Science.gov

Sample records for 3a4 cyp 3a4

  1. Interactions between CYP3A4 and Dietary Polyphenols

    PubMed Central

    Basheer, Loai; Kerem, Zohar

    2015-01-01

    The human cytochrome P450 enzymes (P450s) catalyze oxidative reactions of a broad spectrum of substrates and play a critical role in the metabolism of xenobiotics, such as drugs and dietary compounds. CYP3A4 is known to be the main enzyme involved in the metabolism of drugs and most other xenobiotics. Dietary compounds, of which polyphenolics are the most studied, have been shown to interact with CYP3A4 and alter its expression and activity. Traditionally, the liver was considered the prime site of CYP3A-mediated first-pass metabolic extraction, but in vitro and in vivo studies now suggest that the small intestine can be of equal or even greater importance for the metabolism of polyphenolics and drugs. Recent studies have pointed to the role of gut microbiota in the metabolic fate of polyphenolics in human, suggesting their involvement in the complex interactions between dietary polyphenols and CYP3A4. Last but not least, all the above suggests that coadministration of drugs and foods that are rich in polyphenols is expected to stimulate undesirable clinical consequences. This review focuses on interactions between dietary polyphenols and CYP3A4 as they relate to structural considerations, food-drug interactions, and potential negative consequences of interactions between CYP3A4 and polyphenols. PMID:26180597

  2. Interactions between CYP3A4 and Dietary Polyphenols.

    PubMed

    Basheer, Loai; Kerem, Zohar

    2015-01-01

    The human cytochrome P450 enzymes (P450s) catalyze oxidative reactions of a broad spectrum of substrates and play a critical role in the metabolism of xenobiotics, such as drugs and dietary compounds. CYP3A4 is known to be the main enzyme involved in the metabolism of drugs and most other xenobiotics. Dietary compounds, of which polyphenolics are the most studied, have been shown to interact with CYP3A4 and alter its expression and activity. Traditionally, the liver was considered the prime site of CYP3A-mediated first-pass metabolic extraction, but in vitro and in vivo studies now suggest that the small intestine can be of equal or even greater importance for the metabolism of polyphenolics and drugs. Recent studies have pointed to the role of gut microbiota in the metabolic fate of polyphenolics in human, suggesting their involvement in the complex interactions between dietary polyphenols and CYP3A4. Last but not least, all the above suggests that coadministration of drugs and foods that are rich in polyphenols is expected to stimulate undesirable clinical consequences. This review focuses on interactions between dietary polyphenols and CYP3A4 as they relate to structural considerations, food-drug interactions, and potential negative consequences of interactions between CYP3A4 and polyphenols. PMID:26180597

  3. A useful model capable of predicting the clearance of cytochrome 3A4 (CYP3A4) substrates in humans: validity of CYP3A4 transgenic mice lacking their own Cyp3a enzymes.

    PubMed

    Mitsui, Tetsuya; Nemoto, Takayuki; Miyake, Taiji; Nagao, Shunsuke; Ogawa, Kotaro; Kato, Motohiro; Ishigai, Masaki; Yamada, Hideyuki

    2014-09-01

    The accurate prediction for the body clearance of a novel drug candidate by humans during the preclinical stage contributes to its successful development. To improve the predictability of human hepatic clearance, we focused on CYP3A4, which is involved in the metabolism of more than 50% of all currently marketed drugs. In this study, we investigated the validity of the in vivo model using transgenic mice carrying the human CYP3A4 gene and lacking their own Cyp3a genes (CYP3A4-Tg mice). The CYP3A4 activity toward its substrates in liver microsomes was similar in CYP3A4-Tg mice and humans. As for the clearance, six CYP3A4 substrates (alprazolam, felodipine, midazolam, nifedipine, nitrendipine, and quinidine) were given intravenously to CYP3A4-Tg mice, and their hepatic intrinsic clearance (CLint,h) was evaluated. A regression analysis of the data obtained indicated that the CLint,h values of six substrates in CYP3A4-Tg mice were highly correlated with those in humans (R(2) = 0.95). This correlation could be improved by correcting the CLint,h values by the relative contribution of artificially expressed CYP3A4 to the overall metabolism in the mice. From these findings, it is reasonable to expect that the CLint,h of a particular drug in humans is predictable by applying the CLint,h obtained in CYP3A4-Tg mice to a regression line prepared in advance. The variance of the CLint,h prediction by this method was evaluated and found to be within a range of 2-fold of the regression value. These results suggest that the CYP3A4-Tg mouse model has the potential to accurately predict the human hepatic clearance of CYP3A4 substrates. PMID:25005602

  4. Unique CYP3A4 genetic variant in Brazilian tuberculosis patients with/without HIV.

    PubMed

    Jeovanio-Silva, André L; Monteiro, Thaís P; El-Jaick, Kênia B; do Brasil, Pedro E A A; Rolla, Valéria C; de Castro, Liane

    2012-01-01

    CYP3A4 is involved in tuberculosis (TB) and human immunodeficiency virus (HIV) drug metabolism. Transcriptional activation by rifampicin involves the CYP3A4 gene 5'-upstream region. Consequently, variation may interfere with transcription and enzymatic activity and even drug response. However, genetic polymorphisms and distribution of CYP3A4 allelic frequencies in individuals from Rio de Janeiro remain unknown. The aim of this study was to conduct research into sequencing the CYP3A4 5'-upstream region in Brazilian patients with and without HIV. This follow-up study involved 106 individuals undergoing treatment for TB and/or HIV. The CYP3A4 5'-upstream region was analyzed using PCR, sequencing and clinical data. Male patients revealed a higher HIV frequency (p=0.021). The TB forms observed were pulmonary (48.1%), extrapulmonary (22.64%) and disseminated (27.36%). Lymph node form was the most frequent (70.83%) extrapulmonary form of TB. The only single nucleotide polymorphism detected in the population was c.-392A>G. Genotypes observed were CYP3A4*1A/CYP3A4*1A (45.3%), CYP3A4*1A/CYP3A4*1B (40.6%) and CYP3A4*1B/CYP3A4*1B (14.2%), revealing a different distribution with extrapulmonary TB cases (17.6% CYP3A4*1A/CYP3A4*1B and 23.5% CYP3A4*1B/CYP3A4*1B). The CYP3A4*1A allele was found to be associated with tobacco use. The CYP3A4*1B mutant allele occurred in 34% of patients. This study revealed that the CYP3A4 5'-upstream regulatory region was highly conserved with the exception of the -392 position. Genotype association with tobacco suggests that CYP3A4 may participate in tobacco metabolism. Genotype distribution inversion in extrapulmonary TB cases suggests that CYP3A4 may be involved in TB prognosis. PMID:21964586

  5. Comparison of Paeoniflorin and Albiflorin on Human CYP3A4 and CYP2D6

    PubMed Central

    Gao, Li-Na; Zhang, Ye; Cui, Yuan-Lu; Akinyi, Olunga Mary

    2015-01-01

    Peony (Paeonia lactiflora Pall-) is a plant medicine and a functional food ingredient with wide application for more than 2000 years. It can be coadministrated with many other drugs, composed of traditional Chinese medicine compound such as shaoyao-gancao decoction. In order to explore the efficacy and safety of peony, effects of paeoniflorin and albiflorin (the principal components of peony) on cytochrome P450 (CYP) 3A4 and CYP2D6 were analyzed in human hepatoma HepG2 cells and evaluated from the level of recombinant CYP enzymes in vitro. The findings indicated that albiflorin possessed stronger regulation on the mRNA expression of CYP3A4 and CYP2D6 than paeoniflorin. For the protein level of CYP3A4, albiflorin showed significant induction or inhibition with the concentration increasing from 10−7 M to 10−5 M, but no remarkable variation was observed in paeoniflorin-treated group. Enzyme activity assay implied that both paeoniflorin and albiflorin could regulate CYP3A4 and CYP2D6 with varying degrees. The results showed that albiflorin should be given more attention because it may play a vital role on the overall efficacy of peony. The whole behavior of both paeoniflorin and albiflorin should be focused on ensuring the rationality and effectiveness of clinical application. PMID:26089940

  6. CYP3A4-based drug-drug interaction: CYP3A4 substrates' pharmacokinetic properties and ketoconazole dose regimen effect.

    PubMed

    Boulenc, Xavier; Nicolas, Olivier; Hermabessière, Stéphanie; Zobouyan, Isabelle; Martin, Valérie; Donazzolo, Yves; Ollier, Céline

    2016-02-01

    The aim of the study was to assess the magnitude of the CYP3A4 inhibitory effect of 2 dosing regimens of ketoconazole and the influence of the pharmacokinetic properties of the CYP3A4 substrate on the extent of the substrate exposure increase. For this purpose, a clinical study was conducted and PBPK modeling simulations were performed. A crossover study was conducted in healthy subjects. The study was designed to compare the effects of different regimens of reversible CYP3A4 inhibitors, i.e., ketoconazole 400 mg OD, ketoconazole 200 mg BID, on two CYP3A4 substrates, alprazolam and midazolam, reflecting different pharmacokinetic properties in terms of first-pass effect and elimination. In parallel, time-based simulations were performed using the Simcyp population-based Simulator to address the usefulness of modeling to assess interaction clinical study design with CYP3A4 substrates. Comparison of the OD versus BID regimens for ketoconazole showed an opposite trend for the 2 substrates: BID (200 mg) dosing regimen provided the maximal clearance inhibition for alprazolam, while it was OD (400 mg) dosing regimen for midazolam. However, these effects are moderate despite the well-known pharmacokinetic differences between these substrates, suggesting that these differences are not enough. In the other way round, these investigations show how two CYP3A4 substrates can be different without leading to a major impact of the ketoconazole dosing regimen. The clinical findings are consistent with the Simcyp predictions, in particular the opposite trend observed with midazolam and alprazolam and the ketoconazole dosing regimen. These clinical investigations showed the influence of the CYP3A4 substrates' pharmacokinetic properties and the relevance of ketoconazole dose regimen on the magnitude of the interaction ratios. In addition, PBPK Simcyp simulations demonstrated how they can be used to help clinical study design assessment to capture the maximum effect. PMID:25374256

  7. In vitro inhibition of CYP3A4 by herbal remedies frequently used by cancer patients.

    PubMed

    Engdal, Silje; Nilsen, Odd Georg

    2009-07-01

    The herbal remedies Natto K2, Agaricus, mistletoe, noni juice, green tea and garlic, frequently used by cancer patients, were investigated for their in vitro inhibition potential of cytochrome P-450 3A4 (CYP3A4) metabolism. To our knowledge, only garlic and green tea had available data on the possible inhibition of CYP3A4 metabolism. Metabolic studies were performed with human c-DNA baculovirus expressed CYP3A4. Testosterone was used as a substrate and ketoconazole as a positive quantitative inhibition control. The formation of 6-beta-OH-testosterone was quantified by a validated HPLC methodology. Green tea was the most potent inhibitor of CYP3A4 metabolism (IC(50): 73 microg/mL), followed by Agaricus, mistletoe and noni juice (1324, 3594, >10 000 microg/mL, respectively). All IC(50) values were high compared with those determined for crude extracts of other herbal remedies. The IC(50)/IC(25) ratios for the inhibiting herbal remedies ranged from 2.15 to 2.67, indicating similar inhibition profiles of the herbal inhibitors of CYP3A4. Garlic and Natto K2 were classified as non-inhibitors. Although Agaricus, noni juice, mistletoe and green tea inhibited CYP3A4 metabolism in vitro, clinically relevant systemic or intestinal interactions with CYP3A4 were considered unlikely, except for a probable inhibition of intestinal CYP3A4 by the green tea product. PMID:19170155

  8. Inhibitory Effects of Vegetable Juices on CYP3A4 Activity in Recombinant CYP3A4 and LS180 Cells.

    PubMed

    Tsujimoto, Masayuki; Uchida, Tomoe; Kozakai, Hiroyuki; Yamamoto, Saori; Minegaki, Tetsuya; Nishiguchi, Kohshi

    2016-01-01

    It is thought that eating habits induces individual variation in intestinal absorption and metabolism of drugs. The objective of this research was to clarify the influence of vegetables juices on CYP3A4 activity, which is an important enzyme in intestine. Five vegetables juices (VJ-o, Kagome Original(®); VJ-g, Kagome 30 kinds of vegetables and fruits(®); VJ-p, Kagome Purple vegetables(®); VJ-r, Kagome Sweet Tomato(®); and VJ-y, Kagome Fruity Salada(®); KAGOME Co., Ltd., Aichi, Japan) were centrifuged (1630×g, 10 min) and filtered using filter paper and 0.45-µm membrane filters. In this study, recombinant CYP3A4 and LS180 cells were used for the evaluation of CYP3A4 activity. The metabolisms to 6β-hydroxytestosterone by recombinant CYP3A4 were significantly inhibited by VJ-o, VJ-g, and VJ-y in a preincubation time-dependent manner, and CYP3A4 activity in LS180 cells were significantly inhibited by VJ-o and VJ-y. These results show that the difference in ingestion volume of vegetable juices and vegetables might partially induce individual difference in intestinal drug metabolism. PMID:27582329

  9. Cytochrome P450 3A4 and CYP3A5-Catalyzed Bioactivation of Lapatinib.

    PubMed

    Towles, Joanna K; Clark, Rebecca N; Wahlin, Michelle D; Uttamsingh, Vinita; Rettie, Allan E; Jackson, Klarissa D

    2016-10-01

    Metabolic activation of the dual-tyrosine kinase inhibitor lapatinib by cytochromes CYP3A4 and CYP3A5 has been implicated in lapatinib-induced idiosyncratic hepatotoxicity; however, the relative enzyme contributions have not been established. The objective of this study was to examine the roles of CYP3A4 and CYP3A5 in lapatinib bioactivation leading to a reactive, potentially toxic quinoneimine. Reaction phenotyping experiments were performed using individual human recombinant P450 enzymes and P450-selective chemical inhibitors. Lapatinib metabolites and quinoneimine-glutathione (GSH) adducts were analyzed using liquid chromatography-tandem mass spectrometry. A screen of cDNA-expressed P450s confirmed that CYP3A4 and CYP3A5 are the primary enzymes responsible for quinoneimine-GSH adduct formation using lapatinib or O-dealkylated lapatinib as the substrate. The mean kinetic parameters (Km and kcat) of lapatinib O-dealkylation revealed that CYP3A4 was 5.2-fold more efficient than CYP3A5 at lapatinib O-dealkylation (CYP3A4 kcat/Km = 6.8 μM(-1) min(-1) versus CYP3A5 kcat/Km = 1.3 μM(-1) min(-1)). Kinetic analysis of GSH adduct formation indicated that CYP3A4 was also 4-fold more efficient at quinoneimine-GSH adduct formation as measured by kcat (maximum relative GSH adduct levels)/Km (CYP3A4 = 0.0082 vs. CYP3A5 = 0.0021). In human liver microsomal (HLM) incubations, CYP3A4-selective inhibitors SR-9186 and CYP3cide reduced formation of GSH adducts by 78% and 72%, respectively, compared with >90% inhibition by the pan-CYP3A inhibitor ketoconazole. The 16%-22% difference between CYP3A- and CYP3A4-selective inhibition indicates the involvement of remaining CYP3A5 activity in generating reactive metabolites from lapatinib in pooled HLMs. Collectively, these findings support the conclusion that both CYP3A4 and CYP3A5 are quantitatively important contributors to lapatinib bioactivation. PMID:27450182

  10. Association of CYP3A4 genotype with treatment-related leukemia

    PubMed Central

    Felix, Carolyn A.; Walker, Amy H.; Lange, Beverly J.; Williams, Terence M.; Winick, Naomi J.; Cheung, Nai-Kong V.; Lovett, Brian D.; Nowell, Peter C.; Blair, Ian A.; Rebbeck, Timothy R.

    1998-01-01

    Epipodophyllotoxins are associated with leukemias characterized by translocations of the MLL gene at chromosome band 11q23 and other translocations. Cytochrome P450 (CYP) 3A metabolizes epipodophyllotoxins and other chemotherapeutic agents. CYP3A metabolism generates epipodophyllotoxin catechol and quinone metabolites, which could damage DNA. There is a polymorphism in the 5′ promoter region of the CYP3A4 gene (CYP3A4-V) that might alter the metabolism of anticancer drugs. We examined 99 de novo and 30 treatment-related leukemias with a conformation-sensitive gel electrophoresis assay for the presence of the CYP3A4-V. In all treatment-related cases, there was prior exposure to one or more anticancer drugs metabolized by CYP3A. Nineteen of 99 de novo (19%) and 1 of 30 treatment-related (3%) leukemias carried the CYP3A4-V (P = 0.026; Fisher’s Exact Test, FET). Nine of 42 de novo leukemias with MLL gene translocations (21%), and 0 of 22 treatment-related leukemias with MLL gene translocations carried the CYP3A4-V (P = 0.016, FET). This relationship remained significant when 19 treatment-related leukemias with MLL gene translocations that followed epipodophyllotoxin exposure were compared with the same 42 de novo cases (P = 0.026, FET). These data suggest that individuals with CYP3A4-W genotype may be at increased risk for treatment-related leukemia and that epipodophyllotoxin metabolism by CYP3A4 may contribute to the secondary cancer risk. The CYP3A4-W genotype may increase production of potentially DNA-damaging reactive intermediates. The variant may decrease production of the epipodophyllotoxin catechol metabolite, which is the precursor of the potentially DNA-damaging quinone. PMID:9789061

  11. Association of CYP3A4 genotype with treatment-related leukemia.

    PubMed

    Felix, C A; Walker, A H; Lange, B J; Williams, T M; Winick, N J; Cheung, N K; Lovett, B D; Nowell, P C; Blair, I A; Rebbeck, T R

    1998-10-27

    Epipodophyllotoxins are associated with leukemias characterized by translocations of the MLL gene at chromosome band 11q23 and other translocations. Cytochrome P450 (CYP) 3A metabolizes epipodophyllotoxins and other chemotherapeutic agents. CYP3A metabolism generates epipodophyllotoxin catechol and quinone metabolites, which could damage DNA. There is a polymorphism in the 5' promoter region of the CYP3A4 gene (CYP3A4-V) that might alter the metabolism of anticancer drugs. We examined 99 de novo and 30 treatment-related leukemias with a conformation-sensitive gel electrophoresis assay for the presence of the CYP3A4-V. In all treatment-related cases, there was prior exposure to one or more anticancer drugs metabolized by CYP3A. Nineteen of 99 de novo (19%) and 1 of 30 treatment-related (3%) leukemias carried the CYP3A4-V (P = 0.026; Fisher's Exact Test, FET). Nine of 42 de novo leukemias with MLL gene translocations (21%), and 0 of 22 treatment-related leukemias with MLL gene translocations carried the CYP3A4-V (P = 0. 016, FET). This relationship remained significant when 19 treatment-related leukemias with MLL gene translocations that followed epipodophyllotoxin exposure were compared with the same 42 de novo cases (P = 0.026, FET). These data suggest that individuals with CYP3A4-W genotype may be at increased risk for treatment-related leukemia and that epipodophyllotoxin metabolism by CYP3A4 may contribute to the secondary cancer risk. The CYP3A4-W genotype may increase production of potentially DNA-damaging reactive intermediates. The variant may decrease production of the epipodophyllotoxin catechol metabolite, which is the precursor of the potentially DNA-damaging quinone. PMID:9789061

  12. Structure-Based Inhibitor Design for Evaluation of a CYP3A4 Pharmacophore Model.

    PubMed

    Kaur, Parminder; Chamberlin, A Richard; Poulos, Thomas L; Sevrioukova, Irina F

    2016-05-12

    Human cytochrome P450 3A4 (CYP3A4) is a key xenobiotic-metabolizing enzyme that oxidizes and clears the majority of drugs. CYP3A4 inhibition may lead to drug-drug interactions, toxicity, and other adverse effects but, in some cases, could be beneficial and enhance therapeutic efficiency of coadministered pharmaceuticals that are metabolized by CYP3A4. On the basis of our investigations of analogs of ritonavir, a potent CYP3A4 inactivator and pharmacoenhancer, we have built a pharmacophore model for a CYP3A4-specific inhibitor. This study is the first attempt to test this model using a set of rationally designed compounds. The functional and structural data presented here agree well with the proposed pharmacophore. In particular, we confirmed the importance of a flexible backbone, the H-bond donor/acceptor moiety, and aromaticity of the side group analogous to Phe-2 of ritonavir and demonstrated the leading role of hydrophobic interactions at the sites adjacent to the heme and phenylalanine cluster in the ligand binding process. The X-ray structures of CYP3A4 bound to the rationally designed inhibitors provide deeper insights into the mechanism of the CYP3A4-ligand interaction. Most importantly, two of our compounds (15a and 15b) that are less complex than ritonavir have comparable submicromolar affinity and inhibitory potency for CYP3A4 and, thus, could serve as templates for synthesis of second generation inhibitors for further evaluation and optimization of the pharmacophore model. PMID:26371436

  13. CYP3A4 drug interactions: correlation of 10 in vitro probe substrates

    PubMed Central

    Kenworthy, K E; Bloomer, J C; Clarke, S E; Houston, J B

    1999-01-01

    Aims Many substrates of cytochrome P450 (CYP) 3A4 are used for in vitro investigations of drug metabolism and potential drug–drug interactions. The aim of the present study was to determine the relationship between 10 commonly used CYP3A4 probes using modifiers with a range of inhibitory potency. Methods The effects of 34 compounds on CYP3A4-mediated metabolism were investigated in a recombinant CYP3A4 expression system. Inhibition of erythromycin, dextromethorphan and diazepam N-demethylation, testosterone 6β-hydroxylation, midazolam 1-hydroxylation, triazolam 4-hydroxylation, nifedipine oxidation, cyclosporin oxidation, terfenadine C-hydroxylation and N-dealkylation and benzyloxyresorufin O-dealkylation was evaluated at the apparent Km or S50 (for substrates showing sigmoidicity) value for each substrate and at an inhibitor concentration of 30 μm. Results While all CYP3A4 probe substrates demonstrate some degree of similarity, examination of the coefficients of determination, together with difference and cluster analysis highlighted that seven substrates can be categorized into two distinct substrate groups. Erythromycin, cyclosporin and testosterone form the most closely related group and dextromethorphan, diazepam, midazolam and triazolam form a second group. Terfenadine can be equally well placed in either group, while nifedipine shows a distinctly different relationship. Benzyloxyresorufin shows the weakest correlation with all the other CYP3A4 probes. Modifiers that caused negligible inhibition or potent inhibition are generally comparable in all assays, however, the greatest variability is apparent with compounds causing, on average, intermediate inhibition. Modifiers of this type may cause substantial inhibition, no effect or even activation depending on the substrate employed. Conclusions It is recommended that multiple CYP3A4 probes, representing each substrate group, are used for the in vitro assessment of CYP3A4-mediated drug interactions. PMID

  14. High frequency and founder effect of the CYP3A4*20 loss-of-function allele in the Spanish population classifies CYP3A4 as a polymorphic enzyme.

    PubMed

    Apellániz-Ruiz, M; Inglada-Pérez, L; Naranjo, M E G; Sánchez, L; Mancikova, V; Currás-Freixes, M; de Cubas, A A; Comino-Méndez, I; Triki, S; Rebai, A; Rasool, M; Moya, G; Grazina, M; Opocher, G; Cascón, A; Taboada-Echalar, P; Ingelman-Sundberg, M; Carracedo, A; Robledo, M; Llerena, A; Rodríguez-Antona, C

    2015-06-01

    Cytochrome P450 3A4 (CYP3A4) is a key drug-metabolizing enzyme. Loss-of-function variants have been reported as rare events, and the first demonstration of a CYP3A4 protein lacking functional activity is caused by CYP3A4*20 allele. Here we characterized the world distribution and origin of CYP3A4*20 mutation. CYP3A4*20 was determined in more than 4000 individuals representing different populations, and haplotype analysis was performed using CYP3A polymorphisms and microsatellite markers. CYP3A4*20 allele was present in 1.2% of the Spanish population (up to 3.8% in specific regions), and all CYP3A4*20 carriers had a common haplotype. This is compatible with a Spanish founder effect and classifies CYP3A4 as a polymorphic enzyme. This constitutes the first description of a CYP3A4 loss-of-function variant with high frequency in a population. CYP3A4*20 results together with the key role of CYP3A4 in drug metabolism support screening for rare CYP3A4 functional alleles among subjects with adverse drug events in certain populations. PMID:25348618

  15. Energetics of Heterotropic Cooperativity between α-Naphthoflavone and Testosterone Binding to CYP3A4

    PubMed Central

    Roberts, Arthur G.; Atkins, William M.

    2007-01-01

    Cytochrome P450 3A4 (CYP3A4) is involved in the metabolism of a majority of drugs. Heterotropic cooperativity of drug binding to CYP3A4 was examined with the flavanoid, α-naphthoflavone (ANF) and the steroid, testosterone (TST). UV-vis and EPR spectroscopy of CYP3A4 show that ANF binding to CYP3A4 occurs with apparent negative cooperativity and that there are at least two binding sites: 1) a relatively tight spin-state insensitive binding site (CYP●ANF) and 2) a relatively low affinity spin-state sensitive binding site (CYP●ANF●ANF). Since binding to the spin-state insensitive binding site is considerably tighter for ANF than TST, the spin-state insensitive binding site could be occupied by ANF, while titrating TST at the other site(s). The spin-state insensitive binding site of ANF appears to compete with the spin-state insensitive binding site of TST. The formation of the spin-state insensitive CYP●ANF complex is strongly temperature dependent, when compared to the formation of the CYP●TST complex, suggesting that the formation of the CYP3A4●ANF complex leads to long-range conformational changes within the protein. When the CYP●ANF complex is titrated with TST, the formation of CYP●ANF●TST is favored by 3:1 over the formation of CYP●TST●TST, suggesting that there is an allosteric interaction between ANF and TST. A model of heterotropic cooperativity of CYP3A4 is presented, where the spin-state insensitive binding of ANF occurs at the same peripheral binding site of CYP3A4 as TST. PMID:17459328

  16. CYP3A4 Mediates Oxidative Metabolism of the Synthetic Cannabinoid AKB-48.

    PubMed

    Holm, Niels Bjerre; Nielsen, Line Marie; Linnet, Kristian

    2015-09-01

    Synthetic cannabinoid designer drugs have emerged as drugs of abuse during the last decade, and acute intoxication cases are documented in the scientific literature. Synthetic cannabinoids are extensively metabolized, but our knowledge of the involved enzymes is limited. Here, we investigated the metabolism of N-(1-adamantyl)-1-pentyl-1H-indazole-3-carboxamide (AKB-48), a compound identified in herbal blends from 2012 and onwards. We screened for metabolite formation using a panel of nine recombinant cytochrome P450 (CYP) enzymes (CYP1A2, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, and 3A4) and compared the formed metabolites to human liver microsomal (HLM) incubations with specific inhibitors against CYP2D6, 2C19, and 3A4, respectively. The data reported here demonstrate CYP3A4 to be the major CYP enzyme responsible for the oxidative metabolism of AKB-48, preferentially performing the oxidation on the adamantyl moiety. Genetic polymorphisms are likely not important with regard to toxicity given the major involvement of CYP3A4. Adverse drug-drug interactions (DDIs) could potentially occur in cases with co-intake of strong CYP3A4 inhibitors, e.g., HIV antivirals and azole antifungal agents. PMID:26002511

  17. Stereospecific Metabolism of Itraconazole by CYP3A4: Dioxolane Ring Scission of Azole Antifungals

    PubMed Central

    Peng, Chi-Chi; Shi, Wei; Lutz, Justin D.; Kunze, Kent L.; Liu, Jun O.; Nelson, Wendel L.

    2012-01-01

    Itraconazole (ITZ) is a mixture of four cis-stereoisomers that inhibit CYP3A4 potently and coordinate CYP3A4 heme via the triazole nitrogen. However, (2R,4S,2′R)-ITZ and (2R,4S,2′S)-ITZ also undergo stereoselective sequential metabolism by CYP3A4 at a site distant from the triazole ring to 3′-OH-ITZ, keto-ITZ, and N-desalkyl-ITZ. This stereoselective metabolism demonstrates specific interactions of ITZ within the CYP3A4 active site. To further investigate this process, the binding and metabolism of the four trans-ITZ stereoisomers by CYP3A4 were characterized. All four trans-ITZ stereoisomers were tight binding inhibitors of CYP3A4-mediated midazolam hydroxylation (IC50 16–26 nM), and each gave a type II spectrum upon binding to CYP3A4. However, instead of formation of 3′-OH-ITZ, they were oxidized at the dioxolane ring, leading to ring scission and formation of two new metabolites of ITZ. These two metabolites were also formed from the four cis-ITZ stereoisomers, although not as efficiently. The catalytic rates of dioxolane ring scission were similar to the dissociation rates of ITZ stereoisomers from CYP3A4, suggesting that the heme iron is reduced while the triazole moiety coordinates to it and no dissociation of ITZ is necessary before catalysis. The triazole containing metabolite [1-(2,4-dichlorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethanone] also inhibited CYP3A4 (IC50 >15 μM) and showed type II binding with CYP3A4. The dioxolane ring scission appears to be clinically relevant because this metabolite was detected in urine samples from subjects that had been administered the mixture of cis-ITZ isomers. These data suggest that the dioxolane ring scission is a metabolic pathway for drugs that contain this moiety. PMID:22106171

  18. Aloe vera juice: IC₅₀ and dual mechanistic inhibition of CYP3A4 and CYP2D6.

    PubMed

    Djuv, Ane; Nilsen, Odd Georg

    2012-03-01

    The aim of this study was to evaluate the inhibitory potency (IC₅₀ values) of ethanol extracts of two commercially available aloe vera juice (AVJ) products, on CYP3A4 and CYP2D6 activities in vitro and to determine if such inhibitions could be mechanism-based. Recombinant human CYP3A4 and CYP2D6 enzymes were used and the activities were expressed by the metabolism of testosterone and dextromethorphan with ketoconazole and quinidine as positive inhibitor controls, respectively. The formed metabolites were quantified by validated HPLC techniques. Time- and NADPH- dependent inhibition assays were performed to evaluate a possible mechanism-based inhibition. One of the AVJ extracts showed about twice the inhibitory potency towards both CYP enzymes over the other with IC₅₀ values of 8.35 ± 0.72 and 12.5 ± 2.1 mg/mL for CYP3A4 and CYP2D6, respectively. The AVJ was found to exert both CYP mediated and non-CYP mediated inhibition of both CYP3A4 and CYP2D6. This dual mechanistic inhibition, however, seems to be governed by different mechanisms for CYP3A4 and CYP2D6. Estimated IC₅₀ inhibition values indicate no major interference of AVJ with drug metabolism in man, but the dual mechanistic inhibition of both enzymes might be of clinical significance. PMID:21842479

  19. Effects of CYP3A4 polymorphisms on the plasma concentration of voriconazole.

    PubMed

    He, H-R; Sun, J-Y; Ren, X-D; Wang, T-T; Zhai, Y-J; Chen, S-Y; Dong, Y-L; Lu, J

    2015-04-01

    Voriconazole is frequently utilized for the prevention and treatment of invasive fungal infections (IFIs), and is extensively metabolized by the cytochrome P450 (CYP) system. The impact of activity of the genes encoding CYP3A4, CYP3A5, and CYP2C9 on the pharmacokinetics of voriconazole cannot be ignored because, second to CYP2C19, they are the most important enzymes involved in voriconazole metabolism. The influence of genetic polymorphisms in CYP3A4, CYP3A5, and CYP2C9 on the plasma concentrations of voriconazole was evaluated in the present study. The study cohort comprised 158 patients with IFIs in whom 22 single-nucleotide polymorphisms (SNPs) in CYP3A4, CYP3A5, and CYP2C9 were genotyped using the Sequenom MassARRAY RS1000 system, and voriconazole plasma concentrations were measured by high-performance liquid chromatography (HPLC). 40, 91, and 27 patients presented with low (<1 mg/L), normal (1-4 mg/L), and high (>4 mg/L) plasma voriconazole concentrations, respectively. Correlation analysis between polymorphisms and the plasma voriconazole concentration revealed an association between the presence of the rs4646437 T allele and a higher plasma voriconazole concentration [p = 0.033, odds ratio (OR) = 2.832, 95% confidence interval (CI) = 1.086-7.384]. This study has identified a new SNP related to the metabolism of voriconazole, potentially providing novel insight into the influence of CYP3A4 on the pharmacokinetics of this antifungal agent. PMID:25515945

  20. Metabolic behavior prediction of pazopanib by cytochrome P450 (CYP) 3A4 by molecular docking.

    PubMed

    Liu, Xing-Jie; Lu, Hua; Sun, Ju-Xiang; Wang, Su-Rong; Mo, Yan-Shuai; Yang, Xing-Sheng; Shi, Ben-Kang

    2016-08-01

    Metabolism-mediated drug adverse effects (e.g., drug-drug interaction, bioactivation, etc.) strongly limit the utilization of clinical drugs. The present study aims to predict the metabolic capability of cytochrome P450 (CYP) 3A4 toward pazopanib which is an excellent drug exhibiting therapeutic role toward various cancers especially for ovarian cancer. Pazopanib can be well docked into the activity cavity of CYP3A4, and the interaction structure in pazopanib was methyl group located besides nitrogen in the five-membered ring. The distance between the hydrogen atom in methyl group and active center is 3.64 Å. The interaction amino acid is Glu374. Furthermore, both pazopanib and ketoconazole were docked into the activity cavity of CYP3A4 to compare their binding potential. The distance between ketoconazole and activity center (2.10 Å) is closer than the distance between pazopanib and activity center of CYP3A4, indicating the easy influence of CYP3A4 inhibitor toward the metabolism of pazopanib. All these data were helpful for the clinical application of pazopanib, and R&D of other tinib drug candidates as new anti-tumor drugs. PMID:25737032

  1. Single-Walled Carbon Nanotubes Inhibit the Cytochrome P450 Enzyme, CYP3A4.

    PubMed

    El-Sayed, Ramy; Bhattacharya, Kunal; Gu, Zonglin; Yang, Zaixing; Weber, Jeffrey K; Li, Hu; Leifer, Klaus; Zhao, Yichen; Toprak, Muhammet S; Zhou, Ruhong; Fadeel, Bengt

    2016-01-01

    We report a detailed computational and experimental study of the interaction of single-walled carbon nanotubes (SWCNTs) with the drug-metabolizing cytochrome P450 enzyme, CYP3A4. Dose-dependent inhibition of CYP3A4-mediated conversion of the model compound, testosterone, to its major metabolite, 6β-hydroxy testosterone was noted. Evidence for a direct interaction between SWCNTs and CYP3A4 was also provided. The inhibition of enzyme activity was alleviated when SWCNTs were pre-coated with bovine serum albumin. Furthermore, covalent functionalization of SWCNTs with polyethylene glycol (PEG) chains mitigated the inhibition of CYP3A4 enzymatic activity. Molecular dynamics simulations suggested that inhibition of the catalytic activity of CYP3A4 is mainly due to blocking of the exit channel for substrates/products through a complex binding mechanism. This work suggests that SWCNTs could interfere with metabolism of drugs and other xenobiotics and provides a molecular mechanism for this toxicity. Our study also suggests means to reduce this toxicity, eg., by surface modification. PMID:26899743

  2. Single-Walled Carbon Nanotubes Inhibit the Cytochrome P450 Enzyme, CYP3A4

    PubMed Central

    El-Sayed, Ramy; Bhattacharya, Kunal; Gu, Zonglin; Yang, Zaixing; Weber, Jeffrey K.; Li, Hu; Leifer, Klaus; Zhao, Yichen; Toprak, Muhammet S.; Zhou, Ruhong; Fadeel, Bengt

    2016-01-01

    We report a detailed computational and experimental study of the interaction of single-walled carbon nanotubes (SWCNTs) with the drug-metabolizing cytochrome P450 enzyme, CYP3A4. Dose-dependent inhibition of CYP3A4-mediated conversion of the model compound, testosterone, to its major metabolite, 6β-hydroxy testosterone was noted. Evidence for a direct interaction between SWCNTs and CYP3A4 was also provided. The inhibition of enzyme activity was alleviated when SWCNTs were pre-coated with bovine serum albumin. Furthermore, covalent functionalization of SWCNTs with polyethylene glycol (PEG) chains mitigated the inhibition of CYP3A4 enzymatic activity. Molecular dynamics simulations suggested that inhibition of the catalytic activity of CYP3A4 is mainly due to blocking of the exit channel for substrates/products through a complex binding mechanism. This work suggests that SWCNTs could interfere with metabolism of drugs and other xenobiotics and provides a molecular mechanism for this toxicity. Our study also suggests means to reduce this toxicity, eg., by surface modification. PMID:26899743

  3. Single-Walled Carbon Nanotubes Inhibit the Cytochrome P450 Enzyme, CYP3A4

    NASA Astrophysics Data System (ADS)

    El-Sayed, Ramy; Bhattacharya, Kunal; Gu, Zonglin; Yang, Zaixing; Weber, Jeffrey K.; Li, Hu; Leifer, Klaus; Zhao, Yichen; Toprak, Muhammet S.; Zhou, Ruhong; Fadeel, Bengt

    2016-02-01

    We report a detailed computational and experimental study of the interaction of single-walled carbon nanotubes (SWCNTs) with the drug-metabolizing cytochrome P450 enzyme, CYP3A4. Dose-dependent inhibition of CYP3A4-mediated conversion of the model compound, testosterone, to its major metabolite, 6β-hydroxy testosterone was noted. Evidence for a direct interaction between SWCNTs and CYP3A4 was also provided. The inhibition of enzyme activity was alleviated when SWCNTs were pre-coated with bovine serum albumin. Furthermore, covalent functionalization of SWCNTs with polyethylene glycol (PEG) chains mitigated the inhibition of CYP3A4 enzymatic activity. Molecular dynamics simulations suggested that inhibition of the catalytic activity of CYP3A4 is mainly due to blocking of the exit channel for substrates/products through a complex binding mechanism. This work suggests that SWCNTs could interfere with metabolism of drugs and other xenobiotics and provides a molecular mechanism for this toxicity. Our study also suggests means to reduce this toxicity, eg., by surface modification.

  4. Hydroxylation of 20-hydroxyvitamin D3 by human CYP3A4.

    PubMed

    Cheng, Chloe Y S; Slominski, Andrzej T; Tuckey, Robert C

    2016-05-01

    20S-Hydroxyvitamin D3 [20(OH)D3] is the biologically active major product of the action of CYP11A1 on vitamin D3 and is present in human plasma. 20(OH)D3 displays similar therapeutic properties to 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], but without causing hypercalcaemia and therefore has potential for development as a therapeutic drug. CYP24A1, the kidney mitochondrial P450 involved in inactivation of 1,25(OH)2D3, can hydroxylate 20(OH)D3 at C24 and C25, with the products displaying more potent inhibition of melanoma cell proliferation than 20(OH)D3. CYP3A4 is the major drug-metabolising P450 in liver endoplasmic reticulum and can metabolise other active forms of vitamin D, so we examined its ability to metabolise 20(OH)D3. We found that CYP3A4 metabolises 20(OH)D3 to three major products, 20,24R-dihydroxyvitamin D3 [20,24R(OH)2D3], 20,24S-dihydroxyvitamin D3 [20,24S(OH)2D3] and 20,25-dihydroxyvitamin D3 [20,25(OH)2D3]. 20,24R(OH)2D3 and 20,24S(OH)2D3, but not 20,25(OH)2D3, were further metabolised to trihydroxyvitamin D3 products by CYP3A4 but with low catalytic efficiency. The same three primary products, 20,24R(OH)2D3, 20,24S(OH)2D3 and 20,25(OH)2D3, were observed for the metabolism of 20(OH)D3 by human liver microsomes, in which CYP3A4 is a major CYP isoform present. Addition of CYP3A family-specific inhibitors, troleandomycin and azamulin, almost completely inhibited production of 20,24R(OH)2D3, 20,24S(OH)2D3 and 20,25(OH)2D3 by human liver microsomes, further supporting that CYP3A4 plays the major role in 20(OH)D3 metabolism by microsomes. Since both 20,24R(OH)2D3 and 20,25(OH)2D3 have previously been shown to display enhanced biological activity in inhibiting melanoma cell proliferation, our results show that CYP3A4 further activates, rather than inactivates, 20(OH)D3. PMID:26970587

  5. Polychlorinated biphenyl (PCB) induction of CYP3A4 enzyme activity in healthy Faroese adults

    SciTech Connect

    Petersen, Maria Skaalum Halling, Jonrit; Damkier, Per; Nielsen, Flemming; Grandjean, Philippe; Weihe, Pal; Brosen, Kim

    2007-10-15

    The CYP3A4 enzyme is, along with other cytochrome P450 enzymes, involved in the metabolism of environmental pollutants and is highly inducible by these substances. A commercial polychlorinated biphenyl (PCB) mixture, 1,1,1,-trichloro-2-(o-chlorophenyl), 2-(p'-chlorophenyl)ethane (o,p'-DDT) and 1,1,-dichloro-2,2-bis (p-chlorophenyl)ethene (p,p'-DDE) are known to induce CYP3A4 activity through activation of nuclear receptors, such as the pregnane X receptor. However, this induction of CYP3A4 has not yet been investigated in humans. Thus, the aim of the study was to determine the variability of the CYP3A4 phenotype in regard to increased concentrations of PCBs and other persistent organohalogen pollutants (POPs) in healthy Faroese adults. In 310 randomly selected Faroese residents aged 18-60 years, the CYP3A4 activity was determined based on the urinary 6{beta}-hydroxycortisol/cortisol (6{beta}-OHC/FC) ratio. POP exposures were assessed by measuring their concentrations in serum lipid. The results showed a unimodal distribution of the 6{beta}-OHC/FC ratio with values ranging from 0.58 to 27.38. Women had a slightly higher 6{beta}-OHC/FC ratio than men (p = 0.07). Confounder-adjusted multiple regression analysis showed significant associations between 6{beta}-OHC/FC ratios and {sigma}PCB, PCB-TEQ and p,p'-DDE, o,p'-DDT and HCB, respectively, but the associations were statistically significant for men only.

  6. Mechanism-based inhibition of CYP3A4 and CYP2D6 by Indonesian medicinal plants.

    PubMed

    Subehan; Usia, Tepy; Iwata, Hiroshi; Kadota, Shigetoshi; Tezuka, Yasuhiro

    2006-05-24

    Thirty samples of Indonesian medicinal plants were tested for their mechanism-based inhibition on cytochrome P450 3A4 (CYP3A4) and CYP2D6 via erythromycin N-demethylation and dextromethorphan O-demethylation activities in human liver microsomes. From screening with 0 and 20min preincubation at 0.5mg/ml of methanol extracts, five plants (Cinnamomum burmani bark, Foeniculum vulgare seed, Strychnos ligustrina wood, Tinospora crispa stem, and Zingiber cassumunar rhizome) showed more than 30% increase of CYP3A4 inhibition, while three (Alpinia galanga rhizome, Melaleuca leucadendron leaf, and Piper nigrum fruit) showed more than 30% increase of CYP2D6 inhibition. In these eight plants, Foeniculum vulgare seed, Cinnamomum burmani bark, and Strychnos ligustrina wood showed time-dependent inhibition on CYP3A4 and Piper nigrum fruit and Melaleuca leucadendron leaf on CYP2D6. Among these, four plants other than Melaleuca leucadendron revealed NADPH-dependent inhibition. Thus, Foeniculum vulgare, Cinnamomum burmani, and Strychnos ligustrina should contain mechanism-based inhibitors on CYP3A4 and Piper nigrum contain that on CYP2D6. PMID:16414224

  7. Modulation of CYP2D6 and CYP3A4 metabolic activities by Ferula asafetida resin

    PubMed Central

    Al-Jenoobi, Fahad I.; Al-Thukair, Areej A.; Alam, Mohd Aftab; Abbas, Fawkeya A.; Al-Mohizea, Abdullah M.; Alkharfy, Khalid M.; Al-Suwayeh, Saleh A.

    2014-01-01

    Present study investigated the potential effects of Ferula asafetida resin on metabolic activities of human drug metabolizing enzymes: CYP2D6 and CYP3A4. Dextromethorphan (DEX) was used as a marker to assess metabolic activities of these enzymes, based on its CYP2D6 and CYP3A4 mediated metabolism to dextrorphan (DOR) and 3-methoxymorphinan (3-MM), respectively. In vitro study was conducted by incubating DEX with human liver microsomes and NADPH in the presence or absence of Asafetida alcoholic extract. For clinical study, healthy human volunteers received a single dose of DEX alone (phase-I) and repeated the same dose after a washout period and four-day Asafetida treatment (phase-II). Asafetida showed a concentration dependent inhibition on DOR formation (in vitro) and a 33% increase in DEX/DOR urinary metabolic ratio in clinical study. For CYP3A4, formation of 3-MM in microsomes was increased at low Asafetida concentrations (10, 25 and 50 μg/ml) but slightly inhibited at the concentration of 100 μg/ml. On the other hand, in vivo observations revealed that Asafetida significantly increased DEX/3-MM urinary metabolic ratio. The findings of this study suggest that Asafetida may have a significant effect on CYP3A4 metabolic activity. Therefore, using Ferula asafetida with CYP3A4 drug substrates should be cautioned especially those with narrow therapeutic index such as cyclosporine, tacrolimus and carbamazepine. PMID:25561870

  8. Induction of human CYP3A4 by huperzine A, ligustrazine and oridonin through pregnane X receptor-mediated pathways.

    PubMed

    Zhang, Yi-Wen; Bao, Mei-Hua; Wang, Guo; Qu, Qiang; Zhou, Hong-Hao

    2014-07-01

    The pregnane X receptor (PXR) is a key regulator of CYP3A4, which is involved in catalyzing the metabolic conversion of a number of endogenous substrates. In this study, we screened 22 compounds isolated from traditional Chinese herbal medicines using luciferase reporter gene assays for inspecting their capabilities in inducing PXR-mediated transactivation of CYP3A4 expression. In addition, the mRNA and protein expressions of CYP3A4 and PXR as well as the enzymatic activites of CYP3A4 were analyzed by real-time PCR, Western blot analysis and UPLC-MS/MS-based metabolite assay in LS174T cells. Huperzine A, ligustrazine and oridonin were identified to be the inducers of CYP3A4. These compounds induced the CYP3A4 reporter luciferase activity, and up-regulated CYP3A4 mRNA and protein levels significantly. Besides, huperzine A, ligustrazine and oridonin significantly up-regulated enzymatic activities of CYP3A4. However, the three compounds showed no effects on PXR mRNA and protein expression. To our knowledge, it is the first identification of these three compounds as PXR activators to induce CYP3A4. These results indicate that huperzine A, ligustrazine and oridonin induced CYP3A4 expression and activation via PXR dependent pathways, and might contribute to drug-drug interactions. PMID:25073399

  9. Pharmacokinetics of ruboxistaurin are significantly altered by rifampicin-mediated CYP3A4 induction

    PubMed Central

    Yeo, Kwee Poo; Lowe, Stephen L; Lim, Ming Tung; Voelker, James R; Burkey, Jennifer L; Wise, Stephen D

    2006-01-01

    Aims The aim of this study was to evaluate the effect of rifampicin co-administration on the pharmacokinetics of ruboxistaurin and its active metabolite, N-desmethyl ruboxistaurin and, in addition, to compare the changes in pharmacokinetics of ruboxistaurin and N-desmethyl ruboxistaurin with the urinary 6β-hydroxycortisol : cortisol ratio. Ruboxistaurin is a specific protein-kinase-C β inhibitor in clinical development for the treatment of diabetic microvascular complications. Methods This was a two-period, one-sequence study. Sixteen healthy male subjects completed both study periods. In period one, a single 64 mg oral dose of ruboxistaurin was administered. In period two, 600 mg rifampicin was administered daily for 9 days, during which another single 64 mg ruboxistaurin dose was administered on day 7. Blood samples were collected and assayed for ruboxistaurin and N-desmethyl ruboxistaurin. CYP3A4 induction was assessed by ratios of urinary 6β-hydroxycortisol : cortisol (6β-OHC : C) obtained via 24 h and morning-spot sampling techniques. Results Following repeated doses of rifampicin, both the mean Cmax and AUC(0,∞) of ruboxistaurin were significantly reduced by approximately 95% (P ≤ 0.001). For the metabolite, the mean Cmax decreased by 68% (P ≤ 0.001), and AUC(0,∞) decreased by 77% (P ≤ 0.001). The tmax values did not appear affected. The 6β-OHC : C ratios from both 24 h and morning spot methods increased significantly, consistent with CYP3A4 induction. Conclusions The effect of rifampicin co-administration on the exposure of ruboxistaurin is consistent with ruboxistaurin being a substrate of CYP3A4. Therefore, co-administration with known CYP3A4 inducing agents (rifampicin, carbamazepine, phenobarbital, etc.) may decrease the concentrations of ruboxistaurin and N-desmethyl-ruboxistaurin. In this study, 6β OHC : C ratios substantially underestimated the impact of rifampicin on ruboxistaurin. PMID:16433874

  10. Endosulfan induces CYP2B6 and CYP3A4 by activating the pregnane X receptor.

    PubMed

    Casabar, Richard C T; Das, Parikshit C; Dekrey, Gregory K; Gardiner, Catherine S; Cao, Yan; Rose, Randy L; Wallace, Andrew D

    2010-06-15

    Endosulfan is an organochlorine pesticide commonly used in agriculture. Endosulfan has affects on vertebrate xenobiotic metabolism pathways that may be mediated, in part, by its ability to activate the pregnane X receptor (PXR) and/or the constitutive androstane receptor (CAR) which can elevate expression of cytochrome P450 (CYP) enzymes. This study examined the dose-dependency and receptor specificity of CYP induction in vitro and in vivo. The HepG2 cell line was transiently transfected with CYP2B6- and CYP3A4-luciferase promoter reporter plasmids along with human PXR (hPXR) or hCAR expression vectors. In the presence of hPXR, endosulfan-alpha exposure caused significant induction of CYP2B6 (16-fold) and CYP3A4 (11-fold) promoter activities over control at 10 microM. The metabolite endosulfan sulfate also induced CYP2B6 (12-fold) and CYP3A4 (6-fold) promoter activities over control at 10 microM. In the presence of hCAR-3, endosulfan-alpha induced CYP2B6 (2-fold) promoter activity at 10 microM, but not at lower concentrations. These data indicate that endosulfan-alpha significantly activates hPXR strongly and hCAR weakly. Using western blot analysis of human hepatocytes, the lowest concentrations at which CYP2B6 and CYP3A4 protein levels were found to be significantly elevated by endosulfan-alpha were 1.0 microM and 10 microM, respectively. In mPXR-null/hPXR-transgenic mice, endosulfan-alpha exposure (2.5mg/kg/day) caused a significant reduction of tribromoethanol-induced sleep times by approximately 50%, whereas no significant change in sleep times was observed in PXR-null mice. These data support the role of endosulfan-alpha as a strong activator of PXR and inducer of CYP2B6 and CYP3A4, which may impact metabolism of CYP2B6 or CYP3A4 substrates. PMID:20361990

  11. Endosulfan induces CYP2B6 and CYP3A4 by activating the pregnane X receptor

    SciTech Connect

    Casabar, Richard C.T.; Das, Parikshit C.; DeKrey, Gregory K.; Gardiner, Catherine S.; Cao Yan; Rose, Randy L.; Wallace, Andrew D.

    2010-06-15

    Endosulfan is an organochlorine pesticide commonly used in agriculture. Endosulfan has affects on vertebrate xenobiotic metabolism pathways that may be mediated, in part, by its ability to activate the pregnane X receptor (PXR) and/or the constitutive androstane receptor (CAR) which can elevate expression of cytochrome P450 (CYP) enzymes. This study examined the dose-dependency and receptor specificity of CYP induction in vitro and in vivo. The HepG2 cell line was transiently transfected with CYP2B6- and CYP3A4-luciferase promoter reporter plasmids along with human PXR (hPXR) or hCAR expression vectors. In the presence of hPXR, endosulfan-alpha exposure caused significant induction of CYP2B6 (16-fold) and CYP3A4 (11-fold) promoter activities over control at 10 {mu}M. The metabolite endosulfan sulfate also induced CYP2B6 (12-fold) and CYP3A4 (6-fold) promoter activities over control at 10 {mu}M. In the presence of hCAR-3, endosulfan-alpha induced CYP2B6 (2-fold) promoter activity at 10 {mu}M, but not at lower concentrations. These data indicate that endosulfan-alpha significantly activates hPXR strongly and hCAR weakly. Using western blot analysis of human hepatocytes, the lowest concentrations at which CYP2B6 and CYP3A4 protein levels were found to be significantly elevated by endosulfan-alpha were 1.0 {mu}M and 10 {mu}M, respectively. In mPXR-null/hPXR-transgenic mice, endosulfan-alpha exposure (2.5 mg/kg/day) caused a significant reduction of tribromoethanol-induced sleep times by approximately 50%, whereas no significant change in sleep times was observed in PXR-null mice. These data support the role of endosulfan-alpha as a strong activator of PXR and inducer of CYP2B6 and CYP3A4, which may impact metabolism of CYP2B6 or CYP3A4 substrates.

  12. Trichostatin A, a histone deacetylase inhibitor stimulate CYP3A4 proximal promoter activity in Hepa-I cells.

    PubMed

    Ahn, Mee Ryung; Kim, Dae-Kee; Sheen, Yhun Yhong

    2004-04-01

    Cytochrome P450 3A4 (CYP3A4) is the most abundant CYPs in human liver, comprising approximately 30% of the total liver CYPs contents and is involved in the metabolism of more than 60% of currently used therapeutic drugs. However, the molecular mechanisms underlying regulation of CYP3A4 gene expression have not been understood. Thus, this study has been carried out to gain the insight of the molecular mechanism of CYP3A4 gene expression, investigating if the histone deacetylation is involved in the regulation of CYP3A4 gene expression by proximal promoter. Also SXR was investigated to see if they were involved in the regulation of CYP3A4 proximal promoter activity. Hepa-I cells were transfected with a plasmid containing approximately 1 kb of the human CYP3A4 proximal promoter region (863 to +64 bp) cloned in front of a reporter gene, luciferase, in the presence or absence of SXR. Transfected cells were treated with CYP3A4 inducers such as rifampicin, PCN and RU 486, in order to examine the regulation of CYP3A4 gene expression in the presence or absence of trichostatin A (TSA). In Hepa-I cells, CYP3A4 inducers increased modestly the luciferase activity when TSA was co-treated, but this increment was not enhanced by SXR cotransfection. Taken together, these results indicated that the inhibition of histone deacetylation was required to SXR-mediated increase in CYP3A4 proximal promoter region when rifampicin, or PCN was treated. Further a trans-activation by SXR may demand other species-specific transcription factors. PMID:15180307

  13. Substrate-specific modulation of CYP3A4 activity by genetic variants of cytochrome P450 oxidoreductase (POR)

    PubMed Central

    Agrawal, Vishal; Choi, Ji Ha; Giacomini, Kathleen M.; Miller, Walter L.

    2010-01-01

    Objectives CYP3A4 receives electrons from P450 oxidoreductase (POR) to metabolize about 50% of clinically used drugs. There is substantial inter-individual variation in CYP3A4 catalytic activity that is not explained by CYP3A4 genetic variants. CYP3A4 is flexible and distensible, permitting it to accommodate substrates varying in shape and size. To elucidate mechanisms of variability in CYP3A4 catalysis, we examined the effects of genetic variants of POR, and explored the possibility that substrate-induced conformational changes in CYP3A4 differentially affect the ability of POR variants to support catalysis. Methods We expressed human CYP3A4 and four POR variants (Q153R, A287P, R457H, A503V) in bacteria, reconstituted them in vitro and measured the Michaelis constant and maximum velocity with testosterone, midazolam, quinidine and erythromycin as substrates. Results POR A287P and R457H had low activity with all substrates; Q153R had 76–94% of wild type (WT) activity with midazolam and erythromycin, but 129–150% activity with testosterone and quinidine. The A503V polymorphism reduced CYP3A4 activity to 61–77% of wild type with testosterone and midazolam, but had nearly wild type activity with quinidine and erythromycin. Conclusion POR variants affect CYP3A4 activities. The impact of a POR variant on catalysis by CYP3A4 is substrate-specific, probably due to substrate-induced conformational changes in CYP3A4. PMID:20697309

  14. Diindolylmethane, a naturally occurring compound, induces CYP3A4 and MDR1 gene expression by activating human PXR

    PubMed Central

    Pondugula, Satyanarayana R.; Flannery, Patrick C.; Abbott, Kodye L.; Coleman, Elaine S.; Mani, Sridhar; Samuel, Temesgen; Xie, Wen

    2015-01-01

    Activation of human pregnane X receptor (hPXR)-regulated expression of cytochrome P450 3A4 (CYP3A4) and multidrug resistance protein 1 (MDR1) plays an important role in mediating adverse drug interactions. Given the common use of natural products as part of adjunct human health behavior, there is a growing concern about natural products for their potential to induce undesired drug interactions through the activation of hPXR-regulated CYP3A4 and MDR1. Here, we studied whether 3,3′-diindolylmethane (DIM), a natural health supplement, could induce hPXR-mediated regulation of CYP3A4 and MDR1 in human hepatocytes and intestinal cells. DIM, at its physiologically relevant concentrations, not only induced hPXR transactivation of CYP3A4 promoter activity but also induced gene expression of CYP3A4 and MDR1. DIM decreased intracellular accumulation of MDR1 substrate rhodamine 123, suggesting that DIM induces the functional expression of MDR1. Pharmacologic inhibition or genetic knockdown of hPXR resulted in attenuation of DIM induced CYP3A4 and MDR1 gene expression, suggesting that DIM induces CYP3A4 and MDR1 in an hPXR-dependent manner. Together, these results support our conclusion that DIM induces hPXR-regulated CYP3A4 and MDR1 gene expression. The inductive effects of DIM on CYP3A4 and MDR1 expression caution the use of DIM in conjunction with other medications metabolized and transported via CYP3A4 and MDR1, respectively. PMID:25542144

  15. The role of CYP3A4 in the biotransformation of bile acids and therapeutic implication for cholestasis

    PubMed Central

    Zhao, Kong-Nan; Chen, Chen

    2014-01-01

    CYP3A4 is a major cytochrome P450. It catalyses a broad range of substrates including xenobiotics such as clinically used drugs and endogenous compounds bile acids. Its function to detoxify bile acids could be used for treating cholestasis, which is a condition characterised by accumulation of bile acids. Although bile acids have important physiological functions, they are very toxic when their concentrations are excessively high. The accumulated bile acids in cholestasis can cause liver and other tissue injuries. Thus, control of the concentrations of bile acids is critical for treatment of cholestasis. CYP3A4 is responsively upregulated in cholestasis mediated by the nuclear receptors farnesol X receptor (FXR) and pregnane X receptor (PXR) as a defence mechanism. However, the regulation of CYP3A4 is complicated by estrogen, which is increased in cholestasis and down regulates CYP3A4 expression. The activity of CYP3A4 is also inhibited by accumulated bile acids due to their property of detergent effect. In some cholestasis cases, genetic polymorphisms of the CYP3A4 and PXR genes may interfere with the adaptive response. Further stimulation of CYP3A4 activity in cholestasis could be an effective approach for treatment of the disease. In this review, we summarise recent progress about the roles of CYP3A4 in the metabolism of bile acids, its regulation and possible implication in the treatment of cholestasis. PMID:25332983

  16. Reductive metabolism of oxymatrine is catalyzed by microsomal CYP3A4

    PubMed Central

    Liu, Wenqin; Shi, Jian; Zhu, Lijun; Dong, Lingna; Luo, Feifei; Zhao, Min; Wang, Ying; Hu, Ming; Lu, Linlin; Liu, Zhongqiu

    2015-01-01

    Oxymatrine (OMT) is a pharmacologically active primary quinolizidine alkaloid with various beneficial and toxic effects. It is confirmed that, after oral administration, OMT could be transformed to the more toxic metabolite matrine (MT), and this process may be through the reduction reaction, but the study on the characteristics of this transformation is limited. The aim of this study was to investigate the characteristics of this transformation of OMT in the human liver microsomes (HLMs) and human intestinal microsomes (HIMs) and the cytochrome P450 (CYP) isoforms involved in this transformation. The current studies demonstrated that OMT could be metabolized to MT rapidly in HLMs and HIMs and CYP3A4 greatly contributed to this transformation. All HLMs, HIMs, and CYP3A4 isoform mediated reduction reaction followed typical biphasic kinetic model, and Km, Vmax, and CL were significant higher in HLMs than those in HIMs. Importantly, different oxygen contents could significantly affect the metabolism of OMT, and with the oxygen content decreased, the formation of metabolite was increased, suggesting this transformation was very likely a reduction reaction. Results of this in vitro study elucidated the metabolic pathways and characteristics of metabolism of OMT to MT and would provide a theoretical basis and guidance for the safe application of OMT. PMID:26586934

  17. SPR and electrochemical analyses of interactions between CYP3A4 or 3A5 and cytochrome b5

    NASA Astrophysics Data System (ADS)

    Gnedenko, O. V.; Yablokov, E. O.; Usanov, S. A.; Mukha, D. V.; Sergeev, G. V.; Bulko, T. V.; Kuzikov, A. V.; Moskaleva, N. E.; Shumyantseva, V. V.; Ivanov, A. S.; Archakov, A. I.

    2014-02-01

    The combination of SPR biosensor with electrochemical analysis was used for the study of protein-protein interaction between cytochromes CYP3A4 or 3А5 and cytochromes b5: the microsomal, mitochondrial forms of this protein, and 2 ≪chimeric≫ proteins. Kinetic constants of CYP3A4 and CYP3А5 complex formation with cytochromes b5 were determined by the SPR biosensor. Essential distinction between CYP3A4 and CYP3A5 was observed upon their interactions with mitochondrial cytochrome b5. The electrochemical analysis of CYP3A4, CYP3A5, and cytochromes b5 immobilized on screen printed graphite electrodes modified with membranous matrix revealed that these proteins have very close reduction potentials -0.435 to -0.350 V (vs. Ag/AgCl).

  18. Oxidase uncoupling in heme monooxygenases: Human cytochrome P450 CYP3A4 in Nanodiscs

    SciTech Connect

    Grinkova, Yelena V.; Denisov, Ilia G.; McLean, Mark A.; Sligar, Stephen G.

    2013-01-25

    Highlights: ► Substantial reducing equivalents are lost in human P450 CYP3A4 via an oxidase channel. ► Substrate binding has a pronounced effect on uncoupling in cytochrome P450. ► Anionic phospholipids improve the overall coupling in CYP3A4 Nanodiscs. -- Abstract: The normal reaction mechanism of cytochrome P450 operates by utilizing two reducing equivalents to reduce atmospheric dioxygen, producing one molecule of water and an oxygenated product in an overall stoichiometry of 2 electrons:1 dioxygen:1 product. However, three alternate unproductive pathways exist where the intermediate iron–oxygen states in the catalytic cycle can yield reduced oxygen products without substrate metabolism. The first involves release of superoxide from the oxygenated intermediate while the second occurs after input of the second reducing equivalent. Superoxide rapidly dismutates and hence both processes produce hydrogen peroxide that can be cytotoxic to the organism. In both cases, the formation of hydrogen peroxide involves the same overall stoichiometry as oxygenases catalysis. The key step in the catalytic cycle of cytochrome P450 involves scission of the oxygen–oxygen bond of atmospheric dioxygen to produce a higher valent iron-oxo state termed “Compound I”. This intermediate initiates a radical reaction in the oxygenase pathway but also can uptake two additional reducing equivalents from reduced pyridine nucleotide (NADPH) and the flavoprotein reductase to produce a second molecule of water. This non-productive decay of Compound I thus yields an overall oxygen to NADPH ratio of 1:2 and does not produce hydrocarbon oxidation. This water uncoupling reaction provides one of a limited means to study the reactivity of the critical Compound I intermediate in P450 catalysis. We measured simultaneously the rates of NADPH and oxygen consumption as a function of substrate concentration during the steady-state hydroxylation of testosterone catalyzed by human P450 CYP3A4

  19. Magic-Angle Spinning Solid-State NMR Spectroscopy of Nanodisc– Embedded Human CYP3A4

    PubMed Central

    Kijac, Aleksandra; Li, Ying; Sligar, Stephen G.; Rienstra, Chad M.

    2008-01-01

    Cytochrome P450 (CYP) 3A4 contributes to the metabolism of approximately 50% of commercial drugs by oxidizing a large number of structurally diverse substrates. Like other endoplasmic reticulum-localized P450s, CYP3A4 contains a membrane-anchoring N-terminal helix and a significant number of hydrophobic domains, important for the interaction between CYP3A4 and the membrane. Although the membrane affects specificity of CYP3A4 ligand binding, the structural details of the interaction have not been revealed so far because x-ray crystallography studies are available only for the soluble domain of CYP3A4. Here we report sample preparation and initial magic-angle spinning (MAS) solid-state NMR (SSNMR) of CYP3A4 (Δ3−12) embedded in a nanoscale membrane bilayer, or Nanodisc. The growth protocol yields ∼2.5 mg of the enzymatically active, uniformly 13C, 15N-enriched CYP3A4 from a liter of growth medium. Polyethylene glycol 3350-precipitated CYP3A4 in Nanodiscs yields spectra of high resolution and sensitivity, consistent with a folded, homogeneous protein. CYP3A4 in Nanodiscs remains enzymatically active throughout the precipitation protocol as monitored by bromocriptine binding. The 13C line widths measured from 13C-13C 2D chemical shift correlation spectra are ∼0.5 ppm. The secondary structure distribution within several amino acid types determined from 13C chemical shifts is consistent with the ligand-free x-ray structures. These results demonstrate that MAS SSNMR can be performed on Nanodisc-embedded membrane proteins in a folded, active state. The combination of SSNMR and Nanodisc methodologies opens up new possibilities for obtaining structural information on CYP3A4 and other integral membrane proteins with full retention of functionality. PMID:17985934

  20. Furocoumarins from grapefruit juice and their effect on human CYP 3A4 and CYP 1B1 isoenzymes.

    PubMed

    Girennavar, Basavaraj; Poulose, Shibu M; Jayaprakasha, Guddadarangavvanahally K; Bhat, Narayan G; Patil, Bhimanagouda S

    2006-04-15

    Bioactive compounds present in grapefruit juice are known to increase the bioavailability of certain medications by acting as potent CYP 3A4 inhibitors. An efficient technique has been developed for isolation and purification of three furocoumarins. The isolated compounds have been tested for the inhibition of human CYP 1B1 isoform using specific substrates. Grapefruit juice was extracted with ethyl acetate (EtOAc) and the dried extract was loaded onto silica gel column chromatography. Further, column fractions were subjected to preparative HPLC to obtain three compounds. The purity of these compounds was analyzed by HPLC and structures were determined by NMR studies. The identified compounds, bergamottin, 6',7'-dihydroxybergamottin (DHB), and paradisin-A, were tested for their inhibitory effects on hydroxylase and O-dealkylase activities of human cytochrome P450 isoenzymes CYP 3A4 and CYP 1B1. Paradisin-A was found to be a potent CYP 3A4 inhibitor with an IC50 of 1.2 microM followed by DHB and bergamottin. All three compounds showed a substantial inhibitory effect on CYP 3A4 below 10 microM. Inhibitory effects on CYP 1B1 exhibited a greater variation due to the specificity of substrates. Paradisin A showed an IC50 of 3.56+/-0.12 microM for the ethoxy resorufin O-dealkylase (EROD) activity and 33.56+/-0.72 microM for the benzyloxy resorufin (BROD). DHB and bergamottin showed considerable variations for EROD and BROD activities with an IC50 of 7.17 microM and 13.86 microM, respectively. PMID:16338240

  1. Dipeptide Prodrug Approach to Evade Efflux Pumps and CYP3A4 Metabolism of Lopinavir

    PubMed Central

    Patel, Mitesh; Sheng, Ye; Mandava, Nanda K.; Pal, Dhananjay; Mitra, Ashim K.

    2014-01-01

    Oral absorption of lopinavir (LPV) is limited due to P-glycoprotein (P-gp) and multidrug resistance-associated protein2 (MRP2) mediated efflux by intestinal epithelial cells. Moreover, LPV is extensively metabolized by CYP3A4 enzymes. In the present study, dipeptide prodrug approach was employed to circumvent efflux pumps (P-gp and MRP2) and CYP3A4 mediated metabolism of LPV. Valine-isoleucine-LPV (Val-Ile-LPV) was synthesized and identified by LCMS and NMR techniques. The extent of LPV and Val-Ile-LPV interactions with P-gp and MRP2 was studied by uptake and transport studies across MDCK-MDR1 and MDCK-MRP2 cells. To determine the metabolic stability, time and concentration dependent degradation study was performed in liver microsomes. Val-Ile-LPV exhibited significantly higher aqueous solubility relative to LPV. This prodrug generated higher stability under acidic pH. Val-Ile-LPV demonstrated significantly lower affinity towards P-gp and MRP2 relative to LPV. Transepithelial transport of Val-Ile-LPV was significantly higher in the absorptive direction (apical to basolateral) relative to LPV. Importantly, Val-Ile-LPV was recognized as an excellent substrate by peptide transporter. Moreover, Val-Ile-LPV displayed significantly higher metabolic stability relative to LPV. Results obtained from this study suggested that dipeptide prodrug approach is a viable option to elevate systemic levels of LPV following oral administration PMID:25261710

  2. Pitavastatin Concentrations Are Not Increased by CYP3A4 Inhibitor Itraconazole in Healthy Subjects.

    PubMed

    Nakagawa, Shunji; Gosho, Masahiko; Inazu, Yuji; Hounslow, Neil

    2013-04-01

    Itraconazole is a synthetic triazole antifungal agent which is known to be a potent inhibitor of cytochrome P450 (CYP) 3A4, and may cause drug-drug interactions with the many drugs metabolized by this route, including some statins. In this study, the influence of concomitant administration of a single oral dose of pitavastatin with itraconazole at steady state was investigated to determine the potential for pharmacokinetic interaction and any effects on safety. Eighteen subjects were enrolled into the study. The AUC and Cmax of pitavastatin alone were 138 ng h/mL and 63.8 ng/mL, and pitavastatin with itraconazole were 106 ng h/mL and 49.5 ng/mL, respectively. Comparison of the 90% confidence interval of the geometric mean ratio of AUC0-t and Cmax against a standard reference of 0.80-1.25 demonstrated that the lower limit was breached for both pitavastatin and its lactone metabolite (0.71-0.84 and 0.69-0.88 for AUC0-t and Cmax , respectively, for pitavastatin, 0.86-0.97 and 0.76-0.86 for AUC0-t and Cmax , respectively, for pitavastatin lactone). The safety and tolerability of pitavastatin was not affected by co-administration with itraconazole. This study suggests that pitavastatin is not a CYP3A4 substrate in humans. PMID:27121674

  3. MDR- and CYP3A4-mediated drug-herbal interactions.

    PubMed

    Pal, Dhananjay; Mitra, Ashim K

    2006-03-27

    According to recent epidemiological reports, almost 40% of American population use complimentary and alternative medicine (CAM) during their lifetime. Patients detected with HIV or cancer often consume herbal products especially St. John's wort (SJW) for antidepressants in combination with prescription medicines. Such self-administered herbal products along with prescribed medicines raise concerns of therapeutic activity due to possible drug-herbal interactions. P-glycoprotein (P-gp) and cytochrome P450 3A4 (CYP3A4) together constitute a highly efficient barrier for many orally absorbed drugs. Available literature, clinical reports and in vitro studies from our laboratory indicate that many drugs and herbal active constituents are substrates for both P-gp and CYP3A4. Results from clinical studies and case reports indicate that self-administered SJW reduce steady state plasma concentrations of amitriptyline, cyclosporine, digoxin, fexofenadine, amprenavir, indonavir, lopinavir, ritonavir, saquinavir, benzodiazepines, theophyline, irinotecan, midazolan and warfarin. This herbal agent has been also reported to cause bleeding and unwanted pregnancies when concomitantly administered with oral contraceptives. Most of these medicinal agents and SJW are substrates for P-gp and/or CYP3A4. In vitro studies from our laboratory suggest that short-term exposure with pure herbal agents such as hypericin, kaempferol and quercetin or extract of SJW resulted in higher uptake or influx of ritonavir and erythromycin. Hypericin, kaempferol and quercetin also caused a remarkable inhibition of cortisol metabolism with the percent intact cortisol values of 64.58%, 89.6% and 90.1%, respectively, during short-term in vitro experiments. Conversely, long-term exposure of herbal agents (hyperforin, kaempferol and quercetin) showed enhanced expression of CYP3A4 mRNA in Caco-2 cells. In another study, we observed that long-term exposure of hypericin, kaempferol, quercetin and silibinin resulted

  4. A Fibroblast Growth Factor 21-Pregnane X Receptor Pathway Downregulates Hepatic CYP3A4 in Nonalcoholic Fatty Liver Disease.

    PubMed

    Woolsey, Sarah J; Beaton, Melanie D; Mansell, Sara E; Leon-Ponte, Matilde; Yu, Janice; Pin, Christopher L; Adams, Paul C; Kim, Richard B; Tirona, Rommel G

    2016-10-01

    Nonalcoholic fatty liver disease (NAFLD) alters drug response. We previously reported that NAFLD is associated with reduced in vivo CYP3A drug-metabolism activity and hepatic CYP3A4 expression in humans as well as mouse and human hepatoma models of the disease. Here, we investigated the role of the lipid- and glucose-modulating hormone fibroblast growth factor 21 (FGF21) in the molecular mechanism regulating CYP3A4 expression in NAFLD. In human subjects, mouse and cellular NAFLD models with lower CYP3A4 expression, circulating FGF21, or hepatic FGF21 mRNA levels were elevated. Administration of recombinant FGF21 or transient hepatic overexpression of FGF21 resulted in reduced liver CYP3A4 luciferase reporter activity in mice and decreased CYP3A4 mRNA expression and activity in cultured Huh7 hepatoma cells. Blocking canonical FGF21 signaling by pharmacological inhibition of MEK1 kinase in Huh7 cells caused de-repression of CYP3A4 mRNA expression with FGF21 treatment. Mice with high-fat diet-induced simple hepatic steatosis and lipid-loaded Huh7 cells had reduced nuclear localization of the pregnane X receptor (PXR), a key transcriptional regulator of CYP3A4 Furthermore, decreased nuclear PXR was observed in mouse liver and Huh7 cells after FGF21 treatment or FGF21 overexpression. Decreased PXR binding to the CYP3A4 proximal promoter was found in FGF21-treated Huh7 cells. An FGF21-PXR signaling pathway may be involved in decreased hepatic CYP3A4 metabolic activity in NAFLD. PMID:27482056

  5. The role of CYP 3A4 and 1A1 in amiodarone-induced hepatocellular toxicity.

    PubMed

    Wu, Qiangen; Ning, Baitang; Xuan, Jiekun; Ren, Zhen; Guo, Lei; Bryant, Matthew S

    2016-06-24

    Amiodarone is a widely used potent antiarrhythmic for the treatment of cardiac disease; however, its use is often discontinued due to numerous adverse effects, including hepatotoxicity. To investigate the role of drug metabolism in this liver toxicity, amiodarone and its major metabolite desethylamiodarone were incubated with HepG2 cells overexpressing a series of cytochrome P450 (CYP) isoforms. Significantly higher cytotoxicity of amiodarone was observed in HepG2 cells overexpressing CYP3A4 or CYP1A1, compared with that observed in empty vector transduced control cells. Further, higher levels of the more potent hepatotoxic metabolite desethylamiodarone were detected in CYP3A4 or CYP1A1 expressed cells. The CYP3A4 inhibitor ketoconazole and the CYP1A1 inhibitor α-naphthoflavone drastically inhibited the metabolism of amiodarone to desethylamiodarone. Along with the inhibition of CYP1A1 or CYP3A4, the cytotoxicity of amiodarone was significantly reduced. These data indicate that the metabolism of amiodarone to desethylamiodarone by CYP1A1 or CYP3A4 plays an important role in the hepatocellular toxicity of amiodarone. PMID:27113703

  6. Trainable structure-activity relationship model for virtual screening of CYP3A4 inhibition.

    PubMed

    Didziapetris, Remigijus; Dapkunas, Justas; Sazonovas, Andrius; Japertas, Pranas

    2010-11-01

    A new structure-activity relationship model predicting the probability for a compound to inhibit human cytochrome P450 3A4 has been developed using data for >800 compounds from various literature sources and tested on PubChem screening data. Novel GALAS (Global, Adjusted Locally According to Similarity) modeling methodology has been used, which is a combination of baseline global QSAR model and local similarity based corrections. GALAS modeling method allows forecasting the reliability of prediction thus defining the model applicability domain. For compounds within this domain the statistical results of the final model approach the data consistency between experimental data from literature and PubChem datasets with the overall accuracy of 89%. However, the original model is applicable only for less than a half of PubChem database. Since the similarity correction procedure of GALAS modeling method allows straightforward model training, the possibility to expand the applicability domain has been investigated. Experimental data from PubChem dataset served as an example of in-house high-throughput screening data. The model successfully adapted itself to both data classified using the same and different IC₅₀ threshold compared with the training set. In addition, adjustment of the CYP3A4 inhibition model to compounds with a novel chemical scaffold has been demonstrated. The reported GALAS model is proposed as a useful tool for virtual screening of compounds for possible drug-drug interactions even prior to the actual synthesis. PMID:20814717

  7. Intestinal CYP3A4 protects against lithocholic acid-induced hepatotoxicity in intestine-specific VDR-deficient mice.

    PubMed

    Cheng, Jie; Fang, Zhong-Ze; Kim, Jung-Hwan; Krausz, Kristopher W; Tanaka, Naoki; Chiang, John Y L; Gonzalez, Frank J

    2014-03-01

    Vitamin D receptor (VDR) mediates vitamin D signaling involved in bone metabolism, cellular growth and differentiation, cardiovascular function, and bile acid regulation. Mice with an intestine-specific disruption of VDR (Vdr(ΔIEpC)) have abnormal body size, colon structure, and imbalance of bile acid metabolism. Lithocholic acid (LCA), a secondary bile acid that activates VDR, is among the most toxic of the bile acids that when overaccumulated in the liver causes hepatotoxicity. Because cytochrome P450 3A4 (CYP3A4) is a target gene of VDR-involved bile acid metabolism, the role of CYP3A4 in VDR biology and bile acid metabolism was investigated. The CYP3A4 gene was inserted into Vdr(ΔIEpC) mice to produce the Vdr(ΔIEpC)/3A4 line. LCA was administered to control, transgenic-CYP3A4, Vdr(ΔIEpC), and Vdr(ΔIEpC)/3A4 mice, and hepatic toxicity and bile acid levels in the liver, intestine, bile, and urine were measured. VDR deficiency in the intestine of the Vdr(ΔIEpC) mice exacerbates LCA-induced hepatotoxicity manifested by increased necrosis and inflammation, due in part to over-accumulation of hepatic bile acids including taurocholic acid and taurodeoxycholic acid. Intestinal expression of CYP3A4 in the Vdr(ΔIEpC)/3A4 mouse line reduces LCA-induced hepatotoxicity through elevation of LCA metabolism and detoxification, and suppression of bile acid transporter expression in the small intestine. This study reveals that intestinal CYP3A4 protects against LCA hepatotoxicity. PMID:24343899

  8. Phenotype-genotype variability in the human CYP3A locus as assessed by the probe drug quinine and analyses of variant CYP3A4 alleles

    SciTech Connect

    Rodriguez-Antona, Cristina . E-mail: cristina.rodriguez-antona@cnio.es; Sayi, Jane G.; Gustafsson, Lars L.; Bertilsson, Leif; Ingelman-Sundberg, Magnus

    2005-12-09

    The human cytochrome P450 3A (CYP3A) enzymes, which metabolize 50% of currently used therapeutic drugs, exhibit great interindividual differences in activity that have a major impact on drug treatment outcome, but hitherto no genetic background importantly contributing to this variation has been identified. In this study we show that CYP3A4 mRNA and hnRNA contents with a few exceptions vary in parallel in human liver, suggesting that mechanisms affecting CYP3A4 transcription, such as promoter polymorphisms, are relevant for interindividual differences in CYP3A4 expression. Tanzanian (n = 143) healthy volunteers were phenotyped using quinine as a CYP3A probe and the results were used for association studies with CYP3A4 genotypes. Carriers of CYP3A4*1B had a significantly lower activity than those with CYP3A4*1 whereas no differences were seen for five other SNPs investigated. Nuclear proteins from the B16A2 hepatoma cells were found to bind with less affinity to the CYP3A4*1B element around -392 bp as compared to CYP3A4*1. The data indicate the existence of a genetic CYP3A4 polymorphism with functional importance for interindividual differences in enzyme expression.

