Science.gov

Sample records for 39b mission objectives

  1. STS-103 Mission Specialist Jean-Frangois Clervoy of France at Pad 39B

    NASA Technical Reports Server (NTRS)

    1999-01-01

    STS-103 Mission Specialist Jean-Frangois Clervoy of France poses for a photograph at Launch Pad 39B during a meeting of STS-103 astronauts with family and friends. Clervoy is with the European Space Agency. The lights in the background are on the Fixed Service Structure next to Space Shuttle Discovery. The STS-103 mission, to service the Hubble Space Telescope, is scheduled for launch Dec. 17 at 8:47 p.m. EST from Launch Pad 39B. Mission objectives include replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. The mission is expected to last about 8 days and 21 hours. Discovery is expected to land at KSC Sunday, Dec. 26, at about 6:25 p.m. EST.

  2. STS-87 Mission Specialist Chawla and her husband pose at LC 39B

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Mission Specialist Kalpana Chawla, Ph.D., poses with her husband, Jean-Pierre Harrison, in front of Kennedy Space Center's Launch Pad 39B during final prelaunch activities leading up to the scheduled Nov. 19 liftoff. The other STS-87 crew members are Commander Kevin Kregel; Pilot Steven Lindsey; Mission Specialists Winston Scott and Takao Doi, Ph.D., of the National Space Development Agency of Japan; and Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. STS-87 will be the fourth flight of the United States Microgravity Payload and the Spartan-201 deployable satellite.

  3. STS-87 Mission Specialist Doi and his wife pose at LC 39B

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan poses with his wife, Hitomi Doi, in front of Kennedy Space Center's Launch Pad 39B during final prelaunch activities leading up to the scheduled Nov. 19 liftoff. The other STS-87 crew members are Commander Kevin Kregel; Pilot Steven Lindsey; Mission Specialists Kalpana Chawla, Ph.D., and Winston Scott; and Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. STS-87 will be the fourth flight of the United States Microgravity Payload and the Spartan- 201 deployable satellite.

  4. STS-80 MISSION SPECIALIST STORY MUSGRAVE ANSWERS PRESS QUESTIONS AT PAD 39B DURING TERMINAL COUNTDOW

    NASA Technical Reports Server (NTRS)

    1996-01-01

    While preparing for what probably will be his last space flight, STS-80 Mission Specialist Story Musgrave appears pensive as he gazes skyward from Kennedy Space Center, where he and four other crew members are scheduled to lift off November 8 on the Space Shuttle Columbia. The STS-80 crew arrived at KSC to participate in the Terminal Countdown Demonstration Test (TCDT), a dress rehearsal for launch. On STS- 80, Musgrave will equal American astronaut John Young's record of six space flights. At 61, he also will be the oldest human to fly in space. He was selected by NASA as a scientist-astronaut in 1967, but did not fly until the Space Shuttle program. He was a mission specialist on STS-6 in 1983, STS 51-F in 1985, STS-33 in 1989 and STS-44 in 1991, and the payload commander on STS-61 in 1993, the first Hubble Space Telescope servicing mission.

  5. Space Shuttle Discovery leaves the VAB for Launch Pad 39B and mission STS-60

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Leaving the Vehicle Asembly Building for Launch Pad 39A on a crisp, clear winter day, the Space Shuttle Discovery makes the final Earth-bound leg of a journey into space. Once at the pad, two of the payloads for Discovery's upcoming flight, mission STS- 60, will be installed. The Wake Shield Facility-1 and Get Away Special bridge assembly will be joining SPACEHAB-2 in the orbiter's payload bay. Liftoff of the first Space Shuttle flight of 1994 is currently targeted for around Feb. 3.{end}

  6. Mission objectives and trajectories

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The present state of the knowledge of asteroids was assessed to identify mission and target priorities for planning asteroidal flights in the 1980's and beyond. Mission objectives, mission analysis, trajectory studies, and cost analysis are discussed. A bibliography of reports and technical memoranda is included.

  7. Pad 39B Deconstruction

    NASA Video Gallery

    A time-lapse video of the deconstruction of Launch Pad 39B at NASA's Kennedy Space Center in Florida. The fixed service structure and rotating service structure were removed. Both structures were b...

  8. The STS-103 crew address family and friends at Pad 39B

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The STS-103 crew address family and friends at Launch Pad 39B. From left to right are Pilot Scott J. Kelly, Commander Curtis L. Brown Jr., and Mission Specialists C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Jean-Frangois Clervoy of France , Claude Nicollier of Switzerland and Steven L. Smith. Nicollier and Clervoy are with the European Space Agency. In the background is Space Shuttle Discovery, alongside the lighted Fixed Service Structure. The STS-103 mission, to service the Hubble Space Telescope, is scheduled for launch Dec. 17 at 8:47 p.m. EST from Launch Pad 39B. Mission objectives include replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. The mission is expected to last about 8 days and 21 hours. Discovery is expected to land at KSC Sunday, Dec. 26, at about 6:25 p.m. EST.

  9. STS-103 Commander Curtis L. Brown Jr. and fiancee Ann Brickert at Pad 39B

    NASA Technical Reports Server (NTRS)

    1999-01-01

    STS-103 Commander Curtis L. Brown Jr. and his fiancee, Ann Brickert, pose for a photograph at Launch Pad 39B during a meeting of the STS-103 crew with their family and friends. The lights in the background are on the Fixed Service Structure next to Space Shuttle Discovery. The mission, to service the Hubble Space Telescope, is scheduled for launch Dec. 17 at 8:47 p.m. EST from Launch Pad 39B. Mission objectives include replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. The mission is expected to last about 8 days and 21 hours. Discovery is expected to land at KSC Sunday, Dec. 26, at about 6:25 p.m. EST.

  10. STS-102 Discovery lifts off from Launch Pad 39-B

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - Space Shuttle Discovery rivals the rising sun as it blasts off from Launch Pad 39B at dawn on mission STS-102. . Liftoff occurred at 6:42:09 EST for this eighth flight to the International Space Station.

  11. STS-102 Discovery lifts off from Launch Pad 39-B

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - As Space Shuttle Atlantis clears Launch Pad 39B, the sun peers over the horizon of the Atlantic Ocean. . Liftoff of Discovery on mission STS-102 occurred at 6:42:09 EST for the eighth flight to the International Space Station.

  12. STS-80 crew at LC39B during TCDT

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-80 crew members are all smiles as they pose for a photograph at Launch Pad 39B, only a short distance from the Space Shuttle Columbia, which is poised for a Nov. 8 liftoff. From left, are Mission Specialists Story Musgrave and Thomas D. Jones, Commander Kenneth D. Cockrell, Mission Specialist Tamara E. Jernigan and Pilot Kent V. Rominger. The STS-80 mission, the seventh and final Shuttle flight of 1996, will feature two spacewalks and the deployment, operation and retrieval of two scientific satellites, the Orbiting Retrievable Far and Extreme Ultraviolet Spectrometer-Shuttle Pallet Satellite-2 (ORFEUS-SPAS-2) and the Wake Shield Facility-3 (WSF-3).

  13. Solar system object observations with Gaia Mission

    NASA Astrophysics Data System (ADS)

    Kudryashova, Maria; Tanga, Paolo; Mignard, Francois; CARRY, Benoit; Christophe, Ordenovic; DAVID, Pedro; Hestroffer, Daniel

    2016-05-01

    After a commissioning period, the astrometric mission Gaia of the European Space Agency (ESA) started its survey in July 2014. Throughout passed two years the Gaia Data Processing and Analysis Consortium (DPAC) has been treating the data. The current schedule anticipates the first Gaia Data Release (Gaia-DR1) toward the end of summer 2016. Nevertheless, it is not planned to include Solar System Objects (SSO) into the first release. This is due to a special treatment required by solar system objects, as well as by other peculiar sources (multiple and extended ones). In this presentation, we address issues and recent achivements in SSO processing, in particular validation of SSO-short term data processing chain, GAIA-SSO alerts, as well as the first runs of SSO-long term pipeline.

  14. Shuttle Atlantis travels to LC-39B for STS-76

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Space Shuttle Atlantis completes the journey to Launch Pad 39B from the Vehicle Assembly Building. Atlantis is being prepared for a March 21 liftoff on Mission STS-76, which will be highlighted by the third docking between the U.S. Shuttle and the Russian Space Station Mir and the transfer of U.S. astronaut Shannon Lucid to the station for an extended stay.

  15. STS-112 Atlantis Launch from LC-39B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Atlantis leaps from the steam and smoke billowing across Launch Pad 39B after an on-time liftoff of 3:46 p.m. EDT on mission STS-112. Along with a crew of six, Atlantis carries the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss. [Photo courtesy of Scott Andrews

  16. STS-112 Atlantis Launch from LC-39B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - Looking like a star balanced on a stem of smoke, Space Shuttle Atlantis shoots through the clear blue sky after launch on mission STS-112, the 15th assembly flight to the International Space Station. Liftoff from Launch Pad 39B occurred at 3:46 p.m. EDT. Atlantis carries the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss.

  17. STS-112 Atlantis Launch from LC-39B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - A tracking camera on Launch Pad 39B captures the flames of Space Shuttle Atlantis' three main engines as Altantis hurtles into space on mission STS-112. The shoreline of the Atlantic Ocean is visible in the background. Liftoff occurred at 3:46 p.m. EDT. Atlantis carries the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss.

  18. STS-112 Atlantis Launch from LC-39B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - Space Shuttle Atlantis leaps from the steam and smoke billowing across Launch Pad 39B after an on-time liftoff of 3:46 p.m. EDT on mission STS-112. Along with a crew of six, Atlantis carries the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss.

  19. STS-112 Atlantis Launch from LC-39B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - -- Space Shuttle Atlantis begins its journey to the International Space Station (ISS) as it lifts off from Launch Pad 39B on mission STS-112. Liftoff occurred on time at 3:46 p.m. EDT. Along with a crew of six, Atlantis carries the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A to the Space Station. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss.

  20. STS-112 Atlantis Launch from LC-39B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - Space Shuttle Atlantis leaps clear of the billowing steam and smoke on Launch Pad 39B after an on-time liftoff of 3:46 p.m. EDT on mission STS-112. Along with a crew of six, Atlantis carries the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss. [Photo courtesy of Scott Andrews

  1. STS-112 Atlantis Launch from LC-39B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - With a tail of flame burning white hot, Space Shuttle Atlantis leaps from the billowing steam and smoke on Launch Pad 39B after an on-time liftoff of 3:46 p.m. EDT on mission STS-112. Along with a crew of six, Atlantis carries the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss.

  2. STS-112 Atlantis Launch from LC-39B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - -- Space Shuttle Atlantis races toward space just after liftoff from Launch Pad 39B on mission STS-112. Liftoff occurred on time at 3:46 p.m. EDT. Along with a crew of six, Atlantis carries the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A to the International Space Station (ISS). The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss.

  3. STS-112 Atlantis Launch from LC-39B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - Space Shuttle Atlantis leaps clear of the billowing steam and smoke on Launch Pad 39B after an on-time liftoff of 3:46 p.m. EDT on mission STS-112. Along with a crew of six, Atlantis carries the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss.

  4. STS-112 Atlantis Launch from LC-39B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - -- Space Shuttle Atlantis leaves a billowingclouds of smoke and steam behind just after liftoff from Launch Pad 39B on mission STS-112. Liftoff occurred on time at 3:46 p.m. EDT. Along with a crew of six, Atlantis carries the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A to the International Space Station (ISS). The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss.

  5. Woodpecker Preventative measures at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Technicians at Launch Pad 39B take steps to prevent further damage from woodpeckers to the Space Shuttle Discovery, set to lift off July 13 on Mission STS-70. Installing balloons with scary eyes, such as these two near the external tank, are just one of the measures being taken to keep woodpeckers away since Discovery's second rollout to Pad B. Discovery had to be rolled back once to the Vehicle Assembly Building to repair woodpecker holes made in the insulation covering the external tank.

  6. STS-96 Launch of Discovery from Pad 39-B

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Space Shuttle Discovery lifts off from Launch Pad 39B in a blaze of light amid billows of smoke and steam. With a crew of seven, mission STS-96 launches on time at 6:49:42 a.m. EDT. STS-96 is a 10-day logistics and resupply mission for the International Space Station, carrying about 4,000 pounds of supplies, to be stored aboard the station for use by future crews, including laptop computers, cameras, tools, spare parts, and clothing. The mission also includes such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student- involved experiment. It will include a space walk to attach the cranes to the outside of the ISS for use in future construction. Landing is expected at the SLF on June 6 about

  7. STS-112 Atlantis Launch from LC-39B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Atlantis roars into the clear blue sky from the billows of smoke below after launch on mission STS-112, the 15th assembly flight to the International Space Station. Liftoff from Launch Pad 39B occurred at 3:46 p.m. EDT. Atlantis carries the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss. providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss to the Station.

  8. STS-90 Columbia launch from LC-39B at KSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Space Shuttle Columbia lifts off from Launch Pad 39B at 2:19 p.m. EDT Apr. 17 to begin the nearly 17-day STS-90 Neurolab mission. A torrent of water is seen flowing onto the mobile launcher platform as several large quench nozzles, or 'rainbirds,' mounted on platform's surface operate as a sound suppression system. The crew members are Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, D.V.M., Dafydd (Dave) Williams, M.D., with the Canadian Space Agency, and Kathryn (Kay) Hire; and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system.

  9. Objectives and results of the BIRD mission

    NASA Astrophysics Data System (ADS)

    Lorenz, Eckehard; Briess, Klaus; Halle, Winfried; Oertel, Dieter; Skrbek, Wolfgang; Zhukov, Boris

    2003-11-01

    The DLR small satellite BIRD (Bi- spectral Infrared Detection) is successfully operating in space since October 2001. The main payload is dedicated to the observation of high temperature events and consists mainly of a Bi-Spectral Infrared Push Broom Scanner (3.4-4.2μm and 8.5-9.3μm), a Push Broom Imager for the Visible and Near Infrared and a neural network classification signal processor. The BIRD mission answers topical technological and scientific questions related to the operation of a compact infra-red push-broom sensor on board of a micro satellite. A powerful Payload Data Handling System (PDH) is responsible for all payload real time operation, control and on-board science data handling. The IR cameras are equipped with an advanced real time data processing allowing an autonomously adaptation of the dynamic range to different scenarios. The BIRD mission control, the data reception and the data processing is conducted by the DLR ground stations in Weilheim and Neustrelitz (Germany; is experimentally performed by a low cost ground station implemented at DLR Berlin-Adlershof. The BIRD on ground data processing chain delivers radiometric and geometric corrected data products, which will be also described in this paper. The BIRD mission is an exemplary demonstrator for small satellite projects dedicated to the hazard detection and monitoring.

  10. Magnetospheric Science Objectives of the Juno Mission

    NASA Astrophysics Data System (ADS)

    Bagenal, F.; Adriani, A.; Allegrini, F.; Bolton, S. J.; Bonfond, B.; Bunce, E. J.; Connerney, J. E. P.; Cowley, S. W. H.; Ebert, R. W.; Gladstone, G. R.; Hansen, C. J.; Kurth, W. S.; Levin, S. M.; Mauk, B. H.; McComas, D. J.; Paranicas, C. P.; Santos-Costa, D.; Thorne, R. M.; Valek, P.; Waite, J. H.; Zarka, P.

    2014-02-01

    In July 2016, NASA's Juno mission becomes the first spacecraft to enter polar orbit of Jupiter and venture deep into unexplored polar territories of the magnetosphere. Focusing on these polar regions, we review current understanding of the structure and dynamics of the magnetosphere and summarize the outstanding issues. The Juno mission profile involves (a) a several-week approach from the dawn side of Jupiter's magnetosphere, with an orbit-insertion maneuver on July 6, 2016; (b) a 107-day capture orbit, also on the dawn flank; and (c) a series of thirty 11-day science orbits with the spacecraft flying over Jupiter's poles and ducking under the radiation belts. We show how Juno's view of the magnetosphere evolves over the year of science orbits. The Juno spacecraft carries a range of instruments that take particles and fields measurements, remote sensing observations of auroral emissions at UV, visible, IR and radio wavelengths, and detect microwave emission from Jupiter's radiation belts. We summarize how these Juno measurements address issues of auroral processes, microphysical plasma physics, ionosphere-magnetosphere and satellite-magnetosphere coupling, sources and sinks of plasma, the radiation belts, and the dynamics of the outer magnetosphere. To reach Jupiter, the Juno spacecraft passed close to the Earth on October 9, 2013, gaining the necessary energy to get to Jupiter. The Earth flyby provided an opportunity to test Juno's instrumentation as well as take scientific data in the terrestrial magnetosphere, in conjunction with ground-based and Earth-orbiting assets.

  11. STS-112 Atlantis Launch from LC-39B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- With a tail of flame burning white hot, Space Shuttle Atlantis leaps from the billowing steam and smoke on Launch Pad 39B after an on-time liftoff of 3:46 p.m. EDT on mission STS-112. Along with a crew of six, Atlantis carries the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss. [Photo courtesy of Scott Andrews

  12. STS-93 Columbia after rollout to Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This closeup of Space Shuttle Columbia on Launch Pad 39B shows the Rotating Service Structure, at left, which will be moved into place on Tuesday, June 8. Columbia was rolled out June 7, less than two weeks after the liftoff of Discovery on mission STS-96, in preparation for the launch of STS-93. The mission payload is the Chandra X-ray Observatory, the world's most powerful X-ray telescope, which will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Columbia (OV-102) is the first of NASA's orbiter fleet, delivered to Kennedy Space Center in March 1979. Columbia initiated the Space Shuttle flight program at KSC when it lifted off Launch Pad 39A on April 12, 1981.

  13. SPACEHAB module at LC-39B for STS-76

    NASA Technical Reports Server (NTRS)

    1996-01-01

    At Launch Pad 39B, the SPACEHAB module has been installed in the payload bay of the Space Shuttle Atlantis, which was rolled out to the pad a day previously. Already located in the payload bay was the Orbiter Docking System (ODS), to which the SPACEHAB was connected via a tunnel. During the upcoming flight of Atlantis on Mission STS-76, the ODS will be docked to the Docking Module located on the Kristall module docking port on the Russian Space Station Mir. The SPACEHAB will be filled with Russian and U.S. logistics equipment for transfer to Mir. Also located in the mini-research laboratory is the European Space Agency's Biorack, which houses experiments to be conducted by the U.S. astronauts during the nine-day flight. Atlantis is scheduled to lift off on the third Shuttle-Mir docking mission on March 21.

  14. STS-112 Atlantis rollout to Launch Pad 39-B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- After an early morning rollout, Space Shuttle Atlantis sits on the launch pad. Visible near the tail are the tail service masts that support the fluid, gas and electrical requirements of the orbiter's liquid oxygen and liquid hydrogen aft T-0 umbilicals. After being stacked with its solid rocket boosters and external tank, Atlantis began its rollout to Launch Pad 39B at 2:27 a.m. EDT in preparation for launch to the International Space Station. The Shuttle arrived at the Pad and was hard down at 9:38 a.m. Launch is scheduled no earlier than Oct. 2 for mission STS-112, the 15th assembly flight to the International Space Station. Atlantis will carry the S1 Integrated Truss Structure, which will be attached to the central truss segment, the S0 truss, during the mission.

  15. STS-112 Atlantis rollout to Launch Pad 39-B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- After an early morning rollout, Space Shuttle Atlantis nears the top of the launch pad. The Rotating Service Structure is wide open (in front of the Mobile Launcher Platform). After being stacked with its solid rocket boosters and external tank, Atlantis began its rollout to Launch Pad 39B at 2:27 a.m. EDT in preparation for launch to the International Space Station. The Shuttle arrived at the Pad and was hard down at 9:38 a.m. Launch is scheduled no earlier than Oct. 2 for mission STS-112, the 15th assembly flight to the International Space Station. Atlantis will carry the S1 Integrated Truss Structure, which will be attached to the central truss segment, the S0 truss, during the mission.

  16. STS-112 Atlantis rollout to Launch Pad 39-B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- In the early morning hours, Space Shuttle Atlantis, with its solid rocket boosters and orange external tank, sits atop the Mobile Launcher Platform ready to roll to the launch pad. Atlantis began its rollout to Launch Pad 39B at 2:27 a.m. EDT in preparation for launch to the International Space Station. The Shuttle arrived at the Pad and was hard down at 9:38 a.m. Launch is scheduled no earlier than Oct. 2 for mission STS-112, the 15th assembly flight to the International Space Station. Atlantis will carry the S1 Integrated Truss Structure, which will be attached to the central truss segment, the S0 truss, during the mission.

  17. STS-112 Atlantis rollout to Launch Pad 39-B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- After an early morning rollout, Space Shuttle Atlantis, atop the Mobile Launcher Platform, passes by the American flag as it moves through the gate at the launch pad. After being stacked with its solid rocket boosters and external tank, Atlantis began its rollout to Launch Pad 39B at 2:27 a.m. EDT in preparation for launch to the International Space Station. The Shuttle arrived at the Pad and was hard down at 9:38 a.m. Launch is scheduled no earlier than Oct. 2 for mission STS-112, the 15th assembly flight to the International Space Station. Atlantis will carry the S1 Integrated Truss Structure, which will be attached to the central truss segment, the S0 truss, during the mission.

  18. STS-112 Atlantis rollout to Launch Pad 39-B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- After an early morning rollout, Space Shuttle Atlantis sits on the launch pad. The Rotating Service Structure is wide open (at left). After being stacked with its solid rocket boosters and external tank, Atlantis began its rollout to Launch Pad 39B at 2:27 a.m. EDT in preparation for launch to the International Space Station. The Shuttle arrived at the Pad and was hard down at 9:38 a.m. Launch is scheduled no earlier than Oct. 2 for mission STS-112, the 15th assembly flight to the International Space Station. Atlantis will carry the S1 Integrated Truss Structure, which will be attached to the central truss segment, the S0 truss, during the mission.

  19. STS-112 Atlantis rollout to Launch Pad 39-B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- In the early light of dawn, Atlantis heads to the launch pad, lighted in the distance. After being stacked with its solid rocket boosters and external tank, Atlantis began its rollout to Launch Pad 39B at 2:27 a.m. EDT in preparation for launch to the International Space Station. The Shuttle arrived at the Pad and was hard down at 9:38 a.m. Launch is scheduled no earlier than Oct. 2 for mission STS-112, the 15th assembly flight to the International Space Station. Atlantis will carry the S1 Integrated Truss Structure, which will be attached to the central truss segment, the S0 truss, during the mission.

  20. STS-81 Rollout to Pad 39B (turtle in foreground)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Will the Space Shuttle Atlantis or the turtle reach Launch Pad 39B first? Carried atop the Mobile Launch Platform on the 6- million-pound Crawler Transporter, Shuttle Atlantis departs the Vehicle Assembly Building en route to Pad B at a maximum speed of 1 mile per hour. No one clocked the turtle, which seems to be heading in the same direction. Atlantis is tentatively scheduled to lift off on a nine-day mission on Jan. 12. STS-81 will be the fifth Shuttle-Mir docking. The six-member crew at liftoff will include Mission Specialist J.M. Linenger, who will transfer to the Russian Mir Space Station for an extended stay, replacing astronaut John E. Blaha, who will return to Earth on Atlantis.

  1. The STS-93 crew practice emergency egress training from Launch Pad 39B.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Inside an M-113 armored personnel carrier at the launch pad, the STS-93 crew take part in emergency egress training under the watchful eyes of Capt. George Hoggard (center), trainer with the KSC Fire Department. From left are Mission Specialist Michel Tognini of France, Commander Eileen M. Collins, Hoggard, Mission Specialist Steven A. Hawley (Ph.D.), Pilot Jeffrey S. Ashby, and Mission Specialist Catherine G. Coleman (Ph.D.). Collins is the first woman to serve as mission commander. Tognini represents the Centre National d'Etudes Spatiales (CNES). The training is part of Terminal Countdown Demonstration Test activities that also include a launch-day dress rehearsal culminating with a simulated main engine cut-off. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B.

  2. STRATCOM-8 scientific objectives and mission orginization

    NASA Technical Reports Server (NTRS)

    Reed, E. I. (Compiler)

    1977-01-01

    Stratospheric photochemistry was studied, with emphasis on the Ozone-NOx-ultraviolet flux interactions, but also including members of the chlorine, water vapor, and carbon-containing families. Secondary objectives include: (1) study of the balloon environment, (2) comparison of independent measurements of ozone and of NO, (3) development of new sensor systems; and (4) some measurements for exploratory purposes. Most, but not all, systems and instruments performed as planned, and it is believed that data are available to achieve most of the planned scientific and engineering objectives. The emphasis on photochemistry in the 35 to 40 km region is greater than anticipated, and observations are more complete for sunset than for sunrise. The planned instruments and a summary of the flight operations is discussed partly for the mutual information of those participating and partly for the wider scientific community.

  3. MARCO POLO: A Near Earth Object Sample Return Mission

    NASA Astrophysics Data System (ADS)

    Barucci, M. A.; Yoshikawa, M.; Michel, P.; Kawaguchi, J.; Yano, H.; Brucato, J. R.; Franchi, I. A.; Dotto, E.; Fulchignoni, M.; Ulamec, S.; Boehnhardt, H.; Coradini, M.; Green, S. F.; Josset, J.-L.; Koschny, D.; Muinonen, M.; Oberst, J.; Marco Polo Scienc

    2008-03-01

    MARCO POLO is a joint European-Japanese sample return mission to a near-Earth object. In late 2007 this mission was selected by ESA, in the framework of COSMIC VISION 2015-2025, for an assessment scheduled to last until mid 2009.

  4. The Mission Accessible Near-Earth Object Survey (MANOS)

    NASA Astrophysics Data System (ADS)

    Moskovitz, N. A.; Burt, B.; Binzel, R. P.; Christensen, E.; DeMeo, F.; Endicott, T.; Hinkle, M.; Mommert, M.; Person, M.; Polishook, D.; Siu, H.; Thirouin, A.; Thomas, C. A.; Trilling, D.; Willman, M.

    2015-01-01

    The Mission Accessible Near-Earth Object Survey (MANOS) is a multi-year physical characterization survey to determine physical properties (astrometry, light curves, spectra) for several hundred NEOs. Early results from MANOS will be presented.

  5. STS-93 Columbia after rollout to Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Space Shuttle Columbia sits on Launch Pad 39B less than two weeks after liftoff of Discovery on mission STS-96. Columbia was rolled out June 7 in preparation for the launch of STS-93 with its payload of the Chandra X-ray Observatory. The Rotating Service Structure will be moved into place around it on Tuesday, June 8. With the world's most powerful X-ray telescope, Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Columbia (OV-102) is the first of NASA's orbiter fleet, delivered to Kennedy Space Center in March 1979. Columbia initiated the Space Shuttle flight program at KSC when it lifted off Launch Pad 39A on April 12, 1981.

  6. STS-93 Columbia after rollout to Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Space Shuttle Columbia sits on Launch Pad 39B less than two weeks after liftoff of Discovery on mission STS-96. Columbia was rolled out June 7 in preparation for the launch of STS-93 with its payload of the Chandra X-ray Observatory. The Rotating Service Structure, at left, will be moved into place on Tuesday, June 8. With the world's most powerful X-ray telescope, Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Columbia (OV-102) is the first of NASA's orbiter fleet, delivered to Kennedy Space Center in March 1979. Columbia initiated the Space Shuttle flight program at KSC when it lifted off Launch Pad 39A on April 12, 1981.

  7. The Cassini-Huygens Mission. Overview, Objectives and Huygens Instrumentarium

    NASA Astrophysics Data System (ADS)

    Russell, C. T.

    2003-06-01

    The joint NASA-ESA Cassini-Huygens mission to Saturn is the most ambitious planetary mission since the VEGA mission to Venus and Halley in 1985/86 and the Viking orbiters and landers to Mars in 1976. Perhaps Cassini is even more ambitious than these earlier missions, or at least more daring, as it is being attempted as a single launch unlike early missions such as VEGA, Viking and Voyager that benefited from the security of a redundant spacecraft. This volume describes the mission, the orbiter spacecraft, the Titan atmospheric probe and the mission design in articles written by its project scientists and engineering team. These are followed by five articles from each of the discipline working groups discussing the existing knowledge of the Saturnian system and their goals for the mission. Finally, each of the Huygens entry probe instrument teams describes their instruments and measurement objectives. These instruments include an atmospheric structure instrument, an aerosol pyrolyser, an imager/radiometer, a gas chromatograph, a surface science package and a radioscience investigation. This book is of interest to all potential users of the Cassini-Huygens data, to those who wish to learn about the planned scientific return from the Cassini-Huygens mission and those curious about the processes occurring on this most fascinating planet. A second volume is in preparation that describes the instrumentarium carried by the orbiter. Link: http://www.wkap.nl/prod/b/1-4020-1098-2

  8. Multi-Objective Hybrid Optimal Control for Interplanetary Mission Planning

    NASA Technical Reports Server (NTRS)

    Englander, Jacob; Vavrina, Matthew; Ghosh, Alexander

    2015-01-01

    Preliminary design of low-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed and in some cases the final destination. In addition, a time-history of control variables must be chosen which defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very diserable. This work presents such as an approach by posing the mission design problem as a multi-objective hybrid optimal control problem. The method is demonstrated on a hypothetical mission to the main asteroid belt.

  9. Balancing Science Objectives and Operational Constraints: A Mission Planner's Challenge

    NASA Technical Reports Server (NTRS)

    Weldy, Michelle

    1996-01-01

    The Air Force minute sensor technology integration (MSTI-3) satellite's primary mission is to characterize Earth's atmospheric background clutter. MSTI-3 will use three cameras for data collection, a mid-wave infrared imager, a short wave infrared imager, and a visible imaging spectrometer. Mission science objectives call for the collection of over 2 million images within the one year mission life. In addition, operational constraints limit camera usage to four operations of twenty minutes per day, with no more than 10,000 data and calibrating images collected per day. To balance the operational constraints and science objectives, the mission planning team has designed a planning process to e event schedules and sensor operation timelines. Each set of constraints, including spacecraft performance capabilities, the camera filters, the geographical regions, and the spacecraft-Sun-Earth geometries of interest, and remote tracking station deconflictions has been accounted for in this methodology. To aid in this process, the mission planning team is building a series of tools from commercial off-the-shelf software. These include the mission manifest which builds a daily schedule of events, and the MSTI Scene Simulator which helps build geometrically correct scans. These tools provide an efficient, responsive, and highly flexible architecture that maximizes data collection while minimizing mission planning time.

  10. Astronaut Jean-Francois Clervoy in white room on launch pad 39B

    NASA Technical Reports Server (NTRS)

    1994-01-01

    In the white room at Launch Pad 39B, STS-66 mission specialist Jean-Francois Clervoy is assisted with his partial pressure launch/entry suit by close-out crew members Travis Thompson and Danny Wyatt (background) before entering the Space Shuttle Atlantis for its November 3 launch.

  11. STS-87 Payload installation in LC 39B PCR

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A payload canister, seen here half-open, containing the primary payloads for the STS-87 mission, is moved into the Payload Changeout Room at Pad 39B at Kennedy Space Center. The STS-87 payload includes the United States Microgravity Payload-4 (USMP- 4), seen here on two Multi-Purpose Experiment Support Structures in the center of the photo, and Spartan-201, wrapped in a protective covering directly above the USMP-4 experiments. Spartan-201 is a small retrievable satellite involved in research to study the interaction between the Sun and its wind of charged particles. USMP-4 is one of a series of missions designed to conduct scientific research aboard the Shuttle in the unique microgravity environment for extended periods of time. In the past, USMP missions have provided invaluable experience in the design of instruments needed for the International Space Station (ISS) and microgravity programs to follow in the 21st century. STS-87 is scheduled for launch Nov. 19.

  12. Space Shuttle Atlantis is on Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Atop the mobile launcher platform, Space Shuttle Atlantis sits on Launch Pad 39B after rollout from the Vehicle Assembly Building. Seen on either side of the orbiters tail are the tail service masts. They support the fluid, gas and electrical requirements of the orbiters liquid oxygen and liquid hydrogen aft umbilicals. To the left of the orbiter is the white environmental chamber (white room) that mates with the orbiter and holds six persons. It provides access to the orbiter crew compartment. In the background is the Atlantic Ocean. The Shuttle is targeted for launch no earlier than July 12 on mission STS-104, the 10th flight to the International Space Station. The payload on the 11-day mission is the Joint Airlock Module, which will allow astronauts and cosmonauts in residence on the Station to perform future spacewalks without the presence of a Space Shuttle. The module, which comprises a crew lock and an equipment lock, will be connected to the starboard (right) side of Node 1 Unity. Atlantis will also carry oxygen and nitrogen storage tanks, vital to operation of the Joint Airlock, on a Spacelab Logistics Double Pallet in the payload bay. The tanks, to be installed on the perimeter of the Joint Module during the missions spacewalks, will support future spacewalk operations and experiments plus augment the resupply system for the Stations Service Module.

  13. Space Shuttle Atlantis is on Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Atop the mobile launcher platform, Space Shuttle Atlantis, with its orange external tank and white solid rocket boosters, sits on Launch Pad 39B after rollout from the Vehicle Assembly Building. Seen on either side of the orbiters tail are the tail service masts. They support the fluid, gas and electrical requirements of the orbiters liquid oxygen and liquid hydrogen aft umbilicals. The Shuttle is targeted for launch no earlier than July 12 on mission STS-104, the 10th flight to the International Space Station. The payload on the 11- day mission is the Joint Airlock Module, which will allow astronauts and cosmonauts in residence on the Station to perform future spacewalks without the presence of a Space Shuttle. The module, which comprises a crew lock and an equipment lock, will be connected to the starboard (right) side of Node 1 Unity. Atlantis will also carry oxygen and nitrogen storage tanks, vital to operation of the Joint Airlock, on a Spacelab Logistics Double Pallet in the payload bay. The tanks, to be installed on the perimeter of the Joint Module during the missions spacewalks, will support future spacewalk operations and experiments plus augment the resupply system for the Stations Service Module.

  14. Space Shuttle Atlantis is on Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Atop the mobile launcher platform, Space Shuttle Atlantis arrives on Launch Pad 39B after rollout from the Vehicle Assembly Building. Seen on either side of the orbiters tail are the tail service masts. They support the fluid, gas and electrical requirements of the orbiters liquid oxygen and liquid hydrogen aft umbilicals. The Shuttle is targeted for launch no earlier than July 12 on mission STS-104, the 10th flight to the International Space Station. The payload on the 11- day mission is the Joint Airlock Module, which will allow astronauts and cosmonauts in residence on the Station to perform future spacewalks without the presence of a Space Shuttle. The module, which comprises a crew lock and an equipment lock, will be connected to the starboard (right) side of Node 1 Unity. Atlantis will also carry oxygen and nitrogen storage tanks, vital to operation of the Joint Airlock, on a Spacelab Logistics Double Pallet in the payload bay. The tanks, to be installed on the perimeter of the Joint Module during the missions spacewalks, will support future spacewalk operations and experiments plus augment the resupply system for the Stations Service Module.

  15. STS-103 crew pose in front of Pad 39B

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During Terminal Countdown Demonstration Test (TDCT) activities at Launch Pad 39B, the STS-103 crew pose in front of the flame trench, which is situated underneath the Mobile Launcher Platform holding Space Shuttle Discovery. Standing left to right are Mission Specialists Claude Nicollier of Switzerland, who is with the European Space Agency (ESA), C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Pilot Scott J. Kelly, Commander Curtis L. Brown Jr., and Mission Specialists Jean-Frangois Clervoy of France, also with ESA, and Steven L. Smith. One of the solid rocket boosters and the external tank that are attached to Discovery can be seen in the photo. The flame trench is made of concrete and refractory brick, and contains an orbiter flame deflector on one side and solid rocket booster flame deflector on the other. The deflectors protect the flame trench floor and pad surface from the intense heat of launch. The TCDT provides the crew with emergency egress training, opportunities to inspect their mission payloads in the orbiter's payload bay, and simulated countdown exercises. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.

  16. STS-106 crew participates in activities at Launch Pad 39-B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At the 217-foot level of the Rotating Service Structure on Launch Pad 39B, the STS-106 crew takes a break during Terminal Countdown Demonstration Activities (TCDT) for a group photo. Pictured from left are Mission Specialists Richard A. Mastracchio, Yuri I. Malenchenko and Daniel C. Burbank; Pilot Scott D. Altman; Commander Terrence W. Wilcutt; and Mission Specialists Boris V. Morukov and Edward T. Lu. The TCDT provides the crew with emergency egress training, opportunities to inspect their mission payload in the orbiter'''s payload bay, and a simulated launch countdown. STS-106 is scheduled to launch Sept. 8, 2000, at 8:31 a.m. EDT from Launch Pad 39B. On the 11-day mission, the seven- member crew will perform support tasks on orbit, transfer supplies and prepare the living quarters in the newly arrived Zvezda Service Module. The first long-duration crew, dubbed '''Expedition One,''' is due to arrive at the Station in late fall.

  17. STS-106 crew participates in activities at Launch Pad 39-B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-106 Mission Specialist Yuri I. Malenchenko makes a speedy exit from the Shuttle Atlantis into the White Room during emergency egress training. Right behind him is Mission Specialist Daniel C. Burbank. The training is part of Terminal Countdown Demonstration Activities (TCDT) the crew is undertaking at Launch Pad 39B. The TCDT also provides the crew with opportunities to inspect their mission payload in the orbiter'''s payload bay, and a simulated launch countdown. STS-106 is scheduled to launch Sept. 8, 2000, at 8:31 a.m. EDT from Launch Pad 39B. On the 11-day mission, the seven-member crew will perform support tasks on orbit, transfer supplies and prepare the living quarters in the newly arrived Zvezda Service Module. The first long-duration crew, dubbed '''Expedition One,''' is due to arrive at the Station in late fall. .

  18. STS-103 payload canister arrives at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At Launch Pad 39B, the payload canister for Space Shuttle Discovery, for mission STS-103, is lifted up the Rotating Service Structure. The umbilicals attached to the canister provide an environmental control system until transfer to the orbiter. Installation of the payload into Discovery is slated for Friday, Nov. 12. The mission is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be replacing a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode.

  19. Mission objectives and comparison of strategies for Mars exploration

    NASA Technical Reports Server (NTRS)

    Duke, Michael B.; Keaton, Paul W.; Weaver, David; Briggs, Geoffrey; Roberts, Barney

    1993-01-01

    Over the past several years, a number of candidate scenarios for the human exploration of Mars have been advanced. These have had a range of mission objectives, scope, scale, complexity and probable cost. The Exploration Programs Office (ExPO) has developed a reference Mars exploration program and a means of comparing it to other proposed Mars programs. The reference program was initiated in a workshop of Mars exploration advocates which defined two objectives of equal importance for early Mars exploration - understanding Mars and understanding the potential of Mars to support humans. These goals were used to define a set of transportation and surface elements that could carry out a robust exploration program. The approach to comparing alternate architectures has three principal parts: (1) Bringing the architectures into rough commonality in terms of surface mission objectives and hardware capabilities; (2) Providing a common level of human support for flights to and from Mars; and (3) Comparing the complexity of the elements needed to carry out the program and using partial redundancy to approximate the same statistical probability of mission success. This top-level approach has been applied to the ExPO reference program, the 'Mars Directs strategy (Zubrin, 1991) and the Stanford International Mars Mission (Lusignan, 1992).

  20. STS-112 crew in front of Launch Pad 39B before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - Members of the STS-112 crew pose in front of Launch Pad 39B during a tour of Kennedy Space Center prior to launch. From left, they are Mission Specialist Sandra H. Magnus, Commander Jeffrey S. Ashby, Pilot Pamela Ann Melroy, a nd Mission Specialists David A. Wolf, Fyodor N. Yurchikhin of the Russian Space Agency, and Piers J. Sellers. The launch of Space Shuttle Atlantis was postponed today to no earlier than Thursday, Oct. 3, while weather forecasters and the mission managemen t team assess the possible effect Hurricane Lili may have on the Mission Control Center located at the Lyndon B. Johnson Space Center in Houston, Texas.

  1. Marco Polo: Near-Earth Object Sample Return Mission

    NASA Astrophysics Data System (ADS)

    Antonieta Barucci, Maria; Yoshikawa, M.; Koschny, D.; Boehnhardt, H.; Brucato, J. R.; Coradini, M.; Dotto, E.; Franchi, I. A.; Green, S. F.; Josset, J. L.; Kawagushi, J.; Michel, P.; Muinonen, K.; Oberst, J.; Yano, H.; Binzel, R. P.; Marco Polo Science Team

    2008-09-01

    MARCO POLO is a joint European-Japanese sample return mission to a Near-Earth Object (NEO), selected by ESA in the framework of COSMIC VISION 2015-2025 for an assessment study scheduled to last until October 2009. This Euro-Asian mission will go to a primitive Near-Earth Object (NEO), such as C or D-type, scientifically characterize it at multiple scales, and bring samples back to Earth for detailed scientific investigation. NEOs are part of the small body population in the Solar System, which are leftover building blocks of the Solar System formation process. They offer important clues to the chemical mixture from which planets formed about 4.6 billion years ago. The scientific objectives of Marco Polo will therefore contribute to a better understanding of the origin and evolution of the Solar System, the Earth, and the potential contribution of primitive material to the formation of Life. Marco Polo is based on a launch with a Soyuz Fregat and consists of a Mother Spacecraft (MSC), possibly carrying a lander. The MSC would approach the target asteroid and spend a few months for global characterization of the target to select a sampling site. Then, the MSC would then descend to retrieve several samples which will be transferred to a Sample Return Capsule (SRC). The MSC would return to Earth and release the SRC into the atmosphere for ground recovery. The sample of the NEO will then be available for detailed investigation in ground-based laboratories. In parallel to JAXA considering how to perform the mission, ESA has performed a Marco Polo study in their Concurrent Design Facility (CDF). Two parallel industrial studies will start in September 2008 to be conducted in Europe for one year. The scientific objectives addressed by the mission and the current status of the mission study (ESA-JAXA) will be presented and discussed.

  2. STS-106 crew participates in activities at Launch Pad 39-B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At the 195-foot level of Launch Pad 39B, STS-106 Mission Specialists (left to right) Richard A. Mastracchio and Edward T. Lu pause for a photo before taking their seats in the slidewire basket, which is part of the emergency egress equipment. They and the rest of the STS-106 crew are taking part in Terminal Countdown Demonstration Activities (TCDT), which includes emergency egress training, along with opportunities to inspect their mission payload in the orbiter'''s payload bay, and a simulated launch countdown. STS-106 is scheduled to launch Sept. 8, 2000, at 8:31 a.m. EDT from Launch Pad 39B. On the 11-day mission, the seven-member crew will perform support tasks on orbit, transfer supplies and prepare the living quarters in the newly arrived Zvezda Service Module. The first long-duration crew, dubbed '''Expedition One,''' is due to arrive at the Station in late fall.

  3. STS-106 crew participates in activities at Launch Pad 39-B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At the 195-foot level of Launch Pad 39B, STS-106 Mission Specialists (left to right) Boris V. Morukov, Daniel C. Burbank and Yuri I. Malenchenko pause for a photo before taking their seats in the slidewire basket, which is part of the emergency egress equipment. They and the rest of the STS-106 crew are taking part in Terminal Countdown Demonstration Activities (TCDT), which includes emergency egress training, along with opportunities to inspect their mission payload in the orbiter'''s payload bay, and a simulated launch countdown. STS-106 is scheduled to launch Sept. 8, 2000, at 8:31 a.m. EDT from Launch Pad 39B. On the 11-day mission, the seven-member crew will perform support tasks on orbit, transfer supplies and prepare the living quarters in the newly arrived Zvezda Service Module. The first long-duration crew, dubbed '''Expedition One,''' is due to arrive at the Station in late fall.

  4. STS-106 crew participates in activities at Launch Pad 39-B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At Launch Pad 39B, STS-106 Mission Specialists Yuri I. Malenchenko, Daniel C. Burbank and Boris V. Morukov speedily head for the slidewire baskets that are used for emergency egress from the orbiter. The three are taking part in Terminal Countdown Demonstration Activities (TCDT), along with the rest of the STS- 106 crew. The TCDT also provides the crew with opportunities to inspect their mission payload in the orbiter'''s payload bay, and a simulated launch countdown. STS-106 is scheduled to launch Sept. 8, 2000, at 8:31 a.m. EDT from Launch Pad 39B. On the 11-day mission, the seven-member crew will perform support tasks on orbit, transfer supplies and prepare the living quarters in the newly arrived Zvezda Service Module. The first long-duration crew, dubbed '''Expedition One,''' is due to arrive at the Station in late fall.

  5. STS-106 crew participates in activities at Launch Pad 39-B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At the 195-foot level of Launch Pad 39B, STS-106 Mission Specialists (left to right) Boris V. Morukov, Daniel C. Burbank and Yuri I. Malenchenko take their seats in the slidewire basket, which is part of the emergency egress equipment. They and the rest of the STS-106 crew are taking part in Terminal Countdown Demonstration Activities (TCDT), which includes emergency egress training, along with opportunities to inspect their mission payload in the orbiter'''s payload bay, and a simulated launch countdown. STS-106 is scheduled to launch Sept. 8, 2000, at 8:31 a.m. EDT from Launch Pad 39B. On the 11-day mission, the seven- member crew will perform support tasks on orbit, transfer supplies and prepare the living quarters in the newly arrived Zvezda Service Module. The first long-duration crew, dubbed '''Expedition One,''' is due to arrive at the Station in late fall.

  6. STS-106 crew participates in activities at Launch Pad 39-B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-106 Mission Specialists stand in a slide wire basket at the foot of Launch Pad 39-B. Pictured from left are Daniel C. Burbank, Boris V. Morukov and Yuri I. Malenchenko. Malenchenko and Morukov are with the Russian Aviation and Space Agency. The flight crew were at Kennedy Space Center to take part in Terminal Countdown Demonstration Test (TCDT) activities. The TCDT provides the crew with emergency egress training and opportunities to inspect their mission payload in the orbiter'''s payload bay. STS- 106 is scheduled to launch Sept. 8, 2000, at 8:31 a.m. EDT from Launch Pad 39B. On the 11-day mission, the seven-member crew will perform support tasks on orbit, transfer supplies and prepare the living quarters in the newly arrived Zvezda Service Module. The first long-duration crew, dubbed '''Expedition One,''' is due to arrive at the Station in late fall.

  7. STS-106 crew participates in activities at Launch Pad 39-B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-106 Mission Commander Terrence W. Wilcutt participates in a question and answer session for the media at the slide wire basket area of Launch Pad 39-B. Wilcott and his crew were at Kennedy Space Center participating in Terminal Countdown Demonstration Test (TCDT) activities. The TCDT provides the crew with emergency egress training and opportunities to inspect their mission payload in the orbiter'''s payload bay. STS-106 is scheduled to launch Sept. 8, 2000, at 8:31 a.m. EDT from Launch Pad 39B. On the 11-day mission, the seven-member crew will perform support tasks on orbit, transfer supplies and prepare the living quarters in the newly arrived Zvezda Service Module. The first long-duration crew, dubbed '''Expedition One,''' is due to arrive at the Station in late fall.

  8. 27 CFR 21.71 - Formula No. 39-B.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Formula No. 39-B. 21.71... and Authorized Uses § 21.71 Formula No. 39-B. (a) Formula. To every 100 gallons of alcohol add: Two..., and body). 114.Deodorants (body). 121.Perfumes and perfume tinctures. 122.Toilet waters and...

  9. 27 CFR 21.71 - Formula No. 39-B.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Formula No. 39-B. 21.71... and Authorized Uses § 21.71 Formula No. 39-B. (a) Formula. To every 100 gallons of alcohol add: Two..., and body). 114.Deodorants (body). 121.Perfumes and perfume tinctures. 122.Toilet waters and...

  10. 27 CFR 21.71 - Formula No. 39-B.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Formula No. 39-B. 21.71... and Authorized Uses § 21.71 Formula No. 39-B. (a) Formula. To every 100 gallons of alcohol add: Two..., and body). 114.Deodorants (body). 121.Perfumes and perfume tinctures. 122.Toilet waters and...

  11. Multi-Objective Hybrid Optimal Control for Interplanetary Mission Planning

    NASA Technical Reports Server (NTRS)

    Englander, Jacob A.

    2014-01-01

    Preliminary design of low-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. Because low-thrust trajectory design is tightly coupled with systems design, power and propulsion characteristics must be chosen as well. In addition, a time-history of control variables must be chosen which defines the trajectory. There are often may thousands, if not millions, of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a multi-objective hybrid optimal control problem. The method is demonstrated on hypothetical mission to the main asteroid belt and to Deimos.

  12. Multi-Objective Hybrid Optimal Control for Interplanetary Mission Planning

    NASA Technical Reports Server (NTRS)

    Englander, Jacob

    2015-01-01

    Preliminary design of low-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. Because low-thrust trajectory design is tightly coupled with systems design, power and propulsion characteristics must be chosen as well. In addition, a time-history of control variables must be chosen which defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a multi-objective hybrid optimal control problem. The methods is demonstrated on hypothetical mission to the main asteroid belt and to Deimos.

  13. Mars Environmental Survey (MESUR): Science objectives and mission description

    NASA Technical Reports Server (NTRS)

    Hubbard, G. Scott; Wercinski, Paul F.; Sarver, George L.; Hanel, Robert P.; Ramos, Ruben

    1992-01-01

    In-situ observations and measurements of Mars are objectives of a feasibility study beginning at the Ames Research Center for a mission called the Mars Environmental SURvey (MESUR). The purpose of the MESUR mission is to emplace a pole-to-pole global distribution of landers on the Martian surface to make both short- and long-term observations of the atmosphere and surface. The basic concept is to deploy probes which would directly enter the Mars atmosphere, provide measurements of the upper atmospheric structure, image the local terrain before landing, and survive landing to perform meteorology, seismology, surface imaging, and soil chemistry measurements. MESUR is intended to be a relatively low-cost mission to advance both Mars science and human presence objectives. Mission philosophy is to: (1) 'grow' a network over a period of years using a series of launch opportunities, thereby minimizing the peak annual costs; (2) develop a level-of-effort which is flexible and responsive to a broad set of objectives; (3) focus on science while providing a solid basis for human exploration; and (4) minimize project cost and complexity wherever possible. In order to meet the diverse scientific objectives, each MESUR lander will carry the following strawman instrument payload consisting of: (1) Atmospheric structure experiment, (2) Descent and surface imagers, (3) Meteorology package, (4) Elemental composition instrument, (5) 3-axis seismometer, and (6) Thermal analyzer/evolved gas analyzer. The feasibility study is primarily to show a practical way to design an early capability for characterizing Mars' surface and atmospheric environment on a global scale. The goals are to answer some of the most urgent questions to advance significantly our scientific knowledge about Mars, and for planning eventual exploration of the planet by robots and humans.

  14. STS-97 Space Shuttle Endeavour on Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Space Shuttle Endeavour waits on Launch Pad 39B for launch on mission STS-97. Behind it are the orange external tank flanked by two solid rocket boosters. On either side of Endeavour'''s tail are the tail service masts, which support the fluid, gas and electrical requirements of the orbiter'''s liquid oxygen and liquid hydrogen aft T-0 umbilicals. The masts also protect the ground half of those umbilicals from the harsh launch environment. At launch, the masts rotate backward, triggering a compressed-gas thruster and causing a protective hood to move into place and completely seal the structure from the main engine exhaust. At the end of the orbiter access arm, near the nose of Endeavour, is the White Room, an environmental chamber that provides both entrance to the orbiter and emergency egress, if needed. The arm remains extended until 7 minutes, 24 seconds before launch. The arm extends from the Fixed Service Structure. In the center of Endeavour are the payload bay doors. Endeavour is scheduled to launch Nov. 30 at 10:06 p.m. EST.

  15. The scientific objectives of the ATLAS-1 shuttle mission

    NASA Astrophysics Data System (ADS)

    Torr, Marsha R.

    1993-03-01

    During the 9-day ATLAS-1 mission (March 24 - April 2, 1992), a significant database was acquired on the temperature, pressure, and composition of the atmospheric regions between approximately 15 km and 300 km, together with measurements of the total solar irradiance and the solar spectral irradiance between 1200 Å and 3.2 μm. Six remote sensing atmospheric instruments covered a scope in altitude and species that has not been addressed before from a single mission. The atmospheric composition dataset should serve as an important reference for the determination of future global change in these regions. Both the solar and atmospheric instruments made observations that were coordinated with those made from other spacecraft, such as the UARS, the NOAA, and the ERB satellites. The objective of these correlative measurements was both to complement the measurements made by the other payloads and also to update the calibration of the instruments on the long-duration orbiting vehicles with recent, highly accurate calibrations. Experiments were conducted in space plasma physics. Most important of these was the generation of artificial auroras by firing a beam of energetic electrons into the atmosphere. The induced auroras were observed with a photometric imaging camera. In addition, measurements were made of the precipitation of energetic neutrals from the ring current. ATLAS-1 also carried an UV instrument to gather wide field observations of astronomical sources. A subset of these instruments is planned to fly once a year for the duration of a solar cycle. Both the ATLAS-1 mission and the ongoing series represent an important element of the Mission to Planet Earth and the Global Change Program. The papers in this special issue give a summary of the results obtained in the first 4 months following the mission.

  16. The scientific objectives of the ATLAS-1 shuttle mission

    SciTech Connect

    Torr, M.R. )

    1993-03-19

    During the 9-day ATLAS-1 mission (March 24-April 2, 1992), a significant database was acquired on the temperature, pressure, and composition of the atmosphere regions between approximately 15 km and 300 km, together with measurements of the total solar irradiance and the solar spectral irradiance between 1,200 [Angstrom] and 3.2 [mu]m. Six remote sensing atmospheric instruments covered a scope in altitude and species that has not been addressed before from a single mission. The atmospheric composition dataset should serve as an important reference for the determination of future global change in these regions. Both the solar and atmospheric instruments made observations that were coordinated with those made from other spacecraft, such as the UARS, the NOAA, and the ERB satellites. The objective of these correlative measurements was both to complement the measurements made by the other payloads and also to update the calibration of the instruments on the long-duration orbiting vehicles with recent, highly accurate calibrations. Experiments were conducted in space plasma physics. Most important of these was the generation of artificial auroras by firing a beam of energetic electrons into the atmosphere. The induced auroras were observed with a photometric imaging camera. In addition, measurements were made of the precipitation of energetic neutrals from the ring current. ATLAS-1 also carried an UV instrument to gather wide field observations of astronomical sources. A subset of these instruments is planned to fly once a year for the duration of a solar cycle. Both the ATLAS-1 mission and the ongoing series represent an important element of the Mission to Planet Earth and the Global Change Program. The papers in this special issue give a summary of the results obtained in the first 4 months following the mission. 1 refs., 2 figs., 1 tab.

  17. Scientific objectives for a 1996 Mars Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Blanchard, D. P.; Gooding, J. L.; Clanton, U. S.

    1985-01-01

    The Mars Sample Return Mission, designed to return a variety of surface and subsurface samples as well as atmospheric samples, is described. Primary information about the planet is essential to understanding its place in the evolution of the solar system. The most accurate landing techniques will be used to place the lander near geologically interesting features. A capable rover will be an essential element of the sample collection strategy to maximize the diversity of the samples. The sample collection and return systems will keep the samples at Mars ambient conditions or colder to preserve the abundances and distribution of volatile components. Planetary quarantine is an important consideration for both the Mars lander and the earth return vehicle. Quarantine procedures must be consistent with the primary objectives of the mission and must not compromise the investigations of the returned samples.

  18. STS-106 crew participates in activities at Launch Pad 39-B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At the 195-foot level of Launch Pad 39B, STS-106 Pilot Scott D. Altman (left) gets into position in the slidewire basket while Commander Terrence W. Wilcutt reaches for the lever to release it. The basket is part of the emergency egress equipment from the orbiter. They and the rest of the STS-106 crew are taking part in Terminal Countdown Demonstration Activities (TCDT), which includes emergency egress training, along with opportunities to inspect their mission payload in the orbiter'''s payload bay, and a simulated launch countdown. STS-106 is scheduled to launch Sept. 8, 2000, at 8:31 a.m. EDT from Launch Pad 39B. On the 11-day mission, the seven-member crew will perform support tasks on orbit, transfer supplies and prepare the living quarters in the newly arrived Zvezda Service Module. The first long-duration crew, dubbed '''Expedition One,''' is due to arrive at the Station in late fall.

  19. STS-52 Columbia, OV-102, rises above KSC LC Pad 39B after liftoff

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-52 Columbia, Orbiter Vehicle (OV) 102, leaves Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B on its way toward a ten-day Earth-orbital mission. OV-102 is barely visible at the top of the exhaust cloud which covers the launch pad. The Atlantic Ocean creates the background. The photograph was taken from the Shuttle Training Aircraft (STA) piloted by astronaut Steven R. Nagel. Liftoff occurred at 1:09:39 pm (Eastern Daylight Time (EDT)).

  20. STS-81 Crew in front of LC39-B for TCDT

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The STS-81 flight crew addresses the news media during a break in Terminal Countdown Demonstration Test (TCDT) exercises for that mission at Launch Pad 39B. They are (from left): Mission Specialist John M. Grunsfeld; Mission Commander Michael A. Baker; Pilot Brent W. Jett, Jr. ; and Missions Specialists J.M. 'Jerry' Linenger, Peter J. K. 'Jeff' Wisoff; and Marsha S. Ivins. STS-81 is the fifth Shuttle-Mir docking mission and will feature the transfer of Linenger to Mir to replace astronaut John Blaha, who has been on the orbital laboratory since Sept. 19 after arrival there during the STS-79 mission. During STS-81, Shuttle and Mir crews will conduct risk mitigation, human life science, microgravity and materials processing experiments that will provide data for the design, development and operation of the International Space Station.

