Science.gov

Sample records for 3a4 cyp 3a4

  1. CYP3A4 intronic SNP rs35599367 (CYP3A4*22) alters RNA splicing.

    PubMed

    Wang, Danxin; Sadee, Wolfgang

    2016-01-01

    Cytochrome P450 3A4 (CYP3A4) metabolizes 30-50% of clinically used drugs. Large interperson variability in CYP3A4 activity affects response to CYP3A4 substrate drugs. We had demonstrated that an intronic single nucleotide polymorphism rs35599367 (CYP3A4*22, located in intron 6) reduces mRNA/protein expression; however, the underlying mechanism remained unknown. Here we show that CYP3A4*22 is associated with a two-fold or greater increase in formation of a nonfunctional CYP3A4 alternative splice variant with partial intron 6 retention in human liver (P=0.006), but not in small intestines. Consistent with this observation, in-vitro transfection experiments with a CYP3A4 minigene (spanning from intron 5 to intron 7) demonstrated that plasmids carrying the rs35599367 minor T allele caused significantly greater intron 6 retention than the C allele in liver derived HepG2 cells, but not in intestine-derived LS-174T cells. These results indicate that tissue-specific increased formation of nonfunctional alternative splice variant causes reduced CYP3A4 mRNA/protein expression in CYP3A4*22 carriers.

  2. Metabolic activation of benzodiazepines by CYP3A4.

    PubMed

    Mizuno, Katsuhiko; Katoh, Miki; Okumura, Hirotoshi; Nakagawa, Nao; Negishi, Toru; Hashizume, Takanori; Nakajima, Miki; Yokoi, Tsuyoshi

    2009-02-01

    Cytochrome P450 3A4 is the predominant isoform in liver, and it metabolizes more than 50% of the clinical drugs commonly used. However, CYP3A4 is also responsible for metabolic activation of drugs, leading to liver injury. Benzodiazepines are widely used as hypnotics and sedatives for anxiety, but some of them induce liver injury in humans. To clarify whether benzodiazepines are metabolically activated, 14 benzodiazepines were investigated for their cytotoxic effects on HepG2 cells treated with recombinant CYP3A4. By exposure to 100 microM flunitrazepam, nimetazepam, or nitrazepam, the cell viability in the presence of CYP3A4 decreased more than 25% compared with that of the control. In contrast, in the case of other benzodiazepines, the changes in the cell viability between CYP3A4 and control Supersomes were less than 10%. These results suggested that nitrobenzodiazepines such as flunitrazepam, nimetazepam, and nitrazepam were metabolically activated by CYP3A4, which resulted in cytotoxicity. To identify the reactive metabolite, the glutathione adducts of flunitrazepam and nimetazepam were investigated by liquid chromatography-tandem mass spectrometry. The structural analysis for the glutathione adducts of flunitrazepam indicated that a nitrogen atom in the side chain of flunitrazepam was conjugated with the thiol of glutathione. Therefore, the presence of a nitro group in the side chain of benzodiazepines may play a crucial role in the metabolic activation by CYP3A4. The present study suggested that metabolic activation by CYP3A4 was one of the mechanisms of liver injury by nitrobenzodiazepines.

  3. Interactions between CYP3A4 and Dietary Polyphenols

    PubMed Central

    Basheer, Loai; Kerem, Zohar

    2015-01-01

    The human cytochrome P450 enzymes (P450s) catalyze oxidative reactions of a broad spectrum of substrates and play a critical role in the metabolism of xenobiotics, such as drugs and dietary compounds. CYP3A4 is known to be the main enzyme involved in the metabolism of drugs and most other xenobiotics. Dietary compounds, of which polyphenolics are the most studied, have been shown to interact with CYP3A4 and alter its expression and activity. Traditionally, the liver was considered the prime site of CYP3A-mediated first-pass metabolic extraction, but in vitro and in vivo studies now suggest that the small intestine can be of equal or even greater importance for the metabolism of polyphenolics and drugs. Recent studies have pointed to the role of gut microbiota in the metabolic fate of polyphenolics in human, suggesting their involvement in the complex interactions between dietary polyphenols and CYP3A4. Last but not least, all the above suggests that coadministration of drugs and foods that are rich in polyphenols is expected to stimulate undesirable clinical consequences. This review focuses on interactions between dietary polyphenols and CYP3A4 as they relate to structural considerations, food-drug interactions, and potential negative consequences of interactions between CYP3A4 and polyphenols. PMID:26180597

  4. Cellular localization and functional significance of CYP3A4 in the human epileptic brain

    PubMed Central

    Ghosh, Chaitali; Marchi, Nicola; Desai, Nirav K.; Puvenna, Vikram; Hossain, Mohammed; Gonzalez-Martinez, Jorge; Alexopoulos, Andreas V.; Janigro, Damir

    2011-01-01

    Summary Purpose Compelling evidence supports the presence of P450 enzymes (CYPs) in the central nervous system (CNS). However, little information is available on the localization and function of CYPs in the drug-resistant epileptic brain. We have evaluated the pattern of expression of the specific enzyme CYP3A4 and studied its co-localization with MDR1. We also determined whether an association exists between CYP3A4 expression and cell survival. Methods Brain specimens were obtained from eight patients undergoing resection to relieve drug-resistant seizures or to remove a cavernous angioma. Each specimen was partitioned for either immunostaining or primary culture of human endothelial cells and astrocytes. Immunostaining was performed using anti-CYP3A4, MDR1, GFAP, or NeuN antibodies. High performance liquid chromatography–ultraviolet (HPLC-UV) analysis was used to quantify carbamazepine (CBZ) metabolism by these cells. CYP3A4 expression was correlated to DAPI condensation, a marker of cell viability. Human embryonic kidney (HEK) cells were transfected with CYP3A4 to further evaluate the link between CYP3A4 levels, CBZ metabolism, and cell viability. Key Findings CYP3A4 was expressed by blood–brain barrier (BBB) endothelial cells and by the majority of neurons (75 ± 10%). Fluorescent immunostaining showed coexpression of CYP3A4 and MDR1 in endothelial cells and neurons. CYP3A4 expression inversely correlated with DAPI nuclear condensation. CYP3A4 overexpression in HEK cells conferred resistance to cytotoxic levels of carbamazepine. CYP3A4 levels positively correlated with the amount of CBZ metabolized. Significance CYP3A4 brain expression is not only associated with drug metabolism but may also represent a cytoprotective mechanism. Coexpression of CYP3A4 and MDR1 may be involved in cell survival in the diseased brain. PMID:21294720

  5. Cree antidiabetic plant extracts display mechanism-based inactivation of CYP3A4.

    PubMed

    Tam, Teresa W; Liu, Rui; Arnason, John T; Krantis, Anthony; Staines, William A; Haddad, Pierre S; Foster, Brian C

    2011-01-01

    Seventeen Cree antidiabetic medicinal plants were studied to determine their potential to inhibit cytochrome P450 3A4 (CYP3A4) through mechanism-based inactivation (MBI). The ethanolic extracts of the medicinal plants were studied for their inhibition of CYP3A4 using the substrates testosterone and dibenzylfluorescein (DBF) in high pressure liquid chromatography (HPLC) and microtiter fluorometric assays, respectively. Using testosterone as a substrate, extracts of Alnus incana, Sarracenia purpurea, and Lycopodium clavatum were identified as potent CYP3A4 MBIs, while those from Abies balsamea, Picea mariana, Pinus banksiana, Rhododendron tomentosum, Kalmia angustifolia, and Picea glauca were identified as less potent inactivators. Not unexpectedly, the other substrate, DBF, showed a different profile of inhibition. Only A. balsamea was identified as a CYP3A4 MBI using DBF. Abies balsamea displayed both NADPH- and time-dependence of CYP3A4 inhibition using both substrates. Overall, several of the medicinal plants may markedly deplete CYP3A4 through MBI and, consequently, decrease the metabolism of CYP3A4 substrates including numerous medications used by diabetics.

  6. Development of a highly sensitive cytotoxicity assay system for CYP3A4-mediated metabolic activation.

    PubMed

    Hosomi, Hiroko; Fukami, Tatsuki; Iwamura, Atsushi; Nakajima, Miki; Yokoi, Tsuyoshi

    2011-08-01

    Drug-induced hepatotoxicity, which is a rare but serious adverse reaction to a large number of pharmaceutical drugs, is sometimes associated with reactive metabolites produced by drug-metabolizing enzymes. In the present study, we constructed a cell-based system to evaluate the cytotoxicity of reactive metabolites produced by CYP3A4 using human hepatoma cells infected with an adenovirus vector expressing human CYP3A4 (AdCYP3A4). When seven hepatoma cell lines (HepG2, Hep3B, HLE, HLF, Huh6, Huh7, and Fa2N4 cells) were infected with AdCYP3A4, HepG2 cells showed the highest CYP3A4 protein expression and testosterone 6β-hydroxylase activity (670 pmol · min(-1) · mg(-1)). With the use of AdCYP3A4-infected HepG2 cells, the cytotoxicities of 23 drugs were evaluated by the 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium monosodium salt assay, and the cell viability when treated with 11 drugs (amiodarone, desipramine, felbamate, isoniazid, labetalol, leflunomide, nefazodone, nitrofurantoin, tacrine, terbinafine, and tolcapone) was significantly decreased. Moreover, the transfection of siRNA for nuclear factor erythroid 2-related factor 2 (Nrf2) to decrease the cellular expression level of Nrf2 exacerbated the cytotoxicity of some drugs (troglitazone, flutamide, acetaminophen, clozapine, terbinafine, and desipramine), suggesting that the genes regulated by Nrf2 are associated with the detoxification of the cytotoxicities mediated by CYP3A4. We constructed a highly sensitive cell-based system to detect the drug-induced cytotoxicity mediated by CYP3A4. This system would be beneficial in preclinical screening in drug development and increase our understanding of the drug-induced cytotoxicity associated with CYP3A4.

  7. Mitotane induces CYP3A4 expression via activation of the steroid and xenobiotic receptor.

    PubMed

    Takeshita, Akira; Igarashi-Migitaka, Junko; Koibuchi, Noriyuki; Takeuchi, Yasuhiro

    2013-03-01

    Adrenocortical carcinoma (ACC) is a rare disease with an extremely poor prognosis. Mitotane alone or in combination with other cytotoxic drugs is a common therapeutic option for ACC. In addition to its adrenolytic function, mitotane has been known for decades to increase the metabolic clearance of glucocorticoids. It was recently shown that the tyrosine kinase inhibitor sunitinib is also rapidly metabolized in patients treated with mitotane, indicating that mitotane engages in clinically relevant drug interactions. Although the precise mechanism of these interactions is not well understood, cytochrome P450 mono-oxygenase 3A4 (CYP3A4) is a key enzyme to inactivate both glucocorticoids and sunitinib. The nuclear receptor steroid and xenobiotic receptor (SXR (NR1I2)) is one of the key transcriptional regulators of CYP3A4 gene expression in the liver and intestine. A variety of xenobiotics bind to SXR and stimulate transcription of xenobiotic-response elements (XREs) located in the CYP3A4 gene promoter. In this study, we evaluated the effects of mitotane on SXR-mediated transcription in vitro by luciferase reporter analysis, SXR-steroid receptor coactivator 1 (SRC1) interactions, quantitative real-time PCR analysis of CYP3A4 expression, SXR knockdown, and CYP3A4 enzyme activity assays using human hepatocyte-derived cells. We found that mitotane activated SXR-mediated transcription of the XREs. Mitotane recruited SRC1 to the ligand-binding domain of SXR. Mitotane increased CYP3A4 mRNA levels, which was attenuated by SXR knockdown. Finally, we showed that mitotane increased CYP3A4 enzyme activity. We conclude that mitotane can induce CYP3A4 gene expression and suggest that mitotane is used cautiously due to its drug-drug interactions.

  8. MicroRNAs regulate CYP3A4 expression via direct and indirect targeting.

    PubMed

    Pan, Yu-Zhuo; Gao, Wenqing; Yu, Ai-Ming

    2009-10-01

    CYP3A4 metabolizes many drugs on the market. Although transcriptional regulation of CYP3A4 is known to be tightly controlled by some nuclear receptors (NR) including vitamin D receptor (VDR/NR1I1), posttranscriptional regulation of CYP3A4 remains elusive. In this study, we show that noncoding microRNAs (miRNAs) may control posttranscriptional and transcriptional regulation of CYP3A4 by directly targeting the 3'-untranslated region (3'UTR) of CYP3A4 and indirectly targeting the 3'UTR of VDR, respectively. Luciferase reporter assays showed that CYP3A4 3'UTR-luciferase activity was significantly decreased in human embryonic kidney 293 cells transfected with plasmid that expressed microRNA-27b (miR-27b) or mouse microRNA-298 (mmu-miR-298), whereas the activity was unchanged in cells transfected with plasmid that expressed microRNA-122a or microRNA-328. Disruption of the corresponding miRNA response element (MRE) within CYP3A4 3'UTR led to a 2- to 3-fold increase in luciferase activity. Immunoblot analyses indicated that CYP3A4 protein was down-regulated over 30% by miR-27b and mmu-miR-298 in LS-180 and PANC1 cells. The decrease in CYP3A4 protein expression was associated with significantly decreased CYP3A4 mRNA levels, as determined by quantitative real-time PCR (qPCR) analyses. Likewise, interactions of miR-27b or mmu-miR-298 with VDR 3'UTR were supported by luciferase reporter assays. The mmu-miR-298 MRE site is well conserved within the 3'UTR of mouse, rat, and human VDR. Down-regulation of VDR by the two miRNAs was supported by immunoblot and qPCR analyses. Furthermore, overexpression of miR-27b or mmu-miR-298 in PANC1 cells led to a lower sensitivity to cyclophosphamide. Together, these findings suggest that CYP3A4 gene expression may be regulated by miRNAs at both the transcriptional and posttranscriptional level.

  9. The relative contributions of CYP3A4 and CYP3A5 to the metabolism of vinorelbine.

    PubMed

    Topletz, Ariel R; Dennison, Jennifer B; Barbuch, Robert J; Hadden, Chad E; Hall, Stephen D; Renbarger, Jamie L

    2013-09-01

    Vinorelbine is a semisynthetic vinca alkaloid used in the treatment of advanced breast and non-small cell lung cancers. Vincristine, a related vinca alkaloid, is 9-fold more efficiently metabolized by CYP3A5 than by CYP3A4 in vitro. This study quantified the relative contribution of CYP3A4 and CYP3A5 to the metabolism of vinorelbine in vitro using cDNA-expressed human cytochrome P450s (P450s) and human liver microsomes (HLMs). CYP3A4 and CYP3A5 were identified as the P450s capable of oxidizing vinorelbine using a panel of human enzymes and selective P450 inhibitors in HLMs. For CYP3A4 coexpressed with cytochrome b5 (CYP3A4+b5) and CYP3A5+b5, the Michaelis-Menten constants for vinorelbine were 2.6 and 3.6 μM, respectively, but the Vmax of 1.4 pmol/min/pmol was common to both enzymes. In HLMs, the intrinsic clearance of vinorelbine metabolism was highly correlated with CYP3A4 activity, and there was no significant difference in intrinsic clearance between CYP3A5 high and low expressers. When radiolabeled vinorelbine substrate was used, there were clear qualitative differences in metabolite formation fingerprints between CYP3A4+b5 and CYP3A5+b5 as determined by NMR and mass spectrometry analysis. One major metabolite (M2), a didehydro-vinorelbine, was present in both recombinant and microsomal systems but was more abundant in CYP3A4+b5 incubations. We conclude that despite the equivalent efficiency of recombinant CYP3A4 and CYP3A5 in vinorelbine metabolism the polymorphic expression of CYP3A5, as shown by the kinetics with HLMs, may have a minimal effect on systemic clearance of vinorelbine.

  10. [Effects of isorhamnetin on CYP3A4 and herb-drug interaction].

    PubMed

    Ding, Li-li; Zhang, Jing-jing; Dou, Wei

    2012-08-01

    The study is to report the investigation of the effects of isorhamnetin on CYP3A4 and herb-drug interaction. A reporter gene assay is used to test pregnane X receptor transactivation action, qRT-PCR and a luminescence-based assay were applied to determine mRNA induction and enzyme activity of CYP3A4 after isorhamnetin treatment. The interaction of irinotecan and isorhamnetin was assessed by inhibition assay of cell proliferation. Isorhamnetin at 1, 10 and 25 micromol x L(-1) transactivated the CYP3A4 reporter construct and upregulated CYP3A4 mRNA as well in a dose-dependent manner. However, isorhamnetin had no effect on enzyme activity of CYP3A4 and irinotecan HepG2 cytotoxicity. In conclusion, activation of PXR by isorhamnetin played a role in the upregulation of CYP3A4 mRNA. Moreover, joint action of isorhamnetin with other drugs may not be associated with the herb-drug interaction.

  11. Stereospecific Metabolism of Itraconazole by CYP3A4: Dioxolane Ring Scission of Azole Antifungals

    PubMed Central

    Peng, Chi-Chi; Shi, Wei; Lutz, Justin D.; Kunze, Kent L.; Liu, Jun O.; Nelson, Wendel L.

    2012-01-01

    Itraconazole (ITZ) is a mixture of four cis-stereoisomers that inhibit CYP3A4 potently and coordinate CYP3A4 heme via the triazole nitrogen. However, (2R,4S,2′R)-ITZ and (2R,4S,2′S)-ITZ also undergo stereoselective sequential metabolism by CYP3A4 at a site distant from the triazole ring to 3′-OH-ITZ, keto-ITZ, and N-desalkyl-ITZ. This stereoselective metabolism demonstrates specific interactions of ITZ within the CYP3A4 active site. To further investigate this process, the binding and metabolism of the four trans-ITZ stereoisomers by CYP3A4 were characterized. All four trans-ITZ stereoisomers were tight binding inhibitors of CYP3A4-mediated midazolam hydroxylation (IC50 16–26 nM), and each gave a type II spectrum upon binding to CYP3A4. However, instead of formation of 3′-OH-ITZ, they were oxidized at the dioxolane ring, leading to ring scission and formation of two new metabolites of ITZ. These two metabolites were also formed from the four cis-ITZ stereoisomers, although not as efficiently. The catalytic rates of dioxolane ring scission were similar to the dissociation rates of ITZ stereoisomers from CYP3A4, suggesting that the heme iron is reduced while the triazole moiety coordinates to it and no dissociation of ITZ is necessary before catalysis. The triazole containing metabolite [1-(2,4-dichlorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethanone] also inhibited CYP3A4 (IC50 >15 μM) and showed type II binding with CYP3A4. The dioxolane ring scission appears to be clinically relevant because this metabolite was detected in urine samples from subjects that had been administered the mixture of cis-ITZ isomers. These data suggest that the dioxolane ring scission is a metabolic pathway for drugs that contain this moiety. PMID:22106171

  12. Single-Walled Carbon Nanotubes Inhibit the Cytochrome P450 Enzyme, CYP3A4

    NASA Astrophysics Data System (ADS)

    El-Sayed, Ramy; Bhattacharya, Kunal; Gu, Zonglin; Yang, Zaixing; Weber, Jeffrey K.; Li, Hu; Leifer, Klaus; Zhao, Yichen; Toprak, Muhammet S.; Zhou, Ruhong; Fadeel, Bengt

    2016-02-01

    We report a detailed computational and experimental study of the interaction of single-walled carbon nanotubes (SWCNTs) with the drug-metabolizing cytochrome P450 enzyme, CYP3A4. Dose-dependent inhibition of CYP3A4-mediated conversion of the model compound, testosterone, to its major metabolite, 6β-hydroxy testosterone was noted. Evidence for a direct interaction between SWCNTs and CYP3A4 was also provided. The inhibition of enzyme activity was alleviated when SWCNTs were pre-coated with bovine serum albumin. Furthermore, covalent functionalization of SWCNTs with polyethylene glycol (PEG) chains mitigated the inhibition of CYP3A4 enzymatic activity. Molecular dynamics simulations suggested that inhibition of the catalytic activity of CYP3A4 is mainly due to blocking of the exit channel for substrates/products through a complex binding mechanism. This work suggests that SWCNTs could interfere with metabolism of drugs and other xenobiotics and provides a molecular mechanism for this toxicity. Our study also suggests means to reduce this toxicity, eg., by surface modification.

  13. Single-Walled Carbon Nanotubes Inhibit the Cytochrome P450 Enzyme, CYP3A4

    PubMed Central

    El-Sayed, Ramy; Bhattacharya, Kunal; Gu, Zonglin; Yang, Zaixing; Weber, Jeffrey K.; Li, Hu; Leifer, Klaus; Zhao, Yichen; Toprak, Muhammet S.; Zhou, Ruhong; Fadeel, Bengt

    2016-01-01

    We report a detailed computational and experimental study of the interaction of single-walled carbon nanotubes (SWCNTs) with the drug-metabolizing cytochrome P450 enzyme, CYP3A4. Dose-dependent inhibition of CYP3A4-mediated conversion of the model compound, testosterone, to its major metabolite, 6β-hydroxy testosterone was noted. Evidence for a direct interaction between SWCNTs and CYP3A4 was also provided. The inhibition of enzyme activity was alleviated when SWCNTs were pre-coated with bovine serum albumin. Furthermore, covalent functionalization of SWCNTs with polyethylene glycol (PEG) chains mitigated the inhibition of CYP3A4 enzymatic activity. Molecular dynamics simulations suggested that inhibition of the catalytic activity of CYP3A4 is mainly due to blocking of the exit channel for substrates/products through a complex binding mechanism. This work suggests that SWCNTs could interfere with metabolism of drugs and other xenobiotics and provides a molecular mechanism for this toxicity. Our study also suggests means to reduce this toxicity, eg., by surface modification. PMID:26899743

  14. Metabolic-induced cytotoxicity of diosbulbin B in CYP3A4-expressing cells.

    PubMed

    Jiang, Ji-Zong; Yang, Bao-Hua; Ji, Li-Li; Yang, Li; Mao, Yu-Chang; Hu, Zhuo-Han; Wang, Zheng-Tao; Wang, Chang-Hong

    2017-02-01

    As a candidate antitumor agent, diosbulbin B (DB) can induce serious liver toxicity and other adverse reactions. DB is mainly metabolized by CYP3A4 in vitro and in vivo, but the cytotoxicity and anti-tumor mechanisms of DB have yet to be clarified. This study aimed to determine whether the cytotoxicity and anti-tumor effects of DB are related to the metabolism-induced activation of CYP3A4 in various cell models, including CYP-free NIH3T3 cells, primary rat hepatocytes, HepG2 and L02 cells of high CYP3A4 expression and wild-type. Results showed that DB did not markedly decrease the viability of NIH3T3 cells. DB metabolites, obtained from the metabolism by mouse liver microsomes, did not elicit cytotoxicity on NIH3T3 cells either. By contrast, DB could induce significant cytotoxicity on primary rat hepatocytes. The DB induced cytotoxicity on HepG2 or L02 cells with high CYP3A4 expression were stronger than those on wild-type cells. As a metabolic biomarker, the metabolite conjugate (M31) of DB with GSH was detected in the incubation system. A higher amount of M31 was generated in the transfected HepG2 and L02 cells than in the wild-type cells at different time points. Ketoconazole, however, could restrain DB induced cytotoxicity on primary rat hepatocytes and in CYP3A4 transfected HepG2 and L02 cells. Therefore, the cytotoxicity of DB was closely related to CYP3A4-metabolized reactive DB metabolites.

  15. Testosterone metabolism of equine single CYPs of the 3A subfamily compared to the human CYP3A4.

    PubMed

    Vimercati, S; Büchi, M; Zielinski, J; Peduto, N; Mevissen, M

    2017-02-24

    Cytochrome P450 enzymes (CYPs) are responsible for the phase I metabolism of drugs, xenobiotics and endogenous substances. Knowledge of single CYPs and their substrates is important for drug metabolism, helps to predict adverse effects and may prevent reduced drug efficacy in polypharmacy. In this study, three equine isoenzymes of the 3A subfamily, the equine flavoprotein NADPH-P450 oxidoreductase (POR), and the cytochrome b5 (CYB5) were cloned, sequenced and heterologously expressed in a baculovirus expression system. Testosterone, the standard compound for characterization of the human CYP3A4, was used to characterize the newly expressed equine CYPs. The metabolite pattern was similar in equine and the human CYPs, but the amounts of metabolites were isoform-dependent. All equine CYPs produced 2-hydroxytestosterone (2-OH-TES), a metabolite never described in equines. The main metabolite of CYP3A4 6β-hydroxytestosterone (6β-OH-TES) was measured in CYPs 3A95 and 3A97 with levels close to the detection limit. Ketoconazole inhibited 2-OH-TES in the human CYP3A4 and the equine CYP3A94 and CYP3A97 completely, whereas a 70% inhibition was found in CYP3A95. Testosterone 6β- and 2-hydroxylation was significantly different in the equine CYPs compared to CYP3A4. The expression of single equine CYPs allows characterizing drug metabolism and may allow prevention of drug-drug interactions.

  16. Fatal methadone toxicity: potential role of CYP3A4 genetic polymorphism.

    PubMed

    Richards-Waugh, Lauren L; Primerano, Donald A; Dementieva, Yulia; Kraner, James C; Rankin, Gary O

    2014-10-01

    Methadone is difficult to administer as a therapeutic agent because of a wide range of interindividual pharmacokinetics, likely due to genetic variability of the CYP450 enzymes responsible for metabolism to its principal metabolite 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP). CYP3A4 is one of the primary CYP450 isoforms responsible for the metabolism of methadone to EDDP in humans. The purpose of this study was to evaluate the role of CYP3A4 genetic polymorphisms in accidental methadone fatalities. A study cohort consisting of 136 methadone-only and 92 combined methadone/benzodiazepine fatalities was selected from cases investigated at the West Virginia and Kentucky Offices of the Chief Medical Examiner. Seven single nucleotide polymorphisms (SNPs) were genotyped within the CYP3A4 gene. Observed allelic and genotypic frequencies were compared with expected frequencies obtained from The National Center for Biotechnology Information dbSNP database. SNPs rs2242480 and rs2740574 demonstrated an apparent enrichment within the methadone-only overdose fatalities compared with the control group and the general population. This enrichment was not apparent in the methadone/benzodiazepine cases for these two SNPs. Our findings indicate that there may be two or more SNPs on the CYP3A4 gene that cause or contribute to the methadone poor metabolizer phenotype.

  17. Flavonoids and polymer derivatives as CYP3A4 inhibitors for improved oral drug bioavailability.

    PubMed

    Fasinu, Pius; Choonara, Yahya E; Khan, Riaz A; Du Toit, Lisa C; Kumar, Pradeep; Ndesendo, Valence M K; Pillay, Viness

    2013-02-01

    Molecular modeling computations were utilized to generate pharmaceutical grade CYP3A4-enzyme inhibitors. In vitro metabolism of felodipine in human intestinal and liver microsomes (HLM and HIM) was optimized yielding a Michaelis-Menten plot from where the K(m) and V(max) values were estimated by nonlinear regression. The flavonoids, naringin, naringenin, and quercetin, were subsequently incubated with felodipine at the determined K(m) value in HLM. Comparing results obtained from a known CYP3A4 inhibitor, verapamil, the flavonoids inhibited felodipine metabolism. In-depth computational analysis of these flavonoids in terms of CYP3A4 binding, sequencing, and affinity, computational biomimetism was employed to validate the potential CYP3A4 inhibitors. The modeled compounds were comparatively evaluated by incubation with felodipine in both HLM and HIM. Results showed that the polymers 8-arm-PEG, o-(2-aminoethyl)-o-methyl-PEG, 4-arm-PEG (molecular weight = 10,000 g/mol and 20,000 g/mol, respectively), and poly(l-lysine) were able to inhibit the felodipine metabolism with the half maximal inhibitory concentration (IC(50)) values ranging from 7.22 to 30.0 μM (HLM) and 5.78 to 41.03 μM (HIM). Molecular docking confirmed drug-enzyme interactions by computing the free energies of binding (ΔE) and inhibition constants (K(i)) of the docked compounds utilizing a Lamarckian Genetic Algorithm. Comparative correlations between the computed and experimental K(i) values were obtained. Computational modeling of CYP3A4 inhibitors provided a suitable strategy to screen pharmaceutical grade compounds that may potentially inhibit presystemic CYP3A4-dependent drug metabolism with the prospect of improving oral drug bioavailability.

  18. Evidences for CYP3A4 autoactivation in the desulfuration of dimethoate by the human liver.

    PubMed

    Buratti, Franca M; Testai, Emanuela

    2007-11-20

    Dimethoate (DIM) is an organophosphorothionate (OPT) pesticide used worldwide as a systemic insecticide and acaricide. It is characterized by low-to-moderate acute mammalian toxicity; similarly to the other OPT pesticides, its mode of action is mediated by the inhibition of acetylcholinesterase (AChE), exerted by its toxic metabolite dimethoate-oxon or omethoate (OME), which is also used as a direct acting pesticide. Human hepatic DIM bioactivation to the toxic metabolite OME has been characterized by using c-DNA expressed human CYPs and human liver microsomes (HLM) also in the presence of CYP-specific chemical inhibitors, with a method based on AChE inhibition. The obtained kinetic parameters and AChE IC(50) have been compared with those previously obtained with other OPTs, indicating a lower efficiency in DIM desulfuration reaction and a lower potency in inhibiting AChE. Results showed that, similarly to the other OPTs tested so far, at low DIM concentration OME formation is mainly catalysed by CYP1A2, while the role of 3A4 is relevant at high DIM levels. Differently from the other OPTs, DIM desulfuration reaction showed an atypical kinetic profile, likely due to CYP3A4 autoactivation. The sigmoidicity degree of the activity curve increased with the level of CYP3A4 in HLM or disappeared in the presence of a CYP3A4 chemical inhibitor. This atypical kinetic behaviour can be considered one of the possible explanations for the recent findings that among patients hospitalized following OPT intoxication, DIM ingestion gave different symptoms and more severe poisoning (23.1% of fatal cases versus total) than chlorpyrifos (8% of deaths), which has a lower LD(50) value. Since DIM-poisoned patients poorly responded to pralidoxime, the possibility to use CYP3A4 inhibitors could be considered as a complementary treatment.

  19. Effects of CYP3A4 inducers with and without CYP3A4 inhibitors on the pharmacokinetics of maraviroc in healthy volunteers

    PubMed Central

    Abel, Samantha; Jenkins, Timothy M; Whitlock, Lyndsey A; Ridgway, Caroline E; Muirhead, Gary J

    2008-01-01

    Aims To assess the potential of known CYP3A4 inducers, with and without CYP3A4 inhibitors, to alter the pharmacokinetic profile of maraviroc. Methods Two separate, open, randomized, placebo-controlled studies were conducted in healthy subjects. Study 1 was a 28-day parallel-group study with three treatment groups of 12 subjects each. On days 1–7, all subjects received maraviroc 100 mg b.i.d.; on days 8–21, subjects received maraviroc 100 mg b.i.d. plus either rifampicin 600 mg q.d., efavirenz (EFV) 600 mg q.d., or placebo q.d. as assigned; on days 22–28, the maraviroc dose was increased to 200 mg b.i.d. for patients receiving either rifampicin or EFV. Study 2 was a 21-day, two-way crossover study with three cohorts (12 subjects per cohort). On days 1–21, subjects received maraviroc 300 mg b.i.d. and boosted lopinavir (LPV/r, lopinavir 400 mg + ritonavir 100 mg) or placebo b.i.d. in cohort 1, maraviroc 100 mg b.i.d. and boosted saquinavir (SQV/r, saquinavir 1000 mg + ritonavir 100 mg) or placebo b.i.d. in cohort 2, and maraviroc 100 mg b.i.d. and 1000 mg saquinavir + LPV/r (400 mg/100 mg) or placebo b.i.d. in cohort 3. On days 8–21, subjects in all three cohorts also received EFV 600 mg or placebo q.d. Results Maraviroc (100 mg b.i.d.) exposure (AUC12 and Cmax) was reduced in the presence of rifampicin and EFV by approximately 70% and 50%, respectively. Maraviroc AUC12 and Cmax approached preinduction values when the maraviroc dose was increased to 200 mg b.i.d. for both the rifampicin-treated and EFV-treated groups. Co-administration of LPV/r with maraviroc (300 mg b.i.d.) resulted in geometric mean ratios (GMRs) of 395% and 197% for maraviroc AUC12 and Cmax, respectively, compared with placebo; addition of EFV resulted in GMRs of 253% and 125% for AUC12 and Cmax, respectively. Co-administration of SQV/r with maraviroc (100 mg b.i.d.) resulted in GMRs of 977% and 478% for maraviroc AUC12 and Cmax, respectively, compared with placebo; addition of EFV

  20. Polychlorinated biphenyl (PCB) induction of CYP3A4 enzyme activity in healthy Faroese adults

    SciTech Connect

    Petersen, Maria Skaalum Halling, Jonrit; Damkier, Per; Nielsen, Flemming; Grandjean, Philippe; Weihe, Pal; Brosen, Kim

    2007-10-15

    The CYP3A4 enzyme is, along with other cytochrome P450 enzymes, involved in the metabolism of environmental pollutants and is highly inducible by these substances. A commercial polychlorinated biphenyl (PCB) mixture, 1,1,1,-trichloro-2-(o-chlorophenyl), 2-(p'-chlorophenyl)ethane (o,p'-DDT) and 1,1,-dichloro-2,2-bis (p-chlorophenyl)ethene (p,p'-DDE) are known to induce CYP3A4 activity through activation of nuclear receptors, such as the pregnane X receptor. However, this induction of CYP3A4 has not yet been investigated in humans. Thus, the aim of the study was to determine the variability of the CYP3A4 phenotype in regard to increased concentrations of PCBs and other persistent organohalogen pollutants (POPs) in healthy Faroese adults. In 310 randomly selected Faroese residents aged 18-60 years, the CYP3A4 activity was determined based on the urinary 6{beta}-hydroxycortisol/cortisol (6{beta}-OHC/FC) ratio. POP exposures were assessed by measuring their concentrations in serum lipid. The results showed a unimodal distribution of the 6{beta}-OHC/FC ratio with values ranging from 0.58 to 27.38. Women had a slightly higher 6{beta}-OHC/FC ratio than men (p = 0.07). Confounder-adjusted multiple regression analysis showed significant associations between 6{beta}-OHC/FC ratios and {sigma}PCB, PCB-TEQ and p,p'-DDE, o,p'-DDT and HCB, respectively, but the associations were statistically significant for men only.

  1. NCOA6 differentially regulates the expression of the CYP2C9 and CYP3A4 genes

    PubMed Central

    Surapureddi, Sailesh; Rana, Ritu; Goldstein, Joyce A

    2011-01-01

    CYP2Cs and CYP3A4 sub family of enzymes of the Cytochrome P-450 super family metabolize clinically prescribed therapeutics. Constitutive and induced expressions of these enzymes are under the control of HNF4α and rifampicin activated PXR. In the present study, we show a mechanism for ligand dependent synergistic cross talk between PXR and HNF4α. Two-hybrid screening identified NCOA6 as a HNF4α interacting protein. NCOA6 was also found to interact with PXR through the first LXXLL motif in GST pull down and mammalian two hybrid assays. NCOA6 enhances the synergistic activation of CYP2C9 and CYP3A4 promoter activity by PXR and HNF4α in the presence of rifampicin. However silencing NCOA6 abrogated the synergistic activation and induction of CYP2C9 by PXR-HNF4α but not of CYP3A4. ChIP analysis revealed that NCOA6 could bridge HNF4α and PXR binding sites of the CYP2C9 promoter. Our results indicate that NCOA6 is responsible for the synergistic activation of CYP2C9 by HNF4α and PXR and NCOA6 differentially regulates CYP2C9 and CYP3A4 gene expression though both the genes are regulated by the same nuclear receptors. PMID:21292004

  2. Modulation of CYP2D6 and CYP3A4 metabolic activities by Ferula asafetida resin

    PubMed Central

    Al-Jenoobi, Fahad I.; Al-Thukair, Areej A.; Alam, Mohd Aftab; Abbas, Fawkeya A.; Al-Mohizea, Abdullah M.; Alkharfy, Khalid M.; Al-Suwayeh, Saleh A.

    2014-01-01

    Present study investigated the potential effects of Ferula asafetida resin on metabolic activities of human drug metabolizing enzymes: CYP2D6 and CYP3A4. Dextromethorphan (DEX) was used as a marker to assess metabolic activities of these enzymes, based on its CYP2D6 and CYP3A4 mediated metabolism to dextrorphan (DOR) and 3-methoxymorphinan (3-MM), respectively. In vitro study was conducted by incubating DEX with human liver microsomes and NADPH in the presence or absence of Asafetida alcoholic extract. For clinical study, healthy human volunteers received a single dose of DEX alone (phase-I) and repeated the same dose after a washout period and four-day Asafetida treatment (phase-II). Asafetida showed a concentration dependent inhibition on DOR formation (in vitro) and a 33% increase in DEX/DOR urinary metabolic ratio in clinical study. For CYP3A4, formation of 3-MM in microsomes was increased at low Asafetida concentrations (10, 25 and 50 μg/ml) but slightly inhibited at the concentration of 100 μg/ml. On the other hand, in vivo observations revealed that Asafetida significantly increased DEX/3-MM urinary metabolic ratio. The findings of this study suggest that Asafetida may have a significant effect on CYP3A4 metabolic activity. Therefore, using Ferula asafetida with CYP3A4 drug substrates should be cautioned especially those with narrow therapeutic index such as cyclosporine, tacrolimus and carbamazepine. PMID:25561870

  3. DEC1 binding to the proximal promoter of CYP3A4 ascribes to the downregulation of CYP3A4 expression by IL-6 in primary human hepatocytes

    PubMed Central

    Gang, Cao; Wei, Liu; Jing, Xiong; Gang, Hu; Ruini, Chen; Rui, Ning; Wei, Shang; Jian, Yang; Bingfang, Yan

    2014-01-01

    In this study, we provided molecular evidences that IL-6 contributed to the decreased capacity of oxidative biotransformation in human liver by suppressing the expression of CYP3A4. After human hepatocytes were treated with IL-6, DEC1 expression rapidly increased, and subsequently, the CYP3A4 expression decreased continuously. Furthermore, the repression of CYP3A4 by IL-6 occurred after the increase of DEC1 in primary human hepatocytes. In HepG2 cells, knockdown of DEC1 increased the CYP3A4 expression and its enzymatic activity. In addition, it partially abolished the decreased CYP3A4 expression as well as its enzymatic activity induced by IL-6. Consistent with this, overexpression of DEC1 markedly reduced the CYP3A4 promoter activity and the CYP3A4 expression as well as its enzymatic activity. Using sequential truncation and site directed mutagenesis of CYP3A4 proximal promoter with DEC1 construct, we showed that DEC1 specifically bound to CCCTGC sequence in the proximal promoter of CYP3A4, which was validated by EMSA and ChIP assay. These findings suggest that the repression of CYP3A4 by IL-6 is achieved through increasing the DEC1 expression in human hepatocytes, the increased DEC1 binds to the CCCTGC sequence in the promoter of CYP3A4 to form CCCTGC-DEC1 complex, and the complex downregulates the CYP3A4 expression and its enzymatic activity. PMID:22728071

  4. Comparative CYP3A4 inhibitory effects of venlafaxine, fluoxetine, sertraline, and nefazodone in healthy volunteers.

    PubMed

    DeVane, C Lindsay; Donovan, Jennifer L; Liston, Heidi L; Markowitz, John S; Cheng, Kenneth T; Risch, S Craig; Willard, Lauren

    2004-02-01

    An antidepressant for use in the patient receiving concomitant drug treatment, over-the-counter medications, or herbal products should lack cytochrome P-450 (CYP) 3A4 inductive or inhibitory activity to provide the least likelihood of a drug-drug interaction. This study addresses the potential of 4 diverse antidepressants (venlafaxine, nefazodone, sertraline, and fluoxetine) to inhibit or induce CYP3A4. In a 4-way crossover design, 16 subjects received clinically relevant doses of venlafaxine, nefazodone, or sertraline for 8 days or fluoxetine for 11 days. Treatments were separated by a 7- to 14-day washout period and fluoxetine was always the last antidepressant taken. CYP3A4 activity was evaluated for each subject at baseline and following each antidepressant using the erythromycin breath test (EBT) and by the pharmacokinetics of alprazolam (ALPZ) after 2-mg dose of oral ALPZ. Compared to baseline, venlafaxine, sertraline, and fluoxetine caused no apparent inhibition or induction of erythromycin metabolism (P > 0.05). For nefazodone, a statistically significant inhibition was observed (P < 0.0005). Nefazodone was also the only antidepressant that caused a significant change in ALPZ disposition, decreasing its area under the concentration-versus-time curve (AUC; P < 0.01), and increasing its elimination half-life (16.4 vs. 12.3 hours; P < 0.05) compared with values at baseline. No significant differences were found in the pharmacokinetics of ALPZ with any of the other antidepressants tested. These results demonstrate in vivo that, unlike nefazodone, venlafaxine, sertraline, and fluoxetine do not possess significant metabolic inductive or inhibitory effects on CYP3A4.

  5. Time-dependent inhibition of CYP3A4 by sertraline, a selective serotonin reuptake inhibitor.

    PubMed

    Masubuchi, Yasuhiro; Kawaguchi, Yuki

    2013-11-01

    Drug-drug interactions associated with selective serotonin reuptake inhibitors (SSRIs) are widely known. A major interaction by SSRIs is the inhibition of cytochrome P450 (P450)-mediated hepatic drug metabolism. The SSRI, sertraline, is also reported to increase the blood concentration of co-administered drugs. The potency of sertraline directly to inhibit hepatic drug metabolism is relatively weak compared with the other SSRIs, implying that additional mechanisms are involved in the interactions. The study examined whether sertraline produces time-dependent inhibition of CYP3A4 and/or other P450 enzymes. Incubation of human liver microsomes with sertraline in the presence of NADPH resulted in marked decreases in testosterone 6β-hydroxylation activities, indicating that sertraline metabolism leads to CYP3A4 inactivation. This inactivation required NADPH and was not protected by glutathione. No significant inactivation was observed for other P450 enzymes. Spectroscopic evaluation revealed that microsomes with and without sertraline in the presence of NADPH gave a Soret peak at 455 nm, suggesting the formation of metabolic intermediate (MI) complexes of sertraline metabolite(s) with the reduced form of P450. This is the first report indicating that sertraline produced time-dependent inhibition of CYP3A4, which may be associated with MI complex formation.

  6. Metabolomic profiling of liquid Echinacea medicinal products with in vitro inhibitory effects on cytochrome P450 3A4 (CYP3A4).

    PubMed

    Modarai, Maryam; Yang, Min; Suter, Andy; Kortenkamp, Andreas; Heinrich, Michael

    2010-03-01

    ECHINACEA is a popular and widely used herbal medicinal product and consequently, studies of its interactions with conventional drugs are of particular importance. We have shown that ECHINACEA preparations and some common alkylamides weakly inhibit several cytochrome P450 (CYP) isoforms, with considerable variation in potency. We now report a detailed analysis of six commercial ECHINACEA liquid preparations, with emphasis on the metabolomic characterisation of the ECHINACEA compounds responsible for inhibiting CYP3A4. We separated each preparation into its ethanol- and water-soluble components, and then used (1)H-NMR together with multivariate data analysis and partial least square regression analysis to investigate the nature of the compounds responsible for CYP3A4 inhibition. The results implicated alkylamides in the CYP3A4 inhibitory activity of ECHINACEA. One of the commercial preparations (Echinaforce(R)) was further fractionated using solid phase extraction. Analysis by (1)H-NMR and mass spectroscopy (LC/MS, tandem MS, accurate mass) identified dodeca-2 E,4 E,8 Z,10 E/Z-tetraenoic acid (alkylamide 1) and a new compound (putative molecular formula C (18)H (36) NO (+)) as major components of the inhibitory fractions. In addition, the alkylamide content of all six preparations was determined by reverse phase HPLC. Levels of alkylamides 1 and 3 (undeca-2 E,4 E/ Z-diene-8,10-diynoic acid isobutylamide), correlated well with CYP3A4 inhibition. The acetylene tetradeca-8 Z-ene-11,13-diyn-2-one was shown to be present in the E. PURPUREA as well as the E. PALLIDA extracts. E. PURPUREA unlike E. PALLIDA was thought to not contain significant amounts of acetylenes. Our results directly confirm the role of alkylamides in the inhibition of CYP3A4 by ECHINACEA and uncovered a new compound which may also be involved. Extensive differences in the composition of the commercially available preparations were found. This will inevitably impact on the product efficacy, safety and

  7. Endosulfan induces CYP2B6 and CYP3A4 by activating the pregnane X receptor

    SciTech Connect

    Casabar, Richard C.T.; Das, Parikshit C.; DeKrey, Gregory K.; Gardiner, Catherine S.; Cao Yan; Rose, Randy L.; Wallace, Andrew D.

    2010-06-15

    Endosulfan is an organochlorine pesticide commonly used in agriculture. Endosulfan has affects on vertebrate xenobiotic metabolism pathways that may be mediated, in part, by its ability to activate the pregnane X receptor (PXR) and/or the constitutive androstane receptor (CAR) which can elevate expression of cytochrome P450 (CYP) enzymes. This study examined the dose-dependency and receptor specificity of CYP induction in vitro and in vivo. The HepG2 cell line was transiently transfected with CYP2B6- and CYP3A4-luciferase promoter reporter plasmids along with human PXR (hPXR) or hCAR expression vectors. In the presence of hPXR, endosulfan-alpha exposure caused significant induction of CYP2B6 (16-fold) and CYP3A4 (11-fold) promoter activities over control at 10 {mu}M. The metabolite endosulfan sulfate also induced CYP2B6 (12-fold) and CYP3A4 (6-fold) promoter activities over control at 10 {mu}M. In the presence of hCAR-3, endosulfan-alpha induced CYP2B6 (2-fold) promoter activity at 10 {mu}M, but not at lower concentrations. These data indicate that endosulfan-alpha significantly activates hPXR strongly and hCAR weakly. Using western blot analysis of human hepatocytes, the lowest concentrations at which CYP2B6 and CYP3A4 protein levels were found to be significantly elevated by endosulfan-alpha were 1.0 {mu}M and 10 {mu}M, respectively. In mPXR-null/hPXR-transgenic mice, endosulfan-alpha exposure (2.5 mg/kg/day) caused a significant reduction of tribromoethanol-induced sleep times by approximately 50%, whereas no significant change in sleep times was observed in PXR-null mice. These data support the role of endosulfan-alpha as a strong activator of PXR and inducer of CYP2B6 and CYP3A4, which may impact metabolism of CYP2B6 or CYP3A4 substrates.

  8. Effects of triazole fungicides on androgenic disruption and CYP3A4 enzyme activity.

    PubMed

    Lv, Xuan; Pan, Liumeng; Wang, Jiaying; Lu, Liping; Yan, Weilin; Zhu, Yanye; Xu, Yiwen; Guo, Ming; Zhuang, Shulin

    2017-03-01

    Triazole fungicides are widely used as broad-spectrum fungicides, non-steroidal antiestrogens and for various industrial applications. Their residues have been frequently detected in multiple environmental and human matrices. The increasingly reported toxicity incidents have led triazole fungicides as emerging contaminants of environmental and public health concern. However, whether triazole fungicides behave as endocrine disruptors by directly mimicking environmental androgens/antiandrogens or exerting potential androgenic disruption indirectly through the inhibition of cytochrome P450 (CYP450) enzyme activity is yet an unresolved question. We herein evaluated five commonly used triazole fungicides including bitertanol, hexaconazole, penconazole, tebuconazole and uniconazole for the androgenic and anti-androgenic activity using two-hybrid recombinant human androgen receptor (AR) yeast bioassay and comparatively evaluated their effects on enzymatic activity of CYP3A4 by P450-Glo™ CYP3A4 bioassay. All five fungicides showed moderate anti-androgenic activity toward human AR with the IC50 ranging from 9.34 μM to 79.85 μM. The anti-androgenic activity remained no significant change after the metabolism mediated by human liver microsomes. These fungicides significantly inhibited the activity of CYP3A4 at the environmental relevant concentrations and the potency ranks as tebuconazole > uniconazole > hexaconazole > penconazole > bitertanol with the corresponding IC50 of 0.81 μM, 0.93 μM, 1.27 μM, 2.22 μM, and 2.74 μM, respectively. We found that their anti-androgenic activity and the inhibition potency toward CYP3A4 inhibition was significantly correlated (R(2) between 0.83 and 0.97, p < 0.001). Our results indicated that the risk assessment of triazole pesticides and structurally similar chemicals should fully consider potential androgenic disrupting effects and the influences on the activity of CYP450s.

  9. Exploring the possible metabolism mediated interaction of Glycyrrhiza glabra extract with CYP3A4 and CYP2D6.

    PubMed

    Pandit, Subrata; Ponnusankar, Sivasankaran; Bandyopadhyay, Arun; Ota, Sarda; Mukherjee, Pulok K

    2011-10-01

    The rhizome of Glycyrrhiza glabra L. (licorice) is used very widely in Indian and Chinese traditional medicine, and it is a popular flavor ingredient of drinks, sweets and candies. Its medicinal uses include treating bronchitis, dry cough, respiratory infections, liver disorders and diabetes. Glycyrrhizin is normally considered to be its biologically active marker, so a rapid RP-HPLC method was developed for the quantitative estimation of glycyrrhizin in the extract. The effect of the standardized extract and its marker on drug metabolizing enzymes was evaluated through CYP3A4 and CYP2D6 inhibition assays to evaluate the safety through its drug interaction potential. The inhibition of CYP3A4 and CYP2D6 isozymes was analysed by the fluorescent product formation method. In the CYP450-CO assay, the interaction potential of the standardized extract and pooled microsomes (percentage inhibition 23.23 ± 1.84%), was found to be less than the standard inhibitor. In the fluorimetric assay, G. glabra extracts showed higher IC(50) values than their positive inhibitors, ketoconazole and quinidine for CYP3A4 and CYP2D6, respectively. Furthermore, the interaction potential of the plant extract was greater than the pure compound. The results demonstrate that G. glabra and its principle bioactive compound, glycyrrhizin, when co-administered with conventional medicines showed only a weak interaction potential with drug metabolizing enzymes.

  10. Reductive metabolism of oxymatrine is catalyzed by microsomal CYP3A4

    PubMed Central

    Liu, Wenqin; Shi, Jian; Zhu, Lijun; Dong, Lingna; Luo, Feifei; Zhao, Min; Wang, Ying; Hu, Ming; Lu, Linlin; Liu, Zhongqiu

    2015-01-01

    Oxymatrine (OMT) is a pharmacologically active primary quinolizidine alkaloid with various beneficial and toxic effects. It is confirmed that, after oral administration, OMT could be transformed to the more toxic metabolite matrine (MT), and this process may be through the reduction reaction, but the study on the characteristics of this transformation is limited. The aim of this study was to investigate the characteristics of this transformation of OMT in the human liver microsomes (HLMs) and human intestinal microsomes (HIMs) and the cytochrome P450 (CYP) isoforms involved in this transformation. The current studies demonstrated that OMT could be metabolized to MT rapidly in HLMs and HIMs and CYP3A4 greatly contributed to this transformation. All HLMs, HIMs, and CYP3A4 isoform mediated reduction reaction followed typical biphasic kinetic model, and Km, Vmax, and CL were significant higher in HLMs than those in HIMs. Importantly, different oxygen contents could significantly affect the metabolism of OMT, and with the oxygen content decreased, the formation of metabolite was increased, suggesting this transformation was very likely a reduction reaction. Results of this in vitro study elucidated the metabolic pathways and characteristics of metabolism of OMT to MT and would provide a theoretical basis and guidance for the safe application of OMT. PMID:26586934

  11. The role of CYP3A4 in the biotransformation of bile acids and therapeutic implication for cholestasis

    PubMed Central

    Zhao, Kong-Nan; Chen, Chen

    2014-01-01

    CYP3A4 is a major cytochrome P450. It catalyses a broad range of substrates including xenobiotics such as clinically used drugs and endogenous compounds bile acids. Its function to detoxify bile acids could be used for treating cholestasis, which is a condition characterised by accumulation of bile acids. Although bile acids have important physiological functions, they are very toxic when their concentrations are excessively high. The accumulated bile acids in cholestasis can cause liver and other tissue injuries. Thus, control of the concentrations of bile acids is critical for treatment of cholestasis. CYP3A4 is responsively upregulated in cholestasis mediated by the nuclear receptors farnesol X receptor (FXR) and pregnane X receptor (PXR) as a defence mechanism. However, the regulation of CYP3A4 is complicated by estrogen, which is increased in cholestasis and down regulates CYP3A4 expression. The activity of CYP3A4 is also inhibited by accumulated bile acids due to their property of detergent effect. In some cholestasis cases, genetic polymorphisms of the CYP3A4 and PXR genes may interfere with the adaptive response. Further stimulation of CYP3A4 activity in cholestasis could be an effective approach for treatment of the disease. In this review, we summarise recent progress about the roles of CYP3A4 in the metabolism of bile acids, its regulation and possible implication in the treatment of cholestasis. PMID:25332983

  12. Oxidase uncoupling in heme monooxygenases: Human cytochrome P450 CYP3A4 in Nanodiscs

    SciTech Connect

    Grinkova, Yelena V.; Denisov, Ilia G.; McLean, Mark A.; Sligar, Stephen G.

    2013-01-25

    Highlights: ► Substantial reducing equivalents are lost in human P450 CYP3A4 via an oxidase channel. ► Substrate binding has a pronounced effect on uncoupling in cytochrome P450. ► Anionic phospholipids improve the overall coupling in CYP3A4 Nanodiscs. -- Abstract: The normal reaction mechanism of cytochrome P450 operates by utilizing two reducing equivalents to reduce atmospheric dioxygen, producing one molecule of water and an oxygenated product in an overall stoichiometry of 2 electrons:1 dioxygen:1 product. However, three alternate unproductive pathways exist where the intermediate iron–oxygen states in the catalytic cycle can yield reduced oxygen products without substrate metabolism. The first involves release of superoxide from the oxygenated intermediate while the second occurs after input of the second reducing equivalent. Superoxide rapidly dismutates and hence both processes produce hydrogen peroxide that can be cytotoxic to the organism. In both cases, the formation of hydrogen peroxide involves the same overall stoichiometry as oxygenases catalysis. The key step in the catalytic cycle of cytochrome P450 involves scission of the oxygen–oxygen bond of atmospheric dioxygen to produce a higher valent iron-oxo state termed “Compound I”. This intermediate initiates a radical reaction in the oxygenase pathway but also can uptake two additional reducing equivalents from reduced pyridine nucleotide (NADPH) and the flavoprotein reductase to produce a second molecule of water. This non-productive decay of Compound I thus yields an overall oxygen to NADPH ratio of 1:2 and does not produce hydrocarbon oxidation. This water uncoupling reaction provides one of a limited means to study the reactivity of the critical Compound I intermediate in P450 catalysis. We measured simultaneously the rates of NADPH and oxygen consumption as a function of substrate concentration during the steady-state hydroxylation of testosterone catalyzed by human P450 CYP3A4

  13. Generation and validation of rapid computational filters for cyp2d6 and cyp3a4.

    PubMed

    Ekins, Sean; Berbaum, Jennifer; Harrison, Richard K

    2003-09-01

    CYP2D6 and CYP3A4 represent two particularly important members of the cytochrome p450 enzyme family due to their involvement in the metabolism of many commercially available drugs. Avoiding potent inhibitory interactions with both of these enzymes is highly desirable in early drug discovery, long before entering clinical trials. Computational prediction of this liability as early as possible is desired. Using a commercially available data set of over 1750 molecules to train computer models that were generated with commercially available software enabled predictions of inhibition for CYP2D6 and CYP3A4, which were compared with empirical data. The results suggest that using a recursive partitioning (tree) technique with augmented atom descriptors enables a statistically significant rank ordering of test-set molecules (Spearman's rho of 0.61 and 0.48 for CYP2D6 and CYP3A4, respectively), which represents an increased rate of identifying the best compounds when compared with the random rate. This approach represents a valuable computational filter in early drug discovery to identify compounds that may have p450 inhibition liabilities prior to molecule synthesis. Such computational filters offer a new approach in which lead optimization in silico can occur with virtual molecules simultaneously tested against multiple enzymes implicated in drug-drug interactions, with a resultant cost savings from a decreased level of molecule synthesis and in vitro screening.

