cytotoxic T lymphocyte (CTL) activity restricted to HLA-A2, HLA-A24, and HLA-A26 alleles. Fourteen peptides were screened for their binding activity to HLA-A*0201, -A*0206, -A*0207, -A*2402, and -A*2601 molecules and then tested for their ability to induce CTL activity in peripheral blood mononuclear cells (PBMCs) from prostate cancer patients. Among these peptides, one from the prostate acid phosphatase protein exhibited binding activity to HLA-A*0201, -A*0206, and -A*2402 molecules. In addition, PBMCs stimulated with this peptide showed that HLA-A2 or HLA-A24 restricted CTL activity. Their cytotoxicity toward cancer cells was ascribed to peptide-specific and CD8+ T cells. These results suggest that this peptide could be widely applicable as a peptide vaccine for HLA-A3 supertype-, HLA-A2-, and -A24-positive cancer patients.

  16. Fmoc-modified amino acids and short peptides: simple bio-inspired building blocks for the fabrication of functional materials.

    PubMed

    Tao, Kai; Levin, Aviad; Adler-Abramovich, Lihi; Gazit, Ehud

    2016-07-11

    Amino acids and short peptides modified with the 9-fluorenylmethyloxycarbonyl (Fmoc) group possess eminent self-assembly features and show distinct potential for applications due to the inherent hydrophobicity and aromaticity of the Fmoc moiety which can promote the association of building blocks. Given the extensive study and numerous publications in this field, it is necessary to summarize the recent progress concerning these important bio-inspired building blocks. Therefore, in this review, we explore the self-organization of this class of functional molecules from three aspects, i.e., Fmoc-modified individual amino acids, Fmoc-modified di- and tripeptides, and Fmoc-modified tetra- and pentapeptides. The relevant properties and applications related to cell cultivation, bio-templating, optical, drug delivery, catalytic, therapeutic and antibiotic properties are subsequently summarized. Finally, some existing questions impeding the development of Fmoc-modified simple biomolecules are discussed, and corresponding strategies and outlooks are suggested.

  17. Derivatization and fluorescence detection of amino acids and peptides with 9-fluorenylmethyl chloroformate on the surface of a solid adsorbent.

    PubMed

    Shangguan, D; Zhao, Y; Han, H; Zhao, R; Liu, G

    2001-05-01

    An approach that exploits the surface of a solid adsorbent is proposed for precolumn FMOC derivatization of amino acids and peptides. Amino acids (Ser, Glu, GABA, Val, Phe, Lys) and two neuropeptides (substance P and Leuenkephalin) were adsorbed on alkaline silica gel cartridges. After drying, they were reacted with 9-fluorenyl-methyl chloroformate (FMOC-Cl) in toluene. After washing off the excess FMOC-Cl with ethyl acetate, the derivatives were eluted with aqueous eluant. The eluates were separated and detected by means of HPLC with fluorescence detection. Compared with the traditional derivatization in the liquid phase, the extent of formation of byproducts of FMOC-Cl with water was greatly decreased, and the excess FMOC-Cl was eliminated completely.

  18. A switchable stapled peptide.

    PubMed

    Kalistratova, Aleksandra; Legrand, Baptiste; Verdié, Pascal; Naydenova, Emilia; Amblard, Muriel; Martinez, Jean; Subra, Gilles

    2016-03-01

    The O-N acyl transfer reaction has gained significant popularity in peptide and medicinal chemistry. This reaction has been successfully applied to the synthesis of difficult sequence-containing peptides, cyclic peptides, epimerization-free fragment coupling and more recently, to switchable peptide polymers. Herein, we describe a related strategy to facilitate the synthesis and purification of a hydrophobic stapled peptide. The staple consists of a serine linked through an amide bond formed from its carboxylic acid function and the side chain amino group of diaminopropionic acid and through an ester bond formed from its amino group and the side chain carboxylic acid function of aspartic acid. The α-amino group of serine was protonated during purification. Interestingly, when the peptide was placed at physiological pH, the free amino group initiated the O-N shift reducing the staple length by one atom, leading to a more hydrophobic stapled peptide.

  19. The role of citric acid in oral peptide and protein formulations: relationship between calcium chelation and proteolysis inhibition.

    PubMed

    Welling, Søren H; Hubálek, František; Jacobsen, Jette; Brayden, David J; Rahbek, Ulrik L; Buckley, Stephen T

    2014-04-01

    The excipient citric acid (CA) has been reported to improve oral absorption of peptides by different mechanisms. The balance between its related properties of calcium chelation and permeation enhancement compared to a proteolysis inhibition was examined. A predictive model of CA's calcium chelation activity was developed and verified experimentally using an ion-selective electrode. The effects of CA, its salt (citrate, Cit) and the established permeation enhancer, lauroyl carnitine chloride (LCC) were compared by measuring transepithelial electrical resistance (TEER) and permeability of insulin and FD4 across Caco-2 monolayers and rat small intestinal mucosae mounted in Ussing chambers. Proteolytic degradation of insulin was determined in rat luminal extracts across a range of pH values in the presence of CA. CA's capacity to chelate calcium decreased ~10-fold for each pH unit moving from pH 6 to pH 3. CA was an inferior weak permeation enhancer compared to LCC in both in vitro models using physiological buffers. At pH 4.5 however, degradation of insulin in rat luminal extracts was significantly inhibited in the presence of 10mM CA. The capacity of CA to chelate luminal calcium does not occur significantly at the acidic pH values where it effectively inhibits proteolysis, which is its dominant action in oral peptide formulations. On account of insulin's low basal permeability, inclusion of alternative permeation enhancers is likely to be necessary to achieve sufficient oral bioavailability since this is a weak property of CA.

  20. Polyplexes assembled from self-peptides and regulatory nucleic acids blunt toll-like receptor signaling to combat autoimmunity.

    PubMed

    Hess, Krystina L; Andorko, James I; Tostanoski, Lisa H; Jewell, Christopher M

    2017-02-01

    Autoimmune diseases occur when the immune system incorrectly recognizes self-molecules as foreign; in the case of multiple sclerosis (MS), myelin is attacked. Intriguingly, new studies reveal toll-like receptors (TLRs), pathways usually involved in generating immune responses against pathogens, play a significant role in driving autoimmune disease in both humans and animal models. We reasoned polyplexes formed from myelin self-antigen and regulatory TLR antagonists might limit TLR signaling during differentiation of myelin-specific T cells, inducing tolerance by biasing T cells away from inflammatory phenotypes. Complexes were formed by modifying myelin peptide with cationic amino acids to create peptides able to condense the anionic nucleic-acid based TLR antagonist. These immunological polyplexes eliminate synthetic polymers commonly used to condense polyplexes and do not rely on gene expression; however, the complexes mimic key features of traditional polyplexes such as tunable loading and co-delivery. Using these materials and classic polyplex analysis techniques, we demonstrate condensation of both immune signals, protection from enzymatic degradation, and tunable physicochemical properties. We show polyplexes reduce TLR signaling, and in primary dendritic cell and T cell co-culture, reduce myelin-driven inflammation. During mouse models of MS, these tolerogenic polyplexes improve the progression, severity, and incidence of disease.

  1. Anxiolytic-Like Effect of a Salmon Phospholipopeptidic Complex Composed of Polyunsaturated Fatty Acids and Bioactive Peptides

    PubMed Central

    Belhaj, Nabila; Desor, Frédéric; Gleizes, Céline; Denis, Frédéric M.; Arab-Tehrany, Elmira; Soulimani, Rachid; Linder, Michel

    2013-01-01

    A phospholipopeptidic complex obtained by the enzymatic hydrolysis of salmon heads in green conditions; exert anxiolytic-like effects in a time and dose-dependent manner, with no affection of locomotor activity. This study focused on the physico-chemical properties of the lipidic and peptidic fractions from this natural product. The characterization of mineral composition, amino acid and fatty acids was carried out. Stability of nanoemulsions allowed us to realize a behavioral study conducted with four different tests on 80 mice. This work highlighted the dose dependent effects of the natural complex and its various fractions over a period of 14 days compared to a conventional anxiolytic. The intracellular redox status of neural cells was evaluated in order to determine the free radicals scavenging potential of these products in the central nervous system (CNS), after mice sacrifice. The complex peptidic fraction showed a strong scavenging property and similar results were found for the complex as well as its lipidic fraction. For the first time, the results of this study showed the anxiolytic-like and neuroprotective properties of a phospholipopeptidic complex extracted from salmon head. The applications on anxiety disorders might be relevant, depending on the doses, the fraction used and the chronicity of the supplementation. PMID:24177675

  2. Investigation on enantiomeric separations of fluorenylmethoxycarbonyl amino acids and peptides by high-performance liquid chromatography using native cyclodextrins as chiral stationary phases.

    PubMed

    Tang, Y; Zukowski, J; Armstrong, D W

    1996-09-06

    A systematic study was carried out to investigate enantiomeric separations of fluorenylmethoxycarbonyl (FMOC) amino acids and their peptides. Twenty amino acids were derivatized by 9-fluorenylmethyl chloroformate (FMOC-Cl) and its analogues, FMOC-glycyl-Cl and FMOC-beta-alanyl-Cl. All derivatives were chromatographed on native beta- and gamma-cyclodextrin columns using acetonitrile as the main mobile phase component. The results indicated that glycyl and beta-alanyl groups between FMOC and amino acid moieties enhanced chiral selectivities of amino acid derivatives. The addition of modifiers, triethylamine, acetic acid and methanol, into the mobile phase caused alterations in retention, enantiorecognition and elution order. The structures of amino acids and the type of chiral stationary phase employed exhibited significant impacts on chiral resolutions. It is also found that the number and position of glycyl moieties affect the retentions and enantioselectivities of FMOC derivatized glycyl containing peptides.

  3. Characterizing hydrophobicity of amino acid side chains in a protein environment via measuring contact angle of a water nanodroplet on planar peptide network.

    PubMed

    Zhu, Chongqin; Gao, Yurui; Li, Hui; Meng, Sheng; Li, Lei; Francisco, Joseph S; Zeng, Xiao Cheng

    2016-11-15

    Hydrophobicity of macroscopic planar surface is conventionally characterized by the contact angle of water droplets. However, this engineering measurement cannot be directly extended to surfaces of proteins, due to the nanometer scale of amino acids and inherent nonplanar structures. To measure the hydrophobicity of side chains of proteins quantitatively, numerous parameters were developed to characterize behavior of hydrophobic solvation. However, consistency among these parameters is not always apparent. Herein, we demonstrate an alternative way of characterizing hydrophobicity of amino acid side chains in a protein environment by constructing a monolayer of amino acids (i.e., artificial planar peptide network) according to the primary and the β-sheet secondary structures of protein so that the conventional engineering measurement of the contact angle of a water droplet can be brought to bear. Using molecular dynamics simulations, contact angles θ of a water nanodroplet on the planar peptide network, together with excess chemical potentials of purely repulsive methane-sized Weeks-Chandler-Andersen solute, are computed. All of the 20 types of amino acids and the corresponding planar peptide networks are studied. Expectedly, all of the planar peptide networks with nonpolar amino acids are hydrophobic due to θ [Formula: see text] 90°, whereas all of the planar peptide networks of the polar and charged amino acids are hydrophilic due to θ [Formula: see text] 90°. Planar peptide networks of the charged amino acids exhibit complete-wetting behavior due to θ [Formula: see text] 0°. This computational approach for characterization of hydrophobicity can be extended to artificial planar networks of other soft matter.

  4. Conformational characterization of peptides rich in the cycloaliphatic C alpha,alpha-disubstituted glycine 1-aminocyclononane-1-carboxylic acid.

    PubMed

    Gatos, M; Formaggio, F; Crisma, M; Valle, G; Toniolo, C; Bonora, G M; Saviano, M; Iacovino, R; Menchise, V; Galdiero, S; Pedone, C; Benedetti, E

    1997-01-01

    A series of N- and C-protected, monodispersed homo-oligopeptides (to the pentamer level) from the cycloaliphatic C alpha,alpha-dialkylated glycine 1-aminocyclononane-1-carboxylic acid (Ac9c) and two Ala/Ac9c tripeptides have been synthesized by solution methods and fully characterized. The conformational preferences of all the model peptides were determined in deuterochloroform solution by FT-IR absorption and 1H-NMR. The molecular structures of the amino acid derivatives mCIAc-Ac9c-OH and Z-Ac9c-OtBu, the dipeptide pBrBz-(Ac9c)2-OtBu, the tetrapeptide Z-(Ac9c)4-OtBu, and the pentapeptide Z-(Ac9c)5-OtBu were determined in the crystal state by X-ray diffraction. Based on this information, the average geometry and the preferred conformation for the cyclononyl moiety of the Ac9c residue have been assessed. The backbone conformational data are strongly in favour of the conclusion that the Ac9c residue is a strong beta-turn and helix former. A comparison with the structural propensity of alpha-aminoisobutyric acid, the prototype of C alpha,alpha-dialkylated glycines, and the other extensively investigated members of the family of 1-aminocycloalkane-1-carboxylic acids (Acnc, with n = 3-8) is made and the implications for the use of the Ac9c residue in conformationally constrained analogues of bioactive peptides are briefly examined.

  5. Plane wave density functional theory studies of the structural and the electronic properties of amino acids attached to graphene oxide via peptide bonding

    NASA Astrophysics Data System (ADS)

    Min, Byeong June; Jeong, Hae Kyung; Lee, ChangWoo

    2015-08-01

    We studied via plane wave pseudopotential total-energy calculations within the local spin density approximation (LSDA) the electronic and the structural properties of amino acids (alanine, glycine, and histidine) attached to graphene oxide (GO) by peptide bonding. The HOMO-LUMO gap, the Hirshfeld charges, and the equilibrium geometrical structures exhibit distinctive variations that depend on the species of the attached amino acid. The GO-amino acid system appears to be a good candidate for a biosensor.

  6. N-Terminal Fatty Acid Substitution Increases the Leishmanicidal Activity of CA(1-7)M(2-9), a Cecropin-Melittin Hybrid Peptide

    PubMed Central

    Chicharro, Cristina; Granata, Cesare; Lozano, Rosario; Andreu, David; Rivas, Luis

    2001-01-01

    In order to improve the leishmanicidal activity of the synthetic cecropin A-melittin hybrid peptide CA(1-7)M(2-9) (KWKLFKKIGAVLKVL-NH2), a systematic study of its acylation with saturated linear fatty acids was carried out. Acylation of the Nɛ-7 lysine residue led to a drastic decrease in leishmanicidal activity, whereas acylation at lysine 1, in either the α or the ɛ NH2 group, increased up to 3 times the activity of the peptide against promastigotes and increased up to 15 times the activity of the peptide against amastigotes. Leishmanicidal activity increased with the length of the fatty acid chain, reaching a maximum for the lauroyl analogue (12 carbons). According to the fast kinetics, dissipation of membrane potential, and parasite membrane permeability to the nucleic acid binding probe SYTOX green, the lethal mechanism was directly related to plasma membrane permeabilization. PMID:11502512

  7. Production of carrier-peptide conjugates using chemically reactive unnatural amino acids

    DOEpatents

    Young, Travis; Schultz, Peter G.

    2015-08-18

    Provided are methods of making carrier polypeptide that include incorporating a first unnatural amino acid into a carrier polypeptide variant, incorporating a second unnatural amino acid into a target polypeptide variant, and reacting the first and second unnatural amino acids to produce the conjugate. Conjugates produced using the provided methods are also provided. In addition, orthogonal translation systems in methylotrophic yeast and methods of using these systems to produce carrier and target polypeptide variants comprising unnatural amino acids are provided.

  8. Production of carrier-peptide conjugates using chemically reactive unnatural amino acids

    DOEpatents

    Young, Travis; Schultz, Peter G

    2013-12-17

    Provided are methods of making carrier polypeptide that include incorporating a first unnatural amino acid into a carrier polypeptide variant, incorporating a second unnatural amino acid into a target polypeptide variant, and reacting the first and second unnatural amino acids to produce the conjugate. Conjugates produced using the provided methods are also provided. In addition, orthogonal translation systems in methylotrophic yeast and methods of using these systems to produce carrier and target polypeptide variants comprising unnatural amino acids are provided.

  9. Production of carrier-peptide conjugates using chemically reactive unnatural amino acids

    DOEpatents

    Young, Travis; Schultz, Peter G

    2014-01-28

    Provided are methods of making carrier polypeptide that include incorporating a first unnatural amino acid into a carrier polypeptide variant, incorporating a second unnatural amino acid into a target polypeptide variant, and reacting the first and second unnatural amino acids to produce the conjugate. Conjugates produced using the provided methods are also provided. In addition, orthogonal translation systems in methylotrophic yeast and methods of using these systems to produce carrier and target polypeptide variants comprising unnatural amino acids are provided.

  10. The amino acid sequence of Neurospora NADP-specific glutamate dehydrogenase. The tryptic peptides.

    PubMed Central

    Wootton, J C; Taylor, J G; Jackson, A A; Chambers, G K; Fincham, J R

    1975-01-01

    The NADP-specific glutamate dehydrogenase of Neurospora crassa was digested with trypsin, and peptides accounting for 441 out of the 452 residues of the polypeptide chain were isolated and substantially sequenced. Additional experimental detail has been deposited as Supplementary Publication SUP 50052 (11 pages) with the British Library (Lending Division), Boston Spa, Wetherby, W. Yorkshire LS23 7BQ, U.K., from whom copies may be obtained under the terms given in Biochem J. (1975) 145, 5. PMID:1000

  11. Selective Detection of Carbohydrates and Their Peptide Conjugates by ESI-MS Using Synthetic Quaternary Ammonium Salt Derivatives of Phenylboronic Acids

    NASA Astrophysics Data System (ADS)

    Kijewska, Monika; Kuc, Adam; Kluczyk, Alicja; Waliczek, Mateusz; Man-Kupisinska, Aleksandra; Lukasiewicz, Jolanta; Stefanowicz, Piotr; Szewczuk, Zbigniew

    2014-06-01

    We present new tags based on the derivatives of phenylboronic acid and apply them for the selective detection of sugars and peptide-sugar conjugates in mass spectrometry. We investigated the binding of phenylboronic acid and its quaternary ammonium salt (QAS) derivatives to carbohydrates and peptide-derived Amadori products by HR-MS and MS/MS experiments. The formation of complexes between sugar or sugar-peptide conjugates and synthetic tags was confirmed on the basis of the unique isotopic distribution resulting from the presence of boron atom. Moreover, incorporation of a quaternary ammonium salt dramatically improved the efficiency of ionization in mass spectrometry. It was found that the formation of a complex with phenylboronic acid stabilizes the sugar moiety in glycated peptides, resulting in simplification of the fragmentation pattern of peptide-derived Amadori products. The obtained results suggest that derivatization of phenylboronic acid as QAS is a promising method for sensitive ESI-MS detection of carbohydrates and their conjugates formed by non-enzymatic glycation or glycosylation.

  12. Selective detection of carbohydrates and their peptide conjugates by ESI-MS using synthetic quaternary ammonium salt derivatives of phenylboronic acids.

    PubMed

    Kijewska, Monika; Kuc, Adam; Kluczyk, Alicja; Waliczek, Mateusz; Man-Kupisinska, Aleksandra; Lukasiewicz, Jolanta; Stefanowicz, Piotr; Szewczuk, Zbigniew

    2014-06-01

    We present new tags based on the derivatives of phenylboronic acid and apply them for the selective detection of sugars and peptide-sugar conjugates in mass spectrometry. We investigated the binding of phenylboronic acid and its quaternary ammonium salt (QAS) derivatives to carbohydrates and peptide-derived Amadori products by HR-MS and MS/MS experiments. The formation of complexes between sugar or sugar-peptide conjugates and synthetic tags was confirmed on the basis of the unique isotopic distribution resulting from the presence of boron atom. Moreover, incorporation of a quaternary ammonium salt dramatically improved the efficiency of ionization in mass spectrometry. It was found that the formation of a complex with phenylboronic acid stabilizes the sugar moiety in glycated peptides, resulting in simplification of the fragmentation pattern of peptide-derived Amadori products. The obtained results suggest that derivatization of phenylboronic acid as QAS is a promising method for sensitive ESI-MS detection of carbohydrates and their conjugates formed by non-enzymatic glycation or glycosylation.

  13. Overcoming the Refractory Expression of Secreted Recombinant Proteins in Mammalian Cells through Modification of the Signal Peptide and Adjacent Amino Acids

    PubMed Central

    Güler-Gane, Gülin; Kidd, Sara; Sridharan, Sudharsan; Vaughan, Tristan J.; Wilkinson, Trevor C. I.

    2016-01-01

    The expression and subsequent purification of mammalian recombinant proteins is of critical importance to many areas of biological science. To maintain the appropriate tertiary structure and post-translational modifications of such proteins, transient mammalian expression systems are often adopted. The successful utilisation of these systems is, however, not always forthcoming and some recombinant proteins prove refractory to expression in mammalian hosts. In this study we focussed on the role of different N-terminal signal peptides and residues immediately downstream, in influencing the level of secreted recombinant protein obtained from suspension HEK293 cells. Using secreted alkaline phosphatase (SEAP) as a model protein, we identified that the +1/+2 downstream residues flanking a heterologous signal peptide significantly affect secreted levels. By incorporating these findings we conducted a comparison of different signal peptide sequences and identified the most productive as secrecon, a computationally-designed sequence. Importantly, in the context of the secrecon signal peptide and SEAP, we also demonstrated a clear preference for specific amino acid residues at the +1 position (e.g. alanine), and a detrimental effect of others (cysteine, proline, tyrosine and glutamine). When proteins that naturally contain these “undesirable” residues at the +1 position were expressed with their native signal peptide, the heterologous secrecon signal peptide, or secrecon with an additional alanine at the +1 or +1 and +2 position, the level of expression differed significantly and in an unpredictable manner. For each protein, however, at least one of the panel of signal peptide/adjacent amino acid combinations enabled successful recombinant expression. In this study, we highlight the important interplay between a signal peptide and its adjacent amino acids in enabling protein expression, and we describe a strategy that could enable recombinant proteins that have so far

  14. PH dependent adhesive peptides

    SciTech Connect

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  15. Protective Effect of Cod (Gadus macrocephalus) Skin Collagen Peptides on Acetic Acid-Induced Gastric Ulcer in Rats.

    PubMed

    Niu, Huina; Wang, Zhicong; Hou, Hu; Zhang, Zhaohui; Li, Bafang

    2016-07-01

    This research was performed to explore the protective effect of cod skin collagen peptides (CCP) on gastric ulcer induced by acetic acid. The CCP were fractionated into low molecular CCP (LMCCP, Mw < 3 kDa) and high molecular CCP (HMCCP, Mw > 3 kDa). In HMCCP and LMCCP, glycine of accounted for about one-third of the total amino acids without cysteine and tryptophan, and hydrophobic amino acids accounted for about 50%. After 21 d CCP treatment (60 or 300 mg/kg, p.o./daily), the healing effects on acetic acid-induced gastric ulcers were evaluated by macroscopic measure, microscopic measure, and immune histochemistry. Moreover, the expression levels of the growth factors, such as vascular endothelial growth factor, epidermal growth factor, transforming growth factor β1 (TGFβ1), and the heat shock protein 70 (HSP70) was detected. The results showed that both LMCCP and HMCCP could significantly decrease the ulcer areas and promote the healing of the lesions. They also could improve the levels of hexosamine, glutathione, superoxide dismutase, and glutathione peroxidase, and reduce the content of malondialdehyde and inducible nitric oxide synthase. In addition, the expression level of TGFβ1 gene and HSP70 mRNA was significantly improved by the treatment. It suggested that CCP could be able to improve symptoms of gastric ulcer and probably be used in the treatment of gastric ulcer.

  16. Binding affinities of amino acid analogues at the charged aqueous titania interface: implications for titania-binding peptides.

    PubMed

    Sultan, Anas M; Hughes, Zak E; Walsh, Tiffany R

    2014-11-11

    Despite the extensive utilization of biomolecule-titania interfaces, biomolecular recognition and interactions at the aqueous titania interface remain far from being fully understood. Here, atomistic molecular dynamics simulations, in partnership with metadynamics, are used to calculate the free energy of adsorption of different amino acid side chain analogues at the negatively-charged aqueous rutile TiO2 (110) interface, under conditions corresponding with neutral pH. Our calculations predict that charged amino acid analogues have a relatively high affinity to the titania surface, with the arginine analogue predicted to be the strongest binder. Interactions between uncharged amino acid analogues and titania are found to be repulsive or weak at best. All of the residues that bound to the negatively-charged interface show a relatively stronger adsorption compared with the charge-neutral interface, including the negatively-charged analogue. Of the analogues that are found to bind to the titania surface, the rank ordering of the binding affinities is predicted to be "arginine" > "lysine" ≈ aspartic acid > "serine". This is the same ordering as was found previously for the charge-neutral aqueous titania interface. Our results show very good agreement with available experimental data and can provide a baseline for the interpretation of peptide-TiO2 adsorption data.

  17. Stereoconversion of amino acids and peptides in uryl-pendant binol schiff bases.

    PubMed

    Park, Hyunjung; Nandhakumar, Raju; Hong, Jooyeon; Ham, Sihyun; Chin, Jik; Kim, Kwan Mook

    2008-01-01

    (S)-2-Hydroxy-2'-(3-phenyluryl-benzyl)-1,1'-binaphthyl-3-carboxaldehyde (1) forms Schiff bases with a wide range of nonderivatized amino acids, including unnatural ones. Multiple hydrogen bonds, including resonance-assisted ones, fix the whole orientation of the imine and provoke structural rigidity around the imine C==N bond. Due to the structural difference and the increase in acidity of the alpha proton of the amino acid, the imine formed with an L-amino acid (1-l-aa) is converted into the imine of the D-amino acid (1-D-aa), with a D/L ratio of more than 10 for most amino acids at equilibrium. N-terminal amino acids in dipeptides are also predominantly epimerized to the D form upon imine formation with 1. Density functional theory calculations show that 1-D-Ala is more stable than 1-L-Ala by 1.64 kcal mol(-1), a value that is in qualitative agreement with the experimental result. Deuterium exchange of the alpha proton of alanine in the imine form was studied by (1)H NMR spectroscopy and the results support a stepwise mechanism in the L-into-D conversion rather than a concerted one; that is, deprotonation and protonation take place in a sequential manner. The deprotonation rate of L-Ala is approximately 16 times faster than that of D-Ala. The protonation step, however, appears to favor L-amino acid production, which prevents a much higher predominance of the D form in the imine. Receptor 1 and the predominantly D-form amino acid can be recovered from the imine by simple extraction under acidic conditions. Hence, 1 is a useful auxiliary to produce D-amino acids of industrial interest by the conversion of naturally occurring L-amino acids or relatively easily obtainable racemic amino acids.

  18. Amino acid sequences of alpha-helical segments from S-carboxymethylkerateine-A. Tryptic and chymotryptic peptides from a type-II segment.

    PubMed Central

    Hogg, D M; Dowling, L M; Crewther, W G

    1978-01-01

    1. Amino acid-sequence studies were done on a peptide of mol.wt. approx. 12500 that was isolated from the highly helical fragments obtained by partial chymotryptic digestion of the low-sulphur proteins (S-carboxymethylkerateine-A) from wool. 2. The peptides obtained by tryptic and chymotryptic digestion of this large peptide were separated by ion-exchange chromatography on DEAE-cellulose at pH8.5 with an (NH4)(2)CO(3) concentration gradient and, where necessary, purified further by paper electrophoresis. 3. Determination of the sequences of many of these peptides showed that a high proportion of the cationic residues occurs in pairs. 4. Although two of the four S-carboxymethylcysteine residues are located in what appears to be a non-helical region near the N-terminus the other two S-carboxymethylcysteine residues occur in or near sequences suggesting a helical conformation. 5. Some peptides were obtained, in low yields, that appeared to be homologues of more major ones. These suggest either homologies in the helical portions of the low-sulphur proteins or the presence of closely related amino acid sequences in helical regions of completely different origins. 6. A partial sequence of the complete peptide is proposed. PMID:581263

  19. Role of enthalpy-entropy compensation interactions in determining the conformational propensities of amino acid residues in unfolded peptides.

    PubMed

    Toal, Siobhan E; Verbaro, Daniel J; Schweitzer-Stenner, Reinhard

    2014-02-06

    The driving forces governing the unique and restricted conformational preferences of amino acid residues in the unfolded state are still not well understood. In this study, we experimentally determine the individual thermodynamic components underlying intrinsic conformational propensities of these residues. Thermodynamic analysis of ultraviolet-circular dichroism (UV-CD) and (1)H NMR data for a series of glycine capped amino acid residues (i.e., G-x-G peptides) reveals the existence of a nearly exact enthalpy-entropy compensation for the polyproline II-β strand equilibrium for all investigated residues. The respective ΔHβ, ΔSβ values exhibit a nearly perfect linear relationship with an apparent compensation temperature of 295 ± 2 K. Moreover, we identified iso-equilibrium points for two subsets of residues at 297 and 305 K. Thus, our data suggest that within this temperature regime, which is only slightly below physiological temperatures, the conformational ensembles of amino acid residues in the unfolded state differ solely with respect to their capability to adopt turn-like conformations. Such iso-equilibria are rarely observed, and their existence herein indicates a common physical origin behind conformational preferences, which we are able to assign to side-chain dependent backbone solvation. Conformational effects such as differences between the number of sterically allowed side chain rotamers can contribute to enthalpy and entropy but not to the Gibbs energy associated with conformational preferences. Interestingly, we found that alanine, aspartic acid, and threonine are the only residues which do not share these iso-equilbiria. The enthalpy-entropy compensation discovered as well as the iso-equilbrium and thermodynamics obtained for each amino acid residue provide a new and informative way of identifying the determinants of amino acid propensities in unfolded and disordered states.

  20. Application of serine- and threonine-derived cyclic sulfamidates for the preparation of S-linked glycosyl amino acids in solution- and solid-phase peptide synthesis.