  1. Design of Spacecraft Missions to Remove Multiple Orbital Debris Objects

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.; Alfano, Salvatore; Pinon, Elfego; Gold, Kenn; Gaylor, David

    2012-01-01

    The amount of hazardous debris in Earth orbit has been increasing, posing an evergreater danger to space assets and human missions. In January of 2007, a Chinese ASAT test produced approximately 2600 pieces of orbital debris. In February of 2009, Iridium 33 collided with an inactive Russian satellite, yielding approximately 1300 pieces of debris. These recent disastrous events and the sheer size of the Earth orbiting population make clear the necessity of removing orbital debris. In fact, experts from both NASA and ESA have stated that 10 to 20 pieces of orbital debris need to be removed per year to stabilize the orbital debris environment. However, no spacecraft trajectories have yet been designed for removing multiple debris objects and the size of the debris population makes the design of such trajectories a daunting task. Designing an efficient spacecraft trajectory to rendezvous with each of a large number of orbital debris pieces is akin to the famous Traveling Salesman problem, an NP-complete combinatorial optimization problem in which a number of cities are to be visited in turn. The goal is to choose the order in which the cities are visited so as to minimize the total path distance traveled. In the case of orbital debris, the pieces of debris to be visited must be selected and ordered such that spacecraft propellant consumption is minimized or at least kept low enough to be feasible. Emergent Space Technologies, Inc. has developed specialized algorithms for designing efficient tour missions for near-Earth asteroids that may be applied to the design of efficient spacecraft missions capable of visiting large numbers of orbital debris pieces. The first step is to identify a list of high priority debris targets using the Analytical Graphics, Inc. SOCRATES website and then obtain their state information from Celestrak. The tour trajectory design algorithms will then be used to determine the itinerary of objects and v requirements. These results will shed light

  2. The Mission Accessible Near-Earth Objects Survey (MANOS)

    NASA Technical Reports Server (NTRS)

    Abell, Paul; Moskovitz, Nicholas; DeMeo, Francesca; Endicott, Thomas; Busch, Michael; Roe, Henry; Trilling, David; Thomas, Cristina; Willman, Mark; Grundy, Will; Christensen, Eric; Person, Michael; Binzel, Richard; Polishook, David

    2013-01-01

    Near-Earth objects (NEOs) are essential to understanding the origin of the Solar System. Their relatively small sizes and complex dynamical histories make them excellent laboratories for studying ongoing Solar System processes. The proximity of NEOs to Earth makes them favorable targets for space missions. In addition, knowledge of their physical properties is crucial for impact hazard assessment. However, in spite of their importance to science, exploration, and planetary defense, a representative sample of physical characteristics for sub-km NEOs does not exist. Here we present the Mission Accessible Near-Earth Objects Survey (MANOS), a multi-year survey of subkm NEOs that will provide a large, uniform catalog of physical properties (light curves + colors + spectra + astrometry), representing a 100-fold increase over the current level of NEO knowledge within this size range. This survey will ultimately characterize more than 300 mission-accessible NEOs across the visible and near-infrared ranges using telescopes in both the northern and southern hemispheres. MANOS has been awarded 24 nights per semester for the next three years on NOAO facilities including Gemini North and South, the Kitt Peak Mayall 4m, and the SOAR 4m. Additional telescopic assets available to our team include facilities at Lowell Observatory, the University of Hawaii 2.2m, NASA's IRTF, and the Magellan 6.5m telescopes. Our focus on sub-km sizes and mission accessibility (dv < 7 km/s) is a novel approach to physical characterization studies and is possible through a regular cadence of observations designed to access newly discovered NEOs within days or weeks of first detection before they fade beyond observational limits. The resulting comprehensive catalog will inform global properties of the NEO population, advance scientific understanding of NEOs, produce essential data for robotic and spacecraft exploration, and develop a critical knowledge base to address the risk of NEO impacts. We intend

  3. STS-102 crew gets emergency exit training at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- During emergency exit training on the Fixed Service Structure of Launch Pad 39B, STS-102 Mission Specialist Paul Richards takes a closer look at the lever that releases a slidewire basket, used for emergency exits from the launch pad, to the landing below. He and the rest of the crew are taking part in Terminal Countdown Demonstration Test activities, which include a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Launch on mission STS-102 is scheduled for March 8.

  4. STS-87 Columbia rolls out to LC 39B in preparation for launch

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The orbiter Columbia, mated to its external tank and two solid rocket boosters, is prepared to roll out of Kennedy Space Centers (KSCs) Vehicle Assembly Building (VAB) to Pad 39-B. Columbia is scheduled to launch on Nov. 19 for STS-87 on a 16-day flight of the United States Microgravity Payload (USMP)-4 mission. This mission also features the deployment and retrieval of the Spartan-201 satellite and a spacewalk to demonstrate assembly and maintenance operations for future use on the International Space Station.

  5. STS-102 MS Richards talks to media at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-102 Mission Specialist Paul Richards answers a question from the media during an interview session at the slidewire basket landing near Launch Pad 39B. He and other crew members are at KSC for Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Discovery will also be transporting the Expedition Two crew to the Space Station, to replace Expedition One, who will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  6. STS-102 crew meets with media at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-102 Commander James Wetherbee talks about the mission during a media event at the slidewire basket landing near Launch Pad 39B. He and other crew members are at KSC for Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Discovery will also be transporting the Expedition Two crew to the Space Station, to replace Expedition One, who will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  7. The Mission Accessible Near-Earth Object Survey (MANOS)

    NASA Astrophysics Data System (ADS)

    Moskovitz, N.; Manos Team

    2014-07-01

    Near-Earth objects (NEOs) are essential to understanding the origin of the Solar System through their compositional links to meteorites. As tracers of various regions within the Solar System they can provide insight to more distant, less accessible populations. Their relatively small sizes and complex dynamical histories make them excellent laboratories for studying ongoing Solar System processes such as space weathering, planetary encounters, and non-gravitational dynamics. Knowledge of their physical properties is essential to impact hazard assessment. Finally, the proximity of NEOs to Earth make them favorable targets for robotic and human exploration. However, in spite of their scientific importance, only the largest (km-scale) NEOs have been well studied and a representative sample of physical characteristics for sub-km NEOs does not exist. To address these issues we are conducting the Mission Accessible Near-Earth Object Survey (MANOS), a fully allocated multi-year survey of sub-km NEOs that will provide a large, uniform catalog of physical properties including light curves, spectra, and astrometry. From this comprehensive catalog, we will derive global properties of the NEO population, as well as identify individual targets that are of potential interest for exploration. We will accomplish these goals for approximately 500 mission-accessible NEOs across the visible and near-infrared ranges using telescope assets in both the northern and southern hemispheres. MANOS has been awarded large survey status by NOAO to employ Gemini-N, Gemini-S, SOAR, the Kitt Peak 4 m, and the CTIO 1.3 m. Access to additional facilities at Lowell Observatory (DCT 4.3 m, Perkins 72'', Hall 42'', LONEOS), the University of Hawaii, and the Catalina Sky Survey provide essential complements to this suite of telescopes. Targets for MANOS are selected based on three primary criteria: mission accessibility (i.e. Δ v < 7 km/s), size (H > 20), and observability. Our telescope assets allow

  8. STS-95 crew members greet families at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-95 crew members greet their families from Launch Pad 39B. From left, they are Mission Specialist Scott E. Parazynski, Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA), Payload Specialist John H. Glenn Jr., senator from Ohio, Mission Specialist Stephen K. Robinson, Pilot Steven W. Lindsey, Mission Commander Curtis L. Brown Jr., and Mission Specialist Pedro Duque of Spain, with the European Space Agency (ESA). The crew were making final preparations for launch, targeted for liftoff at 2 p.m. on Oct. 29. The mission is expected to last 8 days, 21 hours and 49 minutes, returning to KSC at 11:49 a.m. EST on Nov. 7.

  9. STS-97 crew practices emergency egress from Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    On the 195-foot level at Launch Pad 39B, STS-97 Mission Specialist Joe Tanner reaches for the lever to release the slidewire basket that also holds Mission Specialists Marc Garneau (middle) and Carlos Noriega (right). They are practicing their emergency egress training from Endeavour as part of Terminal Countdown Demonstration Test (TCDT) activities. The TCDT also includes a simulated launch countdown and opportunities to inspect the mission payloads in the orbiter'''s payload bay. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST.

  10. STS-114: Discovery TCDT Flight Crew Test Media Event at Pad 39-B

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The STS-114 Space Shuttle Discovery Terminal Countdown Demonstration Test (TCDT) flight crew is shown at Pad 39-B. Eileen Collins, Commander introduces the astronauts. Andrew Thomas, mission specialist talks about his primary responsibility of performing boom inspections, Wendy Lawrence, Mission Specialist 4 (MS4) describes her role as the robotic arm operator supporting Extravehicular Activities (EVA), Stephen Robinson, Mission Specialist 3 (MS3) talks about his role as flight engineer, Charlie Camarda, Mission Specialist 5 (MS5) says that his duties are to perform boom operations, transfer operations from the space shuttle to the International Space Station and spacecraft rendezvous. Soichi Noguchi, Mission Specialist 1 (MS1) from JAXA, introduces himself as Extravehicular Activity 1 (EVA1), and Jim Kelley, Pilot will operate the robotic arm and perform pilot duties. Questions from the news media about the safety of the external tank, going to the International Space Station and returning, EVA training, and thoughts about the Space Shuttle Columbia crew are answered.

  11. STS-97 crew meets with the media at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    From the slidewire landing zone at Launch Pad 39B, STS-97 Mission Specialist Carlos Noriega (at right, with microphone) describes the mission for the media. Next to him are Mission Specialists Joe Tanner (left) and Marc Garneau (center). The crew is at KSC to take part in Terminal Countdown Demonstration Test activities that include emergency egress training, familiarization with the payload, and a simulated launch countdown. The other crew members are Commander Brent Jett and Pilot Mike Bloomfield. Mission STS- 97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:05 p.m. EST.

  12. STS-106 crew participates in activities at Launch Pad 39-B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-106 Commander Terrence W. Wilcutt bends to place the STS-106 mission patch at the entrance of Atlantis in the white room of Launch Pad 39-B. Other STS-106 crew members pictured are, from left, Mission Specialists Boris V. Morukov, Yuri I. Malenchenko, Daniel C. Burbank, Pilot Scott D. Altman, Mission Specialists Richard A. Mastracchio and Edward T. Lu. Malenchenko and Morukov are with the Russian Aviation and Space Agency. The flight crew were at Kennedy Space Center to take part in Terminal Countdown Demonstration Test (TCDT) activities. The TCDT provides the crew with emergency egress training and opportunities to inspect their mission payload in the orbiter'''s payload bay. STS-106 is scheduled to launch Sept. 8, 2000, at 8:31 a.m. EDT from Launch Pad 39B. On the 11-day mission, the seven-member crew will perform support tasks on orbit, transfer supplies and prepare the living quarters in the newly arrived Zvezda Service Module. The first long-duration crew, dubbed '''Expedition One,''' is due to arrive at the Station in late fall.

  13. STS-33 MS Carter on KSC LC Pad 39B 195 ft level with OV-103 in background

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-33 Mission Specialist (MS) Manley L. Carter, Jr, wearing launch and entry suit (LES), poses in front of Discovery, Orbiter Vehicle (OV) 103, at the 195 ft level elevator entrance at Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B. Visible in the background is the catwalk to OV-103's side hatch and the Atlantic Ocean.

  14. NEOCAM: The Near Earth Object Chemical Analysis Mission

    NASA Astrophysics Data System (ADS)

    Nuth, Joseph A.; Lowrance, John L.; Carruthers, George R.

    2008-06-01

    The prime measurement objective of the Near Earth Object Chemical Analysis Mission (NEOCAM) is to obtain the ultraviolet spectra of meteors entering the terrestrial atmosphere from ˜125 to 300 nm in meteor showers. All of the spectra will be collected using a slitless ultraviolet spectrometer in Earth orbit. Analysis of these spectra will reveal the degree of chemical diversity in the meteors, as observed in a single meteor shower. Such meteors are traceable to a specific parent body and we know exactly when the meteoroids in a particular shower were released from that parent body (Asher, in: Arlt (ed.) Proc. International Meteor Conference, 2000; Lyytinen and van Flandern, Earth Moon Planets 82-83:149-166, 2000). By observing multiple apparitions of meteor showers we can therefore obtain quasi-stratigraphic information on an individual comet or asteroid. We might also be able to measure systematic effects of chemical weathering in meteoroids from specific parent bodies by looking for correlations in the depletions of the more volatile elements as a function of space exposure (Borovička et al., Icarus 174:15-30, 2005). By observing the relation between meteor entry characteristics (such as the rate of deceleration or breakup) and chemistry we can determine if our meteorite collection is deficient in the most volatile-rich samples. Finally, we can obtain a direct measurement of metal deposition into the terrestrial stratosphere that may act to catalyze atmospheric chemical reactions.

  15. The TerraSAR-L Interferometric Mission Objectives

    NASA Astrophysics Data System (ADS)

    Zink, M.

    2004-06-01

    TerraSAR-L is the new imaging radar mission of the European Space Agency. The platform, based on the novel Snapdragon concept, is built around the active phase array antenna of the L-band Synthetic Aperture Radar (SAR). Specification of the L-SAR has been guided by careful analysis of the product requirements resulting in a robust baseline design with considerable margins. Besides having a commercial role for the provision of geo-information products, TerraSAR-L will contribute to the Global Monitoring for Environment and Security (GMES) initiative and serve the scientific user community. Interferometry (INSAR) is a key element behind a number of mission objectives. A L-band SAR in a 14-day repeat orbit is an ideal sensor for solid earth applications (earth quake and volcano monitoring, landslides and subsidence) relying on differential interferometry. L-band penetration of vegetation cover facilitates these applications also over vegetated surfaces. Because of the high coherence, L-band is also the preferred frequency for monitoring ice sheet and glacier dynamics. Highly accurate orbit control (orbital tube <100m) and special wideband INSAR modes are required to support these applications globally and systematically. Precise burst synchronisation enables repeat-pass ScanSAR interferometry and global coverage within the short repeat cycle. A feasibility study into cartwheel constellations flying in close formation with TerraSAR-L revealed the potential for generating Digital Elevation Models (DEMs) of unprecedented quality (2m relative height accuracy @ 12m posting). The TerraSAR-L operations strategy is based on a long-term systematic and repetitive acquisition scenario to ensure consistent data archives and to maximise the exploitation of this very powerful SAR system.

  16. STS-102 crew gets emergency exit training at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- On the Fixed Service Structure on Launch Pad 39B, the STS-102 crew are instructed on the use of slidewire baskets for emergency exits from the launch pad. Listening to the instructor are (on the left side, left to right) Mission Specialist James Voss, Pilot James Kelly, Mission Specialists Yury Usachev and Susan Helms, Commander James Wetherbee; on the right side are Mission Specialists Paul Richards and Andrew Thomas. The crew is taking part in Terminal Countdown Demonstration Test activities, which include a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Voss, Helms and Usachev are the Expedition Two crew who will be the second resident crew on the International Space Station. They will replace Expedition One, who will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  17. STS-97 crew gets emergency egress training at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Inside the bunker at Launch Pad 39B, a trainer explains the use of an air pack to some of the STS-97 crew. At left is Commander Brent Jett; then Pilot Mike Bloomfield and Mission Specialists Carlos Noriega and Marc Garneau (far right). The training is part of Terminal Countdown Demonstration Test (TCDT) activities, which also include a simulated launch countdown and opportunities for the crew to inspect the mission payloads in the orbiter'''s payload bay. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST.

  18. STS-97 crew meets with the media at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-97 Mission Specialist Marc Garneau (right) answers a question from the media. At left is Mission Specialist Joe Tanner. They and the other crew members are meeting with the media before beginning emergency egress training at Launch Pad 39B. The training is part of Terminal Countdown Demonstration Test activities that include a simulated launch countdown. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST.

  19. STS-106 crew participates in activities at Launch Pad 39-B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At the 195-foot level of Launch Pad 39B, STS-106 Mission Specialists Edward T. Lu (left) reaches for a lever to release the slidewire basket . At right is Richard A. Mastracchio (right) already seated. The basket is part of the emergency egress equipment from the orbiter. In the background can be seen Mission Specialist Boris V. Morukov in another slidewire basket. They and the rest of the STS-106 crew are taking part in Terminal Countdown Demonstration Activities (TCDT), which includes emergency egress training, along with opportunities to inspect their mission payload in the orbiter'''s payload bay, and a simulated launch countdown. STS-106 is scheduled to launch Sept. 8, 2000, at 8:31 a.m. EDT from Launch Pad 39B. On the 11-day mission, the seven-member crew will perform support tasks on orbit, transfer supplies and prepare the living quarters in the newly arrived Zvezda Service Module. The first long-duration crew, dubbed '''Expedition One,''' is due to arrive at the Station in late fall.

  20. STS-106 crew participates in activities at Launch Pad 39-B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The STS-106 flight crew gather in the white room of Launch Pad 39-B. Crew members pictured are, from left, Mission Specialists Boris V. Morukov, Yuri I. Malenchenko, Daniel C. Burbank, Commander Terrence W. Wilcutt, Pilot Scott D. Altman, Mission Specialists Richard A. Mastracchio and Edward T. Lu. Malenchenko and Morukov are with the Russian Aviation and Space Agency. The flight crew were at Kennedy Space Center to take part in Terminal Countdown Demonstration Test (TCDT) activities. The TCDT provides the crew with emergency egress training and opportunities to inspect their mission payload in the orbiter'''s payload bay. STS- 106 is scheduled to launch Sept. 8, 2000, at 8:31 a.m. EDT from Launch Pad 39B. On the 11-day mission, the seven-member crew will perform support tasks on orbit, transfer supplies and prepare the living quarters in the newly arrived Zvezda Service Module. The first long-duration crew, dubbed '''Expedition One,''' is due to arrive at the Station in late fall.

  1. 28 CFR 0.39b - Confidentiality of information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-Office of Professional Responsibility § 0.39b Confidentiality of information. The Counsel shall not disclose the identity of any person submitting an allegation of misconduct or reprisal pursuant to 28 CFR 0.39a(a)(1) or (2) unless the person consents to the disclosure of his identity or the disclosure...

  2. 28 CFR 0.39b - Confidentiality of information.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-Office of Professional Responsibility § 0.39b Confidentiality of information. The Counsel shall not disclose the identity of any person submitting an allegation of misconduct or reprisal pursuant to 28 CFR 0.39a(a)(1) or (2) unless the person consents to the disclosure of his identity or the disclosure...

  3. 28 CFR 0.39b - Confidentiality of information.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-Office of Professional Responsibility § 0.39b Confidentiality of information. The Counsel shall not disclose the identity of any person submitting an allegation of misconduct or reprisal pursuant to 28 CFR 0.39a(a)(1) or (2) unless the person consents to the disclosure of his identity or the disclosure...

  4. 28 CFR 0.39b - Confidentiality of information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-Office of Professional Responsibility § 0.39b Confidentiality of information. The Counsel shall not disclose the identity of any person submitting an allegation of misconduct or reprisal pursuant to 28 CFR 0.39a(a)(1) or (2) unless the person consents to the disclosure of his identity or the disclosure...

  5. 28 CFR 0.39b - Confidentiality of information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-Office of Professional Responsibility § 0.39b Confidentiality of information. The Counsel shall not disclose the identity of any person submitting an allegation of misconduct or reprisal pursuant to 28 CFR 0.39a(a)(1) or (2) unless the person consents to the disclosure of his identity or the disclosure...

  6. 27 CFR 21.71 - Formula No. 39-B.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Formula No. 39-B. 21.71 Section 21.71 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specially Denatured Spirits Formulas and Authorized Uses § 21.71 Formula No....

  7. Science Objectives of the FOXSI Small Explorer Mission Concept

    NASA Astrophysics Data System (ADS)

    Shih, Albert Y.; Christe, Steven; Alaoui, Meriem; Allred, Joel C.; Antiochos, Spiro K.; Battaglia, Marina; Camilo Buitrago-Casas, Juan; Caspi, Amir; Dennis, Brian R.; Drake, James; Fleishman, Gregory D.; Gary, Dale E.; Glesener, Lindsay; Grefenstette, Brian; Hannah, Iain; Holman, Gordon D.; Hudson, Hugh S.; Inglis, Andrew R.; Ireland, Jack; Ishikawa, Shin-Nosuke; Jeffrey, Natasha; Klimchuk, James A.; Kontar, Eduard; Krucker, Sam; Longcope, Dana; Musset, Sophie; Nita, Gelu M.; Ramsey, Brian; Ryan, Daniel; Saint-Hilaire, Pascal; Schwartz, Richard A.; Vilmer, Nicole; White, Stephen M.; Wilson-Hodge, Colleen

    2016-05-01

    Impulsive particle acceleration and plasma heating at the Sun, from the largest solar eruptive events to the smallest flares, are related to fundamental processes throughout the Universe. While there have been significant advances in our understanding of impulsive energy release since the advent of RHESSI observations, there is a clear need for new X-ray observations that can capture the full range of emission in flares (e.g., faint coronal sources near bright chromospheric sources), follow the intricate evolution of energy release and changes in morphology, and search for the signatures of impulsive energy release in even the quiescent Sun. The FOXSI Small Explorer (SMEX) mission concept combines state-of-the-art grazing-incidence focusing optics with pixelated solid-state detectors to provide direct imaging of hard X-rays for the first time on a solar observatory. We present the science objectives of FOXSI and how its capabilities will address and resolve open questions regarding impulsive energy release at the Sun. These questions include: What are the time scales of the processes that accelerate electrons? How do flare-accelerated electrons escape into the heliosphere? What is the energy input of accelerated electrons into the chromosphere, and how is super-heated coronal plasma produced?

  8. NEP for a Kuiper Belt Object Rendezvous Mission

    SciTech Connect

    HOUTS,MICHAEL G.; LENARD,ROGER X.; LIPINSKI,RONALD J.; PATTON,BRUCE; POSTON,DAVID I.; WRIGHT,STEVEN A.

    1999-11-03

    Kuiper Belt Objects (KBOs) are a recently-discovered set of solar system bodies which lie at about the orbit of Pluto (40 AU) out to about 100 astronomical units (AU). There are estimated to be about 100,000 KBOS with a diameter greater than 100 km. KBOS are postulated to be composed of the pristine material which formed our solar system and may even have organic materials in them. A detailed study of KBO size, orbit distribution, structure, and surface composition could shed light on the origins of the solar system and perhaps even on the origin of life in our solar system. A rendezvous mission including a lander would be needed to perform chemical analysis of the surface and sub-surface composition of KBOS. These requirements set the size of the science probe at around a ton. Mission analyses show that a fission-powered system with an electric thruster could rendezvous at 40 AU in about 13.0 years with a total {Delta}V of 46 krnk. It would deliver a 1000-kg science payload while providing ample onboard power for relaying data back to earth. The launch mass of the entire system (power, thrusters, propellant, navigation, communication, structure, science payload, etc.) would be 7984 kg if it were placed into an earth-escape trajectory (C=O). Alternatively, the system could be placed into a 700-km earth orbit with more propellant,yielding a total mass in LEO of 8618 kg, and then spiral out of earth orbit to arrive at the KBO in 14.3 years. To achieve this performance, a fission power system with 100 kW of electrical power and a total mass (reactor, shield, conversion, and radiator) of about 2350 kg. Three possible configurations are proposed: (1) a UZrH-fueled, NaK-cooled reactor with a steam Rankine conversion system, (2) a UN-fueled gas-cooled reactor with a recuperated Brayton conversion system, and (3) a UN-fueled heatpipe-cooled reactor with a recuperated Brayton conversion system. (Boiling and condensation in the Rankine system is a technical risk at present

  9. Plans and objectives of the remaining Apollo missions.

    NASA Technical Reports Server (NTRS)

    Scherer, L. R.

    1972-01-01

    The three remaining Apollo missions will have significantly increased scientific capabilities. These result from increased payload, more time on the surface, improved range, and more sophisticated experiments on the surface and in orbit. Landing sites for the last three missions will be carefully selected to maximize the total scientific return.

  10. Low cost missions to explore the diversity of near Earth objects

    NASA Technical Reports Server (NTRS)

    Belton, Michael J. S.; Delamere, Alan

    1992-01-01

    We propose a series of low-cost flyby missions to perform a reconnaissance of near-Earth cometary nuclei and asteroids. The primary scientific goal is to study the physical and chemical diversity in these objects. The mission concept is based on the Pegasus launch vehicle. Mission costs, inclusive of launch, development, mission operations, and analysis are expected to be near $50 M per mission. Launch opportunities occur in all years. The benefits of this reconnaissance to society are stressed.

  11. STS-80 PILOT ROMINGER AT PAD 39B DURING TERMINAL COUNTDOWN DEMONSTRATION TEST

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Fully covered by his orange launch and entry spacesuit, STS-80 Pilot Kent V. Rominger participates in the Terminal Countdown Demonstration Test (TCDT) at Launch Pad 39B. He and the other four crew members are targeted for a Nov. 8 liftoff on the Space Shuttle Columbia. The STS-80 mission, the seventh and final Shuttle flight of 1996, will feature two spacewalks and the deployment, operation and retrieval of two scientific satellites, the Orbiting Retrievable Far and Extreme Ultraviolet Spectrometer-Shuttle Pallet Satellite-2 (ORFEUS-SPAS-2) and the Wake Shield Facility-3 (WSF-3).

  12. STS-87 Commander Kregel and his wife pose at LC 39B

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Commander Kevin Kregel poses with his wife, Jeannie Kregel, in front of Kennedy Space Center's Launch Pad 39B during final prelaunch activities leading up to the scheduled Nov. 19 liftoff. The other STS-87 crew members are Pilot Steven Lindsey; Mission Specialists Kalpana Chawla, Ph.D., Winston Scott, and Takao Doi, Ph.D., of the National Space Development Agency of Japan; and Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. STS-87 will be the fourth flight of the United States Microgravity Payload and the Spartan-201 deployable satellite.

  13. STS-87 Payload Specialist Kadenyuk and his wife pose at LC 39B

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine poses with his wife, Vera Kadenyuk, in front of Kennedy Space Center's Launch Pad 39B during final prelaunch activities leading up to the scheduled Nov. 19 liftoff. The other STS-87 crew members are Commander Kevin Kregel; Pilot Steven Lindsey; and Mission Specialists Kalpana Chawla, Ph.D.; Winston Scott; and Takao Doi, Ph.D., National Space Development Agency of Japan. STS-87 will be the fourth flight of the United States Microgravity Payload and the Spartan-201 deployable satellite.

  14. NASA's Earth Science Enterprise: Future Science Missions, Objectives and Challenges

    NASA Technical Reports Server (NTRS)

    Habib, Shahid

    1998-01-01

    NASA has been actively involved in studying the planet Earth and its changing environment for well over thirty years. Within the last decade, NASA's Earth Science Enterprise has become a major observational and scientific element of the U.S. Global Change Research Program. NASA's Earth Science Enterprise management has developed a comprehensive observation-based research program addressing all the critical science questions that will take us into the next century. Furthermore, the entire program is being mapped to answer five Science Themes (1) land-cover and land-use change research (2) seasonal-to-interannual climate variability and prediction (3) natural hazards research and applications (4) long-term climate-natural variability and change research and (5) atmospheric ozone research. Now the emergence of newer technologies on the horizon and at the same time continuously declining budget environment has lead to an effort to refocus the Earth Science Enterprise activities. The intent is not to compromise the overall scientific goals, but rather strengthen them by enabling challenging detection, computational and space flight technologies those have not been practically feasible to date. NASA is planning faster, cost effective and relatively smaller missions to continue the science observations from space for the next decade. At the same time, there is a growing interest in the world in the remote sensing area which will allow NASA to take advantage of this by building strong coalitions with a number of international partners. The focus of this presentation is to provide a comprehensive look at the NASA's Earth Science Enterprise in terms of its brief history, scientific objectives, organization, activities and future direction.

  15. STS-106 crew participates in activities at Launch Pad 39-B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-106 Pilot Scott D. Altman, left of STS-106 Commander Terrence W. Wilcutt, answers a question during a press conference at the slide wire basket area of Launch Pad 39-B. Other crew members pictured are, from left, Mission Specialists Boris V. Morukov, Edward T. Lu, Yuri I. Malenchenko, Daniel C. Burbank and Richard A. Mastracchio. Malenchenko and Morukov are with the Russian Aviation and Space Agency. The flight crew were at Kennedy Space Center to take part in Terminal Countdown Demonstration Test (TCDT) activities. The TCDT provides the crew with emergency egress training and opportunities to inspect their mission payload in the orbiter'''s payload bay. STS-106 is scheduled to launch Sept. 8, 2000, at 8:31 a.m. EDT from Launch Pad 39B. On the 11-day mission, the seven-member crew will perform support tasks on orbit, transfer supplies and prepare the living quarters in the newly arrived Zvezda Service Module. The first long- duration crew, dubbed '''Expedition One,''' is due to arrive at the Station in late fall.

  16. STS-106 crew participates in activities at Launch Pad 39-B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The STS-106 flight crew participate in a question and answer session for the media at the slide wire basket area of Launch Pad 39-B. Crew members pictured are, from left, Commander Terrence W. Wilcutt, Pilot Scott D. Altman, Mission Specialists Boris V. Morukov, Edward T. Lu, Yuri I. Malenchenko, Daniel C. Burbank and Richard A. Mastracchio. Malenchenko and Morukov are with the Russian Aviation and Space Agency. The flight crew were at Kennedy Space Center to take part in Terminal Countdown Demonstration Test (TCDT) activities. The TCDT provides the crew with emergency egress training and opportunities to inspect their mission payload in the orbiter'''s payload bay. STS-106 is scheduled to launch Sept. 8, 2000, at 8:31 a.m. EDT from Launch Pad 39B. On the 11-day mission, the seven-member crew will perform support tasks on orbit, transfer supplies and prepare the living quarters in the newly arrived Zvezda Service Module. The first long-duration crew, dubbed '''Expedition One,''' is due to arrive at the Station in late fall.

  17. STS-106 crew participates in activities at Launch Pad 39-B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The STS-106 flight crew review the slide wire basket egress system at Launch Pad 39-B. Pictured from left are Commander Terrence W. Wilcutt, Mission Specialists Boris V. Morukov, Richard A. Mastracchio, Daniel C. Burbank, Edward T. Lu, Yuri I. Malenchenko and Pilot Scott D. Altman. Malenchenko and Morukov are with the Russian Aviation and Space Agency. The flight crew were at Kennedy Space Center to take part in Terminal Countdown Demonstration Test (TCDT) activities. The TCDT provides the crew with emergency egress training and opportunities to inspect their mission payload in the orbiter'''s payload bay. STS-106 is scheduled to launch Sept. 8, 2000, at 8:31 a.m. EDT from Launch Pad 39B. On the 11-day mission, the seven-member crew will perform support tasks on orbit, transfer supplies and prepare the living quarters in the newly arrived Zvezda Service Module. The first long-duration crew, dubbed '''Expedition One,''' is due to arrive at the Station in late fall.

  18. The STS-97 crew take their seats in Endeavour at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-97 Mission Specialist Marc Garneau, who is with the Canadian Space Agency, settles into his seat in Space Shuttle Endeavour on Launch Pad 39B. He and the rest of the crew are taking part in a simulated launch countdown, part of Terminal Countdown Demonstration Test activities that also include emergency egress training and familiarization with the payload. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:05 p.m. EST.

  19. The STS-97 crew take their seats in Endeavour at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-97 Mission Specialist Carlos Noriega settles into his seat in Space Shuttle Endeavour on Launch Pad 39B. He and the rest of the crew are taking part in a simulated launch countdown, part of Terminal Countdown Demonstration Test activities that also include emergency egress training and familiarization with the payload. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:05 p.m. EST.

  20. The STS-97 crew take their seats in Endeavour at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-97 Mission Specialist Joe Tanner settles into his seat in Space Shuttle Endeavour on Launch Pad 39B. He and the rest of the crew are taking part in a simulated launch countdown, part of Terminal Countdown Demonstration Test activities that also include emergency egress training and familiarization with the payload. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST.

  1. STS-97 crew practices emergency egress from Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    On the 195-foot level at Launch Pad 39B, STS-97 Commander Brent Jett reaches for the lever to release the slidewire basket that also holds Pilot Mike Bloomfield (right). They are practicing their emergency egress training from Endeavour as part of Terminal Countdown Demonstration Test (TCDT) activities. The TCDT also includes a simulated launch countdown and opportunities to inspect the mission payloads in the orbiter'''s payload bay. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST.

  2. STS-106 crew participates in activities at Launch Pad 39-B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Strapped into their seats inside the orbiter Atlantis for a simulated countdown exercise are (left to right) STS-106 Mission Specialists Boris V. Morukov, Yuri I. Malenchenko and Daniel C. Burbank. The simulation is part of Terminal Countdown Demonstration Test (TCDT) activities. The TCDT also provides the crew with emergency egress training and opportunities to inspect their mission payload in the orbiter'''s payload bay. STS-106 is scheduled to launch Sept. 8, 2000, at 8:31 a.m. EDT from Launch Pad 39B. On the 11-day mission, the seven-member crew will perform support tasks on orbit, transfer supplies and prepare the living quarters in the newly arrived Zvezda Service Module. The first long-duration crew, dubbed '''Expedition One,''' is due to arrive at the Station in late fall.

  3. STS-112 crew in front of Launch Pad 39B before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - STS-112 Commander Jeffrey S. Ashby poses in front of Launch Pad 39B during a tour of Kennedy Space Center prior to launch. Also on the tour were the other members of the crew including Pilot Pamela Ann Melroy and Mission Speci alists David A. Wolf, Sandra H. Magnus, Piers J. Sellers, and Fyodor N. Yurchikhin of the Russian Space Agency. The launch of Space Shuttle Atlantis was postponed today to no earlier than Thursday, Oct. 3, while weather forecasters and the mission managem ent team assess the possible effect Hurricane Lili may have on the Mission Control Center located at the Lyndon B. Johnson Space Center in Houston, Texas.

  4. STS-97 crew gets emergency egress training at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-97 Pilot Mike Bloomfield stands in a slidewire basket at the landing zone on Launch Pad 39B while a trainer explains its use. The emergency egress training is part of Terminal Countdown Demonstration Test (TCDT) activities, which also include a simulated launch countdown and opportunities for the crew to inspect the mission payloads in the orbiter'''s payload bay. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST.

  5. STS-97 crew meets with the media at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During Terminal Countdown Demonstration Test (TCDT) activities, the STS-97 crew pause in the White Room at Launch Pad 39B for a photo. At left is Commander Brent Jett and crouching in front is Pilot Mike Bloomfield. Standing behind him are Mission Specialists Joe Tanner, Marc Garneau and Carlos Noriega. . Garneau is with the Canadian Space Agency. The TCDT includes emergency egress training, familiarization with the payload, and a simulated launch countdown. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST.

  6. STS-102 crew meets with media at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- At the slidewire basket landing near Launch Pad 39B, the Expedition Two crew poses for a photograph. From left to right are Susan Helms, Yury Usachev and James Voss. They are flying on Space Shuttle Discovery (seen in the background) as mission specialists for STS-102, joining Commander James Wetherbee, Pilot James Kelly and Mission Specialists Andrew Thomas and Paul Richards for the eighth construction flight to the International Space Station. Voss, Helms and Usachev will be replacing the Expedition One crew, who will return to Earth with Discovery. STS-102 will be carrying the Multi-Purpose Logistics Module Leonardo. Launch on mission STS-102 is scheduled for March 8.

  7. STS-97 crew meets with the media at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-97 Commander Brent Jett listens to a question from a reporter during a media session near Launch Pad 39B. The crew is at KSC to take part in Terminal Countdown Demonstration Test activities that include emergency egress training, familiarization with the payload, and a simulated launch countdown. The other crew members are Pilot Mike Bloomfield and Mission Specialists Joe Tanner, Marc Garneau and Carlos Noriega. Garneau is with the Canadian Space Agency. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:05 p.m. EST.

  8. The STS-97 crew meets with the media at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The STS-97 crew pose for photographers at the base of Launch Pad 39B. They are, left to right, Commander Brent Jett, Pilot Mike Bloomfield and Mission Specialists Carlos Noriega, Marc Garneau and Joe Tanner. Garneau is with the Canadian Space Agency. The crew is at KSC to take part in Terminal Countdown Demonstration Test activities that include emergency egress training, familiarization with the payload, and a simulated launch countdown. Visible in the background are the solid rocket booster and external tank on Space Shuttle Endeavour. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:05 p.m. EST.

  9. STS-81 CREW DURING SAFETY EQUIPMENT DEMONSTRATION AT LC 39B DURING TCDT

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The STS-81 crew gets a description of safety equipment and emergency egress routes on Launch Pad 39B during Terminal Countdown Demonstration Test (TCDT) exercises for that mission. They are (from left): Mission Specialists Marsha S. Ivins, J.M. 'Jerry' Linenger and Peter J. K. 'Jeff' Wisoff; Mission Commander Michael A. Baker; Mission Specialist John M. Grunsfeld; and Pilot Brent W. Jett, Jr. STS-81 is the fifth Shuttle-Mir docking mission and will feature the transfer of Linenger to Mir to replace astronaut John Blaha, who has been on the orbital laboratory since Sept. 19 after arrival there during the STS-79 mission. During STS-81, Shuttle and Mir crews will conduct risk mitigation, human life science, microgravity and materials processing experiments that will provide data for the design, development and operation of the International Space Station. The primary payload is the SPACEHAB-DM double module will provide space for more than 2,000 pounds of hardware, food and water that will be transferred into the Russian space station during five days of docking operations during the 10-day mission. The SPACEHAB will also be used to return experiment samples from the Mir to Earth for analysis and for microgravity experiments during the mission.

  10. The SOLAR-C Mission: Science Objectives and Current Status

    NASA Astrophysics Data System (ADS)

    Suematsu, Y.; Solar-C Working Group

    2016-04-01

    The SOLAR-C is a Japan-led international solar mission for mid-2020s designed to investigate the magnetic activities of the Sun, focusing on the study in heating and dynamical phenomena of the chromosphere and corona, and to advance algorithms for predicting short and long term solar magnetic activities. For these purposes, SOLAR-C will carry three dedicated instruments; the Solar UV-Vis-IR Telescope (SUVIT), the EUV Spectroscopic Telescope (EUVST) and the High Resolution Coronal Imager (HCI), to jointly observe the entire visible solar atmosphere with essentially the same high spatial resolution (0.1"-0.3"), performing high resolution spectroscopic measurements over all atmospheric regions and spectro-polarimetric measurements from the photosphere through the upper chromosphere. SOLAR-C will also contribute to understand the solar influence on the Sun-Earth environments with synergetic wide-field observations from ground-based and other space missions.

  11. The PICARD mission: scientific objectives and status of development

    NASA Astrophysics Data System (ADS)

    Thuillier, G.; Dewitte, S.; Schmutz, W.

    Jean Picard a French astronomer measured the solar diameter during the Maunder minimum and his observations opened an important question about the diameter variation with solar activity The solar diameter solar activity relationship remains unclear till this time however it is an important relation for solar physics The PICARD mission will carry out several key measurements such as total and spectral solar irradiance solar diameter limb shape solar asphericity and helioseismologic observations These measurements represent key inputs to validate solar models and to understand the origin of the solar activity These measurements will be carried out by three metrological instruments under the responsibility of Belgium France and Switzerland which will provide absolute radiometers sunphotometers and an imaging telescope The platform is a microsatellite built by the French Space Agency CNES The launch is foreseen by October 2008 This date will allow to have PICARD and Solar Dynamics Observatory NASA in space at the same period for complementary simultaneous measurements Given the specific observations by each mission a strong synergy exists between these two programs Past and present solar diameter measurements reveal discrepancies among results with solar activity consisting either correlation anticorrelation or no variation To understand the role of the atmosphere ground based instruments will be also run during the mission allowing PICARD to extent its domain of interest toward the atmosphere physics by comparing ground and space simultaneous

  12. STS-96 Space Shuttle Discovery rolls back to Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Nearing the end of its 4.2-mile trek from the Vehicle Assembly Building (VAB), Space Shuttle Discovery clears the gate to begin the climb to Launch Pad 39B aboard the mobile launcher platform and crawler transporter. Earlier in the week, the Shuttle was rolled back to the VAB from the pad to repair hail damage on the external tank's foam insulation. Mission STS-96, the 94th launch in the Space Shuttle Program, is scheduled for liftoff May 27 at 6:48 a.m. EDT. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment.

  13. STS-96 Space Shuttle Discovery rolls back to Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Both Space Shuttle Discovery (left) and Launch Pad 39B (right) are reflected in nearby water as the Shuttle makes its slow crawl to the pad aboard a crawler transporter. Earlier in the week, the Shuttle was rolled back from the pad to the Vehicle Assembly Building to repair hail damage on the the external tank's foam insulation. The 4.2-mile trek takes about five hours at the 1-mph speed of the crawler. Mission STS-96, the 94th launch in the Space Shuttle Program, is scheduled for liftoff May 27 at 6:48 a.m. EDT. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment.

  14. STS-96 Space Shuttle Discovery rolls back to Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the early morning hours, Space Shuttle Discovery is returned to Launch Pad 39B aboard the crawler transporter. Earlier in the week, the Shuttle was rolled back to the Vehicle Assembly Building to repair hail damage to the foam insulation on the external tank. The 4.2-mile trek takes about five hours at the 1- mph speed of the crawler. Mission STS-96, the 94th launch in the Space Shuttle Program, is scheduled for liftoff May 27 at 6:48 a.m. EDT. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment.

  15. STS-96 Space Shuttle Discovery rolls back to Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The avian population (foreground) at this watering site on Kennedy Space Center is undaunted as the 12-million-pound combination of Space Shuttle Discovery, crawler transporter and mobile launcher platform rolls out to Launch Pad 39B from the Vehicle Assembly Building (VAB). Earlier in the week, the Shuttle was rolled back to the VAB from the pad to repair hail damage on the external tank's foam insulation. The 4.2-mile trek takes about five hours at the 1-mph speed of the crawler. Mission STS- 96, the 94th launch in the Space Shuttle Program, is scheduled for liftoff May 27 at 6:48 a.m. EDT STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment.

  16. The STS-97 crew take their seats in Endeavour at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-97 Pilot Mike Bloomfield reaches for the control panel as he settles into his seat in the cockpit on Space Shuttle Endeavour on Launch Pad 39B. He and the rest of the crew are taking part in a simulated launch countdown, part of Terminal Countdown Demonstration Test activities that also include emergency egress training and familiarization with the payload. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:05 p.m. EST.

  17. The STS-97 crew take their seats in Endeavour at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Commander Brent Jett looks toward Pilot Mike Broomfield, on his right, as they get comfortable in their seats in the cockpit of Space Shuttle Endeavour on Launch Pad 39B. Along with the rest of the crew, they are taking part in a simulated launch countdown, part of Terminal Countdown Demonstration Test activities that also include emergency egress training and familiarization with the payload. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:05 p.m. EST.

  18. STS-96 Space Shuttle Discovery rolls back to Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Viewed from the top of the rotating service structure, Space Shuttle Discovery rests on the mobile launcher platform and towers over the landscape after rollout to Launch Pad 39B. In the background are portions of the Banana River and the Atlantic Ocean. The lighter spots on the top of the external tank are areas of hail damage that was recently repaired. The Shuttle had to be returned to the VAB for the repairs, making this the second rollout for the Shuttle. Discovery is scheduled for liftoff May 27 at 6:48 a.m. EDT on mission STS-96, the 94th launch in the Space Shuttle Program. A logistics and resupply mission for the International Space Station, STS-96 is carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment.

  19. The Space Shuttle Columbia rolls out to Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Space Shuttle Columbia continues up the ramp to Launch Pad 39B in its morning rollout prior to STS-90. Leveling systems within the crawler-transporter underneath the Shuttle keep the platform level while negotiating the five percent ramp leading up to the pad surface. The top of the orbiter is kept vertical within plus or minus 10 minutes of arc, about the diameter of a basketball during the journey. The Neurolab experiments are the primary payload on this nearly 17-day space flight. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. The crew of STS- 90, slated for launch April 16 at 2:19 p.m. EDT, includes Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D.

  20. STS-102 crew meets with media at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- During Terminal Countdown Demonstration Test activities, the STS-102 crew takes time to talk to the media at the slidewire basket landing near Launch Pad 39B. From left to right are Commander James Wetherbee; Mission Specialists Yury Usachev, Andrew Thomas, James Voss, Susan Helms and Paul Richards; and Pilot James Kelly. Voss, Helms and Usachev are the Expedition Two crew who will be the second resident crew on the International Space Station. They will replace Expedition One, who will return to Earth with Discovery. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo Launch on mission STS-102 is scheduled for March 8.

  1. STS-90 M.S. Kathryn Hire waves to family and friends near Pad 39B

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-90 Mission Specialist Kathryn (Kay) Hire waves to friends and family members near Launch Pad 39B, from which she and the rest of the seven-member crew are scheduled to launch aboard Columbia on May 16 at 2:19 p.m. EDT. The astronauts are under strict health stabilization guidelines to protect them from close contact with persons who do not have health stabilization clearance. This is the 25th flight of Columbia and the 90th mission flown since the start of the Space Shuttle program. STS- 90 is a nearly 17-day life sciences research flight that will focus on the most complex and least understood part of the human body -- the nervous system. Neurolab will examine the effects of spaceflight on the brain, spinal cord, peripheral nerves and sensory organs in the human body.

  2. Scientific objectives of the Solar Mesosphere Explorer mission

    NASA Technical Reports Server (NTRS)

    Thomas, G. E.; Barth, C. A.; Hansen, E. R.; Hord, C. W.; Lawrence, G. M.; Mount, G. H.; Rottman, G. J.; Rusch, D. W.; Stewart, A. I.; Thomas, R. J.

    1980-01-01

    The paper describes the NASA Solar Mesosphere Explorer mission which will study mesospheric ozone and the processes which form and destroy it, measure the ozone density and its altitude distribution from 30 to 80 km, monitor incoming solar UV radiation, and provide a rigorous test of the photochemical equilibrium theory of the mesospheric oxygen-hydrogen system. Five instruments will be carried on the polar-orbiting spacecraft: UV ozone, IR airglow, and visible NO2 programmable Ebert-Fastie spectrometers, a four-channel IR radiometer, and a solar UV spectrometer. Atmospheric measurements will be made of the mesospheric and stratospheric ozone density distribution, water vapor density distribution, temperature profile, ozone photolysis rate, and NO2 density distribution. In addition, the solar UV monitor will measure both the 0.2-0.31 micron spectral region and the Lyman-alpha (0.1216 micron) contribution to the solar irradiance.

  3. STS-97 crew gets emergency egress training at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During Terminal Countdown Demonstration Test (TCDT) activities, the STS-97 crew ride as passengers in the M-113 while trainer Capt. George Hoggard (at right) drives away from Launch Pad 39B. Seen left to right are Mission Specialists Joe Tanner and Carlos Noriega; Pilot Mike Bloomfield; and Mission Specialist Marc Garneau, who is with the Canadian Space Agency. Learning to drive the armored vehicle is part of emergency egress training during TCDT. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter'''s payload bay. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST.

  4. STS-87 crew in LC-39B white room during TCDT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The crew of the STS-87 mission, scheduled for launch Nov. 19 aboard the Space Shuttle Columbia from pad 39B at Kennedy Space Center (KSC), participates in the Terminal Countdown Demonstration Test (TCDT) at KSC. Standing, from left, Mission Specialist Winston Scott; Backup Payload Specialist Yaroslav Pustovyi, Ph.D., of the National Space Agency of Ukraine (NSAU); Payload Specialist Leonid Kadenyuk of NSAU; Pilot Steven Lindsey; Commander Kevin Kregel; Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan; and Mission Specialist Kalpana Chawla, Ph.D. The TCDT is held at KSC prior to each Space Shuttle flight providing the crew of each mission opportunities to participate in simulated countdown activities. The TCDT ends with a mock launch countdown culminating in a simulated main engine cut-off. The crew also spends time undergoing emergency egress training exercises at the pad and has an opportunity to view and inspect the payloads in the orbiter's payload bay.

  5. STS-87 crew in front of LC-39B during TCDT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The crew of the STS-87 mission, scheduled for launch Nov. 19 aboard the Space Shuttle Columbia from Pad 39B at Kennedy Space Center (KSC), poses at the pad during a break in the Terminal Countdown Demonstration Test (TCDT) at KSC. Standing in front of the Shuttle Columbia are, from left, Commander Kevin Kregel; Mission Specialist Kalpana Chawla, Ph.D.; Pilot Steven Lindsey; Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan; Backup Payload Specialist Yaroslav Pustovyi, Ph.D., of the National Space Agency of Ukraine (NSAU); Payload Specialist Leonid Kadenyuk of NSAU; and Mission Specialist Winston Scott. The TCDT is held at KSC prior to each Space Shuttle flight providing the crew of each mission opportunities to participate in simulated countdown activities. The TCDT ends with a mock launch countdown culminating in a simulated main engine cut-off. The crew also spends time undergoing emergency egress training exercises at the pad and has an opportunity to view and inspect the payloads in the orbiter's payload bay.

  6. The STS-97 crew meets with the media at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    From the slidewire landing zone at Launch Pad 39B, STS-97 Mission Specialist Joe Tanner (center, with microphone) speaks to the press about his extravehicular activity (EVA) during the mission. With him are the rest of the crew, Commander Brent Jett and Pilot Mike Bloomfield on the left and Mission Specialists Marc Garneau and Carlos Noriega on the right. The crew is at KSC to take part in Terminal Countdown Demonstration Test activities that include emergency egress training, familiarization with the payload, and a simulated launch countdown. Visible in the background are the solid rocket booster and external tank on Space Shuttle Endeavour. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:05 p.m. EST.

  7. STS-97 crew meets with the media at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    From the slidewire landing zone at Launch Pad 39B, STS-97 Mission Specialist Joe Tanner (center, with microphone) speaks to the press about his extravehicular activity (EVA) during the mission. With him are the rest of the crew, Commander Brent Jett and Pilot Mike Bloomfield on the left and Mission Specialists Marc Garneau and Carlos Noriega on the right. The crew is at KSC to take part in Terminal Countdown Demonstration Test activities that include emergency egress training, familiarization with the payload, and a simulated launch countdown. Visible in the background are the solid rocket booster and external tank on Space Shuttle Endeavour. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:05 p.m. EST.

  8. Objectives of a prospective Ukrainian orbiter mission to the moon

    NASA Astrophysics Data System (ADS)

    Shkuratov, Yu. G.; Lytvynenko, L. M.; Shulga, V. M.; Yatskiv, Ya. S.; Vidmachenko, A. P.; Kislyulk, V. S.

    2003-06-01

    Ukraine has launch vehicles that are able to deliver about 300 kg to lunar orbit. A future Ukrainian lunar program may propose a polar orbiter. This orbiter should fill principal information gaps in our knowledge about the Moon after the Clementine and Lunar Prospector missions and future missions like Smart-1, Lunar-A, and Selene. We consider that this can be provided by radar studies of the Moon with supporting optical photopolarimetric observations from lunar polar orbit. These experiments allow one to better understand global structure of the lunar surface at a wide range of scales, from microns to kilometers. We propose three instruments for the prospective lunar orbiter. They are a synthetic aperture imaging radar, ground-penetrating radar, and imaging UV-spectropolarimeter. The main purpose of the synthetic aperture imaging radar experiment is to study with high-resolution (50 m) permanently shadowed sites in the lunar polar regions. These sites are cold traps for volatiles, and have a potential for resource utilization. Possible presence of water ice in the regolith in the sites makes them interesting for long-term manned bases on the Moon. Radar and optical imaging and mapping of other interesting regions could be also planned. Multi-frequency, multi-polarization sounding of the lunar surface with ground-penetrating radar can provide data about internal structure of the lunar surface from meters to several hundred meters deep. The ground-penetrating radar can be used for measuring megaregolith properties, detection of cryptomaria, and studies of internal structure of the largest craters. Modest spatial resolution (50 m) of the imaging UV-spectropolarimeter should provide total coverage (or coverage of a large portion) of the lunar surface in oblique viewing at large phase angles. Polarization degree at large (>90°) phase angles bears information about characteristic size of the regolith particles. Additional experiments could use the synthetic aperture

  9. The OCO-3 Mission : Overview of Science Objectives and Status

    NASA Astrophysics Data System (ADS)

    Eldering, Annmarie; Bennett, Matthew; Basilio, Ralph

    2016-04-01

    The Orbiting Carbon Observatory 3 (OCO-3) is a space instrument that will investigate important questions about the distribution of carbon dioxide on Earth as it relates to growing urban populations and changing patterns of fossil fuel combustion. OCO-3 will explore, for the first time, daily variations in the release and uptake of carbon dioxide by plants and trees in the major tropical rainforests of South America, Africa, and Southeast Asia, the largest stores of aboveground carbon on our planet. NASA will develop and assemble the instrument using spare materials from OCO-2 and host the instrument on the International Space Station (ISS) (earliest launch readiness in early 2018.) The low-inclination ISS orbit lets OCO-3 sample the tropics and sub-tropics across the full range of daylight hours with dense observations at northern and southern mid-latitudes (+/- 52°). At the same time, OCO-3 will also collect measurements of solar-induced chlorophyll fluorescence (SIF) over these areas. The combination of these dense CO2 (expected to have a precision of 1 parts per mission) and SIF measurements provides continuity of data for global flux estimates as well as a unique opportunity to address key deficiencies in our understanding of the global carbon cycle. The instrument utilizes an agile, 2-axis pointing mechanism (PMA), providing the capability to look towards the bright reflection from the ocean and validation targets. The PMA also allows for a snapshot mapping mode to collect dense datasets over 100km by 100km areas. Measurements over urban centers could aid in making estimates of fossil fuel CO2 emissions. This is critical because the largest urban areas (25 megacities) account for 75% of the global total fossil fuel CO2 emissions, and rapid growth (> 10% per year) is expected in developing regions over the coming 10 years. Similarly, the snapshot mapping mode can be used to sample regions of interest for the terrestrial carbon cycle. For example, snapshot

  10. The OCO-3 Mission : Overview of Science Objectives and Status

    NASA Astrophysics Data System (ADS)

    Eldering, A.; Basilio, R. R.; Bennett, M. W.

    2015-12-01

    The Orbiting Carbon Observatory 3 (OCO-3) is a space instrument that will investigate important questions about the distribution of carbon dioxide on Earth as it relates to growing urban populations and changing patterns of fossil fuel combustion. OCO-3 will explore, for the first time, daily variations in the release and uptake of carbon dioxide by plants and trees in the major tropical rainforests of South America, Africa, and Southeast Asia, the largest stores of aboveground carbon on our planet. NASA will develop and assemble the instrument using spare materials from OCO-2 and host the instrument on the International Space Station (ISS) (earliest launch readiness in early 2018.) The low-inclination ISS orbit lets OCO-3 sample the tropics and sub-tropics across the full range of daylight hours with dense observations at northern and southern mid-latitudes (+/- 52º). At the same time, OCO-3 will also collect measurements of solar-induced chlorophyll fluorescence (SIF) over these areas. The combination of these dense CO2 (expected to have a precision of 1 parts per mission) and SIF measurements provides continuity of data for global flux estimates as well as a unique opportunity to address key deficiencies in our understanding of the global carbon cycle. The instrument utilizes an agile, 2-axis pointing mechanism (PMA), providing the capability to look towards the bright reflection from the ocean and validation targets. The PMA also allows for a snapshot mapping mode to collect dense datasets over 100km by 100km areas. Measurements over urban centers could aid in making estimates of fossil fuel CO2 emissions. This is critical because the largest urban areas (25 megacities) account for 75% of the global total fossil fuel CO2 emissions, and rapid growth (> 10% per year) is expected in developing regions over the coming 10 years. Similarly, the snapshot mapping mode can be used to sample regions of interest for the terrestrial carbon cycle. For example, snapshot

  11. STS-96 crew leaves the O&C Building enroute to Pad 39B

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The STS-96 crew smile and wave at onlookers as they eagerly head for the bus that will take them to Launch Pad 39B for liftoff of Space Shuttle Discovery, targeted for 6:49 a.m. EDT. From left to right in front are Mission Specialists Valery Ivanovich Tokarev, Ellen Ochoa, Julie Payette and Tamara E. Jernigan; in back are Mission Specialist Daniel T. Barry, Pilot Rick D. Husband, and Commander Kent V. Rominger. Payette is with the Canadian Space Agency, and Tokarev is with the Russian Space Agency. STS-96 is a 10-day logistics and resupply mission for the International Space Station, carrying about 4,000 pounds of supplies, to be stored aboard the station for use by future crews, including laptop computers, cameras, tools, spare parts, and clothing. The mission also includes such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student- involved experiment. It will include a space walk to attach the cranes to the outside of the ISS for use in future construction. Landing is expected at the SLF on June 6 about 1:58 a.m. EDT.

  12. The STS-96 crew pose for a group photo on Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The STS-96 crew pose for a group photo after emergency egress training at Launch Pad 39B. From left are Mission Specialist Ellen Ochoa (Ph.D.); Pilot Rick Douglas Husband; Mission Specialists Julie Payette, Daniel Barry (M.D., Ph.D.), amd Tamara E. Jernigan (Ph.D.); Commander Kent V. Rominger; and Mission Specialist Valery Ivanovich Tokarev. Payette is with the Canadian Space Agency, and Ivanovich Tokarev with the Russian Space Agency. Behind them is the tip of the external tank, which is 153.8 feet high. The external tank provides fuel to the three space shuttle main engines in the orbiter during liftoff and ascent. It is eventually jettisoned, entering the Earth's atmosphere, breaking up and impacting a remote ocean area. STS- 96, scheduled for liftoff on May 20 at 9:32 a.m., is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.- built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-led experiment.