  14. Sesamin: A Naturally Occurring Lignan Inhibits CYP3A4 by Antagonizing the Pregnane X Receptor Activation.

    PubMed

    Lim, Yun-Ping; Ma, Chia-Yun; Liu, Cheng-Ling; Lin, Yu-Hsien; Hu, Miao-Lin; Chen, Jih-Jung; Hung, Dong-Zong; Hsieh, Wen-Tsong; Huang, Jin-Ding

    2012-01-01

    Inconsistent expression and regulation of drug-metabolizing enzymes (DMEs) are common causes of adverse drug effects in some drugs with a narrow therapeutic index (TI). An important cytochrome, cytochrome P450 3A4 (CYP3A4), is predominantly regulated by a nuclear receptor, pregnane X receptor (PXR). Sesamin, a major lignan constituent in sesame seeds and oil, exhibits a variety of biological functions; however, the effect of sesamin on the modulation of CYP3A4 is not well understood. In this study, the effects of sesamin on the PXR-CYP3A4 pathway were characterized, as well as the underlying mechanisms of those effects. Sesamin potently attenuated CYP3A4 induction in a dose-dependent manner by blocking the activation of PXR. The PXR inducer-mediated inhibition of CYP3A4 was further evidenced by the ability of sesamin to attenuate the effects of several PXR ligands in the CYP3A4 reporter assay. Further mechanistic studies showed that sesamin inhibited PXR by interrupting the interacting with coregulators. These results may lead to the development of new therapeutic and dietary approaches to reduce the frequency of inducer-drug interaction. Sesamin was established as a novel inhibitor of PXR and may be useful for modulating DMEs expression and drug efficacies. Modification of CYP3A4 expression and activity by consumption of sesamin may have important implications for drug safety.

  15. Moringa oleifera leaf extracts inhibit 6β-hydroxylation of testosterone by CYP3A4

    PubMed Central

    Monera, Tsitsi G.; Wolfe, Alan R.; Maponga, Charles C.; Benet, Leslie Z.; Guglielmo, Joseph

    2017-01-01

    Background Moringa oleifera is a tropical tree often used as a herbal medicine, including by people who test positive for HIV. Since herbal constituents may interact with drugs via inhibition of metabolizing enzymes, we investigated the effects of extracts of M. oleifera on the CYP3A4-mediated 6ß-hydroxylation of testosterone. Methods Methanolic and aqueous leaf and root of extracts of M. oleifera with concentrations between 0.01 and 10 mg/ml were incubated with testosterone and mixed-sex human liver microsomes in the presence of NADPH. Metabolite concentrations were determined by HPLC. The cytotoxicity of the extracts was tested with HepG2 cells using the MTT formazan assay. Results Significant CYP3A4 inhibitory effects were found, with IC50 values of 0.5 and 2.5 mg/ml for leaf-methanol and leaf-water extracts, respectively. Root extracts were less active. Cytotoxicity was observed only with the leaf-water extract (IC50 = 6 mg/ml). Conclusions Further investigation is warranted to elucidate the potential of M. oleifera for clinically significant interactions with antiretroviral and other drugs. PMID:19745507

  16. Dipeptide Prodrug Approach to Evade Efflux Pumps and CYP3A4 Metabolism of Lopinavir

    PubMed Central

    Patel, Mitesh; Sheng, Ye; Mandava, Nanda K.; Pal, Dhananjay; Mitra, Ashim K.

    2014-01-01

    Oral absorption of lopinavir (LPV) is limited due to P-glycoprotein (P-gp) and multidrug resistance-associated protein2 (MRP2) mediated efflux by intestinal epithelial cells. Moreover, LPV is extensively metabolized by CYP3A4 enzymes. In the present study, dipeptide prodrug approach was employed to circumvent efflux pumps (P-gp and MRP2) and CYP3A4 mediated metabolism of LPV. Valine-isoleucine-LPV (Val-Ile-LPV) was synthesized and identified by LCMS and NMR techniques. The extent of LPV and Val-Ile-LPV interactions with P-gp and MRP2 was studied by uptake and transport studies across MDCK-MDR1 and MDCK-MRP2 cells. To determine the metabolic stability, time and concentration dependent degradation study was performed in liver microsomes. Val-Ile-LPV exhibited significantly higher aqueous solubility relative to LPV. This prodrug generated higher stability under acidic pH. Val-Ile-LPV demonstrated significantly lower affinity towards P-gp and MRP2 relative to LPV. Transepithelial transport of Val-Ile-LPV was significantly higher in the absorptive direction (apical to basolateral) relative to LPV. Importantly, Val-Ile-LPV was recognized as an excellent substrate by peptide transporter. Moreover, Val-Ile-LPV displayed significantly higher metabolic stability relative to LPV. Results obtained from this study suggested that dipeptide prodrug approach is a viable option to elevate systemic levels of LPV following oral administration PMID:25261710

  17. Effect of danshen extract on the activity of CYP3A4 in healthy volunteers

    PubMed Central

    Qiu, Furong; Wang, Guangji; Zhang, Rong; Sun, Jianguo; Jiang, Jian; Ma, Yueming

    2010-01-01

    AIMS To assess the effect of danshen extract on CYP3A4 activity using midazolam as an in vivo probe. METHODS A sequential, open-label, two-period pharmacokinetic interaction study design was used to compare midazolam pharmacokinetic parameters before and after 14 days of administration of danshen tablets. Twelve healthy volunteers received a single oral dose (15 mg) of midazolam followed by danshen tablets (four tablets orally, three times a day) for 14 days. On the last day of the study they received four danshen tablets with a 15 mg midazolam tablet and plasma concentrations of midazolam and its corresponding metabolite 1–hydroxylmidazolam were measured prior to and after the administration of danshen tablets periodically for 12 h. RESULTS The 90% confidence intervals of Cmax,t1/2, CL/F and AUC(0,∞) of midazolam before and after administration of danshen tablets were (0.559, 0.849), (0.908, 1.142), (1.086, 1.688) and (0.592, 0.921), respectively; and those of Cmax, t1/2 and AUC(0,∞) of 1-hydroxylmidazolam after vs. before administration of danshen tablets were (0.633, 0.923), (0.801, 1.210) and (0.573, 0.980), respectively. Ratios of geometric LS means of Cmax(1OHMid) : Cmax(Mid) and AUCmax(1OHMid) : AUCmax(Mid) (after vs. before 14-day danshen) were 1.072 and 1.035, respectively. CONCLUSIONS Our findings suggest that multiple dose administration of danshen tablets may induce CYP3A4 in the gut. Accordingly, caution should be taken when danshen products are used in combination with therapeutic drugs metabolized by CYP3A. PMID:20565457

  18. CYP3A4-dependent cellular response does not relate to CYP3A4-catalysed metabolites of C-1748 and C-1305 acridine antitumor agents in HepG2 cells.

    PubMed

    Augustin, Ewa; Niemira, Magdalena; Hołownia, Adam; Mazerska, Zofia

    2014-11-01

    High CYP3A4 expression sensitizes tumor cells to certain antitumor agents while for others it can lower their therapeutic efficacy. We have elucidated the influence of CYP3A4 overexpression on the cellular response induced by antitumor acridine derivatives, C-1305 and C-1748, in two hepatocellular carcinoma (HepG2) cell lines, Hep3A4 stably transfected with CYP3A4 isoenzyme, and HepC34 expressing empty vector. The compounds were selected considering their different chemical structures and different metabolic pathways seen earlier in human and rat liver microsomes C-1748 was transformed to several metabolites at a higher rate in Hep3A4 than in HepC34 cells. In contrast, C-1305 metabolism in Hep3A4 cells was unchanged compared to HepC34 cells, with each cell line producing a single metabolite of comparable concentration. C-1748 resulted in a progressive appearance of sub-G1 population to its high level in both cell lines. In turn, the sub-G1 fraction was dominated in CYP3A4-overexpressing cells following C-1305 exposure. Both compounds induced necrosis and to a lesser extent apoptosis, which were more pronounced in Hep3A4 than in wild-type cells. In conclusion, CYP3A4-overexpressing cells produce higher levels of C-1748 metabolites, but they do not affect the cellular responses to the drug. Conversely, cellular response was modulated following C-1305 treatment in CYP3A4-overexpressing cells, although metabolism of this drug was unaltered.

  19. In vitro metabolism of the opioid tilidine and interaction of tilidine and nortilidine with CYP3A4, CYP2C19, and CYP2D6.

    PubMed

    Weiss, Johanna; Sawa, Evelyn; Riedel, Klaus-Dieter; Haefeli, Walter Emil; Mikus, Gerd

    2008-09-01

    Tilidine is one of the most widely used narcotics in Germany and Belgium. The compound's active metabolite nortilidine easily penetrates the blood-brain barrier and activates the mu-opioid receptor. Thus far, the enzymes involved in tilidine metabolism are unknown. Therefore, the aim of our study was to identify the cytochrome P450 isozymes (CYPs) involved in N-demethylation of tilidine in vitro. We used human liver microsomes as well as recombinant CYPs to investigate the demethylation of tilidine to nortilidine and quantified nortilidine by liquid chromatography-tandem mass spectrometry. Inhibition of CYPs was quantified with commercial kits. Moreover, inhibition of ABCB1 and ABCG2 was investigated. Our results demonstrated that N-demethylation of tilidine to nortilidine followed a Michaelis-Menten kinetic with a K(m) value of 36 +/- 13 microM and a v(max) value of 85 +/- 18 nmol/mg/h. This metabolic step was inhibited by CYP3A4 and CYP2C19 inhibitors. Investigations with recombinant CYP3A4 and CYP2C19 confirmed that the demethylation of tilidine occurs via these two CYPs. Inhibition assays demonstrated that tilidine and nortilidine can also inhibit CYP3A4, CYP2C19, CYP2D6, ABCB1, but not ABCG2, whereas inhibition of CYP2D6 and possibly also of CYP3A4 might be clinically relevant. By calculating the metabolic clearance based on the in vitro and published in vivo data, CYP3A4 and CYP2C19 were identified as the main elimination routes of tilidine. In vivo, drug-drug interactions of tilidine with CYP3A4 or CYP2C19 inhibitors are to be anticipated, whereas substrates of CYP2C19, ABCB1, or ABCG2 will presumably not be influenced by tilidine or nortilidine.

  20. CYP3A4 induction by xenobiotics: biochemistry, experimental methods and impact on drug discovery and development.

    PubMed

    Luo, Gang; Guenthner, Thomas; Gan, Liang-Shang; Humphreys, W Griffith

    2004-12-01

    Cytochrome P450 3A4 (CYP3A4), an enzyme that is highly expressed in the human liver and small intestine, plays a major role in the metabolism of a large variety of xenobiotics, including an estimated 50% of therapeutic drugs, as well as many endogenous compounds. The expression of CYP3A4 can be induced by xenobiotics. Such induction leads to accelerated metabolism of the xenobiotics themselves (autoinduction) or of concomitantly administered CYP3A4 substrates/drugs, thereby significantly altering their pharmacokinetic and pharmacodynamic profiles. During the past decade, much progress has been made in our understanding of the biological mechanisms responsible for regulation of CYP3A4 expression. It is now known that many xenobiotics induce CYP3A4 expression via the pregnane X receptor (PXR) pathway, while others are thought to act through the constitutive androstane receptor (CAR) and the vitamin D receptor (VDR). As a result, most pharmaceutical companies have recognized that it is important to evaluate CYP3A4 induction potential preclinically and are using primary cultures of human hepatocytes and/or PXR reporter gene assays. In general, the results from these two assay methods correlate well. The reporter gene assays in particular can be used to rapidly screen hundreds of drug candidates, whereas methods using primary human hepatocyte cultures may more accurately assess the potential for CYP3A4 induction in vivo. Although it is important to consider CYP3A4 induction in the early stages of the drug development process, it should be recognized that the assessment of induction potential preclinically is a difficult and imprecise endeavor and can be complicated by many factors.

  1. Influence of a Nigerian honey on CYP3A4 biotransformation of quinine in healthy volunteers

    PubMed Central

    Igbinoba, S. I.; Akanmu, M. A.; Onyeji, C. O.; Soyinka, J. O.; Owolabi, A. R.; Nathaniel, T. I.; Pullela, S. V.; Cook, J. M.

    2016-01-01

    What is known and objectives Some studies, howbeit with conflicting reports have suggested that consumption of honey has a potential to modulate drug metabolising enzymes which may result in a honey - drug interaction. Numerous studies have established that honey varies in composition, influenced by the dominant floral, processing and environmental factors. Thus, variation in honey composition may be a contributing factor to the controversial results obtained. No previous drug interaction study has been done with any honey from Africa. CYP 3A4 is an important enzyme in drug metabolism studies as it is involved in the metabolism of over 50 % of drugs in clinical use and quinine remains very relevant in malaria treatment in the tropics, we therefore determined whether there is potential drug interaction between a Nigeria honey and quinine, a drug whose metabolism to 3 –hydroxyquinine is mediated majorly by CYP3A4. Methods In a three phase randomized cross-over study with a wash out period of two weeks between each treatment phase, ten (10) healthy volunteers received quinine sulphate tablet (600 mg single dose) alone (phase 1) or after administration of 10 ml of honey (Phase 2) and 20 ml of honey (Phase 3) twice daily for seven (7) days. Blood samples were collected at the 16th hour post quinine administration in each phase and quinine and its major metabolite, 3-hydroxyquinine were analyzed using a validated HPLC method. Results After scheduled doses of honey, the mean metabolic ratios of quinine (3-hydroxyquinine/quinine) increased by 24.4 % (with 10 ml of honey) and reduced by 23.9 % (with 20 ml of honey) when compared to baseline. These magnitudes of alteration in the mean metabolic ratios were not significant (p > 0.05; Friedman-test). The geometric mean (95 % CI) for the metabolic ratio of quinine before and after honey intake at the two dose levels studied were 0.82 (0.54, 1.23) and 1.29 (0.96, 1.72) respectively and were also not significant (P = 0.296 and

  2. MDR- and CYP3A4-mediated drug-drug interactions.

    PubMed

    Pal, Dhananjay; Mitra, Ashim K

    2006-09-01

    P-glycoprotein (P-gp), multiple drug resistance associated proteins (MRPs), and cytochrome P450 3A4 together constitute a highly efficient barrier for many orally absorbed drugs. Multidrug regimens and corresponding drug-drug interactions are known to cause many adverse drug reactions and treatment failures. Available literature, clinical reports, and in vitro studies from our laboratory indicate that many drugs are substrates for both P-gp and CYP3A4. Our primary hypothesis is that transport and metabolism of protease inhibitors (PIs) and NNRTIs will be altered when administered in combination with azole antifungals, macrolide, fluroquinolone antibiotics, statins, cardiovascular agents, immune modulators, and recreational drugs [benzodiazepines, cocaine, lysergic acid dithylamide (LSD), marijuana, amphetamine (Meth), 3,4-methylenedioxymethamphetamine (MDMA), and opiates] due to efflux, and/or metabolism at cellular targets. Therefore, such drug combinations could be a reason for the unexpected and unexplainable therapeutic outcomes. A number of clinical reports on drug interaction between PIs and other classes (macrolide antibiotics, azole antifungals, cholesterol lowering statins, cardiovascular medicines, and immunomodulators) are discussed in this article. MDCKII-MDR1 was employed as an in vitro model to evaluate the effects of antiretrovirals, azole antifungals, macrolide, and fluroquinolone antibiotics on efflux transporters. Ketoconazole (50 muM) enhanced the intracellular concentration of (3)H ritonavir. The inhibitory effects of ketoconazole and MK 571 on the efflux of (3)H ritonavir were comparable. An additive effect was observed with simultaneous incorporation of ketoconazole and MK 571. Results of (3)H ritonavir uptake studies were confirmed with transcellular transport studies. Several fluroquinolones were also evaluated on P-gp-mediated efflux of (3)H cyclosporin and 14C erythromycin. These in vitro studies indicate that grepafloxacin, levofloxacin

  3. Pharmacokinetic drug-drug interaction between ethinyl estradiol and gestodene, administered as a transdermal fertility control patch, and two CYP3A4 inhibitors and a CYP3A4 substrate.

    PubMed

    Winkler, Julia; Goldammer, Mark; Ludwig, Matthias; Rohde, Beate; Zurth, Christian

    2015-12-01

    Pharmacokinetic (PK) interactions between the cytochrome P450 3A4 (CYP3A4) pathway and transdermally administered ethinyl estradiol (EE) and gestodene (GSD) were investigated. This paper reports the findings of three open-label, intra-individual, one-way crossover, Phase I trials. In two studies, women used a novel contraceptive patch for 3 weeks during two 4-week study periods; in the second period, the CYP3A4 inhibitors erythromycin (Study 1) or ketoconazole (Study 2) were administered concurrently. In a third study, women received single doses of the CYP3A4 model substrate midazolam, alone and after 3 weeks of concurrent patch application. In each period, the EE/GSD patch (delivering low EE and GSD doses resulting in the same systemic exposure as a combined oral contraceptive containing 0.02 mg EE and 0.06 mg GSD) was applied once weekly for 3 weeks, with one patch-free week. Erythromycin, ketoconazole, and midazolam were administered orally. Main outcome measures were area under the curves (AUCs) and maximum plasma concentration (C max) of EE, and total and unbound GSD (Studies 1 and 2). AUC and C max of midazolam (Study 3). Co-administration of CYP3A4 inhibitors did not affect EE metabolism, and had only weak effects on the PK of total and unbound GSD. The patch had no clinically relevant effect on metabolism of the CYP3A4 substrate midazolam.

  4. Effect of Methamphetamine on Spectral Binding, Ligand Docking and Metabolism of Anti-HIV Drugs with CYP3A4.

    PubMed

    Nookala, Anantha R; Li, Junhao; Ande, Anusha; Wang, Lei; Vaidya, Naveen K; Li, Weihua; Kumar, Santosh; Kumar, Anil

    2016-01-01

    Cytochrome P450 3A4 (CYP3A4) is the major drug metabolic enzyme, and is involved in the metabolism of antiretroviral drugs, especially protease inhibitors (PIs). This study was undertaken to examine the effect of methamphetamine on the binding and metabolism of PIs with CYP3A4. We showed that methamphetamine exhibits a type I spectral change upon binding to CYP3A4 with δAmax and KD of 0.016±0.001 and 204±18 μM, respectively. Methamphetamine-CYP3A4 docking showed that methamphetamine binds to the heme of CYP3A4 in two modes, both leading to N-demethylation. We then studied the effect of methamphetamine binding on PIs with CYP3A4. Our results showed that methamphetamine alters spectral binding of nelfinavir but not the other type I PIs (lopinavir, atazanavir, tipranavir). The change in spectral binding for nelfinavir was observed at both δAmax (0.004±0.0003 vs. 0.0068±0.0001) and KD (1.42±0.36 vs.2.93±0.08 μM) levels. We further tested effect of methamphetamine on binding of 2 type II PIs; ritonavir and indinavir. Our results showed that methamphetamine alters the ritonavir binding to CYP3A4 by decreasing both the δAmax (0.0038±0.0003 vs. 0.0055±0.0003) and KD (0.043±0.0001 vs. 0.065±0.001 nM), while indinavir showed only reduced KD in presence of methamphetamine (0.086±0.01 vs. 0.174±0.03 nM). Furthermore, LC-MS/MS studies in high CYP3A4 human liver microsomes showed a decrease in the formation of hydroxy ritonavir in the presence of methamphetamine. Finally, CYP3A4 docking with lopinavir and ritonavir in the absence and presence of methamphetamine showed that methamphetamine alters the docking of ritonavir, which is consistent with the results obtained from spectral binding and metabolism studies. Overall, our results demonstrated differential effects of methamphetamine on the binding and metabolism of PIs with CYP3A4. These findings have clinical implication in terms of drug dose adjustment of antiretroviral medication, especially with ritonavir

  5. Arsenite and its metabolites, MMA{sup III} and DMA{sup III}, modify CYP3A4, PXR and RXR alpha expression in the small intestine of CYP3A4 transgenic mice

    SciTech Connect

    Medina-Diaz, I.M.; Estrada-Muniz, E.; Reyes-Hernandez, O.D.; Ramirez, P.; Vega, L.; Elizondo, G.

    2009-09-01

    Arsenic is an environmental pollutant that has been associated with an increased risk for the development of cancer and several other diseases through alterations of cellular homeostasis and hepatic function. Cytochrome P450 (P450) modification may be one of the factors contributing to these disorders. Several reports have established that exposure to arsenite modifies P450 expression by decreasing or increasing mRNA and protein levels. Cytochrome P450 3A4 (CYP3A4), the predominant P450 expressed in the human liver and intestines, which is regulated mainly by the Pregnane X Receptor-Retinoid X Receptor alpha (PXR-RXR alpha) heterodimer, contributes to the metabolism of approximately half the drugs in clinical use today. The present study investigates the effect of sodium arsenite and its metabolites monomethylarsonous acid (MMA{sup III}) and dimethylarsinous acid (DMA{sup III}) on CYP3A4, PXR, and RXR alpha expression in the small intestine of CYP3A4 transgenic mice. Sodium arsenite treatment increases mRNA, protein and CYP3A4 activity in a dose-dependent manner. However, the increase in protein expression was not as marked as compared to the increase in mRNA levels. Arsenite treatment induces the accumulation of Ub-protein conjugates, indicating that the activation of this mechanism may explain the differences observed between the mRNA and protein expression of CYP3A4 induction. Treatment with 0.05 mg/kg of DMA{sup III} induces CYP3A4 in a similar way, while treatment with 0.05 mg/kg of MMA{sup III} increases mostly mRNA, and to a lesser degree, CYP3A4 activity. Sodium arsenite and both its metabolites increase PXR mRNA, while only DMA{sup III} induces RXR alpha expression. Overall, these results suggest that sodium arsenite and its metabolites induce CYP3A4 expression by increasing PXR expression in the small intestine of CYP3A4 transgenic mice.

  6. Regioselective Versatility of Monooxygenase Reactions Catalyzed by CYP2B6 and CYP3A4: Examples with Single Substrates.

    PubMed

    Erratico, Claudio A; Deo, Anand K; Bandiera, Stelvio M

    2015-01-01

    Hepatic microsomal cytochrome P450 (CYP) enzymes have broad and overlapping substrate specificity and catalyze a variety of monooxygenase reactions, including aliphatic and aromatic hydroxylations, N-hydroxylations, oxygenations of heteroatoms (N, S, P and I), alkene and arene epoxidations, dehalogenations, dehydrogenations and N-, O- and S-dealkylations. Individual CYP enzymes typically catalyze the oxidative metabolism of a common substrate in a regioselective and stereoselective manner. In addition, different CYP enzymes often utilize different monooxygenase reactions when oxidizing a common substrate. This review examines various oxidative reactions catalyzed by a CYP enzyme acting on a single substrate. In the first example, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), a halogenated aromatic environmental contaminant, was oxidatively biotransformed by human CYP2B6. Nine different metabolites of BDE-47 were produced by CYP2B6 via monooxygenase reactions that included aromatic hydroxylation, with and without an NIH-shift, dealkylation and debromination. In the second example, lithocholic acid (3α-hydroxy-5β-cholan-24-oic acid), an endogenous bile acid, served as a substrate for human CYP3A4 and yielded five different metabolites via aliphatic hydroxylation and dehydrogenation reactions.

  7. The consequence of regional gradients of P-gp and CYP3A4 for drug-drug interactions by P-gp inhibitors and the P-gp/CYP3A4 interplay in the human intestine ex vivo.

    PubMed

    Li, Ming; de Graaf, Inge A M; van de Steeg, Evita; de Jager, Marina H; Groothuis, Geny M M

    2017-04-01

    Intestinal P-gp and CYP3A4 work coordinately to reduce the intracellular concentration of drugs, and drug-drug interactions (DDIs) based on this interplay are of clinical importance and require pre-clinical investigation. Using precision-cut intestinal slices (PCIS) of human jejunum, ileum and colon, we investigated the P-gp/CYP3A4 interplay and related DDIs with P-gp inhibitors at the different regions of the human intestine with quinidine (Qi), dual substrate of P-gp and CYP3A4, as probe. All the P-gp inhibitors increased the intracellular concentrations of Qi by 2.1-2.6 fold in jejunum, 2.6-3.8 fold in ileum but only 1.2-1.3 fold in colon, in line with the different P-gp expression in these intestinal regions. The selective P-gp inhibitors (CP100356 and PSC833) enhanced 3-hydroxy-quinidine (3OH-Qi) in jejunum and ileum, while dual inhibitors of P-gp and CYP3A4 (verapamil and ketoconazole) decreased the 3OH-Qi production, despite of the increased intracellular Qi concentration, due to inhibition of CYP3A4. The outcome of DDIs based on P-gp/CYP3A4 interplay, shown as remarkable changes in the intracellular concentration of both the parent drug and the metabolite, varied among the intestinal regions, probably due to the different expression of P-gp and CYP3A4, and were different from those found in rat PCIS, which may have important implications for the disposition and toxicity of drugs and their metabolites.

  8. Effects of CYP3A4 inhibitors on the pharmacokinetics of maraviroc in healthy volunteers

    PubMed Central

    Abel, Samantha; Russell, Deborah; Taylor-Worth, Richard J; Ridgway, Caroline E; Muirhead, Gary J

    2008-01-01

    Aims To evaluate the influence of cytochrome P450 (CYP) 3A4 inhibitors on the clinical pharmacokinetics of maraviroc, a novel CCR5 antagonist. Methods Four open-label, randomized, placebo-controlled studies were conducted in healthy subjects to assess the effect of separate and distinct combinations of CYP3A4 inhibitors on the steady-state pharmacokinetics of maraviroc. Study 1 was a two-way crossover study investigating the influence of saquinavir (SQV; 1200 mg t.i.d.) and ketoconazole (400 mg q.d.) on the pharmacokinetics of maraviroc (100 mg b.i.d.). All subjects received maraviroc for 7 days in both study periods. Cohort 1 subjects also received SQV or placebo and cohort 2 subjects also received ketoconazole or placebo. Study 2 was a parallel-group study including four treatment groups investigating the effects of ritonavir-boosted lopinavir (LPV/r; 400 mg/100 mg b.i.d.), ritonavir-boosted saquinavir (SQV/r; 1000 mg/100 mg b.i.d.), and low-dose ritonavir (RTV; 100 mg b.i.d.) on the steady-state pharmacokinetics of maraviroc (100 mg b.i.d.), and exploring whether maraviroc dose adjustment can compensate for interaction effects. Treatment lasted 28 days and comprised three distinct phases: (i) maraviroc alone on days 1–7; (ii) maraviroc + interactant on days 8–21; and (iii) maraviroc (adjusted dose) + interactant on days 22–28. Study 3 was a two-way crossover study investigating the effects of atazanavir (ATZ; 400 mg q.d.) and ritonavir-boosted atazanavir (ATZ/r; 300 mg/100 mg b.i.d.) on the pharmacokinetics of maraviroc (300 mg b.i.d.). All subjects received maraviroc on days 1–14 of both study periods. Subjects also received ATZ on days 1–7 and ATZ/r on days 8–14 of one treatment period, and placebo on days 1–14 of the other treatment period. Study 4 was a two-way crossover study investigating the effects of ritonavir-boosted tipranavir (TPV/r; 500 mg/200 mg b.i.d.) on the pharmacokinetics of maraviroc (150 mg b.i.d.). Subjects received maraviroc

  9. Altered CYP2C9 Activity Following Modulation of CYP3A4 Levels in Human Hepatocytes: an Example of Protein-Protein Interactions

    PubMed Central

    Tweedie, Donald J.; Chan, Tom S.; Tracy, Timothy S.

    2014-01-01

    Cytochrome P450 (P450) protein-protein interactions resulting in modulation of enzyme activities have been well documented using recombinant isoforms. This interaction has been less clearly demonstrated in a more physiologic in vitro system such as human hepatocytes. As an expansion of earlier work (Subramanian et al., 2010), in which recombinant CYP2C9 activity decreased with increasing levels of CYP3A4, the current study modulated CYP3A4 content in human hepatocytes to determine the impact on CYP2C9. Modulation of CYP3A4 levels in situ was enabled by the use of a long-term human hepatocyte culture model (HepatoPac) shown to retain phenotypic hepatocyte function over a number of weeks. The extended period of culture allowed time for knockdown of CYP3A4 protein by small interfering RNA (siRNA) with subsequent recovery, as well as upregulation through induction with a recovery period. CYP3A4 gene silencing resulted in a 60% decrease in CYP3A4 activity and protein levels with a concomitant 74% increase in CYP2C9 activity, with no change in CYP2C9 mRNA levels. Upon removal of siRNA, both CYP2C9 and CYP3A4 activities returned to pre-knockdown levels. Importantly, modulation of CYP3A4 protein levels had no impact on cytochrome P450 reductase activities or levels. However, the possibility for competition for limiting reductase cannot be ruled out. Interestingly, lowering CYP3A4 levels also increased UDP-glucuronosyltransferase 2B7 activity. These studies clearly demonstrate that alterations in CYP3A4 levels can modulate CYP2C9 activity in situ and suggest that further studies are warranted to evaluate the possible clinical consequences of these findings. PMID:25157098

  10. Oral intake of curcumin markedly activated CYP 3A4: in vivo and ex-vivo studies

    PubMed Central

    Hsieh, Yow-Wen; Huang, Ching-Ya; Yang, Shih-Ying; Peng, Yu-Hsuan; Yu, Chung-Ping; Chao, Pei-Dawn Lee; Hou, Yu-Chi

    2014-01-01

    Curcumin, a specific secondary metabolite of Curcuma species, has potentials for a variety of beneficial health effects. It is nowadays used as a dietary supplement. Everolimus (EVL) is an immunosuppressant indicated for allograft rejection and cancer therapy, but with narrow therapeutic window. EVL is a substrate of P-glycoprotein (P-gp) and cytochrome P450 3A4 (CYP3A4). This study investigated the effect of coadministration of curcumin on the pharmacokinetics of EVL in rats and the underlying mechanisms. EVL (0.5 mg/kg) was orally administered without and with 50 and 100 mg/kg of curcumin, respectively, in rats. Blood samples were collected at specific time points and EVL concentrations in blood were determined by QMS® immunoassay. The underlying mechanisms were evaluated using cell model and recombinant CYP 3A4 isozyme. The results indicated that 50 and 100 mg/kg of curcumin significantly decreased the AUC0-540 of EVL by 70.6% and 71.5%, respectively, and both dosages reduced the Cmax of EVL by 76.7%. Mechanism studies revealed that CYP3A4 was markedly activated by curcumin metabolites, which apparently overrode the inhibition effects of curcumin on P-gp. In conclusion, oral intake of curcumin significantly decreased the bioavailability of EVL, a probe substrate of P-gp/CYP 3A4, mainly through marked activation on CYP 3A4. PMID:25300360

  11. CYP3A4 and CYP2C19 genetic polymorphisms and zolpidem metabolism in the Chinese Han population: a pilot study.

    PubMed

    Shen, Min; Shi, Yan; Xiang, Ping

    2013-04-10

    Zolpidem (ZPD) is an imidazopyridine hypnotic and little is known about the pharmacogenetics of ZPD. Our objective was to evaluate inter-individual genetic variation in conjunction with metabolic ratios of ZPD found in a toxicological analysis. Healthy individuals (n=300) were genotyped for CYP2D6, CYP2C19, CYP2C9, CYP3A4 and CYP1A2 by allele-specific primer extension followed by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS). Twenty-four Chinese volunteers were chosen and divided into the following four groups (n=6/group): group 1: CYP3A4*18 (wild-type, W), CYP2C19*2 (W); group 2: CYP3A4*18 (mutant, M), CYP2C19*2 (W); group 3: CYP3A4*18 (W), CYP2C19*2 (M); and group 4: CYP3A4*18 (M), CYP2C19*2 (M). ZPD and its major metabolites zolpidem 6-carboxylic acid (ZCA) and zolpidem phenyl-4-carboxylic acid (ZPCA) were determined after oral administration of ZPD (10mg), using an UPLC-MS/MS method. Positive correlations between CYP3A4 and CYP2C19 alleles and ZPD metabolism were found. The results of this study show that CYP3A4*18 increases CYP3A4 activity while CYP2C19*2 reduces CYP2C19 activity; the latter mutation is associated with the poor metabolism of ZPD in the Chinese Han population. The results also suggest that genetic factors play a major role in the metabolism of individual drugs with implications for both forensic science and clinical pharmacogenetics.

  12. Rifampicin-Activated Human Pregnane X Receptor and CYP3A4 Induction Enhance Acetaminophen-Induced ToxicityS⃞

    PubMed Central

    Cheng, Jie; Ma, Xiaochao; Krausz, Kristopher W.; Idle, Jeffrey R.; Gonzalez, Frank J.

    2009-01-01

    Acetaminophen (APAP) is safe at therapeutic levels but causes hepatotoxicity via N-acetyl-p-benzoquinone imine-induced oxidative stress upon overdose. To determine the effect of human (h) pregnane X receptor (PXR) activation and CYP3A4 induction on APAP-induced hepatotoxicity, mice humanized for PXR and CYP3A4 (TgCYP3A4/hPXR) were treated with APAP and rifampicin. Human PXR activation and CYP3A4 induction enhanced APAP-induced hepatotoxicity as revealed by hepatic alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities elevated in serum, and hepatic necrosis after coadministration of rifampicin and APAP, compared with APAP administration alone. In contrast, hPXR mice, wild-type mice, and Pxr-null mice exhibited significantly lower ALT/AST levels compared with TgCYP3A4/hPXR mice after APAP administration. Toxicity was coincident with depletion of hepatic glutathione and increased production of hydrogen peroxide, suggesting increased oxidative stress upon hPXR activation. Moreover, mRNA analysis demonstrated that CYP3A4 and other PXR target genes were significantly induced by rifampicin treatment. Urinary metabolomic analysis indicated that cysteine-APAP and its metabolite S-(5-acetylamino-2-hydroxyphenyl)mercaptopyruvic acid were the major contributors to the toxic phenotype. Quantification of plasma APAP metabolites indicated that the APAP dimer formed coincident with increased oxidative stress. In addition, serum metabolomics revealed reduction of lysophosphatidylcholine in the APAP-treated groups. These findings demonstrated that human PXR is involved in regulation of APAP-induced toxicity through CYP3A4-mediated hepatic metabolism of APAP in the presence of PXR ligands. PMID:19460945

  13. Rifampicin-activated human pregnane X receptor and CYP3A4 induction enhance acetaminophen-induced toxicity.

    PubMed

    Cheng, Jie; Ma, Xiaochao; Krausz, Kristopher W; Idle, Jeffrey R; Gonzalez, Frank J

    2009-08-01

    Acetaminophen (APAP) is safe at therapeutic levels but causes hepatotoxicity via N-acetyl-p-benzoquinone imine-induced oxidative stress upon overdose. To determine the effect of human (h) pregnane X receptor (PXR) activation and CYP3A4 induction on APAP-induced hepatotoxicity, mice humanized for PXR and CYP3A4 (TgCYP3A4/hPXR) were treated with APAP and rifampicin. Human PXR activation and CYP3A4 induction enhanced APAP-induced hepatotoxicity as revealed by hepatic alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities elevated in serum, and hepatic necrosis after coadministration of rifampicin and APAP, compared with APAP administration alone. In contrast, hPXR mice, wild-type mice, and Pxr-null mice exhibited significantly lower ALT/AST levels compared with TgCYP3A4/hPXR mice after APAP administration. Toxicity was coincident with depletion of hepatic glutathione and increased production of hydrogen peroxide, suggesting increased oxidative stress upon hPXR activation. Moreover, mRNA analysis demonstrated that CYP3A4 and other PXR target genes were significantly induced by rifampicin treatment. Urinary metabolomic analysis indicated that cysteine-APAP and its metabolite S-(5-acetylamino-2-hydroxyphenyl)mercaptopyruvic acid were the major contributors to the toxic phenotype. Quantification of plasma APAP metabolites indicated that the APAP dimer formed coincident with increased oxidative stress. In addition, serum metabolomics revealed reduction of lysophosphatidylcholine in the APAP-treated groups. These findings demonstrated that human PXR is involved in regulation of APAP-induced toxicity through CYP3A4-mediated hepatic metabolism of APAP in the presence of PXR ligands.

  14. Establishment of In Silico Prediction Models for CYP3A4 and CYP2B6 Induction in Human Hepatocytes by Multiple Regression Analysis Using Azole Compounds.

    PubMed

    Nagai, Mika; Konno, Yoshihiro; Satsukawa, Masahiro; Yamashita, Shinji; Yoshinari, Kouichi

    2016-08-01

    Drug-drug interactions (DDIs) via cytochrome P450 (P450) induction are one clinical problem leading to increased risk of adverse effects and the need for dosage adjustments and additional therapeutic monitoring. In silico models for predicting P450 induction are useful for avoiding DDI risk. In this study, we have established regression models for CYP3A4 and CYP2B6 induction in human hepatocytes using several physicochemical parameters for a set of azole compounds with different P450 induction as characteristics as model compounds. To obtain a well-correlated regression model, the compounds for CYP3A4 or CYP2B6 induction were independently selected from the tested azole compounds using principal component analysis with fold-induction data. Both of the multiple linear regression models obtained for CYP3A4 and CYP2B6 induction are represented by different sets of physicochemical parameters. The adjusted coefficients of determination for these models were of 0.8 and 0.9, respectively. The fold-induction of the validation compounds, another set of 12 azole-containing compounds, were predicted within twofold limits for both CYP3A4 and CYP2B6. The concordance for the prediction of CYP3A4 induction was 87% with another validation set, 23 marketed drugs. However, the prediction of CYP2B6 induction tended to be overestimated for these marketed drugs. The regression models show that lipophilicity mostly contributes to CYP3A4 induction, whereas not only the lipophilicity but also the molecular polarity is important for CYP2B6 induction. Our regression models, especially that for CYP3A4 induction, might provide useful methods to avoid potent CYP3A4 or CYP2B6 inducers during the lead optimization stage without performing induction assays in human hepatocytes.

  15. Regulation of CYP3A4 by pregnane X receptor: The role of nuclear receptors competing for response element binding

    SciTech Connect

    Istrate, Monica A.; Nussler, Andreas K.; Eichelbaum, Michel; Burk, Oliver

    2010-03-19

    Induction of the major drug metabolizing enzyme CYP3A4 by xenobiotics contributes to the pronounced interindividual variability of its expression and often results in clinically relevant drug-drug interactions. It is mainly mediated by PXR, which regulates CYP3A4 expression by binding to several specific elements in the 5' upstream regulatory region of the gene. Induction itself shows a marked interindividual variability, whose underlying determinants are only partly understood. In this study, we investigated the role of nuclear receptor binding to PXR response elements in CYP3A4, as a potential non-genetic mechanism contributing to interindividual variability of induction. By in vitro DNA binding experiments, we showed that several nuclear receptors bind efficiently to the proximal promoter ER6 and distal xenobiotic-responsive enhancer module DR3 motifs. TR{alpha}1, TR{beta}1, COUP-TFI, and COUP-TFII further demonstrated dose-dependent repression of PXR-mediated CYP3A4 enhancer/promoter reporter activity in transient transfection in the presence and absence of the PXR inducer rifampin, while VDR showed this effect only in the absence of treatment. By combining functional in vitro characterization with hepatic expression analysis, we predict that TR{alpha}1, TR{beta}1, COUP-TFI, and COUP-TFII show a strong potential for the repression of PXR-mediated activation of CYP3A4 in vivo. In summary, our results demonstrate that nuclear receptor binding to PXR response elements interferes with PXR-mediated expression and induction of CYP3A4 and thereby contributes to the interindividual variability of induction.

  16. Differential regulation of hepatic CYP2B6 and CYP3A4 genes by constitutive androstane receptor but not pregnane X receptor.

    PubMed

    Faucette, Stephanie R; Sueyoshi, Tatsuya; Smith, Cornelia M; Negishi, Masahiko; Lecluyse, Edward L; Wang, Hongbing

    2006-06-01

    Accumulated evidence suggests that cross-talk between the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR) results in shared transcriptional activation of CYP2B and CYP3A genes. Although most data imply symmetrical cross-regulation of these genes by rodent PXR and CAR, the actual selectivities of the corresponding human receptors are unknown. The objective of this study was to evaluate the symmetry of human (h) PXR and hCAR cross-talk by comparing the selectivities of these receptors for CYP2B6 and CYP3A4. Human hepatocyte studies revealed nonselective induction of both CYP2B6 and CYP3A4 by hPXR activation but marked preferential induction of CYP2B6 by selective hCAR activation. Gel shift assays demonstrated that hPXR exhibited strong and relatively equal binding to all functional response elements in both CYP2B6 and CYP3A4 genes, whereas hCAR displayed significantly weak binding to the CYP3A4 proximal ER6 motif. In cell-based transfection assays, hCAR displayed greater activation of CYP2B6 reporter gene expression compared with CYP3A4 with constructs containing both proximal and distal regulatory elements. Furthermore, in agreement with binding observations, transfection assays using promoter constructs containing repeats of CYP2B6 DR4 and CYP3A4 ER6 motifs revealed an even greater difference in reporter activation by hCAR. In contrast, hPXR activation resulted in less discernible differences between CYP2B6 and CYP3A4 reporter gene expression. These results suggest asymmetrical cross-regulation of CYP2B6 and CYP3A4 by hCAR but not hPXR in that hCAR exhibits preferential induction of CYP2B6 relative to CYP3A4 because of its weak binding and functional activation of the CYP3A4 ER6.

  17. Effect of CYP3A4∗1G and CYP3A5∗3 Polymorphisms on Pharmacokinetics and Pharmacodynamics of Ticagrelor in Healthy Chinese Subjects

    PubMed Central

    Liu, Shuaibing; Shi, Xiangfen; Tian, Xin; Zhang, Xiaojian; Sun, Zhiyong; Miao, Liyan

    2017-01-01

    Ticagrelor is the first reversible, direct-acting, potent P2Y12 receptor antagonist in management of acute coronary syndromes. It is rapidly absorbed and extensively metabolized. AR-C124910XX, the major active metabolite, antagonizes the P2Y12 receptor at approximately equal potency. The metabolism of ticagrelor to AR-C124910XX involves CYP3A4 and CYP3A5. CYP3A polymorphisms have been well documented, and CYP3A4∗1G (g.20230G>A, rs2242480) and CYP3A5∗3 (g.6986A>G, rs776746) are the most important single nucleotide polymorphisms in Chinese. Genetic differences in CYP3A4 and CYP3A5 expression in human volunteers and patients might affect the clearance of ticagrelor or AR-C124910XX in vivo resulting in subsequent variable patient response. Thus, this study is designed to explore the effects of CYP3A4∗1G and CYP3A5∗3 polymorphisms on the pharmacokinetics and pharmcodynamics of ticagrelor in healthy Chinese subjects. The results indicated that the CYP3A4∗1G polymorphism significantly influenced the pharmacokinetics of AR-C124910XX, and it may be more important than CYP3A5∗3 with respect to influencing ticagrelor pharmacokinetics by increasing CYP3A4 activity. However, the significant effect of CYP3A4∗1G polymorphism on AR-C124910XX plasma levels did not translate into detectable effect on inhibition of platelet aggregation. Therefore, it seems not necessary to adjust the dosage of ticagrelor according to the CYP3A4 or 3A5 genotype.

  18. A combined model for predicting CYP3A4 clinical net drug-drug interaction based on CYP3A4 inhibition, inactivation, and induction determined in vitro.

    PubMed

    Fahmi, Odette A; Maurer, Tristan S; Kish, Mary; Cardenas, Edwin; Boldt, Sherri; Nettleton, David

    2008-08-01

    Although approaches to the prediction of drug-drug interactions (DDIs) arising via time-dependent inactivation have recently been developed, such approaches do not account for simple competitive inhibition or induction. Accordingly, these approaches do not provide accurate predictions of DDIs arising from simple competitive inhibition (e.g., ketoconazole) or induction of cytochromes P450 (e.g., phenytoin). In addition, methods that focus upon a single interaction mechanism are likely to yield misleading predictions in the face of mixed mechanisms (e.g., ritonavir). As such, we have developed a more comprehensive mathematical model that accounts for the simultaneous influences of competitive inhibition, time-dependent inactivation, and induction of CYP3A in both the liver and intestine to provide a net drug-drug interaction prediction in terms of area under the concentration-time curve ratio. This model provides a framework by which readily obtained in vitro values for competitive inhibition, time-dependent inactivation and induction for the precipitant compound as well as literature values for f(m) and F(G) for the object drug can be used to provide quantitative predictions of DDIs. Using this model, DDIs arising via inactivation (e.g., erythromycin) continue to be well predicted, whereas those arising via competitive inhibition (e.g., ketoconazole), induction (e.g., phenytoin), and mixed mechanisms (e.g., ritonavir) are also predicted within the ranges reported in the clinic. This comprehensive model quantitatively predicts clinical observations with reasonable accuracy and can be a valuable tool to evaluate candidate drugs and rationalize clinical DDIs.

  19. Systematic and quantitative assessment of the effect of chronic kidney disease on CYP2D6 and CYP3A4/5

    PubMed Central

    Yoshida, K; Sun, B; Zhang, L; Zhao, P; Abernethy, DR; Nolin, TD; Rostami‐Hodjegan, A; Zineh, I

    2016-01-01

    Recent reviews suggest that chronic kidney disease (CKD) can affect the pharmacokinetics of nonrenally eliminated drugs, but the impact of CKD on individual elimination pathways has not been systematically evaluated. In this study we developed a comprehensive dataset of the effect of CKD on the pharmacokinetics of CYP2D6‐ and CYP3A4/5‐metabolized drugs. Drugs for evaluation were selected based on clinical drug–drug interaction (CYP3A4/5 and CYP2D6) and pharmacogenetic (CYP2D6) studies. Information from dedicated CKD studies was available for 13 and 18 of the CYP2D6 and CYP3A4/5 model drugs, respectively. Analysis of these data suggested that CYP2D6‐mediated clearance is generally decreased in parallel with the severity of CKD. There was no apparent relationship between the severity of CKD and CYP3A4/5‐mediated clearance. The observed elimination‐route dependency in CKD effects between CYP2D6 and CYP3A4/5 may inform the need to conduct clinical CKD studies with nonrenally eliminated drugs for optimal use of drugs in patients with CKD. PMID:26800425

  20. Priapism induced by boceprevir-CYP3A4 inhibition and α-adrenergic blockade: case report.

    PubMed

    Hammond, Kyle P; Nielsen, Craig; Linnebur, Sunny A; Langness, Jacob A; Ray, Graham; Maroni, Paul; Kiser, Jennifer J

    2014-01-01

    A 44-year-old white man presented to the emergency department with a 3-day history of priapism requiring a surgically performed distal penile shunt. A drug-drug interaction is the suspected cause whereby CYP3A4 inhibition by boceprevir led to increased exposures of doxazosin, tamsulosin, and/or quetiapine, resulting in additional α-adrenergic blockade.

  1. Drug interactions with mitotane by induction of CYP3A4 metabolism in the clinical management of adrenocortical carcinoma.

    PubMed

    Kroiss, Matthias; Quinkler, Marcus; Lutz, Werner K; Allolio, Bruno; Fassnacht, Martin

    2011-11-01

    Mitotane [1-(2-chlorophenyl)-1-(4-chlorophenyl)-2,2-dichloroethane, (o,p'-DDD)] is the only drug approved for the treatment for adrenocortical carcinoma (ACC) and has also been used for various forms of glucocorticoid excess. Through still largely unknown mechanisms, mitotane inhibits adrenal steroid synthesis and adrenocortical cell proliferation. Mitotane increases hepatic metabolism of cortisol, and an increased replacement dose of glucocorticoids is standard of care during mitotane treatment. Recently, sunitinib, a multityrosine kinase inhibitor (TKI), has been found to be rapidly metabolized by CYP3A4 during mitotane treatment, indicating clinically relevant drug interactions with mitotane. We here summarize the current evidence concerning mitotane-induced changes in hepatic monooxygenase expression, list drugs potentially affected by mitotane-related CYP3A4 induction and suggest alternatives. For example, using standard doses of macrolide antibiotics is unlikely to reach sufficient plasma levels, making fluoroquinolones in many cases a superior choice. Similarly, statins such as simvastatin are metabolized by CYP3A4, whereas others like pravastatin are not. Importantly, in the past, several clinical trials using cytotoxic drugs but also targeted therapies in ACC yielded disappointing results. This lack of antineoplastic activity may be explained in part by insufficient drug exposure owing to enhanced drug metabolism induced by mitotane. Thus, induction of CYP3A4 by mitotane needs to be considered in the design of future clinical trials in ACC.

  2. Priapism Induced by Boceprevir-CYP3A4 Inhibition and α-Adrenergic Blockade: Case Report

    PubMed Central

    Hammond, Kyle P.; Nielsen, Craig; Linnebur, Sunny A.; Langness, Jacob A.; Ray, Graham; Maroni, Paul; Kiser, Jennifer J.

    2014-01-01

    A 44-year-old white man presented to the emergency department with a 3-day history of priapism requiring a surgically performed distal penile shunt. A drug–drug interaction is the suspected cause whereby CYP3A4 inhibition by boceprevir led to increased exposures of doxazosin, tamsulosin, and/or quetiapine, resulting in additional α-adrenergic blockade. PMID:24092799

  3. In Silico Prediction of Cytochrome P450-Drug Interaction: QSARs for CYP3A4 and CYP2C9

    PubMed Central

    Nembri, Serena; Grisoni, Francesca; Consonni, Viviana; Todeschini, Roberto

    2016-01-01

    Cytochromes P450 (CYP) are the main actors in the oxidation of xenobiotics and play a crucial role in drug safety, persistence, bioactivation, and drug-drug/food-drug interaction. This work aims to develop Quantitative Structure-Activity Relationship (QSAR) models to predict the drug interaction with two of the most important CYP isoforms, namely 2C9 and 3A4. The presented models are calibrated on 9122 drug-like compounds, using three different modelling approaches and two types of molecular description (classical molecular descriptors and binary fingerprints). For each isoform, three classification models are presented, based on a different approach and with different advantages: (1) a very simple and interpretable classification tree; (2) a local (k-Nearest Neighbor) model based classical descriptors and; (3) a model based on a recently proposed local classifier (N-Nearest Neighbor) on binary fingerprints. The salient features of the work are (1) the thorough model validation and the applicability domain assessment; (2) the descriptor interpretation, which highlighted the crucial aspects of P450-drug interaction; and (3) the consensus aggregation of models, which largely increased the prediction accuracy. PMID:27294921

  4. Impact of the Herbal Breviscapine on the Pharmacokinetics of Simvastatin in Rats: The Involvement of CYP3A4.

    PubMed

    Ju, Aixia; Li, Yang Yang; Qu, Zhe; Li, Qiuhong

    2017-03-13

    The effect of breviscapine injection on the pharmacokinetics of simvastatin and the mRNA expression of hepatic cytochrome P450 (CYP) enzyme was investigated with rats. The rats were pretreated for 8 consecutive days with breviscapine injection (20 mg/kg/day, i. v.), followed by administration of simvastatin through gavage (40 mg/kg). The control rats received the corresponding volume of saline solution for the pretreatment. Blood samples were collected at varied time points after simvastatin administration and the liver was harvested after the last collection of the blood sample for measurement of the CYP3A4 mRNA expression. Pre-treatment with breviscapine injection led to increased plasma concentration of simvastatin, showing 57% increase for AUC0-∞ (P<0.01), 31% increase for C max (P<0.01), and 36% decrease for the total plasma clearance, compared with the control. Pre-treatment with breviscapine injection also inhibited the mRNA expression of the hepatic CYP3A4. These findings indicate that pre-treatment with breviscapine injection could increase the plasma concentration of simvastatin, possibly by inhibiting the expression of the hepatic CYP3A4, and combined use of breviscapine with simvastatin may improve the simvastatin efficacy and reduce its adverse reactions through reduced its dosage.

  5. Participation of CYP2C8 and CYP3A4 in the N-demethylation of imatinib in human hepatic microsomes

    PubMed Central

    Nebot, Noelia; Crettol, Severine; d'Esposito, Fabrizio; Tattam, Bruce; Hibbs, David E; Murray, Michael

    2010-01-01

    BACKGROUND AND PURPOSE Imatinib is a clinically important inhibitor of tyrosine kinases that are dysregulated in chronic myelogenous leukaemia and gastrointestinal stromal tumours. Inter-individual variation in imatinib pharmacokinetics is extensive, and influences drug safety and efficacy. Hepatic cytochrome P450 (CYP) 3A4 has been implicated in imatinib N-demethylation, but the clearance of imatinib decreases during prolonged therapy. CYP3A phenotype correlates with imatinib clearance at the commencement of therapy, but not at steady state. The present study evaluated the possibility that multiple CYPs may contribute to imatinib oxidation in liver. EXPERIMENTAL APPROACH Imatinib biotransformation in human liver microsomes (n = 20) and by cDNA-expressed CYPs was determined by LC–MS. Relationships between imatinib N-demethylation and other drug metabolizing CYPs were assessed. KEY RESULTS N-desmethylimatinib formation was correlated with microsomal oxidation of the CYP3A4 substrates testosterone (ρ= 0.60; P < 0.01) and midazolam (ρ= 0.46; P < 0.05), and the CYP2C8 substrate paclitaxel (ρ= 0.58; P < 0.01). cDNA-derived CYPs 2C8, 3A4, 3A5 and 3A7 supported imatinib N-demethylation, but 10 other CYPs were inactive; in kinetic studies, CYP2C8 was a high-affinity enzyme with a catalytic efficiency ∼15-fold greater than those of CYPs 3A4 and 3A5. The CYP3A inhibitors ketoconazole and troleandomycin, and the CYP2C8 inhibitors quercetin and paclitaxel decreased imatinib oxidation. From molecular modelling, the imatinib structure could be superimposed on a pharmacophore for CYP2C8 substrates. CONCLUSIONS AND IMPLICATIONS CYP2C8 and CYPs 3A contribute to imatinib N-demethylation in human liver. The involvement of CYP2C8 may account in part for the wide inter-patient variation in imatinib pharmacokinetics observed in clinical practice. PMID:20977456

  6. Effect of Curcuma longa on CYP2D6- and CYP3A4-mediated metabolism of dextromethorphan in human liver microsomes and healthy human subjects.

    PubMed

    Al-Jenoobi, Fahad Ibrahim; Al-Thukair, Areej A; Alam, Mohd Aftab; Abbas, Fawkeya A; Al-Mohizea, Abdullah M; Alkharfy, Khalid M; Al-Suwayeh, Saleh A

    2015-03-01

    Effect of Curcuma longa rhizome powder and its ethanolic extract on CYP2D6 and CYP3A4 metabolic activity was investigated in vitro using human liver microsomes and clinically in healthy human subjects. Dextromethorphan (DEX) was used as common probe for CYP2D6 and CYP3A4 enzymes. Metabolic activity of CYP2D6 and CYP3A4 was evaluated through in vitro study; where microsomes were incubated with NADPH in presence and absence of Curcuma extract. In clinical study phase-I, six healthy human subjects received a single dose (30 mg) of DEX syrup, and in phase-II DEX syrup was administered with Curcuma powder. The enzyme CYP2D6 and CYP3A4 mediated O- and N-demethylation of dextromethorphan into dextrorphan (DOR) and 3-methoxymorphinan (3-MM), respectively. Curcuma extract significantly inhibited the formation of DOR and 3-MM, in a dose-dependent and linear fashion. The 100 μg/ml dose of curcuma extract produced highest inhibition, which was about 70 % for DOR and 80 % for 3-MM. Curcuma significantly increases the urine metabolic ratio of DEX/DOR but the change in DEX/3-MM ratio was statistically insignificant. Present findings suggested that curcuma significantly inhibits the activity of CYP2D6 in in vitro as well as in vivo; which indicates that curcuma has potential to interact with CYP2D6 substrates.