    PubMed

    Cohen, Scott B; Halcomb, Randall L

    2002-03-20

    Cyclic sulfamidates were synthesized in 60% yield from L-serine and allo-L-threonine, respectively. These sulfamidates reacted with a variety of unprotected 1-thio sugars in aqueous bicarbonate buffer (pH 8) to afford the corresponding S-linked serine- and threonine-glycosyl amino acids with good diastereoselectivity (> or =97%) after hydrolysis of the N-sulfates. The serine-derived sulfamidate was incorporated into a simple dipeptide to generate a reactive dipeptide substrate that underwent chemoselective ligation with a 1-thio sugar to afford an S-linked glycopeptide. This sulfamidate was also incorporated into a peptide on a solid support in conjunction with solid-phase peptide synthesis. Chemoselective ligation of a 1-thio sugar with the cyclic sulfamidate was achieved on the solid support, followed by removal of the N-sulfate. Finally, the peptide chain of the resulting support-bound S-linked glycopeptide was extended using standard peptide synthesis procedures.

  1. An active twenty-amino-acid-residue peptide derived from the inhibitor protein of the cyclic AMP-dependent protein kinase.

    PubMed Central

    Cheng, H C; van Patten, S M; Smith, A J; Walsh, D A

    1985-01-01

    Digestion with Staphylococcus aureus V8 proteinase of the inhibitor protein of the cyclic AMP-dependent protein kinase results in the sequential formation of three active inhibitory peptides. The smallest active peptide has the sequence Thr-Thr-Tyr-Ala-Asp-Phe-Ile-Ala-Ser-Gly-Arg-Thr-Gly-Arg-Arg-Asn-Ala-Ile- His-Asp . This 20-amino-acid-residue peptide has 20-40% of the activity of the native molecule and a Ki of 0.2 nM. Inhibition, as a minimum, appears to be based upon the inhibitor protein containing the recognition sequences that dictate protein-substrate-specificity. This inhibitory peptide also has sequence homology with the phosphorylation site for a protein kinase other than the cyclic AMP-dependent enzyme. PMID:3000357

  2. pACC1 peptide loaded chitosan nanoparticles induces apoptosis via reduced fatty acid synthesis in MDA-MB-231 cells

    NASA Astrophysics Data System (ADS)

    Kaliaperumal, Jagatheesh; Hari, Natarajan; Pavankumar, Padarthi; Elangovan, Namasivayam

    2016-06-01

    The development of formulations with therapeutic peptides has been restricted to poor cell penetration and in this attempt; we developed pACC1 peptide loaded chitosan nanoparticles. The prepared nanoparticles were characterized with FT-IR, XRD, SEM and TEM. In addition, the suitable formulation was evaluated for hemocompatibility, plasma stability and embryo toxicity using Danio rerio embryo model. The results showed that pACC1 peptide loaded chitosan nanoparticles were compatible with plasma. They possess sustained release pattern and also found to be safe up to 300 mg/L in embryo toxicity tests. Cytotoxicity assays with MDA-MB-231 cell lines suggested that, pACC1 peptide loaded chitosan nanoparticles were capable of enhanced cellular penetration and reduced palmitic acid content, which was confirmed by H1 NMR. Hence, these nanoparticles could be employed as excellent adjuvant therapeutics while treating solid tumors with multi-drug resistance.

  3. Enhanced visualization of small peptides absorbed in rat small intestine by phytic-acid-aided matrix-assisted laser desorption/ionization-imaging mass spectrometry.

    PubMed

    Hong, Seong-Min; Tanaka, Mitsuru; Yoshii, Saori; Mine, Yoshinori; Matsui, Toshiro

    2013-11-05

    Enhanced visualization of small peptides absorbed through a rat intestinal membrane was achieved by matrix-assisted laser desorption/ionization time-of-flight imaging mass spectrometry (MALDI-IMS) with the aid of phytic acid as a matrix additive. Penetrants through intestinal peptide transporter 1, i.e., glycyl-sarcosine (Gly-Sar, 147.1 m/z) and antihypertensive dipeptide, Val-Tyr (281.2 m/z), were chosen for MALDI-IMS. The signal-to-noise (S/N) ratios of dipeptides Gly-Sar and Val-Tyr were seen to increase by 2.4- and 8.0-fold, respectively, when using a 2',4',6'-trihydroxyacetophenone (THAP) matrix containing 5.0 mM phytic acid, instead of the THAP matrix alone. Owing to the phytic-acid-aided MALDI-IMS method, Gly-Sar and Val-Tyr absorbed in the rat intestinal membrane were successfully visualized. The proposed imaging method also provided useful information on intestinal peptide absorption; to some extent, Val-Tyr was rapidly hydrolyzed to Tyr by peptidases located at the intestinal microvillus during the absorption process. In conclusion, the strongly acidic additive, phytic acid, is beneficial for enhancing the visualization of small peptides using MALDI-IMS, owing to the suppression of ionization-interfering salts in the tissue.

  4. Insights into the Interactions of Amino Acids and Peptides with Inorganic Materials Using Single-Molecule Force Spectroscopy.

    PubMed

    Das, Priyadip; Duanias-Assaf, Tal; Reches, Meital

    2017-03-06

    The interactions between proteins or peptides and inorganic materials lead to several interesting processes. For example, combining proteins with minerals leads to the formation of composite materials with unique properties. In addition, the undesirable process of biofouling is initiated by the adsorption of biomolecules, mainly proteins, on surfaces. This organic layer is an adhesion layer for bacteria and allows them to interact with the surface. Understanding the fundamental forces that govern the interactions at the organic-inorganic interface is therefore important for many areas of research and could lead to the design of new materials for optical, mechanical and biomedical applications. This paper demonstrates a single-molecule force spectroscopy technique that utilizes an AFM to measure the adhesion force between either peptides or amino acids and well-defined inorganic surfaces. This technique involves a protocol for attaching the biomolecule to the AFM tip through a covalent flexible linker and single-molecule force spectroscopy measurements by atomic force microscope. In addition, an analysis of these measurements is included.

  5. Spectrophotometric determination and removal of unchelated europium ions from solutions containing Eu-diethylenetriaminepentaacetic acid chelate-peptide conjugates.

    PubMed

    Elshan, N G R Dayan; Patek, Renata; Vagner, Josef; Mash, Eugene A

    2014-11-01

    Europium chelates conjugated with peptide ligands are routinely used as probes for conducting in vitro binding experiments. The presence of unchelated Eu ions in these formulations gives high background luminescence and can lead to poor results in binding assays. In our experience, the reported methods for purification of these probes do not achieve adequate removal of unchelated metal ions in a reliable manner. In this work, a xylenol orange-based assay for the quantification of unchelated metal ions was streamlined and used to determine levels of metal ion contamination as well as the success of metal ion removal on attempted purification. We compared the use of Empore chelating disks and Chelex 100 resin for the selective removal of unchelated Eu ions from several Eu-diethylenetriaminepentaacetic acid chelate-peptide conjugates. Both purification methods gave complete and selective removal of the contaminant metal ions. However, Empore chelating disks were found to give much higher recoveries of the probes under the conditions used. Related to the issue of probe recovery, we also describe a significantly more efficient method for the synthesis of one such probe using Rink amide AM resin in place of Tentagel S resin.

  6. Design of antimicrobial peptides conjugated biodegradable citric acid derived hydrogels for wound healing.

    PubMed

    Xie, Zhiwei; Aphale, Nikhil V; Kadapure, Tejaswi D; Wadajkar, Aniket S; Orr, Sara; Gyawali, Dipendra; Qian, Guoying; Nguyen, Kytai T; Yang, Jian

    2015-12-01

    Wound healing is usually facilitated by the use of a wound dressing that can be easily applied to cover the wound bed, maintain moisture, and avoid bacterial infection. In order to meet all of these requirements, we developed an in situ forming biodegradable hydrogel (iFBH) system composed of a newly developed combination of biodegradable poly(ethylene glycol) maleate citrate (PEGMC) and poly(ethylene glycol) diacrylate (PEGDA). The in situ forming hydrogel systems are able to conform to the wound shape in order to cover the wound completely and prevent bacterial invasion. A 2(k) factorial analysis was performed to examine the effects of polymer composition on specific properties, including the curing time, Young's modulus, swelling ratio, and degradation rate. An optimized iFBH formulation was achieved from the systematic factorial analysis. Further, in vitro biocompatibility studies using adult human dermal fibroblasts (HDFs) confirmed that the hydrogels and degradation products are not cytotoxic. The iFBH wound dressing was conjugated and functionalized with antimicrobial peptides as well. Evaluation against bacteria both in vitro and in vivo in rats demonstrated that the peptide-incorporated iFBH wound dressing offered excellent bacteria inhibition and promoted wound healing. These studies indicated that our in situ forming antimicrobial biodegradable hydrogel system is a promising candidate for wound treatment.

  7. Gas-phase ion/ion reactions of peptides and proteins: acid/base, redox, and covalent chemistries.

    PubMed

    Prentice, Boone M; McLuckey, Scott A

    2013-02-01

    Gas-phase ion/ion reactions are emerging as useful and flexible means for the manipulation and characterization of peptide and protein biopolymers. Acid/base-like chemical reactions (i.e., proton transfer reactions) and reduction/oxidation (redox) reactions (i.e., electron transfer reactions) represent relatively mature classes of gas-phase chemical reactions. Even so, especially in regards to redox chemistry, the widespread utility of these two types of chemistries is undergoing rapid growth and development. Additionally, a relatively new class of gas-phase ion/ion transformations is emerging which involves the selective formation of functional-group-specific covalent bonds. This feature details our current work and perspective on the developments and current capabilities of these three areas of ion/ion chemistry with an eye towards possible future directions of the field.

  8. Click Chemistry Route to the Synthesis of Unusual Amino Acids, Peptides, Triazole-Fused Heterocycles and Pseudodisaccharides.

    PubMed

    Chandrasekaran, Srinivasan; Ramapanicker, Ramesh

    2017-01-01

    Conjugation of different molecular species using copper(I)-catalyzed click reaction between azides and terminal alkynes is among the best available methods to prepare multifunctional compounds. The effectiveness of this method has provided wider acceptance to the concept of click chemistry, which is now widely employed to synthesize densely functionalized organic molecules. This article summarizes the contributions from our group in the development of new methods for the synthesis of functional molecules using copper(I)-catalyzed click reactions. We have developed very efficient methods for the synthesis of peptides and amino acids conjugated with carbohydrates, thymidine and ferrocene. We have also developed an efficient strategy to synthesize triazole-fused heterocycles from primary amines, amino alochols and diols. Finally, an interesting method for the synthesis of pseudodisaccharides linked through triazoles, starting from carbohydrate-derived donor-acceptor cyclopropanes is discussed.

  9. Hyaluronic acid hydrogels with IKVAV peptides for tissue repair and axonal regeneration in an injured rat brain

    NASA Astrophysics Data System (ADS)

    Wei, Y. T.; Tian, W. M.; Yu, X.; Cui, F. Z.; Hou, S. P.; Xu, Q. Y.; Lee, In-Seop

    2007-09-01

    A biocompatible hydrogel of hyaluronic acid with the neurite-promoting peptide sequence of IKVAV was synthesized. The characterization of the hydrogel shows an open porous structure and a large surface area available for cell interaction. Its ability to promote tissue repair and axonal regeneration in the lesioned rat cerebrum is also evaluated. After implantation, the polymer hydrogel repaired the tissue defect and formed a permissive interface with the host tissue. Axonal growth occurred within the microstructure of the network. Within 6 weeks the polymer implant was invaded by host-derived tissue, glial cells, blood vessels and axons. Such a hydrogel matrix showed the properties of neuron conduction. It has the potential to repair tissue defects in the central nervous system by promoting the formation of a tissue matrix and axonal growth by replacing the lost tissue.

  10. Peptide nucleic acid fluorescence in-situ hybridization for identification of Vibrio spp. in aquatic products and environments.

    PubMed

    Zhang, Xiaofeng; Li, Ke; Wu, Shan; Shuai, Jiangbing; Fang, Weihuan

    2015-08-03

    A peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) method was developed for specific detection of the Vibrio genus. In silico analysis by BLAST and ProbeCheck showed that the designed PNA probe targeting the 16S rRNAs was suitable for specific identification of Vibrio. Specificity and sensitivity of the probe Vib-16S-1 were experimentally verified by its reactivity against 18 strains of 9 Vibrio species and 14 non-Vibrio strains of 14 representative species. The PNA-FISH assay was able to identify 47 Vibrio positive samples from selectively enriched cultures of 510 samples of aquatic products and environments, comparable with the results obtained by biochemical identification and real-time PCR. We conclude that PNA-FISH can be an alternative method for rapid identification of Vibrio species in a broad spectrum of seafood or related samples.

  11. Duplex DNA-Invading γ-Modified Peptide Nucleic Acids Enable Rapid Identification of Bloodstream Infections in Whole Blood

    PubMed Central

    Nölling, Jörk; Rapireddy, Srinivas; Amburg, Joel I.; Crawford, Elizabeth M.; Prakash, Ranjit A.; Rabson, Arthur R.

    2016-01-01

    ABSTRACT Bloodstream infections are a leading cause of morbidity and mortality. Early and targeted antimicrobial intervention is lifesaving, yet current diagnostic approaches fail to provide actionable information within a clinically viable time frame due to their reliance on blood culturing. Here, we present a novel pathogen identification (PID) platform that features the use of duplex DNA-invading γ-modified peptide nucleic acids (γPNAs) for the rapid identification of bacterial and fungal pathogens directly from blood, without culturing. The PID platform provides species-level information in under 2.5 hours while reaching single-CFU-per-milliliter sensitivity across the entire 21-pathogen panel. The clinical utility of the PID platform was demonstrated through assessment of 61 clinical specimens, which showed >95% sensitivity and >90% overall correlation to blood culture findings. This rapid γPNA-based platform promises to improve patient care by enabling the administration of a targeted first-line antimicrobial intervention. PMID:27094328

  12. Peptide nucleic acids targeting β-globin mRNAs selectively inhibit hemoglobin production in murine erythroleukemia cells

    PubMed Central

    MONTAGNER, GIULIA; GEMMO, CHIARA; FABBRI, ENRICA; MANICARDI, ALEX; ACCARDO, IGEA; BIANCHI, NICOLETTA; FINOTTI, ALESSIA; BREVEGLIERI, GIULIA; SALVATORI, FRANCESCA; BORGATTI, MONICA; LAMPRONTI, ILARIA; BRESCIANI, ALBERTO; ALTAMURA, SERGIO; CORRADINI, ROBERTO; GAMBARI, ROBERTO

    2015-01-01

    In the treatment of hemoglobinopathies, amending altered hemoglobins and/or globins produced in excess is an important part of therapeutic strategies and the selective inhibition of globin production may be clinically beneficial. Therefore the development of drug-based methods for the selective inhibition of globin accumulation is required. In this study, we employed peptide nucleic acids (PNAs) to alter globin gene expression. The main conclusion of the present study was that PNAs designed to target adult murine β-globin mRNA inhibit hemoglobin accumulation and erythroid differentiation of murine erythroleukemia (MEL) cells with high efficiency and fair selectivity. No major effects were observed on cell proliferation. Our study supports the concept that PNAs may be used to target mRNAs that, similar to globin mRNAs, are expressed at very high levels in differentiating erythroid cells. Our data suggest that PNAs inhibit the excess production of globins involved in the pathophysiology of hemoglobinopathies. PMID:25405921

  13. Gas-phase ion/ion reactions of peptides and proteins: acid/base, redox, and covalent chemistries

    PubMed Central

    Prentice, Boone M.

    2013-01-01

    Gas-phase ion/ion reactions are emerging as useful and flexible means for the manipulation and characterization of peptide and protein biopolymers. Acid/base-like chemical reactions (i.e., proton transfer reactions) and reduction/oxidation (redox) reactions (i.e., electron transfer reactions) represent relatively mature classes of gas-phase chemical reactions. Even so, especially in regards to redox chemistry, the widespread utility of these two types of chemistries is undergoing rapid growth and development. Additionally, a relatively new class of gas-phase ion/ion transformations is emerging which involves the selective formation of functional-group-specific covalent bonds. This feature details our current work and perspective on the developments and current capabilities of these three areas of ion/ion chemistry with an eye towards possible future directions of the field. PMID:23257901

  14. Focused upon hybridization: rapid and high sensitivity detection of DNA using isotachophoresis and peptide nucleic acid probes.

    PubMed

    Ostromohov, Nadya; Schwartz, Ortal; Bercovici, Moran

    2015-09-15

    We present a novel assay for rapid and high sensitivity detection of nucleic acids without amplification. Utilizing the neutral backbone of peptide nucleic acids (PNA), our method is based on the design of low electrophoretic mobility PNA probes, which do not focus under isotachophoresis (ITP) unless bound to their target sequence. Thus, background noise associated with free probes is entirely eliminated, significantly improving the signal-to-noise ratio while maintaining a simple single-step assay requiring no amplification steps. We provide a detailed analytical model and experimentally demonstrate the ability to detect targets as short as 17 nucleotides (nt) and a limit of detection of 100 fM with a dynamic range of 5 decades. We also demonstrate that the assay can be successfully implemented for detection of DNA in human serum without loss of signal. The assay requires 15 min to complete, and it could potentially be used in applications where rapid and highly sensitive amplification-free detection of nucleic acids is desired.

  15. Effects of cysteamine supplementation on the intestinal expression of amino acid and peptide transporters and intestinal health in finishing pigs.

    PubMed

    Zhou, Ping; Luo, Yiqiu; Zhang, Lin; Li, Jiaolong; Zhang, Bolin; Xing, Shen; Zhu, Yuping; Gao, Feng; Zhou, Guanghong

    2017-02-01

    This study aimed to evaluate the effects of cysteamine supplementation on the expression of jejunal amino acid and peptide transporters and intestinal health in finishing pigs. Sixty barrows were allocated into two experimental diets consisting of a basal control diet supplemented with 0 or 142 mg/kg cysteamine. After 41 days, 10 pigs per treatment were slaughtered. The results showed that cysteamine supplementation increased the apparent digestibility of crude protein (CP) (P < 0.05) and the trypsin activity in jejunal digesta (P < 0.01). Cysteamine supplementation also increased the messenger RNA abundance of SLC7A7, SLC7A9 and SLC15A1, occludin, claudin-1 and zonula occludens protein-1 (P < 0.001) in the jejunum mucosa. Increased glutathione content (P < 0.01) and glutathione peroxidase activity (P < 0.05) and decreased malondialdehyde content (P < 0.01) were observed in pigs receiving cysteamine. Additionally, cysteamine supplementation increased the concentrations of secretory immunoglobulin A (IgA) (P < 0.05), IgM (P < 0.001) and IgG (P < 0.001) in the jejunal mucosa. It is concluded that cysteamine supplementation could influence protein digestion and absorption via increasing trypsin activity, enhancing the digestibility of CP, and promoting the expression of jejunal amino acid and peptide transporters. Moreover, cysteamine improved intestinal integrity, antioxidant capacity and immune function in the jejunum, which were beneficial for intestinal health.

  16. Influence of Amino Acid Compositions and Peptide Profiles on Antioxidant Capacities of Two Protein Hydrolysates from Skipjack Tuna (Katsuwonus pelamis) Dark Muscle

    PubMed Central

    Chi, Chang-Feng; Hu, Fa-Yuan; Wang, Bin; Li, Zhong-Rui; Luo, Hong-Yu

    2015-01-01

    Influence of amino acid compositions and peptide profiles on antioxidant capacities of two protein hydrolysates from skipjack tuna (Katsuwonus pelamis) dark muscle was investigated. Dark muscles from skipjack tuna were hydrolyzed using five separate proteases, including pepsin, trypsin, Neutrase, papain and Alcalase. Two hydrolysates, ATH and NTH, prepared using Alcalase and Neutrase, respectively, showed the strongest antioxidant capacities and were further fractionated using ultrafiltration and gel filtration chromatography. Two fractions, Fr.A3 and Fr.B2, isolated from ATH and NTH, respectively, showed strong radical scavenging activities toward 2,2-diphenyl-1-picrylhydrazyl radicals (EC50 1.08% ± 0.08% and 0.98% ± 0.07%), hydroxyl radicals (EC50 0.22% ± 0.03% and 0.48% ± 0.05%), and superoxide anion radicals (EC50 1.31% ± 0.11% and 1.56% ± 1.03%) and effectively inhibited lipid peroxidation. Eighteen peptides from Fr.A3 and 13 peptides from Fr.B2 were isolated by reversed-phase high performance liquid chromatography, and their amino acid sequences were determined. The elevated antioxidant activity of Fr.A3 might be due to its high content of hydrophobic and aromatic amino acid residues (181.1 and 469.9 residues/1000 residues, respectively), small molecular sizes (3–6 peptides), low molecular weights (524.78 kDa), and amino acid sequences (antioxidant score 6.11). This study confirmed that a smaller molecular size, the presence of hydrophobic and aromatic amino acid residues, and the amino acid sequences were the key factors that determined the antioxidant activities of the proteins, hydrolysates and peptides. The results also demonstrated that the derived hydrolysates and fractions from skipjack tuna (K. pelamis) dark muscles could prevent oxidative reactions and might be useful for food preservation and medicinal purposes. PMID:25923316

  17. THE APPLICATION OF PEPTIDE NUCLEIC ACID PROBES FOR RAPID DETECTION AND ENUMERATION OF EUBACTERIA, STAPHYLOCOCCUS AUREUS AND PSEUDOMONAS AERUGINOSA IN RECREATIONAL BEACHES OF S. FLORIDA. (R828830)

    EPA Science Inventory

    A novel chemiluminescent in situ hybridization technique using peptide nucleic acids (PNA) was adapted for the detection of bacteria in beach sand and recreational waters in South Florida. The simultaneous detection and enumeration of eubacteria and the novel indicators, S...

  18. The neuroprotective efficacy of cell-penetrating peptides TAT, penetratin, Arg-9, and Pep-1 in glutamic acid, kainic acid, and in vitro ischemia injury models using primary cortical neuronal cultures.

    PubMed

    Meloni, Bruno P; Craig, Amanda J; Milech, Nadia; Hopkins, Richard M; Watt, Paul M; Knuckey, Neville W

    2014-03-01

    Cell-penetrating peptides (CPPs) are small peptides (typically 5-25 amino acids), which are used to facilitate the delivery of normally non-permeable cargos such as other peptides, proteins, nucleic acids, or drugs into cells. However, several recent studies have demonstrated that the TAT CPP has neuroprotective properties. Therefore, in this study, we assessed the TAT and three other CPPs (penetratin, Arg-9, Pep-1) for their neuroprotective properties in cortical neuronal cultures following exposure to glutamic acid, kainic acid, or in vitro ischemia (oxygen-glucose deprivation). Arg-9, penetratin, and TAT-D displayed consistent and high level neuroprotective activity in both the glutamic acid (IC50: 0.78, 3.4, 13.9 μM) and kainic acid (IC50: 0.81, 2.0, 6.2 μM) injury models, while Pep-1 was ineffective. The TAT-D isoform displayed similar efficacy to the TAT-L isoform in the glutamic acid model. Interestingly, Arg-9 was the only CPP that displayed efficacy when washed-out prior to glutamic acid exposure. Neuroprotection following in vitro ischemia was more variable with all peptides providing some level of neuroprotection (IC50; Arg-9: 6.0 μM, TAT-D: 7.1 μM, penetratin/Pep-1: >10 μM). The positive control peptides JNKI-1D-TAT (JNK inhibitory peptide) and/or PYC36L-TAT (AP-1 inhibitory peptide) were neuroprotective in all models. Finally, in a post-glutamic acid treatment experiment, Arg-9 was highly effective when added immediately after, and mildly effective when added 15 min post-insult, while the JNKI-1D-TAT control peptide was ineffective when added post-insult. These findings demonstrate that different CPPs have the ability to inhibit neurodamaging events/pathways associated with excitotoxic and ischemic injuries. More importantly, they highlight the need to interpret neuroprotection studies when using CPPs as delivery agents with caution. On a positive note, the cytoprotective properties of CPPs suggests they are ideal carrier molecules to

  19. Antimicrobial activity of a new synthetic peptide loaded in polylactic acid or poly(lactic-co-glycolic) acid nanoparticles against Pseudomonas aeruginosa, Escherichia coli O157:H7 and methicillin resistant Staphylococcus aureus (MRSA).

    PubMed

    Cruz, J; Flórez, J; Torres, R; Urquiza, M; Gutiérrez, J A; Guzmán, F; Ortiz, C C

    2017-03-01

    Nanocarrier systems are currently being developed for peptide, protein and gene delivery to protect them in the blood circulation and in the gastrointestinal tract. Polylactic acid (PLA) and poly(lactic-co-glycolic) acid (PLGA) nanoparticles loaded with a new antimicrobial GIBIM-P5S9K peptide were obtained by the double emulsion solvent extraction/evaporation method. PLA- and PLGA-NPs were spherical with sizes between 300 and 400 nm for PLA and 200 and 300 nm for PLGA and <0.3 polydispersity index as determined by dynamic light scattering and scanning electron microscopy), having the zeta potential of >20 mV. The peptide-loading efficiency of PLA-NP and PLGA-NPs was 75% and 55%, respectively. PLA- and PLGA-NPs released around 50% of this peptide over 8 h. In 10% human sera the size of peptide loaded PLA- and PLGA-NPs increased between 25.2% and 39.3%, the PDI changed from 3.2 to 5.1 and the surface charge from -7.15 to 14.6 mV. Both peptide loaded PLA- and PLGA-NPs at 0.5 μM peptide concentration inhibited the growth of Escherichia coli O157:H7 (E. coli O157:H7), methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas. aeruginosa (P. aeruginosa). In contrast, free peptide inhibited at 10 μM but did not inhibit at 0.5 and 1 μM. These PLA- and PLGA-NPs presented <10% hemolysis indicating that they are hemocompatible and promising for delivery and protection system of GIBIM-P5S9K peptide.

  20. Antimicrobial activity of a new synthetic peptide loaded in polylactic acid or poly(lactic-co-glycolic) acid nanoparticles against Pseudomonas aeruginosa, Escherichia coli O157:H7 and methicillin resistant Staphylococcus aureus (MRSA)

    NASA Astrophysics Data System (ADS)

    Cruz, J.; Flórez, J.; Torres, R.; Urquiza, M.; Gutiérrez, J. A.; Guzmán, F.; Ortiz, C. C.

    2017-03-01

    Nanocarrier systems are currently being developed for peptide, protein and gene delivery to protect them in the blood circulation and in the gastrointestinal tract. Polylactic acid (PLA) and poly(lactic-co-glycolic) acid (PLGA) nanoparticles loaded with a new antimicrobial GIBIM-P5S9K peptide were obtained by the double emulsion solvent extraction/evaporation method. PLA- and PLGA-NPs were spherical with sizes between 300 and 400 nm for PLA and 200 and 300 nm for PLGA and <0.3 polydispersity index as determined by dynamic light scattering and scanning electron microscopy), having the zeta potential of >20 mV. The peptide-loading efficiency of PLA-NP and PLGA-NPs was 75% and 55%, respectively. PLA- and PLGA-NPs released around 50% of this peptide over 8 h. In 10% human sera the size of peptide loaded PLA- and PLGA-NPs increased between 25.2% and 39.3%, the PDI changed from 3.2 to 5.1 and the surface charge from ‑7.15 to 14.6 mV. Both peptide loaded PLA- and PLGA-NPs at 0.5 μM peptide concentration inhibited the growth of Escherichia coli O157:H7 (E. coli O157:H7), methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas. aeruginosa (P. aeruginosa). In contrast, free peptide inhibited at 10 μM but did not inhibit at 0.5 and 1 μM. These PLA- and PLGA-NPs presented <10% hemolysis indicating that they are hemocompatible and promising for delivery and protection system of GIBIM-P5S9K peptide.

  1. N-carbamoyl-alpha-amino acids rather than free alpha-amino acids formation in the primitive hydrosphere: a novel proposal for the emergence of prebiotic peptides.

    PubMed

    Taillades, J; Beuzelin, I; Garrel, L; Tabacik, V; Bied, C; Commeyras, A

    1998-02-01

    Our previous kinetic and thermodynamic studies upon the reactional system HCHO/HCN/NH3 in aqueous solutions are completed. In the assumed prebiotic conditions of the primitive earth ([HCHO] and [HCN] near 1 g L-1, T = 25 degrees C, pH = 8, [NH3] very low), this system leads to 99.9% of alpha-hydroxyacetonitrile and 0.1% of alpha-aminoacetonitrile (precursor of the alpha-amino acid). The classical base-catalyzed hydration of nitriles, slow and not selective, can not modify significantly this proportion. On the contrary, we found two specific and efficient reactions of alpha-aminonitriles which shift the initial equilibrium in favor of the alpha-aminonitrile pathway. The first reaction catalyzed by formaldehyde generates alpha-aminoamides, precursors of alpha-aminoacids. The second reaction catalyzed by carbon dioxide affords hydantoins, precursors of N-carbamoyl-alpha-aminoacids. In the primitive hydrosphere, where the concentration in carbon dioxide was estimated to be higher than that of formaldehyde, the formation of hydantoins was consequently more efficient. The rates of hydrolysis of the alpha-aminoacetamide and of the hydantoin at pH 8 being very similar, the synthesis of the N-carbamoyl-alpha-amino acid seems then to be the fatal issue of the HCHO/HCN/NH3 system that nature used to perform its evolution. These N-protected alpha-amino acids offer new perspectives in prebiotic chemistry, in particular for the emergence of peptides on the prebiotic earth.

  2. Improved protease stability of the antimicrobial peptide Pin2 substituted with D-amino acids.

    PubMed

    Carmona, G; Rodriguez, A; Juarez, D; Corzo, G; Villegas, E

    2013-08-01

    Cationic antimicrobial peptides (AMPs) have attracted a great interest as novel class of antibiotics that might help in the treatment of infectious diseases caused by pathogenic bacteria. However, some AMPs with high antimicrobial activities are also highly hemolytic and subject to proteolytic degradation from human and bacterial proteases that limit their pharmaceutical uses. In this work a D-diastereomer of Pandinin 2, D-Pin2, was constructed to observe if it maintained antimicrobial activity in the same range as the parental one, but with the purpose of reducing its hemolytic activity to human erythrocytes and improving its ability to resist proteolytic cleavage. Although, the hydrophobic and secondary structure characteristics of L- and D-Pin2 were to some extent similar, an important reduction in D-Pin2 hemolytic activity (30-40 %) was achieved compared to that of L-Pin2 over human erythrocytes. Furthermore, D-Pin2 had an antimicrobial activity with a MIC value of 12.5 μM towards Staphylococcus aureus, Escherichia coli, Streptococcus agalactiae and two strains of Pseudomonas aeruginosa in agar diffusion assays, but it was half less potent than that of L-Pin2. Nevertheless, the antimicrobial activity of D-Pin2 was equally effective as that of L-Pin2 in microdilution assays. Yet, when D- and L-Pin2 were incubated with trypsin, elastase and whole human serum, only D-Pin2 kept its antimicrobial activity towards all bacteria, but in diluted human serum, L- and D-Pin2 maintained similar peptide stability. Finally, when L- and D-Pin2 were incubated with proteases from P. aeruginosa DFU3 culture, a clinical isolated strain, D-Pin2 kept its antibiotic activity while L-Pin2 was not effective.