  9. Molecular docking of chemotherapeutic agents to CYP3A4 in non-small cell lung cancer.

    PubMed

    Subhani, Syed; Jamil, Kaiser

    2015-07-01

    CYP3A4, a "heme" containing isoform, abundantly found in the liver, gastro-intestinal tract, lungs and renal cells, also known as drug metabolising enzyme (DME) may be responsible for the disease progression in cancers such as lung cancer. Hence, we have targeted this protein for improving drug selection and in preventing adverse reactions. The aim of this study was to examine chemotherapeutic drug binding to CYP3A4 and the interactions therein. We have used Schrödinger suite 2014, to perform molecular docking of human CYP3A4, by Induced Fit Docking using gemcitabine, cisplatin, carboplatin, docetaxel and paclitaxel drugs. We evaluated drug-binding affinities using Prime/MMGBSA and using these scores we compared the affinities of combination therapies against CYP3A4. Analysis of the docking results showed gemcitabine>carboplatin>cisplatin as the order of binding affinities, with gemcitabine having the best docking score. Interestingly, docetaxel and paclitaxel did not bind to CYP3A4*1B. The combination drug-binding affinity analysis showed gemcitabine+carboplatin to have the best docking score and hence, efficacy. Our investigation has identified the residue Arg 105 to be more frequently involved in drug binding to CYP3A4. Our results suggest that gemcitabine or combination of gemcitabine+carboplatin could serve as an excellent therapy against CYP3A4 in NSCLC patients. Thus, our study depicts binding of chemotherapeutic drugs to CYP3A4 and has identified the residues that may be targeted for therapy in NSCLC patients. PMID:26211584

  10. Effect of Methamphetamine on Spectral Binding, Ligand Docking and Metabolism of Anti-HIV Drugs with CYP3A4

    PubMed Central

    Ande, Anusha; Wang, Lei; Vaidya, Naveen K.; Li, Weihua; Kumar, Santosh; Kumar, Anil

    2016-01-01

    Cytochrome P450 3A4 (CYP3A4) is the major drug metabolic enzyme, and is involved in the metabolism of antiretroviral drugs, especially protease inhibitors (PIs). This study was undertaken to examine the effect of methamphetamine on the binding and metabolism of PIs with CYP3A4. We showed that methamphetamine exhibits a type I spectral change upon binding to CYP3A4 with δAmax and KD of 0.016±0.001 and 204±18 μM, respectively. Methamphetamine-CYP3A4 docking showed that methamphetamine binds to the heme of CYP3A4 in two modes, both leading to N-demethylation. We then studied the effect of methamphetamine binding on PIs with CYP3A4. Our results showed that methamphetamine alters spectral binding of nelfinavir but not the other type I PIs (lopinavir, atazanavir, tipranavir). The change in spectral binding for nelfinavir was observed at both δAmax (0.004±0.0003 vs. 0.0068±0.0001) and KD (1.42±0.36 vs.2.93±0.08 μM) levels. We further tested effect of methamphetamine on binding of 2 type II PIs; ritonavir and indinavir. Our results showed that methamphetamine alters the ritonavir binding to CYP3A4 by decreasing both the δAmax (0.0038±0.0003 vs. 0.0055±0.0003) and KD (0.043±0.0001 vs. 0.065±0.001 nM), while indinavir showed only reduced KD in presence of methamphetamine (0.086±0.01 vs. 0.174±0.03 nM). Furthermore, LC-MS/MS studies in high CYP3A4 human liver microsomes showed a decrease in the formation of hydroxy ritonavir in the presence of methamphetamine. Finally, CYP3A4 docking with lopinavir and ritonavir in the absence and presence of methamphetamine showed that methamphetamine alters the docking of ritonavir, which is consistent with the results obtained from spectral binding and metabolism studies. Overall, our results demonstrated differential effects of methamphetamine on the binding and metabolism of PIs with CYP3A4. These findings have clinical implication in terms of drug dose adjustment of antiretroviral medication, especially with ritonavir

  11. Evaluation of CYP3A4 inhibition and hepatotoxicity using DMSO-treated human hepatoma HuH-7 cells

    PubMed Central

    Liu, Yitong; Flynn, Thomas J.; Xia, Menghang; Wiesenfeld, Paddy L.; Ferguson, Martine S.

    2016-01-01

    A human hepatoma cell line (HuH-7) was evaluated as a metabolically competent cell model to investigate cytochrome P450 3A4 (CYP3A4) inhibition, induction, and hepatotoxicity. First, CYP3A4 gene expression and activity were determined in HuH-7 cells under three culture conditions: 1-week culture, 3-week culture, or 1% dimethyl sulfoxide (DMSO) treatment. HuH-7 cells treated with DMSO for 2 weeks after confluence expressed the highest CYP3A4 gene expression and activity compared to the other two culture conditions. Furthermore, CYP3A4 activity in DMSO-treated HuH-7 cells was compared to that in a human hepatoma cell line (HepG2/C3A) and human bipotent progenitor cell line (HepaRG), which yielded the following ranking: HepaRG > DMSO-treated HuH-7 >> HepG2/C3A cells. The effects of three known CYP3A4 inhibitors were evaluated using DMSO-treated HuH-7 cells. CYP3A4 enzyme inhibition in HuH-7 cells was further compared to human recombinant CYP3A4, indicating similar potency for reversible inhibitors (IC50 within 2.5 fold), but different potency for the irreversible inhibitor. Next, induction of CYP3A4 activity was compared between DMSO-treated HuH-7 and HepaRG cells using two known inducers. DMSO-treated HuH-7 cells yielded minimal CYP3A4 induction compared to that in the HepaRG cells after 48-h treatments. Finally, the cytotoxicity of five known hepatotoxicants was evaluated in DMSO-treated HuH-7 cells, HepG2/C3A, and HepaRG cells, and significant differences in cytotoxic sensitivity were observed. Overall, DMSO-treated HuH-7 cells are a valuable model for medium- or high-throughput screening of chemicals for CYP3A4 inhibition and hepatotoxicity. PMID:26377104

  12. Arsenite and its metabolites, MMA{sup III} and DMA{sup III}, modify CYP3A4, PXR and RXR alpha expression in the small intestine of CYP3A4 transgenic mice

    SciTech Connect

    Medina-Diaz, I.M.; Estrada-Muniz, E.; Reyes-Hernandez, O.D.; Ramirez, P.; Vega, L.; Elizondo, G.

    2009-09-01

    Arsenic is an environmental pollutant that has been associated with an increased risk for the development of cancer and several other diseases through alterations of cellular homeostasis and hepatic function. Cytochrome P450 (P450) modification may be one of the factors contributing to these disorders. Several reports have established that exposure to arsenite modifies P450 expression by decreasing or increasing mRNA and protein levels. Cytochrome P450 3A4 (CYP3A4), the predominant P450 expressed in the human liver and intestines, which is regulated mainly by the Pregnane X Receptor-Retinoid X Receptor alpha (PXR-RXR alpha) heterodimer, contributes to the metabolism of approximately half the drugs in clinical use today. The present study investigates the effect of sodium arsenite and its metabolites monomethylarsonous acid (MMA{sup III}) and dimethylarsinous acid (DMA{sup III}) on CYP3A4, PXR, and RXR alpha expression in the small intestine of CYP3A4 transgenic mice. Sodium arsenite treatment increases mRNA, protein and CYP3A4 activity in a dose-dependent manner. However, the increase in protein expression was not as marked as compared to the increase in mRNA levels. Arsenite treatment induces the accumulation of Ub-protein conjugates, indicating that the activation of this mechanism may explain the differences observed between the mRNA and protein expression of CYP3A4 induction. Treatment with 0.05 mg/kg of DMA{sup III} induces CYP3A4 in a similar way, while treatment with 0.05 mg/kg of MMA{sup III} increases mostly mRNA, and to a lesser degree, CYP3A4 activity. Sodium arsenite and both its metabolites increase PXR mRNA, while only DMA{sup III} induces RXR alpha expression. Overall, these results suggest that sodium arsenite and its metabolites induce CYP3A4 expression by increasing PXR expression in the small intestine of CYP3A4 transgenic mice.

  13. Arsenite and its metabolites, MMA(III) and DMA(III), modify CYP3A4, PXR and RXR alpha expression in the small intestine of CYP3A4 transgenic mice.

    PubMed

    Medina-Díaz, I M; Estrada-Muñiz, E; Reyes-Hernández, O D; Ramírez, P; Vega, L; Elizondo, G

    2009-09-01

    Arsenic is an environmental pollutant that has been associated with an increased risk for the development of cancer and several other diseases through alterations of cellular homeostasis and hepatic function. Cytochrome P450 (P450) modification may be one of the factors contributing to these disorders. Several reports have established that exposure to arsenite modifies P450 expression by decreasing or increasing mRNA and protein levels. Cytochrome P450 3A4 (CYP3A4), the predominant P450 expressed in the human liver and intestines, which is regulated mainly by the Pregnane X Receptor-Retinoid X Receptor alpha (PXR-RXR alpha) heterodimer, contributes to the metabolism of approximately half the drugs in clinical use today. The present study investigates the effect of sodium arsenite and its metabolites monomethylarsonous acid (MMA(III)) and dimethylarsinous acid (DMA(III)) on CYP3A4, PXR, and RXR alpha expression in the small intestine of CYP3A4 transgenic mice. Sodium arsenite treatment increases mRNA, protein and CYP3A4 activity in a dose-dependent manner. However, the increase in protein expression was not as marked as compared to the increase in mRNA levels. Arsenite treatment induces the accumulation of Ub-protein conjugates, indicating that the activation of this mechanism may explain the differences observed between the mRNA and protein expression of CYP3A4 induction. Treatment with 0.05 mg/kg of DMA(III) induces CYP3A4 in a similar way, while treatment with 0.05 mg/kg of MMA(III) increases mostly mRNA, and to a lesser degree, CYP3A4 activity. Sodium arsenite and both its metabolites increase PXR mRNA, while only DMA(III) induces RXR alpha expression. Overall, these results suggest that sodium arsenite and its metabolites induce CYP3A4 expression by increasing PXR expression in the small intestine of CYP3A4 transgenic mice. PMID:19084030

  14. Different effects of proton pump inhibitors and famotidine on the clopidogrel metabolic activation by recombinant CYP2B6, CYP2C19 and CYP3A4.

    PubMed

    Ohbuchi, Masato; Noguchi, Kiyoshi; Kawamura, Akio; Usui, Takashi

    2012-07-01

    Inhibitory potential of proton pump inhibitors (PPIs) and famotidine, an H(2) receptor antagonist, on the metabolic activation of clopidogrel was evaluated using recombinant CYP2B6, CYP2C19 and CYP3A4. Formation of the active metabolite from an intermediate metabolite, 2-oxo-clopidogrel, was investigated by liquid chromatography-tandem mass spectrometry and three peaks corresponding to the pharmacologically active metabolite and its stereoisomers were detected. Omeprazole potently inhibited clopidogrel activation by CYP2C19 with an IC(50) of 12.8 μmol/L and more weakly inhibited that by CYP2B6 and CYP3A4. IC(50) of omeprazole for CYP2C19 and CYP3A4 was decreased about two- and three-fold, respectively, by 30-min preincubation with NADPH. Lansoprazole, esomeprazole, pantoprazole, rabeprazole and rabeprazole thioether, a major metabolite, also inhibited metabolic activation by CYP2C19, with an IC(50) of 4.3, 8.9, 48.3, 36.2 and 30.5 μmol/L, respectively. In contrast, famotidine showed no more than 20% inhibition of clopidogrel activation by CYP2B6, CYP2C19 and CYP3A4 at up to 100 μmol/L and had no time-dependent CYP2C19 and CYP3A4 inhibition. These results provide direct evidence that PPIs inhibit clopidogrel metabolic activation and suggest that CYP2C19 inhibition is the main cause of drug-drug interaction between clopidogrel and omeprazole. Famotidine is considered as a safe anti-acid agent for patients taking clopidogrel. PMID:22313038

  15. Expression of CYP3A4 and CYP3A7 in Human Foetal Tissues and its Correlation with Nuclear Receptors.

    PubMed

    Betts, Stina; Björkhem-Bergman, Linda; Rane, Anders; Ekström, Lena

    2015-10-01

    Previous reports have suggested that the nuclear receptors vitamin D receptor (VDR), peroxisome proliferator-activated receptor α (PPARα), pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are involved in the regulation of the drug-metabolizing enzyme cytochrome P450 (CYP) 3A4 expression in adults. The aim of this study was to investigate the gene expression of CYP3A4 and the foetal CYP3A7 in human foetal tissues and their relation to gene expression and genetic variations in the nuclear receptors VDR, PPARα, PXR and CAR. We determined the relative expression of CYP3A4 and CYP3A7 and these nuclear receptors in foetal livers, intestines and adrenals, using quantitative PCR. In addition, the expression of these enzymes was also analysed in adult liver. There was a high interindividual variability in CYP3A4 and CYP3A7, 49 times and 326 times, respectively. Both CYP3A4 and CYP3A7 had the highest expression in the liver. There were significant correlations (p < 0.001) between the nuclear receptors studied and the expression of CYP3A4 and CYP3A7 in foetal liver, as well as the expression of CYP3A4 in foetal intestine. Polymorphisms in the VDR gene, rs1544410 and rs1523130 (TaqI), in the PXR gene, rs1523130, and in the PPARα gene, rs4253728, were not correlated with CYP3A4 or CYP3A7 expression. However, C-homozygous individuals of the TaqI VDR polymorphism had 60% lower VDR gene expression (p < 0.05), than individuals carrying one or two T alleles. In conclusion, differences in the expression of nuclear receptors might determine the variability in CYP3A4 and CYP3A7 expression observed in foetal liver. PMID:25689036

  16. Co-medication of statins and CYP3A4 inhibitors before and after introduction of new reimbursement policy

    PubMed Central

    Devold, Helene M; Molden, Espen; Skurtveit, Svetlana; Furu, Kari

    2009-01-01

    AIMS To assess the prevalence of co-medication of statins and CYP3A4 inhibitors before and after introduction of a new Norwegian reimbursement policy, which states that all patients should be prescribed simvastatin as first-line lipid-lowering therapy. METHODS Data from patients receiving simvastatin, lovastatin, pravastatin, fluvastatin or atorvastatin in 2004 and 2006, including co-medication of potent CYP3A4 inhibitors, were retrieved from the Norwegian Prescription Database covering the total population of Norway. Key measurements were prevalence of continuous statin use (two or more prescriptions on one statin) and proportions of different statin types among all patients and those co-medicated with CYP3A4 inhibitors. RESULTS In 2004, 5.9% (n = 272 342) of the Norwegian population received two or more prescriptions on one statin compared with 7.0% (n = 324 267) in 2006. The relative number of simvastatin users increased from 39.7% (n = 112 122) in 2004 to 63.1% (n = 226 672) in 2006. A parallel increase was observed within the subpopulation co-medicated with statins and CYP3A4 inhibitors, i.e. from 42.9% (n = 7706) in 2004 to 63.6% (n = 13 367) in 2006. For all other statins the number of overall users decreased to a similar extent to those co-medicated with CYP3A4 inhibitors. CONCLUSIONS In both 2004 and 2006, the choice of statin type did not depend on whether the patient used a CYP3A4 inhibitor or not. Considering the pronounced interaction potential of simvastatin with CYP3A4 inhibitors, a negative influence of the new policy on overall statin safety seems likely. PMID:19220274

  17. In vitro inhibition of human CYP1A2, CYP2D6, and CYP3A4 by six herbs commonly used in pregnancy.

    PubMed

    Langhammer, Astrid Jordet; Nilsen, Odd Georg

    2014-04-01

    Black elderberry, cranberry, fennel, ginger, horsetail, and raspberry leaf, herbs frequently used in pregnancy, were investigated for their in vitro CYP1A2, 2D6, and 3A4 inhibitory potential. Aqueous or ethanolic extracts were made from commercially available herbal products, and incubations were performed with recombinant cDNA-expressed human CYP enzymes in the presence of positive inhibitory controls. Metabolite formation was determined by validated LCMS/MS or HPLC methodologies. IC50 inhibition constants were estimated from CYP activity inhibition plots using non-linear regression. The most potent inhibition was shown for fennel towards CYP2D6 and 3A4 with respective IC50 constants of 23 ± 2 and 40 ± 4 µg/ml, horsetail towards CYP1A2 with an IC50 constant of 27 ± 1 µg/ml, and raspberry leaf towards CYP1A2, 2D6, and 3A4 with IC50 constants of 44 ± 2, 47 ± 8, and 81 ± 11 µg/ml, respectively. Based on the recommended dosing of the different commercial herbal products, clinically relevant systemic CYP inhibitions could be possible for fennel, horsetail, and raspberry leaf. In addition, fennel and raspberry leaf might cause a clinically relevant inhibition of intestinal CYP3A4. The in vivo inhibitory potential of these herbs towards specific CYP enzymes should be further investigated. PMID:23843424

  18. Amlodipine metabolism in human liver microsomes and roles of CYP3A4/5 in the dihydropyridine dehydrogenation.

    PubMed

    Zhu, Yanlin; Wang, Fen; Li, Quan; Zhu, Mingshe; Du, Alicia; Tang, Wei; Chen, Weiqing

    2014-02-01

    Amlodipine is a commonly prescribed calcium channel blocker for the treatment of hypertension and ischemic heart disease. The drug is slowly cleared in humans primarily via dehydrogenation of its dihydropyridine moiety to a pyridine derivative (M9). Results from clinical drug-drug interaction studies suggest that CYP3A4/5 mediate metabolism of amlodipine. However, attempts to identify a role of CYP3A5 in amlodipine metabolism in humans based on its pharmacokinetic differences between CYP3A5 expressers and nonexpressers failed. Objectives of this study were to determine the metabolite profile of amlodipine (a racemic mixture and S-isomer) in human liver microsomes (HLM), and to identify the cytochrome P450 (P450) enzyme(s) involved in the M9 formation. Liquid chromatography/mass spectrometry analysis showed that amlodipine was mainly converted to M9 in HLM incubation. M9 underwent further O-demethylation, O-dealkylation, and oxidative deamination to various pyridine derivatives. This observation is consistent with amlodipine metabolism in humans. Incubations of amlodipine with HLM in the presence of selective P450 inhibitors showed that both ketoconazole (an inhibitor of CYP3A4/5) and CYP3cide (an inhibitor of CYP3A4) completely blocked the M9 formation, whereas chemical inhibitors of other P450 enzymes had little effect. Furthermore, metabolism of amlodipine in expressed human P450 enzymes showed that only CYP3A4 had significant activity in amlodipine dehydrogenation. Metabolite profiles and P450 reaction phenotyping data of a racemic mixture and S-isomer of amlodipine were very similar. The results from this study suggest that CYP3A4, rather than CYP3A5, plays a key role in metabolic clearance of amlodipine in humans. PMID:24301608

  19. Establishment of In Silico Prediction Models for CYP3A4 and CYP2B6 Induction in Human Hepatocytes by Multiple Regression Analysis Using Azole Compounds.

    PubMed

    Nagai, Mika; Konno, Yoshihiro; Satsukawa, Masahiro; Yamashita, Shinji; Yoshinari, Kouichi

    2016-08-01

    Drug-drug interactions (DDIs) via cytochrome P450 (P450) induction are one clinical problem leading to increased risk of adverse effects and the need for dosage adjustments and additional therapeutic monitoring. In silico models for predicting P450 induction are useful for avoiding DDI risk. In this study, we have established regression models for CYP3A4 and CYP2B6 induction in human hepatocytes using several physicochemical parameters for a set of azole compounds with different P450 induction as characteristics as model compounds. To obtain a well-correlated regression model, the compounds for CYP3A4 or CYP2B6 induction were independently selected from the tested azole compounds using principal component analysis with fold-induction data. Both of the multiple linear regression models obtained for CYP3A4 and CYP2B6 induction are represented by different sets of physicochemical parameters. The adjusted coefficients of determination for these models were of 0.8 and 0.9, respectively. The fold-induction of the validation compounds, another set of 12 azole-containing compounds, were predicted within twofold limits for both CYP3A4 and CYP2B6. The concordance for the prediction of CYP3A4 induction was 87% with another validation set, 23 marketed drugs. However, the prediction of CYP2B6 induction tended to be overestimated for these marketed drugs. The regression models show that lipophilicity mostly contributes to CYP3A4 induction, whereas not only the lipophilicity but also the molecular polarity is important for CYP2B6 induction. Our regression models, especially that for CYP3A4 induction, might provide useful methods to avoid potent CYP3A4 or CYP2B6 inducers during the lead optimization stage without performing induction assays in human hepatocytes. PMID:27208383

  20. Safety of Herbal Medicinal Products: Echinacea and Selected Alkylamides Do Not Induce CYP3A4 mRNA Expression.

    PubMed

    Modarai, Maryam; Silva, Elisabete; Suter, Andy; Heinrich, Michael; Kortenkamp, Andreas

    2011-01-01

    A major safety concern with the use of herbal medicinal products (HMP) is their interactions with conventional medicines, which are often mediated via the cytochrome P450 (CYP) system. Echinacea is a widely used over-the-counter HMP, with proven immunomodulatory properties. Its increasing use makes research into its safety an urgent concern. Previously, we showed that Echinacea extracts and its alkylamides (thought to be important for Echinacea's immunomodulatory activity) mildly inhibit the enzymatic activity of the main drug metabolising CYP isoforms, but to this date, there is insufficient work on its ability to alter CYP expression levels. We now report for the first time the effect of a commercial Echinacea extract (Echinaforce) and four Echinacea alkylamides on the transcription of the major drug metabolizing enzyme CYP3A4. HepG2 cells were exposed for 96 h to clinically relevant concentrations of Echinaforce (22, 11.6 and 1.16 μg mL(-1)) or the alkylamides (1.62 and 44 nM). CYP3A4 mRNA levels were quantified using real-time reverse transcription polymerase chain reaction (RT-PCR). Neither Echinaforce nor the alkylamides produced any significant changes in the steady-state CYP3A4 mRNA levels, under these conditions. In contrast, treatment with 50 μM rifampicin resulted in a 3.8-fold up-regulation over the vehicle control. We conclude that Echinaforce is unlikely to affect CYP3A4 transcriptional levels, even at concentrations which can inhibit the enzymatic activity of CYP3A4. Overall, our data provides further evidence for the lack of interactions between Echinacea and conventional drugs. PMID:19906827

  1. Regulation of CYP3A4 by pregnane X receptor: The role of nuclear receptors competing for response element binding

    SciTech Connect

    Istrate, Monica A.; Nussler, Andreas K.; Eichelbaum, Michel; Burk, Oliver

    2010-03-19

    Induction of the major drug metabolizing enzyme CYP3A4 by xenobiotics contributes to the pronounced interindividual variability of its expression and often results in clinically relevant drug-drug interactions. It is mainly mediated by PXR, which regulates CYP3A4 expression by binding to several specific elements in the 5' upstream regulatory region of the gene. Induction itself shows a marked interindividual variability, whose underlying determinants are only partly understood. In this study, we investigated the role of nuclear receptor binding to PXR response elements in CYP3A4, as a potential non-genetic mechanism contributing to interindividual variability of induction. By in vitro DNA binding experiments, we showed that several nuclear receptors bind efficiently to the proximal promoter ER6 and distal xenobiotic-responsive enhancer module DR3 motifs. TR{alpha}1, TR{beta}1, COUP-TFI, and COUP-TFII further demonstrated dose-dependent repression of PXR-mediated CYP3A4 enhancer/promoter reporter activity in transient transfection in the presence and absence of the PXR inducer rifampin, while VDR showed this effect only in the absence of treatment. By combining functional in vitro characterization with hepatic expression analysis, we predict that TR{alpha}1, TR{beta}1, COUP-TFI, and COUP-TFII show a strong potential for the repression of PXR-mediated activation of CYP3A4 in vivo. In summary, our results demonstrate that nuclear receptor binding to PXR response elements interferes with PXR-mediated expression and induction of CYP3A4 and thereby contributes to the interindividual variability of induction.

  2. Systematic and quantitative assessment of the effect of chronic kidney disease on CYP2D6 and CYP3A4/5.

    PubMed

    Yoshida, K; Sun, B; Zhang, L; Zhao, P; Abernethy, D R; Nolin, T D; Rostami-Hodjegan, A; Zineh, I; Huang, S-M

    2016-07-01

    Recent reviews suggest that chronic kidney disease (CKD) can affect the pharmacokinetics of nonrenally eliminated drugs, but the impact of CKD on individual elimination pathways has not been systematically evaluated. In this study we developed a comprehensive dataset of the effect of CKD on the pharmacokinetics of CYP2D6- and CYP3A4/5-metabolized drugs. Drugs for evaluation were selected based on clinical drug-drug interaction (CYP3A4/5 and CYP2D6) and pharmacogenetic (CYP2D6) studies. Information from dedicated CKD studies was available for 13 and 18 of the CYP2D6 and CYP3A4/5 model drugs, respectively. Analysis of these data suggested that CYP2D6-mediated clearance is generally decreased in parallel with the severity of CKD. There was no apparent relationship between the severity of CKD and CYP3A4/5-mediated clearance. The observed elimination-route dependency in CKD effects between CYP2D6 and CYP3A4/5 may inform the need to conduct clinical CKD studies with nonrenally eliminated drugs for optimal use of drugs in patients with CKD. PMID:26800425

  3. Effects of Commonly Used Excipients on the Expression of CYP3A4 in Colon and Liver Cells

    PubMed Central

    Tompkins, Leslie; Lynch, Caitlin; Haidar, Sam; Polli, James; Wang, Hongbing

    2013-01-01

    Purpose The objective of this investigation was to assess whether common pharmaceutical excipients regulate the expression of drug-metabolizing enzymes in human colon and liver cells. Methods Nineteen commonly used excipients were evaluated using a panel of experiments including cell-based human PXR activation assays, real-time RT-PCR assays for CYP3A4 mRNA expression, and immunoblot analysis of CYP3A4 protein expression in immortalized human liver cells (HepG2 and Fa2N4), human primary hepatocytes, and the intestinal LS174T cell models. Results No excipient activated human PXR or practically induced CYP3A4. However, three excipients (polysorbate 80, pregelatinized starch, and hydroxypropyl methylcellulose) tended to decrease mRNA and protein expression across experimental models. Conclusion This study represents the first investigation of the potential role of excipients in the expression of drug-metabolizing enzymes. Findings imply that some excipients may hold potential for excipient-drug interactions by repression of CYP3A4 expression. PMID:20503067

  4. Priapism Induced by Boceprevir-CYP3A4 Inhibition and α-Adrenergic Blockade: Case Report

    PubMed Central

    Hammond, Kyle P.; Nielsen, Craig; Linnebur, Sunny A.; Langness, Jacob A.; Ray, Graham; Maroni, Paul; Kiser, Jennifer J.

    2014-01-01

    A 44-year-old white man presented to the emergency department with a 3-day history of priapism requiring a surgically performed distal penile shunt. A drug–drug interaction is the suspected cause whereby CYP3A4 inhibition by boceprevir led to increased exposures of doxazosin, tamsulosin, and/or quetiapine, resulting in additional α-adrenergic blockade. PMID:24092799

  5. Herb-drug interaction of 50 Chinese herbal medicines on CYP3A4 activity in vitro and in vivo.

    PubMed

    Pao, Li-Heng; Hu, Oliver Yoa-Pu; Fan, Hsien-Yuan; Lin, Chang-Ching; Liu, Liang-Chun; Huang, Pei-Wei

    2012-01-01

    The purpose of this study is to evaluate the effects of Chinese herbal medicines on the enzymatic activity of CYP3A4 and the possible metabolism-based herb-drug interactions in human liver microsomes and in rats. Fifty single-herbal preparations were screened for the activity of CYP3A4 using human liver microsomes for an in vitro probe reaction study. The enzymatic activity of CYP3A4 was estimated by determing the 6β-hydroxytestosterone metabolized from testosterone performed on a liquid chromatography-tandem mass spectrometry (LC-MS/MS). Huang Qin (Scutellaria baicalensis Geprgi), Mu Dan Pi (Paeonia suffruticosa Andr.), Ji Shiee Terng (Spatholobus suberectus Dunn.) and Huang Qi (Astragalus membranaceus [Fisch] Bge) have been demonstrated to have remarkable inhibiting effects on the metabolism of CYP3A4, whereas Xi Yi Hua (Magnolia biondii Pamp.) exhibited a moderate inhibition. These five single herbs were further investigated in an animal study using midazolam. Mu Dan Pi, Ji Shiee Terng and Huang Qi were observed to have greatly increased in the C(max) and AUC of midazolam. This study provides evidence of possible herb-drug interactions involved with certain single herbs. PMID:22298448

  6. Immunohistochemical Markers of CYP3A4 and CYP3A7: A New Tool Towards Personalized Pharmacotherapy of Hepatocellular Carcinoma

    PubMed Central

    Fanni, D.; Manchia, M.; Lai, F.; Gerosa, C.; Ambu, R.; Faa, G.

    2016-01-01

    Hepatocellular carcinoma (HCC) represents a major global health problem, since more than 90% of primary liver cancers worldwide are HCC. Most cases of HCC are secondary to viral hepatitis infection (hepatitis B or C), alcoholism and cirrhosis. Sorafenib, an oral tyrosine kinase inhibitor that suppresses tumor proliferation and angiogenesis, emerged as the first effective systemic treatment for HCC after 30 years of research, and is currently the standard-of-care for patients with advanced HCC. Sorafenib is metabolized by cytochrome P450 (CYP450), particularly from the 3A4 isoform, producing two main metabolites: the N-oxide and the N-hydroxymethyl metabolite. We studied 11 HCC sample showing the presence of CYP3A4 and CYP3A7 in most of the samples analysed. Specifically, the immunoreactivity of CYP3A4 was stronger and more widespread than that of CYP3A7. The CYP3A4 immunoreactivity was observed in surrounding hepatocytes in 8 out of 11 cases; while the CYP3A7 immunostaining was found in normal liver cells, in 7 out of 11 cases. These results suggest the existence of a marked inter-individual variability regarding the presence of the isoforms of CYP3A. In addition, since sorafenib is metabolized by CYP3A4, but not by CYP3A7, an overexpression of CYP3A4 may lead to an increase in the degradation of the drug and then to clinical ineffectiveness. These results might implicate the necessity of an individualized approach in the treatment of HCC as positivity to CYP3A4 in HCC liver samples might predict a scarce response to sorafenib. PMID:27349315

  7. Tamoxifen-associated hot flash severity is inversely correlated with endoxifen concentration and CYP3A4*22.

    PubMed

    Baxter, Simon D; Teft, Wendy A; Choi, Yun-Hee; Winquist, Eric; Kim, Richard B

    2014-06-01

    Tamoxifen use is often limited in some patients due to adverse effects including severe hot flash symptoms. Tamoxifen undergoes hepatic bioactivation by CYP2D6 and CYP3A4 to form the active metabolite endoxifen. It remains unclear whether the extent of attained endoxifen level or genetic polymorphisms in drug metabolizing enzymes is associated with the frequency and severity of hot flashes. We conducted a prospective study using self-reported surveys to assess tamoxifen side effects experienced during the week prior to clinic visits of 132 female breast cancer patients on tamoxifen therapy, and hot flash severity scores were tabulated. At the time of clinic visit, blood samples were obtained to determine tamoxifen and its metabolite levels and to determine CYP2D6 and CYP3A4 genotypes. The majority of participants (77 %) experienced hot flashes, with 11 % experiencing severe or very severe symptoms. We observed an inverse correlation between endoxifen concentration and hot flash severity score following adjustment for age, BMI, and menopausal status in patients with non-zero scores (p < 0.001). Interestingly, CYP2D6 genotype was not significantly associated with hot flash scores in patients on no known inhibitory medications. However, CYP3A4*22 carriers were less likely to have hot flashes with an odds ratio of 8.87 (p < 0.01) even when compared to a cohort with similar endoxifen levels. Our data demonstrate that patients with higher endoxifen levels tended to predict lower hot flash severity scores. Importantly, this is the first study to show CYP3A4*22 genotype as an independent predictor of hot flash severity during tamoxifen therapy. PMID:24744093

  8. Sertraline-induced potentiation of the CYP3A4-dependent neurotoxicity of carbamazepine: An in vitro study

    PubMed Central

    Ghosh, Chaitali; Hossain, Mohammad; Spriggs, Addison; Ghosh, Arnab; Grant, Gerald A.; Marchi, Nicola; Perucca, Emilio; Janigro, Damir

    2015-01-01

    SUMMARY Objective Drug toxicity is a hurdle to drug development and to clinical translation of basic research. Antiepileptic drugs such as carbamazepine (CBZ) and selective serotonin reuptake inhibitors such as sertraline (SRT) are commonly co-prescribed to patients with epilepsy and comorbid depression. Because SRT may interfere with cytochrome P450 (CYP) enzyme activity and CYPs have been implicated in the conversion of CBZ to reactive cytotoxic metabolites, we investigated in vitro models to determine whether SRT affects the neurotoxic potential of CBZ and the mechanisms involved. Methods Human fetal brain-derived dopaminergic neurons, human brain microvascular endothelial cells (HBMECs), and embryonic kidney (HEK) cells were used to evaluate cytotoxicity of CBZ and SRT individually and in combination. Nitrite and glutathione (GSH) levels were measured with drug exposure. To validate the role of CYP3A4 in causing neurotoxicity, drug metabolism was compared to cell death in HEK CYP3A4 overex-pressed and cells pretreated with the CYP3A4 inhibitor ketoconazole. Results In all cellular systems tested, exposure to CBZ (127 μM) or SRT (5 μM) alone caused negligible cytotoxicity. By contrast CBZ, tested at a much lower concentration (17 μM) in combination with SRT (5 μM), produced prominent cytotoxicity within 15 min exposure. In neurons and HBMECs, cytotoxicity was associated with increased nitrite levels, suggesting involvement of free radicals as a pathogenetic mechanism. Pretreatment of HBMECs with reduced GSH or with the GSH precursor N-acetyl-L-cysteine prevented cytotoxic response. In HEK cells, the cytotoxic response to the CBZ + SRT combination correlated with the rate of CBZ biotransformation and production of 2-hydroxy CBZ, further suggesting a causative role of reactive metabolites. In the same system, cytotoxicity was potentiated by overexpression of CYP3A4, and prevented by CYP3A4 inhibitor. Significance These results demonstrate an unexpected

  9. In Silico Prediction of Cytochrome P450-Drug Interaction: QSARs for CYP3A4 and CYP2C9

    PubMed Central

    Nembri, Serena; Grisoni, Francesca; Consonni, Viviana; Todeschini, Roberto

    2016-01-01

    Cytochromes P450 (CYP) are the main actors in the oxidation of xenobiotics and play a crucial role in drug safety, persistence, bioactivation, and drug-drug/food-drug interaction. This work aims to develop Quantitative Structure-Activity Relationship (QSAR) models to predict the drug interaction with two of the most important CYP isoforms, namely 2C9 and 3A4. The presented models are calibrated on 9122 drug-like compounds, using three different modelling approaches and two types of molecular description (classical molecular descriptors and binary fingerprints). For each isoform, three classification models are presented, based on a different approach and with different advantages: (1) a very simple and interpretable classification tree; (2) a local (k-Nearest Neighbor) model based classical descriptors and; (3) a model based on a recently proposed local classifier (N-Nearest Neighbor) on binary fingerprints. The salient features of the work are (1) the thorough model validation and the applicability domain assessment; (2) the descriptor interpretation, which highlighted the crucial aspects of P450-drug interaction; and (3) the consensus aggregation of models, which largely increased the prediction accuracy. PMID:27294921

  10. In Silico Prediction of Cytochrome P450-Drug Interaction: QSARs for CYP3A4 and CYP2C9.

    PubMed

    Nembri, Serena; Grisoni, Francesca; Consonni, Viviana; Todeschini, Roberto

    2016-01-01

    Cytochromes P450 (CYP) are the main actors in the oxidation of xenobiotics and play a crucial role in drug safety, persistence, bioactivation, and drug-drug/food-drug interaction. This work aims to develop Quantitative Structure-Activity Relationship (QSAR) models to predict the drug interaction with two of the most important CYP isoforms, namely 2C9 and 3A4. The presented models are calibrated on 9122 drug-like compounds, using three different modelling approaches and two types of molecular description (classical molecular descriptors and binary fingerprints). For each isoform, three classification models are presented, based on a different approach and with different advantages: (1) a very simple and interpretable classification tree; (2) a local (k-Nearest Neighbor) model based classical descriptors and; (3) a model based on a recently proposed local classifier (N-Nearest Neighbor) on binary fingerprints. The salient features of the work are (1) the thorough model validation and the applicability domain assessment; (2) the descriptor interpretation, which highlighted the crucial aspects of P450-drug interaction; and (3) the consensus aggregation of models, which largely increased the prediction accuracy. PMID:27294921

  11. Modulation of CYP3A4 activity alters the cytotoxicity of lipophilic phycotoxins in human hepatic HepaRG cells.

    PubMed

    Ferron, P J; Hogeveen, K; De Sousa, G; Rahmani, R; Dubreil, E; Fessard, V; Le Hegarat, L

    2016-06-01

    The aim of this study was to investigate (i) the cytotoxic effects of lipophilic phycotoxins, including okadaic acid (OA) and dinophysistoxin-1 and -2 (DTX-1 and DTX-2), pectenotoxin-2 (PTX-2), yessotoxin (YTX), spirolide (SPX), and azaspiracids-1, -2 and -3 (AZA-1, AZA-2 and AZA-3), in human HepaRG cells using a multiparametric high content analysis approach, (ii) the ability of nine lipophilic phycotoxins to act as PXR agonists in a HepG2-PXR cell line, (iii) their potential to induce CYP450 activity, and (iv) the role of CYP3A4 in cytotoxicity induced by lipophilic phycotoxins. Our results indicate that while OA, DTX-1 and DTX-2 activated PXR-dependent transcriptional activity in HepG2 cells, no increase of CYP450 (1A2, 3A4, 2C9, 2C19) activities were observed in HepaRG cell following a 72h treatment with these toxins. Multiparametric analysis showed that OA, DTX-1, DTX-2, and PTX-2 were highly cytotoxic in HepaRG cells; inducing cell loss, activation of caspase-3 and γ-H2AX formation. However, no toxicity was observed for YTX, SPX, and AZAs. Moreover, we found that inhibition of CYP3A4 activity by ketoconazole enhances the toxic effects of OA, DTX-1, DTX-2, and PTX-2 in HepaRG cells. Taken together, these results suggest that CYP3A4-mediated metabolism of some lipophilic phycotoxins decreases their in vitro toxicity. PMID:26956883

  12. Investigation of CYP3A4 and CYP2D6 Interactions of Withania somnifera and Centella asiatica in Human Liver Microsomes.

    PubMed

    Savai, Jay; Varghese, Alice; Pandita, Nancy; Chintamaneni, Meena

    2015-05-01

    Withania somnifera is commonly used as a rejuvenator, whereas Centella asiatica is well known for its anxiolytic and nootropic effects. The present study aims at investigating the effect of crude extracts and principal phytoconstituents of both the medicinal plants with CYP3A4 and CYP2D6 enzyme activity in human liver microsomes (HLM). Phytoconstituents were quantified in the crude extracts of both the medicinal plants using reverse phase HPLC. Crude extracts and phytoconstituents of W. somnifera showed no significant interaction with both CYP3A4 and CYP2D6 enzymes in HLM. Of the crude extracts of C. asiatica screened in vitro, methanolic extract showed potent noncompetitive inhibition of only CYP3A4 enzyme (Ki-64.36 ± 1.82 µg/mL), whereas ethanol solution extract showed potent noncompetitive inhibition of only CYP2D6 enzyme (Ki-36.3 ± 0.44 µg/mL). The flavonoids, quercetin, and kaempferol showed potent (IC50 values less than 100 μM) inhibition of CYP3A4 activity, whereas quercetin alone showed potent inhibition of CYP2D6 activity in HLM. Because methanolic extract of C. asiatica showed a relatively high percentage content of quercetin and kaempferol than ethanol solution extract, the inhibitory effect of methanolic extract on CYP3A4 enzyme activity could be attributed to the flavonoids. Thus, co-administration of the alcoholic extracts of C. asiatica with drugs that are substrates of CYP3A4 and CYP2D6 enzymes may lead to undesirable herb-drug interactions in humans. PMID:25684704

  13. Dynamics of Cytosine Methylation in the Proximal Promoters of CYP3A4 and CYP3A7 in Pediatric and Prenatal Livers.

    PubMed

    Vyhlidal, Carrie A; Bi, Chengpeng; Ye, Shui Qing; Leeder, J Steven

    2016-07-01

    Members of the human CYP3A family of metabolizing enzymes exhibit developmental changes in expression whereby CYP3A7 is expressed in fetal tissues, followed by a transition to expression of CYP3A4 in the first months of life. Despite knowledge about the general pattern of CYP3A activity in human development, the mechanisms that regulate developmental expression remain poorly understood. Epigenetic changes, including cytosine methylation, have been suggested to play a role in the regulation of CYP3A expression. The objective of this study was to investigate changes in cytosine methylation of the CYP3A4 and CYP3A7 genes in human pediatric and prenatal livers. The methylation status of cytosine-phospho-guanine dinucleotides was determined in 16 pediatric liver samples using methyl-seq and confirmed by bisulfite sequencing of 48 pediatric and 34 prenatal liver samples. Samples were separated by age into five groups (prenatal, < 1 year of age, 1.8-6 years, 7-11 years, and 12-17 years). Methyl-seq anaylsis revealed that cytosines in the proximal promoter of CYP3A7 are hypomethylated in neonates compared with adolescents (P < 0.001). In contrast, a cytosine 383 base pair upstream of CYP3A4 is hypermethylated in liver samples from neonates compared with adolescents (P = 0.00001). Developmental changes in methylation of cytosines in the proximal promoters of CYP3A4 and CYP3A7 in pediatric livers were confirmed by bisulfite sequencing. In addition, the methylation status of cytosine in the CYP3A4 and CYP3A7 proximal promoters correlated with changes in developmental expression of mRNA for the two enzymes. PMID:26772622

  14. Modulation of human cytochrome P450 3A4 (CYP3A4) and P-glycoprotein (P-gp) in Caco-2 cell monolayers by selected commercial-source milk thistle and goldenseal products.

    PubMed

    Budzinski, Jason W; Trudeau, Vance L; Drouin, Cathy E; Panahi, Mitra; Arnason, J Thor; Foster, Brian C

    2007-09-01

    In this study, we used an in vitro Caco-2 cell monolayer model to evaluate aqueous extracts of commercial-source goldenseal (Hydrastis canadensis) and milk thistle (Silybum marianum) capsule formulations, their marker phytochemicals (berberine and silibinin, respectively), as well as dillapiol, vinblastine, and the HIV protease inhibitor saquinavir for their ability to modulate CYP3A4 and ABCB1 expression after short-term exposure (48 h). Both upregulation and downregulation of CYP3A4 expression was observed with extracts of varying concentrations of the two natural health products (NHPs). CYP3A4 was highly responsive in our system, showing a strong dose-dependent modulation by the CYP3A4 inhibitor dillapiol (upregulation) and the milk thistle flavonolignan silibinin (downregulation). ABCB1 was largely unresponsive in this cellular model and appears to be of little value as a biomarker under our experimental conditions. Therefore, the modulation of CYP3A4 gene expression can serve as an important marker for the in vitro assessment of NHP-drug interactions. PMID:18066144

  15. Echinacea purpurea up-regulates CYP1A2, CYP3A4 and MDR1 gene expression by activation of pregnane X receptor pathway

    PubMed Central

    Awortwe, Charles; Manda, Vamshi K.; Avonto, Cristina; Khan, Shabana I.; Khan, Ikhlas A.; Walker, Larry A.; Bouic, Patrick J.; Rosenkranz, Bernd

    2015-01-01

    This study investigated the mechanism underlying Echinacea-mediated induction of CYP1A2, CYP3A4 and MDR1 in terms of human pregnane X receptor (PXR) activation. Crude extracts and fractions of Echinacea purpurea were tested for PXR activation in HepG2 cells by a reporter gene assay. Quantitative real-time PCR was carried out to determine their effects on CYP1A2 and CYP3A4 mRNA expressions. Capsules and fractions were risk ranked as high, intermediate and remote risk of drug-metabolizing enzymes induction based on EC50 values determined for respective CYPs. Fractions F1, F2 and capsule (2660) strongly activated PXR with 5-, 4- and 3.5-fold increase in activity, respectively. Echinacea preparations potentiated up-regulation of CYP1A2, CYP3A4 and MDR1 via PXR activation. Thus E. purpurea preparations cause herb–drug interaction by up-regulating CYP1A2, CYP3A4 and P-gp via PXR activation. PMID:25377539

  16. Feed-forward regulation of bile acid detoxification by CYP3A4: studies in humanized transgenic mice.

    PubMed

    Stedman, Catherine; Robertson, Graham; Coulter, Sally; Liddle, Christopher

    2004-03-19

    Bile acids are potentially toxic end products of cholesterol metabolism and their concentrations must be tightly regulated. Homeostasis is maintained by both feed-forward regulation and feedback regulation. We used humanized transgenic mice incorporating 13 kb of the 5' regulatory flanking sequence of CYP3A4 linked to a lacZ reporter gene to explore the in vivo relationship between bile acids and physiological adaptive CYP3A gene regulation in acute cholestasis after bile duct ligation (BDL). Male transgenic mice were subjected to BDL or sham surgery prior to sacrifice on days 3, 6, and 10, and others were injected with intraperitoneal lithocholic acid (LCA) or vehicle alone. BDL resulted in marked hepatic activation of the CYP3A4/lacZ transgene in pericentral hepatocytes, with an 80-fold increase in transgene activation by day 10. Individual bile acids were quantified by liquid chromatography/mass spectrometry. Serum 6beta-hydroxylated bile acids were increased following BDL, confirming the physiological relevance of endogenous Cyp3a induction to bile acid detoxification. Although concentrations of conjugated primary bile acids increased after BDL, there was no increase in LCA, a putative PXR ligand, indicating that this cannot be the only endogenous bile acid mediating this protective response. Moreover, in LCA-treated animals, 5-bromo-4-chloro-3-indolyl-beta-d-galactopyranoside staining showed hepatic activation of the CYP3A4 transgene only on the liver capsular surface, and minimal parenchymal induction, despite significant liver injury. This study demonstrates that CYP3A up-regulation is a significant in vivo adaptive response to cholestasis. However, this up-regulation is not dependent on increases in circulating LCA and the role of other bile acids as regulatory molecules requires further exploration. PMID:14681232

  17. Structural Optimization of Ghrelin Receptor Inverse Agonists to Improve Lipophilicity and Avoid Mechanism-Based CYP3A4 Inactivation.

    PubMed

    Takahashi, Bitoku; Funami, Hideaki; Shibata, Makoto; Maruoka, Hiroshi; Koyama, Makoto; Kanki, Satomi; Muto, Tsuyoshi

    2015-01-01

    Structural optimization of 2-aminonicotinamide derivatives as ghrelin receptor inverse agonists is reported. So as to avoid mechanism-based inactivation (MBI) of CYP3A4, 1,3-benzodioxol ring of the lead compound was modified. Improvement of the main activity and lipophilicity was achieved simultaneously, leading to compound 18a, which showed high lipophilic ligand efficiency (LLE) and low MBI activity. PMID:26423040

  18. Identification and in silico prediction of metabolites of the model compound, tebufenozide by human CYP3A4 and CYP2C19.

    PubMed

    Shirotani, Naoki; Togawa, Moe; Ikushiro, Shinichi; Sakaki, Toshiyuki; Harada, Toshiyuki; Miyagawa, Hisashi; Matsui, Masayoshi; Nagahori, Hirohisa; Mikata, Kazuki; Nishioka, Kazuhiko; Hirai, Nobuhiro; Akamatsu, Miki

    2015-10-15

    The metabolites of tebufenozide, a model compound, formed by the yeast-expressed human CYP3A4 and CYP2C19 were identified to clarify the substrate recognition mechanism of the human cytochrome P450 (CYP) isozymes. We then determined whether tebufenozide metabolites may be predicted in silico. Hydrogen abstraction energies were calculated with the density functional theory method B3LYP/6-31G(∗). A docking simulation was performed using FRED software. Several alkyl sites of tebufenozide were hydroxylated by CYP3A4 whereas only one site was modified by CYP2C19. The accessibility of each site of tebufenozide to the reaction center of CYP enzymes and the susceptibility of each hydrogen atom for metabolism by CYP enzymes were evaluated by a docking simulation and hydrogen abstraction energy estimation, respectively. PMID:26404412

  19. Fluoxetine reduces CES1, CES2, and CYP3A4 expression through decreasing PXR and increasing DEC1 in HepG2 cells.

    PubMed

    Shang, Wei; Liu, Jie; Chen, Ruini; Ning, Rui; Xiong, Jing; Liu, Wei; Mao, Zhao; Hu, Gang; Yang, Jian

    2016-05-01

    1. This study investigated the mechanisms of the decreases of carboxylesterases (CES) and cytochrome P4503A4 (CYP3A4) and the enzymatic activities induced by fluoxetine (FLX) in HepG2 cells. We found that FLX decreased the carboxylesterase 1 (CES1) and carboxylesterase 2 (CES2) expression and the hydrolytic activity. 2. FLX decreased the pregnane X receptor (PXR) expression which regulated the target genes such as CYP3A4, whereas increased the differentiated embryonic chondrocyte-expressed gene 1 (DEC1) expression. 3. FLX repressed the PXR at transcriptional level. 4. Overexpression of PXR alone increased the expression of CES1, CES2, and CYP3A4 and attenuated the decreases of CES1, CES2, and CYP3A4 induced by FLX. On the contrary, knockdown of PXR alone decreased the expression of CES1, CES2, and CYP3A4 and almost abolished the decreases of CES1, CES2, and CYP3A4 induced by FLX. 5. Knockdown of DEC1 alone increased the expression of PXR and CYP3A4 and almost abolished the decreases of CES1, CES2, and CYP3A4 induced by FLX. 6. Taken together, the decreases of CES and CYP3A4 expression and enzymatic activities induced by FLX are through decreasing PXR and increasing DEC1 in HepG2 cells. PMID:26340669

  20. Effect of Garden Cress Seeds Powder and Its Alcoholic Extract on the Metabolic Activity of CYP2D6 and CYP3A4

    PubMed Central

    Al-Jenoobi, Fahad I.; Al-Thukair, Areej A.; Abbas, Fawkeya A.; Al-Mohizea, Abdullah M.; Alkharfy, Khalid M.; Al-Suwayeh, Saleh A.

    2014-01-01

    The powder and alcoholic extract of dried seeds of garden cress were investigated for their effect on metabolic activity of CYP2D6 and CYP3A4 enzymes. In vitro and clinical studies were conducted on human liver microsomes and healthy human subjects, respectively. Dextromethorphan was used as a common marker for measuring metabolic activity of CYP2D6 and CYP3A4 enzymes. In in vitro studies, microsomes were incubated with NADPH in presence and absence of different concentrations of seeds extract. Clinical investigations were performed in two phases. In phase I, six healthy female volunteers were administered a single dose of dextromethorphan and in phase II volunteers were treated with seeds powder for seven days and dextromethorphan was administered with last dose. The O-demethylated and N-demethylated metabolites of dextromethorphan were measured as dextrorphan (DOR) and 3-methoxymorphinan (3-MM), respectively. Observations suggested that garden cress inhibits the formation of DOR and 3-MM metabolites. This inhibition of metabolite level was attributed to the inhibition of CYP2D6 and CYP3A4 activity. Garden cress decreases the level of DOR and 3-MM in urine and significantly increases the urinary metabolic ratio of DEX/DOR and DEX/3-MM. The findings suggested that garden cress seeds powder and ethanolic extract have the potential to interact with CYP2D6 and CYP3A4 substrates. PMID:24711855

  1. Effects of Flavonoids in Lysimachia clethroides Duby on the Activities of Cytochrome P450 CYP2E1 and CYP3A4 in Rat Liver Microsomes.

    PubMed

    Zhang, Zhi-Juan; Xia, Zhao-Yang; Wang, Jin-Mei; Song, Xue-Ting; Wei, Jin-Feng; Kang, Wen-Yi

    2016-01-01

    Incubation systems were established to investigate the effects of quercetin, kaempferol, isoquercitrin and astragalin in Lysimachia clethroides Duby on the activities of CYP2E1 and CYP3A4 in rat liver microsomes in vitro. Probe substrates of 4-nitrophenol and testosterone as well as flavonoids at different concentrations were added to the incubation systems. After incubation, a validated high performance liquid chromatography (HPLC) method was applied to separate and determine the relevant metabolites. The results suggested that kaempferol exhibited a weak inhibition of CYP2E1 activity with an IC50 of 60.26 ± 2.54 μM, while quercetin and kaempferol caused a moderate inhibition of CYP3A4 activity with IC50 values of 18.77 ± 1.69 μM and 32.65 ± 1.32 μM, respectively. Isoquercitrin and astragalin had no effects on the activities of either CYP2E1 or CYP3A4. It could be speculated from these results that the inhibitory effects of quercetin and kaempferol on the activities of CYP2E1 and CYP3A4 could be the mechanisms underlying the hepatoprotective effects of L. clethroides. PMID:27314315

  2. Drug membrane transporters and CYP3A4 are affected by hypericin, hyperforin or aristoforin in colon adenocarcinoma cells.

    PubMed

    Šemeláková, M; Jendželovský, R; Fedoročko, P

    2016-07-01

    Our previous results have shown that the combination of hypericin-mediated photodynamic therapy (HY-PDT) at sub-optimal dose with hyperforin (HP) (compounds of Hypericum sp.), or its stable derivative aristoforin (AR) stimulates generation of reactive oxygen species (ROS) leading to antitumour activity. This enhanced oxidative stress evoked the need for an explanation for HY accumulation in colon cancer cells pretreated with HP or AR. Generally, the therapeutic efficacy of chemotherapeutics is limited by drug resistance related to the overexpression of drug efflux transporters in tumour cells. Therefore, the impact of non-activated hypericin (HY), HY-PDT, HP and AR on cell membrane transporter systems (Multidrug resistance-associated protein 1-MRP1/ABCC1, Multidrug resistance-associated protein 2-MRP2/ABCC2, Breast cancer resistance protein - BCRP/ABCG2, P-glycoprotein-P-gp/ABCC1) and cytochrome P450 3A4 (CYP3A4) was evaluated. The different effects of the three compounds on their expression, protein level and activity was determined under specific PDT light (T0+, T6+) or dark conditions (T0- T6-). We found that HP or AR treatment affected the protein levels of MRP2 and P-gp, whereas HP decreased MRP2 and P-gp expression mostly in the T0+ and T6+ conditions, while AR decreased MRP2 in T0- and T6+. Moreover, HY-PDT treatment induced the expression of MRP1. Our data demonstrate that HP or AR treatment in light or dark PDT conditions had an inhibitory effect on the activity of individual membrane transport proteins and significantly decreased CYP3A4 activity in HT-29 cells. We found that HP or AR significantly affected intracellular accumulation of HY in HT-29 colon adenocarcinoma cells. These results suggest that HY, HP and AR might affect the efficiency of anti-cancer drugs, through interaction with membrane transporters and CYP3A4. PMID:27261575

  3. Analysis of single-nucleotide polymorphisms (SNPs) in human CYP3A4 and CYP3A5 genes: potential implications for the metabolism of HIV drugs

    PubMed Central

    2014-01-01

    Background Drug metabolism via the cytochrome P450 (CYP450) system has emerged as an important determinant in the occurrence of several drug interactions (adverse drug reactions, reduced pharmacological effect, drug toxicities). In particular, CYP3A4 and CYP3A5 (interacting with more than 60% of licensed drugs) exhibit the most individual variations of gene expression, mostly caused by single nucleotide polymorphisms (SNPs) within the regulatory region of the CYP3A4 and CYP3A5 genes which might affect the level of enzyme production. In this study, we sought to improve the performance of sensitive screening for CYP3A polymorphism detection in twenty HIV-1 infected patients undergoing lopinavir/ritonavir (LPV/r) monotherapy. Methods The study was performed by an effective, easy and inexpensive home-made Polymerase Chain Reaction Direct Sequencing approach for analyzing CYP3A4 and CYP3A5 genes which can detect both reported and unreported genetic variants potentially associated with altered or decreased functions of CYP3A4 and CYP3A5 proteins. Proportions and tests of association were used. Results Among the genetic variants considered, CYP3A4*1B (expression of altered function) was only found in 3 patients (15%) and CYP3A5*3 (expression of splicing defect) in 3 other patients (15%). CYP3A5*3 did not appear to be associated with decreased efficacy of LPV/r in any patient, since none of the patients carrying this variant showed virological rebound during LPV/r treatment or low levels of TDM. In contrast, low-level virological rebound was observed in one patient and a low TDM level was found in another; both were carrying CYP3A4*1B. Conclusions Our method exhibited an overall efficiency of 100% (DNA amplification and sequencing in our group of patients). This may contribute to producing innovative results for better understanding the inter-genotypic variability in gene coding for CYP3A, and investigating SNPs as biological markers of individual response to drugs

  4. Indirubin, a component of Ban-Lan-Gen, activates CYP3A4 gene transcription through the human pregnane X receptor.

    PubMed

    Kumagai, Takeshi; Aratsu, Yusuke; Sugawara, Ryosuke; Sasaki, Takamitsu; Miyairi, Shinichi; Nagata, Kiyoshi

    2016-04-01

    Ban-Lan-Gen is the common name for the dried roots of indigo plants, including Polygonum tinctorium, Isatis indigotica, Isatis tinctoria, and Strobilanthes cusia. Ban-Lan-Gen is frequently used as an anti-inflammatory and an anti-viral for the treatment of hepatitis, influenza, and various types of inflammation. One of the cytochrome P450 (CYP) enzymes, CYP3A4, is responsible for the metabolism of a wide variety of xenobiotics, including an estimated 60% of all clinically used drugs. In this study, we investigated the effect of Ban-Lan-Gen on the transcriptional activation of the CYP3A4 gene. Ban-Lan-Gen extract increased CYP3A4 gene reporter activity in a dose-dependent manner. Indirubin, one of the biologically active ingredients in the Ban-Lan-Gen, also dose-dependently increased CYP3A4 gene reporter activity. Expression of short hairpin RNA for the human pregnane X receptor (hPXR-shRNA) inhibited CYP3A4 gene reporter activity, and overexpression of human PXR increased indirubin- and rifampicin-induced CYP3A4 gene reporter activity. Furthermore, indirubin induced CYP3A4 mRNA expression in HepG2 cells. Taken together, these results indicate that indirubin, a component of Ban-Lan-Gen, activated CYP3A4 gene transcription through the activation of the human PXR. PMID:26987505

  5. Analysis of Mechanism-Based Inhibition of CYP 3A4 by a Series of Fluoroquinolone Antibacterial Agents.

    PubMed

    Watanabe, Akiko; Takakusa, Hideo; Kimura, Takako; Inoue, Shin-Ichi; Kusuhara, Hiroyuki; Ando, Osamu

    2016-10-01

    A series of fluoroquinolone compounds (compounds 1-9), which contain a common quinolone scaffold, inactivated the metabolic activity of CYP3A. The purpose of this study was to identify mechanism-based inhibition (MBI) among these fluoroquinolone compounds by metabolite profiling to elucidate the association of the substructure and MBI potential. Reversibility of MBI after incubation with potassium ferricyanide differed among the test compounds. Representative quasi-irreversible inhibitors form a metabolite-intermediate (MI) complex with the heme of CYP3A4 according to absorption analysis. Metabolite profiling identified the cyclopropane ring-opened metabolites from representative irreversible inhibitors, suggesting irreversible binding of the carbon-centered radical species with CYP3A4. On the other hand, the oxime form of representative quasi-irreversible inhibitors was identified, suggesting generation of a nitroso intermediate that could form the MI complex. Metabolites of compound 10 with a methyl group at the carbon atom at the root of the amine moiety of compound 8 include the oxime form, but compound 10 did not show quasi-irreversible inhibition. The docking study with CYP3A4 suggested that a methyl moiety introduced at the carbon atom at the root of the primary amine disrupts formation of the MI complex between the heme and the nitroso intermediate because of steric hindrance. This study identified substructures of fluoroquinolone compounds associated with the MBI mechanism; introduction of substituted groups inducing steric hindrance with the heme of P450 can prevent formation of an MI complex. Our series of experiments may be broadly applicable to prevention of MBI at the drug discovery stage. PMID:27469000

  6. Interactions of endosulfan and methoxychlor involving CYP3A4 and CYP2B6 in human HepaRG cells.

    PubMed

    Savary, Camille C; Jossé, Rozenn; Bruyère, Arnaud; Guillet, Fabrice; Robin, Marie-Anne; Guillouzo, André

    2014-08-01

    Humans are usually exposed to several pesticides simultaneously; consequently, combined actions between pesticides themselves or between pesticides and other chemicals need to be addressed in the risk assessment. Many pesticides are efficient activators of pregnane X receptor (PXR) and/or constitutive androstane receptor (CAR), two major nuclear receptors that are also activated by other substrates. In the present work, we searched for interactions between endosulfan and methoxychlor, two organochlorine pesticides whose major routes of metabolism involve CAR- and PXR-regulated CYP3A4 and CYP2B6, and whose mechanisms of action in humans remain poorly understood. For this purpose, HepaRG cells were treated with both pesticides separately or in mixture for 24 hours or 2 weeks at concentrations relevant to human exposure levels. In combination they exerted synergistic cytotoxic effects. Whatever the duration of treatment, both compounds increased CYP3A4 and CYP2B6 mRNA levels while differently affecting their corresponding activities. Endosulfan exerted a direct reversible inhibition of CYP3A4 activity that was confirmed in human liver microsomes. By contrast, methoxychlor induced this activity. The effects of the mixture on CYP3A4 activity were equal to the sum of those of each individual compound, suggesting an additive effect of each pesticide. Despite CYP2B6 activity being unchanged and increased with endosulfan and methoxychlor, respectively, no change was observed with their mixture, supporting an antagonistic effect. Altogether, our data suggest that CAR and PXR activators endosulfan and methoxychlor can interact together and with other exogenous substrates in human hepatocytes. Their effects on CYP3A4 and CYP2B6 activities could have important consequences if extrapolated to the in vivo situation. PMID:24832206

  7. Polymorphisms in the cytochrome P450 genes CYP1A2, CYP1B1, CYP3A4, CYP3A5, CYP11A1, CYP17A1, CYP19A1 and colorectal cancer risk

    PubMed Central

    Bethke, Lara; Webb, Emily; Sellick, Gabrielle; Rudd, Matthew; Penegar, Stephen; Withey, Laura; Qureshi, Mobshra; Houlston, Richard

    2007-01-01

    Background Cytochrome P450 (CYP) enzymes have the potential to affect colorectal cancer (CRC) risk by determining the genotoxic impact of exogenous carcinogens and levels of sex hormones. Methods To investigate if common variants of CYP1A2, CYP1B1, CYP3A4, CYP3A5, CYP11A1, CYP17A1 and CYP19A1 influence CRC risk we genotyped 2,575 CRC cases and 2,707 controls for 20 single nucleotide polymorphisms (SNPs) that have not previously been shown to have functional consequence within these genes. Results There was a suggestion of increased risk, albeit insignificant after correction for multiple testing, of CRC for individuals homozygous for CYP1B1 rs162558 and heterozygous for CYP1A2 rs2069522 (odds ratio [OR] = 1.36, 95% confidence interval [CI]: 1.03–1.80 and OR = 1.34, 95% CI: 1.00–1.79 respectively). Conclusion This study provides some support for polymorphic variation in CYP1A2 and CYP1B1 playing a role in CRC susceptibility. PMID:17615053

  8. Simultaneous evaluation of human CYP3A4 and ABCB1 induction by reporter assay in LS174T cells, stably expressing their reporter genes.

    PubMed

    Inami, Keita; Sasaki, Takamitsu; Kumagai, Takeshi; Nagata, Kiyoshi

    2015-04-01

    The bioavailability of orally administered therapies are often significantly limited in the human intestine by the metabolic activities of cytochrome P450 3A4 (CYP3A4) and P-glycoprotein (P-gp). Predicting whether candidate compounds induce CYP3A4 and P-gp is a crucial stage in the drug development process, as drug-drug interactions may result in the induction of intestinal CYP3A4 and P-gp. However, the assay systems needed to evaluate both CYP3A4 and P-gp induction in the intestine are yet to be established. To address this urgent requirement, LS174T cells were used to create two stable cell lines expressing the CYP3A4 or ATP-binding cassette subfamily B member 1 (ABCB1, encoding P-gp) reporter genes. First, these stable cells were tested by treatment with 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), all-trans-retinoic acid (ATRA) and 9-cis-retinoic acid (9-cis RA) that induce CYP3A4 and P-gp in the intestines. All these compounds significantly increased both CYP3A4 and ABCB1 reporter activities in the stable cell lines. To simultaneously assess the induction of CYP3A4 and ABCB1, both stable cells were co-cultivated to measure their reporter activities. The mixed cells showed a significant increase in the CYP3A4 and ABCB1 reporter activities following treatment with 1,25(OH)2 D3, ATRA, and 9-cis RA. These activity levels were maintained after passaging more than 20 times and following multiple freeze-thaw cycles. These results demonstrate that our established cell lines can be used to evaluate simultaneously CYP3A4 and ABCB1 induction in the intestines, providing a valuable in vitro model for the evaluation of future drug candidates. PMID:25410880

  9. Mechanism of Drug-Drug Interactions Mediated by Human Cytochrome P450 CYP3A4 Monomer

    PubMed Central

    Denisov, Ilia G.; Grinkova, Yelena V.; Baylon, Javier L.; Tajkhorshid, Emad; Sligar, Stephen G.

    2016-01-01

    Using Nanodiscs, we quantitate the heterotropic interaction between two different drugs mediated by monomeric CYP3A4 incorporated into a native-like membrane environment. The mechanism of this interaction is deciphered by global analysis of multiple turnover experiments performed under identical conditions using the pure substrates progesterone (PGS) and carbamazepine (CBZ) and their mixtures. Activation of CBZ epoxidation and simultaneous inhibition of PGS hydroxylation are measured and quantitated through differences in their respective affinities towards both a remote allosteric site and the productive catalytic site near the heme iron. Preferred binding of PGS at the allosteric site and higher preference of CBZ binding at the productive site give rise to a non-trivial drug-drug interaction. Molecular dynamics simulations indicate functionally important conformational changes caused by PGS binding at the allosteric site and by two CBZ molecules positioned inside the substrate binding pocket. Structural changes involving Phe-213, Phe-219, and Phe-241 are suggested to be responsible for the observed synergetic effects and positive allosteric interactions between these two substrates. Such a mechanism is likely of general relevance to the mutual heterotropic effects caused by biologically active compounds which exhibit different patterns of interaction with the distinct allosteric and productive sites of CYP3A4, as well as other xenobiotic metabolizing cytochromes P450 that are also involved in drug-drug interactions. Importantly, this work demonstrates that a monomeric CYP3A4 can display the full spectrum of activation and cooperative effects that are observed in hepatic membranes. PMID:25777547

  10. The independent contribution of miRNAs to the missing heritability in CYP3A4/5 functionality and the metabolism of atorvastatin

    PubMed Central

    Liu, Ju-E; Ren, Bin; Tang, Lan; Tang, Qian-Jie; Liu, Xiao-Ying; Li, Xin; Bai, Xue; Zhong, Wan-Ping; Meng, Jin-Xiu; Lin, Hao-Ming; Wu, Hong; Chen, Ji-Yan; Zhong, Shi-Long

    2016-01-01

    To evaluate the independent contribution of miRNAs to the missing heritability in CYP3A4/5 functionality and atorvastatin metabolism, the relationships among three levels of factors, namely (1) clinical characteristics, CYP3A4/5 genotypes, and miRNAs, (2) CYP3A4 and CYP3A5 mRNAs, and (3) CYP3A activity, as well as their individual impacts on atorvastatin metabolism, were assessed in 55 human liver tissues. MiR-27b, miR-206, and CYP3A4 mRNA respectively accounted for 20.0%, 5.8%, and 9.5% of the interindividual variations in CYP3A activity. MiR-142 was an independent contributor to the expressions of CYP3A4 mRNA (partial R2 = 0.12, P = 0.002) and CYP3A5 mRNA (partial R2 = 0.09, P = 0.005) but not CYP3A activity or atorvastatin metabolism. CYP3A activity was a unique independent predictor of variability of atorvastatin metabolism, explaining the majority of the variance in reduction of atorvastatin (60.0%) and formation of ortho-hydroxy atorvastatin (78.8%) and para-hydroxy atorvastatin (83.9%). MiR-27b and miR-206 were found to repress CYP3A4 gene expression and CYP3A activity by directly binding to CYP3A4 3′-UTR, while miR-142 was found to indirectly repress CYP3A activity. Our study indicates that miRNAs play significant roles in bridging the gap between epigenetic effects and missing heritability in CYP3A functionality. PMID:27211076

  11. The independent contribution of miRNAs to the missing heritability in CYP3A4/5 functionality and the metabolism of atorvastatin.

    PubMed

    Liu, Ju-E; Ren, Bin; Tang, Lan; Tang, Qian-Jie; Liu, Xiao-Ying; Li, Xin; Bai, Xue; Zhong, Wan-Ping; Meng, Jin-Xiu; Lin, Hao-Ming; Wu, Hong; Chen, Ji-Yan; Zhong, Shi-Long

    2016-01-01

    To evaluate the independent contribution of miRNAs to the missing heritability in CYP3A4/5 functionality and atorvastatin metabolism, the relationships among three levels of factors, namely (1) clinical characteristics, CYP3A4/5 genotypes, and miRNAs, (2) CYP3A4 and CYP3A5 mRNAs, and (3) CYP3A activity, as well as their individual impacts on atorvastatin metabolism, were assessed in 55 human liver tissues. MiR-27b, miR-206, and CYP3A4 mRNA respectively accounted for 20.0%, 5.8%, and 9.5% of the interindividual variations in CYP3A activity. MiR-142 was an independent contributor to the expressions of CYP3A4 mRNA (partial R(2) = 0.12, P = 0.002) and CYP3A5 mRNA (partial R(2) = 0.09, P = 0.005) but not CYP3A activity or atorvastatin metabolism. CYP3A activity was a unique independent predictor of variability of atorvastatin metabolism, explaining the majority of the variance in reduction of atorvastatin (60.0%) and formation of ortho-hydroxy atorvastatin (78.8%) and para-hydroxy atorvastatin (83.9%). MiR-27b and miR-206 were found to repress CYP3A4 gene expression and CYP3A activity by directly binding to CYP3A4 3'-UTR, while miR-142 was found to indirectly repress CYP3A activity. Our study indicates that miRNAs play significant roles in bridging the gap between epigenetic effects and missing heritability in CYP3A functionality. PMID:27211076

  12. Pharmacogenetics in American Indian Populations: Analysis of CYP2D6, CYP3A4, CYP3A5, and CYP2C9 in the Confederated Salish and Kootenai Tribes

    PubMed Central

    Fohner, Alison; Muzquiz, LeeAnna I.; Austin, Melissa A.; Gaedigk, Andrea; Gordon, Adam; Thornton, Timothy; Rieder, Mark J.; Pershouse, Mark A.; Putnam, Elizabeth A.; Howlett, Kevin; Beatty, Patrick; Thummel, Kenneth E.; Woodahl, Erica L.

    2014-01-01

    Objectives Cytochrome P450 enzymes play a dominant role in drug elimination and variation in these genes is a major source of interindividual differences in drug response. Little is known, however, about pharmacogenetic variation in American Indian and Alaska Native (AI/AN) populations. We have developed a partnership with the Confederated Salish and Kootenai Tribes (CSKT) in northwestern Montana to address this knowledge gap. Methods We resequenced CYP2D6 in 187 CSKT subjects and CYP3A4, CYP3A5, and CYP2C9 in 94 CSKT subjects. Results We identified 67 variants in CYP2D6, 15 in CYP3A4, 10 in CYP3A5, and 41 in CYP2C9. The most common CYP2D6 alleles were CYP2D6*4 and *41 (20.86 and 11.23%, respectively). CYP2D6*3, *5, *6, *9, *10, *17, *28, *33, *35, *49, *1xN, *2xN, and *4xN frequencies were less than 2%. CYP3A5*3, CYP3A4*1G, and *1B were detected with frequencies of 92.47, 26.81, and 2.20%, respectively. Allelic variation in CYP2C9 was low: CYP2C9*2 (5.17%) and *3 (2.69%). In general, allele frequencies in CYP2D6, CYP2C9 and CYP3A5 were similar to those observed in European Americans. There was, however, a marked divergence in CYP3A4 for the CYP3A4*1G allele. We also observed low levels of linkage between CYP3A4*1G and CYP3A5*1 in the CSKT. The combination of nonfunctional CYP3A5*3 and putative reduced function CYP3A4*1G alleles may predict diminished clearance of CYP3A substrates. Conclusions These results highlight the importance of conducting pharmacogenomic research in AI/AN populations and demonstrate that extrapolation from other populations is not appropriate. This information could help to optimize drug therapy for the CSKT population. PMID:23778323

  13. Comparative inhibitory potential of selected dietary bioactive polyphenols, phytosterols on CYP3A4 and CYP2D6 with fluorometric high-throughput screening.

    PubMed

    Vijayakumar, Thangavel Mahalingam; Kumar, Ramasamy Mohan; Agrawal, Aruna; Dubey, Govind Prasad; Ilango, Kaliappan

    2015-07-01

    Cytochrome P450 (CYP450) inhibition by the bioactive molecules of dietary supplements or herbal products leading to greater potential for toxicity of co-administered drugs. The present study was aimed to compare the inhibitory potential of selected common dietary bioactive molecules (Gallic acid, Ellagic acid, β-Sitosterol, Stigmasterol, Quercetin and Rutin) on CYP3A4 and CYP2D6 to assess safety through its inhibitory potency and to predict interaction potential with co-administered drugs. CYP450-CO complex assay was carried out for all the selected dietary bioactive molecules in isolated rat microsomes. CYP450 concentration of the rat liver microsome was found to be 0.474 nmol/mg protein, quercetin in DMSO has shown maximum inhibition on CYP450 (51.02 ± 1.24 %) but less when compared with positive control (79.02 ± 1.61 %). In high throughput fluorometric assay, IC50 value of quercetin (49.08 ± 1.02-54.36 ± 0.85 μg/ml) and gallic acid (78.46 ± 1.32-83.84 ± 1.06 μg/ml) was lower than other bioactive compounds on CYP3A4 and CYP2D6 respectively but it was higher than positive controls (06.28 ± 1.76-07.74 ± 1.32 μg/ml). In comparison of in vitro inhibitory potential on CYP3A4 and CYP2D6, consumption of food or herbal or dietary supplements containing quercetin and gallic acid without any limitation should be carefully considered when narrow therapeutic drugs are administered together. PMID:26139922

  14. Transport and uptake of clausenamide enantiomers in CYP3A4-transfected Caco-2 cells: An insight into the efflux-metabolism alliance.

    PubMed

    Hua, Fang; Shi, Mei-jun; Zhu, Xiao-lu; Li, Meng; Wang, Hong-xu; Yu, Xiao-ming; Li, Yan; Zhu, Chuan-jiang

    2015-11-01

    The present study developed a CYP3A4-expressed Caco-2 monolayer model at which effects of the efflux-metabolism alliance on the transport and uptake of clausenamide (CLA) enantiomers as CYP3A4 substrates were investigated. The apparent permeability coefficients (Papp) of (-) and (+)CLA were higher in the absorptive direction than those in the secretory direction with efflux ratios (ER) of 0.709±0.411 and 0.867±0.250 (×10(-6)cm/s), respectively. Their bidirectional transports were significantly reduced by 75.6-87.5% after treatment with verapamil (a P-glycoprotein inhibitor) that increased the rate of metabolism by CYP3A4, whereas the CYP3A4 inhibitor ketoconazole treatment markedly enhanced the basolateral to apical flux of (-) and (+)CLA with ERs being 2.934±1.432 and 1.877±0.148(×10(-6)cm/s) respectively. These changes could be blocked by the duel CYP3A4/P-glycoprotein inhibitor cyclosporine A, consequently, Papp values for CLA enantiomers in both directions were significantly greater than those obtained by using verapamil or ketoconazole, and their ERs were similar to those following (-) or (+)-isomer treatment alone. Furthermore, the uptake of (-)CLA was more than that of (+)CLA in the transfected cells. Incubation with ketoconazole decreased the intracellular concentrations of the two enantiomers. This effect disappeared in the presence of a CYP3A4 inducer dexamethasone. These results indicated that CYP3A4 could influence P-gp efflux, transport and uptake of CLA enantiomers as CYP3A4 substrates and that a duel inhibition to CYP3A4/ P-glycoprotein could enhance their absorption and bioavailability, which provides new insight into the efflux-metabolism alliance and will benefit the clinical pharmacology of (-)CLA as a candidate drug for treatment of Alzheimer's disease. PMID:26301745

  15. Selection of alternative CYP3A4 probe substrates for clinical drug interaction studies using in vitro data and in vivo simulation.