  7. Investigation of CYP3A4 and CYP2D6 Interactions of Withania somnifera and Centella asiatica in Human Liver Microsomes.

    PubMed

    Savai, Jay; Varghese, Alice; Pandita, Nancy; Chintamaneni, Meena

    2015-05-01

    Withania somnifera is commonly used as a rejuvenator, whereas Centella asiatica is well known for its anxiolytic and nootropic effects. The present study aims at investigating the effect of crude extracts and principal phytoconstituents of both the medicinal plants with CYP3A4 and CYP2D6 enzyme activity in human liver microsomes (HLM). Phytoconstituents were quantified in the crude extracts of both the medicinal plants using reverse phase HPLC. Crude extracts and phytoconstituents of W. somnifera showed no significant interaction with both CYP3A4 and CYP2D6 enzymes in HLM. Of the crude extracts of C. asiatica screened in vitro, methanolic extract showed potent noncompetitive inhibition of only CYP3A4 enzyme (Ki-64.36 ± 1.82 µg/mL), whereas ethanol solution extract showed potent noncompetitive inhibition of only CYP2D6 enzyme (Ki-36.3 ± 0.44 µg/mL). The flavonoids, quercetin, and kaempferol showed potent (IC50 values less than 100 μM) inhibition of CYP3A4 activity, whereas quercetin alone showed potent inhibition of CYP2D6 activity in HLM. Because methanolic extract of C. asiatica showed a relatively high percentage content of quercetin and kaempferol than ethanol solution extract, the inhibitory effect of methanolic extract on CYP3A4 enzyme activity could be attributed to the flavonoids. Thus, co-administration of the alcoholic extracts of C. asiatica with drugs that are substrates of CYP3A4 and CYP2D6 enzymes may lead to undesirable herb-drug interactions in humans.

  8. Echinacea purpurea up-regulates CYP1A2, CYP3A4 and MDR1 gene expression by activation of pregnane X receptor pathway

    PubMed Central

    Awortwe, Charles; Manda, Vamshi K.; Avonto, Cristina; Khan, Shabana I.; Khan, Ikhlas A.; Walker, Larry A.; Bouic, Patrick J.; Rosenkranz, Bernd

    2015-01-01

    This study investigated the mechanism underlying Echinacea-mediated induction of CYP1A2, CYP3A4 and MDR1 in terms of human pregnane X receptor (PXR) activation. Crude extracts and fractions of Echinacea purpurea were tested for PXR activation in HepG2 cells by a reporter gene assay. Quantitative real-time PCR was carried out to determine their effects on CYP1A2 and CYP3A4 mRNA expressions. Capsules and fractions were risk ranked as high, intermediate and remote risk of drug-metabolizing enzymes induction based on EC50 values determined for respective CYPs. Fractions F1, F2 and capsule (2660) strongly activated PXR with 5-, 4- and 3.5-fold increase in activity, respectively. Echinacea preparations potentiated up-regulation of CYP1A2, CYP3A4 and MDR1 via PXR activation. Thus E. purpurea preparations cause herb–drug interaction by up-regulating CYP1A2, CYP3A4 and P-gp via PXR activation. PMID:25377539

  9. Influence of Various Polymorphic Variants of Cytochrome P450 Oxidoreductase (POR) on Drug Metabolic Activity of CYP3A4 and CYP2B6

    PubMed Central

    Naranmandura, Hua; Zeng, Su; Chen, Shu Qing

    2012-01-01

    Cytochrome P450 oxidoreductase (POR) is known as the sole electron donor in the metabolism of drugs by cytochrome P450 (CYP) enzymes in human. However, little is known about the effect of polymorphic variants of POR on drug metabolic activities of CYP3A4 and CYP2B6. In order to better understand the mechanism of the activity of CYPs affected by polymorphic variants of POR, six full-length mutants of POR (e.g., Y181D, A287P, K49N, A115V, S244C and G413S) were designed and then co-expressed with CYP3A4 and CYP2B6 in the baculovirus-Sf9 insect cells to determine their kinetic parameters. Surprisingly, both mutants, Y181D and A287P in POR completely inhibited the CYP3A4 activity with testosterone, while the catalytic activity of CYP2B6 with bupropion was reduced to approximately ∼70% of wild-type activity by Y181D and A287P mutations. In addition, the mutant K49N of POR increased the CLint (Vmax/Km) of CYP3A4 up to more than 31% of wild-type, while it reduced the catalytic efficiency of CYP2B6 to 74% of wild-type. Moreover, CLint values of CYP3A4-POR (A115V, G413S) were increased up to 36% and 65% of wild-type respectively. However, there were no appreciable effects observed by the remaining two mutants of POR (i.e., A115V and G413S) on activities of CYP2B6. In conclusion, the extent to which the catalytic activities of CYP were altered did not only depend on the specific POR mutations but also on the isoforms of different CYP redox partners. Thereby, we proposed that the POR-mutant patients should be carefully monitored for the activity of CYP3A4 and CYP2B6 on the prescribed medication. PMID:22719896

  10. Patients with CYP3A4∗1G genetic polymorphism consumed significantly lower amount of sufentanil in general anesthesia during lung resection

    PubMed Central

    Zhang, Huidong; Chen, Minghao; Wang, Xiaodong; Yu, Songyang

    2017-01-01

    Abstract CYP3A4, an isoform of cytochrome P450 enzymes, is responsible for the metabolism of 45% to 60% of currently prescribed drugs. It has been shown that CYP3A4∗1G, a single nucleotide polymorphism (SNP), affects the enzymatic activity of CYP3A4. Sufentanil, a synthetic opioid commonly used for the induction and maintenance of general anesthesia, analgesia, and sedation, is mainly metabolized by CYP3A4. So far, the impact of CYP3A4∗1G on sufentanil metabolism has not been investigated. In the present study, we first determined the frequency of CYP3A4∗1G polymorphism in patients of Chinese Han nationality who underwent lung resection, and then compared the amount of sufentanil used in general anesthesia during the surgical procedure between wild type and mutant patients. DNA sequencing was performed to genotype the CYP3A4∗1G allele in 191 patients. The sufentanil dosages consumed in general anesthesia were recorded and compared between wild-type and mutant patients. The frequency of the CYP3A4∗1G variant allele was 0.202 (77/382). No significant difference was observed in age, body weight, or operation time between wild-type and mutant patients. The amount of sufentanil consumed by patients with the point mutation was significantly lower than that in the wild type group. No significant difference in sufentanil dosages was observed between females and males within wild type or within mutant group. High frequency of CYP3A4∗1G variants was detected in patients of Chinese Han nationality. Significantly lower amount of sufentanil was consumed in mutant patients compared with wild type subjects, likely a result of impaired CYP3A4 activity due to the point mutation. These findings suggest genotyping of CYP3A4 might be of value in providing guidance for the use of sufentanil. PMID:28121959

  11. Indirubin, a component of Ban-Lan-Gen, activates CYP3A4 gene transcription through the human pregnane X receptor.

    PubMed

    Kumagai, Takeshi; Aratsu, Yusuke; Sugawara, Ryosuke; Sasaki, Takamitsu; Miyairi, Shinichi; Nagata, Kiyoshi

    2016-04-01

    Ban-Lan-Gen is the common name for the dried roots of indigo plants, including Polygonum tinctorium, Isatis indigotica, Isatis tinctoria, and Strobilanthes cusia. Ban-Lan-Gen is frequently used as an anti-inflammatory and an anti-viral for the treatment of hepatitis, influenza, and various types of inflammation. One of the cytochrome P450 (CYP) enzymes, CYP3A4, is responsible for the metabolism of a wide variety of xenobiotics, including an estimated 60% of all clinically used drugs. In this study, we investigated the effect of Ban-Lan-Gen on the transcriptional activation of the CYP3A4 gene. Ban-Lan-Gen extract increased CYP3A4 gene reporter activity in a dose-dependent manner. Indirubin, one of the biologically active ingredients in the Ban-Lan-Gen, also dose-dependently increased CYP3A4 gene reporter activity. Expression of short hairpin RNA for the human pregnane X receptor (hPXR-shRNA) inhibited CYP3A4 gene reporter activity, and overexpression of human PXR increased indirubin- and rifampicin-induced CYP3A4 gene reporter activity. Furthermore, indirubin induced CYP3A4 mRNA expression in HepG2 cells. Taken together, these results indicate that indirubin, a component of Ban-Lan-Gen, activated CYP3A4 gene transcription through the activation of the human PXR.

  12. A novel in vitro approach for simultaneous evaluation of CYP3A4 inhibition and kinetic aqueous solubility.

    PubMed

    Pérez, José; Díaz, Caridad; Asensio, Francisco; Palafox, Alexandra; Genilloud, Olga; Vicente, Francisca

    2015-02-01

    In the early stages of the drug discovery process, evaluation of the drug metabolism and physicochemical properties of new chemical entities is crucial to prioritize those candidates displaying a better profile for further development. In terms of metabolism, drug-drug interactions mediated through CYP450 inhibition are a significant safety concern, and therefore the effect of new candidate drugs on CYP450 activity should be screened early. In the initial stages of drug discovery, when physicochemical properties such as aqueous solubility have not been optimized yet, there might be a large number of candidate compounds showing artificially low CYP450 inhibition, and consequently potential drug-drug interaction toxicity might be overlooked. In this work, we present a novel in vitro approach for simultaneous evaluation of CYP3A4 inhibition potential and kinetic aqueous solubility (NIVA-CYPI-KS). This new methodology is based on fluorogenic CYP450 activities and turbidimetric measurements for compound solubility, and it provides a significant improvement in the use of resources and a better understanding of CYP450 inhibition data.

  13. Interactions of endosulfan and methoxychlor involving CYP3A4 and CYP2B6 in human HepaRG cells.

    PubMed

    Savary, Camille C; Jossé, Rozenn; Bruyère, Arnaud; Guillet, Fabrice; Robin, Marie-Anne; Guillouzo, André

    2014-08-01

    Humans are usually exposed to several pesticides simultaneously; consequently, combined actions between pesticides themselves or between pesticides and other chemicals need to be addressed in the risk assessment. Many pesticides are efficient activators of pregnane X receptor (PXR) and/or constitutive androstane receptor (CAR), two major nuclear receptors that are also activated by other substrates. In the present work, we searched for interactions between endosulfan and methoxychlor, two organochlorine pesticides whose major routes of metabolism involve CAR- and PXR-regulated CYP3A4 and CYP2B6, and whose mechanisms of action in humans remain poorly understood. For this purpose, HepaRG cells were treated with both pesticides separately or in mixture for 24 hours or 2 weeks at concentrations relevant to human exposure levels. In combination they exerted synergistic cytotoxic effects. Whatever the duration of treatment, both compounds increased CYP3A4 and CYP2B6 mRNA levels while differently affecting their corresponding activities. Endosulfan exerted a direct reversible inhibition of CYP3A4 activity that was confirmed in human liver microsomes. By contrast, methoxychlor induced this activity. The effects of the mixture on CYP3A4 activity were equal to the sum of those of each individual compound, suggesting an additive effect of each pesticide. Despite CYP2B6 activity being unchanged and increased with endosulfan and methoxychlor, respectively, no change was observed with their mixture, supporting an antagonistic effect. Altogether, our data suggest that CAR and PXR activators endosulfan and methoxychlor can interact together and with other exogenous substrates in human hepatocytes. Their effects on CYP3A4 and CYP2B6 activities could have important consequences if extrapolated to the in vivo situation.

  14. Polymorphisms in the cytochrome P450 genes CYP1A2, CYP1B1, CYP3A4, CYP3A5, CYP11A1, CYP17A1, CYP19A1 and colorectal cancer risk

    PubMed Central

    Bethke, Lara; Webb, Emily; Sellick, Gabrielle; Rudd, Matthew; Penegar, Stephen; Withey, Laura; Qureshi, Mobshra; Houlston, Richard

    2007-01-01

    Background Cytochrome P450 (CYP) enzymes have the potential to affect colorectal cancer (CRC) risk by determining the genotoxic impact of exogenous carcinogens and levels of sex hormones. Methods To investigate if common variants of CYP1A2, CYP1B1, CYP3A4, CYP3A5, CYP11A1, CYP17A1 and CYP19A1 influence CRC risk we genotyped 2,575 CRC cases and 2,707 controls for 20 single nucleotide polymorphisms (SNPs) that have not previously been shown to have functional consequence within these genes. Results There was a suggestion of increased risk, albeit insignificant after correction for multiple testing, of CRC for individuals homozygous for CYP1B1 rs162558 and heterozygous for CYP1A2 rs2069522 (odds ratio [OR] = 1.36, 95% confidence interval [CI]: 1.03–1.80 and OR = 1.34, 95% CI: 1.00–1.79 respectively). Conclusion This study provides some support for polymorphic variation in CYP1A2 and CYP1B1 playing a role in CRC susceptibility. PMID:17615053

  15. The contribution of human OCT1, OCT3, and CYP3A4 to nitidine chloride-induced hepatocellular toxicity.

    PubMed

    Li, Liping; Tu, Meijuan; Yang, Xi; Sun, Siyuan; Wu, Xiaodan; Zhou, Hui; Zeng, Su; Jiang, Huidi

    2014-07-01

    Nitidine chloride (NC), a quaternary ammonium alkaloid, has numerous pharmacological effects, such as anticancer activity. However, it was found that NC also has hepatocellular toxicity. Because organic cation transporters 1 and 3 (OCT1 and OCT3) might mediate the influx of NC into hepatocytes, multidrug and toxin extrusion 1 (MATE1) probably mediates the efflux of NC from hepatocytes, while cytochrome P450 (P450) enzymes might contribute to NC metabolism, the present study was to evaluate the contribution of OCT1, OCT3, MATE1, and P450 enzymes to NC-induced hepatocellular toxicity. Our results showed that the uptake of NC in Madin-Darby canine kidney (MDCK) cells expressing human (h) OCT1 and OCT3 (MDCK-hOCT1 and MDCK-hOCT3) was significantly higher than that in mock cells; the hOCT1- and hOCT3-mediated uptake followed typical Michaelis-Menten kinetics. Meanwhile, NC was also a substrate of hMATE1, although its transport capacity was much lower than that of OCT1 NC-induced cytotoxicity in MDCK-hOCT1 or MDCK-hOCT3 cells was obviously higher than that in mock cells. Quinidine and (+)-tetrahydropalmatine [(+)-THP], OCT1 and OCT3 inhibitors, significantly reduced the uptake of NC in MDCK-hOCT1 cells, MDCK-hOCT3 cells, and rat primary hepatocytes, but only (+)-THP markedly attenuated the NC-induced toxicity. In addition, P450 enzymes, such as CYP3A4, mediated the metabolism of NC, and NC-induced toxicity in MDCK-hOCT1/hCYP3A4 cells was lower than that in MDCK-hOCT1 cells. Our results indicated that NC is a substrate of hOCT1, hOCT3, and CYP3A4; that OCT1 and OCT3 mediate the uptake of NC in hepatocytes and subsequently cause hepatotoxicity; and that NC-induced toxicity could be attenuated by CYP3A4-mediated metabolism.

  16. Effects of anthocyanidins and anthocyanins on the expression and catalytic activities of CYP2A6, CYP2B6, CYP2C9, and CYP3A4 in primary human hepatocytes and human liver microsomes.

    PubMed

    Srovnalova, Alzbeta; Svecarova, Michaela; Zapletalova, Michaela Kopecna; Anzenbacher, Pavel; Bachleda, Petr; Anzenbacherova, Eva; Dvorak, Zdenek

    2014-01-22

    Anthocyanidins and anthocyanins are pharmacologically active constituents of various berry fruits, such as blueberry and cranberry. These compounds are also contained in massively used nutritional supplements based on extracts or dry matter from berry fruits. The current study evaluated the effects of anthocyanidins and anthocyanins on the expression and catalytic activity of major drug-metabolizing enzymes CYP2C9, CYP2A6, CYP2B6, and CYP3A4 in primary cultures of human hepatocytes and human liver microsomes. Expression of mRNA was quantified by qRT-PCR. Expression of proteins was evaluated by Western blotting and immunochemiluminescence. The catalytic activity of CYP enzymes was measured by HPLC using specific enzyme substrates. Tested anthocyanidins (6) and anthocyanins (21) did not induce the expression of mRNA and protein of CYP2C9, CYP2A6, CYP2B6, and CYP3A4 genes in human hepatocytes. Catalytic activities of CYP2C9, CYP2A6, CYP2B6, and CYP3A4 enzymes were inhibited by all anthocyanidins to different extents (e.g., delphinidin inhibits CYP3A4 by >90% at 100 μM with IC50 = 32 μM). Of 21 anthocyanins tested, only cyanidin-3-O-rhamnoside (CYP3A4 by >75% at 100 μM with IC50 = 44 μM) and two glycosides of delphinidin significantly inhibited examined cytochromes P450. It may be concluded that in the ranges of common ingestion of either food or dietary supplement an induction or significant inhibition of CYP2C9, CYP2A6, CYP2B6, and CYP3A4 activity is most probably not expected.

  17. The independent contribution of miRNAs to the missing heritability in CYP3A4/5 functionality and the metabolism of atorvastatin

    PubMed Central

    Liu, Ju-E; Ren, Bin; Tang, Lan; Tang, Qian-Jie; Liu, Xiao-Ying; Li, Xin; Bai, Xue; Zhong, Wan-Ping; Meng, Jin-Xiu; Lin, Hao-Ming; Wu, Hong; Chen, Ji-Yan; Zhong, Shi-Long

    2016-01-01

    To evaluate the independent contribution of miRNAs to the missing heritability in CYP3A4/5 functionality and atorvastatin metabolism, the relationships among three levels of factors, namely (1) clinical characteristics, CYP3A4/5 genotypes, and miRNAs, (2) CYP3A4 and CYP3A5 mRNAs, and (3) CYP3A activity, as well as their individual impacts on atorvastatin metabolism, were assessed in 55 human liver tissues. MiR-27b, miR-206, and CYP3A4 mRNA respectively accounted for 20.0%, 5.8%, and 9.5% of the interindividual variations in CYP3A activity. MiR-142 was an independent contributor to the expressions of CYP3A4 mRNA (partial R2 = 0.12, P = 0.002) and CYP3A5 mRNA (partial R2 = 0.09, P = 0.005) but not CYP3A activity or atorvastatin metabolism. CYP3A activity was a unique independent predictor of variability of atorvastatin metabolism, explaining the majority of the variance in reduction of atorvastatin (60.0%) and formation of ortho-hydroxy atorvastatin (78.8%) and para-hydroxy atorvastatin (83.9%). MiR-27b and miR-206 were found to repress CYP3A4 gene expression and CYP3A activity by directly binding to CYP3A4 3′-UTR, while miR-142 was found to indirectly repress CYP3A activity. Our study indicates that miRNAs play significant roles in bridging the gap between epigenetic effects and missing heritability in CYP3A functionality. PMID:27211076

  18. Pharmacokinetic Evaluation of CYP3A4‐Mediated Drug‐Drug Interactions of Isavuconazole With Rifampin, Ketoconazole, Midazolam, and Ethinyl Estradiol/Norethindrone in Healthy Adults

    PubMed Central

    Dietz, Albert; Hale, Christine; Akhtar, Shahzad; Kowalski, Donna; Lademacher, Christopher; Lasseter, Kenneth; Pearlman, Helene; Rammelsberg, Diane; Schmitt‐Hoffmann, Anne; Yamazaki, Takao; Desai, Amit

    2016-01-01

    Abstract This report describes the phase 1 trials that evaluated the metabolism of the novel triazole antifungal isavuconazole by cytochrome P450 3A4 (CYP3A4) and isavuconazole's effects on CYP3A4‐mediated metabolism in healthy adults. Coadministration of oral isavuconazole (100 mg once daily) with oral rifampin (600 mg once daily; CYP3A4 inducer) decreased isavuconazole area under the concentration‐time curve (AUCτ) during a dosing interval by 90% and maximum concentration (Cmax) by 75%. Conversely, coadministration of isavuconazole (200 mg single dose) with oral ketoconazole (200 mg twice daily; CYP3A4 inhibitor) increased isavuconazole AUC from time 0 to infinity (AUC0‐∞) and Cmax by 422% and 9%, respectively. Isavuconazole was coadministered (200 mg 3 times daily for 2 days, then 200 mg once daily) with single doses of oral midazolam (3 mg; CYP3A4 substrate) or ethinyl estradiol/norethindrone (35 μg/1 mg; CYP3A4 substrate). Following coadministration, AUC0‐∞ increased 103% for midazolam, 8% for ethinyl estradiol, and 16% for norethindrone; Cmax increased by 72%, 14%, and 6%, respectively. Most adverse events were mild to moderate in intensity; there were no deaths, and serious adverse events and adverse events leading to study discontinuation were rare. These results indicate that isavuconazole is a sensitive substrate and moderate inhibitor of CYP3A4. PMID:27273461

  19. Cytochrome b5 is a major determinant of human cytochrome P450 CYP2D6 and CYP3A4 activity in vivo.

    PubMed

    Henderson, Colin J; McLaughlin, Lesley A; Scheer, Nico; Stanley, Lesley A; Wolf, C Roland

    2015-04-01

    The cytochrome P450-dependent mono-oxygenase system is responsible for the metabolism and disposition of chemopreventive agents, chemical toxins and carcinogens, and >80% of therapeutic drugs. Cytochrome P450 (P450) activity is regulated transcriptionally and by the rate of electron transfer from P450 reductase. In vitro studies have demonstrated that cytochrome b5 (Cyb5) also modulates P450 function. We recently showed that hepatic deletion of Cyb5 in the mouse (HBN) markedly alters in vivo drug pharmacokinetics; a key outstanding question is whether Cyb5 modulates the activity of the major human P450s in drug disposition in vivo. To address this, we crossed mice humanized for CYP2D6 or CYP3A4 with mice carrying a hepatic Cyb5 deletion. In vitro triazolam 4-hydroxylation (probe reaction for CYP3A4) was reduced by >50% in hepatic microsomes from CYP3A4-HBN mice compared with controls. Similar reductions in debrisoquine 4-hydroxylation and metoprolol α-hydroxylation were observed using CYP2D6-HBN microsomes, indicating a significant role for Cyb5 in the activity of both enzymes. This effect was confirmed by the concentration-dependent restoration of CYP3A4-mediated triazolam turnover and CYP2D6-mediated bufuralol and debrisoquine turnover on addition of Escherichia coli membranes containing recombinant Cyb5. In vivo, the peak plasma concentration and area under the concentration time curve from 0 to 8 hours (AUC0-8 h) of triazolam were increased 4- and 5.7-fold, respectively, in CYP3A4-HBN mice. Similarly, the pharmacokinetics of bufuralol and debrisoquine were significantly altered in CYP2D6-HBN mice, the AUC0-8 h being increased ∼1.5-fold and clearance decreased by 40-60%. These data demonstrate that Cyb5 can be a major determinant of CYP3A4 and CYP2D6 activity in vivo, with a potential impact on the metabolism, efficacy, and side effects of numerous therapeutic drugs.

  20. Pharmacogenetics in American Indian Populations: Analysis of CYP2D6, CYP3A4, CYP3A5, and CYP2C9 in the Confederated Salish and Kootenai Tribes

    PubMed Central

    Fohner, Alison; Muzquiz, LeeAnna I.; Austin, Melissa A.; Gaedigk, Andrea; Gordon, Adam; Thornton, Timothy; Rieder, Mark J.; Pershouse, Mark A.; Putnam, Elizabeth A.; Howlett, Kevin; Beatty, Patrick; Thummel, Kenneth E.; Woodahl, Erica L.

    2014-01-01

    Objectives Cytochrome P450 enzymes play a dominant role in drug elimination and variation in these genes is a major source of interindividual differences in drug response. Little is known, however, about pharmacogenetic variation in American Indian and Alaska Native (AI/AN) populations. We have developed a partnership with the Confederated Salish and Kootenai Tribes (CSKT) in northwestern Montana to address this knowledge gap. Methods We resequenced CYP2D6 in 187 CSKT subjects and CYP3A4, CYP3A5, and CYP2C9 in 94 CSKT subjects. Results We identified 67 variants in CYP2D6, 15 in CYP3A4, 10 in CYP3A5, and 41 in CYP2C9. The most common CYP2D6 alleles were CYP2D6*4 and *41 (20.86 and 11.23%, respectively). CYP2D6*3, *5, *6, *9, *10, *17, *28, *33, *35, *49, *1xN, *2xN, and *4xN frequencies were less than 2%. CYP3A5*3, CYP3A4*1G, and *1B were detected with frequencies of 92.47, 26.81, and 2.20%, respectively. Allelic variation in CYP2C9 was low: CYP2C9*2 (5.17%) and *3 (2.69%). In general, allele frequencies in CYP2D6, CYP2C9 and CYP3A5 were similar to those observed in European Americans. There was, however, a marked divergence in CYP3A4 for the CYP3A4*1G allele. We also observed low levels of linkage between CYP3A4*1G and CYP3A5*1 in the CSKT. The combination of nonfunctional CYP3A5*3 and putative reduced function CYP3A4*1G alleles may predict diminished clearance of CYP3A substrates. Conclusions These results highlight the importance of conducting pharmacogenomic research in AI/AN populations and demonstrate that extrapolation from other populations is not appropriate. This information could help to optimize drug therapy for the CSKT population. PMID:23778323

  1. Genetic polymorphisms of drug-metabolizing phase I enzymes CYP3A4, CYP2C9, CYP2C19 and CYP2D6 in Han, Uighur, Hui and Mongolian Chinese populations.

    PubMed

    Zuo, Jinliang; Xia, Dongya; Jia, Lihui; Guo, Tao

    2012-07-01

    We randomly evaluated 672 unrelated, healthy Chinese volunteers (136 Han, 214 Uighur, 164 Hui and 158 Mongolian) to compare CYP3A4, CYP2C9, CYP2C19 and CYP2D6 allele frequencies. Genomic DNA was extracted from peripheral leukocytes and genotyped for CYP3A4*5, CYP3A4*18, CYP2C9*2, CYP2C9*13, CYP2C19*2, CYP2C19*3 and CYP2D6*10 by PCR-restriction fragment length polymorphism analysis (PCR-RFLP). Our results showed that there is no significant difference in the distribution of CYP2C19*3 and CYP3A4*18 genotypes in the Han, Uighur, Hui and Mongolian Chinese populations. The CYP2C9*13/*13 and CYP3A4*5 genotypes were not observed in any of the four Chinese populations. We found a higher incidence of the CYP2C9*2 allele in Uighur populations, compared to the Han, Hui and Mongolian populations. The incidence of the CYP2C19*2 allele in the Han population was not significantly different from that in the Uighur, Hui or Mongolian populations; however, the Uighur population showed significantly lower rates of this allele than the Hui and Mongolian populations, and the Mongolian population had a significantly lower incidence of this allele than the Hui population. There was no significant difference in the presence of the CYP2D6*10 allele in the Mongolian, Han or Hui populations. However, the Uighur population showed significantly lower rates of this allele than the other three populations. These findings provide basic genetic information for further pharmacogenomic investigations in the Chinese population.

  2. Fentanyl Enhances Hepatotoxicity of Paclitaxel via Inhibition of CYP3A4 and ABCB1 Transport Activity in Mice

    PubMed Central

    Pan, Jia-Hao; Bi, Bing-Tian; Feng, Kun-Yao; Huang, Wan; Zeng, Wei-An

    2015-01-01

    Fentanyl, a potent opioid analgesic that is used to treat cancer pain, is commonly administered with paclitaxel in advanced tumors. However, the effect of fentanyl on the hepatotoxicity of paclitaxel and its potential mechanism of action is not well studied. The purpose of this study was to investigate the effect of fentanyl on the hepatotoxicity of paclitaxel and its potential mechanisms of action. Pharmacokinetic parameters of paclitaxel were tested using reversed phase high-performance liquid chromatography (RP-HPLC). Aspartate transaminase (AST), alanine aminotransferase (ALT), and mouse liver histopathology were examined. Moreover, the cytotoxicity of anti-carcinogens was examined using 1-(4, 5-dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT), and the intracellular accumulation of doxorubicin and rhodamine 123 was detected by flow cytometry. Furthermore, the expression of ABCB1 and the activity of ABCB1 ATPase and CYP3A4 were also examined. In this study, the co-administration of fentanyl and paclitaxel prolonged the half-life (t1/2) of paclitaxel from 1.455 hours to 2.344 hours and decreased the clearance (CL) from 10.997 ml/h to 7.014 ml/h in mice. Fentanyl significantly increased the levels of ALT in mice to 88.2 U/L, which is more than 2-fold higher than the level detected in the control group, and it increased the histological damage in mouse livers. Furthermore, fentanyl enhanced the cytotoxicity of anti-carcinogens that are ABCB1 substrates and increased the accumulation of doxorubicin and rhodamine 123. Additionally, fentanyl stimulated ABCB1 ATPase activity and inhibited CYP3A4 activity in the liver microsomes of mice. Our study indicates that the obvious hepatotoxicity during this co-administration was due to the inhibition of CYP3A4 activity and ABCB1 transport activity. These findings suggested that the accumulation-induced hepatotoxicity of paclitaxel when it is combined with fentanyl should be avoided. PMID:26633878

  3. Contribution of CYP2C19 and CYP3A4 to the formation of the active nortilidine from the prodrug tilidine

    PubMed Central

    Grün, Barbara; Merkel, Ulrike; Riedel, Klaus-Dieter; Weiss, Johanna; Mikus, Gerd

    2012-01-01

    AIMS To investigate in vivo the effect of the CYP2C19 genotype on the pharmacokinetics of tilidine and the contribution of CYP3A4 and CYP2C19 to the formation of nortilidine using potent CYP3A4 inhibition by ritonavir. METHODS Fourteen healthy volunteers (seven CYP2C19 poor and seven ultrarapid metabolizers) received ritonavir orally (300 mg twice daily) for 3 days or placebo, together with a single oral dose of tilidine and naloxone (100 mg and 4 mg, respectively). Blood samples and urine were collected for 72 h. Noncompartmental analysis was performed to determine pharmacokinetic parameters of tilidine, nortilidine, bisnortilidine and ritonavir. RESULTS Tilidine exposure increased sevenfold and terminal elimination half-life fivefold during ritonavir treatment, but no significant differences were observed between the CYP2C19 genotypes. During ritonavir treatment, nortilidine area under the concentration–time curve was on average doubled, with no differences between CYP2C19 poor metabolizers [2242 h ng ml−1 (95% confidence interval 1811–2674) vs. 996 h ng ml−1 (95% confidence interval 872–1119)] and ultrarapid metabolizers [2074 h ng ml−1 (95% confidence interval 1353–2795) vs. 1059 h ng ml−1 (95% confidence interval 789–1330)]. The plasma concentration–time curve of the secondary metabolite, bisnortilidine, showed a threefold increase of time to reach maximal observed plasma concentration; however, area under the concentration–time curve was not altered by ritonavir. CONCLUSIONS The sequential metabolism of tilidine is inhibited by the potent CYP3A4 inhibitor, ritonavir, independent of the CYP2C19 genotype, with a twofold increase in the exposure of the active nortilidine. PMID:22381043

  4. GW4064, an Agonist of Farnesoid X Receptor, Represses CYP3A4 Expression in Human Hepatocytes by Inducing Small Heterodimer Partner Expression

    PubMed Central

    Zhang, Shu; Pan, Xian

    2015-01-01

    Farnesoid X receptor (FXR) functions as a regulator of bile acid and lipid homeostasis and is recognized as a promising therapeutic target for metabolic diseases. The biologic function of FXR is mediated in part by a small heterodimer partner (SHP); ligand-activated FXR enhances SHP expression, and SHP in turn represses the activity of multiple transcription factors. This study aimed to investigate the effect of FXR activation on expression of the major drug-metabolizing enzyme CYP3A4. The effects of 3-(2,6-dichlorophenyl)-4-(3′-carboxy-2-chlorostilben-4-yl)oxymethyl-5-isopropylisoxazole (GW4064), a synthetic agonist of FXR, on the expression and activity of CYP3A4 were examined in primary human hepatocytes by using quantitative real-time polymerase chain reaction and S9 phenotyping. In human hepatocytes, treatment of GW4064 (1 μM) for 48 hours resulted in a 75% decrease in CYP3A4 mRNA expression and a 25% decrease in CYP3A4 activity, accompanied by ∼3-fold increase in SHP mRNA expression. In HepG2 cells, SHP repressed transactivation of CYP3A4 promoter by pregnane X receptor (PXR), constitutive androstane receptor (CAR), and glucocorticoid receptor. Interestingly, GW4064 did not repress expression of CYP2B6, another target gene of PXR and CAR; GW4064 enhanced CYP2B6 promoter activity. In conclusion, GW4064 represses CYP3A4 expression in human hepatocytes, potentially through upregulation of SHP expression and subsequent repression of CYP3A4 promoter activity. Clinically significant drug-drug interaction involving FXR agonists and CYP3A4 substrates may occur. PMID:25725071

  5. Effects of Decreased Vitamin D and Accumulated Uremic Toxin on Human CYP3A4 Activity in Patients with End-Stage Renal Disease

    PubMed Central

    Tsujimoto, Masayuki; Nagano, Yui; Hosoda, Satomi; Shiraishi, Asuka; Miyoshi, Ayaka; Hiraoka, Shima; Furukubo, Taku; Izumi, Satoshi; Yamakawa, Tomoyuki; Minegaki, Tetsuya; Nishiguchi, Kohshi

    2013-01-01

    In patients with end-stage renal disease, not only renal clearance but also hepatic clearance is known to be impaired. For instance, the concentration of erythromycin, a substrate of cytochrome P450 3A4 (CYP3A4), has been reported to be elevated in patients with end-stage renal disease. The purpose of this study is to elucidate the reason for the decrease in hepatic clearance in patients with end-stage renal disease. Deproteinized pooled sera were used to assess the effects of low-molecular-weight uremic toxins on CYP3A4 activity in human liver microsomes and human LS180 cells. Four uremic toxins (3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid, hippuric acid, indole-3-acetic acid, and 3-indoxyl sulfate) present at high concentrations in uremic serum were also studied. Simultaneous treatment of uremic serum (less than 10%) or uremic toxins did not affect testosterone 6β-hydroxylation in human liver microsomes. On the other hand, pretreatment of each serum activates CYP3A4 in LS180 cells, and the increased CYP3A4 activity in uremic serum-treated cells was smaller than normal serum-treated cells. In addition, CYP3A4 and CYP24A1 mRNA levels also increased in LS180 cells exposed to normal serum, and this effect was reduced in uremic serum-treated cells and in cells exposed to uremic serum added to normal serum. Furthermore, addition of 1,25-dihydroxyvitamin D to uremic serum partially restored the serum effect on CYP3A4 expression. The present study suggests that the decrease of 1,25-dihydroxyvitamin D and the accumulation of uremic toxins contributed to the decreased hepatic clearance of CYP3A4 substrates in patients with end-stage renal disease. PMID:23965431

  6. Racial Differences in CYP3A4 Genotype and Survival Among Men Treated on Radiation Therapy Oncology Group (RTOG) 9202: A Phase III Randomized Trial

    SciTech Connect

    Roach, Mack Silvio, Michelle de; Rebbick, Timothy; Grignon, David; Rotman, Marvin; Wolkov, Harvey; Fisher, Barbara; Hanks, Gerald; Shipley, William U.; Pollack, Alan; Sandler, Howard; Watkins-Bruner, Deborah Ph.D.

    2007-09-01

    Purpose: Inherited genotypes may explain the inferior outcomes of African American (AA) men with prostate cancer. To understand how variation in CYP3A4 correlated with outcomes, a retrospective examination of the CYP3A4*1B genotype was performed on men treated with Radiation Therapy Oncology Group (RTOG) 92-02. Methods and Materials: From 1,514 cases, we evaluated 56 (28.4%) of 197 AA and 54 (4.3%) of 1,274 European American (EA) patients. All patients received goserelin and flutamide for 2 months before and during RT (STAD-RT) {+-} 24 months of goserelin (long-term androgen deprivation plus radiation [LTAD-RT]). Events studied included overall survival and biochemical progression using American Society for Therapeutic Radiology and Oncology consensus guidelines. Results: There were no differences in outcome in patients in with or without CYP3A4 data. There was an association between race and CYP3A4 polymorphisms with 75% of EAs having the Wild Type compared to only 25% of AA men (p <0.0001). There was no association between CYP3A4 classification or race and survival or progression. Conclusions: The samples analyzed support previously reported observations about the distribution of CYP3A4*1B genotype by race, but race was not associated with poorer outcome. However, patient numbers were limited, and selection bias cannot be completely ruled out.

  7. The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions.

    PubMed Central

    Lehmann, J M; McKee, D D; Watson, M A; Willson, T M; Moore, J T; Kliewer, S A

    1998-01-01

    The cytochrome P-450 monooxygenase 3A4 (CYP3A4) is responsible for the oxidative metabolism of a wide variety of xenobiotics including an estimated 60% of all clinically used drugs. Although expression of the CYP3A4 gene is known to be induced in response to a variety of compounds, the mechanism underlying this induction, which represents a basis for drug interactions in patients, has remained unclear. We report the identification of a human (h) orphan nuclear receptor, termed the pregnane X receptor (PXR), that binds to a response element in the CYP3A4 promoter and is activated by a range of drugs known to induce CYP3A4 expression. Comparison of hPXR with the recently cloned mouse PXR reveals marked differences in their activation by certain drugs, which may account in part for the species-specific effects of compounds on CYP3A gene expression. These findings provide a molecular explanation for the ability of disparate chemicals to induce CYP3A4 levels and, furthermore, provide a basis for developing in vitro assays to aid in predicting whether drugs will interact in humans. PMID:9727070

  8. Applying Stable Isotope Labeled Amino Acids in Micropatterned Hepatocyte Co-Culture to Directly Determine the Degradation Rate Constant for CYP3A4.

    PubMed

    Takahashi, Ryan H; Shahidi-Latham, Sheerin; Wong, Susan; Chang, Jae H

    2017-03-13

    The rate of enzyme degradation (kdeg) is an important input parameter for the prediction of clinical drug-drug-interactions (DDI) that result from mechanism-based inactivation or induction of cytochrome P450s. Currently, a large range of reported estimates for CYP3A4 enzyme degradation exists, and consequently, large uncertainty exists in steady-state predictions for DDI. In the current investigations, stable isotope labeled amino acids in culture (SILAC) was applied to a long-lived primary human hepatocyte culture, HepatoPac, to directly monitor the degradation of CYP3A4. This approach allowed selective isotope labeling of a population of de novo synthesized CYP3A4, and specific quantification of proteins with mass spectrometry to determine the CYP3A4 degradation within the hepatocytes. The kdeg estimate was 0.026 ± 0.005 h- 1. This value was reproduced by cultures derived across four individual donors. For these cultures, data indicated that CYP3A4 mRNA and total protein expression (i.e. labeled and not labeled P450s), and activity were stable over the period where degradation had been determined. This kdeg value for CYP3A4 was in good agreement with recently reported values that used alternate analytical approaches, but also employed micropatterned primary human hepatocytes as the in vitro model.

  9. Curcuminoids inhibit multiple human cytochromes P450 (CYP), UDP-glucuronosyltransferase (UGT), and sulfotransferase (SULT) enzymes, while piperine is a relatively selective CYP3A4 inhibitor

    PubMed Central

    Volak, Laurie P.; Ghirmai, Senait; Cashman, John R.; Court, Michael H.

    2008-01-01

    Curcuminoid extract and piperine are being evaluated for beneficial effects in Alzheimer’s disease, among other intractable disorders. Consequently, we studied the potential for herb-drug interactions involving cytochrome P450 (CYP), UDP-glucuronosyltransferase (UGT), and sulfotransferase (SULT) enzymes. The curcuminoid extract inhibited SULT > CYP2C19 > CYP2B6 > UGT > CYP2C9 > CYP3A activities with IC50 values ranging from 0.99 ± 0.04 to 25.3 ± 1.3 μM, while CYP2D6, CYP1A2, and CYP2E1 activities were less affected (IC50 values >60 μM). Inhibition of CYP3A activity by curcuminoid extract was consistent with competitive inhibition (Ki = 11.0 ± 1.3 μM), while inhibition of both CYP2C9 and CYP2C19 activities were consistent with mixed competitive-noncompetitive inhibition (10.6 ± 1.1 μM and 7.8 ± 0.9 μM, respectively). Piperine was a relatively selective noncompetitive inhibitor of CYP3A (IC50 5.5 ± 0.7 μM, Ki = 5.4 ± 0.3 μM) with less effect on other enzymes evaluated (IC50 >29 μM). Curcuminoid extract and piperine inhibited recombinant CYP3A4 much more potently (by >5-fold) than CYP3A5. Pure synthetic curcuminoids (curcumin, demethoxycurcumin, and bisdemethoxycurcumin) were also evaluated for their effects on CYP3A, CYP2C9, UGT, and SULT activities. All three curcuminoids had similar effects on CYP3A, UGT, and SULT activity, but demethoxycurcumin (IC50 = 8.8 ± 1.2 μM) was more active against CYP2C9 than either curcumin or bisdemethoxycurcumin (IC50 >50 μM). Based on these data and expected tissue concentrations of inhibitors, we predict that an orally administered curcuminoid/piperine combination is most likely to inhibit CYP3A, CYP2C9, UGT, and SULT metabolism within the intestinal mucosa. PMID:18480186

  10. Cross-linking mass spectrometry and mutagenesis confirm the functional importance of surface interactions between CYP3A4 and holo/apo cytochrome b(5).

    PubMed

    Zhao, Chunsheng; Gao, Qiuxia; Roberts, Arthur G; Shaffer, Scott A; Doneanu, Catalin E; Xue, Song; Goodlett, David R; Nelson, Sidney D; Atkins, William M

    2012-11-27

    Cytochrome b(5) (cyt b(5)) is one of the key components in the microsomal cytochrome P450 monooxygenase system. Consensus has not been reached about the underlying mechanism of cyt b(5) modulation of CYP catalysis. Both cyt b(5) and apo b(5) are reported to stimulate the activity of several P450 isoforms. In this study, the surface interactions of both holo and apo b(5) with CYP3A4 were investigated and compared for the first time. Chemical cross-linking coupled with mass spectrometric analysis was used to identify the potential electrostatic interactions between the protein surfaces. Subsequently, the models of interaction of holo/apo b(5) with CYP3A4 were built using the identified interacting sites as constraints. Both cyt b(5) and apo b(5) were predicted to bind to the same groove on CYP3A4 with close contacts to the B-B' loop of CYP3A4, a substrate recognition site. Mutagenesis studies further confirmed that the interacting sites on CYP3A4 (Lys96, Lys127, and Lys421) are functionally important. Mutation of these residues reduced or abolished cyt b(5) binding affinity. The critical role of Arg446 on CYP3A4 in binding to cyt b(5) and/or cytochrome P450 reductase was also discovered. The results indicated that electrostatic interactions on the interface of the two proteins are functionally important. The results indicate that apo b(5) can dock with CYP3A4 in a manner analogous to that of holo b(5), so electron transfer from cyt b(5) is not required for its effects.

  11. Cross-linking Mass Spectrometry and Mutagenesis Confirm the Functional Importance of Surface Interactions between CYP3A4 and Holo/Apo Cytochrome b5

    PubMed Central

    Zhao, Chunsheng; Gao, Qiuxia; Roberts, Arthur G.; Shaffer, Scott A.; Doneanu, Catalin E.; Xue, Song; Goodlett, David R.; Nelson, Sidney D.; Atkins, William M.

    2012-01-01

    Cytochrome b5 (cyt b5) is one of the key components in the microsomal cytochrome P450 monooxygenase system. Consensus has not been reached on the underlying mechanism of cyt b5 modulation of CYP catalysis. Both cyt b5 and apo b5, are reported to stimulate the activity of several P450 isoforms. In the present study, the surface interactions of both holo and apo b5 with CYP3A4 were investigated and compared for the first time. Chemical cross-linking coupled with mass spectrometric analysis was used to identify the potential electrostatic interactions between the protein surfaces. Subsequently, the interaction models of holo/apo b5 with CYP3A4 were built using the identified interacting sites as constraints. Both cyt b5 and apo b5 were predicted to bind to the same groove on CYP3A4 with close contacts to the B-B’ loop of CYP3A4, a substrate recognition site (SRS). Mutagenesis studies further confirmed that the interacting sites on CYP3A4 (Lys96, Lys127 and Lys421) are of functional importance. Mutation of these residues reduced or abolished cyt b5 binding affinity. The critical role of Arg446 on CYP3A4 in binding to cyt b5 and/or cytochrome P450 reductase (CPR) was also discovered. The results indicated that electrostatic interactions on the interface of the two proteins are functionally important. The results indicate that the apo cyt b5 can dock with CYP3A4 in a manner analogous to holo cyt b5 so electron transfer from cyt b5 is not required for its effects. PMID:23150942

  12. Size and surface modification of amorphous silica particles determine their effects on the activity of human CYP3A4 in vitro

    NASA Astrophysics Data System (ADS)

    Imai, Shunji; Yoshioka, Yasuo; Morishita, Yuki; Yoshida, Tokuyuki; Uji, Miyuki; Nagano, Kazuya; Mukai, Yohei; Kamada, Haruhiko; Tsunoda, Shin-ichi; Higashisaka, Kazuma; Tsutsumi, Yasuo

    2014-12-01

    Because of their useful chemical and physical properties, nanomaterials are widely used around the world - for example, as additives in food and medicines - and such uses are expected to become more prevalent in the future. Therefore, collecting information about the effects of nanomaterials on metabolic enzymes is important. Here, we examined the effects of amorphous silica particles with various sizes and surface modifications on cytochrome P450 3A4 (CYP3A4) activity by means of two different in vitro assays. Silica nanoparticles with diameters of 30 and 70 nm (nSP30 and nSP70, respectively) tended to inhibit CYP3A4 activity in human liver microsomes (HLMs), but the inhibitory activity of both types of nanoparticles was decreased by carboxyl modification. In contrast, amine-modified nSP70 activated CYP3A4 activity. In HepG2 cells, nSP30 inhibited CYP3A4 activity more strongly than the larger silica particles did. Taken together, these results suggest that the size and surface characteristics of the silica particles determined their effects on CYP3A4 activity and that it may be possible to develop silica particles that do not have undesirable effects on metabolic enzymes by altering their size and surface characteristics.

  13. The Effect of microRNAs in the Regulation of Human CYP3A4: a Systematic Study using a Mathematical Model

    NASA Astrophysics Data System (ADS)

    Wei, Zhiyun; Jiang, Songshan; Zhang, Yiting; Wang, Xiaofei; Peng, Xueling; Meng, Chunjie; Liu, Yichen; Wang, Honglian; Guo, Luo; Qin, Shengying; He, Lin; Shao, Fengmin; Zhang, Lirong; Xing, Qinghe

    2014-03-01

    CYP3A4 metabolizes more than 50% of the drugs on the market. The large inter-individual differences of CYP3A4 expression may contribute to the variability of human drug responses. Post-transcriptional regulation of CYP3A4 is poorly understood, whereas transcriptional regulation has been studied much more thoroughly. In this study, we used multiple software programs to predict miRNAs that might bind to CYP3A4 and identified 112 potentially functional miRNAs. Then a luciferase reporter system was used to assess the effect of the overexpression of each potentially functional miRNA in HEK 293T cells. Fourteen miRNAs that significantly decreased reporter activity were measured in human liver samples (N = 27) as candidate miRNAs. To establish a more effective way to analyze in vivo data for miRNA candidates, the relationship between functional miRNA and target mRNA was modeled mathematically. Taking advantage of this model, we found that hsa-miR-577, hsa-miR-1, hsa-miR-532-3p and hsa-miR-627 could significantly downregulate the translation efficiency of CYP3A4 mRNA in liver. This study used in silico, in vitro and in vivo methods to progressively screen functional miRNAs for CYP3A4 and to enhance our understanding of molecular events underlying the large inter-individual differences of CYP3A4 expression in human populations.

  14. Use of immortalized human hepatocytes to predict the magnitude of clinical drug-drug interactions caused by CYP3A4 induction.

    PubMed

    Ripp, Sharon L; Mills, Jessica B; Fahmi, Odette A; Trevena, Kristen A; Liras, Jennifer L; Maurer, Tristan S; de Morais, Sonia M

    2006-10-01

    Cytochrome P4503A4 (CYP3A4) is the principal drug-metabolizing enzyme in human liver. Drug-drug interactions (DDIs) caused by induction of CYP3A4 can result in decreased exposure to coadministered drugs, with potential loss of efficacy. Immortalized hepatocytes (Fa2N-4 cells) have been proposed as a tool to identify CYP3A4 inducers. The purpose of the current studies was to characterize the effect of known inducers on CYP3A4 in Fa2N-4 cells, and to determine whether these in vitro data could reliably project the magnitude of DDIs caused by induction. Twenty-four compounds were chosen for these studies, based on previously published data using primary human hepatocytes. Eighteen compounds had been shown to be positive for induction, and six compounds had been shown to be negative for induction. In Fa2N-4 cells, all 18 positive controls produced greater than 2-fold maximal CYP3A4 induction, and all 6 negative controls produced less than 1.5-fold maximal CYP3A4 induction. Subsequent studies were conducted to determine the relationship between in vitro induction data and in vivo induction response. The approach was to relate in vitro induction data (E(max) and EC(50) values) with efficacious free plasma concentrations to calculate a relative induction score. This score was then correlated with decreases in area under the plasma concentration versus time curve values for coadministered CYP3A4 object drugs (midazolam or ethinylestradiol) from previously published clinical DDI studies. Excellent correlations (r(2) values >0.92) were obtained, suggesting that Fa2N-4 cells can be used for identification of inducers as well as prediction of the magnitude of clinical DDIs.

  15. A pregnancy physiologically based pharmacokinetic (p-PBPK) model for disposition of drugs metabolized by CYP1A2, CYP2D6 and CYP3A4

    PubMed Central

    Gaohua, Lu; Abduljalil, Khaled; Jamei, Masoud; Johnson, Trevor N; Rostami-Hodjegan, Amin

    2012-01-01

    Aims Pregnant women are usually not part of the traditional drug development programme. Pregnancy is associated with major biological and physiological changes that alter the pharmacokinetics (PK) of drugs. Prediction of the changes to drug exposure in this group of patients may help to prevent under- or overtreatment. We have used a pregnancy physiologically based pharmacokinetic (p-PBPK) model to assess the likely impact of pregnancy on three model compounds, namely caffeine, metoprolol and midazolam, based on the knowledge of their disposition in nonpregnant women and information from in vitro studies. Methods A perfusion-limited form of a 13-compartment full-PBPK model (Simcyp® Simulator) was used for the nonpregnant women, and this was extended to the pregnant state by applying known changes to all model components (including the gestational related activity of specific cytochrome P450 enzymes) and through the addition of an extra compartment to represent the fetoplacental unit. The uterus and the mammary glands were grouped into the muscle compartment. The model was implemented in Matlab Simulink and validated using clinical observations. Results The p-PBPK model predicted the PK changes of three model compounds (namely caffeine, metoprolol and midazolam) for CYP1A2, CYP2D6 and CYP3A4 during pregnancy within twofold of observed values. The changes during the third trimester were predicted to be a 100% increase, a 30% decrease and a 35% decrease in the exposure of caffeine, metoprolol and midazolam, respectively, compared with the nonpregnant women. Conclusions In the absence of clinical data, the in silico prediction of PK behaviour during pregnancy can provide a valuable aid to dose adjustment in pregnant women. The performance of the model for drugs metabolized by a single enzyme to different degrees (high and low extraction) and for drugs that are eliminated by several different routes warrants further study. PMID:22725721

  16. Evaluation of 309 molecules as inducers of CYP3A4, CYP2B6, CYP1A2, OATP1B1, OCT1, MDR1, MRP2, MRP3 and BCRP in cryopreserved human hepatocytes in sandwich culture.

    PubMed

    Badolo, Lassina; Jensen, Bente; Säll, Carolina; Norinder, Ulf; Kallunki, Pekka; Montanari, Dino

    2015-02-01

    1. Regulation of hepatic metabolism or transport may lead to increase in drug clearance and compromise efficacy or safety. In this study, cryopreserved human hepatocytes were used to assess the effect of 309 compounds on the activity and mRNA expression (using qPCR techniques) of CYP1A2, CYP2B6 and CYP3A4, as well as mRNA expression of six hepatic transport proteins: OATP1B1 (SCLO1B1), OCT1 (SLC22A1), MDR1 (ABCB1), MRP2 (ABCC2), MRP3 (ABCC3) and BCRP (ABCG2). 2. The results showed that 6% of compounds induced CYP1A2 activity (1.5-fold increase); 30% induced CYP2B6 while 23% induced CYP3A4. qPCR data identified 16, 33 or 32% inducers of CYP1A2, CYP2B6 or CYP3A4, respectively. MRP2 was induced by 27 compounds followed by MDR1 (16)>BCRP (9)>OCT1 (8)>OATP1B1 (5)>MRP3 (2). 3. CYP3A4 appeared to be down-regulated (≥2-fold decrease in mRNA expression) by 53 compounds, 10 for CYP2B6, 6 for OCT1, 4 for BCRP, 2 for CYP1A2 and OATP1B1 and 1 for MDR1 and MRP2. 4. Structure-activity relationship analysis showed that CYP2B6 and CYP3A4 inducers are bulky lipophilic molecules with a higher number of heavy atoms and a lower number of hydrogen bond donors. Finally, a strategy for testing CYP inducers in drug discovery is proposed.

  17. Enhancement of CYP3A4 activity in Hep G2 cells by lentiviral transfection of hepatocyte nuclear factor-1 alpha.

    PubMed

    Chiang, Tsai-Shin; Yang, Kai-Chiang; Chiou, Ling-Ling; Huang, Guan-Tarn; Lee, Hsuan-Shu

    2014-01-01

    Human hepatoma cell lines are commonly used as alternatives to primary hepatocytes for the study of drug metabolism in vitro. However, the phase I cytochrome P450 (CYP) enzyme activities in these cell lines occur at a much lower level than their corresponding activities in primary hepatocytes, and thus these cell lines may not accurately predict drug metabolism. In the present study, we selected hepatocyte nuclear factor-1 alpha (HNF1α) from six transcriptional regulators for lentiviral transfection into Hep G2 cells to optimally increase their expression of the CYP3A4 enzyme, which is the major CYP enzyme in the human body. We subsequently found that HNF1α-transfected Hep G2 enhanced the CYP3A4 expression in a time- and dose-dependent manner and the activity was noted to increase with time and peaked 7 days. With a multiplicity of infection (MOI) of 100, CYP3A4 expression increased 19-fold and enzyme activity more than doubled at day 7. With higher MOI (1,000 to 3,000), the activity increased 8- to 10-fold; however, it was noted the higher MOI, the higher cell death rate and lower cell survival. Furthermore, the CYP3A4 activity in the HNF1α-transfected cells could be induced by CYP3A4-specific inducer, rifampicin, and metabolized nifedipine in a dose-dependent manner. With an MOI of 3,000, nifedipine-metabolizing activity was 6-fold of control and as high as 66% of primary hepatocytes. In conclusion, forceful delivery of selected transcriptional regulators into human hepatoma cells might be a valuable method to enhance the CYP activity for a more accurate determination of drug metabolism in vitro.

  18. The effect of induction of CYP3A4 by St John's wort on ambrisentan plasma pharmacokinetics in volunteers of known CYP2C19 genotype.