  3. Heat-initiated prebiotic formation of peptides from glycine/aspartic acid and glycine/valine in aqueous environment and clay suspension

    NASA Astrophysics Data System (ADS)

    Pant, Chandra Kala; Lata, Hem; Pathak, Hari Datt; Mehata, Mohan Singh

    2009-04-01

    The effect of heat on the reaction system of glycine/aspartic acid and glycine/valine in the aqueous environment as well as in montmorillonite clay suspension with or without divalent cations (Ca2+, Mg2+ and Ni2+) has been investigated at 85°C±5°C for varying periods under prebiotic drying and wetting conditions. The resulting products were analysed and characterized by chromatographic and spectroscopic methods. Peptide formation appears to depend on the duration of heat effect, nature of reactant amino acids and, to some extent, on montmorillonite clay incorporated with divalent cations. In the glycine/aspartic acid system, oligomerization of glycine was limited up to trimer level (Gly)3 along with the formation of glycyl-aspartic acid, while linear and cyclic peptides of aspartic acid were not formed, whereas the glycine/valine system preferentially elongated homo-oligopeptide of glycine up to pentamer level (Gly)5 along with formation of hetero-peptides (Gly-Val and Val-Gly). These studies are relevant in the context of the prebiotic origin of proteins and the role of clay and metal ions in condensation and oligomerization of amino acids. The length of the bio-oligomer chain depends upon the reaction conditions. However, condensation into even a small length seems significant, as the same process would have taken millions of years in the primitive era of the Earth, leading to the first proteins.

  4. A 16-amino acid peptide from human alpha2-macroglobulin binds transforming growth factor-beta and platelet-derived growth factor-BB.

    PubMed Central

    Webb, D. J.; Roadcap, D. W.; Dhakephalkar, A.; Gonias, S. L.

    2000-01-01

    Alpha2-macroglobulin (alpha2M) is a major carrier of transforming growth factor-beta (TGF-beta) in vitro and in vivo. By screening glutathione S-transferase (GST) fusion proteins with overlapping sequences, we localized the TGFbeta-binding site to aa 700-738 of the mature human alpha2M subunit. In separate experiments, we screened overlapping synthetic peptides corresponding to aa 696-777 of alpha2M and identified a single 16-mer (718-733) that binds TGF-beta1. Platelet-derived growth factor-BB (PDGF-BB) bound to the same peptide, even though TGF-beta and PDGF-BB share almost no sequence identity. The sequence of the growth factor-binding peptide, WDLVVVNSAGVAEVGV, included a high proportion of hydrophobic amino acids. The analogous peptide from murinoglobulin, a human alpha2M homologue that does not bind growth factors, contained only three nonconservative amino acid substitutions; however, the MUG peptide failed to bind TGF-beta1 and PDGF-BB. These results demonstrate that a distinct and highly-restricted site in alpha2M, positioned near the C-terminal flank of the bait region, mediates growth factor binding. At least part of the growth factor-binding site is encoded by exon 18 of the alpha2M gene, which is notable for a 5' splice site polymorphism that has been implicated in Alzheimer's Disease. PMID:11106172

  5. Molecular Dynamics Simulations of the Anchoring and Tilting of the Lung-Surfactant Peptide SP-B1-25 in Palmitic Acid Monolayers

    PubMed Central

    Lee, Hwankyu; Kandasamy, Senthil K.; Larson, Ronald G.

    2005-01-01

    We have performed molecular dynamics simulations of multiple copies of the lung-surfactant peptide SP-B1-25 in a palmitic acid (PA) monolayer. SP-B1-25 is a shorter version of lung-surfactant protein B, an important component of lung surfactant. Up to 30 ns simulations of 20 wt % SP-B1-25 in the PA monolayers were performed with different surface areas of PA, extents of PA ionization, and various initial configurations of the peptides. Starting with initial peptide orientation perpendicular to the monolayer, the predicted final tilt angles average 54°∼ 62° with respect to the monolayer normal, similar to those measured experimentally by Lee et al. (Biophysical Journal. 2001. Synchrotron x-ray study of lung surfactant-specific protein SP-B in lipid monolayers. 81:572–585). In their final conformations, hydrogen-bond analysis and amino acid mutation studies show that the peptides are anchored by hydrogen bond interactions between the cationic residues Arg-12 and Arg-17 and the hydrogen bond acceptors of the ionized PA headgroup, and the tilt angle is affected by the interactions of Tyr-7 and Gln-19 with the PA headgroup. Our work indicates that the factors controlling orientation of small peptides in lipid layers can now be uncovered through molecular dynamics simulations. PMID:16169980

  6. Determination of binding capacity and adsorption enthalpy between Human Glutamate Receptor (GluR1) peptide fragments and kynurenic acid by surface plasmon resonance experiments.

    PubMed

    Csapó, E; Majláth, Z; Juhász, Á; Roósz, B; Hetényi, A; Tóth, G K; Tajti, J; Vécsei, L; Dékány, I

    2014-11-01

    The interaction between kynurenic acid (KYNA) and two peptide fragments (ca. 30 residues) of Human Glutamate Receptor 201-300 (GluR1) using surface plasmon resonance (SPR) spectroscopy was investigated. Because of the medical interest in the neuroscience, GluR1 is one of the important subunits of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR). AMPARs are ionotoropic glutamate receptors, which are mediating fast synaptic transmission and are crucial for plasticity in the brain. On the other hand, KYNA has been suggested to have neuroprotective activity and it has been considered for apply in therapy in certain neurobiological disorders. In this article the adsorption of the GluR1201-230 and GluR1231-259 peptides were studied on gold biosensor chip. The peptides were chemically bonded onto the gold surface via thiol group of L-cysteine resulted in the formation of peptide monolayer on the SPR chip surface. Because the GluR1231-259 peptide does not contain L-cysteine the Val256 was replaced by Cys256. The cross sectional area and the surface orientation of the studied peptides were determined by SPR and theoretical calculations (LOMETS) as well. The binding capability of KYNA on the peptide monolayer was studied in the concentration range of 0.1-5.0 mM using 150 mM NaCl ionic strength at pH 7.4 (±0.02) in phosphate buffer solutions. In order to determine the binding enthalpy the experiments were carried out between +10°C and +40°C. The heat of adsorption was calculated by using adsorption isotherms at different surface loading of KYNA on the SPR chip.

  7. Peptide coupling between amino acids and the carboxylic acid of a functionalized chlorido-gold(I)-phosphane.

    PubMed

    Kriechbaum, Margit; List, Manuela; Himmelsbach, Markus; Redhammer, Günther J; Monkowius, Uwe

    2014-10-06

    We have developed a protocol for the direct coupling between methyl ester protected amino acids and the chlorido-gold(I)-phosphane (p-HOOC(C6H4)PPh2)AuCl. By applying the EDC·HCl/NHS strategy (EDC·HCl = N-ethyl-N'-(3-(dimethylamino)propyl)carbodiimide hydrochloride, NHS = N-hydroxysuccinimide), the methyl esters of l-phenylalanine, glycine, l-leucine, l-alanine, and l-methionine are coupled with the carboxylic acid of the gold complex in moderate to good yields (62-88%). All amino acid tagged gold complexes were characterized by (1)H and (13)C NMR spectroscopy and high-resolution mass spectrometry. As corroborated by measurement of the angle of optical rotation, no racemization occurred during the reaction. The molecular structure of the leucine derivative was determined by single-crystal X-ray diffraction. In the course of developing an efficient coupling protocol, the acyl chlorides (p-Cl(O)C(C6H4)PPh2)AuX (X = Cl, Br) were also prepared and characterized.

  8. A plausible simultaneous synthesis of amino acids and simple peptides on the primordial Earth.

    PubMed

    Parker, Eric T; Zhou, Manshui; Burton, Aaron S; Glavin, Daniel P; Dworkin, Jason P; Krishnamurthy, Ramanarayanan; Fernández, Facundo M; Bada, Jeffrey L

    2014-07-28

    Following his seminal work in 1953, Stanley Miller conducted an experiment in 1958 to study the polymerization of amino acids under simulated early Earth conditions. In the experiment, Miller sparked a gas mixture of CH4, NH3, and H2O, while intermittently adding the plausible prebiotic condensing reagent cyanamide. For unknown reasons, an analysis of the samples was not reported. We analyzed the archived samples for amino acids, dipeptides, and diketopiperazines by liquid chromatography, ion mobility spectrometry, and mass spectrometry. A dozen amino acids, 10 glycine-containing dipeptides, and 3 glycine-containing diketopiperazines were detected. Miller's experiment was repeated and similar polymerization products were observed. Aqueous heating experiments indicate that Strecker synthesis intermediates play a key role in facilitating polymerization. These results highlight the potential importance of condensing reagents in generating diversity within the prebiotic chemical inventory.

  9. Predicting the effects of amino acid replacements in peptide hormones on their binding affinities for class B GPCRs and application to the design of secretin receptor antagonists

    NASA Astrophysics Data System (ADS)

    Te, Jerez A.; Dong, Maoqing; Miller, Laurence J.; Bordner, Andrew J.

    2012-07-01

    Computational prediction of the effects of residue changes on peptide-protein binding affinities, followed by experimental testing of the top predicted binders, is an efficient strategy for the rational structure-based design of peptide inhibitors. In this study we apply this approach to the discovery of competitive antagonists for the secretin receptor, the prototypical member of class B G protein-coupled receptors (GPCRs). Proteins in this family are involved in peptide hormone-stimulated signaling and are implicated in several human diseases, making them potential therapeutic targets. We first validated our computational method by predicting changes in the binding affinities of several peptides to their cognate class B GPCRs due to alanine replacement and compared the results with previously published experimental values. Overall, the results showed a significant correlation between the predicted and experimental ΔΔG values. Next, we identified candidate inhibitors by applying this method to a homology model of the secretin receptor bound to an N-terminal truncated secretin peptide. Predictions were made for single residue replacements to each of the other nineteen naturally occurring amino acids at peptide residues within the segment binding the receptor N-terminal domain. Amino acid replacements predicted to most enhance receptor binding were then experimentally tested by competition-binding assays. We found two residue changes that improved binding affinities by almost one log unit. Furthermore, a peptide combining both of these favorable modifications resulted in an almost two log unit improvement in binding affinity, demonstrating the approximately additive effect of these changes on binding. In order to further investigate possible physical effects of these residue changes on receptor binding affinity, molecular dynamics simulations were performed on representatives of the successful peptide analogues (namely A17I, G25R, and A17I/G25R) in bound and

  10. Design of embedded chimeric peptide nucleic acids that efficiently enter and accurately reactivate gene expression in vivo.

    PubMed

    Chen, Joy; Peterson, Kenneth R; Iancu-Rubin, Camelia; Bieker, James J

    2010-09-28

    Pharmacological treatments designed to reactivate fetal γ-globin can lead to an effective and successful clinical outcome in patients with hemoglobinopathies. However, new approaches remain highly desired because such treatments are not equally effective for all patients, and toxicity issues remain. We have taken a systematic approach to develop an embedded chimeric peptide nucleic acid (PNA) that effectively enters the cell and the nucleus, binds to its target site at the human fetal γ-globin promoter, and reactivates this transcript in adult transgenic mouse bone marrow and human primary peripheral blood cells. In vitro and in vivo DNA-binding assays in conjunction with live-cell imaging have been used to establish and optimize chimeric PNA design parameters that lead to successful gene activation. Our final molecule contains a specific γ-promoter-binding PNA sequence embedded within two amino acid motifs: one leads to efficient cell/nuclear entry, and the other generates transcriptional reactivation of the target. These embedded PNAs overcome previous limitations and are generally applicable to the design of in vivo transcriptional activation reagents that can be directed to any promoter region of interest and are of direct relevance to clinical applications that would benefit from such a need.

  11. Ameliorative effect of 1,2-benzenedicarboxylic acid dinonyl ester against amyloid beta peptide-induced neurotoxicity.

    PubMed

    Jung Choi, Soo; Kim, Mi Jeong; Jin Heo, Ho; Kim, Jae Kyeum; Jin Jun, Woo; Kim, Hye Kyung; Kim, Eun-Ki; Ok Kim, Myeong; Yon Cho, Hong; Hwang, Han-Joon; Jun Kim, Young; Shin, Dong-Hoon

    2009-03-01

    Amyloid beta peptide (Abeta)-induced oxidative stress may be linked to neurodegenerative disease. Ethanol extracts of Rosa laevigata protected PC12 cells from hydrogen peroxide-induced oxidative stress. (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) reduction assays revealed a significant increase in cell viability when oxidatively stressed PC12 cells were treated with R. laevigata extract. The effect of R. laevigata on oxidative stress-induced cell death was further investigated by lactate dehydrogenase release assays and trypan blue exclusion assays. Administration of 1,2-benzenedicarboxylic acid dinonyl ester from R. laevigata extract to mice infused with Abeta significantly reversed learning and memory impairment in behavioural tests. After behavioural testing, the mice were sacrificed and brains were collected for the examination of lipid peroxidation, catalase activity and acetylcholinesterase (AchE) activity. These results suggest that 1,2-benzenedicarboxylic acid dinonyl ester from R. laevigata extract may be able to reduce Abeta-induced neurotoxicity, possibly by reducing oxidative stress. Therefore, R. laevigata extract may be useful for the prevention of oxidative stress-induced neurodegenerative disorders.

  12. Improved detection of multi-phosphorylated peptides in the presence of phosphoric acid in liquid chromatography/mass spectrometry

    SciTech Connect

    Kim, Jeongkwon; Camp, David G.; Smith, Richard D.

    2004-02-18

    In contrast to lower phosphorylation states (e.g., the tryptic monophosphopeptide FQpSEEQQQTEDELQDK from bovine -casein), the specific detection of multi-phosphorylated peptides (e.g. the tetraphosphopeptide RELEELNVPGEIVEpSLpSpSpSEESITR from tryptic digestion of bovine -casein) has often been problematic for liquid chromatography-mass spectrometry analysis due to their high affinity for adsorption to exposed surfaces. We observed an enhancement in the overall detection of phosphopeptides upon addition of phosphoric acid (0.1% to 1.0%) to the sample solution; a 10-fold increase in sensitivity was measured for the detection of two tryptic phosphopeptides as well as a significant improvement in the detection of the tetraphosphopeptide. Using capillary LC with an ion trap tandem mass spectrometer for detection and identification, the achievable detection limits were 50 fmol and 50 pmol for the monophosphopeptide and the tetraphosphopeptide, respectively. Phosphoric acid is believed to act as a blocking agent to available silanol groups on both the silica capillary surface and the C-18-bonded silica surface.

  13. Chemical structure requirements and cellular targeting of microRNA-122 by peptide nucleic acids anti-miRs

    PubMed Central

    Torres, Adrian G.; Fabani, Martin M.; Vigorito, Elena; Williams, Donna; Al-Obaidi, Naowras; Wojciechowski, Filip; Hudson, Robert H. E.; Seitz, Oliver; Gait, Michael J.

    2012-01-01

    Anti-miRs are oligonucleotide inhibitors complementary to miRNAs that have been used extensively as tools to gain understanding of specific miRNA functions and as potential therapeutics. We showed previously that peptide nucleic acid (PNA) anti-miRs containing a few attached Lys residues were potent miRNA inhibitors. Using miR-122 as an example, we report here the PNA sequence and attached amino acid requirements for efficient miRNA targeting and show that anti-miR activity is enhanced substantially by the presence of a terminal-free thiol group, such as a Cys residue, primarily due to better cellular uptake. We show that anti-miR activity of a Cys-containing PNA is achieved by cell uptake through both clathrin-dependent and independent routes. With the aid of two PNA analogues having intrinsic fluorescence, thiazole orange (TO)-PNA and [bis-o-(aminoethoxy)phenyl]pyrrolocytosine (BoPhpC)-PNA, we explored the subcellular localization of PNA anti-miRs and our data suggest that anti-miR targeting of miR-122 may take place in or associated with endosomal compartments. Our findings are valuable for further design of PNAs and other oligonucleotides as potent anti-miR agents. PMID:22070883

  14. Insights on chiral, backbone modified peptide nucleic acids: Properties and biological activity

    PubMed Central

    Moccia, Maria; Adamo, Mauro F A; Saviano, Michele

    2014-01-01

    PNAs are emerging as useful synthetic devices targeting natural miRNAs. In particular 3 classes of structurally modified PNAs analogs are herein described, namely α, β and γ, which differ by their backbone modification. Their mode and binding affinity for natural nucleic acids and their use in medicinal chemistry as potential miRNA binders is discussed. PMID:26752710

  15. Helix formation in preorganized beta/gamma-peptide foldamers: hydrogen-bond analogy to the alpha-helix without alpha-amino acid residues.

    PubMed

    Guo, Li; Almeida, Aaron M; Zhang, Weicheng; Reidenbach, Andrew G; Choi, Soo Hyuk; Guzei, Ilia A; Gellman, Samuel H

    2010-06-16

    We report the first high-resolution structural data for the beta/gamma-peptide 13-helix (i,i+3 C=O...H-N H-bonds), a secondary structure that is formed by oligomers with a 1:1 alternation of beta- and gamma-amino acid residues. Our characterization includes both crystallographic and 2D NMR data. Previous studies suggested that beta/gamma-peptides constructed from conformationally flexible residues adopt a different helical secondary structure in solution. Our design features preorganized beta- and gamma-residues, which strongly promote 13-helical folding by the 1:1 beta/gamma backbone.

  16. Cell Penetrating Peptide-Modified Poly(Lactic-co-Glycolic Acid) Nanoparticles with Enhanced Cell Internalization

    PubMed Central

    Steinbach, Jill M.; Seo, Young-Eun; Saltzman, W. Mark

    2015-01-01

    The surface modification of nanoparticles (NPs) can enhance the intracellular delivery of drugs, proteins, and genetic agents. Here we studied the effect of different surface ligands, including cell penetrating peptides (CPPs), on the cell binding and internalization of poly(lactic-co-glycolic) (PLGA) NPs. Relative to unmodified NPs, we observed that surface-modified NPs greatly enhanced cell internalization. Using one CPP, MPG (unabbreviated notation), that achieved the highest degree of internalization at both low and high surface modification densities, we evaluated the effect of two different NP surface chemistries on cell internalization. After 2 hr, avidin-MPG NPs enhanced cellular internalization by 5 to 26-fold relative to DSPE-MPG NP formulations. Yet, despite a 5-fold increase in MPG density on DSPE- relative to Avidin-NPs, after 24 hr., both formulations resulted in similar internalization levels (48 and 64-fold, respectively). Regardless of surface modification, all NPs were internalized through an energy-dependent, clathrin-mediated process, and became dispersed throughout the cell. Overall both Avidin- and DSPE-CPP modified NPs significantly increased internalization and offer promising delivery options for applications in which internalization presents challenges to efficacious delivery. PMID:26602822

  17. Glucagon-like peptide 1 and fatty acids amplify pulsatile insulin secretion from perifused rat islets.

    PubMed Central

    Cunningham, Barbara A; Richard, Ann-Marie T; Dillon, Joseph S; Daley, Jennifer T; Civelek, Vildan N; Deeney, Jude T; Yaney, Gordon C; Corkey, Barbara E; Tornheim, Keith

    2003-01-01

    Glucose-induced insulin secretion from isolated, perifused rat islets is pulsatile with a period of about 5-10 min, similar to the insulin oscillations that are seen in healthy humans but which are impaired in Type II diabetes. We evaluated the pattern of enhancement by the potent incretin, glucagon-like peptide 1 (GLP-1). GLP-1 increased the amplitude of pulses and the magnitude of insulin secretion from the perifused islets, without affecting the average time interval between pulses. Forskolin and the phosphodiesterase inhibitor isobutylmethylxanthine had the same effect, suggesting that the effect was due to elevated cAMP levels. The possibility that cAMP might enhance the amplitude of pulses by reducing phosphofructo-2-kinase (PFK-2) activity was eliminated when the liver isoform of PFK-2 was shown to be absent from beta-cells. The possibility that cAMP enhanced pulsatile secretion, at least in part, by stimulating lipolysis was supported by the observations that added oleate had a similar effect on secretion, and that the incretin effect of GLP-1 was inhibited by the lipase inhibitor orlistat. These data show that the physiological incretin GLP-1 preserves and enhances normal pulsatile insulin secretion, which may be essential in proposed therapeutic uses of GLP-1 or its analogues. PMID:12356335

  18. Cell penetrating peptide-modified poly(lactic-co-glycolic acid) nanoparticles with enhanced cell internalization.

    PubMed

    Steinbach, Jill M; Seo, Young-Eun; Saltzman, W Mark

    2016-01-01

    The surface modification of nanoparticles (NPs) can enhance the intracellular delivery of drugs, proteins, and genetic agents. Here we studied the effect of different surface ligands, including cell penetrating peptides (CPPs), on the cell binding and internalization of poly(lactic-co-glycolic) (PLGA) NPs. Relative to unmodified NPs, we observed that surface-modified NPs greatly enhanced cell internalization. Using one CPP, MPG (unabbreviated notation), that achieved the highest degree of internalization at both low and high surface modification densities, we evaluated the effect of two different NP surface chemistries on cell internalization. After 2h, avidin-MPG NPs enhanced cellular internalization by 5 to 26-fold relative to DSPE-MPG NP formulations. Yet, despite a 5-fold increase in MPG density on DSPE compared to Avidin NPs, both formulations resulted in similar internalization levels (48 and 64-fold, respectively) after 24h. Regardless of surface modification, all NPs were internalized through an energy-dependent, clathrin-mediated process, and became dispersed throughout the cell. Overall both Avidin- and DSPE-CPP modified NPs significantly increased internalization and offer promising delivery options for applications in which internalization presents challenges to efficacious delivery.

  19. Manipulating the pH response of 2,3-diaminopropionic acid rich peptides to mediate highly effective gene silencing with low-toxicity☆

    PubMed Central

    Abbate, Vincenzo; Liang, Wanling; Patel, Jayneil; Lan, Yun; Capriotti, Luigi; Iacobucci, Valentina; Bui, Tam T.; Chaudhuri, Poulami; Kudsiova, Laila; Vermeer, Louic S.; Chan, Patrick F.L.; Kong, Xiaole; Drake, Alex F.; Lam, Jenny K.W.; Bansal, Sukhvinder S.; Mason, A. James

    2013-01-01

    Cationic amphipathic pH responsive peptides possess high in vitro and in vivo nucleic acid delivery capabilities and function by forming a non-covalent complex with cargo, protecting it from nucleases, facilitating uptake via endocytosis and responding to endosomal acidification by being released from the complex and inserting into and disordering endosomal membranes. We have designed and synthesised peptides to show how Coulombic interactions between ionizable 2,3-diaminopropionic acid (Dap) side chains can be manipulated to tune the functional pH response of the peptides to afford optimal nucleic acid transfer and have modified the hydrogen bonding capabilities of the Dap side chains in order to reduce cytotoxicity. When compared with benchmark delivery compounds, the peptides are shown to have low toxicity and are highly effective at mediating gene silencing in adherent MCF-7 and A549 cell lines, primary human umbilical vein endothelial cells and both differentiated macrophage-like and suspension monocyte-like THP-1 cells. PMID:24144917

  20. Effect of specific amino acid substitutions in the putative fusion peptide of structural glycoprotein E2 on Classical Swine Fever Virus replication

    SciTech Connect

    Fernández-Sainz, I.J.; Largo, E.; Gladue, D.P.; Fletcher, P.; O’Donnell, V.; Holinka, L.G.; Carey, L.B.; Lu, X.; Nieva, J.L.; Borca, M.V.

    2014-05-15

    E2, along with E{sup rns} and E1, is an envelope glycoprotein of Classical Swine Fever Virus (CSFV). E2 is involved in several virus functions: cell attachment, host range susceptibility and virulence in natural hosts. Here we evaluate the role of a specific E2 region, {sup 818}CPIGWTGVIEC{sup 828}, containing a putative fusion peptide (FP) sequence. Reverse genetics utilizing a full-length infectious clone of the highly virulent CSFV strain Brescia (BICv) was used to evaluate how individual amino acid substitutions within this region of E2 may affect replication of BICv. A synthetic peptide representing the complete E2 FP amino acid sequence adopted a β-type extended conformation in membrane mimetics, penetrated into model membranes, and perturbed lipid bilayer integrity in vitro. Similar peptides harboring amino acid substitutions adopted comparable conformations but exhibited different membrane activities. Therefore, a preliminary characterization of the putative FP {sup 818}CPIGWTGVIEC{sup 828} indicates a membrane fusion activity and a critical role in virus replication. - Highlights: • A putative fusion peptide (FP) region in CSFV E2 protein was shown to be critical for virus growth. • Synthetic FPs were shown to efficiently penetrate into lipid membranes using an in vitro model. • Individual residues in the FP affecting virus replication were identified by reverse genetics. • The same FP residues are also responsible for mediating membrane fusion.

  1. Regulation of protein kinase Cmu by basic peptides and heparin. Putative role of an acidic domain in the activation of the kinase.

    PubMed

    Gschwendt, M; Johannes, F J; Kittstein, W; Marks, F

    1997-08-15

    Protein kinase Cmu is a novel member of the protein kinase C (PKC) family that differs from the other isoenzymes in structural and enzymatic properties. No substrate proteins of PKCmu have been identified as yet. Moreover, the regulation of PKCmu activity remains obscure, since a structural region corresponding to the pseudosubstrate domains of other PKC isoenzymes has not been found for PKCmu. Here we show that aldolase is phosphorylated by PKCmu in vitro. Phosphorylation of aldolase and of two substrate peptides by PKCmu is inhibited by various proteins and peptides, including typical PKC substrates such as histone H1, myelin basic protein, and p53. This inhibitory activity seems to depend on clusters of basic amino acids in the protein/peptide structures. Moreover, in contrast to other PKC isoenzymes PKCmu is activated by heparin and dextran sulfate. Maximal activation by heparin is about twice and that by dextran sulfate four times as effective as maximal activation by phosphatidylserine plus 12-O-tetradecanoylphorbol-13-acetate, the conventional activators of c- and nPKC isoforms. We postulate that PKCmu contains an acidic domain, which is involved in the formation and stabilization of an active state and which, in the inactive enzyme, is blocked by an intramolecular interaction with a basic domain. This intramolecular block is thought to be released by heparin and possibly also by 12-O-tetradecanoylphorbol-13-acetate/phosphatidylserine, whereas basic peptides and proteins inhibit PKCmu activity by binding to the acidic domain of the active enzyme.

  2. Differential Binding of Monomethylarsonous Acid Compared to Arsenite and Arsenic Trioxide with Zinc Finger Peptides and Proteins

    PubMed Central

    2015-01-01

    Arsenic is an environmental toxin that enhances the carcinogenic effect of DNA-damaging agents, such as ultraviolet radiation and benzo[a]pyrene. Interaction with zinc finger proteins has been shown to be an important molecular mechanism for arsenic toxicity and cocarcinogenesis. Arsenicals such as arsenite, arsenic trioxide (ATO), and monomethylarsonous acid (MMA(III)) have been reported to interact with cysteine residues of zinc finger domains, but little is known about potential differences in their selectivity of interaction. Herein we analyzed the interaction of arsenite, MMA(III), and ATO with C2H2, C3H1, and C4 configurations of zinc fingers using UV–vis, cobalt, fluorescence, and mass spectrometry. We observed that arsenite and ATO both selectively bound to C3H1 and C4 zinc fingers, while MMA(III) interacted with all three configurations of zinc finger peptides. Structurally and functionally, arsenite and ATO caused conformational changes and zinc loss on C3H1 and C4 zinc finger peptide and protein, respectively, whereas MMA(III) changed conformation and displaced zinc on all three types of zinc fingers. The differential selectivity was also demonstrated in zinc finger proteins isolated from cells treated with these arsenicals. Our results show that trivalent inorganic arsenic compounds, arsenite and ATO, have the same selectivity and behavior when interacting with zinc finger proteins, while methylation removes the selectivity. These findings provide insights on the molecular mechanisms underlying the differential effects of inorganic versus methylated arsenicals, as well as the role of in vivo arsenic methylation in arsenic toxicity and carcinogenesis. PMID:24611629

  3. Differential binding of monomethylarsonous acid compared to arsenite and arsenic trioxide with zinc finger peptides and proteins.

    PubMed

    Zhou, Xixi; Sun, Xi; Mobarak, Charlotte; Gandolfi, A Jay; Burchiel, Scott W; Hudson, Laurie G; Liu, Ke Jian

    2014-04-21

    Arsenic is an environmental toxin that enhances the carcinogenic effect of DNA-damaging agents, such as ultraviolet radiation and benzo[a]pyrene. Interaction with zinc finger proteins has been shown to be an important molecular mechanism for arsenic toxicity and cocarcinogenesis. Arsenicals such as arsenite, arsenic trioxide (ATO), and monomethylarsonous acid (MMA(III)) have been reported to interact with cysteine residues of zinc finger domains, but little is known about potential differences in their selectivity of interaction. Herein we analyzed the interaction of arsenite, MMA(III), and ATO with C2H2, C3H1, and C4 configurations of zinc fingers using UV-vis, cobalt, fluorescence, and mass spectrometry. We observed that arsenite and ATO both selectively bound to C3H1 and C4 zinc fingers, while MMA(III) interacted with all three configurations of zinc finger peptides. Structurally and functionally, arsenite and ATO caused conformational changes and zinc loss on C3H1 and C4 zinc finger peptide and protein, respectively, whereas MMA(III) changed conformation and displaced zinc on all three types of zinc fingers. The differential selectivity was also demonstrated in zinc finger proteins isolated from cells treated with these arsenicals. Our results show that trivalent inorganic arsenic compounds, arsenite and ATO, have the same selectivity and behavior when interacting with zinc finger proteins, while methylation removes the selectivity. These findings provide insights on the molecular mechanisms underlying the differential effects of inorganic versus methylated arsenicals, as well as the role of in vivo arsenic methylation in arsenic toxicity and carcinogenesis.