  13. STS-103 Commander Brown introduces crew during interview at Pad 39B

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At Launch Pad 39B, STS-103 Commander Curtis L. Brown Jr. introduces the rest of the crew: (left to right) Pilot Scott J. Kelly and Mission Specialists Steven L. Smith, Jean-Frangois Clervoy of France, who is with the European Space Agency (ESA), John M. Grunsfeld (Ph.D.), C. Michael Foale (Ph.D.), and Claude Nicollier of Switzerland, who is also with ESA. As a preparation for launch, they have been participating in Terminal Countdown Demonstration Test (TCDT) activities at KSC. The TCDT provides the crew with emergency egress training, opportunities to inspect their mission payloads in the orbiter's payload bay, and simulated countdown exercises. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.

  14. A remote camera at Launch Pad 39B, at the Kennedy Space Center (KSC), recorded this profile view of

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-75 LAUNCH VIEW --- A remote camera at Launch Pad 39B, at the Kennedy Space Center (KSC), recorded this profile view of the Space Shuttle Columbia as it cleared the tower to begin the mission. The liftoff occurred on schedule at 3:18:00 p.m. (EST), February 22, 1996. Onboard Columbia for the scheduled two-week mission were astronauts Andrew M. Allen, commander; Scott J. Horowitz, pilot; Franklin R. Chang-Diaz, payload commander; and astronauts Maurizio Cheli, Jeffrey A. Hoffman and Claude Nicollier, along with payload specialist Umberto Guidioni. Cheli and Nicollier represent the European Space Agency (ESA), while Guidioni represents the Italian Space Agency (ASI).

  15. STS-96 Space Shuttle Discovery rolls back to Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Space Shuttle Discovery, aboard a crawler transporter, is reflected in the waters of Banana Creek as it is returned to Launch Pad 39B. Earlier in the week, the Shuttle was rolled back to the Vehicle Assembly Building to repair hail damage to the foam insulation on the external tank. The 4.2-mile trek takes about five hours at the Space Shuttle Program, is scheduled for liftoff May 27 at 6:48 a.m. EDT. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment.

  16. STS-95 Space Shuttle Discovery rollout to Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    1998-01-01

    As daylight creeps over the horizon, STS-95 Space Shuttle Discovery, on the Mobile Launch Platform, arrives at Launch Complex Pad 39B after a 4.2-mile trip taking approximately 6 hours. At the left is the 'white room,' attached to the orbiter access arm. The white room is an environmental chamber that mates with the orbiter and holds six persons. At the launch pad, the orbiter, external tank and solid rocket boosters will undergo final preparations for the launch, scheduled to lift off Oct. 29. The mission includes research payloads such as the Spartan solar- observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  17. STS-90 M.S. Pawelczyk stands behind his children near Pad 39B

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-90 Payload Specialist James Pawelczyk, Ph.D., stands behind his two children, Bradley and Katlyn (left to right), as they smile to photographers near Launch Pad 39B. James and the rest of the seven-member crew are scheduled to launch aboard Columbia, seen in the background, on May 16 at 2:19 p.m. EDT. The astronauts are under strict health stabilization guidelines to protect them from close contact with persons who do not have health stabilization clearance. This is the 25th flight of Columbia and the 90th mission flown since the start of the Space Shuttle program. This launch of Neurolab will examine the effects of spaceflight on the brain, spinal cord, peripheral nerves and sensory organs in the human body.

  18. Aalto-1 nanosatellite - technical description and mission objectives

    NASA Astrophysics Data System (ADS)

    Kestilä, A.; Tikka, T.; Peitso, P.; Rantanen, J.; Näsilä, A.; Nordling, K.; Saari, H.; Vainio, R.; Janhunen, P.; Praks, J.; Hallikainen, M.

    2012-11-01

    This work presents the outline and so far completed design of the Aalto-1 science mission. Aalto-1 is a multi-payload remote sensing nanosatellite, built almost entirely by students. The satellite aims for a 500-900 km sun-synchronous orbit, and includes an accurate attitude dynamics and control unit, a UHF/VHF housekeeping and S-band data links, and a GPS unit for positioning (radio positioning and NORAD TLE's are planned to be used as backups). It has three specific payloads: a spectral imager based on piezo-actuated Fabry-Perot interferometry, designed and built by The Technical Research Center of Finland (VTT); a miniaturized radiation monitor (RADMON) jointly designed and built by Universities of Helsinki and Turku ; and an electrostatic plasma brake designed and built by the Finnish Meteorological Institute (FMI), derived from the concept of the e-sail, also originating from FMI. Two phases are important for the payloads, the technology demonstration and the science phase. Emphasis is placed on technological demonstration of the spectral imager and RADMON, and suitable targets have already been chosen to be completed during that phase, while the plasma brake will start operation in the latter part of the science phase. The technology demonstration will be over in relatively short time, while the science phase is planned to last two years. The science phase is divided into two smaller phases: the science observations phase, during which only the spectral imager and RADMON will be operated for 6-12 months, and the plasma brake demonstration phase, which is dedicated to the plasma brake experiment for at least a year. These smaller phases are necessary due to the drastically different power, communication and attitude requirements of the payloads. The spectral imager will be by far the most demanding instrument on board, as it requires most of the downlink bandwidth, has a high peak power and attitude performance. It will acquire images in a series up to at

  19. Aalto-1 nanosatellite - technical description and mission objectives

    NASA Astrophysics Data System (ADS)

    Kestilä, A.; Tikka, T.; Peitso, P.; Rantanen, J.; Näsilä, A.; Nordling, K.; Saari, H.; Vainio, R.; Janhunen, P.; Praks, J.; Hallikainen, M.

    2013-02-01

    This work presents the outline and so far completed design of the Aalto-1 science mission. Aalto-1 is a multi-payload remote-sensing nanosatellite, built almost entirely by students. The satellite aims for a 500-900 km sun-synchronous orbit and includes an accurate attitude dynamics and control unit, a UHF/VHF housekeeping and S-band data links, and a GPS unit for positioning (radio positioning and NORAD TLE's are planned to be used as backup). It has three specific payloads: a spectral imager based on piezo-actuated Fabry-Perot interferometry, designed and built by The Technical Research Centre of Finland (VTT); a miniaturised radiation monitor (RADMON) jointly designed and built by Universities of Helsinki and Turku; and an electrostatic plasma brake designed and built by the Finnish Meteorological Institute (FMI), derived from the concept of the e-sail, also originating from FMI. Two phases are important for the payloads, the technology demonstration and the science phase. The emphasis is placed on technological demonstration of the spectral imager and RADMON, and suitable targets have already been chosen to be completed during that phase, while the plasma brake will start operation in the latter part of the science phase. The technology demonstration will be over in a relatively short time, while the science phase is planned to last two years. The science phase is divided into two smaller phases: the science observations phase, during which only the spectral imager and RADMON will be operated for 6-12 months and the plasma brake demonstration phase, which is dedicated to the plasma brake experiment for at least a year. These smaller phases are necessary due to the drastically different power, communication and attitude requirements of the payloads. The spectral imager will be by far the most demanding instrument on board, as it requires most of the downlink bandwidth, has a high peak power and attitude performance. It will acquire images in a series up to at

  20. Object-oriented technologies in a multi-mission data system

    NASA Technical Reports Server (NTRS)

    Murphy, Susan C.; Miller, Kevin J.; Louie, John J.

    1993-01-01

    The Operations Engineering Laboratory (OEL) at JPL is developing new technologies that can provide more efficient and productive ways of doing business in flight operations. Over the past three years, we have worked closely with the Multi-Mission Control Team to develop automation tools, providing technology transfer into operations and resulting in substantial cost savings and error reduction. The OEL development philosophy is characterized by object-oriented design, extensive reusability of code, and an iterative development model with active participation of the end users. Through our work, the benefits of object-oriented design became apparent for use in mission control data systems. Object-oriented technologies and how they can be used in a mission control center to improve efficiency and productivity are explained. The current research and development efforts in the JPL Operations Engineering Laboratory are also discussed to architect and prototype a new paradigm for mission control operations based on object-oriented concepts.

  1. A decision support tool for synchronizing technology advances with strategic mission objectives

    NASA Technical Reports Server (NTRS)

    Hornstein, Rhoda S.; Willoughby, John K.

    1992-01-01

    Successful accomplishment of the objectives of many long-range future missions in areas such as space systems, land-use planning, and natural resource management requires significant technology developments. This paper describes the development of a decision-support data-derived tool called MisTec for helping strategic planners to determine technology development alternatives and to synchronize the technology development schedules with the performance schedules of future long-term missions. Special attention is given to the operations, concept, design, and functional capabilities of the MisTec. The MisTec was initially designed for manned Mars mission, but can be adapted to support other high-technology long-range strategic planning situations, making it possible for a mission analyst, planner, or manager to describe a mission scenario, determine the technology alternatives for making the mission achievable, and to plan the R&D activity necessary to achieve the required technology advances.

  2. Artist's Concept- Ares I On Launchpad 39B

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. Launch Pad 39B of the Kennedy Space Flight Center (KSC), currently used for Space Shuttle launches, will be revised to host the Ares launch vehicles. The fixed and rotating service structures standing at the pad will be dismantled sometime after the Ares I-X test flight. A new launch tower for Ares I will be built onto a new mobile launch platform. The gantry for the shuttle doesn't reach much higher than the top of the four segments of the solid rocket booster. Pad access above the current shuttle launch pad structure will not be required for Ares I-X because the stages above the solid rocket booster are inert. For the test scheduled in 2012 or for the crewed flights, workers and astronauts will need access to the highest levels of the rocket and capsule. When the Ares I rocket rolls out to the launch pad on the back of the same crawler-transporters used now, its launch gantry will be with it. The mobile launchers will nestle under three lightning protection towers to be erected around the pad area. Ares time at the launch pad will be significantly less than the three weeks or more the shuttle requires. This 'clean pad' approach minimizes equipment and servicing at the launch pad. It is the same plan NASA used with the Saturn V rockets and industry employs it with more modern launchers. The launch pad will also get a new emergency escape system for astronauts, one that looks very much like a roller coaster. Cars riding on a rail will replace the familiar baskets hanging from steel cables. This artist's concept illustrates the Ares I on launch pad 39B.

  3. STS-96 crew leaves the O&C Building enroute to Pad 39B

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The STS-96 crew wave to onlookers as they walk out of the Operations and Checkout Building enroute to Launch Pad 39B and liftoff of Space Shuttle Discovery, targeted for 6:49 a.m. EDT. In their orange launch and entry suits, they are (clockwise from bottom left) Mission Specialists Tamara E. Jernigan, Julie Payette, Ellen Ochoa, Valery Ivanovich Tokarev and Daniel T. Barry, Pilot Rick D. Husband, and Commander Kent V. Rominger. Payette is with the Canadian Space Agency, and Tokarev is with the Russian Space Agency. STS-96 is a 10-day logistics and resupply mission for the International Space Station, carrying about 4,000 pounds of supplies, to be stored aboard the station for use by future crews, including laptop computers, cameras, tools, spare parts, and clothing. The mission also includes such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-involved experiment. It will include a space walk to attach the cranes to the outside of the ISS for use in future construction. Landing is expected at the SLF on June 6 about

  4. STS-106 crew participates in activities at Launch Pad 39-B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The STS-106 flight crew departs the Operations & Checkout Facility to take part in Terminal Countdown Demonstration Test (TCDT) activities. The TCDT provides the crew with emergency egress training and opportunities to inspect their mission payload in the orbiter'''s payload bay. Crew members taking part in the TCDT are, from left to right front to back, Commander Terrence W. Wilcutt, Pilot Scott D. Altman, Mission Specialists Yuri I. Malenchenko, Edward T. Lu, Richard A. Mastracchio, Boris V. Morukov and Daniel C. Burbank. Malenchenko and Morukov are with the Russian Aviation and Space Agency. STS-106 is scheduled to launch Sept. 8, 2000, at 8:31 a.m. EDT from Launch Pad 39B. On the 11-day mission, the seven-member crew will perform support tasks on orbit, transfer supplies and prepare the living quarters in the newly arrived Zvezda Service Module. The first long- duration crew, dubbed '''Expedition One,''' is due to arrive at the Station in late fall.

  5. STS-97 crew meets with the media at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Standing in the slidewire landing zone at Launch Pad 39B, the STS-97 crew respond to questions from the media. They are, left to right, Commander Brent Jett, Pilot Mike Bloomfield and Mission Specialists Joe Tanner, Marc Garneau and Carlos Noriega. Garneau is with the Canadian Space Agency. The nets suspended behind them are a braking system catch net for the slidewire baskets that provide emergency exit from the orbiter and Fixed Service Structure. The crew is at KSC to take part in Terminal Countdown Demonstration Test activities that include emergency egress training, familiarization with the payload, and a simulated launch countdown. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST.

  6. The STS-97 crew meets with the media at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Standing in the slidewire landing zone at Launch Pad 39B, the STS-97 crew respond to questions from the media. They are, left to right, Commander Brent Jett, Pilot Mike Bloomfield and Mission Specialists Joe Tanner, Marc Garneau and Carlos Noriega. Garneau is with the Canadian Space Agency. The nets suspended behind them are a braking system catch net for the slidewire baskets that provide emergency exit from the orbiter and Fixed Service Structure. The crew is at KSC to take part in Terminal Countdown Demonstration Test activities that include emergency egress training, familiarization with the payload, and a simulated launch countdown. Visible in the background are the solid rocket booster and external tank on Space Shuttle Endeavour. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:05 p.m. EST.

  7. The STS-90 crew wave to family and friends in front of Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The STS-90 crew wave to friends and family members near Launch Pad 39B, from which they are scheduled to launch aboard Columbia on May 16 at 2:19 p.m. EDT. The crew include, left to right, Mission Specialist Richard Linnehan, D.V.M., Commander Richard Searfoss, Pilot Scott Altman, Payload Specialists James Pawelczyk, Ph.D., and Jay Buckey, M.D., and Mission Specialists Dafydd (Dave) Williams, M.D., with the Canadian Space Agency, and Kathryn (Kay) Hire. The Space Shuttle Columbia is seen in the background, protected by its Rotating Service Structure. This is the 25th flight of Columbia and the 90th mission flown since the start of the Space Shuttle program. STS-90 is a nearly 17-day life sciences research flight that will focus on the most complex and least understood part of the human body -- the nervous system. Neurolab will examine the effects of spaceflight on the brain, spinal cord, peripheral nerves and sensory organs in the human body.

  8. Multi-Objective Hybrid Optimal Control for Multiple-Flyby Interplanetary Mission Design Using Chemical Propulsion

    NASA Technical Reports Server (NTRS)

    Englander, Jacob; Vavrina, Matthew

    2015-01-01

    The customer (scientist or project manager) most often does not want just one point solution to the mission design problem Instead, an exploration of a multi-objective trade space is required. For a typical main-belt asteroid mission the customer might wish to see the trade-space of: Launch date vs. Flight time vs. Deliverable mass, while varying the destination asteroid, planetary flybys, launch year, etcetera. To address this question we use a multi-objective discrete outer-loop which defines many single objective real-valued inner-loop problems.

  9. Advanced software development workstation: Object-oriented methodologies and applications for flight planning and mission operations

    NASA Technical Reports Server (NTRS)

    Izygon, Michel

    1993-01-01

    The work accomplished during the past nine months in order to help three different organizations involved in Flight Planning and in Mission Operations systems, to transition to Object-Oriented Technology, by adopting one of the currently most widely used Object-Oriented analysis and Design Methodology is summarized.

  10. Multi-Objective Hybrid Optimal Control for Multiple-Flyby Low-Thrust Mission Design

    NASA Technical Reports Server (NTRS)

    Englander, Jacob A.; Vavrina, Matthew A.; Ghosh, Alexander R.

    2015-01-01

    Preliminary design of low-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. In addition, a time-history of control variables must be chosen that defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a multi-objective hybrid optimal control problem. The method is demonstrated on a hypothetical mission to the main asteroid belt.

  11. Initial Considerations for Navigation and Flight Dynamics of a Crewed Near-Earth Object Mission

    NASA Technical Reports Server (NTRS)

    Holt, Greg N.; Getchius, Joel; Tracy, William H.

    2011-01-01

    A crewed mission to a Near-Earth Object (NEO) was recently identified as a NASA Space Policy goal and priority. In support of this goal, a study was conducted to identify the initial considerations for performing the navigation and flight dynamics tasks of this mission class. Although missions to a NEO are not new, the unique factors involved in human spaceflight present challenges that warrant special examination. During the cruise phase of the mission, one of the most challenging factors is the noisy acceleration environment associated with a crewed vehicle. Additionally, the presence of a human crew necessitates a timely return trip, which may need to be expedited in an emergency situation where the mission is aborted. Tracking, navigation, and targeting results are shown for sample human-class trajectories to NEOs. Additionally, the benefit of in-situ navigation beacons on robotic precursor missions is presented. This mission class will require a longer duration flight than Apollo and, unlike previous human missions, there will likely be limited communication and tracking availability. This will necessitate the use of more onboard navigation and targeting capabilities. Finally, the rendezvous and proximity operations near an asteroid will be unlike anything previously attempted in a crewed spaceflight. The unknown gravitational environment and physical surface properties of the NEO may cause the rendezvous to behave differently than expected. Symbiosis of the human pilot and onboard navigation/targeting are presented which give additional robustness to unforeseen perturbations.

  12. STS-102 Discovery lifts off from Launch Pad 39-B

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - Sunrise paints the exhaust trail of Space Shuttle Discovery a rosy hue at liftoff on mission STS-102 . Liftoff occurred at 6:42:09 EST for the eighth flight to the International Space Station.

  13. STS-87 Columbia rolls out to LC 39B in preparation for launch

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The orbiter Columbia, mated to its external tank and two solid rocket boosters, rolls out to Kennedy Space Centers (KSCs) Pad 39-B atop a mobile launcher platform (MLP). The entire complement of crawler transporter, MLP and Shuttle weigh in excess of 18 million pounds. The transporter moves at an average rate of less than one mile-per-hour with the Shuttle on top and uses a laser docking system to precisely position the MLP on the pad surface. A leveling system on the crawler transporter keeps the Shuttle perfectly stable during the roll out and during the climb up the 5 percent grade to the launch pad surface. Columbia is scheduled to launch on Nov. 19 for STS-87 on a 16-day flight of the United States Microgravity Payload (USMP)-4 mission. This mission also features the deployment and retrieval of the Spartan-201 satellite and a spacewalk to demonstrate assembly and maintenance operations for future use on the International Space Station.

  14. STS-96 Space Shuttle Discovery rolls back to Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Space Shuttle Discovery makes the climb to Launch Pad 39B aboard the mobile launcher platform and crawler transporter. The crawler is able to keep its cargo level during the move up the five percent grade, not varying from the vertical more than the diameter of a soccer ball. At right are the rotating and fixed service structures which will be used during prelaunch preparations at the pad. Earlier in the week, the Shuttle was rolled back to the VAB from the pad to repair hail damage on the external tank's foam insulation. Mission STS-96, the 94th launch in the Space Shuttle Program, is scheduled for liftoff May 27 at 6:48 a.m. EDT. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment.

  15. STS-103 crew are interviewed by media at Pad 39B

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At Launch Pad 39B, Lisa Malone, chief, Media Services at KSC introduces the STS-103 crew standing ready to answer questions from the media. From left are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, Jean-Frangois Clervoy of France, who is with the European Space Agency (ESA), John M. Grunsfeld (Ph.D.), C. Michael Foale (Ph.D.), and Claude Nicollier of Switzerland, who is also with ESA. As a preparation for launch, the crew have been participating in Terminal Countdown Demonstration Test (TCDT) activities at KSC. The TCDT provides the crew with emergency egress training, opportunities to inspect their mission payloads in the orbiter's payload bay, and simulated countdown exercises. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.

  16. STS-103 crew learn about use of slideware basket at Pad 39B

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the slidewire area of Launch Pad 39B, the STS-103 crew listen to use of the emergency egress equipment. From left are the trainer, with crew members Mission Specialists Steven L. Smith, Jean-Frangois Clervoy of France, Claude Nicollier of Switzerland, John M. Grunsfeld (Ph.D.), Pilot Steven J. Kelly, C. Michael Foale (Ph.D.), and (kneeling) Commander Curtis L. Brown Jr. Clervoy and Nicollier are both with the European Space Agency. As a preparation for launch, the crew have been participating in Terminal Countdown Demonstration Test (TCDT) activities at KSC. The TCDT provides the crew with emergency egress training, opportunities to inspect their mission payloads in the orbiter's payload bay, and simulated countdown exercises. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.

  17. Proving Ground Potential Mission and Flight Test Objectives and Near Term Architectures

    NASA Technical Reports Server (NTRS)

    Smith, R. Marshall; Craig, Douglas A.; Lopez, Pedro Jr.

    2016-01-01

    NASA is developing a Pioneering Space Strategy to expand human and robotic presence further into the solar system, not just to explore and visit, but to stay. NASA's strategy is designed to meet technical and non-technical challenges, leverage current and near-term activities, and lead to a future where humans can work, learn, operate, and thrive safely in space for an extended, and eventually indefinite, period of time. An important aspect of this strategy is the implementation of proving ground activities needed to ensure confidence in both Mars systems and deep space operations prior to embarking on the journey to the Mars. As part of the proving ground development, NASA is assessing potential mission concepts that could validate the required capabilities needed to expand human presence into the solar system. The first step identified in the proving ground is to establish human presence in the cis-lunar vicinity to enable development and testing of systems and operations required to land humans on Mars and to reach other deep space destinations. These capabilities may also be leveraged to support potential commercial and international objectives for Lunar Surface missions. This paper will discuss a series of potential proving ground mission and flight test objectives that support NASA's journey to Mars and can be leveraged for commercial and international goals. The paper will discuss how early missions will begin to satisfy these objectives, including extensibility and applicability to Mars. The initial capability provided by the launch vehicle will be described as well as planned upgrades required to support longer and more complex missions. Potential architectures and mission concepts will be examined as options to satisfy proving ground objectives. In addition, these architectures will be assessed on commercial and international participation opportunities and on how well they develop capabilities and operations applicable to Mars vicinity missions.

  18. STS-96 Launch of Discovery from Pad 39-B

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The launch of Space Shuttle Discovery on mission STS-96 is reflected in the waters of Banana Creek just after sunrise. Liftoff occurred at 6:49:42 a.m. EDT. In the shadows near the bottom are silhouetted a number of spectators at the Banana Creek viewing site. STS-96 is on a 10-day logistics and resupply mission for the International Space Station. Along with such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-involved experiment, Discovery carries about 4,000 pounds of supplies, to be stored aboard the station for use by future crews, including laptop computers, cameras, tools, spare parts, and clothing. The mission includes a space walk to attach the cranes to the outside of the ISS for use in future construction. Landing is expected at the SLF on June 6 about

  19. STS-96 Launch of Discovery from Pad 39-B

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The brilliant flames from the launch of Space Shuttle Discovery light up the billows of steam below. Mission STS-96 lifted off at 6:49:42 a.m. EDT. The crew of seven begin a 10-day logistics and resupply mission for the International Space Station, carrying about 4,000 pounds of supplies, to be stored aboard the station for use by future crews, including laptop computers, cameras, tools, spare parts, and clothing. The mission also includes such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-involved experiment. It will include a space walk to attach the cranes to the outside of the ISS for use in future construction. Landing is expected at the SLF on June 6 about 1:58 a.m. EDT.

  20. STS-96 Launch of Discovery from Pad 39-B

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Space Shuttle Discovery is hurled through a gossamer sky after launch today on mission STS-96. Lifting off at 6:49:42 a.m. EDT, the crew of seven begin a 10-day logistics and resupply mission for the International Space Station. Discovery carries about 4,000 pounds of supplies, to be stored aboard the station for use by future crews, including laptop computers, cameras, tools, spare parts, and clothing. The mission also includes such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-involved experiment. It will include a space walk to attach the cranes to the outside of the ISS for use in future construction. Landing is expected at the SLF on June 6 about 1:58 a.m. EDT.

  1. Science Objectives and Rationale for the Radiation Belt Storm Probes Mission

    NASA Astrophysics Data System (ADS)

    Mauk, B. H.; Fox, N. J.; Kanekal, S. G.; Kessel, R. L.; Sibeck, D. G.; Ukhorskiy, A.

    2013-11-01

    The NASA Radiation Belt Storm Probes (RBSP) mission addresses how populations of high energy charged particles are created, vary, and evolve in space environments, and specifically within Earth's magnetically trapped radiation belts. RBSP, with a nominal launch date of August 2012, comprises two spacecraft making in situ measurements for at least 2 years in nearly the same highly elliptical, low inclination orbits (1.1×5.8 RE, 10∘). The orbits are slightly different so that 1 spacecraft laps the other spacecraft about every 2.5 months, allowing separation of spatial from temporal effects over spatial scales ranging from ˜0.1 to 5 RE. The uniquely comprehensive suite of instruments, identical on the two spacecraft, measures all of the particle (electrons, ions, ion composition), fields ( E and B), and wave distributions ( d E and d B) that are needed to resolve the most critical science questions. Here we summarize the high level science objectives for the RBSP mission, provide historical background on studies of Earth and planetary radiation belts, present examples of the most compelling scientific mysteries of the radiation belts, present the mission design of the RBSP mission that targets these mysteries and objectives, present the observation and measurement requirements for the mission, and introduce the instrumentation that will deliver these measurements. This paper references and is followed by a number of companion papers that describe the details of the RBSP mission, spacecraft, and instruments.

  2. Science Objectives and Rationale for the Radiation Belt Storm Probes Mission

    NASA Technical Reports Server (NTRS)

    Mauk, B.H.; Fox, Nicola J.; Kanekal, S. G.; Kessel, R. L.; Sibek, D. G.; Ukhorskiy, A.

    2012-01-01

    The NASA Radiation Belt Storm Probes (RBSP) mission addresses how populationsof high energy charged particles are created, vary, and evolve in space environments,and specifically within Earths magnetically trapped radiation belts. RBSP, with a nominallaunch date of August 2012, comprises two spacecraft making in situ measurements for atleast 2 years in nearly the same highly elliptical, low inclination orbits (1.1 5.8 RE, 10).The orbits are slightly different so that 1 spacecraft laps the other spacecraft about every2.5 months, allowing separation of spatial from temporal effects over spatial scales rangingfrom 0.1 to 5 RE. The uniquely comprehensive suite of instruments, identical on the twospacecraft, measures all of the particle (electrons, ions, ion composition), fields (E and B),and wave distributions (dE and dB) that are needed to resolve the most critical science questions.Here we summarize the high level science objectives for the RBSP mission, providehistorical background on studies of Earth and planetary radiation belts, present examples ofthe most compelling scientific mysteries of the radiation belts, present the mission design ofthe RBSP mission that targets these mysteries and objectives, present the observation andmeasurement requirements for the mission, and introduce the instrumentation that will deliverthese measurements. This paper references and is followed by a number of companionpapers that describe the details of the RBSP mission, spacecraft, and instruments.

  3. STS-112 Atlantis Launch from LC-39B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - A distant view creates a frame of leaves around the launch of Space Shuttle Atlantis on mission STS-112. Liftoff occurred on time at 3:46 p.m. EDT. Along with a crew of six, Atlantis carries the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss and CETA Cart A.

  4. STS-112 Atlantis Launch from LC-39B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Rising clouds of smoke and steam appear to surround Space Shuttle Atlantis as it hurtles toward space on mission STS-112. Liftoff occurred on time at 3:46 p.m. EDT. Along with a crew of six, Atlantis carries the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss. [Photo courtesy of Scott Andrews

  5. STS-112 Atlantis Launch from LC-39B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - -- Space Shuttle Atlantis roars toward the clear blue sky and space as it begins its journey to the International Space Station (ISS) on mission STS-112. Liftoff occurred on time at 3:46 p.m. EDT. Along with a crew of six, Atlantis carries the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A to the Space Station. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss.

  6. STS-112 Atlantis Launch from LC-39B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The brilliance of the launch of Space Shuttle Atlantis is reflected in nearby waters. Liftoff of the Shuttle on mission STS-112 occurred on time at 3:46 p.m. EDT. Along with a crew of six, Atlantis carries the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss. [Photo courtesy of Scott Andrews

  7. STS-112 Atlantis Launch from LC-39B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Twin columns of white flames from the solid rocket boosters propel Space Shuttle Atlantis toward space after an on-time liftoff of 3:46 p.m. EDT on mission STS-112. Along with a crew of six, Atlantis carries the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss. [Photo courtesy of Scott Andrews

  8. STS-112 Atlantis Launch from LC-39B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The brilliance of the launch of Space Shuttle Atlantis is reflected in nearby waters. Liftoff of the Shuttle on mission STS-112 occurred on time at 3:46 p.m. EDT. Along with a crew of six, Atlantis carries the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss.

  9. The STS-87 crew members and their spouses pose in front of Columbia at LC 39B

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The crew of STS-87 pose with their spouses in front of Kennedy Space Center's Launch Pad 39B during final prelaunch activities leading up to the scheduled Nov. 19 liftoff. From left to right are: Vera Kadenyuk, wife of Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine who is next to Vera; Mission Specialist Winston Scott and his wife, Marilyn; Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan, and his wife, Hitomi; Jeannie Kregel, who is married to Commander Kevin Kregel standing next to her; Mission Specialist Kalpana Chawla, Ph.D., and her husband, Jean-Pierre Harrison; and Pilot Steven Lindsey and his wife Diane. STS-87 will be the fourth flight of the United States Microgravity Payload and the Spartan-201 deployable satellite.

  10. STS-102 Discovery lifts off from Launch Pad 39-B

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - Viewed from the top of the Vehicle Assembly Building, Space Shuttle Discovery leaps from the Earth against the background of the Atlantic Ocean on mission STS-102. Liftoff at dawn occurrred at 6:42:09 EST for the eighth flight to the International Space Station.

  11. Mission objectives for geological exploration of the Apollo 16 landing site

    NASA Technical Reports Server (NTRS)

    Muehlberger, W. R.; Horz, F.; Sevier, J. R.; Ulrich, G. E.

    1980-01-01

    The objectives of the Apollo 16 mission to delineate the nature and origin of two major physiographic units of the central lunar highlands are discussed. Surface exploration plans, specific sampling procedures, operational constraints, and suites of samples that were collected for specific local objectives are described. Pre-mission hypotheses that favored a volcanic origin for the Cayley plains as well as the Descartes mountains were proved to be wrong by the mission results, but not enough samples have been studied to draw any other definite conclusions. Two contrasting schools of thought about the origin of the Apollo fragmental impact deposits are described: one maintains that the samples are predominantly of local origin, while the other suggests more distant, basin-related sources.

  12. The High Energy Solar Physics mission (HESP): Scientific objectives and technical description

    NASA Technical Reports Server (NTRS)

    Crannell, Carol; Dennis, Brian; Davis, John; Emslie, Gordon; Haerendel, Gerhard; Hudson, High; Hurford, Gordon; Lin, Robert; Ling, James; Pick, Monique

    1991-01-01

    The High Energy Solar Physics mission offers the opportunity for major breakthroughs in the understanding of the fundamental energy release and particle acceleration processes at the core of the solar flare problem. The following subject areas are covered: the scientific objectives of HESP; what we can expect from the HESP observations; the high energy imaging spectrometer (HEISPEC); the HESP spacecraft; and budget and schedule.

  13. STS-96 Launch of Discovery from Pad 39-B

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Space Shuttle Discovery begins its climb into space, clearing the fixed service structure at left, after liftoff at 6:49:42 a.m. EDT. The crew of seven begin a 10-day logistics and resupply mission for the International Space Station. Discovery carries about 4,000 pounds of supplies, to be stored aboard the station for use by future crews, including laptop computers, cameras, tools, spare parts, and clothing. The mission also includes such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-involved experiment. It will include a space walk to attach the cranes to the outside of the ISS for use in future construction. Landing is expected at the SLF on June 6 about 1:58 a.m. EDT.

  14. STS-102 Discovery lifts off from Launch Pad 39-B

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - Spectators line the banks of the turn basin to watch the dawn launch of Space Shuttle Discovery on mission STS-102. The rosy sky pales in comparison to the deep rose of the orbiter'''s exhaust trail that captures the rising sun'''s rays. Liftoff occurred at 6:42:09 EST for the eighth flight to the International Space Station.

  15. Piloted Missions to Near-Earth Objects via the Crew Exploration Vehicle

    NASA Astrophysics Data System (ADS)

    Abell, Paul A.; Korsmeyer, D.; Landis, R.; Jones, T.; Morrison, D.; Adamo, D.; Lemke, L.; Gonzales, A.; Gershman, B.; Sweetser, T.; Johnson, L.; Lu, E.

    2007-10-01

    A recent study has examined the feasibility of sending the Crew Exploration Vehicle (CEV) to a near-Earth object (NEO). One of the significant advantages of this type of mission is that it validates the foundational infrastructure for the Vision for Space Exploration and Exploration Systems Architecture Study in the run up to the lunar sorties at the end of the next decade ( 2020). Sending a human expedition to a NEO demonstrates the broad utility of the Constellation Program's Orion CEV capsule and Ares launch systems. This mission would be the first human expedition to an interplanetary body outside of the Earth-Moon system and would help NASA regain crucial operational experience conducting crewed exploration missions outside of low-Earth orbit, which humanity has not attempted in nearly 40 years. Such a mission would not only provide a great deal of technical and engineering data on spacecraft operations for future human space exploration, but would also provide the capability to conduct an in-depth scientific investigation of a NEO. Essential physical and geochemical properties of these objects can best be determined from dedicated spacecraft. In addition, a crewed vehicle would be able to test several different sample collection techniques, and target specific areas of interest via extra-vehicular activities (EVAs) much more capably than a robotic spacecraft. Such capabilities greatly enhance any scientific return from this type of mission. Missions to NEOs would also have practical applications for resource utilization and planetary defense, two issues that will be relevant in the not-too-distant future as humanity begins to explore, understand, and utilize the solar system. These scientific and practical aspects, along with the programmatic and operational benefits of a human venture into deep space, make a mission to a NEO using Constellation systems a compelling prospect. This work is sponsored by NASA's Constellation Advanced Programs Office.

  16. Research Objectives for Human Missions in the Proving Ground of Cis-Lunar Space

    NASA Astrophysics Data System (ADS)

    Spann, James; Niles, Paul B.; Eppler, Dean B.; Kennedy, Kriss J.; Lewis, Ruthan.; Sullivan, Thomas A.

    2016-04-01

    Introduction: This talk will introduce the preliminary findings in support of NASA's Future Capabilities Team. In support of the ongoing studies conducted by NASA's Future Capabilities Team, we are tasked with collecting research objectives for the Proving Ground activities. The objectives could include but are certainly not limited to: demonstrating crew well being and performance over long duration missions, characterizing lunar volatiles, Earth monitoring, near Earth object search and identification, support of a far-side radio telescope, and measuring impact of deep space environment on biological systems. Beginning in as early as 2023, crewed missions beyond low Earth orbit will begin enabled by the new capabilities of the SLS and Orion vehicles. This will initiate the "Proving Ground" phase of human exploration with Mars as an ultimate destination. The primary goal of the Proving Ground is to demonstrate the capability of suitably long duration spaceflight without need of continuous support from Earth, i.e. become Earth Independent. A major component of the Proving Ground phase is to conduct research activities aimed at accomplishing major objectives selected from a wide variety of disciplines including but not limited to: Astronomy, Heliophysics, Fundamental Physics, Planetary Science, Earth Science, Human Systems, Fundamental Space Biology, Microgravity, and In Situ Resource Utilization. Mapping and prioritizing the most important objectives from these disciplines will provide a strong foundation for establishing the architecture to be utilized in the Proving Ground. Possible Architectures: Activities and objectives will be accomplished during the Proving Ground phase using a deep space habitat. This habitat will potentially be accompanied by a power/propulsion bus capable of moving the habitat to accomplish different objectives within cis-lunar space. This architecture can also potentially support staging of robotic and tele-robotic assets as well as

  17. Research Objectives for Human Missions in the Proving Ground of Cis-Lunar Space

    NASA Astrophysics Data System (ADS)

    Spann, James; Niles, Paul; Eppler, Dean; Kennedy, Kriss; Lewis, Ruthan; Sullivan, Thomas

    2016-07-01

    Introduction: This talk will introduce the preliminary findings in support of NASA's Future Capabilities Team. In support of the ongoing studies conducted by NASA's Future Capabilities Team, we are tasked with collecting re-search objectives for the Proving Ground activities. The objectives could include but are certainly not limited to: demonstrating crew well being and performance over long duration missions, characterizing lunar volatiles, Earth monitoring, near Earth object search and identification, support of a far-side radio telescope, and measuring impact of deep space environment on biological systems. Beginning in as early as 2023, crewed missions beyond low Earth orbit will be enabled by the new capabilities of the SLS and Orion vehicles. This will initiate the "Proving Ground" phase of human exploration with Mars as an ultimate destination. The primary goal of the Proving Ground is to demonstrate the capability of suitably long dura-tion spaceflight without need of continuous support from Earth, i.e. become Earth Independent. A major component of the Proving Ground phase is to conduct research activities aimed at accomplishing major objectives selected from a wide variety of disciplines including but not limited to: Astronomy, Heliophysics, Fun-damental Physics, Planetary Science, Earth Science, Human Systems, Fundamental Space Biology, Microgravity, and In Situ Resource Utilization. Mapping and prioritizing the most important objectives from these disciplines will provide a strong foundation for establishing the architecture to be utilized in the Proving Ground. Possible Architectures: Activities and objectives will be accomplished during the Proving Ground phase using a deep space habitat. This habitat will potentially be accompanied by a power/propulsion bus capable of moving the habitat to accomplish different objectives within cis-lunar space. This architecture can also potentially support stag-ing of robotic and tele-robotic assets as well as

  18. Objectives for Mars Orbital Missions in the 2020s: Report from a MEPAG Science Analysis Group

    NASA Astrophysics Data System (ADS)

    Zurek, R. W.; Campbell, B. A.; Diniega, S.; Lock, R. E.

    2015-12-01

    NASA Headquarters is looking at possible missions to Mars to follow the proposed 2020 Mars rover mission currently in development. One option being considered is a multi-functional orbiter, launched in the early 2020's, whose capabilities could address objectives in the following areas: • Replenishment of the telecommunications and reconnaissance infrastructure presently provided by the aging Mars Odyssey and Mars Reconnaissance Orbiters; • Scientific and technical progress on the NRC Planetary Science Decadal Survey priorities, updated MEPAG Goals, and/or follow-up of new discoveries; • Location and quantification of in situ resources for utilization by future robotic and human surface-based missions; and • Data needed to address Strategic Knowledge Gaps (SKGs), again for possible human missions. The Mars Exploration Program Analysis Group (MEPAG) was asked to prepare an analysis of possible science objectives and remote sensing capabilities that could be implemented by such a multi-purpose Mars orbiter launched in the 2022/24 timeframe. MEPAG conducted this analysis through formation of a Next Orbiter Science Analysis Group (NEX-SAG), which was chartered jointly by the NASA Science and Human Exploration Directorates. The SAG was asked to conduct this study within a range of mission capabilities, including the possible first use of Solar Electric Propulsion (SEP) in the Mars system. SEP could provide additional power enabling new payload components and possible changes in orbit (e.g., orbital inclination change) that permit different mission observational campaigns (e.g., polar and non-polar). Special attention was paid towards identifying synergies between science investigations, reconnaissance, and resource/SKG needs. We will present the findings and conclusions of this NEX-SAG regarding possible objectives for the next NASA Orbiter to Mars.

  19. STS-112 Atlantis Launch from LC-39B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - The afternoon sun casts a shadow on Space Shuttle Atlantis as it launches on its journey to the International Space Station. Liftoff occurred on time at 3:46 p.m. EDT. Along with a crew of six, Atlantis carries the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss and CETA cart.

  20. STS-95 Space Shuttle Discovery rollout to Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The STS-95 Space Shuttle Discovery sits on the Mobile Launch Platform, still atop the crawler transporter, at Launch Pad 39B. To its left is the Fixed Service Structure that provides access to the orbiter and the Rotating Service Structure. To its right is the elevated water tank, with a capacity of 300,000 gallons. Part of the sound suppression water system, the tank stands 290 feet high on the northeast side of the pad. Water from the tank is released just before ignition of the orbiter's three main engines and twin solid rocket boosters. The entire system reduces the acoustical levels within the orbiter's payload bay to an acceptable 142 decibels. Beyond the orbiter is seen the Atlantic Ocean. While at the launch pad, the orbiter, external tank and solid rocket boosters will undergo final preparations for the launch, scheduled to lift off Oct. 29. The mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  1. STS-102 Space Shuttle Discovery rolls out to Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Space Shuttle Discovery sits on Launch Pad 39B after its approximately 5-hour rollout from the Vehicle Assembly Building. At center left can be seen the White Room, the environmentally controlled chamber that provides entry into the orbiter for the astronaut crews. The chamber is at the end of the Orbiter Access Arm, which has not been extended yet. At the bottom of Discovery'''s left wing is the tail service mast, one of two belonging to the Mobile Launcher Platform on which the Shuttle rests. The tail service mast is 31 feet high, 15 feet long and 9 feet wide. A second TSM is on the other side. They support the fluid, gas and electrical requirements of the orbiter'''s liquid oxygen and liquid hydrogen aft T-0 umbilicals. Discovery will be flying on mission STS-102 to the International Space Station. Its payload is the Multi-Purpose Logistics Module Leonardo, a '''moving van,''' to carry laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. The flight will also carry the Expedition Two crew up to the Space Station, replacing Expedition One, who will return to Earth on Discovery. Launch is scheduled for March 8 at 6:45 a.m. EST.

  2. How Many Ultra-Low Delta-v Near Earth Objects Remain Undiscovered? Implications for missions.

    NASA Astrophysics Data System (ADS)

    Elvis, Martin; Ranjan, Sukrit; Galache, Jose Luis; Murphy, Max

    2015-08-01

    The past decade has witnessed considerable growth of interest in missions to Near-Earth Objects (NEOs). NEOs are considered prime targets for manned and robotic missions, for both scientific objectives as well as in-situ resource utilization including harvesting of water for propellant and life support and mining of high-value elements for sale on Earth. Appropriate targets are crucial to such missions. Hence, ultra-low delta-v mission targets are strongly favored. Some mission architectures rely on the discovery of more ultra-low delta-v NEOs. In fact the approved and executed NEO missions have all targeted asteroids with ultra-low LEO to asteroid rendezvous delta-v <5.5 km/s.In this paper, we estimate the total NEO population as a function of delta-v, and how many remain to be discovered in various size ranges down to ~100m. We couple the NEOSSat-1 model (Greenstreet et al., 2012) to the NEO size distribution derived from the NEOWISE survey (Mainzer et al., 2011b) to compute an absolute NEO population model. We compare the Minor Planet Center (MPC) catalog of known NEOs to this NEO population model. We compute the delta-v from LEO to asteroid rendezvous orbits using a modified Shoemaker-Helin (S-H) formalism that empirically removes biases found comparing S-H with the results from NHATS. The median delta-v of the known NEOs is 7.3 km/s, the median delta-v predicted by our NEO model is 9.8 km/s, suggesting that undiscovered objects are biased to higher delta-v. The survey of delta-v <10.3 km/s NEOs is essentially complete for objects with diameter D >300 m. However, there are tens of thousands of objects with delta-v <10.3 km/s to be discovered in the D = 50 - 300 m size class (H = 20.4 - 24.3). Our work suggests that there are 100 yet-undiscovered NEOs with delta-v < 5:8 km/s, and 1000 undiscovered NEOs with v < 6.3 km/s. We conclude that, even with complete NEO surveys, the selection of good (i.e. ultra-low delta-v) mission targets is limited given current

  3. The Stratospheric Aerosol and Gas Experiment III/International Space Station Mission: Science Objectives and Mission Status

    NASA Astrophysics Data System (ADS)

    Eckman, R.; Zawodny, J. M.; Cisewski, M. S.; Flittner, D. E.; McCormick, M. P.; Gasbarre, J. F.; Damadeo, R. P.; Hill, C. A.

    2015-12-01

    The Stratospheric Aerosol and Gas Experiment III/International Space Station (SAGE III/ISS) is a strategic climate continuity mission which was included in NASA's 2010 plan, "Responding to the Challenge of Climate and Environmental Change: NASA's Plan for a Climate-Centric Architecture for Earth Observations and Applications from Space." SAGE III/ISS continues the long-term, global measurements of trace gases and aerosols begun in 1979 by SAGE I and continued by SAGE II and SAGE III on Meteor 3M. Using a well characterized occultation technique, the SAGE III instrument's spectrometer will measure vertical profiles of ozone, aerosols, water vapor, nitrogen dioxide, and other trace gases relevant to ozone chemistry. The mission will launch in 2016 aboard a Falcon 9 spacecraft.The primary objective of SAGE III/ISS is to monitor the vertical distribution of aerosols, ozone, and other trace gases in the Earth's stratosphere and troposphere to enhance our understanding of ozone recovery and climate change processes in the stratosphere and upper troposphere. SAGE III/ISS will provide data necessary to assess the state of the recovery in the distribution of ozone, extend the SAGE III aerosol measurement record that is needed by both climate models and ozone models, and gain further insight into key processes contributing to ozone and aerosol variability. The multi-decadal SAGE ozone and aerosol data sets have undergone intense community scrutiny for accuracy and stability. SAGE ozone data have been used to monitor the effectiveness of the Montreal Protocol.The ISS inclined orbit of 51.6 degrees is ideal for SAGE III measurements because the orbit permits solar occultation measurement coverage to approximately +/- 70 degrees of latitude. SAGE III/ISS will make measurements using the solar occultation measurement technique, lunar occultation measurement technique, and the limb scattering measurement technique. In this presentation, we describe the SAGE III/ISS mission, its

  4. Science objectives and performances of NOMAD, a spectrometer suite for the ExoMars TGO mission

    NASA Astrophysics Data System (ADS)

    Vandaele, A. C.; Neefs, E.; Drummond, R.; Thomas, I. R.; Daerden, F.; Lopez-Moreno, J.-J.; Rodriguez, J.; Patel, M. R.; Bellucci, G.; Allen, M.; Altieri, F.; Bolsée, D.; Clancy, T.; Delanoye, S.; Depiesse, C.; Cloutis, E.; Fedorova, A.; Formisano, V.; Funke, B.; Fussen, D.; Geminale, A.; Gérard, J.-C.; Giuranna, M.; Ignatiev, N.; Kaminski, J.; Karatekin, O.; Lefèvre, F.; López-Puertas, M.; López-Valverde, M.; Mahieux, A.; McConnell, J.; Mumma, M.; Neary, L.; Renotte, E.; Ristic, B.; Robert, S.; Smith, M.; Trokhimovsky, S.; Vander Auwera, J.; Villanueva, G.; Whiteway, J.; Wilquet, V.; Wolff, M.

    2015-12-01

    The NOMAD spectrometer suite on the ExoMars Trace Gas Orbiter will map the composition and distribution of Mars' atmospheric trace species in unprecedented detail, fulfilling many of the scientific objectives of the joint ESA-Roscosmos ExoMars Trace Gas Orbiter mission. The instrument is a combination of three channels, covering a spectral range from the UV to the IR, and can perform solar occultation, nadir and limb observations. In this paper, we present the science objectives of the instrument and how these objectives have influenced the design of the channels. We also discuss the expected performance of the instrument in terms of coverage and detection sensitivity.

  5. Multi-Objective Hybrid Optimal Control for Multiple-Flyby Interplanetary Mission Design Using Chemical Propulsion

    NASA Technical Reports Server (NTRS)

    Englander, Jacob A.; Vavrina, Matthew A.

    2015-01-01

    Preliminary design of high-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys and the bodies at which those flybys are performed. For some missions, such as surveys of small bodies, the mission designer also contributes to target selection. In addition, real-valued decision variables, such as launch epoch, flight times, maneuver and flyby epochs, and flyby altitudes must be chosen. There are often many thousands of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the impulsive mission design problem as a multiobjective hybrid optimal control problem. The method is demonstrated on several real-world problems.

  6. STS-90 M.S. Williams with the CSA waves to family and friends near Pad 39B

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-90 Mission Specialist Dafydd (Dave) Williams, M.D., with the Canadian Space Agency speaks with friends and family members near Launch Pad 39B, from which he and the rest of the seven-member crew are scheduled to launch aboard Columbia on May 16 at 2:19 p.m. EDT. The astronauts are under strict health stabilization guidelines to protect them from close contact with persons who do not have health stabilization clearance. This is the 25th flight of Columbia and the 90th mission flown since the start of the Space Shuttle program. STS-90 is a nearly 17-day life sciences research flight that will focus on the most complex and least understood part of the human body -- the nervous system. Neurolab will examine the effects of spaceflight on the brain, spinal cord, peripheral nerves and sensory organs in the human body.

  7. Multi-Objective Multi-User Scheduling for Space Science Missions

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.; Giuliano, Mark

    2010-01-01

    We have developed an architecture called MUSE (Multi-User Scheduling Environment) to enable the integration of multi-objective evolutionary algorithms with existing domain planning and scheduling tools. Our approach is intended to make it possible to re-use existing software, while obtaining the advantages of multi-objective optimization algorithms. This approach enables multiple participants to actively engage in the optimization process, each representing one or more objectives in the optimization problem. As initial applications, we apply our approach to scheduling the James Webb Space Telescope, where three objectives are modeled: minimizing wasted time, minimizing the number of observations that miss their last planning opportunity in a year, and minimizing the (vector) build up of angular momentum that would necessitate the use of mission critical propellant to dump the momentum. As a second application area, we model aspects of the Cassini science planning process, including the trade-off between collecting data (subject to onboard recorder capacity) and transmitting saved data to Earth. A third mission application is that of scheduling the Cluster 4-spacecraft constellation plasma experiment. In this paper we describe our overall architecture and our adaptations for these different application domains. We also describe our plans for applying this approach to other science mission planning and scheduling problems in the future.

  8. The Gamma-Ray Observatory mission objectives and its significance for gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Bertsch, D. L.

    1984-01-01

    The Gamma Ray Observatory (GRO) is an approved NASA mission, programmed for launch in 1988. Its complement of four detectors has established goals: (1) to study the nature of compact gamma-ray sources such as neutron stars and black holes, or objects whose nature is yet to be understood; (2) to search for evidence of nucleosynthesis especially in the regions of supernovae; (3) to study structural features and dynamical properties of the Galaxy; (4) to explore other galaxies, especially the extraordinary types such as radio, Seyferts, and quasars; and (5) to study cosmological effects by examining the diffuse radiation in detail. This paper discusses the design, objectives, and expected scientific results of each of the GRO instruments in view of the GRO mission goals.

  9. Identifying Accessible Near-Earth Objects For Crewed Missions With Solar Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Smet, Stijn De; Parker, Jeffrey S.; Herman, Jonathan F. C.; Aziz, Jonathan; Barbee, Brent W.; Englander, Jacob A.

    2015-01-01

    This paper discusses the expansion of the Near-Earth Object Human Space Flight Accessible Targets Study (NHATS) with Solar Electric Propulsion (SEP). The research investigates the existence of new launch seasons that would have been impossible to achieve using only chemical propulsion. Furthermore, this paper shows that SEP can be used to significantly reduce the launch mass and in some cases the flight time of potential missions as compared to the current, purely chemical trajectories identified by the NHATS project.

  10. Science of Marco Polo : Near-Earth Object Sample Return Mission

    NASA Astrophysics Data System (ADS)

    Barucci, M. A.; Yoshikawa, Makoto; Koschny, Detlef; Boehnhardt, Hermann; Brucato, J. Robert; Coradini, Marcello; Dotto, Elisabetta; Franchi, Ian A.; Green, Simon F.; Josset, Jean-Luc; Michel, Patrick; Kawagushi, Jun; Muinonen, Karri; Oberst, Juergen; Yano, Hajime; Binzel, Richard P.

    MARCO POLO is a joint European-Japanese sample return mission to a Near-Earth Object (NEO), selected by ESA in the framework of COSMIC VISION for an assessment study. This Euro-Asian mission will go to a primitive NEO, such as C or D type, scientifically characterize it at multiple scales, and bring samples back to Earth for detailed scientific investigation. NEOs are part of the small body population in the solar system, which are leftover building blocks of the solar system formation process. They offer important clues to the chemical mixture from which planets formed about 4.6 billion years ago. The scientific objectives of Marco Polo will therefore contribute to a better understanding of the origin and evolution of the Solar System, the Earth, and possibly Life itself. Marco Polo is based on a launch with a Soyuz Fregat and consists of a Mother Spacecraft (MSC), possibly carrying a lander. The MSC would approach the target asteroid and spend a few months for global characterization of the target to select a sampling site. Then, the MSC would then descend to retrieve, using a "touch and go" manoeuvre, several samples which will be transferred to a Sample Return Capsule (SRC). The MSC would return to Earth and release the SRC into the atmosphere for ground recovery. The sample of the NEO will then be available for detailed investigation in ground-based laboratories. The scientific objectives addressed by the mission and the current status of the mission study (ESA-JAXA) will be presented and discussed.

  11. Special issue editorial - Plasma interactions with Solar System Objects: Anticipating Rosetta, Maven and Mars Orbiter Mission

    NASA Astrophysics Data System (ADS)

    Coates, A. J.; Wellbrock, A.; Yamauchi, M.

    2015-12-01

    Within our solar system, the planets, moons, comets and asteroids all have plasma interactions. The interaction depends on the nature of the object, particularly the presence of an atmosphere and a magnetic field. Even the size of the object matters through the finite gyroradius effect and the scale height of cold ions of exospheric origin. It also depends on the upstream conditions, including position within the solar wind or the presence within a planetary magnetosphere. Soon after ESA's Rosetta reached comet Churyumov-Gerasimenko, NASA's Maven and ISRO's Mars Orbiter Mission (MOM) reached Mars, and ESA's Venus Express mission was completed, this issue explores our understanding of plasma interactions with comets, Mars, Venus, and moons in the solar system. We explore the processes which characterise the interactions, such as ion pickup and field draping, and their effects such as plasma escape. Papers are based on data from current and recent space missions, modelling and theory, as we explore our local part of the 'plasma universe'.

  12. Lunar polar ice deposits: scientific and utilization objectives of the Lunar Ice Discovery Mission proposal.

    PubMed

    Duke, Michael B

    2002-03-01

    The Clementine mission has revived interest in the possibility that ice exists in shadowed craters near the lunar poles. Theoretically, the problem is complex, with several possible sources of water (meteoroid, asteroid, comet impact), several possible loss mechanisms (impact vaporization, sputtering, photoionization), and burial by meteorite impact. Opinions of modelers have ranged from no ice to several times 10(16) g of ice in the cold traps. Clementine bistatic radar data have been interpreted in favor of the presence of ice, while Arecibo radar data do not confirm its presence. The Lunar Prospector mission, planned to be flown in the fall of 1997, could gather new evidence for the existence of ice. If ice is present, both scientific and utilitarian objectives would be addressed by a lunar polar rover, such as that proposed to the NASA Discovery program, but not selected. The lunar polar rover remains the best way to understand the distribution and characteristics of lunar polar ice. PMID:11902177

  13. The Mission Accessible Near-Earth Object Survey (MANOS): Project Overview

    NASA Astrophysics Data System (ADS)

    Moskovitz, Nicholas; Polishook, David; Thomas, Cristina; Willman, Mark; DeMeo, Francesca; Mommert, Michael; Endicott, Thomas; Trilling, David; Binzel, Richard; Hinkle, Mary; Siu, Hosea; Neugent, Kathryn; Christensen, Eric; Person, Michael; Burt, Brian; Grundy, Will; Roe, Henry; Abell, Paul; Busch, Michael

    2014-11-01

    The Mission Accessible Near-Earth Object Survey (MANOS) began in August 2013 as a multi-year physical characterization survey that was awarded survey status by NOAO. MANOS will target several hundred mission-accessible NEOs across visible and near-infrared wavelengths, ultimately providing a comprehensive catalog of physical properties (astrometry, light curves, spectra). Particular focus is paid to sub-km NEOs, for which little data currently exists. These small bodies are essential to understanding the link between meteorites and asteroids, pose the most immediate impact hazard to the Earth, and are highly relevant to a variety of planetary mission scenarios. Accessing these targets is enabled through a combination of classical, queue, and target-of-opportunity observations carried out at 1- to 8-meter class facilities in both the northern and southern hemispheres. The MANOS observing strategy is specifically designed to rapidly characterize newly discovered NEOs before they fade beyond observational limits. MANOS will provide major advances in our understanding of the NEO population as a whole and for specific objects of interest. Here we present an overview of the survey, progress to date, and early science highlights including: (1) an estimate of the taxonomic distribution of spectral types for NEOs smaller than ~100 meters, (2) the distribution of rotational properties for approximately 100 previously unstudied objects, (3) models for the dynamical evolution of the overall NEO population over the past 0.5 Myr, and (4) progress in developing a new set of online tools at asteroid.lowell.edu that will enable near realtime public dissemination of our data while providing a portal to facilitate coordination efforts within the small body observer community.MANOS is supported through telescope allocations from NOAO and Lowell Observatory. We acknowledge funding support from an NSF Astronomy and Astrophysics Postdoctoral Fellowship to N. Moskovitz and NASA NEOO grant

  14. The Mission Accessible Near-Earth Object Survey (MANOS) — First Results

    NASA Astrophysics Data System (ADS)

    Moskovitz, Nicholas; Avner, Louis; Binzel, Richard; Burt, Brian; Christensen, Eric; DeMeo, Francesca; Hinkle, Mary; Mommert, Michael; Person, Michael; Polishook, David; Schottland, Robert; Siu, Hosea; Thirouin, Audrey; Thomas, Cristina; Trilling, David; Wasserman, Lawrence; Willman, Mark

    2015-11-01

    The Mission Accessible Near-Earth Object Survey (MANOS) began in August 2013 as a multi-year physical characterization survey that was awarded survey status by NOAO and has since expanded operations to include facilities at Lowell Observatory and the University of Hawaii. MANOS will target several hundred mission-accessible NEOs across visible and near-infrared wavelengths, providing a comprehensive catalog of physical properties (astrometry, light curves, spectra). Particular focus is paid to sub-km NEOs, where little data currently exists. These small bodies are essential to understanding the link between meteorites and asteroids, pose the most immediate impact hazard to the Earth, and are highly relevant to a variety of planetary mission scenarios. Observing these targets is enabled through a combination of classical, queue, and target-of-opportunity observations carried out at 1- to 8-meter class facilities in both the northern and southern hemispheres. The MANOS observing strategy enables the characterization of roughly 10% of newly discovered NEOs before they fade beyond observational limits.To date MANOS has obtained data on over 200 sub-km NEOs and will ultimately provide major advances in our understanding of the NEO population as a whole and for specific objects of interest. Here we present first results from the survey including: (1) the de-biased taxonomic distribution of spectral types for NEOs smaller than ~100 meters, (2) the distribution of rotational properties for small objects with high Earth-encounter probabilities, (3) progress in developing a new set of online tools at asteroid.lowell.edu that will help to facilitate observational planning for the small body observer community, and (4) physical properties derived from rotational light curves.MANOS is supported through telescope allocations from NOAO, Lowell Observatory and the University of Hawaii. We acknowledge funding support from NASA NEOO grant number NNX14AN82G and an NSF Astronomy and

  15. Small Solar Electric Propulsion Spacecraft Concept for Near Earth Object and Inner Solar System Missions

    NASA Technical Reports Server (NTRS)

    Lang, Jared J.; Randolph, Thomas M.; McElrath, Timothy P.; Baker, John D.; Strange, Nathan J.; Landau, Damon; Wallace, Mark S.; Snyder, J. Steve; Piacentine, Jamie S.; Malone, Shane; Bury, Kristen M.; Tracy, William H.

