Science.gov

Sample records for 360k disk drive

  1. Shock Response of the Clamped Disk in Small Form Factor Hard Disk Drive

    NASA Astrophysics Data System (ADS)

    Gu, Bin; Shu, Dongwei; Shi, Baojun; Lu, Guoxing

    As small form factor (one-inch and smaller) hard disk drives are widely used in portable consumer appliances and gadgets, their mechanical robustness is of greater concern. In the previous work, it is found that when the disk is more tightly clamped, it helps to decrease the shock response of the disk and then avoid the head slap. In this paper, the real boundary condition of the disk for a small form factor hard disk drive from Seagate is investigated numerically. The disk is clamped between the clamp and the hub. The shock response of the disk under a half-sine acceleration pulse is simulated by using the finite element method. In the finite element model, both contact between disk and clamp and contact between disk and hub are considered. According to the simulation results, how to decrease the shock response of the disk is suggested.

  2. Fuzzy control for head positioning of disk drives

    NASA Astrophysics Data System (ADS)

    Hsu, Han-Wen; Chen, Fu-Rong

    1992-10-01

    This paper investigates the validity of fuzzy algorithms applied to the control of head- positioning of hard disk drives, which require faster response and higher accuracy compared with other industrial products.

  3. Perpendicular recording media for hard disk drives

    NASA Astrophysics Data System (ADS)

    Piramanayagam, S. N.

    2007-07-01

    Perpendicular recording technology has recently been introduced in hard disk drives for computer and consumer electronics applications. Although conceptualized in the late 1970s, making a product with perpendicular recording that has competing performance, reliability, and price advantage over the prevalent longitudinal recording technology has taken about three decades. One reason for the late entry of perpendicular recording is that the longitudinal recording technology was quite successful in overcoming many of its problems and in staying competitive. Other reasons are the risks, problems, and investment needed in making a successful transition to perpendicular recording technology. Iwasaki and co-workers came up with many inventions in the late 1970s, such as single-pole head, CoCr alloy media with a perpendicular anisotropy, and recording media with soft magnetic underlayers [S. Iwasaki and K. Takemura, IEEE Trans. Magn. 11, 1173 (1975); S. Iwasaki and Y. Nakamura, IEEE Trans. Magn. 14, 436 (1978); S. Iwasaki, Y. Nakamura, and K. Ouchi, IEEE Trans. Magn. 15, 1456 (1979)]. Nevertheless, the research on perpendicular recording media has been intense only in the past five years or so. The main reason for the current interest comes from the need to find an alternative technology to get away from the superparamagnetic limit faced by the longitudinal recording. Out of the several recording media materials investigated in the past, oxide based CoCrPt media have been considered a blessing. The media developed with CoCrPt-oxide or CoCrPt -SiO2 have shown much smaller grain sizes, lower noise, and larger thermal stability than the perpendicular recording media of the past, which is one of the reasons for the success of perpendicular recording. Moreover, oxide-based perpendicular media have also overtaken the current longitudinal recording media in terms of better recording performance. Several issues that were faced with the soft underlayers have also been solved by the

  4. Pressure-sensitive paint measurement on co-rotating disks in a hard disk drive

    NASA Astrophysics Data System (ADS)

    Kameya, Tomohiro; Matsuda, Yu; Yamaguchi, Hiroki; Egami, Yasuhiro; Niimi, Tomohide

    2012-01-01

    There is much demand for improvement in the performance of a hard disk drive (HDD) along with recent rapid developments of information technology. While high-speed disk rotation of a HDD is necessary to accommodate such needs, it causes disk flutter induced by pressure fluctuation on disks and degrades reliability of a HDD. In order to understand the mechanism of the fluttering phenomenon, it is important to know pressure field on the rotating disk. However, it is impossible to measure the pressure by ordinary methods such as pressure taps. Pressure-sensitive paint (PSP) is a pressure measurement technique based on the oxygen quenching of luminescence and enables us to measure the pressure non-invasively. In general, however, the temperature sensitivity of PSP makes it difficult to measure the precise pressure on the surface with temperature distribution. We measured the time-averaged pressure on the disk rotating at 10 000-20 000 rpm for the first time by adopting a temperature-insensitive PSP composed of pyrene sulfonic acid (PySO 3H) as a luminophore. It was found that the pressure forms a concentric circular distribution and decreases toward the center of the disk. Additionally, we elucidate how disk rotational speed and spacing between co-rotating disks influence on the pressure field.

  5. Physics and Hard Disk Drives-A Career in Industry

    NASA Astrophysics Data System (ADS)

    Lambert, Steven

    2014-03-01

    I will participate in a panel discussion about ``Career Opportunities for Physicists.'' I enjoyed 27 years doing technology development and product support in the hard disk drive business. My PhD in low temperature physics was excellent training for this career since I learned how to work in a lab, analyze data, write and present technical information, and define experiments that got to the heart of a problem. An academic position did not appeal to me because I had no passion to pursue a particular topic in basic physics. My work in industry provided an unending stream of challenging problems to solve, and it was a rich and rewarding experience. I'm now employed by the APS to focus on our interactions with physicists in industry. I welcome the chance to share my industrial experience with students, post-docs, and others who are making decisions about their career path. Industrial Physics Fellow, APS Headquarters.

  6. An Evolutionary Algorithm for Feature Subset Selection in Hard Disk Drive Failure Prediction

    ERIC Educational Resources Information Center

    Bhasin, Harpreet

    2011-01-01

    Hard disk drives are used in everyday life to store critical data. Although they are reliable, failure of a hard disk drive can be catastrophic, especially in applications like medicine, banking, air traffic control systems, missile guidance systems, computer numerical controlled machines, and more. The use of Self-Monitoring, Analysis and…

  7. Tribocharging of the magnetic hard disk drive head-disk interface

    NASA Astrophysics Data System (ADS)

    Kiely, J. D.; Hsia, Y.-T.

    2002-04-01

    As head-disk separation diminishes and the sensitivity of magnetic recording transducers increases, the effects of spurious charge buildup caused by friction become an increasing concern. We have investigated some of the characteristics of tribocharging during frictional contact between head and media typically found in magnetic hard disk drives. From constant velocity tests with an electrically isolated head contacting the laser texture zone, we find that current and voltage are closely related, both undergoing a rapid initial rise followed by a long-term rise. We have found that the long-term rise is controlled by the rate of discharge and that the overall magnitude of both current and voltage is dependent upon the rate of rotation. Additionally, we find that the magnitude of current and voltage increases sequentially from test to test, suggesting that wear is occurring at the interface. We develop models for wear-induced tribocharging and surface potential difference-induced tribocharging and contrast their predictions for charge generations as functions of velocity. These models suggest that wear is the dominant tribocharging mechanism.

  8. Disposal of waste computer hard disk drive: data destruction and resources recycling.

    PubMed

    Yan, Guoqing; Xue, Mianqiang; Xu, Zhenming

    2013-06-01

    An increasing quantity of discarded computers is accompanied by a sharp increase in the number of hard disk drives to be eliminated. A waste hard disk drive is a special form of waste electrical and electronic equipment because it holds large amounts of information that is closely connected with its user. Therefore, the treatment of waste hard disk drives is an urgent issue in terms of data security, environmental protection and sustainable development. In the present study the degaussing method was adopted to destroy the residual data on the waste hard disk drives and the housing of the disks was used as an example to explore the coating removal process, which is the most important pretreatment for aluminium alloy recycling. The key operation points of the degaussing determined were: (1) keep the platter plate parallel with the magnetic field direction; and (2) the enlargement of magnetic field intensity B and action time t can lead to a significant upgrade in the degaussing effect. The coating removal experiment indicated that heating the waste hard disk drives housing at a temperature of 400 °C for 24 min was the optimum condition. A novel integrated technique for the treatment of waste hard disk drives is proposed herein. This technique offers the possibility of destroying residual data, recycling the recovered resources and disposing of the disks in an environmentally friendly manner.

  9. Absolute rate of the reaction of hydrogen atoms with ozone from 219-360 K

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Michael, J. V.; Payne, W. A.; Stief, L. J.

    1978-01-01

    Absolute rate constants for the reaction of atomic hydrogen with ozone were obtained over the temperature range 219-360 K by the flash photolysis-resonance fluorescence technique. The results can be expressed in Arrhenius form by K = (1.33 plus or minus 0.32)x10 to the minus 10 power exp (-449 plus or minus 58/T) cu cm/molecule/s (two standard deviations). The present work is compared to two previous determinations and is discussed theoretically.

  10. Head-Positioning Control Using Virtual Resonant Modes in a Hard Disk Drive

    NASA Astrophysics Data System (ADS)

    Atsumi, Takenori

    In conventional control systems in hard disk drives, it is difficult to compensate for disturbances above the primary mechanical resonance. In this paper, a design method that uses a virtual resonant mode in head-positioning systems of hard disk drives was developed. The virtual resonant mode is a digital filter that works like a mechanical resonant mode. Using the proposed method, stable resonant modes in a control system can be designed with a high degree of accuracy to compensate for disturbances whose frequencies are higher than that of the primary mechanical resonance. Application of this method to a hard disk drive showed that it significantly suppresses disturbances beyond the primary mechanical resonance.

  11. Visual CAD platform for the positioning system of optical disk drives

    NASA Astrophysics Data System (ADS)

    Yang, Jiandong; Pei, Xiandeng; Zhu, Wenlang

    1995-08-01

    A visual CAD platform for designing the positioning system of optical disk drives is described in this paper. The platform consists of the opto-mechanical assembly (OMA) and its simulator of an optical disk drive, a servo control board (SCB) with a high performance digital signal processor (DSP), and a personal computer (PC). The OMA and SCB form the complete digital positioning control system of an optical disk drive. The OMA simulator and SCB provide a real-time simulation environment under which a digital controller (i.e., the DSP program) is run. On a PC with the CAD software packages, the controller can be conveniently designed and loaded into SCB. Furthermore, the behavior of the disk drive and the status, parameters and structure of the controller are visualized on the PC's display without interrupting the controller. The visualization can be implemented on three levels: post-processing, tracking, and even steering.

  12. Driving disk winds and heating hot coronae by MRI turbulence

    SciTech Connect

    Io, Yuki; Suzuki, Takeru K.

    2014-01-01

    We investigate the formation of hot coronae and vertical outflows in accretion disks by magnetorotational turbulence. We perform local three-dimensional magnetohydrodynamical (MHD) simulations with the vertical stratification by explicitly solving an energy equation with various effective ratios of specific heats, γ. Initially imposed weak vertical magnetic fields are effectively amplified by magnetorotational instability and winding caused by the differential rotation. In the isothermal case (γ = 1), the disk winds are driven mainly by the Poynting flux associated with the MHD turbulence and show quasi-periodic intermittency. In contrast, in the non-isothermal cases with γ ≥ 1.1, the regions above 1-2 scale heights from the midplane are effectively heated to form coronae with temperature ∼50 times the initial value, which are connected to the cooler midplane region through the pressure-balanced transition regions. As a result, the disk winds are driven mainly by the gas pressure, exhibiting more time-steady nature, although the nondimensional time-averaged mass loss rates are similar to that of the isothermal case. Sound-like waves are confined in the cool midplane region in these cases, and the amplitude of the density fluctuations is larger than that of the isothermal case.

  13. Absolute rate of the reaction of bromine atoms with ozone from 200-360 K

    NASA Technical Reports Server (NTRS)

    Michael, J. V.; Lee, J. H.; Payne, W. A.; Stief, L. J.

    1978-01-01

    The rate constant for the reaction Br + O3 yields BrO + O2 was measured from 200 to 360 K by the technique of flash photolysis coupled to time resolved detection of bromine atoms by resonance fluorescence (FP-RF). Br atoms were produced by the flash photolysis of CH3Br at lambda 165nm.O3 was monitored continuously under reaction conditions by absorption at 253.7 nm. At each of five temperatures the results were independent of substantial variations in O3, total pressure and limited variations in flash intensity. The measured rate constants obeyed the Arrhenius expression, where the error quoted is two standard deviations. Results are compared with previous determinations which employed the discharge flow-mass spectrometric technique.

  14. Absolute rate of the reaction of bromine atoms with ozone from 200 to 360 K

    NASA Technical Reports Server (NTRS)

    Michael, J. V.; Lee, J. H.; Payne, W. A.; Stief, L. J.

    1978-01-01

    The rate constant for the reaction Br + O3 yields BrO + O2 has been measured from 200 to 360 K by the technique of flash photolysis coupled to time resolved detection of bromine atoms by resonance fluorescence (FP-RF). Br atoms were produced by the flash photolysis of CH3Br at a wavelength of 165 nm. O3 concentration was monitored continuously under reaction conditions by absorption at 253.7 nm. At each of five temperatures the results were independent of substantial variations in O3 concentration, total pressure (Ar), and limited variations in flash intensity (i.e., initial Br concentration). The measured rate constants obey the Arrhenius expression, k = (7.74 plus or minus 0.50) x 10 to the -12th exp(-603 plus or minus 16/T) cu cm/molecule/sec, where the error quoted is two standard deviations.

  15. High-bandwidth macro/microactuation for hard-disk drive

    NASA Astrophysics Data System (ADS)

    Ma, Jianxu; Ang, Marcelo H., Jr.

    2000-10-01

    The track density of hard disk drives had been increasing of 30%/year in these last years. The increase in bandwidth is limited by the presence of mechanical resonance modes and other nonlinear in the voice coil motor (VCM) actuators. One approach to overcoming the problem is by using a dual-stage servo mechanism. Dual stage actuator systems composed of a micro actuator and a conventional actuator (VCM)-macro actuator may enable such high track densities to be attained. In this paper, a novel piezoelectric microactuator was successfully designed and mounted on the suspension in hard disk drives. The microactuator is based on the deformation in piezoelectric effect, and drives the head suspension assembly. The paper describes the structure of macro/micro actuators, its principles of operation and mechanical characteristics. The actuators system in hard disk has a high bandwidth, simple structure, and low cost.

  16. Robust H∞ stabilization of a hard disk drive system with a single-stage actuator

    NASA Astrophysics Data System (ADS)

    Harno, Hendra G.; Kiin Woon, Raymond Song

    2015-04-01

    This paper considers a robust H∞ control problem for a hard disk drive system with a single stage actuator. The hard disk drive system is modeled as a linear time-invariant uncertain system where its uncertain parameters and high-order dynamics are considered as uncertainties satisfying integral quadratic constraints. The robust H∞ control problem is transformed into a nonlinear optimization problem with a pair of parameterized algebraic Riccati equations as nonconvex constraints. The nonlinear optimization problem is then solved using a differential evolution algorithm to find stabilizing solutions to the Riccati equations. These solutions are used for synthesizing an output feedback robust H∞ controller to stabilize the hard disk drive system with a specified disturbance attenuation level.

  17. Model of Head-Positioning Error Due to Rotational Vibration of Hard Disk Drives

    NASA Astrophysics Data System (ADS)

    Matsuda, Yasuhiro; Yamaguchi, Takashi; Saegusa, Shozo; Shimizu, Toshihiko; Hamaguchi, Tetsuya

    An analytical model of head-positioning error due to rotational vibration of a hard disk drive is proposed. The model takes into account the rotational vibration of the base plate caused by the reaction force of the head-positioning actuator, the relationship between the rotational vibration and head-track offset, and the sensitivity function of track-following feedback control. Error calculated by the model agrees well with measured error. It is thus concluded that this model can predict the data transfer performance of a disk drive in read mode.

  18. An Evaluation of Personal Health Information Remnants in Second-Hand Personal Computer Disk Drives

    PubMed Central

    Neri, Emilio; Jonker, Elizabeth

    2007-01-01

    Background The public is concerned about the privacy of their health information, especially as more of it is collected, stored, and exchanged electronically. But we do not know the extent of leakage of personal health information (PHI) from data custodians. One form of data leakage is through computer equipment that is sold, donated, lost, or stolen from health care facilities or individuals who work at these facilities. Previous studies have shown that it is possible to get sensitive personal information (PI) from second-hand disk drives. However, there have been no studies investigating the leakage of PHI in this way. Objectives The aim of the study was to determine the extent to which PHI can be obtained from second-hand computer disk drives. Methods A list of Canadian vendors selling second-hand computer equipment was constructed, and we systematically went through the shuffled list and attempted to purchase used disk drives from the vendors. Sixty functional disk drives were purchased and analyzed for data remnants containing PHI using computer forensic tools. Results It was possible to recover PI from 65% (95% CI: 52%-76%) of the drives. In total, 10% (95% CI: 5%-20%) had PHI on people other than the owner(s) of the drive, and 8% (95% CI: 7%-24%) had PHI on the owner(s) of the drive. Some of the PHI included very sensitive mental health information on a large number of people. Conclusions There is a strong need for health care data custodians to either encrypt all computers that can hold PHI on their clients or patients, including those used by employees and subcontractors in their homes, or to ensure that their computers are destroyed rather than finding a second life in the used computer market. PMID:17942386

  19. Analog signal acquisition from computer optical disk drives for quantitative chemical sensing.

    PubMed

    Potyrailo, Radislav A; Morris, William G; Leach, Andrew M; Sivavec, Timothy M; Wisnudel, Marc B; Boyette, Scott

    2006-08-15

    Optoelectronic consumer products that are widely employed in the office and home attract attention for optical sensor applications due to (1) their cost advantage over analytical instruments produced only in small quantities, (2) robustness in operation due to the detailed manufacturability improvements, and (3) ease of operation. We demonstrate here a new approach for quantitative chemical/biochemical sensing when analog signals are acquired from conventional optical disk drives, and these signals are used for quantitative detection of optical changes of sensor films deposited on conventional CD and DVD optical disks. Because we do not alter manufacturing process of optical disks, any disk can be employed for deposition and readout of sensor films. The optical disk drives also perform their original function of reading and writing digital content to optical media because no optical modifications are introduced to obtain the analog signal. Such a sensor platform is quite universal and can be applied for chemical and biological quantitative detection, as well as for monitoring of changes of physical properties of regions deposited onto a CD or DVD (e.g., during combinatorial screening of materials). As a model example, we demonstrate the concept using chemical detection of ionic species such as Ca2+ in liquids (e.g., blood, urine, or water). Colorimetric calcium-sensitive sensor films were deposited onto a DVD, exposed to water with different concentrations of Ca2+, and quantified in the optical disk drive. The developed lab-on-DVD system demonstrated a 5 ppm detection limit of Ca2+ determinations, similar or slightly better than that achieved using a conventional fiber-optic portable spectrometer. This detection limit corresponded to a 0.023 absorbance unit resolution, as determined by the measurement of the same colorimetric films with a portable spectrometer. Determinations of Ca2+ unknowns using the lab-on-DVD system demonstrated +/-5 ppm accuracy and 2

  20. Dynamic stability and slider-lubricant interactions in hard disk drives

    NASA Astrophysics Data System (ADS)

    Ambekar, Rohit Pradeep

    2007-12-01

    Hard disk drives (HDD) have played a significant role in the current information age and have become the backbone of storage. The soaring demand for mass data storage drives the necessity for increasing capacity of the drives and hence the areal density on the disks as well as the reliability of the HDD. To achieve greater areal density in hard disk drives, the flying height of the airbearing slider continually decreases. Different proximity forces and interactions influence the air bearing slider resulting in fly height modulation and instability. This poses several challenges to increasing the areal density (current goal is 2Tb/in.2) as well as making the head-disk interface (HDI) more reliable. Identifying and characterizing these forces or interactions has become important for achieving a stable fly height at proximity and realizing the goals of areal density and reliability. Several proximity forces or interactions influencing the slider are identified through the study of touchdown-takeoff hysteresis. Slider-lubricant interaction which causes meniscus force between the slider and disk as well as airbearing surface contamination seems to be the most important factor affecting stability and reliability at proximity. In addition, intermolecular forces and disk topography are identified as important factors. Disk-to-slider lubricant transfer leads to lubricant pickup on the slider and also causes depletion of lubricant on the disk, affecting stability and reliability of the HDI. Experimental and numerical investigation as well as a parametric study of the process of lubricant transfer has been done using a half-delubed disk. In the first part of this parametric study, dependence on the disk lubricant thickness, lubricant type and slider ABS design has been investigated. It is concluded that the lubricant transfer can occur without slider-disk contact and there can be more than one timescale associated with the transfer. Further, the transfer increases non

  1. Instrument for the on-line measurement of dynamic parameters for hard-disk drive

    NASA Astrophysics Data System (ADS)

    Xie, Changsheng; Hu, Yi-Ming; Pei, Xiandeng

    1993-09-01

    A computer based instrument for the measurements of dynamic parameters of hard disk drives(HDD)-Multi-Parameter On-line Test System of Disk Drive (MOTSODD) has been developed. Several new methods and techniques were used to solve the problems of measuring some specific parameters such as the static stiffness of positioning system the structure resonance frequency of the positioning mechanism and the statistical average power consumption of the voice-coil-motor(VCM) especially when the HDD is in operation. More than 20 parameters of the positioning system and the spindle system of the HDD can easily be obtained. The hardware is a complete integration of the high speed data acquisition unit the arbitrary waveform synthesizer and the multi-interface controller. A parameter measurement methods library has been established to meet the complicated measurement requirements. The virtual panel technique and a high speed graphic environment were developed to enhance the performances of the instrument.

  2. Thermal/structural analysis of the shaft-disk region of a fan drive system

    NASA Technical Reports Server (NTRS)

    Gregory, Peyton B.; Holland, Anne D.

    1990-01-01

    In January 1989, a mishap occurred in the National Transonic Facility wind tunnel at NASA-Langley. It is believed that the failure of an insulation retainer holding foam insulation around the exterior of the fan drive shaft resulted in the subsequent damage to other components in the tunnel. The effect was determined of removing the external thermal insulation on the shaft would have on the stresses on the shaft, disk and bolts holding the two together. To accomplish this, a detailed thermal/structural finite element analysis of the shaft-disk interface was performed. The maximum stresses on the three components were determined for several configurations and conditions with and without the external thermal insulation, and then these results were compared to the original analyses to access the effect of removing the external thermal insulation on the proposed future operation of the shaft/disk structures of the fan drive system. Although the stresses were higher without the external insulation, the stresses did meet all stress criteria. In addition, all stresses were within the infinite life regime of the Modified Goodman diagram. Therefore, it was determined that the structural integrity of the shaft-disk region is not compromised if the external insulation is removed.

  3. Hard Disk/Solid State Drive Synergy in Support of Data-Intensive Computing

    SciTech Connect

    Liu,Ke; Jiang, Song; Davis, Kei

    2012-07-19

    Data-intensive applications are becoming increasingly common in high-performance computing. Examples include combustion simulation, human genome analysis, and satellite image processing. Efficient access of data sets is critical to the performance of these applications. Because of the size of the data today's economically feasible approach is to store the data files on an array of hard disks or data servers equipped with hard disks and managed by a parallel file system such as PVFS or Lustre wherein the data is striped over a (large) number of disks for high aggregate I/O throughout. With file striping, a request for a segment of logically contiguous file space is decomposed into multiple sub-requests, each to a different server. While the data unit for this striping is usually reasonably large to benefit disk efficiency, the first and/or last sub-requests can be much smaller than the striping unit if the request does not align with the striping pattern, severely compromising hard disk efficiency and thus application performance. We propose to exploit solid state drives (SSD), whose efficiency is much less sensitive to small random accesses, to enable the alignment of requests to disk with the data striping pattern. In this scheme hard disks mainly serve large, aligned, sequential requests, with SSDs serving small or unaligned requests, thus respecting the relative cost, performance, and durability characteristics of the two media, and thereby achieving synergy in performance/cost. We will describe the design of the proposed scheme, its implementation on CCS-7's Darwin cluster, and performance results.

  4. Development of Rotary-Type Voice Coil Motor Actuator for Small-Form-Factor Optical Disk Drive

    NASA Astrophysics Data System (ADS)

    Lee, Dong‑Ju; Park, Se‑June; Oh, Jeseung; Park, No‑Cheol; Park, Young‑Pil; Jung, Ho‑Seop

    2006-02-01

    We propose the miniaturized rotary-type voice coil motor (VCM) actuator that has an effective focusing mechanism and a sufficient bandwidth for a small-form-factor (SFF) optical disk drive (ODD) based on Blu-ray disk (BD) 1× specifications.

  5. Dynamics simulation of MEMS device embedded-hard-disk-drive system

    NASA Astrophysics Data System (ADS)

    Yang, Jiaping; Chai, Jie; Lim, Boon Baun; Chen, Shixin

    2002-04-01

    Currently, hard disk drives (HHD) use rotating disks to store digital data and magnetic recording heads are flying on the disk to read/write data. The recording heads are mounted on a slider- suspension assembly, which makes heads move from one track to another on the disk. The heads movement is controlled by close-loop feedback servo system. It is well known that dynamic behaviors of head-slider-suspension-assembly (HSA) system are of great influence on the track per inch capacity of HDD1,2. As the problem is structurally complex, it is usually investigated using experimental methods or finite element simulation models 3. Furthermore, the dual-stage servo system, that is, a conventional VCM as the primary stage and a MEMS actuator as the secondary stage for MEMS device embedded HAS, has resulted in more difficulties in predicting HDD dynamic performance. This paper presents studies of the problem using macromodeling simulation approach. It applies efficient FEM based sub-structuring synthesis (SSS)4 and fast boundary element method (BEM) approaches incorporated with system dynamics technology to investigate dynamic characteristics of MEMS actuator embedded HAS system for HDD.

  6. Wind from the black-hole accretion disk driving a molecular outflow in an active galaxy

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Meléndez, M.; Veilleux, S.; Reeves, J. N.; González-Alfonso, E.; Reynolds, C. S.

    2015-03-01

    Powerful winds driven by active galactic nuclei are often thought to affect the evolution of both supermassive black holes and their host galaxies, quenching star formation and explaining the close relationship between black holes and galaxies. Recent observations of large-scale molecular outflows in ultraluminous infrared galaxies support this quasar-feedback idea, because they directly trace the gas from which stars form. Theoretical models suggest that these outflows originate as energy-conserving flows driven by fast accretion-disk winds. Proposed connections between large-scale molecular outflows and accretion-disk activity in ultraluminous galaxies were incomplete because no accretion-disk wind had been detected. Conversely, studies of powerful accretion-disk winds have until now focused only on X-ray observations of local Seyfert galaxies and a few higher-redshift quasars. Here we report observations of a powerful accretion-disk wind with a mildly relativistic velocity (a quarter that of light) in the X-ray spectrum of IRAS F11119+3257, a nearby (redshift 0.189) optically classified type 1 ultraluminous infrared galaxy hosting a powerful molecular outflow. The active galactic nucleus is responsible for about 80 per cent of the emission, with a quasar-like luminosity of 1.5 × 1046 ergs per second. The energetics of these two types of wide-angle outflows is consistent with the energy-conserving mechanism that is the basis of the quasar feedback in active galactic nuclei that lack powerful radio jets (such jets are an alternative way to drive molecular outflows).

  7. Wind from the black-hole accretion disk driving a molecular outflow in an active galaxy.

    PubMed

    Tombesi, F; Meléndez, M; Veilleux, S; Reeves, J N; González-Alfonso, E; Reynolds, C S

    2015-03-26

    Powerful winds driven by active galactic nuclei are often thought to affect the evolution of both supermassive black holes and their host galaxies, quenching star formation and explaining the close relationship between black holes and galaxies. Recent observations of large-scale molecular outflows in ultraluminous infrared galaxies support this quasar-feedback idea, because they directly trace the gas from which stars form. Theoretical models suggest that these outflows originate as energy-conserving flows driven by fast accretion-disk winds. Proposed connections between large-scale molecular outflows and accretion-disk activity in ultraluminous galaxies were incomplete because no accretion-disk wind had been detected. Conversely, studies of powerful accretion-disk winds have until now focused only on X-ray observations of local Seyfert galaxies and a few higher-redshift quasars. Here we report observations of a powerful accretion-disk wind with a mildly relativistic velocity (a quarter that of light) in the X-ray spectrum of IRAS F11119+3257, a nearby (redshift 0.189) optically classified type 1 ultraluminous infrared galaxy hosting a powerful molecular outflow. The active galactic nucleus is responsible for about 80 per cent of the emission, with a quasar-like luminosity of 1.5 × 10(46) ergs per second. The energetics of these two types of wide-angle outflows is consistent with the energy-conserving mechanism that is the basis of the quasar feedback in active galactic nuclei that lack powerful radio jets (such jets are an alternative way to drive molecular outflows). PMID:25810204

  8. Wind from the black-hole accretion disk driving a molecular outflow in an active galaxy.

    PubMed

    Tombesi, F; Meléndez, M; Veilleux, S; Reeves, J N; González-Alfonso, E; Reynolds, C S

    2015-03-26

    Powerful winds driven by active galactic nuclei are often thought to affect the evolution of both supermassive black holes and their host galaxies, quenching star formation and explaining the close relationship between black holes and galaxies. Recent observations of large-scale molecular outflows in ultraluminous infrared galaxies support this quasar-feedback idea, because they directly trace the gas from which stars form. Theoretical models suggest that these outflows originate as energy-conserving flows driven by fast accretion-disk winds. Proposed connections between large-scale molecular outflows and accretion-disk activity in ultraluminous galaxies were incomplete because no accretion-disk wind had been detected. Conversely, studies of powerful accretion-disk winds have until now focused only on X-ray observations of local Seyfert galaxies and a few higher-redshift quasars. Here we report observations of a powerful accretion-disk wind with a mildly relativistic velocity (a quarter that of light) in the X-ray spectrum of IRAS F11119+3257, a nearby (redshift 0.189) optically classified type 1 ultraluminous infrared galaxy hosting a powerful molecular outflow. The active galactic nucleus is responsible for about 80 per cent of the emission, with a quasar-like luminosity of 1.5 × 10(46) ergs per second. The energetics of these two types of wide-angle outflows is consistent with the energy-conserving mechanism that is the basis of the quasar feedback in active galactic nuclei that lack powerful radio jets (such jets are an alternative way to drive molecular outflows).

  9. Hard disk drive based microsecond x-ray chopper for characterization of ionization chambers and photodiodes

    NASA Astrophysics Data System (ADS)

    Müller, O.; Lützenkirchen-Hecht, D.; Frahm, R.

    2015-03-01

    A fast X-ray chopper capable of producing ms long X-ray pulses with a typical rise time of few μs was realized. It is ideally suited to investigate the temporal response of X-ray detectors with response times of the order of μs to ms, in particular, any kind of ionization chambers and large area photo diodes. The drive mechanism consists of a brushless DC motor and driver electronics from a common hard disk drive, keeping the cost at an absolute minimum. Due to its simple construction and small dimensions, this chopper operates at home lab based X-ray tubes and synchrotron radiation sources as well. The dynamics of the most important detectors used in time resolved X-ray absorption spectroscopy, namely, ionization chambers and Passivated Implanted Planar Silicon photodiodes, were investigated in detail. The results emphasize the applicability of this X-ray chopper.

  10. An Electrostatic Microactuator for Positioning a Hard-Disk Drive Magnetic Head

    NASA Astrophysics Data System (ADS)

    Yoshino, Tomonori; Toshiyoshi, Hiroshi; Mita, Makoto; Kobayashi, Dai; Fujita, Hiroyuki

    We have newly developed a prototype model of silicon microfabricated piggyback actuator for positioning a read/write head of magnetic hard-disk drive, which is usually referred to as a dual servo system because the piggyback actuator for fine control is used in collaboration with the voice-coil motor for coarse control. The actuator is made of a 50-micron-thick SOI (silicon on insulator) wafer processed by deep RIE (reactive ion etching) of high-aspect ratio. Actuation mechanism is based upon electrostatic force generated by multiple parallel plates. Maximum displacement of 0.2μ with a dc driving voltage of 20V has been achieved with a 1mm × 0.3mm actuator of its resonance at 25kHz. An analytical model for predicting electromechanical performance has also been developed.

  11. Hard disk drive based microsecond x-ray chopper for characterization of ionization chambers and photodiodes

    SciTech Connect

    Müller, O. Lützenkirchen-Hecht, D.; Frahm, R.

    2015-03-15

    A fast X-ray chopper capable of producing ms long X-ray pulses with a typical rise time of few μs was realized. It is ideally suited to investigate the temporal response of X-ray detectors with response times of the order of μs to ms, in particular, any kind of ionization chambers and large area photo diodes. The drive mechanism consists of a brushless DC motor and driver electronics from a common hard disk drive, keeping the cost at an absolute minimum. Due to its simple construction and small dimensions, this chopper operates at home lab based X-ray tubes and synchrotron radiation sources as well. The dynamics of the most important detectors used in time resolved X-ray absorption spectroscopy, namely, ionization chambers and Passivated Implanted Planar Silicon photodiodes, were investigated in detail. The results emphasize the applicability of this X-ray chopper.

  12. Hard disk drive based microsecond X-ray chopper for characterization of ionization chambers and photodiodes.

    PubMed

    Müller, O; Lützenkirchen-Hecht, D; Frahm, R

    2015-03-01

    A fast X-ray chopper capable of producing ms long X-ray pulses with a typical rise time of few μs was realized. It is ideally suited to investigate the temporal response of X-ray detectors with response times of the order of μs to ms, in particular, any kind of ionization chambers and large area photo diodes. The drive mechanism consists of a brushless DC motor and driver electronics from a common hard disk drive, keeping the cost at an absolute minimum. Due to its simple construction and small dimensions, this chopper operates at home lab based X-ray tubes and synchrotron radiation sources as well. The dynamics of the most important detectors used in time resolved X-ray absorption spectroscopy, namely, ionization chambers and Passivated Implanted Planar Silicon photodiodes, were investigated in detail. The results emphasize the applicability of this X-ray chopper. PMID:25832273

  13. Fabrication of Beam-rotating Actuator for Multiple-beam Disk Drive

    NASA Astrophysics Data System (ADS)

    Kim, Boung Jun; Kim, Soo Hyun; Kwak, Yoon Keun

    2002-05-01

    Current trends in computer and communication industries are towards increasingly higher resolution images and video processing techniques. However, such sophisticated processing tasks require massive storage systems such as a compact disk read only memory (CD-ROM) and digital versatile disc (DVD). Current demands in the development of such systems are higher data density storage media and an improved data transfer rate. The latter is discussed in this paper. A multiple-beam optical disk drive is presented as a method for improving the effective data transfer rate by increasing the beam spot number formed on an optical disk. The beam-rotating actuator is necessary for positioning the multiple-beam onto more than one track. Ray tracing was also employed for the real system setup. The beam-rotating actuator is made up of piezoelectric material, a high-stiffness wire hinge and a dove prism. The actuator has an approximately 1 kHz resonance frequency and a suitable operational range. The dynamic equation for the actuator is derived for the control of the real system.

  14. A multidentate lubricant for use in hard disk drives at sub-nanometer thickness

    NASA Astrophysics Data System (ADS)

    Guo, X.-C.; Marchon, B.; Wang, R.-H.; Mate, C. M.; Dai, Q.; Waltman, R. J.; Deng, H.; Pocker, D.; Xiao, Q.-F.; Saito, Y.; Ohtani, T.

    2012-01-01

    We describe a second generation of multidentate lubricant structures for use on a magnetic media in a hard disk drive. Building on earlier work where a perfluoropolyether (PFPE) chain with hydroxyl bonding moieties were placed in the middle of the chain as well as on chain ends, creating a structure with two PFPE sub-units for enhanced tribological performance under very low head-disk spacing, this paper focuses on a PFPE chain composed of three, even shorter PFPE sub-units. Experimental data focusing on surface characterization of sub-nanometer thickness films, as well as tribological performance, are presented that confirm the high confinement level achieved with the lubricant structure. Molecular dynamics calculations are also discussed, that are consistent with a molecular film of high stiffness, leading to a denser, more compact structure. This approach could pave the way to achieving the sub-nanometer head-disk clearance level, presumed necessary for storage densities exceeding the terabit per square inch density landmark.

  15. Long-Span Seek Control System for Hard Disk Drive without Mode-Switching

    NASA Astrophysics Data System (ADS)

    Takakura, Shinji

    In Hard Disk Drive (HDD), there are two control modes. One is a head positioning control mode, the other is a seek control mode. In the head positioning control mode, a feedback controller is optimally designed to suppress a disturbance. In the long span seek mode, a velocity feedback control system is applied in order to move a head fast. Thus, a HDD has plural control systems, and the head is moved to the target position while changing from one control system to the other. However, the changing of the control system causes a discontinuous control signal, which activates the resonance mode of an actuator. The past methods only can decrease the discontinuous control. Therefore, a single control system that can be used for both a seek control mode and a head positioning control mode is necessary for narrow track pitch. In the proposed method, the feedback controller is decomposed to an integrator and a phase compensator. The VCM model is updated by the output of the phase compensator, and the integrator and the output of the velocity feedback controller control the VCM. The validity of the proposed method was confirmed by numerical and experimental results using a miniature 2.5-inch Hard Disk Drive.

  16. Detection and suppression for mechanical resonance in hard disk drives with built-in piezoelectric sensors

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Lou, Yaolong; Okada, Kanzo

    2002-07-01

    Many components in hard disk drives (HDDs), when in operation, are subjected to vibration due to out of balance of rotating components, inertial impacts under servo driving and dynamic interactions between components. These vibrations have been found to have significant effect upon the servo performance of drive systems. In order to improve the servo performance by reducing the effect of mechanical resonance in HDDs, this paper seeks to detect and suppress mechanical resonance of the head actuator using smart sensors and multi-sensing control techniques. In this regard, sensitive and miniature piezoelectric elements from the polymer-based piezoelectric materials PVDF (polyvinylindin fluoride) or the ceramic-based piezoelectric materials PZT 9lead zircornate titanate) are built in the head actuator for sensing the mechanical vibration. In the experiment, the multi-sensing signals by the piezoelectric sensors and the laser Doppler vibrometer (LDV) are transferred into a voice coil motor (VCM) through a feedback controller so as to actively suppress structural resonance. Numerical simulation and experimental results indicate that the piezoelectric sensors provide an effective way in monitoring the HDD actuator resonance, and the active vibration control strategy is capable of suppressing main mechanical resonance in the head actuator effectively.

  17. High-density ferroelectric recording using a hard disk drive-type data storage system

    NASA Astrophysics Data System (ADS)

    Aoki, Tomonori; Hiranaga, Yoshiomi; Cho, Yasuo

    2016-05-01

    Ferroelectric probe data storage has been proposed as a novel data storage method in which bits are recorded based on the polarization directions of individual domains. These bits are subsequently read by scanning nonlinear dielectric microscopy. The domain walls of typical ferroelectric materials are quite thin: often only several times the lattice constant, which is advantageous for high-density data storage. In this work, high-density read/write (R/W) demonstrations were conducted using a hard disk drive-type test system, and the writing of bit arrays with a recording density of 3.4 Tbit/in.2 was achieved. Additionally, a series of writing and reading operations was successfully demonstrated at a density of 1 Tbit/in.2. Favorable characteristics of ferroelectric recording media for use with the proposed method are discussed in the latter part of this paper.

  18. Recycling potential of neodymium: the case of computer hard disk drives.

    PubMed

    Sprecher, Benjamin; Kleijn, Rene; Kramer, Gert Jan

    2014-08-19

    Neodymium, one of the more critically scarce rare earth metals, is often used in sustainable technologies. In this study, we investigate the potential contribution of neodymium recycling to reducing scarcity in supply, with a case study on computer hard disk drives (HDDs). We first review the literature on neodymium production and recycling potential. From this review, we find that recycling of computer HDDs is currently the most feasible pathway toward large-scale recycling of neodymium, even though HDDs do not represent the largest application of neodymium. We then use a combination of dynamic modeling and empirical experiments to conclude that within the application of NdFeB magnets for HDDs, the potential for loop-closing is significant: up to 57% in 2017. However, compared to the total NdFeB production capacity, the recovery potential from HDDs is relatively small (in the 1-3% range). The distributed nature of neodymium poses a significant challenge for recycling of neodymium.

  19. RESOLVING THE CIRCUMSTELLAR DISK AROUND THE MASSIVE PROTOSTAR DRIVING THE HH 80-81 JET

    SciTech Connect

    Carrasco-Gonzalez, Carlos; Galvan-Madrid, Roberto; Anglada, Guillem; Osorio, Mayra; D'Alessio, Paola; Rodriguez, Luis F.; Hofner, Peter; Linz, Hendrik; Araya, Esteban D.

    2012-06-20

    We present new high angular resolution observations toward the driving source of the HH 80-81 jet (IRAS 18162-2048). Continuum emission was observed with the Very Large Array at 7 mm and 1.3 cm, and with the Submillimeter Array at 860 {mu}m, with angular resolutions of {approx}0.''1 and {approx}0.''8, respectively. Submillimeter observations of the sulfur oxide (SO) molecule are reported as well. At 1.3 cm the emission traces the well-known radio jet, while at 7 mm the continuum morphology is quadrupolar and seems to be produced by a combination of free-free and dust emission. An elongated structure perpendicular to the jet remains in the 7 mm image after subtraction of the free-free contribution. This structure is interpreted as a compact accretion disk of {approx}200 AU radius. Our interpretation is favored by the presence of rotation in our SO observations observed at larger scales. The observations presented here add to the small list of cases where the hundred-AU scale emission from a circumstellar disk around a massive protostar has been resolved.

  20. Controller Switching Strategy for Constrained Systems and Its Application to Hard Disk Drives

    NASA Astrophysics Data System (ADS)

    Okuyama, Atsushi; Yamaguchi, Takashi

    We propose a switching control strategy for systems with state and control constraints. Prior studies have proven that switching control strategies have the ability to meet performance objectives, such as fast response and good disturbance rejections, while avoiding constraint violations. The controller is selected on-line from a given set of controllers by supervisory rules based on the concept of a maximal output admissible set. The selected controller needs to be appropriately initialized during switching, but how to decide the controller's initial state is still a problem. This paper proposes a method that utilizes an initial value compensation (IVC) technique for determining the initial state of the controller. The IVC technique has the following features. First, the controller's initial state is chosen according to the plant's initial state. Therefore, the number of variables that the supervisory rules need to consider is reduced. Second, smooth and fast transient responses can be obtained after switching, therefore the region of the closed-loop initial state variables that satisfy the desired response specifications under the given constraints can be expanded. Experimental evaluations of the proposed switching control strategy were performed with a 2.5-inch form-factor hard disk drive.

  1. Recycling potential of neodymium: the case of computer hard disk drives.

    PubMed

    Sprecher, Benjamin; Kleijn, Rene; Kramer, Gert Jan

    2014-08-19

    Neodymium, one of the more critically scarce rare earth metals, is often used in sustainable technologies. In this study, we investigate the potential contribution of neodymium recycling to reducing scarcity in supply, with a case study on computer hard disk drives (HDDs). We first review the literature on neodymium production and recycling potential. From this review, we find that recycling of computer HDDs is currently the most feasible pathway toward large-scale recycling of neodymium, even though HDDs do not represent the largest application of neodymium. We then use a combination of dynamic modeling and empirical experiments to conclude that within the application of NdFeB magnets for HDDs, the potential for loop-closing is significant: up to 57% in 2017. However, compared to the total NdFeB production capacity, the recovery potential from HDDs is relatively small (in the 1-3% range). The distributed nature of neodymium poses a significant challenge for recycling of neodymium. PMID:25029356

  2. Do Circumnuclear Dense Gas Disks Drive Mass Accretion onto Supermassive Black Holes?

    NASA Astrophysics Data System (ADS)

    Izumi, Takuma; Kawakatu, Nozomu; Kohno, Kotaro

    2016-08-01

    We present a positive correlation between the mass of dense molecular gas ({M}{{dense}}) of ˜100 pc scale circumnuclear disks (CNDs) and the black hole mass accretion rate ({\\dot{M}}{{BH}}) in a total of 10 Seyfert galaxies, based on data compiled from the literature and an archive (median aperture θ med = 220 pc). A typical {M}{{dense}} of CNDs is 107–8 {M}ȯ , estimated from the luminosity of the dense gas tracer, the HCN(1–0) emission line. Because dense molecular gas is the site of star formation, this correlation is virtually equivalent to the one between the nuclear star-formation rate and {\\dot{M}}{{BH}} revealed previously. Moreover, the {M}{{dense}}{--}{\\dot{M}}{{BH}} correlation was tighter for CND-scale gas than for the gas on kiloparsec or larger scales. This indicates that CNDs likely play an important role in fueling black holes, whereas greater than kiloparesec scale gas does not. To demonstrate a possible approach for studying the CND-scale accretion process with the Atacama Large Millimeter/submillimeter Array, we used a mass accretion model where angular momentum loss due to supernova explosions is vital. Based on the model prediction, we suggest that only the partial fraction of the mass accreted from the CND ({\\dot{M}}{{acc}}) is consumed as {\\dot{M}}{{BH}}. However, {\\dot{M}}{{acc}} agrees well with the total nuclear mass flow rate (i.e., {\\dot{M}}{{BH}} + outflow rate). Although these results are still tentative with large uncertainties, they support the view that star formation in CNDs can drive mass accretion onto supermassive black holes in Seyfert galaxies.

  3. Do Circumnuclear Dense Gas Disks Drive Mass Accretion onto Supermassive Black Holes?

    NASA Astrophysics Data System (ADS)

    Izumi, Takuma; Kawakatu, Nozomu; Kohno, Kotaro

    2016-08-01

    We present a positive correlation between the mass of dense molecular gas ({M}{{dense}}) of ˜100 pc scale circumnuclear disks (CNDs) and the black hole mass accretion rate ({\\dot{M}}{{BH}}) in a total of 10 Seyfert galaxies, based on data compiled from the literature and an archive (median aperture θ med = 220 pc). A typical {M}{{dense}} of CNDs is 107-8 {M}⊙ , estimated from the luminosity of the dense gas tracer, the HCN(1-0) emission line. Because dense molecular gas is the site of star formation, this correlation is virtually equivalent to the one between the nuclear star-formation rate and {\\dot{M}}{{BH}} revealed previously. Moreover, the {M}{{dense}}{--}{\\dot{M}}{{BH}} correlation was tighter for CND-scale gas than for the gas on kiloparsec or larger scales. This indicates that CNDs likely play an important role in fueling black holes, whereas greater than kiloparesec scale gas does not. To demonstrate a possible approach for studying the CND-scale accretion process with the Atacama Large Millimeter/submillimeter Array, we used a mass accretion model where angular momentum loss due to supernova explosions is vital. Based on the model prediction, we suggest that only the partial fraction of the mass accreted from the CND ({\\dot{M}}{{acc}}) is consumed as {\\dot{M}}{{BH}}. However, {\\dot{M}}{{acc}} agrees well with the total nuclear mass flow rate (i.e., {\\dot{M}}{{BH}} + outflow rate). Although these results are still tentative with large uncertainties, they support the view that star formation in CNDs can drive mass accretion onto supermassive black holes in Seyfert galaxies.

  4. Cleaner Technology in the Hard Disk Drive Manufacturing Industry: A Case Study

    NASA Astrophysics Data System (ADS)

    Moolla, Premchai; Chompu-inwai, Rungchat

    2010-10-01

    The objectives of this research are to improve raw material and energy consumption efficiency, as well as reduce defects and the use of chemicals in the arm coil assembly process of hard disk drive manufacturing in the case study company by applying the Cleaner Technology concepts. The four main sequential steps used in this research were: (1) pre-assessment, (2) assessment, (3) feasibility study, and (4) implementation. In the first step, raw data, such as process flows, raw material usage and defects data were collected. In the second step, the loss during production and causes of loss were analyzed. Opportunities to reduce raw material, chemical and energy wastage could then be recommended. The next step was to evaluate the feasibility and potential benefits of a particular Cleaner Technology opportunity. Finally, in the last step, after a thorough evaluation and implementation of the opportunities to apply Cleaner Technology, the results showed that arm coil defects could be reduced by improving the production process using the ECRS technique. ECRS stands for Eliminate, Combine, Rearrange and Simplify. This improvement reduced arm coil defect rates from 0.48% to 0.15%, thus saving approximately 139,638 Thai Baht per month. In addition, production stoppage decision made by workers was used to increase employee involvement in defect detection. Allowing workers to participate in such a decision was an effective way to reduce defect rate and could motivate workers to produce a better quality job. This resulted in arm coil defects reducing from 0.41% to 0.025%, with about 74,562 Thai Baht per month saving. Additionally, an increase in the efficiency of electricity consumption occurred, by increasing the speed of the infrared oven conveyor belt, improving average productivity from 533 pieces/hour to 560 pieces/hour, without adversely affecting product costs and quality, thus producing products of up to the value of 206,242 Thai Baht per month. Furthermore, the new

  5. On the Future of Head-Based Microactuators in Hard Disk Drives

    NASA Astrophysics Data System (ADS)

    Wernow, Josiah Natan

    Dual-stage actuation is an important technology enabler for advancing hard disk drive capacity and performance. This thesis describes the ongoing trend of decreasing track pitches required for areal density growth and increasing disturbances arising from rising spindle speeds, demonstrating that future dual-stage actuators will need to overcome the bandwidth limitations faced by the current suspension-based devices. First, the state of the art for dual-stage actuation is presented in the form of a literature review. This is followed by an overview of a new servo-mechanical design and analysis technique which is a hybrid of Galerkin beam elements and optimal linear quadratic Gaussian control analysis. This new technique is used to demonstrate the potential performance benefits of head-based actuation over suspension-based actuation. With the driving goal of designing a new head-based actuator, the constraints posed by industry are presented and discussed in detail. This is followed by an overview of the various actuation mechanisms evaluated, including several electrostatic and piezoelectric devices. The two most significant challenges identified through this analysis are the introduction of a gap at the trailing edge of the air-bearing and the necessity to actuate traces with sufficiently high actuation force. A quasi-shear mode piezoelectric actuator is proposed as a cost-effective head-based actuator which meets the given criteria and can be implemented at the wafer-scale. A new prototype was fabricated at the Berkeley Nanofabrication Laboratory with a measured bandwidth above 50 kHz. Since the proposed head-based actuation scheme requires a gap in the air-bearing surface, a second actuation mode is also presented. It is shown that the gap width between the slider body and read/write head can be controlled independently of track-following displacement in order to minimize pressure loss at the air-bearing surface. It is also shown that the directionality along

  6. COSMIC RAYS CAN DRIVE STRONG OUTFLOWS FROM GAS-RICH HIGH-REDSHIFT DISK GALAXIES

    SciTech Connect

    Hanasz, M.; Kowalik, K.; Wóltański, D.; Lesch, H.; Naab, T.; Gawryszczak, A.

    2013-11-10

    We present simulations of the magnetized interstellar medium (ISM) in models of massive star-forming (40 M {sub ☉} yr{sup –1}) disk galaxies with high gas surface densities (Σ{sub gas} ∼ 100 M {sub ☉} pc{sup –2}) similar to observed star-forming high-redshift disks. We assume that type II supernovae deposit 10% of their energy into the ISM as cosmic rays (CRs) and neglect the additional deposition of thermal energy or momentum. With a typical Galactic diffusion coefficient for CRs (3 × 10{sup 28} cm{sup 2} s{sup –1}), we demonstrate that this process alone can trigger the local formation of a strong low-density galactic wind maintaining vertically open field lines. Driven by the additional pressure gradient of the relativistic fluid, the wind speed can exceed 10{sup 3} km s{sup –1}, much higher than the escape velocity of the galaxy. The global mass loading, i.e., the ratio of the gas mass leaving the galactic disk in a wind to the star formation rate, becomes of order unity once the system has settled into an equilibrium. We conclude that relativistic particles accelerated in supernova remnants alone provide a natural and efficient mechanism to trigger winds similar to observed mass-loaded galactic winds in high-redshift galaxies. These winds also help in explaining the low efficiencies for the conversion of gas into stars in galaxies, as well as the early enrichment of the intergalactic medium with metals. This mechanism may be at least of similar importance to the traditionally considered momentum feedback from massive stars and thermal and kinetic feedback from supernova explosions.

  7. Optimal Design of Rotary-Type Voice Coil Motor Using Multisegmented Magnet Array for Small Form Factor Optical Disk Drive

    NASA Astrophysics Data System (ADS)

    Jeong, Jaehwa; Gweon, Dae-Gab

    2007-05-01

    For a small form factor optical disk drive (SFFODD), a high-performance actuator satisfying the requirements for small size, high speed, and low-power consumption simultaneously is required. In this paper, we propose a rotary-type voice coil motor (VCM) using a multisegmented magnet array (MSMA) for the SFFODD. The VCM is designed to move the entire system including miniaturized optical components, which are necessary in reading and writing data. To increase the actuating force of the VCM, the MSMA, a novel magnetic circuit, is adopted because it can provide a higher flux density than a conventional magnet array in the rotary-type VCM. To obtain the best performance from the VCM in the limit of actuator size, design optimization is performed. The manufactured actuator with optimally designed parameters is described and the potential performance of track seeking is evaluated and presented.

  8. Development of “L-Shaped” Rotary Voice Coil Motor Actuator for Ultra Slim Optical Disk Drive Using Integrated Design Method based on Coupled-Field Analysis

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Ju; Woo, Jung-Hyun; Kim, Sa-Ung; Oh, Je-Seung; Yoo, Jeong-Hoon; Park, No-Cheol; Park, Young-Pil; Shimano, Takeshi; Nakamura, Shigeo

    2007-06-01

    In this paper, we propose an “L-shaped” rotary voice coil motor (VCM) actuator for an ultra slim optical disk drive (ODD) with a CF II card size using the integrated design method that integrates coupled-field analysis and design methods.

  9. Optimization of Seesaw Swing Arm Actuator Design for Small Form Factor Optical Disk Drive

    NASA Astrophysics Data System (ADS)

    Po-Chien Chou,; Yu-Cheng Lin,; Stone Cheng,

    2010-05-01

    Many small form factor (SFF) optical pickup heads based on the swing arm design utilize a piezoelectric material or the slim metal plate to perform the focusing action. The seesaw-type actuator is a new mechanism used in the focusing action for SFF optical data storage devices. The swing arm nutates along a pivot instead of a hinge in the vertical movement. In this paper, an optimized design of a biaxial voice coil motor (VCM), in which the tracking and focusing VCMs are combined in the rear of the swing arm, is proposed. Simulation and experiment results demonstrate the effectiveness of the proposed design methodology by showing that the stress magnitude distribution characteristics, mechanism stiffness, and driving stability of the optimized design are enhanced in comparison with those of the original.

  10. Ultrasensitive mechanical detection of magnetic moment using a commercial disk drive write head.

    PubMed

    Tao, Y; Eichler, A; Holzherr, T; Degen, C L

    2016-01-01

    Sensitive detection of weak magnetic moments is an essential capability in many areas of nanoscale science and technology, including nanomagnetism, quantum readout of spins and nanoscale magnetic resonance imaging. Here we show that the write head of a commercial hard drive may enable significant advances in nanoscale spin detection. By approaching a sharp diamond tip to within 5 nm from a write pole and measuring the induced diamagnetic moment with a nanomechanical force transducer, we demonstrate a spin sensitivity of 0.032 μB Hz(-1/2), equivalent to 21 proton magnetic moments. The high sensitivity is enabled in part by the pole's strong magnetic gradient of up to 28 × 10(6) T m(-1) and in part by the absence of non-contact friction due to the extremely flat writer surface. In addition, we demonstrate quantitative imaging of the pole field with ∼10 nm spatial resolution. We foresee diverse applications for write heads in experimental condensed matter physics, especially in spintronics, ultrafast spin manipulation and mesoscopic physics. PMID:27647039

  11. Ultrasensitive mechanical detection of magnetic moment using a commercial disk drive write head

    PubMed Central

    Tao, Y.; Eichler, A.; Holzherr, T.; Degen, C. L.

    2016-01-01

    Sensitive detection of weak magnetic moments is an essential capability in many areas of nanoscale science and technology, including nanomagnetism, quantum readout of spins and nanoscale magnetic resonance imaging. Here we show that the write head of a commercial hard drive may enable significant advances in nanoscale spin detection. By approaching a sharp diamond tip to within 5 nm from a write pole and measuring the induced diamagnetic moment with a nanomechanical force transducer, we demonstrate a spin sensitivity of 0.032 μB Hz−1/2, equivalent to 21 proton magnetic moments. The high sensitivity is enabled in part by the pole's strong magnetic gradient of up to 28 × 106 T m−1 and in part by the absence of non-contact friction due to the extremely flat writer surface. In addition, we demonstrate quantitative imaging of the pole field with ∼10 nm spatial resolution. We foresee diverse applications for write heads in experimental condensed matter physics, especially in spintronics, ultrafast spin manipulation and mesoscopic physics. PMID:27647039

  12. Ultrasensitive mechanical detection of magnetic moment using a commercial disk drive write head

    NASA Astrophysics Data System (ADS)

    Tao, Y.; Eichler, A.; Holzherr, T.; Degen, C. L.

    2016-09-01

    Sensitive detection of weak magnetic moments is an essential capability in many areas of nanoscale science and technology, including nanomagnetism, quantum readout of spins and nanoscale magnetic resonance imaging. Here we show that the write head of a commercial hard drive may enable significant advances in nanoscale spin detection. By approaching a sharp diamond tip to within 5 nm from a write pole and measuring the induced diamagnetic moment with a nanomechanical force transducer, we demonstrate a spin sensitivity of 0.032 μB Hz-1/2, equivalent to 21 proton magnetic moments. The high sensitivity is enabled in part by the pole's strong magnetic gradient of up to 28 × 106 T m-1 and in part by the absence of non-contact friction due to the extremely flat writer surface. In addition, we demonstrate quantitative imaging of the pole field with ~10 nm spatial resolution. We foresee diverse applications for write heads in experimental condensed matter physics, especially in spintronics, ultrafast spin manipulation and mesoscopic physics.

  13. Ultrasensitive mechanical detection of magnetic moment using a commercial disk drive write head.

    PubMed

    Tao, Y; Eichler, A; Holzherr, T; Degen, C L

    2016-09-20

    Sensitive detection of weak magnetic moments is an essential capability in many areas of nanoscale science and technology, including nanomagnetism, quantum readout of spins and nanoscale magnetic resonance imaging. Here we show that the write head of a commercial hard drive may enable significant advances in nanoscale spin detection. By approaching a sharp diamond tip to within 5 nm from a write pole and measuring the induced diamagnetic moment with a nanomechanical force transducer, we demonstrate a spin sensitivity of 0.032 μB Hz(-1/2), equivalent to 21 proton magnetic moments. The high sensitivity is enabled in part by the pole's strong magnetic gradient of up to 28 × 10(6) T m(-1) and in part by the absence of non-contact friction due to the extremely flat writer surface. In addition, we demonstrate quantitative imaging of the pole field with ∼10 nm spatial resolution. We foresee diverse applications for write heads in experimental condensed matter physics, especially in spintronics, ultrafast spin manipulation and mesoscopic physics.

  14. Tracking the Flow of Resources in Electronic Waste - The Case of End-of-Life Computer Hard Disk Drives.

    PubMed

    Habib, Komal; Parajuly, Keshav; Wenzel, Henrik

    2015-10-20

    Recovery of resources, in particular, metals, from waste flows is widely seen as a prioritized option to reduce their potential supply constraints in the future. The current waste electrical and electronic equipment (WEEE) treatment system is more focused on bulk metals, where the recycling rate of specialty metals, such as rare earths, is negligible compared to their increasing use in modern products, such as electronics. This study investigates the challenges in recovering these resources in the existing WEEE treatment system. It is illustrated by following the material flows of resources in a conventional WEEE treatment plant in Denmark. Computer hard disk drives (HDDs) containing neodymium-iron-boron (NdFeB) magnets were selected as the case product for this experiment. The resulting output fractions were tracked until their final treatment in order to estimate the recovery potential of rare earth elements (REEs) and other resources contained in HDDs. The results further show that out of the 244 kg of HDDs treated, 212 kg comprising mainly of aluminum and steel can be finally recovered from the metallurgic process. The results further demonstrate the complete loss of REEs in the existing shredding-based WEEE treatment processes. Dismantling and separate processing of NdFeB magnets from their end-use products can be a more preferred option over shredding. However, it remains a technological and logistic challenge for the existing system.

  15. A Higher Bandwidth Servo Design for Magnetic Disk Drives: A Head-positioning Control System with Strain Feedback Control

    NASA Astrophysics Data System (ADS)

    Nakagawa, Shinsuke; Yamaguchi, Takashi

    In magnetic disk drives, mechanical resonance modes prevent a higher bandwidth servo being used for head positioning control. To overcome this limitation and realize more precise head positioning, a strain feedback controller which is added to a conventional head-position feedback loop was developed. The controller of a strain-feedback control system was designed so that the gain and the phase delay of the sensitivity function of the strain-feedback control system were both reduced below the frequency of a primary mechanical resonance. The controller achieves gain suppression by about 10dB at a primary mechanical resonance and phase delay of about zero degrees. It was found that the head-position control system (i.e., the strain feedback plus the conventional head-position feedback loop) increases the servo bandwidth by 17% and improves the positioning accuracy by 18%. It was also confirmed that unlike conventional servo system, the new servo design does not suffer degradation of servo characteristics at high temperature.

  16. Tracking the Flow of Resources in Electronic Waste - The Case of End-of-Life Computer Hard Disk Drives.

    PubMed

    Habib, Komal; Parajuly, Keshav; Wenzel, Henrik

    2015-10-20

    Recovery of resources, in particular, metals, from waste flows is widely seen as a prioritized option to reduce their potential supply constraints in the future. The current waste electrical and electronic equipment (WEEE) treatment system is more focused on bulk metals, where the recycling rate of specialty metals, such as rare earths, is negligible compared to their increasing use in modern products, such as electronics. This study investigates the challenges in recovering these resources in the existing WEEE treatment system. It is illustrated by following the material flows of resources in a conventional WEEE treatment plant in Denmark. Computer hard disk drives (HDDs) containing neodymium-iron-boron (NdFeB) magnets were selected as the case product for this experiment. The resulting output fractions were tracked until their final treatment in order to estimate the recovery potential of rare earth elements (REEs) and other resources contained in HDDs. The results further show that out of the 244 kg of HDDs treated, 212 kg comprising mainly of aluminum and steel can be finally recovered from the metallurgic process. The results further demonstrate the complete loss of REEs in the existing shredding-based WEEE treatment processes. Dismantling and separate processing of NdFeB magnets from their end-use products can be a more preferred option over shredding. However, it remains a technological and logistic challenge for the existing system. PMID:26351732

  17. High-Speed Tracking Method Using Zero Phase Error Tracking-Feed-Forward (ZPET-FF) Control for High-Data-Transfer-Rate Optical Disk Drives

    NASA Astrophysics Data System (ADS)

    Koide, Daiichi; Yanagisawa, Hitoshi; Tokumaru, Haruki; Nakamura, Shoichi; Ohishi, Kiyoshi; Inomata, Koichi; Miyazaki, Toshimasa

    2004-07-01

    We describe the effectiveness of feed-forward control using the zero phase error tracking method (ZPET-FF control) of the tracking servo for high-data-transfer-rate optical disk drives, as we are developing an optical disk system to replace the conventional professional videotape recorder for recording high-definition television signals for news gathering or producing broadcast contents. The optical disk system requires a high-data-transfer-rate of more than 200 Mbps and large recording capacity. Therefore, fast and precise track-following control is indispensable. Here, we compare the characteristics of ZPET-FF control with those of conventional feedback control or repetitive control. Experimental results show that ZPET-FF control is more precise than feedback control, and the residual tracking error level is achieved with a tolerance of 10 nm at a linear velocity of 26 m/s in the experimental setup using a blue-violet laser optical head and high-density media. The feasibility of achieving precise ZPET-FF control at 15000 rpm is also presented.

  18. Numerical Simulation of the Slider Air Bearing Problem of Hard Disk Drives by Two Multidimensional Upwind Residual Distribution Schemes over Unstructured Triangular Meshes

    NASA Astrophysics Data System (ADS)

    Wu, Lin; Bogy, D. B.

    2001-09-01

    In this paper we present two multigrid numerical schemes over unstructured triangular meshes that solve the slider air bearing problem of hard disk drives. For each fixed slider attitude, the air bearing pressure is obtained by solving the generalized Reynolds equation. The convection part of the equation is modeled in one scheme by the PSI multidimensional upwind residual distribution approach and in the other scheme by the SUPG finite element approach cast in residual distribution form. In both schemes, a linear Galerkin method is used to discretize the diffusion terms. In addition, a non-nested multigrid iteration technique is used to speed up the convergence rate. Finally, the balanced steady state flying attitude of the slider subject to pre-applied suspension force and torques is obtained by a Quasi-Newton iteration method (Broyden's method), and the results of the numerical solutions are compared to each other and to experimental data.

  19. Variability of Disk Emission in Pre-main-sequence and Related Stars. I. HD 31648 and HD 163296: Isolated Herbig Ae Stars Driving Herbig-Haro Flows

    NASA Technical Reports Server (NTRS)

    Sitko, Michael L.; Carpenter, William J.; Kimes, Robin L.; Wilde, J. Leon; Lynch, David K.; Russell, Ray W.; Rudy, Richard J.; Mazuk, Stephan M.; Venterini, Catherine C.; Puetter, Richard C.; Grady, Carol A.; Polomski, Elisha F.; Wisnewski, John P.; Brafford, Suellen M.; Hammel, H. B.; Perry, R. Brad

    2008-01-01

    Infrared photometry and spectroscopy covering a time span of a quarter-century are presented for HD 31648 (MWC 480) and HD 163296 (MWC 275). Both are isolated Herbig Ae stars that exhibit signs of active accretion, including driving bipolar flows with embedded Herbig-Haro (HH) objects. HD 163296 was found to be relatively quiescent photometrically in its inner disk region, with the exception of a major increase in emitted flux in a broad wavelength region centered near 3 micron in 2002. In contrast, HD 31648 has exhibited sporadic changes in the entire 3-13 micron region throughout this span of time. In both stars, the changes in the 1-5 micron flux indicate structural changes in the region of the disk near the dust sublimation zone, possibly causing its distance from the star to vary with time. Repeated thermal cycling through this region will result in the preferential survival of large grains, and an increase in the degree of crystallinity. The variability observed in these objects has important consequences for the interpretation of other types of observations. For example, source variability will compromise models based on interferometry measurements unless the interferometry observations are accompanied by nearly simultaneous photometric data.

  20. Variability of Disk Emission in Pre-Main Sequence and Related Stars. I. HD 31648 and HD 163296 - Isolated Herbig Ae Stars Driving Herbig-Haro Flows

    NASA Technical Reports Server (NTRS)

    Sitko, Michael L.; Carpenter, William J.; Kimes, Robin L.; Lynch, David K.; Russell, Ray W.; Rudy, Richard J.; Mazuk, Stephan M.; Venturini, Catherine C.; Puetter, Richard C.; Grady, Carol A.; Polomski, Elisha F.; Wisnewski, John P.; Brafford, Suellen M.; Hammel, H. B.; Perry, Raleigh B.

    2007-01-01

    Infrared photometry and spectroscopy covering a time span of a quarter century are presented for HD 31648 (MWC 480) and HD 163296 (MWC 275). Both are isolated Herbig Ae stars that exhibit signs of active accretion, including driving bipolar flows with embedded Herbig-Haro (HH) objects. HD 163296 was found to be relatively quiescent photometrically in its inner disk region, with the exception of a major increase in emitted flux in a broad wavelength region centered near 3 pm in 2002. In contrast, HD 31648 has exhibited sporadic changes in the entire 3-13 pm region throughout this span of time. In both stars the changes in the 1-5 pm flux indicate structural changes in the region of the disk near the dust sublimation zone, possibly causing its distance from the star to vary with time. Repeated thermal cycling through this region will result in the preferential survival of large grains, and an increase in the degree of crystallinity. The variability observed in these objects has important consequences for the interpretation of other types of observations. For example, source variability will compromise models based on interferometry measurements unless the interferometry observations are accompanied by nearly-simultaneous photometric data.

  1. Rate dependent direct inverse hysteresis compensation of piezoelectric micro-actuator used in dual-stage hard disk drive head positioning system.