  4. Vector-Mediated Delivery of a Polyamide ("Peptide") Nucleic Acid Analogue through the Blood-Brain Barrier in vivo

    NASA Astrophysics Data System (ADS)

    Pardridge, William M.; Boado, Ruben J.; Kang, Young-Sook

    1995-06-01

    Polyamide ("peptide") nucleic acids (PNAs) are molecules with antigene and antisense effects that may prove to be effective neuropharmaceuticals if these molecules are enabled to undergo transport through the brain capillary endothelial wall, which makes up the blood-brain barrier in vivo. The model PNA used in the present studies is an 18-mer that is antisense to the rev gene of human immunodeficiency virus type 1 and is biotinylated at the amino terminus and iodinated at a tyrosine residue near the carboxyl terminus. The biotinylated PNA was linked to a conjugate of streptavidin (SA) and the OX26 murine monoclonal antibody to the rat transferrin receptor. The blood-brain barrier is endowed with high transferrin receptor concentrations, enabling the OX26-SA conjugate to deliver the biotinylated PNA to the brain. Although the brain uptake of the free PNA was negligible following intravenous administration, the brain uptake of the PNA was increased at least 28-fold when the PNA was bound to the OX26-SA vector. The brain uptake of the PNA bound to the OX26-SA vector was 0.1% of the injected dose per gram of brain at 60 min after an intravenous injection, approximating the brain uptake of intravenously injected morphine. The PNA bound to the OX26-SA vector retained the ability to bind to synthetic rev mRNA as shown by RNase protection assays. In summary, the present studies show that while the transport of PNAs across the blood-brain barrier is negligible, delivery of these potential neuropharmaceutical drugs to the brain may be achieved by coupling them to vector-mediated peptide-drug delivery systems.

  5. Efficacy of a Complex of 5-Aminolevulinic Acid and Glycyl-Histidyl-Lysine Peptide on Hair Growth

    PubMed Central

    Sim, Hyun Bo; Jang, Yong Hyun; Lee, Seok-Jong; Kim, Do Won; Yim, Soon-Ho

    2016-01-01

    Background Pattern hair loss is a very common problem. Although effective therapeutics for the treatment of pattern hair loss have been used, novel therapeutic modalities are still required to enhance hair growth. Objective We investigated the efficacy and safety of a complex (ALAVAX) of 5-aminolevulinic acid (5-ALA) and glycyl-histidyl-lysine (GHK) peptide for the treatment of pattern hair loss. Methods Forty-five patients with male pattern hair loss were treated with ALAVAX 100 mg/ml (group A), ALAVAX 50 mg/ml (group B) or placebo (group C) once a day for 6 months. Total hair count, hair length, hair thickness, patient's assessment and adverse events were evaluated at month 1, 3, and 6. Results An increase in hair count for 6 months was 52.6 (p<0.05) in group A, 71.5 (p<0.05) in group B, and 9.6 in group C. The ratio of changes in hair count between group B (2.38) and group C (1.21) at 6 months showed a statistically significant difference (p<0.05). The proportion above good satisfaction was higher in group A (26.7%) than in the other groups (group B: 14.3%, group C: 7.1%). There was no statistically significant difference in hair length and hair thickness among 3 groups at 6 months. There was no adverse event in 3 groups. Conclusion Our study showed that a complex of 5-ALA and GHK peptide may be considered as one of the complementary agents for the treatment of male pattern hair loss. PMID:27489425

  6. Helices with additional H-bonds: crystallographic conformations of α,γ-hybrid peptides helices composed of β-hydroxy γ-amino acids (statines).

    PubMed

    Malik, Ankita; Kumar, Mothukuri Ganesh; Bandyopadhyay, Anupam; Gopi, Hosahudya N

    2017-01-01

    β-Hydroxy-γ-amino acids (Statines) are a class of naturally occurring non-ribosomal amino acids frequently found in many peptide natural products. Peptidomimetics constituted with statines have been used as inhibitors for various aspartic acid proteases. In contrast to the synthetic γ-amino acids, very little is known about the folding behavior of these naturally occurring β-hydroxy γ-amino acids. To understand the folding behavior of statines, three α,γ-hybrid peptides P1 (Ac-Aib-γPhe-Aib-(R, S)Phesta-Aib-γPhe-Aib-CONH2 ), P2 (Ac-Aib-γPhe-Aib-(S, S)Phesta-Aib-γPhe-Aib-CONH2 ), and P3 (Ac-Aib-γPhe-Aib-(S, S)Phesta-Aib-(S, S)Phesta-Aib-CONH2 ) were synthesized on solid phase and their helical conformations in single crystals were studied. Results suggest that both syn and anti diastereoisomers of statines can be accommodated into the helix without deviating overall helical conformation of α,γ-hybrid peptides. In comparison with syn diastereoisomer, the anti diastereoisomer was found to be directly involved in the intramolecular H-bonding with the backbone carbonyl groups (i to i + 3) similar to the backbone amide NHs in the helix.

  7. Cyanobacteria Produce N-(2-Aminoethyl)Glycine, a Backbone for Peptide Nucleic Acids Which May Have Been the First Genetic Molecules for Life on Earth

    PubMed Central

    Banack, Sandra Anne; Metcalf, James S.; Jiang, Liying; Craighead, Derek; Ilag, Leopold L.; Cox, Paul Alan

    2012-01-01

    Prior to the evolution of DNA-based organisms on earth over 3.5 billion years ago it is hypothesized that RNA was the primary genetic molecule. Before RNA-based organisms arose, peptide nucleic acids may have been used to transmit genetic information by the earliest forms of life on earth. We discovered that cyanobacteria produce N-(2-aminoethyl)glycine (AEG), a backbone for peptide nucleic acids. We detected AEG in axenic strains of cyanobacteria with an average concentration of 1 µg/g. We also detected AEG in environmental samples of cyanobacteria as both a free or weakly bound molecule and a tightly bound form released by acid hydrolysis, at concentrations ranging from not detected to 34 µg/g. The production of AEG by diverse taxa of cyanobacteria suggests that AEG may be a primitive feature which arose early in the evolution of life on earth. PMID:23145061

  8. Cyanobacteria produce N-(2-aminoethyl)glycine, a backbone for peptide nucleic acids which may have been the first genetic molecules for life on Earth.

    PubMed

    Banack, Sandra Anne; Metcalf, James S; Jiang, Liying; Craighead, Derek; Ilag, Leopold L; Cox, Paul Alan

    2012-01-01

    Prior to the evolution of DNA-based organisms on earth over 3.5 billion years ago it is hypothesized that RNA was the primary genetic molecule. Before RNA-based organisms arose, peptide nucleic acids may have been used to transmit genetic information by the earliest forms of life on earth. We discovered that cyanobacteria produce N-(2-aminoethyl)glycine (AEG), a backbone for peptide nucleic acids. We detected AEG in axenic strains of cyanobacteria with an average concentration of 1 µg/g. We also detected AEG in environmental samples of cyanobacteria as both a free or weakly bound molecule and a tightly bound form released by acid hydrolysis, at concentrations ranging from not detected to 34 µg/g. The production of AEG by diverse taxa of cyanobacteria suggests that AEG may be a primitive feature which arose early in the evolution of life on earth.

  9. Induction of porcine host defense peptide gene expression by short-chain fatty acids and their analogs.

    PubMed

    Zeng, Xiangfang; Sunkara, Lakshmi T; Jiang, Weiyu; Bible, Megan; Carter, Scott; Ma, Xi; Qiao, Shiyan; Zhang, Guolong

    2013-01-01

    Dietary modulation of the synthesis of endogenous host defense peptides (HDPs) represents a novel antimicrobial approach for disease control and prevention, particularly against antibiotic-resistant infections. However, HDP regulation by dietary compounds such as butyrate is species-dependent. To examine whether butyrate could induce HDP expression in pigs, we evaluated the expressions of a panel of porcine HDPs in IPEC-J2 intestinal epithelial cells, 3D4/31 macrophages, and primary monocytes in response to sodium butyrate treatment by real-time PCR. We revealed that butyrate is a potent inducer of multiple, but not all, HDP genes. Porcine β-defensin 2 (pBD2), pBD3, epididymis protein 2 splicing variant C (pEP2C), and protegrins were induced markedly in response to butyrate, whereas pBD1 expression remained largely unaltered in any cell type. Additionally, a comparison of the HDP-inducing efficacy among saturated free fatty acids of different aliphatic chain lengths revealed that fatty acids containing 3-8 carbons showed an obvious induction of HDP expression in IPEC-J2 cells, with butyrate being the most potent and long-chain fatty acids having only a marginal effect. We further investigated a panel of butyrate analogs for their efficacy in HDP induction, and found glyceryl tributyrate, benzyl butyrate, and 4-phenylbutyrate to be comparable with butyrate. Identification of butyrate and several analogs with a strong capacity to induce HDP gene expression in pigs provides attractive candidates for further evaluation of their potential as novel alternatives to antibiotics in augmenting innate immunity and disease resistance of pigs.

  10. Induction of Porcine Host Defense Peptide Gene Expression by Short-Chain Fatty Acids and Their Analogs

    PubMed Central

    Zeng, Xiangfang; Sunkara, Lakshmi T.; Jiang, Weiyu; Bible, Megan; Carter, Scott; Ma, Xi; Qiao, Shiyan; Zhang, Guolong

    2013-01-01

    Dietary modulation of the synthesis of endogenous host defense peptides (HDPs) represents a novel antimicrobial approach for disease control and prevention, particularly against antibiotic-resistant infections. However, HDP regulation by dietary compounds such as butyrate is species-dependent. To examine whether butyrate could induce HDP expression in pigs, we evaluated the expressions of a panel of porcine HDPs in IPEC-J2 intestinal epithelial cells, 3D4/31 macrophages, and primary monocytes in response to sodium butyrate treatment by real-time PCR. We revealed that butyrate is a potent inducer of multiple, but not all, HDP genes. Porcine β-defensin 2 (pBD2), pBD3, epididymis protein 2 splicing variant C (pEP2C), and protegrins were induced markedly in response to butyrate, whereas pBD1 expression remained largely unaltered in any cell type. Additionally, a comparison of the HDP-inducing efficacy among saturated free fatty acids of different aliphatic chain lengths revealed that fatty acids containing 3–8 carbons showed an obvious induction of HDP expression in IPEC-J2 cells, with butyrate being the most potent and long-chain fatty acids having only a marginal effect. We further investigated a panel of butyrate analogs for their efficacy in HDP induction, and found glyceryl tributyrate, benzyl butyrate, and 4-phenylbutyrate to be comparable with butyrate. Identification of butyrate and several analogs with a strong capacity to induce HDP gene expression in pigs provides attractive candidates for further evaluation of their potential as novel alternatives to antibiotics in augmenting innate immunity and disease resistance of pigs. PMID:24023657

  11. Reductive alkylation and sequential reductive alkylation-click chemistry for on-solid-support modification of pyrrolidinyl peptide nucleic acid.

    PubMed

    Ditmangklo, Boonsong; Boonlua, Chalothorn; Suparpprom, Chaturong; Vilaivan, Tirayut

    2013-04-17

    A methodology for the site-specific attachment of fluorophores to the backbone of pyrrolidinyl peptide nucleic acids (PNAs) with an α/β-backbone derived from D-prolyl-(1S,2S)-2-aminocyclopentanecarboxylic acid (acpcPNA) has been developed. The strategy involves a postsynthetic reductive alkylation of the aldehyde-containing labels onto the acpcPNA that was previously modified with (3R,4S)-3-aminopyrrolidine-4-carboxylic acid on the solid support. The reductive alkylation reaction is remarkably efficient and compatible with a range of reactive functional groups including Fmoc-protected amino, azide, and alkynes. This allows further attachment of readily accessible carboxyl-, alkyne-, or azide-containing labels via amide bond formation or Cu-catalyzed azide-alkyne cycloaddition (CuAAC, also known as click chemistry). The label attached in this way does not negatively affect the affinity and specificity of the pairing of the acpcPNA to its DNA target. Applications of this methodology in creating self-reporting pyrene- and thiazole orange-labeled acpcPNA probes that can yield a change in fluorescence in response to the presence of the correct DNA target have also been explored. A strong fluorescence enhancement was observed with thiazole orange-labeled acpcPNA in the presence of DNA. The specificity could be further improved by enzymatic digestion with S1 nuclease, providing a 9- to 60-fold fluorescence enhancement with fully complementary DNA and a less than 3.5-fold enhancement with mismatched DNA targets.

  12. Amino acid and peptide absorption after proximal small intestinal resection in the rat.

    PubMed Central

    Garrido, A B; Freeman, H J; Chung, Y C; Kim, Y S

    1979-01-01

    In experimental animals with massive proximal intestinal resection, in vivo ileal absorption of an amino acid mixture containing L-leucine and glycine as well as two different dipeptides, L-leucyl-glycine and glycyl-L-leucine, were compared. Both amino acid and dipeptide absorption were markedly enhanced in the ileal segments. However, the absorption rates from the two perfused dipeptides differed. L-leucine absorption from L-leucyl-glycine was much greater than from glycyl-L-leucine. Brush border amino-peptidase activities after resection were also increased but dissociation between absorption and hydrolytic activity occurred. This study indicates that certain dipeptides are handled differently by adapting ileal segments. Furthermore, the changes observed probably reflect mucosal cellular hyperplasia occurring in association with intestinal adaptation. PMID:428822

  13. Polyanionic Carboxyethyl Peptide Nucleic Acids (ce-PNAs): Synthesis and DNA Binding

    PubMed Central

    Kirillova, Yuliya; Boyarskaya, Nataliya; Dezhenkov, Andrey; Tankevich, Mariya; Prokhorov, Ivan; Varizhuk, Anna; Eremin, Sergei; Esipov, Dmitry; Smirnov, Igor; Pozmogova, Galina

    2015-01-01

    New polyanionic modifications of polyamide nucleic acid mimics were obtained. Thymine decamers were synthesized from respective chiral α- and γ-monomers, and their enantiomeric purity was assessed. Here, we present the decamer synthesis, purification and characterization by MALDI-TOF mass spectrometry and an investigation of the hybridization properties of the decamers. We show that the modified γ-S-carboxyethyl-T10 PNA forms a stable triplex with polyadenine DNA. PMID:26469337

  14. Supplementation with branched-chain amino acids to a low-protein diet regulates intestinal expression of amino acid and peptide transporters in weanling pigs.

    PubMed

    Zhang, Shihai; Qiao, Shiyan; Ren, Man; Zeng, Xiangfang; Ma, Xi; Wu, Zhenlong; Thacker, Philip; Wu, Guoyao

    2013-11-01

    This study determined the effects of dietary branched-chain amino acids (AA) (BCAA) on growth performance, expression of jejunal AA and peptide transporters, and the colonic microflora of weanling piglets fed a low-protein (LP) diet. One hundred and eight Large White × Landrace × Duroc piglets (weaned at 28 days of age) were fed a normal protein diet (NP, 20.9 % crude protein), an LP diet (LP, 17.1 % crude protein), or an LP diet supplemented with BCAA (LP + BCAA, 17.9 % crude protein) for 14 days. Dietary protein restriction reduced piglet growth performance and small-intestinal villous height, which were restored by BCAA supplementation to the LP diet to values for the NP diet. Serum concentrations of BCAA were reduced in piglets fed the LP diet while those in piglets fed the LP + BCAA diet were similar to values for the NP group. mRNA levels for Na(+)-neutral AA exchanger-2, cationic AA transporter-1, b(0,+) AA transporter, and 4F2 heavy chain were more abundant in piglets fed the LP + BCAA diet than the LP diet. However, mRNA and protein levels for peptide transporter-1 were lower in piglets fed the LP + BCAA diet as compared to the LP diet. The colonic microflora did not differ among the three groups of pigs. In conclusion, growth performance, intestinal development, and intestinal expression of AA transporters in weanling piglets are enhanced by BCAA supplementation to LP diets. Our findings provide a new molecular basis for further understanding of BCAA as functional AA in animal nutrition.

  15. Mating and sex peptide stimulate the accumulation of yolk in oocytes of Drosophila melanogaster.

    PubMed

    Soller, M; Bownes, M; Kubli, E

    1997-02-01

    Mating elicits two reactions in many insect females: egg deposition is increased and receptivity to males is reduced. Central to the control of receptivity and oviposition in Drosophila melanogaster is the sex peptide (SP), a 36-amino-acid peptide sex pheromone synthesized in the male accessory glands and transferred to the female during copulation. To identify regulatory mechanisms involved in the maintenance of the oviposition response, we have compared the effects of mating and SP application with respect to oogenesis. The distribution of the various stages of oogenesis in the ovary, yolk protein (YP) synthesis by the fat body, as well as YP content, uptake and synthesis by the ovary were investigated. Transcripts of the yolk protein genes (yp) were quantified by Northern blotting. Based on our results, we conclude that mating and SP injection into virgin females stimulate yp gene transcription in the fat body only moderately above the background level. However, uptake into the ovary and transcription of the yp genes in the ovary is strongly enhanced after either mating or SP injection. These data are supported by the finding that the abundance of the vitellogenic stage 10 oocytes is also increased. In contrast, early vitellogenic stages 8 and 9 of oogenesis are present in the same numbers in virgin, mated, and SP-injected females, which suggests a control point at about stage 9 determining vitellogenic oocyte progression. The finding that SP can elicit equally all changes observed after copulation suggests that in the sexually mature female it is the major component controlling and stimulating oogenesis after mating.

  16. Role of amino acid insertions on intermolecular forces between arginine peptide condensed DNA helices: implications for protamine-DNA packaging in sperm.

    PubMed

    DeRouchey, Jason E; Rau, Donald C

    2011-12-09

    In spermatogenesis, chromatin histones are replaced by arginine-rich protamines to densely compact DNA in sperm heads. Tight packaging is considered necessary to protect the DNA from damage. To better understand the nature of the forces condensing protamine-DNA assemblies and their dependence on amino acid content, the effect of neutral and negatively charged amino acids on DNA-DNA intermolecular forces was studied using model peptides containing six arginines. We have previously observed that the neutral amino acids in salmon protamine decrease the net attraction between protamine-DNA helices compared with the equivalent homo-arginine peptide. Using osmotic stress coupled with x-ray scattering, we have investigated the component attractive and repulsive forces that determine the net attraction and equilibrium interhelical distance as a function of the chemistry, position, and number of the amino acid inserted. Neutral amino acids inserted into hexa-arginine increase the short range repulsion while only slightly affecting longer range attraction. The amino acid content alone of salmon protamine is enough to rationalize the forces that package DNA in sperm heads. Inserting a negatively charged amino acid into hexa-arginine dramatically weakens the net attraction. Both of these observations have biological implications for protamine-DNA packaging in sperm heads.

  17. Integrating the intrinsic conformational preferences of non-coded α-amino acids modified at the peptide bond into the NCAD database

    PubMed Central

    Revilla-López, Guillem; Rodríguez-Ropero, Francisco; Curcó, David; Torras, Juan; Calaza, M. Isabel; Zanuy, David; Jiménez, Ana I.; Cativiela, Carlos; Nussinov, Ruth; Alemán, Carlos

    2011-01-01

    Recently, we reported a database (NCAD, Non-Coded Amino acids Database; http://recerca.upc.edu/imem/index.htm) that was built to compile information about the intrinsic conformational preferences of non-proteinogenic residues determined by quantum mechanical calculations, as well as bibliographic information about their synthesis, physical and spectroscopic characterization, the experimentally-established conformational propensities, and applications (J. Phys. Chem. B 2010, 114, 7413). The database initially contained the information available for α-tetrasubstituted α-amino acids. In this work, we extend NCAD to three families of compounds, which can be used to engineer peptides and proteins incorporating modifications at the –NHCO– peptide bond. Such families are: N-substituted α-amino acids, thio-α-amino acids, and diamines and diacids used to build retropeptides. The conformational preferences of these compounds have been analyzed and described based on the information captured in the database. In addition, we provide an example of the utility of the database and of the compounds it compiles in protein and peptide engineering. Specifically, the symmetry of a sequence engineered to stabilize the 310-helix with respect to the α-helix has been broken without perturbing significantly the secondary structure through targeted replacements using the information contained in the database. PMID:21491493

  18. Effect of Fluorescent Labels on Peptide and Amino Acid Sample Dimensionality in Two Dimensional nLC × μFFE Separations.

    PubMed

    Geiger, Matthew; Bowser, Michael T

    2016-02-16

    Multidimensional separations present a unique opportunity for generating the high peak capacities necessary for the analysis of complex biological mixtures. We have coupled nano liquid chromatography with micro free flow electrophoresis (nLC × μFFE) to produce high peak capacity separations of peptide and amino acid mixtures. Currently, μFFE largely relies on laser-induced fluorescence (LIF) detection. We have demonstrated that the choice of fluorescent label significantly affects the fractional coverage and peak capacity of nLC × μFFE separations of peptides and amino acids. Of the labeling reagents assessed, Chromeo P503 performed the best for nLC × μFFE separations of peptides. A nLC × μFFE analysis of a Chromeo P503-labeled BSA tryptic digest produced a 2D separation that made effective use of the available separation space (48%), generating a corrected peak capacity of 521 in a 5 min separation window (104 peaks/min). nLC × μFFE separations of NBD-F-labeled peptides produced similar fractional coverage and peak capacity, but this reagent was able to react with multiple reaction sites, producing an unnecessarily complex analyte mixture. NBD-F performed the best for nLC × μFFE separations of amino acids. NBD-F-labeled amino acids produced a 2D separation that covered 36% of the available separation space, generating a corrected peak capacity of 95 in a 75 s separation window (76 peaks/min). Chromeo P503 and Alexa Fluor 488-labeled amino acids were not effectively separated in the μFFE dimension, giving 2D separations with poor fractional coverage and peak capacity.

  19. Antimicrobial Peptides in 2014

    PubMed Central

    Wang, Guangshun; Mishra, Biswajit; Lau, Kyle; Lushnikova, Tamara; Golla, Radha; Wang, Xiuqing

    2015-01-01

    This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms. PMID:25806720

  20. Isolation, Amino Acid Sequence and Biological Activities of Novel Long-Chain Polyamine-Associated Peptide Toxins from the Sponge Axinyssa aculeata

    PubMed Central

    Matsunaga, Satoko; Jimbo, Mitsuru; Gill, Martin B.; Lash-Van Wyhe, L. Leanne; Murata, Michio; Nonomura, Ken’ichi; Swanson, Geoffrey T.

    2012-01-01

    A novel family of functionalized peptide toxins, aculeines (ACUs), was isolated from the marine sponge Axinyssa aculeate. ACUs are polypeptides with N-terminal residues that are modified by the addition of long-chain polyamines (LCPA). Aculeines were present in the sponge extract as a complex mixture with differing polyamine chain lengths and peptide structures. ACU-A and B, which were purified in this study, share a common polypeptide chain but differ in their N-terminal residue modifications. The amino acid sequence of the polypeptide portion of ACU-A and B was deduced from 3′ and 5′ RACE, and supported by Edman degradation and mass spectral analysis of peptide fragments. ACU induced convulsions upon intracerebroventricular (i.c.v.) injection in mice, and disrupted neuronal membrane integrity in electrophysiological assays. ACU also lysed erythrocytes with a potency that differed between animal species. Here we describe the isolation, amino acid sequence, and biological activity of this new group of cytotoxic sponge peptides. PMID:21830292

  1. Influence of a 4-aminomethylbenzoic acid residue on competitive fragmentation pathways during collision-induced dissociation of metal-cationized peptides.

    PubMed

    Osburn, Sandra; Ochola, Sila; Talaty, Erach; Van Stipdonk, Michael

    2007-01-01

    Formation of [bn+17+cat]+ is a prominent collision-induced dissociation (CID) pathway for Li+- and Na+-cationized peptides. Dissociation of protonated and Ag+-cationized peptides instead favors formation of the rival bn+/[bn-1+cat]+ species. In this study the influence of a 4-aminomethylbenzoic acid (4AMBz) residue on the relative intensities of [b(3)-1+cat]+ and [b(3)+17+cat]+ fragment ions was investigated using several model tetrapeptides including those with the general formula A(4AMBz)AX and A(4AMBz)GX (where X=G, A, V). For Li+- and Na+-cationized versions of the peptides there was a significant increase in the intensity of [b(3)-1+cat]+ for the peptides that contain the 4AMBz residue, and in some cases the complete elimination of the [b(3)+17+cat]+ pathway. The influence of the 4AMBz residue may be attributed to the fact that [b(3)-1+cat]+ would be a highly conjugated species containing an aromatic ring substituent. Comparison of CID profiles generated from Na+-cationized AAGV and A(4AMBz)GV suggests an apparent decrease in the critical energy for generation of [b(3)-1+Na]+ relative to that of [b(3)+17+Na]+ when the aromatic amino acid occupies a position such that it leads to the formation of the highly conjugated oxazolinone, thus leading to an increase in formation rate for the former compared to the latter.

  2. Peptide nucleic acid (PNA) is capable of enhancing hammerhead ribozyme activity with long but not with short RNA substrates.

    PubMed Central

    Jankowsky, E; Strunk, G; Schwenzer, B

    1997-01-01

    Long RNA substrates are inefficiently cleaved by hammerhead ribozymes in trans. Oligonucleotide facilitators capable of affecting the ribozyme activity by interacting with the substrates at the termini of the ribozyme provide a possibility to improve ribozyme mediated cleavage of long RNA substrates. We have examined the effect of PNA as facilitator in vitro in order to test if even artificial compounds have facilitating potential. Effects of 12mer PNA- (peptide nucleic acid), RNA- and DNA-facilitators of identical sequence were measured with three substrates containing either 942, 452 or 39 nucleotides. The PNA facilitator enhances the ribozyme activity with both, the 942mer and the 452mer substrate to a slightly smaller extent than RNA and DNA facilitators. This effect was observed up to PNA facilitator:substrate ratios of 200:1. The enhancement becomes smaller as the PNA facilitator:substrate ratio exceeds 200:1. With the 39mer substrate, the PNA facilitator decreases the ribozyme activity by more than 100-fold, even at PNA facilitator:substrate ratios of 1:1. Although with long substrates the effect of the PNA facilitator is slightly smaller than the effect of identical RNA or DNA facilitators, PNA may be a more practical choice for potential applications in vivo because PNA is much more resistant to degradation by cellular enzymes. PMID:9207013

  3. Differentiation of Candida albicans and Candida dubliniensis by Fluorescent In Situ Hybridization with Peptide Nucleic Acid Probes

    PubMed Central

    Oliveira, Kenneth; Haase, Gerhard; Kurtzman, Cletus; Hyldig-Nielsen, Jens Jo/rgen; Stender, Henrik

    2001-01-01

    The recent discovery of Candida dubliniensis as a separate species that traditionally has been identified as Candida albicans has led to the development of a variety of biochemical and molecular methods for the differentiation of these two pathogenic yeasts. rRNA sequences are well-established phylogenetic markers, and probes targeting species-specific rRNA sequences have been used in diagnostic assays for the detection and identification of microorganisms. Peptide nucleic acid (PNA) is a DNA mimic with improved hybridization characteristics, and the neutral backbone of PNA probes offers significant advantages in whole-cell in situ hybridization assays. In this study, we developed PNA probes targeting the rRNAs of C. albicans and C. dubliniensis and applied them to a fluorescence in situ hybridization method (PNA FISH) for differentiation between C. albicans and C. dubliniensis. Liquid cultures were smeared onto microscope slides, heat fixed, and then hybridized for 30 min. Unhybridized PNA probe was removed by washing, and smears were examined by fluorescence microscopy. Evaluation of the PNA FISH method using smears of 79 C. dubliniensis and 70 C. albicans strains showed 100% sensitivity and 100% specificity for both PNA probes. We concluded that PNA FISH is a powerful tool for the differentiation of C. albicans and C. dubliniensis. PMID:11682542

  4. Using triple-helix-forming Peptide nucleic acids for sequence-selective recognition of double-stranded RNA.

    PubMed

    Hnedzko, Dziyana; Cheruiyot, Samwel K; Rozners, Eriks

    2014-09-08

    Non-coding RNAs play important roles in regulation of gene expression. Specific recognition and inhibition of these biologically important RNAs that form complex double-helical structures will be highly useful for fundamental studies in biology and practical applications in medicine. This protocol describes a strategy developed in our laboratory for sequence-selective recognition of double-stranded RNA (dsRNA) using triple-helix-forming peptide nucleic acids (PNAs) that bind in the major grove of the RNA helix. The strategy developed uses chemically modified nucleobases, such as 2-aminopyridine (M), which enables strong triple-helical binding under physiologically relevant conditions, and 2-pyrimidinone (P) and 3-oxo-2,3-dihydropyridazine (E), which enable recognition of isolated pyrimidines in the purine-rich strand of the RNA duplex. Detailed protocols for preparation of modified PNA monomers, solid-phase synthesis, HPLC purification of PNA oligomers, and measuring dsRNA binding affinity using isothermal titration calorimetry are included.