    PubMed

    Markert, Christoph; Kastner, Ida Maria; Hellwig, Regina; Kalafut, Peter; Schweizer, Yvonne; Hoffmann, Michael Marcus; Burhenne, Jürgen; Weiss, Johanna; Mikus, Gerd; Haefeli, Walter Emil

    2015-05-01

    To evaluate the impact of CYP2C19 polymorphisms on ambrisentan exposure and to assess its modification by St. John's wort (SJW), 20 healthy volunteers (10 CYP2C19 extensive, four poor and six ultrarapid metabolizers) received therapeutic doses of ambrisentan (5 mg qd po) for 20 days and concomitantly SJW (300 mg tid po) for the last 10 days. To quantify changes of CYP3A4 activity, midazolam (3 mg po) as a probe drug was used. Ambrisentan pharmacokinetics was assessed on days 1, 10 and 20, and midazolam pharmacokinetics before and on days 1, 10, 17 and 20. At steady state, ambrisentan exposure was similar in extensive and ultrarapid metabolizers but 43% larger in poor metabolizers (p < 0.01). In all volunteers, SJW reduced ambrisentan exposure and the relative change (17-26%) was similar in all genotype groups. The extent of this interaction did not correlate with the changes in CYP3A activity (midazolam clearance) (rs = 0.23, p = 0.34). Ambrisentan had no effect on midazolam pharmacokinetics. In conclusion, SJW significantly reduced exposure with ambrisentan irrespective of the CYP2C19 genotype. The extent of this interaction was small and thus likely without clinical relevance.

  19. Enhancement of hepatic 4-hydroxylation of 25-hydroxyvitamin D3 through CYP3A4 induction in vitro and in vivo: Implications for drug-induced osteomalacia

    PubMed Central

    Wang, Zhican; Lin, Yvonne S.; Dickmann, Leslie J.; Poulton, Emma-Jane; Eaton, David L.; Lampe, Johanna W.; Shen, Danny D.; Davis, Connie L.; Shuhart, Margaret C.; Thummel, Kenneth E.

    2012-01-01

    Long-term therapy with certain drugs, especially P450 inducing agents, confers an increased risk of osteomalacia that is attributed to vitamin D deficiency. Human CYP24A1, CYP3A4 and CYP27B1 catalyze the inactivation and activation of vitamin D and have been implicated in the adverse drug response. In this study, the inducibility of these enzymes and monohydroxylation of 25OHD3 were evaluated following exposure to P450 inducing drugs. With human hepatocytes, treatment with phenobarbital, hyperforin, carbamazepine and rifampin significantly increased the levels of CYP3A4 but not CYP24A1 or CYP27B1 mRNA. In addition, rifampin pretreatment resulted in an 8-fold increase in formation of the major metabolite of 25OHD3, 4β,25(OH)2D3. This inductive effect was blocked by the addition of 6′,7′-dihydroxybergamottin, a selective CYP3A4 inhibitor. With human renal proximal tubular HK-2 cells, treatment with the same inducers did not alter CYP3A4, CYP24A1 or CYP27B1 expression. 24R,25(OH)2D3 was the predominant monohydroxy metabolite produced from 25OHD3, but its formation was unaffected by the inducers. With healthy volunteers, the mean plasma concentration of 4β,25(OH)2D3 was increased 60% (p < 0.01) after short-term rifampin administration. This was accompanied by a statistically significant reduction in plasma 1α,25(OH)2D3 (−10%; p = 0.03), and a non-significant change in 24R,25(OH)2D3 (−8%; p = 0.09) levels. Further analysis revealed a negative correlation between the increase in 4β,25(OH)2D3 and decrease in 1α,25(OH)2D3 levels. Examination of the plasma monohydroxy metabolite/25OHD3 ratios indicated selective induction of the CYP3A4-dependent 4β-hydroxylation pathway of 25OHD3 elimination. These results suggest that induction of hepatic CYP3A4 may be important in the etiology of drug-induced osteomalacia. PMID:23212742

  20. Transfected MDCK cell line with enhanced expression of CYP3A4 and P-glycoprotein as a model to study their role in drug transport and metabolism.

    PubMed

    Kwatra, Deep; Budda, Balasubramanyam; Vadlapudi, Aswani Dutt; Vadlapatla, Ramya Krishna; Pal, Dhananjay; Mitra, Ashim K

    2012-07-02

    The aim of this study was to characterize and utilize MDCK cell line expressing CYP3A4 and P-glycoprotein as an in vitro model for evaluating drug-herb and drug-drug of abuse interactions. MDCK cell line simultaneously expressing P-gp and CYP3A4 (MMC) was developed and characterized by using expression and activity studies. Cellular transport study of 200 μM cortisol was performed to determine their combined activity. The study was carried across MDCK-WT, MDCK-MDR1 and MMC cell lines. Similar studies were also carried out in the presence of 50 μM naringin and 3 μM morphine. Samples were analyzed by HPLC for drug and its CYP3A4 metabolite. PCR, qPCR and Western blot studies confirmed the enhanced expression of the proteins in the transfected cells. The Vivid CYP3A4 assay and ketoconazole inhibition studies further confirmed the presence of active protein. Apical to basal transport of cortisol was found to be 10- and 3-fold lower in MMC as compared to MDCK-WT and MDCK-MDR1 respectively. Higher amount of metabolite was formed in MMC than in MDCK-WT, indicating enhanced expression of CYP3A4. Highest cortisol metabolite formation was observed in MMC cell line due to the combined activities of CYP3A4 and P-gp. Transport of cortisol increased 5-fold in the presence of naringin in MMC and doubled in MDCK-MDR1. Cortisol transport in MMC was significantly lower than that in MDCK-WT in the presence of naringin. The permeability increased 3-fold in the presence of morphine, which is a weaker inhibitor of CYP3A4. Formation of 6β-hydroxy cortisol was found to decrease in the presence of morphine and naringin. This new model cell line with its enhanced CYP3A4 and P-gp levels in addition to short culture time can serve as an invaluable model to study drug-drug interactions. This cell line can also be used to study the combined contribution of efflux transporter and metabolizing enzymes toward drug-drug interactions.

  1. TRANSFECTED MDCK CELL LINE WITH ENHANCED EXPRESSION OF CYP3A4 AND P-GLYCOPROTEIN AS A MODEL TO STUDY THEIR ROLE IN DRUG TRANSPORT AND METABOLISM

    PubMed Central

    Kwatra, Deep; Budda, Balasubramanyam; Vadlapudi, Aswani Dutt; Vadlapatla, Ramya Krishna; Pal, Dhananjay; Mitra, Ashim K.

    2012-01-01

    The aim of this study was to characterize and utilize MDCK cell line expressing CYP3A4 and P-glycoprotein as an in vitro model for evaluating drug-herb and drug-drugs of abuse interactions. MDCK cell line simultaneously expressing P-gp and CYP3A4 (MMC) was developed and characterized by using expression and activity studies. Cellular transport study of 200 μM cortisol was performed to determine their combined activity. The study was carried across MDCK-WT, MDCK-MDR1 and MMC cell lines. Similar studies were also carried out in the presence of 50 μM naringin and 3 μM morphine. Samples were analyzed by HPLC for drug and its CYP3A4 metabolite. PCR, qPCR and western blot studies confirmed the enhanced expression of the proteins in the transfected cells. The vivid CYP3A4 assay and ketoconazole inhibition studies further confirmed the presence of active protein. Apical to basal transport of cortisol was found to be ten and three fold lower in MMC as compared to WT and MDCKMDR1 respectively. Higher amount of metabolite was formed in MMC than in MDCK-WT indicating enhanced expression of CYP3A4. Highest cortisol metabolite formation was observed in MMC cell line due to the combined metabolic activities of CYP3A4 and P-gp. Transport of cortisol increased fivefold in presence of naringin in MMC and doubled in MDCKMDR1. Cortisol transport in MMC was significantly lower than that in WT in presence of naringin. The permeability increased three fold in presence of morphine which is a weaker inhibitor of CYP3A4. Formation of 6β-hydroxy cortisol was found to decrease in presence of morphine and naringin. This new model cell line with its enhanced CYP3A4 and P-gp levels in addition to short culture time can serve as an invaluable model to study drug-drug interactions. This cell line can also be used to study the combined contribution of efflux transporter and metabolizing enzymes towards drug-drug interactions. PMID:22676443

  2. In interaction with gender a common CYP3A4 polymorphism may influence the survival rate of chemotherapy for childhood acute lymphoblastic leukemia.

    PubMed

    Gézsi, A; Lautner-Csorba, O; Erdélyi, D J; Hullám, G; Antal, P; Semsei, Á F; Kutszegi, N; Hegyi, M; Csordás, K; Kovács, G; Szalai, C

    2015-06-01

    CYP3A4 has an important role in the metabolisms of many drugs used in acute lymphoblastic leukemia (ALL) therapy; still, there are practically no publications about the role of CYP3A4 polymorphisms in ALL pharmacogenomics. We genotyped eight common single-nucleotide polymorphisms (SNPs) in the CYP3A4 and CYP3A5 genes in 511 children with ALL and investigated whether they influenced the survival of the patients. We involved additional 127 SNPs in 34 candidate genes and searched for interactions with respect to the survival rates. Significant association between the survival rates and the common rs2246709 SNP in the CYP3A4 gene was observed. The gender of the patients and the rs1076991 in the MTHFD1 gene strongly influenced this effect. We calculated new risk assessments involving the gender-rs2246709 interaction and showed that they significantly outperformed the earlier risk-group assessments at every time point. If this finding is confirmed in other populations, it can have a considerable prognostic significance.

  3. Prediction of time-dependent CYP3A4 drug-drug interactions by physiologically based pharmacokinetic modelling: impact of inactivation parameters and enzyme turnover.

    PubMed

    Rowland Yeo, K; Walsky, R L; Jamei, M; Rostami-Hodjegan, A; Tucker, G T

    2011-06-14

    Predicting the magnitude of time-dependent metabolic drug-drug (mDDIs) interactions involving cytochrome P-450 3A4 (CYP3A4) from in vitro data requires accurate knowledge of the inactivation parameters of the inhibitor (K(I), k(inact)) and of the turnover of the enzyme (k(deg)) in both the gut and the liver. We have predicted the magnitude of mDDIs observed in 29 in vivo studies involving six CYP3A4 probe substrates and five mechanism based inhibitors of CYP3A4 of variable potency (azithromycin, clarithromycin, diltiazem, erythromycin and verapamil). Inactivation parameters determined anew in a single laboratory under standardised conditions together with data from substrate and inhibitor files within the Simcyp Simulator (Version 9.3) were used to determine a value of the hepatic k(deg) (0.0193 or 0.0077h(-1)) most appropriate for the prediction of mDDIs involving time-dependent inhibition of CYP3A4. The higher value resulted in decreased bias (geometric mean fold error - 1.05 versus 1.30) and increased precision (root mean squared error - 1.29 versus 2.30) of predictions of mean ratios of AUC in the absence and presence of inhibitor. Depending on the k(deg) value used (0.0193 versus 0.0077h(-1)), predicted mean ratios of AUC were within 2-fold of the observed values for all (100%) and 27 (93%) of the 29 studies, respectively and within 1.5-fold for 24 (83%) and 17 (59%) of the 29 studies, respectively. Comprehensive PBPK models were applied for accurate assessment of the potential for mDDIs involving time-dependent inhibition of CYP3A4 using a hepatic k(deg) value of 0.0193h(-1) in conjunction with inactivation parameters determined by the conventional experimental approach.

  4. Evaluation of a Novel Renewable Hepatic Cell Model for Prediction of Clinical CYP3A4 Induction Using a Correlation-Based Relative Induction Score Approach

    PubMed Central

    Li, Feng; Parikh, Sweta; Cao, Li; Cooper, Kirsten L.; Hong, Yulong; Liu, Jin; Faris, Ronald A.; Li, Daochuan; Wang, Hongbing

    2017-01-01

    Metabolism enzyme induction-mediated drug-drug interactions need to be carefully characterized in vitro for drug candidates to predict in vivo safety risk and therapeutic efficiency. Currently, both the Food and Drug Administration and European Medicines Agency recommend using primary human hepatocytes as the gold standard in vitro test system for studying the induction potential of candidate drugs on cytochrome P450 (CYP), CYP3A4, CYP1A2, and CYP2B6. However, primary human hepatocytes are known to bear inherent limitations such as limited supply and large lot-to-lot variations, which result in an experimental burden to qualify new lots. To overcome these shortcomings, a renewable source of human hepatocytes (i.e., Corning HepatoCells) was developed from primary human hepatocytes and was evaluated for in vitro CYP3A4 induction using methods well established by the pharmaceutical industry. HepatoCells have shown mature hepatocyte-like morphology and demonstrated primary hepatocyte-like response to prototypical inducers of all three CYP enzymes with excellent consistency. Importantly, HepatoCells retain a phenobarbital-responsive nuclear translocation of human constitutive androstane receptor from the cytoplasm, characteristic to primary hepatocytes. To validate HepatoCells as a useful tool to predict potential clinical relevant CYP3A4 induction, we tested three different lots of HepatoCells with a group of clinical strong, moderate/weak CYP3A4 inducers, and noninducers. A relative induction score calibration curve-based approach was used for prediction. HepatoCells showed accurate prediction comparable to primary human hepatocytes. Together, these results demonstrate that Corning HepatoCells is a reliable in vitro model for drug-drug interaction studies during the early phase of drug testing. PMID:28062541

  5. Omeprazole and lansoprazole enantiomers induce CYP3A4 in human hepatocytes and cell lines via glucocorticoid receptor and pregnane X receptor axis.

    PubMed

    Novotna, Aneta; Dvorak, Zdenek

    2014-01-01

    Benzimidazole drugs lansoprazole and omeprazole are used for treatment of various gastrointestinal pathologies. Both compounds cause drug-drug interactions because they activate aryl hydrocarbon receptor and induce CYP1A genes. In the current paper, we examined the effects of lansoprazole and omeprazole enantiomers on the expression of key drug-metabolizing enzyme CYP3A4 in human hepatocytes and human cancer cell lines. Lansoprazole enantiomers, but not omeprazole, were equipotent inducers of CYP3A4 mRNA in HepG2 cells. All forms (S-, R-, rac-) of lansoprazole and omeprazole induced CYP3A4 mRNA and protein in human hepatocytes. The quantitative profiles of CYP3A4 induction by individual forms of lansoprazole and omeprazole exerted enantiospecific patterns. Lansoprazole dose-dependently activated pregnane X receptor PXR in gene reporter assays, and slightly modulated rifampicin-inducible PXR activity, with similar potency for each enantiomer. Omeprazole dose-dependently activated PXR and inhibited rifampicin-inducible PXR activity. The effects of S-omeprazole were much stronger as compared to those of R-omeprazole. All forms of lansoprazole, but not omeprazole, slightly activated glucocorticoid receptor and augmented dexamethasone-induced GR transcriptional activity. Omeprazole and lansoprazole influenced basal and ligand inducible expression of tyrosine aminotransferase, a GR-target gene, in HepG2 cells and human hepatocytes. Overall, we demonstrate here that omeprazole and lansoprazole enantiomers induce CYP3A4 in HepG2 cells and human hepatocytes. The induction comprises differential interactions of omeprazole and lansoprazole with transcriptional regulators PXR and GR, and some of the effects were enantiospecific. The data presented here might be of toxicological and clinical importance, since the effects occurred in therapeutically relevant concentrations.

  6. Relevance of in vitro and clinical data for predicting CYP3A4-mediated herb-drug interactions in cancer patients.

    PubMed

    Goey, Andrew K L; Mooiman, Kim D; Beijnen, Jos H; Schellens, Jan H M; Meijerman, Irma

    2013-11-01

    The use of complementary and alternative medicines (CAM) by cancer patients is increasing. Concomitant use of CAM and anticancer drugs could lead to serious safety issues in patients. CAM have the potential to cause pharmacokinetic interactions with anticancer drugs, leading to either increased or decreased plasma levels of anticancer drugs. This could result in unexpected toxicities or a reduced efficacy. Significant pharmacokinetic interactions have already been shown between St. John's Wort (SJW) and the anticancer drugs imatinib and irinotecan. Most pharmacokinetic CAM-drug interactions, involve drug metabolizing cytochrome P450 (CYP) enzymes, in particular CYP3A4. The effect of CAM on CYP3A4 activity and expression can be assessed in vitro. However, no data have been reported yet regarding the relevance of these in vitro data for the prediction of CAM-anticancer drug interactions in clinical practice. To address this issue, a literature research was performed to evaluate the relevance of in vitro data to predict clinical effects of CAM frequently used by cancer patients: SJW, milk thistle, garlic and Panax ginseng (P. ginseng). Furthermore, in clinical studies the sensitive CYP3A4 substrate probe midazolam is often used to determine pharmacokinetic interactions. Results of these clinical studies with midazolam are used to predict pharmacokinetic interactions with other drugs metabolized by CYP3A4. Therefore, this review also explored whether clinical trials with midazolam are useful to predict clinical pharmacokinetic CAM-anticancer drug interactions. In vitro data of SJW have shown CYP3A4 inhibition after short-term exposure and induction after long-term exposure. In clinical studies using midazolam or anticancer drugs (irinotecan and imatinib) as known CYP3A4 substrates in combination with SJW, decreased plasma levels of these drugs were observed, which was expected as a consequence of CYP3A4 induction. For garlic, no effect on CYP3A4 has been shown in vitro

  7. Development of an optimized cytotoxicity assay system for CYP3A4-mediated metabolic activation via modified piggyBac transposition.

    PubMed

    Huang, Lizhen; Zou, Shuxiang; Deng, Jifeng; Dai, Tianming; Jiang, Jingwei; Jia, Ying; Dai, Renke; Xie, Shuilin

    2016-04-01

    Drug-induced hepatotoxicity is often caused by cytochrome P450 (CYP)-dependent metabolism of drugs into reactive metabolites. Assessment of hepatotoxicity induced by bioactive compounds is hampered by low CYP expression within in vitro cell lines. To overcome this limitation, piggyBac transposition and monoclonal expansion were used to generate a HepG2 cell line with stable and homogenously high expression of CYP3A4, a prominent CYP isoform. Our studies demonstrate the generated line's constant CYP3A4 expression and activity for over 40 cell passages; to date, it has been in subculture for more than a year without addition of Puromycin. This cell line was utilized to evaluate cytotoxicity of two bioactive (troglitazone and acetaminophen) and two non-bioactive (citrate and galactosamine) compounds by MTT assay. Cell viability significantly decreased upon treatment with bioactive drugs. Moreover, cell lines used in the present study were more sensitive to toxic effects of troglitazone than previously reported. Therefore, this HepG2 cell-based assay system may provide a suitable hepatic model for predicting CYP3A4-mediated hepatotoxicity during preclinical drug development.

  8. In Vitro Inhibition of Human CYP450s 1A2, 2C9, 3A4/5, 2D6 and 2E1 by Grandisin.

    PubMed

    Habenschus, Maísa Daniela; Moreira, Fernanda de Lima; Lopes, Norberto Peporine; de Oliveira, Anderson R M

    2017-01-10

    Grandisin, a lignan isolated from many species of plants, such as Virola surinamensis, is a potential drug candidate due to its biological properties, highlighted by its antitumor and trypanocidal activities. In this study, the inhibitory effects of grandisin on the activities of human cytochrome P450 enzymes were investigated by using human liver microsomes. Results showed that grandisin is a competitive inhibitor of CYP2C9 and a competitive and mechanism-based inhibitor of CYP3A4/5. The apparent Ki value for CYP2C9 was 50.60 µM and those for CYP3A4/5 were 48.71 µM and 31.25 µM using two different probe substrates, nifedipine and midazolam, respectively. The apparent KI, kinact, and kinact/KI ratio for the mechanism-based inhibition of CYP3A4/5 were 6.40 µM, 0.037 min(-1), and 5.78 mL · min(-1) µmol(-1), respectively, by examining nifedipine oxidation, and 31.53 µM, 0.049 min(-1), and 1.55 mL · min(-1) µmol(-1), respectively, by examining midazolam 1'-hydroxylation. These apparent kinact/KI values were comparable to or even higher than those for several therapeutic drugs that act as mechanism-based inhibitors of CYP3A4/5. CYP1A2 and CYP2D6 activities, in turn, were not substantially inhibited by grandisin (IC50 > 200 µM and 100 µM, respectively). In contrast, from a concentration of 4 µM, grandisin significantly stimulated CYP2E1 activity. These results improve the prediction of grandisin-drug interactions, suggesting that the risk of interactions with drugs metabolized by CYP3A4/5 and CYP2E1 cannot be overlooked.

  9. Human PXR-mediated induction of intestinal CYP3A4 attenuates 1α,25-dihydroxyvitamin D3 function in human colon adenocarcinoma LS180 cells

    PubMed Central

    Zheng, Xi Emily; Wang, Zhican; Liao, Michael Z.; Lin, Yvonne S.; Shuhart, Margaret C.; Schuetz, Erin G.; Thummel, Kenneth E.

    2012-01-01

    Oxidative catabolism of 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3] is mediated by either CYP24A1 or CYP3A4. In this paper, we tested whether induction of CYP3A4 in the LS180 intestinal cell model enhances clearance of 1α,25(OH)2D3 and blunts its hormonal effect on expression of the apical membrane calcium transport protein, TRPV6. Treatment with the hPXR agonist rifampin significantly increased CYP3A4 mRNA content and catalytic activity, but had no effect on CYP24A1 or TRPV6 mRNA content. Pre-treating cells with rifampin for 48 hrs, prior to a 24 hr 1α,25(OH)2D3 treatment phase, was associated with a subsequent 48% increase in the elimination of 1α,25(OH)2D3 and a 35% reduction of peak TRPV6 mRNA. Introduction of the CYP3A4 inhibitor, 6′,7′-dihydroxybergamottin, an active inhibitor in grapefruit juice, reversed the effects of rifampin on 1α,25(OH)2D3 clearance and TRPV6 expression. Over-expression of hPXR in LS180 cells greatly enhanced the CYP3A4 responsiveness to rifampin pretreatment, and elicited a greater relative suppression of TRPV6 expression and an increase in 1α,25(OH)2D3 disappearance rate, compared to vector expressed cells, following hormone administration. Together, these results suggest that induction of CYP3A4 in the intestinal epithelium by hPXR agonists can result in a greater metabolic clearance of 1α,25(OH)2D3 and reduced effects of the hormone on the intestinal calcium absorption, which may contribute to an increased risk of drug-induced osteomalacia/osteoporosis in patients receiving chronic therapy with potent hPXR agonists. Moreover, ingestion of grapefruit juice in the at-risk patients could potentially prevent this adverse drug effect. PMID:22562045

  10. QSAR Modelling of CYP3A4 Inhibition as a Screening Tool in the Context of DrugDrug Interaction Studies.

    PubMed

    Hamon, Véronique; Horvath, Dragos; Gaudin, Cédric; Desrivot, Julie; Junges, Céline; Arrault, Alban; Bertrand, Marc; Vayer, Philippe

    2012-09-01

    Drugdrug interaction potential (DDI), especially cytochrome P450 (CYP) 3A4 inhibition potential, is one of the most important parameters to be optimized before preclinical and clinical pharmaceutical development as regard to the number of marketed drug metabolized mainly by this CYP and potentially co-administered with the future drug. The present study aims to develop in silico models for CYP3A4 inhibition prediction to help medicinal chemists during the discovery phase and even before the synthesis of new chemical entities (NCEs), focusing on NCEs devoid of any inhibitory potential toward this CYP. In order to find a relevant relationship between CYP3A4 inhibition and chemical features of the screened compounds, we applied a genetic-algorithm-based QSAR exploratory tool SQS (Stochastic QSAR Sampler) in combination with different description approaches comprising alignment-independent Volsurf descriptors, ISIDA fragments and Topological Fuzzy Pharmacophore Triplets. The experimental data used to build models were extracted from an in-house database. We derived a model with good prediction ability that was confirmed on both newly synthesized compound and public dataset retrieved from Pubchem database. This model is a promising efficient tool for filtering out potentially problematic compounds.

  11. Common variants of HMGCR, CETP, APOAI, ABCB1, CYP3A4, and CYP7A1 genes as predictors of lipid-lowering response to atorvastatin therapy.

    PubMed

    Poduri, Aruna; Khullar, Madhu; Bahl, Ajay; Sehrawat, B S; Sharma, Yashpaul; Talwar, Kewal K

    2010-10-01

    There is interindividual variation in lipid-lowering response to statins. The objective of this study was to investigate whether common variation in genes involved in lipid and statin metabolism modify the effect of statins on serum total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C), and high-density lipoprotein-cholesterol concentration in coronary artery disease (CAD) patients. We studied the association between 18 single-nucleotide polymorphisms (SNPs) in six genes (HMGCR, CETP, APOAI, ABCB1, CYP3A4, CYP7A1) in response to atorvastatin therapy (20 mg/day) in 265 newly diagnosed CAD patients using multivariable adjusted general linear regression. Variant alleles of ABCB1 (-41A/G), HMGCR SNP29 G/T, rs5908A/G, rs12916C/T, and CYP7A1-204A/C polymorphisms were significantly associated with attenuated LDL-C reduction and variant alleles of CETP TaqI, -629C/A, and APOAI PstI polymorphisms were associated with higher increase in high-density lipoprotein-cholesterol. A three-loci interaction model consisting of CYP7A1rs892871AA/APOAIPstIP1P1/HMGCR rs12916CT was a better predictor for LDL-C lowering, when compared with single polymorphisms analysis on statin response. Variant genotypes of APOAI -2500C/T, CETP 405I/V, and ABCB1 3435C/T showed higher risk of myocardial infarction events (p < 0.05) in a 1-year follow-up of CAD patients. These results suggest that SNPs in lipid and statin pathway genes are associated with reduced LDL-C lowering by statins and identify individuals who may be resistant to maximal LDL-C lowering by statins.

  12. CYP2C19 but not CYP2B6, CYP3A4, CYP3A5, ABCB1, PON1 or P2Y12 genetic polymorphism impacts antiplatelet response after clopidogrel in Koreans.

    PubMed

    Zhang, Hong-Zhe; Kim, Moo Hyun; Guo, Long-Zhe; Serebruany, Victor

    2017-01-01

    Clopidogrel response variability (CRV) is well documented, and may affect clinical outcomes. Impact of genetic polymorphisms is important for assessing and predicting CRV. The extensive evidence indicates the importance of CYP2C19 variants in reducing efficacy of clopidogrel. This study defined the impact of numerous genetic polymorphisms on CRV before and after percutaneous coronary interventions (PCI) exclusively in a Korean cohort assuming less genetic variability noise. One hundred and thirty-six patients of Korean origin undergoing PCI were included. Platelet reactivity was measured by VerifyNow assay before and after PCI. Genetic polymorphism of seven single nucleotides of CYP2B6, CYP2C19, CYP3A4, CYP3A5, ABCB1, PON1, and P2Y12 were evaluated and matched with platelet reactivity. Carriers of at least one CYP2C19*2 or *3 allele uniformly exhibited higher platelet reactivity compared to 0-carrier pre-PCI (odds ratio 3.1, 95% confidence interval 1.4-6.9, P < 0.01) and post-PCI (odds ratio 3.4, 95% confidence interval 1.7-6.8, P < 0.001). The carriers of other gene allele variants lack uniformed impact on CRV. The Korean carriers of CYP2C19*2 or *3 allele are linked to CRV, whereas CYP2B6, CYP3A4, CYP3A5, ABCB1, PON1, and P2Y12 failed to predict CRV. The exact clinical utility of these findings is uncertain, and requires a large randomized national trial for proof of concept.

  13. Abiraterone inhibits 1α,25-dihydroxyvitamin D3 metabolism by CYP3A4 in human liver and intestine in vitro.

    PubMed

    Deb, Subrata; Chin, Mei Yieng; Adomat, Hans; Guns, Emma S Tomlinson

    2014-10-01

    The chemopreventive and therapeutic effects of vitamin D3 are exerted through its dihydroxylated metabolite, 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3]. Inactivation of 1α,25(OH)2D3 by cytochrome P450 3A4 (CYP3A4) may be an important determinant of its serum and tissue levels. Abiraterone, a steroidogenesis inhibitor used in late stage prostate cancer treatment, is a CYP17A1 inhibitor. The purpose of this study was to assess the potential of abiraterone to block hepatic and intestinal inactivation of biologically active vitamin D3in vitro and to evaluate if abiraterone can alter CYP3A4 marker substrate activities. Biotransformation reactions were initiated with NADPH regenerating solutions following initial preincubation of pooled human hepatic or intestinal microsomal protein or human recombinant CYP3A4 supersomes with 1α,25(OH)2D3, midazolam or triazolam for 10min at 37°C. Formation of hydroxylated metabolites of 1α,25(OH)2D3, midazolam or triazolam was analyzed by liquid chromatography-mass spectrometry method. Co-incubation of 1α,25(OH)2D3 with abiraterone at varying concentrations (0.2-100μM) led to up to ∼85% inhibition of formation of hydroxylated metabolites of 1α,25(OH)2D3 thus preventing inactivation of active vitamin D3. The IC50 values for individual metabolites of 1α,25(OH)2D3 ranged from 0.4 to 2.2μM in human liver microsomes or human intestinal microsomes. The mechanism of CYP3A4-mediated inhibition of 1α,25(OH)2D3 by abiraterone was competitive (apparent Ki 2.8-4.3μM). Similar inhibitory effects were also observed upon inclusion of abiraterone into midazolam or triazolam hydroxylation assays. In summary, our results suggest that abiraterone inhibits the CYP3A4-mediated inactivation of active vitamin D3 in human liver and intestine, potentially providing additional anti-cancer benefits to prostate cancer patients. This article is part of a Special Issue entitled '16th Vitamin D Workshop'.

  14. Inhibition of the metabolism of brotizolam by erythromycin in humans: in vivo evidence for the involvement of CYP3A4 in brotizolam metabolism

    PubMed Central

    Tokairin, Takaki; Fukasawa, Takashi; Yasui-Furukori, Norio; Aoshima, Toshiaki; Suzuki, Akihito; Inoue, Yoshimasa; Tateishi, Tomonori; Otani, Koichi

    2005-01-01

    Aims To obtain in vivo evidence for the involvement of cytochrome P450 (CYP) 3A4 in the metabolism of brotizolam. Methods Fourteen healthy male volunteers received erythromycin 1200 mg day−1 or placebo for 7 days in a double-blind randomized crossover manner. On the 6th day they received a single oral 0.5-mg dose of brotizolam, and blood samplings were performed for 24 h. Results Erythromycin treatment significantly increased the peak plasma concentration (P < 0.05), total area under the plasma concentration-time curve (P < 0.01), and elimination half-life (P < 0.01) of brotizolam. Conclusions The present study provides in vivo evidence for the involvement of CYP3A4 in brotizolam metabolism. PMID:16042670

  15. Quantitative Prediction of CYP3A4 Induction: Impact of Measured, Free and Intracellular Perpetrator Concentrations from Human Hepatocyte Induction Studies on Drug-Drug Interaction Predictions.

    PubMed

    Sun, Yongkai; Chothe, Paresh P; Sager, Jennifer; Tsao, Hong; Moore, Amanda; Laitinen, Leena; Hariparsad, Niresh

    2017-03-23

    Typically, concentration-response curves are generated based upon nominal new chemical entity (NCE) concentrations for in-vitro-to-in-vivo extrapolation of CYP3A4 induction. These data are then used to determine the induction risk of an NCE employing various modeling approaches. The limitation to this practice is that it assumes the hepatocyte culture model to be a static system. In the current study, we assessed whether correcting for; 1) changes in perpetrator concentration in the induction medium during the assay incubation period, 2) perpetrator binding to proteins in the induction medium and 3) non-specific binding of perpetrator can improve the accuracy of CYP3A4 induction predictions. Of the seven validation compounds used in our studies, we noted significant parent loss and a high degree of medium protein binding with pioglitazone and rosiglitazone while pleconaril had very high non-specific binding. Predictions of clinical induction were determined using the relative induction score, basic-static, and mechanistic static models. In general, we observed that the precision and accuracy of our predictions improved when corrections were made for measured medium concentrations, medium protein binding, and non-specific binding of the perpetrator. As a follow-up, we noted that for substrates of uptake transporters, the use of free intracellular concentrations could result in improved predictions of CYP3A4 induction. In conclusion, our data indicates that quantifying perpetrator levels in induction medium can improve the accuracy and precision of CYP3A4 induction predictions. Continued efforts are necessary to improve our understanding of the impact of free intracellular concentrations on induction predictions.

  16. Inhibition of human CYP3A4, UGT1A6, and P-glycoprotein with halogenated xanthene food dyes and prevention by superoxide dismutase.

    PubMed

    Furumiya, Kenji; Mizutani, Takaharu

    2008-01-01

    Synthetic food dyes are xenobiotics, and, after ingestion, portions of these dyes may be absorbed and metabolized by phase I and II drug-metabolizing enzymes, and excreted by transporters of phase III enzymes. In the previous report, it was shown that inhibition of UDP-glucuronosyltrasnferase 1A6 occurred following ingestion of phloxine, erythrosine, and rose bengal present in 12 permitted synthetic food dyes. In this report, the influence of dyes was examined on CYP3A4, a major phase I drug-metabolizing enzyme, and P-glycoprotein, a major transporter by synthetic food dyes. Human cytochrome P-450 (CYP) 3A4 and P-glycoprotein were inhibited by xanthene food dyes. The IC(50) values of these dyes to inhibit CYP3A4 and P-glycoprotein were the same as the level of inhibition of UGT1A6 produced by three haloganated xanthene food dyes in the previous report, except acid red, which inhibited only CYP3A4. Data suggest that inhibition by dyes is not enzyme specific but may be in a membrane-specific or protein-specific manner, such as conformational changes in protein. In the previous study, it was suggested that inhibition by dyes depended upon light irradiation due to generation of (1)O2 from these dyes. In this study, the influence of superoxide dismutase and catalase on inhibition by dyes was examined. Superoxide dismutase but not catalase was effective in preventing the inhibition of UGT1A6 by the dyes. Data suggest that superoxide anions, originating from dyes via light irradiation, may attack drug-metabolizing enzymes. It is possible that red cosmetics containing phloxine, erythrosine, or rose bengal react with proteins in skin and may lead to skin damage.

  17. An in vitro bioassay for xenobiotics using the SXR-driven human CYP3A4/lacZ reporter gene.

    PubMed

    Lee, Mi R; Kim, Yeon J; Hwang, Dae Y; Kang, Tae S; Hwang, Jin H; Lim, Chae H; Kang, Hyung K; Goo, Jun S; Lim, Hwa J; Ahn, Kwang S; Cho, Jung S; Chae, Kap R; Kim, Yong K

    2003-01-01

    The dose and time effect of nine xenobiotics, including 17beta-estradiol, corticosterone, dexamethasone, progesterone, nifedipine, bisphenol A, rifampicin, methamphetamine, and nicotine were investigated, in vitro, using human steroid and xenobiotics receptor (SXR)-binding sites on the human CYP3A4 promoter, which can enhance the linked lacZ reporter gene transcription. To test this, liver-specific SAP (human serum amyloid P component)-SXR (SAP/SXR) and human CYP3A4 promoter-regulated lacZ (hCYP3A4/lacZ) constructs were transiently transfected into HepG2 and NIH3T3 cells to compare the xenobiotic responsiveness between human and nonhuman cell lines. In the HepG2 cells, rifampicin, followed by corticosterone, nicotine, methamphetamine, and dexamethasone, exhibited enhanced levels of the lacZ transcript, whereas those of bisphenol A and nifedipine were found to be reduced. No significant responses were observed with 17beta-estradiol or progesterone. In addition, 17beta-estradiol and progesterone did not change the levels of the lacZ transcripts in the HepG2 cells, but did induce significant increases in the transcripts of the NIH3T3 cells. Treatment with corticosterone and dexamethasone, which were highly expressed in the HepG2 cells, did not affect the levels of the lacZ transcript in NIH3T3 cells. These results show that lacZ transcripts can be measured, rapidly and reproducibly, using reverse transcriptase-polymerase chain reaction (RT-PCR) based on the expression of the hCYP3A4/lacZ reporter gene, and was mediated by the SXR. Thus, this in vitro reporter gene bioassay is useful for measuring xenobiotic activities, and is a means to a better relevant bioassay, using human cells, human genes and human promoters, in order to get a closer look at actual human exposure.

  18. Identification of the active components in Shenmai injection that differentially affect Cyp3a4-mediated 1'-hydroxylation and 4-hydroxylation of midazolam.

    PubMed

    Zeng, Caiwen; He, Fang; Xia, Chunhua; Zhang, Hong; Xiong, Yuqing

    2013-04-01

    Shenmai injection (SMI) is a popular herbal preparation that is widely used for the treatment of atherosclerotic coronary heart disease and viral myocarditis. In our previous study, SMI was shown to differentially affect CYP3A4-mediated 1'-hydroxylation and 4-hydroxylation of midazolam (MDZ). The present study was conducted to identify the active components in SMI responsible for the differential effects on MDZ metabolism, using in vitro incubation systems (rat and human liver microsomes and a recombinant CYP3A4 system) to measure 1'-hydroxylation and 4-hydroxylation of MDZ. First, different fractions of SMI were obtained by gradient elution on an solid phase extraction system and individually tested for their effects on MDZ metabolism. The results demonstrated that lipid-soluble constituents were likely to be the predominant active components of SMI. Second, the possible active components were gradually separated on an high-performance liquid chromatography system under different conditions and individually tested in vitro for their effects on MDZ metabolism. Third, the active component obtained in the above experiment was collected and subjected to structural analysis, and identified as panaxytriol (PXT). Finally, it was validated that PXT had significant differential effects on 1'-hydroxylation and 4-hydroxylation of MDZ in various in vitro systems that were similar to those of SMI. We conclude that PXT is the constituent of SMI responsible for the differential effects on CYP3A4-mediated 1'-hydroxylation and 4-hydroxylation of MDZ.

  19. Homotropic cooperativity of monomeric cytochrome P450 3A4

    SciTech Connect

    Baas, Bradley J.; Denisov, Ilia G.; Sligar, Stephen G.

    2010-11-16

    Mechanistic studies of mammalian cytochrome P450s are often obscured by the phase heterogeneity of solubilized preparations of membrane enzymes. The various protein-protein aggregation states of microsomes, detergent solubilized cytochrome or a family of aqueous multimeric complexes can effect measured substrate binding events as well as subsequent steps in the reaction cycle. In addition, these P450 monooxygenases are normally found in a membrane environment and the bilayer composition and dynamics can also effect these catalytic steps. Here, we describe the structural and functional characterization of a homogeneous monomeric population of cytochrome P450 3A4 (CYP 3A4) in a soluble nanoscale membrane bilayer, or Nanodisc [Nano Lett. 2 (2002) 853]. Cytochrome P450 3A4:Nanodisc assemblies were formed and purified to yield a 1:1 ratio of CYP 3A4 to Nanodisc. Solution small angle X-ray scattering was used to structurally characterize this monomeric CYP 3A4 in the membrane bilayer. The purified CYP 3A4:Nanodiscs showed a heretofore undescribed high level of homotropic cooperativity in the binding of testosterone. Soluble CYP 3A4:Nanodisc retains its known function and shows prototypic hydroxylation of testosterone when driven by hydrogen peroxide. This represents the first functional characterization of a true monomeric preparation of cytochrome P450 monooxygenase in a phospholipid bilayer and elucidates new properties of the monomeric form.

  20. A food contaminant ochratoxin A suppresses pregnane X receptor (PXR)-mediated CYP3A4 induction in primary cultures of human hepatocytes.

    PubMed

    Doricakova, Aneta; Vrzal, Radim

    2015-11-04

    Ochratoxin A (OCHA) is a mycotoxin, which can be found in food such as coffee, wine, cereals, meat, nuts. Since it is absorbed via gastrointestinal tract, it is reasonable to anticipate that the liver will be the first organ to which OCHA comes into the contact before systemic circulation. Many xenobiotics are metabolically modified after the passage of the liver to biologically more active substances, sometimes with more harmful activity. Promoting own metabolism is often achieved via transcriptional regulation of biotransformation enzymes through ligand-activated transcription factors. Pregnane X receptor (PXR) belongs to such a group of regulators and it was demonstrated to be activated by many compounds of synthetic as well as natural origin. Our intention was to investigate if OCHA is capable of activating the PXR with consequent induction of PXR-regulated CYP3A4 gene. We found that OCHA does not activate PXR but displays antagonist-like behavior when combined with rifampicin (RIF) in gene reporter assay in human embryonal kidney cells (Hek293T). It was very weak inducer of CYP3A4 mRNA in primary cultures of human hepatocytes and it antagonized RIF-mediated CYP3A4 induction of mRNA as well as protein. In addition, it caused the decline of PXR protein as well as mRNA which was faster than that with actinomycin D, a transcription inhibitor. Since we found that OCHA induced the expression of miR-148a, which was described to regulate PXR expression, we conclude that antagonist-like behavior of OCHA is not due to the antagonism itself but due to the downregulation of PXR gene expression. Herein we provide important findings which bring a piece of puzzle into the understanding of mechanism of toxic action of ochratoxin A.

  1. Substrate dependent inhibition profiles of fourteen drugs on CYP3A4 activity measured by a high throughput LCMS/MS method with four probe drugs, midazolam, testosterone, nifedipine and terfenadine.

    PubMed

    Racha, Jagdish K; Zhao, Z Sylvia; Olejnik, Nicholas; Warner, Nadine; Chan, Rebecca; Moore, David; Satoh, Hiroko

    2003-01-01

    The CYP3A4 enzyme is known for its atypical inhibition kinetics; ligand inhibition can differ depending upon the probe drug used. A high throughput-LCMS/MS CYP3A4 inhibition assay with four substrate drugs was developed to minimize the potential oversight of CYP3A4 inhibition. The assay uses a 96-well format, human liver microsomes, and four CYP3A4 substrate drugs, midazolam, testosterone, nifedipine and terfenadine. After incubation of the individual substrate with human liver microsomes, the reaction is stopped by solid phase extraction and the four probe metabolites produced are pooled and measured by LCMS/MS with multiple-ion-monitoring mode. Using this assay, the IC(50) values of fourteen compounds recognized as substrates/inhibitors of CYP3A4, were measured for the CYP3A4 catalyzed-metabolism of probe drugs. IC(50) values were also obtained for the common set of compounds by the microtiter plate fluorescent assays with cDNA-expressed CYP3A4. Comparison of the results from the two methods suggests that decision making should be cautiously executed to predict drug interaction potential caused by inhibition of CYP3A4 considering the gap between the two assays and various other factors.

  2. Application of CYP3A4 in vitro data to predict clinical drug–drug interactions; predictions of compounds as objects of interaction

    PubMed Central

    Youdim, Kuresh A; Zayed, Aref; Dickins, Maurice; Phipps, Alex; Griffiths, Michelle; Darekar, Amanda; Hyland, Ruth; Fahmi, Odette; Hurst, Susan; Plowchalk, David R; Cook, Jack; Guo, Feng; Obach, R Scott

    2008-01-01

    AIMS The aim of this study was to explore and optimize the in vitro and in silico approaches used for predicting clinical DDIs. A data set containing clinical information on the interaction of 20 Pfizer compounds with ketoconazole was used to assess the success of the techniques. METHODS The study calculated the fraction and the rate of metabolism of 20 Pfizer compounds via each cytochrome P450. Two approaches were used to determine fraction metabolized (fm); 1) by measuring substrate loss in human liver microsomes (HLM) in the presence and absence of specific chemical inhibitors and 2) by measuring substrate loss in individual cDNA expressed P450s (also referred to as recombinant P450s (rhCYP)) The fractions metabolized via each CYP were used to predict the drug–drug interaction due to CYP3A4 inhibition by ketoconazole using the modelling and simulation software SIMCYP®. RESULTS When in vitro data were generated using Gentest supersomes, 85% of predictions were within two-fold of the observed clinical interaction. Using PanVera baculosomes, 70% of predictions were predicted within two-fold. In contrast using chemical inhibitors the accuracy was lower, predicting only 37% of compounds within two-fold of the clinical value. Poorly predicted compounds were found to either be metabolically stable and/or have high microsomal protein binding. The use of equilibrium dialysis to generate accurate protein binding measurements was especially important for highly bound drugs. CONCLUSIONS The current study demonstrated that the use of rhCYPs with SIMCYP® provides a robust in vitro system for predicting the likelihood and magnitude of changes in clinical exposure of compounds as a consequence of CYP3A4 inhibition by a concomitantly administered drug. WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT Numerous retrospective analyses have shown the utility of in vitro systems for predicting potential drug–drug interactions (DDIs). Prediction of DDIs from in vitro data is commonly

  3. The effect of ritonavir on human CYP2B6 catalytic activity: heme modification contributes to the mechanism-based inactivation of CYP2B6 and CYP3A4 by ritonavir.

    PubMed

    Lin, Hsia-lien; D'Agostino, Jaime; Kenaan, Cesar; Calinski, Diane; Hollenberg, Paul F

    2013-10-01

    The mechanism-based inactivation of human CYP2B6 by ritonavir (RTV) in a reconstituted system was investigated. The inactivation is time, concentration, and NADPH dependent and exhibits a K(I) of 0.9 μM, a k(inact) of 0.05 min⁻¹, and a partition ratio of approximately 3. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis showed that the protonated molecular ion of RTV exhibits an m/z at 721 and its two major metabolites are an oxidation product with MH⁺ at m/z 737 and a deacylated product with MH⁺ at m/z 580. Inactivation of CYP2B6 by incubation with 10 μM RTV for 10 min resulted in an approximately 50% loss of catalytic activity and native heme, but no modification of the apoprotein was observed. RTV was found to be a potent mixed-type reversible inhibitor (K(i) = 0.33 μM) and a type II ligand (spectral dissociation constant-K(s) = 0.85 μM) of CYP2B6. Although previous studies have demonstrated that RTV is a potent mechanism-based inactivator of CYP3A4, the molecular mechanism responsible for the inactivation has not been determined. Here, we provide evidence that RTV inactivation of CYP3A4 is due to heme destruction with the formation of a heme-protein adduct. Similar to CYP2B6, there is no significant modification of the apoprotein. Furthermore, LC-MS/MS analysis revealed that both CYP3A4 and human liver microsomes form an RTV-glutathione conjugate having a MH⁺ at m/z 858 during metabolism of RTV, suggesting the formation of an isocyanate intermediate leading to formation of the conjugate.

  4. Itraconazole, a P-glycoprotein and CYP3A4 inhibitor, markedly raises the plasma concentrations and enhances the renin-inhibiting effect of aliskiren.

    PubMed

    Tapaninen, Tuija; Backman, Janne T; Kurkinen, Kaisa J; Neuvonen, Pertti J; Niemi, Mikko

    2011-03-01

    In a randomized crossover study, 11 healthy volunteers took 100 mg (first dose 200 mg) of the antifungal drug itraconazole, a P-glycoprotein and CYP3A4 inhibitor, or placebo twice daily for 5 days. On day 3, they ingested a single 150-mg dose of aliskiren, a renin inhibitor used in the treatment of hypertension. Itraconazole raised the peak plasma aliskiren concentration 5.8-fold (range, 1.1- to 24.3-fold; P < .001) and the area under the plasma aliskiren concentration-time curve 6.5-fold (range, 2.6- to 20.5-fold; P < .001) but had no significant effect on aliskiren elimination half-life. Itraconazole increased the amount of aliskiren excreted into the urine during 12 hours 8.0-fold (P < .001) and its renal clearance 1.2-fold (P = .042). Plasma renin activity 24 hours after aliskiren intake was 68% lower during the itraconazole phase than during the placebo phase (P = .011). In conclusion, itraconazole markedly raises the plasma concentrations and enhances the renin-inhibiting effect of aliskiren. The interaction is probably mainly explained by inhibition of the P-glycoprotein-mediated efflux of aliskiren in the small intestine, with a minor contribution from inhibition of CYP3A4. Concomitant use of aliskiren and itraconazole is best avoided.

  5. Fluoxetine- and norfluoxetine-mediated complex drug-drug interactions: in vitro to in vivo correlation of effects on CYP2D6, CYP2C19, and CYP3A4.

    PubMed

    Sager, J E; Lutz, J D; Foti, R S; Davis, C; Kunze, K L; Isoherranen, N

    2014-06-01

    Fluoxetine and its circulating metabolite norfluoxetine comprise a complex multiple-inhibitor system that causes reversible or time-dependent inhibition of the cytochrome P450 (CYP) family members CYP2D6, CYP3A4, and CYP2C19 in vitro. Although significant inhibition of all three enzymes in vivo was predicted, the areas under the concentration-time curve (AUCs) for midazolam and lovastatin were unaffected by 2-week dosing of fluoxetine, whereas the AUCs of dextromethorphan and omeprazole were increased by 27- and 7.1-fold, respectively. This observed discrepancy between in vitro risk assessment and in vivo drug-drug interaction (DDI) profile was rationalized by time-varying dynamic pharmacokinetic models that incorporated circulating concentrations of fluoxetine and norfluoxetine enantiomers, mutual inhibitor-inhibitor interactions, and CYP3A4 induction. The dynamic models predicted all DDIs with less than twofold error. This study demonstrates that complex DDIs that involve multiple mechanisms, pathways, and inhibitors with their metabolites can be predicted and rationalized via characterization of all the inhibitory species in vitro.

  6. Polymorphism of CYP3A4 and ABCB1 genes increase the risk of neuropathy in breast cancer patients treated with paclitaxel and docetaxel

    PubMed Central

    Kus, Tulay; Aktas, Gokmen; Kalender, Mehmet Emin; Demiryurek, Abdullah Tuncay; Ulasli, Mustafa; Oztuzcu, Serdar; Sevinc, Alper; Kul, Seval; Camci, Celaletdin

    2016-01-01

    Background Interindividual variability of pharmacogenetics may account for unpredictable neurotoxicities of taxanes. Methods From March 2011 to June 2015, female patients with operable breast cancer who had received docetaxel- or paclitaxel-containing adjuvant chemotherapy were included in this study. All patients were treated with single-agent paclitaxel intravenously (IV) 175 mg/m2 every 3 weeks for four cycles, or IV 80 mg/m2 weekly for 12 cycles, and IV 100 mg/m2 docetaxel for four cycles as adjuvant treatment. We evaluated the relationship between neurotoxicity of taxanes and single-nucleotide polymorphisms of ABCB1, CYP3A4, ERCC1, ERCC2, FGFR4, TP53, ERBB2, and CYP2C8 genes. Taxane-induced neurotoxicity during the treatment was evaluated according to the National Cancer Institute Common Toxicity Criteria version 4.03 prior to each cycle. Chi-squared tests were used to compare the two groups, and multivariate binary logistic regression models were used for determining possible risk factors of neuropathy. Results Pharmacogenetic analysis was performed in 219 females. ABCB1 3435 TT genotype had significantly higher risk for grade ≥2 neurotoxicity (odds ratio [OR]: 2.759, 95% confidence interval [CI]: 1.172–6.493, P: 0.017) compared to TC and CC genotype, and also CYP3A4 392 AA and AG genotype had significantly higher risk for grade ≥2 neurotoxicity (OR: 2.259, 95% CI: 1.033–4.941, P: 0.038) compared to GG genotype. For FDGF4 gene with AG and GG genotype, OR was 1.879 (95% CI: 1.001–3.525, P: 0.048) compared to AA genotype with regard to any grade of neuropathy risk. We could not find any other association of other genotypes with neurotoxicity grades. Conclusion ABCB1 3435 TT genotype and CYP3A4 392 AA/AG genotypes may be used as predictors of neurotoxicity during taxane chemotherapy. PMID:27574448

  7. Predicting the "First dose in children" of CYP3A-metabolized drugs: Evaluation of scaling approaches and insights into the CYP3A7-CYP3A4 switch at young ages.

    PubMed

    Strougo, Ashley; Yassen, Ashraf; Monnereau, Claire; Danhof, Meindert; Freijer, Jan

    2014-09-01

    First-dose-in-children relies on the prediction of clearance from adults for which little information is available on the accuracy of the scaling-approaches applied. For CYP3A-metabolized compounds, scaling of clearance is further challenged by different isoforms and by the CYP3A7 to CYP3A4 switch at young ages. This investigation aimed to evaluate the accuracy of two frequently used scaling approaches and to gain insights into the ontogeny of CYP3A. Hence, a literature database was compiled containing 203 clearance values from term-neonates to adults for 18 CYP3A-metabolized compounds. The clearances in adults were scaled to children using (i) allometric scaling plus maturation function and (ii) a mechanistic approach based on the well-stirred model. Three maturation functions were separately evaluated. In children >3 months, all approaches were interchangeable heeding the maturation function applied and biases were mostly observed in children <3 months. The results from a sensitivity analysis indicate that these biases are possibly caused by disregarding the CYP3A7 activity which could account for up to 86% of the metabolism in term-neonates. Only the mechanistic approach using an overall-CYP3A maturation function led to unbiased predictions of clearances across all ages. The current investigation adds to the predictions of the first-dose-in-children of compounds (partially) metabolized by CYP3A.

  8. Unexpected contribution of cytochrome P450 enzymes CYP11B2 and CYP21, as well as CYP3A4 in xenobiotic androgen elimination - insights from metandienone metabolism.

    PubMed

    Parr, Maria Kristina; Zöllner, Andy; Fusshöller, Gregor; Opfermann, Georg; Schlörer, Nils; Zorio, Mirela; Bureik, Matthias; Schänzer, Wilhelm

    2012-09-18

    The metabolism of a variety of anabolic steroids frequently misused for doping purposes has been investigated in the last years. This research mainly focused on main and long-term metabolites suitable for detection, but detailed clearance mechanisms have rarely been elucidated. Recent studies on metandienone focused on the identification of 17β-hydroxymethyl-17α-methyl-18-norandrosta-1,4,13-trien-3-one (20βOH-NorMD) as long-term metabolite, however, the metabolic pathway of its generation remained unclear. Metandienone and its Wagner-Meerwein rearrangement product 17,17-dimethyl-18-norandrosta-1,4,13-trien-3-one (NorMD) were hydroxylated by different human cytochrome P450 enzymes (CYPs). Some of their hydroxylation products were chemically synthesized and characterized by mass spectrometry to allow for their trace detection in urine samples. Following oral administration of metandienone or NorMD in one human volunteer each the post administration urines were checked for the presence of those hydroxylated metabolites using GC-MS/MS analysis. The human mitochondrial steroid hydroxylating enzymes CYP11B1 and CYP11B2 were capable to metabolize metandienone leading to the formation of 11β-hydroxymetandienone and 18-hydroxymetandienone. Following Wagner-Meerwein rearrangement, the resulting products could be assigned to 20βOH-NorMD and 11βOH-NorMD. The contribution of CYP11B1 and CYP11B2 in human metabolism of metandienone was confirmed by analysis of post-administration samples of metandienone and NorMD. Combined with the results from a previous study, enzymatic pathways were identified that involve CYP21 and CYP3A4 in the hydroxylation of NorMD, while CYP21, CYP3A4 and CYP11B2 take part in 20βOH-NorMD generation from MD. The current study represents a valuable contribution to the elucidation of clearance mechanisms of anabolic steroids and also indicates that mainly non-liver CYPs seem to be involved in these processes.

  9. Secretion of albumin and induction of CYP1A2 and CYP3A4 in novel three-dimensional culture system for human hepatocytes using micro-space plate.

    PubMed

    Nishimura, Masuhiro; Hagi, Mieko; Ejiri, Yoko; Kishimoto, Sanae; Horie, Toru; Narimatsu, Shizuo; Naito, Shinsaku

    2010-01-01

    We evaluated a novel primary three-dimensional culture system for human hepatocytes using micro-space plates. The functional activity of human hepatocytes in primary culture was determined by measuring albumin secretion from hepatocytes to medium and measuring expression levels of albumin, CYP1A2 and CYP3A4 mRNA. Albumin secretion was higher in micro-space plates compared with traditional plates after 72 h of culture; the levels of albumin secretion from hepatocytes to medium in culture using micro-space plates after 96 h of culture were 2.7-fold higher than those in culture using traditional plates, and secretion of albumin in micro-space plate culture subsequently remained constant. Expression levels of albumin, CYP1A2 and CYP3A4 mRNA in the culture of hepatocytes were significantly higher using micro-space plates than using traditional plates. The inducibility of CYP1A2 and CYP3A4 mRNA after exposure to inducers in hepatocyte culture on micro-space plates was comparable to that in culture on traditional plates, while expression of CYP1A2 and CYP3A4 mRNA after exposure to inducers was higher on micro-space plates than on traditional plates. The present study demonstrates that a novel primary three-dimensional culture system of cryopreserved human hepatocytes using micro-space plates could be used for evaluating the induction of drug-metabolizing enzymes in humans. This in vitro method may thus be useful for screening the induction potency of new drug candidates.