    PubMed

    Rahman, Md Arifur; Al Mamun, Abdullah; Yao, Kui

    2015-08-01

    The head positioning servo system in hard disk drive is implemented nowadays using a dual-stage actuator—the primary stage consisting of a voice coil motor actuator providing long range motion and the secondary stage controlling the position of the read/write head with fine resolution. Piezoelectric micro-actuator made of lead zirconate titanate (PZT) has been a popular choice for the secondary stage. However, PZT micro-actuator exhibits hysteresis—an inherent nonlinear characteristic of piezoelectric material. The advantage expected from using the secondary micro-actuator is somewhat lost by the hysteresis of the micro-actuator that contributes to tracking error. Hysteresis nonlinearity adversely affects the performance and, if not compensated, may cause inaccuracy and oscillation in the response. Compensation of hysteresis is therefore an important aspect for designing head-positioning servo system. This paper presents a new rate dependent model of hysteresis along with rigorous analysis and identification of the model. Parameters of the model are found using particle swarm optimization. Direct inverse of the proposed rate-dependent generalized Prandtl-Ishlinskii model is used as the hysteresis compensator. Effectiveness of the overall solution is underscored through experimental results.

  2. Rate dependent direct inverse hysteresis compensation of piezoelectric micro-actuator used in dual-stage hard disk drive head positioning system

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Arifur; Al Mamun, Abdullah; Yao, Kui

    2015-08-01

    The head positioning servo system in hard disk drive is implemented nowadays using a dual-stage actuator—the primary stage consisting of a voice coil motor actuator providing long range motion and the secondary stage controlling the position of the read/write head with fine resolution. Piezoelectric micro-actuator made of lead zirconate titanate (PZT) has been a popular choice for the secondary stage. However, PZT micro-actuator exhibits hysteresis—an inherent nonlinear characteristic of piezoelectric material. The advantage expected from using the secondary micro-actuator is somewhat lost by the hysteresis of the micro-actuator that contributes to tracking error. Hysteresis nonlinearity adversely affects the performance and, if not compensated, may cause inaccuracy and oscillation in the response. Compensation of hysteresis is therefore an important aspect for designing head-positioning servo system. This paper presents a new rate dependent model of hysteresis along with rigorous analysis and identification of the model. Parameters of the model are found using particle swarm optimization. Direct inverse of the proposed rate-dependent generalized Prandtl-Ishlinskii model is used as the hysteresis compensator. Effectiveness of the overall solution is underscored through experimental results.

  3. Rate dependent direct inverse hysteresis compensation of piezoelectric micro-actuator used in dual-stage hard disk drive head positioning system.

    PubMed

    Rahman, Md Arifur; Al Mamun, Abdullah; Yao, Kui

    2015-08-01

    The head positioning servo system in hard disk drive is implemented nowadays using a dual-stage actuator—the primary stage consisting of a voice coil motor actuator providing long range motion and the secondary stage controlling the position of the read/write head with fine resolution. Piezoelectric micro-actuator made of lead zirconate titanate (PZT) has been a popular choice for the secondary stage. However, PZT micro-actuator exhibits hysteresis—an inherent nonlinear characteristic of piezoelectric material. The advantage expected from using the secondary micro-actuator is somewhat lost by the hysteresis of the micro-actuator that contributes to tracking error. Hysteresis nonlinearity adversely affects the performance and, if not compensated, may cause inaccuracy and oscillation in the response. Compensation of hysteresis is therefore an important aspect for designing head-positioning servo system. This paper presents a new rate dependent model of hysteresis along with rigorous analysis and identification of the model. Parameters of the model are found using particle swarm optimization. Direct inverse of the proposed rate-dependent generalized Prandtl-Ishlinskii model is used as the hysteresis compensator. Effectiveness of the overall solution is underscored through experimental results. PMID:26329224

  4. Rewriteable optical disk recorder development

    NASA Technical Reports Server (NTRS)

    Shull, Thomas A.; Rinsland, Pamela L.

    1991-01-01

    A NASA program to develop a high performance (high rate, high capability) rewriteable optical disk recorder for spaceflight applications is presented. An expandable, adaptable system concept is proposed based on disk Drive modules and a modular Controller. Drive performance goals are 10 gigabyte capacity are up to 1.8 gigabits per second rate with concurrent I/O, synchronous data transfer, and 2 to 5 years operating life in orbit. Technology developments, design concepts, current status, and future plans are presented.

  5. Herniated Disk

    MedlinePlus

    ... keep them in place. As you age, the disks break down or degenerate. As they do, they lose their cushioning ability. This can lead to pain if the back is stressed. A herniated disk is a disk that ruptures. This allows the ...

  6. Optical Disks.

    ERIC Educational Resources Information Center

    Gale, John C.; And Others

    1985-01-01

    This four-article section focuses on information storage capacity of the optical disk covering the information workstation (uses microcomputer, optical disk, compact disc to provide reference information, information content, work product support); use of laser videodisc technology for dissemination of agricultural information; encoding databases…

  7. An electro-thermally activated rotary micro-positioner for slider-level dual-stage positioning in hard disk drives

    NASA Astrophysics Data System (ADS)

    Keong Lau, Gih; Yang, Jiaping; Tan, Cheng Peng; Boon Chong, Nyok

    2016-03-01

    Slider-level micro-positioners are useful to assist a voice coil motor to perform fine head positioning over a Tb/in2 magnetic disk. Recently, a new kind of slider-level micro-positioner was developed using the thermal unimorph of the Si/SU8 composite. It has the advantages of a very small footprint and high mechanical resonant frequency, but its stroke generation is inadequate, with a 50 nm dynamic stroke at 1 kHz. There is a need for a larger thermally induced stroke. This paper presents a rotary design of an electrothermal micro-positioner to address the stroke requirements without consuming more power or decreasing the mechanical resonant frequency. Experimental studies show the present rotary design can produce a six-fold larger displacement, as compared to the previous lateral design, while possessing a 35 kHz resonant frequency. In addition, simple analytical models were developed to estimate: (i) the rotational stiffness and system’s natural frequency, (ii) thermal unimorph bending and stage rotation, and (iii) the system’s thermal time constant for this rotary electro-thermal micro-positioner. This study found that this rotary electro-thermal micro-positioner can meet the basic stroke requirement and high mechanical resonant frequency for a moving slider, but its thermal cut-off frequency needs to be increased further.

  8. Herniated disk

    MedlinePlus

    ... roots. Slipped disks occur more often in middle-aged and older men, usually after strenuous activity. Other ... calm the nerves Muscle relaxants to relieve back spasms LIFESTYLE CHANGES If you are overweight, diet and ...

  9. Plasmofluidic Disk Resonators

    PubMed Central

    Kwon, Min-Suk; Ku, Bonwoo; Kim, Yonghan

    2016-01-01

    Waveguide-coupled silicon ring or disk resonators have been used for optical signal processing and sensing. Large-scale integration of optical devices demands continuous reduction in their footprints, and ultimately they need to be replaced by silicon-based plasmonic resonators. However, few waveguide-coupled silicon-based plasmonic resonators have been realized until now. Moreover, fluid cannot interact effectively with them since their resonance modes are strongly confined in solid regions. To solve this problem, this paper reports realized plasmofluidic disk resonators (PDRs). The PDR consists of a submicrometer radius silicon disk and metal laterally surrounding the disk with a 30-nm-wide channel in between. The channel is filled with fluid, and the resonance mode of the PDR is strongly confined in the fluid. The PDR coupled to a metal-insulator-silicon-insulator-metal waveguide is implemented by using standard complementary metal oxide semiconductor technology. If the refractive index of the fluid increases by 0.141, the transmission spectrum of the waveguide coupled to the PDR of radius 0.9 μm red-shifts by 30 nm. The PDR can be used as a refractive index sensor requiring a very small amount of analyte. Plus, the PDR filled with liquid crystal may be an ultracompact intensity modulator which is effectively controlled by small driving voltage. PMID:26979929

  10. Spaceflight optical disk recorder development

    NASA Technical Reports Server (NTRS)

    Jurczyk, Stephen G.; Hines, Glenn D.; Shull, Thomas A.

    1992-01-01

    Mass memory systems based on rewriteable optical disk media are expected to play an important role in meeting the data system requirements for future NASA spaceflight missions. NASA has established a program to develop a high performance (high rate, large capacity) optical disk recorder focused on use aboard unmanned Earth orbiting platforms. An expandable, adaptable system concept is proposed based on disk drive modules and a modular controller. Drive performance goals are 10 gigabyte capacity, 300 megabit/s transfer rate, 10 exp -12 corrected bit error rate, and 150 millisec access time. This performance is achieved by writing eight data tracks in parallel on both sides of a 14 in. optical disk using two independent heads. System goals are 160 gigabyte capacity, 1.2 gigabits/s data rate with concurrent I/O, 250 millisec access time, and two to five year operating life on orbit. The system can be configured to meet various applications. This versatility is provided by the controller. The controller provides command processing, multiple drive synchronization, data buffering, basic file management, error processing, and status reporting. Technology developments, design concepts, current status including a computer model of the system and a Controller breadboard, and future plans for the Drive and Controller are presented.

  11. Heating and Cooling Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Turner, Neal

    Many of the disks of gas and dust orbiting young Sun-like stars produce mid-infrared emission from water and other oxygen- and carbon-bearing molecules, as discovered in the last few years using the Spitzer Space Telescope. The emission reveals the temperatures, columns and chemical composition of the gas in the disk atmosphere within 2 AU of the star, directly overlying the region where the planets form. Better understanding of the processes governing the line emission is vital for converting this new class of measurements into information about the planets' raw ingredients. We propose to combine MHD models of the turbulence driving the disk accretion flows, with a thermal-chemical model of the disk atmospheres, to predict emergent spectra that will capture the dynamics, heating, and chemical composition. By comparing the predicted and observed spectra we can determine the strength of the turbulence that heats and mixes the gas, and test ideas about the conditions in the disk interior. We will investigate the coupling of the turbulence to the thermal and chemical evolution, seek to locate the line emission's power source, gauge the rate at which the atmosphere and interior exchange material, and obtain new independent measures of the disk mass accretion rates. These efforts will help infrared spectroscopy of protostellar disks reach its full potential as a diagnostic of the environments in which planets form.

  12. Direct drive wind turbine

    DOEpatents

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2007-02-27

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  13. Direct drive wind turbine

    DOEpatents

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-07-11

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  14. Direct drive wind turbine

    DOEpatents

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2006-10-10

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  15. Direct drive wind turbine

    DOEpatents

    Bywaters, Garrett Lee; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-09-19

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  16. Disk filter

    DOEpatents

    Bergman, W.

    1985-01-09

    An electric disk filter provides a high efficiency at high temperature. A hollow outer filter of fibrous stainless steel forms the ground electrode. A refractory filter material is placed between the outer electrode and the inner electrically isolated high voltage electrode. Air flows through the outer filter surfaces through the electrified refractory filter media and between the high voltage electrodes and is removed from a space in the high voltage electrode.

  17. Disk filter

    DOEpatents

    Bergman, Werner

    1986-01-01

    An electric disk filter provides a high efficiency at high temperature. A hollow outer filter of fibrous stainless steel forms the ground electrode. A refractory filter material is placed between the outer electrode and the inner electrically isolated high voltage electrode. Air flows through the outer filter surfaces through the electrified refractory filter media and between the high voltage electrodes and is removed from a space in the high voltage electrode.

  18. Secular Planetary Perturbations in Circumstellar Debris Disks

    NASA Astrophysics Data System (ADS)

    Hahn, Joseph M.; Capobianco, C.

    2006-12-01

    Circumstellar debris disks are likely the by-product of collisions among unseen planetesimals. Planetesimals are also the seeds of planets, so it is reasonable to expect that some debris disks might also harbor planets. In fact several such disks, like those orbiting beta Pictoris, Fomalhaut, etc., do appear to be perturbed by unseen planets orbiting within. The signatures of planetary perturbations include: central gaps, warps, and radial offsets in the disk's surface brightness. By modeling the disturbances observed in a circumstellar dust disk, one can then measure or constrain the masses and orbits of the planets that may be lurking within. Of particular interest here are the warps and radial offsets seen in such disks, since these features can be due to secular planetary perturbations (Mouillet et al 1997, Wyatt et al 1999). Secular perturbations are the slowly varying gravitational perturbations that can excite orbital eccentricities and inclinations in a disk, and can also drive a slow orbital precession. Note that a dust grain's motion is completely analytic when suffering secular perturbations (Murray & Dermott 1999), which allows us to rapidly generate a synthetic image of a simulated disk as would be seen in scattered starlight or via thermal emission. And because this model is quite fast, our model can rapidly scan a rather large parameter space in order to determine the planetary configuration that may be responsible for the disk's perturbed appearance. We have applied this dust-disk model to Hubble observations of the β Pictoris dust-disk (from Heap et al 2000), and will report on the planets that may be responsible for the warp seen in this edge-on disk. We will also apply the model to optical and IR observations of debris disks at Fomalhaut, AU Microscopii, and others, with additional results to be reported at conference time.

  19. Magneto-thermal Disk Winds from Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Bai, Xue-Ning; Ye, Jiani; Goodman, Jeremy; Yuan, Feng

    2016-02-01

    The global evolution and dispersal of protoplanetary disks (PPDs) are governed by disk angular-momentum transport and mass-loss processes. Recent numerical studies suggest that angular-momentum transport in the inner region of PPDs is largely driven by magnetized disk wind, yet the wind mass-loss rate remains unconstrained. On the other hand, disk mass loss has conventionally been attributed to photoevaporation, where external heating on the disk surface drives a thermal wind. We unify the two scenarios by developing a one-dimensional model of magnetized disk winds with a simple treatment of thermodynamics as a proxy for external heating. The wind properties largely depend on (1) the magnetic field strength at the wind base, characterized by the poloidal Alfvén speed vAp, (2) the sound speed cs near the wind base, and (3) how rapidly poloidal field lines diverge (achieve {R}-2 scaling). When {v}{Ap}\\gg {c}{{s}}, corotation is enforced near the wind base, resulting in centrifugal acceleration. Otherwise, the wind is accelerated mainly by the pressure of the toroidal magnetic field. In both cases, the dominant role played by magnetic forces likely yields wind outflow rates that exceed purely hydrodynamical mechanisms. For typical PPD accretion-rate and wind-launching conditions, we expect vAp to be comparable to cs at the wind base. The resulting wind is heavily loaded, with a total wind mass-loss rate likely reaching a considerable fraction of the wind-driven accretion rate. Implications for modeling global disk evolution and planet formation are also discussed.

  20. Redundant arrays of IDE drives

    SciTech Connect

    D.A. Sanders et al.

    2002-01-02

    The authors report tests of redundant arrays of IDE disk drives for use in offline high energy physics data analysis. Parts costs of total systems using commodity EIDE disks are now at the $4000 per Terabyte level. Disk storage prices have now decreased to the point where they equal the cost per Terabyte of Storage Technology tape silos. The disks, however, offer far better granularity; even small institutions can afford to deploy systems. The tests include reports on software RAID-5 systems running under Linux 2.4 using Promise Ultra 100{trademark} disk controllers. RAID-5 protects data in case of a single disk failure by providing parity bits. Tape backup is not required. Journaling file systems are used to allow rapid recovery from crashes. The data analysis strategy is to encapsulate data and CPU processing power. Analysis for a particular part of a data set takes place on the PC where the data resides. The network is only used to put results together. They explore three methods of moving data between sites; internet transfers, not pluggable IDE disks in FireWire cases, and DVD-R disks.

  1. Disk Alloy Development

    NASA Technical Reports Server (NTRS)

    Gabb, Tim; Gayda, John; Telesman, Jack

    2001-01-01

    The advanced powder metallurgy disk alloy ME3 was designed using statistical screening and optimization of composition and processing variables in the NASA HSR/EPM disk program to have extended durability at 1150 to 1250 "Fin large disks. Scaled-up disks of this alloy were produced at the conclusion of this program to demonstrate these properties in realistic disk shapes. The objective of the UEET disk program was to assess the mechanical properties of these ME3 disks as functions of temperature, in order to estimate the maximum temperature capabilities of this advanced alloy. Scaled-up disks processed in the HSR/EPM Compressor / Turbine Disk program were sectioned, machined into specimens, and tested in tensile, creep, fatigue, and fatigue crack growth tests by NASA Glenn Research Center, in cooperation with General Electric Engine Company and Pratt & Whitney Aircraft Engines. Additional sub-scale disks and blanks were processed and tested to explore the effects of several processing variations on mechanical properties. Scaled-up disks of an advanced regional disk alloy, Alloy 10, were used to evaluate dual microstructure heat treatments. This allowed demonstration of an improved balance of properties in disks with higher strength and fatigue resistance in the bores and higher creep and dwell fatigue crack growth resistance in the rims. Results indicate the baseline ME3 alloy and process has 1300 to 1350 O F temperature capabilities, dependent on detailed disk and engine design property requirements. Chemistry and process enhancements show promise for further increasing temperature capabilities.

  2. Microcomputer Software: Finding a Voice on Disk.

    ERIC Educational Resources Information Center

    Rostron, Andrew; Plant, Richard

    1992-01-01

    This paper describes the prototype of a software package being developed in England for use as an inexpensive and flexible speech synthesizer. The system, which uses a standard IBM-compatible laptop computer, color graphics, and a hard disk drive, provides flexibility in changing the nature of the speech available and how it is organized. (JDD)

  3. ACCRETION DISK WARPING BY RESONANT RELAXATION: THE CASE OF MASER DISK NGC 4258

    SciTech Connect

    Bregman, Michal; Alexander, Tal

    2009-08-01

    The maser disk around the massive black hole (MBH) in active galaxy NGC 4258 exhibits an O(10 deg.) warp on the O(0.1 pc) scale. The physics driving the warp is still debated. Suggested mechanisms include torquing by relativistic frame dragging or by radiation pressure. We propose here a new warping mechanism: resonant torquing of the disk by stars in the dense cusp around the MBH. We show that resonant torquing can induce such a warp over a wide range of observed and deduced physical parameters of the maser disk.

  4. STRUCTURE OF MAGNETOROTATIONAL INSTABILITY ACTIVE PROTOPLANETARY DISKS

    SciTech Connect

    Kretke, Katherine A.; Lin, D. N. C.

    2010-10-01

    The radial drift of planetary cores poses a challenge to efficient planet formation in standard disk models. However, the rate of this migration is sensitive to both the surface density and temperature profiles of protoplanetary disks. In this paper, we present a new model to self-consistently calculate the structure of a protoplanetary disk in which the magnetorotational instability (MRI) drives angular momentum transport. In this model, we calculate a quasi-steady-state disk model including a schematic representation involving efficient angular momentum transport in the active region with decreased (but non-zero) angular momentum transport in the dead zone. We find that MRI affects not only the surface density distribution but also the temperature profile. In this paper, we present our method and the key novel features evident in our fiducial model. In subsequent papers, we will use this model to study the impact of MRI on the formation and migration of planets.

  5. Disk File Management in a Medium-Scale Time-Sharing System.

    ERIC Educational Resources Information Center

    Fitzhugh, Robert J.; Pethia, Richard D.

    The paper descibes a compact and highly efficient disk file management system responsible for the management and allocation of space on moving head disk drives in a medium-scale time-sharing system. The disk file management system is a major component of the Experimental Time-Sharing System (ETSS) developed at the Learning Research and Development…

  6. Understanding Floppy Disks.

    ERIC Educational Resources Information Center

    Valentine, Pamela

    1980-01-01

    The author describes the floppy disk with an analogy to the phonograph record, and discusses the advantages, disadvantages, and capabilities of hard-sectored and soft-sectored floppy disks. She concludes that, at present, the floppy disk will continue to be the primary choice of personal computer manufacturers and their customers. (KC)

  7. Nonaxisymmetric instabilities in self-gravitating disks III. Angular momentum transport

    NASA Astrophysics Data System (ADS)

    Hadley, Kathryn Z.; Dumas, William; Imamura, James N.; Keever, Erik; Tumblin, Rebecka

    2015-09-01

    We follow the development of nonaxisymmetric instabilities of self-gravitating disks from the linear regime to the nonlinear regime. Particular attention is paid to comparison of nonlinear simulation results with previous linear and quasi-linear modeling results to study the mass and angular momentum transport driven by nonaxisymmetric disk instabilities. Systems with star-to-disk mass ratios of and 5 and inner-to-outer disk radius ratios of to 0.66 are investigated. In disks where self-gravity is important, systems with small and large , Jeans-like J modes are dominant and the gravitational stress drives angular momentum transport. In disks where self-gravity is weak, systems with large and large , shear-driven P modes dominate and the Reynolds stress drives angular momentum transport. In disks where self-gravity is intermediate in strength between disks where P modes dominate and disks where J modes dominate, I modes control the evolution of the system and the Reynolds and gravitational stresses both play important roles in the angular momentum transport. In all cases, redistribution of angular momentum takes place on the characteristic disk timescale defined as the orbital period at the location of maximum density in the disk midplane. The disk susceptible to one-armed modes behaves differently than disks dominated by multi-armed spirals. Coupling between the star and the disk driven by one-armed modes leads to angular momentum transfer between the star and disk even when instability is in the linear regime. All modes drive spreading of the disk material and eventually accretion onto the star. The disks dominated by an I mode and one-armed mode do not lead to prompt fission or fragmentation. The J mode dominated disk fragments after instability develops.

  8. Tatooine Nurseries: Structure and Evolution of Circumbinary Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Vartanyan, David; Garmilla, José A.; Rafikov, Roman R.

    2016-01-01

    Recent discoveries of circumbinary planets by the Kepler mission provide motivation for understanding their birthplaces—protoplanetary disks around stellar binaries with separations ≲ 1 {{AU}}. We explore properties and evolution of such circumbinary disks focusing on modification of their structure caused by tidal coupling to the binary. We develop a set of analytical scaling relations describing viscous evolution of the disk properties, which are verified and calibrated using 1D numerical calculations with realistic inputs. Injection of angular momentum by the central binary suppresses mass accretion onto the binary and causes radial distribution of the viscous angular momentum flux {F}J to be different from that in a standard accretion disk around a single star with no torque at the center. Disks with no mass accretion at the center develop an {F}J profile that is flat in radius. Radial profiles of temperature and surface density are also quite different from those in disks around single stars. Damping of the density waves driven by the binary and viscous dissipation dominates heating of the inner disk (within 1-2 AU), pushing the ice line beyond 3-5 AU, depending on disk mass and age. Irradiation by the binary governs disk thermodynamics beyond ˜10 AU. However, self-shadowing by the hot inner disk may render central illumination irrelevant out to ˜20 AU. Spectral energy distribution of a circumbinary disk exhibits a distinctive bump around 10 μm, which may facilitate identification of such disks around unresolved binaries. Efficient tidal coupling to the disk drives orbital inspiral of the binary and may cause low-mass and relatively compact binaries to merge into a single star within the disk lifetime. We generally find that circumbinary disks present favorable sites for planet formation (despite their wider zone of volatile depletion), in agreement with the statistics of Kepler circumbinary planets.

  9. iDriving (Intelligent Driving)

    2012-09-17

    iDriving identifies the driving style factors that have a major impact on fuel economy. An optimization framework is used with the aim of optimizing a driving style with respect to these driving factors. A set of polynomial metamodels is constructed to reflect the responses produced in fuel economy by changing the driving factors. The optimization framework is used to develop a real-time feedback system, including visual instructions, to enable drivers to alter their driving stylesmore » in responses to actual driving conditions to improve fuel efficiency.« less

  10. Floppy disk utility user's guide

    NASA Technical Reports Server (NTRS)

    Akers, J. W.

    1980-01-01

    A floppy disk utility program is described which transfers programs between files on a hard disk and floppy disk. It also copies the data on one floppy disk onto another floppy disk and compares the data. The program operates on the Data General NOVA-4X under the Real Time Disk Operating System. Sample operations are given.

  11. Floppy disk utility user's guide

    NASA Technical Reports Server (NTRS)

    Akers, J. W.

    1981-01-01

    The Floppy Disk Utility Program transfers programs between files on the hard disk and floppy disk. It also copies the data on one floppy disk onto another floppy disk and compares the data. The program operates on the Data General NOVA-4X under the Real Time Disk Operating System (RDOS).

  12. Circumstellar Debris Disks and SIRTF

    NASA Astrophysics Data System (ADS)

    Backman, D. E.

    2000-05-01

    At least 15% of nearby main sequence stars are found to have far-IR excesses representing thermal emission from optically thin dust clouds. Famous prototypes of this class of objects include the Vega and beta Pictoris systems. Because destruction times for observed grains are much shorter than the system ages, the dust is known to be ``2nd generation" material released recently from hypothetical asteroid or comet parent bodies and not primordial grains persisting since system formation. The best local analogs to the main sequence debris disk systems are the inner solar system's zodiacal dust cloud and a presumed dust component of the Kuiper Belt. Planetary masses are probably required to drive planetesimals into shattering collisions and star-grazing orbits that produce dust, thus debris disks may allow inference of presence and location of planets. SIRTF will give us much-improved understanding of the frequency of debris disks around field main sequence stars, as well as the amount, size and composition of dust grains versus stellar age. This will help place our solar system into context of evolution of planetary material around normal stars.

  13. HNC IN PROTOPLANETARY DISKS

    SciTech Connect

    Graninger, Dawn; Öberg, Karin I.; Qi, Chunhua; Kastner, Joel

    2015-07-01

    The distributions and abundances of small organics in protoplanetary disks are potentially powerful probes of disk physics and chemistry. HNC is a common probe of dense interstellar regions and the target of this study. We use the Submillimeter Array (SMA) to observe HNC 3–2 toward the protoplanetary disks around the T Tauri star TW Hya and the Herbig Ae star HD 163296. HNC is detected toward both disks, constituting the first spatially resolved observations of HNC in disks. We also present SMA observations of HCN 3–2 and IRAM 30 m observations of HCN and HNC 1–0 toward HD 163296. The disk-averaged HNC/HCN emission ratio is 0.1–0.2 toward both disks. Toward TW Hya, the HNC emission is confined to a ring. The varying HNC abundance in the TW Hya disk demonstrates that HNC chemistry is strongly linked to the disk physical structure. In particular, the inner rim of the HNC ring can be explained by efficient destruction of HNC at elevated temperatures, similar to what is observed in the ISM. However, to realize the full potential of HNC as a disk tracer requires a combination of high SNR spatially resolved observations of HNC and HCN and disk-specific HNC chemical modeling.

  14. Accretion disk viscosity and internal waves in disks

    NASA Astrophysics Data System (ADS)

    Huang, Min

    1992-01-01

    Recently, Vishniac, Jin and Diamond suggested that internal waves in accretion disks play a critical role in generating magnetic fields, and consequently are indirectly responsible for angular momentum transfer in thin, conducting, and non-self-gravitational disk systems. A project in which we will construct a quantitative model of the internal wave spectrum in accretion disks is started. It includes two aspects of work. The physical properties of the waves in a thin, non-self-gravitational, and non-magnetized accretion disk with realistic vertical structure is cataloged and examined. Besides the low frequency internal waves discovered by Vishniac and Diamond, it was found that sound waves with low frequency and low axisymmetry (with small absolute value of m) are capable of a driving dynamo because they are (1) well confined in a layer with thickness 2(absolute value of m)H where H is the disk scale height; (2) highly dispersive so they may survive the strong dissipation caused by the coherent nonlinear interaction their high frequency partners experience; and (3) elliptically polarized because they are confined in the z-direction. As a first step towards constructing a quantitative theory of this dynamo effect, a framework of calculating resonant nonlinear interaction among waves in disk is established. We are developing a numerical code which will compute the steady spectrum of the wave field in this framework. For simplicity, we only include the low frequency internal waves suggested by Vishniac and Diamond in the present stage. In the vicinity of the static state, the time step whose length is determined by the evolution of the modes with the largest amplitudes is too large for the modes with smaller amplitudes and overshooting occurs. Through nonlinear coupling, this overshooting is amplified and appears as a numerical instability affecting the evolution of the large amplitude modes. Shorter time steps may delay the appearance of the instability but not cure

  15. The magnetic nature of disk accretion onto black holes.

    PubMed

    Miller, Jon M; Raymond, John; Fabian, Andy; Steeghs, Danny; Homan, Jeroen; Reynolds, Chris; van der Klis, Michiel; Wijnands, Rudy

    2006-06-22

    Although disk accretion onto compact objects-white dwarfs, neutron stars and black holes-is central to much of high-energy astrophysics, the mechanisms that enable this process have remained observationally difficult to determine. Accretion disks must transfer angular momentum in order for matter to travel radially inward onto the compact object. Internal viscosity from magnetic processes and disk winds can both in principle transfer angular momentum, but hitherto we lacked evidence that either occurs. Here we report that an X-ray-absorbing wind discovered in an observation of the stellar-mass black hole binary GRO J1655 - 40 (ref. 6) must be powered by a magnetic process that can also drive accretion through the disk. Detailed spectral analysis and modelling of the wind shows that it can only be powered by pressure generated by magnetic viscosity internal to the disk or magnetocentrifugal forces. This result demonstrates that disk accretion onto black holes is a fundamentally magnetic process.

  16. Drugged Driving

    MedlinePlus

    ... Infographics » Drugged Driving Drugged Driving Email Facebook Twitter Text Description of Infographic Top Right Figure : In 2009, ... crash than those who don't smoke. Bottom Text: Develop Social Strategies Offer to be a designated ...

  17. Impaired Driving

    MedlinePlus

    ... Risk Factors BAC Effects Prevention Additional Resources How big is the problem? In 2014, 9,967 people ... Driving: A Threat to Everyone (October 2011) Additional Data Drunk Driving State Data and Maps Motor Vehicle ...

  18. Radiative ablation of disks around massive stars

    NASA Astrophysics Data System (ADS)

    Kee, Nathaniel Dylan

    Hot, massive stars (spectral types O and B) have extreme luminosities (10. 4 -10. 6 L?) that drive strong stellar winds through UV line-scattering.Some massive stars also have disks, formed by either decretion from the star (as in the rapidly rotating "Classical Be stars"), or accretion during the star's formation. This dissertation examines the role of stellar radiation in driving (ablating) material away from these circumstellar disks. A key result is that the observed month to year decay of Classical Be disks can be explained by line-driven ablation without, as previously done, appealing to anomalously strong viscous diffusion. Moreover, the higher luminosity of O stars leads to ablation of optically thin disks on dynamical timescales of order a day, providing a natural explanation for the lack of observed Oe stars. In addition to the destruction of Be disks, this dissertation also introduces a model for their formation by coupling observationally inferred non-radial pulsation modes and rapid stellar rotation to launch material into orbiting Keplerian disks of Be-like densities. In contrast to such Be decretion disks, star-forming accretion disks are much denser and so are generally optically thick to continuum processes. To circumvent the computational challenges associated with radiation hydrodynamics through optically thick media, we develop an approximate method for treating continuum absorption in the limit of geometrically thin disks. The comparison of ablation with and without continuum absorption shows that accounting for disk optical thickness leads to less than a 50% reduction in ablation rate, implying that ablation rate depends mainly on stellar properties like luminosity. Finally, we discuss the role of "thin-shell mixing" in reducing X-rays from colliding wind binaries. Laminar, adiabatic shocks produce well understood X-ray emission, but the emission from radiatively cooled shocks is more complex due to thin-shell instabilities. The parameter

  19. SHADOWS CAST BY A WARP IN THE HD 142527 PROTOPLANETARY DISK

    SciTech Connect

    Marino, S.; Perez, S.; Casassus, S.

    2015-01-10

    Detailed observations of gaps in protoplanetary disks have revealed structures that drive current research on circumstellar disks. One such feature is the two intensity nulls seen along the outer disk of the HD 142527 system, which are particularly well traced in polarized differential imaging. Here we propose that these are shadows cast by the inner disk. The inner and outer disk are thick, in terms of the unit-opacity surface in the H band, so that the shape and orientation of the shadows inform on the three-dimensional structure of the system. Radiative transfer predictions on a parametric disk model allow us to conclude that the relative inclination between the inner and outer disks is 70° ± 5°. This finding taps the potential of high-contrast imaging of circumstellar disks, and bears consequences on the gas dynamics of gapped disks, as well as on the physical conditions in the shadowed regions.

  20. The Disk and Jet of the Classical T Tauri Star AA Tau

    NASA Technical Reports Server (NTRS)

    Grady, Carol A.; Woodgate, Bruce E.

    2012-01-01

    Previous studies of the classical T-Tauri star AA Tau have interpreted the UX Ononis-like photopolarimetric variability as being due to a warp in the inner disk caused by an inclined stellar magnetic dipole field. We test that these effects are macroscopically observable in the inclination and alignment of the disk. We use HST/STIS coronagraphic detection of the disk to measure the outer disk radius and inclination and find that the inner disk is both misinclined and misaligned with respect to the outer disk. AA Tau drives a faint jet which is also misaligned with respect to the outer disk minor axis. The jet is also poorly colimated near the sun. The measured inclination 71 +/- 1 deg is above the inclination range suggested for stars with UX Ononis-like variability, indicating that dust grains in the disk have grown and settled toward the disk midplane.

  1. The Disk and Jet of the Classical T Tauri Star AA Tau

    NASA Technical Reports Server (NTRS)

    Cox, A. W.; Grady, C. A.; Hamel, H.; Hornbeck, Jeremy; Russell, R.; Sitko, M.; Woodgate, B.

    2013-01-01

    Previous studies of the classical T Tauri star AA Tau have interpreted the UX Orionis-like photopolarimetric variability as being due to a warp in the inner disk caused by an inclined stellar magnetic dipolefield. We test that these effects are macroscopically observable in the inclination and alignment of the disk. We use the HST/STIS coronagraphic detection of the disk to measure the outer disk radius and inclination, and find that the inner disk is both misinclined and misaligned with respect to the outer disk. AA Tau drives a faint jet which is also misaligned with respect to the projection of the outer disk minor axis. The jet is also poorly collimated near the star. The measured inclination, 71+/-1deg, is above the inclination range suggested for stars with UX Orionis-like variability, indicating that dust grains in the disk have grown and settled toward the disk midplane.

  2. Playback of multimedia data in low-power mobile drive

    NASA Astrophysics Data System (ADS)

    Choi, Jungwan; Won, Youjip

    2002-07-01

    In this paper, we present the novel scheduling algorithm of the multimedia data retrieval for the mobile disk drive. Our algorithm is focused on minimizing the power consumption in multimedia data retrieval. While the disk based storage devices, e.g. hard disk and optical disk becomes small enough to be used in mobile devices, the practical usage of which leaves much to be desired due to the stringent power consumption restriction of the mobile device. The playback of multimedia data requires that data blocks are delivered to the destination in periodic fashion. The major issue here has been how to guarantee the continuous flow of data. Most of preceding works assume that the disk drive always operates in the steady state. However, this does not hold in modern disk drive for the mobile device. Modern low power disk drive for mobile device goes into standby state when it is not in use. While this feature can significantly extend the battery life, it adds another dimension of complexity in scheduling of the multimedia data retrieval. We elaborately model the power consumption behavior of the low power mobile drive and develop an Adaptive Round Merge(ARM) scheduling algorithm which guarantees a certain disk bandwidth for the multimedia playback while minimizing the power consumption of the storage device. According to our simulation based experiment, the ARM algorithm reduces the power consumption by as much as 23%. It manifests itself when the video clip is relatively short, typically less than 30 sec.

  3. The Nature of Transition Disks in Nearby Star-forming Regions

    NASA Astrophysics Data System (ADS)

    Cieza, Lucas A.; Schreiber, M. R.; Romero, G. A.; Orellana, M.; Williams, J. P.; Merin, B.

    2011-01-01

    We present an update on our ongoing project to characterize a large sample of Spitzer selected transition disks located in several star-forming regions. Transition objects are pre-main-sequence stars with optically thin inner disks and optically thick outer disks. Different mechanisms have been proposed to explain their inner opacity holes: planet formation, grain growth, photoevaporation, and tidal truncation in tight binaries. These mechanisms, all relevant to disk evolution in general, can be distinguished when disk masses, accretion rates, and multiplicity information are available. We have already completed our study of Ophiuchus objects, presenting the results from Adaptive Optics (AO) imaging, submillimeter photometry, and echelle spectroscopy observations. We are currently working on several other regions, including Taurus-Auriga, Perseus, Serpens, and Lupus. Our results show that transition disks are a very heterogeneous group of objects with a wide range of SED morphologies, disk masses ( < 0.5 to 40 Mjup), and accretion rates (<10E-11 to 10E-7 Msolar/yr). Since the properties of our transition disks point toward distinct processes driving the evolution of each disk, we have been able to identify very strong candidates for the following disk categories: circumbinary disks, grain-growth dominated disks, photoevaporating disks, debris disks, and (giant) planet-forming disks.

  4. Astounding Jumping Disk.

    ERIC Educational Resources Information Center

    Guzdziol, Edward S.

    1991-01-01

    Activities involving concave rubber disks are utilized to illustrate the scientific principles of kinetic and potential energy. Provides teacher instructions and questions related to the activity. (MDH)

  5. Glass rupture disk

    DOEpatents

    Glass, S. Jill; Nicolaysen, Scott D.; Beauchamp, Edwin K.

    2002-01-01

    A frangible rupture disk and mounting apparatus for use in blocking fluid flow, generally in a fluid conducting conduit such as a well casing, a well tubing string or other conduits within subterranean boreholes. The disk can also be utilized in above-surface pipes or tanks where temporary and controllable fluid blockage is required. The frangible rupture disk is made from a pre-stressed glass with controllable rupture properties wherein the strength distribution has a standard deviation less than approximately 5% from the mean strength. The frangible rupture disk has controllable operating pressures and rupture pressures.

  6. The PASCO Half-Byte Hard Drive

    NASA Astrophysics Data System (ADS)

    Anderson, Peter S.

    2005-03-01

    To provide an interesting application of Faraday's law, Brad Hinaus and Mick Veum created an experiment constructing a scaled-up model of a computer hard drive. They mounted permanent magnets on a wooden disk. When the disk was spun, an emf was induced in a "read" head (solenoid) and recorded by a computer. I have found a way to do a similar experiment using only PASCO equipment.2

  7. Analysis of cache for streaming tape drive

    NASA Astrophysics Data System (ADS)

    Chinnaswamy, V.

    A tape subsystem consists of a controller and a tape drive. Tapes are used for backup, data interchange, and software distribution. The backup operation is addressed. During a backup operation, data is read from disk, processed in CPU, and then sent to tape. The processing speeds of a disk subsystem, CPU, and a tape subsystem are likely to be different. A powerful CPU can read data from a fast disk, process it, and supply the data to the tape subsystem at a faster rate than the tape subsystem can handle. On the other hand, a slow disk drive and a slow CPU may not be able to supply data fast enough to keep a tape drive busy all the time. The backup process may supply data to tape drive in bursts. Each burst may be followed by an idle period. Depending on the nature of the file distribution in the disk, the input stream to the tape subsystem may vary significantly during backup. To compensate for these differences and optimize the utilization of a tape subsystem, a cache or buffer is introduced in the tape controller. Most of the tape drives today are streaming tape drives. A streaming tape drive goes into reposition when there is no data from the controller. Once the drive goes into reposition, the controller can receive data, but it cannot supply data to the tape drive until the drive completes its reposition. A controller can also receive data from the host and send data to the tape drive at the same time. The relationship of cache size, host transfer rate, drive transfer rate, reposition, and ramp up times for optimal performance of the tape subsystem are investigated. Formulas developed will also show the advantages of cache watermarks to increase the streaming time of the tape drive, maximum loss due to insufficient cache, tradeoffs between cache and reposition times and the effectiveness of cache on a streaming tape drive due to idle times or interruptions due in host transfers. Several mathematical formulas are developed to predict the performance of the tape

  8. Analysis of cache for streaming tape drive

    NASA Technical Reports Server (NTRS)

    Chinnaswamy, V.

    1993-01-01

    A tape subsystem consists of a controller and a tape drive. Tapes are used for backup, data interchange, and software distribution. The backup operation is addressed. During a backup operation, data is read from disk, processed in CPU, and then sent to tape. The processing speeds of a disk subsystem, CPU, and a tape subsystem are likely to be different. A powerful CPU can read data from a fast disk, process it, and supply the data to the tape subsystem at a faster rate than the tape subsystem can handle. On the other hand, a slow disk drive and a slow CPU may not be able to supply data fast enough to keep a tape drive busy all the time. The backup process may supply data to tape drive in bursts. Each burst may be followed by an idle period. Depending on the nature of the file distribution in the disk, the input stream to the tape subsystem may vary significantly during backup. To compensate for these differences and optimize the utilization of a tape subsystem, a cache or buffer is introduced in the tape controller. Most of the tape drives today are streaming tape drives. A streaming tape drive goes into reposition when there is no data from the controller. Once the drive goes into reposition, the controller can receive data, but it cannot supply data to the tape drive until the drive completes its reposition. A controller can also receive data from the host and send data to the tape drive at the same time. The relationship of cache size, host transfer rate, drive transfer rate, reposition, and ramp up times for optimal performance of the tape subsystem are investigated. Formulas developed will also show the advantages of cache watermarks to increase the streaming time of the tape drive, maximum loss due to insufficient cache, tradeoffs between cache and reposition times and the effectiveness of cache on a streaming tape drive due to idle times or interruptions due in host transfers. Several mathematical formulas are developed to predict the performance of the tape

  9. Evolution and precession of accretion disk in tidal disruption events

    NASA Astrophysics Data System (ADS)

    Shen, R.-F.; Matzner, C. D.

    2012-12-01

    In a supermassive black hole (BH) tidal disruption event (TDE), the tidally disrupted star feeds the BH via an accretion disk. Most often it is assumed that the accretion rate history, hence the emission light curve, tracks the rate at which new debris mass falls back onto the disk, notably the t-5/3 power law. But this is not the case when the disk evolution due to viscous spreading - the driving force for accretion - is carefully considered. We construct a simple analytical model that comprehensively describes the accretion rate history across 4 different phases of the disk evolution, in the presence of mass fallback and disk wind loss. Accretion rate evolves differently in those phases which are governed by how the disk heat energy is carried away, early on by advection and later by radiation. The accretion rate can decline as steeply as t-5/3 only if copious disk wind loss is present during the early advection-cooled phase. Later, the accretion rate history is t-8/7 or shallower. These have great implications on the TDE flare light curve. A TDE accretion disk is most likely misaligned with the equatorial plane of the spinning BH. Moreover, in the TDE the accretion rate is super- or near-Eddington thus the disk is geometrically thick, for which case the BH's frame dragging effect may cause the disk precess as a solid body, which may manifest itself as quasi-periodic signal in the TDE light curve. Our disk evolution model predicts the disk precession period increases with time, typically as ∝ t. The results are applied to the recently jetted TDE flare Swift transient J1644 + 57 which shows numerous, quasi-periodic dips in its long-term X-ray light curve. As the current TDE sample increases, the identification of the disk precession signature provides a unique way of measuring BH spin and studying BH accretion physics.

  10. Terabyte IDE RAID-5 Disk Arrays

    SciTech Connect

    David A. Sanders et al.

    2003-09-30

    High energy physics experiments are currently recording large amounts of data and in a few years will be recording prodigious quantities of data. New methods must be developed to handle this data and make analysis at universities possible. We examine some techniques that exploit recent developments in commodity hardware. We report on tests of redundant arrays of integrated drive electronics (IDE) disk drives for use in offline high energy physics data analysis. IDE redundant array of inexpensive disks (RAID) prices now are less than the cost per terabyte of million-dollar tape robots! The arrays can be scaled to sizes affordable to institutions without robots and used when fast random access at low cost is important.

  11. Reprocessing in Luminous Disks

    NASA Astrophysics Data System (ADS)

    Bell, K. R.

    1999-11-01

    We develop and investigate a procedure that accounts for disk reprocessing of photons that originate in the disk itself. Surface temperatures and simple, blackbody spectral energy distributions (SEDs) of protostellar disks are calculated. In disks that flare with radius, reprocessing of stellar photons results in temperature profiles that are not power-law at all radii but are consistently shallower than r-3/4. Including the disk as a radiation source (as in the case of active accretion) along with the stellar source further flattens the temperature profile. Disks that flare strongly near the star and then smoothly curve over and become shadowed at some distance (``decreasing curvature'' disks) exhibit nearly power-law temperature profiles that result in power-law infrared SEDs with slopes in agreement with typical observations of young stellar objects. Disk models in which the photospheric thickness is controlled by the local opacity and in which the temperature decreases with radius naturally have this shape. Uniformly flaring models do not match observations as well; progressively stronger reprocessing at larger radii leads to SEDs that flatten toward the infrared or even have a second peak at the wavelength corresponding (through the Wien law) to the temperature of the outer edge of the disk. In FU Orionis outbursting systems, the dominant source of energy is the inner disk. Reprocessing throughout the disk depends sensitively on the inner disk shape and emitted temperature profile. We show that the thermal instability outburst models of Bell & Lin reproduce trends in the observed SEDs of FU Ori systems with T~r-3/4 in the inner disk (r<~0.25 AU corresponding to λ<~10 μm) and T~r-1/2 in the outer disk. Surface irradiation during outburst and quiescence is compared in the region of planet formation (1-10 AU). The contrast between the two phases is diminished by the importance of the reprocessing of photons from the relatively high mass flux, outer disk (Ṁ=10

  12. Pile Driving

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Machine-oriented structural engineering firm TERA, Inc. is engaged in a project to evaluate the reliability of offshore pile driving prediction methods to eventually predict the best pile driving technique for each new offshore oil platform. Phase I Pile driving records of 48 offshore platforms including such information as blow counts, soil composition and pertinent construction details were digitized. In Phase II, pile driving records were statistically compared with current methods of prediction. Result was development of modular software, the CRIPS80 Software Design Analyzer System, that companies can use to evaluate other prediction procedures or other data bases.

  13. Measurement of Cantilever Displacement Using a Compact Disk/Digital Versatile Disk Pickup Head

    NASA Astrophysics Data System (ADS)

    Hwu, En‑Te; Huang, Kuang‑Yuh; Hung, Shao‑Kang; Hwang, Ing‑Shouh

    2006-03-01

    We use the optical pickup head of a commercial compact disk (CD)/digital versatile disk (DVD) read only memory (ROM) drive to detect the vertical displacement of micro fabricated cantilever in atomic force microscopy (AFM). Both the contact and AC modes of AFM are demonstrated. The single atomic steps of graphite can be resolved, indicating that atomic resolution in the vertical displacement detection can be achieved with this new setup. The low cost, compact size, and the light weight of CD/DVD optical pickups may offer new advantages in future AFM designs.

  14. CONSTRAINTS ON COMPTON-THICK WINDS FROM BLACK HOLE ACCRETION DISKS: CAN WE SEE THE INNER DISK?

    SciTech Connect

    Reynolds, Christopher S.

    2012-11-01

    Strong evidence is emerging that winds can be driven from the central regions of accretion disks in both active galactic nuclei and Galactic black hole binaries. Direct evidence for highly ionized, Compton-thin inner-disk winds comes from observations of blueshifted (v {approx} 0.05-0.1c) iron-K X-ray absorption lines. However, it has been suggested that the inner regions of black hole accretion disks can also drive Compton-thick winds-such winds would enshroud the inner disk, preventing us from seeing direct signatures of the accretion disk (i.e., the photospheric thermal emission, or the Doppler/gravitationally broadened iron K{alpha} line). Here, we show that, provided the source is sub-Eddington, the well-established wind-driving mechanisms fail to launch a Compton-thick wind from the inner disk. For the accelerated region of the wind to be Compton-thick, the momentum carried in the wind must exceed the available photon momentum by a factor of at least 2/{lambda}, where {lambda} is the Eddington ratio of the source, ruling out radiative acceleration unless the source is very close to the Eddington limit. Compton-thick winds also carry large mass fluxes, and a consideration of the connections between the wind and the disk shows this to be incompatible with magneto-centrifugal driving. Finally, thermal driving of the wind is ruled out on the basis of the large Compton radii that typify black hole systems. In the absence of some new acceleration mechanisms, we conclude that the inner regions of sub-Eddington accretion disks around black holes are indeed naked.

  15. TEARING UP THE DISK: HOW BLACK HOLES ACCRETE

    SciTech Connect

    Nixon, Chris; King, Andrew; Price, Daniel; Frank, Juhan

    2012-10-01

    We show that in realistic cases of accretion in active galactic nuclei or stellar-mass X-ray binaries, the Lense-Thirring effect breaks the central regions of tilted accretion disks around spinning black holes into a set of distinct planes with only tenuous flows connecting them. If the original misalignment of the outer disk to the spin axis of the hole is 45 Degree-Sign {approx}< {theta} {approx}< 135 Degree-Sign , as in {approx}70% of randomly oriented accretion events, the continued precession of these disks sets up partially counterrotating gas flows. This drives rapid infall as angular momentum is canceled and gas attempts to circularize at smaller radii. Disk breaking close to the black hole leads to direct dynamical accretion, while breaking further out can drive gas down to scales where it can accrete rapidly. For smaller tilt angles breaking can still occur and may lead to other observable phenomena such as quasi-periodic oscillations. For such effects not to appear, the black hole spin must in practice be negligibly small, or be almost precisely aligned with the disk. Qualitatively similar results hold for any accretion disk subject to a forced differential precession, such as an external disk around a misaligned black hole binary.

  16. Distracted Driving

    MedlinePlus

    ... combines all three types of distraction. 3 How big is the problem? Deaths In 2013, 3,154 ... European countries. More A CDC study analyzed 2011 data on distracted driving, including talking on a cell ...

  17. Ripples in disk galaxies

    NASA Astrophysics Data System (ADS)

    Schweizer, Francois; Seitzer, Patrick

    1988-05-01

    The authors present evidence that ripples ("shells") occur not only in ellipticals, as hitherto believed, but also in disk galaxies of Hubble types S0, S0/Sa, and Sa, and probably even in the Sbc galaxy NGC 3310. This evidence includes the discovery of ripples in the northern disk galaxies NGC 3032, 3619, 4382, 5548 (a Seyfert), and 5739, and in the "diskless S0" NGC 7600. It is argued that these ripples cannot usually have resulted form transient spiral waves or other forced vibrations in the existing disks, but instead consist of extraneous sheet-like matter. The frequent presence of major disk-shaped companions suggests that ripple material may be acquired not only through wholesale mergers, but also through mass transfer from neighbor galaxies.

  18. Hot Accretion Disks Revisited

    NASA Astrophysics Data System (ADS)

    Bjoernsson, Gunnlaugur; Abramowicz, Marek A.; Chen, Xingming; Lasota, Jean-Pierre

    1996-08-01

    All previous studies of hot (Tp 1010-1012 K), optically thin accretion disks have neglected either the presence of e+ e- pairs or advective cooling. Thus all hot disk models constructed previously have not been self-consistent. In this paper we calculate local disk models including pair physics, relevant radiative processes in the hot plasma, and the effect of advective cooling. We use a modification of the Björnsson & Svensson mapping method. We find that the role of e+ e- pairs in the structure of hot, optically thin accretion disks is far less significant than was previously thought. The improved description of the radiation-matter interactions provided in the present paper modify the previously obtained values of the critical parameters characterizing advectively dominated flows.

  19. Gas in Protoplanetary Disks

    NASA Technical Reports Server (NTRS)

    Roberge, Aki

    2008-01-01

    Gas makes up the bulk of the mass in a protoplanetary disk, but it is much more difficult to observe than the smaller dust component. The l ifetime of gas in a disk has far-reaching consequences. including lim iting the time available for giant planet formation and controlling t he migration of planetary bodies of all sizes, from Jupiters to meter-sized planetesimals. Here I will discuss what is known about the gas component of protoplanetary disks, highlighting recent results from i nfrared studies with the Spitzer Space Telescope. Exciting upcoming o pportunities for gas studies will also be discussed. In particular, the first large far-IR survey of gas tracers from young disks will be p erformed using the Herschel Space Observatory, as part of the "Gas in Protoplanetary Systems" (GASPS) Open Time Key Project.

  20. Gas in Protoplanetary Disks

    NASA Technical Reports Server (NTRS)

    Roberge, Aki

    2008-01-01

    Gas makes up the bulk of the mass in a protoplanetary disk, but it is much more difficult to observe than the smaller dust component. The lifetime of gas in a disk has far-reaching consequences, including limiting the time available for giant planet formation and controlling the migration of planetary bodies of all sizes, from Jupiters to meter-sized planetesimals. Here I will discuss what is known about the gas component of protoplanetary disks, highlighting recent results from infrared studies with the Spitzer Space Telescope. Exciting upcoming opportunities for gas studies will also be discussed. In particular, the first large far-IR survey of gas tracers from young disks will be performed using the Herschel Space Observatory, as part of the 'Gas in Protoplanetary Systems' (GASPS) Open Time Key Project.

  1. Organizing Your Hard Disk.

    ERIC Educational Resources Information Center

    Stocker, H. Robert; Hilton, Thomas S. E.

    1991-01-01

    Suggests strategies that make hard disk organization easy and efficient, such as making, changing, and removing directories; grouping files by subject; naming files effectively; backing up efficiently; and using PATH. (JOW)

  2. DIAGNOSING CIRCUMSTELLAR DEBRIS DISKS

    SciTech Connect

    Hahn, Joseph M.

    2010-08-20

    A numerical model of a circumstellar debris disk is developed and applied to observations of the circumstellar dust orbiting {beta} Pictoris. The model accounts for the rates at which dust is produced by collisions among unseen planetesimals, and the rate at which dust grains are destroyed due to collisions. The model also accounts for the effects of radiation pressure, which is the dominant perturbation on the disk's smaller but abundant dust grains. Solving the resulting system of rate equations then provides the dust abundances versus grain size and dust abundances over time. Those solutions also provide the dust grains' collisional lifetime versus grain size, and the debris disk's optical depth and surface brightness versus distance from the star. Comparison to observations then yields estimates of the unseen planetesimal disk's radius, and the rate at which the disk sheds mass due to planetesimal grinding. The model can also be used to measure or else constrain the dust grain's physical and optical properties, such as the dust grains' strength, their light-scattering asymmetry parameter, and the grains' efficiency of light scattering Q{sub s}. The model is then applied to optical observations of the edge-on dust disk orbiting {beta} Pictoris, and good agreement is achieved when the unseen planetesimal disk is broad, with 75 {approx}< r {approx}< 150 AU. If it is assumed that the dust grains are bright like Saturn's icy rings (Q{sub s} = 0.7), then the cross section of dust in the disk is A{sub d} {approx_equal} 2 x 10{sup 20} km{sup 2} and its mass is M{sub d} {approx_equal} 11 lunar masses. In this case, the planetesimal disk's dust-production rate is quite heavy, M-dot {sub d{approx}}9 M {sub +} Myr{sup -1}, implying that there is or was a substantial amount of planetesimal mass there, at least 110 Earth masses. If the dust grains are darker than assumed, then the planetesimal disk's mass-loss rate and its total mass are heavier. In fact, the apparent dearth

  3. Protostars and Disks

    NASA Technical Reports Server (NTRS)

    Ho, Paul

    1997-01-01

    The research concentrated on high angular resolution (arc-second scale) studies of molecular cloud cores associated with very young star formation. New ways to study disks and protoplanetary systems were explored. Findings from the areas studied are briefly summarized: (1) molecular clouds; (2) gravitational contraction; (3) jets, winds, and outflows; (4) Circumstellar Disks (5) Extrasolar Planetary Systems. A bibliography of publications and submitted papers produced during the grant period is included.

  4. Planet Forming Protostellar Disks

    NASA Technical Reports Server (NTRS)

    Lubow, Stephen

    1998-01-01

    The project achieved many of its objectives. The main area of investigation was the interaction of young binary stars with surrounding protostellar disks. A secondary objective was the interaction of young planets with their central stars and surrounding disks. The grant funds were used to support visits by coinvestigators and visitors: Pawel Artymowicz, James Pringle, and Gordon Ogilvie. Funds were also used to support travel to meetings by Lubow and to provide partial salary support.

  5. Local outflows from turbulent accretion disks

    NASA Astrophysics Data System (ADS)

    Fromang, S.; Latter, H.; Lesur, G.; Ogilvie, G. I.

    2013-04-01

    Aims: The aim of this paper is to investigate the properties of accretion disks threaded by a weak vertical magnetic field, with a particular focus on the interplay between magnetohydrodynamic (MHD) turbulence driven by the magnetorotational instability (MRI) and outflows that might be launched from the disk. Methods: For that purpose, we use a set of numerical simulations performed with the MHD code RAMSES in the framework of the shearing box model. We concentrate on the case of a rather weak vertical magnetic field such that the initial ratio β0 of the thermal and magnetic pressures in the disk midplane equals 104. Results: As reported recently, we find that MHD turbulence drives an efficient outflow out of the computational box. We demonstrate a strong sensitivity of that result to the box size: enlargements in the radial and vertical directions lead to a reduction of up to an order of magnitude in the mass-loss rate. Such a dependence prevents any realistic estimates of disk mass-loss rates being derived using shearing-box simulations. We find however that the flow morphology is robust and independent of the numerical details of the simulations. Its properties display some features and approximate invariants that are reminiscent of the Blandford & Payne launching mechanism, but differences exist. For the magnetic field strength considered in this paper, we also find that angular momentum transport is most likely dominated by MHD turbulence, the saturation of which scales with the magnetic Prandtl number, the ratio of viscosity and resistivity, in a way that is in good agreement with expectations based on unstratified simulations. Conclusions: This paper thus demonstrates for the first time that accretion disks can simultaneously exhibit MRI-driven MHD turbulence along with magneto-centrifugally accelerated outflows. However, in contradiction with previously published results, such outflows probably have little impact on the disk dynamics.

  6. Large Format Multifunction 2-Terabyte Optical Disk Storage System

    NASA Technical Reports Server (NTRS)

    Kaiser, David R.; Brucker, Charles F.; Gage, Edward C.; Hatwar, T. K.; Simmons, George O.

    1996-01-01

    The Kodak Digital Science OD System 2000E automated disk library (ADL) base module and write-once drive are being developed as the next generation commercial product to the currently available System 2000 ADL. Under government sponsorship with the Air Force's Rome Laboratory, Kodak is developing magneto-optic (M-O) subsystems compatible with the Kodak Digital Science ODW25 drive architecture, which will result in a multifunction (MF) drive capable of reading and writing 25 gigabyte (GB) WORM media and 15 GB erasable media. In an OD system 2000 E ADL configuration with 4 MF drives and 100 total disks with a 50% ration of WORM and M-O media, 2.0 terabytes (TB) of versatile near line mass storage is available.

  7. Fast, Capacious Disk Memory Device

    NASA Technical Reports Server (NTRS)

    Muller, Ronald M.

    1990-01-01

    Device for recording digital data on, and playing back data from, memory disks has high recording or playback rate and utilizes available recording area more fully. Two disks, each with own reading/writing head, used to record data at same time. Head on disk A operates on one of tracks numbered from outside in; head on disk B operates on track of same number in sequence from inside out. Underlying concept of device applicable to magnetic or optical disks.

  8. Viscosity Prescription for Gravitationally Unstable Accretion Disks

    NASA Astrophysics Data System (ADS)

    Rafikov, Roman R.

    2015-05-01

    Gravitationally unstable accretion disks emerge in a variety of astrophysical contexts—giant planet formation, FU Orioni outbursts, feeding of active galactic nuclei, and the origin of Pop III stars. When a gravitationally unstable disk is unable to cool rapidly, it settles into a quasi-stationary, fluctuating gravitoturbulent state, in which its Toomre Q remains close to a constant value {{Q}0}∼ 1. Here we develop an analytical formalism describing the evolution of such a disk, which is based on the assumptions of Q={{Q}0} and local thermal equilibrium. Our approach works in the presence of additional sources of angular momentum transport (e.g., MRI), as well as external irradiation. Thermal balance dictates a unique value of the gravitoturbulent stress {{α }gt} driving disk evolution, which is a function of the local surface density and angular frequency. We compare this approach with other commonly used gravitoturbulent viscosity prescriptions, which specify the explicit dependence of stress {{α }gt} on Toomre Q in an ad hoc fashion, and identify the ones that provide consistent results. We nevertheless argue that our Q={{Q}0} approach is more flexible, robust, and straightforward and should be given preference in applications. We illustrate this with a couple of analytical calculations—locations of the snow line and of the outer edge of the dead zone in a gravitoturbulent protoplanetary disk—which clearly show the simplicity and versatility of the Q={{Q}0} approach.

  9. Analytical prospect of compact disk technology in immunosensing.

    PubMed

    Morais, Sergi; Tamarit-López, Jesús; Carrascosa, Javier; Puchades, Rosa; Maquieira, Angel

    2008-08-01

    A sensitive and versatile methodology involving recordable compact disks as molecular screening surfaces and a standard optical CD/DVD drive as detector, is reported. Quantitative immunoanalysis, in microarray format, of a cancer marker (alpha-fetoprotein, AFP) and a selective herbicide (atrazine) on four types of audio-video disc was conducted. Enzyme or gold nanoparticle-labeled antibodies were used as tracers, forming a precipitate on the sensing disk surface. The principle of disk reading is based on capture of analog signals with the disk drive that were proportional to the darkness of the immunoreaction product. Detection limits for AFP (8.0 microg L(-1)) and for atrazine (0.04 microg L(-1)) were under the threshold needed to detect nonseminomatous testicular cancer, and below the maximum E.U. residue limit for drinking water, respectively. The described methodology improves the previous developments using CDs and highlights the enormous potential of immunoassay methods using standard audio-video disk surfaces in combination with the CD/DVD drive for clinical analysis, drug discovery, or high-throughput multiresidue screening applications. PMID:18597081

  10. Planetesimal Disk Microlensing

    NASA Astrophysics Data System (ADS)

    Heng, Kevin; Keeton, Charles R.

    2009-12-01

    Motivated by debris disk studies, we investigate the gravitational microlensing of background starlight by a planetesimal disk around a foreground star. We use dynamical survival models to construct a plausible example of a planetesimal disk and study its microlensing properties using established ideas of microlensing by small bodies. When a solar-type source star passes behind a planetesimal disk, the microlensing light curve may exhibit short-term, low-amplitude residuals caused by planetesimals several orders of magnitude below Earth mass. The minimum planetesimal mass probed depends on the photometric sensitivity and the size of the source star, and is lower when the planetesimal lens is located closer to us. Planetesimal lenses may be found more nearby than stellar lenses because the steepness of the planetesimal mass distribution changes how the microlensing signal depends on the lens/source distance ratio. Microlensing searches for planetesimals require essentially continuous monitoring programs that are already feasible and can potentially set constraints on models of debris disks, the progeny of the supposed extrasolar analogues of Kuiper Belts.

  11. Radio pulsar disk electrodynamics

    SciTech Connect

    Michel, F.C.

    1983-03-01

    We outline the macroscopic physics of a disk close to an isolated, magnetized, rotating neutron star. It seems likely that such systems are formed from time to time in the universe. The neutron star acts as a Faraday disk dynamo, and the disk acts as both a load and a neutral sheet, permitting the polar cap current to return to the neutron star and also splitting a dipolar magnetic field into two monopolar halves. Michel and Dessler have proposed that such systems are radio pulsars. The dominant energy loss is from the stellar wind torque (giving a deceleration index n = 7/3), and the next contribution is dissipation in the ''auroral'' zones, where the current returns to the star in a sheet about 5 cm thick. The latter is comparable to the observed radio luminosities and is in reasonable accord with the data. The disk itself may be a source of visible radiation comparable to that in pulsed radiofrequency emission. As the pulsar ages, the disk expands and narrows into a ring, the plausible consequence of which could be cessation of pulsed emission at periods of a few seconds.

  12. PLANETESIMAL DISK MICROLENSING

    SciTech Connect

    Heng, Kevin; Keeton, Charles R. E-mail: keeton@physics.rutgers.ed

    2009-12-10

    Motivated by debris disk studies, we investigate the gravitational microlensing of background starlight by a planetesimal disk around a foreground star. We use dynamical survival models to construct a plausible example of a planetesimal disk and study its microlensing properties using established ideas of microlensing by small bodies. When a solar-type source star passes behind a planetesimal disk, the microlensing light curve may exhibit short-term, low-amplitude residuals caused by planetesimals several orders of magnitude below Earth mass. The minimum planetesimal mass probed depends on the photometric sensitivity and the size of the source star, and is lower when the planetesimal lens is located closer to us. Planetesimal lenses may be found more nearby than stellar lenses because the steepness of the planetesimal mass distribution changes how the microlensing signal depends on the lens/source distance ratio. Microlensing searches for planetesimals require essentially continuous monitoring programs that are already feasible and can potentially set constraints on models of debris disks, the progeny of the supposed extrasolar analogues of Kuiper Belts.

  13. The Chemistry of Nearby Disks

    NASA Astrophysics Data System (ADS)

    Öberg, Karin I.

    2016-01-01

    The gas and dust rich disks around young stars are the formation sites of planets. Observations of molecular trace species have great potential as probes of the disk structures and volatile compositions that together regulate planet formation. The disk around young star TW Hya has become a template for disk molecular studies due to a combination of proximity, a simple face-on geometry and richness in volatiles. It is unclear, however, how typical the chemistry of the TW disk is. In this proceeding, we review lessons learnt from exploring the TW Hya disk chemistry, focusing on the CO snowline, and on deuterium fractionation chemistry. We compare these results with new ALMA observations toward more distant, younger disks. We find that while all disks have some chemical structures in common, there are also substantial differences between the disks, which may be due to different initial conditions, structural or chemical evolutionary stages, or a combination of all three.

  14. Disk structures in the CGS Survey

    NASA Astrophysics Data System (ADS)

    Li, Zhao-Yu; Ho, Luis; Barth, Aaron; Peng, Chien

    2015-03-01

    The Carnegie-Irvine Galaxy Survey (CGS) is a long term program to investigate the photometric and spectroscopic properties of a statistically complete sample of 605 bright (BT < 12.9 mag), southern (delta < 0 deg) galaxies using the facilities at Las Campanas Observatory. For each galaxy, we have broadband images (BVRI) with good seeing (~1'') and deep surface brightness (~27.5 B-band). Using the IRAF task ELLIPSE and the fourier decomposition method, we measured the bar and the lopsidedness properties of disk galaxies in the CGS sample. Our results show that the bar fraction is lower in the early-type galaxies than that in the late-type ones. The (relative) bar length is longer in early-type ones, and strong bars are rare (the one with large ellipticity). We find that the lopsidedness is independent on the galaxy environment, and correlation studies suggest that the lopsided disk may have helped drive gas inward to form stars.

  15. Dead Zone Accretion Flows in Protostellar Disks

    NASA Technical Reports Server (NTRS)

    Turner, Neal; Sano, T.

    2008-01-01

    Planets form inside protostellar disks in a dead zone where the electrical resistivity of the gas is too high for magnetic forces to drive turbulence. We show that much of the dead zone nevertheless is active and flows toward the star while smooth, large-scale magnetic fields transfer the orbital angular momentum radially outward. Stellar X-ray and radionuclide ionization sustain a weak coupling of the dead zone gas to the magnetic fields, despite the rapid recombination of free charges on dust grains. Net radial magnetic fields are generated in the magnetorotational turbulence in the electrically conducting top and bottom surface layers of the disk, and reach the midplane by ohmic diffusion. A toroidal component to the fields is produced near the midplane by the orbital shear. The process is similar to the magnetization of the solar tachocline. The result is a laminar, magnetically driven accretion flow in the region where the planets form.

  16. Dynamic Head-Disk Interface Modeling and Adaptive Control of a Hybrid Actuator for Optical Data Storage Systems

    NASA Astrophysics Data System (ADS)

    Wu, Zhizheng; Li, Yang; Wang, Pei; Liu, Mei

    2015-01-01

    In the near-field recording (NFR) system, the gap between the lens and disk will drop down to 100 nm. However, the disk vibration and force disturbance make it difficult to maintain the desired flying height during disk operation, and the lens-disk collision can easily occur. It is proposed in this article to design a hybrid actuator system which combines both advantages of the flying slider used in hard disk drives and the voice coil actuator used in optical disk drives. The dynamic head-disk interface model of the hybrid actuator is first developed, then an adaptive regulation approach is proposed to control the flying height at its desired value despite the unknown disturbances. Simulation and experimental results are presented to illustrate the effectiveness of the proposed flying height control approach.