  5. Fluorescence In Situ Hybridization with Peptide Nucleic Acid Probes for Rapid Identification of Candida albicans Directly from Blood Culture Bottles

    PubMed Central

    Rigby, Susan; Procop, Gary W.; Haase, Gerhard; Wilson, Deborah; Hall, Geraldine; Kurtzman, Cletus; Oliveira, Kenneth; Von Oy, Sabina; Hyldig-Nielsen, Jens J.; Coull, James; Stender, Henrik

    2002-01-01

    A new fluorescence in situ hybridization (FISH) method that uses peptide nucleic acid (PNA) probes for identification of Candida albicans directly from positive-blood-culture bottles in which yeast was observed by Gram staining (herein referred to as yeast-positive blood culture bottles) is described. The test (the C. albicans PNA FISH method) is based on a fluorescein-labeled PNA probe that targets C. albicans 26S rRNA. The PNA probe is added to smears made directly from the contents of the blood culture bottle and hybridized for 90 min at 55°C. Unhybridized PNA probe is removed by washing of the mixture (30 min), and the smears are examined by fluorescence microscopy. The specificity of the method was confirmed with 23 reference strains representing phylogenetically related yeast species and 148 clinical isolates covering the clinically most significant yeast species, including C. albicans (n = 72), C. dubliniensis (n = 58), C. glabrata (n = 5), C. krusei (n = 2), C. parapsilosis (n = 4), and C. tropicalis (n = 3). The performance of the C. albicans PNA FISH method as a diagnostic test was evaluated with 33 routine and 25 simulated yeast-positive blood culture bottles and showed 100% sensitivity and 100% specificity. It is concluded that this 2.5-h method for the definitive identification of C. albicans directly from yeast-positive blood culture bottles provides important information for optimal antifungal therapy and patient management. PMID:12037084

  6. Peptide nucleic acid fluorescence in situ hybridization for identification of Listeria genus, Listeria monocytogenes and Listeria ivanovii.

    PubMed

    Zhang, Xiaofeng; Wu, Shan; Li, Ke; Shuai, Jiangbing; Dong, Qiang; Fang, Weihuan

    2012-07-02

    A fluorescent in situ hybridization (FISH) method in conjunction with fluorescin-labeled peptide nucleic acid (PNA) probes (PNA-FISH) for detection of Listeria species was developed. In silico analysis showed that three PNA probes Lis-16S-1, Lm-16S-2 and Liv-16S-5 were suitable for specific identification of Listeria genus, Listeria monocytogenes and Listeria ivanovii, respectively. These probes were experimentally verified by their reactivity against 19 strains of six Listeria species (excluding newly described species Listeria marthii and Listeria rocourtiae) and eight other bacterial species. The PNA-FISH method was optimized as 30 min of hybridization with 0.2% Triton X-100 in the solution and used to identify 85 Listeria strains from individual putative Listeria colonies on PALCAM agar plates streaked from selectively enriched cultures of 780 food or food-related samples. Of the 85 Listeria strains, thirty-seven were identified as L. monocytogenes with the probe Lm-16S-2 and two as L. ivanovii with the probe Liv-16S-5 which was in agreement with the results obtained by the API LISTERIA method. Thus, the PNA-FISH protocol has the potential for identification of pathogenic Listeria spp. from food or food-related samples.

  7. Investigation on natural diets of larval marine animals using peptide nucleic acid-directed polymerase chain reaction clamping.

    PubMed

    Chow, Seinen; Suzuki, Sayaka; Matsunaga, Tadashi; Lavery, Shane; Jeffs, Andrew; Takeyama, Haruko

    2011-04-01

    The stomach contents of the larvae of marine animals are usually very small in quantity and amorphous, especially in invertebrates, making morphological methods of identification very difficult. Nucleotide sequence analysis using polymerase chain reaction (PCR) is a likely approach, but the large quantity of larval (host) DNA present may mask subtle signals from the prey genome. We have adopted peptide nucleic acid (PNA)-directed PCR clamping to selectively inhibit amplification of host DNA for this purpose. The Japanese spiny lobster (Panulirus japonicus) and eel (Anguilla japonica) were used as model host and prey organisms, respectively. A lobster-specific PNA oligomer (20 bases) was designed to anneal to the sequence at the junction of the 18 S rDNA gene and the internal transcribed spacer 1 (ITS1) of the lobster. PCR using eukaryote universal primers for amplifying the ITS1 region used in conjunction with the lobster-specific PNA on a mixed DNA template of lobster and eel demonstrated successful inhibition of lobster ITS1 amplification while allowing efficient amplification of eel ITS1. This method was then applied to wild-caught lobster larvae of P. japonicus and P. longipes bispinosus collected around Ryukyu Archipelago, Japan. ITS1 sequences of a wide variety of animals (Ctenophora, Cnidaria, Crustacea, Teleostei, Mollusca, and Chaetognatha) were detected.

  8. Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating

    NASA Astrophysics Data System (ADS)

    Candiani, Alessandro; Bertucci, Alessandro; Giannetti, Sara; Konstantaki, Maria; Manicardi, Alex; Pissadakis, Stavros; Cucinotta, Annamaria; Corradini, Roberto; Selleri, Stefano

    2013-05-01

    We describe a novel sensing approach based on a functionalized microstructured optical fiber-Bragg grating for specific DNA target sequences detection. The inner surface of a microstructured fiber, where a Bragg grating was previously inscribed, has been functionalized by covalent linking of a peptide nucleic acid probe targeting a DNA sequence bearing a single point mutation implicated in cystic fibrosis (CF) disease. A solution of an oligonucleotide (ON) corresponding to a tract of the CF gene containing the mutated DNA has been infiltrated inside the fiber capillaries and allowed to hybridize to the fiber surface according to the Watson-Crick pairing. In order to achieve signal amplification, ON-functionalized gold nanoparticles were then infiltrated and used in a sandwich-like assay. Experimental measurements show a clear shift of the reflected high order mode of a Bragg grating for a 100 nM DNA solution, and fluorescence measurements have confirmed the successful hybridization. Several experiments have been carried out on the same fiber using the identical concentration, showing the same modulation trend, suggesting the possibility of the reuse of the sensor. Measurements have also been made using a 100 nM mismatched DNA solution, containing a single nucleotide mutation and corresponding to the wild-type gene, and the results demonstrate the high selectivity of the sensor.

  9. Effects of hypoxanthine substitution in peptide nucleic acids targeting KRAS2 oncogenic mRNA molecules: theory and experiment.

    PubMed

    Sanders, Jeffrey M; Wampole, Matthew E; Chen, Chang-Po; Sethi, Dalip; Singh, Amrita; Dupradeau, François-Yves; Wang, Fan; Gray, Brian D; Thakur, Mathew L; Wickstrom, Eric

    2013-10-03

    Genetic disorders can arise from single base substitutions in a single gene. A single base substitution for wild type guanine in the twelfth codon of KRAS2 mRNA occurs frequently to initiate lung, pancreatic, and colon cancer. We have observed single base mismatch specificity in radioimaging of mutant KRAS2 mRNA in tumors in mice by in vivo hybridization with radiolabeled peptide nucleic acid (PNA) dodecamers. We hypothesized that multimutant specificity could be achieved with a PNA dodecamer incorporating hypoxanthine, which can form Watson-Crick base pairs with adenine, cytosine, thymine, and uracil. Using molecular dynamics simulations and free energy calculations, we show that hypoxanthine substitutions in PNAs are tolerated in KRAS2 RNA:PNA duplexes where wild type guanine is replaced by mutant uracil or adenine in RNA. To validate our predictions, we synthesized PNA dodecamers with hypoxanthine, and then measured the thermal stability of RNA:PNA duplexes. Circular dichroism thermal melting results showed that hypoxanthine-containing PNAs are more stable in duplexes where hypoxanthine-adenine and hypoxanthine-uracil base pairs are formed than single mismatch duplexes or duplexes containing hypoxanthine-guanine opposition.

  10. Picoliter droplet-based digital peptide nucleic acid clamp PCR and dielectric sorting for low abundant K-ras mutations

    NASA Astrophysics Data System (ADS)

    Zhang, Huidan; Sperling, Ralph; Rotem, Assaf; Shan, Lianfeng; Heyman, John; Zhang, Yizhe; Weitz, David

    2012-02-01

    Colorectal cancer (CRC) remains the second leading cause of cancer-related mortality in the US, and the 5-year survival of metastatic CRC (mCRC) is less than 10%. Although monoclonal antibodies against epidermal growth factor receptor (EGFR) provide incremental improvements in survival, approximately 40% of mCRC patients with activating KRAS mutations won't benefit from this therapy. Peptide nucleic acid (PNA), a synthetic non-extendable oligonucleotides, can bind strongly to completely complementary wild-type KRAS by Watson-Crick base pairing and suppress its amplification during PCR, while any mutant allele will show unhindered amplification. The method is particularly suitable for the simultaneously detection of several adjoining mutant sites, just as mutations of codons 12 and 13 of KRAS gene where there are totally 12 possible mutation types. In this work, we describe the development and validation of this method, based on the droplet-based digital PCR. Using a microfluidic system, single target DNA molecule is compartmentalized in microdroplets together with PNA specific for wild-type KRAS, thermocycled and the fluorescence of each droplet was detected, followed by sorting and sequencing. It enables the precise determination of all possible mutant KRAS simultaneously, and the precise quantification of a single mutated KRAS in excess background unmutated KRAS.

  11. Optimization of peptide nucleic acid antisense oligonucleotides for local and systemic dystrophin splice correction in the mdx mouse.

    PubMed

    Yin, HaiFang; Betts, Corinne; Saleh, Amer F; Ivanova, Gabriela D; Lee, Hyunil; Seow, Yiqi; Kim, Dalsoo; Gait, Michael J; Wood, Matthew J A

    2010-04-01

    Antisense oligonucleotides (AOs) have the capacity to alter the processing of pre-mRNA transcripts in order to correct the function of aberrant disease-related genes. Duchenne muscular dystrophy (DMD) is a fatal X-linked muscle degenerative disease that arises from mutations in the DMD gene leading to an absence of dystrophin protein. AOs have been shown to restore the expression of functional dystrophin via splice correction by intramuscular and systemic delivery in animal models of DMD and in DMD patients via intramuscular administration. Major challenges in developing this splice correction therapy are to optimize AO chemistry and to develop more effective systemic AO delivery. Peptide nucleic acid (PNA) AOs are an alternative AO chemistry with favorable in vivo biochemical properties and splice correcting abilities. Here, we show long-term splice correction of the DMD gene in mdx mice following intramuscular PNA delivery and effective splice correction in aged mdx mice. Further, we report detailed optimization of systemic PNA delivery dose regimens and PNA AO lengths to yield splice correction, with 25-mer PNA AOs providing the greatest splice correcting efficacy, restoring dystrophin protein in multiple peripheral muscle groups. PNA AOs therefore provide an attractive candidate AO chemistry for DMD exon skipping therapy.

  12. The outer-coordination sphere: incorporating amino acids and peptides as ligands for homogeneous catalysts to mimic enzyme function

    SciTech Connect

    Shaw, Wendy J.

    2012-10-09

    Great progress has been achieved in the field of homogeneous transition metal-based catalysis, however, as a general rule these solution based catalysts are still easily outperformed, both in terms of rates and selectivity, by their analogous enzyme counterparts, including structural mimics of the active site. This observation suggests that the features of the enzyme beyond the active site, i.e. the outer-coordination sphere, are important for their exceptional function. Directly mimicking the outer-coordination sphere requires the incorporation of amino acids and peptides as ligands for homogeneous catalysts. This effort has been attempted for many homogeneous catalysts which span the manifold of catalytic reactions and often require careful thought regarding solvent type, pH and characterization to avoid unwanted side reactions or catalyst decomposition. This article reviews the current capability of synthesizing and characterizing this often difficult category of metal-based catalysts. This work was funded by the DOE Office of Science Early Career Research Program through the Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  13. Structure-activity relationship analysis of the peptide deformylase inhibitor 5-bromo-1H-indole-3-acetohydroxamic acid.

    PubMed

    Petit, Sylvain; Duroc, Yann; Larue, Valéry; Giglione, Carmela; Léon, Carole; Soulama, Coralie; Denis, Alexis; Dardel, Frédéric; Meinnel, Thierry; Artaud, Isabelle

    2009-02-01

    The lead compound 5-bromoindolyl-3-acetohydroxamic acid (10) was recently identified as a potent inhibitor of bacterial peptide deformylases (PDFs). The synthesis and associated activities of new variants were investigated at position 5 to optimize the fit at the S1' subsite and at position 1 to improve both potency and antibacterial activity. A morphomimetic series, termed "reverse-indole" was synthesized. The indole derivatives remain selective in vitro inhibitors of PDF2 over PDF1. Bromide is the best group at position 5 and cannot be replaced by bulkier substituents. In this series, an N-benzyl group at position 1 in 19 e improves the potency relative to 10. In the case of PDF1, and unlike PDF2, potency is increased as the alkyl chain becomes longer and more ramified. These data support the results of NMR footprinting experiments that were performed with (15)N-labeled Ni-PDF and the corresponding 3-acetic acid derivatives. Most of the compounds have antibacterial activities toward B. subtilis, but are inefficient toward E. coli owing to active removal by the major efflux pumps. Among the reverse-indole derivatives, 23 c, which is the exact mirror image of 19 e, shows strong potency in vitro against PDF2, but little against PDF1, although this compound displays significant antibacterial activity toward an efflux-minus mutant of E. coli. All the compounds were assessed with major pathogenic bacteria, but most of them are inefficient antibacterial agents. The reverse-indole compounds 23 a and 23 c have potency against S. pneumoniae that is similar to that of actinonin.

  14. Thermal behavior of potato starch and water-vaporization behavior of its paste controlled with amino acid and peptide-rich food materials.

    PubMed

    Sakauchi, Satoshi; Hattori, Makoto; Yoshida, Tadashi; Yagishita, Takahiro; Ito, Koichi; Akemitsu, Shin-Ichi; Takahashi, Koji

    2010-03-01

    The particular effect of 4 kinds of amino acid and peptide-rich food material (APRM) containing different charged amino acid contents on the gelatinization and retrogradation behavior of potato starch granules and on the water-vaporization behavior was analyzed by differential scanning calorimetry, rapid viscoanalysis, x-ray diffractometry, thermal gravimetry-differential thermal analysis, and pulsed NMR. APRM with a high-charged amino acid content produced unique gelatinization and retrogradation behavior in terms of an elevated gelatinization temperature, reduced viscosity, higher setback, and lower retrograded starch melting enthalpy. The recovered x-ray diffraction intensity decreased with increasing charged amino acid content. APRM with high-charged amino acid content could provide an improved paste having easy vaporization of external water in the swollen starch granules due to the reduced swelling.

  15. A Double-Chambered Protein Nanocage Loaded with Thrombin Receptor Agonist Peptide (TRAP) and γ-Carboxyglutamic Acid of Protein C (PC-Gla) for Sepsis Treatment.

    PubMed

    Lee, Wonhwa; Seo, Junyoung; Kwak, Soyoung; Park, Eun Ji; Na, Dong Hee; Kim, Soyoun; Lee, You Mie; Kim, In-San; Bae, Jong-Sup

    2015-11-01

    New protein nanocages are designed bearing two functional proteins, γ-carboxyglutamic acid of protein C (PC-Gla) and thrombin receptor agonist peptide (TRAP), and have an anti-septic response. These nanoparticles reduce sepsis-induced organ injury and septic mortality in vivo. Noting that there are currently no medications for severe sepsis, these results show that novel nanoparticles can be used to treat sepsis.

  16. Structural Basis of Murein Peptide Specificity of a γ-D-glutamyl-L-diamino Acid Endopeptidase

    PubMed Central

    Xu, Qingping; Sudek, Sebastian; McMullan, Daniel; Miller, Mitchell D.; Geierstanger, Bernhard; Jones, David H.; Sri Krishna, S.; Spraggon, Glen; Bursalay, Badry; Abdubek, Polat; Acosta, Claire; Ambing, Eileen; Astakhova, Tamara; Axelrod, Herbert L.; Carlton, Dennis; Caruthers, Jonathan; Chiu, Hsiu-Ju; Clayton, Thomas; Deller, Marc C.; Duan, Lian; Elias, Ylva; Elsliger, Marc-Andre; Feuerhelm, Julie; Grzechnik, Slawomir K.; Hale, Joanna; Han, Gye Won; Haugen, Justin; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Kumar, Abhinav; Marciano, David; Morse, Andrew T.; Nigoghossian, Edward; Okach, Linda; Oommachen, Silvya; Paulsen, Jessica; Reyes, Ron; Rife, Christopher L.; Trout, Christina V.; van den Bedem, Henry; Weekes, Dana; White, Aprilfawn; Wolf, Guenter; Zubieta, Chloe; Hodgson, Keith O.; Wooley, John; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2009-01-01

    Crystal structures of two homologous peptidases from cyanobacteria Anabaena variabilis and Nostoc punctiforme at 1.05 Å and 1.60 Å resolution represent the first structures of a large class of cell-wall, cysteine peptidases that contain an N-terminal bacterial SH3-like domain (SH3b) and a C-terminal NlpC/P60 cysteine peptidase domain. The NlpC/P60 domain is a primitive, papain-like peptidase in the CA clan of cysteine peptidases with a Cys126/His176/His188 catalytic triad and a conserved catalytic core. We deduced from structure and sequence analysis, and then experimentally, that that these two proteins act as γ-D-glutamyl-L-diamino acid endopeptidases (EC 3.4.22.-). The active site is located near the interface between the SH3b and NlpC/P60 domains, where the SH3b domain may help define substrate specificity, instead of functioning as a targeting domain, so that only muropeptides with an N-terminal L-alanine can bind to the active site. PMID:19217401

  17. Association of the pr Peptides with Dengue Virus at Acidic pH Blocks Membrane Fusion

    SciTech Connect

    Yu, I.-M.; Holdaway, H.A.; Chipman, P.R.; Kuhn, R.J.; Rossmann, M.G.; Chen, J.; Purdue

    2010-07-27

    Flavivirus assembles into an inert particle that requires proteolytic activation by furin to enable transmission to other hosts. We previously showed that immature virus undergoes a conformational change at low pH that renders it accessible to furin (I. M. Yu, W. Zhang, H. A. Holdaway, L. Li, V. A. Kostyuchenko, P. R. Chipman, R. J. Kuhn, M. G. Rossmann, and J. Chen, Science 319:1834-1837, 2008). Here we show, using cryoelectron microscopy, that the structure of immature dengue virus at pH 6.0 is essentially the same before and after the cleavage of prM. The structure shows that after cleavage, the proteolytic product pr remains associated with the virion at acidic pH, and that furin cleavage by itself does not induce any major conformational changes. We also show by liposome cofloatation experiments that pr retention prevents membrane insertion, suggesting that pr is present on the virion in the trans-Golgi network to protect the progeny virus from fusion within the host cell.

  18. Use of ferrous chelates of SH-containing amino acids and peptides for the removal of NO/sub x/ and SO/sub 2/ from flue gas

    SciTech Connect

    Chang, S.G.; Littlejohn, D.; Liu, D.K.

    1988-11-01

    The use of ferrous complexes of SH-containing amino acids and peptides for the removal of NO and SO/sub 2/ in wet flue gas clean-up systems is reported. The ferrous chelates investigated in the present study include those of cysteine, N-acetylcysteine, penicillamine, N-acetylpenicillamine, glutathine, and cysteinylglycine. Compared to conventional chelates such as EDTA, these thioamino acids/peptides not only can stabilize ferrous ion in alkaline solutions to promote the absorption of NO but are also capable of rapidly reducing any ferric ions formed during the scrubbing process back to ferrous ions so that continual absorption of NO can be achieved. In the case of ferrous cysteine and ferrous penicillamine, most of the absorbed NO is reduced to N/sub 2/. The disulfide form of several of the thioamino acids/peptides produced upon oxidation can be conveniently reduced by SO/sub 2/ and H/sub 2/S to regenerate the starting materials, thus making possible the recycling of the reagents.

  19. Cascade Dissociations of Peptide Cation-Radicals. Part 1. Scope and Effects of Amino Acid Residues in Penta-, Nona- and Decapeptides

    PubMed Central

    Chung, Thomas W.; Hui, Renjie; Ledvina, Aaron; Coon, Joshua J.

    2013-01-01

    Amino acid residue-specific backbone and side-chain dissociations of peptide z ions in MS3 spectra were elucidated for over 40 pentapeptides with arginine C-terminated sequences of the AAXAR and AAHXR type, nonapeptides of the AAHAAXYAR and AAHAXAYAR type, and AAHAAXYAAR decapeptides. Peptide zn ions containing amino acid residues with readily transferrable benzylic or tertiary β-hydrogen atoms (Phe, Tyr, His, Trp, Val) underwent facile backbone cleavages to form dominant zn-2 or zn-3 ions. These backbone cleavages are thought to be triggered by a side-chain β-hydrogen atom transfer to the z ion Cα radical site followed by homolytic dissociation of the adjacent Cα—CO bond, forming zn-2 + HNCO cation-radicals that spontaneously dissociate by loss of HNCO. Amino acid residues that do not have readily transferrable β-hydrogen atoms (Gly, Ala) do not undergo the zn → zn-2 dissociations. The backbone cleavages compete with side-chain dissociations in z ions containing Asp and Asn residues. Side-chain dissociations are thought to be triggered by α-hydrogen atom transfers that activate the Cβ—Cγ or Cβ—heteroatom bonds for dissociations that dominate the MS3 spectra of z ions from peptides containing Leu, Cys, Lys, Met, Ser, Arg, Glu and Gln residues. The Lys, Arg, Gln, and Glu residues also participate in γ-hydrogen atom transfers that trigger other side-chain dissociations. PMID:22669761

  20. Aminolysis of acyl-chymotrypsins by amino acids. Kinetic appearance of concentration effect in peptide yield enhancement by freezing.

    PubMed

    Töugu, V; Talts, P; Meos, H; Haga, M; Aaviksaar, A

    1995-03-15

    The effects of reagent concentrations, various added substances, pH and temperature on the yield of peptide synthesis by chymotrypsin in frozen and liquid solutions at subzero temperatures have been studied. Increased nucleophile concentration in the liquid microinclusions of ice has been shown to be sufficient for explaining the peptide yield improvement found at freezing conditions.

  1. Oleic acid and glucose regulate glucagon-like peptide 1 receptor expression in a rat pancreatic ductal cell line

    SciTech Connect

    Zhang, Leshuai W.; McMahon Tobin, Grainne A.; Rouse, Rodney L.

    2012-10-15

    The glucagon-like peptide 1 receptor (GLP1R) plays a critical role in glucose metabolism and has become an important target for a growing class of drugs designed to treat type 2 diabetes. In vitro studies were designed to investigate the effect of the GLP1R agonist, exenatide (Ex4), in “on-target” RIN-5mF (islet) cells as well as in “off-target” AR42J (acinar) and DSL-6A/C1 (ductal) cells in a diabetic environment. Ex4 increased islet cell proliferation but did not affect acinar cells or ductal cells at relevant concentrations. A high caloric, high fat diet is a risk factor for impaired glucose tolerance and type-2 diabetes. An in vitro Oleic acid (OA) model was used to investigate the effect of Ex4 in a high calorie, high fat environment. At 0.1 and 0.4 mM, OA mildly decreased the proliferation of all pancreatic cell types. Ex4 did not potentiate the inhibitory effect of OA on cell proliferation. Akt phosphorylation in response to Ex4 was diminished in OA-treated ductal cells. GLP1R protein detected by western blot was time and concentration dependently decreased after glucose stimulation in OA-treated ductal cells. In ductal cells, OA treatment altered the intracellular localization of GLP1R and its co-localization with early endosome and recycling endosomes. Chloroquine (lysosomal inhibitor), N-acetyl-L-cysteine (reactive oxygen species scavenger) and wortmannin (a phosphatidylinositol-3-kinase inhibitor), fully or partially, rescued GLP1R protein in OA-pretreated, glucose-stimulated ductal cells. The impact of altered regulation on phenotype/function is presently unknown. However, these data suggest that GLP1R regulation in ductal cells can be altered by a high fat, high calorie environment. -- Highlights: ► Exenatide did not inhibit islet, acinar or ductal cell proliferation. ► GLP1R protein decreased after glucose stimulation in oleic acid-treated ductal cells. ► Oleic acid treatment altered localization of GLP1R with early and recycling

  2. Conjugation of cell-penetrating peptides with poly(lactic-co-glycolic acid)-polyethylene glycol nanoparticles improves ocular drug delivery.

    PubMed

    Vasconcelos, Aimee; Vega, Estefania; Pérez, Yolanda; Gómara, María J; García, María Luisa; Haro, Isabel

    2015-01-01

    In this work, a peptide for ocular delivery (POD) and human immunodeficiency virus transactivator were conjugated with biodegradable poly(lactic-co-glycolic acid) (PGLA)-polyethylene glycol (PEG)-nanoparticles (NPs) in an attempt to improve ocular drug bioavailability. The NPs were prepared by the solvent displacement method following two different pathways. One involved preparation of PLGA NPs followed by PEG and peptide conjugation (PLGA-NPs-PEG-peptide); the other involved self-assembly of PLGA-PEG and the PLGA-PEG-peptide copolymer followed by NP formulation. The conjugation of the PEG and the peptide was confirmed by a colorimetric test and proton nuclear magnetic resonance spectroscopy. Flurbiprofen was used as an example of an anti-inflammatory drug. The physicochemical properties of the resulting NPs (morphology, in vitro release, cell viability, and ocular tolerance) were studied. In vivo anti-inflammatory efficacy was assessed in rabbit eyes after topical instillation of sodium arachidonate. Of the formulations developed, the PLGA-PEG-POD NPs were the smaller particles and exhibited greater entrapment efficiency and more sustained release. The positive charge on the surface of these NPs, due to the conjugation with the positively charged peptide, facilitated penetration into the corneal epithelium, resulting in more effective prevention of ocular inflammation. The in vitro toxicity of the NPs developed was very low; no ocular irritation in vitro (hen's egg test-chorioallantoic membrane assay) or in vivo (Draize test) was detected. Taken together, these data demonstrate that PLGA-PEG-POD NPs are promising vehicles for ocular drug delivery.

  3. Sequence-selective recognition of double-stranded RNA and enhanced cellular uptake of cationic nucleobase and backbone-modified peptide nucleic acids.

    PubMed

    Hnedzko, Dziyana; McGee, Dennis W; Karamitas, Yannis A; Rozners, Eriks

    2017-01-01

    Sequence-selective recognition of complex RNAs in live cells could find broad applications in biology, biomedical research, and biotechnology. However, specific recognition of structured RNA is challenging, and generally applicable and effective methods are lacking. Recently, we found that peptide nucleic acids (PNAs) were unusually well-suited ligands for recognition of double-stranded RNAs. Herein, we report that 2-aminopyridine (M) modified PNAs and their conjugates with lysine and arginine tripeptides form strong (Ka = 9.4 to 17 × 10(7) M(-1)) and sequence-selective triple helices with RNA hairpins at physiological pH and salt concentration. The affinity of PNA-peptide conjugates for the matched RNA hairpins was unusually high compared to the much lower affinity for DNA hairpins of the same sequence (Ka = 0.05 to 1.1 × 10(7) M(-1)). The binding of double-stranded RNA by M-modified PNA-peptide conjugates was a relatively fast process (kon = 2.9 × 10(4) M(-1) sec(-1)) compared to the notoriously slow triple helix formation by oligodeoxynucleotides (kon ∼ 10(3) M(-1) sec(-1)). M-modified PNA-peptide conjugates were not cytotoxic and were efficiently delivered in the cytosol of HEK293 cells at 10 µM. Surprisingly, M-modified PNAs without peptide conjugation were also taken up by HEK293 cells, which, to the best of our knowledge, is the first example of heterocyclic base modification that enhances the cellular uptake of PNA. Our results suggest that M-modified PNA-peptide conjugates are promising probes for sequence-selective recognition of double-stranded RNA in live cells and other biological systems.

  4. Conjugation of cell-penetrating peptides with poly(lactic-co-glycolic acid)-polyethylene glycol nanoparticles improves ocular drug delivery

    PubMed Central

    Vasconcelos, Aimee; Vega, Estefania; Pérez, Yolanda; Gómara, María J; García, María Luisa; Haro, Isabel

    2015-01-01

    In this work, a peptide for ocular delivery (POD) and human immunodeficiency virus transactivator were conjugated with biodegradable poly(lactic-co-glycolic acid) (PGLA)–polyethylene glycol (PEG)-nanoparticles (NPs) in an attempt to improve ocular drug bioavailability. The NPs were prepared by the solvent displacement method following two different pathways. One involved preparation of PLGA NPs followed by PEG and peptide conjugation (PLGA-NPs-PEG-peptide); the other involved self-assembly of PLGA-PEG and the PLGA-PEG-peptide copolymer followed by NP formulation. The conjugation of the PEG and the peptide was confirmed by a colorimetric test and proton nuclear magnetic resonance spectroscopy. Flurbiprofen was used as an example of an anti-inflammatory drug. The physicochemical properties of the resulting NPs (morphology, in vitro release, cell viability, and ocular tolerance) were studied. In vivo anti-inflammatory efficacy was assessed in rabbit eyes after topical instillation of sodium arachidonate. Of the formulations developed, the PLGA-PEG-POD NPs were the smaller particles and exhibited greater entrapment efficiency and more sustained release. The positive charge on the surface of these NPs, due to the conjugation with the positively charged peptide, facilitated penetration into the corneal epithelium, resulting in more effective prevention of ocular inflammation. The in vitro toxicity of the NPs developed was very low; no ocular irritation in vitro (hen’s egg test–chorioallantoic membrane assay) or in vivo (Draize test) was detected. Taken together, these data demonstrate that PLGA-PEG-POD NPs are promising vehicles for ocular drug delivery. PMID:25670897

  5. On the terminal homologation of physiologically active peptides as a means of increasing stability in human serum--neurotensin, opiorphin, B27-KK10 epitope, NPY.