  10. Anti-CD28 monoclonal antibody-stimulated cytokines released from blood suppress CYP1A2, CYP2B6, and CYP3A4 in human hepatocytes in vitro.

    PubMed

    Czerwiński, Maciej; Kazmi, Faraz; Parkinson, Andrew; Buckley, David B

    2015-01-01

    Like most infections and certain inflammatory diseases, some therapeutic proteins cause a cytokine-mediated suppression of hepatic drug-metabolizing enzymes, which may lead to pharmacokinetic interactions with small-molecule drugs. We propose a new in vitro method to evaluate the whole blood-mediated effects of therapeutic proteins on drug-metabolizing enzymes in human hepatocytes cocultured with Kupffer cells. The traditional method involves treating hepatocyte cocultures with the therapeutic protein, which detects hepatocyte- and macrophage-mediated suppression of cytochrome P450 (P450). The new method involves treating whole human blood with a therapeutic protein to stimulate the release of cytokines from peripheral blood mononuclear cells (PBMCs), after which plasma is prepared and added to the hepatocyte coculture to evaluate P450 enzyme expression. In this study, human blood was treated for 24 hours at 37°C with bacterial lipopolysaccharide (LPS) or ANC28.1, an antibody against human T-cell receptor CD28. Cytokines were measured in plasma by sandwich immunoassay with electrochemiluminescense detection. Treatment of human hepatocyte cocultures with LPS or with plasma from LPS-treated blood markedly reduced the expression of CYP1A2, CYP2B6, and CYP3A4. However, treatment of hepatocyte cocultures with ANC28.1 did not suppress P450 expression, but treatment with plasma from ANC28.1-treated blood suppressed CYP1A2, CYP2B6, and CYP3A4 activity and mRNA levels. The results demonstrated that applying plasma from human blood treated with a therapeutic protein to hepatocytes cocultured with Kupffer cells is a suitable method to identify those therapeutic proteins that suppress P450 expression by an indirect mechanism-namely, the release of cytokines from PBMCs.

  11. Construction of Metabolism Prediction Models for CYP450 3A4, 2D6, and 2C9 Based on Microsomal Metabolic Reaction System

    PubMed Central

    He, Shuai-Bing; Li, Man-Man; Zhang, Bai-Xia; Ye, Xiao-Tong; Du, Ran-Feng; Wang, Yun; Qiao, Yan-Jiang

    2016-01-01

    During the past decades, there have been continuous attempts in the prediction of metabolism mediated by cytochrome P450s (CYP450s) 3A4, 2D6, and 2C9. However, it has indeed remained a huge challenge to accurately predict the metabolism of xenobiotics mediated by these enzymes. To address this issue, microsomal metabolic reaction system (MMRS)—a novel concept, which integrates information about site of metabolism (SOM) and enzyme—was introduced. By incorporating the use of multiple feature selection (FS) techniques (ChiSquared (CHI), InfoGain (IG), GainRatio (GR), Relief) and hybrid classification procedures (Kstar, Bayes (BN), K-nearest neighbours (IBK), C4.5 decision tree (J48), RandomForest (RF), Support vector machines (SVM), AdaBoostM1, Bagging), metabolism prediction models were established based on metabolism data released by Sheridan et al. Four major biotransformations, including aliphatic C-hydroxylation, aromatic C-hydroxylation, N-dealkylation and O-dealkylation, were involved. For validation, the overall accuracies of all four biotransformations exceeded 0.95. For receiver operating characteristic (ROC) analysis, each of these models gave a significant area under curve (AUC) value >0.98. In addition, an external test was performed based on dataset published previously. As a result, 87.7% of the potential SOMs were correctly identified by our four models. In summary, four MMRS-based models were established, which can be used to predict the metabolism mediated by CYP3A4, 2D6, and 2C9 with high accuracy. PMID:27735849

  12. Proximal Roux-en-Y Gastric Bypass Alters Drug Absorption Pattern But Not Systemic Exposure of CYP3A4 and P-glycoprotein Substrates

    PubMed Central

    Chan, Lingtak-Neander; Lin, Yvonne S.; Tay-Sontheimer, Jessica C.; Trawick, Dorothy; Oelschlager, Brant K.; Flum, David R.; Patton, Kristen K.; Shen, Danny D.; Horn, John R.

    2015-01-01

    Study Objectives To evaluate the effect of Roux-en-Y gastric bypass surgery (RYGB) on the pharmacokinetics of midazolam (a CYP3A4 substrate) and digoxin (a P-glycoprotein substrate). Design Prospective, nonblinded, longitudinal, single-dose pharmacokinetic study in three phases: presurgery baseline and postoperative assessments at 3 and 12 months. Patients Twelve obese patients meeting current standards for bariatric surgery. Measurements and Main Results At each study visit, patients received a single dose of oral digoxin and midazolam at 8 a.m. Blood samples were collected at regular intervals for 24 hours after dosing. Continuous 12-lead electrocardiogram (EKG), heart rate, blood pressure, and respiratory rate were monitored, and pharmacokinetic parameters from the three visits were compared. The peak plasma concentration (Cmax) of midazolam increased by 66% and 71% at 3- and 12-month post-RYGB (p=0.017 and p=0.001, respectively), whereas the median time to peak concentration (Tmax) was reduced by 50%. The mean Cmax for 1′-hydroxymidazolam increased by 87% and 80% at 3 and 12 months (p=0.001 and p<0.001, respectively). However, neither the area under the concentration-time curve (AUC) for midazolam nor the metabolite-to-parent AUC ratio changed significantly over time. For digoxin, the median Tmax decreased from 40 minutes at baseline to 30 and 20 minutes at 3 and 12 months, respectively. The mean AUC for digoxin, heart rate, and EKG patterns were similar across the three study phases. Conclusion Contemporary proximal RYGB increases the rate of drug absorption without significantly changing the overall exposure to midazolam and digoxin. The Cmax of a CYP3A4 substrate with a high extraction ratio was substantially increased after RYGB. PMID:25757445

  13. Binary and ternary combinations of anti-HIV protease inhibitors: effect on gene expression and functional activity of CYP3A4 and efflux transporters

    PubMed Central

    Kwatra, Deep; Vadlapudi, Aswani Dutt; Vadlapatla, Ramya Krishna; Khurana, Varun; Pal, Dhananjay; Mitra, Ashim K.

    2015-01-01

    Background The purpose of this study is to identify the effect of binary and ternary combinations of anti-HIV protease inhibitors (PIs) on the expression of metabolizing enzyme (CYP3A4) and efflux transporters [multidrug resistance-associated protein 2 (MRP2), P-glycoprotein (P-gp) and breast cancer resistant protein (BCRP)] in a model intestinal cell line (LS-180). Methods LS-180 cells were treated with various combinations of PIs (amprenavir, indinavir, saquinavir and lopinavir), and the mRNA expression levels of metabolizing enzyme and efflux transporters were measured using quantitative reverse transcription polymerase chain reaction. The alteration of gene expression was further correlated to the expression of nuclear hormone receptor PXR. Uptake of fluorescent and radioactive substrates was carried out to study the functional activity of these proteins. Cytotoxicity and adenosine triphosphate (ATP) assays were carried out to measure stress responses. Results Binary and ternary combinations of PIs appeared to modulate the expression of CYP3A4, MRP2, P-gp and BCRP in a considerable manner. Unlike the individual PIs, their binary combinations showed much greater induction of metabolizing enzyme and efflux proteins. However, such pronounced induction was not observed in the presence of ternary combinations. The observed trend of altered mRNA expression was found to correlate well with the change in expression levels of PXR. The gene expression was found to correlate with activity assays. Lack of cytotoxicity and ATP activity was observed in the treatment samples, suggesting that these alterations in expression levels were probably not stress responses. Conclusions In the present study, we demonstrated that combinations of drugs can have serious consequences toward the treatment of HIV infection by altering their bioavailability and disposition. PMID:24399676

  14. Quantitative prediction of in vivo profiles of CYP3A4 induction in humans from in vitro results with a reporter gene assay.

    PubMed

    Kozawa, Masanari; Honma, Masashi; Suzuki, Hiroshi

    2009-06-01

    Although primary human hepatocytes are commonly used for induction studies, the evaluation method is associated with several problems. More recently, a reporter gene assay has been suggested to be an alternative, although the contribution of only transfected nuclear receptors can be evaluated. The aim of the present study was to establish a method by which the extent of in vivo CYP3A4 induction in humans can be quantitatively predicted based on in vitro results with a reporter gene assay. From previous reports, we calculated in vivo induction ratios (R(in vivo)) caused by prototypical inducers based on the alterations in the hepatic intrinsic clearance of probe drugs. Next, we derived equations by which these R(in vivo) values can be predicted from the results of a reporter gene assay. To use the data obtained from a reporter gene assay, rifampicin was used as a reference drug. The correction coefficient (CC), which is used to quantitatively correlate the activity of inducers between in vitro and in vivo situations, was calculated by comparing the predicted data with the observed R(in vivo) values for rifampicin. With the calculated CC value, good correlations were found between the predicted and observed R(in vivo) values for other inducers such as phenobarbital, phenytoin, and omeprazole. Taken together, with the equations derived in the present study, we have been able to predict the extent of in vivo induction of human CYP3A4 by inducers in a time-dependent and quantitative manner from in vitro data.

  15. In vitro Effects of Four Native Brazilian Medicinal Plants in CYP3A4 mRNA Gene Expression, Glutathione Levels, and P-Glycoprotein Activity

    PubMed Central

    Mazzari, Andre L. D. A.; Milton, Flora; Frangos, Samantha; Carvalho, Ana C. B.; Silveira, Dâmaris; de Assis Rocha Neves, Francisco; Prieto, Jose M.

    2016-01-01

    Erythrina mulungu Benth. (Fabaceae), Cordia verbenacea A. DC. (Boraginaceae), Solanum paniculatum L. (Solanaceae) and Lippia sidoides Cham. (Verbenaceae) are medicinal plant species native to Brazil shortlisted by the Brazilian National Health System for future clinical use. However, nothing is known about their effects in metabolic and transporter proteins, which could potentially lead to herb-drug interactions (HDI). In this work, we assess non-toxic concentrations (100 μg/mL) of the plant infusions for their in vitro ability to modulate CYP3A4 mRNA gene expression and intracellular glutathione levels in HepG2 cells, as well as P-glycoprotein (P-gp) activity in vincristine-resistant Caco-2 cells (Caco-2 VCR). Their mechanisms of action were further studied by measuring the activation of human pregnane X receptor (hPXR) in transiently co-transfected HeLa cells and the inhibition of γ-glutamyl transferase (GGT) in HepG2 cells. Our results show that P-gp activity was not affected in any case and that only Solanum paniculatum was able to significantly change CYP3A4 mRNA gene expression (twofold decrease, p < 0.05), this being correlated with an antagonist effect upon hPXR (EC50 = 0.38 mg/mL). Total intracellular glutathione levels were significantly depleted by exposure to Solanum paniculatum (-44%, p < 0.001), Lippia sidoides (-12%, p < 0.05) and Cordia verbenacea (-47%, p < 0.001). The latter plant extract was able to decrease GGT activity (-48%, p < 0.01). In conclusion, this preclinical study shows that the administration of some of these herbal medicines may be able to cause disturbances to metabolic mechanisms in vitro. Although Erythrina mulungu appears safe in our tests, active pharmacovigilance is recommended for the other three species, especially in the case of Solanum paniculatum. PMID:27594838

  16. A clinical study to assess CYP1A2 and CYP3A4 induction by AZD7325, a selective GABAA receptor modulator – an in vitro and in vivo comparison

    PubMed Central

    Zhou, Diansong; Sunzel, Maria; Ribadeneira, Maria D; Smith, Mark A; Desai, Dhaval; Lin, Jianrong; Grimm, Scott W

    2012-01-01

    AIM(S) To investigate the potential of AZD7325 to induce CYP1A2 and CYP3A4 enzyme activities. METHODS Induction of CYP1A2 and CYP3A4 by AZD7325 was first evaluated using cultured human hepatocytes. The effect of multiple doses of 10 mg AZD7325 on the pharmacokinetics of midazolam and caffeine was then examined in healthy subjects. RESULTS The highest CYP1A2 and CYP3A4 induction responses were observed in human hepatocytes treated with 1 or 10 µm of AZD7325, in the range of 17.9%–54.9% and 76.9%–85.7% of the positive control responses, respectively. The results triggered the further clinical evaluation of AZD7325 induction potential. AZD7325 reached a plasma Cmax of 0.2 µm after 10 mg daily dosing to steady-state. AZD7325 decreased midazolam geometric mean AUC by 19% (0.81-fold, 90% CI 0.77, 0.87), but had no effect on midazolam Cmax (90% CI 0.82, 0.97). The mean CL/F of midazolam increased from 62 l h−1 (midazolam alone) to 76 l h−1 when co-administered with AZD7325. The AUC and Cmax of caffeine were not changed after co-administration of AZD7325, with geometric mean ratios (90% CI) of 1.17 (1.12, 1.23) and 0.99 (0.95, 1.03), respectively. CONCLUSIONS While AZD7325 appeared to be a potent CYP3A4 inducer and a moderate CYP1A2 inducer from in vitro studies, the expected efficacious dose of AZD7325 had no effect on CYP1A2 activity and only a weak inducing effect on CYP3A4 activity. This comparison of in vitro and in vivo results demonstrates the critical role that clinical exposure plays in evaluating the CYP induction risk of a drug candidate. PMID:22122233

  17. Induction of CYP3A4 and MDR1 gene expression by baicalin, baicalein, chlorogenic acid, and ginsenoside Rf through constitutive androstane receptor- and pregnane X receptor-mediated pathways.

    PubMed

    Li, Yue; Wang, Qi; Yao, Xiaomin; Li, Yan

    2010-08-25

    The herbal products baicalin, baicalein, chlorogenic acid, and ginsenoside Rf have multiple pharmacological effects and are extensively used in alternative and/or complementary therapies. The present study investigated whether baicalin, baicalein, chlorogenic acid, and ginsenoside Rf induced the expression of the cytochrome P450 3A4 (CYP3A4) and multi-drug resistance 1 (MDR1) genes through the pregnane X receptor and constitutive androstane receptor pathways. Real time PCR, western blotting, and a luminescent assay were used to assess the induction of gene expression and activity of CYP3A4 and MDR1 by the test compounds. The interactions of baicalein/chlorogenic acid/ginsenoside Rf with constitutive androstane receptor and pregnane X receptor were evaluated using luciferase reporter and gel shift assays. Baicalein induced the expression of CYP3A4 and MDR1 mRNA by activating pregnane X receptor and constitutive androstane receptor. Chlorogenic acid and ginsenoside Rf showed a relatively weak effect on CYP3A4 promoter activation only in HepG2 cells cotransfected with constitutive androstane receptor and demonstrated no effects on MDR1 via either the constitutive androstane receptor or pregnane X receptor pathway. Baicalin had no effect on either CYP3A4 or MDR1 gene expression. In conclusion, baicalein has the potential to up-regulate CYP3A4 and MDR1 through the direct activation of the constitutive androstane receptor and pregnane X receptor pathways. Chlorogenic acid and ginsenoside Rf only induced constitutive androstane receptor-mediated CYP3A4 expression.

  18. An evaluation of the CYP2D6 and CYP3A4 inhibition potential of metoprolol metabolites and their contribution to drug-drug and drug-herb interaction by LC-ESI/MS/MS.

    PubMed

    Borkar, Roshan M; Bhandi, Murali Mohan; Dubey, Ajay P; Ganga Reddy, V; Komirishetty, Prashanth; Nandekar, Prajwal P; Sangamwar, Abhay T; Kamal, Ahmed; Banerjee, Sanjay K; Srinivas, R

    2016-10-01

    The aim of the present study was to evaluate the contribution of metabolites to drug-drug interaction and drug-herb interaction using the inhibition of CYP2D6 and CYP3A4 by metoprolol (MET) and its metabolites. The peak concentrations of unbound plasma concentration of MET, α-hydroxy metoprolol (HM), O-desmethyl metoprolol (ODM) and N-desisopropyl metoprolol (DIM) were 90.37 ± 2.69, 33.32 ± 1.92, 16.93 ± 1.70 and 7.96 ± 0.94 ng/mL, respectively. The metabolites identified, HM and ODM, had a ratio of metabolic area under the concentration-time curve (AUC) to parent AUC of ≥0.25 when either total or unbound concentration of metabolite was considered. In vitro CYP2D6 and CYP3A4 inhibition by MET, HM and ODM study revealed that MET, HM and ODM were not inhibitors of CYP3A4-catalyzed midazolam metabolism and CYP2D6-catalyzed dextromethorphan metabolism. However, DIM only met the criteria of >10% of the total drug related material and <25% of the parent using unbound concentrations. If CYP inhibition testing is solely based on metabolite exposure, DIM metabolite would probably not be considered. However, the present study has demonstrated that DIM contributes significantly to in vitro drug-drug interaction. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Modeling chemical interaction profiles: I. Spectral data-activity relationship and structure-activity relationship models for inhibitors and non-inhibitors of cytochrome P450 CYP3A4 and CYP2D6 isozymes.

    PubMed

    McPhail, Brooks; Tie, Yunfeng; Hong, Huixiao; Pearce, Bruce A; Schnackenberg, Laura K; Ge, Weigong; Valerio, Luis G; Fuscoe, James C; Tong, Weida; Buzatu, Dan A; Wilkes, Jon G; Fowler, Bruce A; Demchuk, Eugene; Beger, Richard D

    2012-03-15

    An interagency collaboration was established to model chemical interactions that may cause adverse health effects when an exposure to a mixture of chemicals occurs. Many of these chemicals--drugs, pesticides, and environmental pollutants--interact at the level of metabolic biotransformations mediated by cytochrome P450 (CYP) enzymes. In the present work, spectral data-activity relationship (SDAR) and structure-activity relationship (SAR) approaches were used to develop machine-learning classifiers of inhibitors and non-inhibitors of the CYP3A4 and CYP2D6 isozymes. The models were built upon 602 reference pharmaceutical compounds whose interactions have been deduced from clinical data, and 100 additional chemicals that were used to evaluate model performance in an external validation (EV) test. SDAR is an innovative modeling approach that relies on discriminant analysis applied to binned nuclear magnetic resonance (NMR) spectral descriptors. In the present work, both 1D ¹³C and 1D ¹⁵N-NMR spectra were used together in a novel implementation of the SDAR technique. It was found that increasing the binning size of 1D ¹³C-NMR and ¹⁵N-NMR spectra caused an increase in the tenfold cross-validation (CV) performance in terms of both the rate of correct classification and sensitivity. The results of SDAR modeling were verified using SAR. For SAR modeling, a decision forest approach involving from 6 to 17 Mold2 descriptors in a tree was used. Average rates of correct classification of SDAR and SAR models in a hundred CV tests were 60% and 61% for CYP3A4, and 62% and 70% for CYP2D6, respectively. The rates of correct classification of SDAR and SAR models in the EV test were 73% and 86% for CYP3A4, and 76% and 90% for CYP2D6, respectively. Thus, both SDAR and SAR methods demonstrated a comparable performance in modeling a large set of structurally diverse data. Based on unique NMR structural descriptors, the new SDAR modeling method complements the existing SAR

  20. Optical Isomers of Atorvastatin, Rosuvastatin and Fluvastatin Enantiospecifically Activate Pregnane X Receptor PXR and Induce CYP2A6, CYP2B6 and CYP3A4 in Human Hepatocytes.

    PubMed

    Korhonova, Martina; Doricakova, Aneta; Dvorak, Zdenek

    2015-01-01

    Atorvastatin, fluvastatin and rosuvastatin are drugs used for treatment of hypercholesterolemia. They cause numerous drug-drug interactions by inhibiting and inducing drug-metabolizing cytochromes P450. These three statins exist in four optical forms, but they are currently used as enantiopure drugs, i.e., only one single enantiomer. There are numerous evidences that efficacy, adverse effects and toxicity of drugs may be enantiospecific. Therefore, we investigated the effects of optical isomers of atorvastatin, fluvastatin and rosuvastatin on the expression of drug-metabolizing P450s in primary human hepatocytes, using western blots and RT-PCR for measurement of proteins and mRNAs, respectively. The activity of P450 transcriptional regulators, including pregnane X receptor (PXR), aryl hydrocarbon receptor (AhR) and glucocorticoid receptor (GR), was assessed by gene reporter assays and EMSA. Transcriptional activity of AhR was not influenced by any statin tested. Basal transcriptional activity of GR was not affected by tested statins, but dexamethasone-inducible activity of GR was dose-dependently and enantioselectively inhibited by fluvastatin. Basal and ligand-inducible transcriptional activity of PXR was dose-dependently influenced by all tested statins, and the potency and efficacy between individual optical isomers varied depending on statin and optical isomer. The expression of CYP1A1 and CYP1A2 in human hepatocytes was not influenced by tested statins. All statins induced CYP2A6, CYP2B6 and CYP3A4, and the effects on CYP2C9 were rather modulatory. The effects varied between statins and enantiomers and induction potency decreased in order: atorvastatin (RR>RS = SR>SS) > fluvastatin (SR>RS = SS>RR) > rosuvastatin (only RS active). The data presented here might be of toxicological and clinical importance.

  1. Building Structure Feature-based Models for Predicting Isoform-specific Human Cytochrome P-450 (hCYP 3A4, 2D6 and 2C9) Inhibition Assay Results in ToxCast

    EPA Science Inventory

    EPA’s ToxCast project is using high-throughput screening (HTS) to profile and prioritize chemicals for further testing. ToxCast Phase I evaluated 309 unique chemicals, the majority pesticide actives, in over 500 HTS assays. These included 3 human cytochrome P450 (hCYP3A4, hCYP2...

  2. RS-Predictor: A new tool for predicting sites of cytochrome P450-mediated metabolism applied to CYP 3A4

    PubMed Central

    Zaretzki, Jed; Bergeron, Charles; Rydberg, Patrik; Huang, Tao-wei; Bennett, Kristin P.; Breneman, Curt M.

    2011-01-01

    This article describes RegioSelectivity-Predictor (RS-Predictor), a new in silico method for generating predictive models of P450-mediated metabolism for drug-like compounds. Within this method, potential sites of metabolism (SOMs) are represented as “metabolophores”: A concept that describes the hierarchical combination of topological and quantum chemical descriptors needed to represent the reactivity of potential metabolic reaction sites. RS-Predictor modeling involves the use of metabolophore descriptors together with multiple-instance ranking (MIRank) to generate an optimized descriptor weight vector that encodes regioselectivity trends across all cases in a training set. The resulting pathway-independent,i isozyme-specific regioselectivity model may be used to predict potential metabolic liabilities. In the present work, cross-validated RS-Predictor models were generated for a set of 394 substrates of CYP 3A4 as a proof-of-principle for the method. Rank aggregation was then employed to merge independently generated predictions for each substrate into a single consensus prediction. The resulting consensus RS-Predictor models were shown to reliably identify at least one observed site of metabolism in the top two rank-positions on 78% of the substrates. Comparisons between RS-Predictor and previously described regioselectivity prediction methods reveal new insights into how in silico metabolite prediction methods should be compared. PMID:21528931

  3. Effects of silybinin, CYP3A4 and P-glycoprotein inhibitor in vitro, on the bioavailability of loratadine in rats.

    PubMed

    Li, C; Lee, M Y; Choi, J S

    2010-07-01

    The effect of silybinin on the pharmacokinetics of orally and intravenously administered loratadine in rats was investigated. Pharmacokinetic parameters of loratadine were determined in rats following oral (4 mg x kg(-1)) and intravenous (1 mg x kg(-1)) administration to rats in the presence and absence of silybinin (0.3, 1.5 and 6 mg x kg(-1)). Compared to those animals in an oral control group (given loratadine alone), the area under the plasma concentration-time curve (AUC) and the peak plasma concentration (C(max)) of loratadine were increased significantly (P < 0.05 for 1.5 mg x kg(-1), P < 0.01 for 6 mg x kg(-1)) by 50.0-76.7% and 65.4-90.1%, respectively, by silybinin. Consequently, the absolute bioavailability of loratadine in the presence of silybinin (1.5 and 6 mg x kg(-1)) was 8.6-10.2%, which was significantly (1.5 mg x kg(-1), P < 0.05; 6 mg x kg(-1), P < 0.01) enhanced compared to that in oral control group (5.8%). Moreover, the relative bioavailability of loratadine was 1.50- to 1.77-fold greater than that in the control group. In contrast, silybinin had no effect on any pharmacokinetic parameters of loratadine given intravenously, implying that coadministration of silybinin could inhibit the cytochrome P450 (CYP) 3A4-mediated metabolism of loratadine, resulting in reducing gastrointestinal and hepatic first-pass metabolism, and the P-glycoprotein (P-gp) efflux pump in the small intestine. Silybinin significantly enhanced the oral bioavailability of loratadine, suggesting that concurrent use of silybinin and loratadine should be monitored closely for potential drug interactions.

  4. Studies of CDK 8/19 inhibitors: Discovery of novel and selective CDK8/19 dual inhibitors and elimination of their CYP3A4 time-dependent inhibition potential.

    PubMed

    Fujimoto, Jun; Hirayama, Takaharu; Hirata, Yasuhiro; Hikichi, Yukiko; Murai, Saomi; Hasegawa, Maki; Hasegawa, Yuka; Yonemori, Kazuko; Hata, Akito; Aoyama, Kazunobu; Cary, Douglas R

    2017-03-30

    In this article, synthetic studies around a pyridylacrylamide-based hit compound (1), utilizing structure-based drug design guided by CDK8 docking models, is discussed. Modification of the pendant 4-fluorophenyl group to various heteroaromatic rings was conducted aiming an interaction with the proximal amino acids, and then replacement of the morpholine ring was targeted for decreasing potential of time-dependent CYP3A4 inhibition. These efforts led to the compound 4k, with enhanced CDK8 inhibitory activity and no apparent potential for time-dependent CYP3A4 inhibition (CDK8 IC50: 2.5nM; CYP3A4 TDI: 99% compound remaining). Compound 4k was found to possess a highly selective kinase inhibition profile, and also showed favorable pharmacokinetic profile. Oral administration of 4k (15mg/kg, bid. for 2weeks) suppressed tumor growth (T/C 29%) in an RPMI8226 mouse xenograft model.

  5. Click chemistry mediated Eu-tagging: activity-based specific quantification and simultaneous activity evaluation of CYP3A4 using 153Eu species-unspecific isotope dilution inductively coupled plasma mass spectrometry.

    PubMed

    Liang, Yong; Yan, Xiaowen; Li, Zhaoxin; Yang, Limin; Zhang, Bo; Wang, Qiuquan

    2014-04-15

    P450 3A4 (CYP3A4) is one of the most important isoforms in the human cytochrome P450 superfamily. It was used as an example in this proof-of-concept study in order to demonstrate an activity-based labeling and then click chemistry (CC) mediated element-tagging strategy for simultaneously specific quantification and activity measurement of an enzyme using species-unspecific isotope dilution inductively coupled plasma mass spectrometry (SUID ICPMS). A dual functional hexynylated 17α-ethynylestradiol activity-based probe was synthesized for specifically labeling CYP3A4 and then CC-mediated Eu-tagging with an azido-DOTA-Eu complex for CYP3A4 quantification and activity measurement in human liver microsome and serum samples using (153)Eu SUID ICPMS. The LOD (3σ) of CYP3A4 reached 20.3 fmol when monitoring (151/153)Eu ICPMS signals, in addition to the merits of specificity and simultaneous activity measurement achieved. We believe that this activity-based CC-mediated element-tagging strategy will liberate more potential advantages of ICPMS in bioanalysis.

  6. Effects of salvianolic acid B and tanshinone IIA on the pharmacokinetics of losartan in rats by regulating the activities and expression of CYP3A4 and CYP2C9.

    PubMed

    Wang, Rong; Zhang, Hai; Wang, Yujie; Yu, Xiaoyan; Yuan, Yongfang

    2016-03-02

    Losartan (LST) is a common chemical drug used to treat high blood pressure and reduce the risk of stroke in certain people with heart disease. Danshen, prepared from the dried root and rhizome of Salvia miltiorrhiza Bunge, has been widely used for prevention and treatment of various cardiovascular and cerebrovascular diseases. There are more than 35 formulations containing Danshen indexed in the 2010 Chinese Pharmacopoeia, which are often combined with LST to treat cardiovascular and cerebrovascular diseases in the clinic. The effects of the two major components of Danshen, salvianolic acid B (SA-B) and tanshinone IIA (Tan IIA), on the pharmacokinetics of losartan and its metabolite, EXP3174, in rats were investigated by liquid chromatography coupled with mass spectrometry (LC-MS). Male Sprague-Dawley rats were randomly assigned to 3 groups: LST, LST+SA-B and LST+Tan IIA, and the main pharmacokinetic parameters were estimated after oral administration of LST, LST+SA-B and LST+Tan IIA. It was found that there are significant differences in the pharmacokinetic parameters among the three groups: Cmax, t1/2, AUC, AUMC in the LST+SA-B group was smaller than those in group LST, while larger in group LST+Tan IIA. Further, the effects of SA-B and Tan IIA on the metabolism of losartan was also investigated using rat liver microsomes in vitro. The results indicated that SA-B can induce the metabolism of LST, while Tan IIA can inhibit the metabolism of LST in rat liver microsomes in vitro by regulating activities of CYP450 enzymes. In addition, the effect of SA-B and Tan IIA on CYP3A4 and CYP2C9 expression was studied in Chang liver cells by western-blotting and Real-time PCR. It was concluded that the two components of Danshen, SA-B and Tan IIA have different influences on the metabolism of LST: SA-B can obviously speed up the metabolism of LST by inducing CYP3A4/CYP2C9 activities and expression, however, Tan IIA can slow down the metabolism of LST by inhibiting CYP3A4/CYP2C

  7. In vitro inhibition of cytochrome P450 3A4 by Aronia melanocarpa constituents.

    PubMed

    Bräunlich, Marie; Christensen, Hege; Johannesen, Siri; Slimestad, Rune; Wangensteen, Helle; Malterud, Karl E; Barsett, Hilde

    2013-01-01

    Extracts, subfractions, isolated anthocyanins and procyanidins, and two phenolic acids from aronia [Aronia melanocarpa] were investigated for their CYP3A4 inhibitory effects, using midazolam as the probe substrate and recombinant insect cell microsomes expressing CYP3A4 as the enzyme source. Procyanidin B5 was a considerably stronger CYP3A4 inhibitor in vitro than the isomeric procyanidin B2 and comparable to bergamottin, a known CYP3A4 inhibitor from grapefruit juice. The inhibitory activity of proanthocyanidin-containing fractions was correlated to the degree of polymerization. Among the anthocyanins, cyanidin 3-arabinoside showed stronger CYP3A4 inhibition than cyanidin 3-galactoside and cyanidin 3-glucoside. Thus, the ability to inhibit CYP3A4 in vitro seems to be influenced by the sugar unit linked to the anthocyanidin.

  8. Optimization of a novel series of N-phenylindoline-5-sulfonamide-based acyl CoA:monoacylglycerol acyltransferase-2 inhibitors: Mitigation of CYP3A4 time-dependent inhibition and phototoxic liabilities.

    PubMed

    Sato, Kenjiro; Takahagi, Hiroki; Kubo, Osamu; Hidaka, Kousuke; Yoshikawa, Takeshi; Kamaura, Masahiro; Nakakariya, Masanori; Amano, Nobuyuki; Adachi, Ryutaro; Maki, Toshiyuki; Take, Kazumi; Takekawa, Shiro; Kitazaki, Tomoyuki; Maekawa, Tsuyoshi

    2015-08-01

    Acyl CoA:monoacylglycerol acyltransferase-2 (MGAT2) has emerged as a potential peripheral target for the treatment of obesity and metabolic disorders. We previously identified a novel series of N-phenylindoline-5-sulfonamide derivatives exemplified by 2 as potent and orally bioavailable MGAT2 inhibitors. Despite its attractive potency, further assessment revealed that this compound exhibited time-dependent inhibition (TDI) of cytochrome P450 3A4 (CYP3A4). To remove the undesirable CYP3A4 TDI activity, structural modification was focused on the 2,4-difluoroaniline moiety on the basis of the assumption that this moiety would be involved in mechanism-based inhibition of CYP3A4 via oxidative metabolism. This led to the finding that the introduction of 4-chloro-2,6-difluoroaniline significantly improved CYP3A4 TDI risk. Further optimization resulted in the discovery of N-(4-chloro-2,6-difluorophenyl)-1-{5-[1-methyl-3-(trifluoromethyl)-1H-pyrazol-5-yl]pyrimidin-2-yl}-7-(2-oxopyrrolidin-1-yl)-2,3-dihydro-1H-indole-5-sulfonamide (27c) with potent MGAT2 inhibitory activity (IC50=7.8 nM) and excellent ADME-Tox profiles including metabolic stability, oral bioavailability, and CYP3A4 TDI. In a mouse oral fat tolerance test, compound 27c effectively and dose-dependently suppressed the elevation of plasma triacylglycerol levels after oral administration at doses of 1 and 3mg/kg. We also discuss mitigation of the phototoxic liability of biaryl derivatives on the basis of the HOMO-LUMO gap hypothesis during the course of optimization efforts.

  9. Effect of variations in the amounts of P-glycoprotein (ABCB1), BCRP (ABCG2) and CYP3A4 along the human small intestine on PBPK models for predicting intestinal first pass.

    PubMed

    Bruyère, Arnaud; Declèves, Xavier; Bouzom, Francois; Ball, Kathryn; Marques, Catie; Treton, Xavier; Pocard, Marc; Valleur, Patrice; Bouhnik, Yoram; Panis, Yves; Scherrmann, Jean-Michel; Mouly, Stephane

    2010-10-04

    It is difficult to predict the first-pass effect in the human intestine due to a lack of scaling factors for correlating in vitro and in vivo data. We have quantified cytochrome P450/3A4 (CYP3A4) and two ABC transporters, P-glycoprotein (P-gp, ABCB1) and the breast cancer resistant protein BCRP (ABCG2), throughout the human small intestine to determine the scaling factors for predicting clearance from intestinal microsomes and develop a physiologically based pharmacokinetic (PBPK) model. CYP3A4, P-gp and BCRP proteins were quantified by Western blotting and/or enzyme activities in small intestine samples from 19 donors, and mathematical trends of these expressions with intestinal localization were established. Microsome fractions were prepared and used to calculate the amount of microsomal protein per gram of intestine (MPPGI). Our results showed a trend in CYP3A4 expression decrease from the upper to the lower small intestine while P-gp expression is increasing. In contrast, BCRP expression did not vary significantly with position, but varied greatly between individuals. The MPPGI (mg microsomal protein per centimeter intestine) remained constant along the length of the small intestine, at about 1.55 mg/cm. Moreover, intrinsic clearance measured with specific CYP3A4 substrates (midazolam and an in-house Servier drug) and intestinal microsomes was well correlated with the amount of CYP3A4 (R(2) > 0.91, p < 0.01). In vivo data were more accurately predicted using PBPK models of blood concentrations of these two substrates based on the segmental distributions of these enzymes and MPPGI determined in this study. Thus, these mathematical trends can be used to predict drug absorption at different intestinal sites and their metabolism can be predicted with the MPPGI.

  10. Comparison of different algorithms for predicting clinical drug-drug interactions, based on the use of CYP3A4 in vitro data: predictions of compounds as precipitants of interaction.

    PubMed

    Fahmi, Odette A; Hurst, Susan; Plowchalk, David; Cook, Jack; Guo, Feng; Youdim, Kuresh; Dickins, Maurice; Phipps, Alex; Darekar, Amanda; Hyland, Ruth; Obach, R Scott

    2009-08-01

    Cytochrome P450 3A4 (CYP3A4) is the most important enzyme in drug metabolism and because it is the most frequent target for pharmacokinetic drug-drug interactions (DDIs) it is highly desirable to be able to predict CYP3A4-based DDIs from in vitro data. In this study, the prediction of clinical DDIs for 30 drugs on the pharmacokinetics of midazolam, a probe substrate for CYP3A4, was done using in vitro inhibition, inactivation, and induction data. Two DDI prediction approaches were used, which account for effects at both the liver and intestine. The first was a model that simultaneously combines reversible inhibition, time-dependent inactivation, and induction data with static estimates of relevant in vivo concentrations of the precipitant drug to provide point estimates of the average magnitude of change in midazolam exposure. This model yielded a success rate of 88% in discerning DDIs with a mean -fold error of 1.74. The second model was a computational physiologically based pharmacokinetic model that uses dynamic estimates of in vivo concentrations of the precipitant drug and accounts for interindividual variability among the population (Simcyp). This model yielded success rates of 88 and 90% (for "steady-state" and "time-based" approaches, respectively) and mean -fold errors of 1.59 and 1.47. From these findings it can be concluded that in vivo DDIs for CYP3A4 can be predicted from in vitro data, even when more than one biochemical phenomenon occurs simultaneously.

  11. Cytotoxicity of 3-(3,5-dichlorophenyl)-2,4-thiazolidinedione (DCPT) and analogues in wild type and CYP3A4 stably transfected HepG2 cells.

    PubMed

    Frederick, Douglas M; Jacinto, Erina Y; Patel, Niti N; Rushmore, Thomas H; Tchao, Ruy; Harvison, Peter J

    2011-12-01

    The thiazolidinedione (TZD) ring is a constituent of the glitazones that are used to treat type II diabetes. Liver injury has been reported following chronic glitazone use; however, they do not produce hepatic damage in common laboratory animal species. In contrast, 3-(3,5-dichlorophenyl)-2,4-thiazolidinedione (DCPT) causes hepatotoxicity in rats. DCPT toxicity is dependent upon the presence of an intact TZD ring and cytochrome P450 (CYP)-mediated biotransformation. To further investigate TZD ring-induced toxicity, DCPT and several structural analogues or potential metabolites were tested in vitro using wild type human hepatoma HepG2 and HepG2 cells stably transfected with the CYP3A4 isozyme. CYP3A4 activity was confirmed by measuring testosterone 6β-hydroxylation. Both cell lines were treated with 0-250 μM of the compounds in Hanks' balanced salt solution. Cell viability was measured after 24 h. DCPT and S-(3,5-dichlorophenyl)aminocarbonyl thioglycolic acid (DCTA) were the most toxic compounds of the series. Furthermore, DCPT was significantly more toxic in transfected cells (LC50=160.2±5.9 μM) than in wild type cells (LC50=233.0±19.7 μM). Treatment with a CYP3A4 inhibitor or inducer attenuated or potentiated DCPT cytotoxicity, respectively. These results suggest that DCPT-induced cytotoxicity in the transfected HepG2 cells is partially dependent on CYP3A4.

  12. Cytotoxicity of 3-(3,5-Dichlorophenyl)-2,4-thiazolidinedione (DCPT) and Analogues in Wild Type and CYP3A4 Stably Transfected HepG2 Cells

    PubMed Central

    Frederick, Douglas M.; Jacinto, Erina Y.; Patel, Niti N.; Rushmore, Thomas H.; Tchao, Ruy; Harvison, Peter J.

    2011-01-01

    The thiazolidinedione (TZD) ring is a constituent of the glitazones that are used to treat type II diabetes. Liver injury has been reported following chronic glitazone use; however, they do not produce hepatic damage in common laboratory animal species. In contrast, 3-(3,5-dichlorophenyl)-2,4-thiazolidinedione (DCPT) causes hepatotoxicity in rats. DCPT toxicity is dependent upon the presence of an intact TZD ring and cytochrome P450 (CYP)-mediated biotransformation. To further investigate TZD ring-induced toxicity, DCPT and several structural analogues or potential metabolites were tested in vitro using wild type human hepatoma HepG2 and HepG2 cells stably transfected with the CYP3A4 isozyme. CYP3A4 activity was confirmed by measuring testosterone 6β-hydroxylation. Both cell lines were treated with 0-250 μM of the compounds in Hanks' balanced salt solution. Cell viability was measured after 24 hrs. DCPT and S-(3,5-dichlorophenyl)aminocarbonyl thioglycolic acid (DCTA) were the most toxic compounds of the series. Furthermore, DCPT was significantly more toxic in transfected cells (LC50 = 160.2 ± 5.9 μM) than in wild type cells (LC50 = 233.0 ± 19.7 μM). Treatment with a CYP3A4 inhibitor or inducer attenuated or potentiated DCPT cytotoxicity, respectively. These results suggest that DCPT-induced cytotoxicity in the transfected HepG2 cells is partially dependent on CYP3A4. PMID:21964476

  13. The comparative effects of diethyldithiocarbamate-copper complex with established proteasome inhibitors on expression levels of CYP1A2/3A4 and their master regulators, aryl hydrocarbon and pregnane X receptor in primary cultures of human hepatocytes.

    PubMed

    Vrzal, Radim; Dvorak, Zdenek

    2016-12-01

    In the recent years, a therapeutic potential of disulfiram (Antabuse) complex with copper, as an anticancer drug, was recognized towards several cancer cell lines. The proteasome was suggested as one of the cellular targets for this compound. As the therapeutic use of diethyldithiocarbamate-copper complex (CuET) is expected to increase, it is of great interest to know whether this compound may be the source of drug-drug interactions via the induction of biotransformation enzymes, especially cytochromes P450 (CYPs). To this purpose, we examined the effect of CuET and compared it with typical inducers (rifampicin and dioxin) of CYPs and with well-established proteasome inhibitors (MG132 and bortezomib). Diethyldithiocarbamate-copper complex revealed inconsistent and rather modulatory effect on the expression of CYP1A2 and CYP3A4 in several cultures of human hepatocytes. Moreover, it was able to cause neither ubiquitin accumulation nor significant and dose-dependent inhibition of proteasome activity. It had no effect on essential transcription factors involved in regulation of selected CYPs, aryl hydrocarbon (AhR) nor pregnane X receptor (PXR). However, the AhR protein was increased in majority of examined hepatocyte cultures. The main finding of this study is that: (i) disulfiram-copper complex is not the cause of drug-drug interactions via CYP1A2/3A4 induction; (ii) proteasome inhibitors may have different impact on studied parameters in given in vitro system.

  14. Potentiation of Methoxymorpholinyl Doxorubicin Anti-Tumor Activity by P450 3A4 Gene Transfer#

    PubMed Central

    Lu, Hong; Chen, Chong-Sheng; Waxman, David J.

    2008-01-01

    Summary Preclinical and clinical studies of CYP gene-directed enzyme-prodrug therapy have focused on anticancer prodrugs activated by CYP2B enzymes, which have low endogenous expression in human liver; however, the gene therapeutic potential of CYP3A enzymes, which are highly expressed in human liver, remains unknown. This study investigated methoxymorpholinyl-doxorubicin (MMDX), a novel CYP3A-activated anticancer prodrug. Retroviral transfer of CYP3A4 increased 9L gliosarcoma cell chemosensitivity to MMDX 120-fold (IC50=0.2nM). In CHO cells, overexpression of P450 reductase in combination with CYP3A4 enhanced chemosensitivity to MMDX, and to ifosfamide, another CYP3A4 prodrug, 11–23-fold compared to CYP3A4 expression alone. CYP3A4 expression and MMDX chemosensitivity were increased in human lung (A549) and brain (U251) tumor cells infected with replication-defective adenovirus encoding CYP3A4. Co-infection with Onyx-017, a replication-conditional adenovirus that co-amplifies and co-replicates the Adeno-3A4 virus, led to large increases in CYP3A4 RNA but only modest increases in CYP3A4 protein and activity. MMDX induced remarkable growth delay of 9L/3A4 tumors, but not 9L tumors, in immunodeficient mice administered low-dose MMDX either i.v. or by direct intratumoral injection (60µg/kg, every 7-days ×3), with the intratumoral route being substantially less toxic to the mouse host. No antitumor activity was observed with i.p. MMDX treatment, suggesting a substantial hepatic first pass effect, and with activated MMDX metabolites formed in the liver having poor access to the tumor site. These studies demonstrate that human CYP3A4 has strong potential for MMDX prodrug activation therapy, and suggest that endogenous tumor cell expression of CYP3A4, and not hepatic CYP3A4 activity, is a key determinant of responsiveness to MMDX therapy in cancer patients in vivo. PMID:19011599

  15. The Nuclear Factor-kB Pathway Regulates Cytochrome P450 3A4 Protein Stability

    SciTech Connect

    Zangar, Richard C.; Bollinger, Nikki; Verma, Seema; Karin, Norm J.; Lu, Yi

    2008-06-01

    We have previously observed that CYP3A4 protein levels are suppressed by inhibition of the proteasome in primary cultured hepatocytes. Because this result is opposite of what would be expected if CYP3A4 is degraded by the proteasome, it seems likely that there is another protein that is susceptible to proteasomal degradation that regulates CYP3A4 expression. In this study, we evaluate whether the nuclear factor kappa B (NF-kB) pathway is involved in that process. Our model system uses an adenovirus system to express CYP3A4 protein in HepG2 cells, which are derived from human cancer cells. Similar to results in primary hepatocytes, we found that inhibition of the proteasome with MG132 suppresses CYP3A4. Consistent with reports that proteasome inhibition suppresses the NF-kB pathway, we also observe a suppression of inhibitory kB kinase protein levels after treatment with MG132. Treatment of the HepG2 cells with NK-kB Activation Inhibitor also suppresses CYP3A4 proteins levels. In contrast, inhibition of either the proteasome or NF-kB pathways increases CYP3A4 mRNA levels. When the HepG2 cells are treated with cycloheximide, a general inhibitor of translation, the loss of CYP3A4 protein is accelerated by co-treatment with an NF-kB Activation Inhibitor. These results indicate that NF-kB activity regulates CYP3A4 protein stability and suggest that the NF-kB pathway is responsible for the decrease in CYP3A4 protein levels that results from the inhibition of proteasomal activity.

  16. Clinical outcomes and management of mechanism-based inhibition of cytochrome P450 3A4

    PubMed Central

    Zhou, Shufeng; Chan, Eli; Li, Xiaotian; Huang, Min

    2005-01-01

    Mechanism-based inhibition of cytochrome P450 (CYP) 3A4 is characterized by NADPH-, time-, and concentration-dependent enzyme inactivation, occurring when some drugs are converted by CYPs to reactive metabolites. Such inhibition of CYP3A4 can be due to the chemical modification of the heme, the protein, or both as a result of covalent binding of modified heme to the protein. The inactivation of CYP3A4 by drugs has important clinical significance as it metabolizes approximately 60% of therapeutic drugs, and its inhibition frequently causes unfavorable drug–drug interactions and toxicity. The clinical outcomes due to CYP3A4 inactivation depend on many factors associated with the enzyme, drugs, and patients. Clinical professionals should adopt proper approaches when using drugs that are mechanism-based CYP3A4 inhibitors. These include early identification of drugs behaving as CYP3A4 inactivators, rational use of such drugs (eg, safe drug combination regimen, dose adjustment, or discontinuation of therapy when toxic drug interactions occur), therapeutic drug monitoring, and predicting the risks for potential drug–drug interactions. A good understanding of CYP3A4 inactivation and proper clinical management are needed by clinical professionals when these drugs are used. PMID:18360537

  17. Comparison of the inhibitory profiles of itraconazole and cimetidine in cytochrome P450 3A4 genetic variants.

    PubMed

    Akiyoshi, Takeshi; Saito, Takashi; Murase, Saori; Miyazaki, Mitsue; Murayama, Norie; Yamazaki, Hiroshi; Guengerich, F Peter; Nakamura, Katsunori; Yamamoto, Koujirou; Ohtani, Hisakazu

    2011-04-01

    CYP3A4, an important drug-metabolizing enzyme, is known to have genetic variants. We have previously reported that CYP3A4 variants such as CYP3A4.2, 7, 16, and 18 show different enzymatic kinetics from CYP3A4.1 (wild type). In this study, we quantitatively investigated the inhibition kinetics of two typical inhibitors, itraconazole (ITCZ) and cimetidine (CMD), on CYP3A4 variants and evaluated whether the genetic variation leads to interindividual differences in the extent of CYP3A4-mediated drug interactions. The inhibitory profiles of ITCZ and CMD on the metabolism of testosterone (TST) were analyzed by using recombinant CYP3A4 variants. The genetic variation of CYP3A4 significantly affected the inhibition profiles of the two inhibitors. In CYP3A4.7, the K(i) value for ITCZ was 2.4-fold higher than that for the wild-type enzyme, whereas the K(i) value for CMD was 0.64-fold lower. In CYP3A4.16, the K(i) value for ITCZ was 0.54-fold lower than that for wild-type CYP3A4, whereas the K(i) value for CMD was 3.2-fold higher. The influence of other genetic variations also differed between the two inhibitors. Docking simulations could explain the changes in the K(i) values, based on the accessibility of TST and inhibitors to the heme moiety of the CYP3A4 molecule. In conclusion, the inhibitory effects of an inhibitor differ among CYP3A4 variants, suggesting that the genetic variation of CYP3A4 may contribute, at least in part, to interindividual differences in drug interactions mediated by CYP3A4 inhibition, and the pattern of the influences of genetic variation differs among inhibitors as well as substrates.

  18. Pharmacokinetics of Lidocaine Hydrochloride Metabolized by CYP3A4 in Chinese Han Volunteers Living at Low Altitude and in Native Han and Tibetan Chinese Volunteers Living at High Altitude.

    PubMed

    Zhang, Juanling; Zhu, Junbo; Yao, Xingchen; Duan, Yabin; Zhou, Xuejiao; Yang, Meng; Li, Xiangyang

    2016-01-01

    To investigate the pharmacokinetics of lidocaine hydrochloride metabolized by cytochrome P450 3A4 (CYP3A4) in Chinese Han volunteers living at low altitude (LA) and in native Han and Tibetan Chinese volunteers living at high altitude, lidocaine hydrochloride 10 mg was given by intramuscular injection to 3 groups: Han volunteers living at LA, and native Han and Tibetan volunteers living at a high altitude. Blood samples were collected before the (baseline) study drug was given and at 0.25, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 6.0, 8.0 h after study drug administration. Lidocaine hydrochloride in plasma was determined by RP-HPLC. Pharmacokinetics parameters of lidocaine hydrochloride showed that there were no significant difference between the native Han and Tibetan volunteers, but the t(1/2) was 29.8 and 29.8% higher in 2 groups, respectively, than in the LA group. To study related mechanism, the effects of exposure to chronic high-altitude hypoxia (CHH) on the activity and expression of CYP3A1 were examined in rats. Rats were divided into LA, chronic moderate altitude hypoxia, and CHH groups. CHH caused significant decreases in the activity and protein and mRNA expression of rat CYP3A1 in vivo. This study found significant changes in the disposition of lidocaine hydrochloride in native healthy Tibetan and Han Chinese subjects living at a high altitude in comparison to healthy Han Chinese subjects living at LA, it might be due to significant decreases in the activity and protein and mRNA expression of CYP3A4 under CHH condition.

  19. Current Approaches for Investigating and Predicting Cytochrome P450 3A4-Ligand Interactions

    PubMed Central

    Poulos, Thomas L.

    2015-01-01

    Cytochrome P450 3A4 (CYP3A4) is the major and most important drug-metabolizing enzyme in humans that oxidizes and clears over a half of all administered pharmaceuticals. This is possible because CYP3A4 is promiscuous with respect to substrate binding and has the ability to catalyze diverse oxidative chemistries in addition to traditional hydroxylation reactions. Furthermore, CYP3A4 binds and oxidizes a number of substrates in a cooperative manner and can be both induced and inactivated by drugs. In vivo, CYP3A4 inhibition could lead to undesired drug-drug interactions and drug toxicity, a major reason for late-stage clinical failures and withdrawal of marketed pharmaceuticals. Owing to its central role in drug metabolism, many aspects of CYP3A4 catalysis have been extensively studied by various techniques. Here, we give an overview of experimental and theoretical methods currently used for investigation and prediction of CYP3A4-ligand interactions, a defining factor in drug metabolism, with an emphasis on the problems addressed and conclusions derived from the studies. PMID:26002732

  20. Pharmacogenomics of Cytochrome P450 3A4: Recent Progress Toward the "Missing Heritability" Problem.

    PubMed

    Klein, Kathrin; Zanger, Ulrich M

    2013-01-01

    CYP3A4 is the most important drug metabolizing enzyme in adult humans because of its prominent expression in liver and gut and because of its broad substrate specificity, which includes drugs from most therapeutic categories and many endogenous substances. Expression and function of CYP3A4 vary extensively both intra- and interindividually thus contributing to unpredictable drug response and toxicity. A multitude of environmental, genetic, and physiological factors are known to influence CYP3A4 expression and activity. Among the best predictable sources of variation are drug-drug interactions, which are either caused by pregnane X-receptor (PXR), constitutive androstane receptor (CAR) mediated gene induction, or by inhibition through coadministered drugs or other chemicals, including also plant and food ingredients. Among physiological and pathophysiological factors are hormonal status, age, and gender, the latter of which was shown to result in higher levels in females compared to males, as well as inflammatory processes that downregulate CYP3A4 transcription. Despite the influence of these non-genetic factors, the genetic influence on CYP3A4 activity was estimated in previous twin studies and using information on repeated drug administration to account for 66% up to 88% of the interindividual variation. Although many single nucleotide polymorphisms (SNPs) within the CYP3A locus have been identified, genetic association studies have so far failed to explain a major part of the phenotypic variability. The term "missing heritability" has been used to denominate the gap between expected and known genetic contribution, e.g., for complex diseases, and is also used here in analogy. In this review we summarize CYP3A4 pharmacogenetics/genomics from the early inheritance estimations up to the most recent genetic and clinical studies, including new findings about SNPs in CYP3A4 (*22) and other genes (P450 oxidoreductase (POR), peroxisome proliferator-activated receptor

  1. Fungal lactone ring opening of 6', 7'-dihydroxybergamottin diminishes cytochrome P450 3A4 inhibitory activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Furanocoumarins (FCs) are a class of aromatic compounds in grapefruit that inhibit human intestinal cytochrome P450 3A4 (CYP3A4). Since fungi metabolize polycyclic aromatic hydrocarbons, we hypothesized that certain fungi might also metabolize FCs into forms that may be inactive as CYP3A4 inhibitors...

  2. A novel incubation direct injection LC/MS/MS technique for in vitro drug metabolism screening studies involving the CYP 2D6 and the CYP 3A4 isozymes.

    PubMed

    Bhoopathy, S; Xin, B; Unger, S E; Karnes, H T

    2005-04-01

    A direct injection LC/MS/MS method involving a novel incubation technique was developed for the inhibition screening of CYP 2D6 and CYP 3A4 isoenzymes using dextromethorphan and midazolam as probe substrates. Both assays were performed using an electrospray ionization source in the positive ion mode. Direct injection was possible by using a short C 18, LC column (2 mm x 20 mm) with large particle diameter packing (10 microm). Analytical characteristics of the direct injection technique were studied by examining matrix effects, which showed suppression of the ESI signal between 0.20 and 0.65 min. The retention times for analytes were adjusted to approximately 0.8 min (k'>3), resulting in no matrix effect. Column lifetime was evaluated and determined to be approximately 160 direct injections of the matrix. The precision and accuracy of the control samples for the quantitation of dextromethorphan was between -0.53 and -12.80, and 3.73 and 6.69% respectively. Unlike conventional incubation techniques, incubations were carried out in an autosampler equipped with a heating accessory. This novel incubation method, which involved no stirring of the incubation mixture, estimated the Cl(int in vitro) for dextromethorphan and midazolam in human liver microsomes to be 1.65+/-0.22 ml/(hmg) and 0.861 ml/(min mg) respectively. The autosampler tray maintained uniform temperature and was sensitive to changes in temperature between 33 and 41 degrees C. High-throughput screening was performed using known inhibitors of the CYP 2D6 isozyme, and the system was evaluated for its ability to differentiate between these inhibitors. The strong inhibitor quinidine resulted in a 25.6% increase in t(1/2), the medium potency inhibitor chlorpromazine resulted in an increase of 6.14% and the weak inhibitor primaquine had no significant effect on half-life. This technique involves no sample preparation, demonstrated run times of 2 min per injection and can be fully automated. The method should

  3. Effects of HMG-CoA reductase inhibitors on the pharmacokinetics of losartan and its main metabolite EXP-3174 in rats: possible role of CYP3A4 and P-gp inhibition by HMG-CoA reductase inhibitors.