  17. Premixed direct injection disk

    SciTech Connect

    York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin; Zuo, Baifang; Uhm, Jong Ho

    2013-04-23

    A fuel/air mixing disk for use in a fuel/air mixing combustor assembly is provided. The disk includes a first face, a second face, and at least one fuel plenum disposed therebetween. A plurality of fuel/air mixing tubes extend through the pre-mixing disk, each mixing tube including an outer tube wall extending axially along a tube axis and in fluid communication with the at least one fuel plenum. At least a portion of the plurality of fuel/air mixing tubes further includes at least one fuel injection hole have a fuel injection hole diameter extending through said outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  18. Supersized Disk (Artist's Concept)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Annotated ImageData Graph

    This illustration compares the size of a gargantuan star and its surrounding dusty disk (top) to that of our solar system. Monstrous disks like this one were discovered around two 'hypergiant' stars by NASA's Spitzer Space Telescope. Astronomers believe these disks might contain the early 'seeds' of planets, or possibly leftover debris from planets that already formed.

    The hypergiant stars, called R 66 and R 126, are located about 170,000 light-years away in our Milky Way's nearest neighbor galaxy, the Large Magellanic Cloud. The stars are about 100 times wider than the sun, or big enough to encompass an orbit equivalent to Earth's. The plump stars are heavy, at 30 and 70 times the mass of the sun, respectively. They are the most massive stars known to sport disks.

    The disks themselves are also bloated, with masses equal to several Jupiters. The disks begin at a distance approximately 120 times greater than that between Earth and the sun, or 120 astronomical units, and terminate at a distance of about 2,500 astronomical units.

    Hypergiant stars are the puffed-up, aging descendants of the most massive class of stars, called 'O' stars. The stars are so massive that their cores ultimately collapse under their own weight, triggering incredible explosions called supernovae. If any planets circled near the stars during one of these blasts, they would most likely be destroyed.

    The orbital distances in this picture are plotted on a logarithmic scale. This means that a given distance shown here represents proportionally larger actual distances as you move to the right. The sun and planets in our solar system have been scaled up in size for better viewing. Little Dust Grains in Giant Stellar Disks The graph above of data from NASA's Spitzer Space Telescope shows the composition of a monstrous disk of what may be planet-forming dust circling the colossal 'hypergiant' star

  19. RELAXATION IN N-BODY SIMULATIONS OF DISK GALAXIES

    SciTech Connect

    Sellwood, J. A.

    2013-06-01

    I use N-body simulations with two mass species of particles to demonstrate that disk galaxy simulations are subject to collisional relaxation at a higher rate than is widely assumed. Relaxation affects the vertical thickness of the disk most strongly, and drives the velocity ellipsoid to a moderately flattened shape similar to that observed for disk stars in the solar neighborhood. The velocity ellipsoid in simulations with small numbers of particles quickly approaches this shape, but shot noise also dominates the in-plane behavior. Simulations with higher, but reachable, numbers of particles relax slowly enough to be considered collisionless, allowing the in-plane dispersions to rise due to spiral activity without heating the vertical motions. Relaxation may have affected many previously published simulations of the formation and evolution of galaxy disks.

  20. Slim accretion disks

    SciTech Connect

    Abramowicz, M.A.; Czerny, B.; Lasota, J.P.; Szuszkiewicz, E.

    1988-09-01

    A new branch of equilibrium solutions for stationary accretion disks around black holes is found. These solutions correspond to moderately super-Eddington accretion rates. The existence of the new branch is a consequence of an additional cooling due to general relativistic Roche lobe overflow and horizontal advection of heat. On an accretion rate versus surface density plane the new branch forms, together with the two standard branches (corresponding to the Shakura-Sunyaev accretion disk models) a characteristically S-shaped curve. This could imply a limit cycle-type behavior for black hole accretion flows with accretion rates close ot the Eddington one. 29 references.

  1. Imaging the Photoevaporating Disk and Radio Jet of GM Aur

    NASA Astrophysics Data System (ADS)

    Macías, Enrique; Anglada, Guillem; Osorio, Mayra; Calvet, Nuria; Torrelles, José M.; Gómez, José F.; Espaillat, Catherine; Lizano, Susana; Rodríguez, Luis F.; Carrasco-González, Carlos; Zapata, Luis

    2016-09-01

    Photoevaporation is probably the main agent for gas dispersal during the last stages of protoplanetary disk evolution. However, the overall mass-loss rate in the photoevaporative wind and its driving mechanism are still not well understood. Here we report multi-configuration Very Large Array observations at 0.7, 3, and 5 cm toward the transitional disk of GM Aur. Our radio continuum observations allow us to image and spatially resolve, for the first time, the three main components at work in this stage of the disk evolution: the disk of dust, the ionized radio jet perpendicular to it, and the photoevaporative wind arising from the disk. The mass-loss rate inferred from the flux density of the radio jet is consistent with the ratio between ejection and accretion rates found in younger objects, suggesting that transitional disks can power collimated ejections of material apparently following the same physical mechanisms as much younger protostars. Our results indicate that extreme-UV (EUV) radiation is the main ionizing mechanism of the photoevaporative wind traced by the free-free emission. The required low EUV photon luminosity of ˜6 × 1040 s-1 would produce a photoevaporation rate of only {\\dot{M}}w,{EUV}≃ 1.3× {10}-10 {M}⊙ yr-1. Therefore, other mechanisms are required to disperse the disk in the timescale imposed by observations.

  2. Hot stars with disks

    NASA Astrophysics Data System (ADS)

    Grundstrom, Erika D.

    The evolutionary paths of the massive O and B type stars are often defined by angular momentum transformations that involve circumstellar gas disks. This circumstellar gas is revealed in several kinds of observations, and here I describe a series of investigations of the hydrogen line emission from such disk using detailed studies of five massive binaries and a survey of 128 Be stars. By examining three sets of spectra of the active mass-transfer binary system RY Scuti, I determined masses of 7.1±1.2 [Special characters omitt ed.] for the bright supergiant and 30.0±2.1 [Special characters omitted.] for the massive companion that is hidden by an accretion torus. I also present a cartoon model of the complex mass flows in the system. Using optical spectroscopy and X-ray flux data, I investigated the mass transfer processes in four massive X-ray binaries (a massive B star with mass flowing onto a compact, neutron star companion). The B-supergiant system LS I +65 010 transfers mass via stellar winds. I find the X-ray flux modulates with the orbital period. In the other three X-ray binary systems (LS I +61 303, HDE 245770, and X Per), an outflowing circumstellar disk is responsible for the mass transfer, and in all three systems, the disk appears to be truncated by gravitational interactions with the compact companion. The disk in the microquasar system LS I +61 303 is limited in radius by the periastron separation and an increase in both Ha equivalent width and X-ray flux following periastron may be due to a density wave in the disk induced by tidal forces. Observations of HDE 245770 document what appears to be the regeneration of a circumstellar disk. The disk of X Per appears to have grown to near record proportions and the X-ray flux has dramatically increased. Tidal interaction may generate a spiral density wave in the disk and cause an increase in Ha equivalent width and mass transfer to the compact companion. During the course of the analysis of the X

  3. Giant Planet Formation by Disk Instability in Low Mass Disks?

    NASA Astrophysics Data System (ADS)

    Boss, Alan P.

    2010-12-01

    Forming giant planets by disk instability requires a gaseous disk that is massive enough to become gravitationally unstable and able to cool fast enough for self-gravitating clumps to form and survive. Models with simplified disk cooling have shown the critical importance of the ratio of the cooling to the orbital timescales. Uncertainties about the proper value of this ratio can be sidestepped by including radiative transfer. Three-dimensional radiative hydrodynamics models of a disk with a mass of 0.043 M sun from 4 to 20 AU in orbit around a 1 M sun protostar show that disk instabilities are considerably less successful in producing self-gravitating clumps than in a disk with twice this mass. The results are sensitive to the assumed initial outer disk (To ) temperatures. Models with To = 20 K are able to form a single self-gravitating clump, whereas models with To = 25 K form clumps that are not quite self-gravitating. These models imply that disk instability requires a disk with a mass of at least ~0.043 M sun inside 20 AU in order to form giant planets around solar-mass protostars with realistic disk cooling rates and outer-disk temperatures. Lower mass disks around solar-mass protostars must rely upon core accretion to form inner giant planets.

  4. Solar disk sextant

    NASA Technical Reports Server (NTRS)

    Sofia, S.; Chiu, H.-Y.; Maier, E.; Schatten, K. H.; Minott, P.; Endal, A. S.

    1984-01-01

    This paper presents the conceptual design of an instrument, called the solar disk sextant, to be used in space to measure the shape and the size of the sun and their variations. The instrumental parameters required to produce sufficient sensitivity to address the problems of solar oblateness, solar pulsations, and global size changes of climatic importance are given.

  5. Accretion disk coronae

    NASA Technical Reports Server (NTRS)

    White, N. E.; Holt, S. S.

    1981-01-01

    Recent observations of partial X-ray eclipses from 4U1822-37 have shown that the central X-ray source in this system is diffused by a large Compton-thick accretion disk corona (ADC). Another binary, 4U2129-47, also displays a partial eclipse and contains an ADC. The possible origin of an ADC is discussed and a simple hydrostatic evaporated ADC model is developed which, when applied to 4U1822-37, 4U2129+47 and Cyg X-3, can explain their temporal and spectral properties. The quasi-sinusoidal modulation of all three sources can be reconciled with the partial occultation of the ADC by a bulge at the edge of the accretion disk which is caused by the inflowing material. The height of this bulge is an order of magnitude larger than the hydrostatic disk height and is the result of turbulence in the outer region of the disk. The spectral properties of all three sources can be understood in terms of Compton scattering of the original source spectrum by the ADC. Spectral variations with epoch in Cyg X-3 are probably caused by changes in the optical depth of the corona. A consequence of our model is that any accreting neutron star X-ray source in a semi-detached binary system which is close to its Eddington limit most likely contains an optically thick ADC.

  6. Herniated disk repair (image)

    MedlinePlus

    ... one of the most common causes of lower back pain. The mainstay of treatment for herniated disks is an initial period of rest with pain and anti-inflammatory medications followed by physical therapy. If pain and symptoms persist, surgery to remove ...

  7. Do disk drives dream of buffer cache hits?

    SciTech Connect

    Holt, A.

    1994-12-31

    G.E. Moore, in his book Principia Ethica, examines the popular view of ethics that deals with {open_quotes}what we ought to do{close_quotes} as well as using ethics to cover the general inquiry: {open_quotes}what is good?{close_quotes} This paper utilises Moore`s view of Ethics to examine computer systems performance. Moore asserts that {open_quotes}good{close_quotes} in itself is indefinable. It is argued in this report that, although we describe computer systems as good (or bad) a computer system cannot be good in itself, rather a means to good! In terms of {open_quotes}what we ought to do{close_quotes} this paper looks at what actions (would) bring about good computer system performance according to computer science and engineering literature. In particular we look at duties, responsibilities and {open_quotes}to do what is right{close_quotes} in terms of system administration, design and usage. We further argue that in order to first make ethical observations with respect computer system performance and then apply them, requires technical knowledge which is typically limited to industry specialists and experts.

  8. Nano-sized light mill drives micro-sized disk

    SciTech Connect

    2010-01-01

    Filmed through water, a silica microdisk embedded with a gold, gammadion-shaped light mill nanomotor rotates in one direction under illumination from laser light at 810 nanometers wavelength. When the wavelength is switched to 1,715 nanometers, the rotational direction is reversed. Torque is produced when the laser light frequencies resonate with the frequencie of the metal's plasmons. (Movie courtesy of Zhang group)

  9. Integrated accretion disk angular momentum removal and astrophysical jet acceleration mechanism

    NASA Astrophysics Data System (ADS)

    Bellan, Paul

    2015-11-01

    A model has been developed for how accretion disks discard angular momentum while powering astrophysical jets. The model depends on the extremely weak ionization of disks. This causes disk ions to be collisionally locked to adjacent disk neutrals so a clump of disk ions and neutrals has an effective cyclotron frequency αωci where α is the fractional ionization. When αωci is approximately twice the Kepler orbital frequency, conservation of canonical momentum shows that the clump spirals radially inwards producing a radially inward disk electric current as electrons cannot move radially in the disk. Upon reaching the jet radius, this current then flows axially away from the disk plane along the jet, producing a toroidal magnetic field that drives the jet. Electrons remain frozen to poloidal flux surfaces everywhere and electron motion on flux surfaces in the ideal MHD region outside the disk completes the current path. Angular momentum absorbed from accreting material in the disk by magnetic counter-torque -JrBz is transported by the electric circuit and ejected at near infinite radius in the disk plane. This is like an electric generator absorbing angular momentum and wired to a distant electric motor that emits angular momentum. Supported by USDOE/NSF Partnership in Plasma Science.

  10. IMAGING THE DISK AND JET OF THE CLASSICAL T TAURI STAR AA TAU

    SciTech Connect

    Cox, Andrew W.; Grady, Carol A.; Hammel, Heidi B.; Hornbeck, Jeremy; Russell, Ray W.; Sitko, Michael L.; Woodgate, Bruce E.

    2013-01-01

    Previous studies of the classical T Tauri star AA Tau have interpreted the UX-Orionis-like photo-polarimetric variability as being due to a warp in the inner disk caused by an inclined stellar magnetic dipole field. We test that these effects are macroscopically observable in the inclination and alignment of the disk. We use Hubble Space Telescope (HST)/STIS coronagraphic imagery to measure the V magnitude of the star for both STIS coronagraphic observations, compare these data with optical photometry in the literature, and find that, unlike other classical T Tauri stars observed in the same HST program, the disk is most robustly detected in scattered light at stellar optical minimum light. We measure the outer disk radius, 1.''15 {+-} 0.''10, major-axis position angle, and disk inclination and find that the inner disk, as reported in the literature, is both misinclined and misaligned with respect to the outer disk. AA Tau drives a faint jet, detected in both STIS observations and in follow-on Goddard Fabry-Perot imagery, which is also misaligned with respect to the projection of the outer disk minor axis and is poorly collimated near the star, but which can be traced 21'' from the star in data from 2005. The measured outer disk inclination, 71 Degree-Sign {+-} 1 Degree-Sign , is out of the range of inclinations suggested for stars with UX-Orionis-like variability when no grain growth has occurred in the disk. The faintness of the disk, small disk size, and detection of the star despite the high inclination all indicate that the dust disk must have experienced grain growth and settling toward the disk midplane, which we verify by comparing the observed disk with model imagery from the literature.

  11. VISCOUS EVOLUTION AND PHOTOEVAPORATION OF CIRCUMSTELLAR DISKS DUE TO EXTERNAL FAR ULTRAVIOLET RADIATION FIELDS

    SciTech Connect

    Anderson, Kassandra R.; Adams, Fred C.; Calvet, Nuria

    2013-09-01

    This paper explores the effects of FUV radiation fields from external stars on circumstellar disk evolution. Disks residing in young clusters can be exposed to extreme levels of FUV flux from nearby OB stars, and observations show that disks in such environments are being actively photoevaporated. Typical FUV flux levels can be factors of {approx}10{sup 2}-10{sup 4} higher than the interstellar value. These fields are effective in driving mass loss from circumstellar disks because they act at large radial distance from the host star, i.e., where most of the disk mass is located, and where the gravitational potential well is shallow. We combine viscous evolution (an {alpha}-disk model) with an existing FUV photoevaporation model to derive constraints on disk lifetimes, and to determine disk properties as functions of time, including mass-loss rates, disk masses, and radii. We also consider the effects of X-ray photoevaporation from the host star using an existing model, and show that for disks around solar-mass stars, externally generated FUV fields are often the dominant mechanism in depleting disk material. For sufficiently large viscosities, FUV fields can efficiently photoevaporate disks over the entire range of parameter space. Disks with viscosity parameter {alpha} = 10{sup -3} are effectively dispersed within 1-3 Myr; for higher viscosities ({alpha} = 10{sup -2}) disks are dispersed within {approx}0.25-0.5 Myr. Furthermore, disk radii are truncated to less than {approx}100 AU, which can possibly affect the formation of planets. Our model predictions are consistent with the range of observed masses and radii of proplyds in the Orion Nebula Cluster.

  12. Imaging the Disk and Jet of the Classical T Tauri Star AA Tau

    NASA Technical Reports Server (NTRS)

    Cox, Andrew W.; Grady, Carol A.; Hammel, Heidi B.; Hornbeck, Jeremy; Russell, Ray W.; Sitko, Michael L.; Woodgate, Bruce E.

    2013-01-01

    Previous studies of the classical T Tauri star AA Tau have interpreted the UX-Orionis-like photo-polarimetric variability as being due to a warp in the inner disk caused by an inclined stellar magnetic dipole field. We test that these effects are macroscopically observable in the inclination and alignment of the disk. We use Hubble Space Telescope (HST)/STIS coronagraphic imagery to measure the V magnitude of the star for both STIS coronagraphic observations, compare these data with optical photometry in the literature, and find that, unlike other classical T Tauri stars observed in the same HST program, the disk is most robustly detected in scattered light at stellar optical minimum light.We measure the outer disk radius, 1 inch.15 plus-minus 0 inch.10, major-axis position angle, and disk inclination and find that the inner disk, as reported in the literature, is both misinclined and misaligned with respect to the outer disk. AA Tau drives a faint jet, detected in both STIS observations and in follow-on Goddard Fabry-Perot imagery, which is also misaligned with respect to the projection of the outer disk minor axis and is poorly collimated near the star, but which can be traced 21 inches from the star in data from 2005. The measured outer disk inclination, 71deg plus-minus 1deg, is out of the range of inclinations suggested for stars with UX-Orionis-like variability when no grain growth has occurred in the disk. The faintness of the disk, small disk size, and detection of the star despite the high inclination all indicate that the dust disk must have experienced grain growth and settling toward the disk midplane, which we verify by comparing the observed disk with model imagery from the literature.

  13. Wobbling The Galactic Disk with Bombardment of Satellite Galaxies

    NASA Astrophysics Data System (ADS)

    D'Onghia, Elena

    We propose to assess the effect of impacts of large visible satellite galaxies on a disk, as well as the relevance of the continuing bombardment of the Galactic disk by dark matter clumps as predicted by the current cosmological framework that can wobble the disk, heating it and eventually exciting ragged spiral structures. In particular, we make detailed predictions for observable features such as spiral arms, rings and their associated stars in galactic disks and relate them to the physical processes that drive their formation and evolution in our Milky Way galaxy and nearby spirals. To do this, we will combine analytic methods and numerical simulations that allow us to calculate observables, which we will compare to present and forthcoming observations. Our methodology utilizes a combination of state of the art hydrodynamic simulations of galaxy evolution and multi- wavelength radiative transfer simulations. Our primary goals are: (1) To identify the physical processes that are responsible for spiral structure formation observed in our Milky Way and nearby disk galaxies, from the flocculent to grand- designed spiral galaxies and to provide observable signatures to be compared with data on nearby galaxies combining maps of 24 micron emission (Spitzer) and cold gas, CO (Heracles) and HI (THINGS). (2) To explore different morphologies of spiral galaxies: from the multi-armed galaxies to the Milky Way sized galaxies with few arms. (3) For a Milky Way disk we will assess the effect of impacts of substructures passing through the disk to origin the asymmetry in the number density of stars recently discovered from SDSS and SEGUE data and confirmed from RAVE data. We will also investigate the disk heating in the vertical plane due to the formation of vertical oscillations that are produced by the impact and migration of stars in the disk as consequence of the heating as compared to the classical stellar migration mechanism. (4) We will measure the spiral pattern speed

  14. THE EVOLUTION OF INNER DISK GAS IN TRANSITION DISKS

    SciTech Connect

    Hoadley, K.; France, K.; McJunkin, M.; Alexander, R. D.; Schneider, P. C.

    2015-10-10

    Investigating the molecular gas in the inner regions of protoplanetary disks (PPDs) provides insight into how the molecular disk environment changes during the transition from primordial to debris disk systems. We conduct a small survey of molecular hydrogen (H{sub 2}) fluorescent emission, using 14 well-studied Classical T Tauri stars at two distinct dust disk evolutionary stages, to explore how the structure of the inner molecular disk changes as the optically thick warm dust dissipates. We simulate the observed Hi-Lyman α-pumped H{sub 2} disk fluorescence by creating a 2D radiative transfer model that describes the radial distributions of H{sub 2} emission in the disk atmosphere and compare these to observations from the Hubble Space Telescope. We find the radial distributions that best describe the observed H{sub 2} FUV emission arising in primordial disk targets (full dust disk) are demonstrably different than those of transition disks (little-to-no warm dust observed). For each best-fit model, we estimate inner and outer disk emission boundaries (r{sub in} and r{sub out}), describing where the bulk of the observed H{sub 2} emission arises in each disk, and we examine correlations between these and several observational disk evolution indicators, such as n{sub 13–31}, r{sub in,} {sub CO}, and the mass accretion rate. We find strong, positive correlations between the H{sub 2} radial distributions and the slope of the dust spectral energy distribution, implying the behavior of the molecular disk atmosphere changes as the inner dust clears in evolving PPDs. Overall, we find that H{sub 2} inner radii are ∼4 times larger in transition systems, while the bulk of the H{sub 2} emission originates inside the dust gap radius for all transitional sources.

  15. PLANETESIMAL AND PROTOPLANET DYNAMICS IN A TURBULENT PROTOPLANETARY DISK: IDEAL STRATIFIED DISKS

    SciTech Connect

    Yang, Chao-Chin; Mac Low, Mordecai-Mark; Menou, Kristen E-mail: mordecai@amnh.org

    2012-04-01

    Due to the gravitational influence of density fluctuations driven by magneto-rotational instability in the gas disk, planetesimals and protoplanets undergo diffusive radial migration as well as changes in other orbital properties. The magnitude of the effect on particle orbits can have important consequences for planet formation scenarios. We use the local-shearing-box approximation to simulate an ideal, isothermal, magnetized gas disk with vertical density stratification and simultaneously evolve numerous massless particles moving under the gravitational field of the gas and the host star. We measure the evolution of the particle orbital properties, including mean radius, eccentricity, inclination, and velocity dispersion, and its dependence on the disk properties and the particle initial conditions. Although the results converge with resolution for fixed box dimensions, we find the response of the particles to the gravity of the turbulent gas correlates with the horizontal box size, up to 16 disk scale heights. This correlation indicates that caution should be exercised when interpreting local-shearing-box models involving gravitational physics of magneto-rotational turbulence. Based on heuristic arguments, nevertheless, the criterion L{sub h} /R {approx} O(1), where L{sub h} is the horizontal box size and R is the distance to the host star, is proposed to possibly circumvent this conundrum. If this criterion holds, we can still conclude that magneto-rotational turbulence seems likely to be ineffective at driving either diffusive migration or collisional erosion under most circumstances.

  16. Planetesimal and Protoplanet Dynamics in a Turbulent Protoplanetary Disk: Ideal Stratified Disks

    NASA Astrophysics Data System (ADS)

    Yang, Chao-Chin; Mac Low, Mordecai-Mark; Menou, Kristen

    2012-04-01

    Due to the gravitational influence of density fluctuations driven by magneto-rotational instability in the gas disk, planetesimals and protoplanets undergo diffusive radial migration as well as changes in other orbital properties. The magnitude of the effect on particle orbits can have important consequences for planet formation scenarios. We use the local-shearing-box approximation to simulate an ideal, isothermal, magnetized gas disk with vertical density stratification and simultaneously evolve numerous massless particles moving under the gravitational field of the gas and the host star. We measure the evolution of the particle orbital properties, including mean radius, eccentricity, inclination, and velocity dispersion, and its dependence on the disk properties and the particle initial conditions. Although the results converge with resolution for fixed box dimensions, we find the response of the particles to the gravity of the turbulent gas correlates with the horizontal box size, up to 16 disk scale heights. This correlation indicates that caution should be exercised when interpreting local-shearing-box models involving gravitational physics of magneto-rotational turbulence. Based on heuristic arguments, nevertheless, the criterion Lh /R ~ O(1), where Lh is the horizontal box size and R is the distance to the host star, is proposed to possibly circumvent this conundrum. If this criterion holds, we can still conclude that magneto-rotational turbulence seems likely to be ineffective at driving either diffusive migration or collisional erosion under most circumstances.

  17. Brown dwarf disks with ALMA

    SciTech Connect

    Ricci, L.; Isella, A.; Testi, L.; De Gregorio-Monsalvo, I.; Natta, A.; Scholz, A.

    2014-08-10

    We present Atacama Large Millimeter/submillimeter Array continuum and spectral line data at 0.89 mm and 3.2 mm for three disks surrounding young brown dwarfs and very low mass stars in the Taurus star forming region. Dust thermal emission is detected and spatially resolved for all the three disks, while CO(J = 3-2) emission is seen in two disks. We analyze the continuum visibilities and constrain the disks' physical structure in dust. The results of our analysis show that the disks are relatively large; the smallest one has an outer radius of about 70 AU. The inferred disk radii, radial profiles of the dust surface density, and disk to central object mass ratios lie within the ranges found for disks around more massive young stars. We derive from our observations the wavelength dependence of the millimeter dust opacity. In all the three disks, data are consistent with the presence of grains with at least millimeter sizes, as also found for disks around young stars, and confirm that the early stages of the solid growth toward planetesimals occur also around very low-mass objects. We discuss the implications of our findings on models of solids evolution in protoplanetary disks, the main mechanisms proposed for the formation of brown dwarfs and very low-mass stars, as well as the potential of finding rocky and giant planets around very low-mass objects.

  18. Dark-disk universe.

    PubMed

    Fan, JiJi; Katz, Andrey; Randall, Lisa; Reece, Matthew

    2013-05-24

    We point out that current constraints on dark matter imply only that the majority of dark matter is cold and collisionless. A subdominant fraction of dark matter could have much stronger interactions. In particular, it could interact in a manner that dissipates energy, thereby cooling into a rotationally supported disk, much as baryons do. We call this proposed new dark matter component double-disk dark matter (DDDM). We argue that DDDM could constitute a fraction of all matter roughly as large as the fraction in baryons, and that it could be detected through its gravitational effects on the motion of stars in galaxies, for example. Furthermore, if DDDM can annihilate to gamma rays, it would give rise to an indirect detection signal distributed across the sky that differs dramatically from that predicted for ordinary dark matter. DDDM and more general partially interacting dark matter scenarios provide a large unexplored space of testable new physics ideas.

  19. Dark-disk universe.

    PubMed

    Fan, JiJi; Katz, Andrey; Randall, Lisa; Reece, Matthew

    2013-05-24

    We point out that current constraints on dark matter imply only that the majority of dark matter is cold and collisionless. A subdominant fraction of dark matter could have much stronger interactions. In particular, it could interact in a manner that dissipates energy, thereby cooling into a rotationally supported disk, much as baryons do. We call this proposed new dark matter component double-disk dark matter (DDDM). We argue that DDDM could constitute a fraction of all matter roughly as large as the fraction in baryons, and that it could be detected through its gravitational effects on the motion of stars in galaxies, for example. Furthermore, if DDDM can annihilate to gamma rays, it would give rise to an indirect detection signal distributed across the sky that differs dramatically from that predicted for ordinary dark matter. DDDM and more general partially interacting dark matter scenarios provide a large unexplored space of testable new physics ideas. PMID:23745856

  20. Experimental investigation of turbine disk cavity aerodynamics and heat transfer

    NASA Technical Reports Server (NTRS)

    Daniels, W. A.; Johnson, B. V.

    1993-01-01

    An experimental investigation of turbine disk cavity aerodynamics and heat transfer was conducted to provide an experimental data base that can guide the aerodynamic and thermal design of turbine disks and blade attachments for flow conditions and geometries simulating those of the space shuttle main engine (SSME) turbopump drive turbines. Experiments were conducted to define the nature of the aerodynamics and heat transfer of the flow within the disk cavities and blade attachments of a large scale model simulating the SSME turbopump drive turbines. These experiments include flow between the main gas path and the disk cavities, flow within the disk cavities, and leakage flows through the blade attachments and labyrinth seals. Air was used to simulate the combustion products in the gas path. Air and carbon dioxide were used to simulate the coolants injected at three locations in the disk cavities. Trace amounts of carbon dioxide were used to determine the source of the gas at selected locations on the rotors, the cavity walls, and the interstage seal. The measurements on the rotor and stationary walls in the forward and aft cavities showed that the coolant effectiveness was 90 percent or greater when the coolant flow rate was greater than the local free disk entrainment flow rate and when room temperature air was used as both coolant and gas path fluid. When a coolant-to-gas-path density ratio of 1.51 was used in the aft cavity, the coolant effectiveness on the rotor was also 90 percent or greater at the aforementioned condition. However, the coolant concentration on the stationary wall was 60 to 80 percent at the aforementioned condition indicating a more rapid mixing of the coolant and flow through the rotor shank passages. This increased mixing rate was attributed to the destabilizing effects of the adverse density gradients.

  1. DISK-SATELLITE INTERACTION IN DISKS WITH DENSITY GAPS

    SciTech Connect

    Petrovich, Cristobal; Rafikov, Roman R.

    2012-10-10

    Gravitational coupling between a gaseous disk and an orbiting perturber leads to angular momentum exchange between them that can result in gap opening by planets in protoplanetary disks and clearing of gas by binary supermassive black holes (SMBHs) embedded in accretion disks. Understanding the co-evolution of the disk and the orbit of the perturber in these circumstances requires knowledge of the spatial distribution of the torque exerted by the latter on a highly non-uniform disk. Here we explore disk-satellite interaction in disks with gaps in linear approximation both in Fourier and in physical space, explicitly incorporating the disk non-uniformity in the fluid equations. Density gradients strongly displace the positions of Lindblad resonances in the disk (which often occur at multiple locations), and the waveforms of modes excited close to the gap edge get modified compared to the uniform disk case. The spatial distribution of the excitation torque density is found to be quite different from the existing prescriptions: most of the torque is exerted in a rather narrow region near the gap edge where Lindblad resonances accumulate, followed by an exponential falloff with the distance from the perturber. Despite these differences, for a given gap profile, the full integrated torque exerted on the disk agrees with the conventional uniform disk theory prediction at the level of {approx}10%. The nonlinearity of the density wave excited by the perturber is shown to decrease as the wave travels out of the gap, slowing down its nonlinear evolution and damping. Our results suggest that gap opening in protoplanetary disks and gas clearing around SMBH binaries can be more efficient than the existing theories predict. They pave the way for self-consistent calculations of the gap structure and the orbital evolution of the perturber using accurate prescription for the torque density behavior.

  2. ON THE ROLE OF THE ACCRETION DISK IN BLACK HOLE DISK-JET CONNECTIONS

    SciTech Connect

    Miller, J. M.; Reis, R. C.; Pooley, G. G.; Fabian, A. C.; Cackett, E. M.; Nowak, M. A.; Pottschmidt, K.; Wilms, J.

    2012-09-20

    Models of jet production in black hole systems suggest that the properties of the accretion disk-such as its mass accretion rate, inner radius, and emergent magnetic field-should drive and modulate the production of relativistic jets. Stellar-mass black holes in the 'low/hard' state are an excellent laboratory in which to study disk-jet connections, but few coordinated observations are made using spectrometers that can incisively probe the inner disk. We report on a series of 20 Suzaku observations of Cygnus X-1 made in the jet-producing low/hard state. Contemporaneous radio monitoring was done using the Arcminute MicroKelvin Array radio telescope. Two important and simple results are obtained: (1) the jet (as traced by radio flux) does not appear to be modulated by changes in the inner radius of the accretion disk and (2) the jet is sensitive to disk properties, including its flux, temperature, and ionization. Some more complex results may reveal aspects of a coupled disk-corona-jet system. A positive correlation between the reflected X-ray flux and radio flux may represent specific support for a plasma ejection model of the corona, wherein the base of a jet produces hard X-ray emission. Within the framework of the plasma ejection model, the spectra suggest a jet base with v/c {approx_equal} 0.3 or the escape velocity for a vertical height of z {approx_equal} 20 GM/c {sup 2} above the black hole. The detailed results of X-ray disk continuum and reflection modeling also suggest a height of z {approx_equal} 20 GM/c {sup 2} for hard X-ray production above a black hole, with a spin in the range 0.6 {<=} a {<=} 0.99. This height agrees with X-ray time lags recently found in Cygnus X-1. The overall picture that emerges from this study is broadly consistent with some jet-focused models for black hole spectral energy distributions in which a relativistic plasma is accelerated at z = 10-100 GM/c {sup 2}. We discuss these results in the context of disk-jet connections

  3. Mean PB To Failure - Initial results from a long-term study of disk storage patterns at the RACF

    NASA Astrophysics Data System (ADS)

    Caramarcu, C.; Hollowell, C.; Rao, T.; Strecker-Kellogg, W.; Wong, A.; Zaytsev, S. A.

    2015-12-01

    The RACF (RHIC-ATLAS Computing Facility) has operated a large, multi-purpose dedicated computing facility since the mid-1990’s, serving a worldwide, geographically diverse scientific community that is a major contributor to various HEPN projects. A central component of the RACF is the Linux-based worker node cluster that is used for both computing and data storage purposes. It currently has nearly 50,000 computing cores and over 23 PB of storage capacity distributed over 12,000+ (non-SSD) disk drives. The majority of the 12,000+ disk drives provide a cost-effective solution for dCache/XRootD-managed storage, and a key concern is the reliability of this solution over the lifetime of the hardware, particularly as the number of disk drives and the storage capacity of individual drives grow. We report initial results of a long-term study to measure lifetime PB read/written to disk drives in the worker node cluster. We discuss the historical disk drive mortality rate, disk drive manufacturers' published MPTF (Mean PB to Failure) data and how they are correlated to our results. The results help the RACF understand the productivity and reliability of its storage solutions and have implications for other highly-available storage systems (NFS, GPFS, CVMFS, etc) with large I/O requirements.

  4. DVD - digital versatile disks

    SciTech Connect

    Gaunt, R.

    1997-05-01

    An international standard has emerged for the first true multimedia format. Digital Versatile Disk (by its official name), you may know it as Digital Video Disks. DVD has applications in movies, music, games, information CD-ROMS, and many other areas where massive amounts of digital information is needed. Did I say massive amounts of data? Would you believe over 17 gigabytes on a single piece of plastic the size of an audio-CD? That`s the promise, at least, by the group of nine electronics manufacturers who have agreed to the format specification, and who hope to make this goal a reality by 1998. In this major agreement, which didn`t come easily, the manufacturers will combine Sony and Phillip`s one side double-layer NMCD format with Toshiba and Matsushita`s double sided Super-Density disk. By Spring of this year, they plan to market the first 4.7 gigabyte units. The question is: Will DVD take off? Some believe that read-only disks recorded with movies will be about as popular as video laser disks. They say that until the eraseable/writable DVD arrives, the consumer will most likely not buy it. Also, DVD has a good market for replacement of CD- Roms. Back in the early 80`s, the international committee deciding the format of the audio compact disk decided its length would be 73 minutes. This, they declared, would allow Beethoven`s 9th Symphony to be contained entirely on a single CD. Similarly, today it was agreed that playback length of a single sided, single layer DVD would be 133 minutes, long enough to hold 94% of all feature-length movies. Further, audio can be in Dolby`s AC-3 stereo or 5.1 tracks of surround sound, better than CD-quality audio (16-bits at 48kHz). In addition, there are three to five language tracks, copy protection and parental ``locks`` for R rated movies. DVD will be backwards compatible with current CD-ROM and audio CD formats. Added versatility comes by way of multiple aspect rations: 4:3 pan-scan, 4:3 letterbox, and 16:9 widescreen. MPEG

  5. ACCRETION OUTBURSTS IN CIRCUMPLANETARY DISKS

    SciTech Connect

    Lubow, S. H.; Martin, R. G.

    2012-04-20

    We describe a model for the long-term evolution of a circumplanetary disk that is fed mass from a circumstellar disk and contains regions of low turbulence (dead zones). We show that such disks can be subject to accretion-driven outbursts, analogous to outbursts previously modeled in the context of circumstellar disks to explain FU Ori phenomena. Circumplanetary disks around a proto-Jupiter can undergo outbursts for infall accretion rates onto the disks in the range M-dot{sub infall} approx. 10{sup -9} to 10{sup -7} M{sub Sun} yr{sup -1}, typical of accretion rates in the T Tauri phase. During outbursts, the accretion rate and disk luminosity increases by several orders of magnitude. Most of the planet mass growth during planetary gas accretion may occur via disk outbursts involving gas that is considerably hotter than predicted by steady state models. For low infall accretion rates M-dot{sub infall} {approx}< 10{sup -10} M{sub sun} yr{sup -1} that occur in late stages of disk accretion, disk outbursts are unlikely to occur, even if dead zones are present. Such conditions are favorable for the formation of icy satellites.

  6. Jet and flash imprint lithography for the fabrication of patterned media drives

    NASA Astrophysics Data System (ADS)

    Schmid, Gerard M.; Brooks, Cynthia; Ye, Zhengmao; Johnson, Steve; LaBrake, Dwayne; Sreenivasan, S. V.; Resnick, Douglas J.

    2009-10-01

    The ever-growing demand for hard drives with greater storage density has motivated a technology shift from continuous magnetic media to patterned media hard disks, which are expected to be implemented in future generations of hard disk drives to provide data storage at densities exceeding 1012 bits per square inch. Jet and Flash Imprint Lithography (J-FILTM) technology has been employed to pattern the hard disk substrates. This paper discusses the infrastructure required to enable J-FIL in high-volume manufacturing; namely, fabrication of master templates, template replication, high-volume imprinting with precisely controlled residual layers, dual-sided imprinting and defect inspection. Imprinting of disks is demonstrated with substrate throughput currently as high as 180 disks/hour (dual-sided). These processes are applied to patterning hard disk substrates with both discrete tracks and bit-patterned designs.

  7. Inversions for axisymmetric galactic disks

    NASA Astrophysics Data System (ADS)

    Hiotelis, N.; Patsis, P. A.

    1993-08-01

    We use two models for the distribution function to solve an inverse problem for axisymmetric disks. These systems may be considered - under certain assumptions - as galactic disks. In some cases the solutions of the resulting integral equations are simple, which allows the determination of the kinematic properties of self-consistent models for these systems. These properties for then = 1 Toomre disk are presented in this study.

  8. A Hot Big Bang Theory: Magnetic Fields and the Early Evolution of the Protolunar Disk

    NASA Astrophysics Data System (ADS)

    Gammie, C. F.; Liao, Wei-Ting; Ricker, P. M.

    2016-09-01

    The leading theory for the formation of Earth’s Moon invokes a collision between a Mars-sized body and the proto-Earth to produce a disk of orbiting material that later condenses to form the Moon. We show that the disk opacity is large, and cooling is therefore inefficient ({t}{cool}{{Ω }}\\gg 1). In this regime, angular momentum transport in the disk leads to steady heating unless α \\lt {({t}{cool}{{Ω }})}-1\\ll 1. Following earlier work by Charnoz and Michaut, and Carballido et al., we show that once the disk is completely vaporized it is well coupled to the magnetic field. We consider a scenario in which turbulence driven by magnetic fields leads to a brief, hot phase where the disk is geometrically thick, with strong turbulent mixing. The disk cools by spreading until it decouples from the field. We point out that approximately half the accretion energy is dissipated in the boundary layer where the disk meets the Earth’s surface. This creates high entropy material close to the Earth, driving convection and mixing. Finally, a hot magnetized disk could drive bipolar outflows that remove mass and angular momentum from the Earth-Moon system.

  9. A Hot Big Bang Theory: Magnetic Fields and the Early Evolution of the Protolunar Disk

    NASA Astrophysics Data System (ADS)

    Gammie, C. F.; Liao, Wei-Ting; Ricker, P. M.

    2016-09-01

    The leading theory for the formation of Earth’s Moon invokes a collision between a Mars-sized body and the proto-Earth to produce a disk of orbiting material that later condenses to form the Moon. We show that the disk opacity is large, and cooling is therefore inefficient ({t}{cool}{{Ω }}\\gg 1). In this regime, angular momentum transport in the disk leads to steady heating unless α \\lt {({t}{cool}{{Ω }})}-1\\ll 1. Following earlier work by Charnoz and Michaut, and Carballido et al., we show that once the disk is completely vaporized it is well coupled to the magnetic field. We consider a scenario in which turbulence driven by magnetic fields leads to a brief, hot phase where the disk is geometrically thick, with strong turbulent mixing. The disk cools by spreading until it decouples from the field. We point out that approximately half the accretion energy is dissipated in the boundary layer where the disk meets the Earth’s surface. This creates high entropy material close to the Earth, driving convection and mixing. Finally, a hot magnetized disk could drive bipolar outflows that remove mass and angular momentum from the Earth–Moon system.

  10. Hall Effect Controlled Gas Dynamics in Protoplanetary Disks. II. Full 3D Simulations toward the Outer Disk

    NASA Astrophysics Data System (ADS)

    Bai, Xue-Ning

    2015-01-01

    We perform three-dimensional stratified shearing-box magnetohydrodynamic (MHD) simulations on the gas dynamics of protoplanetary disks with a net vertical magnetic flux of B z0. All three nonideal MHD effects, Ohmic resistivity, the Hall effect, and ambipolar diffusion, are included in a self-consistent manner based on equilibrium chemistry. We focus on regions toward outer disk radii, from 5 to 60 AU, where Ohmic resistivity tends to become negligible, ambipolar diffusion dominates over an extended region across the disk height, and the Hall effect largely controls the dynamics near the disk midplane. We find that at around R = 5 AU the system launches a laminar or weakly turbulent magnetocentrifugal wind when the net vertical field B z0 is not too weak. Moreover, the wind is able to achieve and maintain a configuration with reflection symmetry at the disk midplane. The case with anti-aligned field polarity ({\\boldsymbol{Ω }}\\cdot {\\boldsymbol{B}}z0<0) is more susceptible to the magnetorotational instability (MRI) when B z0 decreases, leading to an outflow oscillating in radial directions and very inefficient angular momentum transport. At the outer disk around and beyond R = 30 AU, the system shows vigorous MRI turbulence in the surface layer due to far-UV ionization, which efficiently drives disk accretion. The Hall effect affects the stability of the midplane region to the MRI, leading to strong/weak Maxwell stress for aligned/anti-aligned field polarities. Nevertheless, the midplane region is only very weakly turbulent in both cases. Overall, the basic picture is analogous to the conventional layered accretion scenario applied to the outer disk. In addition, we find that the vertical magnetic flux is strongly concentrated into thin, azimuthally extended shells in most of our simulations beyond 15 AU, leading to enhanced radial density variations know as zonal flows. Theoretical implications and observational consequences are briefly discussed.

  11. HALL EFFECT CONTROLLED GAS DYNAMICS IN PROTOPLANETARY DISKS. II. FULL 3D SIMULATIONS TOWARD THE OUTER DISK

    SciTech Connect

    Bai, Xue-Ning

    2015-01-10

    We perform three-dimensional stratified shearing-box magnetohydrodynamic (MHD) simulations on the gas dynamics of protoplanetary disks with a net vertical magnetic flux of B {sub z0}. All three nonideal MHD effects, Ohmic resistivity, the Hall effect, and ambipolar diffusion, are included in a self-consistent manner based on equilibrium chemistry. We focus on regions toward outer disk radii, from 5 to 60 AU, where Ohmic resistivity tends to become negligible, ambipolar diffusion dominates over an extended region across the disk height, and the Hall effect largely controls the dynamics near the disk midplane. We find that at around R = 5 AU the system launches a laminar or weakly turbulent magnetocentrifugal wind when the net vertical field B {sub z0} is not too weak. Moreover, the wind is able to achieve and maintain a configuration with reflection symmetry at the disk midplane. The case with anti-aligned field polarity (Ω⋅B{sub z0}<0) is more susceptible to the magnetorotational instability (MRI) when B {sub z0} decreases, leading to an outflow oscillating in radial directions and very inefficient angular momentum transport. At the outer disk around and beyond R = 30 AU, the system shows vigorous MRI turbulence in the surface layer due to far-UV ionization, which efficiently drives disk accretion. The Hall effect affects the stability of the midplane region to the MRI, leading to strong/weak Maxwell stress for aligned/anti-aligned field polarities. Nevertheless, the midplane region is only very weakly turbulent in both cases. Overall, the basic picture is analogous to the conventional layered accretion scenario applied to the outer disk. In addition, we find that the vertical magnetic flux is strongly concentrated into thin, azimuthally extended shells in most of our simulations beyond 15 AU, leading to enhanced radial density variations know as zonal flows. Theoretical implications and observational consequences are briefly discussed.

  12. Upper lumbar disk herniations.

    PubMed

    Cedoz, M E; Larbre, J P; Lequin, C; Fischer, G; Llorca, G

    1996-06-01

    Specific features of upper lumbar disk herniations are reviewed based on data from the literature and from a retrospective study of 24 cases treated surgically between 1982 and 1994 (seven at L1-L2 and 17 at L2-L3). Clinical manifestations are polymorphic, misleading (abdominogenital pain suggestive of a visceral or psychogenic condition, meralgia paresthetica, isolated sciatica; femoral neuralgia is uncommon) and sometimes severe (five cases of cauda equina syndrome in our study group). The diagnostic usefulness of imaging studies (radiography, myelography, computed tomography, magnetic resonance imaging) and results of surgery are discussed. The risk of misdiagnosis and the encouraging results of surgery are emphasized. PMID:8817752

  13. PRE-TRANSITIONAL DISK NATURE OF THE AB Aur DISK

    SciTech Connect

    Honda, M.; Inoue, A. K.; Okamoto, Y. K.; Kataza, H.; Fujiwara, H.; Kamizuka, T.; Fukagawa, M.; Yamashita, T.; Tamura, M.; Hashimoto, J.; Fujiyoshi, T.; Miyata, T.; Sako, S.; Sakon, I.; Onaka, T.

    2010-08-01

    The disk around AB Aur was imaged and resolved at 24.6 {mu}m using the Cooled Mid-infrared Camera and Spectrometer on the 8.2 m Subaru Telescope. The Gaussian full width at half-maximum of the source size is estimated to be 90 {+-} 6 AU, indicating that the disk extends further out at 24.6 {mu}m than at shorter wavelengths. In order to interpret the extended 24.6 {mu}m image, we consider a disk with a reduced surface density within a boundary radius R{sub c} , which is motivated by radio observations that suggest a reduced inner region within about 100 AU from the star. Introducing the surface density reduction factor f{sub c} for the inner disk, we determine that the best match with the observed radial intensity profile at 24.6 {mu}m is achieved with R{sub c} = 88 AU and f{sub c} = 0.01. We suggest that the extended emission at 24.6 {mu}m is due to the enhanced emission from a wall-like structure at the boundary radius (the inner edge of the outer disk), which is caused by a jump in the surface density at R{sub c} . Such a reduced inner disk and geometrically thick outer disk structure can also explain the more point-like nature at shorter wavelengths. We also note that this disk geometry is qualitatively similar to a pre-transitional disk, suggesting that the AB Aur disk is in a pre-transitional disk phase.

  14. Electrodynamics of disk-accreting magnetic neutron stars

    NASA Technical Reports Server (NTRS)

    Miller, M. Coleman; Lamb, Frederick K.; Hamilton, Russell J.

    1994-01-01

    We have investigated the electrodynamics of magnetic neutron stars accreting from Keplerian disks and the implications for particle acceleration and gamma-ray emission by such systems. We argue that the particle density in the magnetospheres of such stars is larger by orders of magnitude than the Goldreich-Julian density, so that the formation of vacuum gaps is unlikely. We show that even if the star rotates slowly, electromotive forces (EMFs) of order 10(exp 15) V are produced by the interaction of plasma in the accretion disk with the magnetic field of the neutron star. The resistance of the disk-magnetosphere-star circuit is small, and hence these EMFs drive very large conduction currents. Such large currents are likely to produce magnetospheric instabilities, such as relativistic double layers and reconnection events, that can accelerate electrons or ions to very high energies.

  15. Outflows from neutron star merger remnant disks: nucleosynthesis and kilonovae

    NASA Astrophysics Data System (ADS)

    Fernandez, Rodrigo; Lippuner, Jonas; Roberts, Luke; Tchekhovskoy, Alexander; Foucart, Francois; Metzger, Brian; Kasen, Daniel; Quataert, Eliot

    2016-03-01

    The accretion disk formed in a neutron star merger can drive powerful winds on timescales of 100ms to seconds after coalescence. The wind material is more strongly irradiated by neutrinos than the dynamical ejecta, and hence has a less neutron-rich composition, with implications for r-process element synthesis and the radioactively-powered kilonova transient. This talk will present preliminary results from projects aimed at quantifying (1) the nucleosynthesis yield from disks around hypermassive neutron stars, (2) the effect of MHD turbulence on mass ejection when a black hole sits at the center, and (3) the interaction between disk wind and dynamical ejecta when the relative masses of these components vary.

  16. Thermodynamical Structure of Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Hirose, S.; Turner, N.

    2009-12-01

    The thermodynamics of protoplanetary disks determines chemical and physical evolution of dust and gas in the disks, and thus is relevant for understanding the origin and formation of planetary systems. In this paper, the thermodynamical structure of protoplanetary disks around low-mass stars is studied using three-dimensional radiation magnetohydrodynamic (MHD) simulations. Local patches of the disk are modeled using the shearing box approximation with vertical gravity. For simplicity, the dust and gas are well mixed and have the same temperature, and ideal MHD is assumed. The frequency-integrated radiation field is evolved using the flux-limited diffusion approximation, adopting thermally averaged opacities. The heating arises from the dissipation of MHD turbulence driven by magnetorotational instability due to differential rotation of the disk, and the cooling comes from infrared radiation losses. Irradiation by the central star is treated by injecting appropriate amount of thermal energy near the disk photosphere for visible lights. The results indicate the heating is more concentrated in the disk atmosphere than in the classical model. The single-point heating rate in the atmosphere fluctuates by orders of magnitude over time intervals comparable to the orbital period due to magnetic reconnection and shocks, while the patch of disk overall sustains dynamical and thermodynamical equilibrium over many cooling times. We will discuss implications of our numerical results for line and continuum emission from protoplanetary disks.

  17. Gravitational Instability in Planetesimal Disks

    NASA Astrophysics Data System (ADS)

    Bolin, Bryce T.; Lithwick, Yoram; Pan, Margaret; Rein, Hanno; Wu, Yanqin

    2014-11-01

    Gravitational instability (GI) has been proposed as a method of forming giant gas planets enhanced by disk thermodynamics in a protoplanetary disk (Boss, 1997, Science 276; Durisen et al., 2007, Protostars and Planets V) and as a method of forming planetesimals through the focusing of boulders by the interaction between solids and gases in a turbulent circumstellar disk (Johansen et al., 2007, Nature 448; Youdin & Goodman, 2005, Astrophys. J. 620). GI is mediated through a gaseous circumstellar disk in each each of these scenarios. We explore the possibility of GI occurring in a planetesimal disk devoid of gas. In this regime, mutual collisions between planetesimals are required to dissipate their orbital shear and velocity dispersion enough for collapse to occur as described by the Toomre stability criterion (Toomre, 1964, Astrophys. J. 139; Toomre, 1981, Structure and Evolution of Normal Galaxies). How frequent must collisions be between planetesimals in a gravitationally stable planetesimal disk for GI to occur? Are there collisional rates where GI is postponed indefinitely in an equilibrium state between gravitational stirring and collisional cooling? We present 3D shearing sheet simulations using the REBOUND N-body code with the symplectic epicyclic integrator (Rein & Liu, 2011, A&A 537; Rein & Tremaine, 2011, MNRAS 415) in which the candidate collision rates are within a few orders of magnitude of the disk dynamical lifetime. Our simulations suggest that collisions rate directly controls disk cooling. The shape of the disk cooling curve is independent of the collision rate when scaled to the collision time.

  18. Computer-generated holograms on a CD-R disk

    NASA Astrophysics Data System (ADS)

    Sakamoto, Yuji; Morishima, Morito; Usui, Akira

    2004-06-01

    In order to display three-dimensional imagery by computer-generated holograms, it is necessary to draw hologram data on a medium with a resolution on the micrometer order. Conventionally, optical lithography, electron beam lithography, and special laser beam printers designed especially for holograms are used. However these systems are large and expensive, and need special environments such as darkrooms and clean rooms. We have developed a new device that draws hologram data on CD-R (Compact Disc-Recordable) disks, and which is based on a Yamaha CRW-F1 CD-R/RW drive. The drive produces holograms in a short amount of time, at low cost, and at the high resolution of 1.5μm. Moreover, the drive is small, portable and does not require a special environment, so that all of the processes of Desktop Holograming, from hologram calculation to recording, are made possible with just one PC. We evaluated optical properties of the CD-R disk as a viable hologram recording media. There are characteristics that are different from conventional media, because hologram data is recorded on spiral shaped grooves. We propose a new calculation method of hologram data suitable for a CD-R disk in order to display three-dimensional imagery. Using this method, we carried out optical experiments and it showed reconstructed three-dimensional imagery on CD-R disks successfully. In this paper, we discuss the optical properties of the CD-R disk, calculation method, and the experimental results.

  19. Disk MHD generator study

    NASA Technical Reports Server (NTRS)

    Retallick, F. D.

    1980-01-01

    Directly-fired, separately-fired, and oxygen-augmented MHD power plants incorporating a disk geometry for the MHD generator were studied. The base parameters defined for four near-optimum-performance MHD steam power systems of various types are presented. The finally selected systems consisted of (1) two directly fired cases, one at 1920 K (2996F) preheat and the other at 1650 K (2500 F) preheat, (2) a separately-fired case where the air is preheated to the same level as the higher temperature directly-fired cases, and (3) an oxygen augmented case with the same generator inlet temperature of 2839 (4650F) as the high temperature directly-fired and separately-fired cases. Supersonic Mach numbers at the generator inlet, gas inlet swirl, and constant Hall field operation were specified based on disk generator optimization. System pressures were based on optimization of MHD net power. Supercritical reheat stream plants were used in all cases. Open and closed cycle component costs are summarized and compared.

  20. Disk storage at CERN

    NASA Astrophysics Data System (ADS)

    Mascetti, L.; Cano, E.; Chan, B.; Espinal, X.; Fiorot, A.; González Labrador, H.; Iven, J.; Lamanna, M.; Lo Presti, G.; Mościcki, JT; Peters, AJ; Ponce, S.; Rousseau, H.; van der Ster, D.

    2015-12-01

    CERN IT DSS operates the main storage resources for data taking and physics analysis mainly via three system: AFS, CASTOR and EOS. The total usable space available on disk for users is about 100 PB (with relative ratios 1:20:120). EOS actively uses the two CERN Tier0 centres (Meyrin and Wigner) with 50:50 ratio. IT DSS also provide sizeable on-demand resources for IT services most notably OpenStack and NFS-based clients: this is provided by a Ceph infrastructure (3 PB) and few proprietary servers (NetApp). We will describe our operational experience and recent changes to these systems with special emphasis to the present usages for LHC data taking, the convergence to commodity hardware (nodes with 200-TB each with optional SSD) shared across all services. We also describe our experience in coupling commodity and home-grown solution (e.g. CERNBox integration in EOS, Ceph disk pools for AFS, CASTOR and NFS) and finally the future evolution of these systems for WLCG and beyond.

  1. A twisted disk equation that describes warped galaxy disks

    NASA Technical Reports Server (NTRS)

    Barker, K.

    1994-01-01

    Warped H1 gas layers in the outer regions of spiral galaxies usually display a noticeably twisted structure. This structure is thought to arise primarily as a result of differential precession in the H1 disk as it settles toward a 'preferred orientation' in an underlying dark halo potential well that is not spherically symmetric. In an attempt to better understand the structure and evolution of these twisted, warped disk structures, we have utilized the 'twist-equation' formalism. Specifically, we have generalized the twist equation to allow the treatment of non-Keplerian disks and from it have derived the steady-state structure of twisted disks that develop from free precession in a nonspherical, logarithmic halo potential. This generalized equation can also be used to examine the time-evolutionary behavior of warped galaxy disks.

  2. High-Speed Flexible Optical Disk for Broadcast Archival Storage

    NASA Astrophysics Data System (ADS)

    Koide, Daiichi; Kajiyama, Takeshi; Tokumaru, Haruki; Takano, Yoshimichi; Onagi, Nobuaki; Aman, Yasutomo; Ohishi, Kiyoshi

    2010-08-01

    We developed a prototype of a flexible optical disk (FOD) drive with a mechanical stabilizer. We prepared the FOD that had a high recording sensitivity of a recording layer and had low byte error rates below 2 ×10-4 at speeds from 36 to 252 Mbps, and examined the recording of video data on the FOD and the drive. We could record and play a high-definition television (HDTV) video (MPEG-2, 422P@HL) seamlessly at 144 Mbps over the entire area of the FOD and the FOD drive with broadcast video systems. We confirmed that the FOD and the FOD drive can record and play HDTV signals for professional broadcast use.

  3. RINGED ACCRETION DISKS: EQUILIBRIUM CONFIGURATIONS

    SciTech Connect

    Pugliese, D.; Stuchlík, Z. E-mail: zdenek.stuchlik@physics.cz

    2015-12-15

    We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.

  4. Disk Dispersal Around Young Stars

    NASA Technical Reports Server (NTRS)

    Hollenbach, David

    2004-01-01

    We first review the evidence pertaining to the lifetimes of planet-forming disks of gas and dust around young stars and discuss possible disk dispersal mechanisms: 1) viscous accretion of material onto the central source, 2) close stellar encounters, 3) stellar winds, and 4) photoevaporation caused by the heating of the disk surface by ultraviolet radiation. Photoevaporation is likely the most important dispersal mechanism for the outer regions of disks, and this talk focuses on the evaporation caused by the presence of a nearby, luminous star rather than the central star itself. We also focus on disks around low-mass stars like the Sun rather than high-mass stars, which we have treated previously. Stars often form in clusters and the ultraviolet flux from the most luminous star in the cluster can have a dramatic effect on the disk orbiting a nearby low-mass star. We apply our theoretical models to the evaporating protoplanetary disks (or "proplyds") in the Trapezium cluster in Orion, to the formation of gas giant planets like Jupiter around Sun-like stars in the Galaxy, and to the formation of Kuiper belts around low mass stars. We find a possible explanation for the differences between Neptune and Jupiter, and make a prediction concerning recent searches for giant planets in large clusters. We discuss recent models of the infrared spectra from gaseous disks around young stars.

  5. Scattering from Thin Dielectric Disks

    NASA Technical Reports Server (NTRS)

    Levine, D. M.; Schneider, A.; Lang, R. H.; Carter, H. G.

    1984-01-01

    A solution was obtained for scattering from thin dielectric disks by approximating the currents induced inside the disk with the currents which would exist inside a dielectric slab of the same thickness, orientation and dielectric properties. This approximation reduces to an electrostatic approximation when the disk thickness, T, is small compared to the wavelength of the incident radiation and the approximation yields a conventional physical optics solution when the dimension, A, characteristic of the geometrical cross section of the disk (e.g., the diameter of a circular disk) is large compared to wavelength. When the ratio A/T is sufficiently large the disk will always be in one or the other of these regimes (T lambda or kA1. Consequently, when A/T is large this solution provides a conventional approximation for the scattered fields which can be applied at all frequencies. As a check on this conclusion, a comparison was made between the theoretical and measured radar cross section of thin dielectric disks. Agreement was found for thin disks with both large and small values of kA.

  6. Temperature fluctuations driven by magnetorotational instability in protoplanetary disks

    SciTech Connect

    McNally, Colin P.; Hubbard, Alexander; Low, Mordecai-Mark Mac; Yang, Chao-Chin E-mail: ahubbard@amnh.org E-mail: ccyang@astro.lu.se

    2014-08-10

    The magnetorotational instability (MRI) drives magnetized turbulence in sufficiently ionized regions of protoplanetary disks, leading to mass accretion. The dissipation of the potential energy associated with this accretion determines the thermal structure of accreting regions. Until recently, the heating from the turbulence has only been treated in an azimuthally averaged sense, neglecting local fluctuations. However, magnetized turbulence dissipates its energy intermittently in current sheet structures. We study this intermittent energy dissipation using high resolution numerical models including a treatment of radiative thermal diffusion in an optically thick regime. Our models predict that these turbulent current sheets drive order-unity temperature variations even where the MRI is damped strongly by Ohmic resistivity. This implies that the current sheet structures where energy dissipation occurs must be well-resolved to correctly capture the flow structure in numerical models. Higher resolutions are required to resolve energy dissipation than to resolve the magnetic field strength or accretion stresses. The temperature variations are large enough to have major consequences for mineral formation in disks, including melting chondrules, remelting calcium-aluminum-rich inclusions, and annealing silicates; and may drive hysteresis: current sheets in MRI active regions could be significantly more conductive than the remainder of the disk.

  7. Tidally Induced Offset Disks in Magellanic Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Pardy, Stephen A.; D'Onghia, Elena; Athanassoula, E.; Wilcots, Eric M.; Sheth, Kartik

    2016-08-01

    Magellanic spiral galaxies are a class of one-armed systems that often exhibit an offset stellar bar and are rarely found around massive spiral galaxies. Using a set of N-body and hydrodynamic simulations, we consider a dwarf-dwarf galaxy interaction as the driving mechanism for the formation of this peculiar class of systems. We investigate here the relation between the dynamical, stellar, and gaseous disk center and the bar. In all our simulations the bar center always coincides with the dynamical center, while the stellar disk becomes highly asymmetric during the encounter, causing the photometric center of the Magellanic galaxy disk to become mismatched with both the bar and the dynamical center. The disk asymmetries persist for almost 2 Gyr, the time that it takes for the disk to be recentered with the bar, and well after the companion has passed. This explains the nature of the offset bar found in many Magellanic-type galaxies, including the Large Magellanic Cloud (LMC) and NGC 3906. In particular, these results, once applied to the LMC, suggest that the dynamical center should reside in the bar center instead of the H i center as previously assumed, pointing to a variation in the current estimate of the north component of the LMC proper motion.

  8. Tidally Induced Offset Disks in Magellanic Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Pardy, Stephen A.; D’Onghia, Elena; Athanassoula, E.; Wilcots, Eric M.; Sheth, Kartik

    2016-08-01

    Magellanic spiral galaxies are a class of one-armed systems that often exhibit an offset stellar bar and are rarely found around massive spiral galaxies. Using a set of N-body and hydrodynamic simulations, we consider a dwarf–dwarf galaxy interaction as the driving mechanism for the formation of this peculiar class of systems. We investigate here the relation between the dynamical, stellar, and gaseous disk center and the bar. In all our simulations the bar center always coincides with the dynamical center, while the stellar disk becomes highly asymmetric during the encounter, causing the photometric center of the Magellanic galaxy disk to become mismatched with both the bar and the dynamical center. The disk asymmetries persist for almost 2 Gyr, the time that it takes for the disk to be recentered with the bar, and well after the companion has passed. This explains the nature of the offset bar found in many Magellanic-type galaxies, including the Large Magellanic Cloud (LMC) and NGC 3906. In particular, these results, once applied to the LMC, suggest that the dynamical center should reside in the bar center instead of the H i center as previously assumed, pointing to a variation in the current estimate of the north component of the LMC proper motion.

  9. Approximate nearest neighbour field based optic disk detection.

    PubMed

    Ramakanth, S Avinash; Babu, R Venkatesh

    2014-01-01

    Approximate Nearest Neighbour Field maps are commonly used by computer vision and graphics community to deal with problems like image completion, retargetting, denoising, etc. In this paper, we extend the scope of usage of ANNF maps to medical image analysis, more specifically to optic disk detection in retinal images. In the analysis of retinal images, optic disk detection plays an important role since it simplifies the segmentation of optic disk and other retinal structures. The proposed approach uses FeatureMatch, an ANNF algorithm, to find the correspondence between a chosen optic disk reference image and any given query image. This correspondence provides a distribution of patches in the query image that are closest to patches in the reference image. The likelihood map obtained from the distribution of patches in query image is used for optic disk detection. The proposed approach is evaluated on five publicly available DIARETDB0, DIARETDB1, DRIVE, STARE and MESSIDOR databases, with total of 1540 images. We show, experimentally, that our proposed approach achieves an average detection accuracy of 99% and an average computation time of 0.2 s per image. PMID:24290957

  10. Optical disk technology and information.

    PubMed

    Goldstein, C M

    1982-02-12

    The optical video disk, spawned by the home entertainment industry, and its counterpart, the optical digital disk, both hold great promise for information storage and retrieval and the scientific enterprise. Optical digital disks for computer mass storage are currently under development by many firms. In addition, efforts are under way to allow encoding of digital information on video disks. This is desirable as an inexpensive publication medium for machine-readable data as well as a means of obtaining both video and digital information on one disk. Potential applications of this technology include inexpensive on-line storage, random access graphics to complement on-line information systems, hybrid network architectures, office automation systems, and archival storage.

  11. Multiwavelength search for protoplanetary disks

    NASA Technical Reports Server (NTRS)

    Neuhaeuser, Ralph; Schmidt-Kaler, Theodor

    1994-01-01

    Infrared emission of circumstellar dust was observed for almost one hundred T Tauri stars. This dust is interpreted to be part of a protoplanetary disk orbiting the central star. T Tauri stars are young stellar objects and evolve into solar type stars. Planets are believed to form in these disks. The spectral energy distribution of a disk depends on its temperature profile. Different disk regions emit at different wavelengths. The disk-star boundary layer is hot and emits H(alpha) radiation. Inner disk regions at around 1 AU with a temperature of a few hundred Kelvin can be probed in near infrared wavelength regimes. Outer disk regions at around 100 AU distance from the star are colder and emit far infrared and sub-millimeter radiation. Also, X-ray emission from the stellar surface can reveal information on disk properties. Emission from the stellar surface and the boundary layer may be shielded by circumstellar gas and dust. T Tauri stars with low H(alpha) emission, i.e. no boundary layer, show stronger X-ray emission than classical T Tauri stars, because the inner disk regions of weak emission-line T Tauri stars may be clear of material. In this paper, first ROSAT all sky survey results on the X-ray emission of T Tauri stars and correlations between X-ray luminosity and properties of T Tauri disks are presented. Due to atmospheric absorption, X-ray and most infrared observations cannot be carried out on Earth, but from Earth orbiting satellites (e.g. IRAS, ROSAT, ISO) or from lunar based observatories, which would have special advantages such as a stable environment.

  12. Berkeley Disk Resource Manager

    2004-02-27

    The Berkeley Disk Resource Manager (B-DRM) is a middleware component whose function is to provide dynamic space allocation and file management of a shared disk system on the Grid. It provides space allocation and dynamic information on storage availability for the planning and execution of Grid jobs. The B-DRM manages two types of resources: space and files. Vi1en managing space, the B-DRM allocates space to the requesting client based on a default space quota, Thenmore » managing files, the B-DRM allocates space for files, invokes file transfer services to move files into the space, pins files for a certain lifetime, releases files upon the client’s request, and uses file replacement policies to optimize the use of the shared space. The B-DRM is designed to provide effective sharing of files, by monitoring the activity of shared files, and making dynamic decisions on which files to replace when space is needed. In addition, the B-DRM performs automatic garbage collection of unused files when space is needed by removing selected files that were released by the client or whose lifetime has expired. The BDRM supports requests to get multiple files in a single call, manages a queue of the requested files, brings in as many files as the space quota permits, and continues to reuse the space when files are released to stream files to the client until the entire request is satisfied. Similarly, the B-DRM supports requests to put multiple files into its space, streaming files into the allocated space and reusing the space if necessary.« less

  13. Accretion of solid materials onto circumplanetary disks from protoplanetary disks

    SciTech Connect

    Tanigawa, Takayuki; Maruta, Akito; Machida, Masahiro N.