    PubMed

    Foti, Robert S; Rock, Dan A; Wienkers, Larry C; Wahlstrom, Jan L

    2010-06-01

    Understanding the potential for cytochrome P450-mediated drug-drug interactions (DDIs) is a critical step in the drug discovery process. DDIs of CYP3A4 are of particular importance because of the number of marketed drugs that are cleared by this enzyme. In response to studies that suggested the presence of several binding regions within the CYP3A4 active site, multiple probe substrates are often used for in vitro CYP3A4 DDI studies, including midazolam (the clinical standard), felodipine/nifedipine, and testosterone. However, the design of clinical CYP3A4 DDI studies may be confounded for cases such as 1-(2-hydroxy-2-methylpropyl)-N-[5-(7-methoxyquinolin-4-yloxy)pyridin-2-yl]-5-methyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazole-4-carboxamide (AMG 458), with which testosterone is predicted to exhibit a clinically relevant DDI whereas midazolam and felodipine/nifedipine are not. To develop an appropriate path forward for such clinical DDI studies, the inhibition potency of 20 known inhibitors of CYP3A4 were measured in vitro using 8 clinically relevant CYP3A4 probe substrates and testosterone. Hierarchical clustering suggested four probe substrate clusters: testosterone; felodipine; midazolam, buspirone, quinidine, and sildenafil; and simvastatin, budesonide, and fluticasone. The in vivo sensitivities of six clinically relevant CYP3A4 probe substrates (buspirone, cyclosporine, nifedipine, quinidine, sildenafil, and simvastatin) were determined in relation to midazolam from literature DDI data. Buspirone, sildenafil, and simvastatin exhibited similar or greater sensitivity than midazolam to CYP3A4 inhibition in vivo. Finally, Simcyp was used to predict the in vivo magnitude of CYP3A4 DDIs caused by AMG 458 using midazolam, sildenafil, simvastatin, and testosterone as probe substrates. PMID:20203109

  16. GW4064, an agonist of farnesoid X receptor, represses CYP3A4 expression in human hepatocytes by inducing small heterodimer partner expression.

    PubMed

    Zhang, Shu; Pan, Xian; Jeong, Hyunyoung

    2015-05-01

    Farnesoid X receptor (FXR) functions as a regulator of bile acid and lipid homeostasis and is recognized as a promising therapeutic target for metabolic diseases. The biologic function of FXR is mediated in part by a small heterodimer partner (SHP); ligand-activated FXR enhances SHP expression, and SHP in turn represses the activity of multiple transcription factors. This study aimed to investigate the effect of FXR activation on expression of the major drug-metabolizing enzyme CYP3A4. The effects of 3-(2,6-dichlorophenyl)-4-(3'-carboxy-2-chlorostilben-4-yl)oxymethyl-5-isopropylisoxazole (GW4064), a synthetic agonist of FXR, on the expression and activity of CYP3A4 were examined in primary human hepatocytes by using quantitative real-time polymerase chain reaction and S9 phenotyping. In human hepatocytes, treatment of GW4064 (1 μM) for 48 hours resulted in a 75% decrease in CYP3A4 mRNA expression and a 25% decrease in CYP3A4 activity, accompanied by ∼3-fold increase in SHP mRNA expression. In HepG2 cells, SHP repressed transactivation of CYP3A4 promoter by pregnane X receptor (PXR), constitutive androstane receptor (CAR), and glucocorticoid receptor. Interestingly, GW4064 did not repress expression of CYP2B6, another target gene of PXR and CAR; GW4064 enhanced CYP2B6 promoter activity. In conclusion, GW4064 represses CYP3A4 expression in human hepatocytes, potentially through upregulation of SHP expression and subsequent repression of CYP3A4 promoter activity. Clinically significant drug-drug interaction involving FXR agonists and CYP3A4 substrates may occur. PMID:25725071

  17. Fentanyl Enhances Hepatotoxicity of Paclitaxel via Inhibition of CYP3A4 and ABCB1 Transport Activity in Mice

    PubMed Central

    Pan, Jia-Hao; Bi, Bing-Tian; Feng, Kun-Yao; Huang, Wan; Zeng, Wei-An

    2015-01-01

    Fentanyl, a potent opioid analgesic that is used to treat cancer pain, is commonly administered with paclitaxel in advanced tumors. However, the effect of fentanyl on the hepatotoxicity of paclitaxel and its potential mechanism of action is not well studied. The purpose of this study was to investigate the effect of fentanyl on the hepatotoxicity of paclitaxel and its potential mechanisms of action. Pharmacokinetic parameters of paclitaxel were tested using reversed phase high-performance liquid chromatography (RP-HPLC). Aspartate transaminase (AST), alanine aminotransferase (ALT), and mouse liver histopathology were examined. Moreover, the cytotoxicity of anti-carcinogens was examined using 1-(4, 5-dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT), and the intracellular accumulation of doxorubicin and rhodamine 123 was detected by flow cytometry. Furthermore, the expression of ABCB1 and the activity of ABCB1 ATPase and CYP3A4 were also examined. In this study, the co-administration of fentanyl and paclitaxel prolonged the half-life (t1/2) of paclitaxel from 1.455 hours to 2.344 hours and decreased the clearance (CL) from 10.997 ml/h to 7.014 ml/h in mice. Fentanyl significantly increased the levels of ALT in mice to 88.2 U/L, which is more than 2-fold higher than the level detected in the control group, and it increased the histological damage in mouse livers. Furthermore, fentanyl enhanced the cytotoxicity of anti-carcinogens that are ABCB1 substrates and increased the accumulation of doxorubicin and rhodamine 123. Additionally, fentanyl stimulated ABCB1 ATPase activity and inhibited CYP3A4 activity in the liver microsomes of mice. Our study indicates that the obvious hepatotoxicity during this co-administration was due to the inhibition of CYP3A4 activity and ABCB1 transport activity. These findings suggested that the accumulation-induced hepatotoxicity of paclitaxel when it is combined with fentanyl should be avoided. PMID:26633878

  18. Modeling of drug-mediated CYP3A4 induction by using human iPS cell-derived enterocyte-like cells.

    PubMed

    Negoro, Ryosuke; Takayama, Kazuo; Nagamoto, Yasuhito; Sakurai, Fuminori; Tachibana, Masashi; Mizuguchi, Hiroyuki

    2016-04-15

    Many drugs have potential to induce the expression of drug-metabolizing enzymes, particularly cytochrome P450 3A4 (CYP3A4), in small intestinal enterocytes. Therefore, a model that can accurately evaluate drug-mediated CYP3A4 induction is urgently needed. In this study, we overlaid Matrigel on the human induced pluripotent stem cells-derived enterocyte-like cells (hiPS-ELCs) to generate the mature hiPS-ELCs that could be applied to drug-mediated CYP3A4 induction test. By overlaying Matrigel in the maturation process of enterocyte-like cells, the gene expression levels of intestinal markers (VILLIN, sucrase-isomaltase, intestine-specific homeobox, caudal type homeobox 2, and intestinal fatty acid-binding protein) were enhanced suggesting that the enterocyte-like cells were maturated by Matrigel overlay. The percentage of VILLIN-positive cells in the hiPS-ELCs found to be approximately 55.6%. To examine the CYP3A4 induction potential, the hiPS-ELCs were treated with various drugs. Treatment with dexamethasone, phenobarbital, rifampicin, or 1α,25-dihydroxyvitamin D3 resulted in 5.8-fold, 13.4-fold, 9.8-fold, or 95.0-fold induction of CYP3A4 expression relative to that in the untreated controls, respectively. These results suggest that our hiPS-ELCs would be a useful model for CYP3A4 induction test. PMID:26966071

  19. Modeling of Rifampicin-Induced CYP3A4 Activation Dynamics for the Prediction of Clinical Drug-Drug Interactions from In Vitro Data

    PubMed Central

    Yamashita, Fumiyoshi; Sasa, Yukako; Yoshida, Shuya; Hisaka, Akihiro; Asai, Yoshiyuki; Kitano, Hiroaki; Hashida, Mitsuru; Suzuki, Hiroshi

    2013-01-01

    Induction of cytochrome P450 3A4 (CYP3A4) expression is often implicated in clinically relevant drug-drug interactions (DDI), as metabolism catalyzed by this enzyme is the dominant route of elimination for many drugs. Although several DDI models have been proposed, none have comprehensively considered the effects of enzyme transcription/translation dynamics on induction-based DDI. Rifampicin is a well-known CYP3A4 inducer, and is commonly used as a positive control for evaluating the CYP3A4 induction potential of test compounds. Herein, we report the compilation of in vitro induction data for CYP3A4 by rifampicin in human hepatocytes, and the transcription/translation model developed for this enzyme using an extended least squares method that can account for inherent inter-individual variability. We also developed physiologically based pharmacokinetic (PBPK) models for the CYP3A4 inducer and CYP3A4 substrates. Finally, we demonstrated that rifampicin-induced DDI can be predicted with reasonable accuracy, and that a static model can be used to simulate DDI once the blood concentration of the inducer reaches a steady state following repeated dosing. This dynamic PBPK-based DDI model was implemented on a new multi-hierarchical physiology simulation platform named PhysioDesigner. PMID:24086247

  20. Prediction of variability in CYP3A4 induction using a combined 1H NMR metabonomics and targeted UPLC-MS approach.

    PubMed

    Rahmioglu, Nilufer; Le Gall, Gwénaëlle; Heaton, James; Kay, Kristine L; Smith, Norman W; Colquhoun, Ian J; Ahmadi, Kourosh R; Kemsley, E Kate

    2011-06-01

    The activity of Cytochrome P450 3A4 (CYP3A4) enzyme is associated with many adverse or poor therapeutic responses to drugs. We used (1)H NMR-based metabonomics to identify a metabolic signature associated with variation in induced CYP3A4 activity. A total of 301 female twins, aged 45--84, participated in this study. Each volunteer was administered a potent inducer of CYP3A4 (St. John's Wort) for 14 days and the activity of CYP3A4 was quantified through the metabolism of the exogenously administered probe drug quinine sulfate (300 mg). Pre- and postintervention fasting urine samples were used to obtain metabolite profiles, using (1)H NMR spectroscopy, and were analyzed using UPLC--MS to obtain a marker for CYP3A4 induction, via the ratio of 3-hydroxyquinine to quinine (3OH-Q:Q). Multiple linear regression was used to build a predictive model for 3OH-Q:Q values based on the preintervention metabolite profiles. A combination of seven metabolites and seven covariates showed a strong (r = 0.62) relationship with log(3OH-Q:Q). This regression model demonstrated significant (p < 0.00001) predictive ability when applied to an independent validation set. Our results highlight the promise of metabonomics for predicting CYP3A4-mediated drug response. PMID:21491888

  1. Intestinal CYP3A4 protects against lithocholic acid-induced hepatotoxicity in intestine-specific VDR-deficient mice[S

    PubMed Central

    Cheng, Jie; Fang, Zhong-Ze; Kim, Jung-Hwan; Krausz, Kristopher W.; Tanaka, Naoki; Chiang, John Y. L.; Gonzalez, Frank J.

    2014-01-01

    Vitamin D receptor (VDR) mediates vitamin D signaling involved in bone metabolism, cellular growth and differentiation, cardiovascular function, and bile acid regulation. Mice with an intestine-specific disruption of VDR (VdrΔIEpC) have abnormal body size, colon structure, and imbalance of bile acid metabolism. Lithocholic acid (LCA), a secondary bile acid that activates VDR, is among the most toxic of the bile acids that when overaccumulated in the liver causes hepatotoxicity. Because cytochrome P450 3A4 (CYP3A4) is a target gene of VDR-involved bile acid metabolism, the role of CYP3A4 in VDR biology and bile acid metabolism was investigated. The CYP3A4 gene was inserted into VdrΔIEpC mice to produce the VdrΔIEpC/3A4 line. LCA was administered to control, transgenic-CYP3A4, VdrΔIEpC, and VdrΔIEpC/3A4 mice, and hepatic toxicity and bile acid levels in the liver, intestine, bile, and urine were measured. VDR deficiency in the intestine of the VdrΔIEpC mice exacerbates LCA-induced hepatotoxicity manifested by increased necrosis and inflammation, due in part to over-accumulation of hepatic bile acids including taurocholic acid and taurodeoxycholic acid. Intestinal expression of CYP3A4 in the VdrΔIEpC/3A4 mouse line reduces LCA-induced hepatotoxicity through elevation of LCA metabolism and detoxification, and suppression of bile acid transporter expression in the small intestine. This study reveals that intestinal CYP3A4 protects against LCA hepatotoxicity. PMID:24343899

  2. Reduction in hepatic drug metabolizing CYP3A4 activities caused by P450 oxidoreductase mutations identified in patients with disordered steroid metabolism

    SciTech Connect

    Flueck, Christa E.; Mullis, Primus E.; Pandey, Amit V.

    2010-10-08

    Research highlights: {yields} Cytochrome P450 3A4 (CYP3A4), metabolizes 50% of drugs in clinical use and requires NADPH-P450 reductase (POR). {yields} Mutations in human POR cause congenital adrenal hyperplasia from diminished activities of steroid metabolizing P450s. {yields} We are reporting that mutations in POR may reduce CYP3A4 activity. {yields} POR mutants Y181D, A457H, Y459H, V492E and R616X lost 99%, while A287P, C569Y and V608F lost 60-85% CYP3A4 activity. {yields} Reduction of CYP3A4 activity may cause increased risk of drug toxicities/adverse drug reactions in patients with POR mutations. -- Abstract: Cytochrome P450 3A4 (CYP3A4), the major P450 present in human liver metabolizes approximately half the drugs in clinical use and requires electrons supplied from NADPH through NADPH-P450 reductase (POR, CPR). Mutations in human POR cause a rare form of congenital adrenal hyperplasia from diminished activities of steroid metabolizing P450s. In this study we examined the effect of mutations in POR on CYP3A4 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified CYP3A4 to perform kinetic studies. We are reporting that mutations in POR identified in patients with disordered steroidogenesis/Antley-Bixler syndrome (ABS) may reduce CYP3A4 activity, potentially affecting drug metabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had more than 99% loss of CYP3A4 activity, while POR mutations A287P, C569Y and V608F lost 60-85% activity. Loss of CYP3A4 activity may result in increased risk of drug toxicities and adverse drug reactions in patients with POR mutations.

  3. Racial Differences in CYP3A4 Genotype and Survival Among Men Treated on Radiation Therapy Oncology Group (RTOG) 9202: A Phase III Randomized Trial

    SciTech Connect

    Roach, Mack Silvio, Michelle de; Rebbick, Timothy; Grignon, David; Rotman, Marvin; Wolkov, Harvey; Fisher, Barbara; Hanks, Gerald; Shipley, William U.; Pollack, Alan; Sandler, Howard; Watkins-Bruner, Deborah Ph.D.

    2007-09-01

    Purpose: Inherited genotypes may explain the inferior outcomes of African American (AA) men with prostate cancer. To understand how variation in CYP3A4 correlated with outcomes, a retrospective examination of the CYP3A4*1B genotype was performed on men treated with Radiation Therapy Oncology Group (RTOG) 92-02. Methods and Materials: From 1,514 cases, we evaluated 56 (28.4%) of 197 AA and 54 (4.3%) of 1,274 European American (EA) patients. All patients received goserelin and flutamide for 2 months before and during RT (STAD-RT) {+-} 24 months of goserelin (long-term androgen deprivation plus radiation [LTAD-RT]). Events studied included overall survival and biochemical progression using American Society for Therapeutic Radiology and Oncology consensus guidelines. Results: There were no differences in outcome in patients in with or without CYP3A4 data. There was an association between race and CYP3A4 polymorphisms with 75% of EAs having the Wild Type compared to only 25% of AA men (p <0.0001). There was no association between CYP3A4 classification or race and survival or progression. Conclusions: The samples analyzed support previously reported observations about the distribution of CYP3A4*1B genotype by race, but race was not associated with poorer outcome. However, patient numbers were limited, and selection bias cannot be completely ruled out.

  4. CYP3A4-transfected Caco-2 cells as a tool for understanding biochemical absorption barriers: studies with sirolimus and midazolam.

    PubMed

    Cummins, Carolyn L; Jacobsen, Wolfgang; Christians, Uwe; Benet, Leslie Z

    2004-01-01

    CYP3A4-transfected Caco-2 cells were used as an in vitro system to predict the importance of drug metabolism and transport on overall drug absorption. We examined the transport and metabolism of two drugs; midazolam, an anesthetic agent and CYP3A4 substrate, and sirolimus, an immunosuppressant and a dual CYP3A4/P-glycoprotein (P-gp) substrate, in the presence of cyclosporine (CsA, a CYP3A4/P-gp inhibitor) or N-[4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)-ethyl]-phenyl]-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamine (GG918) (an inhibitor of P-gp and not CYP3A4). All major CYP3A4 metabolites were formed in the cells (1-OH > 4-OH midazolam and 39-O-desmethyl > 12-OH > 11-OH sirolimus), consistent with results from human liver microsomes. There was no bidirectional transport of midazolam across CYP3A4-transfected Caco-2 cells, whereas there was a 2.5-fold net efflux of sirolimus (1 microM) that disappeared in the presence of CsA or GG918. No change in the absorption rate or extraction ratio (ER) for midazolam was observed when P-gp was inhibited with GG918. Addition of GG918 had a modest impact on the absorption rate and ER for sirolimus (increased 58% and decreased 25%, respectively), whereas a 6.1-fold increase in the absorption rate and a 75% decrease in the ER were found when sirolimus was combined with CsA. Although both midazolam and sirolimus metabolites were preferentially excreted to the apical compartment, only sirolimus metabolites were transported by P-gp as determined from inhibition studies with GG918. Using CYP3A4-transfected Caco-2 cells we determined that, in contrast to P-gp, CYP3A4 is the major factor limiting sirolimus absorption. The integration of CYP3A4 and P-gp into a combined in vitro system was critical to unveil the relative importance of each biochemical barrier. PMID:14569063

  5. Size and surface modification of amorphous silica particles determine their effects on the activity of human CYP3A4 in vitro

    NASA Astrophysics Data System (ADS)

    Imai, Shunji; Yoshioka, Yasuo; Morishita, Yuki; Yoshida, Tokuyuki; Uji, Miyuki; Nagano, Kazuya; Mukai, Yohei; Kamada, Haruhiko; Tsunoda, Shin-ichi; Higashisaka, Kazuma; Tsutsumi, Yasuo

    2014-12-01

    Because of their useful chemical and physical properties, nanomaterials are widely used around the world - for example, as additives in food and medicines - and such uses are expected to become more prevalent in the future. Therefore, collecting information about the effects of nanomaterials on metabolic enzymes is important. Here, we examined the effects of amorphous silica particles with various sizes and surface modifications on cytochrome P450 3A4 (CYP3A4) activity by means of two different in vitro assays. Silica nanoparticles with diameters of 30 and 70 nm (nSP30 and nSP70, respectively) tended to inhibit CYP3A4 activity in human liver microsomes (HLMs), but the inhibitory activity of both types of nanoparticles was decreased by carboxyl modification. In contrast, amine-modified nSP70 activated CYP3A4 activity. In HepG2 cells, nSP30 inhibited CYP3A4 activity more strongly than the larger silica particles did. Taken together, these results suggest that the size and surface characteristics of the silica particles determined their effects on CYP3A4 activity and that it may be possible to develop silica particles that do not have undesirable effects on metabolic enzymes by altering their size and surface characteristics.

  6. Transcriptional Regulation of CYP3A4/2B6/2C9 Mediated via Nuclear Receptor PXR by Helicid and Its Metabolites

    PubMed Central

    Chen, Qun; Xie, Hai-tang; Li, Yan; Wang, Guo; Xu, Zhe; Pu, Zhi-chen; Hu, Hua

    2015-01-01

    Objective. This study aims at establishing and validating an in vitro system to screen drug inducers of CYPs mediated via hPXR, as well as studying transcriptional regulation of CYPs mediated via hPXR by helicid and its two metabolites. Methods. Cloning the nuclear receptor hPXR and the promoters of CYP3A4, CYP2B6, CYP2C9, and inserting the trans-element to the upstream of firefly luciferase reporter gene of the pGL4.17 vectors, then cotransfecting the report vectors and hPXR expression plasmid to HepG2 cell line. After 24 hours, the transfected cells were treated with helicid (0.004, 0.04, and 0.4 μmol/L) and its metabolite I and metabolite II (0.0004, 0.004, and 0.04 μmol/L) for 48 h, while rifampin (10 μmol/L) was included as the positive control and 0.1% DMSO as the negative control group. Cells were lysized and luciferase activity was determined using a dual luciferase reporter assay kit. Results. Helicid and its metabolites did not significantly increase promoter activities of CYP3A4, CYP2B6, and CYP2C9 in HepG2 cells transfected with PXR expression plasmid (P > 0.05). Conclusion. PXR-expressed CYP3A4, CYP2B6, and CYP2C9 dual luciferase reporter gene platforms were successfully established, and helicid and its metabolites I, II do not significantly induce the transcription of CYP3A4, CYP2B6, and CYP2C9. PMID:25977700

  7. The Effect of microRNAs in the Regulation of Human CYP3A4: a Systematic Study using a Mathematical Model

    NASA Astrophysics Data System (ADS)

    Wei, Zhiyun; Jiang, Songshan; Zhang, Yiting; Wang, Xiaofei; Peng, Xueling; Meng, Chunjie; Liu, Yichen; Wang, Honglian; Guo, Luo; Qin, Shengying; He, Lin; Shao, Fengmin; Zhang, Lirong; Xing, Qinghe

    2014-03-01

    CYP3A4 metabolizes more than 50% of the drugs on the market. The large inter-individual differences of CYP3A4 expression may contribute to the variability of human drug responses. Post-transcriptional regulation of CYP3A4 is poorly understood, whereas transcriptional regulation has been studied much more thoroughly. In this study, we used multiple software programs to predict miRNAs that might bind to CYP3A4 and identified 112 potentially functional miRNAs. Then a luciferase reporter system was used to assess the effect of the overexpression of each potentially functional miRNA in HEK 293T cells. Fourteen miRNAs that significantly decreased reporter activity were measured in human liver samples (N = 27) as candidate miRNAs. To establish a more effective way to analyze in vivo data for miRNA candidates, the relationship between functional miRNA and target mRNA was modeled mathematically. Taking advantage of this model, we found that hsa-miR-577, hsa-miR-1, hsa-miR-532-3p and hsa-miR-627 could significantly downregulate the translation efficiency of CYP3A4 mRNA in liver. This study used in silico, in vitro and in vivo methods to progressively screen functional miRNAs for CYP3A4 and to enhance our understanding of molecular events underlying the large inter-individual differences of CYP3A4 expression in human populations.

  8. Content of CYP3A4 inhibitors, naringin, naringenin and bergapten in grapefruit and grapefruit juice products.

    PubMed

    Ho, P C; Saville, D J; Coville, P F; Wanwimolruk, S

    2000-04-01

    The flavonoids, naringin and naringenin and the furanocoumarin, bergapten (5-methoxypsoralen), were detected in some fresh grapefruit and commercial grapefruit juices but were not detected in other fruit juices tested (orange; orange with apple base; dark grape; orange and mango with apple base; orange, peach, passion fruit juice). The contents of these three grapefruit constituents in commercial juice and fresh grapefruit varied from brand to brand and also from lot to lot. Juice was prepared from the fresh fruit via different methods (by hand, squeezer or blender). The naringin content, after hand-squeeze, ranged from 115 to 384 mg/l. With hand-squeeze juice production, bergapten was not detected (less than 0.5 mg/l) in two varieties of grapefruit, and naringenin was usually not in detectable levels (less than 2 mg/l) in three varieties. All three constituents were present in New Zealand grapefruit preparations (including juice by hand-squeeze) and different lots showed variation in content (1.5-, 2.3- and 4.7-fold for naringin, naringenin and bergapten, respectively). Differences in the concentrations of these three constituents, which have potential for drug interaction, may contribute to the variability in pharmacokinetics of CYP3A4 drugs and some contradictory results of drug interaction studies with grapefruit juice. PMID:10812937

  9. Prednisone has no effect on the pharmacokinetics of CYP3A4 metabolized drugs - midazolam and odanacatib.

    PubMed

    Marcantonio, Eugene E; Ballard, Jeanine; Gibson, Christopher R; Kassahun, Kelem; Palamanda, Jairam; Tang, Cuyue; Evers, Raymond; Liu, Chengcheng; Zajic, Stefan; Mahon, Chantal; Mostoller, Kate; Hreniuk, David; Mehta, Anish; Morris, Denise; Wagner, John A; Stoch, S Aubrey

    2014-11-01

    We evaluated the effect of prednisone on midazolam and odanacatib pharmacokinetics. In this open-label, 2-period crossover study in healthy male subjects, midazolam 2 mg was administered (Day -1) followed by odanacatib 50 mg (Day 1) during Part 1. In Period 2, prednisone 10 mg once daily (qd) was administered on Days 1-28; odanacatib was co-administered on Day 14 and midazolam 2 mg was co-administered on Days 1 and 28. Subjects were administered midazolam 2 mg on Days 42 and 56. Safety and tolerability were assessed throughout the study. A physiologically-based pharmacokinetic (PBPK) model was also built. There were 15 subjects enrolled; mean age was 31 years. The odanacatib AUC(0- ∞) GMR (90% CI) [odanacatib + prednisone (Day 14, Period 2)/odanacatib alone (Day 1, Period 1] was 1.06 (0.96, 1.17). AUC(0-∞) GMR (90%CI) [midazolam + prednisone (Day 28, Period 2)/midazolam alone (Day -1, Period 1] was 1.08 (0.93,1.26). There were no serious AEs or AEs leading to discontinuation. PBPK modeling showed that prednisone does not cause significant effects on the exposure of sensitive CYP3A4 substrates in vivo at therapeutic doses. Co-administration of prednisone 10 mg qd had no effect on pharmacokinetics of either odanacatib 10 mg or midazolam 2 mg. PMID:24895078

  10. Enhancement of CYP3A4 Activity in Hep G2 Cells by Lentiviral Transfection of Hepatocyte Nuclear Factor-1 Alpha

    PubMed Central

    Chiang, Tsai-Shin; Yang, Kai-Chiang; Chiou, Ling-Ling; Huang, Guan-Tarn; Lee, Hsuan-Shu

    2014-01-01

    Human hepatoma cell lines are commonly used as alternatives to primary hepatocytes for the study of drug metabolism in vitro. However, the phase I cytochrome P450 (CYP) enzyme activities in these cell lines occur at a much lower level than their corresponding activities in primary hepatocytes, and thus these cell lines may not accurately predict drug metabolism. In the present study, we selected hepatocyte nuclear factor-1 alpha (HNF1α) from six transcriptional regulators for lentiviral transfection into Hep G2 cells to optimally increase their expression of the CYP3A4 enzyme, which is the major CYP enzyme in the human body. We subsequently found that HNF1α-transfected Hep G2 enhanced the CYP3A4 expression in a time- and dose-dependent manner and the activity was noted to increase with time and peaked 7 days. With a multiplicity of infection (MOI) of 100, CYP3A4 expression increased 19-fold and enzyme activity more than doubled at day 7. With higher MOI (1,000 to 3,000), the activity increased 8- to 10-fold; however, it was noted the higher MOI, the higher cell death rate and lower cell survival. Furthermore, the CYP3A4 activity in the HNF1α-transfected cells could be induced by CYP3A4-specific inducer, rifampicin, and metabolized nifedipine in a dose-dependent manner. With an MOI of 3,000, nifedipine-metabolizing activity was 6-fold of control and as high as 66% of primary hepatocytes. In conclusion, forceful delivery of selected transcriptional regulators into human hepatoma cells might be a valuable method to enhance the CYP activity for a more accurate determination of drug metabolism in vitro. PMID:24733486

  11. Identification of the Residue in Human CYP3A4 That Is Covalently Modified by Bergamottin and the Reactive Intermediate That Contributes to the Grapefruit Juice Effect

    PubMed Central

    Lin, Hsia-lien; Kenaan, Cesar

    2012-01-01

    Previous studies have demonstrated that bergamottin (BG), a component of grapefruit juice, is a mechanism-based inactivator of CYP3A4 and contributes, in part, to the grapefruit juice-drug interaction. Although the covalent binding of [14C]BG to the CYP3A4 apoprotein has been demonstrated by SDS-polyacrylamide gel electrophoresis, the identity of the modified amino acid residue and the reactive intermediate species of BG responsible for the inactivation have not been reported. In the present study, we show that inactivation of CYP3A4 by BG results in formation of a modified apoprotein-3A4 and a GSH conjugate, both exhibiting mass increases of 388 Da, which corresponds to the mass of 6′,7′-dihydroxybergamottin (DHBG), a metabolite of BG, plus one oxygen atom. To identify the adducted residue, BG-inactivated 3A4 was digested with trypsin, and the digests were then analyzed by liquid chromatography-tandem mass spectrometry (MS/MS). A mass shift of 388 Da was used for the SEQUEST database search, which revealed a mass increase of 388 Da for the peptide with the sequence 272LQLMIDSQNSK282, and MS/MS analysis of the adducted peptide demonstrated that Gln273 is the residue modified. Mutagenesis studies showed that the Gln273 to Val mutant was resistant to inactivation by BG and DHBG and did not generate two of the major metabolites of BG formed by 3A4 wild type. In conclusion, we have determined that the reactive intermediate, oxygenated DHBG, covalently binds to Gln273 and thereby contributes to the mechanism-based inactivation of CYP3A4 by BG. PMID:22344702

  12. Lack of effect of brivanib on the pharmacokinetics of midazolam, a CYP3A4 substrate, administered intravenously and orally in healthy participants.

    PubMed

    Syed, Shariq; Clemens, Pamela L; Lathers, Deanne; Kollia, Georgia; Dhar, Arindam; Walters, Ian; Masson, Eric

    2012-06-01

    Brivanib alaninate is the orally available prodrug of brivanib, a dual inhibitor of fibroblast growth factor and vascular endothelial growth factor signaling pathways that is under therapeutic investigation for various malignancies. Brivanib alaninate inhibits CYP3A4 in vitro, and thus there is potential for drug-drug interaction with CYP3A4 substrates, such as midazolam. The present study evaluated pharmacokinetic parameters and safety/tolerability upon coadministration of brivanib alaninate and midazolam. Healthy participants received intravenous (IV) or oral midazolam with and without oral brivanib alaninate. Blood samples for pharmacokinetic analysis were collected up to 12 hours after midazolam and up to 48 hours after brivanib alaninate. Twenty-four participants were administered study drugs; 21 completed the trial. No clinically relevant effect of brivanib alaninate on the overall exposure to midazolam following IV or oral administration was observed. Orally administered brivanib alaninate was generally well tolerated in the presence of IV or oral midazolam. The lack of a pharmacokinetic interaction between brivanib and midazolam indicates that brivanib alaninate does not influence either intestinal or hepatic CYP3A4 and confirms that brivanib alaninate may be safely coadministered with midazolam and other CYP3A4 substrates. PMID:21659627

  13. The use of isomeric testosterone dimers to explore allosteric effects in substrate binding to cytochrome P450 CYP3A4.

    PubMed

    Denisov, Ilia G; Mak, Piotr J; Grinkova, Yelena V; Bastien, Dominic; Bérubé, Gervais; Sligar, Stephen G; Kincaid, James R

    2016-05-01

    Cytochrome P450 CYP3A4 is the main drug-metabolizing enzyme in the human liver, being responsible for oxidation of 50% of all pharmaceuticals metabolized by human P450 enzymes. Possessing a large substrate binding pocket, it can simultaneously bind several substrate molecules and often exhibits a complex pattern of drug-drug interactions. In order to better understand structural and functional aspects of binding of multiple substrate molecules to CYP3A4 we used resonance Raman and UV-VIS spectroscopy to document the effects of binding of synthetic testosterone dimers of different configurations, cis-TST2 and trans-TST2. We directly demonstrate that the binding of two steroid molecules, which can assume multiple possible configurations inside the substrate binding pocket of monomeric CYP3A4, can lead to active site structural changes that affect functional properties. Using resonance Raman spectroscopy, we have documented perturbations in the ferric and Fe-CO states by these substrates, and compared these results with effects caused by binding of monomeric TST. While the binding of trans-TST2 yields results similar to those obtained with monomeric TST, the binding of cis-TST2 is much tighter and results in significantly more pronounced conformational changes of the porphyrin side chains and Fe-CO unit. In addition, binding of an additional monomeric TST molecule in the remote allosteric site significantly improves binding affinity and the overall spin shift for CYP3A4 with trans-TST2 dimer bound inside the substrate binding pocket. This result provides the first direct evidence for an allosteric effect of the peripheral binding site at the protein-membrane interface on the functional properties of CYP3A4. PMID:26774838

  14. Two surfaces of cytochrome b5 with major and minor contributions to CYP3A4-catalyzed steroid and nifedipine oxygenation chemistries

    PubMed Central

    Peng, Hwei-Ming; Auchus, Richard J.

    2014-01-01

    Conserved human cytochrome b5 (b5) residues D58 and D65 are critical for interactions with CYP2E1 and CYP2C19, whereas E48 and E49 are essential for stimulating the 17,20-lyase activity of CYP17A1. Here, we show that b5 mutations E48G, E49G, D58G, and D65G have reduced capacity to stimulate CYP3A4-catalyzed progesterone and testosterone 6β-hydroxylation or nifedipine oxidation. The b5 double mutation D58G/D65G fails to stimulate these reactions, similar to CYP2E1 and CYP2C19, whereas mutation E48G/E49G retains 23–42% of wild-type stimulation. Neither mutation impairs the activity stimulation of wild-type b5, nor does mutation D58G/D65G impair the partial stimulation of mutations E48G or E48G/E49G. For assays reconstituted with a single phospholipid, phosphatidyl serine afforded the highest testosterone 6β-hydroxylase activity with wild-type b5 but the poorest activity with b5 mutation E48G/E49G, and the activity stimulation of mutation E48G/E49G was lost at [NaCl] > 50 mM. Cross-linking of CYP3A4 and b5 decreased in the order wild-type > E48G/E49G > D58G/D65G and varied with phospholipid. We conclude that two b5 acidic surfaces, primarily the domain including residues D58-D65, participate in the stimulation of CYP3A4 activities. Our data suggest that a minor population of CYP3A4 molecules remains sensitive to b5 mutation E48G/E49G, consistent with phospholipid-dependent conformational heterogeneity of CYP3A4. PMID:24256945

  15. Two surfaces of cytochrome b5 with major and minor contributions to CYP3A4-catalyzed steroid and nifedipine oxygenation chemistries.

    PubMed

    Peng, Hwei-Ming; Auchus, Richard J

    2014-01-01

    Conserved human cytochrome b5 (b5) residues D58 and D65 are critical for interactions with CYP2E1 and CYP2C19, whereas E48 and E49 are essential for stimulating the 17,20-lyase activity of CYP17A1. Here, we show that b5 mutations E48G, E49G, D58G, and D65G have reduced capacity to stimulate CYP3A4-catalyzed progesterone and testosterone 6β-hydroxylation or nifedipine oxidation. The b5 double mutation D58G/D65G fails to stimulate these reactions, similar to CYP2E1 and CYP2C19, whereas mutation E48G/E49G retains 23-42% of wild-type stimulation. Neither mutation impairs the activity stimulation of wild-type b5, nor does mutation D58G/D65G impair the partial stimulation of mutations E48G or E48G/E49G. For assays reconstituted with a single phospholipid, phosphatidyl serine afforded the highest testosterone 6β-hydroxylase activity with wild-type b5 but the poorest activity with b5 mutation E48G/E49G, and the activity stimulation of mutation E48G/E49G was lost at [NaCl]>50mM. Cross-linking of CYP3A4 and b5 decreased in the order wild-type>E48G/E49G>D58G/D65G and varied with phospholipid. We conclude that two b5 acidic surfaces, primarily the domain including residues D58-D65, participate in the stimulation of CYP3A4 activities. Our data suggest that a minor population of CYP3A4 molecules remains sensitive to b5 mutation E48G/E49G, consistent with phospholipid-dependent conformational heterogeneity of CYP3A4. PMID:24256945

  16. Inhibition of the metabolism of brotizolam by erythromycin in humans: in vivo evidence for the involvement of CYP3A4 in brotizolam metabolism

    PubMed Central

    Tokairin, Takaki; Fukasawa, Takashi; Yasui-Furukori, Norio; Aoshima, Toshiaki; Suzuki, Akihito; Inoue, Yoshimasa; Tateishi, Tomonori; Otani, Koichi

    2005-01-01

    Aims To obtain in vivo evidence for the involvement of cytochrome P450 (CYP) 3A4 in the metabolism of brotizolam. Methods Fourteen healthy male volunteers received erythromycin 1200 mg day−1 or placebo for 7 days in a double-blind randomized crossover manner. On the 6th day they received a single oral 0.5-mg dose of brotizolam, and blood samplings were performed for 24 h. Results Erythromycin treatment significantly increased the peak plasma concentration (P < 0.05), total area under the plasma concentration-time curve (P < 0.01), and elimination half-life (P < 0.01) of brotizolam. Conclusions The present study provides in vivo evidence for the involvement of CYP3A4 in brotizolam metabolism. PMID:16042670

  17. Investigation of drug-drug interactions caused by human pregnane X receptor-mediated induction of CYP3A4 and CYP2C subfamilies in chimeric mice with a humanized liver.

    PubMed

    Hasegawa, Maki; Tahara, Harunobu; Inoue, Ryo; Kakuni, Masakazu; Tateno, Chise; Ushiki, Junko

    2012-03-01

    The induction of cytochrome P450 (P450) enzymes is one of the risk factors for drug-drug interactions (DDIs). To date, the human pregnane X receptor (PXR)-mediated CYP3A4 induction has been well studied. In addition to CYP3A4, the expression of CYP2C subfamily is also regulated by PXR, and the DDIs caused by the induction of CYP2C enzymes have been reported to have a major clinical impact. The purpose of the present study was to investigate whether chimeric mice with a humanized liver (PXB mice) can be a suitable animal model for investigating the PXR-mediated induction of CYP2C subfamily, together with CYP3A4. We evaluated the inductive effect of rifampicin (RIF), a typical human PXR ligand, on the plasma exposure to the four P450 substrate drugs (triazolam/CYP3A4, pioglitazone/CYP2C8, (S)-warfarin/CYP2C9, and (S)-(-)-mephenytoin/CYP2C19) by cassette dosing in PXB mice. The induction of several drug-metabolizing enzymes and transporters in the liver was also examined by measuring the enzyme activity and mRNA expression levels. Significant reductions in the exposure to triazolam, pioglitazone, and (S)-(-)-mephenytoin, but not to (S)-warfarin, were observed. In contrast to the in vivo results, all the four P450 isoforms, including CYP2C9, were elevated by RIF treatment. The discrepancy in the (S)-warfarin results between in vivo and in vitro studies may be attributed to the relatively small contribution of CYP2C9 to (S)-warfarin elimination in the PXB mice used in this study. In summary, PXB mice are a useful animal model to examine DDIs caused by PXR-mediated induction of CYP2C and CYP3A4. PMID:22126990

  18. The effects of H2S on the activities of CYP2B6, CYP2D6, CYP3A4, CYP2C19 and CYP2C9 in vivo in rat.

    PubMed

    Wang, Xianqin; Han, Anyue; Wen, Congcong; Chen, Mengchun; Chen, Xinxin; Yang, Xuezhi; Ma, Jianshe; Lin, Guanyang

    2013-01-01

    Hydrogen sulfide (H2S) is a colorless, flammable, extremely hazardous gas with a "rotten egg" smell. The human body produces small amounts of H2S and uses it as a signaling molecule. The cocktail method was used to evaluate the influence of H2S on the activities of CYP450 in rats, which were reflected by the changes of pharmacokinetic parameters of five specific probe drugs: bupropion, metroprolol, midazolam, omeprazole and tolbutamide, respectively. The rats were randomly divided into two groups, control group and H2S group. The H2S group rats were given 5 mg/kg NaHS by oral administration once a day for seven days. The mixture of five probes was given to rats through oral administration and the blood samples were obtained at a series of time-points through the caudal vein. The concentrations of probe drugs in rat plasma were measured by LC-MS. In comparing the H2S group with the control group, there was a statistically pharmacokinetics difference for midazolam and tolbutamide; the area under the plasma concentration-time curve (AUC) was decreased for midazolam (p < 0.05) and increased for tolbutamide (p < 0.05); while there was no statistical pharmacokinetics difference for bupropion, metroprolol and omeprazole. H2S could not influence the activities of CYP2B6, CYP2D6 and CYP2C19 in rats, while H2S could induce the activity of CYP3A4 and inhibit the activity of CYP2C9 in rats. PMID:24336065

  19. The Effects of H2S on the Activities of CYP2B6, CYP2D6, CYP3A4, CYP2C19 and CYP2C9 in Vivo in Rat

    PubMed Central

    Wang, Xianqin; Han, Anyue; Wen, Congcong; Chen, Mengchun; Chen, Xinxin; Yang, Xuezhi; Ma, Jianshe; Lin, Guanyang

    2013-01-01

    Hydrogen sulfide (H2S) is a colorless, flammable, extremely hazardous gas with a “rotten egg” smell. The human body produces small amounts of H2S and uses it as a signaling molecule. The cocktail method was used to evaluate the influence of H2S on the activities of CYP450 in rats, which were reflected by the changes of pharmacokinetic parameters of five specific probe drugs: bupropion, metroprolol, midazolam, omeprazole and tolbutamide, respectively. The rats were randomly divided into two groups, control group and H2S group. The H2S group rats were given 5 mg/kg NaHS by oral administration once a day for seven days. The mixture of five probes was given to rats through oral administration and the blood samples were obtained at a series of time-points through the caudal vein. The concentrations of probe drugs in rat plasma were measured by LC-MS. In comparing the H2S group with the control group, there was a statistically pharmacokinetics difference for midazolam and tolbutamide; the area under the plasma concentration-time curve (AUC) was decreased for midazolam (p < 0.05) and increased for tolbutamide (p < 0.05); while there was no statistical pharmacokinetics difference for bupropion, metroprolol and omeprazole. H2S could not influence the activities of CYP2B6, CYP2D6 and CYP2C19 in rats, while H2S could induce the activity of CYP3A4 and inhibit the activity of CYP2C9 in rats. PMID:24336065

  20. Investigation of the effect of the uneven distribution of CYP3A4 and P-glycoprotein in the intestine on the barrier function against xenobiotics: a simulation study.

    PubMed

    Watanabe, Takao; Maeda, Kazuya; Nakai, Chikako; Sugiyama, Yuichi

    2013-09-01

    CYP3A4 and P-glycoprotein (P-gp) have similar substrate specificities and work together to form an intestinal absorption barrier against xenobiotics. Previous reports have indicated that CYP3A4 expression decreases gradually, whereas P-gp expression increases, from the upper to lower small intestine. The physiological rationale for this uneven distribution of CYP3A4 and P-gp as a barrier against xenobiotics has not been determined. To clarify the effect of these distribution patterns on barrier function, we constructed a mathematical model that included passive membrane permeation, P-gp-mediated apical efflux, and CYP3A4-mediated metabolism, and we simulated the effects of these distribution patterns on the fraction absorbed of co-substrates without changing their overall activities. The simulation showed that the physiological distribution patterns of both CYP3A4 and P-gp result in the lowest fraction absorbed, but not for drugs with low CYP3A4 and high P-gp-mediated clearances. These results suggest that the distribution pattern of CYP3A4 is especially important for the barrier function. On the other hand, physiological distribution pattern of P-gp exerts the maximum barrier function for dual good substrates for P-gp and CYP3A4, but even distribution of P-gp mostly suppresses the intestinal absorption of good P-gp, but poor CYP3A4 substrates. PMID:23754337

  1. Towards a Best Practice Approach in PBPK Modeling: Case Example of Developing a Unified Efavirenz Model Accounting for Induction of CYPs 3A4 and 2B6.

    PubMed

    Ke, A; Barter, Z; Rowland-Yeo, K; Almond, L

    2016-07-01

    In this study, we present efavirenz physiologically based pharmacokinetic (PBPK) model development as an example of our best practice approach that uses a stepwise approach to verify the different components of the model. First, a PBPK model for efavirenz incorporating in vitro and clinical pharmacokinetic (PK) data was developed to predict exposure following multiple dosing (600 mg q.d.). Alfentanil i.v. and p.o. drug-drug interaction (DDI) studies were utilized to evaluate and refine the CYP3A4 induction component in the liver and gut. Next, independent DDI studies with substrates of CYP3A4 (maraviroc, atazanavir, and clarithromycin) and CYP2B6 (bupropion) verified the induction components of the model (area under the curve [AUC] ratios within 1.0-1.7-fold of observed). Finally, the model was refined to incorporate the fractional contribution of enzymes, including CYP2B6, propagating autoinduction into the model (Racc 1.7 vs. 1.7 observed). This validated mechanistic model can now be applied in clinical pharmacology studies to prospectively assess both the victim and perpetrator DDI potential of efavirenz. PMID:27435752

  2. Towards a Best Practice Approach in PBPK Modeling: Case Example of Developing a Unified Efavirenz Model Accounting for Induction of CYPs 3A4 and 2B6

    PubMed Central

    Ke, A; Barter, Z; Rowland‐Yeo, K

    2016-01-01

    In this study, we present efavirenz physiologically based pharmacokinetic (PBPK) model development as an example of our best practice approach that uses a stepwise approach to verify the different components of the model. First, a PBPK model for efavirenz incorporating in vitro and clinical pharmacokinetic (PK) data was developed to predict exposure following multiple dosing (600 mg q.d.). Alfentanil i.v. and p.o. drug‐drug interaction (DDI) studies were utilized to evaluate and refine the CYP3A4 induction component in the liver and gut. Next, independent DDI studies with substrates of CYP3A4 (maraviroc, atazanavir, and clarithromycin) and CYP2B6 (bupropion) verified the induction components of the model (area under the curve [AUC] ratios within 1.0–1.7‐fold of observed). Finally, the model was refined to incorporate the fractional contribution of enzymes, including CYP2B6, propagating autoinduction into the model (Racc 1.7 vs. 1.7 observed). This validated mechanistic model can now be applied in clinical pharmacology studies to prospectively assess both the victim and perpetrator DDI potential of efavirenz. PMID:27435752

  3. Differential regulation of CYP3A4 promoter activity by a new class of natural product derivatives binding to pregnane X receptor

    PubMed Central

    Banerjee, Monimoy; Chen, Taosheng

    2013-01-01

    The pregnane X receptor (PXR) regulates drug metabolism by regulating the expression of drug-metabolizing enzymes such as cytochrome P450 3A4 (CYP3A4), which is involved in the metabolism of >50% of clinically prescribed drugs. The activity of PXR can be controlled by the binding of small molecule agonists or antagonists. Because of its unique ligand binding pocket, PXR binds promiscuously to structurally diverse chemicals. To study the structure-activity relationship, novel modulators for PXR are needed. Here we report the virtual screening of ~25,000 natural product derivatives from the ZINC database using the Molecular Operating Environment docking software tool against the PXR-rifampicin complex x-ray crystal structure. Our screening resulted in identification of compounds based on the lowest S score, which measures Gibbs free energy. Interestingly, we found that the compounds that bind directly to PXR, as revealed in an intrinsic tryptophan fluorescence assay, modulate CYP3A4 promoter activity differentially in HepG2 cells. Mutational analysis and docking studies showed that these compounds bind broadly in the ligand binding pocket but interact with different amino acid residues. We further investigated the mechanism of binding by analyzing the functional groups that are important for distinguishing agonists from antagonists. The approach we used to identify novel modulators that bind to PXR can be useful for finding novel modulators of PXR. PMID:23928187

  4. Homotropic cooperativity of monomeric cytochrome P450 3A4

    SciTech Connect

    Baas, Bradley J.; Denisov, Ilia G.; Sligar, Stephen G.

    2010-11-16

    Mechanistic studies of mammalian cytochrome P450s are often obscured by the phase heterogeneity of solubilized preparations of membrane enzymes. The various protein-protein aggregation states of microsomes, detergent solubilized cytochrome or a family of aqueous multimeric complexes can effect measured substrate binding events as well as subsequent steps in the reaction cycle. In addition, these P450 monooxygenases are normally found in a membrane environment and the bilayer composition and dynamics can also effect these catalytic steps. Here, we describe the structural and functional characterization of a homogeneous monomeric population of cytochrome P450 3A4 (CYP 3A4) in a soluble nanoscale membrane bilayer, or Nanodisc [Nano Lett. 2 (2002) 853]. Cytochrome P450 3A4:Nanodisc assemblies were formed and purified to yield a 1:1 ratio of CYP 3A4 to Nanodisc. Solution small angle X-ray scattering was used to structurally characterize this monomeric CYP 3A4 in the membrane bilayer. The purified CYP 3A4:Nanodiscs showed a heretofore undescribed high level of homotropic cooperativity in the binding of testosterone. Soluble CYP 3A4:Nanodisc retains its known function and shows prototypic hydroxylation of testosterone when driven by hydrogen peroxide. This represents the first functional characterization of a true monomeric preparation of cytochrome P450 monooxygenase in a phospholipid bilayer and elucidates new properties of the monomeric form.

  5. High Content Imaging and Analysis Enable Quantitative In Situ Assessment of CYP3A4 Using Cryopreserved Differentiated HepaRG Cells

    PubMed Central

    Ranade, Aarati R.; Wilson, Melinda S.; McClanahan, Amy M.; Ball, Andrew J.

    2014-01-01

    High-throughput imaging-based hepatotoxicity studies capable of analyzing individual cells in situ hold enormous promise for drug safety testing but are frequently limited by a lack of sufficient metabolically competent human cells. This study examined cryopreserved HepaRG cells, a human liver cell line which differentiates into both hepatocytes and biliary epithelial cells, to determine if these cells may represent a suitable metabolically competent cellular model for novel High Content Analysis (HCA) applications. Characterization studies showed that these cells retain many features characteristic of primary human hepatocytes and display significant CYP3A4 and CYP1A2 induction, unlike the HepG2 cell line commonly utilized for HCA studies. Furthermore, this study demonstrates that CYP3A4 induction can be quantified via a simple image analysis-based method, using HepaRG cells as a model system. Additionally, data demonstrate that the hepatocyte and biliary epithelial subpopulations characteristic of HepaRG cultures can be separated during analysis simply on the basis of nuclear size measurements. Proof of concept studies with fluorescent cell function reagents indicated that further multiparametric image-based assessment is achievable with HepaRG. In summary, image-based screening of metabolically competent human hepatocyte models cells such as HepaRG offers novel approaches for hepatotoxicity assessment and improved drug screening tools. PMID:25276124

  6. The Effect of Ritonavir on Human CYP2B6 Catalytic Activity: Heme Modification Contributes to the Mechanism-Based Inactivation of CYP2B6 and CYP3A4 by Ritonavir

    PubMed Central

    Lin, Hsia-lien; D’Agostino, Jaime; Kenaan, Cesar; Calinski, Diane

    2013-01-01

    The mechanism-based inactivation of human CYP2B6 by ritonavir (RTV) in a reconstituted system was investigated. The inactivation is time, concentration, and NADPH dependent and exhibits a KI of 0.9 μM, a kinact of 0.05 min−1, and a partition ratio of approximately 3. Liquid chromatography–tandem mass spectrometry (LC-MS/MS) analysis showed that the protonated molecular ion of RTV exhibits an m/z at 721 and its two major metabolites are an oxidation product with MH+ at m/z 737 and a deacylated product with MH+ at m/z 580. Inactivation of CYP2B6 by incubation with 10 μM RTV for 10 min resulted in an approximately 50% loss of catalytic activity and native heme, but no modification of the apoprotein was observed. RTV was found to be a potent mixed-type reversible inhibitor (Ki = 0.33 μM) and a type II ligand (spectral dissociation constant-Ks = 0.85 μM) of CYP2B6. Although previous studies have demonstrated that RTV is a potent mechanism-based inactivator of CYP3A4, the molecular mechanism responsible for the inactivation has not been determined. Here, we provide evidence that RTV inactivation of CYP3A4 is due to heme destruction with the formation of a heme-protein adduct. Similar to CYP2B6, there is no significant modification of the apoprotein. Furthermore, LC-MS/MS analysis revealed that both CYP3A4 and human liver microsomes form an RTV-glutathione conjugate having a MH+ at m/z 858 during metabolism of RTV, suggesting the formation of an isocyanate intermediate leading to formation of the conjugate. PMID:23886699

  7. Defining CYP3A4 structural responses to substrate binding. Raman spectroscopic studies of a nanodisc-incorporated mammalian Cytochrome P450

    PubMed Central

    Mak, Piotr J.; Denisov, Ilia G.; Grinkova, Yelena V.; Sligar, Stephen G.; Kincaid, James R.

    2011-01-01

    Resonance Raman (RR) spectroscopy is used to help define active site structural responses of nanodisc-incorporated CYP3A4 to the binding of three substrates; bromocriptine (BC), erythromycin (ERY) and testosterone (TST). We demonstrate that nanodisc-incorporated assemblies reveal much more well-defined active site RR spectroscopic responses compared to those normally obtained with the conventional, detergent-stabilized, sampling strategies. While, ERY and BC are known to bind to CYP3A4 with a 1:1 stoichiometry, only the BC induces a substantial conversion from low- to high-spin state, as clearly manifested in the RR spectra acquired herein. The third substrate, TST, displays significant homotropic interactions within CYP3A4, the active site binding up to 3 molecules of this substrate, with the functional properties varying in response to binding of individual substrate molecules. While such behavior seemingly suggests the possibility that each substrate binding event induces functionally important heme structural changes, up to this time spectroscopic evidence for such structural changes has not been available. The current RR spectroscopic studies show clearly that accommodation of different size substrates, and different loading of TST, do not significantly affect the structure of the substrate-bound ferric heme. However, it is here demonstrated that the nature and number of bound substrates do have an extraordinary influence on the conformation of bound exogenous ligands, such as CO or dioxygen and its reduced forms, implying an effective mechanism whereby substrate structure can impact reactivity of intermediates so as to influence function, as reflected in the diverse reactivity of this drug metabolizing cytochrome. PMID:21207936

  8. A food contaminant ochratoxin A suppresses pregnane X receptor (PXR)-mediated CYP3A4 induction in primary cultures of human hepatocytes.

    PubMed

    Doricakova, Aneta; Vrzal, Radim

    2015-11-01

    Ochratoxin A (OCHA) is a mycotoxin, which can be found in food such as coffee, wine, cereals, meat, nuts. Since it is absorbed via gastrointestinal tract, it is reasonable to anticipate that the liver will be the first organ to which OCHA comes into the contact before systemic circulation. Many xenobiotics are metabolically modified after the passage of the liver to biologically more active substances, sometimes with more harmful activity. Promoting own metabolism is often achieved via transcriptional regulation of biotransformation enzymes through ligand-activated transcription factors. Pregnane X receptor (PXR) belongs to such a group of regulators and it was demonstrated to be activated by many compounds of synthetic as well as natural origin. Our intention was to investigate if OCHA is capable of activating the PXR with consequent induction of PXR-regulated CYP3A4 gene. We found that OCHA does not activate PXR but displays antagonist-like behavior when combined with rifampicin (RIF) in gene reporter assay in human embryonal kidney cells (Hek293T). It was very weak inducer of CYP3A4 mRNA in primary cultures of human hepatocytes and it antagonized RIF-mediated CYP3A4 induction of mRNA as well as protein. In addition, it caused the decline of PXR protein as well as mRNA which was faster than that with actinomycin D, a transcription inhibitor. Since we found that OCHA induced the expression of miR-148a, which was described to regulate PXR expression, we conclude that antagonist-like behavior of OCHA is not due to the antagonism itself but due to the downregulation of PXR gene expression. Herein we provide important findings which bring a piece of puzzle into the understanding of mechanism of toxic action of ochratoxin A. PMID:26341324

  9. Application of CYP3A4 in vitro data to predict clinical drug–drug interactions; predictions of compounds as objects of interaction

    PubMed Central

    Youdim, Kuresh A; Zayed, Aref; Dickins, Maurice; Phipps, Alex; Griffiths, Michelle; Darekar, Amanda; Hyland, Ruth; Fahmi, Odette; Hurst, Susan; Plowchalk, David R; Cook, Jack; Guo, Feng; Obach, R Scott

    2008-01-01

    AIMS The aim of this study was to explore and optimize the in vitro and in silico approaches used for predicting clinical DDIs. A data set containing clinical information on the interaction of 20 Pfizer compounds with ketoconazole was used to assess the success of the techniques. METHODS The study calculated the fraction and the rate of metabolism of 20 Pfizer compounds via each cytochrome P450. Two approaches were used to determine fraction metabolized (fm); 1) by measuring substrate loss in human liver microsomes (HLM) in the presence and absence of specific chemical inhibitors and 2) by measuring substrate loss in individual cDNA expressed P450s (also referred to as recombinant P450s (rhCYP)) The fractions metabolized via each CYP were used to predict the drug–drug interaction due to CYP3A4 inhibition by ketoconazole using the modelling and simulation software SIMCYP®. RESULTS When in vitro data were generated using Gentest supersomes, 85% of predictions were within two-fold of the observed clinical interaction. Using PanVera baculosomes, 70% of predictions were predicted within two-fold. In contrast using chemical inhibitors the accuracy was lower, predicting only 37% of compounds within two-fold of the clinical value. Poorly predicted compounds were found to either be metabolically stable and/or have high microsomal protein binding. The use of equilibrium dialysis to generate accurate protein binding measurements was especially important for highly bound drugs. CONCLUSIONS The current study demonstrated that the use of rhCYPs with SIMCYP® provides a robust in vitro system for predicting the likelihood and magnitude of changes in clinical exposure of compounds as a consequence of CYP3A4 inhibition by a concomitantly administered drug. WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT Numerous retrospective analyses have shown the utility of in vitro systems for predicting potential drug–drug interactions (DDIs). Prediction of DDIs from in vitro data is commonly

  10. Gene-gene-environment interactions between drugs, transporters, receptors, and metabolizing enzymes: Statins, SLCO1B1, and CYP3A4 as an example.

    PubMed

    Sadee, Wolfgang

    2013-09-01

    Pharmacogenetic biomarker tests include mostly specific single gene-drug pairs, capable of accounting for a portion of interindividual variability in drug response and toxicity. However, multiple genes are likely to contribute, either acting independently or epistatically, with the CYP2C9-VKORC1-warfarin test panel, an example of a clinically used gene-gene-dug interaction. I discuss here further instances of gene-gene-drug interactions, including a proposed dynamic effect on statin therapy by genetic variants in both a transporter (SLCO1B1) and a metabolizing enzyme (CYP3A4) in liver cells, the main target site where statins block cholesterol synthesis. These examples set a conceptual framework for developing diagnostic panels involving multiple gene-drug combinations. PMID:23436703

  11. Pregnane X receptor dependent up-regulation of CYP2C9 and CYP3A4 in tumor cells by antitumor acridine agents, C-1748 and C-1305, selectively diminished under hypoxia.

    PubMed

    Niemira, Magdalena; Dastych, Jarosław; Mazerska, Zofia

    2013-07-15

    Induction of proteins involved in drug metabolism and in drug delivery has a significant impact on drug-drug interactions and on the final therapeutic effects. Two antitumor acridine derivatives selected for present studies, C-1748 (9-(2'-hydroxyethylamino)-4-methyl-1-nitroacridine) and C-1305 (5-dimethylaminopropylamino-8-hydroxy-triazoloacridinone), expressed high and low susceptibility to metabolic transformations with liver microsomes, respectively. In the current study, we examined the influence of these compounds on cytochrome P450 3A4 (CYP3A4) and 2C9 (CYP2C9) enzymatic activity and gene expression in HepG2 tumor cells. Luminescence and HPLC examination, real-time RT-PCR and western blot analyses along with transfection of pregnane X receptor (PXR) siRNA and CYP3A4 reporter gene assays were applied. We found that both compounds strongly induced CYP3A4 and CYP2C9 activity and expression as well as expression of UGT1A1 and MDR1 in a concentration- and time-dependent manner. C-1748-mediated CYP3A4 and CYP2C9 mRNA induction equal to rifampicin occurred at extremely low concentrations (0.001 and 0.01μM), whereas 10μM C-1305 induced three-times higher CYP3A4 and CYP2C9 mRNA levels than rifampicin did. CYP3A4 and CYP2C9 expressions were shown to be PXR-dependent; however, neither compound influenced PXR expression. Thus, the observed drug-mediated induction of isoenzymes occurs on a PXR-mediated regulatory level. Furthermore, C-1748 and C-1305 were demonstrated to be selective PXR agonists. These effects are hypoxia-inhibited only in the case of C-1748, which is sensitive to P450 metabolism. In summary, PXR was found to be a new target of the studied compounds. Thus, possible combinations of these compounds with other therapeutics might lead to the PXR-dependent enzyme-mediated drug-drug interactions. PMID:23688499

  12. Effects of strong CYP2D6 and 3A4 inhibitors, paroxetine and ketoconazole, on the pharmacokinetics and cardiovascular safety of tamsulosin

    PubMed Central

    Troost, Joachim; Tatami, Shinji; Tsuda, Yasuhiro; Mattheus, Michaela; Mehlburger, Ludwig; Wein, Martina; Michel, Martin C

    2011-01-01

    AIM To determine the effect of the strong CYP2D6 inhibitor paroxetine and strong CYP3A4 inhibitor ketoconazole on the pharmacokinetics and safety (orthostatic challenge) of tamsulosin. METHODS Two open-label, randomized, two-way crossover studies were conducted in healthy male volunteers (extensive CYP2D6 metabolizers). RESULTS Co-administration of multiple oral doses of 20 mg paroxetine once daily with a single oral dose of the 0.4 mg tamsulosin HCl capsule increased the adjusted geometric mean (gMean) values of Cmax and AUC(0,∞) of tamsulosin by factors of 1.34 (90% CI 1.21, 1.49) and 1.64 (90% CI 1.44, 1.85), respectively, and increased the terminal half-life (t1/2) of tamsulosin HCl from 11.4 h to 15.3 h. Co-administration of multiple oral doses of 400 mg ketoconazole once dailywith a single oral dose of the 0.4 mg tamsulosin increased the gMean values of Cmax and AUC(0,∞) of tamsulosin by a factor of 2.20 (90% CI 1.96, 2.45) and 2.80 (90% CI 2.56, 3.07), respectively. The terminal half-life was slightly increased from 10.5 h to 11.8 h. These pharmacokinetic changes were not accompanied by clinically significant alterations of haemodynamic responses during orthostatic stress testing. CONCLUSION The exposure to tamsulosin is increased upon co-administration of strong CYP2D6 inhibitors and even more so of strong 3A4 inhibitors, but neither PK alteration was accompanied by clinically significant haemodynamic changes during orthostatic stress testing. PMID:21496064

  13. Effects of EPHX1 and CYP3A4*22 genetic polymorphisms on carbamazepine metabolism and drug response among Tunisian epileptic patients.

    PubMed

    Chbili, Chahra; Fathallah, Neila; Laouani, Aicha; Nouira, Manel; Hassine, Anis; Ben Amor, Sana; Ben Ammou, Sofiene; Ben Salem, Chaker; Saguem, Saad

    2016-03-01

    The aim of this study was to evaluate the impact of polymorphisms in the EPHX1 (c.416A > G, c.337T > C) and CYP3A4*22 genes involved in carbamazepine (CBZ) metabolism and pharmacoresistance among 118 Tunisian patients with epilepsy under maintenance dose of CBZ. These genetic polymorphisms were analyzed by PCR-RFLP. Associations between plasma CBZ concentration, CBZ-E concentration, maintenance doses and metabolic ratio (CBZ-E:CBZ, CBZ-D:CBZ-E) were analyzed with each polymorphism. Both variants of EPHX1 c.416A > G and c.337T > C are significantly associated with higher metabolic ratio CBZ-E:CBZ and seem to decrease the activity of the epoxide hydrolase. The CYP3A4*22 variant allele is significantly associated with lower CBZ-D:CBZ-E ratio and seems also to be associated with less activity of the cytochrome. Our data suggest that certain polymorphisms of metabolizing enzyme genes could influence inter-individual variability of CBZ metabolism. PMID:27276192

  14. Predicting the "First dose in children" of CYP3A-metabolized drugs: Evaluation of scaling approaches and insights into the CYP3A7-CYP3A4 switch at young ages.

    PubMed

    Strougo, Ashley; Yassen, Ashraf; Monnereau, Claire; Danhof, Meindert; Freijer, Jan

    2014-09-01

    First-dose-in-children relies on the prediction of clearance from adults for which little information is available on the accuracy of the scaling-approaches applied. For CYP3A-metabolized compounds, scaling of clearance is further challenged by different isoforms and by the CYP3A7 to CYP3A4 switch at young ages. This investigation aimed to evaluate the accuracy of two frequently used scaling approaches and to gain insights into the ontogeny of CYP3A. Hence, a literature database was compiled containing 203 clearance values from term-neonates to adults for 18 CYP3A-metabolized compounds. The clearances in adults were scaled to children using (i) allometric scaling plus maturation function and (ii) a mechanistic approach based on the well-stirred model. Three maturation functions were separately evaluated. In children >3 months, all approaches were interchangeable heeding the maturation function applied and biases were mostly observed in children <3 months. The results from a sensitivity analysis indicate that these biases are possibly caused by disregarding the CYP3A7 activity which could account for up to 86% of the metabolism in term-neonates. Only the mechanistic approach using an overall-CYP3A maturation function led to unbiased predictions of clearances across all ages. The current investigation adds to the predictions of the first-dose-in-children of compounds (partially) metabolized by CYP3A. PMID:24676942

  15. Identification of rifampin-inducible P450IIIA4 (CYP3A4) in human small bowel enterocytes.

    PubMed Central

    Kolars, J C; Schmiedlin-Ren, P; Schuetz, J D; Fang, C; Watkins, P B

    1992-01-01

    Enzymes within the P450IIIA (CYP3A) subfamily appear to account for significant "first pass" metabolism of some drugs in the intestine. To identify which of the known P450IIIA genes are expressed in intestine, enterocyte RNA was hybridized on Northern blots with synthetic oligonucleotides complementary to hypervariable regions of hepatic P450IIIA4, P450IIIA5, and P450IIIA7 cDNAs. Hybridization was detected only with the P450IIIA4-specific oligonucleotide. The identity of the hybridizing mRNA was confirmed to be P450IIIA4 by direct sequencing of a DNA fragment amplified from enterocyte cDNA by the polymerase chain reaction. To determine if enterocyte P450IIIA4 is inducible, biopsies of small bowel mucosa were obtained from five volunteers before and after they received 7d of treatment with rifampin, a known inducer of P450IIIA4 in liver. Rifampin treatment resulted in a five- or eightfold mean increase (P < 0.05) in the biopsy concentration of P450IIIA4 mRNA when normalized for content of sucrase isomaltase or intestinal fatty acid binding protein mRNAs, respectively. Rifampin also induced P450IIIA immunoreactive protein in enterocytes in each of the subjects, as judged by immunohistochemistry, and resulted in a 10-fold increase in P450IIIA4-specific catalytic activity (erythromycin N-demethylation) in the one patient studied. Our identification of inducible P450IIIA4 in enterocytes may in part account for drug interactions characteristic of P450IIIA4 substrates and suggests a strategy for controlling entry into the body of a major class of xenobiotics. Images PMID:1430211

  16. Dynamically simulating the interaction of midazolam and the CYP3A4 inhibitor itraconazole using individual coupled whole-body physiologically-based pharmacokinetic (WB-PBPK) models

    PubMed Central

    Vossen, Michaela; Sevestre, Michael; Niederalt, Christoph; Jang, In-Jin; Willmann, Stefan; Edginton, Andrea N

    2007-01-01

    Background Drug-drug interactions resulting from the inhibition of an enzymatic process can have serious implications for clinical drug therapy. Quantification of the drugs internal exposure increase upon administration with an inhibitor requires understanding to avoid the drug reaching toxic thresholds. In this study, we aim to predict the effect of the CYP3A4 inhibitors, itraconazole (ITZ) and its primary metabolite, hydroxyitraconazole (OH-ITZ) on the pharmacokinetics of the anesthetic, midazolam (MDZ) and its metabolites, 1' hydroxymidazolam (1OH-MDZ) and 1' hydroxymidazolam glucuronide (1OH-MDZ-Glu) using mechanistic whole body physiologically-based pharmacokinetic simulation models. The model is build on MDZ, 1OH-MDZ and 1OH-MDZ-Glu plasma concentration time data experimentally determined in 19 CYP3A5 genotyped adult male individuals, who received MDZ intravenously in a basal state. The model is then used to predict MDZ, 1OH-MDZ and 1OH-MDZ-Glu concentrations in an CYP3A-inhibited state following ITZ administration. Results For the basal state model, three linked WB-PBPK models (MDZ, 1OH-MDZ, 1OH-MDZ-Glu) for each individual were elimination optimized that resulted in MDZ and metabolite plasma concentration time curves that matched individual observed clinical data. In vivo Km and Vmax optimized values for MDZ hydroxylation were similar to literature based in vitro measures. With the addition of the ITZ/OH-ITZ model to each individual coupled MDZ + metabolite model, the plasma concentration time curves were predicted to greatly increase the exposure of MDZ as well as to both increase exposure and significantly alter the plasma concentration time curves of the MDZ metabolites in comparison to the basal state curves. As compared to the observed clinical data, the inhibited state curves were generally well described although the simulated concentrations tended to exceed the experimental data between approximately 6 to 12 hours following MDZ administration. This

  17. Polymorphism of CYP3A4 and ABCB1 genes increase the risk of neuropathy in breast cancer patients treated with paclitaxel and docetaxel

    PubMed Central

    Kus, Tulay; Aktas, Gokmen; Kalender, Mehmet Emin; Demiryurek, Abdullah Tuncay; Ulasli, Mustafa; Oztuzcu, Serdar; Sevinc, Alper; Kul, Seval; Camci, Celaletdin

    2016-01-01

    Background Interindividual variability of pharmacogenetics may account for unpredictable neurotoxicities of taxanes. Methods From March 2011 to June 2015, female patients with operable breast cancer who had received docetaxel- or paclitaxel-containing adjuvant chemotherapy were included in this study. All patients were treated with single-agent paclitaxel intravenously (IV) 175 mg/m2 every 3 weeks for four cycles, or IV 80 mg/m2 weekly for 12 cycles, and IV 100 mg/m2 docetaxel for four cycles as adjuvant treatment. We evaluated the relationship between neurotoxicity of taxanes and single-nucleotide polymorphisms of ABCB1, CYP3A4, ERCC1, ERCC2, FGFR4, TP53, ERBB2, and CYP2C8 genes. Taxane-induced neurotoxicity during the treatment was evaluated according to the National Cancer Institute Common Toxicity Criteria version 4.03 prior to each cycle. Chi-squared tests were used to compare the two groups, and multivariate binary logistic regression models were used for determining possible risk factors of neuropathy. Results Pharmacogenetic analysis was performed in 219 females. ABCB1 3435 TT genotype had significantly higher risk for grade ≥2 neurotoxicity (odds ratio [OR]: 2.759, 95% confidence interval [CI]: 1.172–6.493, P: 0.017) compared to TC and CC genotype, and also CYP3A4 392 AA and AG genotype had significantly higher risk for grade ≥2 neurotoxicity (OR: 2.259, 95% CI: 1.033–4.941, P: 0.038) compared to GG genotype. For FDGF4 gene with AG and GG genotype, OR was 1.879 (95% CI: 1.001–3.525, P: 0.048) compared to AA genotype with regard to any grade of neuropathy risk. We could not find any other association of other genotypes with neurotoxicity grades. Conclusion ABCB1 3435 TT genotype and CYP3A4 392 AA/AG genotypes may be used as predictors of neurotoxicity during taxane chemotherapy. PMID:27574448

  18. Unexpected contribution of cytochrome P450 enzymes CYP11B2 and CYP21, as well as CYP3A4 in xenobiotic androgen elimination - insights from metandienone metabolism.

    PubMed

    Parr, Maria Kristina; Zöllner, Andy; Fusshöller, Gregor; Opfermann, Georg; Schlörer, Nils; Zorio, Mirela; Bureik, Matthias; Schänzer, Wilhelm

    2012-09-18

    The metabolism of a variety of anabolic steroids frequently misused for doping purposes has been investigated in the last years. This research mainly focused on main and long-term metabolites suitable for detection, but detailed clearance mechanisms have rarely been elucidated. Recent studies on metandienone focused on the identification of 17β-hydroxymethyl-17α-methyl-18-norandrosta-1,4,13-trien-3-one (20βOH-NorMD) as long-term metabolite, however, the metabolic pathway of its generation remained unclear. Metandienone and its Wagner-Meerwein rearrangement product 17,17-dimethyl-18-norandrosta-1,4,13-trien-3-one (NorMD) were hydroxylated by different human cytochrome P450 enzymes (CYPs). Some of their hydroxylation products were chemically synthesized and characterized by mass spectrometry to allow for their trace detection in urine samples. Following oral administration of metandienone or NorMD in one human volunteer each the post administration urines were checked for the presence of those hydroxylated metabolites using GC-MS/MS analysis. The human mitochondrial steroid hydroxylating enzymes CYP11B1 and CYP11B2 were capable to metabolize metandienone leading to the formation of 11β-hydroxymetandienone and 18-hydroxymetandienone. Following Wagner-Meerwein rearrangement, the resulting products could be assigned to 20βOH-NorMD and 11βOH-NorMD. The contribution of CYP11B1 and CYP11B2 in human metabolism of metandienone was confirmed by analysis of post-administration samples of metandienone and NorMD. Combined with the results from a previous study, enzymatic pathways were identified that involve CYP21 and CYP3A4 in the hydroxylation of NorMD, while CYP21, CYP3A4 and CYP11B2 take part in 20βOH-NorMD generation from MD. The current study represents a valuable contribution to the elucidation of clearance mechanisms of anabolic steroids and also indicates that mainly non-liver CYPs seem to be involved in these processes. PMID:22885098

  19. Identification of nicotinamide phosphoribosyltransferase (NAMPT) inhibitors with no evidence of CYP3A4 time-dependent inhibition and improved aqueous solubility.

    PubMed

    Zak, Mark; Liederer, Bianca M; Sampath, Deepak; Yuen, Po-Wai; Bair, Kenneth W; Baumeister, Timm; Buckmelter, Alexandre J; Clodfelter, Karl H; Cheng, Eric; Crocker, Lisa; Fu, Bang; Han, Bingsong; Li, Guangkun; Ho, Yen-Ching; Lin, Jian; Liu, Xiongcai; Ly, Justin; O'Brien, Thomas; Reynolds, Dominic J; Skelton, Nicholas; Smith, Chase C; Tay, Suzanne; Wang, Weiru; Wang, Zhongguo; Xiao, Yang; Zhang, Lei; Zhao, Guiling; Zheng, Xiaozhang; Dragovich, Peter S

    2015-02-01

    Herein we report the optimization efforts to ameliorate the potent CYP3A4 time-dependent inhibition (TDI) and low aqueous solubility exhibited by a previously identified lead compound from our NAMPT inhibitor program (1, GNE-617). Metabolite identification studies pinpointed the imidazopyridine moiety present in 1 as the likely source of the TDI signal, and replacement with other bicyclic systems was found to reduce or eliminate the TDI finding. A strategy of reducing the number of aromatic rings and/or lowering cLogD7.4 was then employed to significantly improve aqueous solubility. These efforts culminated in the discovery of 42, a compound with no evidence of TDI, improved aqueous solubility, and robust efficacy in tumor xenograft studies. PMID:25556090

  20. In vitro Effects of Four Native Brazilian Medicinal Plants in CYP3A4 mRNA Gene Expression, Glutathione Levels, and P-Glycoprotein Activity

    PubMed Central

    Mazzari, Andre L. D. A.; Milton, Flora; Frangos, Samantha; Carvalho, Ana C. B.; Silveira, Dâmaris; de Assis Rocha Neves, Francisco; Prieto, Jose M.

    2016-01-01

    Erythrina mulungu Benth. (Fabaceae), Cordia verbenacea A. DC. (Boraginaceae), Solanum paniculatum L. (Solanaceae) and Lippia sidoides Cham. (Verbenaceae) are medicinal plant species native to Brazil shortlisted by the Brazilian National Health System for future clinical use. However, nothing is known about their effects in metabolic and transporter proteins, which could potentially lead to herb-drug interactions (HDI). In this work, we assess non-toxic concentrations (100 μg/mL) of the plant infusions for their in vitro ability to modulate CYP3A4 mRNA gene expression and intracellular glutathione levels in HepG2 cells, as well as P-glycoprotein (P-gp) activity in vincristine-resistant Caco-2 cells (Caco-2 VCR). Their mechanisms of action were further studied by measuring the activation of human pregnane X receptor (hPXR) in transiently co-transfected HeLa cells and the inhibition of γ-glutamyl transferase (GGT) in HepG2 cells. Our results show that P-gp activity was not affected in any case and that only Solanum paniculatum was able to significantly change CYP3A4 mRNA gene expression (twofold decrease, p < 0.05), this being correlated with an antagonist effect upon hPXR (EC50 = 0.38 mg/mL). Total intracellular glutathione levels were significantly depleted by exposure to Solanum paniculatum (-44%, p < 0.001), Lippia sidoides (-12%, p < 0.05) and Cordia verbenacea (-47%, p < 0.001). The latter plant extract was able to decrease GGT activity (-48%, p < 0.01). In conclusion, this preclinical study shows that the administration of some of these herbal medicines may be able to cause disturbances to metabolic mechanisms in vitro. Although Erythrina mulungu appears safe in our tests, active pharmacovigilance is recommended for the other three species, especially in the case of Solanum paniculatum. PMID:27594838

  1. Inhibitory effects of pomelo on the metabolism of tacrolimus and the activities of CYP3A4 and P-glycoprotein.

    PubMed

    Egashira, Kanoko; Ohtani, Hisakazu; Itoh, Suwako; Koyabu, Noriko; Tsujimoto, Masayuki; Murakami, Hideyasu; Sawada, Yasufumi

    2004-08-01

    We recently reported a case of increase in the blood level of tacrolimus following intake of pomelo in a renal transplant recipient. To clarify the mechanism of this increase in the blood level of tacrolimus, we investigated the effect of pomelo juice extract on the activities of CYP3A4 and P-glycoprotein, in comparison with that of extract of grapefruit juice (GFJ). The 10% ethyl acetate extracts of the juice of three pomelos of different origins (Banpeiyu, pomelo I; Hirado Buntan, pomelo II; and Tosa Buntan, pomelo III) and GFJ significantly inhibited 6beta-hydroxylation of testosterone in human liver microsomes by 76.4, 67.2, 37.5, and 83.9%, respectively. The extract of pomelo I was as potent as that of GFJ. The metabolism of tacrolimus itself was also inhibited by the extract of pomelo I, as well as that of GFJ. Furthermore, the inhibition of both 6beta-hydroxylation of testosterone and metabolism of tacrolimus by pomelo I and GFJ was preincubation time-dependent. On the other hand, the extract of pomelo I had little effect on the transcellular transport of tacrolimus or [(3)H]digoxin across a monolayer of LLC-GA5-COL150 cells (a porcine kidney epithelial cell line, LLC-PK1, transfected with human MDR1 cDNA and overexpressing human P-glycoprotein). In conclusion, pomelo constituents inhibit the activity of CYP3A4 and may thereby produce an increase in the blood level of tacrolimus. PMID:15258108

  2. Proximal Roux-en-Y Gastric Bypass Alters Drug Absorption Pattern But Not Systemic Exposure of CYP3A4 and P-glycoprotein Substrates

    PubMed Central

    Chan, Lingtak-Neander; Lin, Yvonne S.; Tay-Sontheimer, Jessica C.; Trawick, Dorothy; Oelschlager, Brant K.; Flum, David R.; Patton, Kristen K.; Shen, Danny D.; Horn, John R.