    PubMed

    Yang, Si-Hyung; Choi, Jun-Shik; Choi, Dong-Hyun

    2011-01-01

    The present study was designed to investigate the effects of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (atorvastatin, pravastatin, simvastatin) on the pharmacokinetics of losartan and its active metabolite EXP-3174 in rats. Pharmacokinetic parameters of losartan and EXP-3174 in rats were determined after oral and intravenous administration of losartan (9 mg/kg) without and with HMG-CoA reductase inhibitors (1 mg/kg). The effect of HMG-CoA reductase inhibitors on P-gp and cytochrome (CYP) 3A4 activity were also evaluated. Atorvastatin, pravastatin and simvastatin inhibited CYP3A4 activities with IC₅₀ values of 48.0, 14.1 and 3.10 μmol/l, respectively. Simvastatin (1-10 μmol/l) enhanced the cellular uptake of rhodamine-123 in a concentration-dependent manner. The area under the plasma concentration-time curve (AUC₀₋∞) and the peak plasma concentration of losartan were significantly (p < 0.05) increased by 59.6 and 45.8%, respectively, by simvastatin compared to those of control. The total body clearance (CL/F) of losartan after oral administration with simvastatin was significantly decreased (by 34.8%) compared to that of controls. Consequently, the absolute bioavailability (F) of losartan after oral administration with simvastatin was significantly increased by 59.4% compared to that of control. The metabolite-parent AUC ratio was significantly decreased by 25.7%, suggesting that metabolism of losartan was inhibited by simvastatin. In conclusion, the enhanced bioavailability of losartan might be mainly due to inhibition of P-gp in the small intestine and CYP3A subfamily-mediated metabolism of losartan in the small intestine and/or liver and to reduction of the CL/F of losartan by simvastatin.

  4. Molecular modeling of cytochrome P450 3A4

    NASA Astrophysics Data System (ADS)

    Szklarz, Grazyna D.; Halpert, James R.

    1997-05-01

    The three-dimensional structure of human cytochrome P450 3A4 was modeled based on crystallographic coordinates of four bacterial P450s: P450 BM-3, P450cam, P450terp, and P450eryF. The P450 3A4 sequence was aligned to those of the known proteins using a structure-based alignment of P450 BM-3, P450cam, P450terp, and P450eryF. The coordinates of the model were then calculated using a consensus strategy, and the final structure was optimized in the presence of water. The P450 3A4 model resembles P450 BM-3 the most, but the B' helix is similar to that of P450eryF, which leads to an enlarged active site when compared with P450 BM-3, P450cam, and P450terp. The 3A4 residues equivalent to known substrate contact residues of the bacterial proteins and key residues of rat P450 2B1 are located in the active site or the substrate access channel. Docking of progesterone into the P450 3A4 model demonstrated that the substrate bound in a 6β-orientation can interact with a number of active site residues, such as 114, 119, 301, 304, 305, 309, 370, 373, and 479, through hydrophobic interactions. The active site of the enzyme can also accommodate erythromycin, which, in addition to the residues listed for progesterone, also contacts residues 101, 104, 105, 214, 215, 217, 218, 374, and 478. The majority of 3A4 residues which interact with progesterone and/or erythromycin possess their equivalents in key residues of P450 2B enzymes, except for residues 297, 480 and 482, which do not contact either substrate in P450 3A4. The results from docking of progesterone and erythromycin into the enzyme model make it possible to pinpoint residues which may be important for 3A4 function and to target them for site-directed mutagenesis.

  5. Inhibitory effect of salvianolate on human cytochrome P450 3A4 in vitro involving a noncompetitive manner

    PubMed Central

    Qin, Chong-Zhen; Ren, Xian; Zhou, Hong-Hao; Mao, Xiao-Yuan; Liu, Zhao-Qian

    2015-01-01

    Salvianolic acid B (Sal B), which is purified from Danshen, is a popular herb extract. Sal B has anti-oxidative, anti-inflammatory, anti-hypoxic, anti-arteriosclerotic and anti-apoptotic properties. This substance can also ameliorate brain injury or neurodegenerative diseases. The listed drug Salvianolate, which contains a substantial amount of Sal B, has been used for the treatment of coronary heart disease. Our present work aimed to evaluate the inhibitory effect of salvianolate on seven cytochrome P450 isoforms (CYP450), namely, CYP1A2, CYP2A6, CYP2E1, CYP2C9, CYP2C19, CYP2D6 and CYP3A4, in human liver microsomes (HLMs) and recombinant enzymes through high-performance liquid chromatography (HPLC) assay. Salvianolate have a potent inhibitory effect on CYP3A4 activity with IC50 values of 1.438 (HLMs) and 3.582 (recombinant cDNA-expressed CYP3A4) mg/L, respectively. Salvianolate strongly dose, but not time-dependently decreased CYP3A4 activity in HLMs. The typical Lineweaver-Burk plots showed that Salvianolate inhibited CYP3A4 activity noncompetitively, with a Ki value of 2.27 mg/L in HLMs. Other CYP450 isoforms are not markedly affected by Salvianolate. These findings indicate that salvianolate may be involved in potential drug interactions when co-administrated with CYP3A4 substrates. PMID:26629047

  6. Inhibitory effect of salvianolate on human cytochrome P450 3A4 in vitro involving a noncompetitive manner.

    PubMed

    Qin, Chong-Zhen; Ren, Xian; Zhou, Hong-Hao; Mao, Xiao-Yuan; Liu, Zhao-Qian

    2015-01-01

    Salvianolic acid B (Sal B), which is purified from Danshen, is a popular herb extract. Sal B has anti-oxidative, anti-inflammatory, anti-hypoxic, anti-arteriosclerotic and anti-apoptotic properties. This substance can also ameliorate brain injury or neurodegenerative diseases. The listed drug Salvianolate, which contains a substantial amount of Sal B, has been used for the treatment of coronary heart disease. Our present work aimed to evaluate the inhibitory effect of salvianolate on seven cytochrome P450 isoforms (CYP450), namely, CYP1A2, CYP2A6, CYP2E1, CYP2C9, CYP2C19, CYP2D6 and CYP3A4, in human liver microsomes (HLMs) and recombinant enzymes through high-performance liquid chromatography (HPLC) assay. Salvianolate have a potent inhibitory effect on CYP3A4 activity with IC50 values of 1.438 (HLMs) and 3.582 (recombinant cDNA-expressed CYP3A4) mg/L, respectively. Salvianolate strongly dose, but not time-dependently decreased CYP3A4 activity in HLMs. The typical Lineweaver-Burk plots showed that Salvianolate inhibited CYP3A4 activity noncompetitively, with a Ki value of 2.27 mg/L in HLMs. Other CYP450 isoforms are not markedly affected by Salvianolate. These findings indicate that salvianolate may be involved in potential drug interactions when co-administrated with CYP3A4 substrates.

  7. QSAR modeling of in vitro inhibition of cytochrome P450 3A4.

    PubMed

    Mao, Boryeu; Gozalbes, Rafael; Barbosa, Frédérique; Migeon, Jacques; Merrick, Sandra; Kamm, Kelly; Wong, Eric; Costales, Chester; Shi, Wei; Wu, Cheryl; Froloff, Nicolas

    2006-01-01

    We report the QSAR modeling of cytochrome P450 3A4 (CYP3A4) enzyme inhibition using four large data sets of in vitro data. These data sets consist of marketed drugs and drug-like compounds all tested in four assays measuring the inhibition of the metabolism of four different substrates by the CYP3A4 enzyme. The four probe substrates are benzyloxycoumarin, testosterone, benzyloxyresorufin, and midazolam. We first show that using state-of-the-art QSAR modeling approaches applied to only one of these four data sets does not lead to predictive models that would be useful for in silico filtering of chemical libraries. We then present the development and the testing of a multiple pharmacophore hypothesis (MPH) that is formulated as a conceptual extension of the traditional QSAR approach to modeling the promiscuous binding of a large variety of drugs to CYP3A4. In the simplest form, the MPH approach takes advantage of the multiple substrate data sets and identifies the binding of test compounds as either proximal or distal relative to that of a given substrate. Application of the approach to the in silico filtering of test compounds for potential inhibitors of CYP3A4 is also presented. In addition to an improvement in the QSAR modeling for the inhibition of CYP3A4, the results from this modeling approach provide structural insights into the drug-enzyme interactions. The existence of multiple inhibition data sets in the BioPrint database motivates the original development of the concept of a multiple pharmacophore hypothesis and provides a unique opportunity for formulating alternative strategies of QSAR modeling of the inhibition of the in vitro metabolism of CYP3A4.

  8. Oral Morphine Pharmacokinetic in Obesity: The Role of P-Glycoprotein, MRP2, MRP3, UGT2B7, and CYP3A4 Jejunal Contents and Obesity-Associated Biomarkers.

    PubMed

    Lloret-Linares, Célia; Miyauchi, Eisuke; Luo, Huilong; Labat, Laurence; Bouillot, Jean-Luc; Poitou, Christine; Oppert, Jean-Michel; Laplanche, Jean-Louis; Mouly, Stéphane; Scherrmann, Jean-Michel; Uchida, Yasuo; Tachikawa, Masanori; Terasaki, Tetsuya; Bergmann, Jean-François; Declèves, Xavier

    2016-03-07

    The objective of our work was to study the association between the jejunal expression levels of P-gp, MRP2, MRP3, UGT2B7, CYP3A4, the ABCB1 c.3435C > T polymorphism, and several obesity-associated biomarkers, as well as oral morphine and glucuronides pharmacokinetics in a population of morbidly obese subjects. The pharmacokinetics of oral morphine (30 mg) and its glucuronides was performed in obese patients candidate to bariatric surgery. A fragment of jejunal mucosa was preserved during surgery. Subjects were genotyped for the ABCB1 single nucleotide polymorphism (SNP) c.3435C > T. The subjects were 6 males and 23 females, with a mean body mass index of 44.8 (35.4-61.9) kg/m(2). The metabolic ratios AUC0-inf M3G/morphine and AUC0-inf M6G/morphine were highly correlated (rs = 0.8, p < 0.0001) and were 73.2 ± 24.6 (34.7-137.7) and 10.9 ± 4.1 (3.8-20.6). The pharmacokinetic parameters of morphine and its glucuronides were not associated with the jejunal contents of P-gp, CYP3A4, MRP2, and MRP3. The jejunal content of UGT2B7 was positively associated with morphine AUC0-inf (rs = 0.4, p = 0.03). Adiponectin was inversely correlated with morphine Cmax (rs = -0.44, p = 0.03). None of the factors studied was associated with morphine metabolic ratios. The interindividual variability in the jejunal content of drug transporters and metabolizing enzymes, the ABCB1 gene polymorphism, and the low-grade inflammation did not explain the variability in morphine and glucuronide exposure. High morphine metabolic ratio argued for an increased morphine glucuronidation in morbidly obese patients.

  9. An Inducible Cytochrome P450 3A4-Dependent Vitamin D Catabolic Pathway

    PubMed Central

    Wang, Zhican; Lin, Yvonne S.; Zheng, Xi Emily; Senn, Tauri; Hashizume, Takanori; Scian, Michele; Dickmann, Leslie J.; Nelson, Sidney D.; Baillie, Thomas A.; Hebert, Mary F.; Blough, David; Davis, Connie L.

    2012-01-01

    Vitamin D3 is critical for the regulation of calcium and phosphate homeostasis. In some individuals, mineral homeostasis can be disrupted by long-term therapy with certain antiepileptic drugs and the antimicrobial agent rifampin, resulting in drug-induced osteomalacia, which is attributed to vitamin D deficiency. We now report a novel CYP3A4-dependent pathway, the 4-hydroxylation of 25-hydroxyvitamin D3 (25OHD3), the induction of which may contribute to drug-induced vitamin D deficiency. The metabolism of 25OHD3 was fully characterized in vitro. CYP3A4 was the predominant source of 25OHD3 hydroxylation by human liver microsomes, with the formation of 4β,25-dihydroxyvitamin D3 [4β,25(OH)2D3] dominating (Vmax/Km = 0.85 ml · min−1 · nmol enzyme−1). 4β,25(OH)2D3 was found in human plasma at concentrations comparable to that of 1α,25-dihydroxyvitamin D3, and its formation rate in a panel of human liver microsomes was strongly correlated with CYP3A4 content and midazolam hydroxylation activity. Formation of 4β,25(OH)2D3 in primary human hepatocytes was induced by rifampin and inhibited by CYP3A4-specific inhibitors. Short-term treatment of healthy volunteers (n = 6) with rifampin selectively induced CYP3A4-dependent 4β,25(OH)2D3, but not CYP24A1-dependent 24R,25-dihydroxyvitamin D3 formation, and altered systemic mineral homeostasis. Our results suggest that CYP3A4-dependent 25OHD3 metabolism may play an important role in the regulation of vitamin D3 in vivo and in the etiology of drug-induced osteomalacia. PMID:22205755

  10. Pi-pi Stacking Mediated Cooperative Mechanism for Human Cytochrome P450 3A4.

    PubMed

    Fa, Botao; Cong, Shan; Wang, Jingfang

    2015-04-24

    Human Cytochrome P450 3A4 (CYP3A4) is an important member of the cytochrome P450 superfamily with responsibility for metabolizing ~50% of clinical drugs. Experimental evidence showed that CYP3A4 can adopt multiple substrates in its active site to form a cooperative binding model, accelerating substrate metabolism efficiency. In the current study, we constructed both normal and cooperative binding models of human CYP3A4 with antifungal drug ketoconazoles (KLN). Molecular dynamics simulation and free energy calculation were then carried out to study the cooperative binding mechanism. Our simulation showed that the second KLN in the cooperative binding model had a positive impact on the first one binding in the active site by two significant pi-pi stacking interactions. The first one was formed by Phe215, functioning to position the first KLN in a favorable orientation in the active site for further metabolism reactions. The second one was contributed by Phe304. This pi-pi stacking was enhanced in the cooperative binding model by the parallel conformation between the aromatic rings in Phe304 and the dioxolan moiety of the first KLN. These findings can provide an atomic insight into the cooperative binding in CYP3A4, revealing a novel pi-pi stacking mechanism for drug-drug interactions.

  11. Clinical Exposure Boost Predictions by Integrating Cytochrome P450 3A4-Humanized Mouse Studies With PBPK Modeling.

    PubMed

    Zhang, Jin; Heimbach, Tycho; Scheer, Nico; Barve, Avantika; Li, Wenkui; Lin, Wen; He, Handan

    2016-04-01

    NVS123 is a poorly water-soluble protease 56 inhibitor in clinical development. Data from in vitro hepatocyte studies suggested that NVS123 is mainly metabolized by CYP3A4. As a consequence of limited solubility, NVS123 therapeutic plasma exposures could not be achieved even with high doses and optimized formulations. One approach to overcome NVS123 developability issues was to increase plasma exposure by coadministrating it with an inhibitor of CYP3A4 such as ritonavir. A clinical boost effect was predicted by using physiologically based pharmacokinetic (PBPK) modeling. However, initial boost predictions lacked sufficient confidence because a key parameter, fraction of drug metabolized by CYP3A4 (fmCYP3A4), could not be estimated with accuracy on account of disconnects between in vitro and in vivo preclinical data. To accurately estimate fmCYP3A4 in human, an in vivo boost effect study was conducted using CYP3A4-humanized mouse model which showed a 33- to 56-fold exposure boost effect. Using a top-down approach, human fmCYP3A4 for NVS123 was estimated to be very high and included in the human PBPK modeling to support subsequent clinical study design. The combined use of the in vivo boost study in CYP3A4-humanized mouse model mice along with PBPK modeling accurately predicted the clinical outcome and identified a significant NVS123 exposure boost (∼42-fold increase) with ritonavir.

  12. In Vitro and in Vivo Inhibitory Effects of Glycyrrhetinic Acid in Mice and Human Cytochrome P450 3A4.

    PubMed

    Lv, Qiao-Li; Wang, Gui-Hua; Chen, Shu-Hui; Hu, Lei; Zhang, Xue; Ying, Guo; Qin, Chong-Zhen; Zhou, Hong-Hao

    2015-12-25

    Glycyrrhetinic acid (GA) has been used clinically in the treatment of patients with chronic hepatitis. This study evaluated the effect of GA on the activity of five P450(CYP450) cytochrome enzymes: CYP2A6, CYP2C9, CYP2C19, CYP2D6, and CYP3A4, in human liver microsomes (HLMs) and recombinant cDNA-expressed enzyme systems using a HPLC-MS/MS CYP-specific probe substrate assay. With midazolam as the probe substrate, GA greatly decreased CYP3A4 activity with IC50 values of 8.195 μM in HLMs and 7.498 μM in the recombinant cDNA-expressed CYP3A4 enzyme system, respectively. It significantly decreased CYP3A4 activity in a dose- but not time-dependent manner. Results from Lineweaver-Burk plots showed that GA could inhibit CYP3A4 activity competitively, with a Ki value of 1.57 μM in HLMs. Moreover, CYP2C9 and CYP2C19 could also be inhibited significantly by GA with IC50 of 42.89 and 40.26 μM in HLMs, respectively. Other CYP450 isoforms were not markedly affected by GA. The inhibition was also confirmed by an in vivo study of mice. In addition, it was observed that mRNA expressions of the Cyps2c and 3a family decreased significantly in the livers of mice treated with GA. In conclusion, this study indicates that GA may exert herb-drug interactions by competitively inhibiting CYP3A4.

  13. Cytochrome P450 3A4*22, PPAR-α, and ARNT polymorphisms and clopidogrel response.

    PubMed

    Kreutz, Rolf P; Owens, Janelle; Jin, Yan; Nystrom, Perry; Desta, Zeruesenay; Kreutz, Yvonne; Breall, Jeffrey A; Li, Lang; Chiang, Chienwei; Kovacs, Richard J; Flockhart, David A

    2013-01-01

    Recent candidate gene studies using a human liver bank and in vivo validation in healthy volunteers identified polymorphisms in cytochrome P450 (CYP) 3A4 gene (CYP3A4*22), Ah-receptor nuclear translocator (ARNT), and peroxisome proliferator-activated receptor-α (PPAR-α) genes that are associated with the CYP3A4 phenotype. We hypothesized that the variants identified in these genes may be associated with altered clopidogrel response, since generation of clopidogrel active metabolite is, partially mediated by CYP3A activity. Blood samples from 211 subjects, of mixed racial background, with established coronary artery disease, who had received clopidogrel, were analyzed. Platelet aggregation was determined using light transmittance aggregometry (LTA). Genotyping for CYP2C19*2, CYP3A4*22, PPAR-α (rs4253728, rs4823613), and ARNT (rs2134688) variant alleles was performed using Taqman® assays. CYP2C19*2 genotype was associated with increased on-treatment platelet aggregation (adenosine diphosphate 20 μM; P=0.025). No significant difference in on-treatment platelet aggregation, as measured by LTA during therapy with clopidogrel, was demonstrated among the different genotypes of CYP3A4*22, PPAR-α, and ARNT. These findings suggest that clopidogrel platelet inhibition is not influenced by the genetic variants that have previously been associated with reduced CYP3A4 activity.

  14. The effect of interferon-{alpha} on the expression of cytochrome P450 3A4 in human hepatoma cells

    SciTech Connect

    Flaman, Anathea S.; Gravel, Caroline; Hashem, Anwar M.; Tocchi, Monika; Li Xuguang

    2011-06-01

    Interferon {alpha} (IFN{alpha}) is used to treat malignancies and chronic viral infections. It has been found to decrease the rate of drug metabolism by acting on cytochrome P450 enzymes, but no studies have investigated the consequences of IFN{alpha} treatment on the CYP3A4 isoform, responsible for the metabolism of a majority of drugs. In this study, we have examined the effect of IFN{alpha} on CYP3A4 catalytic activity and expression in human hepatoma cells. We found that IFN{alpha} inhibits CYP3A4 activity and rapidly down-regulates the expression of CYP3A4, independent of de novo protein synthesis. Pharmacologic inhibitors and a dominant-negative mutant expression plasmid were used to dissect the molecular pathway required for CYP3A4 suppression, revealing roles for Jak1 and Stat1 and eliminating the involvement of the p38 mitogen-activated and extracellular regulated kinases. Treatment of hepatoma cells with IFN{alpha} did not affect the nuclear localization or relative abundance of Sp1 and Sp3 transcription factors, suggesting that the suppression of CYP3A4 by IFN{alpha} does not result from inhibitory Sp3 out-competing Sp1. To our knowledge, this is the first report that IFN{alpha} down-regulates CYP3A4 expression largely through the JAK-STAT pathway. Since IFN{alpha} suppresses CYP3A4 expression, caution is warranted when IFN{alpha} is administered in combination with CYP3A4 substrates to avoid the occurrence of adverse drug interactions.

  15. Increased inhibition of cytochrome P450 3A4 with the tablet formulation of posaconazole.

    PubMed

    Petitcollin, A; Crochette, R; Tron, C; Verdier, M-C; Boglione-Kerrien, C; Vigneau, C; Bellissant, E; Lemaitre, F

    2016-10-01

    Being a substrate of the cytochrome P450 3A4 (CYP3A4) isoenzyme, sirolimus metabolism is decreased when posaconazole is administered concomitantly. However, because of the poor bioavailability of the oral suspension of posaconazole with which low plasma concentrations are obtained, CYP3A4 inhibition is weak and a 50-75% dose reduction of sirolimus is sufficient to avoid sirolimus overdosage. The new tablet formulation allows reaching posaconazole concentrations 3-4 fold higher than those obtained with the oral suspension. Based on a case of sirolimus overdosage following posaconazole tablets administration, we modelled the inhibition of sirolimus clearance by posaconazole, and then simulated several dosage regimens of sirolimus taken together with posaconazole tablets. We were able to describe well the interaction, and found a value of IC50 of posaconazole towards sirolimus clearance of 0.68 μg/mL. The simulations showed that even a 80% decrease of the daily dose of sirolimus is unsuitable in many cases with trough concentrations of posaconazole of 2 μg/mL. A decrease of 40% of the dose with spacing administrations of 3 days may be considered. The clinicians and pharmacologists must be warned that the use of posaconazole tablets may result in an inhibition of CYP3A4 of greater magnitude than with the oral suspension.

  16. Is cytochrome P450 3A4 regulated by menstrual cycle hormones in control endometrium and endometriosis?

    PubMed

    Piccinato, Carla A; Neme, Rosa M; Torres, Natália; Silvério, Renata; Pazzini, Vanessa Bitencourt; Rosa E Silva, Júlio C; Ferriani, Rui A

    2017-03-01

    The estrogen-metabolizing activities of cytochrome P450 (CYP) enzymes have been implicated in endometriosis. However, their regulation in various sources of endometrial tissue under different hormonal conditions has not been clarified. Our objective was to study the hormone regulation of a specific CYP enzyme, namely CYP3A4, in control (n = 15) and endometriosis patients (n = 42). To this end, we evaluated mRNA expression (using real-time PCR) of CYP3A4 in tissue samples classified according to the phase of menstrual cycle at which they were obtained as confirmed by the related circulating hormone levels. Protein expression was also evaluated by Western Blot. In order to further investigate the hormonal regulation of CYP3A4, stromal cells from ovarian endometriotic lesions were cultured with the prevailing hormones of the distinct phases of the menstrual cycle. We observed that all control and endometriosis tissues express CYP3A4. Nevertheless, changes in CYP3A4 gene expression related to cycle phase were only seen in the control eutopic endometrium and not in samples from endometriosis patients, with an increase in the luteal phase. Stromal cells isolated from ovarian endometriotic lesions expressed CYP3A4 and their exposure to luteal phase-mimicking hormones (estradiol + progesterone) reduced CYP3A4 mRNA in parallel with a diminished expression of the corresponding receptors, estrogen receptor alpha and progesterone receptor. Our findings suggest that steroid hormones are able to regulate CYP3A4 mRNA expression, although the circulating levels of these hormones can only regulate control endometrium and not endometriosis tissues, probably because of dysregulated local steroid concentration in these latter samples.

  17. Pharmacogenomics of Cytochrome P450 3A4: Recent Progress Toward the “Missing Heritability” Problem

    PubMed Central

    Klein, Kathrin; Zanger, Ulrich M.

    2013-01-01

    CYP3A4 is the most important drug metabolizing enzyme in adult humans because of its prominent expression in liver and gut and because of its broad substrate specificity, which includes drugs from most therapeutic categories and many endogenous substances. Expression and function of CYP3A4 vary extensively both intra- and interindividually thus contributing to unpredictable drug response and toxicity. A multitude of environmental, genetic, and physiological factors are known to influence CYP3A4 expression and activity. Among the best predictable sources of variation are drug–drug interactions, which are either caused by pregnane X-receptor (PXR), constitutive androstane receptor (CAR) mediated gene induction, or by inhibition through coadministered drugs or other chemicals, including also plant and food ingredients. Among physiological and pathophysiological factors are hormonal status, age, and gender, the latter of which was shown to result in higher levels in females compared to males, as well as inflammatory processes that downregulate CYP3A4 transcription. Despite the influence of these non-genetic factors, the genetic influence on CYP3A4 activity was estimated in previous twin studies and using information on repeated drug administration to account for 66% up to 88% of the interindividual variation. Although many single nucleotide polymorphisms (SNPs) within the CYP3A locus have been identified, genetic association studies have so far failed to explain a major part of the phenotypic variability. The term “missing heritability” has been used to denominate the gap between expected and known genetic contribution, e.g., for complex diseases, and is also used here in analogy. In this review we summarize CYP3A4 pharmacogenetics/genomics from the early inheritance estimations up to the most recent genetic and clinical studies, including new findings about SNPs in CYP3A4 (*22) and other genes (P450 oxidoreductase (POR), peroxisome proliferator

  18. Inhibitory effects of polyphenols on human cytochrome P450 3A4 and 2C9 activity.

    PubMed

    Kimura, Yuka; Ito, Hideyuki; Ohnishi, Ryoko; Hatano, Tsutomu

    2010-01-01

    Polyphenols present in foods and supplements may contribute to human health by preventing cardiovascular diseases and cancer. Drug-food or drug-herb interactions have recently come into focus but, except for some phytochemicals, few components of food or herbs participate in such interactions. In this study, we systematically evaluated the inhibitory effects of 60 polyphenols and related compounds on human cytochrome P450 (CYP) 3A4 and CYP2C9 activity by in vitro assay to investigate whether some polyphenols induce drug interactions. In addition, the kinetics of potent CYP inhibitors was investigated by Lineweaver-Burk plot analysis. Three coumarins and 12 flavonoids significantly suppressed CYP3A4 or CYP2C9 activities. Lineweaver-Burk plot analysis indicated that apigenin and its dimer amentoflavone and imperatorin displayed a mixed type of inhibition on CYP3A4 or CYP2C9. Among the inhibitors, amentoflavone was the most potent inhibitor of CYP3A4 and CYP2C9 activities with IC(50) values of 0.07 and 0.03 microM, respectively. The K(i) value of amentoflavone was significantly lower than that of the CYP2C9 inhibition positive control sulfaphenazole. These findings suggest that some dietary polyphenols may have the potential to inhibit the metabolism of clinical drugs.

  19. A Role for Protein Phosphorylation in Cytochrome P450 3A4 Ubiquitin-dependent Proteasomal Degradation*S⃞

    PubMed Central

    Wang, YongQiang; Liao, Mingxiang; Hoe, Nicholas; Acharya, Poulomi; Deng, Changhui; Krutchinsky, Andrew N.; Correia, Maria Almira

    2009-01-01

    Cytochromes P450 (P450s) incur phosphorylation. Although the precise role of this post-translational modification is unclear, marking P450s for degradation is plausible. Indeed, we have found that after structural inactivation, CYP3A4, the major human liver P450, and its rat orthologs are phosphorylated during their ubiquitin-dependent proteasomal degradation. Peptide mapping coupled with mass spectrometric analyses of CYP3A4 phosphorylated in vitro by protein kinase C (PKC) previously identified two target sites, Thr264 and Ser420. We now document that liver cytosolic kinases additionally target Ser478 as a major site. To determine whether such phosphorylation is relevant to in vivo CYP3A4 degradation, wild type and CYP3A4 with single, double, or triple Ala mutations of these residues were heterologously expressed in Saccharomyces cerevisiae pep4Δ strains. We found that relative to CYP3A4wt, its S478A mutant was significantly stabilized in these yeast, and this was greatly to markedly enhanced for its S478A/T264A, S478A/S420A, and S478A/T264A/S420A double and triple mutants. Similar relative S478A/T264A/S420A mutant stabilization was also observed in HEK293T cells. To determine whether phosphorylation enhances CYP3A4 degradation by enhancing its ubiquitination, CYP3A4 ubiquitination was examined in an in vitro UBC7/gp78-reconstituted system with and without cAMP-dependent protein kinase A and PKC, two liver cytosolic kinases involved in CYP3A4 phosphorylation. cAMP-dependent protein kinase A/PKC-mediated phosphorylation of CYP3A4wt but not its S478A/T264A/S420A mutant enhanced its ubiquitination in this system. Together, these findings indicate that phosphorylation of CYP3A4 Ser478, Thr264, and Ser420 residues by cytosolic kinases is important both for its ubiquitination and proteasomal degradation and suggest a direct link between P450 phosphorylation, ubiquitination, and degradation. PMID:19095658

  20. In Silico Docking of Ligands to Drug Oxidation Enzymes Cytochrome P450 3A4 and Cytochrome P450 1A2.

    NASA Astrophysics Data System (ADS)

    Smith, David; Guglielmon, Jonathan; Glenn, Marsch; Peter, Guengerich F.

    2009-03-01

    Cytochrome P450 3A4 (CYP3A4) and Cytochrome P450 1A2 (CYP1A2) oxidize most drugs in humans. Protein modeling toolkits from OpenEye Scientific Software were used to examine the interaction of drug substrates with CYP3A4 and CYP1A2. Conformers and partial atomic charges were generated for each drug molecule. User-defined volumes were defined around CYP3A4 and CYP1A2 active sites. Ligands were docked assuming protein and substrates as rigid bodies. To assess rigid docking accuracy, x-ray diffraction coordinates of CYP3A4-erythromycin and CYP3A4-metyrapone complexes were obtained. Rigid re-docking of erythromycin and metyrapone into CYP3A4 yielded poses similar to the crystal structures. Rigid docking revealed two other energetically-favorable CYP3A4-metyrapone poses. The best poses were obtained by using all the Open Eye scoring functions. Optimization of protein-ligand interactions within 5-10 Angstroms of the docked ligand was then performed using the Merck Molecular Force Field in which the protein was assumed to be flexible and the ligand to be rigid. Nearby protein residues pulled slightly closer to the substrate, reducing the volume of the active site.

  1. A support vector machine approach to classify human cytochrome P450 3A4 inhibitors

    NASA Astrophysics Data System (ADS)

    Kriegl, Jan M.; Arnhold, Thomas; Beck, Bernd; Fox, Thomas

    2005-03-01

    The cytochrome P450 (CYP) enzyme superfamily plays a major role in the metabolism of commercially available drugs. Inhibition of these enzymes by a drug may result in a plasma level increase of another drug, thus leading to unwanted drug-drug interactions when two or more drugs are coadministered. Therefore, fast and reliable in silico methods predicting CYP inhibition from calculated molecular properties are an important tool which can be applied to assess both already synthesized as well as virtual compounds. We have studied the performance of support vector machines (SVMs) to classify compounds according to their potency to inhibit CYP3A4. The data set for model generation consists of more than 1300 structural diverse drug-like research molecules which were divided into training and test sets. The predictive power of SVMs crucially depends on a careful selection of parameters specifying the kernel function and the penalty for misclassifications. In this study we have investigated a procedure to identify a valid set of SVM parameters which is based on a sampling of the parameter space on a regular grid. From this set of parameters, either single SVMs or SVM committees were trained to distinguish between strong and weak inhibitors or to achieve a more realistic three-class assignment, with one class representing medium inhibitors. This workflow was studied for several kernel functions and descriptor sets. All SVM models performed significantly better than PLS-DA models which were generated from the corresponding descriptor sets. As a very promising result, simple two-dimensional (2D) descriptors yield a three-class model which correctly classifies more than 70% of the test set. Our work illustrates that SVMs used in combination with simple 2D descriptors provide a very effective and reliable tool which allows a fast assessment of CYP3A4 inhibition potency in an early in silico filtering process.

  2. Conformational Mobility in Cytochrome P450 3A4 Explored by Pressure-Perturbation EPR Spectroscopy.

    PubMed

    Davydov, Dmitri R; Yang, Zhongyu; Davydova, Nadezhda; Halpert, James R; Hubbell, Wayne L

    2016-04-12

    We used high hydrostatic pressure as a tool for exploring the conformational landscape of human cytochrome P450 3A4 (CYP3A4) by electron paramagnetic resonance and fluorescence spectroscopy. Site-directed incorporation of a luminescence resonance energy transfer donor-acceptor pair allowed us to identify a pressure-dependent equilibrium between two states of the enzyme, where an increase in pressure increased the spatial separation between the two distantly located fluorophores. This transition is characterized by volume change (ΔV°) and P1/2 values of -36.8 ± 5.0 mL/mol and 1.45 ± 0.33 kbar, respectively, which corresponds to a Keq° of 0.13 ± 0.06, so that only 15% of the enzyme adopts the pressure-promoted conformation at ambient pressure. This pressure-promoted displacement of the equilibrium is eliminated by the addition of testosterone, an allosteric activator. Using site-directed spin labeling, we demonstrated that the pressure- and testosterone-sensitive transition is also revealed by pressure-induced changes in the electron paramagnetic resonance spectra of a nitroxide side chain placed at position 85 or 409 of the enzyme. Furthermore, we observed a pressure-induced displacement of the emission maxima of a solvatochromic fluorophore (7-diethylamino-3-((((2-maleimidyl)ethyl)amino)carbonyl) coumarin) placed at the same positions, which suggests a relocation to a more polar environment. Taken together, the results reveal an effector-dependent conformational equilibrium between open and closed states of CYP3A4 that involves a pronounced change at the interface between the region of α-helices A/A' and the meander loop of the enzyme, where residues 85 and 409 are located. Our study demonstrates the high potential of pressure-perturbation strategies for studying protein conformational landscapes.

  3. Camptothecin Attenuates Cytochrome P450 3A4 Induction by Blocking the Activation of Human Pregnane X ReceptorS⃞

    PubMed Central

    Chen, Yakun; Tang, Yong; Robbins, Gregory T.

    2010-01-01

    Differential regulation of drug-metabolizing enzymes (DMEs) is a common cause of adverse drug effects in cancer therapy. Due to the extremely important role of cytochrome P450 3A4 (CYP3A4) in drug metabolism and the dominant regulation of human pregnane X receptor (hPXR) on CYP3A4, finding inhibitors for hPXR could provide a unique tool to control drug efficacies in cancer therapy. Camptothecin (CPT) was demonstrated as a novel and potent inhibitor (IC50 = 0.58 μM) of an hPXR-mediated transcriptional regulation on CYP3A4 in this study. In contrast, one of its analogs, irinotecan (CPT-11), was found to be an hPXR agonist in the same tests. CPT disrupted the interaction of hPXR with steroid receptor coactivator-1 but had effects on neither the competition of ligand binding nor the formation of the hPXR and retinoid X receptor α heterodimer, nor the interaction between the regulatory complex and DNA-responsive elements. CPT treatment resulted in delayed metabolism of nifedipine in human hepatocytes treated with rifampicin, suggesting a potential prevention of drug-drug interactions between CYP3A4 inducers and CYP3A4-metabolized drugs. Because CPT is the leading compound of topoisomerase I inhibitors, which comprise a quickly developing class of anticancer agents, the findings indicate the potential of a new class of compounds to modify hPXR activity as agonists/inhibitors and are important in the development of CPT analogs. PMID:20504912

  4. Human Cytochrome P450 3A4 as a Biocatalyst: Effects of the Engineered Linker in Modulation of Coupling Efficiency in 3A4-BMR Chimeras

    PubMed Central

    Degregorio, Danilo; D'Avino, Serena; Castrignanò, Silvia; Di Nardo, Giovanna; Sadeghi, Sheila J.; Catucci, Gianluca; Gilardi, Gianfranco

    2017-01-01

    Human liver cytochrome P450 3A4 is the main enzyme involved in drug metabolism. This makes it an attractive target for biocatalytic applications, such as the synthesis of pharmaceuticals and drug metabolites. However, its poor solubility, stability and low coupling have limited its application in the biotechnological context. We previously demonstrated that the solubility of P450 3A4 can be increased by creating fusion proteins between the reductase from Bacillus megaterium BM3 (BMR) and the N-terminally modified P450 3A4 (3A4-BMR). In this work, we aim at increasing stability and coupling efficiency by varying the length of the loop connecting the two domains to allow higher inter-domain flexibility, optimizing the interaction between the domains. Starting from the construct 3A4-BMR containing the short linker Pro-Ser-Arg, two constructs were generated by introducing a 3 and 5 glycine hinge (3A4-3GLY-BMR and 3A4-5GLY-BMR). The three fusion proteins show the typical absorbance at 450 nm of the reduced heme-CO adduct as well as the correct incorporation of the FAD and FMN cofactors. Each of the three chimeric proteins were more stable than P450 3A4 alone. Moreover, the 3A4-BMR-3-GLY enzyme showed the highest NADPH oxidation rate in line with the most positive reduction potential. On the other hand, the 3A4-BMR-5-GLY fusion protein showed a Vmax increased by 2-fold as well as a higher coupling efficiency when compared to 3A4-BMR in the hydroxylation of the marker substrate testosterone. This protein also showed the highest rate value of cytochrome c reduction when this external electron acceptor is used to intercept electrons from BMR to P450. The data suggest that the flexibility and the interaction between domains in the chimeric proteins is a key parameter to improve turnover and coupling efficiency. These findings provide important guidelines in engineering catalytically self-sufficient human P450 for applications in biocatalysis. PMID:28377716

  5. Concurrent Cooperativity and Substrate Inhibition in the Epoxidation of Carbamazepine by Cytochrome P450 3A4 Active Site Mutants Inspired by Molecular Dynamics Simulations

    PubMed Central

    2015-01-01

    Cytochrome P450 3A4 (CYP3A4) is the major human P450 responsible for the metabolism of carbamazepine (CBZ). To explore the mechanisms of interactions of CYP3A4 with this anticonvulsive drug, we carried out multiple molecular dynamics (MD) simulations, starting with the complex of CYP3A4 manually docked with CBZ. On the basis of these simulations, we engineered CYP3A4 mutants I369F, I369L, A370V, and A370L, in which the productive binding orientation was expected to be stabilized, thus leading to increased turnover of CBZ to the 10,11-epoxide product. In addition, we generated CYP3A4 mutant S119A as a control construct with putative destabilization of the productive binding pose. Evaluation of the kinetics profiles of CBZ epoxidation demonstrate that CYP3A4-containing bacterial membranes (bactosomes) as well as purified CYP3A4 (wild-type and mutants I369L/F) exhibit substrate inhibition in reconstituted systems. In contrast, mutants S119A and A370V/L exhibit S-shaped profiles that are indicative of homotropic cooperativity. MD simulations with two to four CBZ molecules provide evidence that the substrate-binding pocket of CYP3A4 can accommodate more than one molecule of CBZ. Analysis of the kinetics profiles of CBZ metabolism with a model that combines the formalism of the Hill equation with an allowance for substrate inhibition demonstrates that the mechanism of interactions of CBZ with CYP3A4 involves multiple substrate-binding events (most likely three). Despite the retention of the multisite binding mechanism in the mutants, functional manifestations reveal an exquisite sensitivity to even minor structural changes in the binding pocket that are introduced by conservative substitutions such as I369F, I369L, and A370V. PMID:25545162

  6. Concurrent cooperativity and substrate inhibition in the epoxidation of carbamazepine by cytochrome P450 3A4 active site mutants inspired by molecular dynamics simulations.

    PubMed

    Müller, Christian S; Knehans, Tim; Davydov, Dmitri R; Bounds, Patricia L; von Mandach, Ursula; Halpert, James R; Caflisch, Amedeo; Koppenol, Willem H

    2015-01-27

    Cytochrome P450 3A4 (CYP3A4) is the major human P450 responsible for the metabolism of carbamazepine (CBZ). To explore the mechanisms of interactions of CYP3A4 with this anticonvulsive drug, we carried out multiple molecular dynamics (MD) simulations, starting with the complex of CYP3A4 manually docked with CBZ. On the basis of these simulations, we engineered CYP3A4 mutants I369F, I369L, A370V, and A370L, in which the productive binding orientation was expected to be stabilized, thus leading to increased turnover of CBZ to the 10,11-epoxide product. In addition, we generated CYP3A4 mutant S119A as a control construct with putative destabilization of the productive binding pose. Evaluation of the kinetics profiles of CBZ epoxidation demonstrate that CYP3A4-containing bacterial membranes (bactosomes) as well as purified CYP3A4 (wild-type and mutants I369L/F) exhibit substrate inhibition in reconstituted systems. In contrast, mutants S119A and A370V/L exhibit S-shaped profiles that are indicative of homotropic cooperativity. MD simulations with two to four CBZ molecules provide evidence that the substrate-binding pocket of CYP3A4 can accommodate more than one molecule of CBZ. Analysis of the kinetics profiles of CBZ metabolism with a model that combines the formalism of the Hill equation with an allowance for substrate inhibition demonstrates that the mechanism of interactions of CBZ with CYP3A4 involves multiple substrate-binding events (most likely three). Despite the retention of the multisite binding mechanism in the mutants, functional manifestations reveal an exquisite sensitivity to even minor structural changes in the binding pocket that are introduced by conservative substitutions such as I369F, I369L, and A370V.

  7. Inhibition of cytochrome P450 3A4 activity by schisandrol A and gomisin A isolated from Fructus Schisandrae chinensis.

    PubMed

    Wan, C-K; Tse, A K; Yu, Z-L; Zhu, G-Y; Wang, H; Fong, D W F

    2010-07-01

    We studied the effects of schisandrol A (SCH) and gomisin A (GOM), two of the main bioactive components of Fructus Schisandrae chinensis, on cytochrome P450-3A4 (CYP3A4) activity and cellular glutathione (GSH) level. In a cell-free system both SCH and GOM inhibited CYP3A4 activity with IC(50) values of 32.02 microM and 1.39 microM, respectively. SCH or GOM at concentrations up to 100 microM did not alter cellular GSH level in regular HepG2 cells and P-glycoprotein overexpressing HepG2-DR cells. Since SCH and GOM may reverse multidrug resistance (MDR) by impeding the activity of P-glycoprotein, a membrane xenobiotic exporter, SCH or GOM could affect cellular drug metabolism in addition to drug uptake.

  8. Combining cytochrome P-450 3A4 modulators and cyclosporine or everolimus in transplantation is successful

    PubMed Central

    González, Fernando; Valjalo, Ricardo

    2015-01-01

    AIM: To describe the long term follow-up of kidney allograft recipients receiving ketoconazole with calcineurin inhibitors (CNI) alone or combined with everolimus. METHODS: This is an open-label, prospective observational clinical trial in low immunologic risk patients who, after signing an Institutional Review Board approved consent form, were included in one of two groups. The first one (n = 59) received everolimus (target blood level, 3-8 ng/mL) and the other (n = 114) azathioprine 2 mg/kg per day or mycophenolate mofetyl (MMF) 2 g/d. Both groups also received tapering steroids, the cytochrome P-450 3A4 (CYP3A4) modulator, ketoconazole 50-100 mg/d, and cyclosporine with C0 targets in the everolimus group of 200-250 ng/mL in 1 mo, 100-125 ng/mL in 2 mo, and 50-65 ng/mL thereafter, and in the azathioprine or MMF group of 250-300 ng/mL in 1 mo, 200-250 ng/mL in 2 mo, 180-200 ng/mL until 3-6 mo, and 100-125 ng/mL thereafter. Clinical visits were performed monthly the first year and quarterly thereafter by treating physicians and all data was extracted by the investigators. RESULTS: The clinical characteristics of these two cohorts were similar. During the follow up (66 + 31 mo), both groups showed comparable clinical courses, but the biopsy proven acute rejection rate during the full follow-up period seemed to be lower in the everolimus group (20% vs 36%; P = 0.04). The everolimus group did not show a higher surgical complication rate than the other group. By the end of the follow-up period, the everolimus group tended to show a higher glomerular filtration rate. Nevertheless, we found no evidence of a consistent negative slope of the temporal allograft function estimated by the modification of the diet in renal disease formula in any of both groups. At 6 years of follow-up, the uncensored and death-censored graft survivals were 91% and 93%, and 91% and 83% in the everolimus plus cyclosporine, and cyclosporine alone groups, respectively. The addition of ketoconazole

  9. The Structural Basis for Homotropic and Heterotropic Cooperativity of Midazolam Metabolism by Human Cytochrome P450 3A4

    PubMed Central

    Roberts, Arthur G.; Yang, Jing; Halpert, James R.; Nelson, Sidney D.; Thummel, Kenneth T.; Atkins, William M.

    2012-01-01

    Human cytochrome P450 3A4 (CYP3A4) metabolizes a significant portion of clinically relevant drugs and often exhibits complex steady-state kinetics that can involve homotropic and heterotropic cooperativity between bound ligands. In previous studies, the hydroxylation of the sedative midazolam (MDZ) exhibited homotropic cooperativity via a decrease in the ratio of 1′-OH-MDZ to 4-OH-MDZ at higher drug concentrations. In this study, MDZ exhibited heterotropic cooperativity with the anti-epileptic drug carbamazepine (CBZ) with characteristic decreases in the 1′-OH-MDZ to 4-OH-MDZ ratios. To unravel the structural basis of MDZ cooperativity, MDZ and CBZ bound to CYP3A4 were probed using longitudinal T1 NMR relaxation and molecular docking with AutoDock 4.2. The distances calculated from the longitudinal T1 NMR relaxation were used during simulated annealing to constrain the molecules to the substrate-free X-ray crystal structure of CYP3A4. These simulations revealed that either two MDZ molecules or an MDZ molecule and a CBZ molecule assume a stacked configuration within the CYP3A4 active site. In either case, the proton at position-4 of the MDZ molecule was closer to the heme than the protons of the 1′-CH3 group. In contrast, molecular docking of a single molecule of MDZ revealed that the molecule was preferentially oriented with the 1′-CH3 position closer to the heme than the 4-position. This study provides the first detailed molecular analysis of heterotropic and homotropic cooperativity of a human cytochrome P450 from an NMR-based model. Cooperativity of ligand binding through direct interaction between stacked molecules may represent a common motif for homotropic and heterotropic cooperativity. PMID:21992114

  10. Effects of mace and nutmeg on human cytochrome P450 3A4 and 2C9 activity.

    PubMed

    Kimura, Yuka; Ito, Hideyuki; Hatano, Tsutomu

    2010-01-01

    Pharmacokinetic or pharmacodynamic interactions between herbal medicines or food constituents and drugs have been studied as crucial factors determining therapeutic efficacy and outcome. Most of these interactions are attributed to inhibition or induction of activity of cytochrome P450 (CYP) metabolic enzymes. Inhibition or induction of CYP enzymes by beverages, including grapefruit, pomegranate, or cranberry juice, has been well documented. Because spices are a common daily dietary component, other studies have reported inhibition of CYP activity by spices or their constituents/derivatives. However, a systematic evaluation of various spices has not been performed. In this study, we investigated effects of 55 spices on CYP3A4 and CYP2C9 activity. Cinnamon, black or white pepper, ginger, mace, and nutmeg significantly inhibited CYP3A4 or CYP2C9 activity. Furthermore, bioassay-guided fractionation of mace (Myristica fragrans) led to isolation and structural characterization of a new furan derivative (1) along with other 16 known compounds, including an acylphenol, neolignans, and phenylpropanoids. Among these isolates, (1S,2R)-1-acetoxy-2-(4-allyl-2,6-dimethoxyphenoxy)-1-(3,4-dimethoxyphenyl)propane (9) exhibited the most potent CYP2C9 inhibitory activity with an IC₅₀ value comparable to that of sulfaphenazole, a CYP2C9 inhibitor. Compound 9 competitively inhibited CYP2C9-mediated 4'-hydroxylation of diclofenac. The inhibitory constant (K(i)) of 9 was determined to be 0.037 µM. Compound 9 was found to be 14-fold more potent than was sulfaphenazole.

  11. Forster Distances of Ligand-Heme Pairs in Cytochrome P450 3A4

    NASA Astrophysics Data System (ADS)

    Fern, Joel; Guengerich, F. Peter; Marsch, Glenn A.

    2003-04-01

    Cytochrome P450 3A4 is a protein in the human intestine and liver which oxidizes over half of drugs in use today. Cytochrome P450 3A4 has proven resistant to structure determination by NMR or x-ray crystallography. Fluorescence Resonance Energy Transfer (FRET) studies of P450 3A4 can be used to compute distances between fluorophores in the protein, providing information on the structure of the protein. For a ligand to be suitably used as a probe its fluorescence must not be completely quenched by the heme cofactor in P450 3A4. By using quantum yields, fluorescence, and the absorption spectra of six P450 ligands, the following Forster distances between each ligand and the P450 heme moiety were obtained: pyrene 4.6 nm, aflatoxin B2 5.7 nm, alpha-naphthoflavone 3.7 nm, indinavir 2.6 nm, quinidine 3.5 nm, and terfenadine 2.8 nm. Having these distances should yield a better low-resolution cytochrome P450 3A4 structure. Using the Forster distances, FRET experiments on inter-ligand placement in P450 3A4 will be undertaken soon.

  12. Differential Interactions of Cytochrome P450 3A5 and 3A4 with Chemotherapeutic Agent-Vincristine: A Comparative Molecular Dynamics Study.

    PubMed

    Saba, Nikhat; Bhuyan, Rajabrata; Nandy, Suman Kumar; Seal, Alpana

    2015-01-01

    The chemotherapeutic agent vincristine, used for treatment of acute lymphoblastic leukemia is metabolized preferentially by polymorphic cytochrome P450 3A5 (CYP3A5) with higher clearance rate than cytochrome P450 3A4 (CYP3A4). As a result, CYP3A5 expressers have a reduced amount of vincristine-induced peripheral neuropathy than non-expressers. We modeled the structure of CYP3A5 and its interaction with vincristine, compared with CYP3A4-vincristine complex using molecular docking and simulation studies. This relative study helped us to understand the molecular mechanisms behind the interaction at the atomic level through interaction energy, binding free energy, hydrogen bond and solvent accessible surface area analysis - giving an insight into the binding mode and the main residues involved in this particular interaction. Our results show that the interacting groups get closer in CYP3A5-vincristine complex due to different orientation of vincristine. This leads to higher binding affinity of vincristine towards CYP3A5 compared to CYP3A4 and explains the preferential metabolism of vincristine by CYP3A5. We believe that, the results of the current study will be helpful for future studies on structure-based drug design in this area.

  13. Membrane properties induced by anionic phospholipids and phosphatidylethanolamine are critical for the membrane binding and catalytic activity of human cytochrome P450 3A4.

    PubMed

    Kim, Keon-Hee; Ahn, Taeho; Yun, Chul-Ho

    2003-12-30

    Human cytochrome P450 (CYP) 3A4, a membrane anchoring protein, is the major CYP enzyme present in both liver and small intestine. The enzyme plays a major role in the metabolism of many drugs and procarcinogens. The roles of individual phospholipids and membrane properties in the catalytic activity, membrane binding, and insertion into the membrane of CYP3A4 are poorly understood. Here we report that the catalytic activity of testosterone 6beta-hydroxylation, membrane binding, and membrane insertion of CYP3A4 increase as a function of anionic phospholipid concentration in the order phosphatidic acid (PA) > phosphatidylserine (PS) in a binary system of phosphatidylcholine (PC)/anionic phospholipid and as a function of phosphatidylethanolamine (PE) content in ternary systems of PC/PE/PA or PC/PE/PS having a fixed concentration of anionic phospholipids. These results suggest that PA and PE might help the binding of CYP3A4 to the membrane and the interaction with NPR. Cytochrome b(5) (b(5)) and apolipoprotein b(5) further enhanced the testosterone 6beta-hydroxylation activities of CYP3A4 in all tested phospholipids vesicles with various compositions. Phospholipid-dependent changes of the CYP3A4 conformation were also revealed by altered Trp fluorescence and CD spectra. We also found that PE induced the formation of anionic phospholipid-enriched domains in ternary systems using extrinsic fluorescent probes incorporated into lipid bilayers. Taken together, it can be suggested that the chemical and physical properties of membranes induced by anionic phospholipids and PE are critical for the membrane binding and catalytic activity of CYP3A4.

  14. Spectroscopic studies and molecular docking on the interaction of organotin antitumor compound bis[2,4-difluoro-N-(hydroxy-⟨κ⟩O)benzamidato-⟨κ⟩O]diphenyltin(IV) with human cytochrome P450 3A4 protease

    NASA Astrophysics Data System (ADS)

    Wei, Ying; Niu, Lin; Liu, Xinxin; Zhou, Hongyan; Dong, Hongzhou; Kong, Depeng; Li, Yunlan; Li, Qingshan

    2016-06-01

    A novel organotin DFDPT was synthesized and characterized by elemental analysis, IR, 1H, 13C, 119Sn, NMR techniques,etc. In order to investigate profoundly the relationship between DFDPT with human CYP3A4 proteaset and anticancer molecular mechanism of DFDPT, the intercalative mode of binding of DFDPT with CYP3A4 under physiological conditions were comprehensively evaluated using steady state, synchronous, three-dimensional fluorescence spectroscopy,circular dichroism and molecular docking. Fluorescence emission data showed that CYP3A4 fluorescence affected by DFDPT was a static quenching procedure, which implied that DFDPT-CYP3A4 complex had been formed. Apparent binding constants Kb of CYP3A4 with compound at 298 and 310 K were 2.51 × 107 and 3.09 × 105, respectively. The binding sites number n was 1.64 and 1.22, respectively. The thermodynamic parameters ΔH and ΔS of the DFDPT-CYP3A4 complex were negative, which indicated that their interaction was driven mainly by hydrogen bonding and van der Waals force. The binding of DFDPT-CYP3A4 was spontaneous process in which ΔG was negative. The synchronous results showed DFDPT induced conformational changes of CYP3A4 protein. Three-dimensional fluorescence and circular dichroism spectra results also revealed conformation of CYP3A4 protein had been possible changed in the presence of DFDPT. Molecular docking was used to study the interaction orientation between DFDPT and CYP3A4 protease. The results indicated that DFDPT interacted with a panel of amino acids in the active sites of CYP3A4 protein mainly through formation of hydrogen bond. Furthermore, the predicted binding mode of DFDPT into CYP3A4 appeared to adopt an orientation with interactions among Arg105, Ser119 and Thr309.

  15. Spectroscopic studies and molecular docking on the interaction of organotin antitumor compound bis[2,4-difluoro-N-(hydroxy-⟨κ⟩O)benzamidato-⟨κ⟩O]diphenyltin(IV) with human cytochrome P450 3A4 protease.

    PubMed

    Wei, Ying; Niu, Lin; Liu, Xinxin; Zhou, Hongyan; Dong, Hongzhou; Kong, Depeng; Li, Yunlan; Li, Qingshan

    2016-06-15

    A novel organotin DFDPT was synthesized and characterized by elemental analysis, IR, (1)H, (13)C, (119)Sn, NMR techniques,etc. In order to investigate profoundly the relationship between DFDPT with human CYP3A4 proteaset and anticancer molecular mechanism of DFDPT, the intercalative mode of binding of DFDPT with CYP3A4 under physiological conditions were comprehensively evaluated using steady state, synchronous, three-dimensional fluorescence spectroscopy,circular dichroism and molecular docking. Fluorescence emission data showed that CYP3A4 fluorescence affected by DFDPT was a static quenching procedure, which implied that DFDPT-CYP3A4 complex had been formed. Apparent binding constants Kb of CYP3A4 with compound at 298 and 310K were 2.51×10(7) and 3.09×10(5), respectively. The binding sites number n was 1.64 and 1.22, respectively. The thermodynamic parameters ΔH and ΔS of the DFDPT-CYP3A4 complex were negative, which indicated that their interaction was driven mainly by hydrogen bonding and van der Waals force. The binding of DFDPT-CYP3A4 was spontaneous process in which ΔG was negative. The synchronous results showed DFDPT induced conformational changes of CYP3A4 protein. Three-dimensional fluorescence and circular dichroism spectra results also revealed conformation of CYP3A4 protein had been possible changed in the presence of DFDPT. Molecular docking was used to study the interaction orientation between DFDPT and CYP3A4 protease. The results indicated that DFDPT interacted with a panel of amino acids in the active sites of CYP3A4 protein mainly through formation of hydrogen bond. Furthermore, the predicted binding mode of DFDPT into CYP3A4 appeared to adopt an orientation with interactions among Arg105, Ser119 and Thr309.