    2011-01-01

    Near Earth Objects (NEOs) and other primitive bodies are exciting targets for exploration. Not only do they provide clues to the early formation of the universe, but they also are potential resources for manned exploration as well as provide information about potential Earth hazards. As a step toward exploration outside Earth's sphere of influence, NASA is considering manned exploration to Near Earth Asteroids (NEAs), however hazard characterization of a target is important before embarking on such an undertaking. A small Solar Electric Propulsion (SEP) spacecraft would be ideally suited for this type of mission due to the high delta-V requirements, variety of potential targets and locations, and the solar energy available in the inner solar system.Spacecraft and mission trades have been performed to develop a robust spacecraft design that utilizes low cost, off-the-shelf components that could accommodate a suite of different scientific payloads for NEO characterization. Mission concepts such as multiple spacecraft each rendezvousing with different NEOs, single spacecraft rendezvousing with separate NEOs, NEO landers, as well as other inner solar system applications (Mars telecom orbiter) have been evaluated. Secondary launch opportunities using the Expendable Secondary Payload Adapter (ESPA) Grande launch adapter with unconstrained launch dates have also been examined.

  16. Multi-Objective Hybrid Optimal Control for Multiple-Flyby Interplanetary Mission Design using Chemical Propulsion

    NASA Technical Reports Server (NTRS)

    Englander, Jacob A.; Vavrina, Matthew A.

    2015-01-01

    Preliminary design of high-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys and the bodies at which those flybys are performed. For some missions, such as surveys of small bodies, the mission designer also contributes to target selection. In addition, real-valued decision variables, such as launch epoch, flight times, maneuver and flyby epochs, and flyby altitudes must be chosen. There are often many thousands of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the impulsive mission design problem as a multi-objective hybrid optimal control problem. The method is demonstrated on several real-world problems. Two assumptions are frequently made to simplify the modeling of an interplanetary high-thrust trajectory during the preliminary design phase. The first assumption is that because the available thrust is high, any maneuvers performed by the spacecraft can be modeled as discrete changes in velocity. This assumption removes the need to integrate the equations of motion governing the motion of a spacecraft under thrust and allows the change in velocity to be modeled as an impulse and the expenditure of propellant to be modeled using the time-independent solution to Tsiolkovsky's rocket equation [1]. The second assumption is that the spacecraft moves primarily under the influence of the central body, i.e. the sun, and all other perturbing forces may be neglected in preliminary design. The path of the spacecraft may then be modeled as a series of conic sections. When a spacecraft performs a close

  17. The Bias-Corrected Taxonomic Distribution of Mission-Accessible Small Near-Earth Objects

    NASA Astrophysics Data System (ADS)

    Hinkle, Mary L.; Moskovitz, Nicholas; Trilling, David; Binzel, Richard P.; Thomas, Cristina; Christensen, Eric; DeMeo, Francesca; Person, Michael J.; Polishook, David; Willman, Mark

    2015-11-01

    Although they are thought to compose the majority of the Near-Earth object (NEO) population, the small (d < 1 km) near-Earth asteroids (NEAs) have not yet been studied as thoroughly as their larger cousins. Sub-kilometer objects are amongst the most abundant newly discovered NEOs and are often targets of opportunity, observable for only a few days to weeks after their discovery. Even at their brightest (V ~ 18), these asteroids are faint enough that they must be observed with large ground-based telescopes.The Mission Accessible Near-Earth Object Survey (MANOS) began in August 2013 as a multi-year physical characterization survey that was awarded survey status by NOAO. MANOS will target several hundred mission-accessible NEOs across visible and near-infrared wavelengths, ultimately providing a comprehensive catalog of physical properties (astrometry, light curves, spectra).Fifty-seven small, mission-accessible NEAs were observed between mid 2013 and mid 2015 using GMOS at Gemini North & South observatories as well as the DeVeny spectrograph at Lowell Observatory's Discovery Channel Telescope. Archival data of 43 objects from the MIT-UH-IRTF Joint Campaign for NEO Spectral Reconnaissance (PI R. Binzel) were also used. Taxonomic classifications were obtained by fitting our spectra to the mean reflectance spectra of the Bus asteroid taxonomy (Bus & Binzel 2002). Small NEAs are the likely progenitors of meteorites; an improved understanding of the abundance of meteorite parent body types in the NEO population improves understanding of how the two populations are related as well as the biases Earth's atmosphere imposes upon the meteorite collection.We present classifications for these objects as well as results for the debiased distribution of taxa(as a proxy for composition) as a function of object size and compare to the observed fractions of ordinary chondritemeteorites and asteroids with d > 1 km. Amongst the smallest NEOs we find an unexpected distribution of

  18. The Bias-Corrected Taxonomic Distribution of Mission-Accessible Small Near-Earth Objects

    NASA Astrophysics Data System (ADS)

    Hinkle, Mary Louise; Moskovitz, Nicholas; Trilling, David; Binzel, Richard; DeMeo, Francesca; Thomas, Cristina; Polishook, David; Person, Michael; Willman, Mark; Christensen, Eric

    2015-08-01

    As relics of the inner solar system's formation, asteroids trace the origins of solar system material. Near-Earth asteroids (NEAs) are the intermediaries between material that falls to Earth as meteorites and the source regions of those meteorites in the main belt. A better understanding of the physical parameters of NEAs, in particular their compositions, provides a more complete picture of the processes that shaped the inner solar system and that deliver material from the main belt to near-Earth space.Across the entire NEA population, the smallest (d < 1 km) objects have not been well-studied. These very small objects are often targets of opportunity, observable for only a few days to weeks after their discovery. Even at their brightest (V ~ 18), these asteroids are faint enough that they must be observed with large ground-based telescopes.The Mission Accessible Near-Earth Object Survey (MANOS) began in August 2013 as a multi-year physical characterization survey that was awarded survey status by NOAO. MANOS will target several hundred mission-accessible NEOs across visible and near-infrared wavelengths, ultimately providing a comprehensive catalog of physical properties (astrometry, light curves, spectra). Seventy small, mission-accessible NEAs were observed between mid 2013 and mid 2015 using the Gemini Multi-Object Spectrograph at Gemini North & South observatories. Taxonomic classifications were obtained by fitting our spectra to the mean reflectance spectra of the Bus asteroid taxonomy (Bus & Binzel 2002). The smallest near-Earth asteroids are the likely progenitors of meteorites; we expect the observed fraction of ordinary chondrite meteorites to match that of their parent bodies, S-type asteroids. The distribution of the population of small NEAs should also resemble that of their parent bodies, the larger asteroids (d > 1 km). We present classifications for these objects as well as preliminary results for the debiased distribution of taxa (as a proxy for

  19. RAB39B gene mutations are not a common cause of Parkinson's disease or dementia with Lewy bodies.

    PubMed

    Hodges, Kyndall; Brewer, Sheridan S; Labbé, Catherine; Soto-Ortolaza, Alexandra I; Walton, Ronald L; Strongosky, Audrey J; Uitti, Ryan J; van Gerpen, Jay A; Ertekin-Taner, Nilüfer; Kantarci, Kejal; Lowe, Val J; Parisi, Joseph E; Savica, Rodolfo; Graff-Radford, Jonathan; Jones, David T; Knopman, David S; Petersen, Ronald C; Murray, Melissa E; Graff-Radford, Neill R; Ferman, Tanis J; Dickson, Dennis W; Wszolek, Zbigniew K; Boeve, Bradley F; Ross, Owen A; Lorenzo-Betancor, Oswaldo

    2016-09-01

    Mutations in Ras-related protein Rab-39B (RAB39B) gene have been linked to X-linked early-onset Parkinsonism with intellectual disabilities. The aim of this study was to address the genetic contribution of RAB39B to Parkinson's disease (PD), dementia with Lewy bodies (DLB), and pathologically confirmed Lewy body dementia (pLBD) cases. A cohort of 884 PD, 399 DLB, and 379 pLBD patients were screened for RAB39B mutations, but no coding variants were found, suggesting RAB39B mutations are not a common cause of PD, DLB, or pLBD in Caucasian population. PMID:27459931

  20. Multi-Mission Space Exploration Vehicle Concept Simulation of Operations in Proximity to a Near Earth Object

    NASA Technical Reports Server (NTRS)

    Kline, Heather

    2011-01-01

    This paper details a project to simulate the dynamics of a proposed Multi-Mission Space Exploration Vehicle (MMSEV), and modeling the control of this spacecraft. A potential mission of the MMSEV would be to collect samples from a Near-Earth Object (NEO), a mission which would require the spacecraft to be able to navigate to an orbit keeping it stationary over an area of a spinning asteroid while a robotic arm interacts with the surface.

  1. Operational space human factors - Methodology for a DSO. [Detailed Supplementary Objective for manned Shuttle Orbiter missions

    NASA Technical Reports Server (NTRS)

    Callaghan, Thomas F.; Gosbee, John W.; Adam, Susan C.

    1992-01-01

    The Human Factors Assessment of Orbiter Missions (Detailed Supplementary Objective 904) was conducted on STS-40 (Spacelab Life Sciences 1) in order to bring human factors into the operational world of manned space flight. This paper describes some of its methods. Included are explanations of general and space human factors, and a description of DSO 904 study objectives and results. The methods described include ways to collect background information for studies and also different in-flight data collection techniques. Several lessons for the space human factors engineer are reflected in this paper. First, method development is just as important as standards generation. Second, results of investigations should always have applicability to design. Third, cooperation with other NASA groups is essential. Finally, the human is the most important component of the space exploration system, and often the most difficult to study.

  2. Aspects of Solar System Objects Dynamics with the Gaia Mission and in the Gaia Era

    NASA Astrophysics Data System (ADS)

    Hestroffer, Daniel J. G. J.; David, Pedro; Hees, Aurélien; Kovalenko, Irina; Kudryashova, Maria; Thuillot, William; Berthier, Jerome; Carry, Benoit; Emelynaov, Nikolai; Fouchard, Marc; Lainey, Valery; Le Poncin-Lafitte, Christophe; Stoica, Radu; Tanga, Paolo

    2015-05-01

    After its successful launch in December 2013, and commissioning period, ESA's astrometric space mission Gaia has now started its scientific operations. In addition to the 3D census of our Milky Way with high precision parallax, proper motion, and other parameters derived for a billion of stars, Gaia will also provide a scientific harvest for Solar System Objects (SSO) science. The high precision astrometry and photometry that will be regularly collected for about 300,000 asteroids - during the 5years nominal mission time - will enable significant improvements on fundamental observational data for a very large number of objects.I will describe the current status of the satellite and observations, the Gaia-FUN-SSO follow-up network, data releases policy, and data validations. We will also present the expected results on the dynamics of asteroids and comets, asteroid masses and binary asteroids, tests of GR, and prospects of SSO science (satellites, stellar occultations, etc.) with the Gaia stellar catalogue.Acknowledgements: Thanks to the Gaia DPAC CU4 consortium, and the Labex ESEP (No 2011-LABX-030) & Initiative d'excellence PSL* (convention No ANR-10-IDEX-0001-02)

  3. Bi-objective optimization of a multiple-target active debris removal mission

    NASA Astrophysics Data System (ADS)

    Bérend, Nicolas; Olive, Xavier

    2016-05-01

    The increasing number of space debris in Low-Earth Orbit (LEO) raises the question of future Active Debris Removal (ADR) operations. Typical ADR scenarios rely on an Orbital Transfer Vehicle (OTV) using one of the two following disposal strategies: the first one consists in attaching a deorbiting kit, such as a solid rocket booster, to the debris after rendezvous; with the second one, the OTV captures the debris and moves it to a low-perigee disposal orbit. For multiple-target ADR scenarios, the design of such a mission is very complex, as it involves two optimization levels: one for the space debris sequence, and a second one for the "elementary" orbit transfer strategy from a released debris to the next one in the sequence. This problem can be seen as a Time-Dependant Traveling Salesman Problem (TDTSP) with two objective functions to minimize: the total mission duration and the total propellant consumption. In order to efficiently solve this problem, ONERA has designed, under CNES contract, TOPAS (Tool for Optimal Planning of ADR Sequence), a tool that implements a Branch & Bound method developed in previous work together with a dedicated algorithm for optimizing the "elementary" orbit transfer. A single run of this tool yields an estimation of the Pareto front of the problem, which exhibits the trade-off between mission duration and propellant consumption. We first detail our solution to cope with the combinatorial explosion of complex ADR scenarios with 10 debris. The key point of this approach is to define the orbit transfer strategy through a small set of parameters, allowing an acceptable compromise between the quality of the optimum solution and the calculation cost. Then we present optimization results obtained for various 10 debris removal scenarios involving a 15-ton OTV, using either the deorbiting kit or the disposal orbit strategy. We show that the advantage of one strategy upon the other depends on the propellant margin, the maximum duration allowed

  4. The Mission Accessible Near-Earth Object Survey (MANOS): first photometric results.

    NASA Astrophysics Data System (ADS)

    Thirouin, Audrey; Moskovitz, N.; Binzel, R.; Christensen, E.; DeMeo, F.; Person, M.; Polishook, D.; Thomas, C.; Trilling, D.; Willman, M.; Burt, B.; Hinkle, M.; Mommert, Michael

    2015-08-01

    The Mission Accessible Near-Earth Object Survey (MANOS) is a physical characterization survey of Near Earth Objects (NEOs) that was originally awarded multi-year survey status by NOAO and recently has employed additional facilities available to Lowell Observatory and the University of Hawaii. Our main goal is to provide physical data, such as rotational properties and composition, for several hundred mission accessible NEOs across visible and near-infrared wavelengths.As of February 2015, 12,287 NEOs have been discovered. Despite this impressive number, physical information for the majority of these objects remains limited. Typical NEOs fade in a matter of days or weeks after their discovery, thus their characterization requires a challenging set of rapid response observations.Using a variety of 1-m to 4-m class telescopes, we aim to observe 5 to 10 newly discovered sub-km NEOs per month in order to derive their rotational properties. Such rotational data can provide useful information about physical properties, like shape, surface heterogeneity/homogeneity, density, internal structure, and internal cohesion. Here, we present early results of the MANOS photometric survey for more than 50 NEOs. One of the goals of this survey is to increase the number of sub-km NEOs whose short-term variability has been studied and to compile a high quality homogeneous database which may be used to perform statistical analyses.We report light curves from our first two years of observing and show objects with rotational periods from a couple of hours down to few seconds. We consider the spin rate distributions of several sub-samples according to their size and other physical parameters. Our results were merged with rotational parameters of other asteroids in the literature to build a larger sample. This allows us to identify correlations of rotational properties with orbital parameters. In particular, we want to study MOID vs. rotation period/morphology/elongation/amplitude, rotation

  5. Research Objectives for Human Missions in the Proving Ground of Cis-Lunar Space

    NASA Technical Reports Server (NTRS)

    Niles, P. B.; Eppler, D. B.; Kennedy, K. J.; Lewis, R.; Spann, J. F.; Sullivan, T. A.

    2016-01-01

    Beginning in as early as 2023, crewed missions beyond low Earth orbit will begin enabled by the new capabilities of the SLS and Orion vehicles. This will initiate the "Proving Ground" phase of human exploration with Mars as an ultimate destination. The primary goal of the Proving Ground is to demonstrate the capability of suitably long duration spaceflight without need of continuous support from Earth, i.e. become Earth Independent. A major component of the Proving Ground phase is to conduct research activities aimed at accomplishing major objectives selected from a wide variety of disciplines including but not limited to: Astronomy, Heliophysics, Fundamental Physics, Planetary Science, Earth Science, Human Systems, Fundamental Space Biology, Microgravity, and In A major component of the Proving Ground phase is to conduct research activities aimed at accomplishing major objectives selected from a wide variety of disciplines including but not limited to: Astronomy, Heliophysics, Fundamental Physics, Planetary Science, Earth Science, Human Systems, Fundamental Space Biology, Microgravity, and In Situ Resource Utilization. Mapping and prioritizing the most important objectives from these disciplines will provide a strong foundation for establishing the architecture to be utilized in the Proving Ground.

  6. A New Lightning Instrumentation System for Pad 39B at the Kennedy Space Center Florida

    NASA Technical Reports Server (NTRS)

    Mata, C. T.; Rakov, V. A.

    2011-01-01

    This viewgraph presentation describes a new lightning instrumentation system for pad 39B at Kennedy Space Center Florida. The contents include: 1) Background; 2) Instrumentation; 3) Meteorological Instrumentation; and 4) Lessons learned. A presentation of the data acquired at Camp Blanding is also shown.

  7. STS-26 Discovery, Orbiter Vehicle (OV) 103, at KSC LC pad 39B

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, connected to service structure at Kennedy Space Center (KSC) launch complex (LC) pad 39B after a six-hour journey from the vehicle assembly building (VAB). Work continues to ready the vehicle for the STS-26 launch later in the summer.

  8. STS-30 Atlantis, OV-104, at KSC LC Pad 39B atop mobile launcher platform

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-30 Atlantis, Orbiter Vehicle (OV) 104, arrives at Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B atop mobile launcher platform. The fixed service structure (FSS) towers above OV-104, its external tank (ET), and its solid rocket boosters (SRBs). The rotating service structure (RSS) is retracted. The launch tower catwalks are also retracted.

  9. Ice Dragon: A Mission to Address Science and Human Exploration Objectives on Mars

    NASA Technical Reports Server (NTRS)

    Stoker, Carol R.; Davila, A.; Sanders, G.; Glass, Brian; Gonzales, A.; Heldmann, Jennifer; Karcz, J.; Lemke, L.; Sanders, G.

    2012-01-01

    We present a mission concept where a SpaceX Dragon capsule lands a payload on Mars that samples ground ice to search for evidence of life, assess hazards to future human missions, and demonstrate use of Martian resources.

  10. Ice Dragon: A Mission to Address Science and Human Exploration Objectives on Mars

    NASA Astrophysics Data System (ADS)

    Stoker, C.; Davilla, A.; Davis, S.; Glass, B.; Gonzales, A.; Heldmann, J.; Karcz, J.; Lemke, L.; Sanders, G.

    2012-06-01

    We present a mission concept where a SpaceX Dragon capsule lands a payload on Mars that samples ground ice to search for evidence of life, assess hazards to future human missions, and demonstrate use of Martian resources.

  11. Loss-of-function mutations in RAB39B are associated with typical early-onset Parkinson disease.

    PubMed

    Lesage, Suzanne; Bras, Jose; Cormier-Dequaire, Florence; Condroyer, Christel; Nicolas, Aude; Darwent, Lee; Guerreiro, Rita; Majounie, Elisa; Federoff, Monica; Heutink, Peter; Wood, Nicholas W; Gasser, Thomas; Hardy, John; Tison, François; Singleton, Andrew; Brice, Alexis

    2015-06-01

    Rab proteins are small molecular weight guanosine triphosphatases involved in the regulation of vesicular trafficking.(1) Three of 4 X-linked RAB genes are specific to the brain, including RAB39B. Recently, Wilson et al.(2) reported that mutations in RAB39B cause X-linked intellectual disability (ID) and pathologically confirmed Parkinson disease (PD). They identified a ∼45-kb deletion resulting in the complete loss of RAB39B in an Australian kindred and a missense mutation in a large Wisconsin kindred. Here, we report an additional affected man with typical PD and mild mental retardation harboring a new truncating mutation in RAB39B. PMID:27066548

  12. Orbit Options for an Orion-Class Spacecraft Mission to a Near-Earth Object

    NASA Astrophysics Data System (ADS)

    Shupe, Nathan C.

    Based on the recommendations of the Augustine Commission, President Obama has proposed a vision for U.S. human spaceflight in the post-Shuttle era which includes a manned mission to a Near-Earth Object (NEO). A 2006-2007 study commissioned by the Constellation Program Advanced Projects Office investigated the feasibility of sending a crewed Orion spacecraft to a NEO using different combinations of elements from the latest launch system architecture at that time. The study found a number of suitable mission targets in the database of known NEOs, and predicted that the number of candidate NEOs will continue to increase as more advanced observatories come online and execute more detailed surveys of the NEO population. The objective of this thesis is to pick up where the previous Constellation study left off by considering what orbit options are available for an Orion-class spacecraft upon arrival at a NEO. A model including multiple perturbations (solar radiation pressure, solar gravity, non-spherical mass distribution of the central body) to two-body dynamics is constructed to numerically integrate the motion of a satellite in close proximity to a small body in an elliptical orbit about the Sun. Analytical limits derived elsewhere in the literature for the thresholds on the size of the satellite orbit required to maintain stability in the presence of these perturbing forces are verified by the numerical model. Simulations about NEOs possessing various physical parameters (size, shape, rotation period) are then used to empirically develop general guidelines for establishing orbits of an Orion-class spacecraft about a NEO. It is found that an Orion-class spacecraft can orbit NEOs at any distance greater than the NEO surface height and less than the maximum semi-major axis allowed by the solar radiation pressure perturbation, provided that the ellipticity perturbation is sufficiently weak (this condition is met if the NEO is relatively round and/or has a long rotation

  13. High Performance Ultra-light Nuclear Rockets for NEO (Near Earth Objects) Interaction Missions

    SciTech Connect

    Powell, J.; Maise, G.; Ludewig, H.; Todosow, M.

    1996-12-31

    The performance capabilities and technology features of ultra compact nuclear thermal rockets based on very high power density ({approximately} 30 Megawatts per liter) fuel elements are described. Nuclear rockets appear particularly attractive for carrying out missions to investigate or intercept Near Earth Objects (NEOS) that potentially could impact on the Earth. Many of these NEO threats, whether asteroids or comets, have extremely high closing velocities, i.e., tens of kilometers per second relative to the Earth. Nuclear rockets using hydrogen propellant enable flight velocities 2 to 3 times those achievable with chemical rockets, allowing interaction with a potential NEO threat at a much shorter time, and at much greater range. Two versions of an ultra compact nuclear rocket based on very high heat transfer rates are described: the PBR (Particle Bed Reactor), which has undergone substantial hardware development effort, and MITEE (Miniature Reactor Engine) which is a design derivative of the PBR. Nominal performance capabilities for the PBR are: thermal power - 1000 MW thrust - 45,000 lbsf, and weight - 500 kg. For MITEE, nominal capabilities are: thermal power - 100 MW; thrust {approx} 4500 lbsf, and weight - 50 kg. Development of operational PBR/MITEE systems would enable spacecraft launched from LEO (Low Earth Orbit) to investigate intercept NEO`s at a range of {approximately} 100 million kilometers in times of {approximately} 30 days.

  14. Calculating the Lightning Protection System Downconductors' Grounding Resistance at Launch Complex 39B, Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Mata, Carlos T.; Mata, Angel G.

    2012-01-01

    A new Lightning Protection System (LPS) was designed and built at Launch Complex 39B (LC39B), at the Kennedy Space Center (KSC), Florida, which consists of a catenary wire system (at a height of about 181 meters above ground level) supported by three insulators installed atop three towers in a triangular configuration. Nine downconductors (each about 250 meters long) are connected to the catenary wire system. Each downconductor is connected to a 7.62-meter-radius circular counterpoise conductor with six equally spaced, 6-meter-long vertical grounding rods. Grounding requirements at LC39B call for all underground and aboveground metallic piping, enclosures, raceways, and cable trays, within 7.62 meters of the counterpoise, to be bonded to the counterpoise, which results in a complex interconnected grounding system, given the many metallic piping, raceways, and cable trays that run in multiple directions around LC39B. The complexity of this grounding system makes the fall-of-potential method, which uses multiple metallic rods or stakes, unsuitable for measuring the grounding impedances of the downconductors. To calculate the grounding impedance of the downconductors, an Earth Ground Clamp (EGC) (a stakeless device for measuring grounding impedance) and an Alternative Transient Program (ATP) model of the LPS are used. The EGC is used to measure the loop impedance plus the grounding impedance of each downconductor, and the ATP model is used to calculate the loop impedance of each downconductor circuit. The grounding resistance of the downconductors is then calculated by subtracting the ATP calculated loop impedances from the EGC measurements.

  15. Night view shows STS-33 Discovery, OV-103, lit up on KSC LC Pad 39B

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-33 Discovery, Orbiter Vehicle (OV) 103, is highlighted against the darkness of the night by spotlights on Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B. OV-103, its external tank (ET), and solid rocket boosters (SRBs) are in launch configuration atop the mobile launcher platform with the rotating service structure (RSS) retracted (left). The RSS and the fixed service structure (FSS) are illuminated with lighting on all levels.

  16. HST Hot-Jupiter Transmission Spectral Survey: Clear Skies for Cool Saturn WASP-39b

    NASA Astrophysics Data System (ADS)

    Fischer, Patrick D.; Knutson, Heather A.; Sing, David K.; Henry, Gregory W.; Williamson, Michael W.; Fortney, Jonathan J.; Burrows, Adam S.; Kataria, Tiffany; Nikolov, Nikolay; Showman, Adam P.; Ballester, Gilda E.; Désert, Jean-Michel; Aigrain, Suzanne; Deming, Drake; Lecavelier des Etangs, Alain; Vidal-Madjar, Alfred

    2016-08-01

    We present the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) optical transmission spectroscopy of the cool Saturn-mass exoplanet WASP-39b from 0.29-1.025 μm, along with complementary transit observations from Spitzer IRAC at 3.6 and 4.5 μm. The low density and large atmospheric pressure scale height of WASP-39b make it particularly amenable to atmospheric characterization using this technique. We detect a Rayleigh scattering slope as well as sodium and potassium absorption features; this is the first exoplanet in which both alkali features are clearly detected with the extended wings predicted by cloud-free atmosphere models. The full transmission spectrum is well matched by a clear H2-dominated atmosphere, or one containing a weak contribution from haze, in good agreement with the preliminary reduction of these data presented in Sing et al. WASP-39b is predicted to have a pressure-temperature profile comparable to that of HD 189733b and WASP-6b, making it one of the coolest transiting gas giants observed in our HST STIS survey. Despite this similarity, WASP-39b appears to be largely cloud-free, while the transmission spectra of HD 189733b and WASP-6b both indicate the presence of high altitude clouds or hazes. These observations further emphasize the surprising diversity of cloudy and cloud-free gas giant planets in short-period orbits and the corresponding challenges associated with developing predictive cloud models for these atmospheres.

  17. STS-27 Atlantis, Orbiter Vehicle (OV) 104, at KSC Launch Complex (LC) pad 39B

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-27 Atlantis, Orbiter Vehicle (OV) 104, sits atop the mobile launcher platform at Kennedy Space Center (KSC) Launch Complex (LC) pad 39B. Profile of OV-104 mounted on external tank and flanked by solid rocket boosters (SRBs) is obscured by a flock of seagulls in the foreground. The fixed service structure (FSS) with rotating service structure (RSS) retracted appears in the background. Water resevoir is visible at the base of the launch pad concrete structure.

  18. STS-29 Discovery, Orbiter Vehicle (OV) 103, lifts off from KSC LC Pad 39B

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-29 Discovery, Orbiter Vehicle (OV) 103, rises into clear skies after liftoff from Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B. This low angle view looks up at OV-103's three firing space shuttle main engines (SSMEs) and twin solid rocket boosters (SRBs) as it begins its roll maneuver atop the orange external tank (ET). Exhaust plumes billow out SRB skirts.

  19. The Mission Accessible Near-Earth Object Survey (MANOS) -- Science Highlights

    NASA Astrophysics Data System (ADS)

    Moskovitz, Nicholas; Thirouin, Audrey; Binzel, Richard; Burt, Brian; Christensen, Eric; DeMeo, Francesca; Endicott, Thomas; Hinkle, Mary; Mommert, Michael; Person, Michael; Polishook, David; Siu, Hosea; Thomas, Cristina; Trilling, David; Willman, Mark

    2015-08-01

    Near-Earth objects (NEOs) are essential to understanding the origin of the Solar System through their compositional links to meteorites. As tracers of other parts of the Solar System they provide insight to more distant populations. Their small sizes and complex dynamical histories make them ideal laboratories for studying ongoing processes of planetary evolution. Knowledge of their physical properties is essential to impact hazard assessment. And the proximity of NEOs to Earth make them favorable targets for a variety of planetary mission scenarios. However, in spite of their importance, only the largest NEOs are well studied and a representative sample of physical properties for sub-km NEOs does not exist.MANOS is a multi-year physical characterization survey, originally awarded survey status by NOAO. MANOS is targeting several hundred mission-accessible, sub-km NEOs across visible and near-infrared wavelengths to provide a comprehensive catalog of physical properties (astrometry, light curves, spectra). Accessing these targets is enabled through classical, queue, and target-of-opportunity observations carried out at 1- to 8-meter class facilities in the northern and southern hemispheres. Our observing strategy is designed to rapidly characterize newly discovered NEOs before they fade beyond observational limits.Early progress from MANOS includes: (1) the de-biased taxonomic distribution of spectral types for NEOs smaller than ~100 meters, (2) the distribution of rotational properties for approximately 100 previously unstudied NEOs, (3) detection of the fastest known rotation period of any minor planet in the Solar System, (4) an investigation of the influence of planetary encounters on the rotational properties of NEOs, (5) dynamical models for the evolution of the overall NEO population over the past 0.5 Myr, and (6) development of a new set of online tools at asteroid.lowell.edu that will enable near realtime public dissemination of our data products while

  20. Mission Specialist Smith is suited and ready for launch

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Operations and Checkout Building, STS-103 Mission Specialist Steven L. Smith signals he is suited up and ready for launch. Other crew members are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly and Mission Specialists C. Michel Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Jean-Frangois Clervoy of France and Claude Nicollier of Switzerland. Clervoy and Nicollier are with the European Space Agency. The STS-103 mission, to service the Hubble Space Telescope, is scheduled for launch Dec. 17 at 8:47 p.m. EST from Launch Pad 39B. Mission objectives include replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. After the 8-day, 21-hour mission, Discovery is expected to land at KSC Sunday, Dec. 26, at about 6:30 p.m. EST.

  1. Mission Specialist Nicollier gets help suiting up before launch

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Operations and Checkout Building, STS-103 Mission Specialist Claude Nicollier of Switzerland waves while having his launch and entry suit checked by a suit techician during final launch preparations. Other crew members are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.) and Jean-Frangois Clervoy of France. Nicollier and Clervoy are with the European Space Agency. The STS-103 mission, to service the Hubble Space Telescope, is scheduled for launch Dec. 17 at 8:47 p.m. EST from Launch Pad 39B. Mission objectives include replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. After the 8-day, 21-hour mission, Discovery is expected to land at KSC Sunday, Dec. 26, at about 6:30 p.m. EST.

  2. Mission Specialist Foale gets help suiting up before launch

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Operations and Checkout Building, STS-103 Mission Specialist C. Michel Foale (Ph.D.) smiles as his launch and entry suit is checked by a suit techician during final launch preparations. Other crew members are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly and Mission Specialists Steven L. Smith, John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland and Jean-Frangois Clervoy of France. Nicollier and Clervoy are with the European Space Agency. The STS-103 mission, to service the Hubble Space Telescope, is scheduled for launch Dec. 17 at 8:47 p.m. EST from Launch Pad 39B. Mission objectives include replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. After the 8-day, 21-hour mission, Discovery is expected to land at KSC Sunday, Dec. 26, at about 6:30 p.m. EST.

  3. Mission Specialist Grunsfeld gets help suiting up before launch

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Operations and Checkout Building, STS-103 Mission Specialist John M. Grunsfeld (Ph.D.) is assisted by a suit technician in donning his launch and entry suit during final launch preparations. Other crew members are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), Claude Nicollier of Switzerland and Jean-Frangois Clervoy of France. Nicollier and Clervoy are with the European Space Agency. The STS-103 mission, to service the Hubble Space Telescope, is scheduled for launch Dec. 17 at 8:47 p.m. EST from Launch Pad 39B. Mission objectives include replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. After the 8-day, 21-hour mission, Discovery is expected to land at KSC Sunday, Dec. 26, at about 6:30 p.m. EST.

  4. Automated Mars surface sample return mission concepts for achievement of essential scientific objectives

    NASA Technical Reports Server (NTRS)

    Weaver, W. L.; Norton, H. N.; Darnell, W. L.

    1975-01-01

    Mission concepts were investigated for automated return to Earth of a Mars surface sample adequate for detailed analyses in scientific laboratories. The minimum sample mass sufficient to meet scientific requirements was determined. Types of materials and supporting measurements for essential analyses are reported. A baseline trajectory profile was selected for its low energy requirements and relatively simple implementation, and trajectory profile design data were developed for 1979 and 1981 launch opportunities. Efficient spacecraft systems were conceived by utilizing existing technology where possible. Systems concepts emphasized the 1979 launch opportunity, and the applicability of results to other opportunities was assessed. It was shown that the baseline missions (return through Mars parking orbit) and some comparison missions (return after sample transfer in Mars orbit) can be accomplished by using a single Titan III E/Centaur as the launch vehicle. All missions investigated can be accomplished by use of Space Shuttle/Centaur vehicles.

  5. Scientific objectives of the scientific equipment of the landing platform of the ExoMars-2018 mission

    NASA Astrophysics Data System (ADS)

    Zelenyi, L. M.; Korablev, O. I.; Rodionov, D. S.; Novikov, B. S.; Marchenkov, K. I.; Andreev, O. N.; Larionov, E. V.

    2015-12-01

    The paper lists the main objectives of the scientific complex of the landing platform of the ExoMars-2018 mission. Scientific instruments of the complex are described including the meteorological complex, Fourier spectrometer, radiothermometer, Martian gas analytical complex, dust complex, seismometer, etc. The main studies and results that will be obtained using this scientific equipment are presented.

  6. JUICE: complementarity of the payload in adressing the mission science objectives

    NASA Astrophysics Data System (ADS)

    Titov, Dmitri; Barabash, Stas; Bruzzone, Lorenzo; Dougherty, Michele; Erd, Christian; Fletcher, Leigh; Gare, Philippe; Gladstone, Randall; Grasset, Olivier; Gurvits, Leonid; Hartogh, Paul; Hussmann, Hauke; Iess, Luciano; Jaumann, Ralf; Langevin, Yves; Palumbo, Pasquale; Piccioni, Giuseppe; Wahlund, Jan-Erik

    2014-05-01

    radar sounder (RIME) for exploring the surface and subsurface of the moons, and a radio science experiment (3GM) to probe the atmospheres of Jupiter and its satellites and to perform measurements of the gravity fields. An in situ package comprises a powerful particle environment package (PEP), a magnetometer (J-MAG) and a radio and plasma wave instrument (RPWI), including electric fields sensors and a Langmuir probe. An experiment (PRIDE) using ground-based Very-Long-Baseline Interferometry (VLBI) will provide precise determination of the moons ephemerides. The instruments will work together to achieve mission science objectives that otherwise cannot be achieved by a single experiment. For instance, joint J-MAG, 3GM, GALA and JANUS observations would constrain thickness of the ice shell, ocean depth and conductivity. SWI, 3GM and UVS would complement each other in the temperature sounding of the Jupiter atmosphere. The complex coupling between magnetosphere and atmosphere of Jupiter will be jointly studied by combination of aurora imaging (UVS, MAJIS, JANUS) and plasma and fields measurements (J-MAG, RPWI, PEP). The talk will give an overview of the JUICE payload focusing on complementarity and synergy between the experiments.

  7. The intellectual disability protein RAB39B selectively regulates GluA2 trafficking to determine synaptic AMPAR composition.

    PubMed

    Mignogna, Maria Lidia; Giannandrea, Maila; Gurgone, Antonia; Fanelli, Francesca; Raimondi, Francesco; Mapelli, Lisa; Bassani, Silvia; Fang, Huaqiang; Van Anken, Eelco; Alessio, Massimo; Passafaro, Maria; Gatti, Silvia; Esteban, José A; Huganir, Richard; D'Adamo, Patrizia

    2015-01-01

    RAB39B is a member of the RAB family of small GTPases that controls intracellular vesicular trafficking in a compartment-specific manner. Mutations in the RAB39B gene cause intellectual disability comorbid with autism spectrum disorder and epilepsy, but the impact of RAB39B loss of function on synaptic activity is largely unexplained. Here we show that protein interacting with C-kinase 1 (PICK1) is a downstream effector of GTP-bound RAB39B and that RAB39B-PICK1 controls trafficking from the endoplasmic reticulum to the Golgi and, hence, surface expression of GluA2, a subunit of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs). The role of AMPARs in synaptic transmission varies depending on the combination of subunits (GluA1, GluA2 and GluA3) they incorporate. RAB39B downregulation in mouse hippocampal neurons skews AMPAR composition towards non GluA2-containing Ca(2+)-permeable forms and thereby alters synaptic activity, specifically in hippocampal neurons. We posit that the resulting alteration in synaptic function underlies cognitive dysfunction in RAB39B-related disorders. PMID:25784538

  8. Gravitational experiments on a solar probe mission: Scientific objectives and technology considerations

    NASA Technical Reports Server (NTRS)

    Anderson, John D.

    1989-01-01

    The concept of a solar impact probe (either solar plunger or sun grazer) led to the initiation of a NASA study at JPL in 1978 on the engineering and scientific feasibility of a Solar Probe Mission, named Starprobe, in which a spacecraft is placed in a high eccentricity orbit with a perihelion near 4 solar radii. The Starprobe study showed that the concept was feasible and in fact preliminary mission and spacecraft designs were developed. In the early stages of the Solar Probe studies the emphasis was placed on gravitational science, but by the time of a workshop at Caltech in May 1978 (Neugebauer and Davies, 1978) there was about an equal division of interest between heliospheric physics and gravitation. The last of the gravitational studies for Solar Probe was conducted at JPL in 1983. Since that time, the Committee on Solar and Space Physics (CSSP) of the National Academy of Sciences has recommended the pursuit of a focused mission, featuring fields and particles instrumentation and emphasizing studies of the solar wind source region. Such a solar probe mission is currently listed as the 1994 Major New Star candidate. In the remainder of this review, the unique gravitational science that can be accomplished with a solar probe mission is reviewed. In addition the technology issues that were identified in 1980 by the ad hoc working group for Gravity and Relativity Science are addressed.

  9. Solar-Terrestrial Physics in the 1990s: Key Science Objectives for the IACG Mission Set

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The International Solar-Terrestrial Physics (ISTP) program is an internationally coordinated multi-spacecraft mission that will study the production of the supersonic magnetized solar wind, its interaction with the Earth's magnetosphere, and the resulting transport of plasma, momentum and energy through the magnetosphere and into the ionosphere and upper atmosphere. The mission will involve l4spacecraft to be launched between 1992 and 1996, along with complementary ground-based observations and theoretical programs. A list of the spacecraft, their nominal orbits, and responsible agencies is shown.

  10. Aerial view of the newest bus stop to view Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This aerial view looking northeast shows a new stop (bottom) on the KSC bus tour that allow visitors to view Pad LC-39B (top). The tour stop is next to the crawlerway that is used to transport the Space Shuttle vehicles to the pad. The length of the crawlerway from the Vehicle Assembly Building to Pad B is 6,828 meters (22,440 ft); its width overall is 40 meters (130 ft); each lane is 12 meters (40ft) with a 15-meter (50ft) median.

  11. Aerial view of the newest bus stop to view Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Tour buses unload passengers at a new stop on the KSC tour that allows visitors to view Pad LC-39B. The tour road runs parallel to the crawlerway (just out of sight) that is used to transport the Space Shuttle vehicles to the pad. The length of the crawlerway from the Vehicle Assembly Building to Pad B is 6,828 meters (22,440 ft); its width overall is 40 meters (130 ft); each lane is 12 meters (40ft) with a 15-meter (50ft) median. This view looks south.

  12. STS-56 Discovery, OV-103, lifts off from KSC LC Pad 39B into darkness

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-56 Discovery, Orbiter Vehicle (OV) 103, lifts off from Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B into the early morning darkness at 1:29 am (Eastern Daylight Time (EDT)). OV-103, atop its external tank (ET) and flanked by solid rocket boosters (SRBs), rises above the mobile launcher platform. Exhaust plumes trail from the SRBs. The glow of the SRB / space shuttle main engine (SSME) firings illuminate the fixed service structure (FSS) tower. Trees are silhouetted against the launch fireworks in the foreground.

  13. The HYSPIRI Decadal Survey Mission: Update on the Mission Concept and Science Objectives for Global Imaging Spectroscopy and Multi-Spectral Thermal Measurements

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Hook, Simon J.; Middleton, Elizabeth; Turner, Woody; Ungar, Stephen; Knox, Robert

    2012-01-01

    The NASA HyspIRI mission is planned to provide global solar reflected energy spectroscopic measurement of the terrestrial and shallow water regions of the Earth every 19 days will all measurements downlinked. In addition, HyspIRI will provide multi-spectral thermal measurements with a single band in the 4 micron region and seven bands in the 8 to 12 micron region with 5 day day/night coverage. A direct broadcast capability for measurement subsets is also planned. This HyspIRI mission is one of those designated in the 2007 National Research Council (NRC) Decadal Survey: Earth Science and Applications from Space. In the Decadal Survey, HyspIRI was recognized as relevant to a range of Earth science and science applications, including climate: "A hyperspectral sensor (e.g., FLORA) combined with a multispectral thermal sensor (e.g., SAVII) in low Earth orbit (LEO) is part of an integrated mission concept [described in Parts I and II] that is relevant to several panels, especially the climate variability panel." The HyspIRI science study group was formed in 2008 to evaluate and refine the mission concept. This group has developed a series of HyspIRI science objectives: (1) Climate: Ecosystem biochemistry, condition & feedback; spectral albedo; carbon/dust on snow/ice; biomass burning; evapotranspiration (2) Ecosystems: Global plant functional types, physiological condition, and biochemistry including agricultural lands (3) Fires: Fuel status, fire frequency, severity, emissions, and patterns of recovery globally (4) Coral reef and coastal habitats: Global composition and status (5) Volcanoes: Eruptions, emissions, regional and global impact (6) Geology and resources: Global distributions of surface mineral resources and improved understanding of geology and related hazards These objectives are achieved with the following measurement capabilities. The HyspIRI imaging spectrometer provides: full spectral coverage from 380 to 2500 at 10 nm sampling; 60 m spatial sampling

  14. Fault Management in an Objectives-Based/Risk-Informed View of Safety and Mission Success

    NASA Technical Reports Server (NTRS)

    Groen, Frank

    2012-01-01

    Theme of this talk: (1) Net-benefit of activities and decisions derives from objectives (and their priority) -- similarly: need for integration, value of technology/capability. (2) Risk is a lack of confidence that objectives will be met. (2a) Risk-informed decision making requires objectives. (3) Consideration of objectives is central to recent guidance.

  15. Calculating the Lightning Protection System Downconductors' Grounding Resistance at Launch Complex 39B, Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    Mata, Carlos; Mata, Angel

    2011-01-01

    A new Lightning Protection System (LPS) was designed and built at Launch Complex 39B (LC39B), at the Kennedy Space Center (KSC). Florida, which consists of a catenary wire system (at a height of about 181 meters above ground level) supported by three insulation installed atop three towers in a triangular configuration. Nine downconductors (each about 250 meters long) are connected to the catenary wire system. Each downconductor is connected to a 7.62-meter-radius circular counterpoise conductor with six equally spaced. 6-meter-1ong vertical grounding rods. Grounding requirements at LC39B call for all underground and above ground metallic piping. enclosures, raceways. and. cable trays. within 7.62 meters of. counterpoise, to be bonded to the counterpoise, which results in a complex interconnected grounding system, given the many metallic piping, raceways and cable trays that run in multiple directions around LC39B.

  16. Evaluation of the Performance Characteristics of the CGLSS and NLDN Systems Based on Two Years of Ground-Truth Data from Launch Complex 39B, Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    Mata, Carlos T.; Hill, Jonathan D.; Mata, Angel G.; Cummins, Kenneth L.

    2014-01-01

    From May 2011 through July 2013, the lightning instrumentation at Launch Complex 39B (LC39B) at the Kennedy Space Center, Florida, has obtained high-speed video records and field change waveforms (dE/dt and three-axis dH/dt) for 54 negative polarity return strokes whose strike termination locations and times are known with accuracy of the order of 10 m or less and 1 µs, respectively. A total of 18 strokes terminated directly to the LC39B lighting protection system (LPS), which contains three 181 m towers in a triangular configuration, an overhead catenary wire system on insulating masts, and nine down conductors. An additional 9 strokes terminated on the 106 m lightning protection mast of Launch Complex 39A (LC39A), which is located about 2.7 km southeast of LC39B. The remaining 27 return strokes struck either on the ground or attached to low-elevation grounded objects within about 500 m of the LC39B LPS. Leader/return stroke sequences were imaged at 3200 frames/sec by a network of six Phantom V310 high-speed video cameras. Each of the three towers on LC39B had two high-speed cameras installed at the 147 m level with overlapping fields of view of the center of the pad. The locations of the strike points of 54 return strokes have been compared to time-correlated reports of the Cloud-to-Ground Lightning Surveillance System (CGLSS) and the National Lightning Detection Network (NLDN), and the results of this comparison will be presented and discussed.

  17. Habitability constraints/objectives for a mars manned mission: Internal architecture considerations

    NASA Astrophysics Data System (ADS)

    Winisdoerffer, F.; Soulez-Larivière, C.

    1992-08-01

    It is generally accepted that high quality internal environment shall strongly support crew's adaptation and acceptance to situation of long isolation and confinement. Thus, this paper is an attempt to determine to which extent the resulting stress corresponding to the anticipated duration of a trip to Mars (1 and a half years to 2 and a half years) could be decreased when internal architecture of the spacecraft is properly designed. It is assumed that artificial gravity shall be available on board the Mars spacecraft. This will of course have a strong impact on internal architecture as far as a 1-g oriented design will become mandatory, at least in certain inhabited parts of the spacecraft. The review of usual Habitability functions is performed according to the peculiarities of such an extremely long mission. A particular attention is paid to communications issues and the need for privacy. The second step of the paper addresses internal architecture issues through zoning analyses. Common, Service and Personal zones need to be adapted to the constraints associated with the extremely long duration of the mission. Furthermore, due to the nature of the mission itself (relative autonomy, communication problems, monotony) and the type of selected crew (personalities, group structure) the implementation of a ``fourth zone'', so-called ``recreational'' zone, seems to be needed. This zoning analysis is then translated into some internal architecture proposals, which are discussed and illustrated. This paper is concluded by a reflection on habitability and recommendations on volumetric requirements. Some ideas to validate proposed habitability items through simulation are also discussed.

  18. Mission Objectives Of The Atmospheric Composition Related Sentinels S5p, S4, And S5

    NASA Astrophysics Data System (ADS)

    Ingmann, Paul; Veihelmann, Ben; Langen, Jorg; Meijer, Yasjka

    2013-12-01

    Atmospheric chemistry observations from space have been made for over 30 years, in the beginning mainly by US missions. These missions have always been motivated by the concern about a number of environmental issues. At present European instruments like GOME-2 on MetOp/EPS-A and -B and OMI on NASA's Aura are in space and, despite being designed for research purposes, perform routine observations. The space instruments have helped improving our understanding of processes that govern stratospheric ozone depletion, climate change and the transport of pollutants. However, long-term continuous time series of atmospheric trace gas data have been limited to stratospheric ozone and a few related species. According to current planning, meteorological satellites will maintain these observations over the next decade. They will also add some measurements of tropospheric trace gases critical for climate forcing. However, as their measurements have been motivated by meteorology, vertical sensitivities and accuracies are marginal for atmospheric chemistry applications. With the exception of stratospheric ozone, reliable long-term space-based monitoring of atmospheric constituents with quality attributes sufficient to serve atmospheric chemistry applications still need to be established. The need for a GMES atmospheric service (GAS), its scope and high level requirements were laid down in an orientation papers organised by the European Commission and then updated by an Implementation Group (IG) [1], backed by four working groups, advising the Commission on scope, architecture, in situ and space requirements. The goal of GAS is to provide coherent information on atmospheric variables in support of European policies and for the benefit of European citizens. Services cover air quality, climate change/forcing, stratospheric ozone and solar radiation. To meet the needs of the user community atmospheric composition mission concepts for GEO and LEO have been defined usually referred to

  19. Next space solar observatory SOLAR-C: mission instruments and science objectives

    NASA Astrophysics Data System (ADS)

    Katsukawa, Y.; Watanabe, T.; Hara, H.; Ichimoto, K.; Kubo, M.; Kusano, K.; Sakao, T.; Shimizu, T.; Suematsu, Y.; Tsuneta, S.

    2012-12-01

    SOLAR-C, the fourth space solar mission in Japan, is under study with a launch target of fiscal year 2018. A key concept of the mission is to view the photosphere, chromosphere, and corona as one system coupled by magnetic fields along with resolving the size scale of fundamental physical processes connecting these atmospheric layers. It is especially important to study magnetic structure in the chromosphere as an interface layer between the photosphere and the corona. The SOLAR-C satellite is equipped with three telescopes, the Solar UV-Visible-IR Telescope (SUVIT), the EUV/FUV High Throughput Spectroscopic Telescope (EUVS/LEMUR), and the X-ray Imaging Telescope (XIT). Observations with SUVIT of photospheric and chromospheric magnetic fields make it possible to infer three dimensional magnetic structure extending from the photosphere to the chromosphere and corona.This helps to identify magnetic structures causing magnetic reconnection, and clarify how waves are propagated, reflected, and dissipated. Phenomena indicative of or byproducts of magnetic reconnection, such as flows and shocks, are to be captured by SUVIT and by spectroscopic observations using EUVS/LEMUR, while XIT observes rapid changes in temperature distribution of plasma heated by shock waves.

  20. The RSS rolls back revealing STS-102 Discovery on Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - Workers watch the rollback of the Rotating Service Structure (left) from around Space Shuttle Discovery on Launch Pad 39B. Poised above the orange external tank is the Gaseous Oxygen Vent Arm with the '''beanie cap,''' a vent hood. The RSS provides protected access to the orbiter for changeout and servicing of payloads. It is supported by a rotating bridge that pivots about a vertical axis on the west side of the pad'''s flame trench. Space Shuttle Discovery is scheduled to launch March 8 at 6:42 a.m. EST on the eighth construction flight to the International Space Station. It carries the Multi-Purpose Logistics Module Leonardo, the primary delivery system used to resupply and return Station cargo requiring a pressurized environment. Leonardo will deliver up to 10 tons of laboratory racks filled with equipment, experiments and supplies for outfitting the newly installed U.S. Laboratory Destiny.

  1. A New Comprehensive Lightning Instrumentation System for Pad 39B at the Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    Mata, Carlos T.; Rakov, Vladimir A.; Mata, Angel G.; Bonilla Tatiana; Navedo, Emmanuel; Snyder, Gary P.

    2010-01-01

    A new comprehensive lightning instrumentation system has been designed for Launch Complex 39B at the Kennedy Space Center, Florida. This new instrumentation system includes the synchronized recording of six high-speed video cameras, currents through the nine downconductors of the new lightning protection system, four B-dot, 3-axis measurement stations, and five D-dot stations composed of two antennas each. The instrumentation system is composed of centralized transient recorders and digitizers that located close to the sensors in the field. The sensors and transient recorders communicate via optical fiber. The transient recorders are triggered by the B-dot sensors, the E-dot sensors, or the current through the downlead conductors. The high-speed cameras are triggered by the transient recorders when the latter perceives a qualified trigger.

  2. TTC39B deficiency stabilizes LXR reducing both atherosclerosis and steatohepatitis.

    PubMed

    Hsieh, Joanne; Koseki, Masahiro; Molusky, Matthew M; Yakushiji, Emi; Ichi, Ikuyo; Westerterp, Marit; Iqbal, Jahangir; Chan, Robin B; Abramowicz, Sandra; Tascau, Liana; Takiguchi, Shunichi; Yamashita, Shizuya; Welch, Carrie L; Di Paolo, Gilbert; Hussain, M Mahmood; Lefkowitch, Jay H; Rader, Daniel J; Tall, Alan R

    2016-07-14

    Cellular mechanisms that mediate steatohepatitis, an increasingly prevalent condition in the Western world for which no therapies are available, are poorly understood. Despite the fact that its synthetic agonists induce fatty liver, the liver X receptor (LXR) transcription factor remains a target of interest because of its anti-atherogenic, cholesterol removal, and anti-inflammatory activities. Here we show that tetratricopeptide repeat domain protein 39B (Ttc39b, C9orf52) (T39), a high-density lipoprotein gene discovered in human genome-wide association studies, promotes the ubiquitination and degradation of LXR. Chow-fed mice lacking T39 (T39(-/-)) display increased high-density lipoprotein cholesterol levels associated with increased enterocyte ATP-binding cassette transporter A1 (Abca1) expression and increased LXR protein without change in LXR messenger RNA. When challenged with a high fat/high cholesterol/bile salt diet, T39(-/-) mice or mice with hepatocyte-specific T39 deficiency show increased hepatic LXR protein and target gene expression, and unexpectedly protection from steatohepatitis and death. Mice fed a Western-type diet and lacking low-density lipoprotein receptor (Ldlr(-/-)T39(-/-)) show decreased fatty liver, increased high-density lipoprotein, decreased low-density lipoprotein, and reduced atherosclerosis. In addition to increasing hepatic Abcg5/8 expression and limiting dietary cholesterol absorption, T39 deficiency inhibits hepatic sterol regulatory element-binding protein 1 (SREBP-1, ADD1) processing. This is explained by an increase in microsomal phospholipids containing polyunsaturated fatty acids, linked to an LXRα-dependent increase in expression of enzymes mediating phosphatidylcholine biosynthesis and incorporation of polyunsaturated fatty acids into phospholipids. The preservation of endogenous LXR protein activates a beneficial profile of gene expression that promotes cholesterol removal and inhibits lipogenesis. T39 inhibition could

  3. Investigation of Archean microfossil preservation for defining science objectives for Mars sample return missions

    NASA Astrophysics Data System (ADS)

    Lorber, K.; Czaja, A. D.

    2014-12-01

    Recent studies suggest that Mars contains more potentially life-supporting habitats (either in the present or past), than once thought. The key to finding life on Mars, whether extinct or extant, is to first understand which biomarkers and biosignatures are strictly biogenic in origin. Studying ancient habitats and fossil organisms of the early Earth can help to characterize potential Martian habitats and preserved life. This study, which focuses on the preservation of fossil microorganisms from the Archean Eon, aims to help define in part the science methods needed for a Mars sample return mission, of which, the Mars 2020 rover mission is the first step.Here is reported variations in the geochemical and morphological preservation of filamentous fossil microorganisms (microfossils) collected from the 2.5-billion-year-old Gamohaan Formation of the Kaapvaal Craton of South Africa. Samples of carbonaceous chert were collected from outcrop and drill core within ~1 km of each other. Specimens from each location were located within thin sections and their biologic morphologies were confirmed using confocal laser scanning microscopy. Raman spectroscopic analyses documented the carbonaceous nature of the specimens and also revealed variations in the level of geochemical preservation of the kerogen that comprises the fossils. The geochemical preservation of kerogen is principally thought to be a function of thermal alteration, but the regional geology indicates all of the specimens experienced the same thermal history. It is hypothesized that the fossils contained within the outcrop samples were altered by surface weathering, whereas the drill core samples, buried to a depth of ~250 m, were not. This differential weathering is unusual for cherts that have extremely low porosities. Through morphological and geochemical characterization of the earliest known forms of fossilized life on the earth, a greater understanding of the origin of evolution of life on Earth is gained

  4. Mars exploration with Viking. [orbiter and lander design and mission objectives

    NASA Technical Reports Server (NTRS)

    Martin, J. S., Jr.