    PubMed

    Seebach, Dieter; Lukaszuk, Aneta; Patora-Komisarska, Krystyna; Podwysocka, Dominika; Gardiner, James; Ebert, Marc-Olivier; Reubi, Jean Claude; Cescato, Renzo; Waser, Beatrice; Gmeiner, Peter; Hübner, Harald; Rougeot, Catherine

    2011-05-01

    The terminal homologation by CH(2) insertion into the peptides mentioned in the title is described. This involves replacement of the N-terminal amino acid residue by a β(2) - and of the C-terminal amino acid residue by a β(3) -homo-amino acid moiety (β(2) hXaa and β(3) hXaa, resp.; Fig. 1). In this way, the structure of the peptide chain from the N-terminal to the C-terminal stereogenic center is identical, and the modified peptide is protected against cleavage by exopeptidases (Figs. 2 and 3). Neurotensin (NT; 1) and its C-terminal fragment NT(8-13) are ligands of the G-protein-coupled receptors (GPCR) NT1, NT2, NT3, and NT analogs are promising tools to be used in cancer diagnostics and therapy. The affinities of homologated NT analogs, 2b-2e, for NT1 and NT2 receptors were determined by using cell homogenates and tumor tissues (Table 1); in the latter experiments, the affinities for the NT1 receptor are more or less the same as those of NT (0.5-1.3 vs. 0.6 nM). At the same time, one of the homologated NT analogs, 2c, survives in human plasma for 7 days at 37° (Fig. 6). An NMR analysis of NT(8-13) (Tables 2 and 4, and Fig. 8) reveals that this N-terminal NT fragment folds to a turn in CD(3) OH. - In the case of the human analgesic opiorphin (3a), a pentapeptide, and of the HIV-derived B27-KK10 (4a), a decapeptide, terminal homologation (→3b and 4b, resp.) led to a 7- and 70-fold half-life increase in plasma (Fig. 9). With N-terminally homologated NPY, 5c, we were not able to determine serum stability; the peptide consisting of 36 amino acid residues is subject to cleavage by endopetidases. Three of the homologated compounds, 2b, 2c, and 5c, were shown to be agonists (Fig. 7 and 11). A comparison of terminal homologation with other stability-increasing terminal modifications of peptides is performed (Fig. 5), and possible applications of the neurotensin analogs, described herein, are discussed.

  6. Effect of surface modification of nanofibres with glutamic acid peptide on calcium phosphate nucleation and osteogenic differentiation of marrow stromal cells.

    PubMed

    Karaman, Ozan; Kumar, Ankur; Moeinzadeh, Seyedsina; He, Xuezhong; Cui, Tong; Jabbari, Esmaiel

    2016-02-01

    Biomineralization is mediated by extracellular matrix (ECM) proteins with amino acid sequences rich in glutamic acid. The objective of this study was to investigate the effect of calcium phosphate deposition on aligned nanofibres surface-modified with a glutamic acid peptide on osteogenic differentiation of rat marrow stromal cells. Blend of EEGGC peptide (GLU) conjugated low molecular weight polylactide (PLA) and high molecular weight poly(lactide-co-glycolide) (PLGA) was electrospun to form aligned nanofibres (GLU-NF). The GLU-NF microsheets were incubated in a modified simulated body fluid for nucleation of calcium phosphate crystals on the fibre surface. To achieve a high calcium phosphate to fibre ratio, a layer-by-layer approach was used to improve diffusion of calcium and phosphate ions inside the microsheets. Based on dissipative particle dynamics simulation of PLGA/PLA-GLU fibres, > 80% of GLU peptide was localized to the fibre surface. Calcium phosphate to fibre ratios as high as 200%, between those of cancellous (160%) and cortical (310%) bone, was obtained with the layer-by-layer approach. The extent of osteogenic differentiation and mineralization of marrow stromal cells seeded on GLU-NF microsheets was directly related to the amount of calcium phosphate deposition on the fibres prior to cell seeding. Expression of osteogenic markers osteopontin, alkaline phosphatase (ALP), osteocalcin and type 1 collagen increased gradually with calcium phosphate deposition on GLU-NF microsheets. Results demonstrate that surface modification of aligned synthetic nanofibres with EEGGC peptide dramatically affects nucleation and growth of calcium phosphate crystals on the fibres leading to increased osteogenic differentiation of marrow stromal cells and mineralization.

  7. Human immunodeficiency virus contains an epitope immunoreactive with thymosin. cap alpha. /sub 1/ and the 30-amino acid synthetic p17 group-specific antigen peptide HGP-30

    SciTech Connect

    Naylor, P.H.; Naylor, C.W.; Badamchian, M.; Wada, S.; Goldstein, A.L.; Wang, S.S.; Sun, D.K.; Thornton, A.H.; Sarin, P.S.

    1987-05-01

    The authors have reported that an antiserum prepared against thymosin ..cap alpha../sub 1/ (which shares a region of homology with the p17 protein of the acquired immunodeficiency syndrome (AIDS)-associated human immunodeficiency virus) effectively neutralized the AIDs virus and prevented its replication in H9 cells. Using HPLC and immunoblot analysis, they have identified from a clone B, type III human T-lymphotropic virus (HTLV-IIIB) extracts a protein with a molecular weight of 17,000 that is immunoreactive with thymosin ..cap alpha../sub 1/. In contrast, no immunoreactivity was found in retroviral extracts from a number of nonhuman species including feline, bovine, simian, gibbon, and murine retroviruses. Heterologous antiserum prepared against a 30-amino acid synthetic peptide analogue (HGP-30) does not cross-react with thymosin ..cap alpha../sub 1/ but does react specifically with the p17 protein of the AIDS virus in a manner identical to that seen with an HTLV-IIIB p17-specific monoclonal antibody. The demonstration that this synthetic analogue is immunogenic and that antibodies to HGP-30 cross-react not only with synthetic peptide but also with the HTLV-IIIB p17 viral protein provides an additional, and potentially more specific, candidate for development of a synthetic peptide vaccine for AIDS. In addition, the p17 synthetic peptide (HGP-3) may prove to be useful in a diagnostic assay for the detection of AIDS virus infection in seronegative individuals.

  8. Surface aggregation of urinary proteins and aspartic acid-rich peptides on the faces of calcium oxalate monohydrate investigated by in situ force microscopy

    SciTech Connect

    Weaver, M L; Qiu, S R; Hoyer, J R; Casey, W H; Nancollas, G H; De Yoreo, J J

    2008-05-28

    The growth of calcium oxalate monohydrate in the presence of Tamm-Horsfall protein (THP), osteopontin (OPN), and the 27-residue synthetic peptides (DDDS){sub 6}DDD and (DDDG){sub 6}DDD [where D = aspartic acid and X = S (serine) or G (glycine)] was investigated via in situ atomic force microscopy (AFM). The results show that these three growth modulators create extensive deposits on the crystal faces. Depending on the modulator and crystal face, these deposits can occur as discrete aggregates, filamentary structures, or uniform coatings. These proteinaceous films can lead to either the inhibition or increase of the step speeds (with respect to the impurity-free system) depending on a range of factors that include peptide or protein concentration, supersaturation and ionic strength. While THP and the linear peptides act, respectively, to exclusively increase and inhibit growth on the (-101) face, both exhibit dual functionality on the (010) face, inhibiting growth at low supersaturation or high modulator concentration and accelerating growth at high supersaturation or low modulator concentration. Based on analyses of growth morphologies and dependencies of step speeds on supersaturation and protein or peptide concentration, we argue for a picture of growth modulation that accounts for the observations in terms of the strength of binding to the surfaces and steps and the interplay of electrostatic and solvent-induced forces at crystal surface.

  9. Structural Characterization of Monomers and Oligomers of D-Amino Acid-Containing Peptides Using T-Wave Ion Mobility Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Pang, Xueqin; Jia, Chenxi; Chen, Zhengwei; Li, Lingjun

    2017-01-01

    The D-residues are crucial to biological function of D-amino acid containing peptides (DAACPs). Previous ion mobility mass spectrometry (IM-MS) studies revealing oligomerization patterns of amyloid cascade demonstrated conversion from native soluble unstructured assembly to fibril ß-sheet oligomers, which has been implicated in amyloid diseases, such as Alzheimer's disease and type 2 diabetes. Although neuropeptides are typically present at very low concentrations in circulation, their local concentrations could be much higher in large dense core vesicles, forming dimers or oligomers. We studied the oligomerization of protonated and metal-adducted achatin I and dermorphin peptide isomers with IM-MS. Our results suggested that dimerization, oligomerization, and metal adduction augment the structural differences between D/L peptide isomers compared to protonated monomers. Dimers and oligomers enhanced the structural differences between D/L peptide isomers in both aqueous and organic solvent system. Furthermore, some oligomer forms were only observed for either D- or L-isomers, indicating the importance of chiral center in oligomerization process. The oligomerization patterns of D/L isomers appear to be similar. Potassium adducts were detected to enlarge the structural differences between D/L isomers.

  10. Biosynthesis of Chloro-β-Hydroxytyrosine, a Nonproteinogenic Amino Acid of the Peptidic Backbone of Glycopeptide Antibiotics

    PubMed Central

    Puk, Oliver; Bischoff, Daniel; Kittel, Claudia; Pelzer, Stefan; Weist, Stefan; Stegmann, Efthimia; Süssmuth, Roderich D.; Wohlleben, Wolfgang

    2004-01-01

    The role of the putative P450 monooxygenase OxyD and the chlorination time point in the biosynthesis of the glycopeptide antibiotic balhimycin produced by Amycolatopsis balhimycina were analyzed. The oxyD gene is located directly downstream of the bhp (perhydrolase) and bpsD (nonribosomal peptide synthetase D) genes, which are involved in the synthesis of the balhimycin building block β-hydroxytyrosine (β-HT). Reverse transcriptase experiments revealed that bhp, bpsD, and oxyD form an operon. oxyD was inactivated by an in-frame deletion, and the resulting mutant was unable to produce an active compound. Balhimycin production could be restored (i) by complementation with an oxyD gene, (ii) in cross-feeding studies using A. balhimycina JR1 (a null mutant with a block in the biosynthesis pathway of the building blocks hydroxy- and dihydroxyphenylglycine) as an excretor of the missing precursor, and (iii) by supplementation of β-HT in the growth medium. These data demonstrated an essential role of OxyD in the formation pathway of this amino acid. Liquid chromatography-electrospray ionization-mass spectrometry analysis indicated the biosynthesis of completely chlorinated balhimycin by the oxyD mutant when culture filtrates were supplemented with nonchlorinated β-HT. In contrast, supplementation with 3-chloro-β-HT did not restore balhimycin production. These results indicated that the chlorination time point was later than the stage of free β-HT, most likely during heptapeptide synthesis. PMID:15342578

  11. Site-Specifically Labeled Immunoconjugates for Molecular Imaging—Part 2: Peptide Tags and Unnatural Amino Acids

    PubMed Central

    Adumeau, Pierre; Sharma, Sai Kiran; Brent, Colleen; Zeglis, Brian M.

    2016-01-01

    Molecular imaging using radioisotope- or fluorophore-labeled antibodies is increasingly becoming a critical component of modern precision medicine. Yet despite this promise, the vast majority of these immunoconjugates are synthesized via the random coupling of amine-reactive bifunctional probes to lysines within the antibody, a process that can result in heterogeneous and poorly defined constructs with suboptimal pharmacological properties. In an effort to circumvent these issues, the last 5 years have played witness to a great deal of research focused on the creation of effective strategies for the site-specific attachment of payloads to antibodies. These chemoselective modification methods yield immunoconjugates that are more homogenous and better defined than constructs created using traditional synthetic approaches. Moreover, site-specifically labeled immunoconjugates have also been shown to exhibit superior in vivo behavior compared to their randomly modified cousins. The over-arching goal of this two-part review is to provide a broad yet detailed account of the various site-specific bioconjugation approaches that have been used to create immunoconjugates for positron emission tomography (PET), single photon emission computed tomography (SPECT), and fluorescence imaging. In Part 1, we covered site-specific bioconjugation techniques based on the modification of cysteine residues and the chemoenzymatic manipulation of glycans. In Part 2, we will detail two families of bioconjugation approaches that leverage biochemical tools to achieve site-specificity. First, we will discuss modification methods that employ peptide tags either as sites for enzyme-catalyzed ligations or as radiometal coordination architectures. And second, we will examine bioconjugation strategies predicated on the incorporation of unnatural or non-canonical amino acids into antibodies via genetic engineering. Finally, we will compare the advantages and disadvantages of the modification

  12. Side-chain conformational thermodynamics of aspartic acid residue in the peptides and achatin-I in aqueous solution.

    PubMed

    Kimura, Tomohiro; Matubayasi, Nobuyuki; Nakahara, Masaru

    2004-02-01

    Sequence-position dependence of the side-chain conformational equilibrium of aspartic acid (Asp) residue is investigated for both model Asp peptides (di- to tetra-) and neuropeptide achatin-I (Gly--Phe-Ala-Asp) in aqueous solution. The trans-to-gauche conformational changes on the dihedral angle of C-C(alpha)-C(beta)-C are analyzed in terms of the standard free energy DeltaG(0), enthalpy DeltaH(0), and entropy -TDeltaS(0). The thermodynamic quantities are obtained by measuring the dihedral-angle-dependent vicinal (1)H-(1)H coupling constants in nuclear magnetic resonance over a wide temperature range. When the carboxyl groups of Asp are ionized, DeltaG(0) in the aqueous phase depends by approximately 1-2 kJ mol(-1) on the sequence position, whereas the energy change in the gas phase (absence of solvent) depends by tens of kJ mol(-1). Therefore, the weak position dependence of DeltaG(0) is a result of the compensation for the intramolecular effect by the hydration (= DeltaG(0)-). The DeltaH(0) and -TDeltaS(0) components, on the other hand, exhibit a notable trend at the C-terminus. The C-terminal DeltaH(0) is larger than the N- and nonterminal DeltaH(0) values due to the intramolecular repulsion between alpha- and beta-. The C-terminal -TDeltaS(0) is negative and larger in magnitude than the others, and an attractive solute-solvent interaction at the C-terminus serves as a structure breaker of the water solvent.

  13. Machine learning study of classifiers trained with biophysiochemical properties of amino acids to predict fibril forming Peptide motifs.

    PubMed

    Kumaran Nair, Smitha Sunil; Subba Reddy, N V; Hareesha, K S

    2012-09-01

    It is important to understand the cause of amyloid illnesses by predicting the short protein fragments capable of forming amyloid-like fibril motifs aiding in the discovery of sequence-targeted anti-aggregation drugs. It is extremely desirable to design computational tools to provide affordable in silico predictions owing to the limitations of molecular techniques for their identification. In this research article, we tried to study, from a machine learning perspective, the performance of several machine learning classifiers that use heterogenous features based on biochemical and biophysical properties of amino acids to discriminate between amyloidogenic and non-amyloidogenic regions in peptides. Four conventional machine learning classifiers namely Support Vector Machine, Neural network, Decision tree and Random forest were trained and tested to find the best classifier that fits the problem domain well. Prior to classification, novel implementations of two biologically-inspired feature optimization techniques based on evolutionary algorithms and methodologies that mimic social life and a multivariate method based on projection are utilized in order to remove the unimportant and uninformative features. Among the dimenionality reduction algorithms considered under the study, prediction results show that algorithms based on evolutionary computation is the most effective. SVM best suits the problem domain in its fitment among the classifiers considered. The best classifier is also compared with an online predictor to evidence the equilibrium maintained between true positive rates and false positive rates in the proposed classifier. This exploratory study suggests that these methods are promising in providing amyloidogenity prediction and may be further extended for large-scale proteomic studies.

  14. Related impurities in peptide medicines.

    PubMed

    D'Hondt, Matthias; Bracke, Nathalie; Taevernier, Lien; Gevaert, Bert; Verbeke, Frederick; Wynendaele, Evelien; De Spiegeleer, Bart

    2014-12-01

    Peptides are an increasingly important group of pharmaceuticals, positioned between classic small organic molecules and larger bio-molecules such as proteins. Currently, the peptide drug market is growing twice as fast as other drug markets, illustrating the increasing clinical as well as economical impact of this medicine group. Most peptides today are manufactured by solid-phase peptide synthesis (SPPS). This review will provide a structured overview of the most commonly observed peptide-related impurities in peptide medicines, encompassing the active pharmaceutical ingredients (API or drug substance) as well as the finished drug products. Not only is control of these peptide-related impurities and degradants critical for the already approved and clinically used peptide-drugs, these impurities also possess the capability of greatly influencing initial functionality studies during early drug discovery phases, possibly resulting in erroneous conclusions. The first group of peptide-related impurities is SPPS-related: deletion and insertion of amino acids are related to inefficient Fmoc-deprotection and excess use of amino acid reagents, respectively. Fmoc-deprotection can cause racemization of amino acid residues and thus diastereomeric impurities. Inefficient deprotection of amino acid side chains results into peptide-protection adducts. Furthermore, unprotected side chains can react with a variety of reagents used in the synthesis. Oxidation of amino acid side chains and dimeric-to-oligomeric impurities were also observed. Unwanted peptide counter ions such as trifluoroacetate, originating from the SPPS itself or from additional purification treatments, may also be present in the final peptide product. Contamination of the desired peptide product by other unrelated peptides was also seen, pointing out the lack of appropriate GMP. The second impurity group results from typical peptide degradation mechanisms such as β-elimination, diketopiperazine, pyroglutamate

  15. Electrochemical genosensor based on peptide nucleic acid-mediated PCR and asymmetric PCR techniques: Electrostatic interactions with a metal cation.

    PubMed

    Kerman, Kagan; Vestergaard, Mun'delanji; Nagatani, Naoki; Takamura, Yuzuru; Tamiya, Eiichi

    2006-04-01

    The unique structure of peptide nucleic acids (PNAs), linking the N-(2-aminoethyl)glycine units that create a neutral backbone, and prevent it from acting as a primer for DNA polymerase, has been utilized in an electrochemical biosensor scheme for simple and sensitive detection of hybridization. When the PNA is targeted against a single-nucleotide polymorphism (SNP) or wild-type site on the gene, PNA-mediated polymerase chain reaction (PCR) clamping method effectively blocks the formation of a PCR product. In our report, PNA probe for PCR clamping was targeted against the wild-type site of alcohol dehydrogenase. The electrostatic interactions between the negatively charged DNA and neutral PNA molecules with redox-active metal cation cobalt(III)hexamine ([Co(NH3)6]3+) were monitored using differential pulse voltammetry. The electrostatic binding of [Co(NH3)6]3+ to DNA provided the basis for the discrimination against PNA/PNA, PNA/DNA, and DNA/DNA hybrid molecules. We have optimized the experimental conditions, such as probe concentration, [Co(NH3)6]3+ concentration, accumulation time for [Co(NH3)6]3+, and target concentration. A new pretreatment method has also been employed to allow fast and simple detection of hybridization reaction between the PCR amplicon and the probe on glassy carbon electrode (GCE) surface. This method was based on the application of a high-temperature treatment (95 degrees C, 5 min), followed by a 1-min incubation in the presence of DNA primers. The excess concentration of DNA primers prevented the rehybridization of the denatured strands, while enabling the target gene sequence to bind with the immobilized probe. Additionally, asymmetric PCR was employed to detect the presence of genetically modified organism in standard Roundup Ready soybean samples. The amplicons of asymmetric PCR, which were predominantly single-stranded DNA as a result of unequal primer concentration, hybridized with the DNA probe on the sensor surface efficiently. The

  16. All-Trans Retinoic Acid and Sodium Butyrate Enhance Natriuretic Peptide Receptor A Gene Transcription: Role of Histone Modification

    PubMed Central

    Kumar, Prerna; Periyasamy, Ramu; Das, Subhankar; Neerukonda, Smitha; Mani, Indra

    2014-01-01

    The objective of the present study was to delineate the mechanisms of GC-A/natriuretic peptide receptor-A (GC-A/NPRA) gene (Npr1) expression in vivo. We used all-trans retinoic acid (ATRA) and histone deacetylase (HDAC) inhibitor, sodium butyrate (NaBu) to examine the expression and function of Npr1 using gene-disrupted heterozygous (1-copy; +/−), wild-type (2-copy; +/+), and gene-duplicated heterozygous (3-copy; ++/+) mice. Npr1+/− mice exhibited increased renal HDAC and reduced histone acetyltransferase (HAT) activity; on the contrary, Npr1++/+ mice showed decreased HDAC and enhanced HAT activity compared with Npr1+/+ mice. ATRA and NaBu promoted global acetylation of histones H3-K9/14 and H4-K12, reduced methylation of H3-K9 and H3-K27, and enriched accumulation of active chromatin marks at the Npr1 promoter. A combination of ATRA-NaBu promoted recruitment of activator-complex containing E26 transformation–specific 1, retinoic acid receptor α, and HATs (p300 and p300/cAMP response element–binding protein-binding protein–associated factor) at the Npr1 promoter, and significantly increased renal NPRA expression, GC activity, and cGMP levels. Untreated 1-copy mice showed significantly increased systolic blood pressure and renal expression of α-smooth muscle actin (α-SMA) and proliferating cell nuclear antigen (PCNA) compared with 2- and 3-copy mice. Treatment with ATRA and NaBu synergistically attenuated the expression of α-SMA and PCNA and reduced systolic blood pressure in Npr1+/− mice. Our findings demonstrate that epigenetic upregulation of Npr1 gene transcription by ATRA and NaBu leads to attenuation of renal fibrotic markers and systolic blood pressure in mice with reduced Npr1 gene copy number, which will have important implications in prevention and treatment of hypertension-related renal pathophysiological conditions. PMID:24714214

  17. Zoledronic acid induces dose-dependent increase of antigen-specific CD8 T-cell responses in combination with peptide/poly-IC vaccine.

    PubMed

    Park, Hye-Mi; Cho, Hyun-Il; Shin, Chang-Ae; Shon, Hyun-Jung; Kim, Tai-Gyu

    2016-03-04

    Zoledronic acid (ZA) is used for treating osteoporosis and for preventing skeletal fractures in cancer patients suffering from myeloma and prostate cancer. It is also reported to directly induce cancer cell apoptosis and indirectly modulate T-cell immune response as an antitumor agent. In this study, the effect of ZA following peptide/polyinosinic-polycytidylic acid (poly-IC) vaccination was investigated in a murine tumor model. The combination of ZA with peptide/poly-IC vaccine showed a synergistic effect on the induction of antigen-specific CD8 T-cell response. Three consecutive intravenous administrations of ZA was defined to induce the highest CD8 T-cell response. Further, total splenocyte counts and antigen-specific CD8 T-cell response gradually increased depending on the dose of ZA. In tumor-bearing mice, ZA showed a dose-dependent decrease of growth and prolonged survival. Treatment with ZA only decreased the number of CD11b(+)Gr1(+) myeloid cells in blood. Our results demonstrate that the use of ZA could improve antitumor immune responses induced by the peptide/poly-IC vaccine.

  18. New proctolin analogues modified by D-amino acids in the peptide chain and their high cardioexcitatory effect on Tenebrio molitor.

    PubMed

    Kuczer, M; Rosiński, G; Lisowski, M; Picur, B; Konopiñska, D

    1996-09-01

    The object of our studies was the synthesis and conformational and biological evaluation of the series of 14 analogues of the insect neuropeptide, proctolin. The analogues were obtained by replacement of the native L-amino acids by their D-isomers in one, two, and all positions. Biological effects of the peptides were examined by cardioexcitatory test on the heart of yellow mealworm, Tenebrio molitor, in vitro. In biotest performed on insects, D-Arg-D-Tyr-D-Leu-D-Pro-D-Thr, [D-Arg(N-G-nitro)1,D-Leu3]-, [D-Arg1,D-Leu3]-, [D-Tyr2,D-Thr5]- and [D-Arg1,D-Pro4]-proctolin exert high agonistic activity of proctolin on the heart of insects at 10(-11) - 10(-10) M concentrations. The proctolin analogue containing only D-amino acid residues in the peptide chain unexpectedly shows a much higher cardioexcitatory effect than the native peptide. Moreover, preliminary CD and NMR conformational studies show that proctolin analogues investigated here seem to prefer rather ordered structures, although their conformations differ in some cases.

  19. Binding site and inhibitory mechanism of the mambalgin-2 pain-relieving peptide on acid-sensing ion channel 1a.

    PubMed

    Salinas, Miguel; Besson, Thomas; Delettre, Quentin; Diochot, Sylvie; Boulakirba, Sonia; Douguet, Dominique; Lingueglia, Eric

    2014-05-09

    Acid-sensing ion channels (ASICs) are neuronal proton-gated cation channels associated with nociception, fear, depression, seizure, and neuronal degeneration, suggesting roles in pain and neurological and psychiatric disorders. We have recently discovered black mamba venom peptides called mambalgin-1 and mambalgin-2, which are new three-finger toxins that specifically inhibit with the same pharmacological profile ASIC channels to exert strong analgesic effects in vivo. We now combined bioinformatics and functional approaches to uncover the molecular mechanism of channel inhibition by the mambalgin-2 pain-relieving peptide. Mambalgin-2 binds mainly in a region of ASIC1a involving the upper part of the thumb domain (residues Asp-349 and Phe-350), the palm domain of an adjacent subunit, and the β-ball domain (residues Arg-190, Asp-258, and Gln-259). This region overlaps with the acidic pocket (pH sensor) of the channel. The peptide exerts both stimulatory and inhibitory effects on ASIC1a, and we propose a model where mambalgin-2 traps the channel in a closed conformation by precluding the conformational change of the palm and β-ball domains that follows proton activation. These data help to understand inhibition by mambalgins and provide clues for the development of new optimized blockers of ASIC channels.

  20. 6-(4-Amino-2-butyl-imidazoquinolyl)-norleucine: Toll-like receptor 7 and 8 agonist amino acid for self-adjuvanting peptide vaccine.

    PubMed

    Fujita, Yoshio; Hirai, Kazuyuki; Nishida, Keigo; Taguchi, Hiroaki

    2016-05-01

    Generally, small peptides by themselves are weak to induce antibody responses. Toll-like receptor (TLR) ligands are attractive candidates of vaccine adjuvants to improve their antigenicity. The covalent conjugation of TLR ligands with antigens to produce self-adjuvanting peptide vaccine is a promising approach. Based on the structure of TLR7/8 ligands, a series of synthetic amino acids 6-imidazoquinolyl-norleucines were synthesized, wherein an imidazoquinoline structure as the TLR7/8 agonistic pharmacophores was constructed on the ε-NH2 group of Lys. Of them, 6-(4-amino-2-butyl-imidazoquinolyl)-norleucine showed the most potent TLR7 and TLR8 agonistic activities with EC50 values of 8.55 and 106 μM, respectively. Subsequently, mice were immunized with the influenza A virus M2e antigen mixed with or covalently conjugated to the TLR7/8 agonist amino acid, which led to induction of M2e specific antibody productions in the absence of other adjuvant. We successfully developed a novel efficient tool for self-adjuvanting peptide vaccines targeting TLR7/8.

  1. Single amino acid variation underlies species-specific sensitivity to amphibian skin-derived opioid-like peptides

    PubMed Central

    Vardy, Eyal; Sassano, Maria F.; Rennekamp, Andrew J.; Kroeze, Wesley K.; Mosier, Philip D.; Westkaemper, Richard B.; Stevens, Craig W.; Katritch, Vsevolod; Stevens, Raymond C.; Peterson, Randel T.; Roth, Bryan L.

    2015-01-01

    It has been suggested that the evolution of vertebrate opioid receptors (ORs) follow a vector of increased functionality. Here we test this idea comparing human and frog ORs. Interestingly, some of the most potent opioid peptides known have been isolated from amphibian skin secretions. Here we show that such peptides (dermorphin and deltorphin) are highly potent in the human receptors and inactive in frog ORs. The molecular basis for the insensitivity of the frog ORs to these peptides was studied using chimeras and molecular modeling. Interestingly, the insensitivity of the delta opioid receptor (DOR) to deltorphin was due to variation of a single amino acid– Trp7.35—which is a leucine in mammalian DORs. Notably, Trp7.35 is completely conserved in all known DOR sequences from lamprey, fish and amphibians. The deltorphin-insensitive phenotype was verified in fish. Our results provide a molecular explanation for the species selectivity of skin-derived opioid peptides. PMID:26091169

  2. The amino acid sequences of eleven tryptic peptides of papaya mosaic virus protein by electron ionization mass spectrometry.

    PubMed

    Parente, A; Short, M N; Self, R; Parsley, K R

    1982-04-01

    Eleven of the fourteen tryptic peptides of papaya mosaic virus protein have been sequenced by electron ionization mass spectrometry using chemical and enzymic hydrolyses and mixture analysis as required. Mid-chain cleavages of N-C bonds produced secondary ion series which allowed up to 16 residues to be sequenced without further hydrolysis. Mixture analysis on hydrolysis products enabled a 24 residue tryptic peptide to be sequenced from the data recorded in a single mass spectrum.

  3. Engineering D-Amino Acid Containing Collagen Like Peptide at the Cleavage Site of Clostridium histolyticum Collagenase for Its Inhibition

    PubMed Central

    Velmurugan, Punitha; Jonnalagadda, Raghava Rao; Unni Nair, Balachandran

    2015-01-01

    Collagenase is an important enzyme which plays an important role in degradation of collagen in wound healing, cancer metastasis and even in embryonic development. However, the mechanism of this degradation has not yet been completely understood. In the field of biomedical and protein engineering, the design and development of new peptide based materials is of main concern. In the present work an attempt has been made to study the effect of DAla in collagen like peptide (imino-poor region of type I collagen) on the structure and stability of peptide against enzyme hydrolysis. Effect of replacement of DAla in the collagen like peptide has been studied using circular dichroic spectroscopy (CD). Our findings suggest that, DAla substitution leads to conformational changes in the secondary structure and favours the formation of polyproline II conformation than its L-counterpart in the imino-poor region of collagen like peptides. Change in the chirality of alanine at the cleavage site of collagenase in the imino-poor region inhibits collagenolytic activity. This may find application in design of peptides and peptidomimics for enzyme-substrate interaction, specifically with reference to collagen and other extra cellular matrix proteins. PMID:25973613

  4. Chemo-Enzymatic Synthesis of Each Enantiomer of Orthogonally-Protected 4,4-Difluoroglutamic Acid – A Candidate Monomer for Chiral Brønsted-Acid Peptide-Based Catalysts

    PubMed Central

    Li, Yang

    2011-01-01

    We have accomplished an asymmetric synthesis of each enantiomer of 4,4-difluoroglutamic acid. This α-amino acid has been of interest in medicinal chemistry circles. Key features of the synthesis include highly scalable procedures, a Reformatsky-based coupling reaction, and straightforward functional group manipulations to make the parent amino acid. Enantioenrichment derives from an enzymatic resolution of the synthetic material. Conversion of the optically enriched compounds to orthogonally protected forms allows selective formation of peptide bonds. 4,4- Difluoroglutamic acid, in a suitably protected form, is also shown to exhibit enhanced catalytic activity in both an oxidation reaction and a reduction reaction, in comparison to the analogous glutamic acid derivative. PMID:22039908

  5. Effects of amino acids on melanoma targeting and clearance properties of Tc-99m-labeled Arg-X-Asp-conjugated α-melanocyte stimulating hormone peptides.