    2015-01-01

    Study Objectives To evaluate the effect of Roux-en-Y gastric bypass surgery (RYGB) on the pharmacokinetics of midazolam (a CYP3A4 substrate) and digoxin (a P-glycoprotein substrate). Design Prospective, nonblinded, longitudinal, single-dose pharmacokinetic study in three phases: presurgery baseline and postoperative assessments at 3 and 12 months. Patients Twelve obese patients meeting current standards for bariatric surgery. Measurements and Main Results At each study visit, patients received a single dose of oral digoxin and midazolam at 8 a.m. Blood samples were collected at regular intervals for 24 hours after dosing. Continuous 12-lead electrocardiogram (EKG), heart rate, blood pressure, and respiratory rate were monitored, and pharmacokinetic parameters from the three visits were compared. The peak plasma concentration (Cmax) of midazolam increased by 66% and 71% at 3- and 12-month post-RYGB (p=0.017 and p=0.001, respectively), whereas the median time to peak concentration (Tmax) was reduced by 50%. The mean Cmax for 1′-hydroxymidazolam increased by 87% and 80% at 3 and 12 months (p=0.001 and p<0.001, respectively). However, neither the area under the concentration-time curve (AUC) for midazolam nor the metabolite-to-parent AUC ratio changed significantly over time. For digoxin, the median Tmax decreased from 40 minutes at baseline to 30 and 20 minutes at 3 and 12 months, respectively. The mean AUC for digoxin, heart rate, and EKG patterns were similar across the three study phases. Conclusion Contemporary proximal RYGB increases the rate of drug absorption without significantly changing the overall exposure to midazolam and digoxin. The Cmax of a CYP3A4 substrate with a high extraction ratio was substantially increased after RYGB. PMID:25757445

  3. In vitro Effects of Four Native Brazilian Medicinal Plants in CYP3A4 mRNA Gene Expression, Glutathione Levels, and P-Glycoprotein Activity.

    PubMed

    Mazzari, Andre L D A; Milton, Flora; Frangos, Samantha; Carvalho, Ana C B; Silveira, Dâmaris; de Assis Rocha Neves, Francisco; Prieto, Jose M

    2016-01-01

    Erythrina mulungu Benth. (Fabaceae), Cordia verbenacea A. DC. (Boraginaceae), Solanum paniculatum L. (Solanaceae) and Lippia sidoides Cham. (Verbenaceae) are medicinal plant species native to Brazil shortlisted by the Brazilian National Health System for future clinical use. However, nothing is known about their effects in metabolic and transporter proteins, which could potentially lead to herb-drug interactions (HDI). In this work, we assess non-toxic concentrations (100 μg/mL) of the plant infusions for their in vitro ability to modulate CYP3A4 mRNA gene expression and intracellular glutathione levels in HepG2 cells, as well as P-glycoprotein (P-gp) activity in vincristine-resistant Caco-2 cells (Caco-2 VCR). Their mechanisms of action were further studied by measuring the activation of human pregnane X receptor (hPXR) in transiently co-transfected HeLa cells and the inhibition of γ-glutamyl transferase (GGT) in HepG2 cells. Our results show that P-gp activity was not affected in any case and that only Solanum paniculatum was able to significantly change CYP3A4 mRNA gene expression (twofold decrease, p < 0.05), this being correlated with an antagonist effect upon hPXR (EC50 = 0.38 mg/mL). Total intracellular glutathione levels were significantly depleted by exposure to Solanum paniculatum (-44%, p < 0.001), Lippia sidoides (-12%, p < 0.05) and Cordia verbenacea (-47%, p < 0.001). The latter plant extract was able to decrease GGT activity (-48%, p < 0.01). In conclusion, this preclinical study shows that the administration of some of these herbal medicines may be able to cause disturbances to metabolic mechanisms in vitro. Although Erythrina mulungu appears safe in our tests, active pharmacovigilance is recommended for the other three species, especially in the case of Solanum paniculatum. PMID:27594838

  4. Assessment of a Candidate Marker Constituent Predictive of a Dietary Substance–Drug Interaction: Case Study with Grapefruit Juice and CYP3A4 Drug Substrates

    PubMed Central

    Ainslie, Garrett R.; Wolf, Kristina K.; Li, Yingxin; Connolly, Elizabeth A.; Scarlett, Yolanda V.; Hull, J. Heyward

    2014-01-01

    Dietary substances, including herbal products and citrus juices, can perpetrate interactions with conventional medications. Regulatory guidances for dietary substance–drug interaction assessment are lacking. This deficiency is due in part to challenges unique to dietary substances, a lack of requisite human-derived data, and limited jurisdiction. An in vitro–in vivo extrapolation (IVIVE) approach to help address some of these hurdles was evaluated using the exemplar dietary substance grapefruit juice (GFJ), the candidate marker constituent 6′,7′-dihydroxybergamottin (DHB), and the purported victim drug loperamide. First, the GFJ-loperamide interaction was assessed in 16 healthy volunteers. Loperamide (16 mg) was administered with 240 ml of water or GFJ; plasma was collected from 0 to 72 hours. Relative to water, GFJ increased the geometric mean loperamide area under the plasma concentration–time curve (AUC) significantly (1.7-fold). Second, the mechanism-based inhibition kinetics for DHB were recovered using human intestinal microsomes and the index CYP3A4 reaction, loperamide N-desmethylation (KI [concentration needed to achieve one-half kinact], 5.0 ± 0.9 µM; kinact [maximum inactivation rate constant], 0.38 ± 0.02 minute−1). These parameters were incorporated into a mechanistic static model, which predicted a 1.6-fold increase in loperamide AUC. Third, the successful IVIVE prompted further application to 15 previously reported GFJ-drug interaction studies selected according to predefined criteria. Twelve of the interactions were predicted to within the 25% predefined criterion. Results suggest that DHB could be used to predict the CYP3A4-mediated effect of GFJ. This time- and cost-effective IVIVE approach could be applied to other dietary substance–drug interactions to help prioritize new and existing drugs for more advanced (dynamic) modeling and simulation and clinical assessment. PMID:25253884

  5. The isolation of minor-occurring furanocoumarins in grapefruit and analysis of their inhibition of cyp 3a4 and p-glycoprotein transport of talinolol from caco-2 cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of grapefruit juice on the disposition of certain prescription drugs in humans have been mainly attributed to the inhibition of intestinal cytochrome P450 3A4 (CYP 3A4) by linear furanocoumarins. A number of the main furanocoumarins in grapefruit juice have been identified and analyzed ...

  6. Drug-metabolising enzymes are down-regulated by hypoxia in differentiated human hepatoma HepaRG cells: HIF-1alpha involvement in CYP3A4 repression.

    PubMed

    Legendre, Claire; Hori, Tamaki; Loyer, Pascal; Aninat, Caroline; Ishida, Seiichi; Glaise, Denise; Lucas-Clerc, Catherine; Boudjema, Karim; Guguen-Guillouzo, Christiane; Corlu, Anne; Morel, Fabrice

    2009-11-01

    Weak blood irrigation within solid tumours including hepatocellular carcinomas (HCCs) plays an important role in resistance to anticancer drugs by decreasing accessibility of cytotoxic agents to tumour cells. Reduced oxygen levels, or hypoxia, also contribute to drug resistance because many anticancer drugs require molecular oxygen to be cytotoxic. Our aim was to develop a new in vitro model mimicking hypoxic cells within HCCs in order to further explore the molecular responses to hypoxia, including regulation of drug-metabolising enzymes (DMEs) expression. For this purpose, we used the highly differentiated human hepatoma HepaRG cells cultured under either normoxic or hypoxic (24h at 1% O(2)) conditions. Gene and protein expressions were investigated by quantitative PCR and immunoblotting, respectively. We showed that HepaRG cells adapt to prolonged moderate hypoxia by a switch from aerobic to anaerobic glycolysis and a repression of critical genes involved in amino acid, lipid and ethanol metabolisms. Importantly, expression of several DMEs (particularly cytochromes P450 (CYPs) and phase II enzymes) and xenosensors (CAR, PXR and AhR) was down-regulated and CYPs activities (using testosterone and paclitaxel as substrates) were decreased during hypoxia. In addition, a new role for HIF-1alpha in the repression of CYP3A4 is demonstrated in cells treated with chemical inducers of HIF-1alpha, cobalt chloride or desferrioxamine, and by transfecting untreated HepaRG cells with HIF-1alpha expression vector. In conclusion, HepaRG cells cultured under hypoxia might mimic metabolic changes occurring within poorly irrigated differentiated HCCs. Furthermore, hypoxia down-regulates hepatic DMEs, a phenomenon that might compromise chemotherapy effectiveness in HCC treatment. Thus, HepaRG cells might represent a new in vitro model to test anticancer agents in hypoxic versus normoxic conditions. PMID:19695866

  7. Evaluation of Ketoconazole and Its Alternative Clinical CYP3A4/5 Inhibitors as Inhibitors of Drug Transporters: The In Vitro Effects of Ketoconazole, Ritonavir, Clarithromycin, and Itraconazole on 13 Clinically-Relevant Drug Transporters.

    PubMed

    Vermeer, Lydia M M; Isringhausen, Caleb D; Ogilvie, Brian W; Buckley, David B

    2016-03-01

    Ketoconazole is a potent CYP3A4/5 inhibitor and, until recently, recommended by the Food and Drug Administration (FDA) and the European Medicines Agency as a strong CYP3A4/5 inhibitor in clinical drug-drug interaction (DDI) studies. Ketoconazole sporadically causes liver injury or adrenal insufficiency. Because of this, the FDA and European Medicines Agency recommended suspension of ketoconazole use in DDI studies in 2013. The FDA specifically recommended use of clarithromycin or itraconazole as alternative strong CYP3A4/5 inhibitors in clinical DDI studies, but many investigators have also used ritonavir as an alternative. Although the effects of these clinical CYP3A4/5 inhibitors on other CYPs are largely established, reports on the effects on the broad range of drug transporter activities are sparse. In this study, the inhibitory effects of ketoconazole, clarithromycin, ritonavir, and itraconazole (and its CYP3A4-inhibitory metabolites, hydroxy-, keto-, and N-desalkyl itraconazole) toward 13 drug transporters (OATP1B1, OATP1B3, OAT1, OAT3, OCT1, OCT2, MATE1, MATE2-K, P-gp, BCRP, MRP2, MRP3, and BSEP) were systematically assessed in transporter-expressing HEK-293 cell lines or membrane vesicles. In vitro findings were translated into clinical context with the basic static model approaches outlined by the FDA in its 2012 draft guidance on DDIs. The results indicate that, like ketoconazole, the alternative clinical CYP3A4/5 inhibitors ritonavir, clarithromycin, and itraconazole each have unique transporter inhibition profiles. None of the alternatives to ketoconazole provided a clean inhibition profile toward the 13 drug transporters evaluated. The results provide guidance for the selection of clinical CYP3A4/5 inhibitors when transporters are potentially involved in a victim drug's pharmacokinetics. PMID:26668209

  8. Modeling chemical interaction profiles: I. Spectral data-activity relationship and structure-activity relationship models for inhibitors and non-inhibitors of cytochrome P450 CYP3A4 and CYP2D6 isozymes.

    PubMed

    McPhail, Brooks; Tie, Yunfeng; Hong, Huixiao; Pearce, Bruce A; Schnackenberg, Laura K; Ge, Weigong; Valerio, Luis G; Fuscoe, James C; Tong, Weida; Buzatu, Dan A; Wilkes, Jon G; Fowler, Bruce A; Demchuk, Eugene; Beger, Richard D

    2012-01-01

    An interagency collaboration was established to model chemical interactions that may cause adverse health effects when an exposure to a mixture of chemicals occurs. Many of these chemicals--drugs, pesticides, and environmental pollutants--interact at the level of metabolic biotransformations mediated by cytochrome P450 (CYP) enzymes. In the present work, spectral data-activity relationship (SDAR) and structure-activity relationship (SAR) approaches were used to develop machine-learning classifiers of inhibitors and non-inhibitors of the CYP3A4 and CYP2D6 isozymes. The models were built upon 602 reference pharmaceutical compounds whose interactions have been deduced from clinical data, and 100 additional chemicals that were used to evaluate model performance in an external validation (EV) test. SDAR is an innovative modeling approach that relies on discriminant analysis applied to binned nuclear magnetic resonance (NMR) spectral descriptors. In the present work, both 1D ¹³C and 1D ¹⁵N-NMR spectra were used together in a novel implementation of the SDAR technique. It was found that increasing the binning size of 1D ¹³C-NMR and ¹⁵N-NMR spectra caused an increase in the tenfold cross-validation (CV) performance in terms of both the rate of correct classification and sensitivity. The results of SDAR modeling were verified using SAR. For SAR modeling, a decision forest approach involving from 6 to 17 Mold2 descriptors in a tree was used. Average rates of correct classification of SDAR and SAR models in a hundred CV tests were 60% and 61% for CYP3A4, and 62% and 70% for CYP2D6, respectively. The rates of correct classification of SDAR and SAR models in the EV test were 73% and 86% for CYP3A4, and 76% and 90% for CYP2D6, respectively. Thus, both SDAR and SAR methods demonstrated a comparable performance in modeling a large set of structurally diverse data. Based on unique NMR structural descriptors, the new SDAR modeling method complements the existing SAR

  9. Building Structure Feature-based Models for Predicting Isoform-specific Human Cytochrome P-450 (hCYP 3A4, 2D6 and 2C9) Inhibition Assay Results in ToxCast

    EPA Science Inventory

    EPA’s ToxCast project is using high-throughput screening (HTS) to profile and prioritize chemicals for further testing. ToxCast Phase I evaluated 309 unique chemicals, the majority pesticide actives, in over 500 HTS assays. These included 3 human cytochrome P450 (hCYP3A4, hCYP2...

  10. Associations of CYP3A4, NR1I2, CYP2C19 and P2RY12 polymorphisms with clopidogrel resistance in Chinese patients with ischemic stroke

    PubMed Central

    Liu, Rui; Zhou, Zi-yi; Chen, Yi-bei; Li, Jia-li; Yu, Wei-bang; Chen, Xin-meng; Zhao, Min; Zhao, Yuan-qi; Cai, Ye-feng; Jin, Jing; Huang, Min

    2016-01-01

    Aim: There is a high incidence of the antiplatelet drug clopidogrel resistance (CR) in Asian populations. Because clopidogrel is a prodrug, polymorphisms of genes encoding the enzymes involved in its biotransformation may be the primary influential factors. The goal of this study was to investigate the associations of polymorphisms of CYP3A4, NR1I2, CYP2C19 and P2RY12 genes with CR in Chinese patients with ischemic stroke. Methods: A total of 191 patients with ischemic stroke were enrolled. The patients were treated with clopidogrel for at least 5 days. Platelet function was measured by light transmission aggregometry. The SNPs NR1I2 (rs13059232), CYP3A4*1G (rs2242480), CYP2C19*2 (rs4244285) and P2RY12 (rs2046934) were genotyped. Results: The CR rate in this population was 36%. The CYP2C19*2 variant was a risk factor for CR (*2/*2+wt/*2 vs wt/wt, OR: 2.366, 95% CI: 1.180–4.741, P=0.014), whereas the CYP3A4*1G variant had a protective effect on CR (*1/*1 vs *1G/*1G+*1/*1G, OR: 2.360, 95% CI: 1.247–4.468, P=0.008). The NR1I2 (rs13059232) polymorphism was moderately associated with CR (CC vs TT+TC, OR: 0.533, 95% CI: 0.286–0.991, P=0.046). The C allele in P2RY12 (rs2046934) was predicted to be a protective factor for CR (CC+TC vs TT, OR: 0.407, 95% CI: 0.191–0.867, P=0.018). In addition, an association was found between hypertension and CR (P=0.022). Conclusion: The individuals with both the CYP2C19*2 allele and hypertension are at high risk of CR during anti-thrombosis therapy. The CYP3A4*1G allele, P2RY12 (rs2046934) C allele and NR1I2 (rs13059232) CC genotype may be protective factors for CR. The associated SNPs studied may be useful to predict clopidogrel resistance in Chinese patients with ischemic stroke. PMID:27133299

  11. Lactococcus lactis is an Efficient Expression System for Mammalian Membrane Proteins Involved in Liver Detoxification, CYP3A4, and MGST1.

    PubMed

    Bakari, Sana; Lembrouk, Mehdi; Sourd, Laura; Ousalem, Fares; André, François; Orlowski, Stéphane; Delaforge, Marcel; Frelet-Barrand, Annie

    2016-04-01

    Despite the great importance of human membrane proteins involved in detoxification mechanisms, their wide use for biochemical approaches is still hampered by several technical difficulties considering eukaryotic protein expression in order to obtain the large amounts of protein required for functional and/or structural studies. Lactococcus lactis has emerged recently as an alternative heterologous expression system to Escherichia coli for proteins that are difficult to express. The aim of this work was to check its ability to express mammalian membrane proteins involved in liver detoxification, i.e., CYP3A4 and two isoforms of MGST1 (rat and human). Genes were cloned using two different strategies, i.e., classical or Gateway-compatible cloning, and we checked the possible influence of two affinity tags (6×-His-tag and Strep-tag II). Interestingly, all proteins could be successfully expressed in L. lactis at higher yields than those previously obtained for these proteins with classical expression systems (E. coli, Saccharomyces cerevisiae) or those of other eukaryotic membrane proteins expressed in L. lactis. In addition, rMGST1 was fairly active after expression in L. lactis. This study highlights L. lactis as an attractive system for efficient expression of mammalian detoxification membrane proteins at levels compatible with further functional and structural studies. PMID:26961909

  12. RS-predictor: a new tool for predicting sites of cytochrome P450-mediated metabolism applied to CYP 3A4.

    PubMed

    Zaretzki, Jed; Bergeron, Charles; Rydberg, Patrik; Huang, Tao-wei; Bennett, Kristin P; Breneman, Curt M

    2011-07-25

    This article describes RegioSelectivity-Predictor (RS-Predictor), a new in silico method for generating predictive models of P450-mediated metabolism for drug-like compounds. Within this method, potential sites of metabolism (SOMs) are represented as "metabolophores": A concept that describes the hierarchical combination of topological and quantum chemical descriptors needed to represent the reactivity of potential metabolic reaction sites. RS-Predictor modeling involves the use of metabolophore descriptors together with multiple-instance ranking (MIRank) to generate an optimized descriptor weight vector that encodes regioselectivity trends across all cases in a training set. The resulting pathway-independent (O-dealkylation vs N-oxidation vs Csp(3) hydroxylation, etc.), isozyme-specific regioselectivity model may be used to predict potential metabolic liabilities. In the present work, cross-validated RS-Predictor models were generated for a set of 394 substrates of CYP 3A4 as a proof-of-principle for the method. Rank aggregation was then employed to merge independently generated predictions for each substrate into a single consensus prediction. The resulting consensus RS-Predictor models were shown to reliably identify at least one observed site of metabolism in the top two rank-positions on 78% of the substrates. Comparisons between RS-Predictor and previously described regioselectivity prediction methods reveal new insights into how in silico metabolite prediction methods should be compared. PMID:21528931

  13. RS-Predictor: A new tool for predicting sites of cytochrome P450-mediated metabolism applied to CYP 3A4

    PubMed Central

    Zaretzki, Jed; Bergeron, Charles; Rydberg, Patrik; Huang, Tao-wei; Bennett, Kristin P.; Breneman, Curt M.

    2011-01-01

    This article describes RegioSelectivity-Predictor (RS-Predictor), a new in silico method for generating predictive models of P450-mediated metabolism for drug-like compounds. Within this method, potential sites of metabolism (SOMs) are represented as “metabolophores”: A concept that describes the hierarchical combination of topological and quantum chemical descriptors needed to represent the reactivity of potential metabolic reaction sites. RS-Predictor modeling involves the use of metabolophore descriptors together with multiple-instance ranking (MIRank) to generate an optimized descriptor weight vector that encodes regioselectivity trends across all cases in a training set. The resulting pathway-independent,i isozyme-specific regioselectivity model may be used to predict potential metabolic liabilities. In the present work, cross-validated RS-Predictor models were generated for a set of 394 substrates of CYP 3A4 as a proof-of-principle for the method. Rank aggregation was then employed to merge independently generated predictions for each substrate into a single consensus prediction. The resulting consensus RS-Predictor models were shown to reliably identify at least one observed site of metabolism in the top two rank-positions on 78% of the substrates. Comparisons between RS-Predictor and previously described regioselectivity prediction methods reveal new insights into how in silico metabolite prediction methods should be compared. PMID:21528931

  14. Amine-free melanin-concentrating hormone receptor 1 antagonists: Novel 1-(1H-benzimidazol-6-yl)pyridin-2(1H)-one derivatives and design to avoid CYP3A4 time-dependent inhibition.

    PubMed

    Igawa, Hideyuki; Takahashi, Masashi; Shirasaki, Mikio; Kakegawa, Keiko; Kina, Asato; Ikoma, Minoru; Aida, Jumpei; Yasuma, Tsuneo; Okuda, Shoki; Kawata, Yayoi; Noguchi, Toshihiro; Yamamoto, Syunsuke; Fujioka, Yasushi; Kundu, Mrinalkanti; Khamrai, Uttam; Nakayama, Masaharu; Nagisa, Yasutaka; Kasai, Shizuo; Maekawa, Tsuyoshi

    2016-06-01

    Melanin-concentrating hormone (MCH) is an attractive target for antiobesity agents, and numerous drug discovery programs are dedicated to finding small-molecule MCH receptor 1 (MCHR1) antagonists. We recently reported novel pyridine-2(1H)-ones as aliphatic amine-free MCHR1 antagonists that structurally featured an imidazo[1,2-a]pyridine-based bicyclic motif. To investigate imidazopyridine variants with lower basicity and less potential to inhibit cytochrome P450 3A4 (CYP3A4), we designed pyridine-2(1H)-ones bearing various less basic bicyclic motifs. Among these, a lead compound 6a bearing a 1H-benzimidazole motif showed comparable binding affinity to MCHR1 to the corresponding imidazopyridine derivative 1. Optimization of 6a afforded a series of potent thiophene derivatives (6q-u); however, most of these were found to cause time-dependent inhibition (TDI) of CYP3A4. As bioactivation of thiophenes to form sulfoxide or epoxide species was considered to be a major cause of CYP3A4 TDI, we introduced electron withdrawing groups on the thiophene and found that a CF3 group on the ring or a Cl adjacent to the sulfur atom helped prevent CYP3A4 TDI. Consequently, 4-[(5-chlorothiophen-2-yl)methoxy]-1-(2-cyclopropyl-1-methyl-1H-benzimidazol-6-yl)pyridin-2(1H)-one (6s) was identified as a potent MCHR1 antagonist without the risk of CYP3A4 TDI, which exhibited a promising safety profile including low CYP3A4 inhibition and exerted significant antiobesity effects in diet-induced obese F344 rats. PMID:27112449

  15. Effects of cytokines on CYP3A4 expression and reversal of the effects by anti-cytokine agents in the three-dimensionally cultured human hepatoma cell line FLC-4.

    PubMed

    Mimura, Hanaka; Kobayashi, Kaoru; Xu, Linxiaoqing; Hashimoto, Mari; Ejiri, Yoko; Hosoda, Masaya; Chiba, Kan

    2015-02-01

    The expression of hepatic cytochrome P450 (CYP) enzymes is altered under pathological conditions with increased levels of cytokines. In this study, we analyzed the effects of cytokines (interleukin [IL]-1β, IL-6 and tumor necrosis factor α) on the expression of CYP3A4 using newly introduced three-dimensionally cultured human hepatocarcinoma FLC-4 cells. The mRNA level of CYP3A4 was significantly decreased by IL-1β, IL-6 and tumor necrosis factor-α. Formation of α-hydroxytriazolam catalyzed by CYP3A was decreased by IL-1β and IL-6. Pre-treatment with IL-6 enhanced the cytotoxic effects of gefitinib and paclitaxel. In addition, tocilizumab and IL-1 receptor antagonist restored the decreased expression of CYP3A4 mRNA by IL-6 and IL-1β, respectively. These results obtained by using three-dimensionally cultured FLC-4 cells are consistent with results obtained by using primary human hepatocytes and results of clinical studies. Therefore, three-dimensionally cultured FLC-4 cell system may be a promising cellular tool to assess the effects of cytokines on CYP3A4 expression. PMID:25760537

  16. Effects of salvianolic acid B and tanshinone IIA on the pharmacokinetics of losartan in rats by regulating the activities and expression of CYP3A4 and CYP2C9.

    PubMed

    Wang, Rong; Zhang, Hai; Wang, Yujie; Yu, Xiaoyan; Yuan, Yongfang

    2016-03-01

    Losartan (LST) is a common chemical drug used to treat high blood pressure and reduce the risk of stroke in certain people with heart disease. Danshen, prepared from the dried root and rhizome of Salvia miltiorrhiza Bunge, has been widely used for prevention and treatment of various cardiovascular and cerebrovascular diseases. There are more than 35 formulations containing Danshen indexed in the 2010 Chinese Pharmacopoeia, which are often combined with LST to treat cardiovascular and cerebrovascular diseases in the clinic. The effects of the two major components of Danshen, salvianolic acid B (SA-B) and tanshinone IIA (Tan IIA), on the pharmacokinetics of losartan and its metabolite, EXP3174, in rats were investigated by liquid chromatography coupled with mass spectrometry (LC-MS). Male Sprague-Dawley rats were randomly assigned to 3 groups: LST, LST+SA-B and LST+Tan IIA, and the main pharmacokinetic parameters were estimated after oral administration of LST, LST+SA-B and LST+Tan IIA. It was found that there are significant differences in the pharmacokinetic parameters among the three groups: Cmax, t1/2, AUC, AUMC in the LST+SA-B group was smaller than those in group LST, while larger in group LST+Tan IIA. Further, the effects of SA-B and Tan IIA on the metabolism of losartan was also investigated using rat liver microsomes in vitro. The results indicated that SA-B can induce the metabolism of LST, while Tan IIA can inhibit the metabolism of LST in rat liver microsomes in vitro by regulating activities of CYP450 enzymes. In addition, the effect of SA-B and Tan IIA on CYP3A4 and CYP2C9 expression was studied in Chang liver cells by western-blotting and Real-time PCR. It was concluded that the two components of Danshen, SA-B and Tan IIA have different influences on the metabolism of LST: SA-B can obviously speed up the metabolism of LST by inducing CYP3A4/CYP2C9 activities and expression, however, Tan IIA can slow down the metabolism of LST by inhibiting CYP3A4/CYP2C

  17. In vitro inhibition of cytochrome P450 3A4 by Aronia melanocarpa constituents.

    PubMed

    Bräunlich, Marie; Christensen, Hege; Johannesen, Siri; Slimestad, Rune; Wangensteen, Helle; Malterud, Karl E; Barsett, Hilde

    2013-01-01

    Extracts, subfractions, isolated anthocyanins and procyanidins, and two phenolic acids from aronia [Aronia melanocarpa] were investigated for their CYP3A4 inhibitory effects, using midazolam as the probe substrate and recombinant insect cell microsomes expressing CYP3A4 as the enzyme source. Procyanidin B5 was a considerably stronger CYP3A4 inhibitor in vitro than the isomeric procyanidin B2 and comparable to bergamottin, a known CYP3A4 inhibitor from grapefruit juice. The inhibitory activity of proanthocyanidin-containing fractions was correlated to the degree of polymerization. Among the anthocyanins, cyanidin 3-arabinoside showed stronger CYP3A4 inhibition than cyanidin 3-galactoside and cyanidin 3-glucoside. Thus, the ability to inhibit CYP3A4 in vitro seems to be influenced by the sugar unit linked to the anthocyanidin. PMID:23250807

  18. Optimization of a novel series of N-phenylindoline-5-sulfonamide-based acyl CoA:monoacylglycerol acyltransferase-2 inhibitors: Mitigation of CYP3A4 time-dependent inhibition and phototoxic liabilities.

    PubMed

    Sato, Kenjiro; Takahagi, Hiroki; Kubo, Osamu; Hidaka, Kousuke; Yoshikawa, Takeshi; Kamaura, Masahiro; Nakakariya, Masanori; Amano, Nobuyuki; Adachi, Ryutaro; Maki, Toshiyuki; Take, Kazumi; Takekawa, Shiro; Kitazaki, Tomoyuki; Maekawa, Tsuyoshi

    2015-08-01

    Acyl CoA:monoacylglycerol acyltransferase-2 (MGAT2) has emerged as a potential peripheral target for the treatment of obesity and metabolic disorders. We previously identified a novel series of N-phenylindoline-5-sulfonamide derivatives exemplified by 2 as potent and orally bioavailable MGAT2 inhibitors. Despite its attractive potency, further assessment revealed that this compound exhibited time-dependent inhibition (TDI) of cytochrome P450 3A4 (CYP3A4). To remove the undesirable CYP3A4 TDI activity, structural modification was focused on the 2,4-difluoroaniline moiety on the basis of the assumption that this moiety would be involved in mechanism-based inhibition of CYP3A4 via oxidative metabolism. This led to the finding that the introduction of 4-chloro-2,6-difluoroaniline significantly improved CYP3A4 TDI risk. Further optimization resulted in the discovery of N-(4-chloro-2,6-difluorophenyl)-1-{5-[1-methyl-3-(trifluoromethyl)-1H-pyrazol-5-yl]pyrimidin-2-yl}-7-(2-oxopyrrolidin-1-yl)-2,3-dihydro-1H-indole-5-sulfonamide (27c) with potent MGAT2 inhibitory activity (IC50=7.8 nM) and excellent ADME-Tox profiles including metabolic stability, oral bioavailability, and CYP3A4 TDI. In a mouse oral fat tolerance test, compound 27c effectively and dose-dependently suppressed the elevation of plasma triacylglycerol levels after oral administration at doses of 1 and 3mg/kg. We also discuss mitigation of the phototoxic liability of biaryl derivatives on the basis of the HOMO-LUMO gap hypothesis during the course of optimization efforts. PMID:26100443

  19. Hyperconjugation with lone pair of morpholine nitrogen stabilizes transition state for phenyl hydroxylation in CYP3A4 metabolism of ( S)- N-[1-(3-morpholin-4-yl phenyl) ethyl]-3-phenylacrylamide

    NASA Astrophysics Data System (ADS)

    Shaikh, Abdul Rajjak; Broclawik, Ewa; Ismael, Mohamed; Tsuboi, Hideyuki; Koyama, Michihisa; Kubo, Momoji; Del Carpio, Carlos A.; Miyamoto, Akira

    2006-02-01

    Using quantum chemical modelling we describe a novel effect in the mechanism of CYP3A4 metabolism for the arene substrate with o-substituent yielding a lone pair donation to conjugate π system; this will compensate for the loss of aromaticity on formation of the tetrahedral complex and lower the rate-determining energy barrier.

  20. Studies on the Role of Metabolic Activation in Tyrosine Kinase Inhibitor–Dependent Hepatotoxicity: Induction of CYP3A4 Enhances the Cytotoxicity of Lapatinib in HepaRG Cells

    PubMed Central

    Hardy, Klarissa D.; Wahlin, Michelle D.; Papageorgiou, Ioannis; Unadkat, Jashvant D.; Nelson, Sidney D.

    2014-01-01

    Idiosyncratic hepatotoxicity has been associated with the oral tyrosine kinase inhibitor lapatinib, which is used in metastatic breast cancer therapy. Lapatinib is extensively metabolized by cytochrome P450 3A4/5 to yield an O-debenzylated metabolite, which can undergo further oxidation to a reactive quinone imine. A recent clinical study reported that concomitant use of lapatinib with dexamethasone increased the incidence of hepatotoxicity in metastatic breast cancer patients treated with lapatinib, and so we hypothesized that induction of CYP3A enhances the bioactivation of lapatinib to reactive intermediates that contribute to hepatotoxicity. Therefore, we examined the effect of CYP3A4 induction on the cytotoxicity and metabolism of lapatinib in the HepaRG human hepatic cell line. Differentiated HepaRG cells were pretreated with dexamethasone (100 μM) or the prototypical CYP3A4 inducer rifampicin (4 μM) for 72 hours, followed by incubation with lapatinib (0–100 μM) for 24 hours. Cell viability was monitored using WST-1 assays, and metabolites were quantified by liquid chromatography coupled to tandem mass spectrometry. Induction of CYP3A4 by dexamethasone or rifampicin enhanced lapatinib-induced cytotoxicity, compared with treatment with lapatinib alone. A direct comparison of the cytotoxicity of lapatinib versus O-debenzylated lapatinib demonstrated that the O-debenzylated metabolite was significantly more cytotoxic than lapatinib itself. Furthermore, pretreatment with 25 μM l-buthionine sulfoximine to deplete intracellular glutathione markedly enhanced lapatinib cytotoxicity. Cytotoxicity was correlated with increased formation of O-debenzylated lapatinib and cysteine adducts of the putative quinone imine intermediate. Collectively, these data suggest that CYP3A4 induction potentiates lapatinib-induced hepatotoxicity via increased reactive metabolite formation. PMID:24191259

  1. Effect of buffer conditions on CYP2C8-mediated paclitaxel 6α-hydroxylation and CYP3A4-mediated triazolam α- and 4-hydroxylation by human liver microsomes.

    PubMed

    Kudo, Toshiyuki; Ozaki, Yuya; Kusano, Tomomi; Hotta, Eri; Oya, Yuka; Komatsu, Seina; Goda, Hitomi; Ito, Kiyomi

    2016-01-01

    1. Buffer conditions in in vitro metabolism studies using human liver microsomes (HLM) have been reported to affect the metabolic activities of several cytochrome P450 (CYP) isozymes in different ways, although there are no reports about the dependence of CYP2C8 activity on buffer conditions. 2. The present study investigated the effect of buffer components (phosphate or Tris-HCl) and their concentration (10-200 mM) on the CYP2C8 and CYP3A4 activities of HLM, using paclitaxel and triazolam, respectively, as marker substrates. 3. The Km (or S50) and Vmax values for both paclitaxel 6α-hydroxylation and triazolam α- and 4-hydroxylation, estimated by fitting analyses based on the Michaelis-Menten or Hill equation, greatly depended on the buffer components and their concentration. 4. The CLint values in phosphate buffer were 1.2-3.0-fold (paclitaxel) or 3.1-6.4-fold (triazolam) higher than in Tris-HCl buffer at 50-100 mM. These values also depended on the buffer concentration, with a maximum 2.3-fold difference observed between 50 and 100 mM which are both commonly used in drug metabolism studies. 5. These findings suggest the necessity for optimization of the buffer conditions in the quantitative evaluation of metabolic clearances, such as in vitro-in vivo extrapolation and also estimating the contribution of a particular enzyme in drug metabolism. PMID:26290405

  2. UNDERSTANDING THE MECHANISM OF CYTOCHROME P450 3A4: RECENT ADVANCES AND REMAINING PROBLEMS

    PubMed Central

    Sevrioukova, Irina F.; Poulos, Thomas L.

    2013-01-01

    Cytochromes P450 (CYPs) represent a diverse group of heme-thiolate proteins found in almost all organisms. CYPs share a common protein fold but differ in substrate selectivity and catalyze a wide variety of monooxygenation reactions via activation of molecular oxygen. Among 57 human P450s, the 3A4 isoform (CYP3A4) is the most abundant and the most important because it metabolizes the majority of the administered drugs. A remarkable feature of CYP3A4 is its extreme promiscuity in substrate specificity and cooperative substrate binding, which often leads to undesirable drug-drug interactions and toxic side effects. Owing to its importance in drug development and therapy, CYP3A4 has been the most extensively studied mammalian P450. In this review we provide an overview on recent progress and remaining problems in the CYP3A4 research. PMID:23018626

  3. 22 CFR 3a.4 - Procedure for requesting approval.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Procedure for requesting approval. 3a.4 Section 3a.4 Foreign Relations DEPARTMENT OF STATE GENERAL ACCEPTANCE OF EMPLOYMENT FROM FOREIGN GOVERNMENTS BY MEMBERS OF THE UNIFORMED SERVICES § 3a.4 Procedure for requesting approval. (a) An applicant...

  4. In Silico Predictions and In Vivo Results of Drug-Drug Interactions by Ketoconazole and Verapamil on AZD1305, a Combined Ion Channel Blocker and a Sensitive CYP3A4 Substrate.

    PubMed

    Johansson, Susanne; Löfberg, Boel; Aunes, Maria; Lunde, Helen; Frison, Lars; Edvardsson, Nils; Cullberg, Marie

    2016-09-01

    The objectives were to estimate and compare, in silico and in vivo, the effects of a strong and a moderate CYP3A4 inhibitor on AZD1305 pharmacokinetics. In silico, simulations were performed with the computer software Simcyp, and the predicted outcome was compared with the results observed in healthy male subjects. In silico, the geometric mean plasma exposure of AZD1305 + ketoconazole showed a 7.1-fold higher AUC and a 4.4-fold higher Cmax compared with AZD1305 alone. Coadministration with verapamil gave a 1.9-fold higher AUC and a 1.7-fold higher Cmax compared with AZD1305 alone. In vivo, the plasma exposure of AZD1305 + ketoconazole showed a 7.7-fold higher AUC and a 4.8 -fold higher Cmax compared with AZD1305 alone. Coadministration with verapamil gave a 2.2-fold higher AUC and a 2.0-fold higher Cmax compared with AZD1305 alone. The mean maximum QTcF increase from baseline was 407, 487, and 437 milliseconds for AZD1305, alone and in combination with verapamil or ketoconazole, respectively. Simcyp predicted the effects of ketoconazole and verapamil on the sensitive CYP3A4 substrate AZD1305 pharmacokinetics well. Both the in vivo study and the Simcyp predictions suggest a contraindication for strong CYP3A4 inhibitors and AZD1305 when given in combination. PMID:27627192

  5. Effect of coadministration of ketoconazole, a strong CYP3A4 inhibitor, on pharmacokinetics and tolerability of motesanib diphosphate (AMG 706) in patients with advanced solid tumors.

    PubMed

    Lorusso, Patricia; Heath, Elisabeth I; McGreivy, Jesse; Sun, Yu-Nien; Melara, Rebeca; Yan, Lucy; Malburg, Lisa; Ingram, Megan; Wiezorek, Jeffrey; Chen, Li; Pilat, Mary Jo

    2008-10-01

    Motesanib diphosphate is a novel angiogenesis inhibitor selectively targeting vascular endothelial growth factor receptors 1, 2, and 3; platelet-derived growth factor receptor and stem cell factor receptor. The purpose of this phase 1b, drug-drug interaction study was to investigate the effect of ketoconazole, a strong inhibitor of the cytochrome P450 3A4 isoenzyme, on the pharmacokinetics and tolerability of motesanib diphosphate. Fourteen patients with advanced solid tumors refractory to standard treatment were enrolled and received motesanib diphosphate 50 mg once daily from day 1 through 15. Patients were randomized to receive a single oral dose of ketoconazole 400 mg either on day 8 (Sequence 1; n = 7) or day 15 (Sequence 2; n = 7), while pharmacokinetic samples were collected. After completion of this part (day 16), 13 patients received an escalated once-daily dose of motesanib diphosphate 125 mg. Evaluable pharmacokinetic data (n = 12) suggest that ketoconazole modestly increased motesanib exposure. The motesanib area under the concentration-time curve (AUC) from 0 to 24 h increased by 86% (90% CI, 1.50-2.29; P < 0.001) and the maximum plasma concentration (C (max)) by 35% (90% CI, 1.12-1.64; P = 0.02), compared with motesanib diphosphate administration alone. The tolerability profile (with or without ketoconazole coadministration) was consistent with that from other motesanib diphosphate monotherapy studies. Treatment-related adverse events were mild to moderate and commonly included fatigue (50% of patients), hypertension (43%), diarrhea (21%), dizziness (14%), paresthesia (14%), and vomiting (14%). Hypertension was the most common related grade 3 event (21%). No grade 4 or 5 treatment-related adverse events occurred. PMID:18574557

  6. Pharmacokinetics of Lidocaine Hydrochloride Metabolized by CYP3A4 in Chinese Han Volunteers Living at Low Altitude and in Native Han and Tibetan Chinese Volunteers Living at High Altitude.

    PubMed

    Zhang, Juanling; Zhu, Junbo; Yao, Xingchen; Duan, Yabin; Zhou, Xuejiao; Yang, Meng; Li, Xiangyang

    2016-01-01

    To investigate the pharmacokinetics of lidocaine hydrochloride metabolized by cytochrome P450 3A4 (CYP3A4) in Chinese Han volunteers living at low altitude (LA) and in native Han and Tibetan Chinese volunteers living at high altitude, lidocaine hydrochloride 10 mg was given by intramuscular injection to 3 groups: Han volunteers living at LA, and native Han and Tibetan volunteers living at a high altitude. Blood samples were collected before the (baseline) study drug was given and at 0.25, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 6.0, 8.0 h after study drug administration. Lidocaine hydrochloride in plasma was determined by RP-HPLC. Pharmacokinetics parameters of lidocaine hydrochloride showed that there were no significant difference between the native Han and Tibetan volunteers, but the t1/2 was 29.8 and 29.8% higher in 2 groups, respectively, than in the LA group. To study related mechanism, the effects of exposure to chronic high-altitude hypoxia (CHH) on the activity and expression of CYP3A1 were examined in rats. Rats were divided into LA, chronic moderate altitude hypoxia, and CHH groups. CHH caused significant decreases in the activity and protein and mRNA expression of rat CYP3A1 in vivo. This study found significant changes in the disposition of lidocaine hydrochloride in native healthy Tibetan and Han Chinese subjects living at a high altitude in comparison to healthy Han Chinese subjects living at LA, it might be due to significant decreases in the activity and protein and mRNA expression of CYP3A4 under CHH condition. PMID:26730802

  7. Current Approaches for Investigating and Predicting Cytochrome P450 3A4-Ligand Interactions

    PubMed Central

    Poulos, Thomas L.

    2015-01-01

    Cytochrome P450 3A4 (CYP3A4) is the major and most important drug-metabolizing enzyme in humans that oxidizes and clears over a half of all administered pharmaceuticals. This is possible because CYP3A4 is promiscuous with respect to substrate binding and has the ability to catalyze diverse oxidative chemistries in addition to traditional hydroxylation reactions. Furthermore, CYP3A4 binds and oxidizes a number of substrates in a cooperative manner and can be both induced and inactivated by drugs. In vivo, CYP3A4 inhibition could lead to undesired drug-drug interactions and drug toxicity, a major reason for late-stage clinical failures and withdrawal of marketed pharmaceuticals. Owing to its central role in drug metabolism, many aspects of CYP3A4 catalysis have been extensively studied by various techniques. Here, we give an overview of experimental and theoretical methods currently used for investigation and prediction of CYP3A4-ligand interactions, a defining factor in drug metabolism, with an emphasis on the problems addressed and conclusions derived from the studies. PMID:26002732

  8. Fungal lactone ring opening of 6', 7'-dihydroxybergamottin diminishes cytochrome P450 3A4 inhibitory activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Furanocoumarins (FCs) are a class of aromatic compounds in grapefruit that inhibit human intestinal cytochrome P450 3A4 (CYP3A4). Since fungi metabolize polycyclic aromatic hydrocarbons, we hypothesized that certain fungi might also metabolize FCs into forms that may be inactive as CYP3A4 inhibitors...

  9. Effect of single and repeat doses of casopitant on the pharmacokinetics of CYP450 3A4 substrates midazolam and nifedipine

    PubMed Central

    Zamuner, Stefano; Johnson, Brendan M; Pagliarusco, Sabrina; Fina, Paolo; Peroni, Michela; Fiore, Monica; Adams, Laurel M; Fernandes, Sofia A

    2010-01-01

    AIM To evaluate the impact of single and repeated doses casopitant on the pharmacokinetics of single dose midazolam and nifedipine (CYP3A substrates) in healthy subjects. The effect on debrisoquine metabolism (CYP2D6 substrate) was also assessed. METHODS Three open-label studies were conducted in healthy subjects. In the first study subjects received single dose 50 or 100 mg oral casopitant, single dose 5 mg oral midazolam and single dose 10 mg oral debrisoquine. In the other two studies subjects received repeated doses of 10 mg (study 2), 30, or 120 mg oral casopitant and single doses of 5 mg oral midazolam (study 2) and single doses of 10 mg oral nifedipine (study 3). Plasma concentration–time data were analyzed using standard non-compartmental methods. The effect of casopitant on all probes was assessed using geometric means ratios and corresponding 90% confidence intervals (CIs). RESULTS The AUC(0,∞) of midazolam was increased 1.44-fold (90% CI 1.35, 1.54) and 1.52-fold (90% CI 1.41, 1.65) after co-administration with a single dose of 50 or 100 mg casopitant, respectively. Debrisoquine metabolism was unchanged. After 3 days of casopitant administration, midazolam AUC(0,∞) was increased 1.45- (90% CI 1.32, 1.59), 2.02- (90% CI 1.75, 2.32), and 2.67-fold (90% CI 2.18, 3.27) after co-administration with 10, 30 or 120 mg casopitant, respectively. After 14 days of casopitant administration, midazolam AUC(0,∞) was increased 1.51- (90% CI 1.40, 1.63) to 3.49-fold (90% CI 2.98, 4.08). After 3 days of casopitant administration, nifedipine AUC(0,∞) was increased 1.56- (90% CI 1.37, 1.78) and 1.77-fold (90% CI 1.54, 2.04) after co-administration with 30 or 120 mg casopitant, respectively. Similar increases in nifedipine exposure were observed after 14 days of casopitant administration. CONCLUSIONS Casopitant is a dose- and duration-dependent weak to moderate inhibitor of CYP3A. PMID:20840445

  10. Inhibitory effect of salvianolate on human cytochrome P450 3A4 in vitro involving a noncompetitive manner

    PubMed Central

    Qin, Chong-Zhen; Ren, Xian; Zhou, Hong-Hao; Mao, Xiao-Yuan; Liu, Zhao-Qian

    2015-01-01

    Salvianolic acid B (Sal B), which is purified from Danshen, is a popular herb extract. Sal B has anti-oxidative, anti-inflammatory, anti-hypoxic, anti-arteriosclerotic and anti-apoptotic properties. This substance can also ameliorate brain injury or neurodegenerative diseases. The listed drug Salvianolate, which contains a substantial amount of Sal B, has been used for the treatment of coronary heart disease. Our present work aimed to evaluate the inhibitory effect of salvianolate on seven cytochrome P450 isoforms (CYP450), namely, CYP1A2, CYP2A6, CYP2E1, CYP2C9, CYP2C19, CYP2D6 and CYP3A4, in human liver microsomes (HLMs) and recombinant enzymes through high-performance liquid chromatography (HPLC) assay. Salvianolate have a potent inhibitory effect on CYP3A4 activity with IC50 values of 1.438 (HLMs) and 3.582 (recombinant cDNA-expressed CYP3A4) mg/L, respectively. Salvianolate strongly dose, but not time-dependently decreased CYP3A4 activity in HLMs. The typical Lineweaver-Burk plots showed that Salvianolate inhibited CYP3A4 activity noncompetitively, with a Ki value of 2.27 mg/L in HLMs. Other CYP450 isoforms are not markedly affected by Salvianolate. These findings indicate that salvianolate may be involved in potential drug interactions when co-administrated with CYP3A4 substrates. PMID:26629047

  11. Effect of Glutathione on Homo- and Heterotropic Cooperativity in Cytochrome P450 3A4

    PubMed Central

    Davydov, Dmitri R.; Davydova, Nadezhda Y.; Tsalkova, Tamara N.; Halpert, James R.

    2008-01-01

    Glutathione (GSH) exerted a profound effect on the oxidation of 7-benzyloxy-4-(trifluoromethyl)coumarin (BFC) and 7-benzyloxyquinoline (BQ) by human liver microsomes as well as by CYP3A4-containing insect cell microsomes (Baculosomes). The cooperativity in O-debenzylation of both substrates is eliminated in the presence of 1–4 mM GSH. Addition of GSH also increased the amplitude of the 1-PB induced spin shift with purified CYP3A4 and abolished the cooperativity of 1-PB or BFC binding. Changes in fluorescence of 6-bromoacetyl-2-dimethylaminonaphthalene attached to the cysteine-depleted mutant CYP3A4(C58,C64) suggest a GSH-induced conformational changes in proximity of α-helix A. Importantly, the KS value for formation of the GSH complex and the concentrations in which GSH decreases CYP3A4 cooperativity are consistent with the physiological concentrations of GSH in hepatocytes. Therefore, the allosteric effect of GSH on CYP3A4 may play an important role in regulation of microsomal monooxygenase activity in vivo. PMID:18206979

  12. Genetic variation in the 3′-UTR of CYP1A2, CYP2B6, CYP2D6, CYP3A4, NR1I2, and UGT2B7: potential effects on regulation by microRNA and pharmacogenomics relevance

    PubMed Central

    Swart, Marelize; Dandara, Collet

    2014-01-01

    Introduction: Pharmacogenomics research has concentrated on variation in genes coding for drug metabolizing enzymes, transporters and nuclear receptors. However, variation affecting microRNA could also play a role in drug response. This project set out to investigate potential microRNA target sites in 11 genes and the extent of variation in the 3′-UTR of six selected genes; CYP1A2, CYP2B6, CYP2D6, CYP3A4, NR1I2, and UGT2B7. Methods: Fifteen microRNA target prediction algorithms were used to identify microRNAs predicted to regulate 11 genes. The 3′-UTR of the 6 genes which topped the list of potential microRNA targets was sequenced in 30 black South Africans. In addition, genetic variants within these genes were investigated for interference with mRNA-microRNA interactions. Potential effects of observed variants were determined using in silico prediction tools. Results: The 11 genes coding for DMEs, transporters and nuclear receptors were predicted to be targets of microRNAs with CYP2B6, NR1I2 (PXR), CYP3A4, and CYP1A2, interacting with the most microRNAs. The majority of identified genetic variants were predicted to interfere with microRNA regulation. For example, the variant, rs1054190C in NR1I2 was predicted to result in the presence of a binding site for the microRNA miR-1250-5p, while the variant rs1054191G was predicted to result in the absence of a recognition site for miR-371b-3p, miR-4258 and miR-4707-3p. Fifteen of the seventeen, novel variants occurred within microRNA target sequences. Conclusion: The 3′-UTR harbors variation that is likely to influence regulation of specific genes by microRNA. In silico prediction followed by functional validation could aid in decoding the contribution of variation in the 3′-UTR, to some unexplained heritability that affects drug response. Understanding the specific role of each microRNA may lead to identification of markers for targeted therapy and therefore improve personalized drug treatment. PMID:24926315

  13. Mechanism-Based Inactivation of Human Cytochrome P450 3A4 by Two Piperazine-Containing Compounds

    PubMed Central

    Bolles, Amanda K.; Fujiwara, Rina; Briggs, Erran D.; Nomeir, Amin A.

    2014-01-01

    Human cytochrome P450 3A4 (CYP3A4) is responsible for the metabolism of more than half of pharmaceutic drugs, and inactivation of CYP3A4 can lead to adverse drug-drug interactions. The substituted imidazole compounds 5-fluoro-2-[4-[(2-phenyl-1H-imidazol-5-yl)methyl]-1-piperazinyl]pyrimidine (SCH 66712) and 1-[(2-ethyl-4-methyl-1H-imidazol-5-yl)methyl]-4-[4-(trifluoromethyl)-2-pyridinyl]piperazine (EMTPP) have been previously identified as mechanism-based inactivators (MBI) of CYP2D6. The present study shows that both SCH 66712 and EMTPP are also MBIs of CYP3A4. Inhibition of CYP3A4 by SCH 66712 and EMTPP was determined to be concentration, time, and NADPH dependent. In addition, inactivation of CYP3A4 by SCH 66712 was shown to be unaffected by the presence of electrophile scavengers. SCH 66712 displays type I binding to CYP3A4 with a spectral binding constant (Ks) of 42.9 ± 2.9 µM. The partition ratios for SCH 66712 and EMTPP were 11 and 94, respectively. Whole protein mass spectrum analysis revealed 1:1 binding stoichiometry of SCH 66712 and EMTPP to CYP3A4 and a mass increase consistent with adduction by the inactivators without addition of oxygen. Heme adduction was not apparent. Multiple mono-oxygenation products with each inactivator were observed; no other products were apparent. These are the first MBIs to be shown to be potent inactivators of both CYP2D6 and CYP3A4. PMID:25273356

  14. Anthocyanins and their metabolites are weak inhibitors of cytochrome P450 3A4.

    PubMed

    Dreiseitel, Andrea; Schreier, Peter; Oehme, Anett; Locher, Sanja; Hajak, Goeran; Sand, Philipp G

    2008-12-01

    The cytochrome P450 enzyme cytochrome P450 3A4 (CYP3A4) controls the metabolism of about 60% of all drugs, and its inhibition may dramatically affect drug safety. Modulation of cytochrome P450 activity has been observed by constituents of fruit extracts including several flavonoids. The present investigation addresses CYP3A4 inhibition by anthocyanins, their aglycons, proanthocyanidins, and phenolic metabolites using a chemiluminescent assay. Test compounds inhibited CYP3A4 activity in a concentration-dependent manner featuring IC(50) values from 12.2 up to 7,842 microM. In the order of decreasing effect size, anthocyanidins were followed by anthocyanins, proanthocyanidins, and phenolic acids. When compared to earlier data on furanocoumarins from grapefruit extract, the inhibitory activity of tested anthocyanins, and anthocyanidins was shown to be about 10,000-fold weaker, and was negligible for phenolic acids (>100 000-fold weaker). Future studies are invited to address effects of the above flavonoids on other CYP isoforms for more detailed toxicity profiles. PMID:18727015

  15. In Vitro and in Vivo Inhibitory Effects of Glycyrrhetinic Acid in Mice and Human Cytochrome P450 3A4

    PubMed Central

    Lv, Qiao-Li; Wang, Gui-Hua; Chen, Shu-Hui; Hu, Lei; Zhang, Xue; Ying, Guo; Qin, Chong-Zhen; Zhou, Hong-Hao

    2015-01-01

    Glycyrrhetinic acid (GA) has been used clinically in the treatment of patients with chronic hepatitis. This study evaluated the effect of GA on the activity of five P450(CYP450) cytochrome enzymes: CYP2A6, CYP2C9, CYP2C19, CYP2D6, and CYP3A4, in human liver microsomes (HLMs) and recombinant cDNA-expressed enzyme systems using a HPLC-MS/MS CYP-specific probe substrate assay. With midazolam as the probe substrate, GA greatly decreased CYP3A4 activity with IC50 values of 8.195 μM in HLMs and 7.498 μM in the recombinant cDNA-expressed CYP3A4 enzyme system, respectively. It significantly decreased CYP3A4 activity in a dose- but not time-dependent manner. Results from Lineweaver–Burk plots showed that GA could inhibit CYP3A4 activity competitively, with a Ki value of 1.57 μM in HLMs. Moreover, CYP2C9 and CYP2C19 could also be inhibited significantly by GA with IC50 of 42.89 and 40.26 μM in HLMs, respectively. Other CYP450 isoforms were not markedly affected by GA. The inhibition was also confirmed by an in vivo study of mice. In addition, it was observed that mRNA expressions of the Cyps2c and 3a family decreased significantly in the livers of mice treated with GA. In conclusion, this study indicates that GA may exert herb-drug interactions by competitively inhibiting CYP3A4. PMID:26712778

  16. Hill Parameters and Heterogeneity of alpha-Naphthoflavone Binding to Human Cytochrome P450 3A4 by Fluorescence Spectroscopic Analysis

    NASA Astrophysics Data System (ADS)

    Carlson, Benjamin; Marsch, Glenn; Martin, Martha; Guengerich, F. Peter

    2009-03-01

    Human cytochrome P450 3A4 (CYP 3A4) is an alpha-helical membrane-bound protein that metabolizes approximately 50% of all drugs. The interaction between CYP450 3A4 and alpha-naphthoflavone (ANF) was characterized using fluorescence methods. ANF quenched fluorescence from tryptophan residues in CYP 3A4, and CYP 3A4 quenched bound ANF. The ANF emission energy was unchanged upon binding to CYP 3A4, implying that enzyme-bound 3A4 is completely quenched. Fluorescence difference spectra were fit to the Hill equation by varying the parameters Kd and n. For quenching of tryptophan fluorescence by ANF, no significant sigmoidal behavior was observed with n=1, and the spectral dissociation constant revealed a strong ANF-CYP 3A4 interaction with Kd=27nM. Modest cooperativity and very tight binding was observed in the quenching of ANF by CYP 3A4, with n=1.4 and Kd= 4.9nM. Fluorescence polarization anisotropy decreased at low ANF/CYP 3A4 molar ratios; then increased at higher ratios. Compared to substrate-free CYP 3A4, adding substrate at low molar ratios increases the CYP 3A4 rotation, suggesting the molecular volume decreases.

  17. The effect of interferon-{alpha} on the expression of cytochrome P450 3A4 in human hepatoma cells

    SciTech Connect

    Flaman, Anathea S.; Gravel, Caroline; Hashem, Anwar M.; Tocchi, Monika; Li Xuguang

    2011-06-01

    Interferon {alpha} (IFN{alpha}) is used to treat malignancies and chronic viral infections. It has been found to decrease the rate of drug metabolism by acting on cytochrome P450 enzymes, but no studies have investigated the consequences of IFN{alpha} treatment on the CYP3A4 isoform, responsible for the metabolism of a majority of drugs. In this study, we have examined the effect of IFN{alpha} on CYP3A4 catalytic activity and expression in human hepatoma cells. We found that IFN{alpha} inhibits CYP3A4 activity and rapidly down-regulates the expression of CYP3A4, independent of de novo protein synthesis. Pharmacologic inhibitors and a dominant-negative mutant expression plasmid were used to dissect the molecular pathway required for CYP3A4 suppression, revealing roles for Jak1 and Stat1 and eliminating the involvement of the p38 mitogen-activated and extracellular regulated kinases. Treatment of hepatoma cells with IFN{alpha} did not affect the nuclear localization or relative abundance of Sp1 and Sp3 transcription factors, suggesting that the suppression of CYP3A4 by IFN{alpha} does not result from inhibitory Sp3 out-competing Sp1. To our knowledge, this is the first report that IFN{alpha} down-regulates CYP3A4 expression largely through the JAK-STAT pathway. Since IFN{alpha} suppresses CYP3A4 expression, caution is warranted when IFN{alpha} is administered in combination with CYP3A4 substrates to avoid the occurrence of adverse drug interactions.

  18. Inactivation of Human Cytochrome P450 3A4 and 3A5 by Dronedarone and N-Desbutyl Dronedarone.

    PubMed

    Hong, Yanjun; Chia, Yvonne Mei Fen; Yeo, Ray Hng; Venkatesan, Gopalakrishnan; Koh, Siew Kwan; Chai, Christina Li Lin; Zhou, Lei; Kojodjojo, Pipin; Chan, Eric Chun Yong

    2016-01-01

    Dronedarone is an antiarrhythmic agent approved in 2009 for the treatment of atrial fibrillation. An in-house preliminary study demonstrated that dronedarone inhibits cytochrome P450 (CYP) 3A4 and 3A5 in a time-dependent manner. This study aimed to investigate the inactivation of CYP450 by dronedarone. We demonstrated for the first time that both dronedarone and its main metabolite N-desbutyl dronedarone (NDBD) inactivate CYP3A4 and CYP3A5 in a time-, concentration-, and NADPH-dependent manner. For the inactivation of CYP3A4, the inactivator concentration at the half-maximum rate of inactivation and inactivation rate constant at an infinite inactivator concentration are 0.87 µM and 0.039 minute(-1), respectively, for dronedarone, and 6.24 µM and 0.099 minute(-1), respectively, for NDBD. For CYP3A5 inactivation, the inactivator concentration at the half-maximum rate of inactivation and inactivation rate constant at an infinite inactivator concentration are 2.19 µM and 0.0056 minute(-1) for dronedarone and 5.45 µM and 0.056 minute(-1) for NDBD. The partition ratios for the inactivation of CYP3A4 and CYP3A5 by dronedarone are 51.1 and 32.2, and the partition ratios for the inactivation of CYP3A4 and CYP3A5 by NDBD are 35.3 and 36.6. Testosterone protected both CYP3A4 and CYP3A5 from inactivation by dronedarone and NDBD. Although the presence of Soret peak confirmed the formation of a quasi-irreversible metabolite-intermediate complex between dronedarone/NDBD and CYP3A4/CYP3A5, partial recovery of enzyme activity by potassium ferricyanide illuminated an alternative irreversible mechanism-based inactivation (MBI). MBI of CYP3A4 and CYP3A5 was further supported by the discovery of glutathione adducts derived from the quinone oxime intermediates of dronedarone and NDBD. In conclusion, dronedarone and NDBD inactivate CYP3A4 and CYP3A5 via unique dual mechanisms of MBI and formation of the metabolite-intermediate complex. Our novel findings contribute new knowledge for

  19. Interaction of Human Cytochrome P450 3A4 with Hydrophobicity Probe Nile Red Shows Heterogeneous, Strong Binding

    NASA Astrophysics Data System (ADS)

    Hansen, Jennifer; Guengerich, F.; Martin, Martha; Marsch, Glenn

    2009-03-01

    Human cytochrome P450 3A4 (CYP 3A4) binds an unusually wide variety of substrates, and metabolizes about 50% of all drugs. Steady-state fluorescence spectra were acquired for complexes of CYP 3A4 and the fluorescence probe Nile Red. Difference fluorescence spectra and Hill plots were generated, and Hill coefficients were determined. The fluorescence from multiple Nile Red bound states was observed, with all bound states having higher emission energies than the fluorescence from free Nile Red. Nile Red was titrated into 150nM CYP 3A4, and fluorescence difference spectra showed the quenching of CYP 3A4 tryptophan fluorescence by Nile Red. CYP 3A4 was also added to Nile Red, and changes in the Nile Red fluorescence spectra were monitored. The dissociation constant showed tight binding, with Kd = 44nM. Good fits to the Hill plots were obtained with n = 1, suggesting non-cooperative binding. This study revealed strong, heterogeneous, non-cooperative binding of Nile Red to CYP 3A4.

  20. N-Heterocyclic Carbene Capture by Cytochrome P450 3A4.

    PubMed

    Jennings, Gareth K; Ritchie, Caroline M; Shock, Lisa S; Lyons, Charles E; Hackett, John C

    2016-07-01

    Cytochrome P450 3A4 (CYP3A4) is the dominant P450 enzyme involved in human drug metabolism, and its inhibition may result in adverse interactions or, conversely, favorably reduce the systemic elimination rates of poorly bioavailable drugs. Herein we describe a spectroscopic investigation of the interaction of CYP3A4 with N-methylritonavir, an analog of ritonavir, widely used as a pharmacoenhancer. In contrast to ritonavir, the binding affinity of N-methylritonavir for CYP3A4 is pH-dependent. At pH <7.4, the spectra are definitively type I, whereas at pH ≥7.4 the spectra have split Soret bands, including a red-shifted component characteristic of a P450-carbene complex. Variable-pH UV-visible spectroscopy binding studies with molecular fragments narrows the source of this pH dependence to its N-methylthiazolium fragment. The C2 proton of this group is acidic, and variable-pH resonance Raman spectroscopy tentatively assigns it a pKa of 7.4. Hence, this fragment of N-methylritonavir is expected to be readily deprotonated under physiologic conditions to yield a thiazol-2-ylidene, which is an N-heterocyclic carbene that has high-affinity for and is presumed to be subsequently captured by the heme iron. This mechanism is supported by time-dependent density functional theory with an active site model that accurately reproduces distinguishing features of the experimental UV-visible spectra of N-methylritonavir bound to CYP3A4. Finally, density functional theory calculations support that this novel interaction is as strong as the tightest-binding azaheterocycles found in P450 inhibitors and could offer new avenues for inhibitor development. PMID:27126611

  1. Pharmacogenomics of Cytochrome P450 3A4: Recent Progress Toward the “Missing Heritability” Problem

    PubMed Central

    Klein, Kathrin; Zanger, Ulrich M.

    2013-01-01

    CYP3A4 is the most important drug metabolizing enzyme in adult humans because of its prominent expression in liver and gut and because of its broad substrate specificity, which includes drugs from most therapeutic categories and many endogenous substances. Expression and function of CYP3A4 vary extensively both intra- and interindividually thus contributing to unpredictable drug response and toxicity. A multitude of environmental, genetic, and physiological factors are known to influence CYP3A4 expression and activity. Among the best predictable sources of variation are drug–drug interactions, which are either caused by pregnane X-receptor (PXR), constitutive androstane receptor (CAR) mediated gene induction, or by inhibition through coadministered drugs or other chemicals, including also plant and food ingredients. Among physiological and pathophysiological factors are hormonal status, age, and gender, the latter of which was shown to result in higher levels in females compared to males, as well as inflammatory processes that downregulate CYP3A4 transcription. Despite the influence of these non-genetic factors, the genetic influence on CYP3A4 activity was estimated in previous twin studies and using information on repeated drug administration to account for 66% up to 88% of the interindividual variation. Although many single nucleotide polymorphisms (SNPs) within the CYP3A locus have been identified, genetic association studies have so far failed to explain a major part of the phenotypic variability. The term “missing heritability” has been used to denominate the gap between expected and known genetic contribution, e.g., for complex diseases, and is also used here in analogy. In this review we summarize CYP3A4 pharmacogenetics/genomics from the early inheritance estimations up to the most recent genetic and clinical studies, including new findings about SNPs in CYP3A4 (*22) and other genes (P450 oxidoreductase (POR), peroxisome proliferator

  2. Mechanism-based inhibition of recombinant human cytochrome P450 3A4 by tomato juice extract.

    PubMed

    Sunaga, Katsuyoshi; Ohkawa, Kenichi; Nakamura, Kenichi; Ohkubo, Atsuko; Harada, Sonoko; Tsuda, Tadashi

    2012-01-01

    This study investigates whether tomato juice can inhibit cytochrome P450 (CYP) 3A4-mediated drug metabolism. Three commercially available, additive-free tomato juices, along with homogenized fresh tomato, were analyzed for their ability to inhibit testosterone 6β-hydroxylation activity using human recombinant CYP3A4. Results were compared to that of grapefruit juice. Ethyl acetate extracts of the tomato juices moderately reduced residual activity of CYP3A4 testosterone 6β-hydroxylation activity by 19.3-26.2% with 0-min preincubation. Residual activity was strongly reduced by 69.9-83.5% at 20-min preincubation, a reduction similar to that of grapefruit juice extract, known to contain constituents of mechanism-based inhibitors. One juice extract (tomato juice C) showed irreversible dose- and preincubation time-dependent and partial nicotinamide adenine dinucleotide phosphate (NADPH)-dependent inhibition of CYP3A4 activity. Furthermore, we examined whether the CYP3A4 inhibitory effect of tomato juice was substrate dependent by examining midazolam 1'-hydroxylation activity and nifedipine oxidation activity, in addition to testosterone 6β-hydroxylation activity. Tomato juice showed a potent inhibitory effect on nifedipine oxidation activity, which was comparable to that on testosterone 6β-hydroxylation activity; however, it showed a weak inhibitory effect on midazolam 1'-hydroxylation activity. We conclude that tomato juice contains one or more mechanism-based and competitive inhibitor(s) of CYP3A4. Additionally, significant CYP3A4 inhibitory activity did not result from lycopene, a major compound in tomato. Although the active compound was uncertain, a strong CYP3A4 inhibitory activity was observed in other solanaceous plants, i.e., potato, eggplant, sweet pepper, and capsicum. Therefore, responsible compounds in tomato are likely commonly shared among solanaceous vegetables. PMID:22382318

  3. Study Liver Cytochrome P450 3A4 Inhibition and Hepatotoxicity Using DMSO-Differentiated HuH-7 Cells.

    PubMed

    Liu, Yitong

    2016-01-01

    Metabolically competent, inexpensive, and robust in vitro cell models are needed for studying liver drug-metabolizing enzymes and hepatotoxicity. Human hepatoma HuH-7 cells develop into a differentiated in vitro model resembling primary human hepatocytes after a 2-week dimethyl sulfoxide (DMSO) treatment. DMSO-treated HuH-7 cells express elevated cytochrome P450 3A4 (CYP3A4) enzyme gene expression and activity compared to untreated HuH-7 cells. This cell model could be used to study CYP3A4 inhibition by reversible and time-dependent inhibitors, including drugs, food-related substances, and environmental chemicals. The DMSO-treated HuH-7 model is also a suitable tool for investigating hepatotoxicity. This chapter describes a detailed methodology for developing DMSO-treated HuH-7 cells, which are subsequently used for CYP3A4 inhibition and hepatotoxicity studies. PMID:27518624

  4. Tecarfarin, a novel vitamin K reductase antagonist, is not affected by CYP2C9 and CYP3A4 inhibition following concomitant administration of fluconazole in healthy participants.

    PubMed

    Bavisotto, Linda M; Ellis, David J; Milner, Peter G; Combs, Daniel L; Irwin, Ian; Canafax, Daniel M

    2011-04-01

    Comparative pharmacokinetics of vitamin K epoxide reductase antagonists tecarfarin and warfarin were assessed before and after coadministration for 21 days of the CYP450 inhibitor fluconazole in a randomized, open-label, single-center drug interaction study. Twenty healthy adult participants were randomized 1:1 to receive approximately equipotent single oral doses of tecarfarin (50 mg) or warfarin (17.5 mg). Following 7 days of baseline serial blood level collections, each participant received oral fluconazole 400 mg daily for 21 days. A second identical single oral dose of tecarfarin or warfarin was given 14 days after starting fluconazole with serial pharmacokinetic sampling. Key pharmacokinetic parameters C(max), t(max), AUC(0-168), apparent clearance, and t(1/2) demonstrated no tecarfarin-fluconazole interaction but a strong warfarin-fluconazole interaction. The ratio of log-transformed mean AUC(0-168) with versus without fluconazole for tecarfarin was 91.2% (90% confidence interval [CI]: 83.3-99.8) and for racemic warfarin was 213% (90% CI: 202-226). The 90% CI was entirely within the standard 80% to 125% bioequivalence interval for tecarfarin but well outside the bioequivalence interval for warfarin, confirming a clinically significant pharmacokinetic interaction between warfarin and fluconazole. In contrast, tecarfarin pharmacokinetics were apparently unchanged by fluconazole. PMID:20622200

  5. Furanocoumarin derivatives in Kampo extract medicines inhibit cytochrome P450 3A4 and P-glycoprotein.

    PubMed

    Iwanaga, Kazunori; Hayashi, Manami; Hamahata, Yukimi; Miyazaki, Makoto; Shibano, Makio; Taniguchi, Masahiko; Baba, Kimiye; Kakemi, Masawo

    2010-08-01

    Furanocoumarins in grapefruit are known to show inhibitory effects against P-glycoprotein (P-gp) and CYP3A4 in intestinal epithelial cells; however, furanocoumarin derivatives are widely contained in the plants of Rutaceae and Umbelliferae families, which are used as components of Kampo extract medicines. In this study, we investigated the inhibitory effects of 12 furanocoumarins extracted from plants in the Umbelliferae family against P-gp and CYP3A4 activity. Furthermore, we studied their inhibitory effect on P-gp when furanocoumarins are used as Kampo extract medicine rather than as an isolated single compound. From screening of the CYP3A4 inhibitory effect, notopterol and rivulobirin A, the only dimer types of furanocoumarin, were found to be potent inhibitors of CYP3A4. On the other hand, byakangelicol and rivulobirin A showed strong P-gp inhibition from the screening of P-gp inhibitor evaluated by quinidine permeation through the Caco-2 monolayer; however, the chemical structural relationship of furanocoumarins between P-gp and CYP3A4 inhibitory effects could not be obtained. We also investigated the effect of these furanocoumarins on the transport of digoxin through the Caco-2 monolayer. The inhibitory effect of rivulobirin A was more potent than that of byakangelicol. Application of either Senkyu-cha-cho-san or Sokei-kakketsu-to, which are composed of herbal remedies in the Umbelliferae group, significantly decreased the efflux ratio of digoxin. In conclusion, it was found that some furanocoumarins extracted from the plants in the Umbelliferae family strongly inhibited P-gp and CYP3A4. Kampo extract medicines containing herbal remedies belonging to the Umbelliferae family may cause a drug-drug interaction with P-gp or a CYP3A4 substrate drug. PMID:20463004

  6. Mixing Apples and Oranges: Analysis of Heterotropic Cooperativity in Cytochrome P450 3A4

    PubMed Central

    Frank, Daniel J.; Denisov, Ilia G.; Sligar, Stephen G.

    2016-01-01

    Heterotropic cooperative phenomena have been documented in studies with cytochrome P450 3A4, with few attempts to quantify this behavior other than to show the apparent stimulatory effect of certain CYP3A4 substrates on the enzyme’s catalytic activity for others. Here CYP3A4 solubilized in Nanodiscs is studied for its ability to interact with two substrates, α-naphthoflavone and testosterone, which produce transitions in the heme spin state with apparent spectral affinities (corrected for membrane partitioning) of 7 and 38 µM respectively. Simultaneous addition of both substrates at fixed molar ratios allows for the separation of specific heterotropic cooperative interactions from the simple additive affinities for the given substrate ratios. The absence of any changes in the normalized spectral dissociation constant due to changes in substrate ratio reveals that the observed stimulatory effect is largely due to differences in the relative substrate affinities, and the presence of additional substrate in the system, rather than any specific positive heterotropic interactions between the two substrates. PMID:19560436

  7. Mixing apples and oranges: Analysis of heterotropic cooperativity in cytochrome P450 3A4.

    PubMed

    Frank, Daniel J; Denisov, Ilia G; Sligar, Stephen G

    2009-08-15

    Heterotropic cooperative phenomena have been documented in studies with cytochrome P450 3A4, with few attempts to quantify this behavior other than to show the apparent stimulatory effect of certain CYP3A4 substrates on the enzyme's catalytic activity for others. Here CYP3A4 solubilized in Nanodiscs is studied for its ability to interact with two substrates, alpha-naphthoflavone and testosterone, which produce transitions in the heme spin state with apparent spectral affinities (corrected for membrane partitioning) of 7 and 38 microM, respectively. Simultaneous addition of both substrates at fixed molar ratios allows for the separation of specific heterotropic cooperative interactions from the simple additive affinities for the given substrate ratios. The absence of any changes in the normalized spectral dissociation constant due to changes in substrate ratio reveals that the observed stimulatory effect is largely due to differences in the relative substrate affinities and the presence of additional substrate in the system, rather than any specific positive heterotropic interactions between the two substrates. PMID:19560436

  8. In Silico Docking of Ligands to Drug Oxidation Enzymes Cytochrome P450 3A4 and Cytochrome P450 1A2.

    NASA Astrophysics Data System (ADS)

    Smith, David; Guglielmon, Jonathan; Glenn, Marsch; Peter, Guengerich F.

    2009-03-01

    Cytochrome P450 3A4 (CYP3A4) and Cytochrome P450 1A2 (CYP1A2) oxidize most drugs in humans. Protein modeling toolkits from OpenEye Scientific Software were used to examine the interaction of drug substrates with CYP3A4 and CYP1A2. Conformers and partial atomic charges were generated for each drug molecule. User-defined volumes were defined around CYP3A4 and CYP1A2 active sites. Ligands were docked assuming protein and substrates as rigid bodies. To assess rigid docking accuracy, x-ray diffraction coordinates of CYP3A4-erythromycin and CYP3A4-metyrapone complexes were obtained. Rigid re-docking of erythromycin and metyrapone into CYP3A4 yielded poses similar to the crystal structures. Rigid docking revealed two other energetically-favorable CYP3A4-metyrapone poses. The best poses were obtained by using all the Open Eye scoring functions. Optimization of protein-ligand interactions within 5-10 Angstroms of the docked ligand was then performed using the Merck Molecular Force Field in which the protein was assumed to be flexible and the ligand to be rigid. Nearby protein residues pulled slightly closer to the substrate, reducing the volume of the active site.

  9. Redox Potential Control by Drug Binding to Cytochrome P450 3A4

    PubMed Central

    Das, Aditi; Grinkova, Yelena V.; Sligar, Stephen G.