    1973-01-01

    The Viking Mission is a scientific exploration of the planet Mars with particular emphasis on the search for life. Two unmanned spacecraft will be launched from Cape Kennedy in 1975 and will arrive at Mars in the summer of 1976. Each spacecraft will consist of an orbiter and lander. The landing sites will be preselected before launch and certified by orbital reconnaissance before landing. Soft landing on the surface will be accomplished by decelerating first on an aeroshell, then a deployed parachute and finally using terminal propulsion engines. Thirteen investigations will be performed, including mapping experiments from the orbiter, and analytical experiments on the surface which deal broadly with the biology, geosciences and atmospheric characteristics of the planet.

  5. STS-80 Mission Specialist Story Musgrave in White Room

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-80 Mission Specialist Story Musgrave prepares to enter the Space Shuttle Columbia at Launch Pad 39B, with assistance from white room closeout crew members (from left) Rick Welty, Troy Stewart, Ray Villalobos and Bob Saulnier.

  6. In-Situ Exploration of Venus: Major Science Objectives, Investigations, and Mission Platform Options

    NASA Astrophysics Data System (ADS)

    Baines, K. H.; Limaye, S. S.; Hall, J. L.; Atreya, S. K.; Bullock, M. A.; Crisp, D.; Grinspoon, D. H.; Mahaffy, P. R.; Russell, C. T.; Webster, C. R.; Zahnle, K. J.

    2013-12-01

    In-situ missions to Venus have been recommended by both the 2011 and 2003 Decadal Studies of the NRC and have been proposed numerous times to NASA's Discovery and New Frontiers programs as well as to ESA's Cosmic Vision program. Such missions would revolutionize our understanding of Venus, as they address key questions of Venus's origin, evolution, and current state via high precision measurements of (1) noble gases and their isotopes, and (2) reactive trace gases and aerosol associated with Venus's active photo- and thermo-chemistry and sulfur cycle, including components potentially responsible for the poorly-understood uv-absorbing haze layer. Fundamental questions, as promoted in recent VEXAG documents, include: (1) Did Venus, Mars, and Earth have a common origin? (2) What roles did comets from the outer Solar System play in delivering volatiles to Venus? (3) Did Venus once have and lose a global ocean? (4) How much has Venus outgassed, and what is the current rate of outgassing, particularly of sulfur, the major driver of Venus clouds? and (5) Through the deposition of energy within them, what role do these clouds play in (a) driving the cloud-level thermal structure and (b) generating and maintaining the super-rotating zonal windfield that covers the globe? Fundamental answers could be uniquely provided through in-situ sampling via mass spectrometry of the noble gases and their isotopes - in particular of the 8 stable Xe isotopes, the bulk abundances of Kr, and the 3 isotopes of Ne. Measurements of the relative abundances of the light isotopes of N, O, H, S and O, by, for example, tunable laser spectrometry, would provide additional insights into Venus's origin, surface outgassing and planetary escape. Such measurements could be performed by probes, landers, or balloons. On descent through the uv-absorbing layer and the surrounding H2SO4 cloud, each of these platforms could explore both the absorber and sulfur-cycle-associated reactive species and aerosols

  7. STS-97 crew gets emergency egress training at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The STS-97 crew listens to a trainer explain use of the slidewire basket (right) for emergency egress from the Fixed Service Structure. Second from left is Mission Specialist Joe Tanner; next to him in the cap is Capt. George Hoggard, safety trainer with the KSC Fire Department; Pilot Mike Bloomfield; Mission Specialist Carlos Noriega; Commander Brent Jett; and Mission Specialist Marc Garneau. The training is part of Terminal Countdown Demonstration Test (TCDT) activities, which also include a simulated launch countdown and opportunities to inspect the mission payloads in the orbiter'''s payload bay. Mission STS- 97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST.

  8. Using object-oriented analysis to design a multi-mission ground data system

    NASA Technical Reports Server (NTRS)

    Shames, Peter

    1995-01-01

    This paper describes an analytical approach and descriptive methodology that is adapted from Object-Oriented Analysis (OOA) techniques. The technique is described and then used to communicate key issues of system logical architecture. The essence of the approach is to limit the analysis to only service objects, with the idea of providing a direct mapping from the design to a client-server implementation. Key perspectives on the system, such as user interaction, data flow and management, service interfaces, hardware configuration, and system and data integrity are covered. A significant advantage of this service-oriented approach is that it permits mapping all of these different perspectives on the system onto a single common substrate. This services substrate is readily represented diagramatically, thus making details of the overall design much more accessible.

  9. The NASA Orbiting Carbon Observatory (OCO) Mission: Objectives, Approach, and Status

    NASA Technical Reports Server (NTRS)

    Livermore, Thomas R.; Crisp, David

    2008-01-01

    The Orbiting Carbon Observatory (OCO) is a NASA Earth System Science Pathfinder (ESSP) mission that is currently under development at the Jet Propulsion Laboratory (JPL). OCO will make global, space-based measurements of atmospheric carbon dioxide (CO2) with the precision, resolution, and coverage needed to characterize regional-scale sources and sinks of this important greenhouse gas. The observatory consists of a dedicated spacecraft bus that carries a single instrument. The bus employs single-string version of Orbital Sciences Corporation (OSC) LEOStar-2 architecture. This 3-axis stabilized bus includes a propulsion system for orbit insertion and maintenance, provides power, points the instrument, receives and processes commands from the ground, and records, stores, and downlinks science and engineering data. The OCO instrument incorporates 3 oboresighted, high resolution grating spectrometers that will make coincident measurements of reflected sunlight in near-infrared CO2 and molecular oxygen (O2) bands. The instrument was designed and manufactured by Hamilton Sundstrand (Pomona, CA), and then integrated, flight qualified, and calibrated by JPL. It is scheduled for delivery to OSC (Dulles, VA) for integration with the spacecraft bus in the spring of 2008. OCO will be launched from the Vandenberg Air Force Base on a dedicated OSC Taurus XL launch vehicle in December 2008. It will fly in formation with the Earth Observing System Afternoon Constellation, a group of satellites that files in a 98.8 minute, 705 km altitude, sun-synchronous orbit. This orbit provides coverage of the sunlit hemisphere with a 16-day ground track repeat cycle. OCO will fly approx.4 minutes ahead of the EOS Aqua platform, with an ascending nodal crossing time of approx.1:26 PM. The OCO science data will be transmitted to the NASA Ground Network Stations in Alaska and Virginia, and then transferred to the OCO Ground Data System at JPL. There, the CO2 and O2 spectra will be analyzed by the

  10. Hayabusa2 mission target asteroid (162173) 1999 JU_3: Searching for the object's spin-axis orientation

    NASA Astrophysics Data System (ADS)

    Müller, T.; Durech, J.; Mueller, M.; Kiss, C.; Vilenius, E.; Ishiguro, M.

    2014-07-01

    The JAXA Hayabusa2 mission was approved in 2011 with launch planned for late 2014. Arriving at the asteroid (162173) 1999 JU_3 in 2018, it will survey it, land, and obtain surface material, then depart in late 2019, and return to the Earth in December 2020. We observed the near-Earth asteroid 1999 JU_3 with the Herschel Space Observatory in April 2012 at thermal far-infrared wavelengths, supported by several ground-based observations to obtain optical lightcurves. We re-analyzed previously published Subaru-COMICS observations and merged them with existing data sets from Akari-IRC and Spitzer-IRS. In addition, we used the object's near-IR flux increase from February to May 2013 as observed by Spitzer. The almost spherical shape and the insufficient quality of lightcurve observations forced us to combine radiometric techniques and lightcurve inversion in a new way to find the object's spin-axis orientation, its shape, and to improve the quality of the key physical and thermal parameters of 1999 JU_3. We will present our best pre-launch solution for this C-class asteroid, including the sense of rotation, the spin-axis orientation, the effective diameter, the geometric albedo, and thermal inertia. The finely constrained values for this asteroid serve as an important input for the preparation of this exciting mission.

  11. Common variants upstream of KDR encoding VEGFR2 and in TTC39B associate with endometriosis.

    PubMed

    Steinthorsdottir, Valgerdur; Thorleifsson, Gudmar; Aradottir, Kristrun; Feenstra, Bjarke; Sigurdsson, Asgeir; Stefansdottir, Lilja; Kristinsdottir, Anna M; Zink, Florian; Halldorsson, Gisli H; Munk Nielsen, Nete; Geller, Frank; Melbye, Mads; Gudbjartsson, Daniel F; Geirsson, Reynir T; Thorsteinsdottir, Unnur; Stefansson, Kari

    2016-01-01

    We conducted a genome-wide association scan (GWAS) of endometriosis using 25.5 million sequence variants detected through whole-genome sequencing (WGS) of 8,453 Icelanders and imputed into 1,840 cases and 129,016 control women, followed by testing of associated variants in Danish samples. Here we report the discovery of a new endometriosis susceptibility locus on 4q12 (rs17773813[G], OR=1.28; P=3.8 × 10(-11)), upstream of KDR encoding vascular endothelial growth factor receptor 2 (VEGFR2). The variant correlates with disease severity (P=0.0046) when moderate/severe endometriosis cases are tested against minimal/mild cases. We further report association of rs519664[T] in TTC39B on 9p22 with endometriosis (P=4.8 × 10(-10); OR=1.29). The involvement of KDR in endometriosis risk highlights the importance of the VEGF pathway in the pathogenesis of the disease. PMID:27453397

  12. Common variants upstream of KDR encoding VEGFR2 and in TTC39B associate with endometriosis

    PubMed Central

    Steinthorsdottir, Valgerdur; Thorleifsson, Gudmar; Aradottir, Kristrun; Feenstra, Bjarke; Sigurdsson, Asgeir; Stefansdottir, Lilja; Kristinsdottir, Anna M.; Zink, Florian; Halldorsson, Gisli H.; Munk Nielsen, Nete; Geller, Frank; Melbye, Mads; Gudbjartsson, Daniel F.; Geirsson, Reynir T.; Thorsteinsdottir, Unnur; Stefansson, Kari

    2016-01-01

    We conducted a genome-wide association scan (GWAS) of endometriosis using 25.5 million sequence variants detected through whole-genome sequencing (WGS) of 8,453 Icelanders and imputed into 1,840 cases and 129,016 control women, followed by testing of associated variants in Danish samples. Here we report the discovery of a new endometriosis susceptibility locus on 4q12 (rs17773813[G], OR=1.28; P=3.8 × 10−11), upstream of KDR encoding vascular endothelial growth factor receptor 2 (VEGFR2). The variant correlates with disease severity (P=0.0046) when moderate/severe endometriosis cases are tested against minimal/mild cases. We further report association of rs519664[T] in TTC39B on 9p22 with endometriosis (P=4.8 × 10−10; OR=1.29). The involvement of KDR in endometriosis risk highlights the importance of the VEGF pathway in the pathogenesis of the disease. PMID:27453397

  13. Science Objectives of the JEM EUSO Mission on International Space Station

    NASA Technical Reports Server (NTRS)

    Takahashi, Yoshiyuki

    2007-01-01

    JEM-EUSO space observatory is planned with a very large exposure factor which will exceed the critical exposure factor required for observing the most of the sources within the propagational horizon of about one hundred Mpc. The main science objective of JEM-EUSO is the source-identifying astronomy in particle channel with extremey-high-energy particles. Quasi-linear tracking of the source objects through galactic magnetic field should become feasible at energy > 10(exp 20) eV for all-sky. The individual GZK profile in high statistics experiments should differ from source to source due to different distance unless Lorentz invariance is somehow limited. hi addition, JEM-EUSO has three exploratory test observations: (i), extremely high energy neutrinos beginning at E > 10(exp 19) eV: neutrinos as being expected to have a slowly increasing cross section in the Standard Model, and in particular, hundreds of times more in the extra-dimension models. (ii). fundamental physics at extreme Super LHC (Large Hadronic Collider) energies with the hierarchical unified energy much below the GUT scale, and (iii). global atmospheric observation, including large-scale and local plasma discharges, night-glow, meteorites, and others..

  14. Potential scientific objectives for a 2018 2-rover mission to Mars and implications for the landing site and landed operations

    NASA Astrophysics Data System (ADS)

    Grant, J. A.; Westall, F.; Beaty, D.; Cady, S. L.; Carr, M. H.; Ciarletti, V.; Coradini, A.; Elfving, A.; Glavin, D.; Goesmann, F.; Hurowitz, J. A.; Ori, G. G.; Phillips, R. J.; Salvo, C.; Sephton, M.; Syvertson, M.; Vago, J. L.

    2010-12-01

    A study sponsored by MEPAG has defined the possibilities for cooperative science using two rovers under consideration for launch to Mars in 2018 (ESA’s ExoMars, and a NASA-sourced rover concept for which we use the working name of MAX-C). The group considered collaborative science opportunities both without change to either proposed rover, as well as with some change allowed. Planning focused on analysis of shared and separate objectives, with concurrence on two high priority shared objectives that could form the basis of highly significant collaborative exploration activity. The first shared objective relates to sending the proposed rovers to a site interpreted to contain evidence of past environments with high habitability potential, and with high preservation potential for physical and chemical biosignatures where they would evaluate paleoenvironmental conditions, assess the potential for preservation of biotic and/or prebiotic signatures, and search for possible evidence of past life and prebiotic chemistry. The second shared objective relates to the collection, documentation, and suitable packaging of a set of samples by the rovers that would be sufficient to achieve the scientific objectives of a possible future sample return mission. Achieving cooperative science with the two proposed rovers implies certain compromises that might include less time available for pursuing each rover’s independent objectives, implementation of some hardware modifications, and the need to share a landing site that may not be optimized for either rover. Sharing a landing site has multiple implications, including accepting a common latitude restriction, accepting the geological attributes of the common landing site, and creation of a potential telecommunications bottleneck. Moreover, ensuring a safe landing with the sky crane and pallet system envisioned for the mission would likely result in landing terrain engineering requirements more constraining than those for MSL

  15. Replicas of the Santa Maria, Nina, Pinta sail by OV-105 on KSC LC Pad 39B

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Replicas of Christopher Columbus' sailing ships Santa Maria, Nina, and Pinta sail by Endeavour, Orbiter Vehicle (OV) 105, on Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B awaiting liftoff on its maiden voyage, STS-49. This view is a closeup of the ships with KSC launch complex in the distant background. View provided by KSC with alternate number KSC-92PC-968.

  16. STS-112 S1 truss in Payload Changeout Room at Launch Pad 39-B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- In the Payload Changeout Room at the pad, the payload is moved out of the payload canister for transfer to Space Shuttle Atlantis' payload bay for mission STS-112. The primary payload on the mission is the S1 Integrated Truss Structure. The first starboard truss segment, the S1 will be attached to the Central truss segment, the S0 Truss, on the International Space Station during the mission. Atlantis is scheduled to launch no earlier than Oct. 2.

  17. STS-97 crew gets emergency egress training at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Listening to a trainer explain use of the slidewire basket they are standing in are STS-97 Commander Brent Jett and Mission Specialists Carlos Noriega and Marc Garneau, who is with the Canadian Space Agency. The emergency egress training is part of Terminal Countdown Demonstration Test (TCDT) activities, which also include a simulated launch countdown and opportunities for the crew to inspect the mission payloads in the orbiter'''s payload bay. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST.

  18. STS-102 crew gets emergency exit training at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The STS-102 crew watches a slidewire basket speed down the line to the landing area. At left (backs to camera, back to front) are Commander James Wetherbee, Mission Specialists Susan Helms and Paul Richards. At right are (left to right) Mission Specialists Andrew Thomas and James Voss and Pilot James Kelly. Not seen is Mission Specialist Yury Usachev. The crew is taking part in Terminal Countdown Demonstration Test activities, which include the emergency exit training and a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Launch on mission STS-102 is scheduled for March 8.

  19. STS-112 S1 truss in Payload Changeout Room at Launch Pad 39-B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The payload canister is ready to be opened in the Payload Changeout Room at the pad. Inside is the S1 Integrated Truss Structure, primary payload on mission STS-112 aboard Space Shuttle Atlantis. The first starboard truss segment, the S1 will be attached to the Central truss segment, the S0 Truss, on the International Space Station during the mission. Atlantis is scheduled to launch no earlier than Oct. 2.

  20. Planned flight test of a mercury ion auxiliary propulsion system. 1: Objectives, systems descriptions, and mission operations

    NASA Technical Reports Server (NTRS)

    Power, J. C.

    1978-01-01

    A planned flight test of an 8 cm diameter, electron-bombardment mercury ion thruster system is described. The primary objective of the test is to flight qualify the 5 mN (1 mlb.) thruster system for auxiliary propulsion applications. A seven year north-south stationkeeping mission was selected as the basis for the flight test operating profile. The flight test, which will employ two thruster systems, will also generate thruster system space performance data, measure thruster-spacecraft interactions, and demonstrate thruster operation in a number of operating modes. The flight test is designated as SAMSO-601 and will be flown aboard the shuttle-launched Air Force space test program P80-1 satellite in 1981. The spacecraft will be 3- axis stabilized in its final 740 km circular orbit, which will have an inclination of approximately greater than 73 degrees. The spacecraft design lifetime is three years.

  1. Planned flight test of a mercury ion auxiliary propulsion system. I - Objectives, systems descriptions, and mission operations

    NASA Technical Reports Server (NTRS)

    Power, J. L.

    1978-01-01

    A planned flight test of an 8-cm diameter, electron-bombardment mercury ion thruster system is described. The primary objective of the test is to flight qualify the 5 mN thruster system for auxiliary propulsion applications. A seven year north-south stationkeeping mission was selected as the basis for the flight test operating profile. The flight test, which will employ two thruster systems, will also generate thruster system space performance data, measure thruster-spacecraft interactions, and demonstrate thruster operation in a number of operating modes. The flight test is designated as SAMSO-601 and will be flown aboard the Shuttle-launched Air Force Space Test Program P80-1 satellite in 1981. The spacecraft will be 3-axis stabilized in its final 740 km circular orbit, which will have an inclination of at least 73 degrees. The spacecraft design lifetime is three years.

  2. STS-103 Commander Brown answers question during interview at Pad 39B

    NASA Technical Reports Server (NTRS)

    1999-01-01

    STS-103 Commander Curtis L. Brown Jr. answers a question from the media about the mission. As a preparation for launch, the crew have been participating in Terminal Countdown Demonstration Test (TCDT) activities at KSC. The TCDT provides the crew with emergency egress training, opportunities to inspect their mission payloads in the orbiter's payload bay, and simulated countdown exercises. Other crew members are Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, Jean-Frangois Clervoy of France, who is with the European Space Agency (ESA), John M. Grunsfeld (Ph.D.), C. Michael Foale (Ph.D.), and Claude Nicollier of Switzerland, who is also with ESA. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.

  3. STS-102 crew gets emergency exit training at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The STS-102 crew are instructed on the use of slidewire baskets for emergency exits from the launch pad. Listening to the instructor are, left to right, Mission Specialists Andrew Thomas and Paul Richards, Commander James Wetherbee, Mission Specialists Susan Helms, James Voss and Yury Usachev, and Pilot James Kelly. The crew is taking part in Terminal Countdown Demonstration Test activities, which include a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Voss, Helms and Usachev are the Expedition Two crew who will be the second resident crew on the International Space Station. They will replace Expedition One, who will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  4. STS-102 crew poses on the FSS at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-102 Commander James Wetherbee reaches for the release lever for the slidewire basket, used for emergency egress from the orbiter and pad. Behind him is Pilot James Kelly. The crew is at KSC for Terminal Countdown Demonstration Test activities, which include the emergency training and a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. In addition, the Expedition Two crew will be on the mission, to replace Expedition One, who will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  5. STS-102 crew heads for Astrovan to take them to Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - The STS-102 crew wave to onlookers as they head for the Astrovan after leaving the Operations and Checkout Building. Left to right are Mission Specialists Andrew Thomas, Paul Richards and James Voss; Pilot James Kelly; Mission Specialist Susan Helms; Commander James Wetherbee; and Mission Specialist Yury Usachev. STS-102 is the eighth construction flight to the Space Station, carrying the Multi-Purpose Logistics Module Leonardo. The primary delivery system used to resupply and return Station cargo requiring a pressurized environment, Leonardo will deliver up to 10 tons of laboratory racks filled with equipment, experiments and supplies for outfitting the newly installed U.S. Laboratory Destiny. In addition, Voss, Helms and Usachev, known as Expedition Two, are flying to the Station to replace Expedition One, who will return to Earth on Discovery. Discovery is set to launch March 8 at 6:42 a.m. EST. The 12-day mission is expected to end with a landing at KSC on March 20.

  6. Replicas of the Santa Maria, Nina, Pinta sail by OV-105 on KSC LC Pad 39B

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Replicas of Christopher Columbus' sailing ships Santa Maria, Nina, and Pinta sail by Endeavour, Orbiter Vehicle (OV) 105, on Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B awaiting liftoff on its maiden voyage, STS-49. Taken from the water, the silhouettes of the three sailing ships appear in the foreground with OV-105 atop the mobile launcher platform barely visible in the distant background. View provided by KSC with alternate number KSC-92PC-976.

  7. Understanding Vegetation Response To Climate Variability From Space: The Scientific Objectives< The Approach and The Concept of The Spectra Mission

    NASA Astrophysics Data System (ADS)

    Menenti, M.; Rast, M.; Baret, F.; Mauser, W.; Miller, J.; Schaepman, M.; Schimel, D.; Verstraete, M.

    The response of vegetation to climate variability is a major scientific question. The monitoring of the carbon stock in terrestrial environments, as well as the improved understanding of the surface-atmosphere interactions controlling the exchange of mat- ter, energy and momentum, is of immediate interest for an improved assessment of the various components of the global carbon cycle. Studies of the Earth System processes at the global scale rely on models that require an advanced understanding and proper characterization of processes at smaller scales. The goal of the SPECTRA mission is to improve the description of those processes by means of better constraints on and parameterizations of the associated models. Many vegetation properties are related to features of reflectance spectra in the region 400 nm U 2500 nm. Detailed observa- tions of spectral reflectance reveal subtle features related to biochemical components of leaves such as chlorophyll and water. The architecture of vegetation canopies de- termines complex changes of observed reflectance spectra with view and illumination angle. Quantitative analysis of reflectance spectra requires, therefore, an accurate char- acterization of the anisotropy of reflected radiance. This can be achieved with nearly U simultaneous observations at different view angles. Exchange of energy between the biosphere and the atmosphere is an important mechanism determining the response of vegetation to climate variability. This requires measurements of the component tem- perature of foliage and soil. The prime objective of SPECTRA is to determine the amount, assess the conditions and understand the response of terrestrial vegetation to climate variability and its role in the coupled cycles of energy, water and carbon. The amount and state of vegetation will be determined by the combination of observed vegetation properties and data assimilation. Specifically, the mission will character- ize the amount and state of vegetation

  8. Understanding vegetation response to climate variability from space: the scientific objectives, the approach and the concept of the SPECTRA Mission

    NASA Astrophysics Data System (ADS)

    Menenti, M.

    2002-06-01

    The response of vegetation to climate variability is a major scientific question. The monitoring of the carbon stock in terrestrial environments, as well as the improved understanding of the surface-atmosphere interactions controlling the exchange of matter, energy and momentum, is of immediate interest for an improved assessment of the various components of the global carbon cycle. Studies of the Earth System processes at the global scale rely on models that require an advanced understanding and proper characterization of processes at smaller scales. The goal of the SPECTRA mission is to improve the description of those processes by means of better constraints on and parameterizations of the associated models. Many vegetation properties are related to features of reflectance spectra in the region 400 nm - 2500 nm. Detailed observations of spectral reflectance reveal subtle features related to biochemical components of leaves such as chlorophyll and water. The architecture of vegetation canopies determines complex changes of observed reflectance spectra with view and illumination angle. Quantitative analysis of reflectance spectra requires, therefore, an accurate characterization of the anisotropy of reflected radiance. This can be achieved with nearly simultaneous observations at different view angles. Exchange of energy between the biosphere and the atmosphere is an important mechanism determining the response of vegetation to climate variability. This requires measurements of the component temperature of foliage and soil. The prime objective of SPECTRA is to determine the amount, assess the conditions and understand the response of terrestrial vegetation to climate variability and its role in the coupled cycles of energy, water and carbon. The amount and state of vegetation will be determined by the combination of observed vegetation properties and data assimilation. Specifically, the mission will characterize the amount and state of vegetation with observations

  9. STS-102 crew poses on the FSS at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- An STS-102 crew member reaches for the release lever for the slidewire basket, used for emergency egress from the orbiter and pad. The crew is at KSC for Terminal Countdown Demonstration Test activities, which include the emergency training and a simulated launch countdown. On the horizon in the background can be seen the Vehicle Assembly Building. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. In addition, the Expedition Two crew will be on the mission, to replace Expedition One, who will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  10. STS-102 crew heads for Astrovan to take them to Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - The STS-102 crew heads for the Astrovan after leaving the Operations and Checkout Building behind them. In front, left to right, are Mission Specialists James Voss, Susan Helms and Yury Usachev. In back, left to right, are Mission Specialists Andrew Thomas and Paul Richards, Pilot James Kelly and Commander James Wetherbee. STS-102 is the eighth construction flight to the Space Station, carrying the Multi-Purpose Logistics Module Leonardo. The primary delivery system used to resupply and return Station cargo requiring a pressurized environment, Leonardo will deliver up to 10 tons of laboratory racks filled with equipment, experiments and supplies for outfitting the newly installed U.S. Laboratory Destiny. In addition, Voss, Helms and Usachev, known as Expedition Two, are flying to the Station to replace Expedition One, who will return to Earth on Discovery. Discovery is set to launch March 8 at 6:42 a.m. EST. The 12-day mission is expected to end with a landing at KSC on March 20.

  11. The STS-97 crew meets with the media at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The STS-97 crew poses for another photo after meeting with the media at the slidewire landing zone. They are, left to right, Commander Brent Jett, Pilot Mike Bloomfield and Mission Specialists Joe Tanner, Marc Garneau and Carlos Noriega. Garneau is with the Canadian Space Agency. The nets suspended behind them are a braking system catch net for the slidewire baskets that provide emergency exit from the orbiter and Fixed Service Structure. The crew is at KSC to take part in Terminal Countdown Demonstration Test activities that include emergency egress training, familiarization with the payload, and a simulated launch countdown. Visible in the background are the solid rocket booster and external tank on Space Shuttle Endeavour. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST.

  12. STS-49 Astronaut By Mission Peculiar Equipment Support Structure (MPESS)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-49, the first flight of the Space Shuttle Orbiter Endeavour, lifted off from launch pad 39B on May 7, 1992 at 6:40 pm CDT. The STS-49 mission was the first U.S. orbital flight to feature 4 extravehicular activities (EVAs), and the first flight to involve 3 crew members working simultaneously outside of the spacecraft. The primary objective was the capture and redeployment of the INTELSAT VI (F-3), a communication satellite for the International Telecommunication Satellite organization, which was stranded in an unusable orbit since its launch aboard the Titan rocket in March 1990. In this onboard photo, astronaut Thomas Akers is positioned near the Mission Peculiar Equipment Support Structure (MPESS) in the cargo bay. The MPESS, developed by Marshall Space Flight Center, was used to support experiments.

  13. LEGOS: Object-based software components for mission-critical systems. Final report, June 1, 1995--December 31, 1997

    SciTech Connect

    1998-08-01

    An estimated 85% of the installed base of software is a custom application with a production quantity of one. In practice, almost 100% of military software systems are custom software. Paradoxically, the marginal costs of producing additional units are near zero. So why hasn`t the software market, a market with high design costs and low productions costs evolved like other similar custom widget industries, such as automobiles and hardware chips? The military software industry seems immune to market pressures that have motivated a multilevel supply chain structure in other widget industries: design cost recovery, improve quality through specialization, and enable rapid assembly from purchased components. The primary goal of the ComponentWare Consortium (CWC) technology plan was to overcome barriers to building and deploying mission-critical information systems by using verified, reusable software components (Component Ware). The adoption of the ComponentWare infrastructure is predicated upon a critical mass of the leading platform vendors` inevitable adoption of adopting emerging, object-based, distributed computing frameworks--initially CORBA and COM/OLE. The long-range goal of this work is to build and deploy military systems from verified reusable architectures. The promise of component-based applications is to enable developers to snap together new applications by mixing and matching prefabricated software components. A key result of this effort is the concept of reusable software architectures. A second important contribution is the notion that a software architecture is something that can be captured in a formal language and reused across multiple applications. The formalization and reuse of software architectures provide major cost and schedule improvements. The Unified Modeling Language (UML) is fast becoming the industry standard for object-oriented analysis and design notation for object-based systems. However, the lack of a standard real-time distributed

  14. Asteroid Moon Micro-imager Experiment (amie) For Smart-1 Mission, Science Objectives and Devel- Opment Status.

    NASA Astrophysics Data System (ADS)

    Josset, J.-L.; Heather, D.; Dunkin, S.; Roussel, F.; Beauvivre, S.; Kraenhenbuehl, D.; Plancke, P.; Lange-Vin, Y.; Pinet, P.; Chevrel, S.; Cerroni, P.; de Sanctis, M.-C.; Dillelis, A.; Sodnik, Z.; Koschny, D.; Barucci, A.; Hofmann, B.; Josset, M.; Muinonen, K.; Pironnen, J.; Ehrenfreud, P.; Shkuratov, Y.; Shevchenko, V.

    The Asteroid Moon micro-Imager Experiment (AMIE), which will be on board the first ESA SMART-1 mission to the Moon (launch foreseen late 2002), is an imaging sys- tem with scientific, technical and public outreach oriented objectives. The science objectives are to imagine the Lunar South Pole (Aitken basin), permanent shadow areas (ice deposit), eternal light (crater rims), ancient Lunar Non- mare volcanism, local spectro-photometry and physical state of the lunar surface, and to map high latitudes regions (south) mainly at far side (Fig. 1). The technical objectives are to perform a laser-link experiment (detection of laser beam emitted by ESA Tenerife ground station), flight demonstration of new technologies, navigation aid (feasi- bility study), and on-board autonomy investigations. Figure 3: AMIE camera (< 0.5 kg) For better interpretation of the future imagery of the Moon by the instrument, laboratory measurements have been carried out by CSEM in Tampere (Finland), with support of the Observatory of Helsinki. The experimental set-up is composed of an optical system to image samples in verti- cal position, a light source and a photodiode to verify the stability of the incident flux. The optical system is com- posed of a lens to insure good focusing on the samples (focus with the camera is at distance > 100m) and a mirror to image downwards. The samples used were anorthosite from northern Finland, basalt from Antarctis, meteorites and other lunar analog materials. A spectralon panel has also been used to have flat fields references. The samples were imaged with dif- Figure 1: SMART-1 camera imaging the Moon (simulated view) ferent phase angles. Figure 4 shows images obtained with In order to have spectral information of the surface of the basalt and olivine samples, with different integration times Moon, the camera is equipped with a set of filters (Fig. 2), in order to have information in all areas. introduced between the CCD and the teleobjective. Bandpass

  15. The RSS rolls back revealing STS-102 Discovery on Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - With the Rotating Service Structure rolled back, Space Shuttle Discovery is revealed, poised for launch on mission STS-102 at 6:42 a.m. EST March 8. It sits on the Mobile Launcher Platform, which straddles the flame trench below that helps deflect the intense heat of launch. Made of concrete and refractory brick, the trench is 490 feet long, 58 feet wide and 40 feet high. Situated above the external tank is the Gaseous Oxygen Vent Arm with the '''beanie cap,''' a vent hood. On this eighth construction flight to the International Space Station, Discovery carries the Multi-Purpose Logistics Module Leonardo, the primary delivery system used to resupply and return Station cargo requiring a pressurized environment. Leonardo will deliver up to 10 tons of laboratory racks filled with equipment, experiments and supplies for outfitting the newly installed U.S. Laboratory Destiny.

  16. USMP-4 final processing in SSPF before move to LC 39B

    NASA Technical Reports Server (NTRS)

    1997-01-01

    United States Microgravity Payload-4 (USMP-4) experiments are lifted atop the white triangular Multi-Purpose Experiment Support Structure at Kennedy Space Center (KSC) before placement into the payload canister. The vertical tube in the center of the photo is the Advanced Automated Directional Solidification Furnace (AADSF), which will be used by researchers to study the solidification of semiconductor materials in microgravity. Scientists will be able to better understand how microgravity influences the solidification process of these materials and develop better methods for controlling that process during future Space flights and Earth-based production. To its left is a horizontal white tube known as MEPHISTO, the French acronym for a cooperative American-French investigation of the fundamentals of crystal growth. The USMP-4 will launch aboard the Space Shuttle Columbia as part of the STS-87 mission, scheduled for launch Nov. 19.

  17. Replicas of the Santa Maria, Nina, Pinta sail by OV-105 on KSC LC Pad 39B

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Replicas of Christopher Columbus' sailing ships Santa Maria, Nina, and Pinta sail by Endeavour, Orbiter Vehicle (OV) 105, on Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B awaiting liftoff on its maiden voyage, STS-49. This view was taken from the water showing the three ships silhouetted in the foreground with OV-105 on mobile launcher platform profiled against fixed service structure (FSS) tower and rectracted rotating service structure (RSS) in the background. Next to the launch pad (at right) are the sound suppression water system tower and the liquid hydrogen (LH2) storage tank. View provided by KSC with alternate number KSC-92PC-970.

  18. Replicas of the Santa Maria, Nina, Pinta sail by OV-105 on KSC LC Pad 39B

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Replicas of Christopher Columbus' sailing ships Santa Maria, Nina, and Pinta sail by Endeavour, Orbiter Vehicle (OV) 105, on Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B awaiting liftoff on its maiden voyage, STS-49. This view was taken from the water showing the three ships silhouetted in the foreground with OV-105 on mobile launcher platform profiled against fixed service structure (FSS) tower and rectracted rotating service structure (RSS) in the background. Next to the launch pad (at right) are the sound suppression water system tower and the liquid hydrogen (LH2) storage tank. View provided by KSC with alternate number KSC-92PC-971.

  19. Replicas of the Santa Maria, Nina, Pinta sail by OV-105 on KSC LC Pad 39B

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Replicas of Christopher Columbus' sailing ships Santa Maria, Nina, and Pinta sail by Endeavour, Orbiter Vehicle (OV) 105, on Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B awaiting liftoff on its maiden voyage, STS-49. This view was taken from the water showing the three ships in the foreground with OV-105 on mobile launcher platform profiled against fixed service structure (FSS) tower and rectracted rotating service structure (RSS) in the background. Next to the launch pad (at right) are the sound suppression water system tower and the liquid hydrogen (LH2) storage tank. View provided by KSC with alternate number KSC-92PC-967.

  20. Replicas of the Santa Maria, Nina, Pinta sail by OV-105 on KSC LC Pad 39B

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Replicas of Christopher Columbus' sailing ships Santa Maria, Nina, and Pinta sail by Endeavour, Orbiter Vehicle (OV) 105, on Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B awaiting liftoff on its maiden voyage, STS-49. This view, taken from behind the fixed service structure (FSS) tower and retracted rotating service structure (RSS), shows the three ships as they sail by in the distance. OV-105 and its orange external tank (ET) are only partially visible. View provided by KSC with alternate KSC number KSC-92PC-977.

  1. Summary of 2011 Direct and Nearby Lightning Strikes to Launch Complex 39B, Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    Mata, C.T.; Mata, A.G.

    2012-01-01

    A Lightning Protection System (LPS) was designed and built at Launch Complex 39B (LC39B), at the Kennedy Space Center (KSC), Florida in 2009. This LPS was instrumented with comprehensive meteorological and lightning data acquisition systems that were deployed from late 2010 until mid 2011. The first direct strikes to the LPS were recorded in March of 2011, when a limited number of sensors had been activated. The lightning instrumentation system detected a total of 70 nearby strokes and 19 direct strokes to the LPS, 2 of the 19 direct strokes to the LPS had two simultaneous ground attachment points (in both instances one channel terminated on the LPS and the other on the nearby ground). Additionally, there are more unaccounted nearby strokes seen on video records for which limited data was acquired either due to the distance of the stroke or the settings of the data acquisition system. Instrumentation deployment chronological milestones, a summary of lightning strikes (direct and nearby), high speed video frames, downconductor currents, and dH/dt and dE/dt typical waveforms for direct and nearby strokes are presented.

  2. WASP-39b: a highly inflated Saturn-mass planet orbiting a late G-type star

    NASA Astrophysics Data System (ADS)

    Faedi, F.; Barros, S. C. C.; Anderson, D. R.; Brown, D. J. A.; Collier Cameron, A.; Pollacco, D.; Boisse, I.; Hébrard, G.; Lendl, M.; Lister, T. A.; Smalley, B.; Street, R. A.; Triaud, A. H. M. J.; Bento, J.; Bouchy, F.; Butters, O. W.; Enoch, B.; Haswell, C. A.; Hellier, C.; Keenan, F. P.; Miller, G. R. M.; Moulds, V.; Moutou, C.; Norton, A. J.; Queloz, D.; Santerne, A.; Simpson, E. K.; Skillen, I.; Smith, A. M. S.; Udry, S.; Watson, C. A.; West, R. G.; Wheatley, P. J.

    2011-07-01

    We present the discovery of WASP-39b, a highly inflated transiting Saturn-mass planet orbiting a late G-type dwarf star with a period of 4.055259 ± 0.000008 d, Transit Epoch T0 = 2 455 342.9688 ± 0.0002 (HJD), of duration 0.1168 ± 0.0008 d. A combined analysis of the WASP photometry, high-precision follow-up transit photometry, and radial velocities yield a planetary mass of Mpl = 0.28 ± 0.03 MJ and a radius of Rpl = 1.27 ± 0.04 RJ, resulting in a mean density of 0.14 ± 0.02 ρJ. The stellar parameters are mass M⋆ = 0.93 ± 0.03 M⊙, radius R⋆ = 0.895 ± 0.23 R⊙, and age 9+3-4 Gyr. Only WASP-17b and WASP-31b have lower densities than WASP-39b, although they are slightly more massive and highly irradiated planets. From our spectral analysis, the metallicity of WASP-39 is measured to be [Fe/H] = -0.12 ± 0.1 dex, and we find the planet to have an equilibrium temperature of 1116+33-32 K. Both values strengthen the observed empirical correlation between these parameters and the planetary radius for the known transiting Saturn-mass planets. Spectroscopic and photometric data are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/531/A40

  3. Development of the coastal zone color scanner for NIMBUS 7. Volume 1: Mission objectives and instrument description

    NASA Technical Reports Server (NTRS)

    1979-01-01

    An Earth scanning six channel (detector) radiometer using a classical Cassegrain telescope and a Wadsworth type grating spectrometer was launched aboard Nimbus 7 in order to determine the abundance or density of chlorophyll at or near the sea surface in coastal waters. The instrument also measures the sediment or gelbstroffe (yellow stuff) in coastal waters, detects surface vegetation, and measures sea surface temperature. Block diagrams and schematics are presented, design features are discussed and each subsystem of the instrument is described. A mission overview is included.

  4. Capture of cosmic dusts and exposure of organics on the International Space Station: Objectives of the Tanpopo Mission

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kensei

    Finding of a wide variety of organic compounds contained in extraterrestrial bodies such as carbonaceous chondrites and comets suggested that they were important materials for the first life on the Earth. Cosmic dusts (interplanetary dust particles; IDPs) were believed to have been important carriers of extraterrestrial organics, since IDPs could deliver organics to the primitive Earth more safely than asteroids and comets. Since most IDPs have been collected in such terrestrial environments as ocean sediments, Antarctic ices, and air in stratosphere, it is difficult to judge whether biooranics found in IDPs were extraterrestrial origins or not. Thus it would be of importance to collect IDPs out of the terrestrial biosphere. We are planning the Tanpopo Mission by utilizing the Exposed Facility of Japan Experimental Module (JEM/EF) of the International Space Station (ISS). Two types of experiments will be done in the Tanpopo Mission: Capture experiments and exposure experiments. In order to collect cosmic dusts (including IDPs) on the ISS, we are going to use extra-low density aerogel, since both cosmic dusts and ISS are moving at 8 km s-1 or over. We have developed novel aerogel whose density is 0.01 g cm-3. After the return of the aerogel blocks after 1 to a few years’ stay on JEM/EF, organic compounds in the captured dusts will be characterized by a wide variety of analytical techniques including FT-IR, XANES, and MS. Amino acid enantiomers will be determined after HF digestion and acid hydrolysis. A number of amino acids were detected in water extract of carbonaceous chondrites. It is controversial whether meteorites contain free amino acids or amino acid precursors. When dusts are formed from meteorites or comets in interplanetary space, they are exposed to high-energy particles and photons. In order to evaluate stability and possible alteration of amino acid-related compounds, we chose amino acids (glycine and isovaline) and hydantoins (precursors of amino

  5. Sizing of "Mother Ship and Catcher" Missions for LEO Small Debris and for GEO Large Object Capture

    NASA Technical Reports Server (NTRS)

    Bacon, John B.

    2009-01-01

    Most LEO debris lies in a limited number of inclination "bands" associated with specific useful orbits. Objects in such narrow inclination bands have all possible Right Ascensions of Ascending Node (RAANs), creating a different orbit plane for nearly every piece of debris. However, a low-orbiting satellite will always phase in RAAN faster than debris objects in higher orbits at the same inclination, potentially solving the problem. Such a low-orbiting base can serve as a "mother ship" that can tend and then send small, disposable common individual catcher/deboost devices--one for each debris object--as the facility drifts into the same RAAN as each higher object. The dV necessary to catch highly-eccentric orbit debris in the center of the band alternatively allows the capture of less-eccentric debris in a wider inclination range around the center. It is demonstrated that most LEO hazardous debris can be removed from orbit in three years, using a single LEO launch of one mother ship--with its onboard magazine of freeflying low-tech catchers--into each of ten identified bands, with second or potentially third launches into only the three highest-inclination bands. The nearly 1000 objects near the geostationary orbit present special challenges in mass, maneuverability, and ultimate disposal options, leading to a dramatically different architecture and technology suite than the LEO solution. It is shown that the entire population of near-GEO derelict objects can be gathered and tethered together within a 3 year period for future scrap-yard operations using achievable technologies and only two earth launches.

  6. Mission specification for three generic mission classes

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Mission specifications for three generic mission classes are generated to provide a baseline for definition and analysis of data acquisition platform system concepts. The mission specifications define compatible groupings of sensors that satisfy specific earth resources and environmental mission objectives. The driving force behind the definition of sensor groupings is mission need; platform and space transportation system constraints are of secondary importance. The three generic mission classes are: (1) low earth orbit sun-synchronous; (2) geosynchronous; and (3) non-sun-synchronous, nongeosynchronous. These missions are chosen to provide a variety of sensor complements and implementation concepts. Each mission specification relates mission categories, mission objectives, measured parameters, and candidate sensors to orbits and coverage, operations compatibility, and platform fleet size.

  7. Investigations of the First Objects to Light Up the Universe: The Dark Ages Radio Explorer (DARE) Mission Concept

    NASA Astrophysics Data System (ADS)

    Burns, Jack; Lazio, Joseph; Bowman, Judd; Bradley, Richard; Datta, Abhirup; Furlanetto, Steven; Jones, Dayton; Kasper, Justin; Loeb, Abraham

    2015-08-01

    The Dark Ages Radio Explorer (DARE) is designed to probe the epoch of formation of the first stars, black holes, and galaxies, never before observed, using the redshifted hyperfine 21-cm transition from neutral hydrogen. These first objects to illuminate the Universe (redshifts 35 to 11) will be studied via their heating and ionization of the intergalactic medium. Over its lifetime of 2 years, DARE observes at low radio astronomy frequencies (VHF), 40 - 120 MHz, in a 125 km altitude lunar orbit. The Moon occults both Earth and the Sun as DARE makes observations on the lunar farside, shielding it from the corrupting effects of radio interference, Earth’s ionosphere, and solar emissions. Bi-conical dipole antennas, pseudo-correlation receivers used in differential mode to stabilize the radiometer, and a digital spectrometer achieve the sensitivity required to observe the cosmic signal. The unique frequency structure of the 21-cm signal and its uniformity over large angular scales are unlike the spectrally featureless, spatially varying characteristics of the Galactic foreground, allowing the signal to be cleanly separated from the foreground. In the talk, the DARE science objectives, the science instrument, foreground removal strategy, and design of an engineering prototype will be described.

  8. A Neptune Orbiter Mission

    NASA Technical Reports Server (NTRS)

    Wallace, R. A.; Spilker, T. R.

    1998-01-01

    This paper describes the results of new analyses and mission/system designs for a low cost Neptune Orbiter mission. Science and measurement objectives, instrumentation, and mission/system design options are described and reflect an aggressive approach to the application of new advanced technologies expected to be available and developed over the next five to ten years.

  9. STS-87 Mission Specialist Scott in white room

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Mission Specialist Winston Scott is assisted with his ascent and re-entry flight suit in the white room at Launch Pad 39B by Danny Wyatt, NASA quality assurance specialist. STS-87 is the fourth flight of the United States Microgravity Payload and Spartan-201. Scott is scheduled to perform an extravehicular activity spacewalk with Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan, during STS-87. Scott also performed a spacewalk on the STS-72 mission.

  10. STS-87 Mission Specialist Doi in white room

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan, is assisted with his ascent and re- entry flight suit by Dave Law, USA mechanical technician, in the white room at Launch Pad 39B as Dr. Doi prepares to enter the Space Shuttle orbiter Columbia on launch day. At right wearing glasses is Danny Wyatt, NASA quality assurance specialist. STS-87 is the fourth flight of the United States Microgravity Payload and Spartan-201. The 16-day mission will include a spacewalk by Dr. Doi and Mission Specialist Winston Scott.

  11. STS-87 Mission Specialist Takao Doi suits up

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan, gives a thumbs up in his launch and entry suit in the Operations and Checkout Building. He and the five other crew members will depart shortly for Launch Pad 39B, where the Space Shuttle Columbia awaits liftoff on a 16-day mission to perform microgravity and solar research. Dr. Doi is scheduled to perform an extravehicular activity spacewalk with Mission Specialist Winston Scott during STS-87.

  12. STS-87 Mission Specialist Winston E. Scott suits up

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Mission Specialist Winston Scott dons his launch and entry suit with the assistance of a suit technician in the Operations and Checkout Building. This is Scotts second space flight. He and the five other crew members will depart shortly for Launch Pad 39B, where the Space Shuttle Columbia awaits liftoff on a 16-day mission to perform microgravity and solar research. Scott is scheduled to perform an extravehicular activity spacewalk with Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan, during STS-87. He also performed a spacewalk on STS-72.

  13. STS-70 Mission Specialist Nancy Jane Currie suits up

    NASA Technical Reports Server (NTRS)

    1995-01-01

    STS-70 Mission Specialist Nancy Jane Currie is donning her launch/entry suit in the Operations and Checkout Building with help from a suit technician. Currie has flown in space once before, on STS-57. Currie and four crew mates will depart shortly for Launch Pad 39B, where the Space Shuttle Discovery is undergoing final preparations for a liftoff scheduled during a two and a half hour launch window opening at 9:41 a.m. EDT.

  14. STS-80 Crew Arrival (Mission Specialist Story Musgrave)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-80 Mission Specialist Story Musgrave and four fellow crew members arrive at KSC's Shuttle Landing Facility as preparations continue for launch of the final Shuttle flight of 1996. Tomorrow, Nov. 12, the launch countdown will begin at 1 p.m. with the countdown clock set at T-43 hours. The Space Shuttle Columbia is scheduled for liftoff from Launch Pad 39B at 2:50 p.m. EST, Nov. 15.

  15. A Preliminary Report on the Objectives, Goals, and Missions of the School of Education, Indiana University for the Period 1973-1978.

    ERIC Educational Resources Information Center

    Mehlinger, Howard D.; And Others

    This paper describes how the School of Education at Indiana University intends to take maximum advantage of available resources during the coming 5 years. It is organized around four primary functions of the School of Education and discusses how each of these functions contributes to the overall mission of the school to deal with problems of…

  16. Instituto para la Promocion de la Cultura Civica, A.C.: Mission; Philosophy; Goals and Objectives; Challenge and Commitment; Activities; Publications and Essays; Presence in the Mass Media.

    ERIC Educational Resources Information Center

    Instituto para la Promocion de la Cultura Civica. Mexico City (Mexico).

    The report discusses the activities of the Instituto para la Promocion de la Culture Civica (ICC), a non-partisan, not-for-profit Mexican nongovernmental organization (NGO) that has as its mission: to promote the advancement of a civic culture understood as a system of values, ideas, traits of character, dispositions, inclinations, attitudes,…

  17. Mission operations management

    NASA Technical Reports Server (NTRS)

    Rocco, David A.

    1994-01-01

    Redefining the approach and philosophy that operations management uses to define, develop, and implement space missions will be a central element in achieving high efficiency mission operations for the future. The goal of a cost effective space operations program cannot be realized if the attitudes and methodologies we currently employ to plan, develop, and manage space missions do not change. A management philosophy that is in synch with the environment in terms of budget, technology, and science objectives must be developed. Changing our basic perception of mission operations will require a shift in the way we view the mission. This requires a transition from current practices of viewing the mission as a unique end product, to a 'mission development concept' built on the visualization of the end-to-end mission. To achieve this change we must define realistic mission success criteria and develop pragmatic approaches to achieve our goals. Custom mission development for all but the largest and most unique programs is not practical in the current budget environment, and we simply do not have the resources to implement all of our planned science programs. We need to shift our management focus to allow us the opportunity make use of methodologies and approaches which are based on common building blocks that can be utilized in the space, ground, and mission unique segments of all missions.

  18. Predicting Mission Success in Small Satellite Missions

    NASA Technical Reports Server (NTRS)

    Saunders, Mark; Richie, R. Wayne; Moore, Arlene; Rogers, John

    1999-01-01

    In our global society with its increasing international competition and tighter financial resources, governments, commercial entities and other organizations are becoming critically aware of the need to ensure that space missions can be achieved on time and within budget. This has become particularly true for the National Aeronautics and Space Administration's (NASA's) Office of Space Science (OSS) which has developed their Discovery and Explorer programs to meet this need. As technologies advance, space missions are becoming smaller and more capable than their predecessors. The ability to predict the mission success of these small satellite missions is critical to the continued achievement of NASA science mission objectives. The NASA Office of Space Science, in cooperation with the NASA Langley Research Center, has implemented a process to predict the likely success of missions proposed to its Discovery and Explorer Programs. This process is becoming the basis for predicting mission success in many other NASA programs as well. This paper describes the process, methodology, tools and synthesis techniques used to predict mission success for this class of mission.

  19. Predicting Mission Success in Small Satellite Missions

    NASA Technical Reports Server (NTRS)

    Saunders, Mark; Richie, Wayne; Rogers, John; Moore, Arlene

    1992-01-01

    In our global society with its increasing international competition and tighter financial resources, governments, commercial entities and other organizations are becoming critically aware of the need to ensure that space missions can be achieved on time and within budget. This has become particularly true for the National Aeronautics and Space Administration's (NASA) Office of Space Science (OSS) which has developed their Discovery and Explorer programs to meet this need. As technologies advance, space missions are becoming smaller and more capable than their predecessors. The ability to predict the mission success of these small satellite missions is critical to the continued achievement of NASA science mission objectives. The NASA Office of Space Science, in cooperation with the NASA Langley Research Center, has implemented a process to predict the likely success of missions proposed to its Discovery and Explorer Programs. This process is becoming the basis for predicting mission success in many other NASA programs as well. This paper describes the process, methodology, tools and synthesis techniques used to predict mission success for this class of mission.

  20. The 2005 MARTE Robotic Drilling Experiment in Río Tinto, Spain: Objectives, Approach, and Results of a Simulated Mission to Search for Life in the Martian Subsurface

    NASA Astrophysics Data System (ADS)

    Stoker, Carol R.; Cannon, Howard N.; Dunagan, Stephen E.; Lemke, Lawrence G.; Glass, Brian J.; Miller, David; Gomez-Elvira, Javier; Davis, Kiel; Zavaleta, Jhony; Winterholler, Alois; Roman, Matt; Rodriguez-Manfredi, Jose Antonio; Bonaccorsi, Rosalba; Bell, Mary Sue; Brown, Adrian; Battler, Melissa; Chen, Bin; Cooper, George; Davidson, Mark; Fernández-Remolar, David; Gonzales-Pastor, Eduardo; Heldmann, Jennifer L.; Martínez-Frías, Jesus; Parro, Victor; Prieto-Ballesteros, Olga; Sutter, Brad; Schuerger, Andrew C.; Schutt, John; Rull, Fernando

    2008-10-01

    The Mars Astrobiology Research and Technology Experiment (MARTE) simulated a robotic drilling mission to search for subsurface life on Mars. The drill site was on Peña de Hierro near the headwaters of the Río Tinto river (southwest Spain), on a deposit that includes massive sulfides and their gossanized remains that resemble some iron and sulfur minerals found on Mars. The mission used a fluidless, 10-axis, autonomous coring drill mounted on a simulated lander. Cores were faced; then instruments collected color wide-angle context images, color microscopic images, visible near infrared point spectra, and (lower resolution) visible-near infrared hyperspectral images. Cores were then stored for further processing or ejected. A borehole inspection system collected panoramic imaging and Raman spectra of borehole walls. Life detection was performed on full cores with an adenosine triphosphate luciferin-luciferase bioluminescence assay and on crushed core sections with SOLID2, an antibody array-based instrument. Two remotely located science teams analyzed the remote sensing data and chose subsample locations. In 30 days of operation, the drill penetrated to 6 m and collected 21 cores. Biosignatures were detected in 12 of 15 samples analyzed by SOLID2. Science teams correctly interpreted the nature of the deposits drilled as compared to the ground truth. This experiment shows that drilling to search for subsurface life on Mars is technically feasible and scientifically rewarding.

  1. The 2005 MARTE Robotic Drilling Experiment in Río Tinto, Spain: objectives, approach, and results of a simulated mission to search for life in the Martian subsurface.

    PubMed

    Stoker, Carol R; Cannon, Howard N; Dunagan, Stephen E; Lemke, Lawrence G; Glass, Brian J; Miller, David; Gomez-Elvira, Javier; Davis, Kiel; Zavaleta, Jhony; Winterholler, Alois; Roman, Matt; Rodriguez-Manfredi, Jose Antonio; Bonaccorsi, Rosalba; Bell, Mary Sue; Brown, Adrian; Battler, Melissa; Chen, Bin; Cooper, George; Davidson, Mark; Fernández-Remolar, David; Gonzales-Pastor, Eduardo; Heldmann, Jennifer L; Martínez-Frías, Jesus; Parro, Victor; Prieto-Ballesteros, Olga; Sutter, Brad; Schuerger, Andrew C; Schutt, John; Rull, Fernando

    2008-10-01

    The Mars Astrobiology Research and Technology Experiment (MARTE) simulated a robotic drilling mission to search for subsurface life on Mars. The drill site was on Peña de Hierro near the headwaters of the Río Tinto river (southwest Spain), on a deposit that includes massive sulfides and their gossanized remains that resemble some iron and sulfur minerals found on Mars. The mission used a fluidless, 10-axis, autonomous coring drill mounted on a simulated lander. Cores were faced; then instruments collected color wide-angle context images, color microscopic images, visible-near infrared point spectra, and (lower resolution) visible-near infrared hyperspectral images. Cores were then stored for further processing or ejected. A borehole inspection system collected panoramic imaging and Raman spectra of borehole walls. Life detection was performed on full cores with an adenosine triphosphate luciferin-luciferase bioluminescence assay and on crushed core sections with SOLID2, an antibody array-based instrument. Two remotely located science teams analyzed the remote sensing data and chose subsample locations. In 30 days of operation, the drill penetrated to 6 m and collected 21 cores. Biosignatures were detected in 12 of 15 samples analyzed by SOLID2. Science teams correctly interpreted the nature of the deposits drilled as compared to the ground truth. This experiment shows that drilling to search for subsurface life on Mars is technically feasible and scientifically rewarding. PMID:19032053

  2. STS-51 Mission Overview

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Robert Castle, Lead Flight Director, gives an overview of the STS-51 Discovery mission, including details on the Space Shuttle, the payloads (ACTS-TOS, ORFEUS-SPAS, etc.), the crew, mission objectives, and the spacewalks to be performed. Simulations of the ACT-TS deployment and the ORPFEUS-SPAS operations are shown.

  3. Mission requirements: Second Skylab mission SL-3

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Complete SL-3 mission objectives and requirements, as revised 1 February 1972 (Rev. 6), are presented. Detailed test objectives are also given on the medical experiments, Apollo Telescope Mount experiments, Earth Resources Experiment Package, and corollary experiments and environmental microbiology experiments.

  4. STS-76 Mission Specialist Richard Clifford suits up

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-76 Mission Specialist Michael Richard 'Rich' Clifford is donning his launch/entry suit in the Operations and Checkout Building with assistance from a suit technician. Clifford has flown in space twice before, on Missions STS-53 and STS-59, the latter including fellow STS-76 crew members Kevin Chilton and Linda Godwin. Once suitup activities are completed the six-member STS-76 flight crew will depart for Launch Pad 39B, where the Space Shuttle Atlantis is undergoing final preparations for liftoff during an approximately seven-minute launch window opening around 3:13 a.m. EST, March 22.