    PubMed

    Flook, Adam M; Yang, Jianquan; Miao, Yubin

    2013-11-14

    The purpose of this study was to examine the effects of amino acids on melanoma targeting and clearance properties of new (99m)Tc-labeled Arg-X-Asp-conjugated α-melanocyte stimulating hormone (α-MSH) peptides. RSD-Lys-(Arg(11))CCMSH {c[Arg-Ser-Asp-DTyr-Asp]-Lys-Cys-Cys-Glu-His-dPhe-Arg-Trp-Cys-Arg-Pro-Val-NH2}, RNleD-Lys-(Arg(11))CCMSH, RPheD-Lys-(Arg(11))CCMSH, and RdPheD-Lys-(Arg(11))CCMSH peptides were synthesized and evaluated for their melanocortin-1 (MC1) receptor binding affinities in B16/F1 melanoma cells. The biodistribution of (99m)Tc-RSD-Lys-(Arg(11))CCMSH, (99m)Tc-RFD-Lys-(Arg(11))CCMSH, and (99m)Tc-RfD-Lys-(Arg(11))CCMSH were determined in B16/F1 melanoma-bearing C57 mice. The substitution of Gly with Ser, Phe, and dPhe increased the MC1 receptor binding affinities of the peptides, whereas the substitution of Gly with Nle decreased the MC1 receptor binding affinity of the peptide. (99m)Tc-RSD-Lys-(Arg(11))CCMSH exhibited the highest melanoma uptake (18.01 ± 4.22% ID/g) and the lowest kidney and liver uptake among these (99m)Tc-peptides. The B16/F1 melanoma lesions could be clearly visualized by SPECT/CT using (99m)Tc-RSD-Lys-(Arg(11))CCMSH as an imaging probe. It is desirable to reduce the renal uptake of (99m)Tc-RSD-Lys-(Arg(11))CCMSH to facilitate its potential therapeutic application.

  6. Mambalgin-1 Pain-relieving Peptide, Stepwise Solid-phase Synthesis, Crystal Structure, and Functional Domain for Acid-sensing Ion Channel 1a Inhibition*

    PubMed Central

    Mourier, Gilles; Salinas, Miguel; Kessler, Pascal; Stura, Enrico A.; Leblanc, Mathieu; Tepshi, Livia; Besson, Thomas; Diochot, Sylvie; Baron, Anne; Douguet, Dominique; Lingueglia, Eric; Servent, Denis

    2016-01-01

    Mambalgins are peptides isolated from mamba venom that specifically inhibit a set of acid-sensing ion channels (ASICs) to relieve pain. We show here the first full stepwise solid phase peptide synthesis of mambalgin-1 and confirm the biological activity of the synthetic toxin both in vitro and in vivo. We also report the determination of its three-dimensional crystal structure showing differences with previously described NMR structures. Finally, the functional domain by which the toxin inhibits ASIC1a channels was identified in its loop II and more precisely in the face containing Phe-27, Leu-32, and Leu-34 residues. Moreover, proximity between Leu-32 in mambalgin-1 and Phe-350 in rASIC1a was proposed from double mutant cycle analysis. These data provide information on the structure and on the pharmacophore for ASIC channel inhibition by mambalgins that could have therapeutic value against pain and probably other neurological disorders. PMID:26680001

  7. Mambalgin-1 Pain-relieving Peptide, Stepwise Solid-phase Synthesis, Crystal Structure, and Functional Domain for Acid-sensing Ion Channel 1a Inhibition.

    PubMed

    Mourier, Gilles; Salinas, Miguel; Kessler, Pascal; Stura, Enrico A; Leblanc, Mathieu; Tepshi, Livia; Besson, Thomas; Diochot, Sylvie; Baron, Anne; Douguet, Dominique; Lingueglia, Eric; Servent, Denis

    2016-02-05

    Mambalgins are peptides isolated from mamba venom that specifically inhibit a set of acid-sensing ion channels (ASICs) to relieve pain. We show here the first full stepwise solid phase peptide synthesis of mambalgin-1 and confirm the biological activity of the synthetic toxin both in vitro and in vivo. We also report the determination of its three-dimensional crystal structure showing differences with previously described NMR structures. Finally, the functional domain by which the toxin inhibits ASIC1a channels was identified in its loop II and more precisely in the face containing Phe-27, Leu-32, and Leu-34 residues. Moreover, proximity between Leu-32 in mambalgin-1 and Phe-350 in rASIC1a was proposed from double mutant cycle analysis. These data provide information on the structure and on the pharmacophore for ASIC channel inhibition by mambalgins that could have therapeutic value against pain and probably other neurological disorders.

  8. Novel opioid peptide derived antagonists containing (2S)-2-methyl-3-(2,6-dimethyl-4-carbamoylphenyl)propanoic acid [(2S)-Mdcp].

    PubMed

    Ghosh, Animesh; Luo, Jie; Liu, Chen; Weltrowska, Grazyna; Lemieux, Carole; Chung, Nga N; Lu, Yixin; Schiller, Peter W

    2008-09-25

    A synthesis of the novel tyrosine analogue (2 S)-2-methyl-3-(2,6-dimethyl-4-carbamoylphenyl)propanoic acid [(2 S)-Mdcp] (15) was developed. In (2 S)-Mdcp, the amino and hydroxyl groups of 2',6'-dimethyltyrosine are replaced by a methyl and a carbamoyl group, respectively, and its substitution for Tyr (1) in opioid agonist peptides resulted in compounds showing antagonism at all three opioid receptors. The cyclic peptide (2 S)-Mdcp-c[D-Cys-Gly-Phe(pNO 2)-D-Cys]NH 2 (1) was a potent and selective mu antagonist, whereas (2 S)-Mdcp-c[D-Pen-Gly-Phe(pF)-Pen]-Phe-OH (3) showed subnanomolar delta antagonist activity and extraordinary delta selectivity.

  9. From amino acids polymers, antimicrobial peptides, and histones, to their possible role in the pathogenesis of septic shock: a historical perspective

    PubMed Central

    Ginsburg, Isaac; van Heerden, Peter Vernon; Koren, Erez

    2017-01-01

    This paper describes the evolution of our understanding of the biological role played by synthetic and natural antimicrobial cationic peptides and by the highly basic nuclear histones as modulators of infection, postinfectious sequelae, trauma, and coagulation phenomena. The authors discuss the effects of the synthetic polymers of basic poly α amino acids, poly l-lysine, and poly l-arginine on blood coagulation, fibrinolysis, bacterial killing, and blood vessels; the properties of natural and synthetic antimicrobial cationic peptides as potential replacements or adjuncts to antibiotics; polycations as opsonizing agents promoting endocytosis/phagocytosis; polycations and muramidases as activators of autolytic wall enzymes in bacteria, causing bacteriolysis and tissue damage; and polycations and nuclear histones as potential virulence factors and as markers of sepsis, septic shock, disseminated intravasclar coagulopathy, acute lung injury, pancreatitis, trauma, and other additional clinical disorders PMID:28203100

  10. Beta-secretase cleavage at amino acid residue 34 in the amyloid beta peptide is dependent upon gamma-secretase activity.

    PubMed

    Shi, Xiao-Ping; Tugusheva, Katherine; Bruce, James E; Lucka, Adam; Wu, Guo-Xin; Chen-Dodson, Elizabeth; Price, Eric; Li, Yueming; Xu, Min; Huang, Qian; Sardana, Mohinder K; Hazuda, Daria J

    2003-06-06

    The amyloid beta peptides (Abeta) are the major components of the senile plaques characteristic of Alzheimer's disease. Abeta peptides are generated from the cleavage of amyloid precursor protein (APP) by beta- and gamma-secretases. Beta-secretase (BACE), a type-I transmembrane aspartyl protease, cleaves APP first to generate a 99-amino acid membrane-associated fragment (CT99) containing the N terminus of Abeta peptides. Gamma-secretase, a multi-protein complex, then cleaves within the transmembrane region of CT99 to generate the C termini of Abeta peptides. The production of Abeta peptides is, therefore, dependent on the activities of both BACE and gamma-secretase. The cleavage of APP by BACE is believed to be a prerequisite for gamma-secretase-mediated processing. In the present study, we provide evidence both in vitro and in cells that BACE-mediated cleavage between amino acid residues 34 and 35 (Abeta-34 site) in the Abeta region is dependent on gamma-secretase activity. In vitro, the Abeta-34 site is processed specifically by BACE1 and BACE2, but not by cathepsin D, a closely related aspartyl protease. Moreover, the cleavage of the Abeta-34 site by BACE1 or BACE2 occurred only when Abeta 1- 40 peptide, a gamma-secretase cleavage product, was used as substrate, not the non-cleaved CT99. In cells, overexpression of BACE1 or BACE2 dramatically increased the production of the Abeta 1-34 species. More importantly, the cellular production of Abeta 1-34 species induced by overexpression of BACE1 or BACE2 was blocked by a number of known gamma-secretase inhibitors in a concentration-dependent manner. These gamma-secretase inhibitors had no effect on enzymatic activity of BACE1 or BACE2 in vitro. Our data thus suggest that gamma-secretase cleavage of CT99 is a prerequisite for BACE-mediated processing at Abeta-34 site. Therefore, BACE and gamma-secretase activity can be mutually dependent.

  11. Peptide backbone folding induced by the C(alpha)-tetrasubstituted cyclic alpha-amino acids 4-amino-1,2-dithiolane-4-carboxylic acid (Adt) and 1-aminocyclopentane-1-carboxylic acid (Ac5c). A joint computational and experimental study.

    PubMed

    Aschi, Massimiliano; Lucente, Gino; Mazza, Fernando; Mollica, Adriano; Morera, Enrico; Nalli, Marianna; Paglialunga Paradisi, Mario

    2003-06-07

    The conformational study of a new group of synthetic peptides containing 4-amino-1,2-dithiolane-4-carboxylic acid (Adt), a cysteine-related achiral residue, has been carried out through a joint application of computational and experimental methodologies. Molecular Dynamics simulations clearly suggest the tendency of this molecule to adopt a gamma-turn conformation in vacuum and help in analyzing the complex and crucial conformational behaviour of the dithiolane ring which appears to preferentially adopt a C(S)-like structure. Electronic structure calculations carried out in solution using the Density Functional Theory also indicate the preservation of the gamma-like folding in apolar solvents and the helix-like one in more polar solvents. A comparison with the achiral 1-aminocycloalkane-1-carboxylic acid (Ac5c) has been carried out using the same computational tools. NMR and IR data on dipeptide derivatives containing the Adt or Ac5c residue show that in chloroform solution all the models prefer a gamma-turn structure, centered at the cyclic residue, stabilized by an intramolecular H-bond, whereas in a more polar solvent, i.e. dimethyl sulfoxide, this folding is not maintained. The experimental conformational studies, extended to N-Boc protected tripeptides, clearly indicate the remarkable tendency of both the five-membered C(alpha)-tetrasubstituted cyclic amino acids Adt and Ac5c to induce the gamma-turn structure also in models able to adopt the beta-bend conformation.

  12. Effect of D-amino acids at Asp{sup 23} and Ser{sup 26} residues on the conformational preference of A{beta}{sub 20-29} peptides

    SciTech Connect

    Shanmugam, Ganesh; Polavarapu, Prasad L. . E-mail: Prasad.L.Polavarapu@Vanderbilt.edu; Hallgas, Balazs; Majer, Zsuzsa

    2005-09-30

    The effects of D-amino acids at Asp{sup 23} and Ser{sup 26} residues on the conformational preference of {beta}-amyloid (A{beta}) peptide fragment (A{beta}{sub 20-29}) have been studied using different spectroscopic techniques, namely vibrational circular dichroism (VCD), vibrational absorption, and electronic circular dichroism. To study the structure of the A{beta}{sub 20-29}, [D-Asp{sup 23}]A{beta}{sub 20-29}, and [D-Ser{sup 26}]A{beta}{sub 20-29} peptides under different conditions, the spectra were measured in 10 mM acetate buffer (pH 3) and in 2,2,2-trifluoroethanol (TFE). The spectroscopic results indicated that at pH 3, A{beta}{sub 20-29} peptide takes random coil with {beta}-turn structure, while [D-Ser{sup 26}]A{beta}{sub 20-29} peptide adopts significant amount of polyproline II (PPII) type structure along with {beta}-turn contribution and D-Asp-substituted peptide ([D-Asp{sup 23}]A{beta}{sub 20-29}) adopts predominantly PPII type structure. The increased propensity for PPII conformation upon D-amino acid substitution, in acidic medium, has important biological implications. In TFE, A{beta}{sub 20-29}, [D-Asp{sup 23}]A{beta}{sub 20-29}, and [D-Ser{sup 26}]A{beta}{sub 20-29} peptides adopt 3{sub 10}-helix, {alpha}-helix, and random coil with some {beta}-turn structures, respectively. The VCD data obtained for the A{beta} peptide films suggested that the secondary structures for the peptide films are not the same as those for corresponding solution and are also different among the A{beta} peptides studied here. This observation suggests that dehydration can have a significant influence on the structural preferences of these peptides.

  13. Primary structure of a histidine-rich proteolytic fragment of human ceruloplasmin. I. Amino acid sequence of the cyanogen bromide peptides.

    PubMed

    Kingston, I B; Kingston, B L; Putnam, F W

    1980-04-10

    A histidine-rich fragment, Cp F5, with a molecular weight of 18,650 was isolated from human ceruloplasmin. It consists of 159 amino acids and contains a possible copper-binding site. The sequence of the first 18 NH2-terminal residues of Cp F5 was determined by automated Edman degradation. Cp F5 was cleaved by cyanogen bromide to produce nine fragments of from 2 to 63 residues. The amino acid sequence of all of the cyanogen bromide fragments was investigated using automated and manual Edman degradation, the fragments being digested with trypsin, chymotrypsin, thermolysin, staphylococcal protease, and pepsin as appropriate. The results, in conjunction with the data on the tryptic peptides reported in the accompanying paper (Kingston, I.B., Kingston, B.L., and Putnam, F.L. (1980) J. Biol. Chem. 255, 2886-2896), establish the complete amino acid sequence of Cp F5.

  14. Chemical vectors for gene delivery: a current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers

    PubMed Central

    Midoux, Patrick; Pichon, Chantal; Yaouanc, Jean-Jacques; Jaffrès, Paul-Alain

    2009-01-01

    DNA/cationic lipid (lipoplexes), DNA/cationic polymer (polyplexes) and DNA/cationic polymer/cationic lipid (lipopolyplexes) electrostatic complexes are proposed as non-viral nucleic acids delivery systems. These DNA-nanoparticles are taken up by the cells through endocytosis processes, but the low capacity of DNA to escape from endosomes is regarded as the major limitations of their transfection efficiency. Here, we present a current report on a particular class of carriers including the polymers, peptides and lipids, which is based on the exploitation of the imidazole ring as an endosome destabilization device to favour the nucleic acids delivery in the cytosol. The imidazole ring of histidine is a weak base that has the ability to acquire a cationic charge when the pH of the environment drops bellow 6. As it has been demonstrated for poly(histidine), this phenomena can induce membrane fusion and/or membrane permeation in an acidic medium. Moreover, the accumulation of histidine residues inside acidic vesicles can induce a proton sponge effect, which increases their osmolarity and their swelling. The proof of concept has been shown with polylysine partially substituted with histidine residues that has caused a dramatic increase by 3–4.5 orders of magnitude of the transfection efficiency of DNA/polylysine polyplexes. Then, several histidine-rich polymers and peptides as well as lipids with imidazole, imidazolinium or imidazolium polar head have been reported to be efficient carriers to deliver nucleic acids including genes, mRNA or SiRNA in vitro and in vivo. More remarkable, histidylated carriers are often weakly cytotoxic, making them promising chemical vectors for nucleic acids delivery. This article is part of a themed section on Vector Design and Drug Delivery. For a list of all articles in this section see the end of this paper, or visit: http://www3.interscience.wiley.com/journal/121548564/issueyear?year=2009 PMID:19459843

  15. A new method for ABO genotyping using fluorescence melting curve analysis based on peptide nucleic acid probes.

    PubMed

    Lee, Kyungmyung; Park, Hyun-Chul; An, Sanghyun; Ahn, Eu-Ree; Lee, Yang-Han; Kim, Mi-Jung; Lee, Eun-Jung; Park, Jae Sin; Jung, Jin Wook; Lim, Sikeun

    2015-09-01

    ABO genotyping has been routinely used to identify suspects or unknown remains in crime investigations. Probe-based fluorescence melting curve analysis (FMCA) is a powerful tool for mutation detection and is based on melting temperature shifts due to thermal denaturation. In the present study, we developed a new method for ABO genotyping using peptide nucleic acid (PNA) probe-based FMCA. This method allowed for the simultaneous detection of three single nucleotide polymorphism (SNP) sites in the ABO gene (nucleotide positions 261, 526, and 803) and the determination of 14 ABO genotypes (A/A, A/O01 or A/O02, A/O03, B/B, B/O01 or B/O02, B/O03, O01/O01 or O01/O02 or O02/O02, O01/O03 or O02/O03, O03/O03, A/B, cis-AB01/A, cis-AB01/B, cis-AB01/O01 or cis-AB01/O02, and cis-AB01/cis-AB01). Using this method, we analyzed 80 samples and successfully identified ABO genotypes (A/A [n=5], A/O01 or A/O02 [n=23], B/B [n=3], B/O01 or B/O02 [n=18], A/B [n=9], O01/O01 or O01/O02 or O02/O02 [n=20], cis-AB01/A [n=1], and cis-AB01/O01 or cis-AB01/O02 [n=1]). In addition, all steps in the method, including polymerase chain reaction, PNA probe hybridization, and FMCA, could be performed in one single closed tube in less than 3h. Since no processing or separation steps were required during analysis, this method was more convenient and rapid than traditional methods and reduced the risk of contamination. Thus, this method may be an effective and helpful tool in forensic investigations.

  16. Reversible liposome association induced by LAH4: a peptide with potent antimicrobial and nucleic acid transfection activities.

    PubMed

    Marquette, Arnaud; Lorber, Bernard; Bechinger, Burkhard

    2010-06-02

    We report on the reversible association of anionic liposomes induced by an antimicrobial peptide (LAH4). The process has been characterized for mixed membranes of POPC and POPS at molar ratios of 1:1, 3:1, and 9:1. Although the vesicles remain in suspension in the presence of excess amounts of peptide, the addition of more lipids results in surface charge neutralization, aggregation of the liposomes, and formation of micrometer-sized structures that coexist in equilibrium with vesicles in suspension. At low ratios of anionic lipids, vesicle aggregation is a reversible process, and vesicle disassembly is observed upon inversion of the surface charge by further supplementation with anionic vesicles. In contrast, a different process, membrane fusion, occurs in the presence of high phosphatidylserine concentrations. Upon binding to membranes containing low POPS concentrations, the peptide adopts an in-plane alpha-helical structure, a secondary structure that is conserved during vesicle association and dissociation. Our finding that peptides are essential for vesicle aggregation contributes to a better understanding of the activity of antimicrobial peptides, and suggests an additional layer of complexity in membrane-protein lipid interactions.

  17. Reversible Liposome Association Induced by LAH4: A Peptide with Potent Antimicrobial and Nucleic Acid Transfection Activities

    PubMed Central

    Marquette, Arnaud; Lorber, Bernard; Bechinger, Burkhard

    2010-01-01

    Abstract We report on the reversible association of anionic liposomes induced by an antimicrobial peptide (LAH4). The process has been characterized for mixed membranes of POPC and POPS at molar ratios of 1:1, 3:1, and 9:1. Although the vesicles remain in suspension in the presence of excess amounts of peptide, the addition of more lipids results in surface charge neutralization, aggregation of the liposomes, and formation of micrometer-sized structures that coexist in equilibrium with vesicles in suspension. At low ratios of anionic lipids, vesicle aggregation is a reversible process, and vesicle disassembly is observed upon inversion of the surface charge by further supplementation with anionic vesicles. In contrast, a different process, membrane fusion, occurs in the presence of high phosphatidylserine concentrations. Upon binding to membranes containing low POPS concentrations, the peptide adopts an in-plane α-helical structure, a secondary structure that is conserved during vesicle association and dissociation. Our finding that peptides are essential for vesicle aggregation contributes to a better understanding of the activity of antimicrobial peptides, and suggests an additional layer of complexity in membrane-protein lipid interactions. PMID:20513398

  18. Macrocyclization of Unprotected Peptide Isocyanates.

    PubMed

    Vinogradov, Alexander A; Choo, Zi-Ning; Totaro, Kyle A; Pentelute, Bradley L

    2016-03-18

    A chemistry for the facile two-component macrocyclization of unprotected peptide isocyanates is described. Starting from peptides containing two glutamic acid γ-hydrazide residues, isocyanates can be readily accessed and cyclized with hydrazides of dicarboxylic acids. The choice of a nucleophilic linker allows for the facile modulation of biochemical properties of a macrocyclic peptide. Four cyclic NYAD-1 analogues were synthesized using the described method and displayed a range of biological activities.

  19. Positively charged polymer brush-functionalized filter paper for DNA sequence determination following Dot blot hybridization employing a pyrrolidinyl peptide nucleic acid probe.

    PubMed

    Laopa, Praethong S; Vilaivan, Tirayut; Hoven, Voravee P

    2013-01-07

    As inspired by the Dot blot analysis, a well known technique in molecular biology and genetics for detecting biomolecules, a new paper-based platform for colorimetric detection of specific DNA sequences employing peptide nucleic acid (PNA) as a probe has been developed. In this particular study, a pyrrolidinyl PNA bearing a conformationally rigid d-prolyl-2-aminocyclopentanecarboxylic acid backbone (acpcPNA) was used as a probe. The filter paper was modified to be positively charged with grafted polymer brushes of quaternized poly(dimethylamino)ethyl methacrylate (QPDMAEMA) prepared by surface-initiated polymerization of 2-(dimethylamino)ethyl methacrylate from the filter paper via ARGET ATRP followed by quaternization with methyl iodide. Following the Dot blot format, a DNA target was first immobilized via electrostatic interactions between the positive charges of the QPDMAEMA brushes and negative charges of the phosphate backbone of DNA. Upon hybridization with the biotinylated pyrrolidinyl peptide nucleic acid (b-PNA) probe, the immobilized DNA can be detected by naked eye observation of the yellow product generated by the enzymatic reaction employing HRP-labeled streptavidin. It has been demonstrated that this newly developed assay was capable of discriminating between complementary and single base mismatch targets at a detection limit of at least 10 fmol. In addition, the QPDMAEMA-grafted filter paper exhibited a superior performance to the commercial membranes, namely Nylon 66 and nitrocellulose.

  20. Cascade dissociations of peptide cation-radicals. Part 1. Scope and effects of amino acid residues in penta-, nona-, and decapeptides.

    PubMed

    Chung, Thomas W; Hui, Renjie; Ledvina, Aaron; Coon, Joshua J; Tureček, Frantisek

    2012-08-01

    Amino acid residue-specific backbone and side-chain dissociations of peptide z ions in MS(3) spectra were elucidated for over 40 pentapeptides with arginine C-terminated sequences of the AAXAR and AAHXR type, nonapeptides of the AAHAAXX"AR and AAHAXAX"AR type, and AAHAAXX"AAR decapeptides. Peptide z(n) ions containing amino acid residues with readily transferrable benzylic or tertiary β-hydrogen atoms (Phe, Tyr, His, Trp, Val) underwent facile backbone cleavages to form dominant z(n-2) or z(n-3) ions. These backbone cleavages are thought to be triggered by a side-chain β-hydrogen atom transfer to the z ion C(α) radical site followed by homolytic dissociation of the adjacent C(α)-CO bond, forming x(n-2) cation-radicals that spontaneously dissociate by loss of HNCO. Amino acid residues that do not have readily transferrable β-hydrogen atoms (Gly, Ala) do not undergo the z(n) → z(n-2) dissociations. The backbone cleavages compete with side-chain dissociations in z ions containing Asp and Asn residues. Side-chain dissociations are thought to be triggered by α-hydrogen atom transfers that activate the C(β)-C(γ) or C(β)-heteroatom bonds for dissociations that dominate the MS(3) spectra of z ions from peptides containing Leu, Cys, Lys, Met, Ser, Arg, Glu, and Gln residues. The Lys, Arg, Gln, and Glu residues also participate in γ-hydrogen atom transfers that trigger other side-chain dissociations.

  1. A putative amino acid transporter determines sensitivity to the two-peptide bacteriocin plantaricin JK.

    PubMed

    Oppegård, Camilla; Kjos, Morten; Veening, Jan-Willem; Nissen-Meyer, Jon; Kristensen, Tom

    2016-08-01

    Lactobacillus plantarum produces a number of antimicrobial peptides (bacteriocins) that mostly target closely related bacteria. Although bacteriocins are important for the ecology of these bacteria, very little is known about how the peptides target sensitive cells. In this work, a putative membrane protein receptor of the two-peptide bacteriocin plantaricin JK was identified by comparing Illumina sequence reads from plantaricin JK-resistant mutants to a crude assembly of the sensitive wild-type Weissella viridescens genome using the polymorphism discovery tool VAAL. Ten resistant mutants harbored altogether seven independent mutations in a gene encoding an APC superfamily protein with 12 transmembrane helices. The APC superfamily transporter thus is likely to serve as a target for plantaricin JK on sensitive cells.

  2. Recruitment of SH-containing peptides to lipid and biological membranes through the use of a palmitic acid functionalized with a maleimide group.

    PubMed

    Haralampiev, Ivan; Mertens, Monique; Schwarzer, Roland; Herrmann, Andreas; Volkmer, Rudolf; Wessig, Pablo; Müller, Peter

    2015-01-02

    This study presents a novel and easily applicable approach to recruit sulfhydryl-containing biomolecules to membranes by using a palmitic acid which is functionalized with a maleimide group. Notably, this strategy can also be employed with preformed (biological) membranes. The applicability of the assay is demonstrated by characterizing the binding of a Rhodamine-labeled peptide to lipid and cellular membranes using methods of fluorescence spectroscopy, lifetime measurement, and microscopy. Our approach offers new possibilities for preparing biologically active liposomes and manipulating living cells.

  3. Intrinsic propensities of amino acid residues in GxG peptides inferred from amide I' band profiles and NMR scalar coupling constants.

    PubMed

    Hagarman, Andrew; Measey, Thomas J; Mathieu, Daniel; Schwalbe, Harald; Schweitzer-Stenner, Reinhard

    2010-01-20

    A reliable intrinsic propensity scale of amino acid residues is indispensable for an assessment of how local conformational distributions in the unfolded state can affect the folding of peptides and proteins. Short host-guest peptides, such as GxG tripeptides, are suitable tools for probing such propensities. To explore the conformational distributions sampled by the central amino acid residue in these motifs, we combined vibrational (IR, Raman, and VCD) with NMR spectroscopy. The data were analyzed in terms of a superposition of two-dimensional Gaussian distribution functions in the Ramachandran space pertaining to subensembles of polyproline II, beta-strand, right- and left-handed helical, and gamma-turn-like conformations. The intrinsic propensities of eight amino acid residues (x = A, V, F, L, S, E, K, and M) in GxG peptides were determined as mole fractions of these subensembles. Our results show that alanine adopts primarily (approximately 80%) a PPII-like conformation, while valine and phenylalanine were found to sample PPII and beta-strand-like conformations equally. The centers of the respective beta-strand distributions generally do not coincide with canonical values of dihedral angles of residues in parallel or antiparallel beta-strands. In fact, the distributions for most residues found in the beta-region significantly overlap the PPII-region. A comparison with earlier reported results for trivaline reveals that the terminal valines increase the beta-strand propensity of the central valine residue even further. Of the remaining investigated amino acids, methionine preferred PPII the most (0.64), and E, S, L, and K exhibit moderate (0.56-0.45) PPII propensities. Residues V, F, S, E, and L sample, to a significant extent, a region between the canonical PPII and (antiparallel) beta-strand conformations. This region coincides with the sampling reported for L and V using theoretical predictions (Tran et al. Biochemistry 2005, 44, 11369). The distributions of

  4. Hybridization-modulated ion fluxes through peptide-nucleic-acid- functionalized gold nanotubes. A new approach to quantitative label-free DNA analysis.

    PubMed

    Jágerszki, Gyula; Gyurcsányi, Róbert E; Höfler, Lajos; Pretsch, Ernö

    2007-06-01

    The inner walls of gold nanotubes, prepared by template synthesis in the nanopores of polycarbonate track etch membranes, have been chemically modified with peptide nucleic acid (PNA) and used for label-free quantification of complementary DNA sequences. Selective binding of DNA to the PNA-modified nanotubes is shown to decrease the flux of optically detected anionic markers through the nanotubes in a concentration-dependent manner. The strong dependence of the biorecognition-modulated ion transport through the nanopores on the ionic strength suggests a dominantly electrostatic exclusion mechanism of the ion flux decrease as a result of DNA binding to the PNA-modified nanopores.

  5. Improved collision-induced dissociation analysis of peptides by matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry through 3-sulfobenzoic acid succinimidyl ester labeling.

    PubMed

    Alley, William R; Mechref, Yehia; Klouckova, Iveta; Novotny, Milos V

    2007-01-01

    The sulfonation reagent, a succinimidyl ester of 3-sulfobenzoic acid, has been synthesized for effective peptide sequencing. It is capable of incorporating an additional mobile proton into the peptide backbone, thus, facilitating efficient collision-induced dissociation. This reagent is easily and inexpensively prepared in short time. Tandem mass spectra of the guanidinated and reagent-sulfonated peptides consist mainly of the y-ion series with higher intensities than those observed for solely guanidinated peptides. These enhanced tandem MS attributes significantly improved MASCOT total-ion scores, thus, allowing more confident peptide sequencing. This derivatization was also very effective for the analysis of tryptic digest of human blood serum proteins separated by two-dimensional gel electrophoresis. When used in LC-MALDI/MS/MS format, this type of derivatization does not adversely affect chromatographic efficiencies.