  16. Selective and sensitive quantification of the cytochrome P450 3A4 protein in human liver homogenates through multiple reaction monitoring mass spectrometry.

    PubMed

    Cieślak, Anna; Kelly, Isabelle; Trottier, Jocelyn; Verreault, Mélanie; Wunsch, Ewa; Milkiewicz, Piotr; Poirier, Guy; Droit, Arnaud; Barbier, Olivier

    2016-11-01

    This study aimed at establishing a sensitive multiple reaction monitoring-mass spectrometry (MRM-MS) method for the quantification of the drug metabolizing cytochrome P450 (CYP)3A4 enzyme in human liver homogenates. Liver samples were subjected to trypsin digestion. MRM-MS analyses were performed using three transitions optimized on one purified synthetic peptide unique to CYP3A4 and the standardizing protein, calnexin. Coefficient of variations for the precision and reproducibility of the MRM-MS measurement were also determined. The method was applied to liver samples from ten non-cholestatic donors and 34 cholestatic patients with primary biliary cholangitis (n = 12; PBC), primary sclerosing cholangitis (n = 10; PSC) or alcoholic liver disease (n = 12; ALD). The established method presented high sensitivity with limit of detection lower than 5 fmol, and was successfully applied for the absolute and relative quantification of CYP3A4 in both whole liver homogenate and microsomal fractions. When all groups were analyzed together, a significant correlation was observed for the MRM-based CYP3A4 protein quantification in homogenates and microsomes (r = 0.49, p < 0.001). No statistically significant difference was detected between CYP3A4 levels in PSC, PBC, ALD and control samples. Finally, the MRM-MS quantification of CYP3A4 in homogenates also correlated (r = 0.44; p < 0.05) with the level of enzyme activity in the same samples, as determined by measuring the chenodeoxycholic to hyocholic acid conversion. The established method provides a sensitive tool to evaluate the CYP3A4 protein in human liver homogenates from patients with normal or chronic/severe hepatic injury.

  17. Engineering of cytochrome P450 3A4 for enhanced peroxide-mediated substrate oxidation using directed evolution and site-directed mutagenesis.

    PubMed

    Kumar, Santosh; Liu, Hong; Halpert, James R

    2006-12-01

    CYP3A4 has been subjected to random and site-directed mutagenesis to enhance peroxide-supported metabolism of several substrates. Initially, a high-throughput screening method using whole cell suspensions was developed for H2O2-supported oxidation of 7-benzyloxyquinoline. Random mutagenesis by error-prone polymerase chain reaction and activity screening yielded several CYP3A4 mutants with enhanced activity. L216W and F228I showed a 3-fold decrease in Km, HOOH and a 2.5-fold increase in kcat/Km, HOOH compared with CYP3A4. Subsequently, T309V and T309A were created based on the observation that T309V in CYP2D6 has enhanced cumene hydroperoxide (CuOOH)-supported activity. T309V and T309A showed a > 6- and 5-fold higher kcat/Km, CuOOH than CYP3A4, respectively. Interestingly, L216W and F228I also exhibited, respectively, a > 4- and a > 3-fold higher kcat/Km, CuOOH than CYP3A4. Therefore, several multiple mutants were constructed from rationally designed and randomly isolated mutants; among them, F228I/T309A showed an 11-fold higher kcat/Km, CuOOH than CYP3A4. Addition of cytochrome b5, which is known to stimulate peroxide-supported activity, enhanced the kcat/Km, CuOOH of CYP3A4 by 4- to 7-fold. When the mutants were tested with other substrates, T309V and T433S showed enhanced kcat/Km, CuOOH with 7-benzyloxy-4-(trifluoromethyl)coumarin and testosterone, respectively, compared with CYP3A4. In addition, in the presence of cytochrome b5, T433S has the potential to produce milligram quantities of 6beta-hydroxytestosterone through peroxide-supported oxidation. In conclusion, a combination of random and site-directed mutagenesis approaches yielded CYP3A4 enzymes with enhanced peroxide-supported metabolism of several substrates.

  18. In-line capillary electrophoretic evaluation of the enantioselective metabolism of verapamil by cytochrome P3A4.

    PubMed

    Asensi-Bernardi, L; Martín-Biosca, Y; Escuder-Gilabert, L; Sagrado, S; Medina-Hernández, M J

    2013-07-12

    In this paper a methodology for the in-line evaluation of enantioselective metabolism by capillary electrophoresis has been developed and applied to the study of verapamil metabolism by cytochrome P3A4. The developed methodology comprises an in-capillary reaction step carried out by electrophoretically mediated microanalysis and a separation step in which highly sulfated β-cyclodextrin with partial filling technique has been employed as chiral selector for verapamil and norverapamil enantiomers resolution, joining the advantages of both methodologies in a unique assay. Kinetic parameters of the enzymatic reaction (Km and Vmax) have been evaluated for both verapamil enantiomers by non-linear fitting of experimental data obtained under intermediate precision conditions to Michaelis-Menten equation. Km and Vmax estimated values were 51±9 μM and 22±2 pmol min(-1) (pmol CYP)(-1) for S-VER and 47±9 μM and 21±2 pmol min(-1) (pmol CYP)(-1) for R-VER. Consequently, slight enantioselectivity was found for the CYP3A4 metabolism of verapamil. However, since confidence intervals of estimates overlap, we cannot assure a significant enantioselectivity. Intrinsic clearance values were also estimated from Km and Vmax for both enantiomers.

  19. Multiple doses of saw palmetto (Serenoa repens) did not alter cytochrome P450 2D6 and 3A4 activity in normal volunteers.

    PubMed

    Markowitz, John S; Donovan, Jennifer L; Devane, C Lindsay; Taylor, Robin M; Ruan, Ying; Wang, Jun-Sheng; Chavin, Kenneth D

    2003-12-01

    Saw palmetto (Serenoa repens) is the most commonly used herbal preparation in the treatment of benign prostatic hyperplasia. The objective of this study was to determine whether a characterized saw palmetto product affects the activity of cytochrome P450 (CYP) 2D6 or 3A4 in healthy volunteers (6 men and 6 women). The probe substrates dextromethorphan (CYP2D6 activity) and alprazolam (CYP3A4 activity) were administered orally at baseline and again after exposure to saw palmetto (320-mg capsule once daily) for 14 days. Dextromethorphan metabolic ratios and alprazolam pharmacokinetics were determined at baseline and after saw palmetto treatment. The mean ratio of dextromethorphan to its metabolite was 0.038 +/- 0.044 at baseline and 0.048 +/- 0.080 after 14 days of saw palmetto administration (P =.704, not significant [NS]), indicating a lack of effect on CYP2D6 activity. The area under the plasma alprazolam concentration versus time curve was 476 +/- 178 h. ng. mL(-1) at baseline and 479 +/- 125 h. ng. mL(-1) after saw palmetto treatment (P =.923, NS), indicating a lack of effect on CYP3A4 activity. The elimination half-life of alprazolam was 11.4 +/- 3.1 hours at baseline and 11.6 +/- 2.7 hours after saw palmetto treatment (P =.770, NS), also indicating a lack of effect on CYP3A4 activity. Our results indicate that extracts of saw palmetto at generally recommended doses are unlikely to alter the disposition of coadministered medications primarily dependent on the CYP2D6 or CYP3A4 pathways for elimination. These conclusions must be weighed in the context of the study's limited assessments and regarded as only the initial investigation into the drug interaction potential of saw palmetto.

  20. Inhibition on human liver cytochrome P450 3A4 by constituents of fennel (Foeniculum vulgare): identification and characterization of a mechanism-based inactivator.

    PubMed

    Subehan; Zaidi, Syed F H; Kadota, Shigetoshi; Tezuka, Yasuhiro

    2007-12-12

    Fennel, a seed of Foeniculum vulgare, is used as a culinary spice and traditional medicine. The methanolic extract of fennel showed a characteristic of mechanism-based inactivation on erythromycin N-demethylation mediated by human liver microsomal cytochrome P450 3A4 (CYP3A4). The present study was conducted to identify the fennel constituent having the inhibition. Thirteen compounds have been isolated from a methanol extract of fennel and tested for their inhibition on CYP3A4. Among them, 5-methoxypsoralen (5-MOP) showed the strongest inhibition with an IC50 value of 18.3 microM and a mixed type of inhibition. In addition, with the preincubation time of 20 min only 5-MOP showed preincubation time dependency; the IC50 value decreased from 18.3 microM with a preincubation time of 0 min to 4.6 microM with a preincubation time of 20 min. Further investigation on 5-MOP showed the characteristics of time-dependent inhibition, requirement of NADPH, lack of protecting effect of nucleophiles, and recovery of CYP3A4 activity by the competitive inhibitor. This result suggests that the inhibitory activity of CYP3A4 by 5-MOP was a mechanism-based inactivation. The kinetic parameter for mechanism-based inactivation was characterized by a KI value of 15.0 microM and a kinact value of 0.098 min(-1).

  1. Regulation of human pregnane X receptor and its target gene cytochrome P450 3A4 by Chinese herbal compounds and a molecular docking study.

    PubMed

    Liu, Ya-He; Mo, Sui-Lin; Bi, Hui-Chang; Hu, Bing-Fang; Li, Chun Guang; Wang, Yi-Tao; Huang, Ling; Huang, Min; Duan, Wei; Liu, Jun-Ping; Wei, Ming Qian; Zhou, Shu-Feng

    2011-04-01

    The pregnane X receptor (PXR) plays a critical role in the regulation of human cytochrome P450 3A4 (CYP3A4) gene. In this study, we investigated the effect of an array of compounds isolated from Chinese herbal medicines on the activity of PXR using a luciferase reporter gene assay in transiently transfected HepG2 and Huh7 cells and on the expression of PXR and CYP3A4 in LS174T cells. Furthermore, molecular docking was performed to investigate the binding modes of herbal compounds with PXR. Praeruptorin A and C, salvianolic acid B, sodium danshensu, protocatechuic aldehyde, cryptotanshinone, emodin, morin, and tanshinone IIA significantly transactivated the CYP3A4 reporter gene construct in either HepG2 or Huh7 cells. The PXR mRNA expression in LS174T cells was significantly induced by physcion, protocatechuic aldehyde, salvianolic acid B, and sodium danshensu. However, epifriedelanol, morin, praeruptorin D, mulberroside A, tanshinone I, and tanshinone IIA significantly down-regulated the expression of PXR mRNA in LS174T cells. All the herbal compounds tested can be readily docked into the ligand-binding cavity of PXR mainly through hydrogen bond and aromatic interactions with Ser247, Gln285, His407, and Arg401. These findings suggest that herbal medicines can significantly regulate PXR and CYP3A4 and this has important implication in herb-drug interactions.

  2. High-throughput fluorescence assay of cytochrome P450 3A4

    PubMed Central

    Cheng, Qian; Sohl, Christal D; Guengerich, F Peter

    2013-01-01

    Cytochrome P450 mono-oxygenases (P450s) are the principal enzymes involved in the oxidative metabolism of drugs and other xenobiotics. In this protocol, we describe a fluorescence-based, high-throughput assay for measuring the activity of P450 3A4, one of the key enzymes involved in drug metabolism. The assay involves the oxidative debenzylation of a substituted coumarin, yielding an increase in fluorescence on reaction. The entire procedure can be accomplished in 1 h or less. PMID:19661996

  3. Identification of the heme-modified peptides from cumene hydroperoxide-inactivated cytochrome P450 3A4.

    PubMed

    He, K; Bornheim, L M; Falick, A M; Maltby, D; Yin, H; Correia, M A

    1998-12-15

    Cumene hydroperoxide-mediated (CuOOH-mediated) inactivation of cytochromes P450 (CYPs) results in destruction of their prosthetic heme to reactive fragments that irreversibly bind to the protein. We have attempted to characterize this process structurally, using purified, 14C-heme labeled, recombinant human liver P450 3A4 as the target of CuOOH-mediated inactivation, and a battery of protein characterization approaches [chemical (CNBr) and proteolytic (lysylendopeptidase-C) digestion, HPLC-peptide mapping, microEdman sequencing, and mass spectrometric analyses]. The heme-peptide adducts isolated after CNBr/lysylendopeptidase-C digestion of the CuOOH-inactivated P450 3A4 pertain to two distinct P450 3A4 active site domains. One of the peptides isolated corresponds to the proximal helix L/Cys-region peptide 429-450 domain and the others to the K-region (peptide 359-386 domain). Although the precise residue(s) targeted remain to be identified, we have narrowed down the region of attack to within a 17 amino acid peptide (429-445) stretch of the 55-amino acid proximal helix L/Cys domain. Furthermore, although the exact structures of the heme-modifying fragments and the nature of the adduction remain to be established conclusively, the incremental masses of approximately 302 and 314 Da detected by electrospray mass spectrometric analyses of the heme-modified peptides are consistent with a dipyrrolic heme fragment comprised of either pyrrole ring A-D or B-C, a known soluble product of peroxidative heme degradation, as a modifying species.

  4. Mechanism of interactions of α-naphthoflavone with cytochrome P450 3A4 explored with an engineered enzyme bearing a fluorescent probe†

    PubMed Central

    Tsalkova, Tamara N.; Davydova, Nadezhda Y.; Halpert, James R.; Davydov, Dmitri R.

    2008-01-01

    Design of a partially cysteine-depleted C98S/C239S/C377S/C468A cytochrome P450 3A4 mutant designated CYP3A4(C58,C64) allowed site-directed incorporation of thiol-reactive fluorescent probes into α-helix A‥ The site of modification was identified as Cys-64 with the help of CYP3A4(C58) and CYP3A4(C64), each bearing only one accessible cysteine. Changes in the fluorescence of CYP3A4(C58,C64) labeled with 6-bromoacetyl-2-dimethylaminonaphthalene (BADAN), 7-diethylamino-3-(4’-maleimidylphenyl)-4-methylcoumarin (CPM), or monobromobimane (mBBr) were used to study the interactions with bromocriptine (BCT), 1-pyrenebutanol (1-PB), testosterone (TST), and α-naphthoflavone (ANF). Of these substrates only ANF has a specific effect, causing a considerable decrease in fluorescence intensity of BADAN and CPM and increasing the fluorescence of mBBr. This ANF-binding event in the case of BADAN-modified enzyme is characterized by an S50 of 18.2 ± 0.7, compared with the value of 2.2 ± 0.3 for the ANF-induced spin transition, thus revealing an additional low affinity binding site. Studies of the effect of TST, 1-PB, and BCT on the interactions of ANF monitored by changes in fluorescence of CYP3A4(C58,C64)-BADAN or by the ANF-induced spin transition revealed no competition by these substrates. Investigation of the kinetics of fluorescence increase upon H2O2-dependent heme depletion suggests that labeled CYP3A4(C58,C64) is represented by two conformers, one of which has the fluorescence of the BADAN and CPM labels completely quenched, presumably by photoinduced electron transfer from the neighboring Trp-72 and/or Tyr-68 residues. The binding of ANF to the newly discovered binding site appears to affect the interactions of the label with the above residue(s), thus modulating the fraction of the fluorescent conformer. PMID:17198380

  5. Induction of influx and efflux transporters and cytochrome P450 3A4 in primary human hepatocytes by rifampin, rifabutin, and rifapentine.

    PubMed

    Williamson, Beth; Dooley, Kelly E; Zhang, Yuan; Back, David J; Owen, Andrew

    2013-12-01

    Rifampin is a potent inducer of cytochrome P450 (CYP) enzymes and transporters. Drug-drug interactions during tuberculosis treatment are common. Induction by rifapentine and rifabutin is understudied. Rifampin and rifabutin significantly induced CYP3A4 (80-fold and 20-fold, respectively) in primary human hepatocytes. The induction was concentration dependent. Rifapentine induced CYP3A4 in hepatocytes from 3 of 6 donors. Data were also generated for ABCB1, ABCC1, ABCC2, organic anion-transporting polypeptide 1B1 (OATP1B1), and OATP1B3. This work serves as a basis for further study of the extent to which rifamycins induce key metabolism and transporter genes.

  6. Induction of Influx and Efflux Transporters and Cytochrome P450 3A4 in Primary Human Hepatocytes by Rifampin, Rifabutin, and Rifapentine

    PubMed Central

    Williamson, Beth; Dooley, Kelly E.; Zhang, Yuan; Back, David J.

    2013-01-01

    Rifampin is a potent inducer of cytochrome P450 (CYP) enzymes and transporters. Drug-drug interactions during tuberculosis treatment are common. Induction by rifapentine and rifabutin is understudied. Rifampin and rifabutin significantly induced CYP3A4 (80-fold and 20-fold, respectively) in primary human hepatocytes. The induction was concentration dependent. Rifapentine induced CYP3A4 in hepatocytes from 3 of 6 donors. Data were also generated for ABCB1, ABCC1, ABCC2, organic anion-transporting polypeptide 1B1 (OATP1B1), and OATP1B3. This work serves as a basis for further study of the extent to which rifamycins induce key metabolism and transporter genes. PMID:24060875

  7. Pharmacokinetic design optimization in children and estimation of maturation parameters: example of cytochrome P450 3A4.

    PubMed

    Bouillon-Pichault, Marion; Jullien, Vincent; Bazzoli, Caroline; Pons, Gérard; Tod, Michel

    2011-02-01

    The aim of this work was to determine whether optimizing the study design in terms of ages and sampling times for a drug eliminated solely via cytochrome P450 3A4 (CYP3A4) would allow us to accurately estimate the pharmacokinetic parameters throughout the entire childhood timespan, while taking into account age- and weight-related changes. A linear monocompartmental model with first-order absorption was used successively with three different residual error models and previously published pharmacokinetic parameters ("true values"). The optimal ages were established by D-optimization using the CYP3A4 maturation function to create "optimized demographic databases." The post-dose times for each previously selected age were determined by D-optimization using the pharmacokinetic model to create "optimized sparse sampling databases." We simulated concentrations by applying the population pharmacokinetic model to the optimized sparse sampling databases to create optimized concentration databases. The latter were modeled to estimate population pharmacokinetic parameters. We then compared true and estimated parameter values. The established optimal design comprised four age ranges: 0.008 years old (i.e., around 3 days), 0.192 years old (i.e., around 2 months), 1.325 years old, and adults, with the same number of subjects per group and three or four samples per subject, in accordance with the error model. The population pharmacokinetic parameters that we estimated with this design were precise and unbiased (root mean square error [RMSE] and mean prediction error [MPE] less than 11% for clearance and distribution volume and less than 18% for k(a)), whereas the maturation parameters were unbiased but less precise (MPE < 6% and RMSE < 37%). Based on our results, taking growth and maturation into account a priori in a pediatric pharmacokinetic study is theoretically feasible. However, it requires that very early ages be included in studies, which may present an obstacle to the

  8. A Mechanism-Based Model for the Prediction of the Metabolic Sites of Steroids Mediated by Cytochrome P450 3A4.

    PubMed

    Dai, Zi-Ru; Ai, Chun-Zhi; Ge, Guang-Bo; He, Yu-Qi; Wu, Jing-Jing; Wang, Jia-Yue; Man, Hui-Zi; Jia, Yan; Yang, Ling

    2015-06-30

    Early prediction of xenobiotic metabolism is essential for drug discovery and development. As the most important human drug-metabolizing enzyme, cytochrome P450 3A4 has a large active cavity and metabolizes a broad spectrum of substrates. The poor substrate specificity of CYP3A4 makes it a huge challenge to predict the metabolic site(s) on its substrates. This study aimed to develop a mechanism-based prediction model based on two key parameters, including the binding conformation and the reaction activity of ligands, which could reveal the process of real metabolic reaction(s) and the site(s) of modification. The newly established model was applied to predict the metabolic site(s) of steroids; a class of CYP3A4-preferred substrates. 38 steroids and 12 non-steroids were randomly divided into training and test sets. Two major metabolic reactions, including aliphatic hydroxylation and N-dealkylation, were involved in this study. At least one of the top three predicted metabolic sites was validated by the experimental data. The overall accuracy for the training and test were 82.14% and 86.36%, respectively. In summary, a mechanism-based prediction model was established for the first time, which could be used to predict the metabolic site(s) of CYP3A4 on steroids with high predictive accuracy.

  9. Electron transfer properties and catalytic competence of cytochrome b5 in the fusion protein Hmwb5-EGFP in reactions catalyzed by cytochrome P450 3A4.

    PubMed

    Yantsevich, A V; Gilep, A A; Usanov, S A

    2009-08-01

    In the present paper we describe studies on molecular mechanisms of protein-protein interactions between cytochrome P450 3A4 (CYP3A4) and cytochrome b(5), the latter being incorporated into the artificial recombinant protein Hmwb(5)-EGFP containing full-length cytochrome b(5) (functional module) and a mutant form of the green fluorescent protein EGFP (signal module) fused into a single polypeptide chain. It is shown that cytochrome b(5) within the fusion protein Hmwb(5)-EGFP can be reduced by NADPH-cytochrome P450 reductase in the presence of NADPH, the rate of reduction being dependent on solution ionic strength, indicating that the signal module does not prevent the interaction of the flavo- and hemeproteins. Interaction of cytochrome P450 3A4 and Hmwb(5)-EGFP was estimated based on spin equilibrium shift of cytochrome P450 3A4 to high-spin state in the presence of Hmwb(5)-EGFP, as well as based on steady-state fluorescence anisotropy of the EGFP component of the fusion protein in the presence of CYP3A4. The engineering of chimeric protein Hmwb(5)-EGFP gives an independent method to determine dissociation constant for the complex of cytochrome P450 and cytochrome b(5) that is less sensitive to environmental factors compared to spectrophotometric titration used before. Reconstitution of catalytic activity of cytochrome P450 3A4 in the reaction of testosterone 6beta-hydroxylation in the presence of Hmwb(5)-EGFP indicates that cytochrome b(5) in the fusion protein is able to stimulate the hydroxylation reaction. Using other fusion proteins containing either cytochrome b(5) or its hydrophilic domain to reconstitute catalytic activity of cytochrome P450 3A4 showed that the hydrophobic domain of cytochrome b(5) participates not only in hemeprotein interaction, but also in electron transfer from cytochrome b(5) to cytochrome P450.

  10. Piperine activates human pregnane X receptor to induce the expression of cytochrome P450 3A4 and multidrug resistance protein 1

    SciTech Connect

    Wang, Yue-Ming; Lin, Wenwei; Chai, Sergio C.; Wu, Jing; Ong, Su Sien; Schuetz, Erin G.; Chen, Taosheng

    2013-10-01

    Activation of the pregnane X receptor (PXR) and subsequently its target genes, including those encoding drug transporters and metabolizing enzymes, while playing substantial roles in xenobiotic detoxification, might cause undesired drug-drug interactions. Recently, an increased awareness has been given to dietary components for potential induction of diet–drug interactions through activation of PXR. Here, we studied, whether piperine (PIP), a major component extracted from the widely-used daily spice black pepper, could induce PXR-mediated expression of cytochrome P450 3A4 (CYP3A4) and multidrug resistance protein 1 (MDR1). Our results showed that PIP activated human PXR (hPXR)-mediated CYP3A4 and MDR1 expression in human hepatocytes, intestine cells, and a mouse model; PIP activated hPXR by recruiting its coactivator SRC-1 in both cellular and cell-free systems; PIP bound to the hPXR ligand binding domain in a competitive ligand binding assay in vitro. The dichotomous effects of PIP on induction of CYP3A4 and MDR1 expression observed here and inhibition of their activity reported elsewhere challenges the potential use of PIP as a bioavailability enhancer and suggests that caution should be taken in PIP consumption during drug treatment in patients, particularly those who favor daily pepper spice or rely on certain pepper remedies. - Highlights: • Piperine induces PXR-mediated CYP3A4 and MDR1 expression. • Piperine activates PXR by binding to PXR and recruiting coactivator SRC-1. • Piperine induces PXR activation in vivo. • Caution should be taken in piperine consumption during drug treatment.

  11. Inhibition of P-glycoprotein, multidrug resistance-associated protein 2 and cytochrome P450 3A4 improves the oral absorption of octreotide in rats with portal hypertension.

    PubMed

    Sun, Xiao-Yu; Duan, Zhi-Jun; Liu, Zhen; Tang, Shun-Xiong; Li, Yang; He, Shou-Cheng; Wang, Qiu-Ming; Chang, Qing-Yong

    2016-12-01

    The aim of the present study was to increase the intestinal transport of octreotide (OCT) by targeting the first-pass impact to identify a potential method for decreasing portal vein pressure (PVP) using oral OCT. Thus, the bioavailability of intestinally absorbed OCT was evaluated in normal rats and rats with portal hypertension (PH) that had been administered P-glycoprotein/multidrug resistance-associated protein 2/cytochrome P450 3A4 (P-gp/MRP2/CYP3A4) inhibitors. The mRNA and protein expression levels of P-gp, MRP2 and CYP3A4 were evaluated in normal and PH rats with or without OCT and the inhibitors using RT-PCR, western blot and immunohistochemical analyses. The potential effects of the inhibitor administration on PVP were also examined. The results suggest that P-gp, MRP2 and CYP3A4 play important roles in prohibiting the enteral absorption of OCT, particularly under a PH environment. Moreover, inhibitors of P-gp, MRP2 and CYP3A4 decrease the first-pass effects of OCT and effectively reduce PVP under PH conditions. Therefore, the present results suggest P-gp, MRP2 and CYP3A4 are key factors in the intestinal absorption of OCT. The inhibition of P-gp, MRP2 and CYP3A4 can markedly decrease the first-pass effects of OCT, and their use may facilitate the use of orally administered OCT.

  12. Inhibition of P-glycoprotein, multidrug resistance-associated protein 2 and cytochrome P450 3A4 improves the oral absorption of octreotide in rats with portal hypertension

    PubMed Central

    Sun, Xiao-Yu; Duan, Zhi-Jun; Liu, Zhen; Tang, Shun-Xiong; Li, Yang; He, Shou-Cheng; Wang, Qiu-Ming; Chang, Qing-Yong

    2016-01-01

    The aim of the present study was to increase the intestinal transport of octreotide (OCT) by targeting the first-pass impact to identify a potential method for decreasing portal vein pressure (PVP) using oral OCT. Thus, the bioavailability of intestinally absorbed OCT was evaluated in normal rats and rats with portal hypertension (PH) that had been administered P-glycoprotein/multidrug resistance-associated protein 2/cytochrome P450 3A4 (P-gp/MRP2/CYP3A4) inhibitors. The mRNA and protein expression levels of P-gp, MRP2 and CYP3A4 were evaluated in normal and PH rats with or without OCT and the inhibitors using RT-PCR, western blot and immunohistochemical analyses. The potential effects of the inhibitor administration on PVP were also examined. The results suggest that P-gp, MRP2 and CYP3A4 play important roles in prohibiting the enteral absorption of OCT, particularly under a PH environment. Moreover, inhibitors of P-gp, MRP2 and CYP3A4 decrease the first-pass effects of OCT and effectively reduce PVP under PH conditions. Therefore, the present results suggest P-gp, MRP2 and CYP3A4 are key factors in the intestinal absorption of OCT. The inhibition of P-gp, MRP2 and CYP3A4 can markedly decrease the first-pass effects of OCT, and their use may facilitate the use of orally administered OCT. PMID:28105103

  13. Bioconversion of the antihistaminc drug loratadine by tobacco cell suspension cultures expressing human cytochrome P450 3A4.

    PubMed

    Warzecha, Heribert; Ferme, Daniela; Peer, Markus; Frank, Andreas; Unger, Matthias

    2010-03-01

    In this study we have expanded the metabolic potential of plant cell suspension cultures by introducing active human cytochrome P450 monooxygenase 3A4 into tobacco cells. Exogenously supplied loratadine was metabolized in a 3A4-specific manner, showing the capacity of this system for the generation of metabolites.

  14. P-glycoprotein and cytochrome P450 3A4 involvement in risperidone transport using an in vitro Caco-2/TC7 model and an in vivo model.

    PubMed

    Cousein, Etienne; Barthélémy, Christine; Poullain, Stéphanie; Simon, Nicolas; Lestavel, Sophie; Williame, Virginie; Joiris, Etienne; Danel, Cécile; Clavey, Véronique; Brossard, Denis; Robert, Hugues; Crauste-Manciet, Sylvie; Vaccher, Claude; Odou, Pascal

    2007-05-09

    The possible involvement of P-glycoprotein (P-gp) and cytochrome P450 (CYP) 3A4 in risperidone transport was investigated using in vitro and in vivo models. Firstly, uptake studies were performed on a Caco-2/TC7 cell monolayer; the effects of 1 microg ml(-1) risperidone on apparent permeability were determined for secretory and absorptive directions, in the presence or absence of various P-gp and CYP3A4 inhibitors (verapamil, ketoconazole, erythromycin), and of an associated multidrug-resistant protein inhibitor (indomethacin). Secondly, on a conscious rat model, risperidone pharmacokinetic parameters, notably absorption parameters, were determined using compartmental and deconvolution methods. Three groups of seven rats received respectively an IV risperidone dose, an oral risperidone dose (PO group) and the same oral risperidone dose after verapamil administration (POV group). No formation of 9-hydroxyrisperidone was observed on Caco-2 cells after risperidone administration; there was no evidence that intestinal CYP3A4 is involved in risperidone metabolising. Risperidone secretory permeation was higher than absorptive permeation. Verapamil increased risperidone absorption permeation and decreased its secretory permeation. Indomethacin did not modify these permeation values. In rats, verapamil led to an increase in both risperidone and 9-hydroxyrisperidone plasmatic concentrations. The fraction absorbed in the verapamil group was 3.18 times higher than in the oral group (65.9% and 20.7% for POV group and PO group). The absorption rate constant was lower in the verapamil group. Our results indicate that P-gp decreases the intestinal absorption of risperidone and that intestinal CYP3A4 is not involved in risperidone metabolism.

  15. Extracts of Immature Orange (Aurantii fructus immaturus) and Citrus Unshiu Peel (Citri unshiu pericarpium) Induce P-Glycoprotein and Cytochrome P450 3A4 Expression via Upregulation of Pregnane X Receptor.

    PubMed

    Okada, Naoto; Murakami, Aki; Urushizaki, Shiori; Matsuda, Misa; Kawazoe, Kazuyoshi; Ishizawa, Keisuke

    2017-01-01

    P-glycoprotein (P-gp) and cytochrome P450 3A4 (CYP3A4) are expressed in the intestine and are associated with drug absorption and metabolism. Pregnane X receptor (PXR) is the key molecule that regulates the expression of P-gp and CYP3A4. Given that PXR activity is regulated by a variety of compounds, it is possible that unknown PXR activators exist among known medicines. Kampo is a Japanese traditional medicine composed of various natural compounds. In particular, immature orange [Aurantii fructus immaturus (IO)] and citrus unshiu peel [Citri unshiu pericarpium (CP)] are common ingredients of kampo. A previous study reported that kampo containing IO or CP decreased the blood concentration of concomitant drugs via upregulation of CYP3A4 although the mechanism was unclear. Some flavonoids are indicated to alter P-gp and CYP3A4 activity via changes in PXR activity. Because IO and CP include various flavonoids, we speculated that the activity of P-gp and CYP3A4 in the intestine may be altered via changes in PXR activity when IO or CP is administered. We tested this hypothesis by using LS180 intestinal epithelial cells. The ethanol extract of IO contained narirutin and naringin, and that of CP contained narirutin and hesperidin. Ethanol extracts of IO and CP induced P-gp, CYP3A4, and PXR expression. The increase of P-gp and CYP3A4 expression by the IO and CP ethanol extracts was inhibited by ketoconazole, an inhibitor of PXR activation. The ethanol extract of IO and CP decreased the intracellular concentration of digoxin, a P-gp substrate, and this decrease was inhibited by cyclosporine A, a P-gp inhibitor. In contrast, CP, but not IO, stimulated the metabolism of testosterone, a CYP3A4 substrate, and this was inhibited by a CYP3A4 inhibitor. These findings indicate that the ethanol extract of IO and CP increased P-gp and CYP3A4 expression via induction of PXR protein. Moreover, this induction decreased the intracellular substrate concentration.

  16. Extracts of Immature Orange (Aurantii fructus immaturus) and Citrus Unshiu Peel (Citri unshiu pericarpium) Induce P-Glycoprotein and Cytochrome P450 3A4 Expression via Upregulation of Pregnane X Receptor

    PubMed Central

    Okada, Naoto; Murakami, Aki; Urushizaki, Shiori; Matsuda, Misa; Kawazoe, Kazuyoshi; Ishizawa, Keisuke

    2017-01-01

    P-glycoprotein (P-gp) and cytochrome P450 3A4 (CYP3A4) are expressed in the intestine and are associated with drug absorption and metabolism. Pregnane X receptor (PXR) is the key molecule that regulates the expression of P-gp and CYP3A4. Given that PXR activity is regulated by a variety of compounds, it is possible that unknown PXR activators exist among known medicines. Kampo is a Japanese traditional medicine composed of various natural compounds. In particular, immature orange [Aurantii fructus immaturus (IO)] and citrus unshiu peel [Citri unshiu pericarpium (CP)] are common ingredients of kampo. A previous study reported that kampo containing IO or CP decreased the blood concentration of concomitant drugs via upregulation of CYP3A4 although the mechanism was unclear. Some flavonoids are indicated to alter P-gp and CYP3A4 activity via changes in PXR activity. Because IO and CP include various flavonoids, we speculated that the activity of P-gp and CYP3A4 in the intestine may be altered via changes in PXR activity when IO or CP is administered. We tested this hypothesis by using LS180 intestinal epithelial cells. The ethanol extract of IO contained narirutin and naringin, and that of CP contained narirutin and hesperidin. Ethanol extracts of IO and CP induced P-gp, CYP3A4, and PXR expression. The increase of P-gp and CYP3A4 expression by the IO and CP ethanol extracts was inhibited by ketoconazole, an inhibitor of PXR activation. The ethanol extract of IO and CP decreased the intracellular concentration of digoxin, a P-gp substrate, and this decrease was inhibited by cyclosporine A, a P-gp inhibitor. In contrast, CP, but not IO, stimulated the metabolism of testosterone, a CYP3A4 substrate, and this was inhibited by a CYP3A4 inhibitor. These findings indicate that the ethanol extract of IO and CP increased P-gp and CYP3A4 expression via induction of PXR protein. Moreover, this induction decreased the intracellular substrate concentration. PMID:28270768

  17. In vivo effects of goldenseal, kava kava, black cohosh, and valerian on human cytochrome P450 1A2, 2D6, 2E1, and 3A4 phenotypes

    PubMed Central

    Gardner, Stephanie F.; Hubbard, Martha A.; Williams, D. Keith; Gentry, W. Brooks; Khan, Ikhlas A.; Shah., Amit

    2007-01-01

    Objectives Phytochemical-mediated modulation of cytochrome P-450 activity may underlie many herb-drug interactions. Single time-point, phenotypic metabolic ratios were used to determine whether long-term supplementation of goldenseal (Hydrastis canadensis), black cohosh (Cimicifuga racemosa), kava kava (Piper methysticum), or valerian (Valeriana officinalis) extracts affected CYP1A2, CYP2D6, CYP2E1, or CYP3A4/5 activity. Methods Twelve healthy volunteers (6 females) were randomly assigned to receive goldenseal, black cohosh, kava kava, or valerian for 28 days. For each subject, a 30-day washout period was interposed between each supplementation phase. Probe drug cocktails of midazolam and caffeine, followed 24 hours later by chlorzoxazone and debrisoquine were administered before (baseline) and at the end of supplementation. Pre- and post-supplementation phenotypic trait measurements were determined for CYP3A4/5, CYP1A2, CYP2E1, and CYP2D6 using 1-hydroxymidazolam/midazolam serum ratios (1-hour sample), paraxanthine/caffeine serum ratios (6-hour sample), 6-hydroxychlorzoxazone/chlorzoxazone serum ratios (2-hour sample), and debrisoquine urinary recovery ratios (8-hour collection), respectively. The content of purported “active” phytochemicals was determined for each supplement. Results Comparisons of pre- and post-supplementation phenotypic ratio means revealed significant inhibition (~40%) of CYP2D6 (difference = −0.228; 95% CI = −0.268 to −0.188) and CYP3A4/5 (difference = −1.501; 95% CI = −1.840 to −1.163) activity for goldenseal. Kava produced significant reductions (~40%) in CYP2E1 only (difference = −0.192; 95% CI = −0.325 to −0.060). Black cohosh also exhibited statistically significant inhibition of CYP2D6 (difference = −0.046; 95% CI = −0.085 to −0.007), but the magnitude of the effect (~7%) did not appear clinically relevant. No significant changes in phenotypic ratios were observed for valerian. Conclusions Botanical

  18. Thiazide-like diuretic drug metolazone activates human pregnane X receptor to induce cytochrome 3A4 and multidrug-resistance protein 1.

    PubMed

    Banerjee, Monimoy; Chen, Taosheng

    2014-11-15

    Human pregnane X receptor (hPXR) regulates the expression of drug-metabolizing enzyme cytochrome P450 3A4 (CYP3A4) and drug transporters such as multidrug-resistance protein 1 (MDR1). PXR can be modulated by small molecules, including Federal Drug Administration (FDA)-approved drugs, thus altering drug metabolism and causing drug-drug interactions. To determine the role of FDA-approved drugs in PXR-mediated regulation of drug metabolism and clearance, we screened 1481 FDA-approved small-molecule drugs by using a luciferase reporter assay in HEK293T cells and identified the diuretic drug metolazone as an activator of hPXR. Our data showed that metolazone activated hPXR-mediated expression of CYP3A4 and MDR1 in human hepatocytes and intestine cells and increased CYP3A4 promoter activity in various cell lines. Mammalian two-hybrid assays showed that hPXR recruits its co-activator SRC-1 upon metolazone binding in HepG2 cells, explaining the mechanism of hPXR activation. To understand the role of other commonly-used diuretics in hPXR activation and the structure-activity relationship of metolazone, thiazide and non-thiazide diuretics drugs were also tested but only metolazone activates hPXR. To understand the molecular mechanism, docking studies and mutational analysis were carried out and showed that metolazone binds in the ligand-binding pocket and interacts with mostly hydrophobic amino acid residues. This is the first report showing that metolazone activates hPXR. Because activation of hPXR might cause drug-drug interactions, metolazone should be used with caution for drug treatment in patients undergoing combination therapy.

  19. Systemic exposure of topical erythromycin in comparison to oral administration and the effect on cytochrome P450 3A4 activity

    PubMed Central

    Carls, Alexandra; Jedamzik, Julia; Witt, Lukas; Hohmann, Nicolas; Burhenne, Juergen; Mikus, Gerd

    2014-01-01

    Aims Erythromycin is a macrolide antibiotic, which is frequently used as a topical formulation for the treatment of acne. It is also known as an inhibitor of the cytochrome P450 (CYP) isoenzyme 3A4. In this study, the systemic availability of topical erythromycin, hence the influence on the activity of CYP3A, is evaluated in comparison to orally administered erythromycin. Methods Sixteen healthy volunteers received consecutively topical (two applications of 800 mg) and oral erythromycin (two dose groups, 250 and 1000 mg, with n = 8) to assess erythromycin pharmacokinetics. A microdose of midazolam (3 μg orally) was used to determine the effect on CYP3A activity. Results After topical administration, erythromycin was detected in the plasma of every participant without causing a statistically significant alteration of CYP3A activity. After oral administration, the dose-normalized erythromycin exposure (AUC∞) was 1335 h ng ml−1 after 250 mg and 3-fold higher after the 1000 mg dose (4051 h ng ml−1; P < 0.01), suggesting nonlinear pharmacokinetics of erythromycin. Both oral doses inhibited CYP3A activity; midazolam clearance was decreased to 61% (250 mg) and 21% (1000 mg). The relationship between erythromycin exposure and CYP3A activity (Hill equation) revealed a 50% reduction of CYP3A activity by an erythromycin AUC∞ of 2106 h ng ml−1. Conclusions Topical erythromycin did not cause clinically relevant CYP3A alterations, although low systemic availability of erythromycin was observed. This supports the assumption that treatment with topical erythromycin is not critical in terms of CYP3A inhibition. Furthermore, substantial nonlinearity of erythromycin pharmacokinetics after two different oral doses was observed, possibly due to autoinhibition. PMID:25139487

  20. A Cytochrome P450 3A4 Biosensor Based on Generation 4.0 PAMAM Dendrimers for the Detection of Caffeine

    PubMed Central

    Müller, Michael; Agarwal, Neha; Kim, Jungtae

    2016-01-01

    Cytochromes P450 (CYP, P450) are a large family of heme-active-site proteins involved in many catalytic processes, including steroidogenesis. In humans, four primary enzymes are involved in the metabolism of almost all xenobiotics. Among these enzymes, CYP3A4 is responsible for the inactivation of the majority of used drugs which makes this enzyme an interesting target for many fields of research, especially pharmaceutical research. Since the late 1970s, attempts have been made to construct and develop electrochemical sensors for the determination of substrates. This paper is concerned with the establishment of such a CYP3A4-containing biosensor. The sensor was constructed by adsorption of alternating layers of sub-nanometer gold particle-modified PAMAM (poly-amido-amine) dendrimers of generation 4.0, along with the enzyme by a layer-by-layer assembly technique. Atomic force microscopy (AFM), quartz crystal microbalance (QCM), and Fourier-transformed infrared spectroscopy (FTIR) were employed to elucidate the sensor assembly. Additionally, the biosensor was tested by cyclic voltammetry using caffeine as a substrate. PMID:27548239

  1. Linkage and association of haplotypes at the APOA1/C3/A4/A5 genecluster to familial combined hyperlipidemia

    SciTech Connect

    Eichenbaum-Voline, Sophie; Olivier, Michael; Jones, Emma L.; Naoumova, Rossitza P.; Jones, Bethan; Gau, Brian; Seed, Mary; Betteridge,D. John; Galton, David J.; Rubin, Edward M.; Scott, James; Shoulders,Carol C.; Pennacchio, Len A.

    2002-09-15

    Combined hyperlipidemia (CHL) is a common disorder of lipidmetabolism that leads to an increased risk of cardiovascular disease. Thelipid profile of CHL is characterised by high levels of atherogeniclipoproteins and low levels of high-density-lipoprotein-cholesterol.Apolipoprotein (APO) A5 is a newly discovered gene involved in lipidmetabolism located within 30kbp of the APOA1/C3/A4 gene cluster. Previousstudies have indicated that sequence variants in this cluster areassociated with increased plasma lipid levels. To establish whethervariation at the APOA5 gene contributes to the transmission of CHL, weperformed linkage and linkage disequilibrium (LD) tests on a large cohortof families (n=128) with familial CHL (FCHL). The linkage data producedevidence for linkage of the APOA1/C3/A4/A5 genomic interval to FCHL (NPL= 1.7, P = 0.042). The LD studies substantiated these data. Twoindependent rare alleles, APOA5c.56G and APOC3c.386G of this gene clusterwere over-transmitted in FCHL (P = 0.004 and 0.007, respectively), andthis was associated with a reduced transmission of the most commonAPOA1/C3/A4/A5 haplotype (frequency 0.4425) to affected subjects (P =0.013). The APOA5c.56G allele was associated with increased plasmatriglyceride levels in FCHL probands, whereas the second, andindependent, APOC3c.386G allele was associated with increased plasmatriglyceride levels in FCHL pedigree founders. Thus, this allele (or anallele in LD) may mark a quantitative trait associated with FCHL, as wellas representing a disease susceptibility locus for the condition. Thisstudy establishes that sequence variation in the APOA1/C3/A4/A5 genecluster contributes to the transmission of FCHL in a substantialproportion of affected families, and that these sequence variants mayalso contribute to the lipid abnormalities of the metabolic syndrome,which is present in up to 40 percent of persons with cardiovasculardisease.

  2. Integrated in silico-in vitro strategy for addressing cytochrome P450 3A4 time-dependent inhibition.

    PubMed

    Zientek, Michael; Stoner, Chad; Ayscue, Robyn; Klug-McLeod, Jacquelyn; Jiang, Ying; West, Michael; Collins, Claire; Ekins, Sean

    2010-03-15

    Throughout the past decade, the expectations from the regulatory agencies for safety, drug-drug interactions (DDIs), pharmacokinetic, and disposition characterization of new chemical entities (NCEs) by pharmaceutical companies seeking registration have increased. DDIs are frequently assessed using in silico, in vitro, and in vivo methodologies. However, a key gap in this screening paradigm is a full structural understanding of time-dependent inhibition (TDI) on the cytochrome P450 systems, particularly P450 3A4. To address this, a number of high-throughput in vitro assays have been developed. This work describes an automated assay for TDI using two concentrations at two time points (2 + 2 assay). Data generated with this assay for over 2000 compounds from multiple therapeutic programs were used to generate in silico Bayesian classification models of P450 3A4-mediated TDI. These in silico models were validated using several external test sets and multiple random group testing (receiver operator curve value >0.847). We identified a number of substructures that were likely to elicit TDI, the majority containing indazole rings. These in vitro and in silico approaches have been implemented as a part of the Pfizer screening paradigm. The Bayesian models are available on the intranet to guide synthetic strategy, predict whether a NCE is likely to cause a TDI via P450 3A4, filter for in vitro testing, and identify substructures important for TDI as well as those that do not cause TDI. This represents an integrated in silico-in vitro strategy for addressing P450 3A4 TDI and improving the efficiency of screening.

  3. Synthesis, antimicrobial activity and QSAR studies of new 2,3-disubstituted-3,3a,4,5,6,7-hexahydro-2H-indazoles.

    PubMed

    Minu, Maninder; Thangadurai, Ananda; Wakode, Sharad Ramesh; Agrawal, Shyam Sundar; Narasimhan, Balasubramanian

    2009-06-01

    Antimicrobial activity of synthesized 2,3-disubstituted-3,3a,4,5,6,7-hexahydro-2H-indazole derivatives indicated that 3-(4-chlorophenyl)-2-(4-nitrophenylsulfonyl)-3,3a,4,5,6,7-hexahydro-2H-indazole (6) and 3-(4-fluorophenyl)-2-(4-nitrophenylsulfonyl)-3,3a,4,5,6,7-hexahydro-2H-indazole (20) were the most active compounds. Further, the results of QSAR studies indicated the importance of topological parameters (2)chi and (2)chi(v) in defining the antimicrobial activity of hexahydroindazoles.

  4. Effects of variations in the APOA1/C3/A4/A5 gene cluster on different parameters of postprandial lipid metabolism in healthy young men

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: The APOA1/C3/A4/A5 gene cluster encodes important regulators of fasting lipids, but the majority of lipid metabolism takes place in the postprandial state, and knowledge about gene regulation in this state is scarce. With the aim of characterizing possible regulators of lipid metabolism...

  5. The APOA1/C3/A4/A5 cluster and markers of allostatic load in the Boston Puerto Rican Health Study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The APOA1/C3/A4/A5 cluster encodes key regulators of plasma lipids. Interactions between dietary factors and single nucleotide polymorphisms (SNPs) in the cluster have been reported. Allostatic load, or physiological dysregulation in response to stress, has been implicated in shaping health disparit...

  6. Inactivation of cytochrome P450 (P450) 3A4 but not P450 3A5 by OSI-930, a thiophene-containing anticancer drug.

    PubMed

    Lin, Hsia-lien; Zhang, Haoming; Medower, Christine; Hollenberg, Paul F; Johnson, William W

    2011-02-01

    An investigational anticancer agent that contains a thiophene moiety, 3-[(quinolin-4-ylmethyl)-amino]-N-[4-trifluoromethox)phenyl] thiophene-2-carboxamide (OSI-930), was tested to investigate its ability to modulate the activities of several cytochrome P450 enzymes. Results showed that OSI-930 inactivated purified, recombinant cytochrome P450 (P450) 3A4 in the reconstituted system in a mechanism-based manner. The inactivation was dependent on cytochrome b(5) and required NADPH. Catalase did not protect against the inactivation. No inactivation was observed in studies with human 2B6, 2D6, or 3A5 either in the presence or in the absence of b(5). The inactivation of 3A4 by OSI-930 was time- and concentration-dependent. The inactivation of the 7-benzyloxy-4-(trifluoromethyl)coumarin catalytic activity of 3A4 was characterized by a K(I) of 24 μM and a k(inact) of 0.04 min(-1). This K(I) is significantly greater than the clinical OSI-930 C(max) of 1.7 μM at the maximum tolerated dose, indicating that clinical drug interactions of OSI-930 via this pathway are not likely. Spectral analysis of the inactivated protein indicated that the decrease in the reduced CO spectrum at 450 nm was comparable to the amount of inactivation, thereby suggesting that the inactivation was primarily due to modification of the heme. High-pressure liquid chromatography (HPLC) analysis with detection at 400 nm showed a loss of heme comparable to the activity loss, but a modified heme was not detected. This result suggests either that the heme must have been modified enough so as not to be observed in a HPLC chromatograph or, possibly, that it was destroyed. The partition ratio for the inactivation of P450 3A4 was approximately 23, suggesting that this P450 3A4-mediated pathway occurs with approximately 4% frequency during the metabolism of OSI-930. Modeling studies on the binding of OSI-930 to the active site of the P450 3A4 indicated that OSI-930 would be oriented properly in the active site

  7. Inhibition of CYP3A4 and CYP1A2 b Aegle marmelos and its constituents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aegle marmelos (bael) is a popular tree in India and other Southeast Asian countries. The fruit is usually consumed as dried, fresh or juice and is reported to have a high nutritional value and many perceived health benefits. Despite of the edible nature and therapeutic properties of A. marmelos, no...

  8. Nigellamines A3, A4, A5, and C, new dolabellane-type diterpene alkaloids, with lipid metabolism-promoting activities from the Egyptian medicinal food black cumin.

    PubMed

    Morikawa, Toshio; Xu, Fengming; Ninomiya, Kiyofumi; Matsuda, Hisashi; Yoshikawa, Masayuki

    2004-04-01

    New dolabellane-type diterpene alkaloids, nigellamines A(3), A(4), A(5), and C, were isolated from the methanolic extract of an Egyptian medicinal food, black cumin (the seeds of Nigella sativa). Their absolute configurations were determined on the basis of chemical and physicochemical evidence. Nigellamines were found to lower triglyceride levels in primary cultured mouse hepatocytes, and in particular, the activity of nigellamine A(5) was equivalent to that of the hypolipidemic agent, clofibrate.

  9. Synthesis and anticonvulsant activity of 3a,4-dihydro-3H-indeno[1,2-c]pyrazole-2-carboxamide/carbothioamide analogues.

    PubMed

    Ahsan, Mohamed Jawed; Khalilullah, Habibullah; Stables, James P; Govindasamy, Jeyabalan

    2013-06-01

    A series of fourteen 3a,4-dihydro-3H-indeno[1,2-c]pyrazole-2-carboxamide/carbothioamide analogues were synthesized and evaluated for anticonvulsant activity according to the Antiepileptic Drug Development Programme (ADD) protocol. Some of the synthesized compounds showed significant activity in minimal clonic seizure model (6 Hz psychomotor seizure test). 3-(4-Fluorophenyl)-N-(4-bromophenyl)-6,7-dimethoxy-3a,4-dihydro-3H-indeno[1,2-c]pyrazole-2-carboxamide (4c) was found to be the most active compound of the series showing 75% (3/4, 0.25-2.0 h) and 50% (2/4, 4.0 h) protection against minimal clonic seizure at 100 mg/kg without any toxicity. 3-(Pyridin-4-yl)-N-(4-chlorophenyl)-6,7-dimethoxy-3a,4-dihydro-3H-indeno[1,2-c]pyrazole-2-carboxamide (4f) showed protection in maximal electroshock (MES) seizure and subcutaneous metrazol (scMET) seizure at 300 mg/kg.

  10. Haplotypes in the APOA1-C3-A4-A5 gene cluster affect plasma lipids in both humans and baboons

    SciTech Connect

    Wang, Qian-fei; Liu, Xin; O'Connell, Jeff; Peng, Ze; Krauss, Ronald M.; Rainwater, David L.; VandeBerg, John L.; Rubin, Edward M.; Cheng, Jan-Fang; Pennacchio, Len A.

    2003-09-15

    Genetic studies in non-human primates serve as a potential strategy for identifying genomic intervals where polymorphisms impact upon human disease-related phenotypes. It remains unclear, however, whether independently arising polymorphisms in orthologous regions of non-human primates leads to similar variation in a quantitative trait found in both species. To explore this paradigm, we studied a baboon apolipoprotein gene cluster (APOA1/C3/A4/A5) for which the human gene orthologs have well established roles in influencing plasma HDL-cholesterol and triglyceride concentrations. Our extensive polymorphism analysis of this 68 kb gene cluster in 96 pedigreed baboons identified several haplotype blocks each with limited diversity, consistent with haplotype findings in humans. To determine whether baboons, like humans, also have particular haplotypes associated with lipid phenotypes, we genotyped 634 well characterized baboons using 16 haplotype tagging SNPs. Genetic analysis of single SNPs, as well as haplotypes, revealed an association of APOA5 and APOC3 variants with HDL cholesterol and triglyceride concentrations, respectively. Thus, independent variation in orthologous genomic intervals does associate with similar quantitative lipid traits in both species, supporting the possibility of uncovering human QTL genes in a highly controlled non-human primate model.

  11. A QM/MM study of the active species of the human cytochrome P450 3A4, and the influence thereof of the multiple substrate binding

    PubMed Central

    Fishelovitch, Dan; Hazan, Carina; Hirao, Hajime; Wolfson, Haim J.; Nussinov, Ruth; Shaik, Sason

    2008-01-01

    Cytochrome P450 3A4 is involved in the metabolism of 50% of all swallowed drugs. The enzyme functions by means of a high-valent iron-oxo species, called Compound I (Cpd I), which is formed after entrance of the substrate to the active site. We explored the features of Cpd I using hybrid quantum mechanical/molecular mechanical calculations on various models that are either substrate-free or containing one and two molecules of diazepam as a substrate. Mössbauer parameters of Cpd I were computed. Our major finding shows that without the substrate, Cpd I tends to elongate its Fe-S bond, localize the radical on the sulfur, and form hydrogen bonds with A305 and T309, which may hypothetically lead to Cpd I consumption by H-abstraction. However, the positioning of diazepam close to Cpd I, as enforced by the effector molecule, was found to strengthen the NH---S interactions of the conserved I443 and G444 residues with the proximal cysteinate ligand. These interactions are known to stabilize the Fe-S bond, and as such, the presence of the substrate leads to a shorter Fe-S bond and it prevents the localization of the radical on the sulfur. This diazepam-Cpd I stabilization was manifested in the 1W0E conformer. The effector substrate did not influence Cpd I directly but rather by positioning the active substrate close to Cpd I, thus displacing the hydrogen bonds with A305 and T309, and thereby giving preference to substrate oxidation. It is hypothesized that these effects on Cpd I, promoted by the restrained substrate, may be behind the special metabolic behavior observed in cases of multiple substrate binding (called also cooperative binding). This restraint constitutes a mechanism whereby substrates stabilize Cpd I sufficiently long to affect monooxygenation by P450s at the expense of Cpd I destruction by the protein residues. PMID:18020326

  12. Spectral Analysis and Crystal Structures of 4-(4-Methylphenyl)-6-Phenyl-2,3,3a, 4-Tetrahydro-1H-Pyrido[3,2,1-jk]Carbazole and 4-(4-Methoxyphenyl)-6-Phenyl-2,3,3a, 4-Tetrahydro-1H-Pyrido[3,2,1-jk]Carbazole.