  5. STS-93 Mission Specialist Coleman drives an M-113 during training

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Under the watchful eyes of Capt. George Hoggard (left), trainer with the KSC Fire Department, STS-93 Mission Specialist Catherine G. Coleman (Ph.D.) drives the M-113 armored personnel carrier during emergency egress training at the launch pad. Behind her is Pilot Jeffrey S. Ashby and Commander Eileen M. Collins. In preparation for their mission, the STS-93 crew are participating in Terminal Countdown Demonstration Test activities that also include a launch-day dress rehearsal culminating with a simulated main engine cut-off. Others in the crew participating are Mission Specialists Steven A. Hawley (Ph.D.) and Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as a mission commander. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B.

  6. Formation, Alteration and Delivery of Exogenous High Molecular Weight Organic Compounds: Objectives of the Tanpopo Mission from the Point of View of Chemical Evolution

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kensei; K. Sarker, Palash; Ono, Keisuke; Kawamoto, Yukinori; Obayashi, Yumiko; Kaneko, Takeo; Yoshida, Satoshi; Mita, Hajime; Yabuta, Hikaru; Yamagishi, Akihiko

    A wide variety of organic compounds have been detected in such extraterrestrial bodies as carbonaceous chondrites and comets. Amino acids have been confirmed in extracts from carbonaceous chondrites and cometary dusts. It was suggested that these organics were formed in quite cold environments. We irradiated possible interstellar media, such as a frozen mixture of methanol, ammonia and water, with high-energy particles. Amino acid precursors with high molecular weights were detected in the irradiated products. Such complex amino acid precursors are much more stable than free amino acids against radiation, and heat. It is suggested that interplanetary dust particles (IDPs) brought much more organics than meteorites and comets. However, characteristics of organic compounds in IDPs are little known, since they have been collected only in terrestrial biosphere. We are planning the Tanpopo Mission, where IDPs would be collected in aerogel equipped on the Exposure Facility of the International Space Station. In addition, amino acids and their relating compounds would be exposed to space environments to see their possible alteration processes.

  7. An interstellar precursor mission

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.; Ivie, C.; Lewis, J. C.; Lipes, R.; Norton, H. N.; Stearns, J. W.; Stimpson, L. D.; Weissman, P.

    1980-01-01

    A mission out of the planetary system, launched about the year 2000, could provide valuable scientific data as well as test some of the technology for a later mission to another star. Primary scientific objectives for the precursor mission concern characteristics of the heliopause, the interstellar medium, stellar distances (by parallax measurements), low-energy cosmic rays, interplanetary gas distribution, and the mass of the solar system. Secondary objectives include investigation of Pluto. The mission should extend to 400-1000 AU from the sun. A heliocentric hyperbolic escape velocity of 50-100 km/sec or more is needed to attain this distance within a reasonable mission duration (20-50 years). The trajectory should be toward the incoming interstellar gas. For a year 2000 launch, a Pluto encounter and orbiter can be included. A second mission targeted parallel to the solar axis would also be worthwhile. The mission duration is 20 years, with an extended mission to a total of 50 years. A system using one or two stages of nuclear electric propulsion (NEP) was selected as a possible baseline. The most promising alternatives are ultralight solar sails or laser sailing, with the lasers in earth orbit, for example. The NEP baseline design allows the option of carrying a Pluto orbiter as a daughter spacecraft.

  8. [The mission].

    PubMed

    Ruiz Moreno, J; Blanch Mon, A

    2000-01-01

    After having made a historical review of the concept of mission statement, of evaluating its importance (See Part I), of describing the bases to create a mission statement from a strategic perspective and of analyzing the advantages of this concept, probably more important as a business policy (See Parts I and II), the authors proceed to analyze the mission statement in health organizations. Due to the fact that a mission statement is lacking in the majority of health organizations, the strategy of health organizations are not exactly favored; as a consequence, neither are its competitive advantage nor the development of its essential competencies. After presenting a series of mission statements corresponding to Anglo-Saxon health organizations, the authors highlight two mission statements corresponding to our social context. The article finishes by suggesting an adequate sequence for developing a mission statement in those health organizations having a strategic sense. PMID:10983153

  9. NEOCAM: Near Earth Object Chemical Analysis Mission: Bridging the Gulf between Telescopic Observations and the Chemical and Mineralogical Compositions of Asteroids or Diogenes A: Diagnostic Observation of the Geology of Near Earth Spectrally-Classified Asteroids

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A.

    2009-01-01

    Studies of meteorites have yielded a wealth of scientific information based on highly detailed chemical and isotopic studies possible only in sophisticated terrestrial laboratories. Telescopic studies have revealed an enormous (greater than 10(exp 5)) number of physical objects ranging in size from a few tens of meters to several hundred kilometers, orbiting not only in the traditional asteroid belt between Mars and Jupiter but also throughout the inner solar system. Many of the largest asteroids are classed into taxonomic groups based on their observed spectral properties and are designated as C, D. X, S or V types (as well as a wide range in sub-types). These objects are certainly the sources far the meteorites in our laboratories, but which asteroids are the sources for which meteorites? Spectral classes are nominally correlated to the chemical composition and physical characteristics of the asteroid itself based on studies of the spectral changes induced in meteorites due to exposure to a simulated space environment. While laboratory studies have produced some notable successes (e.g. the identification of the asteroid Vesta as the source of the H, E and D meteorite classes), it is unlikely that we have samples of each asteroidal spectral type in our meteorite collection. The correlation of spectral type and composition for many objects will therefore remain uncertain until we can return samples of specific asteroid types to Earth for analyses. The best candidates for sample return are asteroids that already come close to the Earth. Asteroids in orbit near 1 A.U. have been classified into three groups (Aten, Apollo & Amor) based on their orbital characteristics. These Near Earth Objects (NEOs) contain representatives of virtually all spectral types and sub-types of the asteroid population identified to date. Because of their close proximity to Earth, NEOs are prime targets for asteroid missions such as the NEAR-Shoemaker NASA Discovery Mission to Eros and the

  10. STS-93 Mission Specialist Tognini drives an M-113 during training

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Under the watchful eyes of KSC Fire Department trainer Capt. George Hoggard (seated on the front), STS-93 Mission Specialist Michel Tognini of France (right) drives the M-113 armored personnel carrier during emergency egress training at the launch pad. Tognini represents the Centre National d'Etudes Spatiales (CNES). At the far left is Roland Nedelkovich, with the Vehicle Integration Test Team, JSC. In preparation for their mission, the STS-93 crew are participating in Terminal Countdown Demonstration Test activities that also include a launch-day dress rehearsal culminating with a simulated main engine cut-off. Others in the crew participating are Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Steven A. Hawley (Ph.D.) and Catherine G. Coleman (Ph.D.) Collins is the first woman to serve as a Shuttle commander. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B.

  11. NASA's Terrestrial Planet Finder Missions

    NASA Technical Reports Server (NTRS)

    Coulter, Daniel R.

    2004-01-01

    NASA has decided to move forward with two complementary Terrestrial Planet Finder (TPF) missions, a visible coronagraph and an infrared formation flying interferometer. These missions are major missions in the NASA Office of Space Science Origins Theme. The primary science objectives of the TPF missions are to search for, detect, and characterize planets and planetary systems beyond our own Solar System, including specifically Earth-like planets.

  12. STS-69 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Designed by the mission crew members, the patch for STS-69 symbolizes the multifaceted nature of the flight's mission. The primary payload, the Wake Shield Facility (WSF), is represented in the center by the astronaut emblem against a flat disk. The astronaut emblem also signifies the importance of human beings in space exploration, reflected by the planned space walk to practice for International Space Station (ISS) activities and to evaluate space suit design modifications. The two stylized Space Shuttles highlight the ascent and entry phases of the mission. Along with the two spiral plumes, the stylized Space Shuttles symbolize a NASA first, the deployment and recovery on the same mission of two spacecraft (both the Wake Shield Facility and the Spartan). The constellations Canis Major and Canis Minor represent the astronomy objectives of the Spartan and International Extreme Ultraviolet Hitchhiker (IEH) payload. The two constellations also symbolize the talents and dedication of the support personnel who make Space Shuttle missions possible.

  13. An interstellar precursor mission

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.; Ivie, C.; Lewis, J. C.; Lipes, R. G.; Norton, H. N.; Stearns, J. W.; Stimpson, L.; Weissman, P.

    1977-01-01

    A mission out of the planetary system, with launch about the year 2000, could provide valuable scientific data as well as test some of the technology for a later mission to another star. Primary scientific objectives for the precursor mission concern characteristics of the heliopause, the interstellar medium, stellar distances (by parallax measurements), low energy cosmic rays, interplanetary gas distribution, and mass of the solar system. Secondary objectives include investigation of Pluto. Candidate science instruments are suggested. Individual spacecraft systems for the mission were considered, technology requirements and problem areas noted, and a number of recommendations made for technology study and advanced development. The most critical technology needs include attainment of 50-yr spacecraft lifetime and development of a long-life NEP system.

  14. MSFC Flight Mission Directive Apollo-Saturn 205 Mission

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The purpose of this directive is to provide, under one cover, coordinated direction for the AS-205 Space Vehicle Flight. Within this document, mission objectives are specified, vehicle configuration is described and referenced, flight trajectories, data acquisition requirements, instrumentation requirements, and detailed documentation requirements necessary to meet launch vehicle mission objectives are defined and/or referenced.

  15. Cassini Mission

    SciTech Connect

    Mitchell, Robert

    2005-08-10

    The Cassini/Huygens mission is a joint NASA/European Space Agency/Italian Space Agency project which has a spacecraft currently in orbit about Saturn, and has successfully sent an atmospheric probe through the atmosphere of Saturn's largest moon Titan and down to its previously hidden surface. This presentation will describe the overall mission, how it got a rather massive spacecraft to Saturn, and will cover some of the scientific results of the mission to date.

  16. The Cassini Extended Mission

    NASA Astrophysics Data System (ADS)

    Seal, David A.; Buffington, Brent B.

    Based on the overwhelming success of the Cassini/Huygens 4-year tour of Saturn from July 2004 to June 2008, NASA Headquarters approved at least two years of extended mission for continued study of the target-rich Saturnian system. After a rigorous phase of science objective definition and trajectory design and analysis, the Cassini project initiated an efficient, scientifically intense and operationally challenging mission phase, including 60 orbits around Saturn, 26 close Titan flybys, and 10 close icy satellite flybys — including seven more flybys of Enceladus. At the conclusion of the 2-year extended mission, substantial operating margins should be present with some fascinating options for further extensions

  17. LEO and GEO missions

    NASA Technical Reports Server (NTRS)

    Mercanti, Enrico

    1987-01-01

    The occurrence of the Challenger disaster in early 1986 caused a severe reevaluation of the space program. Plans already established had to be drastically revised and new plans had to be made. NASA created the Space Leadership Planning Group (SLPG) to formulate space mission plans covering a 50 year period based on Agency goals and objectives responsive to the National Commission on Space recommendations. An interim view of the status of SLPG plans for low altitude and geosynchronous missions is presented.

  18. STS-87 Mission Specialist Chawla talks to the media during TCDT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Kalpana Chawla, Ph.D., a mission specialist of the STS-87 crew, participates in a news briefing at Launch Pad 39B during the Terminal Countdown Demonstration Test (TCDT) at Kennedy Space Center (KSC). First-time Shuttle flier Dr. Chawla reported for training as an astronaut at Johnson Space Center in 1995. She has a doctorate in aerospace engineering from the University of Colorado. The TCDT is held at KSC prior to each Space Shuttle flight providing the crew of each mission opportunities to participate in simulated countdown activities. The TCDT ends with a mock launch countdown culminating in a simulated main engine cut-off. The crew also spends time undergoing emergency egress training exercises at the pad and has an opportunity to view and inspect the payloads in the orbiter's payload bay. STS-87 is scheduled for launch Nov. 19 aboard the Space Shuttle Columbia from pad 39B at KSC.

  19. IMP mission

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The program requirements and operations requirements for the IMP mission are presented. The satellite configuration is described and the missions are analyzed. The support equipment, logistics, range facilities, and responsibilities of the launching organizations are defined. The systems for telemetry, communications, satellite tracking, and satellite control are identified.

  20. STS-90 Mission Specialist Richard Linnehan suits up

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-90 Mission Specialist Richard Linnehan, D.V.M., sits in a chair during suitup activities in the Operations and Checkout Building. Linnehan and the rest of the STS-90 crew will shortly depart for Launch Pad 39B, where the Space Shuttle Columbia awaits a second liftoff attempt at 2:19 p.m. EDT. His second trip into space, Linnehan is participating in a life sciences research flight that will focus on the most complex and least understood part of the human body -- the nervous system. Neurolab will examine the effects of spaceflight on the brain, spinal cord, peripheral nerves and sensory organs in the human body.

  1. The Voyager Interstellar Mission.

    PubMed

    Rudd, R P; Hall, J C; Spradlin, G L

    1997-01-01

    The Voyager Interstellar Mission began on January 1, 1990, with the primary objective being to characterize the interplanetary medium beyond Neptune and to search for the transition region between the interplanetary medium and the interstellar medium. At the start of this mission, the two Voyager spacecraft had already been in flight for over twelve years, having successfully returned a wealth of scientific information about the planetary systems of Jupiter, Saturn, Uranus, and Neptune, and the interplanetary medium between Earth and Neptune. The two spacecraft have the potential to continue returning science data until around the year 2020. With this extended operating lifetime, there is a high likelihood of one of the two spacecraft penetrating the termination shock and possibly the heliopause boundary, and entering interstellar space before that time. This paper describes the Voyager Interstellar Mission--the mission objectives, the spacecraft and science payload, the mission operations system used to support operations, and the mission operations strategy being used to maximize science data return even in the event of certain potential spacecraft subsystem failures. The implementation of automated analysis tools to offset and enable reduced flight team staffing levels is also discussed. PMID:11540770

  2. Apollo 15 mission report

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A detailed discussion is presented of the Apollo 15 mission, which conducted exploration of the moon over longer periods, greater ranges, and with more instruments of scientific data acquisition than previous missions. The topics include trajectory, lunar surface science, inflight science and photography, command and service module performance, lunar module performance, lunar surface operational equipment, pilot's report, biomedical evaluation, mission support performance, assessment of mission objectives, launch phase summary, anomaly summary, and vehicle and equipment descriptions. The capability of transporting larger payloads and extending time on the moon were demonstrated. The ground-controlled TV camera allowed greater real-time participation by earth-bound personnel. The crew operated more as scientists and relied more on ground support team for systems monitoring. The modified pressure garment and portable life support system provided better mobility and extended EVA time. The lunar roving vehicle and the lunar communications relay unit were also demonstrated.

  3. The Spacelab J mission

    NASA Technical Reports Server (NTRS)

    Cremin, J. W.; Leslie, F. W.

    1990-01-01

    This paper describes Spacelab J (SL-J), its mission characteristics, features, parameters and configuration, the unique nature of the shared reimbursable cooperative effort with the National Space Development Agency (NASDA) of Japan and the evolution, content and objectives of the mission scientific experiment complement. The mission is planned for launch in 1991. This long module mission has 35 experiments from Japan as well as 9 investigations from the United States. The SL-J payload consists of two broad scientific disciplines which require the extended microgravity or cosmic ray environment: (1) materials science such as crystal growth, solidification processes, drop dynamics, free surface flows, gas dynamics, metallurgy and semiconductor technology; and (2) life science including cell development, human physiology, radiation-induced mutations, vestibular studies, embryo development, and medical technology. Through an international agreement with NASDA, NASA is preparing to fly the first Japanese manned, scientific, cooperative endeavor with the United States.

  4. Mission Specialist Scott Parazynski checks his flight suit

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-95 Mission Specialist Scott E. Parazynski gets help with his flight suit in the Operations and Checkout Building from a suit technician George Brittingham. The final fitting takes place prior to the crew walkout and transport to Launch Pad 39B. Targeted for launch at 2 p.m. EST on Oct. 29, the mission is expected to last 8 days, 21 hours and 49 minutes, and return to KSC at 11:49 a.m. EST on Nov. 7. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  5. STS-106 Mission Specialists Morukov and Malenchenko greeted by Halsell

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Jim Halsell Jr. (left), former mission commander and now the manager, Shuttle Program Integration Office, chats with STS-106 Mission Specialists Boris V. Morukov (center) and Yuri I. Malenchenko (right) after their arrival at KSC. Morukov and Malenchenko, who are with the Russian Aviation and Space Agency, are at KSC with the rest of the crew to take part in Terminal Countdown Demonstration Test activities, which include emergency egress training and a simulated launch countdown. STS-106 is scheduled to launch Sept. 8, 2000, at 8:31 a.m. EDT from Launch Pad 39B. On the 11-day mission, the seven-member crew will perform support tasks on orbit, transfer supplies and prepare the living quarters in the newly arrived Zvezda Service Module. The first long-duration crew, dubbed '''Expedition One,''' is due to arrive at the Station in late fall.

  6. Mission scheduling

    NASA Technical Reports Server (NTRS)

    Gaspin, Christine

    1989-01-01

    How a neural network can work, compared to a hybrid system based on an operations research and artificial intelligence approach, is investigated through a mission scheduling problem. The characteristic features of each system are discussed.

  7. Recce mission planning

    NASA Astrophysics Data System (ADS)

    York, Andrew M.

    2000-11-01

    The ever increasing sophistication of reconnaissance sensors reinforces the importance of timely, accurate, and equally sophisticated mission planning capabilities. Precision targeting and zero-tolerance for collateral damage and civilian casualties, stress the need for accuracy and timeliness. Recent events have highlighted the need for improvement in current planning procedures and systems. Annotating printed maps takes time and does not allow flexibility for rapid changes required in today's conflicts. We must give aircrew the ability to accurately navigate their aircraft to an area of interest, correctly position the sensor to obtain the required sensor coverage, adapt missions as required, and ensure mission success. The growth in automated mission planning system capability and the expansion of those systems to include dedicated and integrated reconnaissance modules, helps to overcome current limitations. Mission planning systems, coupled with extensive integrated visualization capabilities, allow aircrew to not only plan accurately and quickly, but know precisely when they will locate the target and visualize what the sensor will see during its operation. This paper will provide a broad overview of the current capabilities and describe how automated mission planning and visualization systems can improve and enhance the reconnaissance planning process and contribute to mission success. Think about the ultimate objective of the reconnaissance mission as we consider areas that technology can offer improvement. As we briefly review the fundamentals, remember where and how TAC RECCE systems will be used. Try to put yourself in the mindset of those who are on the front lines, working long hours at increasingly demanding tasks, trying to become familiar with new operating areas and equipment, while striving to minimize risk and optimize mission success. Technical advancements that can reduce the TAC RECCE timeline, simplify operations and instill Warfighter

  8. SEPAC: Spacelab Mission 1 report

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The SEPAC Spacelab Mission 1 activities relevant to software operations are reported. Spacelab events and problems that did not directly affect SEPAC but are of interest to experimenters are included. Spacelab Mission 1 was launched from KSC on 28 November 1983 at 10:10 Huntsville time. The Spacelab Mission met its objectives. There were two major problems associated with SEPAC: the loss of the EBA gun and the RAU 21.

  9. Mission planning for autonomous systems

    NASA Technical Reports Server (NTRS)

    Pearson, G.

    1987-01-01

    Planning is a necessary task for intelligent, adaptive systems operating independently of human controllers. A mission planning system that performs task planning by decomposing a high-level mission objective into subtasks and synthesizing a plan for those tasks at varying levels of abstraction is discussed. Researchers use a blackboard architecture to partition the search space and direct the focus of attention of the planner. Using advanced planning techniques, they can control plan synthesis for the complex planning tasks involved in mission planning.

  10. Spacelab Mission 3 experiment descriptions

    NASA Technical Reports Server (NTRS)

    Hill, C. K. (Editor)

    1982-01-01

    The Spacelab 3 mission is the first operational flight of Spacelab aboard the shuttle transportation system. The primary objectives of this mission are to conduct application, science, and technology experimentation that requires the low gravity environment of Earth orbit and an extended duration, stable vehicle attitude with emphasis on materials processing. This document provides descriptions of the experiments to be performed during the Spacelab 3 mission.

  11. Object Oriented Learning Objects

    ERIC Educational Resources Information Center

    Morris, Ed

    2005-01-01

    We apply the object oriented software engineering (OOSE) design methodology for software objects (SOs) to learning objects (LOs). OOSE extends and refines design principles for authoring dynamic reusable LOs. Our learning object class (LOC) is a template from which individualised LOs can be dynamically created for, or by, students. The properties…

  12. Missions to Venus

    NASA Astrophysics Data System (ADS)

    Titov, D. V.; Baines, K. H.; Basilevsky, A. T.; Chassefiere, E.; Chin, G.; Crisp, D.; Esposito, L. W.; Lebreton, J.-P.; Lellouch, E.; Moroz, V. I.; Nagy, A. F.; Owen, T. C.; Oyama, K.-I.; Russell, C. T.; Taylor, F. W.; Young, R. E.

    2002-10-01

    Venus has always been a fascinating objective for planetary studies. At the beginning of the space era Venus became one of the first targets for spacecraft missions. Our neighbour in the solar system and, in size, the twin sister of Earth, Venus was expected to be very similar to our planet. However, the first phase of Venus spacecraft exploration in 1962-1992 by the family of Soviet Venera and Vega spacecraft and US Mariner, Pioneer Venus, and Magellan missions discovered an entirely different, exotic world hidden behind a curtain of dense clouds. These studies gave us a basic knowledge of the conditions on the planet, but generated many more questions concerning the atmospheric composition, chemistry, structure, dynamics, surface-atmosphere interactions, atmospheric and geological evolution, and the plasma environment. Despite all of this exploration by more than 20 spacecraft, the "morning star" still remains a mysterious world. But for more than a decade Venus has been a "forgotten" planet with no new missions featuring in the plans of the world space agencies. Now we are witnessing the revival of interest in this planet: the Venus Orbiter mission is approved in Japan, Venus Express - a European orbiter mission - has successfully passed the selection procedure in ESA, and several Venus Discovery proposals are knocking at the doors of NASA. The paper presents an exciting story of Venus spacecraft exploration, summarizes open scientific problems, and builds a bridge to the future missions.

  13. Mission analyses for manned flight experiments

    NASA Technical Reports Server (NTRS)

    Orth, J. E.

    1973-01-01

    The investigations to develop a high altitude aircraft program plan are reported along with an analysis of manned comet and asteroid missions, the development of shuttle sortie mission objectives, and an analysis of major management issues facing the shuttle sortie.

  14. Autonomous mission operations

    NASA Astrophysics Data System (ADS)

    Frank, J.; Spirkovska, L.; McCann, R.; Wang, Lui; Pohlkamp, K.; Morin, L.

    NASA's Advanced Exploration Systems Autonomous Mission Operations (AMO) project conducted an empirical investigation of the impact of time delay on today's mission operations, and of the effect of processes and mission support tools designed to mitigate time-delay related impacts. Mission operation scenarios were designed for NASA's Deep Space Habitat (DSH), an analog spacecraft habitat, covering a range of activities including nominal objectives, DSH system failures, and crew medical emergencies. The scenarios were simulated at time delay values representative of Lunar (1.2-5 sec), Near Earth Object (NEO) (50 sec) and Mars (300 sec) missions. Each combination of operational scenario and time delay was tested in a Baseline configuration, designed to reflect present-day operations of the International Space Station, and a Mitigation configuration in which a variety of software tools, information displays, and crew-ground communications protocols were employed to assist both crews and Flight Control Team (FCT) members with the long-delay conditions. Preliminary findings indicate: 1) Workload of both crewmembers and FCT members generally increased along with increasing time delay. 2) Advanced procedure execution viewers, caution and warning tools, and communications protocols such as text messaging decreased the workload of both flight controllers and crew, and decreased the difficulty of coordinating activities. 3) Whereas crew workload ratings increased between 50 sec and 300 sec of time delay in the Baseline configuration, workload ratings decreased (or remained flat) in the Mitigation configuration.

  15. STS-70 mission highlights

    NASA Astrophysics Data System (ADS)

    1995-09-01

    The highlights of the STS-70 mission are presented in this video. The flight crew consisted of Cmdr. John Hendricks, Pilot Kevin Kregel, Flight Engineer Nancy Curie, and Mission Specialists Dr. Don Thomas and Dr. Mary Ellen Weber. The mission's primary objective was the deployment of the 7th Tracking Data and Relay Satellite (TDRS), which will provide a communication, tracking, telemetry, data acquisition, and command services space-based network system essential to low Earth orbital spacecraft. Secondary mission objectives included activating and studying the Physiological and Anatomical Rodent Experiment/National Institutes of Health-Rodents (PARE/NIH-R), The Bioreactor Demonstration System (BDS), the Commercial Protein Crystal Growth (CPCG) studies, the Space Tissue Loss/National Institutes of Health-Cells (STL/NIH-C) experiment, the Biological Research in Canisters (BRIC) experiment, Shuttle Amateur Radio Experiment-2 (SAREX-2), the Visual Function Tester-4 (VFT-4), the Hand-Held, Earth Oriented, Real-Time, Cooperative, User-Friendly, Location-Targeting and Environmental System (HERCULES), the Microcapsules in Space-B (MIS-B) experiment, the Windows Experiment (WINDEX), the Radiation Monitoring Equipment-3 (RME-3), and the Military Applications of Ship Tracks (MAST) experiment. There was an in-orbit dedication ceremony by the spacecrew and the newly Integrated Mission Control Center to commemorate the Center's integration. The STS-70 mission was the first mission monitored by this new control center. Earth views included the Earth's atmosphere, a sunrise over the Earth's horizon, several views of various land masses, some B/W lightning shots, some cloud cover, and a tropical storm.

  16. Mars Stratigraphy Mission

    NASA Technical Reports Server (NTRS)

    Budney, C. J.; Miller, S. L.; Cutts, J. A.

    2000-01-01

    The Mars Stratigraphy Mission lands a rover on the surface of Mars which descends down a cliff in Valles Marineris to study the stratigraphy. The rover carries a unique complement of instruments to analyze and age-date materials encountered during descent past 2 km of strata. The science objective for the Mars Stratigraphy Mission is to identify the geologic history of the layered deposits in the Valles Marineris region of Mars. This includes constraining the time interval for formation of these deposits by measuring the ages of various layers and determining the origin of the deposits (volcanic or sedimentary) by measuring their composition and imaging their morphology.

  17. Spirit's Extended-Mission Destination

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The drive route planned for NASA's Mars Exploration Rover Spirit during its extended mission is represented by the green line in this traverse map. The gold line traces the path Spirit drove during its prime mission of 90 sols.

    One objective for the rover's extended mission is to continue eastward to reach the high ground named 'Columbia Hills,' still about 2 kilometers (1.2 miles) away at the beginning of the extended mission.

    The base image for this map was taken from orbit by NASA's Mars Global Surveyor. The entire area is within Gusev Crater.

  18. Earth Science Missions Engineering Challenges

    NASA Technical Reports Server (NTRS)

    Marius, Julio L.

    2009-01-01

    This presentation gives a general overlook of the engineering efforts that are necessary to meet science mission requirement especially for Earth Science missions. It provides brief overlook of NASA's current missions and future Earth Science missions and the engineering challenges to meet some of the specific science objectives. It also provides, if time permits, a brief summary of two significant weather and climate phenomena in the Southern Hemisphere: El Nino and La Nina, as well as the Ozone depletion over Antarctica that will be of interest to IEEE intercom 2009 conference audience.

  19. EVAL mission requirements, phase 1

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The aspects of NASA's applications mission were enhanced by utilization of shuttle/spacelab, and payload groupings which optimize the cost of achieving the mission goals were defined. Preliminary Earth Viewing Application Laboratory (EVAL) missions, experiments, sensors, and sensor groupings were developed. The major technological EVAL themes and objectives which NASA will be addressing during the 1980 to 2,000 time period were investigated. Missions/experiments which addressed technique development, sensor development, application development, and/or operational data collection were considered as valid roles for EVAL flights.

  20. Mission Possible

    ERIC Educational Resources Information Center

    Kittle, Penny, Ed.

    2009-01-01

    As teachers, our most important mission is to turn our students into readers. It sounds so simple, but it's hard work, and we're all on a deadline. Kittle describes a class in which her own expectations that students would become readers combined with a few impassioned strategies succeeded ... at least with a young man named Alan.

  1. STS-95 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The STS-95 patch, designed by the crew, is intended to reflect the scientific, engineering, and historic elements of the mission. The Space Shuttle Discovery is shown rising over the sunlit Earth limb, representing the global benefits of the mission science and the solar science objectives of the Spartan Satellite. The bold number '7' signifies the seven members of Discovery's crew and also represents a historical link to the original seven Mercury astronauts. The STS-95 crew member John Glenn's first orbital flight is represented by the Friendship 7 capsule. The rocket plumes symbolize the three major fields of science represented by the mission payloads: microgravity material science, medical research for humans on Earth and in space, and astronomy.

  2. The PROBA-3 Mission

    NASA Astrophysics Data System (ADS)

    Zhukov, Andrei

    2016-07-01

    PROBA-3 is the next ESA mission in the PROBA line of small technology demonstration satellites. The main goal of PROBA-3 is in-orbit demonstration of formation flying techniques and technologies. The mission will consist of two spacecraft together forming a giant (150 m long) coronagraph called ASPIICS (Association of Spacecraft for Polarimetric and Imaging Investigation of the Corona of the Sun). The bigger spacecraft will host the telescope, and the smaller spacecraft will carry the external occulter of the coronagraph. ASPIICS heralds the next generation of solar coronagraphs that will use formation flying to observe the inner corona in eclipse-like conditions for extended periods of time. The occulter spacecraft will also host the secondary payload, DARA (Davos Absolute RAdiometer), that will measure the total solar irradiance. PROBA-3 is planned to be launched in 2019. The scientific objectives of PROBA-3 will be discussed in the context of other future solar and heliospheric space missions.

  3. Lunar Prospector Extended Mission

    NASA Technical Reports Server (NTRS)

    Folta, David; Beckman, Mark; Lozier, David; Galal, Ken

    1999-01-01

    The National Aeronautics and Space Administration (NASA) selected Lunar Prospector as one of the discovery missions to conduct solar system exploration science investigations. The mission is NASA's first lunar voyage to investigate key science objectives since Apollo and was launched in January 1998. In keeping with discovery program requirements to reduce total mission cost and utilize new technology, Lunar Prospector's mission design and control focused on the use of innovative and proven trajectory analysis programs. As part of this effort, the Ames Research Center and the Goddard Space Flight Center have become partners in the Lunar Prospector trajectory team to provide the trajectory analysis, maneuver planning, orbit determination support, and product generation. At the end of 1998, Lunar Prospector completed its one-year primary mission at 100 km altitude above the lunar surface. On December 19, 1998, Lunar Prospector entered the extended mission phase. Initially the mission orbit was lowered from 100 km to a mean altitude of 40 km. The altitude of Lunar Prospector varied between 25 and 55 km above the mean lunar geode due to lunar potential effects. After one month, the lunar potential model was updated based upon the new tracking data at 40 km. On January 29, 1999, the altitude was lowered again to a mean altitude of 30 km. This altitude varies between 12 and 48 km above the mean lunar geode. Since the minimum altitude is very close to the mean geode, various approaches were employed to get accurate lunar surface elevation including Clementine altimetry and line of sight analysis. Based upon the best available terrain maps, Lunar Prospector will reach altitudes of 8 km above lunar mountains in the southern polar and far side regions. This extended mission phase of six months will enable LP to obtain science data up to 3 orders of magnitude better than at the mission orbit. This paper details the trajectory design and orbit determination planning, and

  4. Lunar Prospector Extended Mission

    NASA Technical Reports Server (NTRS)

    Folta, David; Beckman, Mark; Lozier, David; Galal, Ken

    1999-01-01

    The National Aeronautics and Space Administration (NASA) selected Lunar Prospector (LP) as one of the discovery missions to conduct solar system exploration science investigations. The mission is NASA's first lunar voyage to investigate key science objectives since Apollo and was launched in January 1998. In keeping with discovery program requirements to reduce total mission cost and utilize new technology, Lunar Prospector's mission design and control focused on the use of innovative and proven trajectory analysis programs. As part of this effort, the Ames Research Center and the Goddard Space Flight Center have become partners in the Lunar Prospector trajectory team to provide the trajectory analysis, maneuver planning, orbit determination support, and product generation. At the end of 1998, Lunar Prospector completed its one-year primary mission at 100 km altitude above the lunar surface. On December 19, 1998, Lunar Prospector entered the extended mission phase. Initially the mission orbit was lowered from 100 km to a mean altitude of 40 km. The altitude of Lunar Prospector varied between 25 and 55 km above the mean lunar geode due to lunar potential effects. After one month, the lunar potential model was updated based upon the new tracking data at 40 km. On January 29, 1999, the altitude was lowered again to a mean altitude of 30 km. This altitude varies between 12 and 48 km above the mean lunar geode. Since the minimum altitude is very close to the mean geode, various approaches were employed to get accurate lunar surface elevation including Clementine altimetry and line of sight analysis. Based upon the best available terrain maps, Lunar Prospector will reach altitudes of 8 km above lunar mountains in the southern polar and far side regions. This extended mission phase of six months will enable LP to obtain science data up to 3 orders of magnitude better than at the mission orbit. This paper details the trajectory design and orbit determination planning and

  5. Lunar Prospector Extended Mission

    NASA Astrophysics Data System (ADS)

    Folta, David; Beckman, Mark; Lozier, David; Galal, Ken

    1999-05-01

    The National Aeronautics and Space Administration (NASA) selected Lunar Prospector (LP) as one of the discovery missions to conduct solar system exploration science investigations. The mission is NASA's first lunar voyage to investigate key science objectives since Apollo and was launched in January 1998. In keeping with discovery program requirements to reduce total mission cost and utilize new technology, Lunar Prospector's mission design and control focused on the use of innovative and proven trajectory analysis programs. As part of this effort, the Ames Research Center and the Goddard Space Flight Center have become partners in the Lunar Prospector trajectory team to provide the trajectory analysis, maneuver planning, orbit determination support, and product generation. At the end of 1998, Lunar Prospector completed its one-year primary mission at 100 km altitude above the lunar surface. On December 19, 1998, Lunar Prospector entered the extended mission phase. Initially the mission orbit was lowered from 100 km to a mean altitude of 40 km. The altitude of Lunar Prospector varied between 25 and 55 km above the mean lunar geode due to lunar potential effects. After one month, the lunar potential model was updated based upon the new tracking data at 40 km. On January 29, 1999, the altitude was lowered again to a mean altitude of 30 km. This altitude varies between 12 and 48 km above the mean lunar geode. Since the minimum altitude is very close to the mean geode, various approaches were employed to get accurate lunar surface elevation including Clementine altimetry and line of sight analysis. Based upon the best available terrain maps, Lunar Prospector will reach altitudes of 8 km above lunar mountains in the southern polar and far side regions. This extended mission phase of six months will enable LP to obtain science data up to 3 orders of magnitude better than at the mission orbit. This paper details the trajectory design and orbit determination planning and

  6. STS-81 Mission Specialist Peter Wisoff suits up

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-81 Mission Specialist Peter J. K. 'Jeff' Wisoff prepares for the fifth Shuttle- Mir docking as he waits in the Operations and Checkout (O&C) Building for the operation to fit him into his launch/entry suit to be completed. He conducted a spacewalk on his on his first Shuttle mission, STS- 57 and holds a doctorate degree in applied physics with an emphasis on lasers and semiconductor materials. He and five crew members will shortly depart the O&C and head for Launch Pad 39B, where the Space Shuttle Atlantis will lift off during a 7-minute window that opens at 4:27 a.m. EST, January 12.

  7. Liftoff of Space Shuttle Endeavour on mission STS-97

    NASA Technical Reports Server (NTRS)

    2000-01-01

    As Space Shuttle Endeavour rockets off Launch Pad 39B, spewing clouds of smoke and steam, a majestic heron soars over the nearby water and Endeavour'''s reflection. Liftoff occurred on time at 10:06:01 p.m. EST. The Shuttle and its five-member crew will deliver U.S. solar arrays to the International Space Station and be the first Shuttle crew to visit the Station'''s first resident crew. The 11-day mission includes three spacewalks. This marks the 101st mission in Space Shuttle history and the 25th night launch. Endeavour is expected to land Dec. 11 at 6:19 p.m. EST.

  8. A perfect launch of Atlantis on mission STS-106

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The clouds of steam and smoke generated from the launch of Space Shuttle Atlantis seem to blend with the sky. The launch is reflected in waters near Launch Pad 39B. The perfect on-time liftoff of Atlantis on mission STS-106 occurred at 8:45:47 a.m. EDT. On the 11-day mission to the International Space Station, the seven-member crew will perform support tasks on orbit, transfer supplies and prepare the living quarters in the newly arrived Zvezda Service Module. The first long-duration crew, dubbed '''Expedition One,''' is due to arrive at the Station in late fall. Landing of Atlantis is targeted for 4:45 a.m. EDT on Sept. 19.

  9. A perfect launch of Atlantis on mission STS-106

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The waters near Launch Pad 39B reflect the brilliant red-orange flames from the solid rocket boosters as Space Shuttle Atlantis lifts off on its mission to the International Space Station. The perfect on-time launch occurred at 8:45:47 a.m. EDT. On the 11- day mission to the Station, the seven-member crew will perform support tasks on orbit, transfer supplies and prepare the living quarters in the newly arrived Zvezda Service Module. The first long-duration crew, dubbed '''Expedition One,''' is due to arrive at the Station in late fall. Landing of Atlantis is targeted for 4:45 a.m. EDT on Sept. 19.

  10. A perfect launch of Atlantis on mission STS-106

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Space Shuttle Atlantis's solid rocket boosters trail brilliant flames that light up the clouds of smoke and steam and reflect in the waters Launch Pad 39B at launch. The perfect on-time liftoff of Atlantis on mission STS-106 occurred at 8:45:47 a.m. EDT. On the 11-day mission to the International Space Station, the seven- member crew will perform support tasks on orbit, transfer supplies and prepare the living quarters in the newly arrived Zvezda Service Module. The first long-duration crew, dubbed '''Expedition One,''' is due to arrive at the Station in late fall. Landing of Atlantis is targeted for 4:45 a.m. EDT on Sept. 19.

  11. The ATLAS-1 mission

    NASA Technical Reports Server (NTRS)

    Torr, Marsha R.

    1994-01-01

    Atmospheric Laboratory for Applications and Science (ATLAS)-1 was launched on March 24, 1992, carrying an international payload of 14 investigations, and conducted a successful series of experiments and observations over the subsequent 9 days. The objectives included: measuring the solar irradiance at high precision; remote sensing of the composition of the stratosphere, mesosphere, and thermosphere using techniques for wavelengths from 300 A to 5 mm; and inducing auroras by means of 1.2 amp electron beams. A subset of these instruments will subsequently be flown in a series of shuttle missions at roughly 1-year intervals over an 11-year solar cycle. The frequent recalibration opportunities afforded by such a program allows the transfer of calibrations to longer duration orbiting observatories. The ATLAS-1 mission occurred at the same time as the Upper Atmosphere Research Satellite (UARS), TIROS-N, and ERB satellites were in operation, and correlative measurements were conducted with these. In all, the mission was most successful in achieving its objectives and a unique and important database was acquired, with many scientific firsts accomplished. This paper provides the mission overview for the series of papers that follow.

  12. Space Shuttle Discovery lifts off successfully on mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Space Shuttle Discovery soars above billowing clouds of steam and smoke into clear blue skies as it lifts off from Launch Pad 39B at 2:19 p.m. EST Oct. 29 on mission STS-95. The crew members are Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA); Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA); and Payload Specialist John H. Glenn Jr., a senator from Ohio and one of the original Mercury 7 astronauts. Glenn is making his second voyage into space after 36 years. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

  13. The Asteroid Impact Mission

    NASA Astrophysics Data System (ADS)

    Carnelli, Ian; Galvez, Andres; Mellab, Karim

    2016-04-01

    The Asteroid Impact Mission (AIM) is a small and innovative mission of opportunity, currently under study at ESA, intending to demonstrate new technologies for future deep-space missions while addressing planetary defense objectives and performing for the first time detailed investigations of a binary asteroid system. It leverages on a unique opportunity provided by asteroid 65803 Didymos, set for an Earth close-encounter in October 2022, to achieve a fast mission return in only two years after launch in October/November 2020. AIM is also ESA's contribution to an international cooperation between ESA and NASA called Asteroid Impact Deflection Assessment (AIDA), consisting of two mission elements: the NASA Double Asteroid Redirection Test (DART) mission and the AIM rendezvous spacecraft. The primary goals of AIDA are to test our ability to perform a spacecraft impact on a near-Earth asteroid and to measure and characterize the deflection caused by the impact. The two mission components of AIDA, DART and AIM, are each independently valuable but when combined they provide a greatly increased scientific return. The DART hypervelocity impact on the secondary asteroid will alter the binary orbit period, which will also be measured by means of lightcurves observations from Earth-based telescopes. AIM instead will perform before and after detailed characterization shedding light on the dependence of the momentum transfer on the asteroid's bulk density, porosity, surface and internal properties. AIM will gather data describing the fragmentation and restructuring processes as well as the ejection of material, and relate them to parameters that can only be available from ground-based observations. Collisional events are of great importance in the formation and evolution of planetary systems, own Solar System and planetary rings. The AIDA scenario will provide a unique opportunity to observe a collision event directly in space, and simultaneously from ground-based optical and

  14. A decision model for planetary missions

    NASA Technical Reports Server (NTRS)

    Hazelrigg, G. A., Jr.; Brigadier, W. L.

    1976-01-01

    Many techniques developed for the solution of problems in economics and operations research are directly applicable to problems involving engineering trade-offs. This paper investigates the use of utility theory for decision making in planetary exploration space missions. A decision model is derived that accounts for the objectives of the mission - science - the cost of flying the mission and the risk of mission failure. A simulation methodology for obtaining the probability distribution of science value and costs as a function spacecraft and mission design is presented and an example application of the decision methodology is given for various potential alternatives in a comet Encke mission.

  15. A Mars 1984 mission

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Mission objectives are developed for the next logical step in the investigation of the local physical and chemical environments and the search for organic compounds on Mars. The necessity of three vehicular elements: orbiter, penetrator, and rover for in situ investigations of atmospheric-lithospheric interactions is emphasized. A summary report and committee recommendations are included with the full report of the Mars Science Working Group.

  16. Hitchhiker mission operations: Past, present, and future

    NASA Technical Reports Server (NTRS)

    Anderson, Kathryn

    1995-01-01

    What is mission operations? Mission operations is an iterative process aimed at achieving the greatest possible mission success with the resources available. The process involves understanding of the science objectives, investigation of which system capabilities can best meet these objectives, integration of the objectives and resources into a cohesive mission operations plan, evaluation of the plan through simulations, and implementation of the plan in real-time. In this paper, the authors present a comprehensive description of what the Hitchhiker mission operations approach is and why it is crucial to mission success. The authors describe the significance of operational considerations from the beginning and throughout the experiment ground and flight systems development. The authors also address the necessity of training and simulations. Finally, the authors cite several examples illustrating the benefits of understanding and utilizing the mission operations process.

  17. Kepler Mission

    NASA Technical Reports Server (NTRS)

    Borucki, William J.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The first step in discovering, the extent of life in our galaxy is to determine the number of terrestrial planets in the habitable zone (HZ). The Kepler Mission is a 0.95 m aperture photometer scheduled to be launched in 2006. It is designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. The depth and repetition time of transits provide the size of the planet relative to the star and its orbital period. When combined with ground-based spectroscopy of these stars to fix the stellar parameters, the true planet radius and orbit scale, hence the relation to the HZ are determined. These spectra are also used to discover the relationships between the characteristics of planets and the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. Based on the results of the current Doppler - velocity discoveries, over a thousand giant planets will be found. Information on the albedos and densities of those giants showing transits will be obtained. At the end of the four year mission, hundreds of terrestrial planets should be discovered in and near the HZ of their stars if such planets are common. A null result would imply that terrestrial planets in the HZ occur in less than 1% of the stars and that life might be quite rare.

  18. Spacelab mission development tests

    NASA Technical Reports Server (NTRS)

    Dalton, B. P.

    1978-01-01

    The paper describes Spacelab Mission Development Test III (SMD III) whose principal scientific objective was to demonstrate the feasibility of conducting biological research in the Life Sciences Spacelab. The test also provided an opportunity to try out several items of Common Operational Research Equipment (CORE) hardware being developed for operational use in Shuttle/Spacelab, such as rodent and primate handling, transportation units, and a 'zero-g' surgical bench. Operational concepts planned for Spacelab were subjected to evaluation, including animal handling procedures, animal logistics, crew selection and training, and a 'remote' ground station concept. It is noted that all the objectives originally proposed for SMD III were accomplished

  19. Payload missions integration

    NASA Technical Reports Server (NTRS)

    Mitchell, R. A. K.

    1983-01-01

    Highlights of the Payload Missions Integration Contract (PMIC) are summarized. Spacelab Missions no. 1 to 3, OSTA partial payloads, Astro-1 Mission, premission definition, and mission peculiar equipment support structure are addressed.

  20. Visual Navigation - SARE Mission

    NASA Technical Reports Server (NTRS)

    Alonso, Roberto; Kuba, Jose; Caruso, Daniel

    2007-01-01

    The SARE Earth Observing and Technological Mission is part of the Argentinean Space Agency (CONAE - Comision Nacional de Actividades Espaciales) Small and Technological Payloads Program. The Argentinean National Space Program requires from the SARE program mission to test in a real environment of several units, assemblies and components to reduce the risk of using these equipments in more expensive Space Missions. The objective is to make use those components with an acceptable maturity in design or development, but without any heritage at space. From the application point of view, this mission offers new products in the Earth Observation data market which are listed in the present paper. One of the technological payload on board of the SARE satellite is the sensor Ground Tracker. It computes the satellite attitude and orbit in real time (goal) and/or by ground processing. For the first operating mode a dedicated computer and mass memory are necessary to be part of the mentioned sensor. For the second operational mode the hardware and software are much simpler.

  1. The Pioneer Missions

    NASA Technical Reports Server (NTRS)

    Lasher, Larry E.; Hogan, Robert (Technical Monitor)

    1999-01-01

    This article describes the major achievements of the Pioneer Missions and gives information about mission objectives, spacecraft, and launches of the Pioneers. Pioneer was the United States' longest running space program. The Pioneer Missions began forty years ago. Pioneer 1 was launched shortly after Sputnik startled the world in 1957 as Earth's first artificial satellite at the start of the space age. The Pioneer Missions can be broken down into four distinct groups: Pioneer (PN's) 1 through 5, which comprise the first group - the "First Pioneers" - were launched from 1958 through 1960. These Pioneers made the first thrusts into space toward the Moon and into interplanetary orbit. The next group - the "Interplanetary Pioneers" - consists of PN's 6 through 9, with the initial launch being in 1965 (through 1968); this group explored inward and outward from Earth's orbit and travel in a heliocentric orbit around the Sun just as the Earth. The Pioneer group consisting of 10 and 11 - the "Outer Solar System Pioneers" - blazed a trail through the asteroid belt and was the first to explore Jupiter, Saturn and the outer Solar System and is seeking the borders of the heliosphere and will ultimately journey to the distant stars. The final group of Pioneer 12 and 13 the "Planetary Pioneers" - traveled to Earth's mysterious twin, Venus, to study this planet.

  2. Mission Simulation Toolkit

    NASA Technical Reports Server (NTRS)

    Pisaich, Gregory; Flueckiger, Lorenzo; Neukom, Christian; Wagner, Mike; Buchanan, Eric; Plice, Laura

    2007-01-01

    The Mission Simulation Toolkit (MST) is a flexible software system for autonomy research. It was developed as part of the Mission Simulation Facility (MSF) project that was started in 2001 to facilitate the development of autonomous planetary robotic missions. Autonomy is a key enabling factor for robotic exploration. There has been a large gap between autonomy software (at the research level), and software that is ready for insertion into near-term space missions. The MST bridges this gap by providing a simulation framework and a suite of tools for supporting research and maturation of autonomy. MST uses a distributed framework based on the High Level Architecture (HLA) standard. A key feature of the MST framework is the ability to plug in new models to replace existing ones with the same services. This enables significant simulation flexibility, particularly the mixing and control of fidelity level. In addition, the MST provides automatic code generation from robot interfaces defined with the Unified Modeling Language (UML), methods for maintaining synchronization across distributed simulation systems, XML-based robot description, and an environment server. Finally, the MSF supports a number of third-party products including dynamic models and terrain databases. Although the communication objects and some of the simulation components that are provided with this toolkit are specifically designed for terrestrial surface rovers, the MST can be applied to any other domain, such as aerial, aquatic, or space.

  3. STS-51 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Designed by the crewmembers, the STS-51 crew patch honors all who have contributed to mission success. It symbolizes NASA's continuing quest to increase mankind's knowledge and use of space through this multi-faceted mission. The gold star represents the U.S. Advanced Communications Technology Satellite (ACTS) boosted by the Transfer Orbit Stage (TOS). The rays below the ACTTOS represent the innovative communication technologies to be tested by this experiment. The stylized Shuttle Pallet Satellite (SPAS) represents the German-sponsored ASTROSPAS mission. The constellation Orion below SPAS is representative of the types of stellar objects to be studied by its experimenters. The stars in Orion also commemorate the astronauts who have sacrificed their lives for the space program. The ascending spiral, symbolizing America's continuing commitment to leadership in space exploration and development, originates with the thousands of persons who ensure the success of each Shuttle flight. The five large white stars, representing the five crewmembers, along with the single gold star, fomm the mission's numerical designation.

  4. The OASIS Mission

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Barghouty, Abdulnasser F.; Binns, W. robert; Christl, Mark; Cosse, Charles B.; Guzik, T. Gregory; deNolfo, Georgia A.; Hams,Thomas; Isbert, Joachim; Israel, Martin H.; Krizmanic, John F.; Labrador, Allan W.; Link, Jason T.; Mewaldt, Richard A.; Mitchell, Martin H.; Moiseev, Alexander A.; Sasaki, Makoto; Stochaj, Steven J.; Stone, Edward C.; Steitmatter, Robert E.; Waddington, C. Jake; Watts, John W.; Wefel, John P.; Wiedenbeck, Mark E.

    2010-01-01

    The Orbiting Astrophysical Observatory in Space (OASIS) is a mission to investigate Galactic Cosmic Rays (GCRs), a major feature of our galaxy. OASIS will use measurements of GCRs to determine the cosmic ray source, where they are accelerated, to investigate local accelerators and to learn what they can tell us about the interstellar medium and the processes that occur in it. OASIS will determine the astrophysical sources of both the material and acceleration of GCRs by measuring the abundances of the rare actinide nuclei and make direct measurements of the spectrum and anisotropy of electrons at energies up to approx.10 TeV, well beyond the range of the Fermi and AMS missions. OASIS has two instruments. The Energetic Trans-Iron Composition Experiment (ENTICE) instrument measures elemental composition. It resolves individual elements with atomic number (Z) from 10 to 130 and has a collecting power of 60m2.str.yrs, >20 times larger than previous instruments, and with improved resolution. The sample of 10(exp 10) GCRs collected by ENTICE will include .100 well-resolved actinides. The High Energy Particle Calorimeter Telescope (HEPCaT) is an ionization calorimeter that will extend the electron spectrum into the TeV region for the first time. It has 7.5 sq m.str.yrs of collecting power. This talk will describe the scientific objectives of the OASIS mission and its discovery potential. The mission and its two instruments which have been designed to accomplish this investigation will also be described.

  5. CRRES Prelaunch Mission Operation Report

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The overall NASA Combined Release and Radiation Effects Satellite (CRRES) program consists of a series of chemical releases from the PEGSAT spacecraft, the CRRES spacecraft and sounding rockets. The first chemical releases were made from the PEGSAT spacecraft in April, 1990 over northern Canada. In addition to the releases planned from the CRRES spacecraft there are releases from sounding rockets planned from the Kwajalein rocket range in July and August, 1990 and from Puerto Rico in June and July, 1991. It shows the major milestones in the overall CRRES program. This Mission Operations Report only describes the NASA mission objectives of the CRRES/Geosynchronous Transfer Orbit (GTO) mission.

  6. The OCO-3 MIssion

    NASA Astrophysics Data System (ADS)

    Eldering, A.; Kaki, S.; Crisp, D.; Gunson, M. R.

    2013-12-01

    For the OCO-3 mission, NASA has approved a proposal to install the OCO-2 flight spare instrument on the International Space Station (ISS). The OCO-3 mission on ISS will have a key role in delivering sustained, global, scientifically-based, spaceborne measurements of atmospheric CO2 to monitor natural sources and sinks as part of NASA's proposed OCO-2/OCO-3/ASCENDS mission sequence and NASA's Climate Architecture. The OCO-3 mission will contribute to understanding of the terrestrial carbon cycle through enabling flux estimates at smaller spatial scales and through fluorescence measurements that will reduce the uncertainty in terrestrial carbon flux measurements and drive bottom-up land surface models through constraining GPP. The combined nominal missions of both OCO-2 and OCO-3 will likely span a complete El Niño Southern Oscillation (ENSO) cycle, a key indicator of ocean variability. In addition, OCO-3 may allow investigation of the high-frequency and wavenumber structures suggested by eddying ocean circulation and ecosystem dynamics models. Finally, significant growth of urban agglomerations is underway and projected to continue in the coming decades. With the city mode sampling of the OCO-3 instrument on ISS we can evaluate different sampling strategies aimed at studying anthropogenic sources and demonstrate elements of a Greenhouse Gas Information system, as well as providing a gap-filler for tracking trends in the fastest-changing anthropogenic signals during the coming decade. In this presentation, we will describe our science objectives, the overall approach of utilization of the ISS for OCO-3, and the unique features of XCO2 measurements from ISS.

  7. Cloud Computing Techniques for Space Mission Design

    NASA Technical Reports Server (NTRS)

    Arrieta, Juan; Senent, Juan

    2014-01-01

    The overarching objective of space mission design is to tackle complex problems producing better results, and faster. In developing the methods and tools to fulfill this objective, the user interacts with the different layers of a computing system.

  8. The STEREO Mission

    NASA Technical Reports Server (NTRS)

    Kucera, Therese

    2005-01-01

    STEREO (Solar TErrestrial RElations Observatory) will launch in 2006 on a two-year mission to study Coronal Mass Ejections (CMEs) and the solar wind. The mission consists of two space-based observatories - one moving ahead of Earth in its orbit, the other trailing behind - to provide the first-ever stereoscopic measurements to study the Sun and the nature of CMEs. STEREO's scientific objectives are to: 1) Understand the causes and mechanisms of coronal mass ejection (CME) initiation; 2) Characterize the propagation of CMEs through the heliosphere; 3) Discover the mechanisms and sites of energetic particle acceleration in the low corona and the interplanetary medium; 4) Improve the determination of the structure of the ambient solar wind. Additional information is included in the original extended abstract.

  9. STS-109 Shuttle Mission

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This is the insignia of the STS-109 Space Shuttle mission. Carrying a crew of seven, the Space Shuttle Orbiter Columbia was launched with goals of maintenance and upgrades to the Hubble Space Telescope (HST). The Marshall Space Flight Center had the responsibility for the design, development, and construction of the HST, which is the most complex and sensitive optical telescope ever made, to study the cosmos from a low-Earth orbit. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than is visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. During the STS-109 mission, the telescope was captured and secured on a work stand in Columbia's payload bay using Columbia's robotic arm where four members of the crew performed five spacewalks completing system upgrades to the HST. Included in those upgrades were: The replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when it original coolant ran out. Lasting 10 days, 22 hours, and 11 minutes, the STS-109 mission was the 27th flight of the Orbiter Columbia and the 108th flight overall in NASA's Space Shuttle Program.

  10. STS-109 Shuttle Mission

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Carrying a crew of seven, the Space Shuttle Orbiter Columbia soared through some pre-dawn clouds into the sky as it began its 27th flight, STS-109. Launched March 1, 2002, the goal of the mission was the maintenance and upgrade of the Hubble Space Telescope (HST). The Marshall Space Flight Center had the responsibility for the design, development, and construction of the HST, which is the most complex and sensitive optical telescope ever made, to study the cosmos from a low-Earth orbit. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than is visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. During the STS-109 mission, the telescope was captured and secured on a work stand in Columbia's payload bay using Columbia's robotic arm. Here four members of the crew performed five spacewalks completing system upgrades to the HST. Included in those upgrades were: replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when it original coolant ran out. Lasting 10 days, 22 hours, and 11 minutes, the STS-109 mission was the 108th flight overall in NASA's Space Shuttle Program.

  11. A Solar-Powered Enceladus Mission

    NASA Technical Reports Server (NTRS)

    Simon-Miller, Amy A.; Reuter, Dennis C.

    2008-01-01

    We present the results of a concept design study for a New Frontiers or small Flagship-class mission to Enceladus, using solar power. By concentrating on the science objectives most critical for a Cassini follow-on, this mission maximizes the science return while maintaining a power consumption level that can be provided by a practical solar power system. The optimized instrument payload is the product of a broad science community-based Science Definition Team Study. The spacecraft and mission designs are the products of studies carried out by the GSFC Mission Design Lab and Ball Aerospace. In addition to the low isolation at Enceladus, its location deep in Saturn's gravity well makes it a challenging target to reach, meaning that careful consideration must be given to spacecraft mass and the potential mission types. This presentation summarizes the mission science objectives and payload, the dynamical work, and the notional operations plan of this mission.