    2014-04-01

    We investigate the accretion of solid materials onto circumplanetary disks from heliocentric orbits rotating in protoplanetary disks, which is a key process for the formation of regular satellite systems. In the late stage of the gas-capturing phase of giant planet formation, the accreting gas from protoplanetary disks forms circumplanetary disks. Since the accretion flow toward the circumplanetary disks affects the particle motion through gas drag force, we use hydrodynamic simulation data for the gas drag term to calculate the motion of solid materials. We consider a wide range of size for the solid particles (10{sup –2}-10{sup 6} m), and find that the accretion efficiency of the solid particles peaks around 10 m sized particles because energy dissipation of drag with circum-planetary disk gas in this size regime is most effective. The efficiency for particles larger than 10 m becomes lower because gas drag becomes less effective. For particles smaller than 10 m, the efficiency is lower because the particles are strongly coupled with the background gas flow, which prevents particles from accretion. We also find that the distance from the planet where the particles are captured by the circumplanetary disks is in a narrow range and well described as a function of the particle size.

  14. Cold CO Gas in the Disk of the Young Eruptive Star EX Lup

    NASA Astrophysics Data System (ADS)

    Kóspál, Á.; Ábrahám, P.; Csengeri, T.; Gorti, U.; Henning, Th.; Moór, A.; Semenov, D. A.; Szűcs, L.; Güsten, R.

    2016-04-01

    EX Lupi-type objects (EXors) form a sub-class of T Tauri stars, defined by sudden sporadic flare-ups of 1-5 mag at optical wavelengths. These eruptions are attributed to enhanced mass accretion from the circumstellar disk to the star, and may constitute important events in shaping the structure of the inner disk and the forming planetary system. Although disk properties must play a fundamental role in driving the outbursts, they are surprisingly poorly known. In order to characterize the dust and gas components of EXor disks, here we report on observations of the 12CO J = 3-2 and 4-3 lines, and the 13CO 3-2 line in EX Lup, the prototype of the EXor class. We reproduce the observed line fluxes and profiles with a line radiative transfer model and compare the obtained parameters with corresponding ones of other T Tauri disks.

  15. Low-state disks and low-beta disks

    NASA Technical Reports Server (NTRS)

    Mineshige, Shin; Kusnose, Masaaki; Matsumoto, Ryoji

    1995-01-01

    Stellar black hole candidates (BHCs) exhibit bimodal spectral states. We calculate nonthermal disk spectra, demonstrating that a large photon index (alpha (sub x) approximately 2-3) observed in the soft (high) state is due to a copious soft photon supply, whereas soft photon starvation leads to a smaller index (alpha (sub x) approximately 1.5-2) in the hard (low) state. Thus, the absence of the soft component flux in the low state cannot be due to obscuration. A possible disk configuration during the low state is discussed. We proposed that a low-state disk may be a low-beta disk in which magnetic pressure may exceed gas pressure becuase of the suppression of field escape by a strong shear. As a result, disk material will take the form of blobs constricted by mainly toroidal magnetic fields. Fields are dissipated mainly by occasional reconnection events with a huge energy release. This will account for large-amplitude, aperiodic X-ray variations (flickering) and high-energy radiation with small alpha(sub x) from hard state BHCs and possibly from active galactic nuclei. Further, we propose a hysteretic relation between the mass-flow rate and plasma-beta, a ratio of gas pressure to magnetic pressure, for the spectral evolution of transient BHCs. The disk is in the low-beta state in quiescence and early rise. The low-beta disk is optically thin and affected by advection. A hard-to-soft transition occurs before the peak luminosity, since there is no advection-dominated branch at higher luminosities. An optically thick, high-beta disk appears at small radii. In the decay phase of the light curve, the standard-type disk becomes effectively optically thin, when a soft-hard transition is triggered. High-beta plasmas in the main body shrink to form minute blobs, and low-beta coronal plasma fills interblob space.

  16. Resonantly driven nonlinear density waves in protostellar disks

    NASA Technical Reports Server (NTRS)

    Yuan, Chi; Cassen, Pat

    1994-01-01

    Recent observations of binary, pre-main-sequence, solar-type stars provide evidence that such systems may coexist with circumstellar disks. The binary disk systems, besides being of general interest for the study of star formation, potentially provide useful tests of companion-disk interaction theories prominent in current hypotheses of planet formation. In this paper, we apply an asymptotic analysis of the nonlinear, resonant interaction of a stellar companion with a disk to understand the dependence of such interactions on the properties of the system: the binary mass ratio, the physical properties of the disk, and the effective dissipation (treated herein as viscosity). The method is based on a WKBJ approximation and exploits the conditions that the disk is thin and much less massive than the primary, but does not require that the companion-induced disturbance be small. Both isothermal and adiabatic responses are treated. Only circular orbit resonances are considered in this paper. It is demonstrated that the temperature of the disk as well as the relative mass of the companion affects the degree of nonlinearity, and that nonlinearity promotes high wave compression ratios, long wavelengths, and increased propagation distances. Nevertheless, the total torque exerted between the companion and the disk is well represented by linear theory. The amplitudes of density disturbances are reduced by viscosity and nonisothermality. Because resonant interactions are generally strong and capable of driving rapid evolution, one might expect observations of systems undergoing strong, resonant-driven evolution to be rare. In this connection, it is pointed out that the m = 1 resonance is distinguished by being anomalously weaker than the others and is therefore of observational interest. It is speculated that, in conditions of intrinsically small dissipation, the propagation of resonant-driven density waves is limited by the tendency of their wavelength to diminish with distance

  17. Protoplanetary and Debris Disk Morphologies

    NASA Astrophysics Data System (ADS)

    Lomax, Jamie R.; Wisniewski, John P.; Grady, Carol A.; McElwain, Michael W.; Hashimoto, Jun; Donaldson, Jessica; Debes, John H.; Malumuth, Eliot; Roberge, Aki; Weinberger, Alycia J.; SEEDS Team

    2016-01-01

    The types of planets that form around other stars are highly dependent on their natal disk conditions. Therefore, the composition, morphology, and distribution of material in protoplanetary and debris disks are important for planet formation. Here we present the results of studies of two disk systems: AB Aur and AU Mic.The circumstellar disk around the Herbig Ae star AB Aur has many interesting features, including spirals, asymmetries, and non-uniformities. However, comparatively little is known about the envelope surrounding the system. Recent work by Tang et al (2012) has suggested that the observed spiral armss may not in fact be in the disk, but instead are due to areas of increased density in the envelope and projection effects. Using Monte Carlo modeling, we find that it is unlikely that the envelope holds enough material to be responsible for such features and that it is more plausible that they form from disk material. Given the likelihood that gravitational perturbations from planets cause the observed spiral morphology, we use archival H band observations of AB Aur with a baseline of 5.5 years to determine the locations of possible planets.The AU Mic debris disk also has many interesting morphological features. Because its disk is edge on, the system is an ideal candidate for color studies using coronagraphic spectroscopy. Spectra of the system were taken by placing a HST/STIS long slit parallel to and overlapping the disk while blocking out the central star with an occulting fiducial bar. Color gradients may reveal the chemical processing that is occuring within the disk. In addition, it may trace the potential composition and architecture of any planetary bodies in the system because collisional break up of planetesimals produces the observed dust in the system. We present the resulting optical reflected spectra (5200 to 10,200 angstroms) from this procedure at several disk locations. We find that the disk is bluest at the innermost locations of the

  18. Safe driving for teens

    MedlinePlus

    Driving and teenagers; Teens and safe driving; Automobile safety - teenage drivers ... Make a Commitment to Safety Teens also need to commit to being safe and responsible drivers in order to improve the odds in their favor. Reckless driving ...

  19. METAL ACCRETION ONTO WHITE DWARFS CAUSED BY POYNTING-ROBERTSON DRAG ON THEIR DEBRIS DISKS

    SciTech Connect

    Rafikov, Roman R.

    2011-05-01

    Recent discoveries of compact (sizes {approx}disks around more than a dozen metal-rich white dwarfs (WDs) suggest that pollution of these stars with metals may be caused by accretion of high-Z material from the disk. But the mechanism responsible for efficient transfer of mass from a particulate disk to the WD atmosphere has not yet been identified. Here we demonstrate that radiation of the WD can effectively drive accretion of matter through the disk toward the sublimation radius (located at several tens of WD radii), where particles evaporate, feeding a disk of metal gas accreting onto the WD. We show that, contrary to some previous claims, Poynting-Robertson (PR) drag on the debris disk is effective at providing metal accretion rate M-dot{sub PR}{approx}10{sup 8} g s{sup -1} and higher, scaling quadratically with WD effective temperature. We compare our results with observations and show that, as expected, no WD hosting a particulate debris disk shows evidence of metal accretion rate below that produced by the PR drag. Existence of WDs accreting metals at rates significantly higher than M-dot{sub PR} suggests that another mechanism in addition to the PR drag drives accretion of high-Z elements in these systems.

  20. Star formation in gravitationally unstable disk galaxies: From clouds to disks

    NASA Astrophysics Data System (ADS)

    Goldbaum, Nathan J.

    In Part I, I examine the dynamics of giant molecular clouds through simplified semianalytic models. I focus on the growth of clouds as they accrete gas. Our model clouds reproduce the scaling relations observed in both galactic and extragalactic clouds: clouds attain virial equilibrium and grow maintaining roughly constant surface densities, Sigma ≃ 50--200 M[special character omitted]pc-2 and that clouds grow along the well-known linewidth-size relation. We compare our models to observations of giant molecular clouds and associated young star clusters in the Large Magellanic Cloud, finding good agreement between our models and the relationship between H ii regions, young star clusters, and giant molecular clouds. The role of gravitational-instability driven turbulence in determining the structure and evolution of disk galaxies, and the extent to which gravity rather than feed- back can explain galaxy properties, remains an open question. To address it, in Part II I present high resolution adaptive mesh refinement simulations of Milky Way-like isolated disk galaxies, including realistic heating and cooling rates and a physically motivated prescription for star formation. The simulations resolve densities typical of the transition from atomic to molecular hydrogen, capturing the formation of gravitationally bound clouds. We present simulations both with and without stellar feedback from Type II supernova blast waves. We find gravitational instability alone can drive substantial turbulence in galactic disks and reproduce some properties of nearby star forming galaxies: Qtotal [special character omitted] 1, ceff ˜ 10 km/s, without stellar feedback. Including feedback produces an ISM with a structure similar to observed disks, with the bulk of the gas in the warm or cold atomic phase, and the remainder locked up in short-lived gravitationally bound clouds. We investigate radial flows of gas and find that radial migration of gas due to gravitational instability can

  1. Photoevaporating Disks Around Young Stars

    NASA Technical Reports Server (NTRS)

    Hollenbach, David

    2004-01-01

    Ultraviolet radiation from the central star or from a nearby massive star heats the surfaces of protoplanetary disks and causes the outer, less gravitationally bound part of the disks, to photoevaporate into interstellar space. Photoevaporation is likely the most important dispersal mechanism for the outer regions of disks. We focus in this talk on disks around low-mass stars like the Sun rather than high-mass stars, which we have treated previously. Stars often form in clusters and the ultraviolet flux from the most luminous star in the cluster can have a dramatic effect on the disk orbiting a nearby low-mass star. We apply our theoretical models to the evaporating protoplanetary disks (or "proplyds") in the Trapezium cluster in Orion, to the formation of gas giant planets like Jupiter around Sun-like stars in the Galaxy, and to the formation of Kuiper belts around low mass stars. We discuss recent models of the effects of the radiation from the central low mass star including both the predicted infrared spectra from the heated disks as well as preliminary results on the photoevaporation rates.

  2. Disk Dispersal Around Young Stars

    NASA Technical Reports Server (NTRS)

    Hollenbach, David; Yorke, Harold W.; Johnstone, Doug; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    We review the evidence pertaining to the lifetimes of planet-forming disks and discuss possible disk dispersal mechanisms: 1) viscous accretion of material onto the central source, 2) close stellar encounters, 3) stellar winds, and 4) by ultraviolet radiation. We focus on 3) and 4) and describe the quasi-steady state appearance and the overall evolution of disks under the influence of winds and radiation from the central star and of radiation from external OB stars. Viscous accretion likely dominates disk dispersal in the, inner disk (r approx. less than A 10 AU), while photoevaporation is the principal process of disk dispersal outside of r approximately greater than 10 AU. Disk dispersed timescales are compared and discussed in relation to theoretical estimates for planet formation timescales. Photoevaporation may explain the large differences in the hydrogen content of the giant planets in the solar system. The commonly held belief that our early sun's stellar wind dispersed the solar nebula is called into question.

  3. Extended Driving Impairs Nocturnal Driving Performances

    PubMed Central

    Sagaspe, Patricia; Taillard, Jacques; Åkerstedt, Torbjorn; Bayon, Virginie; Espié, Stéphane; Chaumet, Guillaume; Bioulac, Bernard; Philip, Pierre

    2008-01-01

    Though fatigue and sleepiness at the wheel are well-known risk factors for traffic accidents, many drivers combine extended driving and sleep deprivation. Fatigue-related accidents occur mainly at night but there is no experimental data available to determine if the duration of prior driving affects driving performance at night. Participants drove in 3 nocturnal driving sessions (3–5am, 1–5am and 9pm–5am) on open highway. Fourteen young healthy men (mean age [±SD] = 23.4 [±1.7] years) participated Inappropriate line crossings (ILC) in the last hour of driving of each session, sleep variables, self-perceived fatigue and sleepiness were measured. Compared to the short (3–5am) driving session, the incidence rate ratio of inappropriate line crossings increased by 2.6 (95% CI, 1.1 to 6.0; P<.05) for the intermediate (1–5am) driving session and by 4.0 (CI, 1.7 to 9.4; P<.001) for the long (9pm–5am) driving session. Compared to the reference session (9–10pm), the incidence rate ratio of inappropriate line crossings were 6.0 (95% CI, 2.3 to 15.5; P<.001), 15.4 (CI, 4.6 to 51.5; P<.001) and 24.3 (CI, 7.4 to 79.5; P<.001), respectively, for the three different durations of driving. Self-rated fatigue and sleepiness scores were both positively correlated to driving impairment in the intermediate and long duration sessions (P<.05) and increased significantly during the nocturnal driving sessions compared to the reference session (P<.01). At night, extended driving impairs driving performances and therefore should be limited. PMID:18941525

  4. Gravitational instabilities in protostellar disks

    NASA Technical Reports Server (NTRS)

    Tohline, J. E.

    1994-01-01

    The nonaxisymmetric stability of self-gravitating, geometrically thick accretion disks has been studied for protostellar systems having a wide range of disk-to-central object mass ratios. Global eigenmodes with four distinctly different characters were identified using numerical, nonlinear hydrodynamic techniques. The mode that appears most likely to arise in normal star formation settings, however, resembles the 'eccentric instability' that was identified earlier in thin, nearly Keplerian disks: It presents an open, one-armed spiral pattern that sweeps continuously in a trailing direction through more than 2-pi radians, smoothly connecting the inner and outer edges of the disk, and requires cooperative motion of the point mass for effective amplification. This particular instability promotes the development of a single, self-gravitating clump of material in orbit about the point mass, so its routine appearance in our simulations supports the conjecture that the eccentric instability provides a primary route to the formation of short-period binaries in protostellar systems.

  5. Gravitational Instabilities in Circumstellar Disks

    NASA Astrophysics Data System (ADS)

    Kratter, Kaitlin; Lodato, Giuseppe

    2016-09-01

    Star and planet formation are the complex outcomes of gravitational collapse and angular momentum transport mediated by protostellar and protoplanetary disks. In this review, we focus on the role of gravitational instability in this process. We begin with a brief overview of the observational evidence for massive disks that might be subject to gravitational instability and then highlight the diverse ways in which the instability manifests itself in protostellar and protoplanetary disks: the generation of spiral arms, small-scale turbulence-like density fluctuations, and fragmentation of the disk itself. We present the analytic theory that describes the linear growth phase of the instability supplemented with a survey of numerical simulations that aim to capture the nonlinear evolution. We emphasize the role of thermodynamics and large-scale infall in controlling the outcome of the instability. Despite apparent controversies in the literature, we show a remarkable level of agreement between analytic predictions and numerical results. In the next part of our review, we focus on the astrophysical consequences of the instability. We show that the disks most likely to be gravitationally unstable are young and relatively massive compared with their host star, Md/M*≥0.1. They will develop quasi-stable spiral arms that process infall from the background cloud. Although instability is less likely at later times, once infall becomes less important, the manifestations of the instability are more varied. In this regime, the disk thermodynamics, often regulated by stellar irradiation, dictates the development and evolution of the instability. In some cases the instability may lead to fragmentation into bound companions. These companions are more likely to be brown dwarfs or stars than planetary mass objects. Finally, we highlight open questions related to the development of a turbulent cascade in thin disks and the role of mode-mode coupling in setting the maximum angular

  6. CHEMICAL PROCESSES IN PROTOPLANETARY DISKS

    SciTech Connect

    Walsh, Catherine; Millar, T. J.; Nomura, Hideko

    2010-10-20

    We have developed a high-resolution combined physical and chemical model of a protoplanetary disk surrounding a typical T Tauri star. Our aims were to use our model to calculate the chemical structure of disks on small scales (submilliarcsecond in the inner disk for objects at the distance of Taurus, {approx}140 pc) to investigate the various chemical processes thought to be important in disks and to determine potential molecular tracers of each process. Our gas-phase network was extracted from the UMIST Database for Astrochemistry to which we added gas-grain interactions including freezeout and thermal and non-thermal desorption (cosmic-ray-induced desorption, photodesorption, and X-ray desorption), and a grain-surface network. We find that cosmic-ray-induced desorption has the least effect on our disk chemical structure while photodesorption has a significant effect, enhancing the abundances of most gas-phase molecules throughout the disk and affecting the abundances and distribution of HCN, CN, and CS, in particular. In the outer disk, we also see enhancements in the abundances of H{sub 2}O and CO{sub 2}. X-ray desorption is a potentially powerful mechanism in disks, acting to homogenize the fractional abundances of gas-phase species across the depth and increasing the column densities of most molecules, although there remain significant uncertainties in the rates adopted for this process. The addition of grain-surface chemistry enhances the fractional abundances of several small complex organic molecules including CH{sub 3}OH, HCOOCH{sub 3}, and CH{sub 3}OCH{sub 3} to potentially observable values (i.e., a fractional abundance of {approx}>10{sup -11}).

  7. Centrally-Rupturing Squib-Closure Disks

    NASA Technical Reports Server (NTRS)

    Richter, R.

    1986-01-01

    Rupture-disk design makes squib action more predictable. In new design, center of rupture disk contains cruciform indentation in which thickness reduced to about 0.5 mil (0.013 mm). Reduces strength of center of rupture disk in same manner as that of pull tabs on beverage cans; therefore, disk will fail predictably in center.

  8. Coaxial Redundant Drives

    NASA Technical Reports Server (NTRS)

    Brissette, R.

    1983-01-01

    Harmonic drives allow redundancy and high out put torque in small package. If main drive fails, standby drive takes over and produces torque along same axis as main drive. Uses include power units in robot for internal pipeline inspection, manipulators in deep submersible probes or other applications in which redundancy protects against costly failures.

  9. MIGRATION OF EXTRASOLAR PLANETS: EFFECTS FROM X-WIND ACCRETION DISKS

    SciTech Connect

    Adams, Fred C.; Cai, Mike J.; Lizano, Susana

    2009-09-10

    Magnetic fields are dragged in from the interstellar medium during the gravitational collapse that forms star/disk systems. Consideration of mean field magnetohydrodynamics in these disks shows that magnetic effects produce sub-Keplerian rotation curves and truncate the inner disk. This Letter explores the ramifications of these predicted disk properties for the migration of extrasolar planets. Sub-Keplerian flow in gaseous disks drives a new migration mechanism for embedded planets and modifies the gap-opening processes for larger planets. This sub-Keplerian migration mechanism dominates over Type I migration for sufficiently small planets (m{sub P} {approx}< 1 M {sub +}) and/or close orbits (r {approx}< 1 AU). Although the inclusion of sub-Keplerian torques shortens the total migration time by only a moderate amount, the mass accreted by migrating planetary cores is significantly reduced. Truncation of the inner disk edge (for typical system parameters) naturally explains final planetary orbits with periods P {approx} 4 days. Planets with shorter periods, P {approx} 2 days, can be explained by migration during FU-Orionis outbursts, when the mass accretion rate is high and the disk edge moves inward. Finally, the midplane density is greatly increased at the inner truncation point of the disk (the X-point); this enhancement, in conjunction with continuing flow of gas and solids through the region, supports the in situ formation of giant planets.

  10. Cold Dark Matter Substructure and Galactic Disks I: Morphological Signatures of Hierarchical SatelliteAccretion

    SciTech Connect

    Kazantzidis, Stelios; Bullock, James S.; Zentner, Andrew R.; Kravtsov, Andrey V.; Moustakas, Leonidas A.

    2007-12-03

    primarily as a result of the interaction with the most massive subhalo. We conclude that satellite-disk encounters of the kind expected in {Lambda}CDM models can induce morphological features in galactic disks that are similar to those being discovered in the Milky Way, M31, and in other nearby and distant disk galaxies. These results highlight the significant role of CDM substructure in setting the structure of disk galaxies and driving galaxy evolution. Upcoming galactic structure surveys and astrometric satellites may be able to distinguish between competing cosmological models by testing whether the detailed structure of galactic disks is as excited as predicted by the CDM paradigm.

  11. Outflows from Accretion Disks around Compact Objects

    NASA Astrophysics Data System (ADS)

    Jiao, Cheng-Liang; Wu, Xue-Bing

    2013-02-01

    We solve the set of hydrodynamic equations for accretion disks in the spherical coordinates (rθφ) to obtain the explicit structure along the θ direction. The results display thinner, quasi-Keplerian disks for Shakura-Sunyaev Disks (SSDs) and thicker, sub-Keplerian disks for Advection Dominated Accretion Flows (ADAFs) and slim disks, which are consistent with previous popular analytical models, while an inflow region and an outflow region always exist, which supports the results of some recent numerical simulation works. Our results indicate that the outflows should be common in various accretion disks and stronger in slim disks and ADAFs.

  12. GROWTH OF GRAINS IN BROWN DWARF DISKS

    SciTech Connect

    Meru, Farzana; Galvagni, Marina; Olczak, Christoph

    2013-09-01

    We perform coagulation and fragmentation simulations using the new physically motivated model by Garaud et al. to determine growth locally in brown dwarf disks. We show that large grains can grow and that if brown dwarf disks are scaled-down versions of T Tauri disks (in terms of stellar mass, disk mass, and disk radius) growth at an equivalent location with respect to the disk truncation radius can occur to the same size in both disks. We show that similar growth occurs because the collisional timescales in the two disks are comparable. Our model may therefore potentially explain the recent observations of grain growth to millimeter sizes in brown dwarf disks, as seen in T Tauri disks.

  13. D/H Measurements in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Keane, Jacqueline

    2007-05-01

    It is generally accepted that a considerable fraction of early Earths water was delivered by asteroids, comets, and planetesimals. The local planets and comets were assembled from the material in circumstellar disks, which in turn evolved from the envelopes and clouds surrounding protostars. Here at the University of Hawaii-NASA Astrobiology Institute the key research goal is to connect the major aspects of starformation and planetary water, in effect aiming to understand the terms of a "watery Drake Equation". To achieve this goal, we use the infrared and submillimeter telescopes on Mauna Kea to survey several molecules in a variety of starforming clouds. Observations show that water is the most common interstellar ice component. Moreover, there is evidence for enhanced water ice formation in the inner parts of protostellar envelopes. Simple molecules form on the icy grain mantles from surface reactions or thermal annealing of the ice, in turn these molecules drive a rich gas phase chemistry that produces more complex prebiotic molecules. Ice bands, therefore, serve as unique tracers of the chemical and thermal history of circumstellar environments. Here we will discuss constraints on the reservoirs of water and organic molecules in starforming regions, taking in to account the latest observational and theoretical measurements. Recent observations of a number of deuterated molecules, including water, will be discussed in terms of grain surface chemistry and its role in driving the enhanced fractionation of methanol like species, while at the same time inhibiting the deuteration of water.

  14. 75 FR 65517 - Western Digital Technologies, Inc., Corporate Headquarters/Hard Drive Development Division, Lake...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-25

    ... determination was issued on August 5, 2010 and published in the Federal Register on August 23, 2010 (75 FR 51849... Employment and Training Administration Western Digital Technologies, Inc., Corporate Headquarters/Hard Drive... TAA. The request for reconsideration alleges that increased imports of articles (disk drives)...

  15. Solar array drive system

    NASA Technical Reports Server (NTRS)

    Berkopec, F. D.; Sturman, J. C.; Stanhouse, R. W.

    1976-01-01

    A solar array drive system consisting of a solar array drive mechanism and the corresponding solar array drive electronics is being developed. The principal feature of the solar array drive mechanism is its bidirectional capability which enables its use in mechanical redundancy. The solar array drive system is of a widely applicable design. This configuration will be tested to determine its acceptability for generic mission sets. Foremost of the testing to be performed is the testing for extended duration.

  16. DISK IMAGING SURVEY OF CHEMISTRY WITH SMA. II. SOUTHERN SKY PROTOPLANETARY DISK DATA AND FULL SAMPLE STATISTICS

    SciTech Connect

    Oeberg, Karin I.; Qi Chunhua; Andrews, Sean M.; Espaillat, Catherine; Wilner, David J.; Fogel, Jeffrey K. J.; Bergin, Edwin A.; Pascucci, Ilaria; Kastner, Joel H.

    2011-06-20

    This is the second in a series of papers based on data from DISCS, a Submillimeter Array observing program aimed at spatially and spectrally resolving the chemical composition of 12 protoplanetary disks. We present data on six Southern sky sources-IM Lup, SAO 206462 (HD 135344b), HD 142527, AS 209, AS 205, and V4046 Sgr-which complement the six sources in the Taurus star-forming region reported previously. CO 2-1 and HCO{sup +} 3-2 emission are detected and resolved in all disks and show velocity patterns consistent with Keplerian rotation. Where detected, the emission from DCO{sup +} 3-2, N{sub 2}H{sup +} 3-2, H{sub 2}CO 3{sub 03} - 2{sub 02} and 4{sub 14} - 3{sub 13}, HCN 3-2, and CN 2{sub 33/4/2} - 1{sub 22/3/1} are also generally spatially resolved. The detection rates are highest toward the M and K stars, while the F star SAO 206462 has only weak CN and HCN emission, and H{sub 2}CO alone is detected toward HD 142527. These findings together with the statistics from the previous Taurus disks support the hypothesis that high detection rates of many small molecules depend on the presence of a cold and protected disk midplane, which is less common around F and A stars compared to M and K stars. Disk-averaged variations in the proposed radiation tracer CN/HCN are found to be small, despite a two orders of magnitude range of spectral types and accretion rates. In contrast, the resolved images suggest that the CN/HCN emission ratio varies with disk radius in at least two of the systems. There are no clear observational differences in the disk chemistry between the classical/full T Tauri disks and transitional disks. Furthermore, the observed line emission does not depend on the measured accretion luminosities or the number of infrared lines detected, which suggests that the chemistry outside of 100 AU is not coupled to the physical processes that drive the chemistry in the innermost few AU.

  17. SNOW LINES AS PROBES OF TURBULENT DIFFUSION IN PROTOPLANETARY DISKS

    SciTech Connect

    Owen, James E.

    2014-07-20

    Sharp chemical discontinuities can occur in protoplanetary disks, particularly at ''snow lines'' where a gas-phase species freezes out to form ice grains. Such sharp discontinuities will diffuse out due to the turbulence suspected to drive angular momentum transport in accretion disks. We demonstrate that the concentration gradient—in the vicinity of the snow line—of a species present outside a snow line but destroyed inside is strongly sensitive to the level of turbulent diffusion (provided the chemical and transport timescales are decoupled) and provides a direct measurement of the radial ''Schmidt number'' (the ratio of the angular momentum transport to radial turbulent diffusion). Taking as an example the tracer species N{sub 2}H{sup +}, which is expected to be destroyed inside the CO snow line (as recently observed in TW Hya) we show that ALMA observations possess significant angular resolution to constrain the Schmidt number. Since different turbulent driving mechanisms predict different Schmidt numbers, a direct measurement of the Schmidt number in accretion disks would allow inferences to be made about the nature of the turbulence.

  18. Defect reduction of patterned media templates and disks

    NASA Astrophysics Data System (ADS)

    Luo, Kang; Ha, Steven; Fretwell, John; Ramos, Rick; Ye, Zhengmao; Schmid, Gerard; LaBrake, Dwayne; Resnick, Douglas J.; Sreenivasan, S. V.

    2010-05-01

    Imprint lithography has been shown to be an effective technique for the replication of nano-scale features. Acceptance of imprint lithography for manufacturing will require a demonstration of defect levels commensurate with cost-effective device production. This work summarizes the results of defect inspections of hard disks patterned using Jet and Flash Imprint Lithography (J-FILTM). Inspections were performed with optical based automated inspection tools. For the hard drive market, it is important to understand the defectivity of both the template and the imprinted disk. This work presents a methodology for automated pattern inspection and defect classification for imprint-patterned media. Candela CS20 and 6120 tools from KLA-Tencor map the optical properties of the disk surface, producing highresolution grayscale images of surface reflectivity and scattered light. Defects that have been identified in this manner are further characterized according to the morphology. The imprint process was tested after optimizing both the disk cleaning and adhesion layers processes that precede imprinting. An extended imprint run was performed and both the defect types and trends are reported.

  19. ACCRETING CIRCUMPLANETARY DISKS: OBSERVATIONAL SIGNATURES

    SciTech Connect

    Zhu, Zhaohuan

    2015-01-20

    I calculate the spectral energy distributions of accreting circumplanetary disks using atmospheric radiative transfer models. Circumplanetary disks only accreting at 10{sup –10} M {sub ☉} yr{sup –1} around a 1 M{sub J} planet can be brighter than the planet itself. A moderately accreting circumplanetary disk ( M-dot ∼10{sup −8} M{sub ⊙} yr{sup −1}; enough to form a 10 M{sub J} planet within 1 Myr) around a 1 M{sub J} planet has a maximum temperature of ∼2000 K, and at near-infrared wavelengths (J, H, K bands), this disk is as bright as a late-M-type brown dwarf or a 10 M{sub J} planet with a ''hot start''. To use direct imaging to find the accretion disks around low-mass planets (e.g., 1 M{sub J} ) and distinguish them from brown dwarfs or hot high-mass planets, it is crucial to obtain photometry at mid-infrared bands (L', M, N bands) because the emission from circumplanetary disks falls off more slowly toward longer wavelengths than those of brown dwarfs or planets. If young planets have strong magnetic fields (≳100 G), fields may truncate slowly accreting circumplanetary disks ( M-dot ≲10{sup −9} M{sub ⊙} yr{sup −1}) and lead to magnetospheric accretion, which can provide additional accretion signatures, such as UV/optical excess from the accretion shock and line emission.

  20. Magneto-optical disk as a CD-ROM development tool

    SciTech Connect

    Houghton, F.K.; Leuttgen, A.L.

    1991-01-01

    Computer-based training (CBT) programs are becoming more sophisticated. They are no longer electronic papers, but are large multi-media systems which incorporate computer-generated graphics and digital audio as well as text. The numerous computer-generated graphics, large audio files, and complex hypertext structures place a great demand on the computer system's binary storage capacity (disk space). If the use of interactive video is prohibitive because of cost or other restraints, a compact disk read-only memory (CD-ROM) delivery system is a viable delivery system. Because CD-ROM is a read-only system, the development and delivery system must be different. There are several alternatives for the development system, including a very large hard-disk and a magneto-optical disk drive. Recently a CBT package for radiation protection workers (RPT's) that was developed at Los Alamos National Laboratory (LANL) was delivered on CD-ROM. A magneto-optical drive was used for the development system. This paper will discuss some reasons for selecting a CD-ROM delivery system and the use of magneto-optical disk drive as the development system.

  1. Mass Transport and Turbulence in Gravitationally Unstable Disk Galaxies. II: The Effects of Star Formation Feedback

    NASA Astrophysics Data System (ADS)

    Goldbaum, Nathan J.; Krumholz, Mark R.; Forbes, John C.

    2016-08-01

    Self-gravity and stellar feedback are capable of driving turbulence and transporting mass and angular momentum in disk galaxies, but the balance between them is not well understood. In the previous paper in this series, we showed that gravity alone can drive turbulence in galactic disks, regulate their Toomre Q parameters to ˜1, and transport mass inwards at a rate sufficient to fuel star formation in the centers of present-day galaxies. In this paper we extend our models to include the effects of star formation feedback. We show that feedback suppresses galaxies’ star formation rates by a factor of ˜5 and leads to the formation of a multi-phase atomic and molecular interstellar medium. Both the star formation rate and the phase balance produced in our simulations agree well with observations of nearby spirals. After our galaxies reach steady state, we find that the inclusion of feedback actually lowers the gas velocity dispersion slightly compared to the case of pure self-gravity, and also slightly reduces the rate of inward mass transport. Nevertheless, we find that, even with feedback included, our galactic disks self-regulate to Q ˜ 1, and transport mass inwards at a rate sufficient to supply a substantial fraction of the inner disk star formation. We argue that gravitational instability is therefore likely to be the dominant source of turbulence and transport in galactic disks, and that it is responsible for fueling star formation in the inner parts of galactic disks over cosmological times.

  2. BIPOLAR JETS LAUNCHED FROM MAGNETICALLY DIFFUSIVE ACCRETION DISKS. I. EJECTION EFFICIENCY VERSUS FIELD STRENGTH AND DIFFUSIVITY

    SciTech Connect

    Sheikhnezami, Somayeh; Fendt, Christian; Porth, Oliver; Vaidya, Bhargav; Ghanbari, Jamshid E-mail: fendt@mpia.de

    2012-09-20

    We investigate the launching of jets and outflows from magnetically diffusive accretion disks. Using the PLUTO code, we solve the time-dependent resistive magnetohydrodynamic equations taking into account the disk and jet evolution simultaneously. The main question we address is which kind of disks launch jets and which kind of disks do not? In particular, we study how the magnitude and distribution of the (turbulent) magnetic diffusivity affect mass loading and jet acceleration. We apply a turbulent magnetic diffusivity based on {alpha}-prescription, but also investigate examples where the scale height of diffusivity is larger than that of the disk gas pressure. We further investigate how the ejection efficiency is governed by the magnetic field strength. Our simulations last for up to 5000 dynamical timescales corresponding to 900 orbital periods of the inner disk. As a general result, we observe a continuous and robust outflow launched from the inner part of the disk, expanding into a collimated jet of superfast-magnetosonic speed. For long timescales, the disk's internal dynamics change, as due to outflow ejection and disk accretion the disk mass decreases. For magnetocentrifugally driven jets, we find that for (1) less diffusive disks, (2) a stronger magnetic field, (3) a low poloidal diffusivity, or (4) a lower numerical diffusivity (resolution), the mass loading of the outflow is increased-resulting in more powerful jets with high-mass flux. For weak magnetization, the (weak) outflow is driven by the magnetic pressure gradient. We consider in detail the advection and diffusion of magnetic flux within the disk and we find that the disk and outflow magnetization may substantially change in time. This may have severe impact on the launching and formation process-an initially highly magnetized disk may evolve into a disk of weak magnetization which cannot drive strong outflows. We further investigate the jet asymptotic velocity and the jet rotational velocity in

  3. Electrifying the disk: a modular rotating platform for wireless power and data transmission for Lab on a disk application.

    PubMed

    Höfflin, Jens; Torres Delgado, Saraí M; Suárez Sandoval, Fralett; Korvink, Jan G; Mager, Dario

    2015-06-21

    We present a design for wireless power transfer, via inductively coupled coils, to a spinning disk. The rectified and stabilised power feeds an Arduino-compatible microcontroller (μC) on the disc, which in turn drives and monitors various sensors and actuators. The platform, which has been conceived to flexibly prototype such systems, demonstrates the feasibility of a wireless power supply and the use of a μC circuit, for example for Lab-on-a-disk applications, thereby eliminating the need for cumbersome slip rings or batteries, and adding a cogent and new degree of freedom to the setup. The large number of sensors and actuators included demonstrate that a wide range of physical parameters can be easily monitored and altered. All devices are connected to the μC via an I(2)C bus, therefore can be easily exchanged or augmented by other devices in order to perform a specific task on the disk. The wireless power supply takes up little additional physical space and should work in conjunction with most existing Lab-on-a-disk platforms as a straightforward add-on, since it does not require modification of the rotation axis and can be readily adapted to specific geometrical requirements. PMID:25968976

  4. Lightcurves of Extreme Debris Disks

    NASA Astrophysics Data System (ADS)

    Rieke, George; Meng, Huan; Su, Kate

    2012-12-01

    We have recently discovered that some planetary debris disks with extreme fractional luminosities are variable on the timescale of a few years. This behavior opens a new possibility to understand planet building. Two of the known variable disks are around solar-like stars in the age range of 30 to 100+ Myr, which is the expected era of the final stages of terrestrial planet building. Such variability can be attributed to violent collisions (up to ones on the scale of the Moon-forming event between the proto-Earth and another proto-planet). The collisional cascades that are the aftermaths of these events can produce large clouds of tiny dust grains, possibly even condensed from silica vapor. A Spitzer pilot program has obtained the lightcurve of such a debris disk and caught two minor outbursts. Here we propose to continue the lightcurve monitoring with higher sampling rates and to expand it to more disks. The proposed time domain observations are a new dimension of debris disk studies that can bring unique insight to their evolution, providing important constraints on the collisional and dynamical models of terrestrial planet formation.

  5. Ultrafast disk lasers and amplifiers

    NASA Astrophysics Data System (ADS)

    Sutter, Dirk H.; Kleinbauer, Jochen; Bauer, Dominik; Wolf, Martin; Tan, Chuong; Gebs, Raphael; Budnicki, Aleksander; Wagenblast, Philipp; Weiler, Sascha

    2012-03-01

    Disk lasers with multi-kW continuous wave (CW) output power are widely used in manufacturing, primarily for cutting and welding applications, notably in the automotive industry. The ytterbium disk technology combines high power (average and/or peak power), excellent beam quality, high efficiency, and high reliability with low investment and operating costs. Fundamental mode picosecond disk lasers are well established in micro machining at high throughput and perfect precision. Following the world's first market introduction of industrial grade 50 W picosecond lasers (TruMicro 5050) at the Photonics West 2008, the second generation of the TruMicro series 5000 now provides twice the average power (100 W at 1030 nm, or 60 W frequency doubled, green output) at a significantly reduced footprint. Mode-locked disk oscillators achieve by far the highest average power of any unamplified lasers, significantly exceeding the 100 W level in laboratory set-ups. With robust long resonators their multi-microjoule pulse energies begin to compete with typical ultrafast amplifiers. In addition, significant interest in disk technology has recently come from the extreme light laser community, aiming for ultra-high peak powers of petawatts and beyond.

  6. Magnetic bearings for a spaceflight optical disk recorder

    NASA Technical Reports Server (NTRS)

    Hockney, Richard; Gondhalekar, Vijay; Hawkey, Timothy

    1991-01-01

    The development and testing of a magnetic bearing system for the translator of the read/write head in a magneto-optic disk drive are discussed. The asymmetrical three-pole actuators with permanent magnet bias support the optical head, and its tracking and focusing servos, through their radial excursion above the disk. The specifications for the magnetic bearing are presented, along with the configuration of the magnetic hardware. Development of a five degree of freedom collision model is examined which allowed assessment of the system response during large scale transients. Experimental findings and the results of performance testing are presented, including the roll-off of current-to-force due to eddy current loss in the magnetic materials.

  7. Melting of polydisperse hard disks.

    PubMed

    Pronk, Sander; Frenkel, Daan

    2004-06-01

    The melting of a polydisperse hard-disk system is investigated by Monte Carlo simulations in the semigrand canonical ensemble. This is done in the context of possible continuous melting by a dislocation-unbinding mechanism, as an extension of the two-dimensional hard-disk melting problem. We find that while there is pronounced fractionation in polydispersity, the apparent density-polydispersity gap does not increase in width, contrary to 3D polydisperse hard spheres. The point where the Young's modulus is low enough for the dislocation unbinding to occur moves with the apparent melting point, but stays within the density gap, just like for the monodisperse hard-disk system. Additionally, we find that throughout the accessible polydispersity range, the bound dislocation-pair concentration is high enough to affect the dislocation-unbinding melting as predicted by Kosterlitz, Thouless, Halperin, Nelson, and Young.

  8. Spaceborne optical disk controller development

    NASA Technical Reports Server (NTRS)

    Shull, Thomas A.; Conway, Bruce A.

    1986-01-01

    The current status and potential applications of an optical-disk buffer (ODB) memory system being developed by an interagency consortium including NASA and the USAF are reviewed. The design goals for the ODB include usable capacity 1 Tb, maximum data rate 1.6 Gb/s, read error rate less than 10 to the -12th, time to initial access less than 100 ms, and unlimited read/write cycles. Present efforts focus on a brassboard ODB which employs 12 14-inch magnetooptic disks and 24 nine-diode read/write heads. A typical space application of an optical disk mass memory system (ODMMS) is discussed: as communications buffer, temporary storage, and/or multiuser I/O buffer for data management on the Space Station Earth Observing System. Environmental, operational, system-architecture, and functional-separation factors; critical design issues; and standardization questions for spaceborne ODMMSs are examined in detail.

  9. Laithwaite's Heavy Spinning Disk Demonstration

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2014-09-01

    In 1974, Professor Eric Laithwaite demonstrated an unusually heavy gyroscope at a Royal Institution lecture in London. The demonstration was televised and can be viewed on YouTube.1 A recent version of the same experiment, together with partial explanations, attracted two million YouTube views in the first few months.2 In both cases, the gyroscope consisted of a 40-lb (18-kg) spinning disk on the end of a 3-ft (0.91-m) long axle. The most remarkable feature of the demonstration was that Laithwaite was able to lift the disk over his head with one hand, holding onto the far end of the axle. The impression was given that the 40-lb disk was almost weightless, or "as light as a feather" according to Laithwaite.

  10. Driving and neurodegenerative diseases.

    PubMed

    Uc, Ergun Y; Rizzo, Matthew

    2008-09-01

    The proportion of elderly people in the general population is rising, resulting in greater numbers of drivers with neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. These neurodegenerative disorders impair cognition, visual perception, and motor function, leading to reduced driver fitness and greater crash risk. Yet neither medical diagnosis nor age alone is reliable enough to predict driver safety or crashes or to revoke the driving privileges of these individuals. Driving research utilizes tools such as questionnaires about driving habits and history, driving simulators, standardized road tests utilizing instrumented vehicles, and state driving records. Research challenges include outlining the evolution of driving safety, understanding the mechanisms of driving impairment, and developing a reliable and efficient standardized test battery for prediction of driver safety in neurodegenerative disorders. This information will enable healthcare providers to advise their patients with neurodegenerative disorders with more certainty, affect policy, and help develop rehabilitative measures for driving. PMID:18713573

  11. Dementia and driving

    MedlinePlus

    ... has dementia , deciding when they can no longer drive may be difficult. They may react in different ... that the person may not be able to drive safely, such as: Forgetting recent events Mood swings ...

  12. Circumstellar Disks in Very Young Embedded Clusters

    NASA Astrophysics Data System (ADS)

    Mariñas, Naibí; Lada, Elizabeth A.; Teixeira, Paula S.; Lada, Charles J.

    2014-01-01

    We used FLAMINGOS near-IR photometry and spectroscopy and Spitzer mid-IR photometry to study disk fractions in the 1 to 2 Myr old NGC2264 clusters. We find that stars with masses < 0.3 solar masses have lower disk fractions than stars of solar mass or higher at these early ages. We also find that most disks disappear within the first 4 Myr, which is consistent with previous studies of disk lifetimes. Our study suggests that either some very low mass stars form without disks or that their disks are less massive and/or colder than predicted from models and not detected with Spitzer/Flamingos sensitivities.

  13. ALMA observations of protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Hogerheijde, Michiel

    2015-08-01

    The Universe is filled with planetary systems, as recent detections of exo-planets have shown. Such systems grow out of disks of gas and dust that surround newly formed stars. The ground work for our understanding of the structure, composition, and evolution of such disks has been laid with infrared telescopes in the 1980's, 1990's, and 2000's, as well as with millimeter interferometers operating in the United States, France, and Japan. With the construction of the Atacama Large Millimeter / submillimeter Array, a new era of studying planet-forming disks has started. The unprecedented leap in sensitivity and angular resolution that ALMA offers, has truely revolutionized our understanding of disks. No longer featureless objects consisting of gas and smalll dust, they are now seen to harbor a rich structure and chemistry. The ongoing planet-formation process sculpts many disks into systems of rings and arcs; grains grown to millimeter-sizes collect in high-pressure areas where they could grow out to asteroids or comets or further generations of planets. This wealth of new information directly addresses bottlenecks in our theoretical understanding of planet formation, such as the question how grains can grow past the 'meter-sized' barrier or overcome the 'drift barrier', and how gas and ice evolve together and ultimately determine the elemental compositions of both giant and terrestrial planets. I will review the recent ALMA results on protoplanetary disks, presenting results on individual objects and from the first populations studies. I will conclude with a forward look, on what we might expect from ALMA in this area for the years and decades to come.

  14. Gear bearing drive

    NASA Technical Reports Server (NTRS)

    Weinberg, Brian (Inventor); Mavroidis, Constantinos (Inventor); Vranish, John M. (Inventor)

    2011-01-01

    A gear bearing drive provides a compact mechanism that operates as an actuator providing torque and as a joint providing support. The drive includes a gear arrangement integrating an external rotor DC motor within a sun gear. Locking surfaces maintain the components of the drive in alignment and provide support for axial loads and moments. The gear bearing drive has a variety of applications, including as a joint in robotic arms and prosthetic limbs.

  15. Sequential Dependencies in Driving

    ERIC Educational Resources Information Center

    Doshi, Anup; Tran, Cuong; Wilder, Matthew H.; Mozer, Michael C.; Trivedi, Mohan M.

    2012-01-01

    The effect of recent experience on current behavior has been studied extensively in simple laboratory tasks. We explore the nature of sequential effects in the more naturalistic setting of automobile driving. Driving is a safety-critical task in which delayed response times may have severe consequences. Using a realistic driving simulator, we find…

  16. The Kozai-Lidov mechanism in hydrodynamical disks. II. Effects of binary and disk parameters

    SciTech Connect

    Fu, Wen; Lubow, Stephen H.; Martin, Rebecca G.

    2015-07-01

    Martin et al. (2014b) showed that a substantially misaligned accretion disk around one component of a binary system can undergo global damped Kozai–Lidov (KL) oscillations. During these oscillations, the inclination and eccentricity of the disk are periodically exchanged. However, the robustness of this mechanism and its dependence on the system parameters were unexplored. In this paper, we use three-dimensional hydrodynamical simulations to analyze how various binary and disk parameters affect the KL mechanism in hydrodynamical disks. The simulations include the effect of gas pressure and viscosity, but ignore the effects of disk self-gravity. We describe results for different numerical resolutions, binary mass ratios and orbital eccentricities, initial disk sizes, initial disk surface density profiles, disk sound speeds, and disk viscosities. We show that the KL mechanism can operate for a wide range of binary-disk parameters. We discuss the applications of our results to astrophysical disks in various accreting systems.

  17. THE KOZAI–LIDOV MECHANISM IN HYDRODYNAMICAL DISKS. II. EFFECTS OF BINARY AND DISK PARAMETERS

    SciTech Connect

    Fu, Wen; Lubow, Stephen H.; Martin, Rebecca G.

    2015-07-01

    Martin et al. showed that a substantially misaligned accretion disk around one component of a binary system can undergo global damped Kozai–Lidov (KL) oscillations. During these oscillations, the inclination and eccentricity of the disk are periodically exchanged. However, the robustness of this mechanism and its dependence on the system parameters were unexplored. In this paper, we use three-dimensional hydrodynamical simulations to analyze how various binary and disk parameters affect the KL mechanism in hydrodynamical disks. The simulations include the effect of gas pressure and viscosity, but ignore the effects of disk self-gravity. We describe results for different numerical resolutions, binary mass ratios and orbital eccentricities, initial disk sizes, initial disk surface density profiles, disk sound speeds, and disk viscosities. We show that the KL mechanism can operate for a wide range of binary-disk parameters. We discuss the applications of our results to astrophysical disks in various accreting systems.

  18. The Kozai–Lidov Mechanism in Hydrodynamical Disks. II. Effects of Binary and Disk Parameters

    NASA Astrophysics Data System (ADS)

    Fu, Wen; Lubow, Stephen H.; Martin, Rebecca G.

    2015-07-01

    Martin et al. showed that a substantially misaligned accretion disk around one component of a binary system can undergo global damped Kozai–Lidov (KL) oscillations. During these oscillations, the inclination and eccentricity of the disk are periodically exchanged. However, the robustness of this mechanism and its dependence on the system parameters were unexplored. In this paper, we use three-dimensional hydrodynamical simulations to analyze how various binary and disk parameters affect the KL mechanism in hydrodynamical disks. The simulations include the effect of gas pressure and viscosity, but ignore the effects of disk self-gravity. We describe results for different numerical resolutions, binary mass ratios and orbital eccentricities, initial disk sizes, initial disk surface density profiles, disk sound speeds, and disk viscosities. We show that the KL mechanism can operate for a wide range of binary-disk parameters. We discuss the applications of our results to astrophysical disks in various accreting systems.

  19. Measuring the Relative Contributions of Viscous Accretion and Photoevaporation to the Dispersal of Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Simon, M. N.; Pascucci, I.; Rigliaco, E.; Gorti, U.; Hollenbach, D.

    2014-03-01

    Models of protoplanetary disk evolution suggest that photoevaporation driven by the central star and viscous evolution via gas accretion onto the star are the main mechanisms that drive disk dispersal. Viscous evolution has the ability to smoothly decrease the disk surface density, but photoevaporation can drastically change it by creating gaps in planet-forming regions that widen quickly over time. This quick gas dispersal can stop the migration of giant planets whose location affects the final delivery of volatiles (including water) to terrestrial planets. We selected a sample of twenty protoplanetary disks around T. Tauri stars in the Taurus region spanning all three main disk evolutionary stages, with a range of mass accretion rates. For this sample we have acquired high-resolution optical spectra with Keck/HIRES covering gas lines that trace both accretion and photoevaporation. We will present an analysis of the forbidden OI, SII, and NII lines and provide empirically determined mass loss rates as a function of disk evolutionary stage and mass accretion rate. This will enhance our understanding of the disk stage at which photoevaporation starts to dominate over viscous accretion.

  20. On the Commonality of 10–30 AU Sized Axisymmetric Dust Structures in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Bergin, Edwin A.; Blake, Geoffrey A.; Cleeves, L. Ilsedore; Hogerheijde, Michiel; Salinas, Vachail; Schwarz, Kamber R.

    2016-02-01

    An unsolved problem in step-wise core-accretion planet formation is that rapid radial drift in gas-rich protoplanetary disks should drive millimeter-/meter-sized particles inward to the central star before large bodies can form. One promising solution is to confine solids within small-scale structures. Here, we investigate dust structures in the (sub)millimeter continuum emission of four disks (TW Hya, HL Tau, HD 163296, and DM Tau), a sample of disks with the highest spatial resolution Atacama Large Millimeter/submillimeter Array observations to date. We retrieve the surface brightness distributions using synthesized images and fitting visibilities with analytical functions. We find that the continuum emission of the four disks is ∼axisymmetric but rich in 10–30 AU-sized radial structures, possibly due to physical gaps, surface density enhancements, or localized dust opacity variations within the disks. These results suggest that small-scale axisymmetric dust structures are likely to be common, as a result of ubiquitous processes in disk evolution and planet formation. Compared with recent spatially resolved observations of CO snow lines in these same disks, all four systems show enhanced continuum emission from regions just beyond the CO condensation fronts, potentially suggesting a causal relationship between dust growth/trapping and snow lines.

  1. Binary-disk interaction. II. Gap-opening criteria for unequal-mass binaries

    SciTech Connect

    Del Valle, Luciano; Escala, Andrés

    2014-01-01

    We study the interaction of an unequal-mass binary with an isothermal circumbinary disk, motivated by the theoretical and observational evidence that after a major merger of gas-rich galaxies, a massive gaseous disk with a supermassive black hole binary will be formed in the nuclear region. We focus on the gravitational torques that the binary exerts on the disk and how these torques can drive the formation of a gap in the disk. This exchange of angular momentum between the binary and the disk is mainly driven by the gravitational interaction between the binary and a strong nonaxisymmetric density perturbation that is produced in the disk, in response to the presence of the binary. Using smoothed particle hydrodynamics numerical simulations, we test two gap-opening criteria, one that assumes the geometry of the density perturbation is an ellipsoid/thick spiral and another that assumes a flat spiral geometry for the density perturbation. We find that the flat spiral gap-opening criterion successfully predicts which simulations will have a gap in the disk and which will not. We also study the limiting cases predicted by the gap-opening criteria. Since the viscosity in our simulations is considerably smaller than the expected value in the nuclear regions of gas-rich merging galaxies, we conclude that in such environments the formation of a circumbinary gap is unlikely.

  2. THICK-DISK EVOLUTION INDUCED BY THE GROWTH OF AN EMBEDDED THIN DISK

    SciTech Connect

    Villalobos, Alvaro; Helmi, Amina; Kazantzidis, Stelios E-mail: ahelmi@astro.rug.n E-mail: villalobos@oats.inaf.i

    2010-07-20

    We perform collisionless N-body simulations to investigate the evolution of the structural and kinematical properties of simulated thick disks induced by the growth of an embedded thin disk. The thick disks used in the present study originate from cosmologically common 5:1 encounters between initially thin primary disk galaxies and infalling satellites. The growing thin disks are modeled as static gravitational potentials and we explore a variety of growing-disk parameters that are likely to influence the response of thick disks. We find that the final thick-disk properties depend strongly on the total mass and radial scale length of the growing thin disk, and much less sensitively on its growth timescale and vertical scale height as well as the initial sense of thick-disk rotation. Overall, the growth of an embedded thin disk can cause a substantial contraction in both the radial and vertical direction, resulting in a significant decrease in the scale lengths and scale heights of thick disks. Kinematically, a growing thin disk can induce a notable increase in the mean rotation and velocity dispersions of thick-disk stars. We conclude that the reformation of a thin disk via gas accretion may play a significant role in setting the structure and kinematics of thick disks, and thus it is an important ingredient in models of thick-disk formation.

  3. MINERAL PROCESSING BY SHORT CIRCUITS IN PROTOPLANETARY DISKS

    SciTech Connect

    McNally, Colin P.; Hubbard, Alexander; Mac Low, Mordecai-Mark; Ebel, Denton S.; D'Alessio, Paola E-mail: ahubbard@amnh.org E-mail: debel@amnh.org

    2013-04-10

    Meteoritic chondrules were formed in the early solar system by brief heating of silicate dust to melting temperatures. Some highly refractory grains (Type B calcium-aluminum-rich inclusions, CAIs) also show signs of transient heating. A similar process may occur in other protoplanetary disks, as evidenced by observations of spectra characteristic of crystalline silicates. One possible environment for this process is the turbulent magnetohydrodynamic flow thought to drive accretion in these disks. Such flows generally form thin current sheets, which are sites of magnetic reconnection, and dissipate the magnetic fields amplified by a disk dynamo. We suggest that it is possible to heat precursor grains for chondrules and other high-temperature minerals in current sheets that have been concentrated by our recently described short-circuit instability. We extend our work on this process by including the effects of radiative cooling, taking into account the temperature dependence of the opacity; and by examining current sheet geometry in three-dimensional, global models of magnetorotational instability. We find that temperatures above 1600 K can be reached for favorable parameters that match the ideal global models. This mechanism could provide an efficient means of tapping the gravitational potential energy of the protoplanetary disk to heat grains strongly enough to form high-temperature minerals. The volume-filling nature of turbulent magnetic reconnection is compatible with constraints from chondrule-matrix complementarity, chondrule-chondrule complementarity, the occurrence of igneous rims, and compound chondrules. The same short-circuit mechanism may perform other high-temperature mineral processing in protoplanetary disks such as the production of crystalline silicates and CAIs.

  4. Mineral Processing by Short Circuits in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    McNally, Colin P.; Hubbard, Alexander; Mac Low, Mordecai-Mark; Ebel, Denton S.; D'Alessio, Paola

    2013-04-01

    Meteoritic chondrules were formed in the early solar system by brief heating of silicate dust to melting temperatures. Some highly refractory grains (Type B calcium-aluminum-rich inclusions, CAIs) also show signs of transient heating. A similar process may occur in other protoplanetary disks, as evidenced by observations of spectra characteristic of crystalline silicates. One possible environment for this process is the turbulent magnetohydrodynamic flow thought to drive accretion in these disks. Such flows generally form thin current sheets, which are sites of magnetic reconnection, and dissipate the magnetic fields amplified by a disk dynamo. We suggest that it is possible to heat precursor grains for chondrules and other high-temperature minerals in current sheets that have been concentrated by our recently described short-circuit instability. We extend our work on this process by including the effects of radiative cooling, taking into account the temperature dependence of the opacity; and by examining current sheet geometry in three-dimensional, global models of magnetorotational instability. We find that temperatures above 1600 K can be reached for favorable parameters that match the ideal global models. This mechanism could provide an efficient means of tapping the gravitational potential energy of the protoplanetary disk to heat grains strongly enough to form high-temperature minerals. The volume-filling nature of turbulent magnetic reconnection is compatible with constraints from chondrule-matrix complementarity, chondrule-chondrule complementarity, the occurrence of igneous rims, and compound chondrules. The same short-circuit mechanism may perform other high-temperature mineral processing in protoplanetary disks such as the production of crystalline silicates and CAIs.

  5. Quasar Unification Via Disk Winds: From Phenomenology to Physics

    NASA Astrophysics Data System (ADS)

    Knigge, C.

    2015-09-01

    I will give an overview of a collaborative project aimed at testing the viability of QSO unification via accretion disk winds. In this scenario, most of the characteristic spectral features of QSOs are formed in these outflows. More specifically, broad absorption lines (BALs) are produced for sight lines within the outflow, while broad emission lines (BELs) are observed for other viewing angles. In order to test these ideas, we use a state-of- the-art Monte Carlo radiative transfer and photoionization code to predict emergent spectra for a wide range of viewing angles and quasar properties (black hole mass, accretion rate, X-ray luminosity, etc). It turns out to be relatively straightforward to produce BALs, but harder to obtain sufficiently strong BELs. We also find that it is easy to overionize the wind with realistic X-ray luminosities. In addition, we are using our code to test and improve hydrodynamic disk wind models for quasars. So far, we have been able to demonstrate that the treatment of ionization in existing hydrodynamic models of line-driven disk winds is too simplistic to yield realistic results: the modelled outflows would be strongly overionized and hence would not feel the line-driving forces that are asssumed to produce them. We have therefore embarked on an effort to model line-driven disk winds self-consistently by linking a hydrodynamics code with our ionization and radiative transfer code. Finally, we can also predict the reverberation signatures produced by disk winds, which can be directly compared to the results of the latest reverberation mapping campaigns.

  6. Powerful, Rotating Disk Winds from Stellar-mass Black Holes

    NASA Astrophysics Data System (ADS)

    Miller, J. M.; Fabian, A. C.; Kaastra, J.; Kallman, T.; King, A. L.; Proga, D.; Raymond, J.; Reynolds, C. S.

    2015-12-01

    We present an analysis of ionized X-ray disk winds found in the Fe K band of four stellar-mass black holes observed with Chandra, including 4U 1630-47, GRO J1655-40, H 1743-322, and GRS 1915+105. High-resolution photoionization grids were generated in order to model the data. Third-order gratings spectra were used to resolve complex absorption profiles into atomic effects and multiple velocity components. The Fe xxv line is found to be shaped by contributions from the intercombination line (in absorption), and the Fe xxvi line is detected as a spin-orbit doublet. The data require 2-3 absorption zones, depending on the source. The fastest components have velocities approaching or exceeding 0.01c, increasing mass outflow rates and wind kinetic power by orders of magnitude over prior single-zone models. The first-order spectra require re-emission from the wind, broadened by a degree that is loosely consistent with Keplerian orbital velocities at the photoionization radius. This suggests that disk winds are rotating with the orbital velocity of the underlying disk, and provides a new means of estimating launching radii—crucial to understanding wind driving mechanisms. Some aspects of the wind velocities and radii correspond well to the broad-line region in active galactic nuclei (AGNs), suggesting a physical connection. We discuss these results in terms of prevalent models for disk wind production and disk accretion itself, and implications for massive black holes in AGNs.

  7. Electric versus hydraulic drives

    SciTech Connect

    Not Available

    1983-01-01

    This volume records the proceedings of a conference organised by the Engineering Manufacturing Industries Division of the Institution of Mechanical Engineers. Topics considered include high performance position control - a review of the current state of developments; hydrostatic drives - present and future; electric drives - present and future trends; electrical and hydraulic drives for heavy industrial robots; the development of an electro-mechanical tilt system for the advanced passenger train; industrial hydraulic ring mains - effective or efficient. the comparison of performance of servo feed-drive systems; overhead crane drives; the future of d.c. servodrives; the choice of actuator for military systems; linear electro-hydraulic actuators; and actuation for industrial robots.

  8. Constraints on r-process nucleosynthesis in accretion disks

    NASA Technical Reports Server (NTRS)

    Jin, Liping

    1991-01-01

    Systems in which accretion drives an outflow from a region near a compact object may enrich the interstellar medium in r-process elements. A detailed assessment of the efficacy of this mechanism for the r-process is presented here, taking into account the constraints imposed by typical accretion-disk conditions. It is concluded that r-process elements are unlikely to have been made in this way, largely because the total production is too low, by a factor of about 100,000, to explain the observed abundances.

  9. Herniated Disk in the Lower Back

    MedlinePlus

    ... lives. A high percentage of people will have low back and leg pain caused by a herniated disk. Although a herniated ... pressure against the outer ring may cause lower back pain. If the disk is very worn or injured, ...

  10. Electronic Teaching: Hard Disks and Networks.

    ERIC Educational Resources Information Center

    Howe, Samuel F.

    1984-01-01

    Describes floppy-disk and hard-disk based networks, electronic systems linking microcomputers together for the purpose of sharing peripheral devices, and presents points to remember when shopping for a network. (MBR)

  11. Circumnuclear Keplerian Disks in Galaxies

    NASA Astrophysics Data System (ADS)

    Bertola, Francesco; Cappellari, Michele; Funes, S. J., José G.; Corsini, Enrico M.; Pizzella, Alessandro; Beltrán, Juan C. Vega

    1998-12-01

    In this Letter, we demonstrate the possibility of inferring the presence of Keplerian gaseous disks using properly equipped optical ground-based telescopes. We have modeled the peculiar bidimensional shape of the emission lines in a sample of five early-type disk galaxies as due to the motion of a gaseous disk rotating in the combined potential of a central pointlike mass and of an extended stellar disk. The value of the central mass concentration estimated for four galaxies of the sample (NGC 2179, NGC 4343, NGC 4435, and NGC 4459) is ~109 Msolar. This value, according to the assumptions made in our model, is overestimated. However, we have calculated that the effect is well within the errors. For the remaining galaxy, NGC 5064, an upper limit of 5×107 Msolar is estimated. Based on observations carried out at ESO, La Silla, (Chile) (ESO N. 58, A-0564) and at the Mount Graham International Observatory (AZ) with the VATT: the Alice P. Lennon Telescope and the Thomas J. Bannan Astrophysics Facility.

  12. TREC Document Database: Disk 4

    National Institute of Standards and Technology Data Gateway

    NIST TREC Document Database: Disk 4 (PC database for purchase)   NIST TREC Document Databases (Special Database 22) are distributed for the development and testing of information retrieval (IR) systems and related natural language processing research. The document collections consist of the full text of various newspaper and newswire articles plus government proceedings.

  13. TREC Document Database: Disk 5

    National Institute of Standards and Technology Data Gateway

    NIST TREC Document Database: Disk 5 (PC database for purchase)   NIST TREC Document Databases (Special Database 23) are distributed for the development and testing of information retrieval (IR) systems and related natural language processing research. The document collections consist of the full text of various newspaper and newswire articles plus government proceedings.

  14. Accretion disks around black holes

    NASA Technical Reports Server (NTRS)

    Abramowicz, M. A.

    1994-01-01

    The physics of accretion flow very close to a black hole is dominated by several general relativistic effects. It cannot be described by the standard Shakura Sunyaev model or by its relativistic version developed by Novikov and Thome. The most important of these effects is a dynamical mass loss from the inner edge of the disk (Roche lobe overflow). The relativistic Roche lobe overflow induces a strong advective cooling, which is sufficient to stabilize local, axially symmetric thermal and viscous modes. It also stabilizes the non-axially-symmetric global modes discovered by Papaloizou and Pringle. The Roche lobe overflow, however, destabilizes sufficiently self-gravitating accretion disks with respect to a catastrophic runaway of mass due to minute changes of the gravitational field induced by the changes in the mass and angular momentum of the central black hole. One of the two acoustic modes may become trapped near the inner edge of the disk. All these effects, absent in the standard model, have dramatic implications for time-dependent behavior of the accretion disks around black holes.

  15. Planet Masses from Disk Spirals

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-12-01

    Young, forming planets can generate immense spiral structures within their protoplanetary disks. A recent study has shown that observations of these spiral structures may allow astronomers to measure the mass of the planets that create them.Spirals From WavesSnapshots of the surface density of a protoplanetary disk in a 2D simulation, 3D simulation, and synthesized scattered-light image. Click for a closer look! [Fung Dong, 2015]Recent studies have shown that a single planet, if it is massive enough, can excite multiple density waves within a protoplanetary disk as it orbits. These density waves can then interfere to produce a multiple-armed spiral structure in the disk inside of the planets orbit a structure which can potentially be observed in scattered-light images of the disk.But what do these arms look like, and what factors determine their structure? In a recently published study, Jeffrey Fung and Ruobing Dong, two researchers at the University of California at Berkeley, have modeled the spiral arms in an effort to answer these questions.Arms Provide AnswersA useful parameter for describing the structure is the azimuthal separation (sep) between the primary and secondary spiral arms. If you draw a circle within the disk and measure the angle between the two points where the primary and secondary arms cross it, thats sep.Azimuthal separation of the primary and secondary spiral arms, as a function of the planet-to-star mass ratio q. The different curves represent different disk aspect ratios. [Fung Dong, 2015]The authors find thatsep stays roughly constant for different radii, but its strongly dependent on the planets mass: for larger planets, sep increases. They discover that sep scales as a power of the planet mass for companions between Neptune mass and 16 Jupiter masses, orbiting around a solar-mass star. For larger, brown-dwarf-size companions, sep is a constant 180.If this new theory is confirmed, it could have very interesting implications for

  16. HYPERACCRETING NEUTRON STAR DISKS AND NEUTRINO ANNIHILATION

    SciTech Connect

    Zhang Dong; Dai, Z. G. E-mail: dzg@nju.edu.c

    2009-09-20

    Newborn neutron stars surrounded by hyperaccreting and neutrino-cooled disks may exist in some gamma-ray bursts and/or supernovae. In this paper, we further study the structure of such a neutron star disk based on the two-region (i.e., inner and outer) disk scenario following our previous work, and calculate the neutrino annihilation luminosity from the disk in various cases. We investigate the effects of the viscosity parameter {alpha}, energy parameter {epsilon} (measuring the neutrino cooling efficiency of the inner disk), and outflow strength on the structure of the entire disk as well as the effect of emission from the neutron star surface boundary emission on the total neutrino annihilation rate. The inner disk satisfies the entropy-conservation self-similar structure for the energy parameter {epsilon} {approx_equal} 1 and the advection-dominated structure for {epsilon} < 1. An outflow from the disk decreases the density and pressure but increases the thickness of the disk. Moreover, compared with the black hole disk, the neutrino annihilation luminosity above the neutron star disk is higher, and the neutrino emission from the boundary layer could increase the neutrino annihilation luminosity by about one order of magnitude higher than the disk without boundary emission. The neutron star disk with the advection-dominated inner disk could produce the highest neutrino luminosity while the disk with an outflow has the lowest. Although a heavily mass-loaded outflow from the neutron star surface at early times of neutron star formation prevents the outflow material from being accelerated to a high bulk Lorentz factor, an energetic ultrarelativistic jet via neutrino annihilation can be produced above the stellar polar region at late times if the disk accretion rate and the neutrino emission luminosity from the surface boundary layer are sufficiently high.