    2008-01-01

    The cytochrome P450s are ubiquitous heme proteins that utilize two reducing equivalents to cleave a ferrous iron - dioxygen complex to produce a single water molecule with the insertion of one oxygen atom into a bound substrate. For the case of soluble cytochrome P450 CYP101, it has been shown that there is a linear free energy relationship between heme redox potential and the spin state of the ferric protein. However, the universality of this relationship has been challenged in the case of mammalian enzymes. Most cytochrome P450s are integral membrane proteins, and detailed redox potential measurements have proved difficult due protein aggregation or the necessary presence of detergent. In this communication we utilize a soluble nanometer scale membrane bilayer disc (Nanodisc) to stabilize monomeric human cytochrome P450 CYP3A4. The Nanodisc system allows facile redox potential measurements to be made on substrate-free CYP3A4 as well as with several drug molecules bound at the active site. We show that substrate binding can dramatically effect the redox potential of the heme protein through modulation of the ferric spin state. A linear free energy relationship is observed, analogous to that noted for the soluble P450s, indicating a common mechanism for this linkage and providing a means for control of electron input in response to the presence of a metabolizable substrate, this potentially limiting the unwanted production of reduced oxygen species. PMID:17948999

  10. Induction of cytochrome P450 3A4 and P-glycoprotein by the isoxazolyl-penicillin antibiotic flucloxacillin.

    PubMed

    Huwyler, Jörg; Wright, Matthew B; Gutmann, Heike; Drewe, Juergen

    2006-02-01

    Clinical findings indicate that co-administration of the isoxazolyl-penicillin flucloxacillin with cyclosporine may reduce the plasma concentrations of cyclosporine. We have explored in the present study if induction of cytochrome P450 3A4 or P-glycoprotein may offer a mechanistic explanation of the observed effects. Flucloxacillin is neither an inhibitor nor a substrate of drug metabolizing cytochrome P450 isoenzymes (CYP3A4, 1A2, 2C9, 2C19 and 2D6) or P-glycoprotein as shown by an in vitro assay for CYP inhibition, a fluorescent indicator assay for P-glycoprotein inhibition and a functional P-glycoprotein ATPase assay. However, incubation of human LS 180 colorectal adenocarcinoma cells with flucloxacillin led to a dose-dependent induction of MDR1 as well as of CYP3A4 mRNA, which was also confirmed in primary human hepatocytes. At high concentrations, flucloxacillin activated the human Pregnane-X-Receptor, PXR, a ligand-dependent transcription factor that is the target of many drugs that induce CYP3A4, with consequences for the metabolism of other drugs. Liver microsomes from control rats or rats, which received for 3 consecutive days 100 mg/kg of oral flucloxacillin, were used to study the metabolism and metabolite pattern of midazolam, a model substrate of CYP 3A4. There was a trend towards a higher intrinsic microsomal clearance of midazolam using microsomes from flucloxacillin treated rats. In addition, there was a significant increase in the formation of the principal midazolam metabolites 1-hydroxy midazolam, 4-hydroxy midazolam and 1,4-dihydroxy midazolam as compared to controls. These findings indicate that flucloxacillin has the potential to induce expression of both CYP3A4 as well as P-glycoprotein, most likely through activation of the nuclear hormone receptor PXR. This would offer an explanation for the observed clinical drug-drug interactions between the antibiotic and cyclosporine. PMID:16472102

  11. An in vitro evaluation of human cytochrome P450 3A4 inhibition by selected commercial herbal extracts and tinctures.

    PubMed

    Budzinski, J W; Foster, B C; Vandenhoek, S; Arnason, J T

    2000-07-01

    Serial dilutions of 21 commercial ethanolic herbal extracts and tinctures, and 13 related pure plant compounds have been analyzed for their in vitro cytochrome P450 3A4 (CYP3A4) inhibitory capability via a fluorometric microtitre plate assay. Roughly 75% of the commercial products and 50% of the pure compounds showed significant inhibition of CYP3A4 metabolite formation. For each herbal product and pure compound exhibiting dose-dependency, the inhibition values were used to generate median inhibitory concentration (IC50) curves using linear regression. Among the commercial extracts, Hydrastis canadensis (goldenseal), Hypericum perforatum (St. John's wort), and Uncaria tomentosa (cat's claw) had the lowest IC50 values at < 1% full strength, followed by Echinacea angustifolia roots, Trifolium pratense (wild cherry), Matricaria chamomilla (chamomile), and Glycyrrhiza glabra (licorice), which had IC50 values ranging from 1%-2% of full strength. Dillapiol, hypericin, and naringenin had the lowest IC50 values among the pure plant compounds at < 0.5 mM; dillapiol was the most potent inhibitor at 23.3 times the concentration of the positive CYP3A4 inhibitor ketoconazole. Utilizing high-throughput screening methodologies for assessing CYP3A4 inhibition by natural products has important implications for predicting the likelihood of potential herbal-drug interactions, as well as determining candidates for further in-depth analyses. PMID:10969720

  12. Studies on the interactions between drugs and estrogen: analytical method for prediction system of gynecomastia induced by drugs on the inhibitory metabolism of estradiol using Escherichia coli coexpressing human CYP3A4 with human NADPH-cytochrome P450 reductase.

    PubMed

    Satoh, T; Fujita, K I; Munakata, H; Itoh, S; Nakamura, K; Kamataki, T; Itoh, S; Yoshizawa, I

    2000-11-15

    To establish a prediction system for drug-induced gynecomastia in clinical fields, a model reaction system was developed to explain numerically this side effect. The principle is based on the assumption that 50% inhibition concentration (IC(50)) of drugs on the in vitro metabolism of estradiol (E2) to its major product 2-hydroxyestradiol (2-OH-E2) can be regarded as the index for achieving this purpose. By using human cytochrome P450s coexpressed with human NADPH-cytochrome P450 reductase in Escherichia coli as the enzyme, the reaction was examined. Among the nine enzymes (CYP1A1, 1A2, 2A6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4) tested, CYP3A4 having a V(max)/K(m) (ml/min/nmol P450) value of 0.32 for production of 2-OH-E2 was shown to be the most suitable enzyme as the reagent. The inhibitory effects of ketoconazole, cyclosporin A, and cimetidine toward the 2-hydroxylation of E2 catalyzed by CYP3A4 were obtained, and their IC(50) values were 7 nM, 64 nM, and 290 microM, respectively. The present results suggest that IC(50) values thus obtained can be substituted as the prediction index for gynecomastia induced by drugs, considering the patients' individual information. PMID:11067738

  13. Conformational Mobility in Cytochrome P450 3A4 Explored by Pressure-Perturbation EPR Spectroscopy.

    PubMed

    Davydov, Dmitri R; Yang, Zhongyu; Davydova, Nadezhda; Halpert, James R; Hubbell, Wayne L

    2016-04-12

    We used high hydrostatic pressure as a tool for exploring the conformational landscape of human cytochrome P450 3A4 (CYP3A4) by electron paramagnetic resonance and fluorescence spectroscopy. Site-directed incorporation of a luminescence resonance energy transfer donor-acceptor pair allowed us to identify a pressure-dependent equilibrium between two states of the enzyme, where an increase in pressure increased the spatial separation between the two distantly located fluorophores. This transition is characterized by volume change (ΔV°) and P1/2 values of -36.8 ± 5.0 mL/mol and 1.45 ± 0.33 kbar, respectively, which corresponds to a Keq° of 0.13 ± 0.06, so that only 15% of the enzyme adopts the pressure-promoted conformation at ambient pressure. This pressure-promoted displacement of the equilibrium is eliminated by the addition of testosterone, an allosteric activator. Using site-directed spin labeling, we demonstrated that the pressure- and testosterone-sensitive transition is also revealed by pressure-induced changes in the electron paramagnetic resonance spectra of a nitroxide side chain placed at position 85 or 409 of the enzyme. Furthermore, we observed a pressure-induced displacement of the emission maxima of a solvatochromic fluorophore (7-diethylamino-3-((((2-maleimidyl)ethyl)amino)carbonyl) coumarin) placed at the same positions, which suggests a relocation to a more polar environment. Taken together, the results reveal an effector-dependent conformational equilibrium between open and closed states of CYP3A4 that involves a pronounced change at the interface between the region of α-helices A/A' and the meander loop of the enzyme, where residues 85 and 409 are located. Our study demonstrates the high potential of pressure-perturbation strategies for studying protein conformational landscapes. PMID:27074675

  14. Camptothecin Attenuates Cytochrome P450 3A4 Induction by Blocking the Activation of Human Pregnane X ReceptorS⃞

    PubMed Central

    Chen, Yakun; Tang, Yong; Robbins, Gregory T.

    2010-01-01

    Differential regulation of drug-metabolizing enzymes (DMEs) is a common cause of adverse drug effects in cancer therapy. Due to the extremely important role of cytochrome P450 3A4 (CYP3A4) in drug metabolism and the dominant regulation of human pregnane X receptor (hPXR) on CYP3A4, finding inhibitors for hPXR could provide a unique tool to control drug efficacies in cancer therapy. Camptothecin (CPT) was demonstrated as a novel and potent inhibitor (IC50 = 0.58 μM) of an hPXR-mediated transcriptional regulation on CYP3A4 in this study. In contrast, one of its analogs, irinotecan (CPT-11), was found to be an hPXR agonist in the same tests. CPT disrupted the interaction of hPXR with steroid receptor coactivator-1 but had effects on neither the competition of ligand binding nor the formation of the hPXR and retinoid X receptor α heterodimer, nor the interaction between the regulatory complex and DNA-responsive elements. CPT treatment resulted in delayed metabolism of nifedipine in human hepatocytes treated with rifampicin, suggesting a potential prevention of drug-drug interactions between CYP3A4 inducers and CYP3A4-metabolized drugs. Because CPT is the leading compound of topoisomerase I inhibitors, which comprise a quickly developing class of anticancer agents, the findings indicate the potential of a new class of compounds to modify hPXR activity as agonists/inhibitors and are important in the development of CPT analogs. PMID:20504912

  15. Characterizing the Membrane-Bound State of Cytochrome P450 3A4: Structure, Depth of Insertion, and Orientation

    PubMed Central

    2013-01-01

    Cytochrome P450 3A4 (CYP3A4) is the most abundant membrane-associated isoform of the P450 family in humans and is responsible for biotransformation of more than 50% of drugs metabolized in the body. Despite the large number of crystallographic structures available for CYP3A4, no structural information for its membrane-bound state at an atomic level is available. In order to characterize binding, depth of insertion, membrane orientation, and lipid interactions of CYP3A4, we have employed a combined experimental and simulation approach in this study. Taking advantage of a novel membrane representation, highly mobile membrane mimetic (HMMM), with enhanced lipid mobility and dynamics, we have been able to capture spontaneous binding and insertion of the globular domain of the enzyme into the membrane in multiple independent, unbiased simulations. Despite different initial orientations and positions of the protein in solution, all the simulations converged into the same membrane-bound configuration with regard to both the depth of membrane insertion and the orientation of the enzyme on the surface of the membrane. In tandem, linear dichroism measurements performed on CYP3A4 bound to Nanodisc membranes were used to characterize the orientation of the enzyme in its membrane-bound form experimentally. The heme tilt angles measured experimentally are in close agreement with those calculated for the membrane-bound structures resulted from the simulations, thereby verifying the validity of the developed model. Membrane binding of the globular domain in CYP3A4, which appears to be independent of the presence of the transmembrane helix of the full-length enzyme, significantly reshapes the protein at the membrane interface, causing conformational changes relevant to access tunnels leading to the active site of the enzyme. PMID:23697766

  16. Effects of mace and nutmeg on human cytochrome P450 3A4 and 2C9 activity.

    PubMed

    Kimura, Yuka; Ito, Hideyuki; Hatano, Tsutomu

    2010-01-01

    Pharmacokinetic or pharmacodynamic interactions between herbal medicines or food constituents and drugs have been studied as crucial factors determining therapeutic efficacy and outcome. Most of these interactions are attributed to inhibition or induction of activity of cytochrome P450 (CYP) metabolic enzymes. Inhibition or induction of CYP enzymes by beverages, including grapefruit, pomegranate, or cranberry juice, has been well documented. Because spices are a common daily dietary component, other studies have reported inhibition of CYP activity by spices or their constituents/derivatives. However, a systematic evaluation of various spices has not been performed. In this study, we investigated effects of 55 spices on CYP3A4 and CYP2C9 activity. Cinnamon, black or white pepper, ginger, mace, and nutmeg significantly inhibited CYP3A4 or CYP2C9 activity. Furthermore, bioassay-guided fractionation of mace (Myristica fragrans) led to isolation and structural characterization of a new furan derivative (1) along with other 16 known compounds, including an acylphenol, neolignans, and phenylpropanoids. Among these isolates, (1S,2R)-1-acetoxy-2-(4-allyl-2,6-dimethoxyphenoxy)-1-(3,4-dimethoxyphenyl)propane (9) exhibited the most potent CYP2C9 inhibitory activity with an IC₅₀ value comparable to that of sulfaphenazole, a CYP2C9 inhibitor. Compound 9 competitively inhibited CYP2C9-mediated 4'-hydroxylation of diclofenac. The inhibitory constant (K(i)) of 9 was determined to be 0.037 µM. Compound 9 was found to be 14-fold more potent than was sulfaphenazole. PMID:21139236

  17. ONTOGENIC EXPRESSION OF HUMAN CARBOXYLESTERASE-2 AND CYTOCHROME P450 3A4 IN LIVER AND DUODENUM: POSTNATAL SURGE AND ORGAN-DEPENDENT REGULATION1

    PubMed Central

    Chen, Yi-Tzai; Trzoss, Lynnie; Yang, Dongfang; Yan, Bingfang

    2015-01-01

    Human carboxylesterase-2 (CES2) and cytochrome P450 3A4 (CYP3A4) are two major drug metabolizing enzymes that play critical roles in hydrolytic and oxidative biotransformation, respectively. They share substrates but may have opposite effect on therapeutic potential such as the metabolism of the anticancer prodrug irinotecan. Both CES2 and CYP3A4 are expressed in the liver and the gastrointestinal tract. This study was conducted to determine whether CES2 and CYP3A4 are expressed under developmental regulation and whether the regulation occurs differentially between the liver and duodenum. A large number of tissues (112) were collected with majority of them from donors at 1-198 days of age. In addition, multi-sampling (liver, duodenum and jejunum) was performed in some donors. The expression was determined at mRNA and protein levels. In the liver, CES2 and CYP3A4 mRNA exhibited a postnatal surge (1 versus 2 months of age) by 2.7 and 29 fold, respectively. CYP3A4 but not CES2 mRNA in certain pediatric groups reached or even exceeded the adult level. The duodenal samples, on the other hand, showed a gene-specific expression pattern at mRNA level. CES2 mRNA increased with age but the opposite was true with CYP3A4 mRNA. The levels of CES2 and CYP3A4 protein, on the other hand, increased with age in both liver and duodenum. The multi-sampling study demonstrated significant correlation of CES2 expression between the duodenum and jejunum. However, neither duodenal nor jejunal expression correlated with hepatic expression of CES2. These findings establish that developmental regulation occurs in a gene and organ-dependent manner. PMID:25724353

  18. Differential Interactions of Cytochrome P450 3A5 and 3A4 with Chemotherapeutic Agent-Vincristine: A Comparative Molecular Dynamics Study.

    PubMed

    Saba, Nikhat; Bhuyan, Rajabrata; Nandy, Suman Kumar; Seal, Alpana

    2015-01-01

    The chemotherapeutic agent vincristine, used for treatment of acute lymphoblastic leukemia is metabolized preferentially by polymorphic cytochrome P450 3A5 (CYP3A5) with higher clearance rate than cytochrome P450 3A4 (CYP3A4). As a result, CYP3A5 expressers have a reduced amount of vincristine-induced peripheral neuropathy than non-expressers. We modeled the structure of CYP3A5 and its interaction with vincristine, compared with CYP3A4-vincristine complex using molecular docking and simulation studies. This relative study helped us to understand the molecular mechanisms behind the interaction at the atomic level through interaction energy, binding free energy, hydrogen bond and solvent accessible surface area analysis - giving an insight into the binding mode and the main residues involved in this particular interaction. Our results show that the interacting groups get closer in CYP3A5-vincristine complex due to different orientation of vincristine. This leads to higher binding affinity of vincristine towards CYP3A5 compared to CYP3A4 and explains the preferential metabolism of vincristine by CYP3A5. We believe that, the results of the current study will be helpful for future studies on structure-based drug design in this area. PMID:25634447

  19. Significantly reduced cytochrome P450 3A4 expression and activity in liver from humans with diabetes mellitus

    PubMed Central

    Dostalek, Miroslav; Court, Michael H; Yan, Bingfang; Akhlaghi, Fatemeh

    2011-01-01

    BACKGROUND AND PURPOSE Patients with diabetes mellitus require pharmacotherapy with numerous medications. However, the effect of diabetes on drug biotransformation is not well understood. Our goal was to investigate the effect of diabetes on liver cytochrome P450 3As, the most abundant phase I drug-metabolizing enzymes in humans. EXPERIMENTAL APPROACH Human liver microsomal fractions (HLMs) were prepared from diabetic (n = 12) and demographically matched nondiabetic (n = 12) donors, genotyped for CYP3A4*1B and CYP3A5*3 polymorphisms. Cytochrome P450 3A4, 3A5 and 2E1 mRNA expression, protein level and enzymatic activity were compared between the two groups. KEY RESULTS Midazolam 1′- or 4-hydroxylation and testosterone 6β-hydroxylation, catalyzed by P450 3A, were markedly reduced in diabetic HLMs, irrespective of genotype. Significantly lower P450 3A4 protein and comparable mRNA levels were observed in diabetic HLMs. In contrast, neither P450 3A5 protein level nor mRNA expression differed significantly between the two groups. Concurrently, we have observed increased P450 2E1 protein level and higher chlorzoxazone 6-hydroxylation activity in diabetic HLMs. CONCLUSIONS AND IMPLICATIONS These studies indicate that diabetes is associated with a significant decrease in hepatic P450 3A4 enzymatic activity and protein level. This finding could be clinically relevant for diabetic patients who have additional comorbidities and are receiving multiple medications. To further characterize the effect of diabetes on P450 3A4 activity, a well-controlled clinical study in diabetic patients is warranted. PMID:21323901

  20. Spectroscopic studies and molecular docking on the interaction of organotin antitumor compound bis[2,4-difluoro-N-(hydroxy-⟨κ⟩O)benzamidato-⟨κ⟩O]diphenyltin(IV) with human cytochrome P450 3A4 protease

    NASA Astrophysics Data System (ADS)

    Wei, Ying; Niu, Lin; Liu, Xinxin; Zhou, Hongyan; Dong, Hongzhou; Kong, Depeng; Li, Yunlan; Li, Qingshan

    2016-06-01

    A novel organotin DFDPT was synthesized and characterized by elemental analysis, IR, 1H, 13C, 119Sn, NMR techniques,etc. In order to investigate profoundly the relationship between DFDPT with human CYP3A4 proteaset and anticancer molecular mechanism of DFDPT, the intercalative mode of binding of DFDPT with CYP3A4 under physiological conditions were comprehensively evaluated using steady state, synchronous, three-dimensional fluorescence spectroscopy,circular dichroism and molecular docking. Fluorescence emission data showed that CYP3A4 fluorescence affected by DFDPT was a static quenching procedure, which implied that DFDPT-CYP3A4 complex had been formed. Apparent binding constants Kb of CYP3A4 with compound at 298 and 310 K were 2.51 × 107 and 3.09 × 105, respectively. The binding sites number n was 1.64 and 1.22, respectively. The thermodynamic parameters ΔH and ΔS of the DFDPT-CYP3A4 complex were negative, which indicated that their interaction was driven mainly by hydrogen bonding and van der Waals force. The binding of DFDPT-CYP3A4 was spontaneous process in which ΔG was negative. The synchronous results showed DFDPT induced conformational changes of CYP3A4 protein. Three-dimensional fluorescence and circular dichroism spectra results also revealed conformation of CYP3A4 protein had been possible changed in the presence of DFDPT. Molecular docking was used to study the interaction orientation between DFDPT and CYP3A4 protease. The results indicated that DFDPT interacted with a panel of amino acids in the active sites of CYP3A4 protein mainly through formation of hydrogen bond. Furthermore, the predicted binding mode of DFDPT into CYP3A4 appeared to adopt an orientation with interactions among Arg105, Ser119 and Thr309.

  1. Spectroscopic studies and molecular docking on the interaction of organotin antitumor compound bis[2,4-difluoro-N-(hydroxy-⟨κ⟩O)benzamidato-⟨κ⟩O]diphenyltin(IV) with human cytochrome P450 3A4 protease.

    PubMed

    Wei, Ying; Niu, Lin; Liu, Xinxin; Zhou, Hongyan; Dong, Hongzhou; Kong, Depeng; Li, Yunlan; Li, Qingshan

    2016-06-15

    A novel organotin DFDPT was synthesized and characterized by elemental analysis, IR, (1)H, (13)C, (119)Sn, NMR techniques,etc. In order to investigate profoundly the relationship between DFDPT with human CYP3A4 proteaset and anticancer molecular mechanism of DFDPT, the intercalative mode of binding of DFDPT with CYP3A4 under physiological conditions were comprehensively evaluated using steady state, synchronous, three-dimensional fluorescence spectroscopy,circular dichroism and molecular docking. Fluorescence emission data showed that CYP3A4 fluorescence affected by DFDPT was a static quenching procedure, which implied that DFDPT-CYP3A4 complex had been formed. Apparent binding constants Kb of CYP3A4 with compound at 298 and 310K were 2.51×10(7) and 3.09×10(5), respectively. The binding sites number n was 1.64 and 1.22, respectively. The thermodynamic parameters ΔH and ΔS of the DFDPT-CYP3A4 complex were negative, which indicated that their interaction was driven mainly by hydrogen bonding and van der Waals force. The binding of DFDPT-CYP3A4 was spontaneous process in which ΔG was negative. The synchronous results showed DFDPT induced conformational changes of CYP3A4 protein. Three-dimensional fluorescence and circular dichroism spectra results also revealed conformation of CYP3A4 protein had been possible changed in the presence of DFDPT. Molecular docking was used to study the interaction orientation between DFDPT and CYP3A4 protease. The results indicated that DFDPT interacted with a panel of amino acids in the active sites of CYP3A4 protein mainly through formation of hydrogen bond. Furthermore, the predicted binding mode of DFDPT into CYP3A4 appeared to adopt an orientation with interactions among Arg105, Ser119 and Thr309. PMID:27049867

  2. Inhibition of Human Cytochrome P450 3A4 by Cholesterol*

    PubMed Central

    Shinkyo, Raku; Guengerich, F. Peter

    2011-01-01

    Cholesterol has been shown to be hydroxylated at the 4β-position by cytochrome P450 3A4, and the reaction occurs in vivo (Bodin, K., Andersson, U., Rystedt, E., Ellis, E., Norlin, M., Pikuleva, I., Eggertsen, G., Björkhem, I., and Diczfalusy, U. (2002) J. Biol. Chem. 277, 31534–31540). If cholesterol is a substrate of P450 3A4, then it follows that it should also be an inhibitor, particularly in light of the high concentrations found in liver. Heme perturbation spectra indicated a Kd value of 8 μm for the P450 3A4-cholesterol complex. Cholesterol inhibited the P450 3A4-catalyzed oxidations of nifedipine and quinidine, two prototypic substrates, in liver microsomes and a reconstituted enzyme system with Ki ∼ 10 μm in an apparently non-competitive manner. The concentration of cholesterol could be elevated 4–6-fold in cultured human hepatocytes by incubation with cholesterol; the level of P450 3A4 and cell viability were not altered under the conditions used. Nifedipine oxidation was inhibited when the cholesterol level was increased. We conclude that cholesterol is both a substrate and an inhibitor of P450 3A4, and a model is presented to explain the kinetic behavior. We propose that the endogenous cholesterol in hepatocytes should be considered in models of prediction of metabolism of drugs and steroids, even in the absence of changes in the concentrations of free cholesterol. PMID:21471209

  3. Potent inhibition of human cytochrome P450 3A4, 2D6, and 2C9 isoenzymes by grapefruit juice and its furocoumarins.

    PubMed

    Girennavar, B; Jayaprakasha, G K; Patil, B S

    2007-10-01

    The cytochrome P450 enzyme family is the most abundant and responsible for the metabolism of more than 60% of currently marketed drugs and is considered central in many clinically important drug interactions. Seven different grapefruit and pummelo juices as well as 5 furocoumarins isolated from grapefruit juice were evaluated at different concentration on cytochrome P450 3A4 (CYP3A4), cytochrome P450 2C9 (CYP2C9), and cytochrome P450 2D6 (CYP2D6) isoenzyme activity. Grapefruit and pummelo juices were found to be potent inhibitors of cytochrome CYP3A4 and CYP2C9 isoenzymes at 25% concentration, while CYP2D6 is inhibited significantly low at all the tested concentration of juices (P < 0.05). Among the 5 furocoumarins tested, the inhibitory potency was in the order of paradisin A > dihydroxybergamottin > bergamottin > bergaptol > geranylcoumarin at 0.1 microM to 0.1 mM concentrations. The IC(50) value was lowest for paradisin A for CYP3A4 with 0.11 microM followed by DHB for CYP2C9 with 1.58 microM. PMID:17995595

  4. Stable expression of human cytochrome P450 3A4 in V79 cells and its application for metabolic profiling of ergot derivatives.

    PubMed

    Rauschenbach, R; Gieschen, H; Husemann, M; Salomon, B; Hildebrand, M

    1995-10-01

    Expression of human cytochrome (CYP) in heterologous cells is a means of specifically studying the role of these enzymes in drug metabolism. The complete cDNA encoding CYP3A4 (PCN1) was inserted into an expression vector containing the strong myeloproliferative sarcoma virus promoter in combination with the enhancer of the cytomegalovirus and stably expressed in V79 Chinese hamster cells. The presence of genomically integrated CYP3A4 cDNA cell clones was confirmed by polymerase chain reaction analysis. Transcription was detected by reverse transcribed polymerase chain reaction analysis. Functional expression could be demonstrated by conversion of testosterone to the specific 6beta-hydroxylated product. In recombinant V79 cells expressing CYP3A4 about 6% of the substrate was converted to 6beta-hydroxytestosterone. The metabolism of two dopaminergic ergot derivatives was investigated in live recombinant V79 cells. Both lisuride and terguride were monodeethylated. PMID:8666035

  5. Three-dimensional quantitative structure–activity relationship and docking studies in a series of anthocyanin derivatives as cytochrome P450 3A4 inhibitors

    PubMed Central

    Shityakov, Sergey; Puskás, István; Roewer, Norbert; Förster, Carola; Broscheit, Jens

    2014-01-01

    The cytochrome P450 (CYP)3A4 enzyme affects the metabolism of most drug-like substances, and its inhibition may influence drug safety. Modulation of CYP3A4 by flavonoids, such as anthocyanins, has been shown to inhibit the mutagenic activity of mammalian cells. Considering the previous investigations addressing CYP3A4 inhibition by these substances, we studied the three-dimensional quantitative structure–activity relationship (3D-QSAR) in a series of anthocyanin derivatives as CYP3A4 inhibitors. For the training dataset (n=12), comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) yielded crossvalidated and non-crossvalidated models with a q2 of 0.795 (0.687) and r2 of 0.962 (0.948), respectively. The models were also validated by an external test set of four compounds with r2 of 0.821 (CoMFA) and r2 of 0.812 (CoMSIA). The binding affinity modes associated with experimentally derived IC50 (half maximal inhibitory concentration) values were confirmed by molecular docking into the CYP3A4 active site with r2 of 0.66. The results obtained from this study are useful for a better understanding of the effects of anthocyanin derivatives on inhibition of carcinogen activation and cellular DNA damage. PMID:24741320

  6. Constituents of Indonesian medicinal plant Averrhoa bilimbi and their cytochrome P450 3A4 and 2D6 inhibitory activities.

    PubMed

    Auw, Lidyawati; Subehan; Sukrasno; Kadota, Shigetoshi; Tezuka, Yasuhiro

    2015-01-01

    As constituents of Averrhoa bilimbi leaves we identified three new compounds (1-3) together with 12 known ones (4-15); their inhibitory activities on cytochrome P450 3A4 (CYP3A4) and 2D6 (CYP2D6) were examined. Among the isolated compounds, the mixture of 1 and 2, and compounds 4 and 9 showed strong inhibition on CYP3A4, but mild or no inhibition on CYP2D6. These compounds revealed the characteristics of 1) time- and concentration-dependent inhibition, 2) requirement of NADPH for the inhibition, 3) no protection by nucleophiles, and 4) suppression of the inhibition by competitive inhibitor. Thus, they are suggested to be mechanism-based inactivators of CYP3A4 and CYP2D6. The kinetic parameters for the inactivation (k(inact) and K(I)) were 0.19 min(-1) and 36.7 μM for the mixture of 1 and 2, 0.126 min(-1) and 10.5 μM for 4, and 0.29 min(-1) and 23.4 μM for 9. PMID:25920220

  7. Regulation of cytochrome P450 3A4 by small vault RNAb derived from the non-coding vault RNA1 of multidrug resistance-linked vault particle.

    PubMed

    Meng, Chunjie; Wei, Zhiyun; Zhang, Yiting; Yan, Liang; He, Hang; Zhang, Lirong; Xing, Qinghe

    2016-07-01

    Cytochrome P450 3A4 (CYP3A4) is the most abundant cytochrome P450 enzyme in human liver and intestine, contributing to the metabolism of >60% of all pharmaceuticals. The expression levels of hepatic CYP3A4 show great inter‑individual variation. However, the detailed regulatory mechanism of CYP3A4 expression has remained largely elusive. It has been reported that the non‑coding RNA small vault (sv)RNAb targets the 3' untranslated region (3'UTR) of CYP3A4 in MCF7 cells. However, to date, the role of svRNAb has not been examined in human liver tissue and hepatic cell lines such as HepG2, which was the aim of the present study. Polymerase chain reaction analysis indicated that the expression of CYP3A4 was significantly different within a study cohort (n=19). In addition, a significant negative correlation was observed between svRNAb and CYP3A4 expression in human liver tissue samples. Furthermore, a luciferase assay on HepG2 cells verified that svRNAb directly targets CYP3A4 and regulates the expression of CYP3A4 by interacting with the validated binding sites of the CYP3A4 3'UTR. The results provided insight into the variation of the expression of CYP3A4 among individuals and provided a novel method for the adjustment of personalized drug treatment. Furthermore, the present study provided a mechanism of the regulatory role of svRNAb in multidrug‑resistant cells. PMID:27177257

  8. Radical scavenging and cytochrome P450 3A4 inhibitory activity of bergaptol and geranylcoumarin from grapefruit.

    PubMed

    Girennavar, Basavaraj; Jayaprakasha, G K; Jadegoud, Y; Nagana Gowda, G A; Patil, Bhimanagouda S

    2007-06-01

    Grapefruit juice has been shown to increase the oral bioavailability of several clinically important drugs by inhibiting first pass metabolism. Several compounds in grapefruit juice have shown different biological activities. Unique among them are furocoumarins with potent inhibitory activity against cytochrome P450 enzymes. In the present study, two bioactive compounds were isolated from grapefruit juice and grapefruit peel oil. The purity of the isolated compounds has been analyzed by HPLC. Structures of the compounds were elucidated by extensive NMR and mass spectral studies and identified as bergaptol and geranylcoumarin. The isolated compounds were tested for their radical scavenging activity using 2,2'-azobis (3-ethylbenz-thiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazil (DPPH) methods at different concentrations. Bergaptol showed very good radical scavenging activity at all the tested concentrations. Furthermore, these compounds were evaluated for their inhibitory activity against CYP3A4 enzyme. Bergaptol and geranylcoumarin were found to be potent inhibitors of debenzylation activity of CYP3A4 enzyme with an IC(50) value of 24.92 and 42.93 microM, respectively. PMID:17400460

  9. Elucidation of distinct ligand binding sites for cytochrome P450 3A4.

    PubMed

    Hosea, N A; Miller, G P; Guengerich, F P

    2000-05-23

    Cytochrome P450 (P450) 3A4 is the most abundant human P450 enzyme and has broad selectivity for substrates. The enzyme can show marked catalytic regioselectivity and unusual patterns of homotropic and heterotropic cooperativity, for which several models have been proposed. Spectral titration studies indicated one binding site for the drug indinavir (M(r) 614), a known substrate and inhibitor. Several C-terminal aminated peptides, including the model morphiceptin (YPFP-NH(2)), bind with spectral changes indicative of Fe-NH(2) bonding. The binding of the YPFP-NH(2) N-terminal amine and the influence of C-terminal modification on binding argue that the entire molecule (M(r) 521) fits within P450 3A4. YPFP-NH(2) was not oxidized by P450 3A4 but blocked binding of the substrates testosterone and midazolam, with K(i) values similar to the spectral binding constant (K(s)) for YPFP-NH(2). YPFP-NH(2) inhibited the oxidations of several typical P450 substrates with K(i) values 10-fold greater than the K(s) for binding YPFP-NH(2) and its K(i) for inhibiting substrate binding. The n values for cooperativity of these oxidations were not altered by YPFP-NH(2). YPFP-NH(2) inhibited the oxidations of midazolam at two different positions (1'- and 4-) with 20-fold different K(i) values. The differences in the K(i) values for blocking the binding to ferric P450 3A4 and the oxidation of several substrates may be attributed to weaker binding of YPFP-NH(2) to ferrous P450 3A4 than to the ferric form. The ferrous protein can be considered a distinct form of the enzyme in binding and catalysis because many substrates (but not YPFP-NH(2)) facilitate reduction of the ferric to ferrous enzyme. Our results with these peptides are considered in the context of several proposed models. A P450 3A4 model based on these peptide studies contains at least two and probably three distinct ligand sites, with testosterone and alpha-naphthoflavone occupying distinct sites. Midazolam appears to be able to

  10. Ophiopogon japonicus strains from different cultivation regions exhibit markedly different properties on cytotoxicity, pregnane X receptor activation and cytochrome P450 3A4 induction

    PubMed Central

    GE, LE-LE; KAN, LIAN-DI; ZHUGE, ZHENG-BING; MA, KE; CHEN, SHU-QING

    2015-01-01

    Maidong, known as Ophiopogon japonicus, is one of the two basic ingredients of Shenmai injection, which is a widely used herbal preparation in traditional Chinese medicine (TCM) for the treatment of atherosclerotic coronary heart disease and viral myocarditis. Previously, the ethanol extract of Maidong activated the pregnane X receptor (PXR) signaling pathway and induced the cytochrome P450 3A4 (CYP3A4) reporter gene and raised the concern of herb-drug interactions (HDIs) when Maidong was used in combination with prescribed drugs metabolized by CYP3A4. Therefore, the present study further investigated and compared the differences of the ethanol and aqueous extracts (ee- and ae-, respectively) of two Maidong strains, known as Zhe Maidong (ZM) and Chuan Maidong (CM). Cytotoxicity, PXR activation and CYP3A4 induction by the 3-(4,5)-dimethylthiahiazo-(-z-y1)-3,5-diphenytetrazoliumromide assay, reporter gene assay and reverse transcription-quantitative polymerase chain reaction analysis were examined. The observations showed that ee-ZM demonstrated a significantly higher cytotoxicity, a relatively weaker PXR activation capability and a markedly stronger CYP3A4-inducing capacity than ee-CM. Compared to ae-CM, ae-ZM exhibited only a slight or no difference on cytotoxicity and CYP3A4 induction, while a significant lower level of PXR activation was apparent. Collectively, Maidong from different producing areas possess different properties upon cytotoxicity and the drug-metabolizing enzyme inducing effect, and attention should be paid to the selection of Maidong strains from different planting regions into TCM preparations for reducing potential adverse reactions and HDIs. PMID:26137250

  11. Mechanism of interactions of α-naphthoflavone with cytochrome P450 3A4 explored with an engineered enzyme bearing a fluorescent probe†

    PubMed Central

    Tsalkova, Tamara N.; Davydova, Nadezhda Y.; Halpert, James R.; Davydov, Dmitri R.

    2008-01-01

    Design of a partially cysteine-depleted C98S/C239S/C377S/C468A cytochrome P450 3A4 mutant designated CYP3A4(C58,C64) allowed site-directed incorporation of thiol-reactive fluorescent probes into α-helix A‥ The site of modification was identified as Cys-64 with the help of CYP3A4(C58) and CYP3A4(C64), each bearing only one accessible cysteine. Changes in the fluorescence of CYP3A4(C58,C64) labeled with 6-bromoacetyl-2-dimethylaminonaphthalene (BADAN), 7-diethylamino-3-(4’-maleimidylphenyl)-4-methylcoumarin (CPM), or monobromobimane (mBBr) were used to study the interactions with bromocriptine (BCT), 1-pyrenebutanol (1-PB), testosterone (TST), and α-naphthoflavone (ANF). Of these substrates only ANF has a specific effect, causing a considerable decrease in fluorescence intensity of BADAN and CPM and increasing the fluorescence of mBBr. This ANF-binding event in the case of BADAN-modified enzyme is characterized by an S50 of 18.2 ± 0.7, compared with the value of 2.2 ± 0.3 for the ANF-induced spin transition, thus revealing an additional low affinity binding site. Studies of the effect of TST, 1-PB, and BCT on the interactions of ANF monitored by changes in fluorescence of CYP3A4(C58,C64)-BADAN or by the ANF-induced spin transition revealed no competition by these substrates. Investigation of the kinetics of fluorescence increase upon H2O2-dependent heme depletion suggests that labeled CYP3A4(C58,C64) is represented by two conformers, one of which has the fluorescence of the BADAN and CPM labels completely quenched, presumably by photoinduced electron transfer from the neighboring Trp-72 and/or Tyr-68 residues. The binding of ANF to the newly discovered binding site appears to affect the interactions of the label with the above residue(s), thus modulating the fraction of the fluorescent conformer. PMID:17198380

  12. Comparison of inhibitory duration of grapefruit juice on organic anion-transporting polypeptide and cytochrome P450 3A4.

    PubMed

    Tanaka, Shimako; Uchida, Shinya; Miyakawa, Sachiko; Inui, Naoki; Takeuchi, Kazuhiko; Watanabe, Hiroshi; Namiki, Noriyuki

    2013-01-01

    Recently, a new type of interaction has been reported in which fruit juices diminish oral drug bioavailability through inhibition of organic anion-transporting polypeptide (OATP). In this study, we aimed to clarify the duration of OATP inhibition by grapefruit juice (GFJ), and to compare it with the duration of GFJ-induced inhibition of cytochrome P450 (CYP) 3A4 activity. Seven healthy volunteers were enrolled in this open-label, single-sequence study. They were orally administered celiprolol (100 mg) and midazolam (15 µg/kg) with water on the control day. Three days later, they ingested GFJ (200 mL) 3 times a day for 3 d. On day 1, the same drugs were administered with GFJ. On days 3 and 7, the same drugs were administered with water. Pharmacokinetics of both drugs were evaluated on each trial day. The peak plasma concentration (Cmax) and the area under the plasma concentration-time curve from 0 to 8 h (AUC0-8) of celiprolol significantly decreased on day 1, and the mean ratios of these values and the corresponding control-day values were 0.18 and 0.25, respectively. The Cmax and AUC0-8 returned to the control levels on days 3 and 7. In contrast, AUC0-8 of midazolam were higher on days 1 and 3 than on the control day (mean ratio, 2.12 and 1.47, respectively). The AUC0-8 returned to the control level on day 7. In conclusion, results of this study indicated that the OATP inhibition caused by GFJ dissipated faster than GFJ-mediated alterations in CYP3A4 activity, which were sustained for at least 48 h. PMID:24292052

  13. Mg2+/Mn2+-dependent phosphatase 1A is involved in regulating pregnane X receptor-mediated cytochrome p450 3A4 gene expression.

    PubMed

    Pondugula, Satyanarayana R; Flannery, Patrick C; Apte, Udayan; Babu, Jeganathan Ramesh; Geetha, Thangiah; Rege, Shraddha D; Chen, Taosheng; Abbott, Kodye L

    2015-03-01

    Variations in the expression of human pregnane X receptor (hPXR)-mediated cytochrome p450 3A4 (CYP3A4) in liver can alter therapeutic response to a variety of drugs and may lead to potential adverse drug interactions. We sought to determine whether Mg(2+)/Mn(2+)-dependent phosphatase 1A (PPM1A) regulates hPXR-mediated CYP3A4 expression. PPM1A was found to be coimmunoprecipitated with hPXR. Genetic or pharmacologic activation of PPM1A led to a significant increase in hPXR transactivation of CYP3A4 promoter activity. In contrast, knockdown of endogenous PPM1A not only attenuated hPXR transactivation, but also increased proliferation of HepG2 human liver carcinoma cells, suggesting that PPM1A expression levels regulate hPXR, and that PPM1A expression is regulated in a proliferation-dependent manner. Indeed, PPM1A expression and hPXR transactivation were found to be significantly reduced in subconfluent HepG2 cells compared with confluent HepG2 cells, suggesting that both PPM1A expression and hPXR-mediated CYP3A4 expression may be downregulated in proliferating livers. Elevated PPM1A levels led to attenuation of hPXR inhibition by tumor necrosis factor-α and cyclin-dependent kinase-2, which are known to be upregulated and essential during liver regeneration. In mouse regenerating livers, similar to subconfluent HepG2 cells, expression of both PPM1A and the mouse PXR target gene cyp3a11 was found to be downregulated. Our results show that PPM1A can positively regulate PXR activity by counteracting PXR inhibitory signaling pathways that play a major role in liver regeneration. These results implicate a novel role for PPM1A in regulating hPXR-mediated CYP3A4 expression in hepatocytes and may explain a mechanism for CYP3A repression in regenerating livers. PMID:25561723

  14. Piperine activates human pregnane X receptor to induce the expression of cytochrome P450 3A4 and multidrug resistance protein 1

    PubMed Central

    Wang, Yue-Ming; Lin, Wenwei; Chai, Sergio C.; Wu, Jing; Ong, Su Sien; Schuetz, Erin G.; Chen, Taosheng

    2013-01-01

    Activation of the pregnane X receptor (PXR) and subsequently its target genes, including those encoding drug transporters and metabolizing enzymes, while playing substantial roles in xenobiotics detoxification, might cause undesired drug-drug interactions. Recently, an increased awareness has been given to dietary components for potential induction of diet-drug interactions through activation of PXR. Here, we studied, whether piperine (PIP), a major component extracted from the widely-used daily spice black pepper, could induce PXR-mediated expression of cytochrome P450 3A4 (CYP3A4) and multidrug resistance protein 1 (MDR1). Our results showed that PIP activated human PXR (hPXR)-mediated CYP3A4 and MDR1 expression in human hepatocytes, intestine cells, and a mouse model; PIP activated hPXR by recruiting its coactivator SRC-1 in both cellular and cell-free systems; PIP bound to the hPXR ligand binding domain in a competitive ligand binding assay in vitro. The dichotomous effects of PIP on induction of CYP3A4 and MDR1 expression observed here and inhibition of their activity reported elsewhere challenges the potential use of PIP as a bioavailability enhancer and suggests that cautions should be taken for PIP consumption during drug treatment in patients, particularly those who favor daily pepper spice or rely on certain pepper remedies. PMID:23707768

  15. A Mechanism-Based Model for the Prediction of the Metabolic Sites of Steroids Mediated by Cytochrome P450 3A4.

    PubMed

    Dai, Zi-Ru; Ai, Chun-Zhi; Ge, Guang-Bo; He, Yu-Qi; Wu, Jing-Jing; Wang, Jia-Yue; Man, Hui-Zi; Jia, Yan; Yang, Ling

    2015-01-01

    Early prediction of xenobiotic metabolism is essential for drug discovery and development. As the most important human drug-metabolizing enzyme, cytochrome P450 3A4 has a large active cavity and metabolizes a broad spectrum of substrates. The poor substrate specificity of CYP3A4 makes it a huge challenge to predict the metabolic site(s) on its substrates. This study aimed to develop a mechanism-based prediction model based on two key parameters, including the binding conformation and the reaction activity of ligands, which could reveal the process of real metabolic reaction(s) and the site(s) of modification. The newly established model was applied to predict the metabolic site(s) of steroids; a class of CYP3A4-preferred substrates. 38 steroids and 12 non-steroids were randomly divided into training and test sets. Two major metabolic reactions, including aliphatic hydroxylation and N-dealkylation, were involved in this study. At least one of the top three predicted metabolic sites was validated by the experimental data. The overall accuracy for the training and test were 82.14% and 86.36%, respectively. In summary, a mechanism-based prediction model was established for the first time, which could be used to predict the metabolic site(s) of CYP3A4 on steroids with high predictive accuracy. PMID:26133240

  16. A Mechanism-Based Model for the Prediction of the Metabolic Sites of Steroids Mediated by Cytochrome P450 3A4

    PubMed Central

    Dai, Zi-Ru; Ai, Chun-Zhi; Ge, Guang-Bo; He, Yu-Qi; Wu, Jing-Jing; Wang, Jia-Yue; Man, Hui-Zi; Jia, Yan; Yang, Ling

    2015-01-01

    Early prediction of xenobiotic metabolism is essential for drug discovery and development. As the most important human drug-metabolizing enzyme, cytochrome P450 3A4 has a large active cavity and metabolizes a broad spectrum of substrates. The poor substrate specificity of CYP3A4 makes it a huge challenge to predict the metabolic site(s) on its substrates. This study aimed to develop a mechanism-based prediction model based on two key parameters, including the binding conformation and the reaction activity of ligands, which could reveal the process of real metabolic reaction(s) and the site(s) of modification. The newly established model was applied to predict the metabolic site(s) of steroids; a class of CYP3A4-preferred substrates. 38 steroids and 12 non-steroids were randomly divided into training and test sets. Two major metabolic reactions, including aliphatic hydroxylation and N-dealkylation, were involved in this study. At least one of the top three predicted metabolic sites was validated by the experimental data. The overall accuracy for the training and test were 82.14% and 86.36%, respectively. In summary, a mechanism-based prediction model was established for the first time, which could be used to predict the metabolic site(s) of CYP3A4 on steroids with high predictive accuracy. PMID:26133240

  17. Piperine activates human pregnane X receptor to induce the expression of cytochrome P450 3A4 and multidrug resistance protein 1

    SciTech Connect

    Wang, Yue-Ming; Lin, Wenwei; Chai, Sergio C.; Wu, Jing; Ong, Su Sien; Schuetz, Erin G.; Chen, Taosheng

    2013-10-01

    Activation of the pregnane X receptor (PXR) and subsequently its target genes, including those encoding drug transporters and metabolizing enzymes, while playing substantial roles in xenobiotic detoxification, might cause undesired drug-drug interactions. Recently, an increased awareness has been given to dietary components for potential induction of diet–drug interactions through activation of PXR. Here, we studied, whether piperine (PIP), a major component extracted from the widely-used daily spice black pepper, could induce PXR-mediated expression of cytochrome P450 3A4 (CYP3A4) and multidrug resistance protein 1 (MDR1). Our results showed that PIP activated human PXR (hPXR)-mediated CYP3A4 and MDR1 expression in human hepatocytes, intestine cells, and a mouse model; PIP activated hPXR by recruiting its coactivator SRC-1 in both cellular and cell-free systems; PIP bound to the hPXR ligand binding domain in a competitive ligand binding assay in vitro. The dichotomous effects of PIP on induction of CYP3A4 and MDR1 expression observed here and inhibition of their activity reported elsewhere challenges the potential use of PIP as a bioavailability enhancer and suggests that caution should be taken in PIP consumption during drug treatment in patients, particularly those who favor daily pepper spice or rely on certain pepper remedies. - Highlights: • Piperine induces PXR-mediated CYP3A4 and MDR1 expression. • Piperine activates PXR by binding to PXR and recruiting coactivator SRC-1. • Piperine induces PXR activation in vivo. • Caution should be taken in piperine consumption during drug treatment.

  18. Concomitant use of selective serotonin reuptake inhibitors with other cytochrome P450 2D6 or 3A4 metabolized medications: how often does it really happen?

    PubMed

    Gregor, K J; Way, K; Young, C H; James, S P

    1997-10-01

    This study retrospectively examines the one-month concomitant use of cytochrome P450 2D6 or 3A4 metabolized medications in 544,309 patients who were also receiving selective serotonin reuptake inhibitors (SSRIs). Overall, 25.53% of SSRI patients experienced concomitant use with at least one of the 33 studied CYP 2D6 or 3A4 metabolized medications. Certain drugs and drug classes were more likely to be used concurrently among SSRI patients (e.g., benzodiazepines, tricyclic antidepressants, calcium channel blockers). Similarly, of the SSRI patients experiencing concomitant use, this concurrent use was twice as likely with cytochrome P450 medications metabolized by the 3A4 isoenzyme as with those metabolized by the 2D6 isoenzyme. Finally, the vast majority (80.9%) of SSRI patients experiencing concomitant use did so with one CYP 2D6 or 3A4 metabolized medication. In sum, concomitant use generally was not extensive and did not appear to be differential among the fluoxetine, paroxetine, or sertraline patient comparison groups. PMID:9387087

  19. Determination of midazolam and its metabolite as a probe for cytochrome P450 3A4 phenotype by liquid chromatography-mass spectrometry.

    PubMed

    Kanazawa, Hideko; Okada, Akiko; Igarashi, Eri; Higaki, Megumu; Miyabe, Takako; Sano, Tadashi; Nishimura, Ryouhei

    2004-03-26

    This study demonstrated the analysis of midazolam and its metabolites by liquid chromatography-mass spectrometry (LC-MS) with a sonic spray ionization (SSI) interface. The analytical column was a YMC-Pak Pro C18 (50 mm x 2.0 mm i.d.) using 10 mM ammonium acetate (pH 4.8)-methanol (1:1) at a flow rate of 0.2 ml min(-1). The drift voltage was 100 V. The sampling aperture was heated at 110 degrees C and the shield temperature was 230 degrees C. The lower limits for the detection of midazolam and 1'-hydroxymidazolam were 26.3 and 112.76 pg injected, respectively. The calibration curves for midazolam and 1'-hydroxymidazolam were linear in the range of 0.1-5 microg ml(-1). Within-day relative standard deviations was less than 7%. The method was applied to the determination of midazolam in monkey plasma, and the analysis of midazolam and its metabolites in an in vitro study with recombinant cytochrome P450 (CYP) 3A4. This method is sufficiently sensitive and useful to elucidate the kinetics of midazolam metabolite formation. We also investigated the effect of propofol on the metabolism of midazolam using recombinant CYP3A4. Propofol competitively inhibited the metabolism of midazolam to 1'-hydroxymidazolam by CYP3A4. PMID:15058585

  20. PYRETHROID INSECTICIDES: ISOFORM-DEPENDENT HYDROLYSIS, INDUCTION OF CYTOCHROME P450 3A4 AND EVIDENCE ON THE INVOLVEMENT OF THE PREGNANE X RECEPTOR

    PubMed Central

    Yang, Dongfang; Wang, Xiliang; Chen, Yi-tzai; Deng, Ruitang; Yan, Bingfang

    2009-01-01

    Pyrethroids account for more than one-third of the insecticides currently marketed in the world. In mammals, these insecticides undergo extensive metabolism by carboxylesterases and cytochrome P450s (CYPs). In addition, some pyrethroids are found to induce the expression of CYPs. The aim of this study was to determine whether pyrethroids induce carboxylesterases and CYP3A4, and whether the induction is correlated inversely with their hydrolysis. Human liver microsomes were pooled and tested for the hydrolysis of 11 pyrethroids. All pyrethroids were hydrolyzed by the pooled microsomes, but the hydrolytic rates varied by as many as 14 fold. Some pyrethroids such as bioresmethrin were preferably hydrolyzed by carboxylesterase HCE1, whereas others such as bifenthrin preferably by HCE2. In primary human hepatocytes, all pyrethroids except tetramethrin significantly induced CYP3A4. In contrast, insignificant changes were detected on the expression of carboxylesterases. The induction of CYP3A4 was confirmed in multiple cell lines including HepG2, Hop92 and LS180. Overall, the magnitude of the induction was correlated inversely with the rates of hydrolysis, but positively with the activation of the pregnane X receptor (PXR). Transfection of a carboxylesterase markedly decreased the activation of PXR, and the decrease was in agreement with carboxylesterase-based preference for hydrolysis. In addition, human PXR variants as well as rat PXR differed from human PXR (wild-type) in responding to certain pyrethroids (e.g., lambda-cyhalothrin), suggesting that induction of PXR target genes by these pyrethroids varies depending on polymorphic variants and the PXR species identity. PMID:19249324

  1. Pyrethroid insecticides: Isoform-dependent hydrolysis, induction of cytochrome P450 3A4 and evidence on the involvement of the pregnane X receptor

    SciTech Connect

    Yang Dongfang; Wang Xiliang; Chen Yitzai; Deng Ruitang; Yan Bingfang

    2009-05-15

    Pyrethroids account for more than one-third of the insecticides currently marketed in the world. In mammals, these insecticides undergo extensive metabolism by carboxylesterases and cytochrome P450s (CYPs). In addition, some pyrethroids are found to induce the expression of CYPs. The aim of this study was to determine whether pyrethroids induce carboxylesterases and CYP3A4, and whether the induction is correlated inversely with their hydrolysis. Human liver microsomes were pooled and tested for the hydrolysis of 11 pyrethroids. All pyrethroids were hydrolyzed by the pooled microsomes, but the hydrolytic rates varied by as many as 14 fold. Some pyrethroids such as bioresmethrin were preferably hydrolyzed by carboxylesterase HCE1, whereas others such as bifenthrin preferably by HCE2. In primary human hepatocytes, all pyrethroids except tetramethrin significantly induced CYP3A4. In contrast, insignificant changes were detected on the expression of carboxylesterases. The induction of CYP3A4 was confirmed in multiple cell lines including HepG2, Hop92 and LS180. Overall, the magnitude of the induction was correlated inversely with the rates of hydrolysis, but positively with the activation of the pregnane X receptor (PXR). Transfection of a carboxylesterase markedly decreased the activation of PXR, and the decrease was in agreement with carboxylesterase-based preference for hydrolysis. In addition, human PXR variants as well as rat PXR differed from human PXR (wild-type) in responding to certain pyrethroids (e.g., lambda-cyhalothrin), suggesting that induction of PXR target genes by these pyrethroids varies depending on polymorphic variants and the PXR species identity.

  2. In vitro metabolic interactions between black cohosh (Cimicifuga racemosa) and tamoxifen via inhibition of cytochromes P450 2D6 and 3A4.

    PubMed

    Li, Jinghu; Gödecke, Tanja; Chen, Shao-Nong; Imai, Ayano; Lankin, David C; Farnsworth, Norman R; Pauli, Guido F; van Breemen, Richard B; Nikolić, Dejan

    2011-08-01

    Women who experience hot flashes as a side effect of tamoxifen (TAM) therapy often try botanical remedies such as black cohosh to alleviate these symptoms. Since pharmacological activity of TAM is dependent on the metabolic conversion into active metabolites by the action of cytochromes P450 2D6 (CYP2D6) and 3A4, the objective of this study was to evaluate whether black cohosh extracts can inhibit formation of active TAM metabolites and possibly reduce its clinical efficacy. At 50 μg/mL, a 75% ethanolic extract of black cohosh inhibited formation of 4-hydroxy- TAM by 66.3%, N-desmethyl TAM by 74.6% and α-hydroxy TAM by 80.3%. In addition, using midazolam and dextromethorphan as probe substrates, this extract inhibited CYP3A4 and CYP2D6 with IC(50) values of 16.5 and 50.1 μg/mL, respectively. Eight triterpene glycosides were identified as competitive CYP3A4 inhibitors with IC(50) values ranging from 2.3-5.1 µM, while the alkaloids protopine and allocryptopine were identified as competitive CYP2D6 inhibitors with K(i) values of 78 and 122 nM, respectively. The results of this study suggests that co-administration of black cohosh with TAM might interfere with the clinical efficacy of this drug. However, additional clinical studies are needed to determine the clinical significance of these in vitro results. PMID:21827327

  3. Thiazide-like diuretic drug metolazone activates human pregnane X receptor to induce cytochrome 3A4 and multidrug-resistance protein 1

    PubMed Central

    Banerjee, Monimoy; Chen, Taosheng

    2014-01-01

    Human pregnane X receptor (hPXR) regulates the expression of drug-metabolizing enzyme cytochrome P450 3A4 (CYP3A4) and drug transporters such as multidrug-resistance protein 1 (MDR1). PXR can be modulated by small molecules, including Federal Drug Administration (FDA)–approved drugs, thus altering drug metabolism and causing drug-drug interactions. To determine the role of FDA-approved drugs in PXR-mediated regulation of drug metabolism and clearance, we screened 1481 FDA-approved small-molecule drugs by using a luciferase reporter assay in HEK293T cells and identified the diuretic drug metolazone as an activator of PXR. Our data showed that metolazone activated hPXR-mediated expression of CYP3A4 and MDR1 in human hepatocytes and intestine cells and increased CYP3A4 promoter activity in various cell lines. Mammalian two-hybrid assays showed that hPXR recruits its co-activator SRC-1 upon metolazone binding in HepG2 cells, explaining the mechanism of hPXR activation. To understand the role of other commonly-used diuretics in PXR activation and the structure-activity relationship of metolazone, thiazide and non-thiazide diuretics drugs were also tested but only metolazone activates PXR. To understand the molecular mechanism, docking studies and mutational analysis were carried out and showed that metolazone binds in the ligand-binding pocket and interacts with mostly hydrophobic amino acid residues. This is the first report showing that metolazone activates PXR. Because activation of hPXR might cause drug-drug interactions, metolazone should be used with caution for drug treatment in patients undergoing combination therapy. PMID:25181459

  4. Human liver cytochrome P450 3A4 ubiquitination: molecular recognition by UBC7-gp78 autocrine motility factor receptor and UbcH5a-CHIP-Hsc70-Hsp40 E2-E3 ubiquitin ligase complexes.

    PubMed

    Wang, YongQiang; Kim, Sung-Mi; Trnka, Michael J; Liu, Yi; Burlingame, A L; Correia, Maria Almira

    2015-02-01

    CYP3A4 is an abundant and catalytically dominant human liver endoplasmic reticulum-anchored cytochrome P450 enzyme engaged in the biotransformation of endo- and xenobiotics, including >50% of clinically relevant drugs. Alterations of CYP3A4 protein turnover can influence clinically relevant drug metabolism and bioavailability and drug-drug interactions. This CYP3A4 turnover involves endoplasmic reticulum-associated degradation via the ubiquitin (Ub)-dependent 26 S proteasomal system that relies on two highly complementary E2 Ub-conjugating-E3 Ub-ligase (UBC7-gp78 and UbcH5a-C terminus of Hsc70-interacting protein (CHIP)-Hsc70-Hsp40) complexes, as well as protein kinases (PK) A and C. We have documented that CYP3A4 Ser/Thr phosphorylation (Ser(P)/Thr(P)) by PKA and/or PKC accelerates/enhances its Lys ubiquitination by either of these E2-E3 systems. Intriguingly, CYP3A4 Ser(P)/Thr(P) and ubiquitinated Lys residues reside within the cytosol-accessible surface loop and/or conformationally assembled acidic Asp/Glu clusters, leading us to propose that such post-translational Ser/Thr protein phosphorylation primes CYP3A4 for ubiquitination. Herein, this possibility was examined through various complementary approaches, including site-directed mutagenesis, chemical cross-linking, peptide mapping, and LC-MS/MS analyses. Our findings reveal that such CYP3A4 Asp/Glu/Ser(P)/Thr(P) surface clusters are indeed important for its intermolecular electrostatic interactions with each of these E2-E3 subcomponents. By imparting additional negative charge to these Asp/Glu clusters, such Ser/Thr phosphorylation would generate P450 phosphodegrons for molecular recognition by the E2-E3 complexes, thereby controlling the timing of CYP3A4 ubiquitination and endoplasmic reticulum-associated degradation. Although the importance of phosphodegrons in the CHIP targeting of its substrates is known, to our knowledge this is the first example of phosphodegron involvement in gp78-substrate

  5. A Cytochrome P450 3A4 Biosensor Based on Generation 4.0 PAMAM Dendrimers for the Detection of Caffeine.

    PubMed

    Müller, Michael; Agarwal, Neha; Kim, Jungtae

    2016-01-01

    Cytochromes P450 (CYP, P450) are a large family of heme-active-site proteins involved in many catalytic processes, including steroidogenesis. In humans, four primary enzymes are involved in the metabolism of almost all xenobiotics. Among these enzymes, CYP3A4 is responsible for the inactivation of the majority of used drugs which makes this enzyme an interesting target for many fields of research, especially pharmaceutical research. Since the late 1970s, attempts have been made to construct and develop electrochemical sensors for the determination of substrates. This paper is concerned with the establishment of such a CYP3A4-containing biosensor. The sensor was constructed by adsorption of alternating layers of sub-nanometer gold particle-modified PAMAM (poly-amido-amine) dendrimers of generation 4.0, along with the enzyme by a layer-by-layer assembly technique. Atomic force microscopy (AFM), quartz crystal microbalance (QCM), and Fourier-transformed infrared spectroscopy (FTIR) were employed to elucidate the sensor assembly. Additionally, the biosensor was tested by cyclic voltammetry using caffeine as a substrate. PMID:27548239

  6. Kinetics of electron transfer in the complex of cytochrome P450 3A4 with the flavin domain of cytochrome P450BM-3 as evidence of functional heterogeneity of the heme protein

    PubMed Central

    Fernando, Harshica; Halpert, James R.; Davydov, Dmitri R.

    2008-01-01

    We used a rapid scanning stop-flow technique to study the kinetics of reduction of cytochrome P450 3A4 (CYP3A4) by the flavin domain of cytochrome P450-BM3 (BMR), which was shown to form a stoichiometric complex (KD = 0.48 µM) with CYP3A4. In the absence of substrates only about 50% of CYP3A4 was able to accept electrons from BMR. Whereas the high-spin fraction was completely reducible, the reducibility of the low-spin fraction did not exceed 42%. Among four substrates tested (testosterone, 1-pyrenebutanol, bromocriptine, or α-naphthoflavone (ANF)) only ANF is capable of increasing the reducibility of the low-spin fraction to 75%. Our results demonstrate that the pool of CYP3A4 is heterogeneous, and not all P450 is competent for electron transfer in the complex with reductase. The increase in the reducibility of the enzyme in the presence of ANF may represent an important element of the mechanism of action of this activator. PMID:18086551

  7. Theoretical Characterization of Substrate Access/Exit Channels in the Human Cytochrome P450 3A4 Enzyme: Involvement of Phenylalanine Residues in the Gating Mechanism

    PubMed Central

    2009-01-01

    The human cytochrome P450 3A4 mono-oxygenates ∼50% of all drugs. Its substrates/products enter/leave the active site by access/exit channels. Here, we perform steered molecular dynamics simulations, pulling the products temazepam and testosterone-6βOH out of the P450 3A4 enzyme in order to identify the preferred substrate/product pathways and their gating mechanism. We locate six different egress pathways of products from the active site with different exit preferences for the two products and find that there is more than just one access/exit channel in CYP3A4. The so-called solvent channel manifests the largest opening for both tested products, thereby identifying this channel as a putative substrate channel. Most channels consist of one or two π-stacked phenylalanine residues that serve as gate keepers. The oxidized drug breaks the hydrophobic interactions of the gating residues and forms mainly hydrophobic contacts with the gate. We argue that product exit preferences in P450s are regulated by protein−substrate specificity. PMID:19728720

  8. [3a,4]-Dihydropyrazolo[1,5a]pyrimidines: Novel, Potent, and Selective Phosphatidylinositol-3-kinase β Inhibitors.

    PubMed

    Yu, Hongyi; Moore, Michael L; Erhard, Karl; Hardwicke, Mary Ann; Lin, Hong; Luengo, Juan I; McSurdy-Freed, Jeanelle; Plant, Ramona; Qu, Junya; Raha, Kaushik; Rominger, Cynthia M; Schaber, Michael D; Spengler, Michael D; Rivero, Ralph A

    2013-02-14

    A series of novel [3a,4]dihydropyrazolo[1,5a]pyrimidines were identified, which were highly potent and selective inhibitors of PI3Kβ. The template afforded the opportunity to develop novel SAR for both the hinge-binding (R3) and back-pocket (R4) substitutents. While cellular potency was relatively modest due to high protein binding, the series displayed low clearance in rat, mouse, and monkey. PMID:24900655

  9. [3a,4]-Dihydropyrazolo[1,5a]pyrimidines: Novel, Potent, and Selective Phosphatidylinositol-3-kinase β Inhibitors

    PubMed Central

    2013-01-01

    A series of novel [3a,4]dihydropyrazolo[1,5a]pyrimidines were identified, which were highly potent and selective inhibitors of PI3Kβ. The template afforded the opportunity to develop novel SAR for both the hinge-binding (R3) and back-pocket (R4) substitutents. While cellular potency was relatively modest due to high protein binding, the series displayed low clearance in rat, mouse, and monkey. PMID:24900655

  10. Linkage and association of haplotypes at the APOA1/C3/A4/A5 genecluster to familial combined hyperlipidemia

    SciTech Connect

    Eichenbaum-Voline, Sophie; Olivier, Michael; Jones, Emma L.; Naoumova, Rossitza P.; Jones, Bethan; Gau, Brian; Seed, Mary; Betteridge,D. John; Galton, David J.; Rubin, Edward M.; Scott, James; Shoulders,Carol C.; Pennacchio, Len A.

    2002-09-15

    Combined hyperlipidemia (CHL) is a common disorder of lipidmetabolism that leads to an increased risk of cardiovascular disease. Thelipid profile of CHL is characterised by high levels of atherogeniclipoproteins and low levels of high-density-lipoprotein-cholesterol.Apolipoprotein (APO) A5 is a newly discovered gene involved in lipidmetabolism located within 30kbp of the APOA1/C3/A4 gene cluster. Previousstudies have indicated that sequence variants in this cluster areassociated with increased plasma lipid levels. To establish whethervariation at the APOA5 gene contributes to the transmission of CHL, weperformed linkage and linkage disequilibrium (LD) tests on a large cohortof families (n=128) with familial CHL (FCHL). The linkage data producedevidence for linkage of the APOA1/C3/A4/A5 genomic interval to FCHL (NPL= 1.7, P = 0.042). The LD studies substantiated these data. Twoindependent rare alleles, APOA5c.56G and APOC3c.386G of this gene clusterwere over-transmitted in FCHL (P = 0.004 and 0.007, respectively), andthis was associated with a reduced transmission of the most commonAPOA1/C3/A4/A5 haplotype (frequency 0.4425) to affected subjects (P =0.013). The APOA5c.56G allele was associated with increased plasmatriglyceride levels in FCHL probands, whereas the second, andindependent, APOC3c.386G allele was associated with increased plasmatriglyceride levels in FCHL pedigree founders. Thus, this allele (or anallele in LD) may mark a quantitative trait associated with FCHL, as wellas representing a disease susceptibility locus for the condition. Thisstudy establishes that sequence variation in the APOA1/C3/A4/A5 genecluster contributes to the transmission of FCHL in a substantialproportion of affected families, and that these sequence variants mayalso contribute to the lipid abnormalities of the metabolic syndrome,which is present in up to 40 percent of persons with cardiovasculardisease.

  11. ALTERATION IN CYTOCHROME P450 3A4 ACTIVITY AS MEASURED BY A URINE CORTISOL ASSAY IN HIV-1-INFECTED PREGNANT WOMEN AND RELATIONSHIP TO ANTIRETROVIRAL PHARMACOKINETICS

    PubMed Central

    Aweeka, Francesca T.; Hu, Chengcheng; Huang, Liusheng; Best, Brookie M.; Stek, Alice; Lizak, Patricia; Burchett, Sandra K.; Read, Jennifer S.; Watts, Heather; Mirochnick, Mark; Capparelli, Edmund V.

    2014-01-01

    Objectives Pregnancy results in physiological changes altering the pharmacokinetics of drugs metabolized by cytochrome p450 3A4. The urinary ratio of 6-β hydroxycortisol to cortisol (6βHF:F) is a marker of CYP3A4 induction. We sought to evaluate its change in antiretroviral (ARV) treated HIV-1-infected women and to relate this change to ARV pharmacokinetics. Methods Women receiving various ARV had pharmacokinetic evaluations during third trimester pregnancy (>30 weeks) and postpartum with determination of 6βHF:F carried out on the same days. Wilcoxon signed rank test compared the ratio antepartum to postpartum. The relationship between the change in ratio to the change in pharmacokinetics was done using Kendall’s tau. Results 6βHF:F ratios were available for 107 women antepartum with 54 having postpartum values. The ratio was higher antepartum (p=0.033) [median comparison 1.35 (95% CI: 1.01, 1.81]. For 71 women taking a protease inhibitor (PI), the antepartum versus postpartum 6βHF:F comparison was marginally significant (p=0.058). When relating the change in the 6βHF:F ratio to the change in the dose-adjusted ARV AUC antepartum to postpartum, the 35 subjects in the LPV/r arms demonstrated an inverse relationship (p=0.125), albeit this correlation did not reach statistical significance. Conclusions A 35% increase in the urinary 6βHF:F ratio was measured during late pregnancy compared to postpartum, indicating CYP3A induction occurs during pregnancy. The trend to an inverse relationship between the change in the 6βHF:F ratio and the change in the LPV AUC antepartum versus postpartum suggests CYP3A induction may be one mechanism behind altered LPV exposure during pregnancy. PMID:25407158

  12. Minor furanocoumarins and coumarins in grapefruit peel oil as inhibitors of human cytochrome P450 3A4.

    PubMed

    César, Thaïs B; Manthey, John A; Myung, Kyung

    2009-09-01

    A new cyclic acetal (1) of marmin (6',7'-dihydroxy-7-geranyloxycoumarin), two new cyclic acetals (5, 6) of 6',7'-dihydroxybergamottin, and the known compounds marmin (2), 7-geranyloxycoumarin (3), bergamottin (4), and 6',7'-dihydroxybergamottin (7) were isolated from grapefruit peel oil. All compounds were tested for inhibitory activity against intestinal cytochrome P450 3A4, an enzyme involved in the "grapefruit/drug" interactions in humans. Coumarins (1-3) exhibited negligible inhibitory activity, while the furanocoumarins (4-7) showed potent in vitro inhibitory activity with IC(50) values of 2.42, 0.13, 0.27, and 1.58 microM, respectively. PMID:19689106

  13. Combined application of plasma mutagenesis and gene engineering leads to 5-oxomilbemycins A3/A4 as main components from Streptomyces bingchenggensis.

    PubMed

    Wang, Hai-Yan; Zhang, Ji; Zhang, Yue-Jing; Zhang, Bo; Liu, Chong-Xi; He, Hai-Rong; Wang, Xiang-Jing; Xiang, Wen-Sheng

    2014-12-01

    Milbemycin oxime has been commercialized as effective anthelmintics in the fields of animal health, agriculture, and human infections. Currently, milbemycin oxime is synthesized by a two-step chemical reaction, which involves the ketonization of milbemycins A3/A4 to yield the intermediates 5-oxomilbemycins A3/A4 using CrO3 as catalyst. Due to the low efficiency and environmental unfriendliness of the ketonization of milbemycins A3/A4, it is imperative to develop alternative strategies to produce 5-oxomilbemycins A3/A4. In this study, the atmospheric and room temperature plasma (ARTP) mutation system was first employed to treat milbemycin-producing strain Streptomyces bingchenggensis, and a mutant strain BC-120-4 producing milbemycins A3, A4, B2, and B3 as main components was obtained, which favors the construction of genetically engineered strains producing 5-oxomilbemycins. Importantly, the milbemycins A3/A4 yield of BC-120-4 reached 3,890 ± 52 g/l, which was approximately two times higher than that of the initial strain BC-109-6 (1,326 ± 37 g/l). The subsequent interruption of the gene milF encoding a C5-ketoreductase responsible for the ketonization of milbemycins led to strain BCJ60 (∆milF) with the production of 5-oxomilbemycins A3/A4 and the elimination of milbemycins A3, A4, B2, and B3. The high 5-oxomilbemycins A3/A4 yield (3,470 ± 147 g/l) and genetic stability of BCJ60 implied the potential use in industry to prepare 5-oxomilbemycins A3/A4 for the semisynthesis of milbemycins oxime. PMID:25081559

  14. Selective inhibition of human cytochrome P450 3A4 by N-[2(R)-hydroxy-1(S)-indanyl]-5-[2(S)-(1, 1-dimethylethylaminocarbonyl)-4-[(furo[2, 3-b]pyridin-5-yl)methyl]piperazin-1-yl]-4(S)-hydroxy-2(R)-phenylmethy lpentanamide and P-glycoprotein by valspodar in gene transfectant systems.

    PubMed

    Kawahara, I; Kato, Y; Suzuki, H; Achira, M; Ito, K; Crespi, C L; Sugiyama, Y

    2000-10-01

    Our previous report showed that L754.394 and valspodar (PSC833) are potent inhibitors of midazolam hydroxylation in human jejunum microsomes and vectorial transport of vinblastine in Caco-2 cells, respectively. In the present study, to directly examine the interactions of these compounds as well as other substrates with CYP3A4 and P-glycoprotein (P-gp), we performed in vitro inhibition studies using recombinant CYP3A4-expressed microsomes and an MDR1-transfected cell line, LLC-MDR1, respectively. In CYP3A4-expressed microsomes, both L754.394 and ketoconazole, at a concentration less than 0.5 microM, are the most potent inhibitors of the formation of 1'-hydroxymidazolam, a major metabolite of midazolam formed by CYP3A4. The greatest inhibitory effect on the transcellular transport of digoxin in LLC-MDR1 cells was observed in the presence of valspodar (<0.1 microM), followed by verapamil. From a comparison of the IC(50) values, it was shown that L754.394 and valspodar exhibited the highest selectivity for CYP3A4 and P-gp, respectively. To demonstrate such specificity, both midazolam hydroxylation and digoxin transport were observed in CYP3A4 transfected Caco-2 cells, which coexpress both P-gp and CYP3A4, in the presence or absence of L754.394 (0.5 microM) and valspodar (1.0 microM). L754.394 almost completely inhibited midazolam hydroxylation, but not digoxin transport, whereas almost complete inhibition of digoxin transport was observed in the presence of valspodar, but inhibition of the hydroxylation was minimal. Thus, the present study has demonstrated that L754.394 has a specific inhibitory effect on CYP3A4, whereas valspodar is specific for P-gp. PMID:10997946

  15. Histone deacetylase inhibitors valproate and trichostatin A are toxic to neuroblastoma cells and modulate cytochrome P450 1A1, 1B1 and 3A4 expression in these cells

    PubMed Central

    Hřebačková, Jana; Poljaková, Jitka; Eckschlager, Tomáš; Hraběta, Jan; Procházka, Pavel; Smutný, Svatopluk; Stiborová, Marie

    2009-01-01

    Histone deacetylase inhibitors such as valproic acid (VPA) and trichostatin A (TSA) were shown to exert antitumor activity. Here, the toxicity of both drugs to human neuroblastoma cell lines was investigated using MTT test, and IC50 values for both compounds were determined. Another target of this work was to evaluate the effects of both drugs on expression of cytochrome P450 (CYP) 1A1, 1B1 and 3A4 enzymes, which are known to be expressed in neuroblastoma cells. A malignant subset of neuroblastoma cells, so-called N-type cells (UKF-NB-3 cells) and the more benign S-type neuroblastoma cells (UKF-NB-4 and SK-N-AS cell lines) were studied from both two points of view. VPA and TSA inhibited the growth of neuroblastoma cells in a dose-dependent manner. The IC50 values ranging from 1.0 to 2.8 mM and from 69.8 to 129.4 nM were found for VPA and TSA, respectively. Of the neuroblastoma tested here, the N-type UKF-NB-3 cell line was the most sensitive to both drugs. The different effects of VPA and TSA were found on expression of CYP1A1, 1B1 and 3A4 enzymes in individual neuroblastoma cells tested in the study. Protein expression of all these CYP enzymes in the S-type SK-N-AS cell line was not influenced by either of studied drugs. On the contrary, in another S-type cell line, UKF-NB-4, VPA and TSA induced expression of CYP1A1, depressed levels of CYP1B1 and had no effect on expression levels of CYP3A4 enzyme. In the N-type UKF-NB-3 cell line, the expression of CYP1A1 was strongly induced, while that of CYP1B1 depressed by VPA and TSA. VPA also induced the expression of CYP3A4 in this neuroblastoma cell line. PMID:21217856

  16. Multiple substrate-binding sites are retained in cytochrome P450 3A4 mutants with decreased cooperativity

    PubMed Central

    Fernando, Harshica; Rumfeldt, Jessica A. O.; Davydova, Nadezhda Y.; Halpert, James R.; Davydov, Dmitri R.

    2010-01-01

    1. The basis of decreased cooperativity in substrate binding in the cytochrome P450 3A4 mutants F213W, F304W and L211F/D214E was studied with fluorescence resonance energy transfer (FRET) and absorbance spectroscopy. 2. Whereas in the wild type enzyme the absorbance changes reflecting the interactions with 1-pyrenebutanol exhibit a Hill coefficient (nH) around 1.7 (S50 = 11.7 μM), the mutants showed no cooperativity (nH ≤ 1.1) with unchanged S50 values. 3. Contrary to the premise that the mutants lack one of the two binding sites, the mutants exhibited at least two substrate binding events. The high affinity interaction is characterized by a dissociation constant (KD) ≤ 1.0 μM, whereas the KD of the second binding has the same magnitude as the S50. 4. Theoretical analysis of a two-step binding model suggests that nH values may vary from 1.1 to 2.2 depending on the amplitude of the spin shift caused by the first binding event. 5. Alteration of cooperativity in the mutants is caused by a partial displacement of the “spin-shifting” step. Whereas in the wild type the spin shift occurs in the ternary complex only, the mutants exhibit some spin shift upon binding of the first substrate molecule. PMID:21143007

  17. Identification of cytochrome P450 3A4 modification site with reactive metabolite using linear ion trap-Fourier transform mass spectrometry.

    PubMed

    Yukinaga, Hideo; Takami, Tomonori; Shioyama, Sho-Hei; Tozuka, Zenzaburo; Masumoto, Hiroshi; Okazaki, Osamu; Sudo, Ken-Ichi

    2007-10-01

    Covalent binding of reactive metabolites to cytochrome P450s (P450s) often causes their mechanism-based inactivation (MBI), resulting in drug-drug interactions or toxicity. The detection and identification of the P450 sites to which reactive metabolites bind would elucidate MBI mechanisms. We describe a proteomic approach using nano-LC/linear ion trap-Fourier transform ion cyclotron resonance (FTICR) mass spectrometry to characterize the binding of a reactive metabolite of raloxifene, which is a known P450 3A4 inhibitor, to the P450 3A4 isozyme. LTQ-FT analyses revealed that the metabolic reaction of raloxifene in a reconstituted P450 3A4 system formed a reactive metabolite adduct to P450 3A4 apoprotein, accompanied by a mass shift of 471 Da relative to intact P450 3A4 apoprotein. The reaction mixtures were digested with trypsin, and then the tryptic digests were analyzed by nano-LC-MS/MS. This technique revealed that VWGFYDGQQPVLAITDPDMIK (position 71-91) was a tryptic peptide modified by the reactive metabolite derived from raloxifene. The site of adduction with the reactive metabolite was further postulated to be the nucleophilic OH group of Tyr-75 of P450 3A4. A proteomic approach using LTQ-FT can yield direct information on the P450 3A4 modification site without radiolabeled compounds. In addition, this information can elucidate mechanisms involved in the covalent binding of reactive metabolites and the inactivation of P450 3A4. PMID:17867646

  18. MicroRNA-30c-1-3p is a silencer of the pregnane X receptor by targeting the 3'-untranslated region and alters the expression of its target gene cytochrome P450 3A4.