  12. Phoenix--the first Mars Scout mission.

    PubMed

    Shotwell, Robert

    2005-01-01

    NASA has initiated the first of a new series of missions to augment the current Mars Program. In addition to the systematic series of planned, directed missions currently comprising the Mars Program plan, NASA has started a series of Mars Scout missions that are low cost, price fixed, Principal [correction of Principle] Investigator-led projects. These missions are intended to provide an avenue for rapid response to discoveries made as a result of the primary Mars missions, as well as allow more risky technologies and approaches to be applied in the investigation of Mars. The first in this new series is the Phoenix mission which was selected as part of a highly competitive process. Phoenix will use the Mars 2001 Lander that was discontinued in 2000 and apply a new set of science objectives and mission objectives and will validate this soft lander architecture for future applications. This paper will provide an overview of both the Program and the Project. PMID:16010756

  13. Debris/ice/TPS assessment and integrated photographic analysis for Shuttle Mission STS-62

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Bowen, Barry C.; Davis, J. Bradley; Speece, Robert F.; Rivera, Jorge E.

    1994-01-01

    A pre-launch debris inspection of the pad and Shuttle vehicle was conducted on 2 March 1994. The detailed walkdown of Launch Pad 39B and MLP-1 also included the primary flight elements OV-102 Columbia (16th flight), ET-62 (LWT 55), and BI-064 SRB's. There were no significant facility or vehicle anomalies. After the launch on March 4th, a debris inspection of Pad 39B was performed. Damage to the pad overall was minimal. On-orbit photographs taken by the flight crew and two films from the ET/ORB umbilical cameras of the External Tank after separation from the Orbiter revealed no major damage or lost flight hardware that would have been a safety of flight concern. Orbiter performance on final approach appeared normal. Infrared imagery of landing gear deployment showed the loss of thermal barrier from the nose gear wheel well. The missing thermal barrier material was not recovered. The Solid Rocket Boosters were inspected at Hanger AF after retrieval. Both frustums had a combined total of 44 MSA-2 debonds over fasteners. Significant amounts of BTA had been applied to closeouts on the RH frustum, forward skirt, and aft skirt. Hypalon paint was blistered/missing over the areas were the BTA had been applied. The underlying BTA was not sooted (IFA STS-62-B-1). Investigation of this condition has concluded there was insufficient heat rates to cause blistering of the Hypalon until late in the ascent phase. A post landing inspection of OV-102 was conducted after the landing at KSC. The Orbiter TPS sustained a total of 97 hits, of which 16 had a major dimension of 1 inch or larger. The Orbiter lower surface had a total of 36 hits, of which 7 had a major dimension of 1 inch or larger. Based on these numbers and comparison to statistics from previous missions of similar configuration, both the total number of debris hits and the number of hits 1 inch or larger was less than average. Six thermal barriers, total size approximately 36 in. x 3 in. x 1.5 in., and one corner tile

  14. Debris/ice/TPS assessment and integrated photographic analysis for Shuttle Mission STS-62

    NASA Astrophysics Data System (ADS)

    Katnik, Gregory N.; Bowen, Barry C.; Davis, J. Bradley; Speece, Robert F.; Rivera, Jorge E.

    1994-05-01

    A pre-launch debris inspection of the pad and Shuttle vehicle was conducted on 2 March 1994. The detailed walkdown of Launch Pad 39B and MLP-1 also included the primary flight elements OV-102 Columbia (16th flight), ET-62 (LWT 55), and BI-064 SRB's. There were no significant facility or vehicle anomalies. After the launch on March 4th, a debris inspection of Pad 39B was performed. Damage to the pad overall was minimal. On-orbit photographs taken by the flight crew and two films from the ET/ORB umbilical cameras of the External Tank after separation from the Orbiter revealed no major damage or lost flight hardware that would have been a safety of flight concern. Orbiter performance on final approach appeared normal. Infrared imagery of landing gear deployment showed the loss of thermal barrier from the nose gear wheel well. The missing thermal barrier material was not recovered. The Solid Rocket Boosters were inspected at Hanger AF after retrieval. Both frustums had a combined total of 44 MSA-2 debonds over fasteners. Significant amounts of BTA had been applied to closeouts on the RH frustum, forward skirt, and aft skirt. Hypalon paint was blistered/missing over the areas were the BTA had been applied. The underlying BTA was not sooted (IFA STS-62-B-1). Investigation of this condition has concluded there was insufficient heat rates to cause blistering of the Hypalon until late in the ascent phase. A post landing inspection of OV-102 was conducted after the landing at KSC. The Orbiter TPS sustained a total of 97 hits, of which 16 had a major dimension of 1 inch or larger. The Orbiter lower surface had a total of 36 hits, of which 7 had a major dimension of 1 inch or larger. missions of similar configuration, both the total number of debris hits and the number of hits 1 inch or larger was less than average. &Six thermal barriers, total size approximately 36 in. x 3 in. x 1.5 in., and one corner tile

  15. Low Cost Mission Operations Workshop. [Space Missions

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The presentations given at the Low Cost (Space) Mission Operations (LCMO) Workshop are outlined. The LCMO concepts are covered in four introductory sections: Definition of Mission Operations (OPS); Mission Operations (MOS) Elements; The Operations Concept; and Mission Operations for Two Classes of Missions (operationally simple and complex). Individual presentations cover the following topics: Science Data Processing and Analysis; Mis sion Design, Planning, and Sequencing; Data Transport and Delivery, and Mission Coordination and Engineering Analysis. A list of panelists who participated in the conference is included along with a listing of the contact persons for obtaining more information concerning LCMO at JPL. The presentation of this document is in outline and graphic form.

  16. Exomars Mission Verification Approach

    NASA Astrophysics Data System (ADS)

    Cassi, Carlo; Gilardi, Franco; Bethge, Boris

    According to the long-term cooperation plan established by ESA and NASA in June 2009, the ExoMars project now consists of two missions: A first mission will be launched in 2016 under ESA lead, with the objectives to demonstrate the European capability to safely land a surface package on Mars, to perform Mars Atmosphere investigation, and to provide communi-cation capability for present and future ESA/NASA missions. For this mission ESA provides a spacecraft-composite, made up of an "Entry Descent & Landing Demonstrator Module (EDM)" and a Mars Orbiter Module (OM), NASA provides the Launch Vehicle and the scientific in-struments located on the Orbiter for Mars atmosphere characterisation. A second mission with it launch foreseen in 2018 is lead by NASA, who provides spacecraft and launcher, the EDL system, and a rover. ESA contributes the ExoMars Rover Module (RM) to provide surface mobility. It includes a drill system allowing drilling down to 2 meter, collecting samples and to investigate them for signs of past and present life with exobiological experiments, and to investigate the Mars water/geochemical environment, In this scenario Thales Alenia Space Italia as ESA Prime industrial contractor is in charge of the design, manufacturing, integration and verification of the ESA ExoMars modules, i.e.: the Spacecraft Composite (OM + EDM) for the 2016 mission, the RM for the 2018 mission and the Rover Operations Control Centre, which will be located at Altec-Turin (Italy). The verification process of the above products is quite complex and will include some pecu-liarities with limited or no heritage in Europe. Furthermore the verification approach has to be optimised to allow full verification despite significant schedule and budget constraints. The paper presents the verification philosophy tailored for the ExoMars mission in line with the above considerations, starting from the model philosophy, showing the verification activities flow and the sharing of tests

  17. Mars integrated transportation system multistage Mars mission

    NASA Technical Reports Server (NTRS)

    1991-01-01

    In accordance with the objective of the Mars Integrated Transport System (MITS) program, the Multistage Mars Mission (MSMM) design team developed a profile for a manned mission to Mars. The purpose of the multistage mission is to send a crew of five astronauts to the martian surface by the year 2019. The mission continues man's eternal quest for exploration of new frontiers. This mission has a scheduled duration of 426 days that includes experimentation en route as well as surface exploration and experimentation. The MSMM is also designed as a foundation for a continuing program leading to the colonization of the planet Mars.

  18. The Lunar Reconnaissance Orbiter: Looking back at the Exploration Mission, Looking Forward to the Science Mission

    NASA Astrophysics Data System (ADS)

    Keller, John; Vondrak, Richard; Chin, Gordon; Garvin, Jim

    The Lunar Reconnaissance Orbiter spacecraft (LRO) was launched on June 18, 2009 and arrived at the Moon 5 days later on June 23. LRO's mission, as part of NASA's Exploration Systems Mission Directorate (ESMD), is to seek safe landing sites for future robotic missions or the return of humans to the Moon. In addition LRO's primary objectives include the search for resources and to investigate the Lunar radiation environment. The Exploration Mission for ESMD will be completed on September 15, 2010. LRO will then begin a two-year Science Mission under NASA's Science Mission Directorate. This presentation updates the status and recent results from the LRO Exploration Mission, as well as the plans and objectives for the Science Mission.

  19. Science Planning for the TROPIX Mission

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1998-01-01

    The objective of the study grant was to undertake the planning needed to execute meaningful solar electric propulsion missions in the magnetosphere and beyond. The first mission examined was the Transfer Orbit Plasma Investigation Experiment (TROPIX) mission to spiral outward through the magnetosphere. The next mission examined was to the moon and an asteroid. Entitled Diana, it was proposed to NASA in October 1994. Two similar missions were conceived in 1996 entitled CNR for Comet Nucleus Rendezvous and MBAR for Main Belt Asteroid Rendezvous. The latter mission was again proposed in 1998. All four of these missions were unsuccessfully proposed to the NASA Discovery program. Nevertheless we were partially successful in that the Deep Space 1 (DS1) mission was eventually carried out nearly duplicating our CNR mission. Returning to the magnetosphere we studied and proposed to the Medium Class Explorer (MIDEX) program a MidEx mission called TEMPEST, in 1995. This mission included two solar electric spacecraft that spiraled outward in the magnetosphere: one at near 900 inclination and one in the equatorial plane. This mission was not selected for flight. Next we proposed a single SEP vehicle to carry Energetic Neutral Atom (ENA) imagers and inside observations to complement the IMAGE mission providing needed data to properly interpret the IMAGE data. This mission called SESAME was submitted unsuccessfully in 1997. One proposal was successful. A study grant was awarded to examine a four spacecraft solar electric mission, named Global Magnetospheric Dynamics. This study was completed and a report on this mission is attached but events overtook this design and a separate study team was selected to design a classical chemical mission as a Solar Terrestrial Probe. Competing proposals such as through the MIDEX opportunity were expressly forbidden. A bibliography is attached.

  20. STS-99 / Endeavour Mission Overview

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The primary objective of the STS-99 mission was to complete high resolution mapping of large sections of the Earth's surface using the Shuttle Radar Topography Mission (SRTM). This radar system will produce unrivaled 3-D images of the Earth's Surface. This videotape presents a mission overview press briefing. The panel members are Dr. Ghassem Asrar, NASA Associate Administrator Earth Sciences; General James C. King, Director National Imagery and Mapping Agency (NIMA); Professor Achim Bachem, Member of the Executive Board, Deutschen Zentrum fur Luft- und Raumfahrt (DLR), the German National Aerospace Research Center; and Professor Sergio Deiulio, President of the Italian Space Agency. Dr. Asrar opened with a summary of the history of Earth Observations from space, relating the SRTM to this history. This mission, due to cost and complexity, required partnership with other agencies and nations, and the active participation of the astronauts. General King spoke to the expectations of NIMA, and the use of the Synthetic Aperture Radar to produce the high resolution topographic images. Dr. Achim Bachem spoke about the international cooperation that this mission required, and some of the commercial applications and companies that will use this data. Dr Deiulio spoke of future plans to improve knowledge of the Earth using satellites. Questions from the press concerned use of the information for military actions, the reason for the restriction on access to the higher resolution data, the mechanism to acquire that data for scientific research, and the cost sharing from the mission's partners. There was also discussion about the mission's length.

  1. Missions to Mercury

    NASA Astrophysics Data System (ADS)

    Grard, Réjean; Laakso, Harry; Svedhem, Håkan

    2002-10-01

    Mercury is a poorly known planet. It is difficult to observe from Earth and to explore with spacecraft, due to its proximity to the Sun. Only the NASA probe Mariner 10 caught a few glimpses of Mercury during three flybys, more than 27 years ago. Still, this planet is an interesting and important object because it belongs, like our own Earth, to the family of the terrestrial planets. After reviewing what we know about Mercury and recapitulating the major findings of Mariner 10, we present the two missions, Messenger and BepiColombo, which will perform the first systematic exploration of this forgotten planet in 2009 and 2014, respectively.

  2. Sample Return Mission to the South Pole Aitken Basin

    NASA Astrophysics Data System (ADS)

    Duke, M. B.; Clark, B. C.; Gamber, T.; Lucey, P. G.; Ryder, G.; Taylor, G. J.

    1999-01-01

    affected all of the planets of the inner solar system, and in particular, could have been critical to the history of life on Earth. If the SPA is significantly older, a more orderly cratering history may be inferred. Secondly, melt-rock compositions and clasts in melt rocks or breccias may yield evidence of the composition of the lunar mantle, which could have been penetrated by the impact or exposed by the rebound process that occurred after the impact. Thirdly, study of mare and cryptomare basalts could yield further constraints on the age of SPA and the thermal history of the crust and mantle in that region. The integration of these data may allow inferences to be made on the nature of the impacting body. Secondary science objectives in samples from the SPA could include analysis of the regolith for the latitudinal effects of solar wind irradiation, which should be reduced from its equatorial values; possible remnant magnetization of very old basalts; and evidence for Imbrium Basin ejecta and KREEP materials. If a sampling site is chosen close enough to the poles, it is possible that indirect evidence of polar-ice deposits may be found in the form of oxidized or hydrated regolith constituents. A sample return mission to the Moon may be possible within the constraints of NASA's Discovery Program. Recent progress in the development of sample return canisters for Genesis, Stardust, and Mars Sample Return missions suggests that a small capsule can be returned directly to the ground without a parachute, thus reducing its mass and complexity. Return of a 1-kg sample from the lunar surface would appear to be compatible with a Delta 11 class launch from Earth, or possibly with a piggyback opportunity on a commercial launch to GEO. A total mission price tag on the order of 100 million would be a goal. Target date would be late 2002. Samples would be returned to the curatorial facility at the Johnson Space Center for description and allocation for investigations. Concentration of

  3. STS-106 Mission Specialist Lu drives the M113

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-106 Mission Specialist Edward T. Lu, at the wheel of the M113 armored personnel carrier, heads down the road with passengers Capt. George Hoggard riding in front and Mission Specialists Richard A. Mastracchio and Yuri I. Malenchenko in the back. The M113 is an armored personnel carrier that is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter'''s payload bay. STS-106 is scheduled to launch Sept. 8, 2000, at 8:31 a.m. EDT from Launch Pad 39B. On the 11-day mission, the seven-member crew will perform support tasks on orbit, transfer supplies and prepare the living quarters in the newly arrived Zvezda Service Module. The first long-duration crew, dubbed '''Expedition One,''' is due to arrive at the Station in late fall.

  4. Progress on the Cluster Mission

    NASA Technical Reports Server (NTRS)

    Kivelson, Margaret; Khurana, Krishan; Acuna, Mario (Technical Monitor)

    2002-01-01

    Prof M. G. Kivelson and Dr. K. K. Khurana (UCLA (University of California, Los Angeles)) are co-investigators on the Cluster Magnetometer Consortium (CMC) that provided the fluxgate magnetometers and associated mission support for the Cluster Mission. The CMC designated UCLA as the site with primary responsibility for the inter-calibration of data from the four spacecraft and the production of fully corrected data critical to achieving the mission objectives. UCLA will also participate in the analysis and interpretation of the data. The UCLA group here reports its excellent progress in developing fully intra-calibrated data for large portions of the mission and an excellent start in developing inter-calibrated data for selected time intervals, especially extended intervals in August, 2001 on which a workshop held at ESTEC in March, 2002 focused. In addition, some scientific investigations were initiated and results were reported at meetings.

  5. KAGUYA(SELENE) Science Mission

    NASA Astrophysics Data System (ADS)

    Sasaki, Susumu; Kato, Manabu; Takizawa, Yoshisada; Selene Project Team

    The Moon-orbiting KAGUYA (SELENE: Selenological and Engineering Explorer) was successfully launched on Sep. 14, 2007 from JAXA Tanegashima Space Center. It was injected into the lunar orbit on Oct.4, 2007 on schedule. It started science mission in mid-December after checkout of each mission instruments. The scientific objectives are; 1) study of the origin and evolution of the Moon, 2) in-situ measurement of the lunar environment, and 3) observation of the solar-terrestrial plasma environment. Totally 14 mission instruments on the main orbiter and two subsatellites (OKINA and OUNA) have been operated. This paper presents the major results of scientific obsevation in the initial mission operation phase.

  6. STS-78 Mission Specialist Charles E. Brady suits up

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-78 Mission Specialist Charles E. Brady Jr. is donning his launch/entry suit in the Operations and Checkout Building. A spaceflight rookie, Brady was selected by NASA to join the astronaut corps in March 1992; he is a medical doctor who also is a commander in the U.S. Navy. Along with six fellow crew members, he will depart the O&C in a short while and head for Launch Pad 39B, where the Space Shuttle Columbia awaits liftoff during a two-and-a-half hour launch window opening at 10:49 a.m. EDT, June 20. STS-78 will be an extended duration flight during which extensive research will be conducted in the Life and Microgravity Spacelab (LMS) located in the payload bay.

  7. STS-81 Mission Specialist Jerry Linenger suits up

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-81 Mission Specialist Jerry Linenger waves to the camera in his launch/entry suit and helmet in the suitup room of the Operations and Checkout (O&C) Building. He is on his second Shuttle flight and has been an astronaut since 1992. Linenger will become a member of the Mir 22 crew and replace astronaut John Blaha on the Russian space station for a four-month stay after the Space Shuttle orbiter Atlantis docks with the orbital habitat on flight day 3. A medical doctor and an exercise buff, Linenger will conduct physiological experiments during his stay on Mir. He and five crew members will shortly depart the O&C and head for Launch Pad 39B, where the Space Shuttle Atlantis will lift off during a 7-minute window that opens at 4:27 a.m. EST, January 12.

  8. STS-81 Mission Specialist Marsha Ivins suits up

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-81 Mission Specialist Marsha S. Ivins gets a helping hand from a suit technician as she prepares to don the helmet of her launch/entry suit in the suitup room of the Operations and Checkout (O&C) Building. She is the veteran of three Shuttle flights and became an astronaut in 1984. Among other responsibilities, Ivins will perform photo and video surveys of the Russian Mir space station and operate the Kidsat experiment camera on the orbiters aft flight deck. She and five crew members will shortly depart the O&C and head for Launch Pad 39B, where the Space Shuttle Atlantis will lift off during a 7-minute window that opens at 4:27 a.m. EST, January 12.

  9. STS-78 Mission Specialist Richard Linnehan suits up

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-78 Mission Specialist Richard M. Linnehan completes suitup activities in the Operations and Checkout Building. The fifth Shuttle flight of 1996 will be the first trip into space for Linnehan, who is a veterinarian by training. Along with six fellow crew members, he will depart the O&C in a short while and head for Launch Pad 39B, where the Space Shuttle Columbia awaits liftoff during a two-and-a-half hour launch window opening at 10:49 a.m. EDT, June 20. STS-78 will be an extended duration flight during which extensive research will be conducted in the Life and Microgravity Spacelab (LMS) located in the payload bay.

  10. STS-80 Mission Specialist Story Musgrave suits up

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-80 Mission Specialist Story Musgrave is donning his launch/entry suit in the Operations and Checkout Building with assistance from a suit technician. Musgrave's sixth flight into space is noteworthy in two respects. First, he will tie NASA astronaut John Young's record for most number of spaceflights by any human being. Secondly, at age 61, Musgrave will be the oldest person ever to fly in space. He and four crew members will shortly depart the O&C and head for Launch Pad 39B, where the Space Shuttle Columbia awaits liftoff during a two-and-a-half hour window opening at 2:53 p.m. EST, Nov. 19.

  11. Interplanetary mission planning

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A long range plan for solar system exploration is presented. The subjects discussed are: (1) science payload for first Jupiter orbiters, (2) Mercury orbiter mission study, (3) preliminary analysis of Uranus/Neptune entry probes for Grand Tour Missions, (4) comet rendezvous mission study, (5) a survey of interstellar missions, (6) a survey of candidate missions to explore rings of Saturn, and (7) preliminary analysis of Venus orbit radar missions.

  12. Study of multiple asteroid flyby missions

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The feasibility, scientific objectives, mission profile characteristics, and implementation of an asteroid belt exploration mission by a spacecraft guided to intercept three or more asteroids at close range are discussed. A principal consideration in planning a multiasteroid mission is to cut cost by adapting an available and flight-proven spacecraft design such as Pioneer F and G, augmenting its propulsion and guidance capabilities and revising the scientific payload complement in accordance with required mission characteristics. Spacecraft modification necessary to meet the objectives and requirements of the mission were studied. A ground rule of the study was to hold design changes to a minimum and to utilize available technology as much as possible. However, with mission dates not projected before the end of this decade, a reasonable technology growth in payload instrument design and some subsystem components is anticipated that can be incorporated in the spacecraft adaptation.

  13. Titan Explorer: A NASA Flagship Mission Concept

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.; Leary, James C.; Lockwood, Mary Kae; Waite, J. Hunter

    2008-01-01

    We summarize the scientific potential and mission and system design for a Flagship-class mission to Titan. A broad range of science objectives are addressed by an architecture that is uniquely enabled by the Titan atmosphere which permits aerocapture of an orbiter and delivery of a lander and balloon, with all three elements packaged on a single launch vehicle. This multi-element architecture provides a portfolio of mission options adaptable to budget scope and partnering opportunities.

  14. Mission Statements: One More Time.

    ERIC Educational Resources Information Center

    Detomasi, Don

    1995-01-01

    It is argued that well-conceived college and university mission statements can be useful in setting objectives for planning and for public information dissemination and marketing. The experience of the University of Calgary (Alberta) illustrates a successful process of drafting and reaching agreement on such a document. (MSE)

  15. A Look Inside the Juno Mission to Jupiter

    NASA Technical Reports Server (NTRS)

    Grammier, Richard S.

    2008-01-01

    Juno, the second mission within the New Frontiers Program, is a Jupiter polar orbiter mission designed to return high-priority science data that spans across multiple divisions within NASA's Science Mission Directorate. Juno's science objectives, coupled with the natural constraints of a cost-capped, PI-led mission and the harsh environment of Jupiter, have led to a very unique mission and spacecraft design.

  16. ASTROSAT mission

    NASA Astrophysics Data System (ADS)

    Singh, Kulinder Pal; Tandon, S. N.; Agrawal, P. C.; Antia, H. M.; Manchanda, R. K.; Yadav, J. S.; Seetha, S.; Ramadevi, M. C.; Rao, A. R.; Bhattacharya, D.; Paul, B.; Sreekumar, P.; Bhattacharyya, S.; Stewart, G. C.; Hutchings, J.; Annapurni, S. A.; Ghosh, S. K.; Murthy, J.; Pati, A.; Rao, N. K.; Stalin, C. S.; Girish, V.; Sankarasubramanian, K.; Vadawale, S.; Bhalerao, V. B.; Dewangan, G. C.; Dedhia, D. K.; Hingar, M. K.; Katoch, T. B.; Kothare, A. T.; Mirza, I.; Mukerjee, K.; Shah, H.; Shah, P.; Mohan, R.; Sangal, A. K.; Nagabhusana, S.; Sriram, S.; Malkar, J. P.; Sreekumar, S.; Abbey, A. F.; Hansford, G. M.; Beardmore, A. P.; Sharma, M. R.; Murthy, S.; Kulkarni, R.; Meena, G.; Babu, V. C.; Postma, J.

    2014-07-01

    ASTROSAT is India's first astronomy satellite that will carry an array of instruments capable of simultaneous observations in a broad range of wavelengths: from the visible, near ultraviolet (NUV), far-UV (FUV), soft X-rays to hard X-rays. There will be five principal scientific payloads aboard the satellite: (i) a Soft X-ray Telescope (SXT), (ii) three Large Area Xenon Proportional Counters (LAXPCs), (iii) a Cadmium-Zinc-Telluride Imager (CZTI), (iv) two Ultra-Violet Imaging Telescopes (UVITs) one for visible and near-UV channels and another for far-UV, and (v) three Scanning Sky Monitors (SSMs). It will also carry a charged particle monitor (CPM). Almost all the instruments have qualified and their flight models are currently in different stages of integration into the satellite structure in ISRO Satellite Centre. ASTROSAT is due to be launched by India's Polar Satellite Launch Vehicle (PSLV) in the first half of 2015 in a circular 600 km orbit with inclination of ~6 degrees, from Sriharikota launching station on the east coast of India. A brief description of the design, construction, capabilities and scientific objectives of all the main scientific payloads is presented here. A few examples of the simulated observations with ASTROSAT and plans to utilize the satellite nationally and internationally are also presented.

  17. Swarm: ESA's Magnetic Field Mission

    NASA Astrophysics Data System (ADS)

    Haagmans, R.; Menard, Y.; Floberghagen, R.; Plank, G.; Drinkwater, M. R.

    2010-12-01

    Swarm is the fifth Earth Explorer mission in ESA’s Living Planet Programme. The objective of the Swarm mission is to provide the best ever survey of the geomagnetic field and its temporal evolution. The Mission shall deliver data that allow access to new insights into the Earth system by improving our understanding of the Earth’s interior and near-Earth electro-magnetic environment. After release from a single launcher, a side-by-side flying slowly decaying lower pair of satellites will be released at an initial altitude of about 490 km together with a third satellite that will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations that are required to separate and model various sources of the geomagnetic field and near-Earth current systems. The mission aims to provide a unique view into Earth core dynamics, mantle conductivity, crustal magnetisation, ionospheric and magnetospheric current systems and upper atmosphere dynamics - ranging from understanding the geodynamo to contributing to space weather. The scientific objectives and results from recent scientific studies will be presented. In addition the current status of the project, which is presently in the development phase, will be addressed. The mission is scheduled for launch in 2012.

  18. The ADAHELI Solar Mission

    NASA Astrophysics Data System (ADS)

    Berrilli, F.; Velli, M.; Roselli, L.; Bigazzi, A.; Moretti, P. F.; Romoli, M.; Orsini, S.; Cavallini, F.; Greco, V.; Carbone, V.; Consolini, G.; Di Mauro, M. P.; Ermolli, I.; Pietropaolo, E.; Romano, P.; Ventura, P.; White, S. M.; Zuccarello, F.; Cauzzi, G.; Valdettaro, L.

    2008-09-01

    ADAHELI (Advanced Astronomy for HELIOphysics) is an Italian Space project for the investigation of solar photospheric and chromospheric dynamics, via high-resolution spectro-polarimetric observations in the near-infrared spectral range. The mission has been financed for phase A study in the framework of ASI Italian Space Agency Small Missions Program call of September 2007. Four fields have been selected to highlight the specific benefits of ADAHELI scientific payload: 1) Photospheric and chromospheric dynamics and structure, 2) Emergence and evolution of solar active regions and solar irradiance, 3) Chromospheric and corona heating and turbulence, 4) Solar flares in the millimeter wavelength region. The principal science instrument, ISODY, is a 50 cm solar telescope equipped with an innovative Focal Plane Suite composed of a spectro-polarimetric imager, based upon two Fabry-Perot interferometers operating in the NIR regions around 845nm and 1083nm, a broad band imager, and a correlation tracker used as image stabilization system. Designed Mission Profiles for ADAHELI intend to achieve continuous high-spectral and spatial resolution observations of the Sun for a routine duration of 4 hours with a goal to be extended to 24 hours. ADAHELI also carries MIOS, a millimeter wavelengths radiometer operating at around 90 GHz for flare detection. The ADAHELI payload's instrument suite integrates and complements, without overlap, the present major objectives of ESA, NASA and the International Living with a Star program, in particular Solar Dynamics Observatory, PICARD, Solar Orbiter, and the Solar Probe missions. Proposals for optional instruments are also under evaluation: DIMMI-2h, a double channel MOF based full disk imager operating at 589nm and 770nm, allowing high temporal resolution velocity and magnetic field measurements; EISR a two channel spectrometer operating in the 50-130 nm wavelength range, and NPA, an in-situ Neutral Particle Analyzer to detect Energetic

  19. Mir Mission Chronicle

    NASA Technical Reports Server (NTRS)

    McDonald, Sue

    1998-01-01

    Dockings, module additions, configuration changes, crew changes, and major mission events are tracked for Mir missions 17 through 21 (November 1994 through August 1996). The international aspects of these missions are presented, comprising joint missions with ESA and NASA, including three U.S. Space Shuttle dockings. New Mir modules described are Spektr, the Docking Module, and Priroda.

  20. Space physics missions handbook

    NASA Technical Reports Server (NTRS)

    Cooper, Robert A. (Compiler); Burks, David H. (Compiler); Hayne, Julie A. (Editor)

    1991-01-01

    The purpose of this handbook is to provide background data on current, approved, and planned missions, including a summary of the recommended candidate future missions. Topics include the space physics mission plan, operational spacecraft, and details of such approved missions as the Tethered Satellite System, the Solar and Heliospheric Observatory, and the Atmospheric Laboratory for Applications and Science.

  1. Missions and Moral Judgement.

    ERIC Educational Resources Information Center

    Bushnell, Amy Turner

    2000-01-01

    Addresses the history of Spanish-American missions, discussing the view of missions in church history, their role in the Spanish conquest, and the role and ideas of Herbert E. Bolton. Focuses on differences among Spanish borderlands missions, paying particular attention to the Florida missions. (CMK)

  2. Human Mars Missions: Cost Driven Architecture Assessments

    NASA Technical Reports Server (NTRS)

    Donahue, Benjamin

    1998-01-01

    This report investigates various methods of reducing the cost in space transportation systems for human Mars missions. The reference mission for this task is a mission currently under study at NASA. called the Mars Design Reference Mission, characterized by In-Situ propellant production at Mars. This study mainly consists of comparative evaluations to the reference mission with a view to selecting strategies that would reduce the cost of the Mars program as a whole. One of the objectives is to understand the implications of certain Mars architectures, mission modes, vehicle configurations, and potentials for vehicle reusability. The evaluations start with year 2011-2014 conjunction missions which were characterized by their abort-to-the-surface mission abort philosophy. Variations within this mission architecture, as well as outside the set to other architectures (not predicated on an abort to surface philosophy) were evaluated. Specific emphasis has been placed on identifying and assessing overall mission risk. Impacts that Mars mission vehicles might place upon the Space Station, if it were to be used as an assembly or operations base, were also discussed. Because of the short duration of this study only on a few propulsion elements were addressed (nuclear thermal, cryogenic oxygen-hydrogen, cryogenic oxygen-methane, and aerocapture). Primary ground rules and assumptions were taken from NASA material used in Marshall Space Flight Center's own assessment done in 1997.

  3. Rosetta mission operations for landing

    NASA Astrophysics Data System (ADS)

    Accomazzo, Andrea; Lodiot, Sylvain; Companys, Vicente

    2016-08-01

    The International Rosetta Mission of the European Space Agency (ESA) was launched on 2nd March 2004 on its 10 year journey to comet Churyumov-Gerasimenko and has reached it early August 2014. The main mission objectives were to perform close observations of the comet nucleus throughout its orbit around the Sun and deliver the lander Philae to its surface. This paper describers the activities at mission operations level that allowed the landing of Philae. The landing preparation phase was mainly characterised by the definition of the landing selection process, to which several parties contributed, and by the definition of the strategy for comet characterisation, the orbital strategy for lander delivery, and the definition and validation of the operations timeline. The definition of the landing site selection process involved almost all components of the mission team; Rosetta has been the first, and so far only mission, that could not rely on data collected by previous missions for the landing site selection. This forced the teams to include an intensive observation campaign as a mandatory part of the process; several science teams actively contributed to this campaign thus making results from science observations part of the mandatory operational products. The time allocated to the comet characterisation phase was in the order of a few weeks and all the processes, tools, and interfaces required an extensive planning an validation. Being the descent of Philae purely ballistic, the main driver for the orbital strategy was the capability to accurately control the position and velocity of Rosetta at Philae's separation. The resulting operations timeline had to merge this need of frequent orbit determination and control with the complexity of the ground segment and the inherent risk of problems when doing critical activities in short times. This paper describes the contribution of the Mission Control Centre (MOC) at the European Space Operations Centre (ESOC) to this

  4. The Asteroid Redirect Mission (ARM)

    NASA Astrophysics Data System (ADS)

    Abell, Paul; Gates, Michele; Johnson, Lindley; Chodas, Paul; Mazanek, Dan; Reeves, David; Ticker, Ronald

    2016-07-01

    To achieve its long-term goal of sending humans to Mars, the National Aeronautics and Space Administration (NASA) plans to proceed in a series of incrementally more complex human spaceflight missions. Today, human flight experience extends only to Low-Earth Orbit (LEO), and should problems arise during a mission, the crew can return to Earth in a matter of minutes to hours. The next logical step for human spaceflight is to gain flight experience in the vicinity of the Moon. These cis-lunar missions provide a "proving ground" for the testing of systems and operations while still accommodating an emergency return path to the Earth that would last only several days. Cis-lunar mission experience will be essential for more ambitious human missions beyond the Earth-Moon system, which will require weeks, months, or even years of transit time. In addition, NASA has been given a Grand Challenge to find all asteroid threats to human populations and know what to do about them. Obtaining knowledge of asteroid physical properties combined with performing technology demonstrations for planetary defense provide much needed information to address the issue of future asteroid impacts on Earth. Hence the combined objectives of human exploration and planetary defense give a rationale for the Asteroid Re-direct Mission (ARM). Mission Description: NASA's ARM consists of two mission segments: 1) the Asteroid Redirect Robotic Mission (ARRM), the first robotic mission to visit a large (greater than ~100 m diameter) near-Earth asteroid (NEA), collect a multi-ton boulder from its surface along with regolith samples, demonstrate a planetary defense technique, and return the asteroidal material to a stable orbit around the Moon; and 2) the Asteroid Redirect Crewed Mission (ARCM), in which astronauts will take the Orion capsule to rendezvous and dock with the robotic vehicle, conduct multiple extravehicular activities to explore the boulder, and return to Earth with samples. NASA's proposed

  5. Outer planet probe missions, designs and science

    NASA Technical Reports Server (NTRS)

    Colin, L.

    1978-01-01

    The similarities and differences of atmosphere entry probe mission designs and sciences appropriate to certain solar system objects, are reviewed. Candidate payloads for Saturn and Titan probes are suggested. Significant supporting research and technology efforts are required to develop mission-peculiar technology for probe exploration of the Saturnian system.

  6. Mission design for the low-cost Mariner Mark II missions

    NASA Technical Reports Server (NTRS)

    Wallace, R. A.; Blume, W. H.; Hulkower, N. D.; Yen, C. L.

    1982-01-01

    Mariner Mark II is a program of missions, now under study at JPL, which will maximize scientific return at substantially reduced cost. There will be 3 to 5 missions in the program investigating comets, asteroids, the outer planets and their satellites, and Mars in the 1990s. Mission opportunities for these targets in this time period are described in terms of launch vehicle, propulsion, and flight time requirements, as well as other mission constraints such as margin and launch period objectives. Example encounter designs as well as mission launch scenarios are also described.

  7. Objectives and Outcomes

    SciTech Connect

    Segalman, D.J.

    1998-11-30

    I have recently become involved in the ABET certification process under the new system - ABET 2000. This system relies heavily on concepts of Total Quality Management (TQM). It encourages each institution to define its objectives in terms of its own mission and then create a coherent program based on it. The prescribed steps in setting up the new system at an engineering institution are: o identification of constituencies G definition of mission. It is expected that the department's mission will be consistent with that of the overall institution, but containing some higher resolution language appropriate to that particular discipline of the engineering profession. o statement of objectives consistent with the mission 3G~~\\vED " enumeration of desired, and preferably measurable, outcomes of the process that would ~ `=. verify satisfaction of the objectives. ~~~ 07 !398 o establish performance standards for each outcome. o creation of appropriate feedback loops to assure that the objectives are still consistent with Q$YT1 the mission, that the outcomes remain consistent with the objectives, and that the curriculum and the teaching result in those outcomes. It is my assertion that once the institution verbalizes a mission, enumerated objectives naturally flow from that mission. (We shall try to demonstrate by example.) Further, if the mission uses the word "engineer", one would expect that word also to appear in at least one of the objectives. The objective of producing engineers of any sort must -by decree - involve the presence of the ABET criteria in the outcomes list. In other words, successful satisfaction of the ABET items a-k are a necessary subset of the measure of success in producing engineers. o We shall produce bachelor level engineers whose training in the core topics of chemical (or electrical, or mechanical) engineering is recognized to be among the best in the nation. o We shall provide an opportunity for our students to gain a

  8. Technology for Future Exoplanet Missions

    NASA Technical Reports Server (NTRS)

    Lawson, Peter; Devirian, Michael; van Zyl, Jakob

    2011-01-01

    A central theme in NASA's and ESA's vision for future missions is the search for habitable worlds and life beyond our Solar System. This presentation will review the current state of the art in planet-finding technology, with an emphasis on methods of starlight suppression. At optical wavelengths, Earth-like planets are about 10 billion times fainter than their host stars. Starlight suppression is therefore necessary to enable measurements of biosignatures in the atmospheres of faint Earth-like planets. Mission concepts based on coronagraph, starshade, and interferometers will be described along with their science objectives and technology requirements.

  9. Mission Design Overview for the Phoenix Mars Scout Mission

    NASA Technical Reports Server (NTRS)

    Garcia, Mark D.; Fujii, Kenneth K.

    2007-01-01

    The Phoenix mission "follows the water" by landing in a region where NASA's Mars Odyssey orbiter has discovered evidence of ice-rich soil very near the Martian surface. For three months after landing, the fixed Lander will perform in-situ and remote sensing investigations that will characterize the chemistry of the materials at the local surface, sub-surface, and atmosphere, and will identify potential provenance of key indicator elements of significance to the biological potential of Mars, including potential organics and any accessible water ice. The Lander will employ a robotic arm to dig to the ice layer, and will analyze the acquired samples using a suite of deck-mounted, science instruments. The development of the baseline strategy to achieve the objectives of this mission involves the integration of a variety of elements into a coherent mission plan.

  10. Comet nucleus sample return mission

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A comet nucleus sample return mission in terms of its relevant science objectives, candidate mission concepts, key design/technology requirements, and programmatic issues is discussed. The primary objective was to collect a sample of undisturbed comet material from beneath the surface of an active comet and to preserve its chemical and, if possible, its physical integrity and return it to Earth in a minimally altered state. The secondary objectives are to: (1) characterize the comet to a level consistent with a rendezvous mission; (2) monitor the comet dynamics through perihelion and aphelion with a long lived lander; and (3) determine the subsurface properties of the nucleus in an area local to the sampled core. A set of candidate comets is discussed. The hazards which the spacecraft would encounter in the vicinity of the comet are also discussed. The encounter strategy, the sampling hardware, the thermal control of the pristine comet material during the return to Earth, and the flight performance of various spacecraft systems and the cost estimates of such a mission are presented.

  11. The OHMIC Mission

    NASA Astrophysics Data System (ADS)

    Ergun, R.; Burch, J. L.; Lotko, W.; Frey, H. U.; Chaston, C. C.

    2013-12-01

    The Observatory for Heteroscale Magnetosphere-Ionosphere Coupling (OHMIC) investigates the coupling of Earth's magnetosphere and ionosphere (MI) focusing on the conversion of electromagnetic energy into particle energy in auroral acceleration regions. Energy conversion and acceleration are universal processes that are a critical part of MI coupling and govern the energy deposition into Earth's upper atmosphere. These same processes are known to occur in planetary magnetospheres and in the magnetized plasmas of stars. Energy conversion and acceleration in the auroral regions are known to occur on small spatial scales through dispersive Alfvén waves and nonlinear plasma structures such as double layers. OHMIC advances our understanding of MI coupling over previous missions using two spacecraft equipped with high-time resolution measurements of electron distributions, ion distributions, and vector electric and magnetic fields. One of the spacecraft will carry two high-time and high-spatial resolution imagers and a wide-angle imager in the far ultraviolet. The mission has two phases. The first phase investigates meridional phenomena by using the combination of two-point measurements and high-resolution to distinguishing spatial and temporal phenomena. The second phase investigates field-aligned phenomena with spacecraft separations between 10 and 1100 km. Primary science objectives include (1) determining how energy conversion and transport vary along the magnetic field, (2) determining how ionospheric outflow is mediated by ion heating, convection and field-aligned transport, and (3) determining how charged-particle acceleration and injection vary in time and space.

  12. AXTAR: Mission Design Concept

    NASA Technical Reports Server (NTRS)

    Ray, Paul S.; Chakrabarty, Deepto; Wilson-Hodge, Colleen A.; Philips, Bernard F.; Remillard, Ronald A.; Levine, Alan M.; Wood, Kent S.; Wolff, Michael T.; Gwon, Chul S.; Strohmayer, Tod E.; Briggs, Michael S.; Capizzo, Peter; Fabisinski, Leo; Hopkins, Randall C.; Hornsby, Linda S.; Johnson, Les; Maples, C. Dauphne; Miernik, Janie H.; Thomas, Dan; DeGeronimo, Gianluigi

    2010-01-01

    The Advanced X-ray Timing Array (AXTAR) is a mission concept for X-ray timing of compact objects that combines very large collecting area, broadband spectral coverage, high time resolution, highly flexible scheduling, and an ability to respond promptly to time-critical targets of opportunity. It is optimized for sub-millisecond timing of bright Galactic X-ray sources in order to study phenomena at the natural time scales of neutron star surfaces and black hole event horizons, thus probing the physics of ultra-dense matter, strongly curved spacetimes, and intense magnetic fields. AXTAR s main instrument, the Large Area Timing Array (LATA) is a collimated instrument with 2 50 keV coverage and over 3 square meters effective area. The LATA is made up of an array of super-modules that house 2-mm thick silicon pixel detectors. AXTAR will provide a significant improvement in effective area (a factor of 7 at 4 keV and a factor of 36 at 30 keV) over the RXTE PCA. AXTAR will also carry a sensitive Sky Monitor (SM) that acts as a trigger for pointed observations of X-ray transients in addition to providing high duty cycle monitoring of the X-ray sky. We review the science goals and technical concept for AXTAR and present results from a preliminary mission design study

  13. The microscope mission

    NASA Astrophysics Data System (ADS)

    Touboul, Pierre; Foulon, Bernard; Lafargue, Laurent; Metris, Gilles

    2002-04-01

    The MICROSCOPE mission had been selected at the end of 1999 by the French space agency Cnes for a launch scheduled in 2004. The scientific objective of the mission is the test of the Equivalence Principle (EP) up to an accuracy of 10 -15 with its well-known manifestation, the universality of free fall. This principle, at the origin of general relativity, is only consolidated by experimental results and presently with an accuracy of several 10 -13. The micro-satellite developed by Cnes weighs less than 120 kg and is compatible with a low-cost launch like ASAP ARIANE V. The instrument is composed of two differential electrostatic accelerometers operating at finely stabilised room temperature. Each accelerometer includes two cylindrical and concentric test masses, made of platinum or titanium alloys. The experiment consists in controlling the two masses in the same orbital motion. Because of the drag compensation system of the satellite including field effect electrical thrusters, this motion is quite purely gravitational. The electrostatic control forces used in the differential accelerometers are finely measured. The principle of the experiment is presented, the configuration of the instrument and of the satellite is detailed with regard to the present development status. The specifications for the major parameters of the experiment are detailed.

  14. Spacelab 3 Mission Science Review

    NASA Technical Reports Server (NTRS)

    Fichtl, George H. (Editor); Theon, John S. (Editor); Hill, Charles K. (Editor); Vaughan, Otha H. (Editor)

    1987-01-01

    Papers and abstracts of the presentations made at the symposium are given as the scientific report for the Spacelab 3 mission. Spacelab 3, the second flight of the National Aeronautics and Space Administration's (NASA) orbital laboratory, signified a new era of research in space. The primary objective of the mission was to conduct applications, science, and technology experiments requiring the low-gravity environment of Earth orbit and stable vehicle attitude over an extended period (e.g., 6 days) with emphasis on materials processing. The mission was launched on April 29, 1985, aboard the Space Shuttle Challenger which landed a week later on May 6. The multidisciplinary payload included 15 investigations in five scientific fields: material science, fluid dynamics, life sciences, astrophysics, and atmospheric science.

  15. The CHEOPS Mission

    NASA Astrophysics Data System (ADS)

    Broeg, Christopher; benz, willy; fortier, andrea; Ehrenreich, David; beck, Thomas; cessa, Virginie; Alibert, Yann; Heng, Kevin

    2015-12-01

    The CHaracterising ExOPlanet Satellite (CHEOPS) is a joint ESA-Switzerland space mission dedicated to search for exoplanet transits by means of ultra-high precision photometry. It is expected to be launch-ready at the end of 2017.CHEOPS will be the first space observatory dedicated to search for transits on bright stars already known to host planets. It will have access to more than 70% of the sky. This will provide the unique capability of determining accurate radii for planets for which the mass has already been estimated from ground-based radial velocity surveys and for new planets discovered by the next generation ground-based transits surveys (Neptune-size and smaller). The measurement of the radius of a planet from its transit combined with the determination of its mass through radial velocity techniques gives the bulk density of the planet, which provides direct insights into the structure and/or composition of the body. In order to meet the scientific objectives, a number of requirements have been derived that drive the design of CHEOPS. For the detection of Earth and super-Earth planets orbiting G5 dwarf stars with V-band magnitudes in the range 6 ≤ V ≤ 9 mag, a photometric precision of 20 ppm in 6 hours of integration time must be reached. This time corresponds to the transit duration of a planet with a revolution period of 50 days. In the case of Neptune-size planets orbiting K-type dwarf with magnitudes as faint as V=12 mag, a photometric precision of 85 ppm in 3 hours of integration time must be reached. To achieve this performance, the CHEOPS mission payload consists of only one instrument, a space telescope of 30 cm clear aperture, which has a single CCD focal plane detector. CHEOPS will be inserted in a low Earth orbit and the total duration of the CHEOPS mission is 3.5 years (goal: 5 years).The presentation will describe the current payload and mission design of CHEOPS, give the development status, and show the expected performances.

  16. Climate Benchmark Missions: CLARREO

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Young, David F.

    2010-01-01

    CLARREO (Climate Absolute Radiance and Refractivity Observatory) is one of the four Tier 1 missions recommended by the recent NRC decadal survey report on Earth Science and Applications from Space (NRC, 2007). The CLARREO mission addresses the need to rigorously observe climate change on decade time scales and to use decadal change observations as the most critical method to determine the accuracy of climate change projections such as those used in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4). A rigorously known accuracy of both decadal change observations as well as climate projections is critical in order to enable sound policy decisions. The CLARREO mission accomplishes this critical objective through highly accurate and SI traceable decadal change observations sensitive to many of the key uncertainties in climate radiative forcings, responses, and feedbacks that in turn drive uncertainty in current climate model projections. The same uncertainties also lead to uncertainty in attribution of climate change to anthropogenic forcing. The CLARREO breakthrough in decadal climate change observations is to achieve the required levels of accuracy and traceability to SI standards for a set of observations sensitive to a wide range of key decadal change variables. These accuracy levels are determined both by the projected decadal changes as well as by the background natural variability that such signals must be detected against. The accuracy for decadal change traceability to SI standards includes uncertainties of calibration, sampling, and analysis methods. Unlike most other missions, all of the CLARREO requirements are judged not by instantaneous accuracy, but instead by accuracy in large time/space scale average decadal changes. Given the focus on decadal climate change, the NRC Decadal Survey concluded that the single most critical issue for decadal change observations was their lack of accuracy and low confidence in

  17. Architecting a mission plan for Lunar Observer

    NASA Technical Reports Server (NTRS)

    Ridenoure, Rex W.

    1991-01-01

    The present status of NASA's Lunar Observer study effort at JPL is discussed in the context of an ongoing 20-year series of studies focused on defining a robotic, low-altitude, polar-orbiting mission to the moon. The primary emphasis of the discussion is a review of the various systems-level factors that drive the overall architecture of the mission plan. Selected top-level project and science requirements are summarized and the current mission and science objectives are presented. A brief description of the candidate science instrument complement is included. Several significant orbital effects caused by the lunar gravity field are explained and the variety of trajectory and maneuver options considered for both getting to the moon and orbiting there are described. Several candidate mission architectures are outlined and the mission plans chosen for future study are described. Two mission options result: a single-spacecraft, single-launch scenario, and a multiple-spacecraft, multiple-launch concept.

  18. The PROPEL Electrodynamic Tether Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Bilen, Sven G.; Johnson, C. Les; Wiegmann, Bruce M.; Alexander, Leslie; Gilchrist, Brian E.; Hoyt, Robert P.; Elder, Craig H.; Fuhrhop, Keith P.; Scadera, Michael

    2012-01-01

    The PROPEL ("Propulsion using Electrodynamics") mission will demonstrate the operation of an electrodynamic tether propulsion system in low Earth orbit and advance its technology readiness level for multiple applications. The PROPEL mission has two primary objectives: first, to demonstrate the capability of electrodynamic tether technology to provide robust and safe, near-propellantless propulsion for orbit-raising, de-orbit, plane change, and station keeping, as well as to perform orbital power harvesting and formation flight; and, second, to fully characterize and validate the performance of an integrated electrodynamic tether propulsion system, qualifying it for infusion into future multiple satellite platforms and missions with minimal modification. This paper provides an overview of the PROPEL system and design reference missions; mission goals and required measurements; and ongoing PROPEL mission design efforts.

  19. Agile: From Software to Mission System

    NASA Technical Reports Server (NTRS)

    Trimble, Jay; Shirley, Mark H.; Hobart, Sarah Groves

    2016-01-01

    The Resource Prospector (RP) is an in-situ resource utilization (ISRU) technology demonstration mission, designed to search for volatiles at the Lunar South Pole. This is NASA's first near real time tele-operated rover on the Moon. The primary objective is to search for volatiles at one of the Lunar Poles. The combination of short mission duration, a solar powered rover, and the requirement to explore shadowed regions makes for an operationally challenging mission. To maximize efficiency and flexibility in Mission System design and thus to improve the performance and reliability of the resulting Mission System, we are tailoring Agile principles that we have used effectively in ground data system software development and applying those principles to the design of elements of the mission operations system.

  20. Overview of the Cassini Extended Mission Trajectory

    NASA Technical Reports Server (NTRS)

    Buffington, Brent; Strange, Nathan; Smith, John

    2008-01-01

    Due to the highly successful execution of the Cassini-Huygens prime mission and the estimated propellant remaining at the conclusion of the prime mission, NASA Headquarters allocated funding for the development of a 2-year long Cassini extended mission. The resultant extended mission, stemming from 1.5 years of development, includes an additional 26 targeted Titan flybys, 9 close flybys of icy satellites, and 60 orbits about Saturn. This paper describes, in detail, the different phases of the Cassini extended mission and the associated design methodology, which attempted to maximize the number and quality of high-priority scientific objectives while minimizing the total delta v expenditure and adhering to mission-imposed constraints.

  1. Potential Mission Scenarios Post Asteroid Crewed Mission

    NASA Technical Reports Server (NTRS)

    Lopez, Pedro, Jr.; McDonald, Mark A.

    2015-01-01

    A deep-space mission has been proposed to identify and redirect an asteroid to a distant retrograde orbit around the moon, and explore it by sending a crew using the Space Launch System and the Orion spacecraft. The Asteroid Redirect Crewed Mission (ARCM), which represents the third segment of the Asteroid Redirect Mission (ARM), could be performed on EM-3 or EM-4 depending on asteroid return date. Recent NASA studies have raised questions on how we could progress from current Human Space Flight (HSF) efforts to longer term human exploration of Mars. This paper will describe the benefits of execution of the ARM as the initial stepping stone towards Mars exploration, and how the capabilities required to send humans to Mars could be built upon those developed for the asteroid mission. A series of potential interim missions aimed at developing such capabilities will be described, and the feasibility of such mission manifest will be discussed. Options for the asteroid crewed mission will also be addressed, including crew size and mission duration.

  2. Constellation Program Mission Operations Project Office Status and Support Philosophy

    NASA Technical Reports Server (NTRS)

    Smith, Ernest; Webb, Dennis

    2007-01-01

    The Constellation Program Mission Operations Project Office (CxP MOP) at Johnson Space Center in Houston Texas is preparing to support the CxP mission operations objectives for the CEV/Orion flights, the Lunar Lander, and and Lunar surface operations. Initially the CEV will provide access to the International Space Station, then progress to the Lunar missions. Initial CEV mission operations support will be conceptually similar to the Apollo missions, and we have set a challenge to support the CEV mission with 50% of the mission operations support currently required for Shuttle missions. Therefore, we are assessing more efficient way to organize the support and new technologies which will enhance our operations support. This paper will address the status of our preparation for these CxP missions, our philosophical approach to CxP operations support, and some of the technologies we are assessing to streamline our mission operations infrastructure.

  3. STS-73 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The crew patch of STS-73, the second flight of the United States Microgravity Laboratory (USML-2), depicts the Space Shuttle Columbia in the vastness of space. In the foreground are the classic regular polyhedrons that were investigated by Plato and later Euclid. The Pythagoreans were also fascinated by the symmetrical three-dimensional objects whose sides are the same regular polygon. The tetrahedron, the cube, the octahedron, and the icosahedron were each associated with the Natural Elements of that time: fire (on this mission represented as combustion science); Earth (crystallography), air and water (fluid physics). An additional icon shown as the infinity symbol was added to further convey the discipline of fluid mechanics. The shape of the emblem represents a fifth polyhedron, a dodecahedron, which the Pythagoreans thought corresponded to a fifth element that represented the cosmos.

  4. Re-Engineering the Mission Operations System (MOS) for the Prime and Extended Mission

    NASA Technical Reports Server (NTRS)

    Hunt, Joseph C., Jr.; Cheng, Leo Y.

    2012-01-01

    One of the most challenging tasks in a space science mission is designing the Mission Operations System (MOS). Whereas the focus of the project is getting the spacecraft built and tested for launch, the mission operations engineers must build a system to carry out the science objectives. The completed MOS design is then formally assessed in the many reviews. Once a mission has completed the reviews, the Mission Operation System (MOS) design has been validated to the Functional Requirements and is ready for operations. The design was built based on heritage processes, new technology, and lessons learned from past experience. Furthermore, our operational concepts must be properly mapped to the mission design and science objectives. However, during the course of implementing the science objective in the operations phase after launch, the MOS experiences an evolutional change to adapt for actual performance characteristics. This drives the re-engineering of the MOS, because the MOS includes the flight and ground segments. Using the Spitzer mission as an example we demonstrate how the MOS design evolved for both the prime and extended mission to enhance the overall efficiency for science return. In our re-engineering process, we ensured that no requirements were violated or mission objectives compromised. In most cases, optimized performance across the MOS, including gains in science return as well as savings in the budget profile was achieved. Finally, we suggest a need to better categorize the Operations Phase (Phase E) in the NASA Life-Cycle Phases of Formulation and Implementation

  5. Cubesat Gravity Field Mission

    NASA Astrophysics Data System (ADS)

    Burla, Santoshkumar; Mueller, Vitali; Flury, Jakob; Jovanovic, Nemanja

    2016-04-01

    CHAMP, GRACE and GOCE missions have been successful in the field of satellite geodesy (especially to improve Earth's gravity field models) and have established the necessity towards the next generation gravity field missions. Especially, GRACE has shown its capabilities beyond any other gravity field missions. GRACE Follow-On mission is going to continue GRACE's legacy which is almost identical to GRACE mission with addition of laser interferometry. But these missions are not only quite expensive but also takes quite an effort to plan and to execute. Still there are few drawbacks such as under-sampling and incapability of exploring new ideas within a single mission (ex: to perform different orbit configurations with multi satellite mission(s) at different altitudes). The budget is the major limiting factor to build multi satellite mission(s). Here, we offer a solution to overcome these drawbacks using cubesat/ nanosatellite mission. Cubesats are widely used in research because they are cheaper, smaller in size and building them is easy and faster than bigger satellites. Here, we design a 3D model of GRACE like mission with available sensors and explain how the Attitude and Orbit Control System (AOCS) works. The expected accuracies on final results of gravity field are also explained here.

  6. The Space Interferometry Mission

    NASA Technical Reports Server (NTRS)

    Unwin, Stephen C.