  17. Optimization of the Processing of Mo Disks

    SciTech Connect

    Tkac, Peter; Rotsch, David A.; Stepinski, Dominique; Makarashvili, Vakhtang; Harvey, James; Vandegrift, George F.

    2016-01-01

    The objective of this work is to decrease the processing time for irradiated disks of enriched Mo for the production of 99Mo. Results are given for the dissolution of nonirradiated Mo disks, optimization of the process for large-scale dissolution of sintered disks, optimization of the removal of the main side products (Zr and Nb) from dissolved targets, and dissolution of irradiated Mo disks.

  18. Drill drive mechanism

    DOEpatents

    Dressel, Michael O.

    1979-01-01

    A drill drive mechanism is especially adapted to provide both rotational drive and axial feed for a drill of substantial diameter such as may be used for drilling holes for roof bolts in mine shafts. The drill shaft is made with a helical pattern of scroll-like projections on its surface for removal of cuttings. The drill drive mechanism includes a plurality of sprockets carrying two chains of drive links which are arranged to interlock around the drill shaft with each drive link having depressions which mate with the scroll-like projections. As the chain links move upwardly or downwardly the surfaces of the depressions in the links mate with the scroll projections to move the shaft axially. Tangs on the drive links mate with notch surfaces between scroll projections to provide a means for rotating the shaft. Projections on the drive links mate together at the center to hold the drive links tightly around the drill shaft. The entire chain drive mechanism is rotated around the drill shaft axis by means of a hydraulic motor and gear drive to cause rotation of the drill shaft. This gear drive also connects with a differential gearset which is interconnected with a second gear. A second motor is connected to the spider shaft of the differential gearset to produce differential movement (speeds) at the output gears of the differential gearset. This differential in speed is utilized to drive said second gear at a speed different from the speed of said gear drive, this speed differential being utilized to drive said sprockets for axial movement of said drill shaft.

  19. PSOCT studies of intervertebral disk

    NASA Astrophysics Data System (ADS)

    Matcher, Stephen J.; Winlove, Peter C.; Gangnus, Sergey V.

    2004-07-01

    Polarization-sensitive optical coherence tomography (PSOCT) is an emerging optical imaging technique that is sensitive to the birefringence properties of tissues. It thus has applications in studying the large-scale ordering of collagen fibers within connective tissues. This ordering not only provides useful insights into the relationship between structure and function for various anatomical structures but also is an indicator of pathology. Intervertebral disk is an elastic tissue of the spine and possesses a 3-D collagen structure well suited to study using PSOCT. Since the outer layer of the disk has a lamellar structure with collagen fibers oriented in a trellis-like arrangement between lamellae, the birefringence fast-axis shows pronounced variations with depth, on a spatial scale of about 100 μm. The lamellar thickness varies with age and possibly with disease. We have used a polarisation-sensitive optical coherence tomography system to measure the birefringence properties of freshly excised, hydrated bovine caudal intervertebral disk and compared this with equine flexor tendon. Our results clearly demonstrate the ability of PSOCT to detect the outer three lamellae, down to a depth of at least 700 μm, via discontinuities in the depth-resolved retardance. We have applied a simple semi-empirical model based on Jones calculus to quantify the variation in the fast-axis orientation with depth. Our data and modeling is in broad agreement with previous studies using x-ray diffraction and polarization microscopy applied to histological sections of dehydrated disk. Our results imply that PSOCT may prove a useful tool to study collagen organisation within intervertebral disk in vitro and possibly in vivo and its variation with age and disease.

  20. Poynting Jets from Accretion Disks

    NASA Astrophysics Data System (ADS)

    Lovelace, R. V. E.; Li, H.; Koldoba, A. V.; Ustyugova, G. V.; Romanova, M. M.

    2002-06-01

    We give further consideration to the problem of the evolution of a coronal, force-free magnetic field that threads a differentially rotating, conducting Keplerian disk, extending the recent work of Li and coworkers. This situation is described by the force-free Grad-Shafranov (GS) equation for the flux function Ψ(r, z) that labels the poloidal field lines (in cylindrical coordinates). The GS equation involves a function H(Ψ) describing the distribution of the poloidal current, which is determined by the differential rotation or ``twist'' of the disk that increases linearly with time. We numerically solve the GS equation in a sequence of volumes of increasing size corresponding to the expansion of the outer perfectly conducting boundaries at (Rm, Zm). The outer boundaries model the influence of an external nonmagnetized plasma. The sequence of GS solutions provides a model for the dynamical evolution of the magnetic field in response to (1) the increasing twist of the disk and (2) the pressure of external plasma. We find solutions with magnetically collimated Poynting jets in which there is a continuous outflow of energy, angular momentum, and toroidal magnetic flux from the disk into the external space. This behavior contradicts the commonly accepted ``theorem'' of solar plasma physics that the motion of the footpoints of a magnetic loop structure leads to a stationary magnetic field configuration with zero power, angular momentum, and flux outflows. In addition, we discuss magnetohydrodynamic simulations that show quasi-stationary collimated Poynting jets similar to our GS solutions. In contrast with the GS solutions, the simulations show a steady uncollimated hydromagnetic (nonforce-free) outflow from the outer part of the disk. The Poynting jets are of interest for the understanding of the jets from active galactic nuclei, microquasars, and possibly gamma-ray burst sources.

  1. Circumstellar Debris Disks: Diagnosing the Unseen Perturber

    NASA Astrophysics Data System (ADS)

    Nesvold, Erika R.; Naoz, Smadar; Vican, Laura; Farr, Will M.

    2016-07-01

    The first indication of the presence of a circumstellar debris disk is usually the detection of excess infrared emission from the population of small dust grains orbiting the star. This dust is short-lived, requiring continual replenishment, and indicating that the disk must be excited by an unseen perturber. Previous theoretical studies have demonstrated that an eccentric planet orbiting interior to the disk will stir the larger bodies in the belt and produce dust via interparticle collisions. However, motivated by recent observations, we explore another possible mechanism for heating a debris disk: a stellar-mass perturber orbiting exterior to and inclined to the disk and exciting the disk particles’ eccentricities and inclinations via the Kozai–Lidov mechanism. We explore the consequences of an exterior perturber on the evolution of a debris disk using secular analysis and collisional N-body simulations. We demonstrate that a Kozai–Lidov excited disk can generate a dust disk via collisions and we compare the results of the Kozai–Lidov excited disk with a simulated disk perturbed by an interior eccentric planet. Finally, we propose two observational tests of a dust disk that can distinguish whether the dust was produced by an exterior brown dwarf or stellar companion or an interior eccentric planet.

  2. Methods of Stress Calculation in Rotating Disks

    NASA Technical Reports Server (NTRS)

    Tumarkin, S.

    1944-01-01

    The paper describes nethods of computing the stresses in disks of a given profile as well as methods of choosing the disk profiles for a given stress distribution for turhines, turbo blowers, and so forth. A new method of in tegrating the differential equations of Stodola leads to a simplification of the computation for disks of hyperbolic profile.

  3. PROTOPLANETARY DISK RESONANCES AND TYPE I MIGRATION

    SciTech Connect

    Tsang, David

    2011-11-10

    Waves reflected by the inner edge of a protoplanetary disk are shown to significantly modify Type I migration, even allowing the trapping of planets near the inner disk edge for small planets in a range of disk parameters. This may inform the distribution of planets close to their central stars, as observed recently by the Kepler mission.

  4. Circumstellar Debris Disks: Diagnosing the Unseen Perturber

    NASA Astrophysics Data System (ADS)

    Nesvold, Erika R.; Naoz, Smadar; Vican, Laura; Farr, Will M.

    2016-07-01

    The first indication of the presence of a circumstellar debris disk is usually the detection of excess infrared emission from the population of small dust grains orbiting the star. This dust is short-lived, requiring continual replenishment, and indicating that the disk must be excited by an unseen perturber. Previous theoretical studies have demonstrated that an eccentric planet orbiting interior to the disk will stir the larger bodies in the belt and produce dust via interparticle collisions. However, motivated by recent observations, we explore another possible mechanism for heating a debris disk: a stellar-mass perturber orbiting exterior to and inclined to the disk and exciting the disk particles’ eccentricities and inclinations via the Kozai-Lidov mechanism. We explore the consequences of an exterior perturber on the evolution of a debris disk using secular analysis and collisional N-body simulations. We demonstrate that a Kozai-Lidov excited disk can generate a dust disk via collisions and we compare the results of the Kozai-Lidov excited disk with a simulated disk perturbed by an interior eccentric planet. Finally, we propose two observational tests of a dust disk that can distinguish whether the dust was produced by an exterior brown dwarf or stellar companion or an interior eccentric planet.

  5. Microporous Carbon Disks For Sorption Refrigerators

    NASA Technical Reports Server (NTRS)

    Munukutla, Lakshmi V.; Moore, Mark R.

    1993-01-01

    Slow, carefully controlled pyrolysis found to turn polyvinylidene chloride disks into carbon disks having small pores and large surface areas. Disks exhibit high adsorptivities making them useful in krypton-sorption refrigerators. Carbons made from polyvinylidene chloride have greater adsorptive capacities. Thermal instability controlled and variability of product reduced by careful control of rates of heating, heating times, and rate of final cooling.

  6. A COMMON SOURCE OF ACCRETION DISK TILT

    SciTech Connect

    Montgomery, M. M.; Martin, E. L.

    2010-10-20

    Many different system types retrogradely precess, and retrograde precession could be from a tidal torque by the secondary on a misaligned accretion disk. However, a source that causes and maintains disk tilt is unknown. In this work, we show that accretion disks can tilt due to a force called lift. Lift results from differing gas stream supersonic speeds over and under an accretion disk. Because lift acts at the disk's center of pressure, a torque is applied around a rotation axis passing through the disk's center of mass. The disk responds to lift by pitching around the disk's line of nodes. If the gas stream flow ebbs, then lift also ebbs and the disk attempts to return to its original orientation. To first approximation, lift does not depend on magnetic fields or radiation sources but does depend on the mass and the surface area of the disk. Also, for disk tilt to be initiated, a minimum mass transfer rate must be exceeded. For example, a 10{sup -11} M{sub sun} disk around a 0.8 M{sub sun} compact central object requires a mass transfer rate greater than {approx} 8 x 10{sup -11} M{sub sun} yr{sup -1}, a value well below the known mass transfer rates in cataclysmic variable dwarf novae systems that retrogradely precess and exhibit negative superhumps in their light curves and a value well below mass transfer rates in protostellar-forming systems.

  7. Optical Disk Formats: A Briefing. ERIC Digest.

    ERIC Educational Resources Information Center

    Schamber, Linda

    This digest begins with a brief description and review of the development of optical disks. Optical disk formats are then described by capability: Read Only Memory (ROM), Write Once, Read Many (WORM), Interactive (I), and Erasable (E); forms of information (audio, text or data, video or graphics, or a combination); and disk size (most often 12 or…

  8. PLANET FORMATION IN BINARIES: DYNAMICS OF PLANETESIMALS PERTURBED BY THE ECCENTRIC PROTOPLANETARY DISK AND THE SECONDARY

    SciTech Connect

    Silsbee, Kedron; Rafikov, Roman R.

    2015-01-10

    Detections of planets in eccentric, close (separations of ∼20 AU) binary systems such as α Cen or γ Cep provide an important test of planet formation theories. Gravitational perturbations from the companion are expected to excite high planetesimal eccentricities, resulting in destruction rather than growth of objects with sizes of up to several hundred kilometers in collisions of similar-sized bodies. It was recently suggested that the gravity of a massive axisymmetric gaseous disk in which planetesimals are embedded drives rapid precession of their orbits, suppressing eccentricity excitation. However, disks in binaries are themselves expected to be eccentric, leading to additional planetesimal excitation. Here we develop a secular theory of eccentricity evolution for planetesimals perturbed by the gravity of an elliptical protoplanetary disk (neglecting gas drag) and the companion. For the first time, we derive an expression for the disturbing function due to an eccentric disk, which can be used for a variety of other astrophysical problems. We obtain explicit analytical solutions for planetesimal eccentricity evolution neglecting gas drag and delineate four different regimes of dynamical excitation. We show that in systems with massive (≳ 10{sup –2} M {sub ☉}) disks, planetesimal eccentricity is usually determined by the gravity of the eccentric disk alone, and is comparable to the disk eccentricity. As a result, the latter imposes a lower limit on collisional velocities of solids, making their growth problematic. In the absence of gas drag, this fragmentation barrier can be alleviated if the gaseous disk rapidly precesses or if its own self-gravity is efficient at lowering disk eccentricity.

  9. Warm Disks from Giant Impacts

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-10-01

    In the process of searching for exoplanetary systems, weve discovered tens of debris disks close around distant stars that are especially bright in infrared wavelengths. New research suggests that we might be looking at the late stages of terrestrial planet formation in these systems.Forming Terrestrial PlanetsAccording to the widely-accepted formation model for our solar-system, protoplanets the size of Mars formed within a protoplanetary disk around our Sun. Eventually, the depletion of the gas in the disk led the orbits of these protoplanets to become chaotically unstable. Finally, in the giant impact stage, many of the protoplanets collided with each other ultimately leading to the formation of the terrestrial planets and their moons as we know them today.If giant impact stages occur in exoplanetary systems, too leading to the formation of terrestrial exoplanets how would we detect this process? According to a study led by Hidenori Genda of the Tokyo Institute of Technology, we might be already be witnessing this stage in observations of warm debris disks around other stars. To test this, Genda and collaborators model giant impact stages and determine what we would expect to see from a system undergoing this violent evolution.Modeling CollisionsSnapshots of a giant impact in one of the authors simulations. The collision causes roughly 0.05 Earth masses of protoplanetary material to be ejected from the system. Click for a closer look! [Genda et al. 2015]The collaborators run a series of simulations evolving protoplanetary bodies in a solar system. The simulations begin 10 Myr into the lifetime of the solar system, i.e., after the gas from the protoplanetary disk has had time to be cleared and the protoplanetary orbits begin to destabilize. The simulations end when the protoplanets are done smashing into each other and have again settled into stable orbits, typically after ~100 Myr.The authors find that, over an average giant impact stage, the total amount of

  10. Secular Evolution in Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Kormendy, John

    2013-10-01

    Self-gravitating systems evolve toward the most tightly bound configuration that is reachable via the evolution processes that are available to them. They do this by spreading -- the inner parts shrink while the outer parts expand -- provided that some physical process efficiently transports energy or angular momentum outward. The reason is that self-gravitating systems have negative specific heats. As a result, the evolution of stars, star clusters, protostellar and protoplanetary disks, black hole accretion disks and galaxy disks are fundamentally similar. How evolution proceeds then depends on the evolution processes that are available to each kind of self-gravitating system. These processes and their consequences for galaxy disks are the subjects of my lectures and of this Canary Islands Winter School. I begin with a review of the formation, growth and death of bars. Then I review the slow (`secular') rearrangement of energy, angular momentum, and mass that results from interactions between stars or gas clouds and collective phenomena such as bars, oval disks, spiral structure and triaxial dark haloes. The `existence-proof' phase of this work is largely over: we have a good heuristic understanding of how nonaxisymmetric structures rearrange disk gas into outer rings, inner rings and stuff dumped onto the centre. The results of simulations correspond closely to the morphology of barred and oval galaxies. Gas that is transported to small radii reaches high densities. Observations confirm that many barred and oval galaxies have dense central concentrations of gas and star formation. The result is to grow, on timescales of a few Gyr, dense central components that are frequently mistaken for classical (elliptical-galaxy-like) bulges but that were grown slowly out of the disk (not made rapidly by major mergers). The resulting picture of secular galaxy evolution accounts for the richness observed in galaxy structure. We can distinguish between classical and pseudo

  11. Magnetic fields in primordial accretion disks

    NASA Astrophysics Data System (ADS)

    Latif, M. A.; Schleicher, D. R. G.

    2016-01-01

    Magnetic fields are considered a vital ingredient of contemporary star formation and may have been important during the formation of the first stars in the presence of an efficient amplification mechanism. Initial seed fields are provided via plasma fluctuations and are subsequently amplified by the small-scale dynamo, leading to a strong, tangled magnetic field. We explore how the magnetic field provided by the small-scale dynamo is further amplified via the α-Ω dynamo in a protostellar disk and assess its implications. For this purpose, we consider two characteristic cases, a typical Pop. III star with 10M⊙ and an accretion rate of 10-3M⊙ yr-1, and a supermassive star with 105M⊙ and an accretion rate of 10-1M⊙ yr-1. For the 10M⊙ Pop. III star, we find that coherent magnetic fields can be produced on scales of at least 100 AU, which are sufficient to drive a jet with a luminosity of 100L⊙ and a mass outflow rate of 10-3.7M⊙ yr-1. For the supermassive star, the dynamical timescales in its environment are even shorter, implying smaller orbital timescales and an efficient magnetization out to at least 1000 AU. The jet luminosity corresponds to ~106.0L⊙ and a mass outflow rate of 10-2.1M⊙ yr-1. We expect that the feedback from the supermassive star can have a relevant impact on its host galaxy.

  12. Kinematic Dynamo In Turbulent Circumstellar Disks

    NASA Technical Reports Server (NTRS)

    Stepinski, T.

    1993-01-01

    Many circumstellar disks associated with objects ranging from protoplanetary nebulae, to accretion disks around compact stars allow for the generation of magnetic fields by an (alpha)omega dynamo. We have applied kinematic dynamo formalism to geometrically thin accretion disks. We calculate, in the framework of an adiabatic approximation, the normal mode solutions for dynamos operating in disks around compact stars. We then describe the criteria for a viable dynamo in protoplanetary nebulae, and discuss the particular features that make accretion disk dynamos different from planetary, stellar, and galactic dynamos.

  13. Lectures on magnetohydrodynamical drives

    NASA Astrophysics Data System (ADS)

    Loigom, Villem

    The paper deals with nonconventional types of electrical machines and drives - magnetohydrodynamical (MHD) machines and drives. In cardinal it is based on the research conducted with participation of the author in Tallinn Technical University at the Institute of Electrical Drives and Power Electronics, where the use of magnetohydrodynamical motors and drives in the metallurgical and casting industries have been studied for a long time. Major research interests include the qualities and applications of the induction MHD-drives for set in the motion (pumping, turning, dosing, mixing, etc.) non-ferrous molten metals like Al, Mg, Sn, Pb, Na, K, and their alloys. The first part of the paper describes induction MHD motors and their electrohydraulical qualities. In the second part energy conversion problems are described. Also, on the basis of the analogy between electromechanical and electrohydraulical phenomenas, static and dynamic qualities of MHD drives with induction MHD machines are discussed.

  14. Superluminal warp drive

    NASA Astrophysics Data System (ADS)

    González-Díaz, Pedro F.

    2007-09-01

    In this Letter we consider a warp drive spacetime resulting from that suggested by Alcubierre when the spaceship can only travel faster than light. Restricting to the two dimensions that retains most of the physics, we derive the thermodynamic properties of the warp drive and show that the temperature of the spaceship rises up as its apparent velocity increases. We also find that the warp drive spacetime can be exhibited in a manifestly cosmological form.

  15. Accurate Runout Measurement for HDD Spinning Motors and Disks

    NASA Astrophysics Data System (ADS)

    Jiang, Quan; Bi, Chao; Lin, Song

    As hard disk drive (HDD) areal density increases, its track width becomes smaller and smaller and so is non-repeatable runout. HDD industry needs more accurate and better resolution runout measurements of spinning spindle motors and media platters in both axial and radial directions. This paper introduces a new system how to precisely measure the runout of HDD spinning disks and motors through synchronously acquiring the rotor position signal and the displacements in axial or radial directions. In order to minimize the synchronizing error between the rotor position and the displacement signal, a high resolution counter is adopted instead of the conventional phase-lock loop method. With Laser Doppler Vibrometer and proper signal processing, the proposed runout system can precisely measure the runout of the HDD spinning disks and motors with 1 nm resolution and 0.2% accuracy with a proper sampling rate. It can provide an effective and accurate means to measure the runout of high areal density HDDs, in particular the next generation HDDs, such as, pattern media HDDs and HAMR HDDs.

  16. High-Speed Recording of Test Data on Hard Disks

    NASA Technical Reports Server (NTRS)

    Lagarde, Paul M., Jr.; Newnan, Bruce

    2003-01-01

    Disk Recording System (DRS) is a systems-integration computer program for a direct-to-disk (DTD) high-speed data acquisition system (HDAS) that records rocket-engine test data. The HDAS consists partly of equipment originally designed for recording the data on tapes. The tape recorders were replaced with hard-disk drives, necessitating the development of DRS to provide an operating environment that ties two computers, a set of five DTD recorders, and signal-processing circuits from the original tape-recording version of the HDAS into one working system. DRS includes three subsystems: (1) one that generates a graphical user interface (GUI), on one of the computers, that serves as a main control panel; (2) one that generates a GUI, on the other computer, that serves as a remote control panel; and (3) a data-processing subsystem that performs tasks on the DTD recorders according to instructions sent from the main control panel. The software affords capabilities for dynamic configuration to record single or multiple channels from a remote source, remote starting and stopping of the recorders, indexing to prevent overwriting of data, and production of filtered frequency data from an original time-series data file.

  17. Flash on disk for low-power multimedia computing

    NASA Astrophysics Data System (ADS)

    Singleton, Leo; Nathuji, Ripal; Schwan, Karsten

    2007-01-01

    Mobile multimedia computers require large amounts of data storage, yet must consume low power in order to prolong battery life. Solid-state storage offers low power consumption, but its capacity is an order of magnitude smaller than the hard disks needed for high-resolution photos and digital video. In order to create a device with the space of a hard drive, yet the low power consumption of solid-state storage, hardware manufacturers have proposed using flash memory as a write buffer on mobile systems. This paper evaluates the power savings of such an approach and also considers other possible flash allocation algorithms, using both hardware- and software-level flash management. Its contributions also include a set of typical multimedia-rich workloads for mobile systems and power models based upon current disk and flash technology. Based on these workloads, we demonstrate an average power savings of 267 mW (53% of disk power) using hardware-only approaches. Next, we propose another algorithm, termed Energy-efficient Virtual Storage using Application-Level Framing (EVS-ALF), which uses both hardware and software for power management. By collecting information from the applications and using this metadata to perform intelligent flash allocation and prefetching, EVS-ALF achieves an average power savings of 307 mW (61%), another 8% improvement over hardware-only techniques.

  18. Warped circumbinary disks in active galactic nuclei

    SciTech Connect

    Hayasaki, Kimitake; Sohn, Bong Won; Jung, Taehyun; Zhao, Guangyao; Okazaki, Atsuo T.; Naito, Tsuguya

    2014-07-20

    We study a warping instability of a geometrically thin, non-self-gravitating disk surrounding binary supermassive black holes on a circular orbit. Such a circumbinary disk is subject to not only tidal torques due to the binary gravitational potential but also radiative torques due to radiation emitted from an accretion disk around each black hole. We find that a circumbinary disk initially aligned with the binary orbital plane is unstable to radiation-driven warping beyond the marginally stable warping radius, which is sensitive to both the ratio of vertical to horizontal shear viscosities and the mass-to-energy conversion efficiency. As expected, the tidal torques give no contribution to the growth of warping modes but tend to align the circumbinary disk with the orbital plane. Since the tidal torques can suppress the warping modes in the inner part of circumbinary disk, the circumbinary disk starts to be warped at radii larger than the marginally stable warping radius. If the warping radius is of the order of 0.1 pc, a resultant semi-major axis is estimated to be of the order of 10{sup –2} pc to 10{sup –4} pc for 10{sup 7} M{sub ☉} black hole. We also discuss the possibility that the central objects of observed warped maser disks in active galactic nuclei are binary supermassive black holes with a triple disk: two accretion disks around the individual black holes and one circumbinary disk surrounding them.

  19. Diabetes and driving.

    PubMed

    Inkster, B; Frier, B M

    2013-09-01

    The principal safety concern for driving for people treated with insulin or insulin secretagogues is hypoglycaemia, which impairs driving performance. Other complications, such as those causing visual impairment and peripheral neuropathy, are also relevant to medical fitness to drive. Case control studies have suggested that drivers with diabetes pose a modestly increased but acceptable and measurable risk of motor vehicle accidents compared to non-diabetic drivers, but many studies are limited and of poor quality. Factors which have been shown to increase driving risk include previous episodes of severe hypoglycaemia, previous hypoglycaemia while driving, strict glycaemic control (lower HbA1c) and absence of blood glucose monitoring before driving. Impaired awareness of hypoglycaemia may be counteracted by frequent blood glucose testing. The European Union Third directive on driving (2006) has necessitated changes in statutory regulations for driving licences for people with diabetes in all European States, including the UK. Stricter criteria have been introduced for Group 1 vehicle licences while those for Group 2 licences have been relaxed. Insulin-treated drivers can now apply to drive Group 2 vehicles, but in the UK must meet very strict criteria and be assessed by an independent specialist to be issued with a 1-year licence. PMID:23350766

  20. Accretion disks in Algols: Progenitors and evolution

    NASA Astrophysics Data System (ADS)

    Van Rensbergen, W.; De Greve, J. P.

    2016-08-01

    Context. There are only a few Algols with measured accretion disk parameters. These measurements provide additional constraints for tracing the origin of individual systems, narrowing down the initial parameter space. Aims: We investigate the origin and evolution of six Algol systems with accretion disks to find the initial parameters and evolutionary constraints for them. Methods: With a modified binary evolution code, series of close binary evolution are calculated to obtain the best match for observed individual systems. Results: Initial parameters for six Algol systems with accretion disks were determined matching both the present system parameters and the observed disk characteristics. Conclusions: When Roche lobe overflow (RLOF) starts during core hydrogen burning of the donor, the disk lifetime was found to be short. The disk luminosity is comparable to the luminosity of the gainer during a large fraction of the disk lifetime.

  1. Herschel evidence for disk flattening or gas depletion in transitional disks

    SciTech Connect

    Keane, J. T.; Pascucci, I.; Espaillat, C.; Woitke, P.; Andrews, S.; Kamp, I.; Thi, W.-F.; Meeus, G.; Dent, W. R. F.

    2014-06-01

    Transitional disks are protoplanetary disks characterized by reduced near- and mid-infrared emission, with respect to full disks. This characteristic spectral energy distribution indicates the presence of an optically thin inner cavity within the dust disk believed to mark the disappearance of the primordial massive disk. We present new Herschel Space Observatory PACS spectra of [O I] 63.18 μm for 21 transitional disks. Our survey complements the larger Herschel GASPS program ({sup G}as in Protoplanetary Systems{sup )} by quadrupling the number of transitional disks observed with PACS in this wavelength. [O I] 63.18 μm traces material in the outer regions of the disk, beyond the inner cavity of most transitional disks. We find that transitional disks have [O I] 63.18 μm line luminosities ∼2 times fainter than their full disk counterparts. We self-consistently determine various stellar properties (e.g., bolometric luminosity, FUV excess, etc.) and disk properties (e.g., disk dust mass, etc.) that could influence the [O I] 63.18 μm line luminosity, and we find no correlations that can explain the lower [O I] 63.18 μm line luminosities in transitional disks. Using a grid of thermo-chemical protoplanetary disk models, we conclude that either transitional disks are less flared than full disks or they possess lower gas-to-dust ratios due to a depletion of gas mass. This result suggests that transitional disks are more evolved than their full disk counterparts, possibly even at large radii.

  2. Solar disk sextant optical configuration

    NASA Technical Reports Server (NTRS)

    Chiu, H.-Y.; Maier, E.; Schatten, K. H.; Sofia, S.

    1984-01-01

    In this paper the performance of a plausible configuration for the solar disk sextant, an instrument to be used to monitor the solar diameter, is evaluated. Overall system requirements are evaluated, and tolerable uncertainties are obtained. It is concluded that by using a beam splitting wedge, a folded optics design can be used to measure the solar diameter to an accuracy of 10 to the -6th, despite the greater aberrations present in such optical systems.

  3. Development report for dual-burst disks

    SciTech Connect

    Fusco, A.M.

    1996-11-01

    Burst disks, commonly used in pressure relief applications, were studied as single-use valves. A dual-burst disk design was chosen for primary investigation for systems involving separation of gases of two significantly different pressures. The two disks are used to seal either end of a piston cavity that has a different cross-sectional area on each side. Different piston surface areas are used to maintain hydrostatic equilibrium, P{sub 1}A{sub 1} = P{sub 2}A{sub 2}. The single-use valve functions when the downstream pressure is reduced to approximately atmospheric pressure, creating a pressure differential that causes the burst disks to fail. Several parameters were studied to determine the optimum design of the burst disk. These parameters include thickness, diameter, area/pressure ratio, scoring, and disk geometry. The disk material was limited to 304L stainless steel. Factors that were considered essential to the optimization of the design were robustness, manufacturability, and burst pressure variability. The thicknesses of the disks that were studied range from 0.003 in. to 0.010 in. A model for predicting burst pressures of the burst disks was derived. The model combines membrane stress theory with force/displacement data to predict the burst pressure of various designs to within {+-}10%. This model results from studies that characterize the behavior of individual small and large disks. Welding techniques used to join the dual-disk assembly are discussed. Laser welds are used to join and seal the disks to the bulkhead. These welds were optimized for repeatability and robustness. Resistance upset welding is suggested for joining the dual-disk assembly to the pressure vessel body. Resistance upset weld parameters were developed for this particular design so as to minimize the side effects on the burst-disk performance and to provide high-quality welds.

  4. Multi-scale/multi-physical modeling in head/disk interface of magnetic data storage

    NASA Astrophysics Data System (ADS)

    Chung, Pil Seung; Smith, Robert; Vemuri, Sesha Hari; Jhon, Young In; Tak, Kyungjae; Moon, Il; Biegler, Lorenz T.; Jhon, Myung S.

    2012-04-01

    The model integration of the head-disk interface (HDI) in the hard disk drive system, which includes the hierarchy of highly interactive layers (magnetic layer, carbon overcoat (COC), lubricant, and air bearing system (ABS)), has recently been focused upon to resolve technical barriers and enhance reliability. Heat-assisted magnetic recording especially demands that the model simultaneously incorporates thermal and mechanical phenomena by considering the enormous combinatorial cases of materials and multi-scale/multi-physical phenomena. In this paper, we explore multi-scale/multi-physical simulation methods for HDI, which will holistically integrate magnetic layers, COC, lubricants, and ABS in non-isothermal conditions.

  5. Digital droplet PCR on disk.

    PubMed

    Schuler, Friedrich; Trotter, Martin; Geltman, Marcel; Schwemmer, Frank; Wadle, Simon; Domínguez-Garrido, Elena; López, María; Cervera-Acedo, Cristina; Santibáñez, Paula; von Stetten, Felix; Zengerle, Roland; Paust, Nils

    2016-01-01

    Existing systems for digital droplet PCR (ddPCR) either suffer from low integration or are difficult to introduce to mass fabrication. Here we present an integrated system that is compatible to mass fabrication and combines emulsification, PCR, and fluorescence readout in a single chamber within a disposable cartridge (disk). Droplets are generated by injecting the sample into fluorinated oil via centrifugal step emulsification. The resulting emulsion is aligned in the PCR and readout zone by capillary action. During thermocycling, gas bubbles generated by degassing are removed by capillary driven transport through tapered regions in the PCR chamber. Thereby, the positioning of the emulsion within the readout zone of the PCR chamber is ensured at any time and no bubbles are present during readout. Manual handling of the disk solely requires pipetting of oil and PCR mix into the inlet structures, placing the disk into the thermocycler and subsequently into a microarray scanner. The functionality of the ddPCR process chain is demonstrated by quantitative detection of the cystic fibrosis causing mutation p.Phe508del, which is of interest for non-invasive prenatal testing (NIPT). The mutation was detected in a concentration range spanning four orders of magnitude. We envision that this work will lay the base for the development of highly integrated sample-to-digital-answer PCR systems that can be employed in routine clinical diagnosis. PMID:26610263

  6. A Pulsar and a Disk

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-07-01

    Recent, unusual X-ray observations from our galactic neighbor, the Small Magellanic Cloud, have led to an interesting model for SXP 214, a pulsar in a binary star system.Artists illustration of the magnetic field lines of a pulsar, a highly magnetized, rotating neutron star. [NASA]An Intriguing BinaryAn X-ray pulsar is a magnetized, rotating neutron star in a binary system with a stellar companion. Material is fed from the companion onto the neutron star, channeled by the objects magnetic fields onto a hotspot thats millions of degrees. This hotspot rotating past our line of sight is what produces the pulsations that we observe from X-ray pulsars.Located in the Small Magellanic Cloud, SXP 214 is a transient X-ray pulsar in a binary with a Be-type star. This star is spinning so quickly that material is thrown off of it to form a circumstellar disk.Recently, a team of authors led by JaeSub Hong (Harvard-Smithsonian Center for Astrophysics) have presented new Chandra X-ray observations of SXP 214, tracking it for 50 ks (~14 hours) in January 2013. These observations reveal some very unexpected behavior for this pulsar.X-ray PuzzleThe energy distribution of the X-ray emission from SXP 214 over time. Dark shades or blue colors indicate high counts, and light shades or yellow colors indicate low counts. Lower-energy X-ray emission appeared only later, after about 20 ks. [Hong et al. 2016]Three interesting pieces of information came from the Chandra observations:SXP 214s rotation period was measured to be 211.5 s an increase in the spin rate since the discovery measurement of a 214-second period. Pulsars usually spin down as they lose angular momentum over time so what caused this one to spin up?Its overall X-ray luminosity steadily increased over the 50 ks of observations.Its spectrum became gradually softer (lower energy) over time; in the first 20 ks, the spectrum only consisted of hard X-ray photons above 3 keV, but after 20 ks, softer X-ray photons below 2 ke

  7. Fullerenes and disk-fullerenes

    NASA Astrophysics Data System (ADS)

    Deza, M.; Dutour Sikirić, M.; Shtogrin, M. I.

    2013-08-01

    A geometric fullerene, or simply a fullerene, is the surface of a simple closed convex 3-dimensional polyhedron with only 5- and 6-gonal faces. Fullerenes are geometric models for chemical fullerenes, which form an important class of organic molecules. These molecules have been studied intensively in chemistry, physics, crystallography, and so on, and their study has led to the appearance of a vast literature on fullerenes in mathematical chemistry and combinatorial and applied geometry. In particular, several generalizations of the notion of a fullerene have been given, aiming at various applications. Here a new generalization of this notion is proposed: an n-disk-fullerene. It is obtained from the surface of a closed convex 3-dimensional polyhedron which has one n-gonal face and all other faces 5- and 6-gonal, by removing the n-gonal face. Only 5- and 6-disk-fullerenes correspond to geometric fullerenes. The notion of a geometric fullerene is therefore generalized from spheres to compact simply connected two-dimensional manifolds with boundary. A two-dimensional surface is said to be unshrinkable if it does not contain belts, that is, simple cycles consisting of 6-gons each of which has two neighbours adjacent at a pair of opposite edges. Shrinkability of fullerenes and n-disk-fullerenes is investigated. Bibliography: 87 titles.

  8. Reading Text While Driving

    PubMed Central

    Horrey, William J.; Hoffman, Joshua D.

    2015-01-01

    Objective In this study, we investigated how drivers adapt secondary-task initiation and time-sharing behavior when faced with fluctuating driving demands. Background Reading text while driving is particularly detrimental; however, in real-world driving, drivers actively decide when to perform the task. Method In a test track experiment, participants were free to decide when to read messages while driving along a straight road consisting of an area with increased driving demands (demand zone) followed by an area with low demands. A message was made available shortly before the vehicle entered the demand zone. We manipulated the type of driving demands (baseline, narrow lane, pace clock, combined), message format (no message, paragraph, parsed), and the distance from the demand zone when the message was available (near, far). Results In all conditions, drivers started reading messages (drivers’ first glance to the display) before entering or before leaving the demand zone but tended to wait longer when faced with increased driving demands. While reading messages, drivers looked more or less off road, depending on types of driving demands. Conclusions For task initiation, drivers avoid transitions from low to high demands; however, they are not discouraged when driving demands are already elevated. Drivers adjust time-sharing behavior according to driving demands while performing secondary tasks. Nonetheless, such adjustment may be less effective when total demands are high. Application This study helps us to understand a driver’s role as an active controller in the context of distracted driving and provides insights for developing distraction interventions. PMID:25850162

  9. Ocular disease and driving.

    PubMed

    Wood, Joanne M; Black, Alex A

    2016-09-01

    As the driving population ages, the number of drivers with visual impairment resulting from ocular disease will increase given the age-related prevalence of ocular disease. The increase in visual impairment in the driving population has a number of implications for driving outcomes. This review summarises current research regarding the impact of common ocular diseases on driving ability and safety, with particular focus on cataract, glaucoma, age-related macular degeneration, hemianopia and diabetic retinopathy. The evidence considered includes self-reported driving outcomes, driving performance (on-road and simulator-based) and various motor vehicle crash indices. Collectively, this review demonstrates that driving ability and safety are negatively affected by ocular disease; however, further research is needed in this area. Older drivers with ocular disease need to be aware of the negative consequences of their ocular condition and in the case where treatment options are available, encouraged to seek these earlier for optimum driving safety and quality of life benefits. PMID:27156178

  10. Electric vehicles: Driving range

    NASA Astrophysics Data System (ADS)

    Kempton, Willett

    2016-09-01

    For uptake of electric vehicles to increase, consumers' driving-range needs must be fulfilled. Analysis of the driving patterns of personal vehicles in the US now shows that today's electric vehicles can meet all travel needs on almost 90% of days from a single overnight charge.

  11. Piezoelectric drive circuit

    DOEpatents

    Treu, C.A. Jr.

    1999-08-31

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes. 7 figs.

  12. Piezoelectric drive circuit

    DOEpatents

    Treu, Jr., Charles A.

    1999-08-31

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes.

  13. Merger Histories of Galaxy Halos and Implications for Disk Survival

    SciTech Connect

    Stewart, Kyle R.; Bullock, James S.; Wechsler, Risa H.; Maller, Ariyeh H.; Zentner, Andrew R.

    2008-05-16

    The authors study the merger histories of galaxy dark matter halos using a high resolution {Lambda}CDM N-body simulation. The merger trees follow {approx} 17,000 halos with masses M{sub 0} = (10{sup 11} - 10{sup 13})h{sup -1}M{sub {circle_dot}} at z = 0 and track accretion events involving objects as small as m {approx_equal} 10{sup 10} h{sup -1}M{sub {circle_dot}}. They find that mass assembly is remarkably self-similar in m/M{sub 0}, and dominated by mergers that are {approx}10% of the final halo mass. While very large mergers, m {approx}> 0.4 M{sub 0}, are quite rare, sizeable accretion events, m {approx} 0.1 M{sub 0}, are common. Over the last {approx} 10 Gyr, an overwhelming majority ({approx} 95%) of Milky Way-sized halos with M{sub 0} = 10{sup 12} h{sup -1}M{sub {circle_dot}} have accreted at least one object with greater total mass than the Milky Way disk (m > 5 x 10{sup 10} h{sup -1}M{sub {circle_dot}}), and approximately 70% have accreted an object with more than twice that mass (m > 10{sup 11} h{sup -1}M{sub {circle_dot}}). The results raise serious concerns about the survival of thin-disk dominated galaxies within the current paradigm for galaxy formation in a {Lambda}CDM universe. in order to achieve a {approx} 70% disk-dominated fraction in Milky Way-sized {Lambda}CDM halos, mergers involving m {approx_equal} 2 x 10{sup 11} h{sup -1}M{sub {circle_dot}} objects must not destroy disks. Considering that most thick disks and bulges contain old stellar populations, the situation is even more restrictive: these mergers must not heat disks or drive gas into their centers to create young bulges.

  14. Design of traction drives

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Zaretsky, E. V.

    1985-01-01

    Traction drives are among the simplest of all speed-changing mechanisms. Because of their simplicity and their ability to smoothly and continuously adjust speed, they are excellent choices for many drive system applications. They have been used in industrial service for more than 100 years. Today's traction drives have power capacities which rival the best gear and belt drives due to modern traction fluids and highly fatigue-resistant bearing steels. This report summarizes methods to analyze and size traction drives. Lubrication principles, contact kinematics, stress, fatigue life, and performance prediction methods are presented. The effects of the lubricant's traction characteristics on life and power loss are discussed. An example problem is given which illustrates the effects of spin on power loss. Loading mechanism design and the design of nonlubricated friction wheels and rings are also treated.

  15. Thin disk lasers: history and prospects

    NASA Astrophysics Data System (ADS)

    Speiser, Jochen

    2016-04-01

    During the early 1990s, collaboration between the German Aerospace Center and the University of Stuttgart started to work on the Thin Disk concept. The core idea behind the thin disk design is the use of a thin, disk-shaped active medium that is cooled through one of the flat faces of the disk. This ensures a large surface-to-volume ratio and therefore provides very efficient thermal management. Today, the thin disk concept is used in various commercial lasers - ranging from compact, efficient low power systems to multi-kW lasers, including cw lasers and also pulsed (femtosecond to nanosecond) oscillators and amplifiers. The whole development of the Thin Disk laser was and will be accompanied by numerical modeling and optimization of the thermal and thermo-mechanic behavior of the disk and also the heat sink structure, mostly based on finite element models. For further increasing the energy and efficiency of pulsed Thin Disk lasers, the effects of amplified spontaneous emission (ASE) are a core issue. Actual efforts are oriented towards short pulse and ultra-short pulse amplifiers with (multi-)kW average power or Joule-class Thin Disk amplifiers, but also on new designs for cw thin disk MOPA designs.

  16. Foundations of Black Hole Accretion Disk Theory

    NASA Astrophysics Data System (ADS)

    Abramowicz, Marek A.; Fragile, P. Chris

    2013-12-01

    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).

  17. A cool disk in the Galactic Center?

    NASA Astrophysics Data System (ADS)

    Liu, B. F.; Meyer, F.; Meyer-Hofmeister, E.

    2004-07-01

    We study the possibility of a cool disk existing in the Galactic Center in the framework of the disk-corona evaporation/condensation model. Assuming an inactive disk near the gravitational capture distance left over from an earlier evolutionary stage, a hot corona should form above the disk since there is a continuous supply of hot gas from stellar winds of the close-by massive stars. We study the interaction between the disk and the corona. Whether the cool disk can survive depends on the mass exchange between disk and corona which is determined by the energy and pressure balance. If evaporation is the dominant process and the rate is larger than the Bondi accretion rate in the Galactic Center, the disk will be depleted within a certain time and no persistent disk will exist. On the other hand, if the interaction results in hot gas steadily condensing into the disk, an inactive cool disk with little gas accreting towards the central black hole might survive in the Galactic Center. For this case we further investigate the Bremsstrahlung radiation from the hot corona and compare it with the observed X-ray luminosity. Our model shows that, for standard viscosity in the corona (α=0.3), the mass evaporation rate is much higher than the Bondi accretion rate and the coronal density is much larger than that inferred from Chandra observations. An inactive disk can not survive such strong evaporation. For small viscosity (α ⪉ 0.07) we find condensation solutions. But detailed coronal structure computations show that in this case there is too much X-ray radiation from the corona to be in agreement with the observations. From this modeling we conclude that there should be no thin/inactive disk presently in the Galactic Center. However we do not exclude that the alternative non-radiative model of Nayakshin (\\cite{Nayakshin04}) might instead be realized in nature and shortly discuss this question.}

  18. Generalized Similarity for Accretion/Decretion Disks

    NASA Astrophysics Data System (ADS)

    Rafikov, Roman R.

    2016-10-01

    Decretion (or external) disks are gas disks freely expanding to large radii due to their internal stresses. They are expected to naturally arise in tidal disruption events, around Be stars, in mass-losing post-main-sequence binaries, as a result of supernova fallback, etc. Their evolution is theoretically understood in two regimes: when the central object does not exert torque on the disk (a standard assumption for conventional accretion disks) or when no mass inflow (or outflow) occurs at the disk center. However, many astrophysical objects—circumbinary disks, Be stars, neutron stars accreting in a propeller regime, etc.—feature non-zero torque simultaneously with the non-zero accretion (or ejection of mass) at the disk center. We provide a general description for the evolution of such disks (both linear and nonlinear) in the self-similar regime, to which the disk should asymptotically converge with time. We identify a similarity parameter λ, which is uniquely related to the degree, to which the central mass accretion is suppressed by the non-zero central torque. The known decretion disk solutions correspond to the two discrete values of λ, while our new solutions cover a continuum of its physically allowed values, corresponding to either accretion or mass ejection by the central object. A direct relationship between λ and central \\dot{M} and torque is also established. We describe the time evolution of the various disk characteristics for different λ, and show that the observable properties (spectrum and luminosity evolution) of the decretion disks, in general, are different from the standard accretion disks with no central torque.

  19. DUSTY DISKS AROUND WHITE DWARFS. I. ORIGIN OF DEBRIS DISKS

    SciTech Connect

    Dong Ruobing; Wang Yan; Lin, D. N. C.; Liu, X.-W. E-mail: yuw123@psu.ed E-mail: liuxw@bac.pku.edu.c

    2010-06-01

    A significant fraction of the mature FGK stars have cool dusty disks at least an order of magnitude brighter than the solar system's outer zodiacal light. Since such dusts must be continually replenished, they are generally assumed to be the collisional fragments of residual planetesimals analogous to the Kuiper-Belt objects. At least 10% of solar-type stars also bear gas giant planets. The fraction of stars with known gas giants or detectable debris disks (or both) appears to increase with the stellar mass. Here, we examine the dynamical evolution of systems of long-period gas giant planets and residual planetesimals as their host stars evolve off the main sequence, lose mass, and form planetary nebula around remnant white dwarf cores. The orbits of distant gas giant planets and super-km-size planetesimals expand adiabatically. During the most intense asymptotic giant branch mass-loss phase, sub-meter-size particles migrate toward their host stars due to the strong hydrodynamical drag by the intense stellar wind. Along their migration paths, gas giant planets capture and sweep up sub-km-size planetesimals onto their mean-motion resonances. These planetesimals also acquire modest eccentricities which are determined by the mass of the perturbing planets, and the rate and speed of stellar mass loss. The swept-up planetesimals undergo disruptive collisions which lead to the production of grains with an extended size range. The radiation drag on these particles is ineffective against the planets' resonant barrier and they form 30-50 AU size rings which can effectively reprocess the stellar irradiation in the form of FIR continuum. We identify the recently discovered dust ring around the white dwarf WD 2226-210 at the center of the Helix nebula as a prototype of such disks and suggest such rings may be common.

  20. Secular Evolution in Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Kormendy, John

    2013-10-01

    Self-gravitating systems evolve toward the most tightly bound configuration that is reachable via the evolution processes that are available to them. They do this by spreading -- the inner parts shrink while the outer parts expand -- provided that some physical process efficiently transports energy or angular momentum outward. The reason is that self-gravitating systems have negative specific heats. As a result, the evolution of stars, star clusters, protostellar and protoplanetary disks, black hole accretion disks and galaxy disks are fundamentally similar. How evolution proceeds then depends on the evolution processes that are available to each kind of self-gravitating system. These processes and their consequences for galaxy disks are the subjects of my lectures and of this Canary Islands Winter School. I begin with a review of the formation, growth and death of bars. Then I review the slow (`secular') rearrangement of energy, angular momentum, and mass that results from interactions between stars or gas clouds and collective phenomena such as bars, oval disks, spiral structure and triaxial dark haloes. The `existence-proof' phase of this work is largely over: we have a good heuristic understanding of how nonaxisymmetric structures rearrange disk gas into outer rings, inner rings and stuff dumped onto the centre. The results of simulations correspond closely to the morphology of barred and oval galaxies. Gas that is transported to small radii reaches high densities. Observations confirm that many barred and oval galaxies have dense central concentrations of gas and star formation. The result is to grow, on timescales of a few Gyr, dense central components that are frequently mistaken for classical (elliptical-galaxy-like) bulges but that were grown slowly out of the disk (not made rapidly by major mergers). The resulting picture of secular galaxy evolution accounts for the richness observed in galaxy structure. We can distinguish between classical and pseudo

  1. Simulating the Formation of Massive Protostars. I. Radiative Feedback and Accretion Disks

    NASA Astrophysics Data System (ADS)

    Klassen, Mikhail; Pudritz, Ralph E.; Kuiper, Rolf; Peters, Thomas; Banerjee, Robi

    2016-05-01

    We present radiation hydrodynamic simulations of collapsing protostellar cores with initial masses of 30, 100, and 200 M ⊙. We follow their gravitational collapse and the formation of a massive protostar and protostellar accretion disk. We employ a new hybrid radiative feedback method blending raytracing techniques with flux-limited diffusion for a more accurate treatment of the temperature and radiative force. In each case, the disk that forms becomes Toomre-unstable and develops spiral arms. This occurs between 0.35 and 0.55 freefall times and is accompanied by an increase in the accretion rate by a factor of 2–10. Although the disk becomes unstable, no other stars are formed. In the case of our 100 and 200 M ⊙ simulations, the star becomes highly super-Eddington and begins to drive bipolar outflow cavities that expand outwards. These radiatively driven bubbles appear stable, and appear to be channeling gas back onto the protostellar accretion disk. Accretion proceeds strongly through the disk. After 81.4 kyr of evolution, our 30 M ⊙ simulation shows a star with a mass of 5.48 M ⊙ and a disk of mass 3.3 M ⊙, while our 100 M ⊙ simulation forms a 28.8 M ⊙ mass star with a 15.8 M ⊙ disk over the course of 41.6 kyr, and our 200 M ⊙ simulation forms a 43.7 M ⊙ star with an 18 M ⊙ disk in 21.9 kyr. In the absence of magnetic fields or other forms of feedback, the masses of the stars in our simulation do not appear to be limited by their own luminosities.

  2. LARGE-SCALE ASYMMETRIES IN THE TRANSITIONAL DISKS OF SAO 206462 AND SR 21

    SciTech Connect

    Pérez, Laura M.; Chandler, Claire J.; Isella, Andrea; Carpenter, John M.

    2014-03-01

    We present Atacama Large Millimeter/submillimeter Array (ALMA) observations in the dust continuum (690 GHz, 0.45 mm) and {sup 12}CO J = 6-5 spectral line emission of the transitional disks surrounding the stars SAO 206462 and SR 21. These ALMA observations resolve the dust-depleted disk cavities and extended gaseous disks, revealing large-scale asymmetries in the dust emission of both disks. We modeled these disk structures with a ring and an azimuthal Gaussian, where the azimuthal Gaussian is motivated by the steady-state vortex solution from Lyra and Lin. Compared to recent observations of HD 142527, Oph IRS 48, and LkHα 330, these are low-contrast (≲ 2) asymmetries. Nevertheless, a ring alone is not a good fit, and the addition of a vortex prescription describes these data much better. The asymmetric component encompasses 15% and 28% of the total disk emission in SAO 206462 and SR 21, respectively, which corresponds to a lower limit of 2 M {sub Jup} of material within the asymmetry for both disks. Although the contrast in the dust asymmetry is low, we find that the turbulent velocity inside it must be large (∼20% of the sound speed) in order to drive these azimuthally wide and radially narrow vortex-like structures. We obtain residuals from the ring and vortex fitting that are still significant, tracing non-axisymmetric emission in both disks. We compared these submillimeter observations with recently published H-band scattered light observations. For SR 21 the scattered light emission is distributed quite differently from the submillimeter continuum emission, while for SAO 206462 the submillimeter residuals are suggestive of spiral-like structure similar to the near-IR emission.

  3. An Observational Perspective of Transitional Disks

    NASA Astrophysics Data System (ADS)

    Espaillat, C.; Muzerolle, J.; Najita, J.; Andrews, S.; Zhu, Z.; Calvet, N.; Kraus, S.; Hashimoto, J.; Kraus, A.; D'Alessio, P.

    Transitional disks are objects whose inner disk regions have undergone substantial clearing. The Spitzer Space Telescope produced detailed spectral energy distributions (SEDs) of transitional disks that allowed us to infer their radial dust disk structure in some detail, revealing the diversity of this class of disks. The growing sample of transitional disks also opened up the possibility of demographic studies, which provided unique insights. There now exist (sub)millimeter and infrared images that confirm the presence of large clearings of dust in transitional disks. In addition, protoplanet candidates have been detected within some of these clearings. Transitional disks are thought to be a strong link to planet formation around young stars and are a key area to study if further progress is to be made on understanding the initial stages of planet formation. Here we provide a review and synthesis of transitional disk observations to date with the aim of providing timely direction to the field, which is about to undergo its next burst of growth as the Atacama Large Millimeter/submillimeter Array (ALMA) reaches its full potential. We discuss what we have learned about transitional disks from SEDs, color-color diagrams, and imaging in the (sub)millimeter and infrared. We note the limitations of these techniques, particularly with respect to the sizes of the clearings currently detectable, and highlight the need for pairing broadband SEDs with multi-wavelength images to paint a more detailed picture of transitional disk structure. We review the gas in transitional disks, keeping in mind that future observations with ALMA will give us unprecedented access to gas in disks, and also observed infrared variability pointing to variable transitional disk structure, which may have implications for disks in general. We then distill the observations into constraints for the main disk-clearing mechanisms proposed to date (i.e., photoevaporation, grain growth, and companions) and

  4. Relativistic slim disks with vertical structure

    NASA Astrophysics Data System (ADS)

    Sądowski, A.; Abramowicz, M.; Bursa, M.; Kluźniak, W.; Lasota, J.-P.; Różańska, A.

    2011-03-01

    We report on a scheme for incorporating vertical radiative energy transport into a fully relativistic, Kerr-metric model of optically thick, advective, transonic alpha disks. Our code couples the radial and vertical equations of the accretion disk. The flux was computed in the diffusion approximation, and convection is included in the mixing-length approximation. We present the detailed structure of this "two-dimensional" slim-disk model for α = 0.01. We then calculated the emergent spectra integrated over the disk surface. The values of surface density, radial velocity, and the photospheric height for these models differ by 20%-30% from those obtained in the polytropic, height-averaged slim disk model considered previously. However, the emission profiles and the resulting spectra are quite similar for both types of models. The effective optical depth of the slim disk becomes lower than unity for high values of the alpha parameter and for high accretion rates.

  5. Gas Rich Mergers in Disk Formation

    NASA Astrophysics Data System (ADS)

    Brook, C. B.; Veilleux, V.; Kawata, D.; Martel, H.; Gibson, B. K.

    In order to explain disk galaxy formation within the hierarchical structure formation, it seems that gas rich mergers must play an important role. We review here our previous studies which have shown the importance of mergers at high redshift being gas rich, in the formation of both the stellar halo and thick disk components of disk galaxies. Regulation of star formation in the building blocks of our galaxy is required to form a low mass low metallicity stellar halo. This regulation results in high redshift, gas rich mergers during which the thick disk forms. In these proceedings, we categorise stars from our simulated disk galaxy into thin and thick disk components by using the Toomre diagram. Rotation velocity, metallicity and age histograms of the two populations are presented, along with alpha element abundances (oxygen, silicone, magnesium), age-height above the plane, age-radius, metallicity-height, and metalicity-radius gradients.

  6. Vector diffraction analysis of optical disk readout.

    PubMed

    Cheng, X; Jia, H; Xu, D

    2000-12-01

    The optical disk readout signals from ROM disks are presented by use of a rigorous three-dimensional vector diffraction method. The optical disk is modeled as a crossed metal grating without restriction on the form of the information marks, and the permittivity of the metal is taken into account. The diffracted field from the disk is obtained by means of decomposing the focused incident beam into a spectrum of plane waves and then calculating the diffracted plane waves for each respective incident component. The readout signal is obtained by integration of the energy-flux density of the diffracted field according to the detection scheme of the optical disk system. A typical digital versatile disk (DVD) system is applied with this theory, and the result is far from that of scalar diffraction theory. PMID:18354657

  7. First Image of the disk

    NASA Astrophysics Data System (ADS)

    Smith, B.

    2014-09-01

    In 1983 IRAS detected significant infrared excess around four relatively nearby stars: ! Lyrae, ! Piscis Austrini, " Eridani, and # Pictoris. Before the IRAS results had been officially released, Frank Low asked me if the LPL coronagraph (used in the 1980 Saturn ring-plane crossing) might be able to detect the source of the infrared excess. Of the four stars, all but # Pictoris were easily observable from Tucson. I told Frank I would give it a try. Ultimately, the coronagraphic observations failed to reveal anything around the three stars that were observable from Tucson. In April 1984 Rich Terrile and I had an observing run on the 2.5-m du Pont telescope at the Las Campanas Observatory in Chile. We were using the LPL coronagraph and a Caltech CCD camera to examine the close environment around Uranus and Neptune in preparation for the upcoming Voyager 2 encounters with the two planets. I used this opportunity to observe the fourth IRAS star, # Pictoris. A small window was available for me to observe # Pictoris each night before our observations of the planets could begin. In those days image processing capability did not exist at Las Campanas, and so the circumstellar disk around the star was not seen until we returned home and processed the images at LPL and JPL. During follow-up observations the following year I was able to see the disk visually in the coronagraph's eyepiece. I've sometimes wondered how many astronomers have actually seen a circumstellar disk at the eyepiece of a telescope.

  8. Heating and Cooling Protostellar Disks

    NASA Astrophysics Data System (ADS)

    Hirose, S.; Turner, N. J.

    2011-05-01

    We examine heating and cooling in protostellar disks using three-dimensional radiation-MHD calculations of a patch of the Solar nebula at 1 AU, employing the shearing-box and flux-limited radiation diffusion approximations. The disk atmosphere is ionized by stellar X-rays, well coupled to magnetic fields, and sustains a turbulent accretion flow driven by magnetorotational instability, while the interior is resistive and magnetically dead. The turbulent layers are heated by absorbing the light from the central star and by dissipating the magnetic fields. They are optically thin to their own radiation and cool inefficiently. The optically thick interior in contrast is heated only weakly, by re-emission from the atmosphere. The interior is colder than a classical viscous model and isothermal. The magnetic fields support an extended atmosphere that absorbs the starlight 1.5 times higher than the hydrostatic viscous model. The disk thickness thus measures not the internal temperature, but the magnetic field strength. Fluctuations in the fields move the starlight-absorbing surface up and down. The height ranges between 13% and 24% of the radius over timescales of several orbits, with implications for infrared variability. The fields are buoyant, so the accretion heating occurs higher in the atmosphere than the stresses. The heating is localized around current sheets, caused by magnetorotational instability at lower elevations and by Parker instability at higher elevations. Gas in the sheets is heated above the stellar irradiation temperature, even though accretion is much less than irradiation power when volume averaged. The hot optically thin current sheets might be detectable through their line emission.

  9. The Test Drive

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken at NASA's Jet Propulsion Laboratory shows engineers rehearsing the sol 133 (June 8, 2004) drive into 'Endurance' crater by NASA's Mars Exploration Rover Opportunity. Engineers and scientists have recreated the martian surface and slope the rover will encounter using a combination of bare and thinly sand-coated rocks, simulated martian 'blueberries' and a platform tilted at a 25-degree angle. The results of this test convinced engineers that the rover was capable of driving up and down a straight slope before it attempted the actual drive on Mars.

  10. Vision and Driving

    PubMed Central

    Owsley, Cynthia; McGwin, Gerald

    2010-01-01

    Driving is the primary means of personal travel in many countries and is relies heavily on vision for its successful execution. Research over the past few decades has addressed the role of vision in driver safety (motor vehicle collision involvement) and in driver performance (both on-road and using interactive simulators in the laboratory). Here we critically review what is currently known about the role of various aspects of visual function in driving. We also discuss translational research issues on vision screening for licensure and re-licensure and rehabilitation of visually impaired persons who want to drive. PMID:20580907

  11. Drive System Research

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.

    2007-01-01

    An overview of the NASA Glenn Research Center Drive Systems Research will be presented. The primary purpose of this research is to improve performance, reliability, and integrity of aerospace drive systems and space mechanisms. The research is conducted through a combination of in-house, academia, and through contractors. Research is conducted through computer code development and validated through component and system testing. The drive system activity currently has four major thrust areas including: thermal behavior of high speed gearing, health and usage monitoring, advanced components, and space mechanisms.

  12. Polar Direct Drive

    NASA Astrophysics Data System (ADS)

    Skupsky, S.

    2003-10-01

    Direct drive offers the potential of higher target gain on the National Ignition Facility (NIF) than x-ray drive: The initial direct-drive target design had a 1-D gain of 45 and consisted primarily of a pure cryogenic DT shell. Using the expected levels of target and laser nonuniformities for the NIF, two-dimensional (2-D) hydrodynamic simulations predicted target gains around 30.(P.W. McKenty et al.), Phys. Plasmas 8, 2315 (2001). More-recent designs have shown that higher target gains could be obtained by replacing a portion of the DT shell with ``wetted'' CH foam and by using adiabat shaping: (1) Higher-Z material (C) in the foam increases laser absorption by about 40% (from 60% absorption to 85%).(S. Skupsky et al.), in Inertial Fusion Sciences and Applications 2001, edited by K. Tanaka et al. (Elsevier, Paris, 2002), p. 240. (2) Adiabat shaping allows the main portion of the fuel to be placed on a lower adiabat without compromising target stability.(V.N. Goncharov et al.), Phys. Plasmas 10, 1906 (2003). These direct-drive concepts can be tested on the NIF, long before that facility is converted to a direct-drive (spherically symmetric) irradiation configuration. Using the NIF x-ray-drive beam configuration, some of the near-polar beams could be pointed to better illuminate the target's equator. These more-oblique, equatorial beams will have lower absorption and reduced drive efficiency than the polar beams. One strategy to compensate for the difference in polar and equatorial drive is to reduce the irradiation at the poles and employ different pulse shapes to accommodate the time-dependent variations in drive and absorption. This concept of polar direct drive (PDD) has been studied using the 2-D hydrocode DRACO to determine the requirements for achieving ignition and moderate target gain for the NIF. Experiments on the OMEGA laser will examine the effects of oblique irradiation on target drive. Results of simulations for different direct-drive target designs

  13. Accretion disk thermal instability in galactic nuclei

    NASA Astrophysics Data System (ADS)

    Mineshige, S.; Shields, G. A.

    1990-03-01

    The nonlinear evolution and spatial propagation of the thermal instability in accretion disks in galactic nuclei are investigated. Integrations of the vertical structure of the disks are described for different alpha prescriptions, and the thermal stability is examined. Global time-dependent calculations of the unstable disks are performed which show that there are two distinct types of behavior according to the assumed prescription for the viscosity parameter: the 'purr' type and the 'roar' type. The roar type is analyzed in some detail.

  14. Forced response of mistuned bladed disk assemblies

    NASA Technical Reports Server (NTRS)

    Watson, Brian C.; Kamat, Manohar P.; Murthy, Durbha V.

    1993-01-01

    A complete analytic model of mistuned bladed disk assemblies, designed to simulate the dynamical behavior of these systems, is analyzed. The model incorporates a generalized method for describing the mistuning of the assembly through the introduction of specific mistuning modes. The model is used to develop a computational bladed disk assembly model for a series of parametric studies. Results are presented demonstrating that the response amplitudes of bladed disk assemblies depend both on the excitation mode and on the mistune mode.

  15. Do elliptical galaxies have thick disks?

    NASA Technical Reports Server (NTRS)

    Thomson, R. C.; Wright, A. E.

    1990-01-01

    The authors discuss new evidence which supports the existence of thick disks in elliptical/SO galaxies. Numerical simulations of weak interactions with thick disk systems produce shell structures very similar in appearance to those observed in many shell galaxies. The authors think this model presents a more plausible explanation for the formation of shell structures in elliptical/SO galaxies than does the merger model and, if correct, supports the existence of thick disks in elliptical/SO galaxies.

  16. MOLECULAR GAS IN YOUNG DEBRIS DISKS

    SciTech Connect

    Moor, A.; Abraham, P.; Kiss, Cs.; Juhasz, A.; Kospal, A.; Pascucci, I.; Apai, D.; Henning, Th.; Csengeri, T.; Grady, C.

    2011-10-10

    Gas-rich primordial disks and tenuous gas-poor debris disks are usually considered as two distinct evolutionary phases of the circumstellar matter. Interestingly, the debris disk around the young main-sequence star 49 Ceti possesses a substantial amount of molecular gas and possibly represents the missing link between the two phases. Motivated to understand the evolution of the gas component in circumstellar disks via finding more 49 Ceti-like systems, we carried out a CO J = 3-2 survey with the Atacama Pathfinder EXperiment, targeting 20 infrared-luminous debris disks. These systems fill the gap between primordial and old tenuous debris disks in terms of fractional luminosity. Here we report on the discovery of a second 49 Ceti-like disk around the 30 Myr old A3-type star HD21997, a member of the Columba Association. This system was also detected in the CO(2-1) transition, and the reliable age determination makes it an even clearer example of an old gas-bearing disk than 49 Ceti. While the fractional luminosities of HD21997 and 49 Ceti are not particularly high, these objects seem to harbor the most extended disks within our sample. The double-peaked profiles of HD21997 were reproduced by a Keplerian disk model combined with the LIME radiative transfer code. Based on their similarities, 49 Ceti and HD21997 may be the first representatives of a so far undefined new class of relatively old ({approx}>8 Myr), gaseous dust disks. From our results, neither primordial origin nor steady secondary production from icy planetesimals can unequivocally explain the presence of CO gas in the disk of HD21997.

  17. ON THE FORMATION OF GALACTIC THICK DISKS

    SciTech Connect

    Minchev, I.; Streich, D.; Scannapieco, C.; De Jong, R. S.; Steinmetz, M.; Martig, M.

    2015-05-01

    Recent spectroscopic observations in the Milky Way suggest that the chemically defined thick disk (stars that have high [α/Fe] ratios and are thus old) has a significantly smaller scale-length than the thin disk. This is in apparent contradiction with observations of external edge-on galaxies, where the thin and thick components have comparable scale-lengths. Moreover, while observed disks do not flare (scale-height does not increase with radius), numerical simulations suggest that disk flaring is unavoidable, resulting from both environmental effects and secular evolution. Here we address these problems by studying two different suites of simulated galactic disks formed in the cosmological context. We show that the scale-heights of coeval populations always increase with radius. However, the total population can be decomposed morphologically into thin and thick disks, which do not flare. We relate this to the disk inside-out formation, where younger populations have increasingly larger scale-lengths and flare at progressively larger radii. In this new picture, thick disks are composed of the imbedded flares of mono-age stellar populations. Assuming that disks form inside out, we predict that morphologically defined thick disks must show a decrease in age (or [α/Fe] ratios) with radius and that coeval populations should always flare. This also explains the observed inversion in the metallicity and [α/Fe] gradients for stars away from the disk midplane in the Milky Way. The results of this work are directly linked to, and can be seen as evidence of, inside-out disk growth.

  18. Molecular Gas in Young Debris Disks

    NASA Technical Reports Server (NTRS)

    Moor, A.; Abraham, P.; Juhasz, A.; Kiss, Cs.; Pascucci, I.; Kospal, A.; Apai, D.; Henning, T.; Csengeri, T.; Grady, C.