    PubMed

    Vachirayonstien, Thaveechai; Yan, Bingfang

    2016-09-01

    The pregnane X receptor (PXR) is a master regulator of genes involved in drug elimination. Recently, activation of PXR has also been linked to the development of many disease conditions such as metabolic disorders and malignancies. MicroRNAs (miRs) emerge as important molecular species involved in these conditions. This study was undertaken to test a large number of miRs for their ability to regulate PXR expression. As many as 58 miRs were tested and miR-30c-1-3p was identified to suppress PXR expression. The suppression was achieved by targeting the 3'-untranslated region, 438 nucleotides from the stop codon. The suppression was detected in multiple cell lines from different organ origins. In addition, miR-30c-1-3p altered basal and induced expression of cytochrome P450 3A4 (CYP3A4), a prototypical target gene of PXR. The alteration varied depending on the time and amounts of miR-30c-1-3p. CYP3A4 is responsible for the metabolism of more than 50% medicines. The interconnection between miR-30c-1-3p and PXR signifies a role of miRs in drug-drug interactions and chemosensitivity. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie. PMID:27085140

  19. The APOA1/C3/A4/A5 cluster and markers of allostatic load in the Boston Puerto Rican Health Study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The APOA1/C3/A4/A5 cluster encodes key regulators of plasma lipids. Interactions between dietary factors and single nucleotide polymorphisms (SNPs) in the cluster have been reported. Allostatic load, or physiological dysregulation in response to stress, has been implicated in shaping health disparit...

  20. Effects of variations in the APOA1/C3/A4/A5 gene cluster on different parameters of postprandial lipid metabolism in healthy young men

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: The APOA1/C3/A4/A5 gene cluster encodes important regulators of fasting lipids, but the majority of lipid metabolism takes place in the postprandial state, and knowledge about gene regulation in this state is scarce. With the aim of characterizing possible regulators of lipid metabolism...

  1. Role of Enzyme Flexibility in Ligand Access and Egress to Active Site: Bias-Exchange Metadynamics Study of 1,3,7-Trimethyluric Acid in Cytochrome P450 3A4.

    PubMed

    Paloncýová, Markéta; Navrátilová, Veronika; Berka, Karel; Laio, Alessandro; Otyepka, Michal

    2016-04-12

    Although the majority of enzymes have buried active sites, very little is known about the energetics and mechanisms associated with substrate and product channeling in and out. Gaining direct information about these processes is a challenging task both for experimental and theoretical techniques. Here, we present a methodology that enables following of a ligand during its passage to the active site of cytochrome P450 (CYP) 3A4 and mapping of the free energy associated with this process. The technique is based on a combination of a bioinformatics tool for identifying access channels and bias-exchange metadynamics and provides converged free energies in good agreement with experimental data. In addition, it identifies the energetically preferred escape routes, limiting steps, and amino acids residues lining the channel. The approach was applied to mapping of a complex channel network in a complex environment, i.e., CYP3A4 attached to a lipid bilayer mimicking an endoplasmic reticulum membrane. The results provided direct information about the energetics and conformational changes associated with the ligand channeling. The methodology can easily be adapted to study channeling through other flexible biomacromolecular channels. PMID:26967371

  2. Molecular and crystal structures of some novel derivatives of 3-aryl-7-arylidene-3,3a,4,5,6,7-hexahydroindazoles

    SciTech Connect

    Abakumov, V. V.; Shishkina, S. V.; Zubatyuk, R. I.; Gella, I. M.; Pivnenko, N. S.; Kutulya, L. A. Shishkin, O. V.

    2007-03-15

    The stereochemical aspects of the interaction of 2,6-bis(arylidene)-cyclohexanone and 2,6-bis(arylidene)-3-methylcyclohexanone with arylhydrazine (aryl is phenyl or 4-nitrophenyl) and methylhydrazine are investigated using X-ray diffraction analysis. The molecular structure of the 3-aryl-7-arylidene-3,3a,4,5,6,7-hexahydroindazoles synthesized is determined by X-ray diffraction analysis for the first time. It is established that the stereochemistry of the products of the interaction between the cyclohexanone derivatives and arylhydrazines depends on the electronic nature of the substituent in the aryl group. Two regioisomeric products with different positions of the methyl group in the cyclohexane ring with respect to the arylidene fragment are synthesized by the reaction of 2,6-bis(4-methoxybenzylidene)-3-methylcyclohexanone with methylhydrazine. The influence of the substituents at the nitrogen atom of the pyrazoline ring on the intramolecular electronic interactions and the geometry of the heterocycle in the compounds under investigation is discussed.

  3. Haplotypes in the APOA1-C3-A4-A5 gene cluster affect plasma lipids in both humans and baboons

    SciTech Connect

    Wang, Qian-fei; Liu, Xin; O'Connell, Jeff; Peng, Ze; Krauss, Ronald M.; Rainwater, David L.; VandeBerg, John L.; Rubin, Edward M.; Cheng, Jan-Fang; Pennacchio, Len A.

    2003-09-15

    Genetic studies in non-human primates serve as a potential strategy for identifying genomic intervals where polymorphisms impact upon human disease-related phenotypes. It remains unclear, however, whether independently arising polymorphisms in orthologous regions of non-human primates leads to similar variation in a quantitative trait found in both species. To explore this paradigm, we studied a baboon apolipoprotein gene cluster (APOA1/C3/A4/A5) for which the human gene orthologs have well established roles in influencing plasma HDL-cholesterol and triglyceride concentrations. Our extensive polymorphism analysis of this 68 kb gene cluster in 96 pedigreed baboons identified several haplotype blocks each with limited diversity, consistent with haplotype findings in humans. To determine whether baboons, like humans, also have particular haplotypes associated with lipid phenotypes, we genotyped 634 well characterized baboons using 16 haplotype tagging SNPs. Genetic analysis of single SNPs, as well as haplotypes, revealed an association of APOA5 and APOC3 variants with HDL cholesterol and triglyceride concentrations, respectively. Thus, independent variation in orthologous genomic intervals does associate with similar quantitative lipid traits in both species, supporting the possibility of uncovering human QTL genes in a highly controlled non-human primate model.

  4. CROSS-SPECIES COMPARISON OF CONAZOLE FUNGICIDE METABOLITES USING RAT AND RAINBOW TROUT (ONCHORHYNCHUS MYKISS) HEPATIC MICROSOMES AND PURIFIED HUMAN CYTOCHROME P450 3A4

    EPA Science Inventory

    Conazoles represent a unique class of azole-containing fungicides that are widely used in both pharmaceutical and agriculture applications. The antifungal property of conazoles occurs via complexation with cytochrome P450 monooxygenases (CYP) responsible for mediating fungal cell...

  5. Comparative study of the affinity and metabolism of type I and type II binding quinoline carboxamide analogs by cytochrome P450 3A4

    PubMed Central

    Dahal, Upendra P.; Joswig-Jones, Carolyn; Jones, Jeffrey P.

    2011-01-01

    Compounds that coordinate to the heme-iron of cytochrome P450 (CYP) enzymes are assumed to increase metabolic stability. However, recently we observed that the type II binding quinoline carboxamide (QCA) compounds were metabolically less stable. To test if the higher intrinsic clearance of type II binding compounds relative to type I binding compounds is general for other metabolic transformations, we synthesized a library of QCA compounds that could undergo N-dealkylation, O-dealkylation, benzylic hydroxylation and aromatic hydroxylation. The results demonstrated that type II binding QCA analogs were metabolically less stable (2 to 12 fold) at sub-saturating concentration compared to type I binding counterparts for all the transformations. When the rates of different metabolic transformations between type I and type II binding compounds were compared, they were found to be in the order of N-demethylation>benzylic hydroxylation> O-demethylation> aromatic hydroxylation. Finally, for the QCA analogs with aza-heteroaromatic rings, we did not detect metabolism in aza-aromatic rings (pyridine, pyrazine, pyrimidine) indicating electronegativity of the nitrogen can change regioselectivity in CYP metabolism. PMID:22087535

  6. Generation of in-silico cytochrome P450 1A2, 2C9, 2C19, 2D6, and 3A4 inhibition QSAR models.

    PubMed

    Gleeson, M Paul; Davis, Andrew M; Chohan, Kamaldeep K; Paine, Stuart W; Boyer, Scott; Gavaghan, Claire L; Arnby, Catrin Hasselgren; Kankkonen, Cecilia; Albertson, Nan

    2007-01-01

    In-silico models were generated to predict the extent of inhibition of cytochrome P450 isoenzymes using a set of relatively interpretable descriptors in conjunction with partial least squares (PLS) and regression trees (RT). The former was chosen due to the conservative nature of the resultant models built and the latter to more effectively account for any non-linearity between dependent and independent variables. All models are statistically significant and agree with the known SAR and they could be used as a guide to P450 liability through a classification based on the continuous pIC50 prediction given by the model. A compound is classified as having either a high or low P450 liability if the predicted pIC(50) is at least one root mean square error (RMSE) from the high/low pIC(50) cut-off of 5. If predicted within an RMSE of the cut-off we cannot be confident a compound will be experimentally low or high so an indeterminate classification is given. Hybrid models using bulk descriptors and fragmental descriptors do significantly better in modeling CYP450 inhibition, than bulk property QSAR descriptors alone. PMID:18034311

  7. Synthesis, structure and antimicrobial evaluation of new 3,3a,4,5-tetrahydro-2H-benzo[g]indazol-2-yl-thiazol-4(5H)-ones

    NASA Astrophysics Data System (ADS)

    Gautam, Deepika; Chaudhary, R. P.

    2015-01-01

    The reaction of semicarbazide or thiosemicarbazide with 2-arylidene-1-tetralones under alkaline condition affords 3,3a,4,5-tetrahydro-2H-benzo[g]indazole-2-carbo(thio)amides as a mixture of cis and trans diastereoisomers of 3-H and 3a-H. The synthesis of new indazolyl-thiazol-4(5H)-ones from the condensation of cis isomer and α-halo acids is reported. A DFT study along with X-ray single crystal data of a representative compound is presented. All the eight newly synthesised indazolyl-thiazol-4(5H)-ones were screened for their antibacterial and antifungal activities and some compounds have shown promising activities.

  8. Synthesis, structure and antimicrobial evaluation of new 3,3a,4,5-tetrahydro-2H-benzo[g]indazol-2-yl-thiazol-4(5H)-ones.

    PubMed

    Gautam, Deepika; Chaudhary, R P

    2015-01-25

    The reaction of semicarbazide or thiosemicarbazide with 2-arylidene-1-tetralones under alkaline condition affords 3,3a,4,5-tetrahydro-2H-benzo[g]indazole-2-carbo(thio)amides as a mixture of cis and trans diastereoisomers of 3-H and 3a-H. The synthesis of new indazolyl-thiazol-4(5H)-ones from the condensation of cis isomer and α-halo acids is reported. A DFT study along with X-ray single crystal data of a representative compound is presented. All the eight newly synthesised indazolyl-thiazol-4(5H)-ones were screened for their antibacterial and antifungal activities and some compounds have shown promising activities. PMID:25064506

  9. High nitrogen explosives. Part 2. Dibenzo-1,3a,4,6a-tetraazapentalenes and benzo-1 2,3,4-tetrazine-1,3-dioxides. Progress report, February 1994-June 1995

    SciTech Connect

    Altmann, K.L.; Merwin, L.H.; Norris, W.P.; Wilson, W.S.; Gilardi, R.

    1996-08-01

    High nitrogen materials are sought as a potentially dense, powerful but insensitive explosive and propellant ingredients. Elucidation of the structure and chemistry of dibenzo-1 ,3a,4,6a-tetraazapentalenes has continued, with particular attention to a putative C12N12O12 derivative initially prepared at the University of New Orleans. This research contributed substantially to identification of the actual o-quinone hydrate structure, and explanation of the apparently anomalous explosive insensitivity of the material. Synthesis of the novel 5,7-dinitrobenzo-1, 2,3,4-tetrazine-1,3-dioxide has been repeated, its structure has been confirmed, and preliminary evaluation of its explosive sensitivity has been completed.

  10. Development of a new fluorescent probe: 1,3,5,7-tetramethyl-8-(4'-aminophenyl)-4,4-difluoro-4-bora-3a,4a-diaza- s-indacence for the determination of trace nitrite

    NASA Astrophysics Data System (ADS)

    Li, Mengling; Wang, Hong; Zhang, Xian; Zhang, Hua-shan

    2004-03-01

    A new fluorescent probe, 1,3,5,7-tetramethyl-8-(4'-aminophenyl)-4,4-difluoro-4-bora-3a,4a-diaza- s-indacence (TMABODIPY) has been developed for the determination of trace nitrite in terms of the reaction of nitrite with TMABODIPY first in acidic solution and then in alkaline solution to form diazotate, a stable and highly fluorescent reagent. The method offered the advantage of specificity, sensitivity and simplicity. The linear calibration range for nitrite was 8-300 nmol l -1 s with a 3 σ detection limit of 0.65 nmol l -1. The proposed method has been applied to monitor the trace nitrite in drinking water and vegetable without extraction.

  11. THE PUTATIVE HIGH ACTIVITY VARIANT CYP3A4*1B PREDICTS THE ONSET OF PUBERTY IN YOUNG GIRLS. (R825816)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  12. In vitro inhibition of CYP3A4 activity by some newly-isolated minor-occurring furanocoumarins in grapefruit juice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A number of furanocoumarins, which are minor phenolic constituents in plants, have been extensively studied for their biological functions in plant defense mechanisms, grapefruit-drug interactions, and therapeutic medications. In grapefruit-drug interactions, it has been shown that furanocoumarins ...

  13. CROSS-SPECIES COMPARISON OF CONAZOLE FUNGICIDE METABOLITES USING RAT AND RAINBOW TROUT (ONCHLORHYNCHUS MYKISS) HEPATIC MICROSOMES AND PURIFIED HUMAN CYP 3A4

    EPA Science Inventory

    Ecological risk assessment frequently relies on cross-species extrapolation to predict acute toxicity from chemical exposures. A major concern for environmental risk characterization is the degree of uncertainty in assessing xenobiotic biotansformation processes. Although inheren...

  14. Chemical synthesis, pharmacological evaluation and in silico analysis of new 2,3,3a,4,5,6-hexahydrocyclopenta[c]pyrazole derivatives as potential anti-mitotic agents.

    PubMed

    Minu, Maninder; Singh, Deepti; Mahaddalkar, Tejashree; Lopus, Manu; Winter, Philip; Ayoub, Ahmed T; Missiaen, Kristal; Tilli, Tatiana Martins; Pasdar, Manijeh; Tuszynski, Jack

    2016-08-15

    We have synthesized new, biologically active mono- and di-substituted 2,3,3a,4,5,6-hexahydrocyclopenta[c]pyrazole derivatives bearing electron withdrawing groups and electron donating groups. These derivative structures were characterized by their spectral and analytical data. The newly synthesized hexahydropyrazole analogues were evaluated for their in vitro anticancer activity against breast and lung cancer cell lines using a cytotoxicity bioassay. To understand their mechanism of action, tubulin binding assays were performed which pointed to their binding to microtubules in a mode similar to but not identical to colchicine, as evidenced by their KD value evaluation. Computational docking studies also suggested binding near the colchicine binding site on tubulin. These results were further confirmed by colchicine-binding assays on the most active compounds, which indicated that they bound to tubulin near but not at the colchicine site. The moderate cytotoxic effects of these compounds may be due to the presence of electron donating groups on the para-position of the phenyl ring, along with the hexahydropyrazole core nucleus. The observed anti-cancer activity based on inhibition of microtubule formation may be helpful in designing more potent compounds with a hexahydropyrazole moiety. PMID:27449957

  15. Role of subunit interactions in P450 oligomers in the loss of homotropic cooperativity in the cytochrome P450 3A4 mutant L211F/D214E/F304W

    PubMed Central

    Fernando, Harshica; Davydov, Dmitri R.; Chin, Christopher C.; Halpert, James R.

    2007-01-01

    The contribution of conformational heterogeneity to cooperativity in cytochrome P450 3A4 was investigated using the mutant L211F/D214E/F304W. Initial spectral studies revealed a loss of cooperativity of the 1-pyrenebutanol (1-PB) induced spin shift (S50 = 5.4 μM, n = 1.0) but retained cooperativity of α-naphthoflavone binding. Continuous variation (Job’s titration) experiments showed the existence of two pools of enzyme with different 1-PB binding characteristics. Monitoring of 1-PB binding by fluorescence resonance energy transfer from the substrate to the heme confirmed that the high affinity site (KD = 0.3 μM) is retained in at least some fraction of the enzyme, although cooperativity is masked. Removal of apoprotein on a second column increased the high spin content and restored cooperativity of 1-PB binding and of progesterone and testosterone 6β-hydroxylation. The loss of cooperativity in the mutant is, therefore, mediated by the interaction of holo- and apo-P450 in mixed oligomers. PMID:17274942

  16. First highly efficient and photostable E and C derivatives of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) as dye lasers in the liquid phase, thin films, and solid-state rods.

    PubMed

    Duran-Sampedro, Gonzalo; Esnal, Ixone; Agarrabeitia, Antonia R; Bañuelos Prieto, Jorge; Cerdán, Luis; García-Moreno, Inmaculada; Costela, Angel; Lopez-Arbeloa, Iñigo; Ortiz, María J

    2014-02-24

    A new library of E- and C-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) derivatives has been synthesized through a straightforward protocol from commercially available BODIPY complexes, and a systematic study of the photophysical properties and laser behavior related to the electronic properties of the B-substituent group (alkynyl, cyano, vinyl, aryl, and alkyl) has been carried out. The replacement of fluorine atoms by electron-withdrawing groups enhances the fluorescence response of the dye, whereas electron-donor groups diminish the fluorescence efficiency. As a consequence, these compounds exhibit enhanced laser action with respect to their parent dyes, both in liquid solution and in the solid phase, with lasing efficiencies under transversal pumping up to 73 % in liquid solution and 53 % in a solid matrix. The new dyes also showed enhanced photostability. In a solid matrix, the derivative of commercial dye PM597 that incorporated cyano groups at the boron center exhibited a very high lasing stability, with the laser emission remaining at the initial level after 100 000 pump pulses in the same position of the sample at a 10 Hz repetition rate. Distributed feedback laser emission was demonstrated with organic films that incorporated parent dye PM597 and its cyano derivative. The films were deposited onto quartz substrates engraved with appropriate periodical structures. The C derivative exhibited a laser threshold lower than that of the parent dye as well as lasing intensities up to three orders of magnitude higher. PMID:24453119

  17. Loss of CYP3A7 gene induction by 1,25-dihydroxyvitamin D3 is caused by less binding of VDR to the proximal ER6 in CYP3A7 gene.

    PubMed

    Hara, Hirokazu; Yasunami, Yoko; Adachi, Tetsuo

    2004-09-01

    Cytochrome P450 3A4 and 3A7 (CYP3A4 and CYP3A7, respectively) are predominant forms in the human adult and fetal liver, respectively. 1,25-Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) is known to be a potent inducer of CYP3A4 in human colon carcinoma Caco-2 via vitamin D receptor (VDR). However, whether CYP3A7 is inducible by 1,25(OH)(2)D(3) has not yet been elucidated. In the present study, we examined the effect of 1,25(OH)(2)D(3) on CYP3A7 gene expression in Caco-2 cells, which express CYP3A4 and CYP3A7 mRNAs. 1,25(OH)(2)D(3) hardly induced the expression of CYP3A7 mRNA in contrast to the marked induction of CYP3A4 mRNA. Reporter assay using 5'-franking region CYP3A4 and CYP3A7 genes also revealed that 1,25(OH)(2)D(3) activates CYP3A4 promoter, but not CYP3A7 promoter, which has two mutations in the proximal ER6 site compared with CYP3A4 promoter. In addition, we found that the binding of VDR to the proximal ER6 in CYP3A7 gene was markedly less than that to the proximal ER6 in CYP3A4 gene using gel shift assay. Taken together, the decrease of VDR binding to the proximal ER6 caused by the mutation results in the loss of CYP3A7 gene activation by 1,25(OH)(2)D(3). PMID:15358113

  18. Contribution of three CYP3A isoforms to metabolism of R- and S-warfarin.

    PubMed

    Jones, Drew R; Kim, So-Young; Boysen, Gunnar; Yun, Chul-Ho; Miller, Grover P

    2010-12-01

    Effective coumadin (R/S-warfarin) therapy is complicated by inter-individual variability in metabolism. Recent studies have demonstrated that CYP3A isoforms likely contribute to patient responses and clinical outcomes. Despite a significant focus on CYP3A4, little is known about CYP3A5 and CYP3A7 metabolism of warfarin. Based on our studies, recombinant CYP3A4, CYP3A5 and CYP3A7 metabolized R- and S-warfarin to 10- and 4'-hydroxywarfarin with efficiencies that depended on the individual enzymes. For R-warfarin, CYP3A4, CYP3A7, and CYP3A5 demonstrated decreasing preference for 10-hydroxylation over 4'-hydroxylation. By contrast, there was no regioselectivity toward S-warfarin. While all enzymes preferentially metabolized R-warfarin, CYP3A4 was the most efficient at metabolizing all reactions. Individuals, namely African-Americans and children, with higher relative levels of CYP3A5 and/or CYP3A7, respectively, compared to CYP3A4 may metabolize warfarin less efficiently and thus may require lower doses and be at risk for adverse drug-drug interactions related to the contributions of the respective enzymes. PMID:20615193

  19. Applicability of second-generation upcyte® human hepatocytes for use in CYP inhibition and induction studies

    PubMed Central

    Ramachandran, Sarada D; Vivarès, Aurélie; Klieber, Sylvie; Hewitt, Nicola J; Muenst, Bernhard; Heinz, Stefan; Walles, Heike; Braspenning, Joris

    2015-01-01

    Human upcyte® hepatocytes are proliferating hepatocytes that retain many characteristics of primary human hepatocytes. We conducted a comprehensive evaluation of the application of second-generation upcyte® hepatocytes from four donors for inhibition and induction assays using a selection of reference inhibitors and inducers. CYP1A2, CYP2B6, CYP2C9, and CYP3A4 were reproducibly inhibited in a concentration-dependent manner and the calculated IC50 values for each compound correctly classified them as potent inhibitors. Upcyte® hepatocytes were responsive to prototypical CYP1A2, CYP2B6, CYP2C9, and CYP3A4 inducers, confirming that they have functional AhR-, CAR-, and PXR-mediated CYP regulation. A panel of 11 inducers classified as potent, moderate or noninducers of CYP3A4 and CYP2B6 were tested. There was a good fit of data from upcyte® hepatocytes to three different predictive models for CYP3A4 induction, namely the Relative Induction Score (RIS), AUCu/F2, and Cmax,u/Ind50. In addition, PXR (rifampicin) and CAR-selective (carbamazepine and phenytoin) inducers of CYP3A4 and CYP2B6 induction, respectively, were demonstrated. In conclusion, these data support the use of second-generation upcyte® hepatocytes for CYP inhibition and induction assays. Under the culture conditions used, these cells expressed CYP activities that were equivalent to or higher than those measured in primary human hepatocyte cultures, which could be inhibited or induced by prototypical CYP inhibitors and inducers, respectively. Moreover, they can be used to predict in vivo CYP3A4 induction potential using three prediction models. Bulk availability of cells from multiple donors makes upcyte® hepatocytes suitable for DDI screening, as well as more in-depth mechanistic investigations. PMID:26516577

  20. Human variation and CYP enzyme contribution in benfuracarb metabolism in human in vitro hepatic models.

    PubMed

    Abass, Khaled; Reponen, Petri; Mattila, Sampo; Rautio, Arja; Pelkonen, Olavi

    2014-01-13

    Human responses to the toxicological effects of chemicals are often complicated by a substantial interindividual variability in toxicokinetics, of which metabolism is often the most important factor. Therefore, we investigated human variation and the contributions of human-CYP isoforms to in vitro metabolism of benfuracarb. The primary metabolic pathways were the initial sulfur oxidation to benfuracarb-sulfoxide and the nitrogen-sulfur bond cleavage to carbofuran (activation). The Km, Vmax, and CL(int) values of carbofuran production in ten individual hepatic samples varied 7.3-, 3.4-, and 5.4-fold, respectively. CYP2C9 and CYP2C19 catalyzed benfuracarb sulphur oxidation. Carbofuran formation, representing from 79% to 98% of the total metabolism, was catalyzed predominantly by CYP3A4. The calculated relative contribution of CYP3A4 to carbofuran formation was 93%, while it was 4.4% for CYP2C9. The major contribution of CYP3A4 in benfuracarb metabolism was further substantiated by showing a strong correlation with CYP3A4-selective markers midazolam-1'-hydroxylation and omeprazole-sulfoxidation (r=0.885 and 0.772, respectively). Carbofuran formation was highly inhibited by the CYP3A inhibitor ketoconazole. Moreover, CYP3A4 marker activities were relatively inhibited by benfuracarb. These results confirm that human CYP3A4 is the major enzyme involved in the in vitro activation of benfuracarb and that CYP3A4-catalyzed metabolism is the primary source of interindividual differences. PMID:24016712

  1. Inhibitory Mechanisms of Human CYPs by Three Alkaloids Isolated from Traditional Chinese Herbs.

    PubMed

    Zhao, Yong; Hellum, Bent Håvard; Liang, Aihua; Nilsen, Odd Georg

    2015-06-01

    The three purified herbal compounds tetrahydropalmatine (Tet), neferine and berberine (Ber) were explored in vitro for basic inhibition mechanisms towards recombinant human CYP1A2, CYP2D6 and CYP3A4 metabolic activities. Phenacetin, dextromethorphan and testosterone, respectively, were used as CYP1A2, CYP2D6 and CYP3A4 substrates, and their metabolites were determined by validated HPLC methodologies. Positive inhibition controls were used. Mechanism-based (irreversible) inhibition was assessed by time-dependent and nicotinamide adenine dinucleotide phosphate-dependent and reversible inhibition by Lineweaver-Burk plot assessments. Inhibition mechanisms were also assessed by computerized interaction prediction by using the Discovery Studio CDOCKER software (Accelrys, San Diego, CA, USA). Tetrahydropalmatine showed a mechanism-based inhibition of both CYP1A2 and CYP2D6, and Ber of CYP2D6. Neferine and Ber both showed a nonmechanistic inhibition of CYP1A2. All compounds showed a similar and significant mechanism-based inhibition of CYP3A4. Tetrahydropalmatine and Ber demonstrated both reversible and irreversible inhibition of CYP2D6 and CYP3A4. Tetrahydropalmatine and Ber displayed H-bond and several Pi-bond connections with specific amino acid residues of CYP1A2, CYP2D6 and CYP3A4, giving further knowledge to the identified reversible and irreversible herb-drug interactions. Tetrahydropalmatine and Ber should be considered for herb-drug interactions in clinical therapy until relevant clinical studies are available. PMID:25640685

  2. [Effect of Fuzheng Huayu recipe on CYP450 isozymes in normal and liver fibrosis rats].

    PubMed

    Zheng, Tian-hui; Liu, Wei; Li, Shu-ping; Yang, Tao; Wang, Chang-hong; Liu, Cheng-hai

    2015-03-01

    To study the effect of Fuzheng Huayu recipe (FZHY) on five types of isozymes of cytochrome P450 (CYP450) of normal and liver fibrosis rats by using the cocktail probe method. Dimethylnitrosamine ( DMN) was injected to induce the liver fibrosis model. After the tail vein injection with Cocktail probe solutions prepared with five CYP450s probe substrates (phenacetin-CYP1A2, omeprazole-CYP2C9, tolbutamide-CYP2C19, dextromethorphan-CYP2D6, midazolam-CYP3A4), the plasma concentrations of the five probe substrates were determined by LC-MS/MS, and the pharmacokinetic parameters were calculated by PK solutions 2. After the oral administration with FZHY, normal rats given phenacetin, omeprazole, tolbutamide and dextromethorphan showed increase in AUC(0-t) and decrease in CL to varying degrees, indicating that FZHY obviously inhibited the activities of CYP1A2, CYP2C9, CYP2C19 and CYP2D6 in normal rats, but with no obvious effect on the activity of CYP3A4. After the oral administration with FZHY, liver fibrosis rats treated with CYP2C9 showed the significant increase in AUC(0-t) and significant decrease in Vd, hut with no obvious changes in the pharmacokinetic parameters of other four types of prove substances, suggesting that FZHY could significantly inhibit the activity of CYP2C9 in rats but had no effect on the activities of CYP1A2, CYP2C19, CYP2D6 and CYP3A4. The changes in the activity of CYP450 isozymes in liver fibrosis rats may be the reason for FZHY's different effects on CYP450 isozymes in normal and liver fibrosis rats. PMID:26226765

  3. Fidelity of binding of the guanidinium nucleic acid (DNG) d(Tg)4-T-azido with short strand DNA oligomers (A5G3A5, GA4G3A4G, G2A3G3A3G2, G2A2G5A2G2). A kinetic and thermodynamic study.

    PubMed

    Blaskó, A; Minyat, E E; Dempcy, R O; Bruice, T C

    1997-06-24

    Short strand DNA oligomers (A5G3A5, GA4G3A4G, G2A3G3A3G2, and G2A2G5A2G2) and the guanidinium (g) linked thymidyl nucleoside d(Tg)4-T-azido associate as triplexes. The melting temperatures, Tm, the association and dissociation kinetic and thermodynamic parameters and activation energies for the triplexes were determined by UV thermal analysis. The hypochromic shift and Tm for triplex formation increases with increase in concentration and decreases with the number of mismatches. The melting temperatures are between 35 and 55 degrees C in the range of ionic strength of 0.06-0.24 and decrease with increase in ionic strength at 100 deg/(ionic strength unit). The melting and cooling curves exhibit hysteresis behavior in the temperature range 5-95 degrees C at 0.2 deg/min thermal rate. From these curves, the rate constants and the energies of activation for association (k(on), E(on)) and dissociation (k(off), E(off)) processes were obtained. The second-order rate constants, k(on), for the triplex formation at 288 K are between 10 and 500 M(-2) s(-1). Values of k(on) increase with the decrease in the ionic strength. The first order rate constants for the dissociation, k(off), at 288 K are between 10(-6) and 40 x 10(-6) s(-1) and increase with increase in ionic strength. The energies of activation for the association and dissociation processes are in the range -22 to -9 kcal/mol and 8 to 29 kcal/mol, respectively. At 6.3 x 10(-5) M/base and at the physiological ionic strength (0.15-0.30) and below, the triplex structures formed with d(Tg)4-T-azido and A5G3A5 and GA4G3A4G have well-defined Tm values. The melting curves with G2A3G3A3G2 and G2A2G5A2G2 are very shallow with small hypochromic shifts denoting negligible binding at physiological ionic strength. Therefore, with the increase in the G content (mismatched base pairs) at a certain concentration (e.g., 6.3 x 10(-5) M/base), discrimination (change in fidelity) occurs in the formation and strength of binding of d(Tg)4-T

  4. CYP isoform specificity toward drug metabolism: analysis using common feature hypothesis.

    PubMed

    Ramesh, M; Bharatam, Prasad V

    2012-02-01

    Three dimensional pharmacophoric maps were generated for each isoforms of CYP2C9, CYP2D6 and CYP3A4 separately using independent training sets consist of highly potent substrates (seven substrates for each isoform). HipHop module of CATALYST software was used in the generation of pharmacophore models. The best pharmacophore model was chosen out of the several models on the basis of (i) highest ranking score, (ii) better fit value among training set, (iii) capability to screen substrates from data set and (iv) efficiency to identify the isoform specificity. The individual pharmacophore models (CYP2C9-hypo1, CYP2D6-hypo1 and CYP3A4-hypo1) are characterized by the pharmacophoric features XZDH, RPZH and XYZHH for the CYP2C9, CYP2D6 and CYP3A4 respectively. Each of the chosen models was validated by using data sets of CYP substrates. This comparative study of CYP substrates demonstrates the importance of acidic character along with HBD and HBAl features for CYP2C9, basic character with ring aromatic features for CYP2D6 and hydrophobic features for CYP3A4. Acidity, basicity and hydrophobicity features arising from the functional groups of the substrates are also responsible for demonstrating CYP isoform specificity. Hence, these chemical features are incorporated in the decision tree along with pharmacophore maps. Finally, a decision tree based on chemical features and pharmacophore features was generated to identify the isoform specificity of novel query molecule toward the three isoforms. PMID:21562823

  5. PXR-Mediated Upregulation of CYP3A Expression by Herb Compound Praeruptorin C from Peucedanum praeruptorum Dunn

    PubMed Central

    Huang, Ling; Wu, Qian; Li, Yu-Hua; Wang, Yi-Tao; Bi, Hui-Chang

    2013-01-01

    We recently reported that Praeruptorin C effectively transactivated the mRNA, protein expression, and catalytic activity of CYP3A4 via the CAR-mediated pathway, but whether and how PC could affect the expression and catalytic activity of CYP3A4 via PXR pathway remains unknown. Therefore, in this study, the effect of PC on the CYP3A gene expression was investigated in mice primary hepatocytes after knockdown of PXR by transient transfection of PXR siRNA, and the gene expression, protein expression, and catalytic activity of CYP3A4 in the LS174T cells with PXR overexpression were determined by real-time PCR, western blot analysis, and LC-MS/MS-based CYP3A4 substrate assay, respectively. We found that the level of CYP3a11 gene expression in mouse primary hepatocytes was significantly increased by praeruptorin C, but such an induction was suppressed after knockdown of pregnane X receptor by its siRNA. In PXR-overexpressed LS174T cells, PC significantly enhanced CYP3A4 mRNA, protein expression, and functional activity through PXR-mediated pathway; conversely, no such increase was found in the untransfected cells. These findings suggest that PC can significantly upregulate CYP3A level via the PXR-mediated pathway, and this should be taken into consideration to predict any potential herb-drug interactions between PC, Qianhu, and the other coadministered drugs. PMID:24379885

  6. Future Trends in the Pharmacogenomics of Brain Disorders and Dementia: Influence of APOE and CYP2D6 Variants

    PubMed Central

    Cacabelos, Ramón; Fernández-Novoa, Lucía; Martínez-Bouza, Rocío; McKay, Adam; Carril, Juan C.; Lombardi, Valter; Corzo, Lola; Carrera, Iván; Tellado, Iván; Nebril, Laura; Alcaraz, Margarita; Rodríguez, Susana; Casas, Ángela; Couceiro, Verónica; Álvarez, Antón

    2010-01-01

    About 80% of functional genes in the human genome are expressed in the brain and over 1,200 different genes have been associated with the pathogenesis of CNS disorders and dementia. Pharmacogenetic studies of psychotropic drug response have focused on determining the relationship between variations in specific candidate genes and the positive and adverse effects of drug treatment. Approximately, 18% of neuroleptics are substrates of CYP1A2 enzymes, 40% of CYP2D6, and 23% of CYP3A4; 24% of antidepressants are substrates of CYP1A2 enzymes, 5% of CYP2B6, 38% of CYP2C19, 85% of CYP2D6, and 38% of CYP3A4; 7% of benzodiazepines are substrates of CYP2C19 enzymes, 20% of CYP2D6, and 95% of CYP3A4. 10-20% of Western populations are defective in genes of the CYP superfamily; and the pharmacogenomic response of psychotropic drugs also depends on genetic variants associated with dementia. Prospective studies with anti-dementia drugs or with multifactorial strategies have revealed that the therapeutic response to conventional drugs in Alzheimer’s disease is genotype-specific. The disease-modifying effects (cognitive performance, biomarker modification) of therapeutic intervention are APOE-dependent, with APOE-4 carriers acting as the worst responders (APOE-3/3 > APOE-3/4 > APOE-4/4). APOE-CYP2D6 interactions also influence the therapeutic outcome in patients with dementia.

  7. Human variation in CYP-specific chlorpyrifos metabolism.

    PubMed

    Croom, Edward L; Wallace, Andrew D; Hodgson, Ernest

    2010-10-29

    Chlorpyrifos, an organophophorothioate insecticide, is bioactivated to the neurotoxic metabolite, chlorpyrifos-oxon (CPO) by cytochromes P450 (CYPs). To determine the variability in chlorpyrifos bioactivation, CPO production by human liver microsomes from 17 individual donors was compared relative to phenotype and genotype. CPO production varied over 14-fold between individuals in incubations utilizing 20 μM chlorpyrifos as substrate, while CPO production varied 57-fold in incubations with 100 μM chlorpyrifos. For all but two samples, the formation of the less toxic metabolite, 3,5,6-trichloro-2-pyridinol (TCP), was greater than CPO production. TCP production varied 9-fold in incubations utilizing 20 μM chlorpyrifos as substrate and 19-fold using 100 μM chlorpyrifos. Chlorpyrifos metabolism by individual human liver microsomes was significantly correlated with CYP2B6, CYP2C19 and CYP3A4 related activity. CPO formation was best correlated with CYP2B6 related activity at low (20 μM) chlorpyrifos concentrations while CYP3A4 related activity was best correlated with CPO formation at high concentrations (100 μM) of chlorpyrifos. TCP production was best correlated with CYP3A4 activity at all substrate concentrations of chlorpyrifos. The production of both CPO and TCP was significantly lower at a concentration of 20 μM chlorpyrifos as compared to 100 μM chlorpyrifos. Calculations of percent total normalized rates (% TNR) and the chemical inhibitors ketoconazole and ticlopidine were used to confirm the importance of CYP2B6, CYP2C19, and CYP3A4 for the metabolism of chlorpyrifos. The combination of ketoconazole and ticlopidine inhibited the majority of TCP and CPO formation. CPO formation did not differ by CYP2B6 genotype. Individual variations in CPO production may need to be considered in determining the risk of chlorpyrifos poisoning. PMID:20709133

  8. Use of fluorescence-activated flow cytometry to determine membrane lipid peroxidation during hypothermic liquid storage and freeze-thawing of viable boar sperm loaded with 4, 4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene-3-undecanoic acid.

    PubMed

    Guthrie, H D; Welch, G R

    2007-06-01

    Part of the reduction in boar sperm motility and fertility associated with hypothermic liquid storage and cryopreservation may be due to membrane lipid peroxidation. Lipid peroxidation was monitored by the shift from red to green fluorescence emission of the lipophilic probe 4, 4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene-3-undecanoic acid, C(11)BODIPY(581/591) (BODIPY), as measured by fluorescence-activated flow cytometry in live sperm (negative for propidium iodide). Experiments were conducted with Percoll-washed sperm to determine the specificity of BODIPY oxidation in the presence of different reactive oxygen species generators and metal chelators. Compared with no FeSO(4) and Na ascorbate, the combination of FeSO(4) and Na ascorbate (FeAc) increased (P < 0.01) the percentage of sperm containing oxidized BODIPY from 70% and increased (P < 0.05) BOD-IPY fluorescence intensity/cell by 5- to 10-fold after a 30-min incubation. Motility was depressed (P < 0.05) after exposure to FeAc, but viability was not affected. Of the reactive oxygen species generators tested, BODIPY oxidation was specific for FeAc, because menadione and H(2)O(2) had little or no effect. The oxidization of hydroethidine to ethidium was specific for menadione and H(2)O(2); FeAc had no effect. The presence of the metal chelators EDTA or deferoxamine mesylate at 3 and 9 muM inhibited FeAc-induced BODIPY oxidation and maintained motility. Experiments were conducted to determine the effect of liquid storage at 17 degrees C for 1 and 5 d and the effect of freeze-thawing on basal and FeAc-induced BODIPY oxidation. Basal BODIPY oxidation (no FeAc) was low in liquid stored and thawed viable sperm (1.3 and 3.4%, respectively). Although the incidence of basal or spontaneous membrane lipid peroxidation was low during liquid storage and after freeze-thawing, viable boar sperm were susceptible to FeAc-induced lipid peroxidation. PMID:17296775

  9. Microarray Analysis of Differentially-Expressed Genes Encoding CYP450 and Phase II Drug Metabolizing Enzymes in Psoriasis and Melanoma

    PubMed Central

    Sumantran, Venil N.; Mishra, Pratik; Bera, Rakesh; Sudhakar, Natarajan

    2016-01-01

    Cytochrome P450 drug metabolizing enzymes are implicated in personalized medicine for two main reasons. First, inter-individual variability in CYP3A4 expression is a confounding factor during cancer treatment. Second, inhibition or induction of CYP3A4 can trigger adverse drug–drug interactions. However, inflammation can downregulate CYP3A4 and other drug metabolizing enzymes and lead to altered metabolism of drugs and essential vitamins and lipids. Little is known about effects of inflammation on expression of CYP450 genes controlling drug metabolism in the skin. Therefore, we analyzed seven published microarray datasets, and identified differentially-expressed genes in two inflammatory skin diseases (melanoma and psoriasis). We observed opposite patterns of expression of genes regulating metabolism of specific vitamins and lipids in psoriasis and melanoma samples. Thus, genes controlling the turnover of vitamin D (CYP27B1, CYP24A1), vitamin A (ALDH1A3, AKR1B10), and cholesterol (CYP7B1), were up-regulated in psoriasis, whereas melanomas showed downregulation of genes regulating turnover of vitamin A (AKR1C3), and cholesterol (CYP39A1). Genes controlling abnormal keratinocyte differentiation and epidermal barrier function (CYP4F22, SULT2B1) were up-regulated in psoriasis. The up-regulated CYP24A1, CYP4F22, SULT2B1, and CYP7B1 genes are potential drug targets in psoriatic skin. Both disease samples showed diminished drug metabolizing capacity due to downregulation of the CYP1B1 and CYP3A5 genes. However, melanomas showed greater loss of drug metabolizing capacity due to downregulation of the CYP3A4 gene. PMID:26901218

  10. The effects of CYP2D6 and CYP3A activities on the pharmacokinetics of immediate release oxycodone

    PubMed Central

    Samer, CF; Daali, Y; Wagner, M; Hopfgartner, G; Eap, CB; Rebsamen, MC; Rossier, MF; Hochstrasser, D; Dayer, P; Desmeules, JA

    2010-01-01

    Background and purpose: There is high interindividual variability in the activity of drug-metabolizing enzymes catalysing the oxidation of oxycodone [cytochrome P450 (CYP) 2D6 and 3A], due to genetic polymorphisms and/or drug–drug interactions. The effects of CYP2D6 and/or CYP3A activity modulation on the pharmacokinetics of oxycodone remains poorly explored. Experimental approach: A randomized crossover double-blind placebo-controlled study was performed with 10 healthy volunteers genotyped for CYP2D6 [six extensive (EM), two deficient (PM/IM) and two ultrarapid metabolizers (UM)]. The volunteers randomly received on five different occasions: oxycodone 0.2 mg·kg−1 and placebo; oxycodone and quinidine (CYP2D6 inhibitor); oxycodone and ketoconazole (CYP3A inhibitor); oxycodone and quinidine+ketoconazole; placebo. Blood samples for plasma concentrations of oxycodone and metabolites (oxymorphone, noroxycodone and noroxymorphone) were collected for 24 h after dosing. Phenotyping for CYP2D6 (with dextromethorphan) and CYP3A (with midazolam) were assessed at each session. Key results: CYP2D6 activity was correlated with oxymorphone and noroxymorphone AUCs and Cmax (−0.71 < Spearman correlation coefficient ρs < −0.92). Oxymorphone Cmax was 62% and 75% lower in PM than EM and UM. Noroxymorphone Cmax reduction was even more pronounced (90%). In UM, oxymorphone and noroxymorphone concentrations increased whereas noroxycodone exposure was halved. Blocking CYP2D6 (with quinidine) reduced oxymorphone and noroxymorphone Cmax by 40% and 80%, and increased noroxycodone AUC∞ by 70%. Blocking CYP3A4 (with ketoconazole) tripled oxymorphone AUC∞ and reduced noroxycodone and noroxymorphone AUCs by 80%. Shunting to CYP2D6 pathway was observed after CYP3A4 inhibition. Conclusions and implications: Drug–drug interactions via CYP2D6 and CYP3A affected oxycodone pharmacokinetics and its magnitude depended on CYP2D6 genotype. PMID:20590587

  11. Follow-up to the pre-validation of a harmonised protocol for assessment of CYP induction responses in freshly isolated and cryopreserved human hepatocytes with respect to culture format, treatment, positive reference inducers and incubation conditions.

    PubMed

    Abadie-Viollon, Catherine; Martin, Hélène; Blanchard, Nadège; Pekthong, Dumrongsak; Bachellier, Philippe; Mantion, Georges; Heyd, Bruno; Schuler, Frantz; Coassolo, Philippe; Alexandre, Eliane; Richert, Lysiane

    2010-02-01

    We have compared induction responses of human hepatocytes to known inducers of CYP1A2, CYP2B6, CYP2C and CYP3A4/5 to determine whether the culture format, treatment regimen and/or substrate incubation conditions affected the outcome. CYP induction responses to prototypical inducers were equivalent regardless of pre-culture time (24h or 48h), plate format (60mm or 24-well plates) used or whether CYP activities were measured in microsomes or whole cell monolayers. Fold-induction of CYP3A4/5 by 1000muM PB and 10microM RIF were equivalent. In contrast, the fold-induction of CYP2B6 by PB was 3-fold higher that by 10microM RIF. In addition to inducing CYP1A2, 50microM OME also induced CYP3A4/5 in 50% of the donors tested. CYP2B6 was induced in 14 out of 21 donors by BNF; however CYP3A4/5 was unaffected by BNF in these donors. In order to confirm that donor-to-donor variation was not due to inter-laboratory differences, the induction responses of 5 different batches of cryopreserved human hepatocytes were compared in two different laboratories. The induction of CYP1A2, CYP2B6 and CYP3A4 measured in our laboratory were equivalent to those obtained by the commercial companies, proving good between-laboratory reproducibility. In conclusion, there is some flexibility in the treatment and incubation protocols for classical CYP induction assays on human hepatocytes. Both RIF and PB are suitable positive control inducers of CYP3A4/5 but PB may be more appropriate for CYP2B6 induction. BNF may be more appropriate for CYP1A2 induction than OME since, in contrast to the latter, it does not induce CYP3A4. Induction responses using hepatocytes from the same donor but in different labs can be expected to be similar. The good reproducibility of induction responses between laboratories using cryopreserved hepatocytes underlines the usefulness of these cells for these types of studies. PMID:19497360

  12. Effect of acute paraquat poisoning on CYP450 isoforms activity in rats by cocktail method.

    PubMed

    Wang, Shuanghu; Wang, Zhiyi; Chen, Dongxin; Chen, Mengchun; Lin, Yingying; Liu, Zezheng; Zhang, Lijing; Wen, Congcong; Wang, Xianqin; Ma, Jianshe

    2015-01-01

    Paraquat is a highly effective contact herbicide that is marketed worldwide as a fantastical, non-selective compound for broadleaf weed control. As compared to most pesticides, paraquat is extremely toxic to humans and the lack of strategies to manage paraquat poisoning has resulted in high fatality rates. The rats were randomly divided into acute paraquat poisoning group and control group. The paraquat group rats were given 36 mg/kg paraquat by intragastric administration. The influence of acute paraquat poisoning on the activities of CYP450 isoforms CYP2B6, CYP1A2, CYP2C9, CYP2D6, CYP3A4 and CYP2C19 were evaluated by cocktail method, they were responded by the changes of pharmacokinetic parameters of bupropion, phenacetin, tolbutamide, metoprolol, midazolam and omeprazole. The six probe drugs were given to rats through intragastric administration, and the plasma concentrations were determined by UPLC-MS/MS. In the results of paraquat group compared to control group, there was statistical pharmacokinetic difference for bupropion, tolbutamide, metoprolol, midazolam and omeprazole. Acute paraquat poisoning may induce the activities of CYP2C19, and inhibit of CYP2B6, CYP2C9, CYP2D6 and CYP3A4 in rats. This may give advising for reasonable drug use after acute paraquat poisoning. PMID:26770539

  13. Effect of acute paraquat poisoning on CYP450 isoforms activity in rats by cocktail method

    PubMed Central

    Wang, Shuanghu; Wang, Zhiyi; Chen, Dongxin; Chen, Mengchun; Lin, Yingying; Liu, Zezheng; Zhang, Lijing; Wen, Congcong; Wang, Xianqin; Ma, Jianshe

    2015-01-01

    Paraquat is a highly effective contact herbicide that is marketed worldwide as a fantastical, non-selective compound for broadleaf weed control. As compared to most pesticides, paraquat is extremely toxic to humans and the lack of strategies to manage paraquat poisoning has resulted in high fatality rates. The rats were randomly divided into acute paraquat poisoning group and control group. The paraquat group rats were given 36 mg/kg paraquat by intragastric administration. The influence of acute paraquat poisoning on the activities of CYP450 isoforms CYP2B6, CYP1A2, CYP2C9, CYP2D6, CYP3A4 and CYP2C19 were evaluated by cocktail method, they were responded by the changes of pharmacokinetic parameters of bupropion, phenacetin, tolbutamide, metoprolol, midazolam and omeprazole. The six probe drugs were given to rats through intragastric administration, and the plasma concentrations were determined by UPLC-MS/MS. In the results of paraquat group compared to control group, there was statistical pharmacokinetic difference for bupropion, tolbutamide, metoprolol, midazolam and omeprazole. Acute paraquat poisoning may induce the activities of CYP2C19, and inhibit of CYP2B6, CYP2C9, CYP2D6 and CYP3A4 in rats. This may give advising for reasonable drug use after acute paraquat poisoning. PMID:26770539

  14. Eletriptan metabolism by human hepatic CYP450 enzymes and transport by human P-glycoprotein.

    PubMed

    Evans, David C; O'Connor, Desmond; Lake, Brian G; Evers, Raymond; Allen, Christopher; Hargreaves, Richard

    2003-07-01

    "Reaction phenotyping" studies were performed with eletriptan (ETT) to determine its propensity to interact with coadministered medications. Its ability to serve as a substrate for human P-glycoprotein (P-gp) was also investigated since a central mechanism of action has been proposed for this "triptan" class of drug. In studies with a characterized bank of human liver microsome preparations, a good correlation (r2 = 0.932) was obtained between formation of N-desmethyl eletriptan (DETT) and CYP3A4-catalyzed testosterone 6 beta-hydroxylation. DETT was selected to be monitored in our studies since it represents a significant ETT metabolite in humans, circulating at concentrations 10 to 20% of those observed for parent drug. ETT was metabolized to DETT by recombinant CYP2D6 (rCYP2D6) and rCYP3A4, and to a lesser extent by rCYP2C9 and rCYP2C19. The metabolism of ETT to DETT in human liver microsomes was markedly inhibited by troleandomycin, erythromycin, miconazole, and an inhibitory antibody to CYP3A4, but not by inhibitors of other major P450 enzymes. ETT had little inhibitory effect on any of the P450 enzymes investigated. ETT was determined to be a good substrate for human P-gp in vitro. In bidirectional transport studies across LLC-MDR1 and LLC-Mdr1a cell monolayers, ETT had a BA/AB transport ratio in the range 9 to 11. This finding had significance in vivo since brain exposure to ETT was reduced 40-fold in Mdr1a+/+ relative to Mdr1a-/- mice. ETT metabolism to DETT is therefore catalyzed primarily by CYP3A4, and plasma concentrations are expected to be increased when coadministered with inhibitors of CYP3A4 and P-gp activity. PMID:12814962

  15. CYP3A isoforms in Ewing's sarcoma tumours: an immunohistochemical study with clinical correlation

    PubMed Central

    Zia, Hamid; Murray, Graeme I; Vyhlidal, Carrie A; Leeder, J Steven; Anwar, Ahmed E; Bui, Marilyn M; Ahmed, Atif A

    2015-01-01

    Ewing's sarcoma is an aggressive malignancy of bone and soft tissue with high incidence of metastasis and resistance to chemotherapy. Cytochrome P450 (CYP) monooxygenases are a family of enzymes that are involved in the metabolism of exogenous and endogenous compounds, including anti-cancer drugs, and have been implicated in the aggressive behaviour of various malignancies. Tumour samples and clinical information including age, sex, tumour site, tumour size, clinical stage and survival were collected from 36 adult and paediatric patients with Ewing's sarcoma family tumours. Tissue microarrays slides were processed for immunohistochemical labelling for CYP3A4, CYP3A5 and CYP3A7 using liver sections as positive control. The intensity of staining was scored as negative, low or high expression and was analysed statistically for any association with patients' clinical information. Four cases were later excluded due to inadequate viable tissue. CYP3A4 staining was present in 26 (81%) cases with high expression noted in 13 (40%) of 32 cases. High expression was significantly associated with distant metastases (P < 0.05). CYP3A5 and CYP3A7 were expressed in 5 and 13 cases respectively (15.6%, 40.6%). There was no association between the expression of CYP3A isoforms and age, sex, tumour size, or location (pelvic or extra-pelvic). None of the biomarkers showed any correlation with overall or disease-free survival. In conclusion, expression of CYP3A isoforms is noted in Ewing's sarcoma tumours and high CYP3A4 expression may be associated with metastasis. Additional studies are needed to further investigate the role of CYP3A4 in the prognosis of these tumours. PMID:25670065

  16. CYP3A isoforms in Ewing's sarcoma tumours: an immunohistochemical study with clinical correlation.

    PubMed

    Zia, Hamid; Murray, Graeme I; Vyhlidal, Carrie A; Leeder, J Steven; Anwar, Ahmed E; Bui, Marilyn M; Ahmed, Atif A

    2015-04-01

    Ewing's sarcoma is an aggressive malignancy of bone and soft tissue with high incidence of metastasis and resistance to chemotherapy. Cytochrome P450 (CYP) monooxygenases are a family of enzymes that are involved in the metabolism of exogenous and endogenous compounds, including anti-cancer drugs, and have been implicated in the aggressive behaviour of various malignancies. Tumour samples and clinical information including age, sex, tumour site, tumour size, clinical stage and survival were collected from 36 adult and paediatric patients with Ewing's sarcoma family tumours. Tissue microarrays slides were processed for immunohistochemical labelling for CYP3A4, CYP3A5 and CYP3A7 using liver sections as positive control. The intensity of staining was scored as negative, low or high expression and was analysed statistically for any association with patients' clinical information. Four cases were later excluded due to inadequate viable tissue. CYP3A4 staining was present in 26 (81%) cases with high expression noted in 13 (40%) of 32 cases. High expression was significantly associated with distant metastases (P < 0.05). CYP3A5 and CYP3A7 were expressed in 5 and 13 cases respectively (15.6%, 40.6%). There was no association between the expression of CYP3A isoforms and age, sex, tumour size, or location (pelvic or extra-pelvic). None of the biomarkers showed any correlation with overall or disease-free survival. In conclusion, expression of CYP3A isoforms is noted in Ewing's sarcoma tumours and high CYP3A4 expression may be associated with metastasis. Additional studies are needed to further investigate the role of CYP3A4 in the prognosis of these tumours. PMID:25670065

  17. Genetic polymorphisms and drug interactions modulating CYP2D6 and CYP3A activities have a major effect on oxycodone analgesic efficacy and safety

    PubMed Central

    Samer, CF; Daali, Y; Wagner, M; Hopfgartner, G; Eap, CB; Rebsamen, MC; Rossier, MF; Hochstrasser, D; Dayer, P; Desmeules, JA

    2010-01-01

    Background and purpose: The major drug-metabolizing enzymes for the oxidation of oxycodone are CYP2D6 and CYP3A. A high interindividual variability in the activity of these enzymes because of genetic polymorphisms and/or drug–drug interactions is well established. The possible role of an active metabolite in the pharmacodynamics of oxycodone has been questioned and the importance of CYP3A-mediated effects on the pharmacokinetics and pharmacodynamics of oxycodone has been poorly explored. Experimental approach: We conducted a randomized crossover (five arms) double-blind placebo-controlled study in 10 healthy volunteers genotyped for CYP2D6. Oral oxycodone (0.2 mg·kg−1) was given alone or after inhibition of CYP2D6 (with quinidine) and/or of CYP3A (with ketoconazole). Experimental pain (cold pressor test, electrical stimulation, thermode), pupil size, psychomotor effects and toxicity were assessed. Key results: CYP2D6 activity was correlated with oxycodone experimental pain assessment. CYP2D6 ultra-rapid metabolizers experienced increased pharmacodynamic effects, whereas cold pressor test and pupil size were unchanged in CYP2D6 poor metabolizers, relative to extensive metabolizers. CYP2D6 blockade reduced subjective pain threshold (SPT) for oxycodone by 30% and the response was similar to placebo. CYP3A4 blockade had a major effect on all pharmacodynamic assessments and SPT increased by 15%. Oxymorphone Cmax was correlated with SPT assessment (ρS= 0.7) and the only independent positive predictor of SPT. Side-effects were observed after CYP3A4 blockade and/or in CYP2D6 ultra-rapid metabolizers. Conclusions and implications: The modulation of CYP2D6 and CYP3A activities had clear effects on oxycodone pharmacodynamics and these effects were dependent on CYP2D6 genetic polymorphism. PMID:20590588

  18. The Psychostimulant Khat (Catha edulis) Inhibits CYP2D6 Enzyme Activity in Humans.

    PubMed

    Bedada, Worku; de Andrés, Fernando; Engidawork, Ephrem; Pohanka, Anton; Beck, Olof; Bertilsson, Leif; Llerena, Adrián; Aklillu, Eleni

    2015-12-01

    The use of khat (Catha edulis) while on medication may alter treatment outcome. In particular, the influence of khat on the metabolic activities of drug-metabolizing enzymes is not known. We performed a comparative 1-way crossover study to evaluate the effect of khat on cytochrome P450 (CYP)2D6 and CYP3A4 enzyme activity. After 1 week of khat abstinence, baseline CYP2D6 and CYP3A4 metabolic activities were determined in 40 Ethiopian male volunteers using 30 mg dextromethorphan (DM) as a probe drug and then repeated after 1 week of daily use of 400 g fresh khat leaves. Urinary concentrations of cathinone and cathine were determined to monitor the subjects' compliance to the study protocol. Genotyping for CYP2D6*3 and CYP2D6*4 was done. Plasma DM, dextrorphan and 3-methoxymorphinan concentrations were quantified. CYP2D6 and CYP3A4 enzyme activities were assessed by comparing plasma log DM/dextrorphan and log DM/methoxymorphinan metabolic ratio (MR) respectively in the presence and absence of khat. Cytochrome 2D6 MR was significantly increased from baseline by concurrent khat use (paired t test, P = 0.003; geometric mean ratio, 1.38; 95% confidence interval [95% CI], 1.12-1.53). Moreover, the inhibition of CYP2D6 activity by khat was more pronounced in CYP2D6*1/*1 compared with CYP2D6*1/*4 genotypes (P = 0.01). A marginal inhibition of CYP3A4 activity in the presence of khat was observed (P = 0.24). The mean percentage increase of CYP2D6 and CYP3A4 MR from baseline by khat use was 46% (95% CI, 20-72) and 31% (95% CI, 8-54), respectively. This is the first report linking khat use with significant inhibition of CYP2D6 metabolic activity in humans. PMID:26444948

  19. Evaluation of 89 compounds for identification of substrates for cynomolgus monkey CYP2C76, a new bupropion/nifedipine oxidase.

    PubMed

    Hosaka, Shinya; Murayama, Norie; Satsukawa, Masahiro; Shimizu, Makiko; Uehara, Shotaro; Fujino, Hideki; Iwasaki, Kazuhide; Iwano, Shunsuke; Uno, Yasuhiro; Yamazaki, Hiroshi

    2015-01-01

    Cynomolgus monkeys are widely used in preclinical studies during drug development because of their evolutionary closeness to humans, including their cytochrome P450s (P450s). Most cynomolgus monkey P450s are almost identical (≥90%) to human P450s; however, CYP2C76 has low sequence identity (approximately 80%) to any human CYP2Cs. Although CYP2C76 has no ortholog in humans and is partly responsible for species differences in drug metabolism between cynomolgus monkeys and humans, a broad evaluation of potential substrates for CYP2C76 has not yet been conducted. In this study, a screening of 89 marketed compounds, including human CYP2C and non-CYP2C substrates or inhibitors, was conducted to find potential CYP2C76 substrates. Among the compounds screened, 19 chemicals were identified as substrates for CYP2C76, including substrates for human CYP1A2 (7-ethoxyresorufin), CYP2B6 (bupropion), CYP2D6 (dextromethorphan), and CYP3A4/5 (dextromethorphan and nifedipine), and inhibitors for CYP2B6 (sertraline, clopidogrel, and ticlopidine), CYP2C8 (quercetin), CYP2C19 (ticlopidine and nootkatone), and CYP3A4/5 (troleandomycin). CYP2C76 metabolized a wide variety of the compounds with diverse structures. Among them, bupropion and nifedipine showed high selectivity to CYP2C76. As for nifedipine, CYP2C76 formed methylhydroxylated nifedipine, which was not produced by monkey CYP2C9, CYP2C19, or CYP3A4, as identified by mass spectrometry and estimated by a molecular docking simulation. This unique oxidative metabolite formation of nifedipine could be one of the selective marker reactions of CYP2C76 among the major CYP2Cs and CYP3As tested. These results suggest that monkey CYP2C76 contributes to bupropion hydroxylation and formation of different nifedipine oxidative metabolites as a result of its relatively large substrate cavity. PMID:25318994

  20. In vitro inhibition and induction of human liver cytochrome P450 enzymes by gentiopicroside: potent effect on CYP2A6.

    PubMed

    Deng, Yating; Wang, Lu; Yang, Yong; Sun, Wenji; Xie, Renming; Liu, Xueying; Wang, Qingwei

    2013-01-01

    Gentiopicroside (GE), a naturally occurring iridoid glycoside, has been developed into a Novel Traditional Chinese Drug named gentiopicroside injection, and it was approved for the treatment of acute jaundice and chronic active hepatitis by SFDA. However, the inhibitory and inducible effects of GE on the activity of cytochrome P450 (CYP450) are unclear. The purpose of this study was to evaluate the ability of GE to inhibit and induce human cytochrome P450 enzymes in vitro. In human liver microsomes, GE inhibited CYP2A6 and CYP2E1 in a concentration-dependent manner, with IC₅₀ values of 21.8 µg/ml and 594 µg/ml, respectively, and the IC₅₀ of CYP2A6 was close to the C(max) value observed clinically. GE was a non-competitive inhibitor of CYP2A6 at lower concentrations and a competitive inhibitor at higher concentrations. GE did not produce inhibition of CYP2C9, CYP2D6, CYP1A2 or CYP3A4 activities. However, a significant increase of CYP1A2 and CYP3A4 activity was observed at high concentrations. In cultured human hepatocytes no significant induction of CYP1A2, CYP3A4 or CYP2B6 was observed. Given these results, the in vivo potential inhibition of GE on CYP2A6 deserves further investigation, and it seems that the hepatoprotective effect of GE is irrelevant to its effect on P450s. PMID:23419353

  1. Modulation of CYPs, P-gp, and PXR by Eschscholzia californica (California Poppy) and Its Alkaloids.

    PubMed

    Manda, Vamshi K; Ibrahim, Mohamed A; Dale, Olivia R; Kumarihamy, Mallika; Cutler, Stephen J; Khan, Ikhlas A; Walker, Larry A; Muhammad, Ilias; Khan, Shabana I

    2016-04-01

    Eschscholzia californica, a native US plant, is traditionally used as a sedative, analgesic, and anxiolytic herb. With the rapid rise in the use of herbal supplements together with over-the-counter and prescription drugs, the risk for potential herb-drug interactions is also increasing. Most of the clinically relevant pharmacokinetic drug interactions occur due to modulation of cytochrome P450 enzymes (CYPs), P-glycoprotein, and the pregnane X receptor by concomitantly used herbs. This study aimed to determine the effects of an EtOH extract, aqueous extract (tea), basic CHCl3 fractions, and isolated major alkaloids, namely protopine (1), escholtzine (2), allocryptopine (3), and californidine (4), of E. californica on the activity of cytochrome P450s, P-glycoprotein and the pregnane X receptor. The EtOH extract and fractions showed strong time-dependent inhibition of CYP 3A4, CYP 2C9, and CYP 2C19, and reversible inhibition of CYP 2D6. Among the alkaloids, escholtzine (2) and allocryptopine (3) exhibited time-dependent inhibition of CYP 3A4, CYP 2C9, and CYP 2C19 (IC50 shift ratio > 2), while protopine (1) and allocryptopine (3) showed reversible inhibition of CYP 2D6 enzyme. A significant activation of the pregnane X receptor (> 2-fold) was observed with the EtOH extract, basic CHCl3 fraction, and alkaloids (except protopine), which resulted into an increased expression of mRNA and the activity of CYP 3A4 and CYP 1A2. The expression of P-glycoprotein was unaffected. However, aqueous extract (tea) and its main alkaloid californidine (4) did not affect cytochrome P450s, P-glycoprotein, or the pregnane X receptor. This data suggests that EtOH extract of E. californica and its major alkaloids have a potential of causing interactions with drugs that are metabolized by cytochrome P450s, while the tea seems to be safer. PMID:27054913

  2. CYP450 Enzyme-Mediated Metabolism of TCAS and Its Inhibitory and Induced Effects on Metabolized Enzymes in Vitro

    PubMed Central

    Shen, Guolin; Wang, Cheng; Zhou, Lili; Li, Lei; Chen, Huiming; Yu, Wenlian; Li, Haishan

    2015-01-01

    In this study, we investigated the enzymes catalyzing the phaseⅠmetabolism of thiacalixarene (TCAS) based on in vitro system including cDNA-expressed P450 enzymes, human liver microsomes plus inhibitors and monoclonal antibodies. In addition, the inhibitory potential of TCAS on major CYP450 drug metabolizing enzymes (CYP1A2, CYP2C9, CYP2B6, CYP2D6 and CYP3A4) was assessed. The results showed that CYP1A2 and CYP2C9 mediated TCAS hydroxylation. IC50 values for TCAS in rat and human liver microsomes were greater than 50 µM, and it demonstrated a weak inhibition of rat and human CYP450 enzymes. Finally, sandwiched hepatocytes were used to evaluate the induction of CYP1A and CYP3A to define the function of TCAS in vivo. The results showed that incubation of TCAS at different concentrations for 72 h failed to induce CYP1A and CYP3A. However, incubation of the cells with 50 and 100 µM TCAS caused a profound decrease in the activities of CYP1A and CYP3A, which was probably due to cytotoxic effects, suggesting that exposure to TCAS might be a health concern. PMID:26404338

  3. In vitro and pharmacophore insights into CYP3A enzymes.

    PubMed

    Ekins, Sean; Stresser, David M; Williams, J Andrew

    2003-04-01

    The cytochrome P450 3A (CYP3A) enzymes have a major role in the metabolism of drugs in humans. Their wide substrate specificity and induction by a vast array of structurally diverse compounds presents the possibility of metabolic drug-drug interactions. Understanding the enzymes themselves is crucial. Over the past decade, this has occurred mostly with in vitro studies, although more recent approaches incorporate computational models to predict CYP inhibition and substrate potential. The three-dimensional displacement, or pharmacophore, of chemical features in space that are derived from inhibition data have produced pharmacophores for CYP3A4, CYP3A5 and CYP3A7, and provide new insights into ligand binding for each enzyme. PMID:12707001

  4. Comparison of effects of VDR versus PXR, FXR and GR ligands on the regulation of CYP3A isozymes in rat and human intestine and liver.

    PubMed

    Khan, Ansar A; Chow, Edwin C Y; van Loenen-Weemaes, Anne-miek M A; Porte, Robert J; Pang, K Sandy; Groothuis, Geny M M

    2009-05-12

    In this study, we compared the regulation of CYP3A isozymes by the vitamin D receptor (VDR) ligand 1 alpha,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) against ligands of the pregnane X receptor (PXR), the glucocorticoid receptor (GR) and the farnesoid X receptor (FXR) in precision-cut tissue slices of the rat jejunum, ileum, colon and liver, and human ileum and liver. In the rat, 1,25(OH)(2)D(3) strongly induced CYP3A1 mRNA, quantified by qRT-PCR, along the entire length of the intestine, induced CYP3A2 only in ileum but had no effect on CYP3A9. In contrast, the PXR/GR ligand, dexamethasone (DEX), the PXR ligand, pregnenolone-16 alpha carbonitrile (PCN), and the FXR ligand, chenodeoxycholic acid (CDCA), but not the GR ligand, budesonide (BUD), induced CYP3A1 only in the ileum, none of them influenced CYP3A2 expression, and PCN, DEX and BUD but not CDCA induced CYP3A9 in jejunum, ileum and colon. In rat liver, CYP3A1, CYP3A2 and CYP3A9 mRNA expression was unaffected by 1,25(OH)(2)D(3), whereas CDCA decreased the mRNA of all CYP3A isozymes; PCN induced CYP3A1 and CYP3A9, BUD induced CYP3A9, and DEX induced all three CYP3A isozymes. In human ileum and liver, 1,25(OH)(2)D(3) and DEX induced CYP3A4 expression, whereas CDCA induced CYP3A4 expression in liver only. In conclusion, the regulation of rat CYP3A isozymes by VDR, PXR, FXR and GR ligands differed for different segments of the rat and human intestine and liver, and the changes did not parallel expression levels of the nuclear receptors. PMID:19429418

  5. Effect of Ethanol on the Metabolic Characteristics of HIV-1 Integrase Inhibitor Elvitegravir and Elvitegravir/Cobicistat with CYP3A: An Analysis Using a Newly Developed LC-MS/MS Method.

    PubMed

    Midde, Narasimha M; Rahman, Mohammad A; Rathi, Chetan; Li, Junhao; Meibohm, Bernd; Li, Weihua; Kumar, Santosh

    2016-01-01

    Elvitegravir (EVG), an integrase inhibitor for the treatment HIV infection, is increasingly becoming the part of first-line antiretroviral therapy (ART) regimen. EVG is mainly metabolized through cytochrome P450 (CYP) 3A4. Previously, we have shown that ethanol alters ART-CYP3A4 interactions with protease inhibitors thereby altering their metabolisms. However, as EVG is a fairly new class of drug, its kinetic characteristics and the effect of ethanol on EVG-CYPP3A4 interaction is poorly understood. In this study, we characterized EVG and cobicistat (COBI)-boosted EVG metabolism in human microsomes followed by ethanol-EVG, ethanol-COBI-EVG interaction with CYP3A. First, we developed and validated a simple, sensitive, and robust liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantification of EVG in the human liver microsomes. The lower limit of quantification for the drug was at 0.003 μM (1.34 ng/ml). Extraction yield, matrix effects, drug stability, and calibration curves for the proposed method were validated according to the FDA guidelines. Time dependent kinetics data showed that 20mM ethanol decreases the apparent half-life of EVG degradation by ~50% compared to EVG alone. Our substrate kinetic results revealed that ethanol mildly decreases the catalytic efficiency for EVG metabolism. Inhibition studies demonstrated that EVG inhibits CYP3A4, and 20 mM ethanol causes a decrease in the IC50 of EVG. However, in the presence of COBI we were unable to determine these parameters effectively because COBI, being a strong inhibitor of CYP3A4, blocked the EVG/ethanol-CYP3A4 interactions. Docking studies predicted a shift of EVG or COBI binding to the active site of CYP3A4 in the presence of ethanol. Taken together, these results suggest that ethanol interacts with microsomal CYP3A and alters EVG-CYP3A4 interaction thereby altering EVG metabolism and inhibition of CYP3A4 by EVG. This finding has clinical significance because alcohol use is

  6. Effect of Ethanol on the Metabolic Characteristics of HIV-1 Integrase Inhibitor Elvitegravir and Elvitegravir/Cobicistat with CYP3A: An Analysis Using a Newly Developed LC-MS/MS Method

    PubMed Central

    Midde, Narasimha M.; Rahman, Mohammad A.; Rathi, Chetan; Li, Junhao; Meibohm, Bernd; Li, Weihua; Kumar, Santosh

    2016-01-01

    Elvitegravir (EVG), an integrase inhibitor for the treatment HIV infection, is increasingly becoming the part of first-line antiretroviral therapy (ART) regimen. EVG is mainly metabolized through cytochrome P450 (CYP) 3A4. Previously, we have shown that ethanol alters ART-CYP3A4 interactions with protease inhibitors thereby altering their metabolisms. However, as EVG is a fairly new class of drug, its kinetic characteristics and the effect of ethanol on EVG-CYPP3A4 interaction is poorly understood. In this study, we characterized EVG and cobicistat (COBI)-boosted EVG metabolism in human microsomes followed by ethanol-EVG, ethanol-COBI-EVG interaction with CYP3A. First, we developed and validated a simple, sensitive, and robust liquid chromatography–tandem mass spectrometry (LC-MS/MS) method for the quantification of EVG in the human liver microsomes. The lower limit of quantification for the drug was at 0.003 μM (1.34ng/ml). Extraction yield, matrix effects, drug stability, and calibration curves for the proposed method were validated according to the FDA guidelines. Time dependent kinetics data showed that 20mM ethanol decreases the apparent half-life of EVG degradation by ~50% compared to EVG alone. Our substrate kinetic results revealed that ethanol mildly decreases the catalytic efficiency for EVG metabolism. Inhibition studies demonstrated that EVG inhibits CYP3A4, and 20 mM ethanol causes a decrease in the IC50 of EVG. However, in the presence of COBI we were unable to determine these parameters effectively because COBI, being a strong inhibitor of CYP3A4, blocked the EVG/ethanol-CYP3A4 interactions. Docking studies predicted a shift of EVG or COBI binding to the active site of CYP3A4 in the presence of ethanol. Taken together, these results suggest that ethanol interacts with microsomal CYP3A and alters EVG-CYP3A4 interaction thereby altering EVG metabolism and inhibition of CYP3A4 by EVG. This finding has clinical significance because alcohol use is

  7. Effects of capsaicin and dihydrocapsaicin on human and rat liver microsomal CYP450 enzyme activities in vitro and in vivo.

    PubMed

    Zhang, Qing-Hao; Hu, Jin-Ping; Wang, Bao-Lian; Li, Yan

    2012-01-01

    Capsaicin and dihydrocapsaicin, the two most abundant members of capsaicinoids in chili peppers, are widely used as food additives and for other purposes. In this study, we examined the inhibitory potentials of capsaicin and dihydrocapsaicin against CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4/5 activities in human liver microsomes. The effects of these two capsaicinoids on CYP450 enzymes were also evaluated in vivo in rats. The results demonstrated that capsaicin and dihydrocapsaicin moderately inhibited five isozymes (IC₅₀) values ranging from 4.4 to 61.8 μM), with the exception of CYP2E1 (IC₅₀ > 200 μM). Both capsaicinoids exhibited competitive, mixed, and noncompetitive inhibition on these isozymes (K (i) = 3.1 ± 0.5 - 78.6 ± 8.4 μM). Time-dependent inhibition of CYP3A4/5 by capsaicin was found. After multiple administrations of capsaicin and dihydrocapsaicin (1, 4, and 10 mg/kg) to rats, chlorzoxazone 6-hydroxylase activity and the expression of CYP2E1 were increased in liver microsomes. Our findings indicated that the possibility of food-drug interactions mediated by capsaicin and dihydrocapsaicin could not be excluded, and provided the useful information for evaluating the anticarcinogenic potentials of these two capsaicinoids. PMID:22375877

  8. 17 CFR 270.3a-4 - Status of investment advisory programs.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... clients regarding the selection of, persons responsible for managing the client's account in the program... presumption about a program that is not organized and operated in the manner contemplated by the section. (a) Any program under which discretionary investment advisory services are provided to clients that...

  9. Aspergillus niger metabolism of citrus furanocoumarin inhibitors of human cytochrome P450 3A4

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungi metabolize polycyclic aromatic hydrocarbons by a number of detoxification processes, including the formation of sulfated and glycosidated conjugates. A class of aromatic compounds important to the citrus industry is the furanocoumarins in grapefruit, and their metabolism in humans is critical...

  10. Cytochrome P450 CYP3A in marsupials: cloning and characterisation of the second identified CYP3A subfamily member, isoform 3A78 from koala (Phascolarctos cinereus).