  6. The mRNA expression of amino acid transporters, aminopeptidase, and the di- and tri-peptide transporter PepT1 in the intestine and liver of post-hatch broiler chicks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Amino acid transporter (AAT) proteins are responsible for the movement of amino acids (AA) in and out of cells. Aminopeptidase (APN) cleaves AAs from the N terminus of polypeptides making them available for transport, while PepT1 is a di- and tri- peptide transporter. In the intestine, these prote...

  7. Peptide bonds affect the formation of haloacetamides, an emerging class of N-DBPs in drinking water: free amino acids versus oligopeptides

    NASA Astrophysics Data System (ADS)

    Chu, Wenhai; Li, Xin; Gao, Naiyun; Deng, Yang; Yin, Daqiang; Li, Dongmei; Chu, Tengfei

    2015-09-01

    Haloacetamides (HAcAms), an emerging class of nitrogenous disinfection by-products (N-DBPs) of health concern, have been frequently identified in drinking waters. It has long been appreciated that free amino acids (AAs), accounting for a small fraction of the dissolved organic nitrogen (DON) pool, can form dichloroacetamide (DCAcAm) during chlorination. However, the information regarding the impacts of combined AAs, which contribute to the greatest identifiable DON portion in natural waters, is limited. In this study, we compared the formation of HAcAms from free AAs (tyrosine [Tyr] and alanine [Ala]) and combined AAs (Tyr-Ala, Ala-Tyr, Tyr-Tyr-Tyr, Ala-Ala-Ala), and found that HAcAm formation from the chlorination of AAs in combined forms (oligopeptides) significantly exhibited a different pattern with HAcAm formation from free AAs. Due to the presence of peptide bonds in tripeptides, Tyr-Tyr-Tyr and Ala-Ala-Ala produced trichloroacetamide (TCAcAm) in which free AAs was unable to form TCAcAm during chlorination. Moreover, peptide bond in tripeptides formed more tri-HAcAms than di-HAcAms in the presence of bromide. Therefore, the peptide bond may be an important indicator to predict the formation of specific N-DBPs in chlorination. The increased use of algal- and wastewater-impacted water as drinking water sources will increase health concerns over exposure to HAcAms in drinking water.

  8. The intrinsic antimicrobial activity of citric acid-coated manganese ferrite nanoparticles is enhanced after conjugation with the antifungal peptide Cm-p5

    PubMed Central

    Lopez-Abarrategui, Carlos; Figueroa-Espi, Viviana; Lugo-Alvarez, Maria B; Pereira, Caroline D; Garay, Hilda; Barbosa, João ARG; Falcão, Rosana; Jiménez-Hernández, Linnavel; Estévez-Hernández, Osvaldo; Reguera, Edilso; Franco, Octavio L; Dias, Simoni C; Otero-Gonzalez, Anselmo J

    2016-01-01

    Diseases caused by bacterial and fungal pathogens are among the major health problems in the world. Newer antimicrobial therapies based on novel molecules urgently need to be developed, and this includes the antimicrobial peptides. In spite of the potential of antimicrobial peptides, very few of them were able to be successfully developed into therapeutics. The major problems they present are molecule stability, toxicity in host cells, and production costs. A novel strategy to overcome these obstacles is conjugation to nanomaterial preparations. The antimicrobial activity of different types of nanoparticles has been previously demonstrated. Specifically, magnetic nanoparticles have been widely studied in biomedicine due to their physicochemical properties. The citric acid-modified manganese ferrite nanoparticles used in this study were characterized by high-resolution transmission electron microscopy, which confirmed the formation of nanocrystals of approximately 5 nm diameter. These nanoparticles were able to inhibit Candida albicans growth in vitro. The minimal inhibitory concentration was 250 µg/mL. However, the nanoparticles were not capable of inhibiting Gram-negative bacteria (Escherichia coli) or Gram-positive bacteria (Staphylococcus aureus). Finally, an antifungal peptide (Cm-p5) from the sea animal Cenchritis muricatus (Gastropoda: Littorinidae) was conjugated to the modified manganese ferrite nanoparticles. The antifungal activity of the conjugated nanoparticles was higher than their bulk counterparts, showing a minimal inhibitory concentration of 100 µg/mL. This conjugate proved to be nontoxic to a macrophage cell line at concentrations that showed antimicrobial activity. PMID:27563243

  9. Peptide bonds affect the formation of haloacetamides, an emerging class of N-DBPs in drinking water: free amino acids versus oligopeptides.

    PubMed

    Chu, Wenhai; Li, Xin; Gao, Naiyun; Deng, Yang; Yin, Daqiang; Li, Dongmei; Chu, Tengfei

    2015-09-23

    Haloacetamides (HAcAms), an emerging class of nitrogenous disinfection by-products (N-DBPs) of health concern, have been frequently identified in drinking waters. It has long been appreciated that free amino acids (AAs), accounting for a small fraction of the dissolved organic nitrogen (DON) pool, can form dichloroacetamide (DCAcAm) during chlorination. However, the information regarding the impacts of combined AAs, which contribute to the greatest identifiable DON portion in natural waters, is limited. In this study, we compared the formation of HAcAms from free AAs (tyrosine [Tyr] and alanine [Ala]) and combined AAs (Tyr-Ala, Ala-Tyr, Tyr-Tyr-Tyr, Ala-Ala-Ala), and found that HAcAm formation from the chlorination of AAs in combined forms (oligopeptides) significantly exhibited a different pattern with HAcAm formation from free AAs. Due to the presence of peptide bonds in tripeptides, Tyr-Tyr-Tyr and Ala-Ala-Ala produced trichloroacetamide (TCAcAm) in which free AAs was unable to form TCAcAm during chlorination. Moreover, peptide bond in tripeptides formed more tri-HAcAms than di-HAcAms in the presence of bromide. Therefore, the peptide bond may be an important indicator to predict the formation of specific N-DBPs in chlorination. The increased use of algal- and wastewater-impacted water as drinking water sources will increase health concerns over exposure to HAcAms in drinking water.

  10. Moving Away from the Reference Genome: Evaluating a Peptide Sequencing Tagging Approach for Single Amino Acid Polymorphism Identifications in the Genus Populus

    SciTech Connect

    Abraham, Paul E; Adams, Rachel M; Tuskan, Gerald A; Hettich, Robert {Bob} L

    2013-01-01

    The genetic diversity across natural populations of the model organism, Populus, is extensive, containing a single nucleotide polymorphism roughly every 200 base pairs. When deviations from the reference genome occur in coding regions, they can impact protein sequences. Rather than relying on a static reference database to profile protein expression, we employed a peptide sequence tagging (PST) approach capable of decoding the plasticity of the Populus proteome. Using shotgun proteomics data from two genotypes of P. trichocarpa, a tag-based approach enabled the detection of 6,653 unexpected sequence variants. Through manual validation, our study investigated how the most abundant chemical modification (methionine oxidation) could masquerade as a sequence variant (AlaSer) when few site-determining ions existed. In fact, precise localization of an oxidation site for peptides with more than one potential placement was indeterminate for 70% of the MS/MS spectra. We demonstrate that additional fragment ions made available by high energy collisional dissociation enhances the robustness of the peptide sequence tagging approach (81% of oxidation events could be exclusively localized to a methionine). We are confident that augmenting fragmentation processes for a PST approach will further improve the identification of single amino acid polymorphism in Populus and potentially other species as well.

  11. Peptide bonds affect the formation of haloacetamides, an emerging class of N-DBPs in drinking water: free amino acids versus oligopeptides

    PubMed Central

    Chu, Wenhai; Li, Xin; Gao, Naiyun; Deng, Yang; Yin, Daqiang; Li, Dongmei; Chu, Tengfei

    2015-01-01

    Haloacetamides (HAcAms), an emerging class of nitrogenous disinfection by-products (N-DBPs) of health concern, have been frequently identified in drinking waters. It has long been appreciated that free amino acids (AAs), accounting for a small fraction of the dissolved organic nitrogen (DON) pool, can form dichloroacetamide (DCAcAm) during chlorination. However, the information regarding the impacts of combined AAs, which contribute to the greatest identifiable DON portion in natural waters, is limited. In this study, we compared the formation of HAcAms from free AAs (tyrosine [Tyr] and alanine [Ala]) and combined AAs (Tyr-Ala, Ala-Tyr, Tyr-Tyr-Tyr, Ala-Ala-Ala), and found that HAcAm formation from the chlorination of AAs in combined forms (oligopeptides) significantly exhibited a different pattern with HAcAm formation from free AAs. Due to the presence of peptide bonds in tripeptides, Tyr-Tyr-Tyr and Ala-Ala-Ala produced trichloroacetamide (TCAcAm) in which free AAs was unable to form TCAcAm during chlorination. Moreover, peptide bond in tripeptides formed more tri-HAcAms than di-HAcAms in the presence of bromide. Therefore, the peptide bond may be an important indicator to predict the formation of specific N-DBPs in chlorination. The increased use of algal- and wastewater-impacted water as drinking water sources will increase health concerns over exposure to HAcAms in drinking water. PMID:26394759

  12. The intrinsic antimicrobial activity of citric acid-coated manganese ferrite nanoparticles is enhanced after conjugation with the antifungal peptide Cm-p5.

    PubMed

    Lopez-Abarrategui, Carlos; Figueroa-Espi, Viviana; Lugo-Alvarez, Maria B; Pereira, Caroline D; Garay, Hilda; Barbosa, João Arg; Falcão, Rosana; Jiménez-Hernández, Linnavel; Estévez-Hernández, Osvaldo; Reguera, Edilso; Franco, Octavio L; Dias, Simoni C; Otero-Gonzalez, Anselmo J

    2016-01-01

    Diseases caused by bacterial and fungal pathogens are among the major health problems in the world. Newer antimicrobial therapies based on novel molecules urgently need to be developed, and this includes the antimicrobial peptides. In spite of the potential of antimicrobial peptides, very few of them were able to be successfully developed into therapeutics. The major problems they present are molecule stability, toxicity in host cells, and production costs. A novel strategy to overcome these obstacles is conjugation to nanomaterial preparations. The antimicrobial activity of different types of nanoparticles has been previously demonstrated. Specifically, magnetic nanoparticles have been widely studied in biomedicine due to their physicochemical properties. The citric acid-modified manganese ferrite nanoparticles used in this study were characterized by high-resolution transmission electron microscopy, which confirmed the formation of nanocrystals of approximately 5 nm diameter. These nanoparticles were able to inhibit Candida albicans growth in vitro. The minimal inhibitory concentration was 250 µg/mL. However, the nanoparticles were not capable of inhibiting Gram-negative bacteria (Escherichia coli) or Gram-positive bacteria (Staphylococcus aureus). Finally, an antifungal peptide (Cm-p5) from the sea animal Cenchritis muricatus (Gastropoda: Littorinidae) was conjugated to the modified manganese ferrite nanoparticles. The antifungal activity of the conjugated nanoparticles was higher than their bulk counterparts, showing a minimal inhibitory concentration of 100 µg/mL. This conjugate proved to be nontoxic to a macrophage cell line at concentrations that showed antimicrobial activity.

  13. Formulation and evaluation of poly(lactic-co-glycolic acid) microspheres loaded with an altered collagen type II peptide for the treatment of rheumatoid arthritis.

    PubMed

    He, Jintian; Li, Huiqi; Liu, Chao; Wang, Gaizhen; Ge, Lan; Ma, Shufen; Huang, Lijing; Yan, Shaofeng; Xu, Xiaohong

    2015-01-01

    The aim of this research was to evaluate the potential of water-in-oil-in-water (w/o/w) and solid-in-oil-in-water (s/o/w) emulsification techniques to prepare the altered collagen type II peptide AP268-270 (ACTP)-loaded poly(lactic-co-glycolic acid) (PLGA) microspheres to make ACTP more convenient as an rheumatoid arthritis treatment. Microspheres produced by the s/o/w method had higher drug encapsulation efficiency (69.7-79.8%) than those prepared by the w/o/w method (21.8-39.3%). In vitro drug release was influenced by the microencapsulation technique, molecular weight, and composition of the polymer. After intramuscular injection of the optimal formulation to Lewis rats, the concentration of ACTP peptide in serum reached its maximum level on day 3 and then remained nearly stable for approximately 4 weeks. In a collagen-induced arthritis rat model, a single intramuscular injection of ACTP-loaded PLGA microspheres had comparable efficacy to the intravenous injection of ACTP peptide solution once every other day.

  14. The role of a basic amino acid cluster in target site selection and non-specific binding of bZIP peptides to DNA.

    PubMed Central

    Metallo, S J; Paolella, D N; Schepartz, A

    1997-01-01

    The ability of a transcription factor to locate and bind its cognate DNA site in the presence of closely related sites and a vast array of non-specific DNA is crucial for cell survival. The CREB/ATF family of transcription factors is an important group of basic region leucine zipper (bZIP) proteins that display high affinity for the CRE site and low affinity for the closely related AP-1 site. Members of the CREB/ATF family share in common a cluster of basic amino acids at the N-terminus of their bZIP element. This basic cluster is necessary and sufficient to cause the CRE site to bend upon binding of a CREB/ATF protein. The possibility that DNA bending and CRE/AP-1 specificity were linked in CREB/ATF proteins was investigated using chimeric peptides derived from human CRE-BP1 (a member of the CREB/ATF family) and yeast GCN4, which lacks both a basic cluster and CRE/AP-1 specificity. Gain of function and loss of function experiments demonstrated that the basic cluster was not responsible for the CRE/AP-1 specificity displayed by all characterized CREB/ATF proteins. The basic cluster was, however, responsible for inducing very high affinity for non- specific DNA. It was further shown that basic cluster-containing peptides bind non-specific DNA in a random coil conformation. We postulate that the high non- specific DNA affinities of basic cluster-containing peptides result from cooperative electrostatic interactions with the phosphate backbone that do not require peptide organization. PMID:9224594

  15. Does L to D-amino acid substitution trigger helix→sheet conformations in collagen like peptides adsorbed to surfaces?

    PubMed

    Velmurugan, Punitha; Jonnalagadda, Raghava Rao; Sankaranarayanan, Kamatchi; Dhathathreyan, Aruna

    2015-12-01

    The present work reports on the structural order, self assembling behaviour and the role in adsorption to hydrophilic or hydrophobic solid surfaces of modified sequence from the triple helical peptide model of the collagenase cleavage site in type I collagen (Uniprot accession number P02452 residues from 935 to 970) using (D)Ala and (D)Ile substitutions as given in the models below: Model-1: GSOGADGPAGAOGTOGPQGIAGQRGVV GLOGQRGER. Model-2: GSOGADGP(D)AGAOGTOGPQGIAGQRGVVGLOGQRGER. Model-3: GSOGADGPAGAOGTOGPQG(D)IAGQRGVVGLOGQRGER. Collagenase is an important enzyme that plays an important role in degrading collagen in wound healing, cancer metastasis and even in embryonic development. However, the mechanism by which this degradation occurs is not completely understood. Our results show that adsorption of the peptides to the solid surfaces, specifically hydrophobic triggers a helix to beta transition with order increasing in peptide models 2 and 3. This restricts the collagenolytic behaviour of collagenase and may find application in design of peptides and peptidomimetics for enzyme-substrate interaction, specifically with reference to collagen and other extra cellular matrix proteins.

  16. Metabolism of Peptides by Rumen Microorganisms

    PubMed Central

    Wright, D. E.

    1967-01-01

    Rumen microorganisms utilize tryptic peptides from Chlorella protein, forming carbon dioxide, volatile fatty acids, and bacterial protein. Peptide carbon is more efficiently converted into bacterial protein than is amino acid carbon. A progressive degradation of the peptides was demonstrated by use of columns of Sephadex G-25. PMID:6035045

  17. Non-coding nucleotides and amino acids near the active site regulate peptide deformylase expression and inhibitor susceptibility in Chlamydia trachomatis

    PubMed Central

    Bao, Xiaofeng; Pachikara, Niseema D.; Oey, Christopher B.; Balakrishnan, Amit; Westblade, Lars F.; Tan, Ming; Chase, Theodore; Nickels, Bryce E.

    2011-01-01

    Chlamydia trachomatis, an obligate intracellular bacterium, is a highly prevalent human pathogen. Hydroxamic-acid-based matrix metalloprotease inhibitors can effectively inhibit the pathogen both in vitro and in vivo, and have exhibited therapeutic potential. Here, we provide genome sequencing data indicating that peptide deformylase (PDF) is the sole target of the inhibitors in this organism. We further report molecular mechanisms that control chlamydial PDF (cPDF) expression and inhibition efficiency. In particular, we identify the σ66-dependent promoter that controls cPDF gene expression and demonstrate that point mutations in this promoter lead to resistance by increasing cPDF transcription. Furthermore, we show that substitution of two amino acids near the active site of the enzyme alters enzyme kinetics and protein stability. PMID:21719536

  18. D-Alanylation of Lipoteichoic Acids Confers Resistance to Cationic Peptides in Group B Streptococcus by Increasing the Cell Wall Density

    PubMed Central

    Saar-Dover, Ron; Bitler, Arkadi; Nezer, Ravit; Shmuel-Galia, Liraz; Firon, Arnaud; Shimoni, Eyal; Trieu-Cuot, Patrick; Shai, Yechiel

    2012-01-01

    Cationic antimicrobial peptides (CAMPs) serve as the first line of defense of the innate immune system against invading microbial pathogens. Gram-positive bacteria can resist CAMPs by modifying their anionic teichoic acids (TAs) with D-alanine, but the exact mechanism of resistance is not fully understood. Here, we utilized various functional and biophysical approaches to investigate the interactions of the human pathogen Group B Streptococcus (GBS) with a series of CAMPs having different properties. The data reveal that: (i) D-alanylation of lipoteichoic acids (LTAs) enhance GBS resistance only to a subset of CAMPs and there is a direct correlation between resistance and CAMPs length and charge density; (ii) resistance due to reduced anionic charge of LTAs is not attributed to decreased amounts of bound peptides to the bacteria; and (iii) D-alanylation most probably alters the conformation of LTAs which results in increasing the cell wall density, as seen by Transmission Electron Microscopy, and reduces the penetration of CAMPs through the cell wall. Furthermore, Atomic Force Microscopy reveals increased surface rigidity of the cell wall of the wild-type GBS strain to more than 20-fold that of the dltA mutant. We propose that D-alanylation of LTAs confers protection against linear CAMPs mainly by decreasing the flexibility and permeability of the cell wall, rather than by reducing the electrostatic interactions of the peptide with the cell surface. Overall, our findings uncover an important protective role of the cell wall against CAMPs and extend our understanding of mechanisms of bacterial resistance. PMID:22969424

  19. [Hydrolysis of peptides by immobilized bacterial peptide hydrolases].

    PubMed

    Nekliudov, A D; Deniakina, E K

    2004-01-01

    The feasibility of hydrolysis of a mixture of peptides with an enzyme from the bacterium Xanthomonas rubrilineans, displaying a peptidase activity and immobilized on aluminum oxide, was studied. Kinetic schemes and equations allowing for approaching quantitative description of peptide hydrolysis in complex mixtures containing free amino acids and peptides were obtained. It was demonstrated that as a result of hydrolysis, the content of free amino acids in hydrolysates decreased 2.5- to 3-fold and the molecular weight of the constituent peptides, 2-fold.

  20. Side-Chain Conformational Thermodynamics of Aspartic Acid Residue in the Peptides and Achatin-I in Aqueous Solution

    PubMed Central

    Kimura, Tomohiro; Matubayasi, Nobuyuki; Nakahara, Masaru

    2004-01-01

    Sequence-position dependence of the side-chain conformational equilibrium of aspartic acid (Asp) residue is investigated for both model Asp peptides (di- to tetra-) and neuropeptide achatin-I (Gly-𝒟-Phe-Ala-Asp) in aqueous solution. The trans-to-gauche conformational changes on the dihedral angle of C–Cα–Cβ–C are analyzed in terms of the standard free energy ΔG0, enthalpy ΔH0, and entropy −TΔS0. The thermodynamic quantities are obtained by measuring the dihedral-angle-dependent vicinal 1H-1H coupling constants in nuclear magnetic resonance over a wide temperature range. When the carboxyl groups of Asp are ionized, ΔG0 in the aqueous phase depends by ∼1–2 kJ mol−1 on the sequence position, whereas the energy change \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\Delta}E_{{\\mathrm{gas}}}^{0}\\end{equation*}\\end{document} in the gas phase (absence of solvent) depends by tens of kJ mol−1. Therefore, the weak position dependence of ΔG0 is a result of the compensation for the intramolecular effect \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\Delta}E_{{\\mathrm{gas}}}^{0}\\end{equation*}\\end{document} by the hydration \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\Delta}G_{{\\mathrm{hyd}}}^{0}\\end{equation*}\\end{document} (= ΔG0–\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage

  1. Bio-inspired nitrile hydration by peptidic ligands based on L-cysteine, L-methionine or L-penicillamine and pyridine-2,6-dicarboxylic acid.

    PubMed

    Byrne, Cillian; Houlihan, Kate M; Devi, Prarthana; Jensen, Paul; Rutledge, Peter J

    2014-12-12

    Nitrile hydratase (NHase, EC 4.2.1.84) is a metalloenzyme which catalyses the conversion of nitriles to amides. The high efficiency and broad substrate range of NHase have led to the successful application of this enzyme as a biocatalyst in the industrial syntheses of acrylamide and nicotinamide and in the bioremediation of nitrile waste. Crystal structures of both cobalt(III)- and iron(III)-dependent NHases reveal an unusual metal binding motif made up from six sequential amino acids and comprising two amide nitrogens from the peptide backbone and three cysteine-derived sulfur ligands, each at a different oxidation state (thiolate, sulfenate and sulfinate). Based on the active site geometry revealed by these crystal structures, we have designed a series of small-molecule ligands which integrate essential features of the NHase metal binding motif into a readily accessible peptide environment. We report the synthesis of ligands based on a pyridine-2,6-dicarboxylic acid scaffold and L-cysteine, L-S-methylcysteine, L-methionine or L-penicillamine. These ligands have been combined with cobalt(III) and iron(III) and tested as catalysts for biomimetic nitrile hydration. The highest levels of activity are observed with the L-penicillamine ligand which, in combination with cobalt(III), converts acetonitrile to acetamide at 1.25 turnovers and benzonitrile to benzamide at 1.20 turnovers.

  2. Effects of small peptides or amino acids infused to a perfused area of the skin of Angora goats on mohair growth.

    PubMed

    Puchala, R; Pierzynowski, S G; Wuliji, T; Goetsch, A L; Sahlu, T; Lachica, M; Soto-Navarro, S A

    2002-04-01

    The effect of infusing dipeptides or their amino acids on mohair growth of Angora goats was investigated using a skin perfusion technique. Seven Angora wethers (average BW 24 +/- 2.5 kg) were implanted bilaterally with silicon catheters into the superficial branches of the deep circumflex iliac artery and vein and carotid artery. The experiment consisted of three 28-d phases. In the first 14 d of Phases 1 and 3, saline was infused into deep circumflex iliac arteries supplying skin and in Phase 2 a mixture of dipeptides (methionine-leucine [Met-Leu], lysine-leucine [Lys-Leu]) was infused into the artery on one side, and free amino acids were administered on the other side. Infusion rates of peptides were 0.85 mg/h Met-Leu and 0.85 mg/h Lys-Leu in 2.4 mL saline. Infusion rates of amino acids were 0.474 mg/h Lys, 0.483 mg/h Met, and 0.743 mg/h Leu in 2.4 mL saline. A 100-cm2 area within the perfused region was used to determine mohair growth. Two weeks after the cessation of infusions, perfused areas were shorn. Clean mohair production from the dipeptide- and amino acids-perfused regions were similar (4.21 vs 4.35 g/[100 cm2 +/- 28 d], respectively; P > 0.05). However, clean mohair production during dipeptides and amino acids infusions was greater (P < 0.01) than that observed during saline infusions (3.63 g/[100 cm2 +/- 28 d]). There were no significant differences between dipeptides and free amino acids in concentrations of various hormones and metabolites in blood from deep circumflex iliac veins (P > 0.05). In conclusion, the studied small dipeptides and amino acids similarly increased mohair fiber growth, presumably through supplying limiting amino acids directly to the fiber follicle.

  3. Effects of Rice Bran, Flax Seed, and Sunflower Seed on Growth Performance, Carcass Characteristics, Fatty Acid Composition, Free Amino Acid and Peptide Contents, and Sensory Evaluations of Native Korean Cattle (Hanwoo)

    PubMed Central

    Choi, Chang Bon; Kwon, Hana; Kim, Sung Il; Yang, Un Mok; Lee, Ju Hwan; Park, Eun Kyu

    2016-01-01

    This study was conducted to evaluate the effect of dietary supplementation with rice bran, flax seed, or sunflower seed to finishing native Korean cattle (Hanwoo) on growth performances, carcass characteristics, fatty acid composition, free amino acid and peptide contents, and sensory evaluations of Longissimus muscle (LM). A total of 39 Hanwoo steers (average age of 22.2 mo and average body weight (BW) of 552.2 kg) were randomly divided into Control, rice bran (RB), flax seed (FS), or Sunflower seed (SS) groups. The steers were group fed for 273 d until they reached an average age of 31.2 mo. Final BW was 768.2, 785.8, 786.2, and 789.0 kg, and average daily gain was 0.79, 0.85, 0.82, and 0.84 kg for the Control, RS, FS, and SS groups, respectively (p>0.05). Fat thickness of the FS group (19.8 mm) was greater (p<0.05) than that of the other groups. Final yield grade converted into numerical values was 2.0 for the RB group, 1.7 for the Control and SS groups, and 1.4 for the FS group. Marbling degrees for the Control, SS, RB, and FS groups were 5.3, 5.1, 4.7, and 4.6, respectively. Percentages of palmitic acid (C16:0), stearic acid (C18:0), and arachidic acid (C20:0) in the LM were not different among the groups. Palmitoleic (C16:1) acid was higher (p<0.05) in the SS group. The concentration of oleic acid was highest (p<0.05) in the Control group (47.73%). The level of linolenic acid (C18:3) was 2.3 times higher (p<0.05) in the FS group compared to the other groups. Methionine concentration was (p<0.05) higher in FS (1.7 mg/100 g) and SS (1.2 mg/100 g) steers than in the Control or RB groups. Glutamic acid and α-aminoadipic acid (α-AAA) contents were (p<0.05) higher in the FS group compared to the other groups. LM from the FS group had numerically higher (p>0.05) scores for flavor, umami, and overall palatability in sensory evaluations. In conclusion, supplementation of flax seed to diets of finishing Hanwoo steers improved sensory evaluations which might have been

  4. Intrinsic Amino Acid Side-Chain Hydrophilicity/Hydrophobicity Coefficients Determined by Reversed-Phase High-Performance Liquid Chromatography of Model Peptides: Comparison with Other Hydrophilicity/Hydrophobicity Scales

    PubMed Central

    Mant, Colin T.; Kovacs, James M.; Kim, Hyun-Min; Pollock, David D.; Hodges, Robert S.

    2009-01-01

    An accurate determination of the intrinsic hydrophilicity/hydrophobicity of amino acid side-chains in peptides and proteins is fundamental in understanding many areas, including protein folding and stability, peptide and protein function, protein-protein interactions and peptide/protein oligomerization, as well as the design of protocols for purification and characterization of peptides and proteins. Our definition of intrinsic hydrophilicity/hydrophobicity of side-chains is the maximum possible hydrophilicity/hydrophobicity of side-chains in the absence of any nearest-neighbor effects and/or any conformational effects of the polypeptide chain that prevent full expression of side-chain hydrophilicity/hydrophobicity. In this review, we have compared an experimentally-derived intrinsic side-chain hydrophilicity/hydrophobicity scale generated from RP-HPLC retention behavior of de novo designed synthetic model peptides at pH 2 and pH 7 with other RP-HPLC-derived scales, as well as scales generated from classic experimental and calculation-based methods of octanol/water partitioning of Nα-acetyl-amino-acid amides or free energy of transfer of free amino acids. Generally poor correlation was found with previous RP-HPLC-derived scales, likely due to the random nature of the peptide mixtures in terms of varying peptide size, conformation and frequency of particular amino acids. In addition, generally poor correlation with the classical approaches served to underline the importance of the presence of a polypeptide backbone when generating intrinsic values. We have shown that the intrinsic scale determined here is in full agreement with the structural characteristics of amino acid side-chains. PMID:19795449

  5. A FRET-enabled molecular peptide beacon with a significant red shift for the ratiometric detection of nucleic acids.

    PubMed

    Maity, Debabrata; Jiang, Juanjuan; Ehlers, Martin; Wu, Junchen; Schmuck, Carsten

    2016-05-04

    A cationic molecular peptide beacon NAP1 functionalized with a fluorescence resonance energy transfer-pair at its ends allows the ratiometric detection of ds-DNA with a preference for AT rich sequences. NAP1 most likely binds in a folded form into the minor groove of ds-DNA, which results in a remarkable change in its fluorescence properties. As NAP1 exhibits quite low cytotoxicity, it can also be used for imaging of nuclear DNA in cells.

  6. Affinity-Based Screening of Tetravalent Peptides Identifies Subtype-Selective Neutralizers of Shiga Toxin 2d, a Highly Virulent Subtype, by Targeting a Unique Amino Acid Involved in Its Receptor Recognition

    PubMed Central

    Mitsui, Takaaki; Watanabe-Takahashi, Miho; Shimizu, Eiko; Zhang, Baihao; Funamoto, Satoru; Yamasaki, Shinji

    2016-01-01

    Shiga toxin (Stx), a major virulence factor of enterohemorrhagic Escherichia coli (EHEC), can be classified into two subgroups, Stx1 and Stx2, each consisting of various closely related subtypes. Stx2 subtypes Stx2a and Stx2d are highly virulent and linked with serious human disorders, such as acute encephalopathy and hemolytic-uremic syndrome. Through affinity-based screening of a tetravalent peptide library, we previously developed peptide neutralizers of Stx2a in which the structure was optimized to bind to the B-subunit pentamer. In this study, we identified Stx2d-selective neutralizers by targeting Asn16 of the B subunit, an amino acid unique to Stx2d that plays an essential role in receptor binding. We synthesized a series of tetravalent peptides on a cellulose membrane in which the core structure was exactly the same as that of