    2011-01-01

    Gas-rich primordial disks and tenuous gas-poor debris disks are usually considered as two distinct evolutionary phases of the circumstellar matter. Interestingly, the debris disk around the young main-sequence star 49 Ceti possesses a substantial amount of molecular gas and possibly represents the missing link between the two phases. Motivated to understand the evolution of the gas component in circumstellar disks via finding more 49 Ceti-like systems, we carried out a CO J = 3-2 survey with the Atacama Pathfinder EXperiment, targeting 20 infrared-luminous debris disks. These systems fill the gap between primordial and old tenuous debris disks in terms of fractional luminosity. Here we report on the discovery of a second 49 Ceti-like disk around the 30 Myr old A3-type star HD21997, a member of the Columba Association. This system was also detected in the CO(2-1) transition, and the reliable age determination makes it an even clearer example of an old gas-bearing disk than 49 Ceti. While the fractional luminosities of HD21997 and 49 Ceti are not particularly high, these objects seem to harbor the most extended disks within our sample. The double-peaked profiles of HD21997 were reproduced by a Keplerian disk model combined with the LIME radiative transfer code. Based on their similarities, 49 Ceti and HD21997 may be the first representatives of a so far undefined new class of relatively old > or approx.8 Myr), gaseous dust disks. From our results, neither primordia1 origin nor steady secondary production from icy planetesima1s can unequivocally explain the presence of CO gas in the disk ofHD21997.

  19. Uncommon Manifestations of Intervertebral Disk Pathologic Conditions.

    PubMed

    Diehn, Felix E; Maus, Timothy P; Morris, Jonathan M; Carr, Carrie M; Kotsenas, Amy L; Luetmer, Patrick H; Lehman, Vance T; Thielen, Kent R; Nassr, Ahmad; Wald, John T

    2016-01-01

    Beyond the familiar disk herniations with typical clinical features, intervertebral disk pathologic conditions can have a wide spectrum of imaging and clinical manifestations. The goal of this review is to illustrate and discuss unusual manifestations of intervertebral disk pathologic conditions that radiologists may encounter, including disk herniations in unusual locations, those with atypical imaging features, and those with uncommon pathophysiologic findings. Examples of atypical disk herniations presented include dorsal epidural, intradural, symptomatic thoracic (including giant calcified), extreme lateral (retroperitoneal), fluorine 18 fluorodeoxyglucose-avid, acute intravertebral (Schmorl node), and massive lumbar disk herniations. Examples of atypical pathophysiologic conditions covered are discal cysts, fibrocartilaginous emboli to the spinal cord, tiny calcified disks or disk-level spiculated osteophytes causing spinal cerebrospinal fluid (CSF) leak and intracranial hypotension, and pediatric acute calcific discitis. This broad gamut of disease includes a variety of sizes of disk pathologic conditions, from the tiny (eg, the minuscule calcified disks causing high-flow CSF leaks) to the extremely large (eg, giant calcified thoracic intradural disk herniations causing myelopathy). A spectrum of clinical acuity is represented, from hyperacute fibrocartilaginous emboli causing spinal cord infarct, to acute Schmorl nodes, to chronic intradural herniations. The entities included are characterized by a range of clinical courses, from the typically devastating cord infarct caused by fibrocartilaginous emboli, to the usually spontaneously resolving pediatric acute calcific discitis. Several conditions have important differential diagnostic considerations, and others have relatively diagnostic imaging findings. The pathophysiologic findings are well understood for some of these entities and poorly defined for others. Radiologists' knowledge of this broad scope of

  20. High-energy particle acceleration by explosive electromagnetic interaction in an accretion disk

    NASA Technical Reports Server (NTRS)

    Haswell, C. A.; Tajima, T.; Sakai, J.-I.

    1992-01-01

    By examining electromagnetic field evolution occurring in an accretion disk around a compact object, we arrive at an explosive mechanism of particle acceleration. Flux-freezing in the differentially rotating disk causes the seed and/or generated magnetic field to wrap up tightly, becoming highly sheared and locally predominantly azimuthal in orientation. We show how asymptotically nonlinear solutions for the electromagnetic fields may arise in isolated plasma blobs as a result of the driving of the fluid equations by the accretion flow. These fields are capable of rapidly accelerating charged particles from the disk. Acceleration through the present mechanism from AGN can give rise to energies beyond 10 exp 20 eV. Such a mechanism may present an explanation for the extragalactic origin of the most energetic observed cosmic rays.

  1. RAID-2: Design and implementation of a large scale disk array controller

    NASA Technical Reports Server (NTRS)

    Katz, R. H.; Chen, P. M.; Drapeau, A. L.; Lee, E. K.; Lutz, K.; Miller, E. L.; Seshan, S.; Patterson, D. A.

    1992-01-01

    We describe the implementation of a large scale disk array controller and subsystem incorporating over 100 high performance 3.5 inch disk drives. It is designed to provide 40 MB/s sustained performance and 40 GB capacity in three 19 inch racks. The array controller forms an integral part of a file server that attaches to a Gb/s local area network. The controller implements a high bandwidth interconnect between an interleaved memory, an XOR calculation engine, the network interface (HIPPI), and the disk interfaces (SCSI). The system is now functionally operational, and we are tuning its performance. We review the design decisions, history, and lessons learned from this three year university implementation effort to construct a truly large scale system assembly.

  2. Magnetic Forces in an Isopedic Disk

    NASA Astrophysics Data System (ADS)

    Shu, Frank H.; Li, Zhi-Yun

    1997-01-01

    We consider the magnetic forces in electrically conducting thin disks threaded by magnetic fields originating in the external (interstellar) medium. We focus on disks that have dimensionless ratios λ of the mass to flux that are spatially constant, a condition that we term isopedic. For arbitrary distributions of the surface density Σ (which can be nonaxisymmetric and time dependent), we show that the magnetic tension exerts a force in the plane of the disk equal to -1/λ2 times the self-gravitational force. In addition, if the disk maintains magnetostatic equilibrium in the vertical direction, the magnetic pressure, integrated over the z-height of the disk, may be approximated as (1 + η2)/(λ2 + η2) times the gas pressure integrated over z, where η ≡ f||/2πGΣ and f|| is the component of the local gravitational field parallel to the plane of the disk. We apply these results to the problem of the stability of magnetized isothermal disks to gravitational fragmentation into subcondensations of a size comparable to the vertical scale height of the disk. Contrary to common belief, such dynamical fragmentation probably does not occur. In particular, the case of the magnetized singular isothermal disk undergoes not dynamical fragmentation into many subcondensations, but inside-out collapse into a single compact object, a self similar problem that is studied in a companion paper (Li & Shu 1997).

  3. Debris Disks Around Nearby Young M Dwarfs

    NASA Astrophysics Data System (ADS)

    Liu, Michael

    2006-07-01

    We propose to obtain HST/ACS F606W coronagraphic imaging of two young {10-50 Myr}, nearby {25-55 pc} M dwarfs to resolve their debris disks in scattered light. Little is known about debris disks around M dwarfs, as very few examples are known and only one, the AU Mic debris disk, has been spatially resolved thus far. IR/sub-mm photometry of our targets indicate large quantities of exceptionally cold dust, comparable to the prototype AU Mic system, and make them excellent candidates for resolved studies with physical resolutions of 1-2 AU. HST/ACS provides an excellent capability for detection of disks in scattered light. Modeling the disk images will allow us to quantify the radial and vertical structure and to search for disk sub-structure, a potential probe of the planet formation process in these young systems. Our program can expand the census of young resolved debris disks, of which very few are currently known. M dwarfs have been largely over-looked in myriad imaging searches: our program will complement the many current programs focusing on the higher-mass AFGK stars. Because our targets belong to nearby young moving groups with known resolved disks around higher mass stars, a key potential outcome of our program is comparative study of coeval debris disks over a range of stellar masses.

  4. Evaluation of powder metallurgy superalloy disk materials

    NASA Technical Reports Server (NTRS)

    Evans, D. J.

    1975-01-01

    A program was conducted to develop nickel-base superalloy disk material using prealloyed powder metallurgy techniques. The program included fabrication of test specimens and subscale turbine disks from four different prealloyed powders (NASA-TRW-VIA, AF2-1DA, Mar-M-432 and MERL 80). Based on evaluation of these specimens and disks, two alloys (AF2-1DA and Mar-M-432) were selected for scale-up evaluation. Using fabricating experience gained in the subscale turbine disk effort, test specimens and full scale turbine disks were formed from the selected alloys. These specimens and disks were then subjected to a rigorous test program to evaluate their physical properties and determine their suitability for use in advanced performance turbine engines. A major objective of the program was to develop processes which would yield alloy properties that would be repeatable in producing jet engine disks from the same powder metallurgy alloys. The feasibility of manufacturing full scale gas turbine engine disks by thermomechanical processing of pre-alloyed metal powders was demonstrated. AF2-1DA was shown to possess tensile and creep-rupture properties in excess of those of Astroloy, one of the highest temperature capability disk alloys now in production. It was determined that metallographic evaluation after post-HIP elevated temperature exposure should be used to verify the effectiveness of consolidation of hot isostatically pressed billets.

  5. Disk's Spiral Arms Point to Possible Planets

    NASA Video Gallery

    Simulations of young stellar systems suggest that planets embedded in a circumstellar disk can produce many distinctive structures, including rings, gaps and spiral arms. This video compares comput...

  6. Drive program documentation

    NASA Technical Reports Server (NTRS)

    Graham, S.

    1979-01-01

    The program description and user's guide for the Downlist Requirement Integrated Verification and Evaluation (DRIVE) program is provided. The program is used to compare existing telemetry downlist files with updated downlist requirements.

  7. Control rod drive

    DOEpatents

    Hawke, Basil C.

    1986-01-01

    A control rod drive uses gravitational forces to insert one or more control rods upwardly into a reactor core from beneath the reactor core under emergency conditions. The preferred control rod drive includes a vertically movable weight and a mechanism operatively associating the weight with the control rod so that downward movement of the weight is translated into upward movement of the control rod. The preferred control rod drive further includes an electric motor for driving the control rods under normal conditions, an electrically actuated clutch which automatically disengages the motor during a power failure and a decelerator for bringing the control rod to a controlled stop when it is inserted under emergency conditions into a reactor core.

  8. CONTROL ROD DRIVE

    DOEpatents

    Chapellier, R.A.

    1960-05-24

    BS>A drive mechanism was invented for the control rod of a nuclear reactor. Power is provided by an electric motor and an outside source of fluid pressure is utilized in conjunction with the fluid pressure within the reactor to balance the loadings on the motor. The force exerted on the drive mechanism in the direction of scramming the rod is derived from the reactor fluid pressure so that failure of the outside pressure source will cause prompt scramming of the rod.

  9. Nickel Base Superalloy Turbine Disk

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P. (Inventor); Gauda, John (Inventor); Telesman, Ignacy (Inventor); Kantzos, Pete T. (Inventor)

    2005-01-01

    A low solvus, high refractory alloy having unusually versatile processing mechanical property capabilities for advanced disks and rotors in gas turbine engines. The nickel base superalloy has a composition consisting essentially of, in weight percent, 3.0-4.0 N, 0.02-0.04 B, 0.02-0.05 C, 12.0-14.0 Cr, 19.0-22.0 Co, 2.0-3.5 Mo, greater than 1.0 to 2.1 Nb, 1.3 to 2.1 Ta,3.04.OTi,4.1 to 5.0 W, 0.03-0.06 Zr, and balance essentially Ni and incidental impurities. The superalloy combines ease of processing with high temperature capabilities to be suitable for use in various turbine engine disk, impeller, and shaft applications. The Co and Cr levels of the superalloy can provide low solvus temperature for high processing versatility. The W, Mo, Ta, and Nb refractory element levels of the superalloy can provide sustained strength, creep, and dwell crack growth resistance at high temperatures.

  10. On the simple actuator disk

    NASA Astrophysics Data System (ADS)

    Spalart, Philippe R.

    2003-11-01

    The standard textbook model of a helicopter rotor in vertical translation, a disk loaded with a uniform pressure jump in inviscid fluid, is revisited in search of correct descriptions of the far-field velocity and of the vortex sheet, allowing a rigorous control-volume analysis. The translation rate is not required to be large compared with the induced velocity. The classical results for induced power are unchanged, and now have a strong foundation: they are exact within the steady inviscid problem statement, instead of depending on a quasi-one-dimensional approximation as in the literature. Conversely, even with a uniform pressure jump the induced velocity is far from uniform over the disk, again in conflict with common beliefs and with any quasi-one-dimensional argument: the flow is upwards near the rim, both inside and outside it. The cross-section of the vortex sheet probably begins with a 45° spiral, as opposed to the smooth funnel shape that has been sketched, in the literature and below. A viscous numerical solution supports this conjecture. Plausible boundaries between the translation rates that produce the two ‘clean’ streamtube flow types, namely climb/hover and rapid descent, and those in-between that produce the vortex-ring state are also discussed.

  11. The physical and chemical evolution of protostellar disks. The growth of protostellar disks: Progress to date

    NASA Technical Reports Server (NTRS)

    Stahler, Steven W.

    1993-01-01

    This study constitutes one part of our multi-disciplinary approach to the evolution of planet-forming disks. The goal is to establish the disks' thermal and mechanical properties as they grow by the infall of their parent interstellar clouds. Thus far, significant advances toward establishing the evolving surface density of such disks was made.

  12. ON THE TRANSITIONAL DISK CLASS: LINKING OBSERVATIONS OF T TAURI STARS AND PHYSICAL DISK MODELS

    SciTech Connect

    Espaillat, C.; Andrews, S.; Qi, C.; Wilner, D.; Ingleby, L.; Calvet, N.; Hernandez, J.; Furlan, E.; D'Alessio, P.; Muzerolle, J. E-mail: sandrews@cfa.harvard.edu E-mail: dwilner@cfa.harvard.edu E-mail: ncalvet@umich.edu E-mail: Elise.Furlan@jpl.nasa.gov E-mail: muzerol@stsci.edu

    2012-03-10

    Two decades ago 'transitional disks' (TDs) described spectral energy distributions (SEDs) of T Tauri stars with small near-IR excesses, but significant mid- and far-IR excesses. Many inferred this indicated dust-free holes in disks possibly cleared by planets. Recently, this term has been applied disparately to objects whose Spitzer SEDs diverge from the expectations for a typical full disk (FD). Here, we use irradiated accretion disk models to fit the SEDs of 15 such disks in NGC 2068 and IC 348. One group has a 'dip' in infrared emission while the others' continuum emission decreases steadily at all wavelengths. We find that the former have an inner disk hole or gap at intermediate radii in the disk and we call these objects 'transitional disks' and 'pre-transitional disks' (PTDs), respectively. For the latter group, we can fit these SEDs with FD models and find that millimeter data are necessary to break the degeneracy between dust settling and disk mass. We suggest that the term 'transitional' only be applied to objects that display evidence for a radical change in the disk's radial structure. Using this definition, we find that TDs and PTDs tend to have lower mass accretion rates than FDs and that TDs have lower accretion rates than PTDs. These reduced accretion rates onto the star could be linked to forming planets. Future observations of TDs and PTDs will allow us to better quantify the signatures of planet formation in young disks.

  13. STELLAR-MASS-DEPENDENT DISK STRUCTURE IN COEVAL PLANET-FORMING DISKS

    SciTech Connect

    Szucs, Laszlo; Apai, Daniel; Pascucci, Ilaria; Dullemond, Cornelis P. E-mail: apai@stsci.ed E-mail: dullemon@mpia.d

    2010-09-10

    Previous studies suggest that the planet-forming disks around very low mass stars/brown dwarfs may be flatter than those around more massive stars, in contrast to model predictions of larger scale heights for gas-disks around lower-mass stars. We conducted a statistically robust study to determine whether there is evidence for stellar-mass-dependent disk structure in planet-forming disks. We find a statistically significant difference in the Spitzer/IRAC color distributions of disks around very low mass and low mass stars all belonging to the same star-forming region, the Chamaeleon I star-forming region. We show that self-consistently calculated flared disk models cannot fit the median spectral energy distributions (SEDs) of the two groups. These SEDs can only be explained by flatter disk models, consistent with the effect of dust settling in disks. We find that, relative to the disk structure predicted for flared disks, the required reduction in disk scale height is anti-correlated with the stellar mass; i.e., disks around lower-mass stars are flatter. Our results show that the initial and boundary conditions of planet formation are stellar-mass-dependent, an important finding that must be considered in planet formation models.

  14. Self-driving carsickness.

    PubMed

    Diels, Cyriel; Bos, Jelte E

    2016-03-01

    This paper discusses the predicted increase in the occurrence and severity of motion sickness in self-driving cars. Self-driving cars have the potential to lead to significant benefits. From the driver's perspective, the direct benefits of this technology are considered increased comfort and productivity. However, we here show that the envisaged scenarios all lead to an increased risk of motion sickness. As such, the benefits this technology is assumed to bring may not be capitalised on, in particular by those already susceptible to motion sickness. This can negatively affect user acceptance and uptake and, in turn, limit the potential socioeconomic benefits that this emerging technology may provide. Following a discussion on the causes of motion sickness in the context of self-driving cars, we present guidelines to steer the design and development of automated vehicle technologies. The aim is to limit or avoid the impact of motion sickness and ultimately promote the uptake of self-driving cars. Attention is also given to less well known consequences of motion sickness, in particular negative aftereffects such as postural instability, and detrimental effects on task performance and how this may impact the use and design of self-driving cars. We conclude that basic perceptual mechanisms need to be considered in the design process whereby self-driving cars cannot simply be thought of as living rooms, offices, or entertainment venues on wheels.

  15. Dementia and driving.

    PubMed

    O'Neill, D; Neubauer, K; Boyle, M; Gerrard, J; Surmon, D; Wilcock, G K

    1992-04-01

    Many European countries test cars, but not their drivers, as they age. There is evidence to suggest that human factors are more important than vehicular factors as causes of motor crashes. The elderly also are involved in more accidents per distance travelled than middle-aged drivers. As the UK relies on self-certification of health by drivers over the age of 70 years, we examined the driving practices of patients with dementia attending a Memory Clinic. Nearly one-fifth of 329 patients with documented dementia continued to drive after the onset of dementia, and impaired driving ability was noted in two-thirds of these. Their families experienced great difficulty in persuading patients to stop driving, and had to invoke outside help in many cases. Neuropsychological tests did not help to identify those who drove badly while activity of daily living scores were related to driving ability. These findings suggest that many patients with dementia drive in an unsafe fashion after the onset of the illness. The present system of self-certification of health by the elderly for driver-licensing purposes needs to be reassessed.

  16. Self-driving carsickness.

    PubMed

    Diels, Cyriel; Bos, Jelte E

    2016-03-01

    This paper discusses the predicted increase in the occurrence and severity of motion sickness in self-driving cars. Self-driving cars have the potential to lead to significant benefits. From the driver's perspective, the direct benefits of this technology are considered increased comfort and productivity. However, we here show that the envisaged scenarios all lead to an increased risk of motion sickness. As such, the benefits this technology is assumed to bring may not be capitalised on, in particular by those already susceptible to motion sickness. This can negatively affect user acceptance and uptake and, in turn, limit the potential socioeconomic benefits that this emerging technology may provide. Following a discussion on the causes of motion sickness in the context of self-driving cars, we present guidelines to steer the design and development of automated vehicle technologies. The aim is to limit or avoid the impact of motion sickness and ultimately promote the uptake of self-driving cars. Attention is also given to less well known consequences of motion sickness, in particular negative aftereffects such as postural instability, and detrimental effects on task performance and how this may impact the use and design of self-driving cars. We conclude that basic perceptual mechanisms need to be considered in the design process whereby self-driving cars cannot simply be thought of as living rooms, offices, or entertainment venues on wheels. PMID:26446454

  17. Hydraulic drive system prevents backlash

    NASA Technical Reports Server (NTRS)

    Acord, J. D.

    1965-01-01

    Hydraulic drive system uses a second drive motor operating at reduced torque. This exerts a relative braking action which eliminates the normal gear train backlash that is intolerable when driving certain heavy loads.

  18. Time-resolved scanning Kerr microscopy of flux beam formation in hard disk write heads

    NASA Astrophysics Data System (ADS)

    Valkass, Robert A. J.; Spicer, Timothy M.; Burgos Parra, Erick; Hicken, Robert J.; Bashir, Muhammad A.; Gubbins, Mark A.; Czoschke, Peter J.; Lopusnik, Radek

    2016-06-01

    To meet growing data storage needs, the density of data stored on hard disk drives must increase. In pursuit of this aim, the magnetodynamics of the hard disk write head must be characterized and understood, particularly the process of "flux beaming." In this study, seven different configurations of perpendicular magnetic recording (PMR) write heads were imaged using time-resolved scanning Kerr microscopy, revealing their detailed dynamic magnetic state during the write process. It was found that the precise position and number of driving coils can significantly alter the formation of flux beams during the write process. These results are applicable to the design and understanding of current PMR and next-generation heat-assisted magnetic recording devices, as well as being relevant to other magnetic devices.

  19. GAS ACCRETION FROM A CIRCUMBINARY DISK

    SciTech Connect

    Hanawa, Tomoyuki; Ochi, Yasuhiro; Ando, Koichi

    2010-01-01

    A new computational scheme is developed to study gas accretion from a circumbinary disk. The scheme decomposes the gas velocity into two components one of which denotes the Keplerian rotation and the other of which does the deviation from it. This scheme enables us to solve the centrifugal balance of a gas disk against gravity with better accuracy, since the former inertia force cancels the gravity. It is applied to circumbinary disk rotating around binary of which primary and secondary has mass ratio, 1.4:0.95. The gravity is reduced artificially softened only in small circular regions around the primary and secondary. The radii are 7% of the binary separation and much smaller than those in the previous grid based simulations. Seven models are constructed to study dependence on the gas temperature and the initial inner radius of the disk. The gas accretion shows both fast and slow time variations while the binary is assumed to have a circular orbit. The time variation is due to oscillation of spiral arms in the circumbinary disk. The masses of primary and secondary disks increase while oscillating appreciably. The mass accretion rate tends to be higher for the primary disk although the secondary disk has a higher accretion rate in certain periods. The accretion rates onto the two components are similar within the fluctuations in late times, i.e., after the binary rotates more than 20 times. The primary disk is perturbed intensely by the impact of gas flow so that the outer part is removed. The secondary disk is quiet in most of time on the contrary. Both the primary and secondary disks have traveling spiral waves which transfer angular momentum within them.

  20. Vortex Formation in Vertically Stratified Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Stewart, Glen R.

    2013-10-01

    A central problem of planet formation is how to form large planetesimals in a turbulent protoplanetary disk. Recent work suggests that MRI turbulence would excite such large velocities that the planetesimals would collisionally fragment rather than grow. The structure of chondritic meteorites indicates a gentle nebular environment where chondrules are sorted by size and cemented together rapidly. Although it is well established that anticyclones can concentrate particles that are weakly coupled to the gas in protoplanetary disks, the conditions required for the formation and long-time stability of anticyclones in a vertically stratified disk are still highly uncertain. Fully three dimensional fluid dynamic simulations of protoplanetary disks are computationally expensive when one requires a computational domain that is large compared to the vertical scale height of the disk. An alternative simulation approach is to use potential temperature as the vertical coordinate so that the equations of motion resemble the shallow water equations (Dowling et al. 1998). We have therefore modified a multilayer shallow water simulation code to model the formation of vortices in a vertically stratified protoplanetary disk with a radial entropy gradient. Vertical stratification of the disk is modeled by using multiple layers, where each layer has a different constant value of the entropy. By forcing a slope in the interfaces between the layers, we impose a radial entropy gradient in the disk. Radiative heating and cooling causes vertical mass exchange between adjacent constant entropy layers according to a Newton cooling formula. We find that the formation of anticyclones is robust, and that these vortices actively excite density waves, which in turn, transport angular momentum through the disk. Our simulations therefore yield new insights on how the dusty dead zones of protoplanetary disks can transport angular momentum through the disk by purely hydrodynamic processes. Support

  1. Development Of High Performance Head Positioner For An Optical Disk Storage System

    NASA Astrophysics Data System (ADS)

    Yamamoto, Tetsu; Yumura, Takashi; Shimegi, Hiroo

    1987-01-01

    Design of a high performance linear head positioner fitted for an optical disk drive is reported. First, a flat and small positioner structure with a linear motor consisting of one coil and two magnetic circuits is invented. Next, a new design method to make drive force large, motor size small, and resonant frequency high is discussed by combining motor design with vibration analysis. Finally, the flat and small head positioner with 4.8 N at 1.6 A and about 6 kHz resonant frequency is developed by this design method.

  2. A Disk-Based System for Producing and Distributing Science Products from MODIS

    NASA Technical Reports Server (NTRS)

    Masuoka, Edward; Wolfe, Robert; Sinno, Scott; Ye Gang; Teague, Michael

    2007-01-01

    Since beginning operations in 1999, the MODIS Adaptive Processing System (MODAPS) has evolved to take advantage of trends in information technology, such as the falling cost of computing cycles and disk storage and the availability of high quality open-source software (Linux, Apache and Perl), to achieve substantial gains in processing and distribution capacity and throughput while driving down the cost of system operations.

  3. Accretion Kinematics through the Warped Transition Disk in HD142527 from Resolved CO(6-5) Observations

    NASA Astrophysics Data System (ADS)

    Casassus, S.; Marino, S.; Pérez, S.; Roman, P.; Dunhill, A.; Armitage, P. J.; Cuadra, J.; Wootten, A.; van der Plas, G.; Cieza, L.; Moral, Victor; Christiaens, V.; Montesinos, Matías

    2015-10-01

    The finding of residual gas in the large central cavity of the HD 142527 disk motivates questions regarding the origin of its non-Keplerian kinematics and possible connections with planet formation. We aim to understand the physical structure that underlies the intra-cavity gaseous flows, guided by new molecular-line data in CO(6-5) with unprecedented angular resolutions. Given the warped structure inferred from the identification of scattered-light shadows cast on the outer disk, the kinematics are consistent, to first order, with axisymmetric accretion onto the inner disk occurring at all azimuths. A steady-state accretion profile, fixed at the stellar accretion rate, explains the depth of the cavity as traced in CO isotopologues. The abrupt warp and evidence for near free-fall radial flows in HD 142527 resemble theoretical models for disk tearing, which could be driven by the reported low-mass companion, whose orbit may be contained in the plane of the inner disk. The companion’s high inclination with respect to the massive outer disk could drive Kozai oscillations over long timescales; high-eccentricity periods may perhaps account for the large cavity. While shadowing by the tilted disk could imprint an azimuthal modulation in the molecular-line maps, further observations are required to ascertain the significance of azimuthal structure in the density field inside the cavity of HD 142527.

  4. ACCRETION KINEMATICS THROUGH THE WARPED TRANSITION DISK IN HD 142527 FROM RESOLVED CO(6–5) OBSERVATIONS

    SciTech Connect

    Casassus, S.; Marino, S.; Pérez, S.; Plas, G. van der; Christiaens, V.; Montesinos, Matías; Roman, P.; Dunhill, A.; Cuadra, J.; Cieza, L.; Moral, Victor; Armitage, P. J.; Wootten, A.

    2015-10-01

    The finding of residual gas in the large central cavity of the HD 142527 disk motivates questions regarding the origin of its non-Keplerian kinematics and possible connections with planet formation. We aim to understand the physical structure that underlies the intra-cavity gaseous flows, guided by new molecular-line data in CO(6–5) with unprecedented angular resolutions. Given the warped structure inferred from the identification of scattered-light shadows cast on the outer disk, the kinematics are consistent, to first order, with axisymmetric accretion onto the inner disk occurring at all azimuths. A steady-state accretion profile, fixed at the stellar accretion rate, explains the depth of the cavity as traced in CO isotopologues. The abrupt warp and evidence for near free-fall radial flows in HD 142527 resemble theoretical models for disk tearing, which could be driven by the reported low-mass companion, whose orbit may be contained in the plane of the inner disk. The companion’s high inclination with respect to the massive outer disk could drive Kozai oscillations over long timescales; high-eccentricity periods may perhaps account for the large cavity. While shadowing by the tilted disk could imprint an azimuthal modulation in the molecular-line maps, further observations are required to ascertain the significance of azimuthal structure in the density field inside the cavity of HD 142527.

  5. Mental workload and driving

    PubMed Central

    Paxion, Julie; Galy, Edith; Berthelon, Catherine

    2014-01-01

    The aim of this review is to identify the most representative measures of subjective and objective mental workload in driving, and to understand how the subjective and objective levels of mental workload influence the performance as a function of situation complexity and driving experience, i.e., to verify whether the increase of situation complexity and the lack of experience increase the subjective and physiological levels of mental workload and lead to driving performance impairments. This review will be useful to both researchers designing an experimental study of mental workload and to designers of drivers’ training content. In the first part, we will broach the theoretical approach with two factors of mental workload and performance, i.e., situation complexity and driving experience. Indeed, a low complex situation (e.g., highways), or conversely a high complex situation (e.g., town) can provoke an overload. Additionally, performing the driving tasks implies producing a high effort for novice drivers who have not totally automated the driving activity. In the second part, we will focus on subjective measures of mental workload. A comparison of questionnaires usually used in driving will allow identifying the most appropriate ones as a function of different criteria. Moreover, we will review the empirical studies to verify if the subjective level of mental workload is high in simple and very complex situations, especially for novice drivers compared to the experienced ones. In the third part, we will focus on physiological measures. A comparison of physiological indicators will be realized in order to identify the most correlated to mental workload. An empirical review will also take the effect of situation complexity and experience on these physiological indicators into consideration. Finally, a more nuanced comparison between subjective and physiological measures will be established from the impact on situation complexity and experience. PMID:25520678

  6. Fabrication of large ceramic electrolyte disks

    NASA Technical Reports Server (NTRS)

    Ring, S. A.

    1972-01-01

    Process for sintering compressed ceramic powders produces large ceramic disks for use as electrolytes in high-temperature electrolytic cells. Thin, strain-free uniformly dense disks as large as 30 cm squared have been fabricated by slicing ceramic slugs produced by this technique.

  7. Grinding Glass Disks On A Belt Sander

    NASA Technical Reports Server (NTRS)

    Lyons, James J., III

    1995-01-01

    Small machine attached to table-top belt sander makes possible to use belt sander to grind glass disk quickly to specified diameter within tolerance of about plus or minus 0.002 in. Intended to be used in place of production-shop glass grinder. Held on driveshaft by vacuum, glass disk rotated while periphery ground by continuous sanding belt.

  8. Circumstellar disks around binary stars in Taurus

    SciTech Connect

    Akeson, R. L.

    2014-03-20

    We have conducted a survey of 17 wide (>100 AU) young binary systems in Taurus with the Atacama Large Millimeter Array (ALMA) at two wavelengths. The observations were designed to measure the masses of circumstellar disks in these systems as an aid to understanding the role of multiplicity in star and planet formation. The ALMA observations had sufficient resolution to localize emission within the binary system. Disk emission was detected around all primaries and 10 secondaries, with disk masses as low as 10{sup –4} M {sub ☉}. We compare the properties of our sample to the population of known disks in Taurus and find that the disks from this binary sample match the scaling between stellar mass and millimeter flux of F{sub mm}∝M{sub ∗}{sup 1.5--2.0} to within the scatter found in previous studies. We also compare the properties of the primaries to those of the secondaries and find that the secondary/primary stellar and disk mass ratios are not correlated; in three systems, the circumsecondary disk is more massive than the circumprimary disk, counter to some theoretical predictions.

  9. Slim Disks Around Kerr Black Holes Revisited

    NASA Astrophysics Data System (ADS)

    Sądowski, Aleksander

    2009-08-01

    We investigate stationary slim accretion disks around Kerr black holes. We construct a new numerical method based on the relaxation technique. We systematically cover the whole parameter space relevant to stellar mass X-ray binaries. We also notice some non-monotonic features in the disk structure, overlooked in previous studies.

  10. Gap opening planets in stellar irradiated disks

    NASA Astrophysics Data System (ADS)

    Lobo Gomes, Aiara; Klahr, Hubert; Kuiper, Rolf

    2016-05-01

    We investigate the influence of radiative effects on planetary gap structures, aiming to understand cavities that have recently been observed in protoplanetary disks and suggested to be a result of planet-disk interactions. We use 3D global radiative-hydrodynamical simulations, including dust radiation as well as stellar irradiation in the PLUTO code.

  11. Dispersal of Disks Around Young Stars

    NASA Technical Reports Server (NTRS)

    Hollenbach, David; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    We review the evidence pertaining to the lifetimes of planet-forming disks and discuss possible disk dispersal mechanisms: 1) viscous accretion of material onto the central source; 2) close stellar encounters; 3) stellar winds; and 4) photoevaporation by ultraviolet radiation. We focus on 3) and 4) and describe the quasi-steady state appearance and the overall evolution of disks under the influence of winds and radiation from the central star and of radiation from external OB stars. Viscous accretion likely dominates disk dispersal in the inner disk (r approx. or less than 10 AU), while photoevaporation is the principal process of disk dispersal outside of r approx. or greater than 10 AU for low mass stars. Disk dispersal timescales are compared and discussed in relation to theoretical estimates for planet formation timescales. Photoevaporation may explain the large differences in the hydrogen content of the giant planets in the solar system. The commonly held belief that our early sun's stellar wind dispersed he solar nebula is called into question. Finally, we model the small bright objects ('proplyds') observed in the Orion Nebula as disks around young, low mass stars which are externally illuminated by the UV (ultraviolet) photons from the nearby massive star Theta(1)C.

  12. Dispersal of Disks Around Young Stars

    NASA Technical Reports Server (NTRS)

    Hollenbach, David

    2001-01-01

    We review the evidence pertaining to the lifetimes of planet-forming disks and discuss possible disk dispersal mechanisms: 1) viscous accretion of material onto the central source, 2) close stellar encounters, 3) stellar winds, and 4) photoevaporation by ultraviolet radiation. We focus on 3) and 4) and describe the quasi-steady state appearance and the overall evolution of disks under the influence of winds and radiation from the central star and of radiation from external OB stars. Viscous accretion likely dominates disk dispersal in the inner disk (r < or approx. equals 10 AU), while photoevaporation is the principal process of disk dispersal outside of r > or approx. equals 10 AU for low mass stars. Disk dispersal timescales are compared and discussed in relation to theoretical estimates for planet formation timescales. Photoevaporation may explain the large differences in the hydrogen content of the giant planets in the solar system. The commonly held belief that our early sun's stellar wind dispersed the solar nebula is called into question. Finally, we model the small bright objects ("proplyds") observed in the Orion Nebula as disks around young, low mass stars which are externally illuminated by the UV photons from the nearby massive star Theta(sup 1)C.

  13. Anticyclonic Vortex in a Protoplanetary Disk

    NASA Astrophysics Data System (ADS)

    Abrahamyan, M. G.

    2016-06-01

    The dynamics of protoplanetary disks is studied in a local approximation. A solution in the form of an anticyclonic vortex with a triaxial-ellipsoidal shape is obtained with linear circulation of matter in the plane of rotation of the disk. The formation of planetesimals from dust by vortices of this type is examined.

  14. A Primer on Unifying Debris Disk Morphologies

    NASA Astrophysics Data System (ADS)

    Lee, Eve J.; Chiang, Eugene

    2016-08-01

    A “minimum model” for debris disks consists of a narrow ring of parent bodies, secularly forced by a single planet on a possibly eccentric orbit, colliding to produce dust grains that are perturbed by stellar radiation pressure. We demonstrate how this minimum model can reproduce a wide variety of disk morphologies imaged in scattered starlight. Five broad categories of disk shape can be captured: “rings,” “needles,” “ships-and-wakes,” “bars,” and “moths (a.k.a. fans),” depending on the viewing geometry. Moths can also sport “double wings.” We explain the origin of morphological features from first principles, exploring the dependence on planet eccentricity, disk inclination dispersion, and the parent body orbital phases at which dust grains are born. A key determinant in disk appearance is the degree to which dust grain orbits are apsidally aligned. Our study of a simple steady-state (secularly relaxed) disk should serve as a reference for more detailed models tailored to individual systems. We use the intuition gained from our guidebook of disk morphologies to interpret, informally, the images of a number of real-world debris disks. These interpretations suggest that the farthest reaches of planetary systems are perturbed by eccentric planets, possibly just a few Earth masses each.

  15. [Herniated intradural lumbar disk: a clinical case].

    PubMed

    Borgogno, G; Fontanella, C; La Camera, V

    1991-01-01

    The authors report a case of intradural disk herniation at L4-5 observed in a patient with longstanding low back pain and sciatica due to a herniated disk. After having undergone various surgical procedures for this disorder, the patient recently developed a multiradicular syndrome of the cauda equina.

  16. The Transitional Disks Associated With Herbig Stars

    NASA Technical Reports Server (NTRS)

    Grady, C.; Fukagawa, M.; Maruta, Y.; Ohta, Y.; Wisniewski, J.; Lomax, J.; Hashimoto, J.; Currie, T.; Okamoto, Y.; Momose, M.; McElwain, M.

    2015-01-01

    As part of the Strategic Exploration of Exoplanets and Disks with Subaru YSO survey, we have surveyed a number of Herbig B-F stars mainly at H-band using Polarimetric Differential Imaging + Angular differential imaging. Historically, Herbig stars have been sorted by the shape of the IR SEDs into those which can be fit by power laws over 1-200 micrometers (Meeus et al. 2001, group II), and those which can be interpreted as a power law + a blackbody component (Meeus group I) or as transitional or pre-transitional disks (Maaskant et al. 2013). Meeus group II disks, when imaged with HiCIAO show featureless disks with depolarization along the projection of the disk semi-minor axis (Kusakabe et al. 2012). This is what we had expected to see for the Meeus group I disks, except for the addition of wide gaps or central cavities. Instead we find wild diversity, suggesting that transitional disks are highly perturbed compared to Meeus group II disks. To date, similar structure continues to be observed as higher Strehl ratio imagery becomes available.

  17. Recent development of disk lasers at TRUMPF

    NASA Astrophysics Data System (ADS)

    Schad, Sven-Silvius; Gottwald, Tina; Kuhn, Vincent; Ackermann, Matthias; Bauer, Dominik; Scharun, Michael; Killi, Alexander

    2016-03-01

    The disk laser is one of the most important laser concepts for today's industrial laser market. Offering high brilliance at low cost, high optical efficiency and great application flexibility the disk laser paved the way for many industrial laser applications. Over the past years power and brightness increased and the disk laser turned out to be a very versatile laser source, not only for welding but also for cutting. Both, the quality and speed of cutting are superior to CO2-based lasers for a vast majority of metals, and, most important, in a broad thickness range. In addition, due to the insensitivity against back reflections the disk laser is well suited for cutting highly reflective metal such as brass or copper. These advantages facilitate versatile cutting machines and explain the high and growing demand for disk lasers for applications besides welding applications that can be observed today. From a today's perspective the disk principle has not reached any fundamental limits regarding output power per disk or beam quality, and offers numerous advantages over other high power resonator concepts, especially over fiber lasers or direct diode lasers. This paper will give insight in the latest progress in kilowatt class cw disk laser technology at TRUMPF and will discuss recent power scaling results as well.

  18. SLIM DISKS AROUND KERR BLACK HOLES REVISITED

    SciTech Connect

    Sadowski, Aleksander

    2009-08-01

    We investigate stationary slim accretion disks around Kerr black holes. We construct a new numerical method based on the relaxation technique. We systematically cover the whole parameter space relevant to stellar mass X-ray binaries. We also notice some non-monotonic features in the disk structure, overlooked in previous studies.

  19. BACKPRESSURE TESTING OF ROTARY MICROFILTER DISKS

    SciTech Connect

    Fowley, M.; Herman, D.

    2011-04-14

    The Savannah River National Laboratory (SRNL), under the Department of Energy (DOE) Office of Environmental Management (EM), is modifying and testing the SpinTek{trademark} rotary microfilter (RMF) for radioactive filtration service in the Department of Energy (DOE) complex. The RMF has been shown to improve filtration throughput when compared to other conventional methods such as cross-flow filtration. A concern with the RMF was that backpressure, or reverse flow through the disk, would damage the filter membranes. Reverse flow might happen as a result of an inadvertent valve alignment during flushing. Testing was completed in the Engineering Development Laboratory (EDL) located in SRNL to study the physical effects of backpressure as well as to determine the maximum allowable back-pressure for RMF disks. The RMF disks tested at the EDL were manufactured by SpinTek{trademark} Filtration and used a Pall Corporation PMM050 filter membrane (0.5 micron nominal pore size) made from 316L stainless steel. Early versions of the RMF disks were made from synthetic materials that were incompatible with caustic solutions and radioactive service as well as being susceptible to delaminating when subjected to backpressure. Figure 1-1 shows the essential components of the RMF; 3 rotating disks and 3 stationary turbulence promoters (or shear elements) are shown. Figure 1-2 show the assembly view of a 25 disk RMF proposed for use at the Savannah River Site (SRS) and at the Hanford Facility. The purpose of the testing discussed in this report was to determine the allowable backpressure for RMF disks as well as study the physical effects of backpressure on RMF disks made with the Pall PMM050 membrane. This was accomplished by pressurizing the disks in the reverse flow direction (backpressure) until the test limit was reached or until membrane failure occurred. Backpressure was applied to the disks with air while submerged in deionized (DI) water. This method provided a visual

  20. An improved electronic drive for small two and four wheel vehicles

    SciTech Connect

    Pavuza, F.G.; Beszedics, G.; Toriser, W.; Wawra, M.; Winkler, W.

    1994-12-31

    The paper introduces the basic design goals, the guidelines for the development and the practical test results of a versatile, powerful, highly efficient and energy saving electronic drive, consisting of an optimized electric disk-motor and an electronic control circuit. The implementation in two prototypes--a single engine bicycle and a twin engine wheelchair--is discussed. 1 ref.

  1. ALIGNMENTS OF BLACK HOLES WITH THEIR WARPED ACCRETION DISKS AND EPISODIC LIFETIMES OF ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Li, Yan-Rong; Wang, Jian-Min; Qiu, Jie; Cheng, Cheng

    2015-05-01

    Warped accretion disks have attracted intense attention because of their critical role in shaping the spin of supermassive massive black holes (SMBHs) through the Bardeen–Petterson effect, a general relativistic effect that leads to final alignments or anti-alignments between black holes and warped accretion disks. We study such alignment processes by explicitly taking into account the finite sizes of accretion disks and the episodic lifetimes of active galactic nuclei (AGNs) that delineate the duration of gas fueling onto accretion disks. We employ an approximate global model to simulate the evolution of accretion disks, allowing us to determine the gravitomagnetic torque that drives the alignments in a simple way. We then track down the evolutionary paths for mass and spin of black holes both in a single activity episode and over a series of episodes. Given with randomly and isotropically oriented gas fueling over episodes, we calculate the spin evolution with different episodic lifetimes and find that it is quite sensitive to the lifetimes. We therefore propose that the spin distribution of SMBHs can place constraints on the episodic lifetimes of AGNs and vice versa. The applications of our results on the observed spin distributions of SMBHs and the observed episodic lifetimes of AGNs are discussed, although both measurements at present are too ambiguous for us to draw a firm conclusion. Our prescription can be easily incorporated into semi-analytic models for black hole growth and spin evolution.

  2. Supermassive black holes do not correlate with galaxy disks or pseudobulges.

    PubMed

    Kormendy, John; Bender, R; Cornell, M E

    2011-01-20

    The masses of supermassive black holes are known to correlate with the properties of the bulge components of their host galaxies. In contrast, they seem not to correlate with galaxy disks. Disk-grown 'pseudobulges' are intermediate in properties between bulges and disks; it has been unclear whether they do or do not correlate with black holes in the same way that bulges do. At stake in this issue are conclusions about which parts of galaxies coevolve with black holes, possibly by being regulated by energy feedback from black holes. Here we report pseudobulge classifications for galaxies with dynamically detected black holes and combine them with recent measurements of velocity dispersions in the biggest bulgeless galaxies. These data confirm that black holes do not correlate with disks and show that they correlate little or not at all with pseudobulges. We suggest that there are two different modes of black-hole feeding. Black holes in bulges grow rapidly to high masses when mergers drive gas infall that feeds quasar-like events. In contrast, small black holes in bulgeless galaxies and in galaxies with pseudobulges grow as low-level Seyfert galaxies. Growth of the former is driven by global processes, so the biggest black holes coevolve with bulges, but growth of the latter is driven locally and stochastically, and they do not coevolve with disks and pseudobulges.

  3. High star formation rates as the origin of turbulence in early and modern disk galaxies.

    PubMed

    Green, Andrew W; Glazebrook, Karl; McGregor, Peter J; Abraham, Roberto G; Poole, Gregory B; Damjanov, Ivana; McCarthy, Patrick J; Colless, Matthew; Sharp, Robert G

    2010-10-01

    Observations of star formation and kinematics in early galaxies at high spatial and spectral resolution have shown that two-thirds are massive rotating disk galaxies, with the remainder being less massive non-rotating objects. The line-of-sight-averaged velocity dispersions are typically five times higher than in today's disk galaxies. This suggests that gravitationally unstable, gas-rich disks in the early Universe are fuelled by cold, dense accreting gas flowing along cosmic filaments and penetrating hot galactic gas halos. These accreting flows, however, have not been observed, and cosmic accretion cannot power the observed level of turbulence. Here we report observations of a sample of rare, high-velocity-dispersion disk galaxies in the nearby Universe where cold accretion is unlikely to drive their high star formation rates. We find that their velocity dispersions are correlated with their star formation rates, but not their masses or gas fractions, which suggests that star formation is the energetic driver of galaxy disk turbulence at all cosmic epochs.

  4. Modeling Gas Distribution in Protoplanetary Accretion Disks

    NASA Astrophysics Data System (ADS)

    Kronberg, Martin; Lewis, Josiah; Brittain, Sean

    2010-07-01

    Protoplanetary accretion disks are disks of dust and gas which surround and feed material onto a forming star in the earliest stages of its evolution. One of the most useful methods for studying these disks is near infrared spectroscopy of rovibrational CO emission. This paper presents the methods in which synthetically generated spectra are modeled and fit to spectral data gathered from protoplanetary disks. This paper also discussed the methods in which this code can be improved by modifying the code to run a Monte Carlo analysis of best fit across the CONDOR cluster at Clemson University, thereby allowing for the creation of a catalog of protoplanetary disks with detailed information about them as gathered from the model.

  5. Caspofungin Disk Diffusion Breakpoints and Quality Control▿

    PubMed Central

    Brown, Steven D.; Traczewski, Maria M.

    2008-01-01

    Interpretive disk diffusion breakpoints for caspofungin are proposed by evaluating 762 isolates of Candida spp., representing 10 different species obtained as part of the caspofungin clinical trials. Standardized broth microdilution reference tests were compared to the zone diameters observed with 5-μg caspofungin disks produced by two different disk manufacturers. Disk diffusion breakpoints of ≥11 mm for susceptible are proposed. Compared to results from MIC testing, these zone diameters produced error rates that were ≤0.3% for all categories. In addition, an eight-laboratory disk diffusion quality control (QC) study was performed, and QC ranges are proposed for the four QC strains recommended by the CLSI. PMID:18400918

  6. Observational constraints on black hole accretion disks

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.

    1994-01-01

    We review the empirical constraints on accretion disk models of stellar-mass black holes based on recent multiwavelength observational results. In addition to time-averaged emission spectra, the time evolutions of the intensity and spectrum provide critical information about the structure, stability, and dynamics of the disk. Using the basic thermal Keplerian disk paradigm, we consider in particular generalizations of the standard optically thin disk models needed to accommodate the extremely rich variety of dynamical phenomena exhibited by black hole candidates ranging from flares of electron-positron annihilations and quasiperiodic oscillations in the X-ray intensity to X-ray novae activity. These in turn provide probes of the disk structure and global geometry. The goal is to construct a single unified framework to interpret a large variety of black hole phenomena. This paper will concentrate on the interface between basic theory and observational data modeling.

  7. Rossby Wave Instability in Astrophysical Disks

    NASA Astrophysics Data System (ADS)

    Lovelace, Richard; Li, Hui

    2014-10-01

    A brief review is given of the Rossby wave instability in astrophysical disks. In non-self-gravitating discs, around for example a newly forming stars, the instability can be triggered by an axisymmetric bump at some radius r0 in the disk surface mass-density. It gives rise to exponentially growing non-axisymmetric perturbation (proportional to Exp[im ϕ], m = 1,2,...) in the vicinity of r0 consisting of anticyclonic vortices. These vortices are regions of high pressure and consequently act to trap dust particles which in turn can facilitate planetesimal growth in protoplanetary disks. The Rossby vortices in the disks around stars and black holes may cause the observed quasi-periodic modulations of the disk's thermal emission. Stirling Colgate's long standing interest in all types of vortices - particularly tornados - had an important part in stimulating the research on the Rossby wave instability.

  8. The Kozai-Lidov mechanism in hydrodynamical disks. II. Effects of binary and disk parameters

    DOE PAGES

    Fu, Wen; Lubow, Stephen H.; Martin, Rebecca G.

    2015-07-01

    Martin et al. (2014b) showed that a substantially misaligned accretion disk around one component of a binary system can undergo global damped Kozai–Lidov (KL) oscillations. During these oscillations, the inclination and eccentricity of the disk are periodically exchanged. However, the robustness of this mechanism and its dependence on the system parameters were unexplored. In this paper, we use three-dimensional hydrodynamical simulations to analyze how various binary and disk parameters affect the KL mechanism in hydrodynamical disks. The simulations include the effect of gas pressure and viscosity, but ignore the effects of disk self-gravity. We describe results for different numerical resolutions,more » binary mass ratios and orbital eccentricities, initial disk sizes, initial disk surface density profiles, disk sound speeds, and disk viscosities. We show that the KL mechanism can operate for a wide range of binary-disk parameters. We discuss the applications of our results to astrophysical disks in various accreting systems.« less

  9. Driving Anger and Driving Behavior in Adults with ADHD

    ERIC Educational Resources Information Center

    Richards, Tracy L.; Deffenbacher, Jerry L.; Rosen, Lee A.; Barkley, Russell A.; Rodricks, Trisha

    2006-01-01

    Objective: This study assesses whether anger in the context of driving is associated with the negative driving outcomes experienced by individuals with ADHD. Method: ADHD adults (n = 56) complete measures of driving anger, driving anger expression, angry thoughts behind the wheel, and aggressive, risky, and crash-related behavior. Results are…

  10. DEDRICK DRIVE, LOOKING NORTH FROM SOUTH END OF DEDRICK DRIVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DEDRICK DRIVE, LOOKING NORTH FROM SOUTH END OF DEDRICK DRIVE NEAR BUILDING 80 - Pacific Coast Torpedo Station, Keyport Industrial District, Both sides of Second Street, between Dedrick Drive and Liberty Bay and one building west of Dedrick Drive and south of Second Street, Keyport, Kitsap County, WA

  11. Evidence of nuclear disks in starburst galaxies from their radial distribution of supernovae

    NASA Astrophysics Data System (ADS)

    Herrero-Illana, R.; Pérez-Torres, M. Á.; Alberdi, A.

    2012-04-01

    Galaxy-galaxy interactions are expected to be responsible for triggering massive star formation and possibly accretion onto a supermassive black hole, by providing large amounts of dense molecular gas down to the central kiloparsec region. Several scenarios to drive the gas further down to the central ~100 pc, have been proposed, including the formation of a nuclear disk around the black hole, where massive stars would produce supernovae. Here, we probe the radial distribution of supernovae and supernova remnants in the nuclear regions of the starburst galaxies M 82, Arp 299-A, and Arp 220, by using high-angular resolution (≲ 0.''1) radio observations published in the literature (for M 82 and Arp 220), or obtained by ourselves from the European VLBI Network (Arp 299-A). Our main goal was to characterize the nuclear starbursts in those galaxies and thus test scenarios that propose that nuclear disks of sizes ~100 pc form in the central regions of starburst galaxies. We obtained the radial distribution of supernovae (SNe) in the nuclear starbursts of M 82, Arp 299-A, and Arp 220, and derived scale-length values for the putative nuclear disks powering the bursts in those central regions. The scale lengths for the (exponential) disks range from ~20-30 pc for Arp 299-A and Arp 220, up to ~140 pc for M 82. The radial distribution of SNe for the nuclear disks in Arp 299-A and Arp 220 is also consistent with a power-law surface density profile of exponent γ = 1, as expected from detailed hydrodynamical simulations of nuclear disks. Our results support scenarios where a nuclear disk of size ~100 pc is formed in (U)LIRGs, and sustained by gas pressure, in which case the accretion onto the black hole could be lowered by supernova feedback. Appendices are available in electronic form at http://www.aanda.org

  12. High-Temperature Mineral Formation by Short Circuits in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Mac Low, Mordecai-Mark; Hubbard, A.; McNally, C.; Ebel, D.; D'Alessio, P.

    2013-01-01

    Intermittent heating of solid materials in protoplanetary disks is attested to by meteoritical components such as chondrules and calcium-aluminum inclusions, by the presence of high temperature minerals in comet dust sampled by the Stardust mission, and by the observation of crystalline silicates at substantial radii in disks around young stars. Such heating requires an energy source and a physical mechanism to explain it. One plausible energy source is the differential rotation of a Keplerian disk. In most models of protoplanetary disks, this energy drives magnetized turbulence through magnetorotational instability everywhere outside of a transient dead zone. Magnetized turbulence very generally forms current sheets as energy cascades to smaller scales. In resistive media such as the gas in disks, these currents act as a heating source. The density of charge carriers in cold disks is too low for these currents to raise the gas to rock-melting temperatures immediately. However, temperatures can be raised to the range of 1000 K, sufficient to being ionizing alkali metals, locally decreasing the resistivity and increasing the turbulence. This triggers an exponential instability, leading to a narrow sheet of highly ionized, high temperature gas. The strongly varying resistivity acts as an anti-diffusive term in the induction equation, concentrating field in the sheet. Preliminary calculations using a one-dimensional simulation including both non-ideal MHD and radiative transfer suggest that rock-melting or vaporizing temperatures above 1800 K can easily be reached in these sheets. This could provide a widespread, intermittent, heating mechanism in protoplanetary disks sufficient to produce the observed high-temperature minerals.

  13. Driving anger in Malaysia.

    PubMed

    Sullman, Mark J M; Stephens, Amanda N; Yong, Michelle

    2014-10-01

    The present study examined the types of situations that cause Malaysian drivers to become angry. The 33-item version of the driver anger scale (Deffenbacher et al., 1994) was used to investigate driver anger amongst a sample of 339 drivers. Confirmatory factor analysis showed that the fit of the original six-factor model (discourtesy, traffic obstructions, hostile gestures, slow driving, illegal driving and police presence), after removing one item and allowing three error pairs to covary, was satisfactory. Female drivers reported more anger, than males, caused by traffic obstruction and hostile gestures. Age was also negatively related to five (discourtesy, traffic obstructions, hostile gestures, slow driving and police presence) of the six factors and also to the total DAS score. Furthermore, although they were not directly related to crash involvement, several of the six forms of driving anger were significantly related to the crash-related conditions of: near misses, loss of concentration, having lost control of a vehicle and being ticketed. Overall the pattern of findings made in the present research were broadly similar to those from Western countries, indicating that the DAS is a valid measure of driving anger even among non-European based cultures.

  14. Why Do T Tauri Disks Accrete?

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee; D'Alessio, Paola; Calvet, Nuria; Muzerolle, James

    2006-01-01

    Observations of T Tauri stars and young brown dwarfs suggest that the accretion rates of their disks scales roughly with the square of the central stellar mass. No dependence of accretion rate on stellar mass is predicted by the simplest version of the Gammie layered disk model, in which nonthermal ionization of upper disk layers allows accretion to occur via the magnetorotational instability. We show that a minor modification of Gaminie's model to include heating by irradiation from the central star yields a modest dependence of accretion on the mass of the central star. A purely viscous disk model could provide a strong dependence of accretion rate on stellar mass if the initial disk radius (before much viscous evolution has occurred) has a strong dependence on stellar mass. However, it is far from clear that at least the most massive pre-main-sequence disks can be totally magnetically activated by X-rays or cosmic rays. We suggest that a combination of effects are responsible for the observed dependence, with the lowest mass stars having the lowest mass disks, which can be thoroughly magnetically active, while the higher mass stars have higher mass disks that have layered accret,ion and relatively inactive or "dead" central zones at some radii. In such dead zones, we suggest that gravitational instabilities may play a role in allowing accretion to proceed. In this connection, we emphasize the uncertainty in disk masses derived from dust emission and argue that T Tauri disk masses have been systematically underestimated by conventional analyses. Furtlier study of accretion rates, especially in the lowest mass stars, would help to clarify the mechanisms of accretion in T Tauri stars.

  15. The Dark Disk of the Milky Way

    NASA Astrophysics Data System (ADS)

    Purcell, Chris W.; Bullock, James S.; Kaplinghat, Manoj

    2009-10-01

    Massive satellite accretions onto early galactic disks can lead to the deposition of dark matter in disk-like configurations that co-rotate with the galaxy. This phenomenon has potentially dramatic consequences for dark matter detection experiments. We utilize focused, high-resolution simulations of accretion events onto disks designed to be Galaxy analogues, and compare the resultant disks to the morphological and kinematic properties of the Milky Way's thick disk in order to bracket the range of co-rotating accreted dark matter. In agreement with previous results, we find that the Milky Way's merger history must have been unusually quiescent compared to median Λ cold dark matter expectations and, therefore, its dark disk must be relatively small: the fraction of accreted dark disk material near the Sun is about 20% of the host halo density or smaller and the co-rotating dark matter fraction near the Sun, defined as particles moving with a rotational velocity lag less than 50 km s-1, is enhanced by about 30% or less compared to a standard halo model. Such a dark disk could contribute dominantly to the low energy (of order keV for a dark matter particle with mass 100 GeV) nuclear recoil event rate of direct detection experiments, but it will not change the likelihood of detection significantly. These dark disks provide testable predictions of weakly interacting massive particle dark matter models and should be considered in detailed comparisons to experimental data. Our findings suggest that the dark disk of the Milky Way may provide a detectable signal for indirect detection experiments, contributing up to about 25% of the dark matter self-annihilation signal in the direction of the center of the Galaxy, lending the signal a noticeably oblate morphology.

  16. Turbine inter-disk cavity cooling air compressor

    DOEpatents

    Chupp, Raymond E.; Little, David A.

    1998-01-01

    The inter-disk cavity between turbine rotor disks is used to pressurize cooling air. A plurality of ridges extend radially outwardly over the face of the rotor disks. When the rotor disks are rotated, the ridges cause the inter-disk cavity to compress air coolant flowing through the inter-disk cavity en route to the rotor blades. The ridges eliminate the need for an external compressor to pressurize the air coolant.

  17. Turbine inter-disk cavity cooling air compressor

    DOEpatents

    Chupp, R.E.; Little, D.A.

    1998-01-06

    The inter-disk cavity between turbine rotor disks is used to pressurize cooling air. A plurality of ridges extend radially outwardly over the face of the rotor disks. When the rotor disks are rotated, the ridges cause the inter-disk cavity to compress air coolant flowing through the inter-disk cavity en route to the rotor blades. The ridges eliminate the need for an external compressor to pressurize the air coolant. 5 figs.

  18. OT1_briaz_4: Disk masses for ~10 Myr old brown dwarf disks

    NASA Astrophysics Data System (ADS)

    Riaz, B.

    2010-07-01

    We request SPIRE 200-500mu observations for two brown dwarf disks, 2MASSW J1207334-393254 (2M1207) and SSSPM J1102-3431 (SSSPM 1102), in the TW Hydrae Association (TWA). From our previous Spitzer observations, we had confirmed excess emission at wavelengths of ~5-38mu for both of these sources. With the SPIRE observations, we can probe the optically thin dust in the outer cooler regions of these disks. We have performed radiative transfer modeling for these systems. With the available mid-infrared observations, we find high degeneracies for the disk mass and outer disk radius estimates. Observations at far-infrared wavelengths can help constrain the model fits and obtain better estimates for the disk mass and outer radius for these disks. At an age of ~10 Myr, 2M1207 and SSSPM1102 are the oldest known brown dwarf disks. It is thus important to estimate the disk masses for these older disks, and to understand, in comparison with the younger Taurus systems, if brown dwarf disk masses show any decline with the age of the system. We also request PACS 70mu photometry for another candidate brown dwarf disk in the TWA, 2MASSW J1139511-315921 (2M1139). This object shows an excess emission at 24mu, but none at shorter wavelengths. With 70mu observations, we can confirm if the disk flares up at longer wavelengths. If the presence of such a disk is confirmed for 2M1139, then this would be the first transition disk detected among the sub-stellar members of TWA.

  19. U.S. DRIVE

    SciTech Connect

    2012-03-16

    U.S. DRIVE, which stands for United States Driving Research and Innovation for Vehicle efficiency and Energy sustainability, is an expanded government-industry partnership among the U.S. Department of Energy; USCAR, representing Chrysler Group LLC, Ford Motor Company and General Motors; Tesla Motors; five energy companies – BP America, Chevron Corporation, ConocoPhillips, ExxonMobil Corporation, and Shell Oil Products US; two utilities – Southern California Edison and Michigan-based DTE Energy; and the Electric Power Research Institute (EPRI). The U.S. DRIVE mission is to accelerate the development of pre-competitive and innovative technologies to enable a full range of affordable and clean advanced light-duty vehicles, as well as related energy infrastructure.

  20. Ceramic vane drive joint

    DOEpatents

    Smale, Charles H.

    1981-01-01

    A variable geometry gas turbine has an array of ceramic composition vanes positioned by an actuating ring coupled through a plurality of circumferentially spaced turbine vane levers to the outer end of a metallic vane drive shaft at each of the ceramic vanes. Each of the ceramic vanes has an end slot of bow tie configuration including flared end segments and a center slot therebetween. Each of the vane drive shafts has a cross head with ends thereof spaced with respect to the sides of the end slot to define clearance for free expansion of the cross head with respect to the vane and the cross head being configured to uniformly distribute drive loads across bearing surfaces of the vane slot.

  1. Current drive, anticurrent drive, and balanced injection

    SciTech Connect

    von Goeler, S.; Stevens, J.; Beiersdorfer, P.; Bell, R.; Bernabei, S.; Bitter, M.; Cavallo, A.; Chu, T.K.; Fishman, H.; Hill, K.

    1987-08-01

    In lower hybrid (LH) discharges, the number of suprathermal electrons is limited by the upper bound on the current density from the q = 1 condition, which is caused by the onset of the m = 1 MHD instability. The stored energy of suprathermal electrons, measured in terms of a poloidal beta, scales with plasma current as I/sub p//sup -1/. Potentially, these bounds represent very restrictive conditions for heating in larger machines. Consequently, it seems necessary to perform experiments where the electrons are driven in both directions, parallel and antiparallel to the magnetic field, i.e., bidirectional scenarios like anticurrent drive or balanced injection. Data from PLT relevant to these ideas are discussed. 6 refs., 4 figs.

  2. Magnetocentrifugally driven flows from young stars and disks. 1: A generalized model

    NASA Technical Reports Server (NTRS)

    Shu, Frank; Najita, Joan; Ostriker, Eve; Wilkin, Frank; Ruden, Steven; Lizano, Susana

    1994-01-01

    We propose a generalized model for stellar spin-down, disk accretion, and truncation, and the origin of winds, jets, and bipolar outflows from young stellar objects. We consider the steady state dynamics of accretion of matter from a viscous and imperfectly conducting disk onto a young star with a strong magnetic field. For an aligned stellar magnetosphere, shielding currents in the surface layers of the disk prevent stellar field lines from penetrating the disk everywhere except for a range of radii about pi = R(sub x), where the Keplerian angular speed of rotation Omega(sub x) equals the angular speed of the star Omega(sub *). For the low disk accretion rates and high magnetic fields associated with typical T Tauri stars, R(sub x) exceeds the radius of the star R(sub *) by a factor of a few, and the inner disk is effectively truncated at a radius R(sub t) somewhat smaller than R(sub x). Where the closed field lines between R(sub t) and R(sub x) bow sufficiently inward, the accreting gas attaches itself to the field and is funneled dynamically down the effective potential (gravitational plus centrifugal) onto the star. Contrary to common belief, the accompanying magnetic torques associated with this accreting gas may transfer angular momentum mostly to the disk rather than to the star. Thus, the star can spin slowly as long as R(sub x) remains significantly greater than R(sub *). Exterior to R(sub x) field lines threading the disk bow outward, which makes the gas off the mid-plane rotate at super-Keplerian velocities. This combination drives a magnetocentrifugal wind with a mass-loss rate M(sub w) equal to a definite fraction f of the disk accretion rate M(sub D). For high disk accretion rates, R(sub x) is forced down to the stellar surface, the star is spun to breakup, and the wind is generated in a manner identical to that proposed by Shu, Lizano, Ruden, & Najita in a previous communication to this journal. In two companion papers (II and III), we develop a

  3. Disk-loss and disk-renewal phases in classical Be stars. II. Contrasting with stable and variable disks

    SciTech Connect

    Draper, Zachary H.; Wisniewski, John P.; Bjorkman, Karen S.; Bjorkman, Jon E.; Meade, Marilyn R.; Haubois, Xavier; Mota, Bruno C.; Carciofi, Alex C. E-mail: karen.bjorkman@utoledo.edu E-mail: meade@astro.wisc.edu E-mail: carciofi@usp.br

    2014-05-10

    Recent observational and theoretical studies of classical Be stars have established the utility of polarization color diagrams (PCDs) in helping to constrain the time-dependent mass decretion rates of these systems. We expand on our pilot observational study of this phenomenon, and report the detailed analysis of a long-term (1989-2004) spectropolarimetric survey of nine additional classical Be stars, including systems exhibiting evidence of partial disk-loss/disk-growth episodes as well as systems exhibiting long-term stable disks. After carefully characterizing and removing the interstellar polarization along the line of sight to each of these targets, we analyze their intrinsic polarization behavior. We find that many steady-state Be disks pause at the top of the PCD, as predicted by theory. We also observe sharp declines in the Balmer jump polarization for later spectral type, near edge-on steady-state disks, again as recently predicted by theory, likely caused when the base density of the disk is very high, and the outer region of the edge-on disk starts to self absorb a significant number of Balmer jump photons. The intrinsic V-band polarization and polarization position angle of γ Cas exhibits variations that seem to phase with the orbital period of a known one-armed density structure in this disk, similar to the theoretical predictions of Halonen and Jones. We also observe stochastic jumps in the intrinsic polarization across the Balmer jump of several known Be+sdO systems, and speculate that the thermal inflation of part of the outer region of these disks could be responsible for producing this observational phenomenon. Finally, we estimate the base densities of this sample of stars to be between ≈8 × 10{sup –11} and ≈4 × 10{sup –12} g cm{sup –3} during quasi steady state periods given there maximum observed polarization.

  4. Disk-loss and Disk-renewal Phases in Classical Be Stars. II. Contrasting with Stable and Variable Disks

    NASA Astrophysics Data System (ADS)

    Draper, Zachary H.; Wisniewski, John P.; Bjorkman, Karen S.; Meade, Marilyn R.; Haubois, Xavier; Mota, Bruno C.; Carciofi, Alex C.; Bjorkman, Jon E.

    2014-05-01

    Recent observational and theoretical studies of classical Be stars have established the utility of polarization color diagrams (PCDs) in helping to constrain the time-dependent mass decretion rates of these systems. We expand on our pilot observational study of this phenomenon, and report the detailed analysis of a long-term (1989-2004) spectropolarimetric survey of nine additional classical Be stars, including systems exhibiting evidence of partial disk-loss/disk-growth episodes as well as systems exhibiting long-term stable disks. After carefully characterizing and removing the interstellar polarization along the line of sight to each of these targets, we analyze their intrinsic polarization behavior. We find that many steady-state Be disks pause at the top of the PCD, as predicted by theory. We also observe sharp declines in the Balmer jump polarization for later spectral type, near edge-on steady-state disks, again as recently predicted by theory, likely caused when the base density of the disk is very high, and the outer region of the edge-on disk starts to self absorb a significant number of Balmer jump photons. The intrinsic V-band polarization and polarization position angle of γ Cas exhibits variations that seem to phase with the orbital period of a known one-armed density structure in this disk, similar to the theoretical predictions of Halonen & Jones. We also observe stochastic jumps in the intrinsic polarization across the Balmer jump of several known Be+sdO systems, and speculate that the thermal inflation of part of the outer region of these disks could be responsible for producing this observational phenomenon. Finally, we estimate the base densities of this sample of stars to be between ≈8 × 10-11 and ≈4 × 10-12 g cm-3 during quasi steady state periods given there maximum observed polarization.