    PubMed

    El-Merhibi, Adaweyah; Ngo, Suong N T; Crittenden, Tamara A; Marchant, Ceilidh L; Stupans, Ieva; McKinnon, Ross A

    2011-11-01

    Cytochromes P450 (CYPs) are critically important in the oxidative metabolism of a diverse array of xenobiotics and endogenous substrates. Previously, we cloned and characterised the CYP2C, CYP4A, and CYP4B gene subfamilies from marsupials and demonstrated important species-differences in both activity and tissue expression of these CYP enzymes. Recently, we isolated the Eastern grey kangaroo CYP3A70. Here we have cloned and characterised the second identified member of marsupial CYP3A gene subfamily, CYP3A78 from the koala (Phascolarctos cinereus). In addition, we have examined the gender-differences in microsomal erythromycin N-demethylation activity (a CYP3A marker) and CYP3A protein expression across test marsupial species. Significant differences in hepatic erythromycin N-demethylation activity were observed between male and female koalas, with the activity detected in female koalas being 2.5-fold higher compared to that in male koalas (p<0.01). No gender-differences were observed in tammar wallaby or Eastern grey kangaroo. Immunoblot analysis utilising anti-human CYP3A4 antibody detected immunoreactive proteins in liver microsomes from all test male and female marsupials including the koala, tammar wallaby, and Eastern grey kangaroo, with no gender-differences detected across test marsupials. A 1610 bp koala hepatic CYP3A complete cDNA, designated CYP3A78, was cloned by reverse transcription-polymerase chain reaction approaches. It displays 64% nucleotide and 57% amino acid sequence identity to the Eastern grey kangaroo CYP3A70. The CYP3A78 cDNA encodes a protein of 515 amino acids, shares approximately 68% nucleotide and 56% amino acid sequence identity to human CYP3A4, and displays high sequence similarity to other published mammalian CYP3As from human, monkey, cow, pig, dog, rat, rabbit, mouse, hamster, and guinea pig. Collectively, this study provides primary molecular data regarding koala hepatic CYP3A78 gene and enables further functional analyses of CYP

  11. Individualization of tamoxifen therapy: much more than just CYP2D6 genotyping.

    PubMed

    Binkhorst, Lisette; Mathijssen, Ron H J; Jager, Agnes; van Gelder, Teun

    2015-03-01

    Clinical response to tamoxifen varies widely among women treated with this drug for hormone receptor-positive breast cancer. The principal active metabolite - endoxifen - is generated through hepatic metabolism of tamoxifen, with key roles for cytochrome P450 (CYP) CYP2D6 and CYP3A. By influencing endoxifen formation, genetic variants of CYP2D6 may affect response to tamoxifen. After a decade of research, examining the effects of CYP2D6 genetic variants on tamoxifen efficacy, there is still no agreement on the clinical utility of CYP2D6 genotype as biomarker for the prediction of breast cancer outcome, because studies revealed conflicting results. However, tamoxifen metabolism is complex and involves several other drug-metabolizing enzymes. Genetic variants of other CYP enzymes, including CYP3A4 and CYP2C9/19, as well as co-medication interfering with the metabolic activity of CYP2D6 and CYP3A4 have been shown to affect endoxifen concentrations and may also contribute to the variability in response to tamoxifen. Phenotyping strategies can predict endoxifen exposure more accurately than CYP2D6 genotype, but do not take into account all factors influencing endoxifen exposure. Therapeutic drug monitoring (TDM) is likely to be the optimal strategy for individualization of tamoxifen treatment. According to a growing amount of literature, endoxifen concentration seems to be a predictor of clinical outcome. The relationship between endoxifen levels and breast cancer outcomes has to be replicated and confirmed and the value of TDM should be evaluated in prospective clinical trials. Caution is advised regarding the concomitant use of medications which could interact with tamoxifen, including inhibitors and inducers of CYP enzymes. PMID:25618289

  12. Dehydroepiandrosterone Induces Human CYP2B6 through the Constitutive Androstane Receptor

    PubMed Central

    Kőhalmy, Krisztina; Tamási, Viola; Kóbori, László; Sárváry, Enikő; Pascussi, Jean-Marc; Porrogi, Pálma; Rozman, Damjana; Prough, Russell A.; Meyer, Urs A.; Monostory, Katalin

    2008-01-01

    Dehydroepiandrosterone (DHEA), the major precursor of androgens and estrogens, has several beneficial effects on the immune system, on memory function, and in modulating the effects of diabetes, obesity, and chemical carcinogenesis. Treatment of rats with DHEA influences expression of cytochrome P450 (P450) genes, including peroxisome proliferator-activated receptor α (PPARα)- and pregnane X receptor (PXR)-mediated induction of CYP4As and CYP3A23, and suppression of CYP2C11. DHEA treatment elevated the expression and activities of CYP3A4, CYP2C9, CYP2C19, and CYP2B6 in primary cultures of human hepatocytes. Induction of CYP3A4 in human hepatocytes was consistent with studies in rats, but induction of CYP2Cs was unexpected. The role of PXR in this response was studied in transient transfection assays. DHEA activated hPXR in a concentration-dependent manner. Because CYP2B6 induction by DHEA in human hepatocytes might involve either PXR or constitutive androstane receptor (CAR) activation, we performed experiments in primary hepatocytes from CAR knockout mice and observed that CAR was required for maximal induction of Cyp2b10 by DHEA. Furthermore, CAR-mediated Cyp2b10 induction by DHEA was inhibited by the inverse agonist of CAR, androstanol (5α-androstan-3α-ol). Further evidence for CAR activation was provided by cytoplasmic/nuclear transfer of CAR upon DHEA treatment. Elucidation of CAR activation and subsequent induction of CYP2B6 by DHEA presented an additional mechanism by which the sterol can modify the expression of P450s. The effect of DHEA on the activation of the xenosensors PPARα, PXR, and CAR, and the consequent potential for adverse drug/toxicant interactions should be considered in humans treated with this nutriceutical agent. PMID:17591676

  13. Effects of CYP2C9 genetic polymorphisms on the pharmacokinetics of zafirlukast.

    PubMed

    Lee, Hyun-Jee; Kim, Young-Hoon; Kim, Se-Hyung; Lee, Choong-Min; Yang, Ae-Yun; Jang, Choon-Gon; Lee, Seok-Yong; Bae, Jung-Woo; Choi, Chang-Ik

    2016-07-01

    Zafirlukast, a cysteinyl leukotriene receptor antagonist, is indicated for the treatment of patients with mild to moderate asthma. Zafirlukast is metabolized mainly by CYP3A4 and CYP2C9. We investigated the effects of the major CYP2C9 variant alleles in Asian populations, CYP2C9*3 and CYP2C9*13, on the pharmacokinetics of zafirlukast in healthy Korean subjects. A single 20-mg oral dose of zafirlukast was given to 23 Korean male subjects divided into two genotype groups according to CYP2C9 genotypes, CYP2C9EM (n = 11; CYP2C9*1/*1) and CYP2C9IM (n = 12; 9 and 3 carriers of CYP2C9*1/*3 and *1/*13, respectively). Zafirlukast concentrations were determined using a validated HPLC-MS/MS analytical method in plasma samples collected after the drug intake. Compared with the CYP2C9EM group, the Cmax and AUCinf of zafirlukast in the CYP2C9IM group were 1.44- and 1.70-fold higher, respectively (p < 0.01 and p < 0.0001). The CL/F of zafirlukast was 42.8 % lower in the CYP2C9IM group compared with the CYP2C9EM group (p < 0.001). Slightly higher Cmax and AUC, and lower CL/F of zafirlukast were observed in subjects with the CYP2C9*1/*13 genotype compared with the CYP2C9*1/*3 genotype subjects. CYP2C9*3 and CYP2C9*13 alleles significantly affected the plasma concentrations of zafirlukast. PMID:27377818

  14. In vitro inhibition of the cytochrome P450 (CYP450) system by the antiplatelet drug ticlopidine: potent effect on CYP2C19 and CYP2D6

    PubMed Central

    Ko, Jae Wook; Desta, Zeruesenay; Soukhova, Nadia V; Tracy, Timothy; Flockhart, David A

    2000-01-01

    Aims To examine the potency of ticlopidine (TCL) as an inhibitor of cytochrome P450s (CYP450s) in vitro using human liver microsomes (HLMs) and recombinant human CYP450s. Methods Isoform-specific substrate probes of CYP1A2, 2C19, 2C9, 2D6, 2E1 and 3A4 were incubated in HLMs or recombinant CYPs with or without TCL. Preliminary data were generated to simulate an appropriate range of substrate and inhibitor concentrations to construct Dixon plots. In order to estimate accurately inhibition constants (Ki values) of TCL and determine the type of inhibition, data from experiments with three different HLMs for each isoform were fitted to relevant nonlinear regression enzyme inhibition models by WinNonlin. Results TCL was a potent, competitive inhibitor of CYP2C19 (Ki = 1.2 ± 0.5 µm) and of CYP2D6 (Ki = 3.4 ± 0.3 µm). These Ki values fell within the therapeutic steady-state plasma concentrations of TCL (1–3 µm). TCL was also a moderate inhibitor of CYP1A2 (Ki = 49 ± 19 µm) and a weak inhibitor of CYP2C9 (Ki > 75 µm), but its effect on the activities of CYP2E1 (Ki = 584 ± 48 µm) and CYP3A (> 1000 µm) was marginal. Conclusions TCL appears to be a broad-spectrum inhibitor of the CYP isoforms, but clinically significant adverse drug interactions are most likely with drugs that are substrates of CYP2C19 or CYP2D6. PMID:10759690

  15. METOCLOPRAMIDE IS METABOLIZED BY CYP2D6 AND IS A REVERSIBLE INHIBITOR, BUT NOT INACTIVATOR, OF CYP2D6

    PubMed Central

    Nagy, Leslie D.; Fujiwara, Rina; Furge, Laura Lowe

    2014-01-01

    Metoclopramide is a widely used clinical drug in a variety of medical settings with rare acute dystonic events reported. The aim of this study was to assess a previous report of inactivation of CYP2D6 by metoclopramide, to determine the contribution of various CYPs to metoclopramide metabolism, and to identify the mono-oxygenated products of metoclopramide metabolism. Metoclopramide interacted with CYP2D6 with Type I binding and a Ks value of 9.56 ± 1.09 μM. CYP2D6 was the major metabolizer of metoclopramide and the two major products were N-deethylation of the diethyl amine and N-hydroxylation on the phenyl ring amine. CYPs 1A2, 2C9, 2C19, and 3A4 also metabolized metoclopramide. While reversible inhibition of CYP2D6 was noted, CYP2D6 inactivation by metoclopramide was not observed under conditions of varying concentration or varying time using Supersomes™ or pool human liver microsomes. The major metabolites of metoclopramide were N-hydroxylation and N-deethylation formed most efficiently by CYP2D6 but also formed by all CYPs examined. Also, while metoclopramide is metabolized primarily by CYP2D6, it is not a mechanism-based inactivator of CYP2D6 in vitro. PMID:24010633

  16. Metoclopramide is metabolized by CYP2D6 and is a reversible inhibitor, but not inactivator, of CYP2D6.

    PubMed

    Livezey, Mara R; Briggs, Erran D; Bolles, Amanda K; Nagy, Leslie D; Fujiwara, Rina; Furge, Laura Lowe

    2014-04-01

    1. Metoclopramide is a widely used clinical drug in a variety of medical settings with rare acute dystonic events reported. The aim of this study was to assess a previous report of inactivation of CYP2D6 by metoclopramide, to determine the contribution of various CYPs to metoclopramide metabolism, and to identify the mono-oxygenated products of metoclopramide metabolism. 2. Metoclopramide interacted with CYP2D6 with Type I binding and a Ks value of 9.56 ± 1.09 µM. CYP2D6 was the major metabolizer of metoclopramide and the two major products were N-deethylation of the diethyl amine and N-hydroxylation on the phenyl ring amine. CYPs 1A2, 2C9, 2C19, and 3A4 also metabolized metoclopramide. 3. While reversible inhibition of CYP2D6 was noted, CYP2D6 inactivation by metoclopramide was not observed under conditions of varying concentration or varying time using Supersomes(TM) or pooled human liver microsomes. 4. The major metabolites of metoclopramide were N-hydroxylation and N-deethylation formed most efficiently by CYP2D6 but also formed by all CYPs examined. Also, while metoclopramide is metabolized primarily by CYP2D6, it is not a mechanism-based inactivator of CYP2D6 in vitro. PMID:24010633

  17. In Vitro Approaches to Study Regulation of Hepatic Cytochrome P450 (CYP) 3A Expression by Paclitaxel and Rifampicin.

    PubMed

    Ghose, Romi; Mallick, Pankajini; Taneja, Guncha; Chu, Chun; Moorthy, Bhagavatula

    2016-01-01

    Cancer is the second leading cause of mortality worldwide; however the response rate to chemotherapy treatment remains slow, mainly due to narrow therapeutic index and multidrug resistance. Paclitaxel (taxol) has a superior outcome in terms of response rates and progression-free survival. However, numerous cancer patients are resistant to this drug. In this investigation, we tested the hypothesis that induction of cytochrome P450 (Cyp)3a11 gene by paclitaxel is downregulated by the inflammatory mediator, lipopolysaccharide (LPS), and that the pro-inflammatory cytokine, tumor necrosis factor (TNF)-α, attenuates human CYP3A4 gene induction by rifampicin. Primary mouse hepatocytes were pretreated with LPS (1 μg/ml) for 10 min, followed by paclitaxel (20 μM) or vehicle for 24 h. RNA was extracted from the cells by trizol method followed by cDNA synthesis and analysis by real-time PCR. Paclitaxel significantly induced gene expression of Cyp3a11 (~30-fold) and this induction was attenuated in LPS-treated samples. Induction and subsequent downregulation of CYP3A enzyme can impact paclitaxel treatment in cancer patients where inflammatory mediators are activated. It has been shown that the nuclear receptor, pregnane X receptor (PXR), plays a role in the induction of CYP enzymes. In order to understand the mechanisms of regulation of human CYP3A4 gene, we co-transfected HepG2 cells (human liver cell line) with CYP3A4-luciferase construct and a PXR expression plasmid. The cells were then treated with the pro-inflammatory cytokine, TNFα, followed by the prototype CYP3A inducer rifampicin. It is well established that rifampicin activates PXR, leading to CYP3A4 induction. We found that induction of CYP3A4-luciferase activity by rifampicin was significantly attenuated by TNFα. In conclusion, we describe herein several in vitro approaches entailing primary and cultured hepatocytes, real-time PCR, and transcriptional activation (transfection) assays to investigate the

  18. Stereoselective hydroxylation by CYP2C19 and oxidation by ADH4 in the in vitro metabolism of tivantinib.

    PubMed

    Nishiya, Yumi; Nakai, Daisuke; Urasaki, Yoko; Takakusa, Hideo; Ohsuki, Satoru; Iwano, Yuji; Yasukochi, Takanori; Takayama, Tomoko; Bazyo, Shohei; Oza, Chikahiro; Kurihara, Atsushi; Savage, Ronald E; Izumi, Takashi

    2016-11-01

    1. In prior studies, it has been shown that tivantinib is extensively metabolized in humans to many oxidative metabolites and glucuronides. In order to identify the responsible enzymes, we investigated the in vitro metabolism of tivantinib and its four major circulating metabolites. 2. The primary isoforms involved in the elimination of tivantinib were CYP2C19 and CYP3A4/5. CYP2C19 showed catalytic activity for the formation of M5 (hydroxylated metabolite), but not for M4 (a stereoisomer of M5), whereas CYP3A4/5 catalyzed the formation of both metabolites. For the elimination of M4, M5 and M8 (keto-metabolite), CYP3A4/5 was the major cytochrome P450 isoform and UGT1A9 was mainly involved in the glucuronidation of M4 and M5. 3. ADH4 was identified as one of the major alcohol dehydrogenase isoforms contributing to the formation of M6 (sequential keto-metabolite of M4 and M5) and M8. The substrate preference of ADH for M4, and not M5, was observed in the formation of M6. 4. In conclusion, CYP2C19, CYP3A4/5, UGT1A9 and ADH4 were the primary drug metabolizing enzymes involved in the in vitro metabolism of tivantinib and its metabolites. The stereoselective hydroxylation by CYP2C19 and substrate stereoselectivity of ADH4-catalyzed oxidation in the in vitro metabolism of tivantinib was discovered. PMID:26899628

  19. Analysis of the impact of controlled release formulations on oral drug absorption, gut wall metabolism and relative bioavailability of CYP3A substrates using a physiologically-based pharmacokinetic model.

    PubMed

    Olivares-Morales, Andrés; Kamiyama, Yoshiteru; Darwich, Adam S; Aarons, Leon; Rostami-Hodjegan, Amin

    2015-01-25

    Controlled release (CR) formulations are usually designed to achieve similar exposure (AUC) levels as the marketed immediate release (IR) formulation. However, the AUC is often lower following CR compared to IR formulations. There are a few exceptions when the CR formulations have shown higher AUC. This study investigated the impact of CR formulations on oral drug absorption and CYP3A4-mediated gut wall metabolism. A review of the current literature on relative bioavailability (Frel) between CR and IR formulations of CYP3A substrates was conducted. This was followed by a systematic analysis to assess the impact of the release characteristics and the drug-specific factors (including metabolism and permeability) on oral bioavailability employing a physiologically-based pharmacokinetic (PBPK) modelling and simulation approach. From the literature review, only three CYP3A4 substrates showed higher Frel when formulated as CR. Several scenarios were investigated using the PBPK approach; in most of them, the oral absorption of CR formulations was lower as compared to the IR formulations. However, for highly permeable compounds that were CYP3A4 substrates the reduction in absorption was compensated by an increase in the fraction that escapes from first pass metabolism in the gut wall (FG), where the magnitude was dependent on CYP3A4 affinity. The systematic simulations of various interplays between different parameters demonstrated that BCS class 1 highly-cleared CYP3A4 substrates can display up to 220% higher relative bioavailability when formulated as CR compared to IR, in agreement with the observed data collected from the literature. The results and methodology of this study can be employed during the formulation development process in order to optimize drug absorption, especially for CYP3A4 substrates. PMID:25444842

  20. Identification of CYP3A7 for Glyburide Metabolism in Human Fetal Livers

    PubMed Central

    Shuster, Diana L.; Risler, Linda J.; Prasad, Bhagwat; Calamia, Justina C.; Voellinger, Jenna L.; Kelly, Edward J.; Unadkat, Jashvant D.; Hebert, Mary F.; Shen, Danny D.; Thummel, Kenneth E.; Mao, Qingcheng

    2014-01-01

    Glyburide is commonly prescribed for the treatment of gestational diabetes mellitus; however, fetal exposure to glyburide is not well understood and may have short- and long-term consequences for the health of the child. Glyburide can cross the placenta; fetal concentrations at term are nearly comparable to maternal levels. Whether or not glyburide is metabolized in the fetus and by what mechanisms has yet to be determined. In this study, we determined the kinetic parameters for glyburide depletion by CYP3A isoenzymes; characterized glyburide metabolism by human fetal liver tissues collected during the first or early second trimester of pregnancy; and identified the major enzyme responsible for glyburide metabolism in human fetal livers. CYP3A4 had the highest metabolic capacity towards glyburide, followed by CYP3A7 and CYP3A5 (Clint,u = 37.1, 13.0, and 8.7 ml/min/nmol P450, respectively). M5 was the predominant metabolite generated by CYP3A7 and human fetal liver microsomes (HFLMs) with approximately 96% relative abundance. M5 was also the dominant metabolite generated by CYP3A4, CYP3A5, and adult liver microsomes; however, M1-M4 were also present, with up to 15% relative abundance. CYP3A7 protein levels in HFLMs were highly correlated with glyburide Clint, 16α-OH DHEA formation, and 4′-OH midazolam formation. Likewise, glyburide Clint was highly correlated with 16α-OH DHEA formation. Fetal demographics as well as CYP3A5 and CYP3A7 genotype did not alter CYP3A7 protein levels or glyburide Clint. These results indicate that human fetal livers metabolize glyburide predominantly to M5 and that CYP3A7 is the major enzyme responsible for glyburide metabolism in human fetal livers. PMID:25450675

  1. Characterization of inhibitory effects of perfluorooctane sulfonate on human hepatic cytochrome P450 isoenzymes: focusing on CYP2A6.

    PubMed

    Narimatsu, Shizuo; Nakanishi, Ryoko; Hanioka, Nobumitsu; Saito, Keita; Kataoka, Hiroyuki

    2011-11-15

    Perfluorooctane sulfonate (PFOS) is a chemically stable compound extensively used as oil and water repellent, surface active agents in our daily life. Accumulative research evidence gradually appears the toxicity of PFOS against mammals, but the whole figure remains to be elucidated. The present study was conducted to know the effects of PFOS on human hepatic drug metabolizing-type cytochrome P450 (CYP) isoenzymes such as CYP1A2 (7-ethoxyresorufin as a substrate), CYP2A6 (coumarin), CYP2B6 (7-ethoxy-4-trifluoromethylcoumarin), CYP2C8 (paclitaxel), CYP2C9 (diclofenac), CYP2C19 (S-mephenytoin), CYP2D6 (bufuralol), CYP2E1 (chlorzoxazone) and CYP3A4 (testosterone) in human livers employing their typical substrates. Although all of the oxidation reactions tested were more or less inhibited by PFOS, diclofenac 4'-hydroxylation mediated mainly by CYP2C9 was most strongly inhibited (K(i) value of 40 nM), followed by paclitaxel 6α-hydroxylation mediated mainly by CYP2C8 (K(i) value of 4 μM). The substrate oxidation reactions catalyzed by CYP2A6, CYP2B6, CYP2C19 and CYP3A4 were moderately (K(i) values of 35 to 45 μM), and those by CYP1A2, CYP2D6 and CYP2E1 were weakly inhibited by PFOS (K(i) values of 190-300 μM). The inhibition by PFOS for coumarin 7-hydroxylation mainly catalyzed by human liver microsomal CYP2A6 as well as by the recombinant enzyme was found to be enhanced by the preincubation of PFOS with human liver microsomes and NADPH as compared to the case without preincubation. The inhibition of the human liver microsomal cumarin 7-hydroxylation was PFOS concentration-dependent, and exhibited pseudo-first-order kinetics with respect to preincubation time, yielding K(inact) and K(I) values of 0.06 min(-1) and 23 μM, respectively. These results suggest that the metabolism of medicines which are substrates for CYP2C9 may be altered by PFOS in human bodies, and that PFOS is a mechanism-based inhibitor of CYP2A6. PMID:21964418

  2. Cytochrome P450 CYP3A in marsupials: cloning and identification of the first CYP3A subfamily member, isoform 3A70 from Eastern gray kangaroo (Macropus giganteus).

    PubMed

    El-Merhibi, Adaweyah; Ngo, Suong N T; Marchant, Ceilidh L; Height, Tamara A; Stupans, Ieva; McKinnon, Ross A

    2012-09-15

    Australian marsupials are unique fauna that have evolved and adapted to unique environments and thus it is likely that their detoxification systems differ considerably from those of well-studied eutherian mammals. Knowledge of these processes in marsupials is therefore vital to understanding the consequences of exposure to xenobiotics. Cytochromes P450 (CYPs) are critically important in the oxidative metabolism of a diverse array of both xenobiotics and endogenous substrates. In this study we have cloned and characterized CYP3A70, the first identified member of the CYP3A gene subfamily from Eastern gray kangaroo (Macropus giganteus). A 1665 base pair kangaroo hepatic CYP3A complete cDNA, designated CYP3A70, was cloned by reverse transcription-polymerase chain reaction approaches, which encodes a protein of 506 amino acids. The CYP3A70 cDNA shares approximately 71% nucleotide and 65% amino acid sequence homology to human CYP3A4 and displays high sequence similarity to other published mammalian CYP3As from human, monkey, cow, pig, dog, rat, rabbit, mouse, hamster, and guinea pig. Transfection of the CYP3A70 cDNAs into 293T cells resulted in stable cell lines expressing a CYP3A immuno-reactive protein that was recognized by a goat anti-human CYP3A4 polyclonal antibody. The anti-human CYP3A4 antibody also detected immunoreactive proteins in liver microsomes from all test marsupials, including the kangaroo, koala, wallaby, and wombat, with multiple CYP3A immunoreactive bands observed in kangaroo and wallaby tissues. Relatively, very low CYP catalytic activity was detected for the kangaroo CYP3A70 cDNA-expressed proteins (19.6 relative luminescent units/μg protein), which may be due to low protein expression levels. Collectively, this study provides primary molecular data regarding the Eastern kangaroo hepatic CYP3A70 gene and enables further functional analyses of CYP3A enzymes in marsupials. PMID:22759518

  3. Acetaminophen induces accumulation of functional rat CYP3A via polyubiquitination dysfunction.

    PubMed

    Santoh, Masataka; Sanoh, Seigo; Takagi, Masashi; Ejiri, Yoko; Kotake, Yaichiro; Ohta, Shigeru

    2016-01-01

    Acetaminophen (APAP) is extensively used as an analgesic and antipyretic drug. APAP is partly metabolized to N-acetyl-p-benzoquinone imine, a reactive metabolite, by cytochrome P450 (CYP) 1A2, 2E1 and 3A4. Some reports have indicated that CYP3A protein production and its metabolic activity are induced by APAP in rats in vivo. The CYP3A subfamily is believed to be transcriptionally regulated by chemical compounds. However, the mechanism underlying these responses is not completely understood. To clarify these mechanisms, we assessed the effects of APAP on CYP3A1/23 protein levels according to mRNA synthesis and protein degradation in rat hepatocyte spheroids, a model of liver tissue, in vivo. APAP induced CYP3A1/23 protein levels and metabolic activity. However, no change in CYP3A1/23 mRNA levels was observed. Moreover, APAP prolonged the half-life of CYP3A1/23 protein. CYP3A is known to be degraded via the ubiquitin-proteasome system. APAP significantly was found to decrease levels of polyubiquitinated CYP3A1/23 and glycoprotein 78, an E3 ligase of CYP3A1/23. These findings demonstrate that APAP induces accumulation of functional CYP3A protein via inhibition of protein degradation. Our findings may lead to the determination of novel drug-drug interactions with APAP. PMID:26900149

  4. Acetaminophen induces accumulation of functional rat CYP3A via polyubiquitination dysfunction

    PubMed Central

    Santoh, Masataka; Sanoh, Seigo; Takagi, Masashi; Ejiri, Yoko; Kotake, Yaichiro; Ohta, Shigeru

    2016-01-01

    Acetaminophen (APAP) is extensively used as an analgesic and antipyretic drug. APAP is partly metabolized to N-acetyl-p-benzoquinone imine, a reactive metabolite, by cytochrome P450 (CYP) 1A2, 2E1 and 3A4. Some reports have indicated that CYP3A protein production and its metabolic activity are induced by APAP in rats in vivo. The CYP3A subfamily is believed to be transcriptionally regulated by chemical compounds. However, the mechanism underlying these responses is not completely understood. To clarify these mechanisms, we assessed the effects of APAP on CYP3A1/23 protein levels according to mRNA synthesis and protein degradation in rat hepatocyte spheroids, a model of liver tissue, in vivo. APAP induced CYP3A1/23 protein levels and metabolic activity. However, no change in CYP3A1/23 mRNA levels was observed. Moreover, APAP prolonged the half-life of CYP3A1/23 protein. CYP3A is known to be degraded via the ubiquitin-proteasome system. APAP significantly was found to decrease levels of polyubiquitinated CYP3A1/23 and glycoprotein 78, an E3 ligase of CYP3A1/23. These findings demonstrate that APAP induces accumulation of functional CYP3A protein via inhibition of protein degradation. Our findings may lead to the determination of novel drug–drug interactions with APAP. PMID:26900149

  5. Effect of Radix Sophorae Flavescentis on activity of CYP450 isoforms in rats

    PubMed Central

    Chen, Lianguo; Cai, Jinzhang; Wang, Shuanghu; Hu, Lufeng; Yang, Xuezhi

    2015-01-01

    Kushen (Radix Sophorae Flavescentis) is the dried roots of Sophora Flavescens Ait, alkaloids and flavonoids are the main active constituents of Radix Sophorae Flavescentis. The influence of Radix Sophorae Flavescentis on the activities of CYP450 isoforms CYP2B6, CYP2C19, CYP1A2, CYP2C9, CYP3A4 and CYP2D6 were evaluated by cocktail method. The rats were randomly divided into Radix Sophorae Flavescentis group and control group. The Radix Sophorae Flavescentis group rats were given 5 g/kg Radix Sophorae Flavescentis decoction by intragastric administration. The six probe drugs (bupropion, omeprazole, phenacetin, tolbutamide, midazolam and metroprolol) were given to rats through intragastric administration, and the plasma concentration were determined by UPLC-MS/MS. The result of Radix Sophorae Flavescentis group compared to control group, there were statistical pharmacokinetics difference for omeprazole, phenacetin, tolbutamide and metroprolol. It indicated that the Radix Sophorae Flavescentis may induce the activities of CYP2D6, and inhibit of CYP2C19, CYP1A2 and CYP2C9 of rats. As other drugs are always used after Radix Sophorae Flavescentis, interactions between other drugs and Radix Sophorae Flavescentis undertake the risk of either diminished efficacy or adverse effects. This may give advising for reasonable drug use after Radix Sophorae Flavescentis. PMID:26885078

  6. Assessment of effect of Zhu-tan Tong-luo decoction on CYP450 isoforms activity of rats

    PubMed Central

    Jin, Yongxi; Shao, Lingjiu; Li, Gaowen; Shao, Mengmeng; Zhi, Yinghao; Zhu, Wenzong

    2015-01-01

    In order to investigate the effects of Zhu-tan Tong-luo decoction on the metabolic capacity of cytochrome P450 (CYP) enzymes, a cocktail method was employed to evaluate the activities of CYP2B6, CYP2C19, CYP1A2, CYP3A4, CYP2C9, CYP2D6. The rats were randomly divided into acute Zhu-Tan Tong-Luo decoction group (Low, High), chronic Zhu-Tan Tong-Luo decoction group (Low, High) and control group. The acute group rats were given 0.6, 1.2 g/kg (Low, High) Zhu-tan Tong-luo decoction by intragastric administration for 1 day, and the chronic group for 14 days. Six probe drugs bupropion, omeprazole, phenacetin, testosterone, tolbutamide, and metroprolol were given to rats through intragastric administration, and the plasma concentrations were determined by UPLC-MS/MS. There statistical pharmacokinetics differences for omeprazole, phenacetin, testosterone, tolbutamide, and metroprolol in rats were observed by comparing acute Zhu-tan Tong-luo decoction group with control group; and statistical pharmacokinetics differences for bupropion, omeprazole, phenacetin, testosterone, tolbutamide, and metroprolol were observed by comparing chronic Zhu-Tan Tong-Luo decoction group with control group. After intragastric administration of Zhu-Tan Tong-Luo decoction may slightly induce the activities of CYP2B6, CYP2C19, CYP1A2, CYP3A4, CYP2C9, CYP2D6 of rats. Induction of drug metabolizing enzyme by Zhu-Tan Tong-Luo decoction would reduce the efficacy of other drug. Additional, there no statistical difference for biochemical results after 1 or 14 intragastric administration of Zhu-Tan Tong-Luo decoction. PMID:26629097

  7. Food-drug interactions via human cytochrome P450 3A (CYP3A).

    PubMed

    Fujita, Ken-ichi

    2004-01-01

    Food-drug interactions have been reported to occur in various systems in the body. The causes of these interactions are mainly divided into pharmacodynamic and pharmacokinetic processes. Among these processes, drug metabolism plays a crucial role in drug interactions. Metabolic food-drug interactions occur when a certain food alters the activity of a drug-metabolizing enzyme, leading to a modulation of the pharmacokinetics of drugs metabolized by the enzyme. A variety of interactions have been documented so far. Foods consisting of complex chemical mixtures, such as fruits, alcoholic beverages, teas, and herbs, possess the ability to inhibit or induce the activity of drug-metabolizing enzymes. According to results obtained thus far, cytochrome P450 3A4 (CYP3A4) appears to be a key enzyme in food-drug interactions. For example, interactions of grapefruit juice with felodipine and cyclosporine, red wine with cyclosporine, and St John's wort with various medicines including cyclosporine, have been demonstrated. The results indicate the requirement of dosage adjustment to maintain drug concentrations within their therapeutic windows. The CYP3A4-related interaction by food components may be related to the high level of expression of CYP3A4 in the small intestine, as well as its broad substrate specificity, as CYP3A4 is responsible for the metabolism of more than 50% of clinical pharmaceuticals. This review article summarizes the findings obtained to date concerning food-drug interactions and their clinical implications. It seems likely that more information regarding such interactions will accumulate in the future, and awareness is necessary for achieving optimal drug therapy. PMID:15663291

  8. Cytochrome P450 CYP3A in human renal cell cancer

    PubMed Central

    Murray, G I; McFadyen, M C E; Mitchell, R T; Cheung, Y-L; Kerr, A C; Melvin, W T

    1999-01-01

    Renal cell cancer is the main malignant tumour of the kidney and has an increasing incidence. This type of tumour has a poor prognosis and shows intrinsic resistance to several anti-cancer drugs. The CYP3A P450 family, which consists of three closely related forms, is involved in the oxidative activation and deactivation of a variety of carcinogens and several anti-cancer drugs. In this study the presence and cellular localization of CYP3A has been investigated using a combination of immunohistochemistry, immunoblotting and reverse transcriptase polymerase chain reaction (RT-PCR) in renal cell cancer and corresponding normal kidney. CYP3A was consistently expressed in both renal call cancer and in normal kidney. In renal cell cancer, CYP3A was localized to tumour cells and in normal kidney the predominant cellular localization of CYP3A was to proximal tubular epithelial cells. RT-PCR showed that both CYP3A5 mRNA and CYP3A7 mRNA were consistently present in both tumour and normal samples, while CYP3A4 mRNA was present in 65% of tumours and 90% of normal samples. This study indicates that individual members of the CYP3A family are expressed in renal cell cancer. The presence of CYP3A in renal cell cancer might be important in the metabolic potentiation as well as the detoxification of chemotherapeutic agents used to renal cancer. © 1999 Cancer Research Campaign PMID:10206301

  9. Pregnane X receptor mediated-transcription regulation of CYP3A by glycyrrhizin: a possible mechanism for its hepatoprotective property against lithocholic acid-induced injury.

    PubMed

    Wang, Yu-Guang; Zhou, Jian-Ming; Ma, Zeng-Chun; Li, Hua; Liang, Qian-De; Tan, Hong-Ling; Xiao, Cheng-Rong; Zhang, Bo-Li; Gao, Yue

    2012-10-25

    Licorice (LE) has been commonly used in traditional Chinese medicine (TCM) for over 4000 years to reconcile various drugs and for hepatic disorders. Glycyrrhizin is the main bioactive component isolated from LE herbs. In the present study we examined the effects of glycyrrhizin on pregnane X receptor (PXR)-mediated CYP3A expression and its hepatoprotective activity. Treatment of HepG2 cells with glycyrrhizin resulted in marked increase in both CYP3A4 mRNA and protein levels. The transcriptional activation of the CYP3A4 gene through glycyrrhizin is PXR-dependent, as shown in transient transfection experiments. Glycyrrhizin activates the DNA-binding capacity of the PXR for the CYP3A4 element responding to xenobiotic signals, as measured by the electrophoretic-mobility shift assay (EMSA). These results indicate that the induction of the hepatic CYP3A4 by glycyrrhizin is mediated through the activation of PXR. The next aim of the current study was to determine whether the activation of PXR and induction of CYP3A by glycyrrhizin prevents hepatotoxicity during cholestasis as a mechanism of hepatoprotection. Mice were pretreated with glycyrrhizin prior to induction of intrahepatic cholestasis using lithocholic acid (LCA). Pre-treatment with glycyrrhizin, as well as the PXR activator pregnenolone 16α-carbontrile (PCN), prevents the increase in plasma ALT and AST activity, multifocal necrosis and prevents an increase in a level of serum LCA level in mice, as compared with the results in the mice treated with LCA alone. Activation of the PXR by glycyrrhizin results in induction of CYP3A11 (CYP3A4 for human) expression and inhibition of CYP7A1 through an increase in small heterodimer partner (SHP) expression. Glycyrrhizin regulates the expression of the gene mentioned above to prevent toxic accumulation of bile acids in the liver and it also protects mouse livers from the harmful effects of LCA. In conclusion, PXR-mediated effects on CYP3A and CYP7A may contribute to the

  10. Evaluation of CYP2C8 inhibition in vitro: utility of montelukast as a selective CYP2C8 probe substrate.

    PubMed

    VandenBrink, Brooke M; Foti, Robert S; Rock, Dan A; Wienkers, Larry C; Wahlstrom, Jan L

    2011-09-01

    Understanding the potential for cytochrome P450 (P450)-mediated drug-drug interactions is a critical step in the drug discovery process. Although in vitro studies with CYP3A4, CYP2C9, and CYP2C19 have suggested the presence of multiple binding regions within the P450 active site based on probe substrate-dependent inhibition profiles, similar studies have not been performed with CYP2C8. The ability to understand CYP2C8 probe substrate sensitivity will enable appropriate in vitro and in vivo probe selection. To characterize the potential for probe substrate-dependent inhibition with CYP2C8, the inhibition potency of 22 known inhibitors of CYP2C8 were measured in vitro using four clinically relevant CYP2C8 probe substrates (montelukast, paclitaxel, repaglinide, and rosiglitazone) and amodiaquine. Repaglinide exhibited the highest sensitivity to inhibition in vitro. In vitro phenotyping indicated that montelukast is an appropriate probe for CYP2C8 inhibition studies. The in vivo sensitivities of the CYP2C8 probe substrates cerivastatin, fluvastatin, montelukast, pioglitazone, and rosiglitazone were determined in relation to repaglinide on the basis of clinical drug-drug interaction (DDI) data. Repaglinide exhibited the highest sensitivity in vivo, followed by cerivastatin, montelukast, and pioglitazone. Finally, the magnitude of in vivo CYP2C8 DDI caused by gemfibrozil-1-O-β-glucuronide was predicted. Comparisons of the predictions with clinical data coupled with the potential liabilities of other CYP2C8 probes suggest that montelukast is an appropriate CYP2C8 probe substrate to use for the in vivo situation. PMID:21697463

  11. Detection of Anti-Isoniazid and Anti-CYP Antibodies in Patients with Isoniazid-Induced Liver Failure

    PubMed Central

    Metushi, Imir G; Sanders, Corron; Lee, William M.; Uetrecht, Jack

    2016-01-01

    Isoniazid (INH)-induced hepatotoxicity remains one of the most common causes of drug-induced idiosyncratic liver injury and liver failure. This form of liver injury is not believed to be immune-mediated because it is not usually associated with fever or rash, does not recur more rapidly on rechallenge, and previous studies have failed to identify anti-INH antibodies. In this paper we found antibodies present in the sera of 15/19 cases of INH-induced liver failure. Anti-INH antibodies were present in 8; 11 sera had anti-CYP2E1 antibodies, 14 sera had antibodies against CYP2E1 modified by INH, 14 sera had anti-CYP3A4 antibodies, and 10 sera had anti-CYP2C9 antibodies. INH was found to form covalent adducts with CYP2E1, CYP3A4, and CYP2C9. None of these antibodies were detected in sera from INH-treated controls without significant liver injury. The presence of a range of anti-drug and autoantibodies has been observed in other drug-induced liver injury that is presumed to be immune-mediated. Conclusion These data provide strong evidence that INH induces an immune response that causes INH-induced liver injury. PMID:23775837

  12. Peroxisome proliferator-activated receptor alpha, PPARα, directly regulates transcription of cytochrome P450 CYP2C8

    PubMed Central

    Thomas, Maria; Winter, Stefan; Klumpp, Britta; Turpeinen, Miia; Klein, Kathrin; Schwab, Matthias; Zanger, Ulrich M.

    2015-01-01

    The cytochrome P450, CYP2C8, metabolizes more than 60 clinically used drugs as well as endogenous substances including retinoic acid and arachidonic acid. However, predictive factors for interindividual variability in the efficacy and toxicity of CYP2C8 drug substrates are essentially lacking. Recently we demonstrated that peroxisome proliferator-activated receptor alpha (PPARα), a nuclear receptor primarily involved in control of lipid and energy homeostasis directly regulates the transcription of CYP3A4. Here we investigated the potential regulation of CYP2C8 by PPARα. Two linked intronic SNPs in PPARα (rs4253728, rs4823613) previously associated with hepatic CYP3A4 status showed significant association with CYP2C8 protein level in human liver samples (N = 150). Furthermore, siRNA-mediated knock-down of PPARα in HepaRG human hepatocyte cells resulted in up to ∼60 and ∼50% downregulation of CYP2C8 mRNA and activity, while treatment with the PPARα agonist WY14,643 lead to an induction by >150 and >100%, respectively. Using chromatin immunoprecipitation scanning assay we identified a specific upstream gene region that is occupied in vivo by PPARα. Electromobility shift assay demonstrated direct binding of PPARα to a DR-1 motif located at positions –2762/–2775 bp upstream of the CYP2C8 transcription start site. We further validated the functional activity of this element using luciferase reporter gene assays in HuH7 cells. Moreover, based on our previous studies we demonstrated that WNT/β-catenin acts as a functional inhibitor of PPARα-mediated inducibility of CYP2C8 expression. In conclusion, our data suggest direct involvement of PPARα in both constitutive and inducible regulation of CYP2C8 expression in human liver, which is further modulated by WNT/β-catenin pathway. PPARA gene polymorphism could have a modest influence on CYP2C8 phenotype. PMID:26582990

  13. The influence of standardized Valeriana officinalis extract on the CYP3A1 gene expression by nuclear receptors in in vivo model.

    PubMed

    Bogacz, Anna; Mrozikiewicz, Przemyslaw M; Karasiewicz, Monika; Bartkowiak-Wieczorek, Joanna; Majchrzycki, Marian; Mikolajczak, Przemyslaw L; Ozarowski, Marcin; Grzeskowiak, Edmund

    2014-01-01

    Valeriana officinalis is one of the most popular medicinal plants commonly used as a sedative and sleep aid. It is suggested that its pharmacologically active compounds derived from the root may modulate the CYP3A4 gene expression by activation of pregnane X receptor (PXR) or constitutive androstane receptor (CAR) and lead to pharmacokinetic herb-drug interactions. The aim of the study was to determine the influence of valerian on the expression level of CYP3A1 (homologue to human CYP3A4) as well as nuclear receptors PXR, CAR, RXR, GR, and HNF-4α. Male Wistar rats were given standardized valerian extract (300 mg/kg/day, p.o.) for 3 and 10 days. The expression in liver tissue was analyzed by using real-time PCR. Our result showed a decrease of CYP3A1 expression level by 35% (P = 0.248) and 37% (P < 0.001), respectively. Moreover, Valeriana exhibited statistically significant reduction in RXR (approximately 28%) only after 3-day treatment. We also demonstrated a decrease in the amount HNF-4α by 22% (P = 0.005) and 32% (P = 0.012), respectively. In case of CAR, the increase of expression level by 46% (P = 0.023) was noted. These findings suggest that Valeriana officinalis extract can decrease the CYP3A4 expression and therefore may lead to interactions with synthetic drugs metabolized by this enzyme. PMID:25302309

  14. The Influence of Standardized Valeriana officinalis Extract on the CYP3A1 Gene Expression by Nuclear Receptors in In Vivo Model

    PubMed Central

    Mrozikiewicz, Przemyslaw M.; Karasiewicz, Monika; Mikolajczak, Przemyslaw L.; Ozarowski, Marcin; Grzeskowiak, Edmund

    2014-01-01

    Valeriana officinalis is one of the most popular medicinal plants commonly used as a sedative and sleep aid. It is suggested that its pharmacologically active compounds derived from the root may modulate the CYP3A4 gene expression by activation of pregnane X receptor (PXR) or constitutive androstane receptor (CAR) and lead to pharmacokinetic herb-drug interactions. The aim of the study was to determine the influence of valerian on the expression level of CYP3A1 (homologue to human CYP3A4) as well as nuclear receptors PXR, CAR, RXR, GR, and HNF-4α. Male Wistar rats were given standardized valerian extract (300 mg/kg/day, p.o.) for 3 and 10 days. The expression in liver tissue was analyzed by using real-time PCR. Our result showed a decrease of CYP3A1 expression level by 35% (P = 0.248) and 37% (P < 0.001), respectively. Moreover, Valeriana exhibited statistically significant reduction in RXR (approximately 28%) only after 3-day treatment. We also demonstrated a decrease in the amount HNF-4α by 22% (P = 0.005) and 32% (P = 0.012), respectively. In case of CAR, the increase of expression level by 46% (P = 0.023) was noted. These findings suggest that Valeriana officinalis extract can decrease the CYP3A4 expression and therefore may lead to interactions with synthetic drugs metabolized by this enzyme. PMID:25302309

  15. Metabolic pathways of inhaled glucocorticoids by the CYP3A enzymes.

    PubMed

    Moore, Chad D; Roberts, Jessica K; Orton, Christopher R; Murai, Takahiro; Fidler, Trevor P; Reilly, Christopher A; Ward, Robert M; Yost, Garold S

    2013-02-01

    Asthma is one of the most prevalent diseases in the world, for which the mainstay treatment has been inhaled glucocorticoids (GCs). Despite the widespread use of these drugs, approximately 30% of asthma sufferers exhibit some degree of steroid insensitivity or are refractory to inhaled GCs. One hypothesis to explain this phenomenon is interpatient variability in the clearance of these compounds. The objective of this research is to determine how metabolism of GCs by the CYP3A family of enzymes could affect their effectiveness in asthmatic patients. In this work, the metabolism of four frequently prescribed inhaled GCs, triamcinolone acetonide, flunisolide, budesonide, and fluticasone propionate, by the CYP3A family of enzymes was studied to identify differences in their rates of clearance and to identify their metabolites. Both interenzyme and interdrug variability in rates of metabolism and metabolic fate were observed. CYP3A4 was the most efficient metabolic catalyst for all the compounds, and CYP3A7 had the slowest rates. CYP3A5, which is particularly relevant to GC metabolism in the lungs, was also shown to efficiently metabolize triamcinolone acetonide, budesonide, and fluticasone propionate. In contrast, flunisolide was only metabolized via CYP3A4, with no significant turnover by CYP3A5 or CYP3A7. Common metabolites included 6β-hydroxylation and Δ(6)-dehydrogenation for triamcinolone acetonide, budesonide, and flunisolide. The structure of Δ(6)-flunisolide was unambiguously established by NMR analysis. Metabolism also occurred on the D-ring substituents, including the 21-carboxy metabolites for triamcinolone acetonide and flunisolide. The novel metabolite 21-nortriamcinolone acetonide was also identified by liquid chromatography-mass spectrometry and NMR analysis. PMID:23143891

  16. Metabolic Pathways of Inhaled Glucocorticoids by the CYP3A Enzymes

    PubMed Central

    Moore, Chad D.; Roberts, Jessica K.; Orton, Christopher R.; Murai, Takahiro; Fidler, Trevor P.; Reilly, Christopher A.; Ward, Robert M.

    2013-01-01

    Asthma is one of the most prevalent diseases in the world, for which the mainstay treatment has been inhaled glucocorticoids (GCs). Despite the widespread use of these drugs, approximately 30% of asthma sufferers exhibit some degree of steroid insensitivity or are refractory to inhaled GCs. One hypothesis to explain this phenomenon is interpatient variability in the clearance of these compounds. The objective of this research is to determine how metabolism of GCs by the CYP3A family of enzymes could affect their effectiveness in asthmatic patients. In this work, the metabolism of four frequently prescribed inhaled GCs, triamcinolone acetonide, flunisolide, budesonide, and fluticasone propionate, by the CYP3A family of enzymes was studied to identify differences in their rates of clearance and to identify their metabolites. Both interenzyme and interdrug variability in rates of metabolism and metabolic fate were observed. CYP3A4 was the most efficient metabolic catalyst for all the compounds, and CYP3A7 had the slowest rates. CYP3A5, which is particularly relevant to GC metabolism in the lungs, was also shown to efficiently metabolize triamcinolone acetonide, budesonide, and fluticasone propionate. In contrast, flunisolide was only metabolized via CYP3A4, with no significant turnover by CYP3A5 or CYP3A7. Common metabolites included 6β-hydroxylation and Δ6-dehydrogenation for triamcinolone acetonide, budesonide, and flunisolide. The structure of Δ6-flunisolide was unambiguously established by NMR analysis. Metabolism also occurred on the D-ring substituents, including the 21-carboxy metabolites for triamcinolone acetonide and flunisolide. The novel metabolite 21-nortriamcinolone acetonide was also identified by liquid chromatography–mass spectrometry and NMR analysis. PMID:23143891

  17. Integrin Receptors Play a Key Role in the Regulation of Hepatic CYP3A.

    PubMed

    Jonsson-Schmunk, Kristina; Wonganan, Piynauch; Choi, Jin Huk; Callahan, Shellie M; Croyle, Maria A

    2016-05-01

    Landmark studies describing the effect of microbial infection on the expression and activity of hepatic CYP3A used bacterial lipopolysaccharide as a model antigen. Our efforts to determine whether these findings were translatable to viral infections led us to observations suggesting that engagement of integrin receptors is key in the initiation of processes responsible for changes in hepatic CYP3A4 during infection and inflammation. Studies outlined in this article were designed to evaluate whether engagement of integrins, receptors commonly used by a variety of microbes to enter cellular targets, is vital in the regulation of CYP3A in the presence and absence of virus infection. Mice infected with a recombinant adenovirus (AdlacZ) experienced a 70% reduction in hepatic CYP3A catalytic activity. Infection with a mutant virus with integrin-binding arginine-glycine-aspartic acid (RGD) sequences deleted from the penton base protein of the virus capsid (AdΔRGD) did not alter CYP3A activity. CYP3A mRNA and protein levels in AdlacZ-treated animals were also suppressed, whereas those of mice given AdΔRGD were not significantly different from uninfected control mice. Silencing of the integrinβ-subunit reverted adenovirus-mediated CYP3A4 suppression in vitro. Silencing of theα-subunit did not. Suppression of integrin subunits had a profound effect on nuclear receptors pregnane X receptor and constitutive androstane receptor, whereas retinoid X receptorαwas largely unaffected. To our knowledge, this is the first time that extracellular receptors, like integrins, have been indicated in the regulation of CYP3A. This finding has several implications owing to the important role of integrins in normal physiologic process and in many disease states. PMID:26868618

  18. Rate of onset of inhibition of gut-wall and hepatic CYP3A by clarithromycin

    PubMed Central

    Quinney, Sara K.; Malireddy, Srikar R.; Vuppalanchi, Raj; Hamman, Mitchell A.; Chalasani, Naga; Gorski, J. Christopher; Hall, Stephen D.

    2013-01-01

    Aims To determine the extent and time-course of hepatic and intestinal cytochrome P450 3A (CYP3A) inactivation due to the mechanism-based inhibitor clarithromycin. Methods Intestinal and hepatic CYP3A inhibition was examined in 12 healthy volunteers following the administration of single and multiple doses of oral clarithromycin (500 mg). Intestinal biopsies were obtained under intravenous midazolam sedation at baseline and after the first dose, on days 2–4, and on days 6–8 of the clarithromycin treatment. The formation of 1′-hydroxymidazolam in biopsy tissue and the serum 1′-hydroxymidazolam:midazolam ratio were indicators of intestinal and hepatic CYP3A activity, respectively. Results Intestinal CYP3A activity decreased by 64 % (p=0.0029) following the first dose of clarithromycin, but hepatic CYP3A activity did not significantly decrease. Repeated dosing of clarithromycin caused a significant decrease in hepatic CYP3A activity (p=0.005), while intestinal activity showed little further decline. The CYP3A5 or CYP3A4*1B genotype were unable to account for inter-individual variability in CYP3A activity. Conclusions Following the administration of clarithromycin, the onset of hepatic CYP3A inactivation is delayed compared to that of intestinal CYP3A. The time-course of drug–drug interactions due to clarithromycin will vary with the relative contribution of intestinal and hepatic CYP3A to the clearance and bioavailability of a victim substrate. PMID:22777148

  19. A CAR-responsive enhancer element locating approximately 31 kb upstream in the 5'-flanking region of rat cytochrome P450 (CYP) 3A1 gene.

    PubMed

    Gamou, Toshie; Habano, Wataru; Terashima, Jun; Ozawa, Shogo

    2015-04-01

    Constitutive androstane receptor (CAR) is one of the principal regulators of hepatic cytochrome P450s (CYPs) 3A (CYP3A). cDNA-mediated expression of a mature rat CAR (rCAR) into rat hepatoma cells induced CYP3A1 and CYP2B mRNAs. Aberrant rCAR failed in these inductions. Three important human CYP3A4 regulatory elements (REs), proximal ER6 (proER6), xenobiotic responsive enhancer module (XREM) and constitutive liver enhancer module (CLEM), support constitutive and inducible expression of CYP3As mediated by CAR and pregnane X receptor (PXR). NHR-scan software predicted proER6, XREM and CLEM at -255 b, -8 kb and -11.5 kb, respectively of CYP3A4, but neither XREM nor CLEM was predicted in rat CYP3A. A luciferase reporter construct carrying a 5'-flanking sequence of CYP3A1 (-31,739 to -31,585 from its transcription initiation site) revealed important for the rCAR-dependent transactivation of CYP3A1. This region includes two putative binding motifs of nuclear receptors (DR4 and DR2), a putative hepatocyte nuclear factor-1 binding motif (HNF1), nuclear factor-kappa B binding motif (NFκB), activator protein 1 binding motif (AP-1), and ecotropic viral integration site 1 binding motif (Evi1). We hereby conclude DR4 and/or DR2 motifs being primarily responsible and HNF1 being synergistically functioning elements for the rCAR-mediated transcription of CYP3A1. PMID:25989892

  20. The action of cytochrome b(5) on CYP2E1 and CYP2C19 activities requires anionic residues D58 and D65.

    PubMed

    Peng, Hwei-Ming; Auchus, Richard J

    2013-01-01

    The capacity of cytochrome b(5) (b(5)) to influence cytochrome P450 activities has been extensively studied and physiologically validated. Apo-b(5) enhances the activities of CYP3A4, CYP2A6, CYP2C19, and CYP17A1 but not that of CYP2E1 or CYP2D6, suggesting that the b(5) interaction varies among P450s. We previously showed that b(5) residues E48 and E49 are required to stimulate the 17,20-lyase activity of CYP17A1, but these same residues might not mediate b(5) activation of other P450 reactions, such as CYP2E1-catalyzed oxygenations, which are insensitive to apo-b(5). Using purified P450, b(5), and reductase (POR) in reconstituted assays, the D58G/D65G double mutation, of residues located in a hydrophilic α-helix of b(5), totally abolished the ability to stimulate CYP2E1-catalyzed chlorzoxazone 6-hydroxylation. In sharp contrast, the D58G/D65G double mutation retained the full ability to stimulate the 17,20-lyase activity of CYP17A1. The D58G/D65G double mutation competes poorly with wild-type b(5) for binding to the CYP2E1·POR complex yet accepts electrons from POR at a similar rate. Furthermore, the phospholipid composition markedly influences P450 turnover and b(5) stimulation and specificity, particularly for CYP17A1, in the following order: phosphatidylserine > phosphatidylethanolamine > phosphatidylcholine. The D58G/D65G double mutation also failed to stimulate CYP2C19-catalyzed (S)-mephenytoin 4-hydroxylation, whereas the E48G/E49G double mutation stimulated these activities of CYP2C19 and CYP2E1 equivalent to wild-type b(5). We conclude that b(5) residues D58 and D65 are essential for the stimulation of CYP2E1 and CYP2C19 activities and that the phospholipid composition significantly influences the b(5)-P450 interaction. At least two surfaces of b(5) differentially influence P450 activities, and the critical residues for individual P450 reactions cannot be predicted from sensitivity to apo-b(5) alone. PMID:23193974

  1. The action of cytochrome b5 on both CYP2E1 and CYP2C19 activities requires the anionic residues D58 and D65

    PubMed Central

    Peng, Hwei-Ming; Auchus, Richard J.

    2013-01-01

    The capacity of cytochrome b5 (b5) to influence cytochrome P450 activities has been extensively studied and physiologically validated. Apo-b5 enhances the activities of CYP3A4, CYP2A6, CYP2C19, and CYP17A1 but not of CYP2E1 or CYP2D6, suggesting that the b5 interaction varies amongst P450s. We previously showed that b5 residues E48 and E49 are required to stimulate the 17,20-lyase activity of CYP17A1, but these same residues might not mediate b5 activation of other P450 reactions, such as CYP2E1-catalyzed oxygenations, which are insensitive to apo-b5. Using purified P450, b5, and reductase (POR) in reconstituted assays, mutation D58G+D65G, residues located in a hydrophilic α-helix of b5, totally abolished the ability to stimulate CYP2E1-catalyzed chlorzoxazone 6-hydroxylation. In sharp contrast, the D58G+D65G mutation retained full capability to stimulate the 17,20 lyase activity of CYP17A1. Mutation D58G+D65G competes poorly with wild-type b5 for binding to the CYP2E1•POR complex yet accepts electrons from POR at a similar rate. Furthermore, the phospholipid composition markedly influences P450 turnover and b5 stimulation and specificity, particularly for CYP17A1, in the order phosphatidylserine > phosphatidylethanolamine > phosphatidylcholine. Mutation D58G+D65G also failed to stimulate CYP2C19-catalyzed (S)-mephenytoin 4-hydroxylation, whereas mutation E48G+E49G stimulated these activities of CYP2C19 and CYP2E1 equivalent to wild-type b5. We conclude that b5 residues D58 and D65 are essential for the stimulation of CYP2E1 and CYP2C19 activities and that phospholipid composition significantly influences the b5-P450 interaction. At least two surfaces of b5 differentially influence P450 activities, and the critical residues for individual P450 reactions cannot be predicted from sensitivity to apo-b5 alone. PMID:23193974

  2. [Furanocoumarins contents and cytochrome P450 3A (CYP3A) inhibitory activities of various processed fruit peel products: outflow of 6',7'-Dihydroxybergamottin during processing treatment of peel].

    PubMed

    Ishihara, Masaru; Toda, Hikaru; Sunagane, Nobuyoshi; Ohta, Takafumi

    2011-01-01

    Furanocoumarins (FCs) such as bergamottin (BG) and 6',7'-dihydroxybergamottin (DHBG) contained in grapefruits are known to be cytochrome P450 3A4 (CYP3A4) inhibitors. These are contained in larger quantity in peel than in pulp, and therefore, processed peel products possibly have strong CYP3A4 inhibitory activity. The CYP3A4 inhibitory potency of these processed peel products, however, remains to be elucidated. The FC content and CYP3A inhibitory activities of various processed fruit peel products were investigated. CYP3A inhibitory activities of crystallized grapefruit peel, grapefruit marmalade, lemon peel and bitter orange slice were close to that of 100% grapefruit juice, while the activities of yuzu slice, pomelo (buntan) marmalade and crystallized iyokan peel were very weak, 1/8-1/20 of 100% grapefruit juice. The maximum BG content was 5.6 µg/g in lemon peel. The maximum DHBG content was 7.2 µg/g in crystallized grapefruit peel, about 1/30 that of raw peel. Grapefruit marmalade and crystallized grapefruit peel contained similar amounts of FCs to 100% grapefruit juice, but FCs were not detected in pomelo (buntan) marmalade or crystallized iyokan peel. Good correlation (r=0.78) was observed between the FC contents of these peel products and those CYP3A inhibitory activities. Preparation of homemade grapefruit marmalade and crystallized peel revealed that considerably lower DHBG content in these products and lower CYP3A inhibitory activity than anticipated were attributable to outflow of DHBG to broth during boiling of the raw peel. PMID:21532264

  3. Draft Genome Sequence of Cupriavidus sp. Strain SK-3, a 4-Chlorobiphenyl- and 4-Clorobenzoic Acid-Degrading Bacterium

    PubMed Central

    Vilo, Claudia; Benedik, Michael J.; Ilori, Matthew

    2014-01-01

    We report the draft genome sequence of Cupriavidus sp. strain SK-3, which can use 4-chlorobiphenyl and 4-clorobenzoic acid as the sole carbon source for growth. The draft genome sequence allowed the study of the polychlorinated biphenyl degradation mechanism and the recharacterization of the strain SK-3 as a Cupriavidus species. PMID:24994805

  4. 17 CFR 240.3a4-1 - Associated persons of an issuer deemed not to be brokers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... compensated in connection with his participation by the payment of commissions or other remuneration based... communication is approved by a partner, officer or director of the issuer; (B) Responding to inquiries of a... who is a partner, officer, director, or employee of: (i) The issuer; (ii) A corporate general...

  5. Minor furanocoumarins and coumarins in grapefruit peel oil as inhibitors of human cytochrome P450 3A4

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel cyclic acetal of 6',7'-dihydroxy-7-geranyloxycoumarin (marmin) and two novel cyclic acetals of 6',7'-dihydroxybergamottin were isolated from nonvolatile residues of grapefruit peel oil. Other known compounds, marmin, 7-geranyloxycoumarin, bergamottin, and 6',7'-dihydroxybergamottin were also...

  6. CYP450 phenotyping and metabolite identification of quinine by accurate mass UPLC-MS analysis: a possible metabolic link to blackwater fever

    PubMed Central

    2013-01-01

    Background The naturally occurring alkaloid drug, quinine is commonly used for the treatment of severe malaria. Despite centuries of use, its metabolism is still not fully understood, and may play a role in the haemolytic disorders associated with the drug. Methods Incubations of quinine with CYPs 1A2, 2C9, 2C19, 2D6, and 3A4 were conducted, and the metabolites were characterized by accurate mass UPLC-MSE analysis. Reactive oxygen species generation was also measured in human erythrocytes incubated in the presence of quinine with and without microsomes. Results The metabolites 3-hydroxyquinine, 2’-oxoquininone, and O-desmethylquinine were observed after incubation with CYPs 3A4 (3-hydroxyquinine and 2’-oxoquininone) and 2D6 (O-desmethylquinine). In addition, multiple hydroxylations were observed both on the quinoline core and the quinuclidine ring system. Of the five primary abundance CYPs tested, 3A4, 2D6, 2C9, and 2C19 all demonstrated activity toward quinine, while 1A2 did not. Further, quinine produced robust dose-dependent oxidative stress in human erythrocytes in the presence of microsomes. Conclusions Taken in context, these data suggest a CYP-mediated link between quinine metabolism and the poorly understood haemolytic condition known as blackwater fever, often associated with quinine ingestion. PMID:23800033

  7. Inhibition of Major Drug Metabolizing CYPs by Common Herbal Medicines used by HIV/AIDS Patients in Africa– Implications for Herb-Drug Interactions

    PubMed Central

    Awortwe, Charles; Bouic, Patrick J.; Masimirembwa, Collen M.; Rosenkranz, Bernd

    2015-01-01

    The purpose of this study was to evaluate the potential risk of common herbal medicines used by HIV-infected patients in Africa for herb-drug interactions (HDI). High throughput screening assays consisting of recombinant Cytochrome P450 enzymes (CYPs) and fluorescent probes, and parallel artificial membrane permeability assays (PAMPA) were used. The potential of herbal medicines to cause HDI was ranked according to FDA guidelines for reversible inhibition and categorization of time dependent inhibition was based on the normalized ratio. CYPs 1A2 and 3A4 were most inhibited by the herbal extracts. H. hemerocallidea (IC50 = 0.63 μg/mL and 58 μg/mL) and E. purpurea (IC50 = 20 μg/mL and 12 μg/mL) were the potent inhibitors of CYPs 1A2 and 3A4 respectively. L. frutescens and H. hemerocallidea showed clear time dependent inhibition on CYP3A4. Furthermore, the inhibitory effect of both H. hemerocallidea and L. frutescens before and after PAMPA were identical. The results indicate potential HDI of H. hemerocallidea, L. frutescens and E. purpurea with substrates of the affected enzymes if maximum in vivo concentration is achieved. PMID:24475926

  8. In Vitro Hepatic Metabolism Explains Higher Clearance of Voriconazole in Children versus Adults: Role of CYP2C19 and Flavin-Containing Monooxygenase 3

    PubMed Central

    Yanni, Souzan B.; Annaert, Pieter P.; Augustijns, Patrick; Ibrahim, Joseph G.; Benjamin, Daniel K.

    2010-01-01

    Voriconazole is a broad spectrum antifungal agent for treating life-threatening fungal infections. Its clearance is approximately 3-fold higher in children compared with adults. Voriconazole is cleared predominantly via hepatic metabolism in adults, mainly by CYP3A4, CYP2C19, and flavin-containing monooxygenase 3 (FMO3). In vitro metabolism of voriconazole by liver microsomes prepared from pediatric and adult tissues (n = 6/group) mirrored the in vivo clearance differences in children versus adults, and it showed that the oxidative metabolism was significantly faster in children compared with adults as indicated by the in vitro half-life (T1/2) of 33.8 ± 15.3 versus 72.6 ± 23.7 min, respectively. The Km for voriconazole metabolism to N-oxide, the major metabolite formed in humans, by liver microsomes from children and adults was similar (11 ± 5.2 versus 9.3 ± 3.6 μM, respectively). In contrast, apparent Vmax was approximately 3-fold higher in children compared with adults (120.5 ± 99.9 versus 40 ± 13.9 pmol/min/mg). The calculated in vivo clearance from in vitro data was found to be approximately 80% of the observed plasma clearance values in both populations. Metabolism studies in which CYP3A4, CYP2C19, or FMO was selectively inhibited provided evidence that contribution of CYP2C19 and FMO toward voriconazole N-oxidation was much greater in children than in adults, whereas CYP3A4 played a larger role in adults. Although expression of CYP2C19 and FMO3 is not significantly different in children versus adults, these enzymes seem to contribute to higher metabolic clearance of voriconazole in children versus adults. PMID:19841059

  9. The enhanced atorvastatin hepatotoxicity in diabetic rats was partly attributed to the upregulated hepatic Cyp3a and SLCO1B1.

    PubMed

    Shu, Nan; Hu, Mengyue; Ling, Zhaoli; Liu, Peihua; Wang, Fan; Xu, Ping; Zhong, Zeyu; Sun, Binbin; Zhang, Mian; Li, Feng; Xie, Qiushi; Liu, Xiaodong; Liu, Li

    2016-01-01

    Liver injury is a common adverse effect of atorvastatin. This study aimed to investigate atorvastatin-induced hepatotoxicity in diabetic rats induced by high-fat diet combined with streptozotocin. The results showed that 40 mg/kg atorvastatin was lethal to diabetic rats, whose mean survival time was 6.2 days. Severe liver injury also occurred in diabetic rats treated with 10 mg/kg and 20 mg/kg atorvastatin. The in vitro results indicated that atorvastatin cytotoxicity in hepatocytes of diabetic rats was more severe than normal and high-fat diet feeding rats. Expressions and activities of hepatic Cyp3a and SLCO1B1 were increased in diabetic rats, which were highly correlated with hepatotoxicity. Antioxidants (glutathione and N-Acetylcysteine), Cyp3a inhibitor ketoconazole and SLCO1B1 inhibitor gemfibrozil suppressed cytotoxicity and ROS formation in primary hepatocytes of diabetic rats. In HepG2 cells, up-regulations of CYP3A4 and SLCO1B1 potentiated hepatotoxicity and ROS generation, whereas knockdowns of CYP3A4 and SLCO1B1 as well as CYP3A4/SLCO1B1 inhibitions showed the opposite effects. Phenobarbital pretreatment was used to induce hepatic Cyp3a and SLCO1B1 in rats. Phenobarbital aggravated atorvastatin-induced hepatotoxicity, while decreased plasma exposure of atorvastatin. All these findings demonstrated that the upregulations of hepatic Cyp3a and SLCO1B1 in diabetic rats potentiated atorvastatin-induced hepatotoxicity via increasing ROS formation. PMID:27624558

  10. The Clinical Candidate VT-1161 Is a Highly Potent Inhibitor of Candida albicans CYP51 but Fails To Bind the Human Enzyme

    PubMed Central

    Warrilow, A. G. S.; Hull, C. M.; Parker, J. E.; Garvey, E. P.; Hoekstra, W. J.; Moore, W. R.; Schotzinger, R. J.

    2014-01-01

    The binding and cytochrome P45051 (CYP51) inhibition properties of a novel antifungal compound, VT-1161, against purified recombinant Candida albicans CYP51 (ERG11) and Homo sapiens CYP51 were compared with those of clotrimazole, fluconazole, itraconazole, and voriconazole. VT-1161 produced a type II binding spectrum with Candida albicans CYP51, characteristic of heme iron coordination. The binding affinity of VT-1161 for Candida albicans CYP51 was high (dissociation constant [Kd], ≤39 nM) and similar to that of the pharmaceutical azole antifungals (Kd, ≤50 nM). In stark contrast, VT-1161 at concentrations up to 86 μM did not perturb the spectrum of recombinant human CYP51, whereas all the pharmaceutical azoles bound to human CYP51. In reconstitution assays, VT-1161 inhibited Candida albicans CYP51 activity in a tight-binding fashion with a potency similar to that of the pharmaceutical azoles but failed to inhibit the human enzyme at the highest concentration tested (50 μM). In addition, VT-1161 (MIC = 0.002 μg ml−1) had a more pronounced fungal sterol disruption profile (increased levels of methylated sterols and decreased levels of ergosterol) than the known CYP51 inhibitor voriconazole (MIC = 0.004 μg ml−1). Furthermore, VT-1161 weakly inhibited human CYP2C9, CYP2C19, and CYP3A4, suggesting a low drug-drug interaction potential. In summary, VT-1161 potently inhibited Candida albicans CYP51 and culture growth but did not inhibit human CYP51, demonstrating a >2,000-fold selectivity. This degree of potency and selectivity strongly supports the potential utility of VT-1161 in the treatment of Candida infections. PMID:25224009

  11. The clinical candidate VT-1161 is a highly potent inhibitor of Candida albicans CYP51 but fails to bind the human enzyme.

    PubMed

    Warrilow, A G S; Hull, C M; Parker, J E; Garvey, E P; Hoekstra, W J; Moore, W R; Schotzinger, R J; Kelly, D E; Kelly, S L

    2014-12-01

    The binding and cytochrome P45051 (CYP51) inhibition properties of a novel antifungal compound, VT-1161, against purified recombinant Candida albicans CYP51 (ERG11) and Homo sapiens CYP51 were compared with those of clotrimazole, fluconazole, itraconazole, and voriconazole. VT-1161 produced a type II binding spectrum with Candida albicans CYP51, characteristic of heme iron coordination. The binding affinity of VT-1161 for Candida albicans CYP51 was high (dissociation constant [Kd], ≤ 39 nM) and similar to that of the pharmaceutical azole antifungals (Kd, ≤ 50 nM). In stark contrast, VT-1161 at concentrations up to 86 μM did not perturb the spectrum of recombinant human CYP51, whereas all the pharmaceutical azoles bound to human CYP51. In reconstitution assays, VT-1161 inhibited Candida albicans CYP51 activity in a tight-binding fashion with a potency similar to that of the pharmaceutical azoles but failed to inhibit the human enzyme at the highest concentration tested (50 μM). In addition, VT-1161 (MIC = 0.002 μg ml(-1)) had a more pronounced fungal sterol disruption profile (increased levels of methylated sterols and decreased levels of ergosterol) than the known CYP51 inhibitor voriconazole (MIC = 0.004 μg ml(-1)). Furthermore, VT-1161 weakly inhibited human CYP2C9, CYP2C19, and CYP3A4, suggesting a low drug-drug interaction potential. In summary, VT-1161 potently inhibited Candida albicans CYP51 and culture growth but did not inhibit human CYP51, demonstrating a >2,000-fold selectivity. This degree of potency and selectivity strongly supports the potential utility of VT-1161 in the treatment of Candida infections. PMID:25224009

  12. Bioactivation of 4-ipomeanol by CYP4B1: adduct characterization and evidence for an enedial intermediate.

    PubMed

    Baer, Brian R; Rettie, Allan E; Henne, Kirk R

    2005-05-01

    4-Ipomeanol (IPO) is a pneumotoxin that is bioactivated to a reactive intermediate that binds to DNA and other cellular macromolecules. Despite over 30 years of research in this area, detailed structural information on the nature of the IPO reactive intermediate is still lacking. In the present study, we reacted IPO with rabbit CYP4B1 in the presence of exogenous nucleophiles and analyzed the products by liquid chromatography/electrospray ionization-mass spectrometry. Coincubation of IPO and rabbit CYP4B1 with glutathione gave rise to multiple products due likely to the presence of both sulfur and nitrogen nucleophiles in the same trapping molecule. Reaction mixtures containing equimolar N-acetyl cysteine (NAC) and N-acetyl lysine (NAL) provided a major NADPH- and CYP4B1-dependent product. A combination of high-resolution mass spectrometry and two-dimensional NMR analysis following large-scale isolation of the biologically derived material provided evidence for an N-substituted cysteinyl pyrrole derivative of IPO, analogous to that characterized previously in model chemical studies conducted with cis-2-butene-1,4-dial. Purified native rabbit lung CYP4B1 and purified recombinant rabbit CYP4B1 produced the trapped NAC/NAL-IPO pyrrole adduct at rates of 600-700 nmol/nmol P450/30 min. A panel of 14 commercially available recombinant human CYPs was also studied, and substantial rates of IPO bioactivation (>100 nmol/nmol/30 min) were observed with CYP1A2, CYP2C19, CYP2D6, and CYP3A4. These studies provide evidence for the formation of an enedial reactive intermediate during CYP-mediated IPO bioactivation, identify multiple human liver P450s capable of IPO bioactivation, and demonstrate that the same reactive intermediate is formed by both rabbit CYP4B1 and human P450s. PMID:15892579

  13. Downregulation of Mouse Hepatic CYP3A Protein by 3-Methylcholanthrene Does Not Require Cytochrome P450-Dependent Metabolism

    PubMed Central

    Lee, Chunja; Ding, Xinxin

    2013-01-01

    The aryl hydrocarbon receptor (AHR)–dependent induction of cytochromes P450 (P450) such as CYP1A1 by 3-methylcholanthrene (MC) and related polycyclic aromatic hydrocarbons is well characterized. We reported previously that MC treatment triggers a pronounced downregulation, particularly at the protein level, of mouse hepatic Cyp3a11, a counterpart of the key human drug-metabolizing enzyme CYP3A4. To determine whether this effect of MC requires hepatic microsomal P450 activity, we studied liver Cpr-null (LCN) mice with hepatocyte-specific conditional deletion of the NADPH-cytochrome P450 oxidoreductase gene. In vehicle-treated animals, basal levels of CYP3A11 mRNA and CYP3A protein immunoreactivity were elevated by approximately 9-fold in LCN mice compared with wild-type (WT) mice, whereas CYP3A catalytic activity was profoundly compromised in LCN mice. MC treatment caused suppression of CYP3A11 mRNA, CYP3A protein immunoreactivity, and CYP3A catalytic activity in WT mice, and the MC effects at the mRNA and protein levels were maintained in LCN mice. Flavin-containing monooxygenase-3 (Fmo3) induction by MC was suggested previously to occur via an AHR-dependent mechanism requiring conversion of the parent compound to DNA-damaging reactive metabolites; however, hepatic FMO3 mRNA levels were dramatically increased by MC in both WT and LCN mice. MC did not function as a mechanism-based inactivator of CYP3A enzymes in hepatic microsomes prepared from untreated WT mice, under conditions in which 1-aminobenzotriazole caused marked NADPH-dependent loss of total P450 content and CYP3A catalytic activity. These results indicate that MC downregulates mouse hepatic CYP3A protein via a pretranslational mechanism that does not require hepatic microsomal P450-dependent activity. PMID:23846873

  14. Mass spectrometric detection of CYP450 adducts following oxidative desulfuration of methyl parathion.

    PubMed

    Kyle, Patrick B; Smith, Stanley V; Baker, Rodney C; Kramer, Robert E

    2013-07-01

    Cytochrome P450 (CYP)-mediated desulfuration of methyl parathion results in mechanism-based inhibition of the enzyme. Although previous data suggest that reactive sulfur is released and binds to the apoprotein, the identities of neither the adduct(s) nor the affected amino acid(s) have been clearly determined. In this study, nanospray tandem mass spectroscopy was used to analyze peptide digests of CYP resolved by SDS-PAGE from liver microsomes of male rats following incubation in the absence or presence of methyl parathion. Oxidative desulfuration was confirmed by measurement of methyl paraoxon, and inhibition of specific CYP isozymes was determined by measurement of testosterone hydroxylation. Total CYP content was quantified spectrophotometrically. Incubation of microsomes with methyl parathion decreased CYP content by 58%. This effect was not associated with a comparable increase in absorbance at 420 nm, suggesting the displacement of heme from the apoprotein. Rates of testosterone 2β- and 6β-hydroxylation, respectively, were reduced to 8 and 2%, implicating CYP3A and CYP2C11 in the oxidative desulfuration of methyl parathion. Mass spectrometric analysis identified 96 amu adducts to cysteines 64 and 378 of CYP3A1. In addition, a peptide containing cysteine 433 that coordinates with heme was possibly modified as it was detected in control, but not methyl parathion samples. A comparison of rat CYP3A1 with human CYP3A4 suggests that cysteines 64 and 378 reside along the substrate channel, remote from the active site. Alteration of these residues might modulate substrate entry to the binding pocket of the enzyme. PMID:22271348

  15. The Investigational Drug VT-1129 Is a Highly Potent Inhibitor of Cryptococcus Species CYP51 but Only Weakly Inhibits the Human Enzyme.

    PubMed

    Warrilow, Andrew G S; Parker, Josie E; Price, Claire L; Nes, W David; Garvey, Edward P; Hoekstra, William J; Schotzinger, Robert J; Kelly, Diane E; Kelly, Steven L

    2016-08-01

    Cryptococcosis is a life-threatening disease often associated with HIV infection. Three Cryptococcus species CYP51 enzymes were purified and catalyzed the 14α-demethylation of lanosterol, eburicol, and obtusifoliol. The investigational agent VT-1129 bound tightly to all three CYP51 proteins (dissociation constant [Kd] range, 14 to 25 nM) with affinities similar to those of fluconazole, voriconazole, itraconazole, clotrimazole, and ketoconazole (Kd range, 4 to 52 nM), whereas VT-1129 bound weakly to human CYP51 (Kd, 4.53 μM). VT-1129 was as effective as conventional triazole antifungal drugs at inhibiting cryptococcal CYP51 activity (50% inhibitory concentration [IC50] range, 0.14 to 0.20 μM), while it only weakly inhibited human CYP51 activity (IC50, ∼600 μM). Furthermore, VT-1129 weakly inhibited human CYP2C9, CYP2C19, and CYP3A4, suggesting a low drug-drug interaction potential. Finally, the cellular mode of action for VT-1129 was confirmed to be CYP51 inhibition, resulting in the depletion of ergosterol and ergosta-7-enol and the accumulation of eburicol, obtusifolione, and lanosterol/obtusifoliol in the cell membranes. PMID:27161631

  16. Assessment of competitive and mechanism-based inhibition by clarithromycin: use of domperidone as a CYP3A probe-drug substrate and various enzymatic sources including a new cell-based assay with freshly isolated human hepatocytes.

    PubMed

    Michaud, Veronique; Turgeon, Jacques

    2010-04-01

    Clarithromycin is involved in a large number of clinically relevant drug-drug interactions. Discrepancies are observed between the magnitude of drug interactions predicted from in vitro competitive inhibition studies and changes observed clinically in the plasma levels of affected CYP3A substrates. The formation of metabolic-intermediate complexes has been proposed to explain these differences. The objectives of our study were: 1) to determine the competitive inhibition potency of clarithromycin on the metabolism of domperidone as a CYP3A probe drug using human recombinant CYP3A4 and CYP3A5 isoenzymes, human liver microsomes and cultured human hepatocytes; 2) to establish the modulatory role of cytochrome b5 on the competitive inhibition potency of clarithromycin; 3) to demonstrate the clarithromycin-induced formation of CYP450 metabolic-intermediate complexes in human liver microsomes; and 4) to determine the extent of CYP3A inhibition due to metabolic-intermediate complex formation using human liver microsomes and cultured human hepatocytes. At high concentrations (100 µM), clarithromycin had weak competitive inhibition potency towards CYP3A4 and CYP3A5. Inhibition potency was further decreased by the addition of cytochrome b5 (9-19%). Clarithromycin-induced metabolic-intermediate complexes were revealed by spectrophotometry analysis using human liver microsomes while time- and concentration-dependent mechanism-based inhibitions were quantified using isolated hepatocytes. These results indicate that mechanism-based but not competitive inhibition of CYP3As is the major underlying mechanism of drug-drug interactions observed clinically with clarithromycin. Drug interactions between clarithromycin and several CYP3A substrates are predicted to be insidious; the risk of severe adverse events should increase over time and persist for a few days after cessation of the drug. PMID:20446912

  17. PXR variants and artemisinin use in Vietnamese subjects: frequency distribution and impact on the interindividual variability of CYP3A induction by artemisinin.