    1998-01-01

    The Space Interferometry Mission (SIM) is the next major space mission in NASA's Origins program after SIRTF. The SIM architecture uses three Michelson interferometers in low-earth orbit to provide 4 microarcsecond precision absolute astrometric measurements on approx. 40,000 stars. SIM will also provide synthesis imaging in the visible waveband to a resolution of 10 milliarcsecond, and interferometric nulling to a depth of 10(exp -4). A near-IR (1-2 micron) capability is being considered. Many key technologies will be demonstrated by SIM that will be carried over directly or can be readily scaled to future Origins missions such as TPF. The SIM spacecraft will carry a triple Michelson interferometer with baselines in the 10 meter range. Two interferometers act as high precision trackers, providing attitude information at all time, while the third one conducts the science observations. Ultra-accurate laser metrology and active systems monitor the systematic errors and to control the instrument vibrations in order to reach the 4 microarcsecond level on wide-angle measurements. SIM will produce a wealth of new astronomical data. With an absolute positional precision of 4 microarcsecond, SIM will improve on the best currently available measures (the Hipparcos catalog) by 2 or 3 orders of magnitude, providing parallaxes accurate to 10% and transverse velocities to 0.2 km/s anywhere in the Galaxy, to stars as faint as 20th magnitude. With the addition of radial velocities, knowledge of the 6-dimension phase space for objects of interest will allow us to attack a wide array of previously inaccessible problems such as: search for planets down to few earth masses; calibration of stellar luminosities and by means of standard candles, calibration of the cosmic distance scale; detecting perturbations due to spiral arms, disk warps and central bar in our galaxy; probe of the gravitational potential of the Galaxy, several kiloparsecs out of the galactic plane; synthesis imaging

  7. Adaptive Objectness for Object Tracking

    NASA Astrophysics Data System (ADS)

    Liang, Pengpeng; Pang, Yu; Liao, Chunyuan; Mei, Xue; Ling, Haibin

    2016-07-01

    Object tracking is a long standing problem in vision. While great efforts have been spent to improve tracking performance, a simple yet reliable prior knowledge is left unexploited: the target object in tracking must be an object other than non-object. The recently proposed and popularized objectness measure provides a natural way to model such prior in visual tracking. Thus motivated, in this paper we propose to adapt objectness for visual object tracking. Instead of directly applying an existing objectness measure that is generic and handles various objects and environments, we adapt it to be compatible to the specific tracking sequence and object. More specifically, we use the newly proposed BING objectness as the base, and then train an object-adaptive objectness for each tracking task. The training is implemented by using an adaptive support vector machine that integrates information from the specific tracking target into the BING measure. We emphasize that the benefit of the proposed adaptive objectness, named ADOBING, is generic. To show this, we combine ADOBING with seven top performed trackers in recent evaluations. We run the ADOBING-enhanced trackers with their base trackers on two popular benchmarks, the CVPR2013 benchmark (50 sequences) and the Princeton Tracking Benchmark (100 sequences). On both benchmarks, our methods not only consistently improve the base trackers, but also achieve the best known performances. Noting that the way we integrate objectness in visual tracking is generic and straightforward, we expect even more improvement by using tracker-specific objectness.

  8. STS-87 Payload Specialist Kadenyuk participates in the CEIT for his mission

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Participating in the Crew Equipment Integration Test (CEIT) at Kennedy Space Center is STS-87 Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine (NSAU). Here, Cosmonaut Kadenyuk is inspecting flowers for pollination and fertilization, which will occur as part of the Collaborative Ukrainian Experiment, or CUE, aboard Columbia during its 16-day mission, scheduled to take off from KSC's Launch Pad 39-B on Nov. 19. The CUE experiment is a collection of 10 plant space biology experiments that will fly in Columbia's middeck and feature an educational component that involves evaluating the effects of microgravity on the pollinating Brassica rapa seedlings. Students in Ukrainian and American schools will participate in the same experiment on the ground and have several live opportunities to discuss the experiment with Kadenyuk in Space. Kadenyuk of the Ukraine will be flying his first Shuttle mission on STS-87.

  9. Soviet Mission Control Center

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This photo is an overall view of the Mission Control Center in Korolev, Russia during the Expedition Seven mission. The Expedition Seven crew launched aboard a Soyez spacecraft on April 26, 2003. Photo credit: NASA/Bill Ingalls

  10. Space missions to comets

    NASA Technical Reports Server (NTRS)

    Neugebauer, M. (Editor); Yeomans, D. K. (Editor); Brandt, J. C. (Editor); Hobbs, R. W. (Editor)

    1979-01-01

    The broad impact of a cometary mission is assessed with particular emphasis on scientific interest in a fly-by mission to Halley's comet and a rendezvous with Tempel 2. Scientific results, speculations, and future plans are discussed.

  11. Editing the Mission.

    ERIC Educational Resources Information Center

    Walsh, Sharon; Fogg, Piper

    2002-01-01

    Discusses the decision by Columbia University's new president to reevaluate the mission of its journalism school before naming a new dean, in order to explore how the journalism school fits into the mission of a research university. (EV)

  12. Space Launch System Mission Flexibility Assessment

    NASA Technical Reports Server (NTRS)

    Monk, Timothy; Holladay, Jon; Sanders, Terry; Hampton, Bryan

    2012-01-01

    The Space Launch System (SLS) is envisioned as a heavy lift vehicle that will provide the foundation for future beyond low Earth orbit (LEO) missions. While multiple assessments have been performed to determine the optimal configuration for the SLS, this effort was undertaken to evaluate the flexibility of various concepts for the range of missions that may be required of this system. These mission scenarios include single launch crew and/or cargo delivery to LEO, single launch cargo delivery missions to LEO in support of multi-launch mission campaigns, and single launch beyond LEO missions. Specifically, we assessed options for the single launch beyond LEO mission scenario using a variety of in-space stages and vehicle staging criteria. This was performed to determine the most flexible (and perhaps optimal) method of designing this particular type of mission. A specific mission opportunity to the Jovian system was further assessed to determine potential solutions that may meet currently envisioned mission objectives. This application sought to significantly reduce mission cost by allowing for a direct, faster transfer from Earth to Jupiter and to determine the order-of-magnitude mass margin that would be made available from utilization of the SLS. In general, smaller, existing stages provided comparable performance to larger, new stage developments when the mission scenario allowed for optimal LEO dropoff orbits (e.g. highly elliptical staging orbits). Initial results using this method with early SLS configurations and existing Upper Stages showed the potential of capturing Lunar flyby missions as well as providing significant mass delivery to a Jupiter transfer orbit.

  13. Love Objects.

    ERIC Educational Resources Information Center

    Cusack, Lynne

    1998-01-01

    Discusses the role of "security" or "transition" objects, such as a blanket or stuffed toy, in children's development of self-comfort and autonomy. Notes the influence of parents in the child-object relationship, and discusses children's responses to losing a security object, and the developmental point at which a child will give up such an…

  14. Threads of Mission Success

    NASA Technical Reports Server (NTRS)

    Gavin, Thomas R.

    2006-01-01

    This viewgraph presentation reviews the many parts of the JPL mission planning process that the project manager has to work with. Some of them are: NASA & JPL's institutional requirements, the mission systems design requirements, the science interactions, the technical interactions, financial requirements, verification and validation, safety and mission assurance, and independent assessment, review and reporting.

  15. Recent Results from the Lunar Reconnaissance Orbiter Mission and Plans for the Extended Mission

    NASA Technical Reports Server (NTRS)

    Keller, John W.; Vondrak, Richard; Chin, Gordon; Petro, Noah; Gavin, James W.

    2012-01-01

    The Lunar Reconnaissance Orbiter spacecraft (LRO), launched on June 18, 2009, began with the goal of seeking safe landing sites for future robotic missions or the return of humans to the Moon as part of NASA's Exploration Systems Mission Directorate (ESMD). In addition, LRO's objectives included the search for surface resources and to investigate the Lunar radiation environment. After spacecraft commissioning, this phase of the mission began on September 15, 2009, completed on September 15, 2010 when operational responsibility for LRO was transferred to NASA's Science Mission Directorate (SMD). The SMD mission is scheduled for 2 years and will be completed in 2012 with an opportunity for an extended mission beyond 2012. Under SMD, the mission focuses on a new set of goals related to understanding the geologic history of the Moon, its current state, and what it can tell us about the evolution of the Solar System. Having marked the two year anniversary will review here the major results from the LRO mission for both exploration and science and discuss plans and objectives going forward including a proposed 2-year extended mission. These objectives include: 1) understanding the bombardment history of the Moon, 2) interpreting Lunar geologic processes, 3) mapping the global Lunar regolith, 4) identifying volatiles on the Moon, and 5) measuring the Lunar atmosphere and radiation environment.

  16. Deep space 1 mission and observation of comet Borrellly

    USGS Publications Warehouse

    Lee, M.; Weidner, R.J.; Soderblom, L.A.

    2002-01-01

    The NASA's new millennium program (NMP) focuses on testing high-risk, advanced technologies in space with low-cost flights. The objective of the NMP technology validation missions is to enable future science missions. The NMP missions are technology-driven, with the principal requirements coming from the needs of the advanced technologies that form the 'payload'.

  17. Flora: A Proposed Hyperspectral Mission

    NASA Technical Reports Server (NTRS)

    Ungar, Stephen; Asner, Gregory; Green, Robert; Knox, Robert

    2006-01-01

    ) designed to effectively reduce the volume of data required to be transmitted down to the ground. This paper discusses mission science objectives, describes the mission concept and presents the current status of possible funding opportunities leading to realization of the mission.

  18. The Europa Clipper Mission Concept

    NASA Astrophysics Data System (ADS)

    Pappalardo, Robert; Goldstein, Barry; Magner, Thomas; Prockter, Louise; Senske, David; Paczkowski, Brian; Cooke, Brian; Vance, Steve; Wes Patterson, G.; Craft, Kate

    2014-05-01

    A NASA-appointed Science Definition Team (SDT), working closely with a technical team from the Jet Propulsion Laboratory (JPL) and the Applied Physics Laboratory (APL), recently considered options for a future strategic mission to Europa, with the stated science goal: Explore Europa to investigate its habitability. The group considered several mission options, which were fully technically developed, then costed and reviewed by technical review boards and planetary science community groups. There was strong convergence on a favored architecture consisting of a spacecraft in Jupiter orbit making many close flybys of Europa, concentrating on remote sensing to explore the moon. Innovative mission design would use gravitational perturbations of the spacecraft trajectory to permit flybys at a wide variety of latitudes and longitudes, enabling globally distributed regional coverage of the moon's surface, with nominally 45 close flybys at altitudes from 25 to 100 km. We will present the science and reconnaissance goals and objectives, a mission design overview, and the notional spacecraft for this concept, which has become known as the Europa Clipper. The Europa Clipper concept provides a cost-efficient means to explore Europa and investigate its habitability, through understanding the satellite's ice and ocean, composition, and geology. The set of investigations derived from the Europa Clipper science objectives traces to a notional payload for science, consisting of: Ice Penetrating Radar (for sounding of ice-water interfaces within and beneath the ice shell), Topographical Imager (for stereo imaging of the surface), ShortWave Infrared Spectrometer (for surface composition), Neutral Mass Spectrometer (for atmospheric composition), Magnetometer and Langmuir Probes (for inferring the satellite's induction field to characterize an ocean), and Gravity Science (to confirm an ocean).The mission would also include the capability to perform reconnaissance for a future lander

  19. A Second Space Gravitational Wave Observation Mission?

    NASA Astrophysics Data System (ADS)

    Bender, Peter L.

    2010-02-01

    The scientific case for early flight of a first space GW mission to observe the signals from massive black hole mergers throughout the universe and from inspirals of stellar mass black holes into galactic center black holes appears to be strong. But, the justification for a second space GW mission will depend strongly on what the first one finds. The Big Bang Observer and DECIGO missions have been proposed, with their objectives including looking for primordial GW signals and helping to determine the cosmological distance scale. However, these missions are extremely challenging, so whether they will be scientifically justified in the future is quite uncertain. Future progress toward achieving similar objectives appears likely from ground observations and from one of the several Cosmic Microwave Background Polarization missions that have been proposed. Two much more modest missions have been suggested for study, in addition to the Laser Interferometer Space Antenna (LISA) mission and the LISA and DECIGO pathfinder missions. One is called pre-DECIGO, which would combine looking for NS-NS inspirals out to 300 Mpc with technology demonstrations for DECIGO. The other is called the Advanced Laser Interferometer Antenna (ALIA), and would extend observations of stellar mass and intermediate mass black hole mergers out to considerably larger redshifts. The suggested baselines are 100 km and 500,000 km, and the required spurious acceleration limits are 1x10-17 and 3x10-16 m/s2/sqrt Hz, respectively.

  20. Computer graphics aid mission operations. [NASA missions

    NASA Technical Reports Server (NTRS)

    Jeletic, James F.

    1990-01-01

    The application of computer graphics techniques in NASA space missions is reviewed. Telemetric monitoring of the Space Shuttle and its components is discussed, noting the use of computer graphics for real-time visualization problems in the retrieval and repair of the Solar Maximum Mission. The use of the world map display for determining a spacecraft's location above the earth and the problem of verifying the relative position and orientation of spacecraft to celestial bodies are examined. The Flight Dynamics/STS Three-dimensional Monitoring System and the Trajectroy Computations and Orbital Products System world map display are described, emphasizing Space Shuttle applications. Also, consideration is given to the development of monitoring systems such as the Shuttle Payloads Mission Monitoring System and the Attitude Heads-Up Display and the use of the NASA-Goddard Two-dimensional Graphics Monitoring System during Shuttle missions and to support the Hubble Space Telescope.

  1. International Task Force on Volunteer Cleft Missions.

    PubMed

    Yeow, Vincent K L; Lee, Seng-Teik T; Lambrecht, Thomas J; Barnett, John; Gorney, Mark; Hardjowasito, Widanto; Lemperle, Gottfried; McComb, Harold; Natsume, Nagato; Stranc, Mirek; Wilson, Libby

    2002-01-01

    The International Task Force on Volunteer Cleft Missions was set up to provide a report to be presented at the Eighth International Congress of Cleft Palate and Associated Craniofacial Anomalies on September 12, 1997, in Singapore. The aim of the report was to provide data from a wide range of different international teams performing volunteer cleft missions and, thereafter, based on the collected data, to identify common goals and aims of such missions. Thirteen different groups actively participating in volunteer cleft missions worldwide were selected from the International Confederation of Plastic and Reconstructive Surgery's list of teams actively participating in volunteer cleft missions. Because of the time frame within which the committee had to work, three groups that did not respond by the stipulated deadline were omitted from the committee. The represented members and their respective institutions have undertaken more than 50 volunteer cleft missions to underdeveloped nations worldwide within the last 3 years. They have visited over 20 different countries, treating more than 3,500 patients worldwide. Based on the data collected and by consensus, the committee outlined recommendations for future volunteer cleft missions based on 1) mission objectives, 2) organization, 3) personal health and liability, 4) funding, 5) trainees in volunteer cleft missions, and 6) public relations. The task force believed that all volunteer cleft missions should have well-defined objectives, preferably with long-term plans. The task force also decided that it was impossible to achieve a successful mission without good organization and close coordination. All efforts should be made, and care taken, to ensure that there is minimal morbidity and no mortality. Finally, as ambassadors of goodwill and humanitarian aid, the participants must make every effort to understand and respect local customs and protocol. The main aims are to provide top-quality surgical service, train local

  2. The Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Mission Applications Study

    NASA Technical Reports Server (NTRS)

    Bose, David M.; Winski, Richard; Shidner, Jeremy; Zumwalt, Carlie; Johnston, Christopher O.; Komar, D. R.; Cheatwood, F. M.; Hughes, Stephen J.

    2013-01-01

    The objective of the HIAD Mission Applications Study is to quantify the benefits of HIAD infusion to the concept of operations of high priority exploration missions. Results of the study will identify the range of mission concepts ideally suited to HIADs and provide mission-pull to associated technology development programs while further advancing operational concepts associated with HIAD technology. A summary of Year 1 modeling and analysis results is presented covering missions focusing on Earth and Mars-based applications. Recommended HIAD scales are presented for near term and future mission opportunities and the associated environments (heating and structural loads) are described.

  3. Europa Explorer - An Exceptional Mission Using Existing Technology

    NASA Technical Reports Server (NTRS)

    Clark, Karla B.

    2007-01-01

    A mission to Europa has been identified as a high priority by the science community for several years. The difficulty of an orbital mission, primarily due to the propulsive requirements and Jupiter's trapped radiation, led to many studies which investigated various approaches to meeting the science goals. The Europa Orbiter Mission studied in the late 1990's only met the most fundamental science objectives. The science objectives have evolved with the discoveries from the Galileo mission. JPL studied one concept, Europa Explorer, for a Europa orbiting mission which could meet a much expanded set of science objectives. A study science group was formed to verify that the science objectives and goals were being adequately met by the resulting mission design concept. The Europa Explorer design emerged primarily from two key self-imposed constraints: 1) meet the full set of identified nonlander science objectives and 2) use only existing technology.

  4. STS-34: Mission Overview Briefing

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Live footage shows Milt Heflin, the Lead Flight Director participating in the STS-34 Mission Briefing. He addresses the primary objective, and answered questions from the audience and other NASA Centers. Heflin also mentions the Shuttle Solar Backscatter Ultraviolet secondary payload, and several experiments. These experiments include Growth Hormone Crystal Distribution (Plants), Polymer Morphology, Sensor Technology Experiment, Mesoscale Lightning Experiment, Shuttle Student Involvement Program "Ice Crystals", and the Air Force Maui Optical Site.

  5. Matrix evaluation of science objectives

    NASA Technical Reports Server (NTRS)

    Wessen, Randii R.

    1994-01-01

    The most fundamental objective of all robotic planetary spacecraft is to return science data. To accomplish this, a spacecraft is fabricated and built, software is planned and coded, and a ground system is designed and implemented. However, the quantitative analysis required to determine how the collection of science data drives ground system capabilities has received very little attention. This paper defines a process by which science objectives can be quantitatively evaluated. By applying it to the Cassini Mission to Saturn, this paper further illustrates the power of this technique. The results show which science objectives drive specific ground system capabilities. In addition, this process can assist system engineers and scientists in the selection of the science payload during pre-project mission planning; ground system designers during ground system development and implementation; and operations personnel during mission operations.

  6. Simulation of Mission Phases

    NASA Technical Reports Server (NTRS)

    Carlstrom, Nicholas Mercury

    2016-01-01

    This position with the Simulation and Graphics Branch (ER7) at Johnson Space Center (JSC) provided an introduction to vehicle hardware, mission planning, and simulation design. ER7 supports engineering analysis and flight crew training by providing high-fidelity, real-time graphical simulations in the Systems Engineering Simulator (SES) lab. The primary project assigned by NASA mentor and SES lab manager, Meghan Daley, was to develop a graphical simulation of the rendezvous, proximity operations, and docking (RPOD) phases of flight. The simulation is to include a generic crew/cargo transportation vehicle and a target object in low-Earth orbit (LEO). Various capsule, winged, and lifting body vehicles as well as historical RPOD methods were evaluated during the project analysis phase. JSC core mission to support the International Space Station (ISS), Commercial Crew Program (CCP), and Human Space Flight (HSF) influenced the project specifications. The simulation is characterized as a 30 meter +V Bar and/or -R Bar approach to the target object's docking station. The ISS was selected as the target object and the international Low Impact Docking System (iLIDS) was selected as the docking mechanism. The location of the target object's docking station corresponds with the RPOD methods identified. The simulation design focuses on Guidance, Navigation, and Control (GNC) system architecture models with station keeping and telemetry data processing capabilities. The optical and inertial sensors, reaction control system thrusters, and the docking mechanism selected were based on CCP vehicle manufacturer's current and proposed technologies. A significant amount of independent study and tutorial completion was required for this project. Multiple primary source materials were accessed using the NASA Technical Report Server (NTRS) and reference textbooks were borrowed from the JSC Main Library and International Space Station Library. The Trick Simulation Environment and User

  7. NASA Laboratory Analysis for Manned Exploration Missions

    NASA Technical Reports Server (NTRS)

    Krihak, Michael K.; Shaw, Tianna E.

    2014-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability Element under the NASA Human Research Program. ELA instrumentation is identified as an essential capability for future exploration missions to diagnose and treat evidence-based medical conditions. However, mission architecture limits the medical equipment, consumables, and procedures that will be available to treat medical conditions during human exploration missions. Allocated resources such as mass, power, volume, and crew time must be used efficiently to optimize the delivery of in-flight medical care. Although commercial instruments can provide the blood and urine based measurements required for exploration missions, these commercial-off-the-shelf devices are prohibitive for deployment in the space environment. The objective of the ELA project is to close the technology gap of current minimally invasive laboratory capabilities and analytical measurements in a manner that the mission architecture constraints impose on exploration missions. Besides micro gravity and radiation tolerances, other principal issues that generally fail to meet NASA requirements include excessive mass, volume, power and consumables, and nominal reagent shelf-life. Though manned exploration missions will not occur for nearly a decade, NASA has already taken strides towards meeting the development of ELA medical diagnostics by developing mission requirements and concepts of operations that are coupled with strategic investments and partnerships towards meeting these challenges. This paper focuses on the remote environment, its challenges, biomedical diagnostics requirements and candidate technologies that may lead to successful blood-urine chemistry and biomolecular measurements in future space exploration missions.

  8. Linking Human and Robotic Missions: Early Leveraging of the Code S Missions

    NASA Technical Reports Server (NTRS)

    Cooke, Doug

    2001-01-01

    A major long term NASA objective is to enable human exploration beyond low Earth orbit. This will take a strange approach, with a concentration on new, enabling technologies and capabilities. Mars robotic missions are logical and necessary steps in the progression toward eventual human missions.

  9. A magnetic shield/dual purpose mission

    NASA Technical Reports Server (NTRS)

    Watkins, Seth; Albertelli, Jamil; Copeland, R. Braden; Correll, Eric; Dales, Chris; Davis, Dana; Davis, Nechole; Duck, Rob; Feaster, Sandi; Grant, Patrick

    1994-01-01

    The objective of this work is to design, build, and fly a dual-purpose payload whose function is to produce a large volume, low intensity magnetic field and to test the concept of using such a magnetic field to protect manned spacecraft against particle radiation. An additional mission objective is to study the effect of this moving field on upper atmosphere plasmas. Both mission objectives appear to be capable of being tested using the same superconducting coil. The potential benefits of this magnetic shield concept apply directly to both earth-orbital and interplanetary missions. This payload would be a first step in assessing the true potential of large volume magnetic fields in the U.S. space program. Either converted launch systems or piggyback payload opportunities may be appropriate for this mission. The use of superconducting coils for magnetic shielding against solar flare radiation during manned interplanetary missions has long been contemplated and was considered in detail in the years preceding the Apollo mission. With the advent of new superconductors, it has now become realistic to reconsider this concept for a Mars mission. Even in near-earth orbits, large volume magnetic fields produced using conventional metallic superconductors allow novel plasma physics experiments to be contemplated. Both deployed field-coil and non-deployed field-coil shielding arrangements have been investigated, with the latter being most suitable for an initial test payload in a polar orbit.

  10. Applications Explorer Missions (AEM): Mission planners handbook

    NASA Technical Reports Server (NTRS)

    Smith, S. R. (Editor)

    1974-01-01

    The Applications Explorer Missions (AEM) Program is a planned series of space applications missions whose purpose is to perform various tasks that require a low cost, quick reaction, small spacecraft in a dedicated orbit. The Heat Capacity Mapping Mission (HCMM) is the first mission of this series. The spacecraft described in this document was conceived to support a variety of applications instruments and the HCMM instrument in particular. The maximum use of commonality has been achieved. That is, all of the subsystems employed are taken directly or modified from other programs such as IUE, IMP, RAE, and Nimbus. The result is a small versatile spacecraft. The purpose of this document, the AEM Mission Planners Handbook (AEM/MPH) is to describe the spacecraft and its capabilities in general and the HCMM in particular. This document will also serve as a guide for potential users as to the capabilities of the AEM spacecraft and its achievable orbits. It should enable each potential user to determine the suitability of the AEM concept to his mission.

  11. Analogue Missions on Earth, a New Approach to Prepare Future Missions on the Moon

    NASA Astrophysics Data System (ADS)

    Lebeuf, Martin

    well as using analogue missions to meet agency programmatic needs, the Canadian Space Agency encourages scientists and engineers to make use of opportunities presented by analogue missions to further their own research objectives. Specific objectives of Analogue Missions are to (1) foster a multidisciplinary approach to planning, data acquisition, processing and interpretation, calibration of instruments, and telemetry during mission operations; (2) integrate new science with emerging technologies; and (3) develop an expertise on exploration architecture design from projects carried out at terrestrial analogue sites. Within Analogue Missions, teams develop planning tools, use mission-specific software and technology, and communicate results as well as lessons learned during tactical operations. The expertise gained through Analogue Missions will contribute to inform on all aspects of exploration architectures, including planetary mobility requirements and astronaut training.

  12. Phobos Sample Return mission

    NASA Astrophysics Data System (ADS)

    Zelenyi, Lev; Zakharov, A.; Martynov, M.; Polischuk, G.

    Very mysterious objects of the Solar system are the Martian satellites, Phobos and Deimos. Attempt to study Phobos in situ from an orbiter and from landers have been done by the Russian mission FOBOS in 1988. However, due to a malfunction of the onboard control system the landers have not been delivered to the Phobos surface. A new robotics mission to Phobos is under development now in Russia. Its main goal is the delivery of samples of the Phobos surface material to the Earth for laboratory studies of its chemical, isotopic, mineral composition, age etc. Other goals are in situ studies of Phobos (regolith, internal structure, peculiarities in orbital and proper rotation), studies of Martian environment (dust, plasma, fields). The payload includes a number of scientific instruments: gamma and neutron spectrometers, gaschromatograph, mass spectrometers, IR spectrometer, seismometer, panoramic camera, dust sensor, plasma package. To implement the tasks of this mission a cruise-transfer spacecraft after the launch and the Earth-Mars interplanetary flight will be inserted into the first elliptical orbit around Mars, then after several corrections the spacecraft orbit will be formed very close to the Phobos orbit to keep the synchronous orbiting with Phobos. Then the spacecraft will encounter with Phobos and will land at the surface. After the landing the sampling device of the spacecraft will collect several samples of the Phobos regolith and will load these samples into the return capsule mounted at the returned vehicle. This returned vehicle will be launched from the mother spacecraft and after the Mars-Earth interplanetary flight after 11 monthes with reach the terrestrial atmosphere. Before entering into the atmosphere the returned capsule will be separated from the returned vehicle and will hopefully land at the Earth surface. The mother spacecraft at the Phobos surface carrying onboard scientific instruments will implement the "in situ" experiments during an year

  13. EDL Pathfinder Missions

    NASA Technical Reports Server (NTRS)

    Drake, Bret G.

    2016-01-01

    NASA is developing a long-term strategy for achieving extended human missions to Mars in support of the policies outlined in the 2010 NASA Authorization Act and National Space Policy. The Authorization Act states that "A long term objective for human exploration of space should be the eventual international exploration of Mars." Echoing this is the National Space Policy, which directs that NASA should, "By 2025, begin crewed missions beyond the moon, including sending humans to an asteroid. By the mid-2030s, send humans to orbit Mars and return them safely to Earth." Further defining this goal, NASA's 2014 Strategic Plan identifies that "Our long-term goal is to send humans to Mars. Over the next two decades, we will develop and demonstrate the technologies and capabilities needed to send humans to explore the red planet and safely return them to Earth." Over the past several decades numerous assessments regarding human exploration of Mars have indicated that landing humans on the surface of Mars remains one of the key critical challenges. In 2015 NASA initiated an Agency-wide assessment of the challenges associated with Entry, Descent, and Landing (EDL) of large payloads necessary for supporting human exploration of Mars. Due to the criticality and long-lead nature of advancing EDL techniques, it is necessary to determine an appropriate strategy to improve the capability to land large payloads. This paper provides an overview of NASA's 2015 EDL assessment on understanding the key EDL risks with a focus on determining what "must" be tested at Mars. This process identified the various risks and potential risk mitigation strategies, that is, benefits of flight demonstration at Mars relative to terrestrial test, modeling, and analysis. The goal of the activity was to determine if a subscale demonstrator is necessary, or if NASA should take a direct path to a human-scale lander. This assessment also provided insight into how EDL advancements align with other Agency

  14. The Mars Pathfinder Mission

    NASA Technical Reports Server (NTRS)

    Golombek, Matthew P.

    1997-01-01

    Mars Pathfinder, one of the first Discovery-class missions (quick, low-cost projects with focused science objectives), will land a single spacecraft with a microrover and several instruments on the surface of Mars in 1997. Pathfinder will be the first mission to use a rover, carrying a chemical analysis instrument, to characterize the rocks and soils in a landing area over hundreds of square meters on Mars, which will provide a calibration point or "ground truth" for orbital remote sensing observations. In addition to the rover, which also performs a number of technology experiments, Pathfinder carries three science instruments: a stereoscopic imager with spectral filters on an extendable mast, an alpha proton X ray spectrometer, and an atmospheric structure instrument/meteorology package. The instruments, the rover technology experiments, and the telemetry system will allow investigations of the surface morphology and geology at submeter to a hundred meters scale, the petrology and geochemistry of rocks and soils, the magnetic properties of dust, soil mechanics and properties, a variety of atmospheric investigations, and the rotational and orbital dynamics of Mars. Landing downstream from the mouth of a giant catastrophic outflow channel, Ares Vallis at 19.5 deg N, 32.8 deg W, offers the potential of identifying and analyzing a wide variety of crustal materials, from the ancient heavily cratered terrain, intermediate-aged ridged plains, and reworked channel deposits, thus allowing first-order scientific investigations of the early differentiation and evolution of the crust, the development of weathering products, and tile early environments and conditions on Mars.

  15. Infrared Space Astrometry Missions ˜ JASMINE Missions ˜

    NASA Astrophysics Data System (ADS)

    Gouda, N.

    2012-08-01

    "JASMINE" is an abbreviation of Japan Astrometry Satellite Mission for Infrared Exploration. Three satellites are planned as a series of JASMINE missions, as a step-by-step approach, to overcome technical issues and promote scientific results. These are Nano-JASMINE, Small-JASMINE and (medium-sized) JASMINE. JASMINE missions provide the positions and proper motions of celestial objects. Nano-JASMINE uses a very small nano-satellite and is scheduled to be launched in 2013. Nano-JASMINE will operate in zw-band (˜ 0.8μm) to perform an all sky survey with an accuracy of 3 milli-arcseconds for position and parallaxes. Small-JASMINE will observe towards a region around the Galactic center and other small regions, which include interesting scientific targets, with accuracies of 10 to 50 μ-arcseconds in an infrared Hw-band (˜ 1.7 μm). The target launch date is around 2017. (Medium-sized) JASMINE is an extended mission of Small-JASMINE, which will observe towards almost the whole region of the Galactic bulge with accuracies of ˜ 10 μ arcseconds in Kw-band (˜ 2.0μ m). The target launch date is the first half of the 2020s.

  16. Earth to Mars - Scenarios for early manned missions

    NASA Technical Reports Server (NTRS)

    Snoddy, William C.

    1988-01-01

    Trajectories and mission types for a manned mission to Mars are reviewed, focusing on what can be undertaken relative to available technologies. The objectives of a manned mission are outlined and several mission scenarios are described. Space Station involvement, an interplanetary manned Mars space vehicle, and the role of artificial gravity are discussed. Possible launch vehicles, surface systems options, and space vehicle configurations are examined.

  17. Approach to rapid mission design and planning. [earth orbit missions

    NASA Technical Reports Server (NTRS)

    Green, W. G.; Matthys, V. J.

    1973-01-01

    Methods and techniques are described for implementation in automated computer systems to assess parametric data, capabilities, requirements and constraints for planning earth orbit missions. Mission planning and design procedures are defined using two types of typical missions as examples. These missions were the high energy Astronomical Observatory Satellite missions, and Small Applications Technology Satellite missions.

  18. Reconfigurable Software for Mission Operations

    NASA Technical Reports Server (NTRS)

    Trimble, Jay

    2014-01-01

    We developed software that provides flexibility to mission organizations through modularity and composability. Modularity enables removal and addition of functionality through the installation of plug-ins. Composability enables users to assemble software from pre-built reusable objects, thus reducing or eliminating the walls associated with traditional application architectures and enabling unique combinations of functionality. We have used composable objects to reduce display build time, create workflows, and build scenarios to test concepts for lunar roving operations. The software is open source, and may be downloaded from https:github.comnasamct.

  19. Objective lens

    NASA Technical Reports Server (NTRS)

    Olczak, Eugene G. (Inventor)

    2011-01-01

    An objective lens and a method for using same. The objective lens has a first end, a second end, and a plurality of optical elements. The optical elements are positioned between the first end and the second end and are at least substantially symmetric about a plane centered between the first end and the second end.

  20. The first dedicated life sciences Spacelab mission

    NASA Technical Reports Server (NTRS)

    Perry, T. W.; Rummel, J. A.; Griffiths, L. D.; White, R. J.; Leonard, J. I.

    1984-01-01

    JIt is pointed out that the Shuttle-borne Spacelab provides the capability to fly large numbers of life sciences experiments, to retrieve and rescue experimental equipment, and to undertake multiple-flight studies. A NASA Life Sciences Flight Experiments Program has been organized with the aim to take full advantages of this capability. A description is provided of the scientific aspects of the most ambitious Spacelab mission currently being conducted in connection with this program, taking into account the First Dedicated Life Sciences Spacelab Mission. The payload of this mission will contain the equipment for 24 separate investigations. It is planned to perform the mission on two separate seven-day Spacelab flights, the first of which is currently scheduled for early 1986. Some of the mission objectives are related to the study of human and animal responses which occur promptly upon achieving weightlessness.

  1. LISA Pathfinder: mission and status

    NASA Astrophysics Data System (ADS)

    Antonucci, F.; Armano, M.; Audley, H.; Auger, G.; Benedetti, M.; Binetruy, P.; Boatella, C.; Bogenstahl, J.; Bortoluzzi, D.; Bosetti, P.; Caleno, M.; Cavalleri, A.; Cesa, M.; Chmeissani, M.; Ciani, G.; Conchillo, A.; Congedo, G.; Cristofolini, I.; Cruise, M.; Danzmann, K.; De Marchi, F.; Diaz-Aguilo, M.; Diepholz, I.; Dixon, G.; Dolesi, R.; Dunbar, N.; Fauste, J.; Ferraioli, L.; Fertin, D.; Fichter, W.; Fitzsimons, E.; Freschi, M.; García Marin, A.; García Marirrodriga, C.; Gerndt, R.; Gesa, L.; Gilbert, F.; Giardini, D.; Grimani, C.; Grynagier, A.; Guillaume, B.; Guzmán, F.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hough, J.; Hoyland, D.; Hueller, M.; Huesler, J.; Jeannin, O.; Jennrich, O.; Jetzer, P.; Johlander, B.; Killow, C.; Llamas, X.; Lloro, I.; Lobo, A.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Mateos, I.; McNamara, P. W.; Mendes, J.; Mitchell, E.; Monsky, A.; Nicolini, D.; Nicolodi, D.; Nofrarias, M.; Pedersen, F.; Perreur-Lloyd, M.; Perreca, A.; Plagnol, E.; Prat, P.; Racca, G. D.; Rais, B.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Sanjuan, J.; Schleicher, A.; Schulte, M.; Shaul, D.; Stagnaro, L.; Strandmoe, S.; Steier, F.; Sumner, T. J.; Taylor, A.; Texier, D.; Trenkel, C.; Tombolato, D.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Weber, W. J.; Zweifel, P.

    2011-05-01

    LISA Pathfinder, the second of the European Space Agency's Small Missions for Advanced Research in Technology (SMART), is a dedicated technology demonstrator for the joint ESA/NASA Laser Interferometer Space Antenna (LISA) mission. The technologies required for LISA are many and extremely challenging. This coupled with the fact that some flight hardware cannot be fully tested on ground due to Earth-induced noise led to the implementation of the LISA Pathfinder mission to test the critical LISA technologies in a flight environment. LISA Pathfinder essentially mimics one arm of the LISA constellation by shrinking the 5 million kilometre armlength down to a few tens of centimetres, giving up the sensitivity to gravitational waves, but keeping the measurement technology: the distance between the two test masses is measured using a laser interferometric technique similar to one aspect of the LISA interferometry system. The scientific objective of the LISA Pathfinder mission consists then of the first in-flight test of low frequency gravitational wave detection metrology. LISA Pathfinder is due to be launched in 2013 on-board a dedicated small launch vehicle (VEGA). After a series of apogee raising manoeuvres using an expendable propulsion module, LISA Pathfinder will enter a transfer orbit towards the first Sun-Earth Lagrange point (L1). After separation from the propulsion module, the LPF spacecraft will be stabilized using the micro-Newton thrusters, entering a 500 000 km by 800 000 km Lissajous orbit around L1. Science results will be available approximately 2 months after launch.

  2. History of the Spitzer Mission

    NASA Astrophysics Data System (ADS)

    Rieke, George

    2006-12-01

    The Spitzer Telescope was launched more than 20 years after the original announcement of opportunity was released. During this long gestation period, the mission took a wide variety of forms and had to survive many political and managerial environments within NASA and in the US Government generally. Finally, approval to build the telescope was won at the height of the faster-better-cheaper era, but completing it extended beyond this phase. This poster shows the key steps in preserving the mission and why decision makers viewed it positively at critical points when it might have been killed. In the end, the scope of the mission was reduced by a factor of about five while still preserving much of its science capabilities. This reduction required a new way to streamline the science objectives by adopting a limited number of key programs and requiring that all features be justified in terms of those programs. This philosophy provided decision rules to carry out necessary descopes while preserving a coherent set of capabilities. In addition, the faster-better-cheaper guidelines requires use of a small launch vehicle, which was only possible by the invention of a new “warm launch” telescope concept, in which the telescope would cool primarily by radiation into space after launch. Both of these concepts are critical to the approach to future missions such as JWST. This work is partially supported by contract 1255094 from JPL/Caltech to the University of Arizona.

  3. The Asteroid Redirect Mission (ARM)

    NASA Astrophysics Data System (ADS)

    Abell, Paul; Gates, Michele; Johnson, Lindley; Chodas, Paul; Mazanek, Dan; Reeves, David; Ticker, Ronald

    2016-07-01

    To achieve its long-term goal of sending humans to Mars, the National Aeronautics and Space Administration (NASA) plans to proceed in a series of incrementally more complex human spaceflight missions. Today, human flight experience extends only to Low-Earth Orbit (LEO), and should problems arise during a mission, the crew can return to Earth in a matter of minutes to hours. The next logical step for human spaceflight is to gain flight experience in the vicinity of the Moon. These cis-lunar missions provide a "proving ground" for the testing of systems and operations while still accommodating an emergency return path to the Earth that would last only several days. Cis-lunar mission experience will be essential for more ambitious human missions beyond the Earth-Moon system, which will require weeks, months, or even years of transit time. In addition, NASA has been given a Grand Challenge to find all asteroid threats to human populations and know what to do about them. Obtaining knowledge of asteroid physical properties combined with performing technology demonstrations for planetary defense provide much needed information to address the issue of future asteroid impacts on Earth. Hence the combined objectives of human exploration and planetary defense give a rationale for the Asteroid Re-direct Mission (ARM). Mission Description: NASA's ARM consists of two mission segments: 1) the Asteroid Redirect Robotic Mission (ARRM), the first robotic mission to visit a large (greater than ~100 m diameter) near-Earth asteroid (NEA), collect a multi-ton boulder from its surface along with regolith samples, demonstrate a planetary defense technique, and return the asteroidal material to a stable orbit around the Moon; and 2) the Asteroid Redirect Crewed Mission (ARCM), in which astronauts will take the Orion capsule to rendezvous and dock with the robotic vehicle, conduct multiple extravehicular activities to explore the boulder, and return to Earth with samples. NASA's proposed

  4. Demonstration That Calibration of the Instrument Response to Polarizations Parallel and Perpendicular to the Object Space Projected Slit of an Imaging Spectrometer Enable Measurement of the Atmospheric Absorption Spectrum in Region of the Weak CO2 Band for the Case of Arbitrary Polarization: Implication for the Geocarb Mission

    NASA Astrophysics Data System (ADS)

    Kumer, J. B.; Rairden, R. L.; Polonsky, I. N.; O'Brien, D. M.

    2014-12-01

    The Tropospheric Infrared Mapping Spectrometer (TIMS) unit rebuilt to operate in a narrow spectral region, approximately 1603 to 1615 nm, of the weak CO2 band as described by Kumer et al. (2013, Proc. SPIE 8867, doi:10.1117/12.2022668) was used to conduct the demonstration. An integrating sphere (IS), linear polarizers and quarter wave plate were used to confirm that the instrument's spectral response to unpolarized light, to 45° linearly polarized light and to circular polarized light are identical. In all these cases the intensity components Ip = Is where Ip is the component parallel to the object space projected slit and Is is perpendicular to the slit. In the circular polarized case Ip = Is in the time averaged sense. The polarizer and IS were used to characterize the ratio Rθ of the instrument response to linearly polarized light at the angle θ relative to parallel from the slit, for increments of θ from 0 to 90°, to that of the unpolarized case. Spectra of diffusely reflected sunlight passed through the polarizer in increments of θ, and divided by the respective Rθ showed identical results, within the noise limit, for solar spectrum multiplied by the atmospheric transmission and convolved by the Instrument Line Shape (ILS). These measurements demonstrate that unknown polarization in the diffusely reflected sunlight on this small spectral range affect only the slow change across the narrow band in spectral response relative to that of unpolarized light and NOT the finely structured / high contrast spectral structure of the CO2 atmospheric absorption that is used to retrieve the atmospheric content of CO2. The latter is one of the geoCARB mission objectives (Kumer et al, 2013). The situation is similar for the other three narrow geoCARB bands; O2 A band 757.9 to 768.6 nm; strong CO2 band 2045.0 to 2085.0 nm; CH4 and CO region 2300.6 to 2345.6 nm. Polonsky et al have repeated the mission simulation study doi:10.5194/amt-7-959-2014 assuming no use of a geo

  5. The Europa Jupiter System Mission

    NASA Astrophysics Data System (ADS)

    Hendrix, A. R.; Clark, K.; Erd, C.; Pappalardo, R.; Greeley, R. R.; Blanc, M.; Lebreton, J.; van Houten, T.

    2009-05-01

    Europa Jupiter System Mission (EJSM) will be an international mission that will achieve Decadal Survey and Cosmic Vision goals. NASA and ESA have concluded a joint study of a mission to Europa, Ganymede and the Jupiter system with orbiters developed by NASA and ESA; contributions by JAXA are also possible. The baseline EJSM architecture consists of two primary elements operating in the Jovian system: the NASA-led Jupiter Europa Orbiter (JEO), and the ESA-led Jupiter Ganymede Orbiter (JGO). The JEO mission has been selected by NASA as the next Flagship mission to the out solar system. JEO and JGO would execute an intricately choreographed exploration of the Jupiter System before settling into orbit around Europa and Ganymede, respectively. JEO and JGO would carry eleven and ten complementary instruments, respectively, to monitor dynamic phenomena (such as Io's volcanoes and Jupiter's atmosphere), map the Jovian magnetosphere and its interactions with the Galilean satellites, and characterize water oceans beneath the ice shells of Europa and Ganymede. EJSM will fully addresses high priority science objectives identified by the National Research Council's (NRC's) Decadal Survey and ESA's Cosmic Vision for exploration of the outer solar system. The Decadal Survey recommended a Europa Orbiter as the highest priority outer planet flagship mission and also identified Ganymede as a highly desirable mission target. EJSM would uniquely address several of the central themes of ESA's Cosmic Vision Programme, through its in-depth exploration of the Jupiter system and its evolution from origin to habitability. EJSM will investigate the potential habitability of the active ocean-bearing moons Europa and Ganymede, detailing the geophysical, compositional, geological and external processes that affect these icy worlds. EJSM would also explore Io and Callisto, Jupiter's atmosphere, and the Jovian magnetosphere. By understanding the Jupiter system and unraveling its history, the

  6. Manned Mars mission accommodation: Sprint mission

    NASA Technical Reports Server (NTRS)

    Cirillo, William M.; Kaszubowski, Martin J.; Ayers, J. Kirk; Llewellyn, Charles P.; Weidman, Deene J.; Meredith, Barry D.

    1988-01-01

    The results of a study conducted at the NASA-LaRC to assess the impacts on the Phase 2 Space Station of Accommodating a Manned Mission to Mars are documented. In addition, several candidate transportation node configurations are presented to accommodate the assembly and verification of the Mars Mission vehicles. This study includes an identification of a life science research program that would need to be completed, on-orbit, prior to mission departure and an assessment of the necessary orbital technology development and demonstration program needed to accomplish the mission. Also included is an analysis of the configuration mass properties and a preliminary analysis of the Space Station control system sizing that would be required to control the station. Results of the study indicate the Phase 2 Space Station can support a manned mission to Mars with the addition of a supporting infrastructure that includes a propellant depot, assembly hangar, and a heavy lift launch vehicle to support the large launch requirements.

  7. Manned Mars mission accommodation: Sprint mission

    NASA Astrophysics Data System (ADS)

    Cirillo, William M.; Kaszubowski, Martin J.; Ayers, J. Kirk; Llewellyn, Charles P.; Weidman, Deene J.; Meredith, Barry D.

    1988-04-01

    The results of a study conducted at the NASA-LaRC to assess the impacts on the Phase 2 Space Station of Accommodating a Manned Mission to Mars are documented. In addition, several candidate transportation node configurations are presented to accommodate the assembly and verification of the Mars Mission vehicles. This study includes an identification of a life science research program that would need to be completed, on-orbit, prior to mission departure and an assessment of the necessary orbital technology development and demonstration program needed to accomplish the mission. Also included is an analysis of the configuration mass properties and a preliminary analysis of the Space Station control system sizing that would be required to control the station. Results of the study indicate the Phase 2 Space Station can support a manned mission to Mars with the addition of a supporting infrastructure that includes a propellant depot, assembly hanger, and a heavy lift launch vehicle to support the large launch requirements.

  8. Concepts For An EO Land Convoy Mission

    NASA Astrophysics Data System (ADS)

    Cutter, M. A.; Eves, S.; Remedios, J.; Humpage, N.; Hall, D.; Regan, A.

    2013-12-01

    ESA are undertaking three studies investigating possible synergistic satellite missions flying in formation with the operational Copernicus Sentinel missions and/or the METOP satellites. These three studies are focussed on:- a) ocean and ice b) land c) atmosphere Surrey Satellite Technology Ltd (SSTL), the University of Leicester and Astrium Ltd are undertaking the second of these studies into the synergetic observation by missions flying in formation with European operational missions, focusing on the land theme. The aim of the study is to identify and develop, (through systematic analysis), potential innovative Earth science objectives and novel applications and services that could be made possible by flying additional satellites, (possibly of small-class type), in constellation or formation with one or more already deployed or firmly planned European operational missions, with an emphasis on the Sentinel missions, but without excluding other possibilities. In the long-term, the project aims at stimulating the development of novel, (smaller), mission concepts in Europe that may exploit new and existing European operational capacity in order to address in a cost effective manner new scientific objectives and applications. One possible route of exploitation would be via the proposed Small Mission Initiative (SMI) that may be initiated under the ESA Earth Explorer Observation Programme (EOEP). The following ESA science priority areas have been highlighted during the study [1]:- - The water cycle - The carbon cycle - Terrestrial ecosystems - Biodiversity - Land use and land use cover - Human population dynamics The study team have identified the science gaps that might be addressed by a "convoy" mission flying with the Copernicus Sentinel satellites, identified the candidate mission concepts and provided recommendations regarding the most promising concepts from a list of candidates. These recommendations provided the basis of a selection process performed by ESA

  9. Apollo experience report: The role of flight mission rules in mission preparation and conduct

    NASA Technical Reports Server (NTRS)

    Keyser, L. W.

    1974-01-01

    The development of flight mission rules from the mission development phase through the detailed mission-planning phase and through the testing and training phase is analyzed. The procedure for review of the rules and the coordination requirements for mission-rule development are presented. The application of the rules to real-time decision making is outlined, and consideration is given to the benefit of training ground controllers and flightcrews in the methods of determining the best response to a nonnominal in-flight situation for which no action has been preplanned. The Flight Mission Rules document is discussed in terms of the purpose and objective thereof and in terms of the definition, the development, and the use of mission rules.

  10. The allocation of cargo to channel missions

    SciTech Connect

    Liu, Cheng; Harrison, G.

    1992-01-01

    Each month the armed services provide a forecast of tons of cargo by channel to MAC. The purpose of the Channels Allocation Algorithm is to allocate cargo requirements to specific Channel Missions. The objective of the allocation is algorithm is to minimize frequency and cargo requirements shortfall. The constraints on the allocation model include flying hours, channel frequencies, mission structure, mission operation days, and aircraft capacity. Cargo requirements shortfall is defined as the tonnage of cargo not moved from the airfields in the United States that are channel staging points to overseas locations. Channel frequencies are defined by the number of times a destination is served by an origin in one month. The mission structures are defined as sets of missions usually in the form of circuit. Mission operating days are determined by the operating day rules for the month, or they can be input by the user for an individual month. One of the assumptions in this model is that there is only one transshipment allowed between any origin and a destination if there is no mission that actually connects the stations. The transshipment stations are also restricted in that only certain stations can serve as transshipment stations. The Channels Allocation Algorithm consists of two linear programs that incorporate three objectives. The objectives are: (1) to minimize that number of frequency channels not met. (2) to minimize cargo shortfall, and (3) to minimize operating cost. The first linear program minimizes frequency channels not met, subject to the mission structure, number of times the mission operates, and total flying hours available. The second linear program minimizes the fleet operating cost cargo handling cost, and cargo shortfall, subject to frequency channels met by the first linear program, aircraft capacity, and total flying hours available. This document is comprised of viewgraphs.

  11. The allocation of cargo to channel missions

    SciTech Connect

    Liu, Cheng; Harrison, G.

    1992-06-01

    Each month the armed services provide a forecast of tons of cargo by channel to MAC. The purpose of the Channels Allocation Algorithm is to allocate cargo requirements to specific Channel Missions. The objective of the allocation is algorithm is to minimize frequency and cargo requirements shortfall. The constraints on the allocation model include flying hours, channel frequencies, mission structure, mission operation days, and aircraft capacity. Cargo requirements shortfall is defined as the tonnage of cargo not moved from the airfields in the United States that are channel staging points to overseas locations. Channel frequencies are defined by the number of times a destination is served by an origin in one month. The mission structures are defined as sets of missions usually in the form of circuit. Mission operating days are determined by the operating day rules for the month, or they can be input by the user for an individual month. One of the assumptions in this model is that there is only one transshipment allowed between any origin and a destination if there is no mission that actually connects the stations. The transshipment stations are also restricted in that only certain stations can serve as transshipment stations. The Channels Allocation Algorithm consists of two linear programs that incorporate three objectives. The objectives are: (1) to minimize that number of frequency channels not met. (2) to minimize cargo shortfall, and (3) to minimize operating cost. The first linear program minimizes frequency channels not met, subject to the mission structure, number of times the mission operates, and total flying hours available. The second linear program minimizes the fleet operating cost cargo handling cost, and cargo shortfall, subject to frequency channels met by the first linear program, aircraft capacity, and total flying hours available. This document is comprised of viewgraphs.

  12. The virtual mission approach: Empowering earth and space science missions

    NASA Astrophysics Data System (ADS)

    Hansen, Elaine

    1993-08-01

    Future Earth and Space Science missions will address increasingly broad and complex scientific issues. To accomplish this task, we will need to acquire and coordinate data sets from a number of different instrumetns, to make coordinated observations of a given phenomenon, and to coordinate the operation of the many individual instruments making these observations. These instruments will need to be used together as a single ``Virtual Mission.'' This coordinated approach is complicated in that these scientific instruments will generally be on different platforms, in different orbits, from different control centers, at different institutions, and report to different user groups. Before this Virtual Mission approach can be implemented, techniques need to be developed to enable separate instruments to work together harmoniously, to execute observing sequences in a synchronized manner, and to be managed by the Virtual Mission authority during times of these coordinated activities. Enabling technologies include object-oriented designed approaches, extended operations management concepts and distributed computing techniques. Once these technologies are developed and the Virtual Mission concept is available, we believe the concept will provide NASA's Science Program with a new, ``go-as-you-pay,'' flexible, and resilient way of accomplishing its science observing program. The concept will foster the use of smaller and lower cost satellites. It will enable the fleet of scientific satellites to evolve in directions that best meet prevailing science needs. It will empower scientists by enabling them to mix and match various combinations of in-space, ground, and suborbital instruments - combinations which can be called up quickly in response to new events or discoveries. And, it will enable small groups such as universities, Space Grant colleges, and small businesses to participate significantly in the program by developing small components of this evolving scientific fleet.

  13. JPL Mission Bibliometrics

    NASA Technical Reports Server (NTRS)

    Coppin, Ann

    2013-01-01

    For a number of years ongoing bibliographies of various JPL missions (AIRS, ASTER, Cassini, GRACE, Earth Science, Mars Exploration Rovers (Spirit & Opportunity)) have been compiled by the JPL Library. Mission specific bibliographies are compiled by the Library and sent to mission scientists and managers in the form of regular (usually quarterly) updates. Charts showing publications by years are periodically provided to the ASTER, Cassini, and GRACE missions for supporting Senior Review/ongoing funding requests, and upon other occasions as a measure of the impact of the missions. Basically the Web of Science, Compendex, sometimes Inspec, GeoRef and Aerospace databases are searched for the mission name in the title, abstract, and assigned keywords. All get coded for journal publications that are refereed publications.

  14. Manned Mars mission

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Terrapin Technologies proposes a Manned Mars Mission design study. The purpose of the Manned Mars Mission is to transport ten people and a habitat with all required support systems and supplies from low Earth orbit (LEO) to the surface of Mars and, after an expedition of three months to return the personnel safely to LEO. The proposed hardware design is based on systems and components of demonstrated high capability and reliability. The mission design builds on past mission experience but incorporates innovative design approaches to achieve mission priorities. These priorities, in decreasing order of importance, are safety, reliability, minimum personnel transfer time, minimum weight, and minimum cost. The design demonstrates the feasibility and flexibility of a waverider transfer module. Information is given on how the plan meets the mission requirements.

  15. End of Mission Considerations

    NASA Technical Reports Server (NTRS)

    Hull, Scott M.

    2013-01-01

    While a great deal of effort goes into planning and executing successful mission operations, it is also important to consider the End of the Mission during the planning, design, and operations phases of any mission. Spacecraft and launch vehicles must be disposed of properly in order to limit the generation of orbital debris, and better preserve the orbital environment for all future missions. Figure 30-1 shows a 1990's projected growth of debris with and without the use of responsible disposal techniques. This requires early selection of a responsible disposal scenario, so that the necessary capabilities can be incorporated into the hardware designs. The mission operations must then be conducted in such a way as to preserve, and then actually perform, the planned, appropriate end of mission disposal.

  16. Spacelab mission 4 - The first dedicated life sciences mission

    NASA Technical Reports Server (NTRS)

    Perry, T. W.; Reid, D. H.

    1983-01-01

    Plans for the first Spacelab-4 mission dedicated entirely to the life sciences, are reviewed. The thrust of the scientific mission scheduled for late 1985 will be to study the acute effects of weightlessness on living systems, particularly humans. The payload of the Spacelab compartment will contain 24 experiments of which approximately half will involve humans. Among the major areas of interest are cardiovascular and pulmonary function, vestibular function, renal and endocrine physiology, hematology, nitrogen balance, immunological function, the gravitational biology of plants, inflight fertilization of frogs' eggs and the effects of zero gravity on monkeys and rats. In selecting the array of experiments an effort was made to combine investigations with complementary scientific objectives to develop animal models of human biological problems.

  17. 2001 Mars Odyssey Mission

    NASA Technical Reports Server (NTRS)

    Varghese, Philip

    2008-01-01

    This viewgraph presentation reviews the 2001 Mars Odyssey Mission. The contents include: 1) Mission Overview; 2) Current Scope of Work: 3) Facilities; 4) Critical Role of DSN; 5) Relay as Mission Supplement; 6) Current Mars Telecom Infrastructure; 7) PHX EDL Comm Overview; 8) EDL Geometry (Entry through Landing); 9) Phoenix Support; 10) Preparations for Phoenix; 11) EDL Support Timeline; 12) One Year Rolling Schedule; 13) E3 Rationale; and 14) Spacecraft Status.

  18. Concepts for a Titan Lake Probe Mission

    NASA Astrophysics Data System (ADS)

    Elliott, John; Waite, Hunter

    2010-05-01

    The lakes of Titan represent an increasingly tantalizing target for future exploration. As Cassini continues to reveal more details the lakes appear to offer a particularly rich reservoir of knowledge that could provide insights to Titan's formation and evolution, as well as an ideal location to explore Titan's potential for pre-biotic chemistry. This talk will discuss the status and preliminary results of a study to evaluate options for missions to investigate Titan's lakes (one of several dozen studies commissioned by the NRC's Planetary Decadal Survey to explore the technical readiness, feasibility and affordability of scientifically promising mission scenarios). In this study a range of potential mission architectures were considered, including in-situ vehicle delivery by a future Titan flagship mission, as well as options for lower cost, standalone missions that could be performed in the next decade. Detailed point designs have been developed for in-situ elements including both floating platforms and submersibles, instrumented to meet varying ranges of science objectives. In this talk we will present an overview of the science objectives of the missions, the mission architecture and surface element trades, and the detailed point designs chosen for more in-depth analysis.

  19. Trusted Objects

    SciTech Connect

    CAMPBELL,PHILIP L.; PIERSON,LYNDON G.; WITZKE,EDWARD L.

    1999-10-27

    In the world of computers a trusted object is a collection of possibly-sensitive data and programs that can be allowed to reside and execute on a computer, even on an adversary's machine. Beyond the scope of one computer we believe that network-based agents in high-consequence and highly reliable applications will depend on this approach, and that the basis for such objects is what we call ''faithful execution.''

  20. Solar composition from the Genesis Discovery Mission.

    PubMed

    Burnett, D S; Team, Genesis Science

    2011-11-29

    Science results from the Genesis Mission illustrate the major advantages of sample return missions. (i) Important results not otherwise obtainable except by analysis in terrestrial laboratories: the isotopic compositions of O, N, and noble gases differ in the Sun from other inner solar system objects. The N isotopic composition is the same as that of Jupiter. Genesis has resolved discrepancies in the noble gas data from solar wind implanted in lunar soils. (ii) The most advanced analytical instruments have been applied to Genesis samples, including some developed specifically for the mission. (iii) The N isotope result has been replicated with four different instruments. PMID:21555545