  5. Magnetohydrodynamic simulations of global accretion disks with vertical magnetic fields

    SciTech Connect

    Suzuki, Takeru K.; Inutsuka, Shu-ichiro

    2014-04-01

    We report results of three-dimensional magnetohydrodynamical (MHD) simulations of global accretion disks threaded with weak vertical magnetic fields. We perform the simulations in the spherical coordinates with different temperature profiles and accordingly different rotation profiles. In the cases with a spatially constant temperature, because the rotation frequency is vertically constant in the equilibrium condition, general properties of the turbulence excited by magnetorotational instability are quantitatively similar to those obtained in local shearing box simulations. On the other hand, in the cases with a radially variable temperature profile, the vertical differential rotation, which is inevitable in the equilibrium condition, winds up the magnetic field lines in addition to the usual radial differential rotation. As a result, the coherent wound magnetic fields contribute to the Maxwell stress in the surface regions. We obtain nondimensional density and velocity fluctuations ∼0.1-0.2 at the midplane. The azimuthal power spectra of the magnetic fields show shallower slopes, ∼m {sup 0} – m {sup –1}, than those of velocity and density. The Poynting flux associated with the MHD turbulence drives intermittent and structured disk winds as well as sound-like waves toward the midplane. The mass accretion mainly occurs near the surfaces, and the gas near the midplane slowly moves outward in the time domain of the present simulations. The vertical magnetic fields are also dragged inward in the surface regions, while they stochastically move outward and inward around the midplane. We also discuss an observational implication of induced spiral structure in the simulated turbulent disks.

  6. Are all flaring Herbig disks transitional?

    NASA Astrophysics Data System (ADS)

    Maaskant, K. M.; Honda, M.; Waters, L. B. F. M.; Tielens, A. G. G. M.; Dominik, Carsten; Min, M.; Verhoeff, A.; Meeus, G.; Ancker, M. E.

    2013-07-01

    Context: The evolution of young massive protoplanetary disks toward planetary systems is expected to correspond to structural changes in observational appearance, which includes the formation of gaps and the depletion of dust and gas. Aims. A special group of disks around Herbig Ae/Be stars do not show prominent silicate emission features, although they still bear signs of flaring disks, the presence of gas, and small grains. We focus our attention on four key Herbig Ae/Be stars to understand the structural properties responsible for the absence of silicate feature emission. Methods: We investigate Q- and N-band images taken with Subaru/COMICS, Gemini South/T-ReCS, and VLT/VISIR. We perform radiative transfer modeling to examine the radial distribution of dust and polycyclic aromatic hydrocarbons (PAHs). Our solutions require a separation of inner- and outer- disks by a large gap. From this, we characterize the radial density structure of dust and PAHs in the disk. Results: The inner edge of the outer disk has a high surface brightness and a typical temperature between ˜100-150 K and therefore, dominates the emission in the Q-band. All four disks are characterized by large gaps. We derive radii of the inner edge of the outer disk of 34+4 , 23+3 , 30+5 and 63+4 AU for HD 97048, HD 169142, HD 135344 B, and Oph IRS 48, respectively. For HD 97048 this is the first -4 -5 -3 -4 detection of a disk gap. The large gaps deplete the entire population of silicate particles with temperatures suitable for prominent mid- infrared feature emission, while small carbonaceous grains and PAHs can still show prominent emission at mid-infrared wavelengths. The continuum emission in the N-band is not due to emission in the wings of PAHs. This continuum emission can be due to very small grains or to thermal emission from the inner disk. We find that PAH emission is not always dominated by PAHs on the surface of the outer disk. Conclusions: The absence of silicate emission features is

  7. LCLS Injector Drive Laser

    SciTech Connect

    Dowell, D.H.; Castro, J.; Emma, P.; Frisch, J.; Gilevich, A.; Hays, G.; Hering, P.; Limborg-Deprey, C.; Loos, H.; Miahnahri, A.; White, W.; /SLAC

    2007-11-02

    Requirements for the LCLS injector drive laser present significant challenges to the design of the system. While progress has been demonstrated in spatial shape, temporal shape, UV generation and rep-rate, a laser that meets all of the LCLS specifications simultaneously has yet to be demonstrated. These challenges are compounded by the stability and reliability requirements. The drive laser and transport system has been installed and tested. We will report on the current operational state of the laser and plans for future improvements.

  8. Pulsation driving and convection

    NASA Astrophysics Data System (ADS)

    Antoci, Victoria

    2015-08-01

    Convection in stellar envelopes affects not only the stellar structure, but has a strong impact on different astrophysical processes, such as dynamo-generated magnetic fields, stellar activity and transport of angular momentum. Solar and stellar observations from ground and space have shown that the turbulent convective motion can also drive global oscillations in many type of stars, allowing to study stellar interiors at different evolutionary stages. In this talk I will concentrate on the influence of convection on the driving of stochastic and coherent pulsations across the Hertzsprung-Russell diagram and give an overview of recent studies.

  9. CONTROL ROD DRIVE

    DOEpatents

    Chapellier, R.A.; Rogers, I.

    1961-06-27

    Accurate and controlled drive for the control rod is from an electric motor. A hydraulic arrangement is provided to balance a piston against which a control rod is urged by the application of fluid pressure. The electric motor drive of the control rod for normal operation is made through the aforementioned piston. In the event scramming is required, the fluid pressure urging the control rod against the piston is relieved and an opposite fluid pressure is applied. The lack of mechanical connection between the electric motor and control rod facilitates the scramming operation.

  10. System level traffic shaping in disk servers with heterogeneous protocols

    NASA Astrophysics Data System (ADS)

    Cano, Eric; Kruse, Daniele Francesco

    2014-06-01

    Disk access and tape migrations compete for network bandwidth in CASTORs disk servers, over various protocols: RFIO, Xroot, root and GridFTP. As there are a limited number of tape drives, it is important to keep them busy all the time, at their nominal speed. With potentially 100s of user read streams per server, the bandwidth for the tape migrations has to be guaranteed to a controlled level, and not the fair share the system gives by default. Xroot provides a prioritization mechanism, but using it implies moving exclusively to the Xroot protocol, which is not possible in short to mid-term time frame, as users are equally using all protocols. The greatest commonality of all those protocols is not more than the usage of TCP/IP. We investigated the Linux kernel traffic shaper to control TCP/ IP bandwidth. The performance and limitations of the traffic shaper have been understood in test environment, and satisfactory working point has been found for production. Notably, TCP offload engines' negative impact on traffic shaping, and the limitations of the length of the traffic shaping rules were discovered and measured. A suitable working point has been found and the traffic shaping is now successfully deployed in the CASTOR production systems at CERN. This system level approach could be transposed easily to other environments.

  11. REEXAMINATION OF INDUCTION HEATING OF PRIMITIVE BODIES IN PROTOPLANETARY DISKS

    SciTech Connect

    Menzel, Raymond L.; Roberge, Wayne G. E-mail: roberw@rpi.edu

    2013-10-20

    We reexamine the unipolar induction mechanism for heating asteroids originally proposed in a classic series of papers by Sonett and collaborators. As originally conceived, induction heating is caused by the 'motional electric field' that appears in the frame of an asteroid immersed in a fully ionized, magnetized solar wind and drives currents through its interior. However, we point out that classical induction heating contains a subtle conceptual error, in consequence of which the electric field inside the asteroid was calculated incorrectly. The problem is that the motional electric field used by Sonett et al. is the electric field in the freely streaming plasma far from the asteroid; in fact, the motional field vanishes at the asteroid surface for realistic assumptions about the plasma density. In this paper we revisit and improve the induction heating scenario by (1) correcting the conceptual error by self-consistently calculating the electric field in and around the boundary layer at the asteroid-plasma interface; (2) considering weakly ionized plasmas consistent with current ideas about protoplanetary disks; and (3) considering more realistic scenarios that do not require a fully ionized, powerful T Tauri wind in the disk midplane. We present exemplary solutions for two highly idealized flows that show that the interior electric field can either vanish or be comparable to the fields predicted by classical induction depending on the flow geometry. We term the heating driven by these flows 'electrodynamic heating', calculate its upper limits, and compare them to heating produced by short-lived radionuclides.

  12. A Liquid Sodium Model of a BH Accretion Disk Dynamo

    NASA Astrophysics Data System (ADS)

    Beckley, Howard; Colgate, Stirling; Pariev, Vladimir; Weatherall, James

    2002-04-01

    A magnetic dynamo experiment is under construction at the New Mexico Institute of Mining and Technology. The experiment is designed to demonstrate in the laboratory the alpha-omega magnetic dynamo, which is believed to operate in many rotating and conducting astrophysical objects. The experiment uses the Couette flow of liquid sodium between two cylinders rotating with different angular velocities to model the omega-effect. The alpha-effect is created by the rising and expanding jets of liquid sodium driven through a pair of orifices in the end plates of the cylindrical vessel. The driven jets simulate plumes driven by buoyancy either within stars or from star-disk collisions in AGN accretion disks. A water analog of the dynamo device has been constructed and the flow necessary for the dynamo has been demonstrated. Numerical simulations of the kinematic dynamo predict that the toroidal field produced by the omega-effect will be B_phi (R_m/2pi) B_poloidal 20 x B_poloidal for the expected magnetic Reynolds number of Rm 120. The critical rate of jets necessary for the dynamo self-excitation is predicted to be a pair of jets every 4 revolutions of the outer cylinder. Within the limitations on the strength of materials and the power of the drive, the self-excitation of the dynamo appears to be feasible.

  13. Radiation-hydrodynamic simulations of quasar disk winds

    NASA Astrophysics Data System (ADS)

    Higginbottom, N.

    2015-09-01

    Disk winds are a compelling candidate to provide geometrical unification between Broad Absorption Line QSOs (BALQSOs) and Type1 Quasars. However, the geometry of these winds, and even the driving mech- anism remain largely unknown. Progress has been made through RT simulations and theoretical analysis of simplified wind geometries but there are several outstanding issues including the problem of shielding the low ionization BAL gas from the intense X-ray radiation from the central corona, and also how to produce the strong emission lines which exemplify Type 1 Quasars. A complex, clumpy geometry may provide a solution, and a full hydrodynamic model in which such structure may well spontaneously develop is something we wish to investigate. We have already demonstrated that the previous generation of hydrodynamic models of BALQSOs suffer from the fact that radiation transfer (RT) was necessarily simplified to permit computation, thereby neglecting the effects of multiple scattering and reprocessing of photons within the wind (potentially very important processes). We have therefore embarked upon a project to marry together a RT code with a hydrodynamics code to permit full radiation hydrodynamics simulations to be carried out on QSO disk winds. Here we present details of the project and results to date.

  14. High-frequency nano-optomechanical disk resonators in liquids.

    PubMed

    Gil-Santos, E; Baker, C; Nguyen, D T; Hease, W; Gomez, C; Lemaître, A; Ducci, S; Leo, G; Favero, I

    2015-09-01

    Nano- and micromechanical resonators are the subject of research that aims to develop ultrasensitive mass sensors for spectrometry, chemical analysis and biomedical diagnosis. Unfortunately, their merits generally diminish in liquids because of an increased dissipation. The development of faster and lighter miniaturized devices would enable improved performances, provided the dissipation was controlled and novel techniques were available to drive and readout their minute displacement. Here we report a nano-optomechanical approach to this problem using miniature semiconductor disks. These devices combine a mechanical motion at high frequencies (gigahertz and above) with an ultralow mass (picograms) and a moderate dissipation in liquids. We show that high-sensitivity optical measurements allow their Brownian vibrations to be resolved directly, even in the most-dissipative liquids. We investigate their interaction with liquids of arbitrary properties, and analyse measurements in light of new models. Nano-optomechanical disks emerge as probes of rheological information of unprecedented sensitivity and speed, which opens up applications in sensing and fundamental science.

  15. High-frequency nano-optomechanical disk resonators in liquids

    NASA Astrophysics Data System (ADS)

    Gil-Santos, E.; Baker, C.; Nguyen, D. T.; Hease, W.; Gomez, C.; Lemaître, A.; Ducci, S.; Leo, G.; Favero, I.

    2015-09-01

    Nano- and micromechanical resonators are the subject of research that aims to develop ultrasensitive mass sensors for spectrometry, chemical analysis and biomedical diagnosis. Unfortunately, their merits generally diminish in liquids because of an increased dissipation. The development of faster and lighter miniaturized devices would enable improved performances, provided the dissipation was controlled and novel techniques were available to drive and readout their minute displacement. Here we report a nano-optomechanical approach to this problem using miniature semiconductor disks. These devices combine a mechanical motion at high frequencies (gigahertz and above) with an ultralow mass (picograms) and a moderate dissipation in liquids. We show that high-sensitivity optical measurements allow their Brownian vibrations to be resolved directly, even in the most-dissipative liquids. We investigate their interaction with liquids of arbitrary properties, and analyse measurements in light of new models. Nano-optomechanical disks emerge as probes of rheological information of unprecedented sensitivity and speed, which opens up applications in sensing and fundamental science.

  16. Modeling collisions in circumstellar debris disks

    NASA Astrophysics Data System (ADS)

    Nesvold, Erika

    2015-10-01

    Observations of resolved debris disks show a spectacular variety of features and asymmetries, including inner cavities and gaps, inclined secondary disks or warps, and eccentric, sharp-edged rings. Embedded exoplanets could create many of these features via gravitational perturbations, which sculpt the disk directly and by generating planetesimal collisions. In this thesis, I present the Superparticle Model/Algorithm for Collisions in Kuiper belts and debris disks (SMACK), a new method for simultaneously modeling, in 3-D, the collisional and dynamical evolution of planetesimals in a debris disk with planets. SMACK can simulate azimuthal asymmetries and how these asymmetries evolve over time. I show that SMACK is stable to numerical viscosity and numerical heating over 107 yr, and that it can reproduce analytic models of disk evolution. As an example of the algorithm's capabilities, I use SMACK to model the evolution of a debris ring containing a planet on an eccentric orbit and demonstrate that differential precession creates a spiral structure as the ring evolves, but collisions subsequently break up the spiral, leaving a narrower eccentric ring. To demonstrate SMACK's utility in studying debris disk physics, I apply SMACK to simulate a planet on a circular orbit near a ring of planetesimals that are experiencing destructive collisions. Previous simulations of a planet opening a gap in a collisionless debris disk have found that the width of the gap scales as the planet mass to the 2/7th power (alpha = 2/7). I find that gap sizes in a collisional disk still obey a power law scaling with planet mass, but that the index alpha of the power law depends on the age of the system t relative to the collisional timescale t coll of the disk by alpha = 0.32(t/ tcoll)-0.04, with inferred planet masses up to five times smaller than those predicted by the classical gap law. The increased gap sizes likely stem from the interaction between collisions and the mean motion

  17. A Gap in TW Hydrae's Disk

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    Located a mere 176 light-years away, TW Hydrae is an 8-million-year-old star surrounded by a nearly face-on disk of gas and dust. Recent observations have confirmed the existence of a gap within that disk a particularly intriguing find, since gaps can sometimes signal the presence of a planet.Gaps and PlanetsNumerical simulations have shown that newly-formed planets orbiting within dusty disks can clear the gas and dust out of their paths. This process results in pressure gradients that can be seen in the density structure of the disk, in the form of visible gaps, rings, or spirals.For this reason, finding a gap in a protoplanetary disk can be an exciting discovery. Previous observations of the disk around TW Hydrae had indicated that there might be a gap present, but they were limited in their resolution; despite TW Hydraes relative nearness, attempting to observe the dim light scattered off dust particles in a disk surrounding a distant, bright star is difficult!But a team led by Valerie Rapson (Rochester Institute of Technology, Dudley Observatory) recently set out to follow up on this discovery using a powerful tool: the Gemini Planet Imager (GPI).New ObservationsComparison of the actual image of TW Hydraes disk from GPI (right) to a simulated scattered-light image from a model of a ~0.2 Jupiter-mass planet orbiting in the disk at ~21 AU (left) in two different bands (top: J, bottom: K1).[Adapted from Rapson et al. 2015]GPI is an instrument on the Gemini South Telescope in Chile. Its near-infrared imagers, equipped with extreme adaptive optics, allowed it to probe the disk from ~80 AU all the way in to ~10 AU from the central star, with an unprecedented resolution of ~1.5 AU.These observations from GPI allowed Rapson and collaborators to unambiguously confirm the presence of a gap in TW Hydraes disk. The gap lies at a distance of ~23 AU from the central star (roughly the same distance as Uranus to the Sun), and its ~5 AU wide.Modeled PossibilitiesThere are a

  18. Where a Neutron Star's Accretion Disk Ends

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    In X-ray binaries that consist of a neutron star and a companion star, gas funnels from the companion into an accretion disk surrounding the neutron star, spiraling around until it is eventually accreted. How do the powerful magnetic fields threading through the neutron star affect this accretion disk? Recent observations provide evidence that they may push the accretion disk away from the neutron stars surface.Truncated DisksTheoretical models have indicated that neutron star accretion disks may not extend all the way in to the surface of a neutron star, but may instead be truncated at a distance. This prediction has been difficult to test observationally, however, due to the challenge of measuring the location of the inner disk edge in neutron-star X-ray binaries.In a new study, however, a team of scientists led by Ashley King (Einstein Fellow at Stanford University) has managed to measure the location of the inner edge of the disk in Aquila X-1, a neutron-star X-ray binary located 17,000 light-years away.Iron line feature detected by Swift (red) and NuSTAR (black). The symmetry of the line is one of the indicators that the disk is located far from the neutron star; if the inner regions of the disk were close to the neutron star, severe relativistic effects would skew the line to be asymmetric. [King et al. 2016]Measurements from ReflectionsKing and collaborators used observations made by NuSTAR and Swift/XRT both X-ray space observatories of Aquila X-1 during the peak of an X-ray outburst. By observing the reflection of Aquila X-1s emission off of the inner regions of the accretion disk, the authors were able to estimate the location of the inner edge of the disk.The authors find that this inner edge sits at ~15 gravitational radii. Since the neutron stars surface is at ~5 gravitational radii, this means that the accretion disk is truncated far from the stars surface. In spite of this truncation, material still manages to cross the gap and accrete onto the

  19. Performance of a disk array prototype

    NASA Technical Reports Server (NTRS)

    Chervenak, Ann L.; Katz, Randy H.

    1991-01-01

    A prototype disk array's component-performance limits are examined using SCSI bus traces, Sprite operating system traces, and user programs. The array performs successfully for a workload of small, random I/O operations, achieving 275 I/Os per second on 14 disks before the Sun4/280 host becomes CPU-limited. The prototype is less successful in delivering high throughput for large, sequential operations. Memory system contention on the Sun4/280 host limits throughput to 2.3 MBytes/sec under the Sprite Operating System. Throughput is also limited by the bandwidth supported by the VME backplane, disk controller and disks, and overheads associated with the SCSI protocol. We conclude that merely using a powerful host CPU and many disks will not provide the full bandwidth possible from disk arrays. Host memory bandwidth and throughput of disk controllers are equally important. In addition, operating systems should avoid unnecessary copy and cache flush operations that can saturate the host memory system.

  20. Stability of MRI-turbulent Accretion Disks

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroyuki R.; Masada, Youhei

    2011-02-01

    Based on the characteristics of the magnetorotational instability (MRI) and the MRI-driven turbulence, we construct a steady model for a geometrically thin disk using "non-standard" α-prescription. The efficiency of the angular momentum transport depends on the magnetic Prandtl number, Pm = ν/η, where ν and η are the microscopic viscous and magnetic diffusivities. In our disk model, Shakura-Sunyaev's α-parameter has a power-law dependence on the magnetic Prandtl number, that is α vprop Pm δ, where δ is the constant power-law index. Adopting Spitzer's microscopic diffusivities, the magnetic Prandtl number becomes a decreasing function of the disk radius when δ>0. The transport efficiency of the angular momentum and the viscous heating rate are thus smaller in the outer part of the disk, while these are impacted by the size of index δ. We find that the disk becomes more unstable to the gravitational instability for a larger value of index δ. The most remarkable feature of our disk model is that the thermal and secular instabilities can grow in its middle part even if the radiation pressure is negligibly small in the condition δ>2/3. In the realistic disk systems, it would be difficult to maintain the steady mass accretion state unless the Pm dependence of MRI-driven turbulence is relatively weak.

  1. Disk mass determination through CO isotopologues

    NASA Astrophysics Data System (ADS)

    Miotello, Anna; Kama, Mihkel; van Dishoeck, Ewine

    2015-08-01

    One of the key properties for understanding how disks evolve to planetary systems is their overall mass, combined with their surface density distribution. So far, virtually all disk mass determinations are based on observations of the millimeter continuum dust emission.To derive the total gas + dust disk mass from these data involves however several big assumptions. The alternative method is to directly derive the gas mass through the detection of carbon monoxide (CO) and its less abundant isotopologues. CO chemistry is well studied and easily implemented in chemical models, provided that isotope-selective processes are properly accounted for.CO isotope-selective photodissociation was implemented for the first time in a full physical-chemical code in Miotello et al. (2014). The main result is that if isotope-selective effects are not considered in the data analysis, disk masses can be underestimated by an order of magnitude or more. For example, the mass discrepancy found for the renowned TW Hya disk may be explained or at least mitigated by this implementation. In this poster, we present new results for a large grid of disk models. We derive mass correction factors for different disk, stellar and grain properties in order to account for isotope-selective effects in analyzing ALMA data of CO isotopologues (Miotello et al., in prep.).

  2. Lunar and Meteorite Sample Disk for Educators

    NASA Technical Reports Server (NTRS)

    Foxworth, Suzanne; Luckey, M.; McInturff, B.; Allen, J.; Kascak, A.

    2015-01-01

    NASA Johnson Space Center (JSC) has the unique responsibility to curate NASA's extraterrestrial samples from past and future missions. Curation includes documentation, preservation, preparation and distribution of samples for research, education and public outreach. Between 1969 and 1972 six Apollo missions brought back 382 kilograms of lunar rocks, core and regolith samples, from the lunar surface. JSC also curates meteorites collected from a US cooperative effort among NASA, the National Science Foundation (NSF) and the Smithsonian Institution that funds expeditions to Antarctica. The meteorites that are collected include rocks from Moon, Mars, and many asteroids including Vesta. The sample disks for educational use include these different samples. Active relevant learning has always been important to teachers and the Lunar and Meteorite Sample Disk Program provides this active style of learning for students and the general public. The Lunar and Meteorite Sample Disks permit students to conduct investigations comparable to actual scientists. The Lunar Sample Disk contains 6 samples; Basalt, Breccia, Highland Regolith, Anorthosite, Mare Regolith and Orange Soil. The Meteorite Sample Disk contains 6 samples; Chondrite L3, Chondrite H5, Carbonaceous Chondrite, Basaltic Achondrite, Iron and Stony-Iron. Teachers are given different activities that adhere to their standards with the disks. During a Sample Disk Certification Workshop, teachers participate in the activities as students gain insight into the history, formation and geologic processes of the moon, asteroids and meteorites.

  3. Stability of general-relativistic accretion disks

    NASA Astrophysics Data System (ADS)

    Korobkin, Oleg; Abdikamalov, Ernazar B.; Schnetter, Erik; Stergioulas, Nikolaos; Zink, Burkhard

    2011-02-01

    Self-gravitating relativistic disks around black holes can form as transient structures in a number of astrophysical scenarios such as binary neutron star and black hole-neutron star coalescences, as well as the core collapse of massive stars. We explore the stability of such disks against runaway and nonaxisymmetric instabilities using three-dimensional hydrodynamics simulations in full general relativity using the Thor code. We model the disk matter using the ideal fluid approximation with a Γ-law equation of state with Γ=4/3. We explore three disk models around nonrotating black holes with disk-to-black hole mass ratios of 0.24, 0.17, and 0.11. Because of metric blending in our initial data, all of our initial models contain an initial axisymmetric perturbation which induces radial disk oscillations. Despite these oscillations, our models do not develop the runaway instability during the first several orbital periods. Instead, all of the models develop unstable nonaxisymmetric modes on a dynamical time scale. We observe two distinct types of instabilities: the Papaloizou-Pringle and the so-called intermediate type instabilities. The development of the nonaxisymmetric mode with azimuthal number m=1 is accompanied by an outspiraling motion of the black hole, which significantly amplifies the growth rate of the m=1 mode in some cases. Overall, our simulations show that the properties of the unstable nonaxisymmetric modes in our disk models are qualitatively similar to those in the Newtonian theory.

  4. Dynamics of acoustically levitated disk samples.

    PubMed

    Xie, W J; Wei, B

    2004-10-01

    The acoustic levitation force on disk samples and the dynamics of large water drops in a planar standing wave are studied by solving the acoustic scattering problem through incorporating the boundary element method. The dependence of levitation force amplitude on the equivalent radius R of disks deviates seriously from the R3 law predicted by King's theory, and a larger force can be obtained for thin disks. When the disk aspect ratio gamma is larger than a critical value gamma(*) ( approximately 1.9 ) and the disk radius a is smaller than the critical value a(*) (gamma) , the levitation force per unit volume of the sample will increase with the enlargement of the disk. The acoustic levitation force on thin-disk samples ( gamma

  5. Dynamics of acoustically levitated disk samples

    NASA Astrophysics Data System (ADS)

    Xie, W. J.; Wei, B.

    2004-10-01

    The acoustic levitation force on disk samples and the dynamics of large water drops in a planar standing wave are studied by solving the acoustic scattering problem through incorporating the boundary element method. The dependence of levitation force amplitude on the equivalent radius R of disks deviates seriously from the R3 law predicted by King’s theory, and a larger force can be obtained for thin disks. When the disk aspect ratio γ is larger than a critical value γ*(≈1.9) and the disk radius a is smaller than the critical value a*(γ) , the levitation force per unit volume of the sample will increase with the enlargement of the disk. The acoustic levitation force on thin-disk samples (γ⩽γ*) can be formulated by the shape factor f(γ,a) when a⩽a*(γ) . It is found experimentally that a necessary condition of the acoustic field for stable levitation of a large water drop is to adjust the reflector-emitter interval H slightly above the resonant interval Hn . The simulation shows that the drop is flattened and the central parts of its top and bottom surface become concave with the increase of sound pressure level, which agrees with the experimental observation. The main frequencies of the shape oscillation under different sound pressures are slightly larger than the Rayleigh frequency because of the large shape deformation. The simulated translational frequencies of the vertical vibration under normal gravity condition agree with the theoretical analysis.

  6. Fast Radial Flows in Transition Disk Holes

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Katherine A.; Chiang, Eugene; Andrews, Sean M.

    2014-02-01

    Protoplanetary "transition" disks have large, mass-depleted central cavities, yet also deliver gas onto their host stars at rates comparable to disks without holes. The paradox of simultaneous transparency and accretion can be explained if gas flows inward at much higher radial speeds inside the cavity than outside the cavity, since surface density (and by extension optical depth) varies inversely with inflow velocity at fixed accretion rate. Radial speeds within the cavity might even have to approach free-fall values to explain the huge surface density contrasts inferred for transition disks. We identify observational diagnostics of fast radial inflow in channel maps made in optically thick spectral lines. Signatures include (1) twisted isophotes in maps made at low systemic velocities and (2) rotation of structures observed between maps made in high-velocity line wings. As a test case, we apply our new diagnostic tools to archival Atacama Large Millimeter Array data on the transition disk HD 142527 and uncover evidence for free-fall radial velocities inside its cavity. Although the observed kinematics are also consistent with a disk warp, the radial inflow scenario is preferred because it predicts low surface densities that appear consistent with recent observations of optically thin CO isotopologues in this disk. How material in the disk cavity sheds its angular momentum wholesale to fall freely onto the star is an unsolved problem; gravitational torques exerted by giant planets or brown dwarfs are briefly discussed as a candidate mechanism.

  7. Fast radial flows in transition disk holes

    SciTech Connect

    Rosenfeld, Katherine A.; Andrews, Sean M.; Chiang, Eugene

    2014-02-20

    Protoplanetary 'transition' disks have large, mass-depleted central cavities, yet also deliver gas onto their host stars at rates comparable to disks without holes. The paradox of simultaneous transparency and accretion can be explained if gas flows inward at much higher radial speeds inside the cavity than outside the cavity, since surface density (and by extension optical depth) varies inversely with inflow velocity at fixed accretion rate. Radial speeds within the cavity might even have to approach free-fall values to explain the huge surface density contrasts inferred for transition disks. We identify observational diagnostics of fast radial inflow in channel maps made in optically thick spectral lines. Signatures include (1) twisted isophotes in maps made at low systemic velocities and (2) rotation of structures observed between maps made in high-velocity line wings. As a test case, we apply our new diagnostic tools to archival Atacama Large Millimeter Array data on the transition disk HD 142527 and uncover evidence for free-fall radial velocities inside its cavity. Although the observed kinematics are also consistent with a disk warp, the radial inflow scenario is preferred because it predicts low surface densities that appear consistent with recent observations of optically thin CO isotopologues in this disk. How material in the disk cavity sheds its angular momentum wholesale to fall freely onto the star is an unsolved problem; gravitational torques exerted by giant planets or brown dwarfs are briefly discussed as a candidate mechanism.

  8. Stability of general-relativistic accretion disks

    SciTech Connect

    Korobkin, Oleg; Abdikamalov, Ernazar B.; Schnetter, Erik; Stergioulas, Nikolaos; Zink, Burkhard

    2011-02-15

    Self-gravitating relativistic disks around black holes can form as transient structures in a number of astrophysical scenarios such as binary neutron star and black hole-neutron star coalescences, as well as the core collapse of massive stars. We explore the stability of such disks against runaway and nonaxisymmetric instabilities using three-dimensional hydrodynamics simulations in full general relativity using the Thor code. We model the disk matter using the ideal fluid approximation with a {Gamma}-law equation of state with {Gamma}=4/3. We explore three disk models around nonrotating black holes with disk-to-black hole mass ratios of 0.24, 0.17, and 0.11. Because of metric blending in our initial data, all of our initial models contain an initial axisymmetric perturbation which induces radial disk oscillations. Despite these oscillations, our models do not develop the runaway instability during the first several orbital periods. Instead, all of the models develop unstable nonaxisymmetric modes on a dynamical time scale. We observe two distinct types of instabilities: the Papaloizou-Pringle and the so-called intermediate type instabilities. The development of the nonaxisymmetric mode with azimuthal number m=1 is accompanied by an outspiraling motion of the black hole, which significantly amplifies the growth rate of the m=1 mode in some cases. Overall, our simulations show that the properties of the unstable nonaxisymmetric modes in our disk models are qualitatively similar to those in the Newtonian theory.

  9. Subaru Imaging of Asymmetric Features in a Transitional Disk in a Transitional Disk in Upper Scorpius

    NASA Technical Reports Server (NTRS)

    Mayama, S.; Hashimoto, J.; Muto, T.; Tsukagoshi, T.; Kusakabe, N.; Kuzuhara, M.; Takahashi, Y.; Kudo, T.; Dong, R.; Fukagawa, M.; Takami, M.; Momose, M.; Wisniewski, J. P.; Follette, K.; Abe, L.; Akiyama, E.; Brandner, W.; Brandt, T.; Carson, J.; Egner, S.; Feldt, M.; Goto, M.; Grady, C. A.; Guyon, O.; Hayano, Y.; McElwain, M. W.

    2012-01-01

    We report high-resolution (0.07 arcsec) near-infrared polarized intensity images of the circumstellar disk around the star 2MASS J16042165-2130284 obtained with HiCIAO mounted on the Subaru 8.2 m telescope. We present our H-band data, which clearly exhibit a resolved, face-on disk with a large inner hole for the first time at infrared wavelengths.We detect the centrosymmetric polarization pattern in the circumstellar material as has been observed in other disks. Elliptical fitting gives the semimajor axis, semiminor axis, and position angle (P.A.) of the disk as 63 AU, 62 AU, and -14?, respectively. The disk is asymmetric, with one dip located at P.A.s of 85?. Our observed disk size agrees well with a previous study of dust and CO emission at submillimeter wavelength with Submillimeter Array. Hence, the near-infrared light is interpreted as scattered light reflected from the inner edge of the disk. Our observations also detect an elongated arc (50 AU) extending over the disk inner hole. It emanates at the inner edge of the western side of the disk, extending inward first, then curving to the northeast. We discuss the possibility that the inner hole, the dip, and the arc that we have observed may be related to the existence of unseen bodies within the disk

  10. Giant Planet Migration, Disk Evolution, and the Origin of Transitional Disks

    NASA Astrophysics Data System (ADS)

    Alexander, Richard D.; Armitage, Philip J.

    2009-10-01

    We present models of giant planet migration in evolving protoplanetary disks. Our disks evolve subject to viscous transport of angular momentum and photoevaporation, while planets undergo Type II migration. We use a Monte Carlo approach, running large numbers of models with a range in initial conditions. We find that relatively simple models can reproduce both the observed radial distribution of extrasolar giant planets, and the lifetimes and accretion histories of protoplanetary disks. The use of state-of-the-art photoevaporation models results in a degree of coupling between planet formation and disk clearing, which has not been found previously. Some accretion across planetary orbits is necessary if planets are to survive at radii lsim1.5 AU, and if planets of Jupiter mass or greater are to survive in our models they must be able to form at late times, when the disk surface density in the formation region is low. Our model forms two different types of "transitional" disks, embedded planets and clearing disks, which show markedly different properties. We find that the observable properties of these systems are broadly consistent with current observations, and highlight useful observational diagnostics. We predict that young transition disks are more likely to contain embedded giant planets, while older transition disks are more likely to be undergoing disk clearing.

  11. GIANT PLANET MIGRATION, DISK EVOLUTION, AND THE ORIGIN OF TRANSITIONAL DISKS

    SciTech Connect

    Alexander, Richard D.; Armitage, Philip J.

    2009-10-20

    We present models of giant planet migration in evolving protoplanetary disks. Our disks evolve subject to viscous transport of angular momentum and photoevaporation, while planets undergo Type II migration. We use a Monte Carlo approach, running large numbers of models with a range in initial conditions. We find that relatively simple models can reproduce both the observed radial distribution of extrasolar giant planets, and the lifetimes and accretion histories of protoplanetary disks. The use of state-of-the-art photoevaporation models results in a degree of coupling between planet formation and disk clearing, which has not been found previously. Some accretion across planetary orbits is necessary if planets are to survive at radii approx<1.5 AU, and if planets of Jupiter mass or greater are to survive in our models they must be able to form at late times, when the disk surface density in the formation region is low. Our model forms two different types of 'transitional' disks, embedded planets and clearing disks, which show markedly different properties. We find that the observable properties of these systems are broadly consistent with current observations, and highlight useful observational diagnostics. We predict that young transition disks are more likely to contain embedded giant planets, while older transition disks are more likely to be undergoing disk clearing.

  12. THE EXTENDED OPTICAL DISK OF M101

    SciTech Connect

    Mihos, J. Christopher; Harding, Paul; Spengler, Chelsea E.; Rudick, Craig S.; Feldmeier, John J. E-mail: paul.harding@case.edu E-mail: craig.rudick@phys.ethz.ch

    2013-01-10

    We have used deep, wide-field optical imaging to study the faint outskirts of the luminous spiral galaxy M101 (NGC 5457) as well as its surrounding environment. Over 6 deg{sup 2}, our imaging has a limiting surface brightness of {mu} {sub B} {approx} 29.5 mag arcsec{sup -2}, and has revealed the stellar structure of M101's disk out to nearly 25' (50 kpc), 3 times our measured R {sub 25} isophotal size of the optical disk. At these radii, the well-known asymmetry of the inner disk slews 180 Degree-Sign , resulting in an asymmetric plume of light at large radius which follows the very extended H I disk to the northeast of M101. This plume has very blue colors (B - V {approx} 0.2), suggesting that it is the somewhat more evolved (few hundred Myr to {approx}1 Gyr) counterpart of the young far-ultraviolet emitting population traced by Galaxy Evolution Explorer imaging. We also detect another, redder spur of extended light to the east of the disk, and both structures are reminiscent of features produced during fly-by galaxy interactions. However, we see no evidence of very extended tidal tails around M101 or any of its companions which might be expected from a recent encounter with a massive companion. We consider the properties of M101's outer disk in light of possible past interactions with the nearby companion galaxies NGC 5477 and NGC 5474. The detection of optical starlight at such large radii gives us the ability to study star formation histories and stellar populations in outer disks over longer timescales than those traced by the UV or H{alpha} emitting populations. Our data suggest an ongoing buildup of M101's outer disk due to encounters in the group environment triggering extended star formation and tidal heating of existing disk populations.

  13. Magnetic Fields in Early Protostellar Disk Formation

    NASA Astrophysics Data System (ADS)

    González-Casanova, Diego F.; Lazarian, Alexander; Santos-Lima, Reinaldo

    2016-03-01

    We consider formation of accretion disks from a realistically turbulent molecular gas using 3D MHD simulations. In particular, we analyze the effect of the fast turbulent reconnection described by the Lazarian & Vishniac model for the removal of magnetic flux from a disk. With our numerical simulations we demonstrate how the fast reconnection enables protostellar disk formation resolving the so-called “magnetic braking catastrophe.” In particular, we provide a detailed study of the dynamics of a 0.5 M⊙ protostar and the formation of its disk for up to several thousands years. We measure the evolution of the mass, angular momentum, magnetic field, and turbulence around the star. We consider effects of two processes that strongly affect the magnetic transfer of angular momentum, both of which are based on turbulent reconnection: the first, “reconnection diffusion,” removes the magnetic flux from the disk; the other involves the change of the magnetic field's topology, but does not change the absolute value of the magnetic flux through the disk. We demonstrate that for the first mechanism, turbulence causes a magnetic flux transport outward from the inner disk to the ambient medium, thus decreasing the coupling of the disk to the ambient material. A similar effect is achieved through the change of the magnetic field's topology from a split monopole configuration to a dipole configuration. We explore how both mechanisms prevent the catastrophic loss of disk angular momentum and compare both above turbulent reconnection mechanisms with alternative mechanisms from the literature.

  14. Structure and dynamics of Andromeda's stellar disk

    NASA Astrophysics Data System (ADS)

    Dorman, Claire Elise

    2015-10-01

    Lambda cold dark matter (LambdaCDM) cosmology predicts that the disks of Milky Way-mass galaxies should have undergone at least one merger with a large (mass ratio 1:10) satellite in the last several Gyr. However, the stellar disk in the solar neighborhood of the Milky Way is too thin and dynamically cold to have experienced such an impact. The dynamics of the nearby Andromeda galaxy can serve as a second data point, and help us understand whether the Milky Way may simply have had an unusually quiescent merger history, or whether LambdaCDM theory needs to be revisited. Over the last few years, we have carried out a detailed study of the resolved stellar populations in the disk of the Andromeda galaxy using data from two surveys: six-filter Hubble Space Telescope photometry from the recently-completed Panchromatic Hubble Andromeda Treasury (PHAT) survey, and radial velocities derived from Keck/DEIMOS optical spectra obtained as part of the Spectroscopic and Photometric Landscape of Andromeda's Stellar 0Halo (SPLASH) program. These detailed, multidimensional data sets allow us to decouple the structural subcomponents and characterize them individually. We find that an old, dynamically hot (velocity dispersion 150 km/s) RGB population extends out to 20 kpc (the edge of the visible disk) but has a disk-like surface brightness profile and luminosity function. This population may have originated in the disk but been kicked out subsequently in impacts with satellite galaxies. We also study the kinematics of the disk as a function of the age of stellar tracers, and find a direct correlation between age and velocity dispersion, indicating that Andromeda has undergone a continuous heating or disk settling process throughout its lifetime. Overall, both the velocity dispersion of Andromeda's disk and the slope of the velocity dispersion vs. stellar age curve are several times those of the Milky Way's, suggesting a more active merger history more in line with Lambda

  15. No Pass, No Drive?

    ERIC Educational Resources Information Center

    Zirkel, Perry A.

    2001-01-01

    Discusses basis for Kentucky appellate court decision that state's no-pass, no-drive statute did not violate due-process and equal-protection clauses of the Kentucky and federal constitutions, but did violate the federal Family Education Rights and Privacy Act, but nevertheless did not invalidate the statute. Explains why the decision is…

  16. Drive-Through Training

    ERIC Educational Resources Information Center

    Carter, Margie

    2010-01-01

    In this article, the author discusses how the early childhood field's approach to staff training reflects the drive-through, fast-food culture. Year after year directors send their teachers to workshops to get some quick refresher techniques. The author suggests that rather than focusing professional development on topics, focus on observing…

  17. COMMENT: No warp drive

    NASA Astrophysics Data System (ADS)

    Coule, D. H.

    1998-08-01

    The warp drive spacetime of Alcubierre is impossible to set up without first being able to distribute matter at tachyonic speed, put roughly, you need one to make one! However, over small distances, where the energy conditions possibly can be violated, one can envision opening the light-cones to increase the apparent speed of light.

  18. Magnetized drive fluids

    SciTech Connect

    Rosensweig, R.E.; Zahn, M.

    1986-04-01

    A process is described for recovering a first fluid from a porous subterranean formation which comprises injecting a displacement fluid in an effective amount to displace the first fluid, injecting a ferrofluid, applying a magnetic field containing a gradient of field intensity within the formation, driving the displacement fluid through the formation with the ferrofluid and recovering first fluid.

  19. DrivePy

    SciTech Connect

    King, Ryan; Guo, Yi

    2014-08-30

    DrivePy is physics-based drivetrain model that sizes drivetrain components based on aerodynamic and operational loads for use in a systems engineering model. It also calculates costs based on empirical data collected by NREL's National Wind Technology Center.

  20. CSI: Hard Drive

    ERIC Educational Resources Information Center

    Sturgeon, Julie

    2008-01-01

    Acting on information from students who reported seeing a classmate looking at inappropriate material on a school computer, school officials used forensics software to plunge the depths of the PC's hard drive, searching for evidence of improper activity. Images were found in a deleted Internet Explorer cache as well as deleted file space.…

  1. Teachers with Drive

    ERIC Educational Resources Information Center

    Coggins, Celine; Diffenbaugh, P. K.

    2013-01-01

    For students in U.S. classrooms today, the odds of being assigned to an inexperienced teacher are higher than they have ever been because so many teachers, some in the top 20 percent of effectiveness are leaving the classroom in their first five years. Coggins and Diffenbaugh turn to Daniel Pink's work on drive to determine how to motivate…

  2. Driving While Intoxicated.

    ERIC Educational Resources Information Center

    Brick, John

    Alcohol intoxication increases the risk of highway accidents, the relative risk of crash probability increasing as a function of blood alcohol content (BAC). Because alcohol use is more prevalent than use of other drugs, more is known about the relationship between alcohol use and driving. Most states presume a BAC of .10% to be evidence of drunk…

  3. Chondrules and the Protoplanetary Disk

    NASA Astrophysics Data System (ADS)

    Hewins, R. H.; Jones, Rhian; Scott, Ed

    2011-03-01

    Part I. Introduction: 1. Chondrules and the protoplanetary disk: An overview R. H. Hewins; Part. II. Chonrules, Ca-Al-Rich Inclusions and Protoplanetary Disks: 2. Astronomical observations of phenomena in protostellar disks L. Hartmann; 3. Overview of models of the solar nebula: potential chondrule-forming environments P. Cassen; 4. Large scale processes in the solar nebula A. P. Boss; 5. Turbulence, chondrules and planetisimals J. N. Cuzzi, A. R. Dobrovolskis and R. C. Hogan; 6. Chondrule formation: energetics and length scales J. T. Wasson; 7. Unresolved issues in the formation of chondrules and chondrites J. A. Wood; 8. Thermal processing in the solar nebula: constraints from refractory inclusions A. M. Davis and G. J. MacPherson; 9. Formation times of chondrules and Ca-Al-Rich inclusions: constraints from short-lived radionuclides T. D. Swindle, A. M. Davis, C. M. Hohenberg, G. J. MacPherson and L. E. Nyquist; 10. Formation of chondrules and chondrites in the protoplanetary nebula E. R. D. Scott, S. G. Love and A. N. Krot; Part III. Chondrule precursors and multiple melting: 11. Origin of refractory precursor components of chondrules K. Misawa and N. Nakamura; 12. Mass-independent isotopic effects in chondrites: the role of chemical processes M. H. Thiemens; 13. Agglomeratic chondrules: implications for the nature of chondrule precursors and formation by incomplete melting M. K. Weisberg and M. Prinz; 14. Constraints on chondrule precursors from experimental Data H. C. Connolly Jr. and R. H. Hewins; 15. Nature of matrix in unequilibrated chondrites and its possible relationship to chondrules A. J. Brearly; 16. Constraints on chondrite agglomeration from fine-grained chondrule Rims K. Metzler and A. Bischoff; 17. Relict grains in chondrules: evidence for chondrule recycling R. H. Jones; 18. Multiple heating of chondrules A. E. Rubin and A. N. Krot; 19. Microchondrule-bearing chondrule rims: constraints on chondrule formation A. N. Krot and A. E. Rubin; Part IV

  4. Microdiscectomy for a Paracentral Lumbar Herniated Disk.

    PubMed

    Millhouse, Paul W; Schroeder, Gregory D; Kurd, Mark F; Kepler, Christopher K; Vaccaro, Alexander R; Savage, Jason W

    2016-02-01

    Lumbar disk herniations occur frequently and are often associated with leg pain, weakness, and paresthesias. Fortunately, the natural outcomes of radiculopathy due to a disk herniation are generally favorable, and the vast majority of patients improve with nonoperative care. Surgical intervention is reserved for patients who have significant pain that is refractory to at least 6 weeks of conservative care, patients who have a severe or progressive motor deficit, or patients who have any symptoms of bowel or bladder dysfunction. This paper reviews the preoperative and postoperative considerations, as well as the surgical technique, for a microdiscectomy for a lumbar intervertebral disk herniation. PMID:26710186

  5. Patterns In Debris Disks: No Planets Required?

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc

    2012-01-01

    Debris disks like those around Fomalhaut and Beta Pictoris show striking dust patterns often attributed to hidden exoplanets. These patterns have been crucial for constraining the masses and orbits of these planets. But adding a bit of gas to our models of debris disks--too little gas to detect--seems to alter this interpretation. Small amounts of gas lead to new dynamical instabilities that may mimic the narrow eccentric rings and other structures planets would create in a gas-free disk. Can we still use dust patterns to find hidden exoplanets?

  6. Fiber Optic Flexural Disk Microphone

    NASA Astrophysics Data System (ADS)

    Brown, David A.; Hofler, T.; Garrett, S. L.

    1989-02-01

    A microphone consisting of a hollow cylinder whose flexible, circular endplates are bonded to pairs of flat spiral wound coils of optical fiber is described. When the endplate/disk is deformed due to a pressure difference, the outer and inner fiber coils experience opposite strains resulting in a "push-pull" optical path length difference which is detected in an all-fiber Michelson interferometer. The close proximity of the interferometric fiber coils, separated by the thin thermally conducting end plate, rejects thermal gradient induced signals. The addition of a second identical endplate and fiber coil pair at the opposite end of the cylinder doubles the acoustic sensitivity while canceling acceleration induced signals. The calculated and measured optical strain of a single plate, single coil sensor using static pressure, acoustic pressure, and acceleration are in good agreement and yield a sensitivity of 21 milliradians per Pascal per meter of optical fiber for an 8.0 cm diameter, 3.0 mm thick plate below its resonance frequency of 3 KHz.

  7. Non-ideal magnetohydrodynamic effects in protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Bai, Xue-Ning

    The gas dynamics in protoplanetary disks (PPDs), particularly the level of turbulence as well as their global structure and evolution, are of crucial importance to many aspects of planet formation. Magnetic field is widely believed to play a crucial role in the gas dynamics, mainly via the magneto-rotational instability (MRI) or the magneto-centrifugal wind (MCW). In PPDs, however, these mechanisms are strongly affected by non-ideal magnetohydrodynamics (MHD) effects, including Ohmic resistivity, Hall effect and ambipolar diffusion (AD), due to the weak ionization level in PPDs. While Ohmic resistivity has been routinely included in the study of PPD gas dynamics, the Hall effects and AD have been largely ignored, even though they play an equally, if not more, important role. In this thesis, the effect of AD is thoroughly explored via numerical simulations and the results are applied to estimate the effectiveness of the MRI in PPDs. The simulations show that MRI can always operate in the presence of AD for appropriate magnetic field strength and geometry. Stronger AD requires weaker magnetic field, and the most favorable field geometry involves the presence of both net vertical and net toroidal magnetic fluxes. Applying these results to PPDs, together with the results in the literature on the effect of Ohmic resistivity and the Hall term, a new theoretical framework is proposed to make optimistic estimates of the MRI-driven accretion rate. It is found that the MRI inevitably becomes inefficient in driving rapid accretion in the inner regions (˜ 1 AU) of PPDs. It becomes more efficient in the outer disk ( ≳ 15 AU), especially assisted by the presence of tiny grains. The fact that MRI becomes inefficient at the inner PPDs makes the MCW scenario a promising alternative. By performing vertically stratified shearing-box simulations of PPDs that simultaneously include the effects of both Ohmic resistivity and AD in a self-consistent manner, it is found that in the

  8. Brown dwarf disks with ALMA: Evidence for truncated dust disks in Ophiuchus

    NASA Astrophysics Data System (ADS)

    Testi, L.; Natta, A.; Scholz, A.; Tazzari, M.; Ricci, L.; de Gregorio Monsalvo, I.

    2016-10-01

    Context. The study of the properties of disks around young brown dwarfs can provide important clues on the formation of these very low-mass objects and on the possibility of forming planetary systems around them. The presence of warm dusty disks around brown dwarfs is well known, based on near- and mid-infrared studies. Aims: High angular resolution observations of the cold outer disk are limited; we used ALMA to attempt a first survey of young brown dwarfs in the ρ Oph star-forming region. Methods: All 17 young brown dwarfs in our sample were observed at 890 μm in the continuum at 0.̋5 angular resolution. The sensitivity of our observations was chosen to detect ~0.5 M⊕ of dust. Results: We detect continuum emission in 11 disks (~65% of the total), and the estimated mass of dust in the detected disks ranges from ~0.5 to ~6 M⊕. These disk masses imply that planet formation around brown dwarfs may be relatively rare and that the supra-Jupiter mass companions found around some brown dwarfs are probably the result of a binary system formation. We find evidence that the two brightest disks in ρ Oph have sharp outer edges at R ≲ 25 AU, in contrast to disks around Taurus brown dwarfs. This difference may suggest that the different environment in ρ Oph may lead to significant differences in disk properties. A comparison of the Mdisk/M∗ ratio for brown dwarf and solar-mass systems also shows a possible deficit of mass in brown dwarfs, which could support the evidence for dynamical truncation of disks in the substellar regime. These findings are still tentative and need to be put on firmer grounds by studying the gaseous disks around brown dwarfs and by performing a more systematic and unbiased survey of the disk population around the more massive stars.

  9. Between the Disk and the Star: Boundary Layers in Astrophysical Accretion Disks

    NASA Astrophysics Data System (ADS)

    Rafikov, Roman

    Accretion disks are encountered in a wide variety of astrophysical settings: compact binaries, active galactic nuclei, star and planet formation. Whenever accretion proceeds onto a central object with a surface, a boundary layer forms at the inner edge of the disk. Energy release taking place in this layer is expected to dramatically modify spectra and give rise to variability of accreting objects. To properly interpret observations it is thus imperative to obtain a good working model of the boundary layer phenomenon. However, at the moment reconciliation of observations and theory of the boundary layers in grossly incomplete, and there are long-standing puzzles such as e.g. the missing boundary layer problem in accreting white dwarfs and young stars. The main reason for this unsatisfactory state of affairs is that the current theory is severely hampered by the lack of understanding of the mechanisms by which angular momentum and mass are transported across the boundary layer region. Our group has recently discovered a novel transport mechanism, which naturally emerges under the boundary layer conditions and has proven to be very robust. Using a suite of large-scale hydrodynamic and magnetohydrodynamic simulations we have shown that supersonic shear near the stellar surface is highly conducive to the excitation of a global instability, which relies on launching the acoustic modes in the system. Saturation of this instability results in a regular, non-axisymmetric, global pattern of acoustic waves that persists on very long time scales. These waves dissipate in weak shocks giving rise to global momentum transport, which in turn drives mass accretion. Transport of angular momentum and energy by these waves is intrinsically non-local and cannot be described in the framework of existing local models of effective viscosity. This new transport mechanism is efficient and robust. Its discovery calls for better and urgent understanding of how the boundary layer operate in a

  10. Dynamics of gas disks in triaxial galaxies

    SciTech Connect

    Steiman-Cameron, T.Y.

    1984-01-01

    Increasing evidence has accumulated since the mid 1970's arguing that many, if not all, undisturbed galaxies may have triaxial mass distributions. The steady state configurations (preferred planes) of gas disks in triaxial galaxies with static and rotating surface figures is determined. In addition, the evolution of a gas disk as it settles into the steady state is followed for both axisymmetric and triaxial galaxies. Observational tests are provided for triaxial galactic geometry and give more accurate measures of settling times than those previously published. The preferred planes for gas disks in static and tumbling triaxial galaxies are determined using an analytic method derived from celestial mechanics. The evolution of gas disks which are not in the steady state is followed using numerical methods.

  11. Rolling and slipping motion of Euler's disk

    NASA Astrophysics Data System (ADS)

    Caps, H.; Dorbolo, S.; Ponte, S.; Croisier, H.; Vandewalle, N.

    2004-05-01

    We present an experimental study of the motion of a circular disk spun onto a table. With the help of a high speed video system, the temporal evolution of (i) the inclination angle α , (ii) the angular velocity ω , and (iii) the precession rate Ω are studied. The influence of the mass of the disk as well as the friction between the disk and the supporting surface are considered. Both inclination angle and angular velocity are observed to decrease according to a power law. We also show that the precession rate diverges as the motion stops. Measurements are performed very near the collapse as well as on long range times. Times to collapse have been also measured. Results are compared with previous theoretical and experimental works. The major source of energy dissipation is found to be the slipping of the disk on the plane.

  12. Interstellar Gas and a Dark Disk

    NASA Astrophysics Data System (ADS)

    Kramer, Eric David; Randall, Lisa

    2016-10-01

    We introduce a potentially powerful method for constraining or discovering a thin dark matter disk in the Milky Way. The method relies on the relationship between the midplane densities and scale heights of interstellar gas being determined by the gravitational potential, which is sensitive to the presence of a dark disk. We show how to use the interstellar gas parameters to set a bound on a dark disk and discuss the constraints suggested by the current data. However, current measurements for these parameters are discordant, with the uncertainty in the constraint being dominated by the molecular hydrogen midplane density measurement, as well as by the atomic hydrogen velocity dispersion measurement. Magnetic fields and cosmic ray pressure, which are expected to play a role, are uncertain as well. The current models and data are inadequate to determine the disk's existence, but taken at face value, may favor its existence depending on the gas parameters used.

  13. The radar cross section of dielectric disks

    NASA Technical Reports Server (NTRS)

    Levine, D. M.

    1982-01-01

    A solution is presented for the backscatter (nonstatic) radar cross section of dielectric disks of arbitrary shape, thickness and dielectric constant. The result is obtained by employing a Kirchhoff type approximation to obtain the fields inside the disk. The internal fields induce polarization and conduction currents from which the scattered fields and the radar cross section can be computed. The solution for the radar cross section obtained in this manner is shown to agree with known results in the special cases of normal incidence, thin disks and perfect conductivity. The solution can also be written as a product of the reflection coefficient of an identically oriented slab times the physical optics solution for the backscatter cross section of a perfectly conducting disk of the same shape. This result follows directly from the Kirchhoff type approximation without additional assumptions.

  14. Formation of Planets in a Protoplanetary Disk

    NASA Video Gallery

    The artist conception shows a newly formed star surrounded by a swirling protoplanetary disk of dust and gas. Debris coalesces to create rocky 'planetesimals' that collide and grow to eventually fo...

  15. New Scattered Disk Object and Centaur Colors

    NASA Astrophysics Data System (ADS)

    Brucker, Melissa; Wilcox, P.; Stansberry, J.

    2013-10-01

    We report B, V, and R magnitudes for scattered disk objects and centaurs from observations taken in December 2011 and August 2013 using the Lowell Observatory Perkins Telescope with PRISM and observations taken in March 2012 at the Vatican Advanced Technology Telescope (VATT) on Mt. Graham, Arizona. Targeted scattered disk objects include 2002 CY224, 2003 UY117, 2006 QJ181, 2008 CT190, 2009 YG19, 2010 FD49, 2010 VZ98. Targeted centaurs include 2002 QX47, 2005 UJ438, 2006 UX184, and 2007 RH283. We will determine if the resultant centaur colors follow the bimodal distribution (B-R either red or gray) previously detected. We will also compare the resultant scattered disk object colors to those published for other scattered disk objects. This work is based on observations with the Perkins Telescope at Lowell Observatory, and with the VATT: The Alice P. Lennon Telescope and the Thomas J. Bannan Astrophysics Facility.

  16. Review of gravitomagnetic acceleration from accretion disks

    NASA Astrophysics Data System (ADS)

    Poirier, J.; Mathews, G. J.

    2015-11-01

    We review the development of the equations of gravitoelectromagnetism and summarize how the motion of the neutral masses in an accretion disk orbiting a black hole creates a general-relativistic magnetic-like (gravitomagnetic) field that vertically accelerates neutral particles near the accretion disk upward and then inward toward the axis of the accretion disk. Even though this gravitomagnetic field is not the only mechanism to produce collimated jets, it is a novel means to identify one general relativistic effect from a much more complicated problem. In addition, as the accelerated material above or below the accretion disk nears the axis with a nearly vertical direction, a frame-dragging effect twists the trajectories around the axis thus contributing to the collimation of the jet.

  17. Gravitomagnetic acceleration from black hole accretion disks

    NASA Astrophysics Data System (ADS)

    Poirier, J.; Mathews, G. J.

    2016-05-01

    We demonstrate how the motion of the neutral masses in an accretion disk orbiting a black hole creates a general-relativistic magnetic-like (gravitomagnetic) field that vertically accelerates neutral particles near an accretion disk upward and then inward toward the axis of the accretion disk. Even though this gravitomagnetic field is not the only mechanism contributing to the production of jets, it presents a novel means to identify one general relativistic effect from a much more complicated problem. In addition, as the accelerated material above or below the accretion disk nears the axis with a nearly vertical direction, a frame-dragging effect twists the trajectories around the axis thus contributing to the collimation of the jet.

  18. Multi-wavelength modeling of protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Pinte, C.; Ménard, F.; Duchêne, G.; Augereau, J.-C.

    2006-06-01

    The on-going revolution of high angular resolution observations and increasing wavelength coverage promises to unlock tightly-kept secrets of circumstellar disks. Thanks to these advances, many issues have already been addressed : large scale geometry of disks, evidence of grain growth, of dust settling, ldots Most of these results are based on models that emphasize on fitting either SEDs or scattered light images or, more recently, interferometric visibilities. In this contribution, we present a global approach which aims at interpreting the increasing amount of observational data coherently, in the framework of a single model, in order to get a more global picture and to better characterize both the dust population and the disk properties. Results of such a modeling approach, applied to a few disks for which large observational data-sets are available, are presented.

  19. IGRINS observations toward Class I disk sources

    NASA Astrophysics Data System (ADS)

    Lee, Seokho; Lee, Jeong-Eun; Park, Sunkyung; Jaffe, Daniel T.; Lee, Jae-Joon

    2015-08-01

    We present the high-resolution Immersion GRating INfrared spectrograph (IGRINS) spectra of Class I sources, including IRAS03445+3242 and IRAS04239+2436. These sources show the evidence of Keplerian disks; the broadened CO overtone (Δ v=2) transitions in emission and neutral metal lines (Mg I, Fe I, and Al I) in absorption. The thin Keplerian disk with a rotational velocity of ~100 km s-1 and a gas temperature of 5000 K at the innermost annulus can reproduce the CO overtone transitions including the bandhead emission. The temperature is assumed to have a power-law distribution with p=0.5. The outer colder disk or the envelope needs to fit the narrow absorption features overlaid on the broad emission lines in the CO overtone transitions. Other atomic and molecular emission lines likely radiated from the disk and/or wind are also detected.

  20. Observational evidence for thin AGN disks

    NASA Technical Reports Server (NTRS)

    Netzer, Hagai

    1992-01-01

    AGN spectrum and spectral features, polarization, inclination, and X-ray line and continuum reflection features are discussed in a critical way in order to determine the ones that are the least model-dependent. The sign and strength of absorption and emission edges are found to be model-dependent, and relativistic broadening and shifting makes them hard to detect. The presence or absence of the predicted Lyman edge polarization feature may be used as a decisive test for thin, bare AGN disks. Other good model-independent tests are several inclination-related line and continuum correlations in big AGN samples. It is shown that electron temperature near the surface of the disk can greatly exceed the disk equilibrium temperature, which causes deviations from LTE. This effect must be incorporated into realistic disk models.

  1. Radiation-Driven Warping. 2; Nonisothermal Disks

    NASA Technical Reports Server (NTRS)

    Maloney, Philip R.; Begelman, Mitchell C.; Nowak, Michael A.

    1998-01-01

    Recent work by Pringle and by Maloney, Begelman, & Pringle has shown that geometrically thin, optically thick, accretion disks are unstable to warping driven by radiation torque from the central source. This work was confined to isothermal (i.e., surface density Sigma varies as R(sup -3/2) disks. In this paper we generalize the study of radiation-driven warping to include general power-law surface density distributions, Sigma varies as R(sup -delta).We consider the range from Delta = 3/2 (the isothermal case) to Delta = -3/2, which corresponds to a radiation-pressure-supported disk; this spans the range of surface density distributions likely to be found in real astrophysical disks. In all cases there are an infinite number of zero-crossing solutions (i.e., solutions that cross the equator), which are the physically relevant modes if the outer boundary of the disk is required to lie in a specified plane. However, unlike the isothermal disk, which is the degenerate case, the frequency eigenvalues for Delta does not equal 3/2 are all distinct. In all cases the location of the zero moves outward from the steady state (pure precession) value with increasing growth rate; thus, there is a critical minimum size for unstable disks. Modes with zeros at smaller radii are damped. The critical radius and the steady state precession rate depend only weakly on Delta. An additional analytic solution has been found for Delta = 1. The case Delta = 1 divides the solutions into two qualitatively different regimes. For Delta greater than or equal to 1, the fastest growing modes have maximum warp amplitude, close to the disk outer edge, and the ratio of Beta(sub max) to the warp amplitude at the disk inner edge, Beta(sub o), is much greater than 1. For Delta less than 1, Beta(sub max/Beta(sub o) approximately equals 1, and the warp maximum steadily approaches the origin as Delta decreases. This implies that nonlinear effects must be important if the warp extends to the disk inner edge

  2. Design optimization of wide-band Tonpilz piezoelectric transducer with a bending piezoelectric disk on the radiation surface.

    PubMed

    Saijyou, Kenji; Okuyama, Tomonao

    2010-05-01

    Wide-band Tonpilz piezoelectric transducer with a bending piezoelectric disk on the radiation surface has been proposed to improve sonar detection performance in shallow water. This transducer is driven by utilizing two vibration modes, i.e., longitudinal and bending. Consequently, to achieve a wide-band signal transmission by this transducer, the phase difference between signals, which drive the ring-stack and the bending-disk piezoelectric resonators has to be optimized. In this paper, optimization approach of this phase difference in the design process is proposed. The effectiveness of this approach was confirmed by water-pool experiments.

  3. Earth, Moon, Sun, and CV Accretion Disks

    NASA Astrophysics Data System (ADS)

    Montgomery, M. M.

    2009-11-01

    Net tidal torque by the secondary on a misaligned accretion disk, like the net tidal torque by the Moon and the Sun on the equatorial bulge of the spinning and tilted Earth, is suggested by others to be a source to retrograde precession in non-magnetic, accreting cataclysmic variable (CV) dwarf novae (DN) systems that show negative superhumps in their light curves. We investigate this idea in this work. We generate a generic theoretical expression for retrograde precession in spinning disks that are misaligned with the orbital plane. Our generic theoretical expression matches that which describes the retrograde precession of Earths' equinoxes. By making appropriate assumptions, we reduce our generic theoretical expression to those generated by others, or to those used by others, to describe retrograde precession in protostellar, protoplanetary, X-ray binary, non-magnetic CV DN, quasar, and black hole systems. We find that spinning, tilted CV DN systems cannot be described by a precessing ring or by a precessing rigid disk. We find that differential rotation and effects on the disk by the accretion stream must be addressed. Our analysis indicates that the best description of a retrogradely precessing spinning, tilted, CV DN accretion disk is a differentially rotating, tilted disk with an attached rotating, tilted ring located near the innermost disk annuli. In agreement with the observations and numerical simulations by others, we find that our numerically simulated CV DN accretion disks retrogradely precess as a unit. Our final, reduced expression for retrograde precession agrees well with our numerical simulation results and with selective observational systems that seem to have main-sequence secondaries. Our results suggest that a major source to retrograde precession is tidal torques like that by the Moon and the Sun on the Earth. In addition, these tidal torques should be common to a variety of systems where one member is spinning and tilted, regardless if

  4. EARTH, MOON, SUN, AND CV ACCRETION DISKS

    SciTech Connect

    Montgomery, M. M.

    2009-11-01

    Net tidal torque by the secondary on a misaligned accretion disk, like the net tidal torque by the Moon and the Sun on the equatorial bulge of the spinning and tilted Earth, is suggested by others to be a source to retrograde precession in non-magnetic, accreting cataclysmic variable (CV) dwarf novae (DN) systems that show negative superhumps in their light curves. We investigate this idea in this work. We generate a generic theoretical expression for retrograde precession in spinning disks that are misaligned with the orbital plane. Our generic theoretical expression matches that which describes the retrograde precession of Earths' equinoxes. By making appropriate assumptions, we reduce our generic theoretical expression to those generated by others, or to those used by others, to describe retrograde precession in protostellar, protoplanetary, X-ray binary, non-magnetic CV DN, quasar, and black hole systems. We find that spinning, tilted CV DN systems cannot be described by a precessing ring or by a precessing rigid disk. We find that differential rotation and effects on the disk by the accretion stream must be addressed. Our analysis indicates that the best description of a retrogradely precessing spinning, tilted, CV DN accretion disk is a differentially rotating, tilted disk with an attached rotating, tilted ring located near the innermost disk annuli. In agreement with the observations and numerical simulations by others, we find that our numerically simulated CV DN accretion disks retrogradely precess as a unit. Our final, reduced expression for retrograde precession agrees well with our numerical simulation results and with selective observational systems that seem to have main-sequence secondaries. Our results suggest that a major source to retrograde precession is tidal torques like that by the Moon and the Sun on the Earth. In addition, these tidal torques should be common to a variety of systems where one member is spinning and tilted, regardless if

  5. Lessons from accretion disks in cataclysmic variables

    NASA Astrophysics Data System (ADS)

    Horne, Keith

    1998-04-01

    We survey recent progress in the interpretation of observations of cataclysmic variables, whose accretion disks are heated by viscous dissipation rather than irradiation. Many features of standard viscous accretion disk models are confirmed by tomographic imaging studies of dwarf novae. Eclipse maps indicate that steady disk temperature structures are established during outbursts. Doppler maps of double-peaked emission lines suggest disk chromospheres heated by magnetic activity. Gas streams impacting on the disk rim leave expected signatures both in the eclipses and emission lines. Doppler maps of dwarf nova IP Peg at the beginning of an outburst show evidence for tidally-induced spiral shocks. While enjoying these successes, we must still face up to the dreaded ``SW Sex syndrome'' which afflicts most if not all cataclysmic variables in high accretion states. The anomalies include single-peaked emission lines with skewed kinematics, flat temperature-radius profiles, shallow offset line eclipses, and narrow low-ionization absorption lines at phase 0.5. The enigmatic behavior of AE Aqr is now largely understood in terms of a magnetic propeller model in which the rapidly spinning white dwarf magnetosphere expels the gas stream out of the system before an accretion disk can form. A final piece in this puzzle is the realization that an internal shock zone occurs in the exit stream at just the right place to explain the anomalous kinematics and violent flaring of the single-peaked emission lines. Encouraged by this success, we propose that disk-anchored magnetic propellers operate in the high accretion rate systems afflicted by the SW Sex syndrome. Magnetic fields anchored in the Keplerian disk sweep forward and apply a boost that expels gas stream material flowing above the disk plane. This working hypothesis offers a framework on which we can hang all the SW Sex anomalies. The lesson for theorists is that magnetic links appear to be transporting energy and angular

  6. A New M Dwarf Debris Disk Candidate in a Young Moving Group Discovered with Disk Detective

    NASA Astrophysics Data System (ADS)

    Silverberg, Steven M.; Kuchner, Marc J.; Wisniewski, John P.; Gagné, Jonathan; Bans, Alissa S.; Bhattacharjee, Shambo; Currie, Thayne R.; Debes, John R.; Biggs, Joseph R.; Bosch, Milton; Doll, Katharina; Durantini-Luca, Hugo A.; Enachioaie, Alexandru; Griffith, Philip, Sr.; Hyogo, Michiharu; Piñiero, Fernanda; Disk Detective Collaboration

    2016-10-01

    We used the Disk Detective citizen science project and the BANYAN II Bayesian analysis tool to identify a new candidate member of a nearby young association with infrared excess. WISE J080822.18-644357.3, an M5.5-type debris disk system with significant excess at both 12 and 22 μm, is a likely member (∼ 90 % BANYAN II probability) of the ∼45 Myr old Carina association. Since this would be the oldest M dwarf debris disk detected in a moving group, this discovery could be an important constraint on our understanding of M dwarf debris disk evolution.