    PubMed

    Piedade, Rita; Schaeffeler, Elke; Winter, Stefan; Asimus, Sara; Schwab, Matthias; Ashton, Michael; Burk, Oliver; Gil, José P

    2012-04-01

    Artemisinins induce drug metabolism through the activation of the pregnane X receptor (PXR) in vitro. Here, we report the resequencing and genotyping of PXR variants in 75 Vietnamese individuals previously characterized for CYP3A enzyme activity after artemisinin exposure. We identified a total of 31 PXR variants, including 5 novel single nucleotide polymorphisms (SNPs), and we identified significantly different allele frequencies relative to other ethnic groups. A trend of significance was observed between the level of CYP3A4 induction by artemisinin and two PXR variants, the 8118C→T (Y328Y) and 10719A→G variants. PMID:22252826

  18. Effect of tamoxifen on the enzymatic activity of human cytochrome CYP2B6.

    PubMed

    Sridar, Chitra; Kent, Ute M; Notley, Lisa M; Gillam, Elizabeth M J; Hollenberg, Paul F

    2002-06-01

    Tamoxifen is primarily used in the treatment of breast cancer. It has been approved as a chemopreventive agent for individuals at high risk for this disease. Tamoxifen is metabolized to a number of different products by cytochrome P450 enzymes. The effect of tamoxifen on the enzymatic activity of bacterially expressed human cytochrome CYP2B6 in a reconstituted system has been investigated. The 7-ethoxy-4-(trifluoromethyl)coumarin O-deethylation activity of purified CYP2B6 was inactivated by tamoxifen in a time- and concentration-dependent manner. Enzymatic activity was lost only in samples that were incubated with both tamoxifen and NADPH. The inactivation was characterized by a K(I) of 0.9 microM, a k(inact) of 0.02 min(-1), and a t(1/2) of 34 min. The loss in the 7-ethoxy-4-(trifluoromethyl)coumarin O-deethylation activity did not result in a similar percentage loss in the reduced carbon monoxide spectrum, suggesting that the heme moiety was not the major site of modification. The activity of CYP2B6 was not recovered after removal of free tamoxifen using spin column gel filtration. The loss in activity seemed to be due to a modification of the CYP2B6 and not reductase because adding fresh reductase back to the inactivated samples did not restore enzymatic activity. A reconstituted system containing purified CYP2B6, NADPH-reductase, and NADPH-generating system was found to catalyze tamoxifen metabolism to 4-OH-tamoxifen, 4'-OH-tamoxifen, and N-desmethyl-tamoxifen as analyzed by high-performance liquid chromatography analysis. Preliminary studies showed that tamoxifen had no effect on the activities of CYP1B1 and CYP3A4, whereas CYP2D6 and CYP2C9 exhibited a 25% loss in enzymatic activity. PMID:12023523

  19. Rational development of 4-aminopyridyl-based inhibitors targeting Trypanosoma cruzi CYP51 as anti-Chagas agents

    PubMed Central

    Choi, Jun Yong; Calvet, Claudia M.; Gunatilleke, Shamila S.; Ruiz, Claudia; Cameron, Michael D.; McKerrow, James H.; Podust, Larissa M.; Roush, William R.

    2013-01-01

    A new series of 4-aminopyridyl-based lead inhibitors targeting Trypanosoma cruzi CYP51 (TcCYP51) has been developed using structure-based drug design as well as structure-property relationship (SPR) analyses. The screening hit starting point, LP10 (KD ≤ 42 nM; EC50 of 0.65 µM), has been optimized to give the potential leads 14t, 27i, 27q, 27r, and 27t, that have low nanomolar binding affinity to TcCYP51 and significant activity against T. cruzi amastigotes cultured in human myoblasts (EC50 = 14–18 nM for 27i and 27r). Many of the optimized compounds have improved microsome stability, and most are selective against human CYPs 1A2, 2D6 and 3A4 (<50% inhibition at 1 µM). A rationale for the improvement of microsome stability and selectivity of inhibitors against human metabolic CYP enzymes is presented. In addition, the binding mode of 14t with the T. brucei CYP51 (TbCYP51) ortholog has been characterized by x-ray structure analysis. PMID:24079662

  20. Effects of cytochrome P450 3A (CYP3A) and the drug transporters P-glycoprotein (MDR1/ABCB1) and MRP2 (ABCC2) on the pharmacokinetics of lopinavir

    PubMed Central

    van Waterschoot, RAB; ter Heine, R; Wagenaar, E; van der Kruijssen, CMM; Rooswinkel, RW; Huitema, ADR; Beijnen, JH; Schinkel, AH

    2010-01-01

    Background and purpose: Lopinavir is extensively metabolized by cytochrome P450 3A (CYP3A) and is considered to be a substrate for the drug transporters ABCB1 (P-glycoprotein) and ABCC2 (MRP2). Here, we have assessed the individual and combined effects of CYP3A, ABCB1 and ABCC2 on the pharmacokinetics of lopinavir and the relative importance of intestinal and hepatic metabolism. We also evaluated whether ritonavir increases lopinavir oral bioavailability by inhibition of CYP3A, ABCB1 and/or ABCC2. Experimental approach: Lopinavir transport was measured in Madin-Darby canine kidney cells expressing ABCB1 or ABCC2. Oral lopinavir kinetics (+/− ritonavir) was studied in mice with genetic deletions of Cyp3a, Abcb1a/b and/or Abcc2, or in transgenic mice expressing human CYP3A4 exclusively in the liver and/or intestine. Key results: Lopinavir was transported by ABCB1 but not by ABCC2 in vitro. Lopinavir area under the plasma concentration – time curve (AUC)oral was increased in Abcb1a/b−/− mice (approximately ninefold vs. wild-type) but not in Abcc2−/− mice. Increased lopinavir AUCoral (>2000-fold) was observed in cytochrome P450 3A knockout (Cyp3a−/−) mice compared with wild-type mice. No difference in AUCoral between Cyp3a−/− and Cyp3a/Abcb1a/b/Abcc2−/− mice was observed. CYP3A4 activity in intestine or liver, separately, reduced lopinavir AUCoral (>100-fold), compared with Cyp3a−/− mice. Ritonavir markedly increased lopinavir AUCoral in all CYP3A-containing mouse strains. Conclusions and implications: CYP3A was the major determinant of lopinavir pharmacokinetics, far more than Abcb1a/b. Both intestinal and hepatic CYP3A activity contributed importantly to low oral bioavailability of lopinavir. Ritonavir increased lopinavir bioavailability primarily by inhibiting CYP3A. Effects of Abcb1a/b were only detectable in the presence of CYP3A, suggesting saturation of Abcb1a/b in the absence of CYP3A activity. PMID:20590614

  1. Glucuronidation converts clopidogrel to a strong time-dependent inhibitor of CYP2C8: a phase II metabolite as a perpetrator of drug-drug interactions.

    PubMed

    Tornio, A; Filppula, A M; Kailari, O; Neuvonen, M; Nyrönen, T H; Tapaninen, T; Neuvonen, P J; Niemi, M; Backman, J T

    2014-10-01

    Cerivastatin and repaglinide are substrates of cytochrome P450 (CYP)2C8, CYP3A4, and organic anion-transporting polypeptide (OATP)1B1. A recent study revealed an increased risk of rhabdomyolysis in patients using cerivastatin with clopidogrel, warranting further studies on clopidogrel interactions. In healthy volunteers, repaglinide area under the concentration-time curve (AUC(0-∞)) was increased 5.1-fold by a 300-mg loading dose of clopidogrel and 3.9-fold by continued administration of 75 mg clopidogrel daily. In vitro, we identified clopidogrel acyl-β-D-glucuronide as a potent time-dependent inhibitor of CYP2C8. A physiologically based pharmacokinetic model indicated that inactivation of CYP2C8 by clopidogrel acyl-β-D-glucuronide leads to uninterrupted 60-85% inhibition of CYP2C8 during daily clopidogrel treatment. Computational modeling resulted in docking of clopidogrel acyl-β-D-glucuronide at the CYP2C8 active site with its thiophene moiety close to heme. The results indicate that clopidogrel is a strong CYP2C8 inhibitor via its acyl-β-D-glucuronide and imply that glucuronide metabolites should be considered potential inhibitors of CYP enzymes. PMID:24971633

  2. Mechanism of ritonavir changes in methadone pharmacokinetics and pharmacodynamics: II. Ritonavir effects on CYP3A and P-glycoprotein activities.

    PubMed

    Kharasch, E D; Bedynek, P S; Walker, A; Whittington, D; Hoffer, C

    2008-10-01

    Ritonavir diminishes methadone plasma concentrations, an effect attributed to CYP3A induction, but the actual mechanisms are unknown. We determined short-term (2-day) and steady-state (2-week) ritonavir effects on intestinal and hepatic CYP3A4/5 (probed with intravenous (IV) and oral alfentanil (ALF) and with miosis) and P-glycoprotein (P-gp) (fexofenadine), and on methadone pharmacokinetics and pharmacodynamics in healthy volunteers. Acute ritonavir increased the area under the concentration-time curve (AUC)(0-infinity)/dose ratio (ritonavir/control) for oral ALF 25-fold. Steady-state ritonavir increased the AUC(0-Infinity)/dose ratio for IV and oral ALF 4- and 10-fold, respectively; reduced hepatic extraction (from 0.26 to 0.07) and intestinal extraction (from 0.51 to 0); and increased bioavailability (from 37 to 95%). Acute ritonavir inhibits first-pass CYP3A > 96%. Chronic ritonavir inhibits hepatic CYP3A (> 70%) and first-pass CYP3A (> 90%). Acute and steady-state ritonavir increased the fexofenadine AUC(0-infinity) 2.8- and 1.4-fold, respectively, suggesting P-gp inhibition. Steady-state compared with acute ritonavir caused mild apparent induction of P-gp and hepatic CYP3A, but net inhibition still predominated. Ritonavir inhibited both intestinal and hepatic CYP3A and drug transport. ALF miosis noninvasively determined CYP3A inhibition by ritonavir. PMID:19238656

  3. Pharmacogenetic evaluation of ABCB1, Cyp2C9, Cyp2C19 and methylene tetrahydrofolate reductase polymorphisms in teratogenicity of anti-epileptic drugs in women with epilepsy

    PubMed Central

    Jose, Manna; Banerjee, Moinak; Mathew, Anila; Bharadwaj, Tashi; Vijayan, Neetha; Thomas, Sanjeev V.

    2014-01-01

    Aim: Pregnancy in women with epilepsy (WWE) who are on anti-epileptic drugs (AEDs) has two- to three-fold increased risk of fetal malformations. AEDs are mostly metabolized by Cyp2C9, Cyp2C19 and Cyp3A4 and transported by ABCB1. Patients on AED therapy can have folate deficiency. We hypothesize that the polymorphisms in ABCB1, Cyp2C9, Cyp2C19 and methylene tetrahydrofolate reductase (MTHFR) might result in differential expression resulting in differential drug transport, drug metabolism and folate metabolism, which in turn may contribute to the teratogenic impact of AEDs. Materials and Methods: The ABCB1, Cyp2C9, Cyp2C19 and MTHFR polymorphisms were genotyped for their role in teratogenic potential and the nature of teratogenecity in response to AED treatment in WWE. The allelic, genotypic associations were tested in 266 WWE comprising of 143 WWE who had given birth to babies with WWE-malformation (WWE-M) and 123 WWE who had normal offsprings (WWE-N). Results: In WWE-M, CC genotype of Ex07 + 139C/T was overrepresented (P = 0.0032) whereas the poor metabolizer allele *2 and *2 *2 genotype of CYP2C219 was significantly higher in comparison to WWE-N group (P = 0.007 and P = 0.005, respectively). All these observations were independent of the nature of malformation (cardiac vs. non cardiac malformations). Conclusion: Our study indicates the possibility that ABCB1 and Cyp2C19 may play a pivotal role in the AED induced teratogenesis, which is independent of nature of malformation. This is one of the first reports indicating the pharmacogenetic role of Cyp2C19 and ABCB1 in teratogenesis of AED in pregnant WWE. PMID:25221392

  4. Modulation of CYP3a expression and activity in mice models of type 1 and type 2 diabetes

    PubMed Central

    Patoine, Dany; Petit, Michaël; Pilote, Sylvie; Picard, Frédéric; Drolet, Benoit; Simard, Chantale

    2014-01-01

    CYP3A4, the most abundant cytochrome P450 enzyme in the human liver and small intestine, is responsible for the metabolism of about 50% of all marketed drugs. Numerous pathophysiological factors, such as diabetes and obesity, were shown to affect CYP3A activity. Evidences suggest that drug disposition is altered in type 1 (T1D) and type 2 diabetes (T2D). The objective was to evaluate the effect of T1D and T2D on hepatic and intestinal CYP3a drug-metabolizing activity/expression in mice. Hepatic and intestinal microsomes were prepared from streptozotocin-induced T1D, db/db T2D and control mice. Domperidone was selected as a probe substrate for CYP3a and formation of five of its metabolites was evaluated using high performance liquid chromatography. Hepatic CYP3a protein and mRNA expression were assessed by Western blot and reverse-transcription quantitative polymerase chain reaction respectively. Hepatic microsomal CYP3a activity was significantly increased in both T1D and T2D groups versus control group. Intestinal CYP3a activity was also significantly increased in both T1D and T2D groups. Moreover, significant increases of both hepatic CYP3a mRNAs and protein expression were observed in both T1D and T2D groups versus control group. Additional experiments with testosterone further validated the increased activity of CYP3a under the effect of both T1D and T2D. Although differences exist in the pathophysiological insults associated with T1D and T2D, our results suggest that these two distinct diseases may have the same modulating effect on the regulation of CYP3a, ultimately leading to variability in drug response, ranging from lack of effect to life-threatening toxicity. PMID:25505621

  5. Hydroxywarfarin metabolites potently inhibit CYP2C9 metabolism of S-warfarin.

    PubMed

    Jones, Drew R; Kim, So-Young; Guderyon, Michael; Yun, Chul-Ho; Moran, Jeffery H; Miller, Grover P

    2010-05-17

    Coumadin (R/S-warfarin) anticoagulant therapy poses a risk to over 50 million Americans, in part due to interpersonal variation in drug metabolism. Consequently, it is important to understand how metabolic capacity is influenced among patients. Cytochrome P450s (P450 or CYP for a specific isoform) catalyze the first major step in warfarin metabolism to generate five hydroxywarfarins for each drug enantiomer. These primary metabolites are thought to reach at least 5-fold higher levels in plasma than warfarin. We hypothesized that hydroxywarfarins inhibit the hydroxylation of warfarin by CYP2C9, thereby limiting enzymatic capacity toward S-warfarin. To test this hypothesis, we investigated the ability of all five racemic hydroxywarfarins to block CYP2C9 activity toward S-warfarin using recombinant enzyme and human liver microsomes. We initially screened for the inhibition of CYP2C9 by hydroxywarfarins using a P450-Glo assay to determine IC(50) values for each hydroxywarfarin. Compared to the substrate, CYP2C9 bound its hydroxywarfarin products with less affinity but retained high affinity for 10- and 4'-hydroxywarfarins, products from CYP3A4 reactions. S-Warfarin steady-state inhibition studies with recombinant CYP2C9 and pooled human liver microsomes confirmed that hydroxywarfarin products from CYP reactions possess the capacity to competitively inhibit CYP2C9 with biologically relevant inhibition constants. Inhibition of CYP2C9 by 7-hydroxywarfarin may be significant given its abundance in human plasma, despite its weak affinity for the enzyme. 10-Hydroxywarfarin, which has been reported as the second most abundant plasma metabolite, was the most potent inhibitor of CYP2C9, displaying approximately 3-fold higher affinity than S-warfarin. These results indicate that hydroxywarfarin metabolites produced by CYP2C9 and other CYPs may limit metabolic capacity toward S-warfarin through competitive inhibition. Subsequent processing of hydroxywarfarins to secondary

  6. Effects of the differentiated keratinocyte phenotype on expression levels of CYP1-4 family genes in human skin cells

    SciTech Connect

    Du Liping; Neis, Mark M.; Ladd, Patricia A.; Yost, Garold S.; Keeney, Diane S. . E-mail: diane.keeney@vanderbilt.edu

    2006-06-01

    Epoxyeicosatrienoic acids produced by mouse CYP2B19 have been implicated in mechanisms regulating epidermal cornification (Ladd, P.A., Du, L., Capdevila, J.H., Mernaugh, R., Keeney, D.S., 2003. Epoxyeicosatrienoic acids activate transglutaminases in situ and induce cornification of epidermal keratinocytes. J. Biol. Chem. 278, 35184-35192). In this study, we aimed to identify CYPs that are up-regulated during keratinocyte differentiation and potentially responsible for epoxyeicosatrienoic acid formation in human skin. The cellular differentiation state of human epidermal cell cultures was manipulated to resemble the basal, spinous, and granular cell phenotypes in vivo. Changes in CYP mRNA levels were measured as a function of differentiation state for a panel of 15 CYPs that included known and putative arachidonate monooxygenases. Quantitative real-time PCR analyses showed that all of the CYPs were expressed in differentiating epidermal cell cultures and in human epidermis, with the exception of CYP2B6, which was poorly expressed in vitro. Six CYPs were strongly up-regulated at Day 6 and Day 8 of in vitro differentiation (CYP4B1, 2W1, 2C18, 3A4, 2C19, 2C9); the increase in mRNA levels ranged from 27- to 356-fold. Only CYP2U1 mRNA levels decreased (6-fold change) during cellular differentiation. Six CYPs showed little variation (<2-fold change) in mRNA levels during in vitro differentiation (CYP2S1, 2J2, 1B1, 1A1, 2E1, 2D6). No single CYP was identifiable as being a functional counterpart to CYP2B19 in mouse skin since none qualified as being mainly responsible for epidermal epoxyeicosatrienoic acid formation. Rather, the data suggest that epoxyeicosatrienoic acids in human skin are formed by several CYPs expressed in different cell layers of the epidermis. This would predict that CYP-derived eicosanoids have different functions in different epidermal cell layers.

  7. Inhibition of CYP1A1 by Quassinoids found in Picrasma excelsa.

    PubMed

    Shields, Mario; Niazi, Umar; Badal, Simone; Yee, Trevor; Sutcliffe, Michael J; Delgoda, Rupika

    2009-02-01

    Infusions of the plant Picrasma excelsa, known as Jamaican bitterwood tea, are commonly consumed to lower blood sugar levels in diabetics who are already on prescription medicines. We therefore investigated the inhibition properties of this tea against a panel of cytochrome P450 (CYP) enzymes, which are primarily responsible for the metabolism of a majority of drugs on the market. The two major ingredients, quassin and neoquassin, were then isolated and used for further characterization. Inhibition of the activities of heterologously expressed CYP microsomes (CYPs 2D6, 3A4, 1A1, 1A2, 2C9, and 2C19) was monitored, and the most potent inhibition was found to be against CYP1A1, with IC (50) values of 9.2 microM and 11.9 microM for quassin and neoquassin, respectively. The moderate inhibition against the CYP1A1 isoform by quassin and neoquassin displayed partial competitive inhibition kinetics, with inhibition constants ( K(i)) of 10.8 +/- 1.6 microM, for quassin and competitive inhibition kinetics, with a K(i) of 11.3 +/- 0.9 microM, for neoquassin. We then docked these two inhibitors into the active site of a model of CYP1A1, which provided insight at the atomic level into the structure-activity relationship of quassinoids with respect to this important CYP isoform known to be an activator of carcinogens, thus providing a useful basis for the search for more potent inhibitors of CYP1A1 that may have implications in chemoprotection. PMID:19016402

  8. Dynamic and Static Simulations of Fluvoxamine-Perpetrated Drug-Drug Interactions Using Multiple Cytochrome P450 Inhibition Modeling, and Determination of Perpetrator-Specific CYP Isoform Inhibition Constants and Fractional CYP Isoform Contributions to Victim Clearance.

    PubMed

    Iga, Katsumi

    2016-03-01

    Fluvoxamine-perpetrated drug-drug interactions (DDIs) of victims metabolized by multiple cytochrome P450 isoforms (CYP1A2, CYP2C19, and CYP3A4) were simulated using 2 compartment-based tube modeling, assuming a multiple inhibition-constant (Ki) model, as well as a previously reported single Ki model. Good fittings were obtained for all DDIs using consistent perpetrator-specific CYP isoform Kis and fractional CYP isoform contributions to victim clearance in concordance with literature information. Through these simulations, the following rules to predict DDI were derived. Overall enzymatic inhibitory activity calculated from static DDI data determines entirely dynamic DDIs. DDI-relevant time-dependent hepatic blood unbound perpetrator levels can be approximated to mean hepatic blood unbound perpetrator levels in any victim DDIs when a perpetrator is supplied consistently. Static and dynamic multiple CYP model-based simulations agree with one another. Fluvoxamine-perpetrated DDIs can be bridged to other perpetrator DDIs. The derived rules will allow simpler prediction of DDIs from in vivo DDI databases. Tens or hundreds of Ki gaps between in vitro and in vivo data could be reduced to within severalfold using the liver-microsome contamination model, thus suggesting that microsomes qualified with contamination would greatly improve prediction of DDIs from in vitro data. PMID:26886336

  9. Design and optimization of highly-selective fungal CYP51 inhibitors.

    PubMed

    Hoekstra, William J; Garvey, Edward P; Moore, William R; Rafferty, Stephen W; Yates, Christopher M; Schotzinger, Robert J

    2014-08-01

    While the orally-active azoles such as voriconazole and itraconazole are effective antifungal agents, they potently inhibit a broad range of off-target human cytochrome P450 enzymes (CYPs) leading to various safety issues (e.g., drug-drug interactions, liver toxicity). Herein, we describe rationally-designed, broad-spectrum antifungal agents that are more selective for the target fungal enzyme, CYP51, than related human CYP enzymes such as CYP3A4. Using proprietary methodology, the triazole metal-binding group found in current clinical agents was replaced with novel, less avid metal-binding groups in concert with potency-enhancing molecular scaffold modifications. This process produced a unique series of fungal CYP51-selective inhibitors that included the oral antifungal 7d (VT-1161), now in Phase 2 clinical trials. This series exhibits excellent potency against key yeast and dermatophyte strains. The chemical methodology described is potentially applicable to the design of new and more effective metalloenzyme inhibitor treatments for a broad array of diseases. PMID:24948565

  10. Reduced Methylprednisolone Clearance Causing Prolonged Pharmacodynamics in a Healthy Subject Was Not Associated With CYP3A5*3 Allele or a Change in Diet Composition

    PubMed Central

    Lee, Su-Jun; Jusko, William J.; Salaita, Christine G.; Calis, Karim A.; Jann, Michael W.; Spratlin, Vicky E.; Goldstein, Joyce A.; Hon, Yuen Yi

    2014-01-01

    The influence of diet and genetics was investigated in a healthy white person who had distinctly low methylprednisolone clearance. Pharmacokinetic and pharmacodynamic parameter values were similar on 2 occasions during the consumption of a low-carbohydrate diet and a Weight Watchers diet, indicating that the decreased clearance was unlikely attributable to a change in diet composition. Although the subject was found to be homozygous for CYP3A5*3, genetic findings were not significant for a number of other CYP3A4 and CYP3A5 allelic variants. Because of the high prevalence of CYP3A5*3/*3 in whites and because 5 of 7 white control subjects are also homozygous for CYP3A5*3, this genotype cannot fully explain the reduced metabolism of the drug. Other genetic or contributing factors might have been involved. New polymerase chain reaction–based genotyping methods for functionally defective CYP3A5*6, *8, *9, and *10 alleles were developed in this study. These assays will be useful for CYP3A5 genotype analysis in future clinical studies. PMID:16638735

  11. Novel CYP17 inhibitors: synthesis, biological evaluation, structure-activity relationships and modelling of methoxy- and hydroxy-substituted methyleneimidazolyl biphenyls.

    PubMed

    Hille, Ulrike E; Hu, Qingzhong; Vock, Carsten; Negri, Matthias; Bartels, Marc; Müller-Vieira, Ursula; Lauterbach, Thomas; Hartmann, Rolf W

    2009-07-01

    Recently, the steroidal CYP17 inhibitor Abiraterone entered phase II clinical trial for the treatment of androgen-dependent prostate cancer. As 17alpha-hydroxylase-17,20-lyase (CYP17) catalyzes the last step in androgen biosynthesis, inhibition of this target should affect not only testicular but also adrenal androgen formation. Therefore CYP17 inhibitors should be advantageous over existing therapies, for example with GnRH analogues. However, steroidal drugs are known for side effects which are due to affinities for steroid receptors. Therefore we decided to synthesize non-steroidal compounds mimicking the natural CYP17 substrates pregnenolone and progesterone. The synthesis and biological evaluation of a series of 15 novel and highly active non-steroidal CYP17 inhibitors are reported. The compounds were prepared via Suzuki-cross-coupling, Grignard reaction and CDI-assisted S(N)t-reaction with imidazole and their inhibitory activity was examined with recombinant human CYP17 expressed in Escherichia coli. Promising compounds were further tested for their selectivity against the hepatic enzyme CYP3A4 and the glucocorticoid-forming enzyme CYP11B1. All compounds turned out to be potent CYP17 inhibitors. The most active compounds 7 and 8 were much more active than Ketoconazole showing activity comparable to Abiraterone (IC(50) values of 90 and 52nM vs. 72nM). Most compounds also showed higher selectivities than Ketoconazole, but turned out to be less selective than Abiraterone. Docking studies using our CYP17 protein model were performed with selected compounds to study the interactions between the inhibitors and the amino acid residues of the active site. PMID:19211174

  12. CYP3A Specifically Catalyzes 1β-Hydroxylation of Deoxycholic Acid: Characterization and Enzymatic Synthesis of a Potential Novel Urinary Biomarker for CYP3A Activity.

    PubMed

    Hayes, Martin A; Li, Xue-Qing; Grönberg, Gunnar; Diczfalusy, Ulf; Andersson, Tommy B

    2016-09-01

    The endogenous bile acid metabolite 1β-hydroxy-deoxycholic acid (1β-OH-DCA) excreted in human urine may be used as a sensitive CYP3A biomarker in drug development reflecting in vivo CYP3A activity. An efficient and stereospecific enzymatic synthesis of 1β-OH-DCA was developed using a Bacillus megaterium (BM3) cytochrome P450 (P450) mutant, and its structure was confirmed by nuclear magnetic resonance (NMR) spectroscopy. A [(2)H4]-labeled analog of 1β-OH-DCA was also prepared. The major hydroxylated metabolite of deoxycholic acid (DCA) in human liver microsomal incubations was identified as 1β-OH-DCA by comparison with the synthesized reference analyzed by UPLC-HRMS. Its formation was strongly inhibited by CYP3A inhibitor ketoconazole. Screening of 21 recombinant human cytochrome P450 (P450) enzymes showed that, with the exception of extrahepatic CYP46A1, the most abundant liver P450 subfamily CYP3A, including CYP3A4, 3A5, and 3A7, specifically catalyzed 1β-OH-DCA formation. This indicated that 1β-hydroxylation of DCA may be a useful marker reaction for CYP3A activity in vitro. The metabolic pathways of DCA and 1β-OH-DCA in human hepatocytes were predominantly via glycine and, to a lesser extent, via taurine and sulfate conjugation. The potential utility of 1β-hydroxylation of DCA as a urinary CYP3A biomarker was illustrated by comparing the ratio of 1β-OH-DCA:DCA in a pooled spot urine sample from six healthy control subjects to a sample from one patient treated with carbamazepine, a potent CYP3A inducer; 1β-OH-DCA:DCA was considerably higher in the patient versus controls (ratio 2.8 vs. 0.4). Our results highlight the potential of 1β-OH-DCA as a urinary biomarker in clinical CYP3A DDI studies. PMID:27402728

  13. Identification and characterization of reactive metabolites in myristicin-mediated mechanism-based inhibition of CYP1A2.

    PubMed

    Yang, Ai-Hong; He, Xin; Chen, Jun-Xiu; He, Li-Na; Jin, Chun-Huan; Wang, Li-Li; Zhang, Fang-Liang; An, Li-Jun

    2015-07-25

    Myristicin belongs to the methylenedioxyphenyl or allyl-benzene family of compounds, which are found widely in plants of the Umbelliferae family, such as parsley and carrot. Myristicin is also the major active component in the essential oils of mace and nutmeg. However, this compound can cause adverse reactions, particularly when taken inappropriately or in overdoses. One important source of toxicity of natural products arises from their metabolic biotransformations into reactive metabolites. Myristicin contains a methylenedioxyphenyl substructure, and this specific structural feature may allow compounds to cause a mechanism-based inhibition of cytochrome P450 enzymes and produce reactive metabolites. Therefore, the aim of this work was to identify whether the role of myristicin in CYP enzyme inhibition is mechanism-based inhibition and to gain further information regarding the structure of the resulting reactive metabolites. CYP cocktail assays showed that myristicin most significantly inhibits CYP1A2 among five CYP enzymes (CYP1A2, CYP2D6, CYP2E1, CYP3A4 and CYP2C19) from human liver microsomes. The 3.21-fold IC50 shift value of CYP1A2 indicates that myristicin may be a mechanism-based inhibitor of CYP1A2. Next, reduced glutathione was shown to block the inhibition of CYP1A2, indicating that myristicin utilized a mechanism-based inhibition. Phase I metabolism assays identified two metabolites, 5-allyl-1-methoxy-2,3-dihydroxybenzene (M1) and 1'-hydroxymyristicin or 2',3'-epoxy-myristicin (M2). Reduced glutathione capturing assays captured the glutathione-M1 adduct, and the reactive metabolites were identified using UPLC-MS(2) as a quinone and its tautomer. Thus, it was concluded that myristicin is a mechanism-based inhibitor of CYP1A2, and the reactive metabolites are quinone tautomers. Additionally, the cleavage process of the glutathione-M1 adduct was analyzed in further detail. This study provides additional information on the metabolic mechanism of myristicin

  14. Guanfu base A, an antiarrhythmic alkaloid of Aconitum coreanum, Is a CYP2D6 inhibitor of human, monkey, and dog isoforms.

    PubMed

    Sun, Jianguo; Peng, Ying; Wu, Hui; Zhang, Xueyuan; Zhong, Yunxi; Xiao, Yanan; Zhang, Fengyi; Qi, Huanhuan; Shang, Lili; Zhu, Jianping; Sun, Yue; Liu, Ke; Liu, Jinghan; A, Jiye; Ho, Rodney J Y; Wang, Guangji

    2015-05-01

    Guanfu base A (GFA) is a novel heterocyclic antiarrhythmic drug isolated from Aconitum coreanum (Lèvl.) rapaics and is currently in a phase IV clinical trial in China. However, no study has investigated the influence of GFA on cytochrome P450 (P450) drug metabolism. We characterized the potency and specificity of GFA CYP2D inhibition based on dextromethorphan O-demethylation, a CYP2D6 probe substrate of activity in human, mouse, rat, dog, and monkey liver microsomes. In addition, (+)-bufuralol 1'-hydroxylation was used as a CYP2D6 probe for the recombinant form (rCYP2D6), 2D1 (rCYP2D1), and 2D2 (rCYP2D2) activities. Results show that GFA is a potent noncompetitive inhibitor of CYP2D6, with inhibition constant Ki = 1.20 ± 0.33 μM in human liver microsomes (HLMs) and Ki = 0.37 ± 0.16 μM for the human recombinant form (rCYP2D6). GFA is also a potent competitive inhibitor of CYP2D in monkey (Ki = 0.38 ± 0.12 μM) and dog (Ki = 2.4 ± 1.3 μM) microsomes. However, GFA has no inhibitory activity on mouse or rat CYP2Ds. GFA did not exhibit any inhibition activity on human recombinant CYP1A2, 2A6, 2C8, 2C19, 3A4, or 3A5, but showed slight inhibition of 2B6 and 2E1. Preincubation of HLMs and rCYP2D6 resulted in the inactivation of the enzyme, which was attenuated by GFA or quinidine. Beagle dogs treated intravenously with dextromethorphan (2 mg/ml) after pretreatment with GFA injection showed reduced CYP2D metabolic activity, with the Cmax of dextrorphan being one-third that of the saline-treated group and area under the plasma concentration-time curve half that of the saline-treated group. This study suggests that GFA is a specific CYP2D6 inhibitor that might play a role in CYP2D6 medicated drug-drug interaction. PMID:25681130

  15. Relationship between genotypes Sult1a2 and Cyp2d6 and tamoxifen metabolism in breast cancer patients.

    PubMed

    Fernández-Santander, Ana; Gaibar, María; Novillo, Apolonia; Romero-Lorca, Alicia; Rubio, Margarita; Chicharro, Luis Miguel; Tejerina, Armando; Bandrés, Fernando

    2013-01-01

    Tamoxifen is a pro-drug widely used in breast cancer patients to prevent tumor recurrence. Prior work has revealed a role of cytochrome and sulfotransferase enzymes in tamoxifen metabolism. In this descriptive study, correlations were examined between concentrations of tamoxifen metabolites and genotypes for CYP2D6, CYP3A4, CYP3A5, SULT1A1, SULT1A2 and SULT1E1 in 135 patients with estrogen receptor-positive breast cancer. Patients were genotyped using the Roche-AmpliChip® CYP450 Test, and Real-Time and conventional PCR-RFLP. Plasma tamoxifen, 4-hydroxy-tamoxifen, N-desmethyl-tamoxifen, endoxifen and tamoxifen-N-oxide were isolated and quantified using a high-pressure liquid chromatography-tandem mass spectrometry system. Significantly higher endoxifen levels were detected in patients with the wt/wt CYP2D6 compared to the v/v CYP2D6 genotype (p<0.001). No differences were detected in the remaining tamoxifen metabolites among CYP2D6 genotypes. Patients featuring the SULT1A2*2 and SULT1A2*3 alleles showed significantly higher plasma levels of 4-hydroxy-tamoxifen and endoxifen (p = 0.025 and p = 0.006, respectively), as likely substrates of the SULT1A2 enzyme. Our observations indicate that besides the CYP2D6 genotype leading to tamoxifen conversion to potent hydroxylated metabolites in a manner consistent with a gene-dose effect, SULT1A2 also seems to play a role in maintaining optimal levels of both 4-hydroxy-tamoxifen and endoxifen. PMID:23922954

  16. Relationship between Genotypes Sult1a2 and Cyp2d6 and Tamoxifen Metabolism in Breast Cancer Patients

    PubMed Central

    Fernández-Santander, Ana; Gaibar, María; Novillo, Apolonia; Romero-Lorca, Alicia; Rubio, Margarita; Chicharro, Luis Miguel; Tejerina, Armando; Bandrés, Fernando

    2013-01-01

    Tamoxifen is a pro-drug widely used in breast cancer patients to prevent tumor recurrence. Prior work has revealed a role of cytochrome and sulfotransferase enzymes in tamoxifen metabolism. In this descriptive study, correlations were examined between concentrations of tamoxifen metabolites and genotypes for CYP2D6, CYP3A4, CYP3A5, SULT1A1, SULT1A2 and SULT1E1 in 135 patients with estrogen receptor-positive breast cancer. Patients were genotyped using the Roche-AmpliChip® CYP450 Test, and Real-Time and conventional PCR-RFLP. Plasma tamoxifen, 4-hydroxy-tamoxifen, N-desmethyl-tamoxifen, endoxifen and tamoxifen-N-oxide were isolated and quantified using a high-pressure liquid chromatography-tandem mass spectrometry system. Significantly higher endoxifen levels were detected in patients with the wt/wt CYP2D6 compared to the v/v CYP2D6 genotype (p<0.001). No differences were detected in the remaining tamoxifen metabolites among CYP2D6 genotypes. Patients featuring the SULT1A2*2 and SULT1A2*3 alleles showed significantly higher plasma levels of 4-hydroxy-tamoxifen and endoxifen (p = 0.025 and p = 0.006, respectively), as likely substrates of the SULT1A2 enzyme. Our observations indicate that besides the CYP2D6 genotype leading to tamoxifen conversion to potent hydroxylated metabolites in a manner consistent with a gene-dose effect, SULT1A2 also seems to play a role in maintaining optimal levels of both 4-hydroxy-tamoxifen and endoxifen. PMID:23922954

  17. Thunbergia laurifolia extract minimizes the adverse effects of toxicants by regulating P-glycoprotein activity, CYP450, and lipid metabolism gene expression in HepG2 cells.

    PubMed

    Rocejanasaroj, A; Tencomnao, T; Sangkitikomol, W

    2014-01-01

    Thunbergia laurifolia (TL) is widely used as an antidote in Thai traditional medicine against toxic substances such as alcohol, pesticides, arsenic, and strychnine. We found that the lyophilized form of TL in 80% ethanol possessed the antioxidant levels within the range 23,163.9 ± 1457.4 Trolox equivalents mM/kg dry mass and 899.8 ± 14.5 gallic acid equivalents mM/kg dry mass using the oxygen radical absorbance capacity assay and the Folin Ciocalteu phenol assay, respectively. TL extract (TLE) at a high dose (3000 mg/L) induced cytotoxicity according to the neutral red assay and the MTT assay. However, TLE doses of 800-3000 mg/L could reduce intracellular oxidative stress in a dose-dependent manner (P < 0.05) using the dichlorodihydrofluorescein diacetate assay. TLE significantly enhanced the mRNA expression of CYP1A1, CYP1A2, CYP2B6, CYP3A4, and PPARg, but it significantly inhibited the mRNA expression of CYP3A7, CYP2D6, and CYP2E1 (P < 0.05) by reverse transcription-polymerase chain reaction. Moreover, TLE could increase the activity of a multidrug transporter, P-glycoprotein, which accelerated the excretion of toxic substances from HepG2 cells. It is suggested that TLE may be beneficial for detoxification by reducing oxidative stress, minimizing toxicity by regulating the expression CYP450 mRNAs for suitable production of CYP450 isoenzymes, and increasing PPARγ mRNA expression and P-glycoprotein activity in HepG2 cells, thereby maintaining xenobiotic biotransformation balance. PMID:24446304

  18. Prediction of inter-individual variability on the pharmacokinetics of CYP1A2 substrates in non-smoking healthy volunteers.

    PubMed

    Haraya, Kenta; Kato, Motohiro; Chiba, Koji; Sugiyama, Yuichi

    2016-08-01

    The activity of CYP1A2, a major drug-metabolizing enzyme, is known to be affected by various environmental factors. Our study aimed to predict inter-individual variability of AUC/Dose of CYP1A2 substrates in non-smoking healthy volunteers using the Monte Carlo simulation. Inter-individual variability in hepatic intrinsic clearance of CYP1A2 substrates (CLint,h,1A2) was estimated using dispersion model based on the inter-individual variability (N = 96) of the AUC of caffeine, a major CYP1A2 substrate. The estimated coefficient of variation (CV) of CLint,h,1A2 was 55%, similar to previously reported CLint,h,2D6 (60%) but larger than CLint,h,3A4 (33%). Then, this estimated CV was validated by predicting the CVs of AUC/Dose of tizanidine and phenacetin, which are mainly metabolized by CYP1A2 and have negligible renal clearance. As a result, reported CVs were successfully predicted within 2.5-97.5 percentile range of predicted values. Moreover, CVs for AUC/Dose of the CYP1A2 substrates theophylline and lidocaine, which are affected by other CYPs and renal clearance, were also successfully predicted. The inter-individual variability of AUC/Dose of CYP1A2 substrates was successfully predicted using 55% CV for CLint,h,1A2, and the results, along with those reported by our group for other CYPs, support the prediction of inter-individual variability of pharmacokinetics in the clinical setting. PMID:27318879

  19. RS-Predictor models augmented with SMARTCyp reactivities: robust metabolic regioselectivity predictions for nine CYP isozymes.

    PubMed

    Zaretzki, Jed; Rydberg, Patrik; Bergeron, Charles; Bennett, Kristin P; Olsen, Lars; Breneman, Curt M

    2012-06-25

    RS-Predictor is a tool for creating pathway-independent, isozyme-specific, site of metabolism (SOM) prediction models using any set of known cytochrome P450 (CYP) substrates and metabolites. Until now, the RS-Predictor method was only trained and validated on CYP 3A4 data, but in the present study, we report on the versatility the RS-Predictor modeling paradigm by creating and testing regioselectivity models for substrates of the nine most important CYP isozymes. Through curation of source literature, we have assembled 680 substrates distributed among CYPs 1A2, 2A6, 2B6, 2C19, 2C8, 2C9, 2D6, 2E1, and 3A4, the largest publicly accessible collection of P450 ligands and metabolites released to date. A comprehensive investigation into the importance of different descriptor classes for identifying the regioselectivity mediated by each isozyme is made through the generation of multiple independent RS-Predictor models for each set of isozyme substrates. Two of these models include a density functional theory (DFT) reactivity descriptor derived from SMARTCyp. Optimal combinations of RS-Predictor and SMARTCyp are shown to have stronger performance than either method alone, while also exceeding the accuracy of the commercial regioselectivity prediction methods distributed by Optibrium and Schrödinger, correctly identifying a large proportion of the metabolites in each substrate set within the top two rank-positions: 1A2 (83.0%), 2A6 (85.7%), 2B6 (82.1%), 2C19 (86.2%), 2C8 (83.8%), 2C9 (84.5%), 2D6 (85.9%), 2E1 (82.8%), 3A4 (82.3%), and merged (86.0%). Comprehensive datamining of each substrate set and careful statistical analyses of the predictions made by the different models revealed new insights into molecular features that control metabolic regioselectivity and enable accurate prospective prediction of likely SOMs. PMID:22524152

  20. Biotransformation of BDE-47 to Potentially Toxic Metabolites Is Predominantly Mediated by Human CYP2B6

    PubMed Central

    Feo, Maria Luisa; Gross, Michael S.; McGarrigle, Barbara P.; Eljarrat, Ethel; Barceló, Damià; Olson, James R.

    2012-01-01

    Background: Previous studies have indicated that cytochrome P450s (CYPs) are involved in the metabolism of polybrominated diphenyl ether (PBDE) flame retardants in humans, resulting in the formation of hydroxylated PBDEs (OH-PBDEs) that are potentially more toxic than the parent PBDEs. However, the specific enzymes responsible for the formation of OH-PBDEs are unknown. Objectives: The purposes of this study were to characterize the in vitro metabolism of 2,2´,4,4´-tetrabromodiphenyl ether (BDE-47) by human liver microsomes (HLM) and recombinant human CYPs, and to identify the CYP(s) that are active in the oxidative metabolism of BDE-47. Methods: Recombinant human CYPs (CYP1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4) were incubated with BDE-47 (20 µM), and the metabolites were measured and characterized using gas chromatography with tandem mass spectrometry (GC-MS/MS). For kinetic studies, CYP2B6 and pooled human liver microsomes (HLMs) were incubated with BDE-47 (0–60 µM). Results: CYP2B6 was the predominant CYP capable of forming six OH-BDEs, including 3-OH-BDE-47, 5-OH-BDE-47, 6-OH-BDE-47, 4-OH-BDE-42, 4´-OH-BDE-49, and a metabolite tentatively identified as 2´-OH-BDE-66. On the basis of full-scan GC-MS analysis, we hypothesized the formation of two other metabolites: di-OH-tetra-BDE and di-OH-tetrabrominated dioxin. In kinetic studies of BDE-47 metabolism by CYP2B6 and pooled HLMs, we found Km values ranging from 3.8 to 6.4 µM and 7.0 to 11.4 µM, respectively, indicating the high affinity toward the formation of OH-BDEs. Conclusion: Our findings support a predominant role of CYP2B6 in the metabolism of BDE-47 to potentially toxic metabolites, including a hypothesized di-OH-tetrabrominated dioxin metabolite. These results will assist future epidemiological studies investigating the potential of PBDEs and their metabolites to produce neurobehavioral/neurodevelopmental disorders. PMID:23249762

  1. A Systematic Approach to Evaluate Herb-Drug Interaction Mechanisms: Investigation of Milk Thistle Extracts and Eight Isolated Constituents as CYP3A Inhibitors

    PubMed Central

    Brantley, Scott J.; Graf, Tyler N.; Oberlies, Nicholas H.

    2013-01-01

    Despite increasing recognition of potential untoward interactions between herbal products and conventional medications, a standard system for prospective assessment of these interactions remains elusive. This information gap was addressed by evaluating the drug interaction liability of the model herbal product milk thistle (Silybum marianum) with the CYP3A probe substrate midazolam. The inhibitory effects of commercially available milk thistle extracts and isolated constituents on midazolam 1′-hydroxylation were screened using human liver and intestinal microsomes. Relative to vehicle, the extract silymarin and constituents silybin A, isosilybin A, isosilybin B, and silychristin at 100 μM demonstrated >50% inhibition of CYP3A activity with at least one microsomal preparation, prompting IC50 determination. The IC50s for isosilybin B and silychristin were ∼60 and 90 μM, respectively, whereas those for the remaining constituents were >100 μM. Extracts and constituents that contained the 1,4-dioxane moiety demonstrated a >1.5-fold shift in IC50 when tested as potential mechanism-based inhibitors. The semipurified extract, silibinin, and the two associated constituents (silybin A and silybin B) demonstrated mechanism-based inhibition of recombinant CYP3A4 (KI, ∼100 μM; kinact, ∼0.20 min−1) but not microsomal CYP3A activity. The maximum predicted increases in midazolam area under the curve using the static mechanistic equation and recombinant CYP3A4 data were 1.75-fold, which may necessitate clinical assessment. Evaluation of the interaction liability of single herbal product constituents, in addition to commercially available extracts, will enable elucidation of mechanisms underlying potential clinically significant herb-drug interactions. Application of this framework to other herbal products would permit predictions of herb-drug interactions and assist in prioritizing clinical evaluation. PMID:23801821

  2. Recommendations on the Development of a Bioanalytical Assay for 4β-Hydroxycholesterol, an Emerging Endogenous Biomarker of CYP3A Activity.

    PubMed

    Aubry, Anne-Françoise; Dean, Brian; Diczfalusy, Ulf; Goodenough, Angela; Iffland, André; McLeod, James; Weng, Naidong; Yang, Ziping

    2016-09-01

    The availability of reliable assays for measuring 4β-hydroxycholesterol (4β-HC), a CYP3A metabolite of cholesterol, is an important step in qualifying this endogenous moiety as a biomarker of CYP3A activity. Liquid and gas chromatographic methods with mass spectrometric detection have been developed with varying sensitivities, with or without derivatization. Care must be taken to chromatographically resolve 4β-HC from the multiple isobaric cholesterol oxidation products present in plasma, including 4α-hydroxycholesterol (4α-HC). Plasma concentrations of 4β-HC are low in humans (10-60 ng/ml), lower than many other cholesterol metabolites and far less than cholesterol itself. Stability of 4β-HC has been established for at least 12 months at -20°C in plasma samples obtained with a typical clinical workflow. Oxidation of plasma cholesterol during storage produces both 4β-HC and 4α-HC, and 4α-HC may be used as assessment of sample quality. As 4β-HC concentrations over time in untreated individuals have low intra-individual variability, assay precision and reproducibility are the key assay attributes in assessing CYP3A4 induction, and potentially inhibition. Assessment of CYP3A4/5 activity with 4β-HC relies on the differences between pre- and post-dose concentrations, in which each subject acts as their own control. To reduce analytical variability, samples from a single subject should be analyzed together to facilitate interpretation of study results. As an endogenous biomarker, 4β-HC offers the opportunity for less invasive assessment of CYP3A induction potential of new drugs during clinical development. PMID:27350147

  3. A predominate role of CYP1A2 for the metabolism of nabumetone to the active metabolite, 6-methoxy-2-naphthylacetic acid, in human liver microsomes.

    PubMed

    Turpeinen, Miia; Hofmann, Ute; Klein, Kathrin; Mürdter, Thomas; Schwab, Matthias; Zanger, Ulrich M

    2009-05-01

    Nabumetone, a widely used nonsteroidal anti-inflammatory drug, requires biotransformation into 6-methoxy-2-naphthylacetic acid (6-MNA), a close structural analog to naproxen, to achieve its analgesic and anti-inflammatory effects. Despite its wide use, the enzymes involved in metabolism have not been identified. In the present study, several in vitro approaches were used to identify the cytochrome P450 (P450) enzyme(s) responsible for 6-MNA formation. In human liver microsomes (HLMs) 6-MNA formation displayed monophasic Michaelis-Menten kinetics with apparent K(m) and V(max) values (mean +/- S.D.) of 75.1 +/- 15.3 microM and 1304 +/- 226 pmol/min/mg protein, respectively, and formation rate of 6-MNA varied approximately 5.5-fold (179-983 pmol/min/mg protein). 6-MNA activity correlated strongly with both CYP1A2-mediated phenacetin O-deethylation activity and CYP1A2 protein content (r = 0.85 and 0.74, respectively; p < 0.0001 for both). Additional correlations were found with model activities of CYP2C19 and CYP3A4. Of 11 cDNA-expressed recombinant P450s used, recombinant CYP1A2 was the major form catalyzing the 6-MNA formation with an apparent K(m) of 45 microM and V(max) of 8.7 pmol/min/pmol P450. Minor fractions were catalyzed by recombinant P450s CYP1A1, CYP2B6, CYP2C19, CYP2D6, and CYP2E1. Experiments with P450-selective chemical inhibitors and monoclonal anti-P450 antibodies showed that furafylline, a mechanism-based inhibitor CYP1A2, and anti-CYP1A2 antibody markedly inhibited 6-MNA formation, whereas inhibitors for other P450s did not show significant inhibitory effects. Taken together, these studies indicate that the formation of the active metabolite of nabumetone, 6-MNA, is predominantly catalyzed by CYP1A2 in HLMs with only minor contribution of other P450s. PMID:19204080

  4. Human Enteric Microsomal CYP4F Enzymes O-Demethylate the Antiparasitic Prodrug Pafuramidine

    PubMed Central

    Wang, Michael Zhuo; Wu, Judy Qiju; Bridges, Arlene S.; Zeldin, Darryl C.; Kornbluth, Sally; Tidwell, Richard R.; Hall, James Edwin; Paine, Mary F.

    2008-01-01

    CYP4F enzymes, including CYP4F2 and CYP4F3B, were recently shown to be the major enzymes catalyzing the initial oxidative O-demethylation of the antiparasitic prodrug pafuramidine (DB289) by human liver microsomes. As suggested by a low oral bioavailability, DB289 could undergo first-pass biotransformation in the intestine, as well as in the liver. Using human intestinal microsomes (HIM), we characterized the enteric enzymes that catalyze the initial O-demethylation of DB289 to the intermediate metabolite, M1. M1 formation in HIM was catalyzed by cytochrome P450 (P450) enzymes, as evidenced by potent inhibition by 1-aminoben-zotriazole and the requirement for NADPH. Apparent Km and Vmax values ranged from 0.6 to 2.4 μM and from 0.02 to 0.89 nmol/min/mg protein, respectively (n = 9). Of the P450 chemical inhibitors evaluated, ketoconazole was the most potent, inhibiting M1 formation by 66%. Two inhibitors of P450-mediated arachidonic acid metabolism, HET0016 (N-hydroxy-N′-(4-n-butyl-2-methylphenyl)formamidine) and 17-octadecynoic acid, inhibited M1 formation in a concentration-dependent manner (up to 95%). Immunoinhibition with an antibody raised against CYP4F2 showed concentration-dependent inhibition of M1 formation (up to 92%), whereas antibodies against CYP3A4/5 and CYP2J2 had negligible to modest effects. M1 formation rates correlated strongly with arachidonic acid ω-hydroxylation rates (r2 = 0.94, P < 0.0001, n = 12) in a panel of HIM that lacked detectable CYP4A11 protein expression. Quantitative Western blot analysis revealed appreciable CYP4F expression in these HIM, with a mean (range) of 7 (3–18) pmol/mg protein. We conclude that enteric CYP4F enzymes could play a role in the first-pass biotransformation of DB289 and other xenobiotics. PMID:17709372

  5. Methyl 6-eth-oxy-3-phenyl-3a,4-dihydro-3H-chromeno[4,3-c]isoxazole-3a-car-boxylate.

    PubMed

    Suresh, G; Srinivasan, J; Bakthadoss, M; Aravindhan, S

    2013-02-01

    In the title compound, C(20)H(19)NO(5), the dihedral angle between the mean plane of the pyran ring (which has a half-chair conformation) and the benzene ring of the chromeno ring system is 7.21 (7)°. The dihedral angle between the mean plane of the chromeno ring system and the isoxazole ring is 21.78 (6)°, while the isoxazole ring forms a dihedral angle of 72.60 (8)° with the attached phenyl ring. In the crystal, mol-ecules are linked via pairs of C-H⋯O hydrogen bonds, forming inversion dimers with an R(2) (2)(10) ring motif. These dimers are linked via C-H⋯N hydrogen bonds, forming chains along [001]. PMID:23424465

  6. Biotransformations of 6',7'-dihydroxybergamottin and 6',7'-epoxybergamottin by the citrus-pathogenic fungi diminish cytochrome P450 3A4 inhibitory activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Penicillium digitatum, as well as five other citrus pathogenic species, (P. ulaiense Link, Geotrichum citri Link, Botrytis cinerea P. Micheli ex Pers., Lasiodiplodia theobromae (Pat.)Griffon & Maubl. and Phomopsis citri (teleomorph Diaporthe citri)) was observed to convert 6',7'-epoxybergamottin (1)...

  7. CYP-dependent metabolism of antitumor pyrazolo[3,4-d]pyrimidine derivatives is characterized by an oxidative dechlorination reaction.

    PubMed

    Zamperini, Claudio; Dreassi, Elena; Vignaroli, Giulia; Radi, Marco; Dragoni, Stefania; Schenone, Silvia; Musumeci, Francesca; Valoti, Massimo; Antiochia, Riccarda; Botta, Maurizio

    2014-01-01

    The aim of this study is to investigate the metabolic (cytochrome P450-dependent) behaviour of pyrazolo[3,4-d]pyrimidines 1-10 dual Abl/Src kinase inhibitors. All the compounds demonstrate good metabolic stability both in human liver (HLM) and in rat liver (RLM) microsomes. Moreover, all the tested molecules undergo the same metabolic CYP-dependent reactions, namely oxidative dechlorination and N-dealkylation. These metabolic pathways are fully characterized for compound 1. In HLM, the dehalogenated metabolite accounts for about 87% of the full 1 metabolism, while the N-dealkylated metabolite accounts for 12%. Inhibition studies performed using different CYP-inhibitors indicate that the 3A family is the isoenzyme family most involved in pyrazolo[3,4-d]pyrimidine metabolism. This observation is confirmed by studies performed by using CYP3A selective substrates. Furthermore kinetic analysis performed in RLM, HLM and cDNA CYP3A4 shows that the affinity of CYPs towards compound 1 is similar in all the tested preparations (Km = 32.7, 21.8, and 48.7 µM, respectively). PMID:24850316

  8. Cyp2D6 catalyzes 5-hydroxylation of 1-(2-pyrimidinyl)-piperazine, an active metabolite of several psychoactive drugs, in human liver microsomes.

    PubMed

    Raghavan, Nirmala; Zhang, Donglu; Zhu, Mingshe; Zeng, Jianing; Christopher, Lisa

    2005-02-01

    1-(2-Pyrimidinyl)-piperazine (1-PP) is an active metabolite of several psychoactive drugs including buspirone. 1-PP is also the major metabolite in the human circulation and in rat brains following oral administration of buspirone. This study was conducted to identify the enzyme responsible for the metabolic conversion of 1-PP to 5-hydroxy-1-(2-pyrimidinyl)-piperazine (HO-1-PP) in human liver microsomes (HLMs). The product HO-1-PP was quantified by a validated liquid chromatography-tandem mass spectrometry method. In the presence of NADPH, 1-PP (100 microM) was incubated separately with human cDNA-expressed cytochrome P450 isozymes (including CYP2D6, 3A4, 1A2, 2A6, 2C9, 2C19, 2E1, and 2B6) at 37 degrees C. CYP2D6 catalyzed the formation of HO-1-PP from 1-PP. This catalytic activity was >95% inhibited by quinidine, a CYP2D6 inhibitor. HO-1-PP formation rates correlated well with the bufuralol 1-hydroxylase (CYP2D6) activities of individual HLMs. The formation of HO-1-PP followed a Michaelis-Menten kinetics with a K(m) of 171 microM and V(max) of 313 pmol/min x mg protein in HLMs. Collectively, these results indicate that polymorphic CYP2D6 is responsible for the conversion of 1-PP to HO-1-PP. PMID:15507542

  9. Rhubarb decreased the systemic exposure of cyclosporine, a probe substrate of P-glycoprotein and CYP 3A.

    PubMed

    Yu, Chung-Ping; Lin, Hui-Ju; Lin, Shiuan-Pey; Shia, Chi-Sheng; Chang, Pei-Hua; Hou, Yu-Chi; Hsieh, Yo-Wen

    2016-08-01

    1. Rhubarb, rhizome of Rheum palmatum L. (RP), is an important herb in clinical Chinese medicine. 2. Cyclosporine (CSP) is an immunosuppressant with narrow therapeutic window. The oral bioavailability of CSP was associated with P-glycoprotein (P-gp) and CYP 3A4. CSP was used as a probe substrate to investigate the in vivo modulation effects of RP on P-gp and CYP 3A. 3. Rats were orally administered 2.5 mg/kg of CSP with and without 0.25 and 1.0 g/kg of RP. The blood CSP concentration was determined by a specific monoclonal fluorescence polarization immunoassay. 4. Both dosages of RP significantly decreased the Cmax and AUC0-t of CSP in rats. Mechanism studies indicated that RP activated the functions of P-gp and CYP 3A. 5. RP ingestion reduced the systemic exposure of CSP through activating P-gp and CYP 3A. PMID:26634287

  10. CYP2B6*6 genotype and high efavirenz plasma concentration but not nevirapine are associated with low lumefantrine plasma exposure and poor treatment response in HIV-malaria-coinfected patients.

    PubMed

    Maganda, B A; Minzi, O M S; Ngaimisi, E; Kamuhabwa, A A R; Aklillu, E

    2016-02-01

    We investigated the influence of efavirenz (EFV)- or nevirapine (NVP)-based antiretroviral therapy (ART) on lumefantrine plasma exposure in HIV-malaria-coinfected patients and implication of pharmacogenetic variations. A total of 269 HIV patients with uncomplicated falciparum malaria on NVP-based ART (NVP-arm), EFV-based ART (EFV-arm) or not receiving ART (control-arm) were enrolled and treated with artemether-lumefantrine. Day-7 lumefantrine, baseline EFV and NVP plasma concentrations, and CYP2B6*6,*18, CYP3A4*1B, CYP3A5*3,*6,*7, ABCB1 c.3435C>T and ABCB1 c.4036A>G genotypes were determined. The median day-7 lumefantrine plasma concentration was significantly lower in the EFV-arm compared with that in NVP- and control-arm. High EFV plasma concentrations and CYP2B6*6/*6 genotype significantly correlated with low lumefantrine plasma concentrations and high rate of recurrent parasitemia. No significant effect of NVP-based ART on lumefantrine exposure was observed. In conclusion, owing to long-term CYP3A induction, EFV-based ART cotreatment significantly reduces lumefantrine plasma exposure leading to poor malaria treatment response, which is more pronounced in CYP2B6 slow metabolizers. PMID:25963334

  11. Design and synthesis of novel tamoxifen analogues that avoid CYP2D6 metabolism.

    PubMed

    Ahmed, Nermin S; Elghazawy, Nehal H; ElHady, Ahmed K; Engel, Matthias; Hartmann, Rolf W; Abadi, Ashraf H

    2016-04-13

    Tamoxifen (TAM) is a widely used drug in the prophylaxis and treatment of breast cancer. TAM is metabolized to the more active 4-hydroxytamoxifen (4-OH-TAM) and endoxifen by cytochrome P450 (CYP) mainly CYP2D6 and CYP3A4 enzymes. Due to the genetic polymorphisms in CYP2D6 genes, high variation in the clinical outcomes of TAM treatment is observed among women of different populations. To address this issue, novel TAM analogues with possible altered activation pathways were synthesized. These analogues were tested for their antiproliferative action on MCF-7 breast cancer cell lines as well as their binding affinity for estrogen receptor (ER) ER-α and ER-β receptors. These entire novel compounds showed better antiproliferative activity than did TAM on the MCF-7 cells. Moreover, compound 10 exhibited a half maximal growth inhibition (GI50) that was 1000 times more potent than that of TAM (GI50 < 0.005 μM vs 1.58 μM, respectively). Along with a broad spectrum activity on various cancer cell lines, all the TAM analogues showed considerable activity on the ER-negative breast cancer cell line. For further study, compound 10 was incubated in human liver microsomes (HLM), human hepatocytes (hHEP) and CYP2D6 supersomes. The active hydroxyl metabolite was detected after incubation in HLM and hHEP, implicating the involvement of other enzymes in its metabolism. These results prove that this novel series of TAM analogues might provide improved clinical outcomes for poor 2D6 metabolizers. PMID:26896706

  12. RS-Predictor models augmented with SMARTCyp reactivities: Robust metabolic regioselectivity predictions for nine CYP isozymes

    PubMed Central

    Zaretzki, Jed; Rydberg, Patrik; Bergeron, Charles; Bennett, Kristin P.; Olsen, Lars

    2012-01-01

    RS-Predictor is a tool for creating pathway-independent, isozyme-specific site of metabolism (SOM) prediction models using any set of known cytochrome P450 substrates and metabolites. Until now, the RS-Predictor method was only trained and validated on CYP 3A4 data, but in the present study we report on the versatility the RS-Predictor modeling paradigm by creating and testing regioselectivity models for substrates of the nine most important CYP isozymes. Through curation of source literature, we have assembled 680 substrates distributed among CYPs 1A2, 2A6, 2B6, 2C19, 2C8, 2C9, 2D6, 2E1 and 3A4, which we believe is the largest publicly accessible collection of P450 ligands and metabolites ever released. A comprehensive investigation into the importance of different descriptor classes for predicting the regioselectivity of each isozyme is made through the generation of multiple independent RS-Predictor models for each set of isozyme substrates. Two of these models include a DFT reactivity descriptor derived from SMARTCyp. Optimal combinations of RS-Predictor and SMARTCyp are shown to have stronger performance than either method alone, while also exceeding the accuracy of the commercial regioselectivity prediction methods distributed by StarDrop and Schrödinger, correctly identifying a large proportion of the metabolites in each substrate set within the top two rank-positions: 1A2(83.0%), 2A6(85.7%), 2B6(82.1%), 2C19(86.2%), 2C8(83.8%), 2C9(84.5%), 2D6(85.9%), 2E1(82.8%), 3A4(82.3%) and merged(86.0%). Comprehensive datamining of each substrate set and careful statistical analyses of the predictions made by the different models revealed new insights into molecular features that control metabolic regioselectivity and enable accurate prospective prediction of likely SOMs. PMID:22524152

  13. Mechanism-based inactivation of CYP450 enzymes: a case study of lapatinib

    PubMed Central

    Ho, Han Kiat; Chan, Chun Yip; Hardy, Klarissa D; Chan, Eric Chun Yong

    2015-01-01

    Mechanism-based inactivation (MBI) of CYP450 enzymes is a unique form of inhibition in which the enzymatic machinery of the victim is responsible for generation of the reactive metabolite. This precondition sets up a time-dependency for the inactivation process, a hallmark feature that characterizes all MBI. Yet, MBI itself is a complex biochemical phenomenon that operates in different modes, namely covalent binding to apoprotein, covalent binding of the porphyrin group, and also complexation of the catalytic iron. Using lapatinib as a recent example of toxicological interest, we present an example of a mixed-function MBI that can confound clinical drug-drug interactions manifestation. Lapatinib exhibits both covalent binding to the apoprotein, and formation of a metabolite-intermediate (MI) complex in an enzyme-selective manner (CYP3A4 versus CYP3A5), each with different reactive metabolites. The clinical implication of this effect is also contingent upon genetic polymorphisms of the enzyme involved as well as the co-administration of other substrates, inhibitors or inducers, culminating in drug-drug interactions. This understanding recapitulates the importance of applying isoform-specific mechanistic investigations to develop customized strategies to manage such outcomes. PMID:25639891

  14. Impact of Tetrahydropalmatine on the Pharmacokinetics of Probe Drugs for CYP1A2, 2D6 and 3A Isoenzymes in Beagle Dogs.

    PubMed

    Zhao, Yong; Liang, Aihua; Zhang, Yushi; Li, Chunying; Yi, Yan; Nilsen, Odd Georg

    2016-06-01

    Tetrahydropalmatine (Tet) exhibit multiple pharmacological activities and is used frequently by clinical practitioners. In this study, we evaluate the in vivo effects of single and repeated oral Tet administrations on CYP1A2, 2D6 and 3A activities in six beagle dogs in a randomized, controlled, open-label, crossover study. A cocktail approach, with dosages of the probe drugs caffeine (3.0 mg/kg), metoprolol (2.33 mg/kg) and midazolam (0.45 mg/kg), was used to measure cytochrome P450 (CYP) metabolic activities. The cocktail was administered orally as a single dose (12 mg/kg) 1 day prior to and 4 days after repeated oral Tet administrations (12 mg/kg three times daily). The probe drugs and their metabolites in plasma were quantified simultaneously by a validated HPLC technique, and non-compartmental parameters were used to evaluate metabolic variables for assessment of CYP inhibition or induction. Tet had no or minor impact on the pharmacokinetics and metabolism of the probe drugs caffeine and metoprolol, CYP1A2 and CYP2D6 substrates, respectively. However, Tet increased AUC0-24 h and decreased AUCratio(0-24 h) (1-hydroxymidazolam/midazolam ratio) for midazolam statistically significant, both in single or multiple dosing of Tet, with up to 39 or 57% increase for AUC0-24 h and 29% or 22 decrease for AUCratio(0-24 h), respectively, in line with previous in vitro findings for its CYP3A4 inhibition. The extensive use of Tet and herbal medicines containing Tet makes Tet a candidate for further evaluation of CYP3A-mediated herb-drug interactions. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26990021

  15. Enantioselective inhibition of Cytochrome P450-mediated drug metabolism by a novel antithrombotic agent, S002-333: Major effect on CYP2B6.

    PubMed

    Bhateria, Manisha; Ramakrishna, Rachumallu; Puttrevu, Santosh Kumar; Saxena, Anil K; Bhatta, Rabi Sankar

    2016-08-25

    A significant number of new chemical entities (NCEs) fail in drug discovery due to inhibition of Cytochrome P450 (CYP) enzymes. Therefore, to avert costly drug failure at the clinical phase it becomes indispensable to evaluate the CYP inhibition profile of NCEs early in drug discovery. In light of these concerns, we envisioned to investigate the inhibitory effects of S002-333 [2-(4-methoxy-benzenesulfonyl)-2,3,4,9-tetrahydro-1H-b-carboxylic acid amide], a novel and potent antithrombotic agent, on nine major CYP enzymes (CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1 and 3A4) of human liver microsomes (HLM). S002-333 exists as racemic mixture of S004-1032 (R-isomer) and S007-1558 (S-isomer), consequently, we further examined the enantioselective differences of S002-333 in the inhibition of human CYP enzymes. Of the CYP enzymes tested, CYP2B6-catalyzed bupropion 6-hydroxylation was inhibited by S002-333 (IC50 ∼ 9.25 ± 2.46 μM) in a stereoselective manner with (S)-isomer showing potent inhibition (IC50 ∼ 5.28 ± 1.25 μM) in contrast to (R)-isomer which showed negligible inhibition on CYP2B6 activity (IC50 > 50 μM). S002-333 and its (S)-isomer inhibited CYP2B6 activity in a non-competitive fashion with estimated Ki values of 10.1 ± 3.4 μM and 5.09 ± 1.05 μM, respectively. No shift in the IC50 value was observed for S002-333 and its isomers when preincubated for 30 min in the presence of NADPH suggesting that neither S002-333 nor its enantiomers are time-dependent inhibitors. Thus, the present findings signified that S002-333 is a potent stereoselective inhibitor of CYP2B6, whereas, inhibition for other CYPs was substantially negligible. These in vitro findings would be useful in deciding the development of S002-333 as a single-enantiomer or as a racemic mixture. PMID:27387538

  16. Epoxidation of the methamphetamine pyrolysis product, trans-phenylpropene, to trans-phenylpropylene oxide by CYP enzymes and stereoselective glutathione adduct formation

    SciTech Connect

    Sanga, Madhu; Younis, Islam R.; Tirumalai, Padma S.; Bland, Tina M.; Banaszewska, Monica; Konat, Gregory W.; Tracy, Timothy S.; Gannett, Peter M.; Callery, Patrick S. . E-mail: pcallery@hsc.wvu.edu

    2006-03-01

    Pyrolytic products of smoked methamphetamine hydrochloride are well established. Among the various degradation products formed, trans-phenylpropene (trans-{beta}-methylstyrene) is structurally similar to styrene analogues known to be bioactivated by CYP enzymes. In human liver microsomes, trans-phenylpropene was converted to the epoxide trans-phenylpropylene oxide (trans-2-methyl-3-phenyloxirane) and cinnamyl alcohol. Incubation of trans-phenylpropene with microsomes in the presence of enzyme-specific P450 enzyme inhibitors indicated the involvement of CYP2E1, CYP1A2, and CYP3A4 enzymes. Both (R,R)-phenylpropylene oxide and (S,S)-phenylpropylene oxide were formed in human liver microsomal preparations. Enantiomers of trans-phenylpropylene oxide were stereoselectively and regioselectively conjugated in a Phase II drug metabolism reaction catalyzed by human liver cytosolic enzymes consisting of conjugation with glutathione. The structure of the phenylpropylene oxide-glutathione adduct is consistent with nucleophilic ring-opening by attack at the benzylic carbon. Exposure of cultured C6 glial cells to (S,S)-phenylpropylene oxide produced a cytotoxic response in a concentration-dependent manner based on cell degeneration and death.

  17. Isolation and identification of intestinal CYP3A inhibitors from cranberry (Vaccinium macrocarpon) using human intestinal microsomes.

    PubMed

    Kim, Eunkyung; Sy-Cordero, Arlene; Graf, Tyler N; Brantley, Scott J; Paine, Mary F; Oberlies, Nicholas H

    2011-02-01

    Cranberry juice is used routinely, especially among women and the elderly, to prevent and treat urinary tract infections. These individuals are likely to be taking medications concomitantly with cranberry juice, leading to concern about potential drug-dietary substance interactions, particularly in the intestine, which, along with the liver, is rich in expression of the prominent drug metabolizing enzyme, cytochrome P450 3A (CYP3A). Using a systematic in vitro-in vivo approach, a cranberry juice product was identified recently that elicited a pharmacokinetic interaction with the CYP3A probe substrate midazolam in 16 healthy volunteers. Relative to water, cranberry juice inhibited intestinal first-pass midazolam metabolism. In vitro studies were initiated to identify potential enteric CYP3A inhibitors from cranberry via a bioactivity-directed fractionation approach involving dried whole cranberry [Vaccinium macrocarpon Ait. (Ericaceae)], midazolam, and human intestinal microsomes (HIM). Three triterpenes (maslinic acid, corosolic acid, and ursolic acid) were isolated. The inhibitory potency (IC(50)) of maslinic acid, corosolic acid, and ursolic acid was 7.4, 8.8, and < 10 µM, respectively, using HIM as the enzyme source and 2.8, 4.3, and < 10 µM, respectively, using recombinant CYP3A4 as the enzyme source. These in vitro inhibitory potencies, which are within the range of those reported for two CYP3A inhibitory components in grapefruit juice, suggest that these triterpenes may have contributed to the midazolam-cranberry juice interaction observed in the clinical study. PMID:20717876

  18. Schisandrol B protects against acetaminophen-induced hepatotoxicity by inhibition of CYP-mediated bioactivation and regulation of liver regeneration.

    PubMed

    Jiang, Yiming; Fan, Xiaomei; Wang, Ying; Chen, Pan; Zeng, Hang; Tan, Huasen; Gonzalez, Frank J; Huang, Min; Bi, Huichang

    2015-01-01

    Acetaminophen (APAP) overdose is the most frequent cause of drug-induced acute liver failure. Schisandra sphenanthera is a traditional hepato-protective Chinese medicine and Schisandrol B (SolB) is one of its major active constituents. In this study, the protective effect of SolB against APAP-induced acute hepatotoxicity in mice and the involved mechanisms were investigated. Morphological and biochemical assessments clearly demonstrated a protective effect of SolB against APAP-induced liver injury. SolB pretreatment significantly attenuated the increases in alanine aminotransferase and aspartate aminotransferase activity, and prevented elevated hepatic malondialdehyde formation and the depletion of mitochondrial glutathione (GSH) in a dose-dependent manner. SolB also dramatically altered APAP metabolic activation by inhibiting the activities of CYP2E1 and CYP3A11, which was evidenced by significant inhibition of the formation of the oxidized APAP metabolite NAPQI-GSH. A molecular docking model also predicted that SolB had potential to interact with the CYP2E1 and CYP3A4 active sites. In addition, SolB abrogated APAP-induced activation of p53 and p21, and increased expression of liver regeneration and antiapoptotic-related proteins such as cyclin D1 (CCND1), PCNA, and BCL-2. This study demonstrated that SolB exhibited a significant protective effect toward APAP-induced liver injury, potentially through inhibition of CYP-mediated APAP bioactivation and regulation of the p53, p21, CCND1, PCNA, and BCL-2 to promote liver regeneration. PMID:25319358

  19. Isolation and Identification of Intestinal CYP3A Inhibitors from Cranberry (Vaccinium macrocarpon) using Human Intestinal Microsomes

    PubMed Central

    Kim, Eunkyung; Sy-Cordero, Arlene; Graf, Tyler N.; Brantley, Scott J.; Paine, Mary F.; Oberlies, Nicholas H.

    2010-01-01

    Cranberry juice is used routinely, especially among women and the elderly, to prevent and treat urinary tract infections. These individuals are likely to be taking medications concomitantly with cranberry juice, leading to concern about potential drug-dietary substance interactions, particularly in the intestine, which, along with the liver, is rich in expression of the prominent drug metabolizing enzyme, cytochrome P450 3A (CYP3A). Using a systematic in vitro-in vivo approach, a cranberry juice product was identified recently that elicited a pharmacokinetic interaction with the CYP3A probe substrate midazolam in 16 healthy volunteers. Relative to water, a cranberry juice inhibited intestinal first-pass midazolam metabolism. In vitro studies were initiated to identify potential enteric CYP3A inhibitors from cranberry via a bioactivity-directed fractionation approach involving dried whole cranberry [Vaccinium macrocarpon Ait. (Ericaceae)], midazolam, and human intestinal microsomes (HIM). Three triterpenes (maslinic acid, corosolic acid, and ursolic acid) were isolated. The inhibitory potency (IC50) of maslinic acid, corosolic acid, and ursolic acid was 7.4, 8.8, and <10 μM, respectively, using HIM as the enzyme source and was 2.8, 4.3, and <10 μM, respectively, using recombinant CYP3A4 as the enzyme source. These in vitro inhibitory potencies, which are within the range of those reported for two CYP3A inhibitory components in grapefruit juice, suggest that these triterpenes may have contributed to the midazolam-cranberry juice interaction observed in the clinical study. PMID:20717876

  20. Schisandrol B Protects Against Acetaminophen-Induced Hepatotoxicity by Inhibition of CYP-Mediated Bioactivation and Regulation of Liver Regeneration

    PubMed Central

    Jiang, Yiming; Fan, Xiaomei; Wang, Ying; Chen, Pan; Zeng, Hang; Tan, Huasen; Gonzalez, Frank J.; Bi, Huichang

    2015-01-01

    Acetaminophen (APAP) overdose is the most frequent cause of drug-induced acute liver failure. Schisandra sphenanthera is a traditional hepato-protective Chinese medicine and Schisandrol B (SolB) is one of its major active constituents. In this study, the protective effect of SolB against APAP-induced acute hepatotoxicity in mice and the involved mechanisms were investigated. Morphological and biochemical assessments clearly demonstrated a protective effect of SolB against APAP-induced liver injury. SolB pretreatment significantly attenuated the increases in alanine aminotransferase and aspartate aminotransferase activity, and prevented elevated hepatic malondialdehyde formation and the depletion of mitochondrial glutathione (GSH) in a dose-dependent manner. SolB also dramatically altered APAP metabolic activation by inhibiting the activities of CYP2E1 and CYP3A11, which was evidenced by significant inhibition of the formation of the oxidized APAP metabolite NAPQI–GSH. A molecular docking model also predicted that SolB had potential to interact with the CYP2E1 and CYP3A4 active sites. In addition, SolB abrogated APAP-induced activation of p53 and p21, and increased expression of liver regeneration and antiapoptotic-related proteins such as cyclin D1 (CCND1), PCNA, and BCL-2. This study demonstrated that SolB exhibited a significant protective effect toward APAP-induced liver injury, potentially through inhibition of CYP-mediated APAP bioactivation and regulation of the p53, p21, CCND1, PCNA, and BCL-2 to promote liver regeneration. PMID:25319358

  1. Potent inhibition of CYP1A2 by Frutinone A, an active ingredient of the broad spectrum antimicrobial herbal extract from P. fruticosa.

    PubMed

    Thelingwani, Roslyn S; Dhansay, Kariema; Smith, Peter; Chibale, Kelly; Masimirembwa, Collen M

    2012-10-01

    1. Frutinone is an active ingredient extracted from the lipophilic fraction of the Polygala Fruticosa demonstrating various antibacterial and fungal properties. The aim of this study was to characterize its metabolism in an effort to understand metabolism based drug-herb interactions. 2. In vitro metabolic clearance and metabolite identification studies were done using cryopreserved hepatocytes. Reaction phenotyping and inhibition studies were done using human liver microsomes and recombinant cytochrome P450s (CYPs). Frutinone A-CYP1A2 interactions were rationalized using docking simulations. 3. Hepatic clearance was predicted to be low (7.17 mL/min/kg), with reaction phenotyping studies indicating no clearance by the enzymes tested. Frutinone was identified as a potent inhibitor of CYP1A2 with moderate effects on CYP2C19, 2C9, 2D6 and 3A4. CYP1A2 inhibition was reversible and characterised by an IC(50) of 0.56 µM. Inhibition was differential showing mixed (K(i) = 0.48 µM) and competitive (K(i) = 0.31 µM) inhibition with 3-cyano-7-ethoxycoumarin and ethoxyresorufin, respectively. Two binding sites, one for inhibitors and the other for substrates were identified in silico. 4. The potent CYP1A2 inhibition by Frutinone A could be predictive of the potential drug-herb interaction risk in the use of herbal extracts from P. fruticosa. The data suggest future pharmacological research on this chromocoumarin should take metabolic properties into account. PMID:22533317

  2. Effect of voriconazole and other azole antifungal agents on CYP3A activity and metabolism of tacrolimus in human liver microsomes.

    PubMed

    Zhang, Shimin; Pillai, Venkateswaran C; Mada, Sripal Reddy; Strom, Steve; Venkataramanan, Raman

    2012-05-01

    Azole antifungal agents are known to inhibit cytochrome P450 3A (CYP3A) enzymes. Limited information is available regarding the effect of voriconazole on CYP3A activity. We examined the effect of voriconazole on CYP3A activity in human liver microsomes as measured by the formation of 6β-hydroxytestosterone from testosterone. We also evaluated the interaction between voriconazole and tacrolimus, an immunosuppressive drug, using human liver microsomes. Th