  7. Cluster Dynamics Largely Shapes Protoplanetary Disk Sizes

    NASA Astrophysics Data System (ADS)

    Vincke, Kirsten; Pfalzner, Susanne

    2016-09-01

    To what degree the cluster environment influences the sizes of protoplanetary disks surrounding young stars is still an open question. This is particularly true for the short-lived clusters typical for the solar neighborhood, in which the stellar density and therefore the influence of the cluster environment change considerably over the first 10 Myr. In previous studies, the effect of the gas on the cluster dynamics has often been neglected this is remedied here. Using the code NBody6++, we study the stellar dynamics in different developmental phases—embedded, expulsion, and expansion—including the gas, and quantify the effect of fly-bys on the disk size. We concentrate on massive clusters (M cl ≥ 103-6 ∗ 104 M Sun), which are representative for clusters like the Orion Nebula Cluster (ONC) or NGC 6611. We find that not only the stellar density but also the duration of the embedded phase matters. The densest clusters react fastest to the gas expulsion and drop quickly in density, here 98% of relevant encounters happen before gas expulsion. By contrast, disks in sparser clusters are initially less affected, but because these clusters expand more slowly, 13% of disks are truncated after gas expulsion. For ONC-like clusters, we find that disks larger than 500 au are usually affected by the environment, which corresponds to the observation that 200 au-sized disks are common. For NGC 6611-like clusters, disk sizes are cut-down on average to roughly 100 au. A testable hypothesis would be that the disks in the center of NGC 6611 should be on average ≈20 au and therefore considerably smaller than those in the ONC.

  8. Linear stability of magnetized massive protoplanetary disks

    SciTech Connect

    Lin, Min-Kai

    2014-07-20

    Magnetorotational instability (MRI) and gravitational instability (GI) are the two principle routes to turbulent angular momentum transport in accretion disks. Protoplanetary disks (PPDs) may develop both. This paper aims to reinvigorate interest in the study of magnetized massive PPDs, starting from the basic issue of stability. The local linear stability of a self-gravitating, uniformly magnetized, differentially rotating, three-dimensional stratified disk subject to axisymmetric perturbations is calculated numerically. The formulation includes resistivity. It is found that the reduction in the disk thickness by self-gravity (SG) can decrease MRI growth rates; the MRI becomes global in the vertical direction, and MRI modes with small radial length scales are stabilized. The maximum vertical field strength that permits the MRI in a strongly self-gravitating polytropic disk with polytropic index Γ = 1 is estimated to be B{sub z,max}≃c{sub s0}Ω√(μ{sub 0}/16πG), where c{sub s0} is the midplane sound speed and Ω is the local angular velocity. In massive disks with layered resistivity, the MRI is not well localized to regions where the Elsasser number exceeds unity. For MRI modes with radial length scales on the order of the disk thickness, SG can enhance density perturbations, an effect that becomes significant in the presence of a strong toroidal field, and which depends on the symmetry of the underlying MRI mode. In gravitationally unstable disks where GI and MRI growth rates are comparable, the character of unstable modes can transition smoothly between MRI and GI. Implications for nonlinear simulations are discussed briefly.

  9. Dissecting disks around B-type protostars

    NASA Astrophysics Data System (ADS)

    Sanchez-Monge, Alvaro; Cesaroni, Riccardo; Beltran, Maite; Kumar, M. S. Nanda; Stanke, Thomas; Zinnecker, Hans; Etoka, Sandra; Galli, Daniele; Hummel, Christian A.; Moscadelli, Luca; Preibisch, Thomas; Ratzka, Thorsten; van der Tak, Floris F. S.; Vig, Sarita; Walmsley, C. Malcolm; Wang, Kuo-Song

    2013-07-01

    Recent theoretical models indicate that OB-type stars could form through disk-mediated accretion, like their low mass counterparts. However, on the observational side, circumstellar disks appear still elusive, especially around the most massive (proto)stars. As for early B-type (proto)stars, an ever growing number of disk candidates has been proposed, but only very few of these present evidence for Keplerian rotation. The advent of ALMA provides us with the necessary sensitivity and angular resolution to assess the existence of such disks and possibly establish their rotation curves. With this in mind, we have performed ALMA observations with the highest possible resolution (~0.4") at 350 GHz to search for circumstellar disks in a couple of presumably massive young stellar objects with luminosities of ~10000 Lsun and associated with bipolar nebulosities suggestive of the presence of disk/outflow systems. By observing simultaneously core and jet tracers, we could reveal molecular cores with velocity gradients perpendicular to the corresponding jets. In at least one case (G35.20-0.74 N), the core structure appears resolved and the velocity field can be fitted with an almost edge-on Keplerian disk rotating about a central mass of 18 Msun. This finding is consistent with the results of a recent study of the CO first overtone bandhead emission at 2.3mum towards G35.20-0.74 N. The disk radius and mass are >2500 au and 3 Msun. To reconcile the observed bolometric luminosity (3x10^4 Lsun) with the estimated stellar mass of 18 Msun, we propose that the latter is the total mass of a binary system.

  10. [Driving ability with multiple sclerosis].

    PubMed

    Küst, J; Dettmers, C

    2014-07-01

    Driving is an important issue for young patients, especially for those whose walking capacity is impaired. Driving might support the patient's social and vocational participation. The question as to whether a patient with multiple sclerosis (MS) is restricted in the ability to drive a car depends on neurological and neuropsychological deficits, self-awareness, insight into deficits and ability to compensate for loss of function. Because of the enormous variability of symptoms in MS the question is highly individualized. A practical driving test under supervision of a driving instructor (possibly accompanied by a neuropsychologist) might be helpful in providing both patient and relatives adequate feedback on driving abilities. PMID:24906536

  11. Laser optical disk position encoder with active heads

    NASA Technical Reports Server (NTRS)

    Osborne, Eric P.

    1991-01-01

    An angular position encoder that minimizes the effects of eccentricity and other misalignments between the disk and the read stations by employing heads with beam steering optics that actively track the disk in directions along the disk radius and normal to its surface is discussed. The device adapts features prevalent in optical disk technology to the application of angular position sensing.

  12. Laser optical disk position encoder with active heads

    NASA Astrophysics Data System (ADS)

    Osborne, Eric P.

    An angular position encoder that minimizes the effects of eccentricity and other misalignments between the disk and the read stations by employing heads with beam steering optics that actively track the disk in directions along the disk radius and normal to its surface is discussed. The device adapts features prevalent in optical disk technology to the application of angular position sensing.

  13. PROTOPLANETARY DISK MASSES IN IC348: A RAPID DECLINE IN THE POPULATION OF SMALL DUST GRAINS AFTER 1 Myr

    SciTech Connect

    Lee, Nicholas; Williams, Jonathan P.; Cieza, Lucas A.

    2011-08-01

    We present a 1.3 mm continuum survey of protoplanetary disks in the 2-3 Myr old cluster, IC348, with the Submillimeter Array. We observed 85 young stellar objects and detected 10 with 1.3 mm fluxes greater than 2 mJy. The brightest source is a young embedded protostar driving a molecular outflow. The other nine detections are dusty disks around optically visible stars. Our millimeter flux measurements translate into total disk masses ranging from 2 to 6 Jupiter masses. Each detected disk has strong mid-infrared emission in excess of the stellar photosphere and has H{alpha} equivalent widths larger than the average in the cluster and indicative of ongoing gas accretion. The disk mass distribution, however, is shifted by about a factor of 20 to lower masses, compared to that in the {approx}1 Myr old Taurus and Ophiuchus regions. These observations reveal the rapid decline in the number of small dust grains in disks with time and probably their concomitant growth beyond millimeter sizes. Moreover, if IC348 is to form planets in the same proportion as detected in the field, these faint millimeter detections may represent the best candidates in the cluster to study the progression from planetesimals to planets.

  14. Advanced Motor Drives Studies

    NASA Technical Reports Server (NTRS)

    Ehsani, M.; Tchamdjou, A.

    1997-01-01

    This report presents an evaluation of advanced motor drive systems as a replacement for the hydrazine fueled APU units. The replacement technology must meet several requirements which are particular to the space applications and the Orbiter in general. Some of these requirements are high efficiency, small size, high power density. In the first part of the study several motors are compared, based on their characteristics and in light of the Orbiter requirements. The best candidate, the brushless DC is chosen because of its particularly good performance with regards to efficiency. Several power electronics drive technologies including the conventional three-phase hard switched and several soft-switched inverters are then presented. In the last part of the study, a soft-switched inverter is analyzed and compared to its conventional hard-switched counterpart. Optimal efficiency is a basic requirement for space applications and the soft-switched technology represents an unavoidable trend for the future.

  15. Forces Driving Chaperone Action.

    PubMed

    Koldewey, Philipp; Stull, Frederick; Horowitz, Scott; Martin, Raoul; Bardwell, James C A

    2016-07-14

    It is still unclear what molecular forces drive chaperone-mediated protein folding. Here, we obtain a detailed mechanistic understanding of the forces that dictate the four key steps of chaperone-client interaction: initial binding, complex stabilization, folding, and release. Contrary to the common belief that chaperones recognize unfolding intermediates by their hydrophobic nature, we discover that the model chaperone Spy uses long-range electrostatic interactions to rapidly bind to its unfolded client protein Im7. Short-range hydrophobic interactions follow, which serve to stabilize the complex. Hydrophobic collapse of the client protein then drives its folding. By burying hydrophobic residues in its core, the client's affinity to Spy decreases, which causes client release. By allowing the client to fold itself, Spy circumvents the need for client-specific folding instructions. This mechanism might help explain how chaperones can facilitate the folding of various unrelated proteins. PMID:27293188

  16. Drive-by-Downloads

    SciTech Connect

    Narvaez, Julia; Endicott-Popovsky, Barbara E.; Seifert, Christian; Aval, Chiraag U.; Frincke, Deborah A.

    2010-02-01

    Abstract: Drive-by-downloads are malware that push, and then execute, malicious code on a client system without the user's consent. The purpose of this paper is to introduce a discussion of the usefulness of antivirus software for detecting the installation of such malware, providing groundwork for future studies. Client honeypots collected drive-by malware which was then evaluated using common antivirus products. Initial analysis showed that most of such antivirus products identified less than 70% of these highly polymorphic malware programs. Also, it was observed that the antivirus products tested, even when successfully detecting this malware, often failed to classify it, leading to the conclusion that further work could involve not only developing new behavioral detection technologies, but also empirical studies that improve general understanding of these threats. Toward that end, one example of malicious code was analyzed behaviorally to provide insight into next steps for the future direction of this research.

  17. TIME EVOLUTION OF VISCOUS CIRCUMSTELLAR DISKS DUE TO PHOTOEVAPORATION BY FAR-ULTRAVIOLET, EXTREME-ULTRAVIOLET, AND X-RAY RADIATION FROM THE CENTRAL STAR

    SciTech Connect

    Gorti, U.; Dullemond, C. P.; Hollenbach, D.

    2009-11-10

    We present the time evolution of viscously accreting circumstellar disks as they are irradiated by ultraviolet and X-ray photons from a low-mass central star. Our model is a hybrid of a one-dimensional (1D) time-dependent viscous disk model coupled to a 1+1D disk vertical structure model used for calculating the disk structure and photoevaporation rates. We find that disks of initial mass 0.1 M{sub sun} around approx1 M{sub sun} stars survive for approx4 x 10{sup 6} yr, assuming a viscosity parameter alpha = 0.01, a time-dependent FUV luminosity L{sub FUV} approx 10{sup -2}-10{sup -3} L{sub sun} and with X-ray and EUV luminosities L{sub X} approx L{sub EUV} approx 10{sup -3} L{sub sun}. We find that FUV/X-ray-induced photoevaporation and viscous accretion are both important in depleting disk mass. Photoevaporation rates are most significant at approx1-10 AU and at approx>30 AU. Viscosity spreads the disk which causes mass loss by accretion onto the central star and feeds mass loss by photoevaporation in the outer disk. We find that FUV photons can create gaps in the inner, planet-forming regions of the disk (approx1-10 AU) at relatively early epochs in disk evolution while disk masses are still substantial. EUV and X-ray photons are also capable of driving gaps, but EUV can only do so at late, low accretion-rate epochs after the disk mass has already declined substantially. Disks around stars with predominantly soft X-ray fields experience enhanced photoevaporative mass loss. We follow disk evolution around stars of different masses, and find that disk survival time is relatively independent of mass for stars with M{sub *}approx< 3 M{sub sun}; for M{sub *}approx> 3 M{sub sun} the disks are short-lived (approx10{sup 5} yr).

  18. Dust Coagulation in Protoplanetary Accretion Disks

    NASA Technical Reports Server (NTRS)

    Schmitt, W.; Henning, Th.; Mucha, R.

    1996-01-01

    The time evolution of dust particles in circumstellar disk-like structures around protostars and young stellar objects is discussed. In particular, we consider the coagulation of grains due to collisional aggregation. The coagulation of the particles is calculated by solving numerically the non-linear Smoluchowski equation. The different physical processes leading to relative velocities between the grains are investigated. The relative velocities may be induced by Brownian motion, turbulence and drift motion. Starting from different regimes which can be identified during the grain growth we also discuss the evolution of dust opacities. These opacities are important for both the derivation of the circumstellar dust mass from submillimeter/millimeter continuum observations and the dynamical behavior of the disks. We present results of our numerical studies of the coagulation of dust grains in a turbulent protoplanetary accretion disk described by a time-dependent one-dimensional (radial) alpha-model. For several periods and disk radii, mass distributions of coagulated grains have been calculated. From these mass spectra, we determined the corresponding Rosseland mean dust opacities. The influence of grain opacity changes due to dust coagulation on the dynamical evolution of a protostellar disk is considered. Significant changes in the thermal structure of the protoplanetary nebula are observed. A 'gap' in the accretion disk forms at the very frontier of the coagulation, i.e., behind the sublimation boundary in the region between 1 and 5 AU.

  19. Stability of MRI Turbulent Accretion Disks

    NASA Astrophysics Data System (ADS)

    Takahashi, H. R.; Masada, Y.

    2010-12-01

    We study the stability of geometrically thin accretion disks with non-standard α parameter, which characterizes the efficiency of the angular momentum transport. Following recent results of numerical simulations of the Magnetorotational instability (MRI) driven turbulence, we assume that α increases with the magnetic Prandtl number. By adopting Spitzer's microscopic diffusivities, we obtain local structures of geometrically thin accretion disks consistently including effects of MRI-driven turbulence. Since the magnetic Prandtl number increases with the temperature, the efficiency of the angular momentum transport and thus viscous heating rate are smaller for a larger radius when δ > 0. We find that such disks can be unstable to gravitational, thermal, and secular instabilities. It is most remarkable feature that the thermal and secular instabilities can grow in the middle part of accretion disks even when the radiation pressure is negligible, while the standard Shakura & Sunyaev's accretion disk (constant α) is stable to these instabilities. We conclude that it would be difficult to maintain the steady mass accretion state unless the Pm-dependence of the MRI-driven turbulence is weak. Consideration of Pm dependence of α due to the MRI-driven turbulence may make the phase transition of accretion disks less mysterious.

  20. TILT, WARP, AND SIMULTANEOUS PRECESSIONS IN DISKS

    SciTech Connect

    Montgomery, M. M.

    2012-07-10

    Warps are suspected in disks around massive compact objects. However, the proposed warping source-non-axisymmetric radiation pressure-does not apply to white dwarfs. In this Letter, we report the first smoothed particle hydrodynamic simulations of accretion disks in SU UMa-type systems that naturally tilt, warp, and simultaneously precess in the prograde and retrograde directions using white dwarf V344 Lyrae in the Kepler field as our model. After {approx}79 days in V344 Lyrae, the disk angular momentum L{sub d} becomes misaligned to the orbital angular momentum L{sub o} . As the gas stream remains normal to L{sub o} , hydrodynamics (e.g., the lift force) is a likely source to disk tilt. In addition to tilt, the outer disk annuli cyclically change shape from circular to highly eccentric due to tidal torques by the secondary star. The effect of simultaneous prograde and retrograde precession is a warp of the colder, denser midplane as seen along the disk rim. The simulated rate of apsidal advance to nodal regression per orbit nearly matches the observed ratio in V344 Lyrae.

  1. Disk Evaporation in Star Forming Regions

    NASA Technical Reports Server (NTRS)

    Hollenbach, David; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Young stars produce sufficient ultraviolet photon luminosity and mechanical luminosity in their winds to significantly affect the structure and evolution of the accretion disks surrounding them. The Lyman continuum photons create a nearly static, ionized, isothermal 10(exp 4) K atmosphere forms above the neutral disk at small distances from the star. Further out, they create a photoevaporative flow which relatively rapidly destroys the disk. The resulting slow (10-50 km/s) ionized outflow, which persists for approx. greater than 10(exp 5) years for disk masses M(sub d) approx. 0.3M(sub *), may explain the observational characteristics of many ultracompact HII regions. We compare model results to the observed radio free-free spectra and luminosities of ultracompact HII regions and to the interesting source MWC349, which is observed to produce hydrogen masers. We apply the results to Ae and Be stars in order to determine the lifetimes of disks around such stars. We also apply the results to the early solar nebula to explain the the dispersal of the solar nebula and the differences in hydrogen content in the giant planets. Finally, we model the small bright objects ("proplyds") observed in the Orion Nebula as disks around young, low mass stars which are externally illuminated by the UV photons from the nearby massive star Theta(sup 1) C.

  2. Signposts of Multiple Planets in Debris Disks

    NASA Astrophysics Data System (ADS)

    Su, Kate Y. L.; Rieke, G. H.

    2014-01-01

    We review the nearby debris disk structures revealed by multi-wavelength images from Spitzer and Herschel, and complemented with detailed spectral energy distribution modeling. Similar to the definition of habitable zones around stars, debris disk structures should be identified and characterized in terms of dust temperatures rather than physical distances so that the heating power of different spectral type of stars is taken into account and common features in disks can be discussed and compared directly. Common features, such as warm (~150 K) dust belts near the water-ice line and cold (~50 K) Kuiper-belt analogs, give rise to our emerging understanding of the levels of order in debris disk structures and illuminate various processes about the formation and evolution of exoplanetary systems. In light of the disk structures in the debris disk twins (Vega and Fomalhaut), and the current limits on the masses of planetary objects, we suggest that the large gap between the warm and cold dust belts is the best signpost for multiple (low-mass) planets beyond the water-ice line.

  3. An MCMC Circumstellar Disks Modeling Tool

    NASA Astrophysics Data System (ADS)

    Wolff, Schuyler; Perrin, Marshall D.; Mazoyer, Johan; Choquet, Elodie; Soummer, Remi; Ren, Bin; Pueyo, Laurent; Debes, John H.; Duchene, Gaspard; Pinte, Christophe; Menard, Francois

    2016-01-01

    We present an enhanced software framework for the Monte Carlo Markov Chain modeling of circumstellar disk observations, including spectral energy distributions and multi wavelength images from a variety of instruments (e.g. GPI, NICI, HST, WFIRST). The goal is to self-consistently and simultaneously fit a wide variety of observables in order to place constraints on the physical properties of a given disk, while also rigorously assessing the uncertainties in the derived properties. This modular code is designed to work with a collection of existing modeling tools, ranging from simple scripts to define the geometry for optically thin debris disks, to full radiative transfer modeling of complex grain structures in protoplanetary disks (using the MCFOST radiative transfer modeling code). The MCMC chain relies on direct chi squared comparison of model images/spectra to observations. We will include a discussion of how best to weight different observations in the modeling of a single disk and how to incorporate forward modeling from PCA PSF subtraction techniques. The code is open source, python, and available from github. Results for several disks at various evolutionary stages will be discussed.

  4. Dynamic behavior of rod photoreceptor disks.

    PubMed Central

    Chen, Chunhe; Jiang, Yunhai; Koutalos, Yiannis

    2002-01-01

    Eukaryotic cells use membrane organelles, like the endoplasmic reticulum or the Golgi, to carry out different functions. Vertebrate rod photoreceptors use hundreds of membrane sacs (the disks) for the detection of light. We have used fluorescent tracers and single cell imaging to study the properties of rod photoreceptor disks. Labeling of intact rod photoreceptors with membrane markers and polar tracers revealed communication between intradiskal and extracellular space. Internalized tracers moved along the length of the rod outer segment, indicating communication between the disks as well. This communication involved the exchange of both membrane and aqueous phase and had a time constant in the order of minutes. The communication pathway uses approximately 2% of the available membrane disk area and does not allow the passage of molecules larger than 10 kDa. It was possible to load the intradiskal space with fluorescent Ca(2+) and pH dyes, which reported an intradiskal Ca(2+) concentration in the order of 1 microM and an acidic pH 6.5, both of them significantly different than intracellular and extracellular Ca(2+) concentrations and pH. The results suggest that the rod photoreceptor disks are not discrete, passive sacs but rather comprise an active cellular organelle. The communication between disks may be important for membrane remodeling as well as for providing access to the intradiskal space of the whole outer segment. PMID:12202366

  5. Gear Drive Testing

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Philadelphia Gear Corporation used two COSMIC computer programs; one dealing with shrink fit analysis and the other with rotor dynamics problems in computerized design and test work. The programs were used to verify existing in-house programs to insure design accuracy by checking its company-developed computer methods against procedures developed by other organizations. Its specialty is in custom units for unique applications, such as Coast Guard ice breaking ships, steel mill drives, coal crusher, sewage treatment equipment and electricity.

  6. Synchronized Intermittent Motion Induced by the Interaction between Camphor Disks

    NASA Astrophysics Data System (ADS)

    Suematsu, Nobuhiko J.; Tateno, Kurina; Nakata, Satoshi; Nishimori, Hiraku

    2015-03-01

    A new mode of collective motion was discovered in a system of camphor disks floating on the water surface in a circular chamber. The mode was induced by tuning the number of the disks. A single or few disks are known to continuously move on the water surface. Conversely, when many disks are present, motion comes to a stop and the disks form ordered spatial patterns by repulsive interaction. Here we found the third mode that emerged at an intermediate disk number, in which inactive and active motion phases alternated non-periodically. This new mode exhibited synchronization as the disk number increased.

  7. Recent Observational Progress on Accretion Disks Around Compact Objects

    NASA Astrophysics Data System (ADS)

    Miller, Jon M.

    2016-04-01

    Studies of accretion disks around black holes and neutron stars over the last ten years have made remarkable progress. Our understanding of disk evolution as a function of mass accretion rate is pushing toward a consensus on thin/thick disk transitions; an apparent switching between disk-driven outflow modes has emerged; and monitoring observations have revealed complex spectral energy distributions wherein disk reprocessing must be important. Detailed studies of disk winds, in particular, have the potential to reveal the basic physical processes that mediate disk accretion, and to connect with numerical simulations. This talk will review these developments and look ahead to the potential of Astro-H.

  8. The onset of planet formation in brown dwarf disks.

    PubMed

    Apai, Dániel; Pascucci, Ilaria; Bouwman, Jeroen; Natta, Antonella; Henning, Thomas; Dullemond, Cornelis P

    2005-11-01

    The onset of planet formation in protoplanetary disks is marked by the growth and crystallization of sub-micrometer-sized dust grains accompanied by dust settling toward the disk mid-plane. Here, we present infrared spectra of disks around brown dwarfs and brown dwarf candidates. We show that all three processes occur in such cool disks in a way similar or identical to that in disks around low- and intermediate-mass stars. These results indicate that the onset of planet formation extends to disks around brown dwarfs, suggesting that planet formation is a robust process occurring in most young circumstellar disks.

  9. Variabilities of Gamma-ray Bursts from Black Hole Hyper-accretion Disks

    NASA Astrophysics Data System (ADS)

    Lin, Da-Bin; Lu, Zu-Jia; Mu, Hui-Jun; Liu, Tong; Hou, Shu-Jin; Lü, Jing; Gu, Wei-Min; Liang, En-Wei

    2016-08-01

    The emission from black hole binaries (BHBs) and active galactic nuclei (AGNs) displays significant aperiodic variabilities. The most promising explanation for these variabilities is the propagating fluctuations in the accretion flow. It is natural to expect that the mechanism driving variabilities in BHBs and AGNs may operate in a black hole hyper-accretion disk, which is believed to power gamma-ray bursts (GRBs). We study the variabilities of jet power in GRBs based on the model of propagating fluctuations. It is found that the variabilities of jet power and the temporal profile of erratic spikes in this scenario are similar to those in observed light curves of prompt gamma-ray emission of GRBs. Our results show that the mechanism driving X-ray variabilities in BHBs and AGNs may operate in the central engine to drive the variabilities of GRBs.

  10. Environmental Crack Driving Force

    NASA Astrophysics Data System (ADS)

    Hall, M. M.

    2013-03-01

    The effect of environment on the crack driving force is considered, first by assuming quasistatic extension of a stationary crack and second, by use of stress corrosion cracking (SCC) crack growth rate models developed previously by this author and developed further here. A quasistatic thermodynamic energy balance approach, of the Griffith-Irwin type, is used to develop stationary crack threshold expressions, tilde{J}_c , which represent the conjoint mechanical and electrochemical conditions, below which stationary cracks are stable. Expressions for the electrochemical crack driving force (CDF) were derived using an analysis that is analogous to that used by Irwin to derive his "strain energy release rate," G, which Rice showed as being equivalent to his mechanical CDF, J. The derivations show that electrochemical CDFs both for active path dissolution (APD) and hydrogen embrittlement (HE) mechanisms of SCC are simply proportional to Tafel's electrochemical anodic and cathodic overpotentials, η a and η c, respectively. Phenomenological SCC models based on the kinetics of APD and HE crack growth are used to derive expressions for the kinetic threshold, J scc, below which crack growth cannot be sustained. These models show how independent mechanical and environmental CDFs may act together to drive SCC crack advance. Development of a user-friendly computational tool for calculating Tafel's overpotentials is advocated.

  11. Who's Driving Home?: Assessing Adolescent Drinking and Driving.

    ERIC Educational Resources Information Center

    Swisher, John D.; Bibeau, Daniel

    1987-01-01

    Data from 13,998 students revealed that high percentages of students drank often and that many of these students reported being drunk often. While most students indicated they would prefer not to drive home after drinking, approximately one-third of driving age students indicated they would drive under the influence of alcohol or would ride with…

  12. Interaction of the focused laser beam with the grooved surface of optical disk: Evanescent coupling and vector diffraction effects

    NASA Astrophysics Data System (ADS)

    Yeh, Wei-Hung

    1999-10-01

    The primary objective of this dissertation is to present a clear physical picture and useful insights of polarization effects in the diffraction of focused beams by grooved, multilayer-coated disks. The reading process of optical disk systems significantly relies on the reaction of the incident focused beam to the disk structure, may it be the groove profile or coating materials. The resulting complex-amplitude from diffraction is the main source for the readout signal. In the presence of the periodic pattern and the focused beam, however, different polarization states usually result in different complex-amplitudes. A good understanding of polarization effects in grooved multilayer disks is thus required for the optimum design of optical data storage systems. The pursuit of high-density recording inevitably drives the optical data storage industry to reduce the wavelength of light sources, decrease the track pitch of optical disks, and increase the numerical aperture of objective lenses. The track pitch and the size of the focused spot gradually approach the optical wavelength. Under these circumstances, the analysis of the interaction of focused beams with this type of high- frequency periodic disk using conventional scalar diffraction theory is no longer adequate. Only through vector diffraction study of polarization effects in the interaction of the focused beam with the periodic pattern can the characteristics of an optical disk system be fully understood and improved. Starting from the introduction of various polarization effects in optical disk systems and basic concepts of both scalar and vector diffraction theory, we then focus on the studies of diffraction patterns at the exit pupil of the objective lens and on the disk surface. Different behavior on the baseball pattern and in the effective groove depth is observed for the two polarization states. The use of the solid immersion lens to extensively increase the area density of optical disk systems prompts

  13. [Occupation and lumbar disk prolapse].

    PubMed

    Jensen, M V; Tüchsen, F

    1995-03-13

    All Danish occupational groups were screened for an increased risk of hospitalization due to a prolapsed lumbar intervertebral disc (PLID) (ICD-8: 725.11). A cohort of all gainfully employed Danes aged 20 to 59 years in 1981 was followed-up for 10 years for first hospitalization with PLID. A Standardized Hospitalization Ratio was calculated using all economically active persons as the reference group. Male groups with an elevated risk were found in building and construction, the iron and metal industry, in the food and nutrition sector and in occupational driving. Almost all groups of professional drivers had an elevated risk. Female groups with an elevated risk were mainly found in the same industries, but home helps, service workers in the private sector and sewing machine operators also had an elevated risk. We conclude that there are significant and systematic differences between occupational groups as concerns the risk of hospital admission due to PLID. PMID:7725550

  14. The Spitzer Infrared Spectrograph Survey of Protoplanetary Disks in Orion A. I. Disk Properties

    NASA Astrophysics Data System (ADS)

    Kim, K. H.; Watson, Dan M.; Manoj, P.; Forrest, W. J.; Furlan, Elise; Najita, Joan; Sargent, Benjamin; Hernández, Jesús; Calvet, Nuria; Adame, Lucía; Espaillat, Catherine; Megeath, S. T.; Muzerolle, James; McClure, M. K.

    2016-09-01

    We present our investigation of 319 Class II objects in Orion A observed by Spitzer/IRS. We also present the follow-up observations of 120 of these Class II objects in Orion A from the Infrared Telescope Facility/SpeX. We measure continuum spectral indices, equivalent widths, and integrated fluxes that pertain to disk structure and dust composition from IRS spectra of Class II objects in Orion A. We estimate mass accretion rates using hydrogen recombination lines in the SpeX spectra of our targets. Utilizing these properties, we compare the distributions of the disk and dust properties of Orion A disks with those of Taurus disks with respect to position within Orion A (Orion Nebular Cluster [ONC] and L1641) and with the subgroups by the inferred radial structures, such as transitional disks (TDs) versus radially continuous full disks (FDs). Our main findings are as follows. (1) Inner disks evolve faster than the outer disks. (2) The mass accretion rates of TDs and those of radially continuous FDs are statistically significantly displaced from each other. The median mass accretion rate of radially continuous disks in the ONC and L1641 is not very different from that in Taurus. (3) Less grain processing has occurred in the disks in the ONC compared to those in Taurus, based on analysis of the shape index of the 10 μm silicate feature (F 11.3/F 9.8). (4) The 20–31 μm continuum spectral index tracks the projected distance from the most luminous Trapezium star, θ 1 Ori C. A possible explanation is UV ablation of the outer parts of disks.

  15. The Spitzer Infrared Spectrograph Survey of Protoplanetary Disks in Orion A. I. Disk Properties

    NASA Astrophysics Data System (ADS)

    Kim, K. H.; Watson, Dan M.; Manoj, P.; Forrest, W. J.; Furlan, Elise; Najita, Joan; Sargent, Benjamin; Hernández, Jesús; Calvet, Nuria; Adame, Lucía; Espaillat, Catherine; Megeath, S. T.; Muzerolle, James; McClure, M. K.

    2016-09-01

    We present our investigation of 319 Class II objects in Orion A observed by Spitzer/IRS. We also present the follow-up observations of 120 of these Class II objects in Orion A from the Infrared Telescope Facility/SpeX. We measure continuum spectral indices, equivalent widths, and integrated fluxes that pertain to disk structure and dust composition from IRS spectra of Class II objects in Orion A. We estimate mass accretion rates using hydrogen recombination lines in the SpeX spectra of our targets. Utilizing these properties, we compare the distributions of the disk and dust properties of Orion A disks with those of Taurus disks with respect to position within Orion A (Orion Nebular Cluster [ONC] and L1641) and with the subgroups by the inferred radial structures, such as transitional disks (TDs) versus radially continuous full disks (FDs). Our main findings are as follows. (1) Inner disks evolve faster than the outer disks. (2) The mass accretion rates of TDs and those of radially continuous FDs are statistically significantly displaced from each other. The median mass accretion rate of radially continuous disks in the ONC and L1641 is not very different from that in Taurus. (3) Less grain processing has occurred in the disks in the ONC compared to those in Taurus, based on analysis of the shape index of the 10 μm silicate feature (F 11.3/F 9.8). (4) The 20-31 μm continuum spectral index tracks the projected distance from the most luminous Trapezium star, θ 1 Ori C. A possible explanation is UV ablation of the outer parts of disks.

  16. THE OUTER DISKS OF DWARF IRREGULAR GALAXIES

    SciTech Connect

    Hunter, Deidre A.; Massey, Philip; Wilsey, Nick; Riabokin, Malanka; Elmegreen, Bruce G.; Oh, Se-Heon; Anderson, Ed; Nordgren, Tyler E. E-mail: phil.massey@lowell.edu E-mail: riabokin@msu.edu E-mail: seheon-oh@ast.uct.ac.za E-mail: tyler_nordgren@redlands.edu

    2011-10-15

    In order to explore the properties of extreme outer stellar disks, we obtained ultra-deep V and GALEX ultraviolet (UV) images of four dwarf irregular galaxies and one blue compact dwarf galaxy, and ultra-deep B images of three of these. Our V-band surface photometry extends to 29.5 mag arcsec{sup -2}. We convert the FUV and V-band photometry, along with H{alpha} photometry obtained in a larger survey, into radial star formation rate profiles that are sensitive to timescales from 10 Myr to the lifetime of the galaxy. We also obtained H I-line emission data and compare the stellar distributions, surface brightness profiles, and star formation rate profiles to H I-line emission maps, gas surface density profiles, and gas kinematics. Our data lead us to two general observations. First, the exponential disks in these irregular galaxies are extraordinarily regular. We observe that the stellar disks continue to decline exponentially as far as our measurements extend. In spite of lumpiness in the distribution of young stars and H I distributions and kinematics that have significant unordered motions, sporadic processes that have built the disks-star formation, radial movement of stars, and perhaps even perturbations from the outside-have, nevertheless, conspired to produce standard disk profiles. Second, there is a remarkable continuity of star formation throughout these disks over time. In four out of five of our galaxies the star formation rate in the outer disk measured from the FUV tracks that determined from the V-band, to within factors of five, requiring star formation at a fairly steady rate over the galaxy's lifetime. Yet, the H I surface density profiles generally decline with radius more shallowly than the stellar light, and the gas is marginally gravitationally stable against collapse into clouds. Outer stellar disks are challenging our concepts of star formation and disk growth and provide a critical environment in which to understand processes that mold

  17. Testing the Propagating Fluctuations Model with a Long, Global Accretion Disk Simulation

    NASA Astrophysics Data System (ADS)

    Hogg, J. Drew; Reynolds, Christopher S.

    2016-07-01

    The broadband variability of many accreting systems displays characteristic structures; log-normal flux distributions, root-mean square (rms)-flux relations, and long inter-band lags. These characteristics are usually interpreted as inward propagating fluctuations of the mass accretion rate in an accretion disk driven by stochasticity of the angular momentum transport mechanism. We present the first analysis of propagating fluctuations in a long-duration, high-resolution, global three-dimensional magnetohydrodynamic (MHD) simulation of a geometrically thin (h/r ≈ 0.1) accretion disk around a black hole. While the dynamical-timescale turbulent fluctuations in the Maxwell stresses are too rapid to drive radially coherent fluctuations in the accretion rate, we find that the low-frequency quasi-periodic dynamo action introduces low-frequency fluctuations in the Maxwell stresses, which then drive the propagating fluctuations. Examining both the mass accretion rate and emission proxies, we recover log-normality, linear rms-flux relations, and radial coherence that would produce inter-band lags. Hence, we successfully relate and connect the phenomenology of propagating fluctuations to modern MHD accretion disk theory.

  18. Geometrical Structures of Chemically Decomposed Thick and Thin Disk Populations

    NASA Astrophysics Data System (ADS)

    Kawata, D.; Brook, C. B.; Rahimi, A.; Gibson, B. K.

    2016-10-01

    We summarize the thick and thin disk formation commonly seen in cosmological N-body simulations. As suggested in Brook et al. (2004), a hierarchical clustering scenario causes multiple minor gas-rich mergers, and leads to the formation of a kinematically hot disk, thick disk population, at a high redshift. Once the mergers become less significant at a later epoch, the thin disk population starts building up. Because in this scenario the thick disk population forms intensively at high redshift through multiple gas-rich mergers, the thick disk population is compact and has systematically higher [α/Fe] abundance than the thin disk population. We discuss that the thick disk population would be affected by the formation of the thin disk and suffer from the radial migration, which helps the thick disk population to be observed in the solar neighborhood. In addition, we show that the current cosmological simulations also naturally predict that the thin disk population is flaring at the outer region. As shown in Rahimi et al. (2014), at high vertical height from the disk plane, the compact thick disk population (low metallicity and high [α/Fe]) is dominant in the inner region and the flaring thin disk population (high metallicity and low [α/Fe]) contributes more in the outer region. This helps to explain the positive radial metallicity gradient and negative radial [α/Fe] gradient observed at high vertical height in the Milky Way stellar disk.

  19. Photoevaporating Disks around Young Stars: Ultracompact HII Regions and Protoplanetary Disks.

    NASA Astrophysics Data System (ADS)

    Johnstone, Douglas Ian

    1995-01-01

    Newly formed stars produce sufficient Lyman continuum luminosity phi to significantly alter the structure and evolution of the accretion disk surrounding them. In the absence of a stellar wind, a nearly static, photoionized, 10^4 K, disk atmosphere, with a scale height that increases with disk radius varpi as varpi^{3/2 }, forms inside the gravitational radius varpig ~ 1014(M_*/ M_odot) cm where M _* is the mass of the central star. This ionized atmosphere is maintained by both the direct radiation from the central star and the diffuse field produced in the disk atmosphere by the significant fraction of hydrogen recombinations directly to the ground state. Beyond varpig the material evaporated from the disk is capable of escaping from the system and produces an ionized disk wind. The mass-loss due to this disk wind peaks at varpig . The inclusion of a stellar wind into the basic picture reduces the height of the inner disk atmosphere and introduces a new scale radius varpi_ {w} where the thermal pressure of the material evaporated from the disk balances the ram pressure in the wind. In this case the mass-loss due to the disk wind peaks at varpiw and is enhanced over the no-wind case. The photoevaporation of disks around newly formed stars has significance to both ultracompact HII regions and the dispersal of solar-type nebulae. High mass stars are intrinsically hot and thus yield sufficient Lyman luminosity to create, even without a stellar wind, disk mass-loss rates of order 2 times 10 ^{-5}phi_sp{49} {1/2} M_odotyr ^{-1}, where phi 49 = phi/(10 49 Lyman continuum photons s^{-1}). This wind, which will last until the disk is dispersed, ~ 10^5 yrs if the disk mass is M_ {d}~0.3M_*, yields sizes, emission measures and ages consistent with observations of ultracompact HII regions. The well-observed high mass star MWC 349 may be the best example to date of an evaporating disk around a high mass star. On the other end of the stellar scale, many newly formed low

  20. Binary star systems with asymmetrically heated disks: Thermal phase curves for the disk in epsilon Aurigae

    NASA Astrophysics Data System (ADS)

    Pearson, Richard L., III

    Epsilon Aurigae is a long-period eclipsing binary that contains a warm F-star (~7750 K) and a circumstellar disk enshrouding a hidden companion, likely to be a hot B-star (≥15,000 K). The eclipse itself lasts just over two years---thanks, in part, to the size of the disk---and occurs every 27.1-years. Its evolutionary status is still debated, along with the true nature of each stellar component, due to the high uncertainty in its parallax. The disk is similarly debated from the near absence of solid state infrared spectral features indicating its composition, particle size distribution, and density. An investigation of a wide parameter space by means of analytic, Monte Carlo radiative transfer (MCRT), and thermal inertia-dependent methods are presented here in order to minimize the current parameter space. The first MCRT models including all of the epsilon Aurigae components (F-star, B-star, and disk) are included here. Additional parameter constraints are found by melding MCRT outputs (e.g. dust temperatures) with a thermal inertia-based extrapolation. The so-called MCRT-TI models investigate the effects of various parameters on the disk-edge temperatures; these include two distances, three particle size distributions, three compositions, and two disk masses, resulting in thirty-six independent models. Adding in the MCRT temperatures as possible solutions doubles the number of models to seventy-two. Additionally, infrared observations at 7 epochs, spanning nearly 1/3 of the orbit of epsilon Aurigae, are evaluated in order to extract phase-dependent disk temperatures. The resulting temperatures create a thermal phase curve, or TPC, for the system. The TPC correlates the observed disk temperature with orbital phase or date of observation. Then, the best-case MCRT and MCRT-TI models are compared against two different mid-eclipse temperatures. If one considers the evolutionary constraints on the models---where a smaller distance denotes an older system with a disk

  1. Drive alignment pays maintenance dividends

    SciTech Connect

    Fedder, R.

    2008-12-15

    Proper alignment of the motor and gear drive on conveying and processing equipment will result in longer bearing and coupling life, along with lower maintenance costs. Selecting an alignment free drive package instead of a traditional foot mounted drive and motor is a major advancement toward these goals. 4 photos.

  2. Drive Diagnostic Filter Wheel Control

    SciTech Connect

    Uhlich, D.

    2007-07-17

    DrD Filter Wheel Control is National Instrument's Labview software that drives a Drive Diagnostic filter wheel. The software can drive the filter wheel between each end limit, detect the positive and negative limit and each home position and post the stepper motot values to an Excel spreadsheet. The software can also be used to cycle the assembly between the end limits.

  3. Evidence of Nuclear Disks from the Radial Distribution of CCSNe in Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Herrero-Illana, Rubén; Pérez-Torres, Miguel Ángel; Alberdi, Antxon

    Galaxy-galaxy interactions are expected to be responsible for triggering massive star formation and possibly accretion onto a supermassive black hole, by providing large amounts of dense molecular gas down to the central kiloparsec region. Several scenarios to drive the gas further down to the central ˜ 100 pc, have been proposed, including the formation of a nuclear disk around the black hole, where massive stars would produce supernovae. Here, we probe the radial distribution of supernovae and supernova remnants in the nuclear regions of the starburst galaxies M82, Arp 299-A, and Arp 220, by using high-angular resolution (≲ 0.'1) radio observations. We derived scale-length values for the putative nuclear disks, which range from ˜ 20-30 pc for Arp 299-A and Arp 220, up to ˜ 140 pc for M82. The radial distribution of SNe for the nuclear disks in Arp 299-A and Arp 220 is also consistent with a power-law surface density profile of exponent γ = 1, as expected from detailed hydrodynamical simulations of nuclear disks. This study is detailed in Herrero-Illana, Perez-Torres, and Alberdi [11].

  4. Protoplanetary Disk Shadowing by Gas Infalling onto the Young Star AK Sco

    NASA Astrophysics Data System (ADS)

    Gómez de Castro, Ana I.; Loyd, Robert O. P.; France, Kevin; Sytov, Alexey; Bisikalo, Dmitry

    2016-02-01

    Young solar-type stars grow through the accretion of material from the circumstellar disk during pre-main-sequence (PMS) evolution. The ultraviolet radiation generated in this process plays a key role in the chemistry and evolution of young planetary disks. In particular, the hydrogen Lyα line (Lyα) etches the disk surface by driving photoevaporative flows that control disk evolution. Using the Hubble Space Telescope, we have monitored the PMS binary star AK Sco during the periastron passage and have detected a drop of the H2 flux by up to 10% lasting 5.9 hr. We show that the decrease of the H2 flux can be produced by the occultation of the stellar Lyα photons by a gas stream in free fall from 3 R{}*. Given the high optical depth of the Lyα line, a very low gas column of {N}{{H}}\\gt 5× {10}17 cm‑2 suffices to block the Lyα radiation without producing noticeable effects in the rest of the stellar spectral tracers.

  5. Electron Heating in Magnetorotational Instability: Implications for Turbulence Strength in the Outer Regions of Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Mori, Shoji; Okuzumi, Satoshi

    2016-01-01

    The magnetorotational instability (MRI) drives vigorous turbulence in a region of protoplanetary disks where the ionization fraction is sufficiently high. It has recently been shown that the electric field induced by the MRI can heat up electrons and thereby affect the ionization balance in the gas. In particular, in a disk where abundant dust grains are present, the electron heating causes a reduction of the electron abundance, thereby preventing further growth of the MRI. By using the nonlinear Ohm's law that takes into account electron heating, we investigate where in protoplanetary disks this negative feedback between the MRI and ionization chemistry becomes important. We find that the “e-heating zone,” the region where the electron heating limits the saturation of the MRI, extends out up to 80 AU in the minimum-mass solar nebula with abundant submicron-sized grains. This region is considerably larger than the conventional dead zone whose radial extent is ∼20 AU in the same disk model. Scaling arguments show that the MRI turbulence in the e-heating zone should have a significantly lower saturation level. Submicron-sized grains in the e-heating zone are so negatively charged that their collisional growth is unlikely to occur. Our present model neglects ambipolar and Hall diffusion, but our estimate shows that ambipolar diffusion would also affect the MRI in the e-heating zone.

  6. Near-resonant excitation and propagation of eccentric density waves by external forcing. [in accretion disks

    NASA Technical Reports Server (NTRS)

    Ostriker, Eve C.; Shu, Frank H.; Adams, Fred C.

    1992-01-01

    An overview is presented of the astronomical evidence that relatively massive, distended, gaseous disks form as a natural by-product of the process of star formation, and also the numerical evidence that SLING-amplified eccentric modes in the outer parts of such disks can drive one-armed spiral density waves in the inner parts by near-resonant excitation and propagation. An ordinary differential equation (ODE) of the second order that approximately governs the nonlocalized forcing of waves in a disk satisfying Lindblad resonance almost everywhere is derived. When transformed and appended with an extra model term, this ODE implies, for free waves, the usual asymptotic results of the WKBJ dispersion relationship and the propagation Goldreich-Tremaine (1978) formula for the resonant torque exerted on a localized Lindblad resonance. An analytical solution is given for the rate of energy and angular momentum transfer by nonlocalized near-resonant forcing in the case when the disk has power-law dependences on the radius of the surface density and temperature.

  7. Binary black hole accretion from a circumbinary disk: Gas dynamics inside the central cavity

    SciTech Connect

    Farris, Brian D.; Duffell, Paul; MacFadyen, Andrew I.; Haiman, Zoltan

    2014-03-10

    We present the results of two-dimensional (2D) hydrodynamical simulations of circumbinary disk accretion using the finite-volume code DISCO. This code solves the 2D viscous Navier-Stokes equations on a high-resolution moving mesh which shears with the fluid flow, greatly reducing advection errors in comparison with a fixed grid. We perform a series of simulations for binary mass ratios in the range 0.026 ≤ q ≤ 1.0, each lasting longer than a viscous time so that we reach a quasi-steady accretion state. In each case, we find that gas is efficiently stripped from the inner edge of the circumbinary disk and enters the cavity along accretion streams, which feed persistent 'mini disks' surrounding each black hole. We find that for q ≳ 0.1, the binary excites eccentricity in the inner region of the circumbinary disk, creating an overdense lump which gives rise to enhanced periodicity in the accretion rate. The dependence of the periodicity on mass ratio may provide a method for observationally inferring mass ratios from measurements of the accretion rate. We also find that for all mass ratios studied, the magnitude of the accretion onto the secondary is sufficient to drive the binary toward larger mass ratio. This suggests a mechanism for biasing mass-ratio distributions toward equal mass.

  8. THE SPINDLE: AN IRRADIATED DISK AND BENT PROTOSTELLAR JET IN ORION

    SciTech Connect

    Bally, John; Youngblood, Allison; Ginsburg, Adam E-mail: Allison.Youngblood@colorado.edu

    2012-09-10

    We present Hubble Space Telescope observations of a bent, pulsed Herbig-Haro jet, HH 1064, emerging from the young star Parenago 2042 embedded in the H II region NGC 1977 located about 30' north of the Orion Nebula. This outflow contains eight bow shocks in the redshifted western lobe and five bow shocks in the blueshifted eastern lobe. Shocks within a few thousand AU of the source star exhibit proper motions of {approx}160 km s{sup -1} but motions decrease with increasing distance. Parenago 2042 is embedded in a proplyd-a photoevaporating protoplanetary disk. A remarkable set of H{alpha} arcs resembling a spindle surround the redshifted (western) jet. The largest arc with a radius of 500 AU may trace the ionized edge of a circumstellar disk inclined by {approx}30 Degree-Sign . The spindle may be the photoionized edge of either a {approx}3 km s{sup -1} FUV-driven wind from the outer disk or a faster MHD-powered flow from an inner disk. The HH 1064 jet appears to be deflected north by photoablation of the south-facing side of a mostly neutral jet beam. V2412 Ori, located 1' west of Parenago 2042 drives a second bent flow, HH 1065. Both HH 1064 and 1065 are surrounded by LL Ori-type bows marking the boundary between the outflow cavity and the surrounding nebula.

  9. Protoplanetary Disk Shadowing by Gas Infalling onto the Young Star AK Sco

    NASA Astrophysics Data System (ADS)

    Gómez de Castro, Ana I.; Loyd, Robert O. P.; France, Kevin; Sytov, Alexey; Bisikalo, Dmitry

    2016-02-01

    Young solar-type stars grow through the accretion of material from the circumstellar disk during pre-main-sequence (PMS) evolution. The ultraviolet radiation generated in this process plays a key role in the chemistry and evolution of young planetary disks. In particular, the hydrogen Lyα line (Lyα) etches the disk surface by driving photoevaporative flows that control disk evolution. Using the Hubble Space Telescope, we have monitored the PMS binary star AK Sco during the periastron passage and have detected a drop of the H2 flux by up to 10% lasting 5.9 hr. We show that the decrease of the H2 flux can be produced by the occultation of the stellar Lyα photons by a gas stream in free fall from 3 R{}*. Given the high optical depth of the Lyα line, a very low gas column of {N}{{H}}\\gt 5× {10}17 cm-2 suffices to block the Lyα radiation without producing noticeable effects in the rest of the stellar spectral tracers.

  10. Thermal modeling of head disk interface system in heat assisted magnetic recording

    NASA Astrophysics Data System (ADS)

    Vemuri, Sesha Hari; Min Kim, Hyung; Seung Chung, Pil; Jhon, Myung S.

    2014-05-01

    A thorough understanding of the temperature profiles introduced by the heat assisted magnetic recording is required to maintain the hotspot at the desired location on the disk with minimal heat damage to other components. Here, we implement a transient mesoscale modeling methodology termed lattice Boltzmann method (LBM) for phonons (which are primary carriers of energy) in the thermal modeling of the head disk interface (HDI) components, namely, carbon overcoat (COC). The LBM can provide more accurate results compared to conventional Fourier methodology by capturing the nanoscale phenomena due to ballistic heat transfer. We examine the in-plane and out-of-plane heat transfer in the COC via analyzing the temperature profiles with a continuously focused and pulsed laser beam on a moving disk. Larger in-plane hotspot widening is observed in continuously focused laser beam compared to a pulsed laser. A pulsed laser surface develops steeper temperature gradients compared to continuous hotspot. Furthermore, out-of-plane heat transfer from the COC to the media is enhanced with a continuous laser beam then a pulsed laser, while the temperature takes around 140 fs to reach the bottom surface of the COC. Our study can lead to a realistic thermal model describing novel HDI material design criteria for the next generation of hard disk drives with ultra high recording densities.

  11. Thermal modeling of head disk interface system in heat assisted magnetic recording

    SciTech Connect

    Vemuri, Sesha Hari; Seung Chung, Pil; Jhon, Myung S.; Min Kim, Hyung

    2014-05-07

    A thorough understanding of the temperature profiles introduced by the heat assisted magnetic recording is required to maintain the hotspot at the desired location on the disk with minimal heat damage to other components. Here, we implement a transient mesoscale modeling methodology termed lattice Boltzmann method (LBM) for phonons (which are primary carriers of energy) in the thermal modeling of the head disk interface (HDI) components, namely, carbon overcoat (COC). The LBM can provide more accurate results compared to conventional Fourier methodology by capturing the nanoscale phenomena due to ballistic heat transfer. We examine the in-plane and out-of-plane heat transfer in the COC via analyzing the temperature profiles with a continuously focused and pulsed laser beam on a moving disk. Larger in-plane hotspot widening is observed in continuously focused laser beam compared to a pulsed laser. A pulsed laser surface develops steeper temperature gradients compared to continuous hotspot. Furthermore, out-of-plane heat transfer from the COC to the media is enhanced with a continuous laser beam then a pulsed laser, while the temperature takes around 140 fs to reach the bottom surface of the COC. Our study can lead to a realistic thermal model describing novel HDI material design criteria for the next generation of hard disk drives with ultra high recording densities.

  12. Self-gravitating disk models of YSOs

    NASA Astrophysics Data System (ADS)

    Lodato, G.; Bertin, G.

    2001-12-01

    Disks cannot be too cold, otherwise gravitational instabilities would violently set in. A simple model of self-gravitating accretion disk is presented here and applied to fit and interpret the Spectral Energy Distribution of a sample of Young Stellar Objects. In general, this scenario is likely to be more relevant for younger objects, for which mm observations point to disk masses comparable to that of the central protostar. The key characteristic of the model is the process of self-regulation associated with gravitational instabilities. This is incorporated in our model equations explicitly and significantly modifies the energy budget inside the disk with respect to standard pictures. Dynamical mechanisms related to the physical processes considered by us have been addressed by other authors, especially by means of numerical simulations. The disk self-gravity may thus enhance the long-wavelength emission of protostellar nebulae through the combined effects of increased viscous dissipation (resulting from significant deviations from Keplerian rotation) and of additional heating (responsible for maintaining the disk close to marginal Jeans stability). An investigation of a relatively large sample of YSOs, which includes four T Tauri stars and two FU Orionis objects discussed by us earlier (A&A, 375, 455-468) and a number of Herbig Ae/Be objects, allows us to identify a subsample of objects for which self-gravity may indeed provide an important contribution to the observed infrared excess. The model turns out to be more appealing for FU Orionis objects, while for T Tauri stars the derived values of the physical parameters, such as disk mass and accretion rate, tend to fall outside the generally accepted range.

  13. Water vapor distribution in protoplanetary disks

    SciTech Connect

    Du, Fujun; Bergin, Edwin A.

    2014-09-01

    Water vapor has been detected in protoplanetary disks. In this work, we model the distribution of water vapor in protoplanetary disks with a thermo-chemical code. For a set of parameterized disk models, we calculate the distribution of dust temperature and radiation field of the disk with a Monte Carlo method, and then solve the gas temperature distribution and chemical composition. The radiative transfer includes detailed treatment of scattering by atomic hydrogen and absorption by water of Lyα photons, since the Lyα line dominates the UV spectrum of accreting young stars. In a fiducial model, we find that warm water vapor with temperature around 300 K is mainly distributed in a small and well-confined region in the inner disk. The inner boundary of the warm water region is where the shielding of UV field due to dust and water itself become significant. The outer boundary is where the dust temperature drops below the water condensation temperature. A more luminous central star leads to a more extended distribution of warm water vapor, while dust growth and settling tends to reduce the amount of warm water vapor. Based on typical assumptions regarding the elemental oxygen abundance and the water chemistry, the column density of warm water vapor can be as high as 10{sup 22} cm{sup –2}. A small amount of hot water vapor with temperature higher than ∼300 K exists in a more extended region in the upper atmosphere of the disk. Cold water vapor with temperature lower than 100 K is distributed over the entire disk, produced by photodesorption of the water ice.

  14. Magnetic Fields and Outflows from AGN Disks

    NASA Astrophysics Data System (ADS)

    Lovelace, Richard V. E.; Bisnovatyi-Kogan, Gennady S.; Rothstein, D. M.

    2010-11-01

    Activity of the nuclei of galaxies involving disk accretion to black holes is thought to be due to (1) a small-scale turbulent magnetic field in the disk (due to the magneto-rotational instability or MRI) which gives a large viscosity enhancing accretion, and (2) a large-scale magnetic field which gives rise to matter outflows and/or electromagnetic jets from the disk which also enhances accretion. An important problem with this picture is that the enhanced viscosity is accompanied by an enhanced magnetic diffusivity which acts to prevent the build up of a significant large-scale field. Recent work has pointed out that the disk's surface layers are non-turbulent and thus highly conducting (or non-diffusive) because the MRI is suppressed high in the disk where the magnetic and radiation pressures are larger than the thermal pressure. Here, we calculate the vertical (Z) profiles of the stationary accretion flows (with radial and azimuthal components), and the profiles of the large-scale, magnetic field taking into account the turbulent viscosity and diffusivity due to the MRI and the fact that the turbulence vanishes at the surface of the disk. We derive a sixth-order differential equation for the radial flow velocity vr (Z) which depends mainly on the midplane thermal to magnetic pressure ratio ˜>1 and the Prandtl number of the turbulence P = viscosity/diffusivity. Boundary conditions at the disk surface take into account a possible magnetic wind or jet and allow for a surface current in the highly conducting surface layer. The stationary solutions we find indicate that a weak (˜>1) large-scale field does not di use away as suggested by earlier work.

  15. Radially Magnetized Protoplanetary Disk: Vertical Profile

    NASA Astrophysics Data System (ADS)

    Russo, Matthew; Thompson, Christopher

    2015-11-01

    This paper studies the response of a thin accretion disk to an external radial magnetic field. Our focus is on protoplanetary disks (PPDs), which are exposed during their later evolution to an intense, magnetized wind from the central star. A radial magnetic field is mixed into a thin surface layer, wound up by the disk shear, and pushed downward by a combination of turbulent mixing and ambipolar and ohmic drift. The toroidal field reaches much greater strengths than the seed vertical field that is usually invoked in PPD models, even becoming superthermal. Linear stability analysis indicates that the disk experiences the magnetorotational instability (MRI) at a higher magnetization than a vertically magnetized disk when both the effects of ambipolar and Hall drift are taken into account. Steady vertical profiles of density and magnetic field are obtained at several radii between 0.06 and 1 AU in response to a wind magnetic field Br ˜ (10-4-10-2)(r/ AU)-2 G. Careful attention is given to the radial and vertical ionization structure resulting from irradiation by stellar X-rays. The disk is more strongly magnetized closer to the star, where it can support a higher rate of mass transfer. As a result, the inner ˜1 AU of a PPD is found to evolve toward lower surface density. Mass transfer rates around 10-8 M⊙ yr-1 are obtained under conservative assumptions about the MRI-generated stress. The evolution of the disk and the implications for planet migration are investigated in the accompanying paper.

  16. The age of the galactic disk

    NASA Technical Reports Server (NTRS)

    Sandage, Allan

    1988-01-01

    The galactic disk is a dissipative structure and must, therefore be younger than the halo if galaxy formation generally proceeds by collapse. Just how much younger the oldest stars in the galactic disk are than the oldest halo stars remains an open question. A fast collapse (on a time scale no longer than the rotation period of the extended protogalaxy) permits an age gap of the order of approximately 10 to the 9th power years. A slow collapse, governed by the cooling rate of the partially pressure supported falling gas that formed into what is now the thick stellar disk, permits a longer age gap, claimed by some to be as long as 6 Gyr. Early methods of age dating the oldest components of the disk contain implicit assumptions concerning the details of the age-metallicity relation for stars in the solar neighborhood. The discovery that this relation for open clusters outside the solar circle is different that in the solar neighborhood (Geisler 1987), complicates the earlier arguments. The oldest stars in the galactic disk are at least as old as NGC 188. The new data by Janes on NGC 6791, shown first at this conference, suggest a disk age of at least 12.5 Gyr, as do data near the main sequence termination point of metal rich, high proper motion stars of low orbital eccentricity. Hence, a case can still be made that the oldest part of the galactic thick disk is similar in age to the halo globular clusters, if their ages are the same as 47 Tuc.

  17. HERSCHEL OBSERVATIONS OF THE T CHA TRANSITION DISK: CONSTRAINING THE OUTER DISK PROPERTIES

    SciTech Connect

    Cieza, Lucas A.; Olofsson, Johan; Henning, Thomas; Harvey, Paul M.; Evans II, Neal J.; Pinte, Christophe; Augereau, Jean-Charles; Menard, Francois; Najita, Joan

    2011-11-10

    T Cha is a nearby (d {approx} 100 pc) transition disk known to have an optically thin gap separating optically thick inner and outer disk components. Huelamo et al. recently reported the presence of a low-mass object candidate within the gap of the T Cha disk, giving credence to the suspected planetary origin of this gap. Here we present the Herschel photometry (70, 160, 250, 350, and 500 {mu}m) of T Cha from the 'Dust, Ice, and Gas in Time' Key Program, which bridges the wavelength range between existing Spitzer and millimeter data and provide important constraints on the outer disk properties of this extraordinary system. We model the entire optical to millimeter wavelength spectral energy distribution (SED) of T Cha (19 data points between 0.36 and 3300 {mu}m without any major gaps in wavelength coverage). T Cha shows a steep spectral slope in the far-IR, which we find clearly favors models with outer disks containing little or no dust beyond {approx}40 AU. The full SED can be modeled equally well with either an outer disk that is very compact (only a few AU wide) or a much larger one that has a very steep surface density profile. That is, T Cha's outer disk seems to be either very small or very tenuous. Both scenarios suggest a highly unusual outer disk and have important but different implications for the nature of T Cha. Spatially resolved images are needed to distinguish between the two scenarios.

  18. CHEMICAL EVOLUTION OF PROTOPLANETARY DISKS-THE EFFECTS OF VISCOUS ACCRETION, TURBULENT MIXING, AND DISK WINDS

    SciTech Connect

    Heinzeller, D.; Nomura, H.; Walsh, C.; Millar, T. J.

    2011-04-20

    We calculate the chemical evolution of protoplanetary disks considering radial viscous accretion, vertical turbulent mixing, and vertical disk winds. We study the effects on the disk chemical structure when different models for the formation of molecular hydrogen on dust grains are adopted. Our gas-phase chemistry is extracted from the UMIST Database for Astrochemistry (Rate06) to which we have added detailed gas-grain interactions. We use our chemical model results to generate synthetic near- and mid-infrared local thermodynamic equilibrium line emission spectra and compare these with recent Spitzer observations. Our results show that if H{sub 2} formation on warm grains is taken into consideration, the H{sub 2}O and OH abundances in the disk surface increase significantly. We find that the radial accretion flow strongly influences the molecular abundances, with those in the cold midplane layers particularly affected. On the other hand, we show that diffusive turbulent mixing affects the disk chemistry in the warm molecular layers, influencing the line emission from the disk and subsequently improving agreement with observations. We find that NH{sub 3}, CH{sub 3}OH, C{sub 2}H{sub 2}, and sulfur-containing species are greatly enhanced by the inclusion of turbulent mixing. We demonstrate that disk winds potentially affect the disk chemistry and the resulting molecular line emission in a manner similar to that found when mixing is included.

  19. Offset Compound Gear Drive

    NASA Technical Reports Server (NTRS)

    Stevens, Mark A.; Handschuh, Robert F.; Lewicki, David G.

    2010-01-01

    The Offset Compound Gear Drive is an in-line, discrete, two-speed device utilizing a special offset compound gear that has both an internal tooth configuration on the input end and external tooth configuration on the output end, thus allowing it to mesh in series, simultaneously, with both a smaller external tooth input gear and a larger internal tooth output gear. This unique geometry and offset axis permits the compound gear to mesh with the smaller diameter input gear and the larger diameter output gear, both of which are on the same central, or primary, centerline. This configuration results in a compact in-line reduction gear set consisting of fewer gears and bearings than a conventional planetary gear train. Switching between the two output ratios is accomplished through a main control clutch and sprag. Power flow to the above is transmitted through concentric power paths. Low-speed operation is accomplished in two meshes. For the purpose of illustrating the low-speed output operation, the following example pitch diameters are given. A 5.0 pitch diameter (PD) input gear to 7.50 PD (internal tooth) intermediate gear (0.667 reduction mesh), and a 7.50 PD (external tooth) intermediate gear to a 10.00 PD output gear (0.750 reduction mesh). Note that it is not required that the intermediate gears on the offset axis be of the same diameter. For this example, the resultant low-speed ratio is 2:1 (output speed = 0.500; product of stage one 0.667 reduction and stage two 0.750 stage reduction). The design is not restricted to the example pitch diameters, or output ratio. From the output gear, power is transmitted through a hollow drive shaft, which, in turn, drives a sprag during which time the main clutch is disengaged.

  20. Disk Radii and Grain Sizes in Herschel-resolved Debris Disks

    NASA Astrophysics Data System (ADS)

    Pawellek, Nicole; Krivov, Alexander V.; Marshall, Jonathan P.; Montesinos, Benjamin; Ábrahám, Péter; Moór, Attila; Bryden, Geoffrey; Eiroa, Carlos

    2014-09-01

    The radii of debris disks and the sizes of their dust grains are important tracers of the planetesimal formation mechanisms and physical processes operating in these systems. Here we use a representative sample of 34 debris disks resolved in various Herschel Space Observatory (Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA) programs to constrain the disk radii and the size distribution of their dust. While we modeled disks with both warm and cold components, and identified warm inner disks around about two-thirds of the stars, we focus our analysis only on the cold outer disks, i.e., Kuiper-belt analogs. We derive the disk radii from the resolved images and find a large dispersion for host stars of any spectral class, but no significant trend with the stellar luminosity. This argues against ice lines as a dominant player in setting the debris disk sizes, since the ice line location varies with the luminosity of the central star. Fixing the disk radii to those inferred from the resolved images, we model the spectral energy distribution to determine the dust temperature and the grain size distribution for each target. While the dust temperature systematically increases toward earlier spectral types, the ratio of the dust temperature to the blackbody temperature at the disk radius decreases with the stellar luminosity. This is explained by a clear trend of typical sizes increasing toward more luminous stars. The typical grain sizes are compared to the radiation pressure blowout limit s blow that is proportional to the stellar luminosity-to-mass ratio and thus also increases toward earlier spectral classes. The grain sizes in the disks of G- to A-stars are inferred to be several times s blow at all stellar luminosities, in agreement with collisional models of debris disks. The sizes, measured in the units of s blow, appear to decrease with the luminosity