    PubMed

    Kalyana Sundar, J; Natarajan, S; Chitra, S; Paul, Nidhin; Manisankar, P; Muthusubramanian, S; Suresh, J

    2011-01-01

    The crystal structures of 4-(4-methylphenyl)-6-phenyl-2,3,3a,4-tetrahydro-1H-pyrido[3,2,1-jk]carbazole (IIa) and 4-(4-methoxyphenyl)-6-phenyl-2,3,3a,4-tetrahydro-1H-pyrido[3,2,1-jk]carbazole (IIb) were elucidated by single crystal X-ray diffraction. Compound (IIa), C28H25N, crystallizes in the triclinic system, space group P-1, with a = 8.936(2) Å, b = 10.490(1) Å, c = 11.801(1) Å, α = 102.69(5) (°) ,  β = 103.27(3) (°) , γ = 93.80(1) (°) , and Z = 2. The compound (IIb), C28H25NO, crystallizes in the monoclinic system, space group P21/a, with a = 11.376(5) Å, b = 14.139(3) Å, c = 13.237(4) Å, β = 97.41(3) (°) , and Z = 4. In both the structures, the pyrido ring adopts a twist boat conformation and the carbazole molecule has the twisted envelope structure with C3 and C13 at the flap. No classical hydrogen bonds are observed in the crystal structures. Details of the preparation, structures, and spectroscopic properties of the new compounds are discussed.

  13. CROSS-SPECIES COMPARISON OF CONAZOLE FUNGICIDE METABOLITES USING RAT AND RAINBOW TROUT (ONCHORHYNCHUS MYKISS) HEPATIC MICROSOMES AND PURIFIED HUMAN CYTOCHROME P450 3A4

    EPA Science Inventory

    Conazoles represent a unique class of azole-containing fungicides that are widely used in both pharmaceutical and agriculture applications. The antifungal property of conazoles occurs via complexation with cytochrome P450 monooxygenases (CYP) responsible for mediating fungal cell...

  14. POMA analyses as new efficient bioinformatics' platform to predict and optimise bioactivity of synthesized 3a,4-dihydro-3H-indeno[1,2-c]pyrazole-2-carboxamide/carbothioamide analogues.

    PubMed

    Ahsan, Mohamed Jawed; Govindasamy, Jeyabalan; Khalilullah, Habibullah; Mohan, Govind; Stables, James P

    2012-12-01

    A series of 43, 3a,4-dihydro-3H-indeno[1,2-c]pyrazole-2-carboxamide/carbothioamide analogues (D01-D43) were analysed using Petra, Osiris, Molinspiration and ALOGPS (POMA) to identify pharmacophore, toxicity prediction, lipophilicity and bioactivity. All the compounds were evaluated for anti-HIV activity. 3-(4-Chlorophenyl)-N-(4-fluorophenyl)-6,7-dimethoxy-3a,4-dihydro-3H-indeno[1,2-c]pyrazole-2-carboxamide (D07) was found to be the most active with IC(50)>4.83 μM and CC(50) 4.83 μM. 3-(4-Fluorophenyl)-6,7-dimethoxy-3a,4-dihydro-3H-indeno[1,2-c]pyrazole-2-carbothioamide (D41) was found to be the most active compound against bacterial strains with MIC of 4 μg/ml, comparable to the standard drug ciprofloxacin while 3-(4-methoxyphenyl)-6,7-dimethoxy-3a,4-dihydro-3H-indeno[1,2-c]pyrazole-2-carboxamide (D38) was found to be the most active compound against fungal strains with MIC 2-4 μg/ml, however less active than standard fluconazole. Toxicities prediction by Osiris were well supported and experimentally verified with exception of some compounds. In anticonvulsant screening, 3-(4-fluorophenyl)-N-(4-chlorophenyl)-6,7-dimethoxy-3a,4-dihydro-3H-indeno[1,2-c]pyrazole-2-carboxamide (D09) showed maximum activity showing 100% (4/4, 0.25-0.5h) and 75% (3/4, 1.0 h) protection against minimal clonic seizure test without any toxicity.

  15. Endosulfan-alpha Induces CYP26 and CYP3A4 by Activating the Pregnane X Receptor But Not the Constitutive Androstane Receptor

    DTIC Science & Technology

    2006-01-01

    our son. I also would like to dedicate this thesis to a friend and mentor, the late Dr. Randy L. Rose, whose guidance have been very instrumental in...Chem 22:2106-2113. Gupta PK and Gupta RC (1977) Effect of endosulfan pretreatment on organ weights and on pentobarbital hypnosis in rats. Toxicology 7...Br J Clin Pharmacol 52:349-355. Gupta PK and Gupta RC (1977) Effect of endosulfan pretreatment on organ weights and on pentobarbital hypnosis in rats

  16. Metabolism of Endosulfan-Alpha by Human Liver Microsomes and its Utility as a Simultaneous In Vitro Probe for CYP2B6 and CYP3A4

    DTIC Science & Technology

    2006-03-30

    cyclophosphamide and ifosfamide (Huang et al., 2000), S-mephenytoin (Heyn et al., 1996; Ko et al., 1998), bupropion (Faucette et al., 2000; Hesse et al...cyclophosphamide and ifosfamide . Biochem Pharmacol 59:961-972. Khanna RN, Misra D, Anand M and Sharma HK (1979) Distribution of endosulfan in cat

  17. Structure-function relationships of inhibition of human cytochromes P450 1A1, 1A2, 1B1, 2C9, and 3A4 by 33 flavonoid derivatives.

    PubMed

    Shimada, Tsutomu; Tanaka, Katsuhiro; Takenaka, Shigeo; Murayama, Norie; Martin, Martha V; Foroozesh, Maryam K; Yamazaki, Hiroshi; Guengerich, F Peter; Komori, Masayuki

    2010-12-20

    Structure-function relationships for the inhibition of human cytochrome P450s (P450s) 1A1, 1A2, 1B1, 2C9, and 3A4 by 33 flavonoid derivatives were studied. Thirty-two of the 33 flavonoids tested produced reverse type I binding spectra with P450 1B1, and the potencies of binding were correlated with the abilities to inhibit 7-ethoxyresorufin O-deethylation activity. The presence of a hydroxyl group in flavones, for example, 3-, 5-, and 7-monohydroxy- and 5,7-dihydroxyflavone, decreased the 50% inhibition concentration (IC50) of P450 1B1 from 0.6 μM to 0.09, 0.21, 0.25, and 0.27 μM, respectively, and 3,5,7-trihydroxyflavone (galangin) was the most potent, with an IC50 of 0.003 μM. The introduction of a 4'-methoxy- or 3',4'-dimethoxy group into 5,7-dihydroxyflavone yielded other active inhibitors of P450 1B1 with IC50 values of 0.014 and 0.019 μM, respectively. The above hydroxyl and/or methoxy groups in flavone molecules also increased the inhibition activity with P450 1A1 but not always toward P450 1A2, where 3-, 5-, or 7-hydroxyflavone and 4'-methoxy-5,7-dihydroxyflavone were less inhibitory than flavone itself. P450 2C9 was more inhibited by 7-hydroxy-, 5,7-dihydroxy-, and 3,5,7-trihydroxyflavones than by flavone but was weakly inhibited by 3- and 5-hydroxyflavone. Flavone and several other flavonoids produced type I binding spectra with P450 3A4, but such binding was not always related to the inhibitiory activities toward P450 3A4. These results indicate that there are different mechanisms of inhibition for P450s 1A1, 1A2, 1B1, 2C9, and 3A4 by various flavonoid derivatives and that the number and position of hydroxyl and/or methoxy groups highly influence the inhibitory actions of flavonoids toward these enzymes. Molecular docking studies suggest that there are different mechanisms involved in the interaction of various flavonoids with the active site of P450s, thus causing differences in inhibition of these P450 catalytic activities by flavonoids.

  18. Structure-Function Relationships of Inhibition of Human Cytochromes P450 1A1, 1A2, 1B1, 2C9, and 3A4 by 33 Flavonoid Derivatives

    PubMed Central

    Shimada, Tsutomu; Tanaka, Katsuhiro; Takenaka, Shigeo; Murayama, Norie; Martin, Martha V.; Foroozesh, Maryam K.; Yamazaki, Hiroshi; Guengerich, F. Peter; Komori, Masayuki

    2010-01-01

    Structure-function relationships for inhibition of human cytochrome P450s (P450s) 1A1, 1A2, 1B1, 2C9, and 3A4 by 33 flavonoid derivatives were studied. Thirty-two of the 33 flavonoids tested produced Reverse Type I binding spectra with P450 1B1, and the potencies of binding were correlated with the abilities to inhibit 7-ethoxyresorufin O-deethylation activity. The presence of a hydroxyl group in flavones, e.g. 3-, 5-, and 7-monohydroxy- and 5,7-dihydroxyflavone, decreased the 50% inhibition concentration (IC50) of P450 1B1 from 0.6 µM to 0.09, 0.21, 0.25, and 0.27 µM, respectively, and 3,5,7-trihydroxyflavone (galangin) was the most potent, with an IC50 of 0.003 µM. The introduction of a 4’-methoxy- or 3’,4’-dimethoxy group into 5,7-dihydroxyflavone yielded other active inhibitors of P450 1B1 with IC50 values of 0.014 and 0.019 µM, respectively. The above hydroxyl- and/or methoxy-groups in flavone molecules also increased the inhibition activity with P450 1A1 but not always towards P450 1A2, where 3-, 5-, or 7-hydroxyflavone, and 4’-methoxy-5,7-dihydroxyflavone were less inhibitory than flavone itself. P450 2C9 was more inhibited by 7-hydroxy-,5,7-dihydroxy-, and 3,5,7-trihydroxyflavones than by flavone but was weakly inhibited by 3-and 5-hydroxyflavone. Flavone and several other flavonoids produced Type I binding spectra with P450 3A4, but such binding was not always related to the inhibitiory activities towards P450 3A4. These results indicate that there are different mechanisms of inhibition for P450s 1A1, 1A2, 1B1, 2C9, and 3A4 by various flavonoid derivatives and that the number and position of hydroxyl and/or methoxy groups highly influence the inhibitory actions of flavonoids towards these enzymes. Molecular docking studies suggest that there are different mechanisms involved in the interaction of various flavonoids with the active site of P450s, thus causing differences in inhibition of these P450 catalytic activities by flavonoids. PMID

  19. Pharmacological properties of 2,3,3a,4,5,6-hexahydro-8-methyl-1H-pyrazino [3,2,1-j,k]carbazol hydrochloride (pirlindole), a new antidepressant.

    PubMed

    Mashkovsky, M D; Andrejeva, N I

    1981-01-01

    The hydrochloride salt of 2,3,3a,4,5,6-hexahydro-8-methyl-1H-pyrazino[3,2,1-j,k]carbazol hydrochloride (pirlindole) exerts pharmacological effects typical of antidepressants. This compound antagonizes the depressant effects of reserpine and tetrabenazine and potentiates the central effects of amphetamine and l-dopa. It also enhances the head-twitch effect of 5-hydroxy-tryptophan, the effects of noradrenaline, adrenaline, serotonin, tyramine on blood pressure as well as the hypertensive and tremor activities of tryptamine. Pirlindole inhibits the neuronal uptake of noradrenaline and exerts reversible, short-lasting anti-MAO activity. It does not possess anti-cholinergic activity. Clinical trials have shown pirlindole to be effective as an antidepressive drug.

  20. Synthesis, structure and antimicrobial evaluation of new 3,3a,4,5-tetrahydro-2H-benzo[g]indazol-2-yl-thiazol-4(5H)-ones.

    PubMed

    Gautam, Deepika; Chaudhary, R P

    2015-01-25

    The reaction of semicarbazide or thiosemicarbazide with 2-arylidene-1-tetralones under alkaline condition affords 3,3a,4,5-tetrahydro-2H-benzo[g]indazole-2-carbo(thio)amides as a mixture of cis and trans diastereoisomers of 3-H and 3a-H. The synthesis of new indazolyl-thiazol-4(5H)-ones from the condensation of cis isomer and α-halo acids is reported. A DFT study along with X-ray single crystal data of a representative compound is presented. All the eight newly synthesised indazolyl-thiazol-4(5H)-ones were screened for their antibacterial and antifungal activities and some compounds have shown promising activities.

  1. Synthesis, structure and antimicrobial evaluation of new 3,3a,4,5-tetrahydro-2H-benzo[g]indazol-2-yl-thiazol-4(5H)-ones

    NASA Astrophysics Data System (ADS)

    Gautam, Deepika; Chaudhary, R. P.

    2015-01-01

    The reaction of semicarbazide or thiosemicarbazide with 2-arylidene-1-tetralones under alkaline condition affords 3,3a,4,5-tetrahydro-2H-benzo[g]indazole-2-carbo(thio)amides as a mixture of cis and trans diastereoisomers of 3-H and 3a-H. The synthesis of new indazolyl-thiazol-4(5H)-ones from the condensation of cis isomer and α-halo acids is reported. A DFT study along with X-ray single crystal data of a representative compound is presented. All the eight newly synthesised indazolyl-thiazol-4(5H)-ones were screened for their antibacterial and antifungal activities and some compounds have shown promising activities.

  2. An exposure-response analysis based on rifampin suggests CYP3A4 induction is driven by AUC: an in vitro investigation.

    PubMed

    Chang, Cheng; Yang, Xin; Fahmi, Odette A; Riccardi, Keith A; Di, Li; Obach, R Scott

    2016-09-05

    1. Induction is an important mechanism contributing to drug-drug interactions. It is most commonly evaluated in the human hepatocyte assay over 48-h or 72-h incubation period. However, whether the overall exposure (i.e. Area Under the Curve (AUC) or Cave) or maximum exposure (i.e. Cmax) of the inducer is responsible for the magnitude of subsequent induction has not been thoroughly investigated. Additionally, in vitro induction assays are typically treated as static systems, which could lead to inaccurate induction potency estimation. Hence, European Medicines Agency (EMA) guidance now specifies quantitation of drug levels in the incubation. 2. This work treated the typical in vitro evaluation of rifampin induction as an in vivo system by generating various target engagement profiles, measuring free rifampin concentration over 3 d of incubation and evaluating the impact of these factors on final induction response. 3. This rifampin-based analysis demonstrates that the induction process is driven by time-averaged target engagement (i.e. AUC-driven). Additionally, depletion of rifampin in the incubation medium over 3 d as well as non-specific/specific binding were observed. 4. These findings should help aid the discovery of clinical candidates with minimal induction liability and further expand our knowledge in the quantitative translatability of in vitro induction assays.

  3. CROSS-SPECIES COMPARISON OF CONAZOLE FUNGICIDE METABOLITES USING RAT AND RAINBOW TROUT (ONCHLORHYNCHUS MYKISS) HEPATIC MICROSOMES AND PURIFIED HUMAN CYP 3A4

    EPA Science Inventory

    Ecological risk assessment frequently relies on cross-species extrapolation to predict acute toxicity from chemical exposures. A major concern for environmental risk characterization is the degree of uncertainty in assessing xenobiotic biotansformation processes. Although inheren...

  4. Oral delivery of paclitaxel nanocrystal (PNC) with a dual Pgp-CYP3A4 inhibitor: preparation, characterization and antitumor activity.

    PubMed

    Patel, Ketan; Patil, Anand; Mehta, Miten; Gota, Vikram; Vavia, Pradeep

    2014-09-10

    Several molecular inheritances have severely restrained the peroral delivery of taxanes. The main objective of the present investigation was to develop a paclitaxel (PTX) formulation which can circumvent the hurdles of its extremely poor solubility and permeability, Pgp efflux and high pre-systemic metabolism. Positively charged PTX nanocrystals of 209 nm were prepared by sonoprecipitation with high pressure homogenization technique, wherein an arginine based surfactant was explored as a stabilizer. The BET surface area analysis revealed that the surface area of PNC was 8.53 m(2)/gm, reflecting significant rise in surface area with nanonization of PTX. The DSC and XRD pattern suggested that the PTX is in the form of the most stable dihydrate crystal. The PNC showed very rapid dissolution profile compared to plain PTX in both sinks and non-sink conditions. Clarithromycin (CLM) was evaluated as a better alternative to cyclosporin A in improving PTX permeability. The PNC-CLM showed remarkable enhancement of 453% in relative bioavailability along with maintaining the therapeutic concentration of PTX for 8h. Efficacy data in B16 F10 melanoma tumor bearing mice showed substantial reduction in tumor volume and improvement in percentage survival compared to the control group.

  5. THE PUTATIVE HIGH ACTIVITY VARIANT CYP3A4*1B PREDICTS THE ONSET OF PUBERTY IN YOUNG GIRLS. (R825816)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  6. Electron impact mass spectral fragmentation of 3a,5-disubstituted 1, 3-diphenyl-3a,4,5,6-tetra-hydro-3H-1,2,4-triazolo[4,3-a][1, 5]benzo-diazepines.

    PubMed

    Xu, J; Zhang, Q; Wang, C

    2000-01-01

    The mass spectrometric behaviour of six 3a,5-disubstituted 1, 3-diphenyl-3a,4,5,6-tetrahydro-3H-1,2,4-triazolo[4,3-a][1, 5]benzodiazepines has been studied with the aid of mass-analyzed ion kinetic energy spectrometry and accurate mass measurements under electron impact ionization. All compounds show a tendency to eliminate (substituted) styrene molecules, aryl radicals, arylmethyl radicals or phenylnitrene (PhN:). All of the resulting fragment ions, except [M - PhN:](+.), could further undergo a reverse [2 + 3] cycloaddition. The [M - PhN:](+.) ions could further lose styrene derivatives and undergo a ring enlargement rearrangement. The molecular ions also show a tendency to eliminate a phenyl radical, and the [M - Ph](+) ions could eliminate styrene derivatives. The [M - R(1)CH = CH(2)](+.) ions could further lose NH(2) to yield stable tetracyclic 1,3-diphenyl-1,2,4-triazolo[4,3-d]phenanthridine ions, which could further lose benzonitrile, or undergo a reverse [2 + 3] cycloaddition. The molecular ions could also undergo a reverse [2 + 3] cycloaddition to produce N-phenylbenzonitrile imine ions and 2, 4-disubstituted 2,3-dihydro-1H-1,5-benzodiazepine ions, whose further fragmentations were also investigated.

  7. Synthesis, crystal structure analysis, spectral characterization, quantum chemical calculations, antioxidant and antimicrobial activity of 3-(4-chlorophenyl)-3a,4,7,7a-tetrahydro-4,7-methanobenzo[d]isoxazole

    NASA Astrophysics Data System (ADS)

    Eryılmaz, Serpil; Gül, Melek; İnkaya, Ersin; İdil, Önder; Özdemir, Namık

    2016-10-01

    In this paper, 3-(4-chlorophenyl)-3a,4,7,7a-tetrahydro-4,7-methanobenzo[d]isoxazole was synthesized via 1,3 dipolar cycloaddition, characterized by spectroscopic analysis such as FT-IR, 1H NMR, 13C NMR, UV-Vis, LC-MS/MS, Elemental Analysis, and X-ray Single Crystal diffraction technique. The Density Functional Theory (DFT/B3LYP) method with 6-311G(d,p) basis set in the ground state was applied for quantum chemical calculations and molecular geometric parameters of the compound were compared with the X-ray analysis results. FT-IR, NMR and UV-Vis spectral analysis were analysed to determine the compliance with the vibrational frequencies, 1H NMR and 13C NMR chemical shifts and absorption wavelength values. The frontier molecular orbitals (FMOs), some global reactivity descriptors, molecular electrostatic potential (MEP), thermodynamic properties, non-linear optical (NLO) behaviour of the compound were examined with the same method in gas phase, theoretically. Moreover, antioxidant activity was determined with three different methods - DPPH radical scavenging, reducing and metal chelating, antimicrobial activity were carried out with Gram positive, Gram negative and Eukaryote for the title compound.

  8. First highly efficient and photostable E and C derivatives of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) as dye lasers in the liquid phase, thin films, and solid-state rods.

    PubMed

    Duran-Sampedro, Gonzalo; Esnal, Ixone; Agarrabeitia, Antonia R; Bañuelos Prieto, Jorge; Cerdán, Luis; García-Moreno, Inmaculada; Costela, Angel; Lopez-Arbeloa, Iñigo; Ortiz, María J

    2014-02-24

    A new library of E- and C-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) derivatives has been synthesized through a straightforward protocol from commercially available BODIPY complexes, and a systematic study of the photophysical properties and laser behavior related to the electronic properties of the B-substituent group (alkynyl, cyano, vinyl, aryl, and alkyl) has been carried out. The replacement of fluorine atoms by electron-withdrawing groups enhances the fluorescence response of the dye, whereas electron-donor groups diminish the fluorescence efficiency. As a consequence, these compounds exhibit enhanced laser action with respect to their parent dyes, both in liquid solution and in the solid phase, with lasing efficiencies under transversal pumping up to 73 % in liquid solution and 53 % in a solid matrix. The new dyes also showed enhanced photostability. In a solid matrix, the derivative of commercial dye PM597 that incorporated cyano groups at the boron center exhibited a very high lasing stability, with the laser emission remaining at the initial level after 100 000 pump pulses in the same position of the sample at a 10 Hz repetition rate. Distributed feedback laser emission was demonstrated with organic films that incorporated parent dye PM597 and its cyano derivative. The films were deposited onto quartz substrates engraved with appropriate periodical structures. The C derivative exhibited a laser threshold lower than that of the parent dye as well as lasing intensities up to three orders of magnitude higher.

  9. Differential expression of human cytochrome P450 enzymes from the CYP3A subfamily in the brains of alcoholic subjects and drug-free controls.

    PubMed

    Booth Depaz, Iris M; Toselli, Francesca; Wilce, Peter A; Gillam, Elizabeth M J

    2013-06-01

    Cytochrome P450 enzymes are responsible for the metabolism of most commonly used drugs. Among these enzymes, CYP3A forms mediate the clearance of around 40-50% of drugs and may also play roles in the biotransformation of endogenous compounds. CYP3A forms are expressed both in the liver and extrahepatically. However, little is known about the expression of CYP3A proteins in specific regions of the human brain. In this study, form-selective antibodies raised to CYP3A4 and CYP3A5 were used to characterize the expression of these forms in the human brain. Both CYP3A4 and CYP3A5 immunoreactivity were found to varying extents in the microsomal fractions of cortex, hippocampus, basal ganglia, amygdala, and cerebellum. However, only CYP3A4 expression was observed in the mitochondrial fractions of these brain regions. N-terminal sequencing confirmed the principal antigen detected by the anti-CYP3A4 antibody in cortical microsomes to be CYP3A4. Immunohistochemical analysis revealed that CYP3A4 and CYP3A5 expression was primarily localized in the soma and axonal hillock of neurons and varied according to cell type and cell layer within brain regions. Finally, analysis of the frontal cortex of chronic alcohol abusers revealed elevated expression of CYP3A4 in microsomal but not mitochondrial fractions; CYP3A5 expression was unchanged. The site-specific expression of CYP3A4 and CYP3A5 in the human brain may have implications for the role of these enzymes in both normal brain physiology and the response to drugs.

  10. Interaction of isoflavonoids with human liver microsomal cytochromes P450: inhibition of CYP enzyme activities.

    PubMed

    Kopečná-Zapletalová, Michaela; Krasulová, Kristýna; Anzenbacher, Pavel; Hodek, Petr; Anzenbacherová, Eva

    2017-04-01

    1. The possibility of interaction of isoflavonoids with concomitantly taken drugs to determined isoflavonoids safety was studied. Inhibition of nine forms of cytochrome P450 (CYP3A4, CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2C9, CYP2D6 and CYP2E1) by 12 isoflavonoids (daidzein, genistein, biochanin A, formononetin, glycitein, equol and six glucosides, daidzin, puerarin, genistin, sissotrin, ononin and glycitin) was studied systematically. 2. The most potent inhibitors were genistein and daidzein inhibiting noncompetitively the CYP2C9 with Ki of 35.95 ± 6.96 and 60.56 ± 3.53 μmol/l and CYP3A4 (inhibited by genistein with Ki of 23.25 ± 5.85 μmol/l also by a noncompetitive mechanism). Potent inhibition of CYP3A4 was observed also with biochanin A (Ki of 57.69 ± 2.36 μmol/l) and equol (Ki of 38.47 ± 2.32 μmol/l). 3. Genistein and daidzein inhibit noncompetitively CYP3A4 and CYP2C9. With plasma levels in micromolar range, a clinically important interaction with concomitantly taken drugs does not seem to be probable.

  11. Applicability of second-generation upcyte® human hepatocytes for use in CYP inhibition and induction studies

    PubMed Central

    Ramachandran, Sarada D; Vivarès, Aurélie; Klieber, Sylvie; Hewitt, Nicola J; Muenst, Bernhard; Heinz, Stefan; Walles, Heike; Braspenning, Joris

    2015-01-01

    Human upcyte® hepatocytes are proliferating hepatocytes that retain many characteristics of primary human hepatocytes. We conducted a comprehensive evaluation of the application of second-generation upcyte® hepatocytes from four donors for inhibition and induction assays using a selection of reference inhibitors and inducers. CYP1A2, CYP2B6, CYP2C9, and CYP3A4 were reproducibly inhibited in a concentration-dependent manner and the calculated IC50 values for each compound correctly classified them as potent inhibitors. Upcyte® hepatocytes were responsive to prototypical CYP1A2, CYP2B6, CYP2C9, and CYP3A4 inducers, confirming that they have functional AhR-, CAR-, and PXR-mediated CYP regulation. A panel of 11 inducers classified as potent, moderate or noninducers of CYP3A4 and CYP2B6 were tested. There was a good fit of data from upcyte® hepatocytes to three different predictive models for CYP3A4 induction, namely the Relative Induction Score (RIS), AUCu/F2, and Cmax,u/Ind50. In addition, PXR (rifampicin) and CAR-selective (carbamazepine and phenytoin) inducers of CYP3A4 and CYP2B6 induction, respectively, were demonstrated. In conclusion, these data support the use of second-generation upcyte® hepatocytes for CYP inhibition and induction assays. Under the culture conditions used, these cells expressed CYP activities that were equivalent to or higher than those measured in primary human hepatocyte cultures, which could be inhibited or induced by prototypical CYP inhibitors and inducers, respectively. Moreover, they can be used to predict in vivo CYP3A4 induction potential using three prediction models. Bulk availability of cells from multiple donors makes upcyte® hepatocytes suitable for DDI screening, as well as more in-depth mechanistic investigations. PMID:26516577

  12. Grapefruit juice increases felodipine oral availability in humans by decreasing intestinal CYP3A protein expression.

    PubMed Central

    Lown, K S; Bailey, D G; Fontana, R J; Janardan, S K; Adair, C H; Fortlage, L A; Brown, M B; Guo, W; Watkins, P B

    1997-01-01

    The increase in oral availability of felodipine and other commonly used medications when taken with grapefruit juice has been assumed to be due to inhibition of CYP3A4, a cytochrome P450 that is present in liver and intestine. To evaluate the effect of repeated grapefruit juice ingestion on CYP3A4 expression, 10 healthy men were given 8 oz of grapefruit juice three times a day for 6 d. Before and after receiving grapefruit juice, small bowel and colon mucosal biopsies were obtained endoscopically, oral felodipine kinetics were determined, and liver CYP3A4 activity was measured with the [14C N-methyl] erythromycin breath test in each subject. Grapefruit juice did not alter liver CYP3A4 activity, colon levels of CYP3A5, or small bowel concentrations of P-glycoprotein, villin, CYP1A1, and CYP2D6. In contrast, the concentration of CYP3A4 in small bowel epithelia (enterocytes) fell 62% (P = 0.0006) with no corresponding change in CYP3A4 mRNA levels. In addition, enterocyte concentrations of CYP3A4 measured before grapefruit juice consumption correlated with the increase in Cmax when felodipine was taken with either the 1st or the 16th glass of grapefruit juice relative to water (r = 0. 67, P = 0.043, and r = 0.71, P = 0.022, respectively). We conclude that a mechanism for the effect of grapefruit juice on oral felodipine kinetics is its selective downregulation of CYP3A4 in the small intestine. PMID:9153299

  13. Functional characterization of CYP2B6 allelic variants in demethylation of antimalarial artemether.

    PubMed

    Honda, Masashi; Muroi, Yuka; Tamaki, Yuichiro; Saigusa, Daisuke; Suzuki, Naoto; Tomioka, Yoshihisa; Matsubara, Yoichi; Oda, Akifumi; Hirasawa, Noriyasu; Hiratsuka, Masahiro

    2011-10-01

    Artemether (AM) is one of the most effective antimalarial drugs. The elimination half-life of AM is very short, and it shows large interindividual variability in pharmacokinetic parameters. The aim of this study was to identify cytochrome P450 (P450) isozymes responsible for the demethylation of AM and to evaluate functional differences between 26 CYP2B6 allelic variants in vitro. Of 14 recombinant P450s examined in this study, CYP2B6 and CYP3A4 were primarily responsible for production of the desmethyl metabolite dihydroartemisinin. The intrinsic clearance (V(max)/K(m)) of CYP2B6 was 6-fold higher than that of CYP3A4. AM demethylation activity was correlated with CYP2B6 protein levels (P = 0.004); however, it was not correlated with CYP3A4 protein levels (P = 0.27) in human liver microsomes. Wild-type CYP2B6.1 and 25 CYP2B6 allelic variants (CYP2B6.2-CYP2B6.21 and CYP2B6.23-CYP2B6.27) were heterologously expressed in COS-7 cells. In vitro analysis revealed no enzymatic activity in 5 variants (CYP2B6.8, CYP2B6.12, CYP2B6.18, CYP2B6.21, and CYP2B6.24), lower activity in 7 variants (CYP2B6.10, CYP2B6.11, CYP2B6.14, CYP2B6.15, CYP2B6.16, CYP2B6.20, and CYP2B6.27), and higher activity in 4 variants (CYP2B6.2, CYP2B6.4, CYP2B6.6, and CYP2B6.19), compared with that of wild-type CYP2B6.1. In kinetic analysis, 3 variants (CYP2B6.2, CYP2B6.4, and CYP2B6.6) exhibited significantly higher V(max), and 3 variants (CYP2B6.14, CYP2B6.20 and CYP2B6.27) exhibited significantly lower V(max) compared with that of CYP2B6.1. This functional analysis of CYP2B6 variants could provide useful information for individualization of antimalarial drug therapy.

  14. Three-dimensional quantitative structure-activity relationship analysis for human pregnane X receptor for the prediction of CYP3A4 induction in human hepatocytes: structure-based comparative molecular field analysis.

    PubMed

    Handa, Koichi; Nakagome, Izumi; Yamaotsu, Noriyuki; Gouda, Hiroaki; Hirono, Shuichi

    2015-01-01

    The pregnane X receptor [PXR (NR1I2)] induces the expression of xenobiotic metabolic genes and transporter genes. In this study, we aimed to establish a computational method for quantifying the enzyme-inducing potencies of different compounds via their ability to activate PXR, for the application in drug discovery and development. To achieve this purpose, we developed a three-dimensional quantitative structure-activity relationship (3D-QSAR) model using comparative molecular field analysis (CoMFA) for predicting enzyme-inducing potencies, based on computer-ligand docking to multiple PXR protein structures sampled from the trajectory of a molecular dynamics simulation. Molecular mechanics-generalized born/surface area scores representing the ligand-protein-binding free energies were calculated for each ligand. As a result, the predicted enzyme-inducing potencies for compounds generated by the CoMFA model were in good agreement with the experimental values. Finally, we concluded that this 3D-QSAR model has the potential to predict the enzyme-inducing potencies of novel compounds with high precision and therefore has valuable applications in the early stages of the drug discovery process.

  15. Application of substrate depletion assay to evaluation of CYP isoforms responsible for stereoselective metabolism of carvedilol.

    PubMed

    Iwaki, Masahiro; Niwa, Toshiro; Bandoh, Saya; Itoh, Megumi; Hirose, Hitomi; Kawase, Atsushi; Komura, Hiroshi

    2016-12-01

    To evaluate the relative contribution of cytochrome P450 (CYP) isoforms responsible for carvedilol (CAR) oxidation, enantioselective metabolism of CAR was investigated in human liver microsomes (HLMs) and recombinant human CYPs by using the substrate depletion assay. CYP2D6 exhibited the highest contribution to the metabolism of R-CAR, followed by CYP3A4, CYP1A2, and CYP2C9, whereas the metabolism of the S-enantiomer was mainly mediated by CYP1A2, followed by CYP2D6 and CYP3A4. In HLMs, metabolism of R- and S-CAR was markedly inhibited by quinidine; R-CAR metabolism (57-61% decrease) was more inhibited than S-CAR metabolism (37-43% decrease), and furafylline and ketoconazole almost equally inhibited metabolism of both enantiomers by 25-32% and 30-50%, respectively. The absence of CYP2D6 in a mixture of five major recombinant CYP isoforms at the approximate ratio as in HLMs resulted in a 42% and 25% decrease in the metabolic activities for R- and S-CAR, respectively. Moreover, the absence of CYP1A2 in the mixture resulted in a 16% and 39% decrease in the metabolic activities for R- and S-CAR, respectively. Our results suggest the stereoselective metabolism of CAR is determined by not only the activity of CYP2D6 but also of CYP1A2 and CYP3A4.

  16. Evaluation of CYP2B6 Induction and Prediction of Clinical Drug-Drug Interactions: Considerations from the IQ Consortium Induction Working Group-An Industry Perspective.

    PubMed

    Fahmi, Odette A; Shebley, Mohamad; Palamanda, Jairam; Sinz, Michael W; Ramsden, Diane; Einolf, Heidi J; Chen, Liangfu; Wang, Hongbing

    2016-10-01

    Drug-drug interactions (DDIs) due to CYP2B6 induction have recently gained prominence and clinical induction risk assessment is recommended by regulatory agencies. This work aimed to evaluate the potency of CYP2B6 versus CYP3A4 induction in vitro and from clinical studies and to assess the predictability of efavirenz versus bupropion as clinical probe substrates of CYP2B6 induction. The analysis indicates that the magnitude of CYP3A4 induction was higher than CYP2B6 both in vitro and in vivo. The magnitude of DDIs caused by induction could not be predicted for bupropion with static or dynamic models. On the other hand, the relative induction score, net effect, and physiologically based pharmacokinetics SimCYP models using efavirenz resulted in improved DDI predictions. Although bupropion and efavirenz have been used and are recommended by regulatory agencies as clinical CYP2B6 probe substrates for DDI studies, CYP3A4 contributes to the metabolism of both probes and is induced by all reference CYP2B6 inducers. Therefore, caution must be taken when interpreting clinical induction results because of the lack of selectivity of these probes. Although in vitro-in vivo extrapolation for efavirenz performed better than bupropion, interpretation of the clinical change in exposure is confounded by the coinduction of CYP2B6 and CYP3A4, as well as the increased contribution of CYP3A4 to efavirenz metabolism under induced conditions. Current methods and probe substrates preclude accurate prediction of CYP2B6 induction. Identification of a sensitive and selective clinical substrate for CYP2B6 (fraction metabolized > 0.9) is needed to improve in vitro-in vivo extrapolation for characterizing the potential for CYP2B6-mediated DDIs. Alternative strategies and a framework for evaluating the CYP2B6 induction risk are proposed.

  17. PXR-Mediated Upregulation of CYP3A Expression by Herb Compound Praeruptorin C from Peucedanum praeruptorum Dunn.

    PubMed

    Huang, Ling; Wu, Qian; Li, Yu-Hua; Wang, Yi-Tao; Bi, Hui-Chang

    2013-01-01

    We recently reported that Praeruptorin C effectively transactivated the mRNA, protein expression, and catalytic activity of CYP3A4 via the CAR-mediated pathway, but whether and how PC could affect the expression and catalytic activity of CYP3A4 via PXR pathway remains unknown. Therefore, in this study, the effect of PC on the CYP3A gene expression was investigated in mice primary hepatocytes after knockdown of PXR by transient transfection of PXR siRNA, and the gene expression, protein expression, and catalytic activity of CYP3A4 in the LS174T cells with PXR overexpression were determined by real-time PCR, western blot analysis, and LC-MS/MS-based CYP3A4 substrate assay, respectively. We found that the level of CYP3a11 gene expression in mouse primary hepatocytes was significantly increased by praeruptorin C, but such an induction was suppressed after knockdown of pregnane X receptor by its siRNA. In PXR-overexpressed LS174T cells, PC significantly enhanced CYP3A4 mRNA, protein expression, and functional activity through PXR-mediated pathway; conversely, no such increase was found in the untransfected cells. These findings suggest that PC can significantly upregulate CYP3A level via the PXR-mediated pathway, and this should be taken into consideration to predict any potential herb-drug interactions between PC, Qianhu, and the other coadministered drugs.

  18. PXR-Mediated Upregulation of CYP3A Expression by Herb Compound Praeruptorin C from Peucedanum praeruptorum Dunn

    PubMed Central

    Huang, Ling; Wu, Qian; Li, Yu-Hua; Wang, Yi-Tao; Bi, Hui-Chang

    2013-01-01

    We recently reported that Praeruptorin C effectively transactivated the mRNA, protein expression, and catalytic activity of CYP3A4 via the CAR-mediated pathway, but whether and how PC could affect the expression and catalytic activity of CYP3A4 via PXR pathway remains unknown. Therefore, in this study, the effect of PC on the CYP3A gene expression was investigated in mice primary hepatocytes after knockdown of PXR by transient transfection of PXR siRNA, and the gene expression, protein expression, and catalytic activity of CYP3A4 in the LS174T cells with PXR overexpression were determined by real-time PCR, western blot analysis, and LC-MS/MS-based CYP3A4 substrate assay, respectively. We found that the level of CYP3a11 gene expression in mouse primary hepatocytes was significantly increased by praeruptorin C, but such an induction was suppressed after knockdown of pregnane X receptor by its siRNA. In PXR-overexpressed LS174T cells, PC significantly enhanced CYP3A4 mRNA, protein expression, and functional activity through PXR-mediated pathway; conversely, no such increase was found in the untransfected cells. These findings suggest that PC can significantly upregulate CYP3A level via the PXR-mediated pathway, and this should be taken into consideration to predict any potential herb-drug interactions between PC, Qianhu, and the other coadministered drugs. PMID:24379885

  19. Immunochemical quantification of cynomolgus CYP2J2, CYP4A and CYP4F enzymes in liver and small intestine.

    PubMed

    Uehara, Shotaro; Murayama, Norie; Nakanishi, Yasuharu; Nakamura, Chika; Hashizume, Takanori; Zeldin, Darryl C; Yamazaki, Hiroshi; Uno, Yasuhiro

    2015-02-01

    1. An increasing number of studies have indicated the roles of CYP4 proteins in drug metabolism; however, CYP4 expression has not been measured in cynomolgus monkeys, an important animal species for drug metabolism studies. 2. In this study, cynomolgus CYP4A11, CYP4F2/3, CYP4F11 and CYP4F12, along with CYP2J2, were immunoquantified using selective antibodies in 28 livers and 35 small intestines, and their content was compared with CYP1A, CYP2A, CYP2B6, CYP2C9/19, CYP2D, CYP2E1, CYP3A4 and CYP3A5, previously quantified. 3. In livers, CYP2J2, CYP4A11, CYP4F2/3, CYP4F11 and CYP4F12, varied 1.3- to 4.3-fold, represented 11.2, 14.4, 8.0, 2.7 and 0.3% of total immunoquantified CYP1-4 proteins, respectively. 4. In small intestines, CYP2J2, CYP4F2/3, CYP4F11 and CYP4F12, varied 2.4- to 9.7-fold, represented 6.9, 36.4, 2.4 and 9.3% of total immunoquantified CYP1-4 proteins, respectively, making CYP4F the most abundant P450 subfamily in small intestines. CYP4A11 was under the detection limit in all of the samples analyzed. 5. Significant correlations were found in liver for CYP4A11 with lauric acid 11-/12-hydroxylation and for CYP4F2/3 and CYP4F11 with astemizole hydroxylation. 6. This study revealed the relatively abundant contents of cynomolgus CYP2J2, CYP4A11 and CYP4Fs in liver and/or small intestine, suggesting their potential roles for the metabolism of xenobitotics and endogenous substrates.

  20. Future Trends in the Pharmacogenomics of Brain Disorders and Dementia: Influence of APOE and CYP2D6 Variants

    PubMed Central

    Cacabelos, Ramón; Fernández-Novoa, Lucía; Martínez-Bouza, Rocío; McKay, Adam; Carril, Juan C.; Lombardi, Valter; Corzo, Lola; Carrera, Iván; Tellado, Iván; Nebril, Laura; Alcaraz, Margarita; Rodríguez, Susana; Casas, Ángela; Couceiro, Verónica; Álvarez, Antón

    2010-01-01

    About 80% of functional genes in the human genome are expressed in the brain and over 1,200 different genes have been associated with the pathogenesis of CNS disorders and dementia. Pharmacogenetic studies of psychotropic drug response have focused on determining the relationship between variations in specific candidate genes and the positive and adverse effects of drug treatment. Approximately, 18% of neuroleptics are substrates of CYP1A2 enzymes, 40% of CYP2D6, and 23% of CYP3A4; 24% of antidepressants are substrates of CYP1A2 enzymes, 5% of CYP2B6, 38% of CYP2C19, 85% of CYP2D6, and 38% of CYP3A4; 7% of benzodiazepines are substrates of CYP2C19 enzymes, 20% of CYP2D6, and 95% of CYP3A4. 10-20% of Western populations are defective in genes of the CYP superfamily; and the pharmacogenomic response of psychotropic drugs also depends on genetic variants associated with dementia. Prospective studies with anti-dementia drugs or with multifactorial strategies have revealed that the therapeutic response to conventional drugs in Alzheimer’s disease is genotype-specific. The disease-modifying effects (cognitive performance, biomarker modification) of therapeutic intervention are APOE-dependent, with APOE-4 carriers acting as the worst responders (APOE-3/3 > APOE-3/4 > APOE-4/4). APOE-CYP2D6 interactions also influence the therapeutic outcome in patients with dementia.

  1. The CYP2B6*6 allele significantly alters the N-demethylation of ketamine enantiomers in vitro.

    PubMed

    Li, Yibai; Coller, Janet K; Hutchinson, Mark R; Klein, Kathrin; Zanger, Ulrich M; Stanley, Nathan J; Abell, Andrew D; Somogyi, Andrew A

    2013-06-01

    Ketamine is primarily metabolized to norketamine by hepatic CYP2B6 and CYP3A4-mediated N-demethylation. However, the relative contribution from each enzyme remains controversial. The CYP2B6*6 allele is associated with reduced enzyme expression and activity that may lead to interindividual variability in ketamine metabolism. We examined the N-demethylation of individual ketamine enantiomers using human liver microsomes (HLMs) genotyped for the CYP2B6*6 allele, insect cell-expressed recombinant CYP2B6 and CYP3A4 enzymes, and COS-1 cell-expressed recombinant CYP2B6.1 and CYP2B6.6 protein variant. Effects of CYP-selective inhibitors on norketamine formation were also determined in HLMs. The two-enzyme Michaelis-Menten model best fitted the HLM kinetic data. The Michaelis-Menten constants (K(m)) for the high-affinity enzyme and the low-affinity enzyme were similar to those for the expressed CYP2B6 and CYP3A4, respectively. The intrinsic clearance for both ketamine enantiomers by the high-affinity enzyme in HLMs with CYP2B6*1/*1 genotype were at least 2-fold and 6-fold higher, respectively, than those for CYP2B6*1/*6 genotype and CYP2B6*6/*6 genotype. The V(max) and K(m) values for CYP2B6.1 were approximately 160 and 70% of those for CYP2B6.6, respectively. N,N'N'-triethylenethiophosphoramide (thioTEPA) (CYP2B6 inhibitor, 25 μM) and the monoclonal antibody against CYP2B6 but not troleandomycin (CYP3A4 inhibitor, 25 μM) or the monoclonal antibody against CYP3A4 inhibited ketamine N-demethylation at clinically relevant concentrations. The degree of inhibition was significantly reduced in HLMs with the CYP2B6*6 allele (gene-dose P < 0.05). These results indicate a major role of CYP2B6 in ketamine N-demethylation in vitro and a significant impact of the CYP2B6*6 allele on enzyme-ketamine binding and catalytic activity.

  2. Drug-drug Interaction between Losartan and Paclitaxel in Human Liver Microsomes with Different CYP2C8 Genotypes.

    PubMed

    Mukai, Yuji; Senda, Asuna; Toda, Takaki; Hayakawa, Toru; Eliasson, Erik; Rane, Anders; Inotsume, Nobuo

    2015-06-01

    The cytochrome P450 (CYP) 2C8*3 allele is associated with reduced metabolic activity of paclitaxel. This study was aimed to investigate the inhibitory effect of losartan on paclitaxel metabolism in human liver microsomes (HLMs) and to determine the impact of the CYP2C8*3 polymorphism. HLMs that contained the CYP2C8*1 homozygote (HL60) or CYP2C8*3 heterozygote (HL54) genotype were used for the inhibition study. Losartan, at a concentration of 50 μmol/L, significantly inhibited paclitaxel metabolism by 29% and 57% in the HL60 (p < 0.001) and HL54 (p < 0.01), respectively. When using HL60, losartan and the CYP3A4-selective inhibitors, erythromycin and ketoconazole, caused a greater inhibition of the paclitaxel metabolism than quercetin, a CYP2C8-selective inhibitor. This demonstrated that the paclitaxel metabolism was mainly catalysed by CYP3A4 in HL60. There were no significant differences found for the inhibitory effects caused by the four inhibitors of the paclitaxel metabolism in HL54, indicating that both CYP2C8 and CYP3A4 play important roles in paclitaxel metabolism in HL54. These findings suggest that 50 μmol/L of losartan inhibits both CYP2C8 and CYP3A4 in HLMs. In summary, losartan inhibited paclitaxel metabolism, with concentrations over 50 μmol/L in HLMs. The CYP2C8*3 allele carriers are likely susceptible to the interactions of losartan and CYP3A4 inhibitors to paclitaxel metabolism.

  3. Allosteric activation of midazolam CYP3A5 hydroxylase activity by icotinib - Enhancement by ketoconazole.

    PubMed

    Zhuang, XiaoMei; Zhang, TianHong; Yue, SiJia; Wang, Juan; Luo, Huan; Zhang, YunXia; Li, Zheng; Che, JinJing; Yang, HaiYing; Li, Hua; Zhu, MingShe; Lu, Chuang

    2016-12-01

    Icotinib (ICO), a novel small molecule and a tyrosine kinase inhibitor, was developed and approved recently in China for non-small cell lung cancer. During screening for CYP inhibition potential in human liver microsomes (HLM), heterotropic activation toward CYP3A5 was revealed. Activation by icotinib was observed with CYP3A-mediated midazolam hydroxylase activity in HLM (∼40% over the baseline) or recombinant human CYP3A5 (rhCYP3A5) (∼70% over the baseline), but not in the other major CYPs including rhCYP3A4. When co-incubated with selective CYP3A4 inhibitor CYP3cide or monoclonal human CYP3A4 inhibitory antibody in HLM, the activation was extended to ∼60%, suggesting CYP3A5 might be the isozyme involved. Further, the relative activation was enhanced to ∼270% in rhCYP3A5 in the presence of ketoconazole. The activation was substrate and pathway dependent and observed only in the formation of 1'-OH-midazolam, and not 4-OH-midazolam, 6β-OH-testosterone, or oxidized nifedipine. The activation requires the presence of cytochrome b5 and it is only observed in the liver microsomes of dogs, monkeys, and humans, but not in rats and mice. Kinetic analyses of 1'-OH-midazolam formation showed that ICO increased the Vmax values in HLM and rhCYP3A5 with no significant changes in Km values. By adding CYP3cide with ICO to the incubation, the Vmax values increased 2-fold over the CYP3cide control. Addition of ketoconazole with ICO alone or ICO plus CYP3cide resulted in an increase in Vmax values and decrease in Km values compared to their controls. This phenomenon may be attributed to a new mechanism of CYP3A5 heterotropic activation, which warrants further investigation.

  4. Microarray Analysis of Differentially-Expressed Genes Encoding CYP450 and Phase II Drug Metabolizing Enzymes in Psoriasis and Melanoma

    PubMed Central

    Sumantran, Venil N.; Mishra, Pratik; Bera, Rakesh; Sudhakar, Natarajan

    2016-01-01

    Cytochrome P450 drug metabolizing enzymes are implicated in personalized medicine for two main reasons. First, inter-individual variability in CYP3A4 expression is a confounding factor during cancer treatment. Second, inhibition or induction of CYP3A4 can trigger adverse drug–drug interactions. However, inflammation can downregulate CYP3A4 and other drug metabolizing enzymes and lead to altered metabolism of drugs and essential vitamins and lipids. Little is known about effects of inflammation on expression of CYP450 genes controlling drug metabolism in the skin. Therefore, we analyzed seven published microarray datasets, and identified differentially-expressed genes in two inflammatory skin diseases (melanoma and psoriasis). We observed opposite patterns of expression of genes regulating metabolism of specific vitamins and lipids in psoriasis and melanoma samples. Thus, genes controlling the turnover of vitamin D (CYP27B1, CYP24A1), vitamin A (ALDH1A3, AKR1B10), and cholesterol (CYP7B1), were up-regulated in psoriasis, whereas melanomas showed downregulation of genes regulating turnover of vitamin A (AKR1C3), and cholesterol (CYP39A1). Genes controlling abnormal keratinocyte differentiation and epidermal barrier function (CYP4F22, SULT2B1) were up-regulated in psoriasis. The up-regulated CYP24A1, CYP4F22, SULT2B1, and CYP7B1 genes are potential drug targets in psoriatic skin. Both disease samples showed diminished drug metabolizing capacity due to downregulation of the CYP1B1 and CYP3A5 genes. However, melanomas showed greater loss of drug metabolizing capacity due to downregulation of the CYP3A4 gene. PMID:26901218

  5. The Psychostimulant Khat (Catha edulis) Inhibits CYP2D6 Enzyme Activity in Humans.

    PubMed

    Bedada, Worku; de Andrés, Fernando; Engidawork, Ephrem; Pohanka, Anton; Beck, Olof; Bertilsson, Leif; Llerena, Adrián; Aklillu, Eleni

    2015-12-01

    The use of khat (Catha edulis) while on medication may alter treatment outcome. In particular, the influence of khat on the metabolic activities of drug-metabolizing enzymes is not known. We performed a comparative 1-way crossover study to evaluate the effect of khat on cytochrome P450 (CYP)2D6 and CYP3A4 enzyme activity. After 1 week of khat abstinence, baseline CYP2D6 and CYP3A4 metabolic activities were determined in 40 Ethiopian male volunteers using 30 mg dextromethorphan (DM) as a probe drug and then repeated after 1 week of daily use of 400 g fresh khat leaves. Urinary concentrations of cathinone and cathine were determined to monitor the subjects' compliance to the study protocol. Genotyping for CYP2D6*3 and CYP2D6*4 was done. Plasma DM, dextrorphan and 3-methoxymorphinan concentrations were quantified. CYP2D6 and CYP3A4 enzyme activities were assessed by comparing plasma log DM/dextrorphan and log DM/methoxymorphinan metabolic ratio (MR) respectively in the presence and absence of khat. Cytochrome 2D6 MR was significantly increased from baseline by concurrent khat use (paired t test, P = 0.003; geometric mean ratio, 1.38; 95% confidence interval [95% CI], 1.12-1.53). Moreover, the inhibition of CYP2D6 activity by khat was more pronounced in CYP2D6*1/*1 compared with CYP2D6*1/*4 genotypes (P = 0.01). A marginal inhibition of CYP3A4 activity in the presence of khat was observed (P = 0.24). The mean percentage increase of CYP2D6 and CYP3A4 MR from baseline by khat use was 46% (95% CI, 20-72) and 31% (95% CI, 8-54), respectively. This is the first report linking khat use with significant inhibition of CYP2D6 metabolic activity in humans.

  6. Effective cytochrome P450 (CYP) inhibitor isolated from thyme (Thymus saturoides) purchased from a Japanese market.

    PubMed

    Brahmi, Zeineb; Niwa, Hitomi; Yamasato, Mio; Shigeto, Sakurako; Kusakari, Yuna; Sugaya, Kouichi; Onose, Jun-ichi; Abe, Naoki

    2011-01-01

    A highly polymethylated flavone that effectively inhibited cytochrome P450s (CYPs) 1A2 and 3A4 (IC(50) = 2.41 and 1.71 µM) in vitro was isolated from thyme leaves (Thymus saturoides) purchased from a Japanese market. Its structure was spectroscopically identified as 4',5-dihydroxy-3',6,7,8-tetramethoxy flavone (8-methoxycirsilineol, 1). This is the first report describing a strong inhibitor of CYP1A2 and 3A4 isolated from Thymus saturoides.

  7. [Role of antioxidants in electro catalytic activity of cytochrome P450 3A4].

    PubMed

    Shumiantseva, V V; Makhova, A A; Bulko, T V; Shikh, E V; Kukes, V G; Usanov, S A; Archakov, A I

    2014-01-01

    The electrochemical analysis of cytochrome Р450 3А4 catalytic activity has shown that vitamins C, A and Е influence on electron transfer and Fe3+/Fe2+ reduction process of cytochrome Р450 3А4. These data allow to assume possibility of cross effects and interference of vitamins-antioxidants with drugs metabolised by cytochrome Р450 3А4, at carrying out of complex therapy. This class of vitamins shows antioxidant properties that lead to increase of the cathodic current corresponding to heme reduction of this functionally significant haemoprotein. Ascorbic acid of 0.028-0.56 mM concentration stimulates cathodic peak (an electrochemical signal) of cytochrome Р450 3А4. At the presence of diclofenac (Voltaren) - a typical substrate of cytochrome Р450 3А4 - the increase growth of a catalytic current testifying to an electrocatalysis and stimulating action of ascorbic acid is observed. In the presence of vitamins A and Е also is registered dose-dependent (in a range of 10-100 M) increase in a catalytic current of cytochrome Р450 3А4: the maximum increase corresponds to 229 ± 20% for 100 M of vitamin A, and 162±10% for 100 M of vitamin E. Vitamin E in the presence of P450's inhibitor itraconazole doesn't give essential increase in a reductive current, unlike retinol (vitamin A). This effect can manifest substrate properties of tocopherol (vitamin E). The electrochemical approach for the analysis of catalytic activity of cytochrome Р450 3А4 and studies of influence of biologically active compounds on an electrocatalysis is the sensitive and effective sensor approach, allowing to use low concentration of protein on an electrode (till 10-15 mol/electrode), to carry out the analysis without participation of protein redox partners, and to reveal drug-drug or drug-vitamins interaction in pre-clinical experiments.

  8. 17 CFR 270.3a-4 - Status of investment advisory programs.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... consultation. (3) Each client has the ability to impose reasonable restrictions on the management of the client... nothing in this section requires that a client have the ability to require that particular securities or..., all contributions and withdrawals made by the client, all fees and expenses charged to the...

  9. Aspergillus niger metabolism of citrus furanocoumarin inhibitors of human cytochrome P450 3A4

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungi metabolize polycyclic aromatic hydrocarbons by a number of detoxification processes, including the formation of sulfated and glycosidated conjugates. A class of aromatic compounds important to the citrus industry is the furanocoumarins in grapefruit, and their metabolism in humans is critical...

  10. Evaluation of Pharmacokinetic Interactions Between Lesinurad, a New Selective Urate Reabsorption Inhibitor, and CYP Enzyme Substrates Sildenafil, Amlodipine, Tolbutamide, and Repaglinide.

    PubMed

    Gillen, Michael; Yang, Chun; Wilson, David; Valdez, Shakti; Lee, Caroline; Kerr, Bradley; Shen, Zancong

    2017-01-09

    Lesinurad is a selective uric acid reabsorption inhibitor approved for the treatment of hyperuricemia associated with gout in combination with xanthine oxidase inhibitors. In vitro assays indicate that lesinurad is an inducer of CYPs in the order CYP3A > CYP2C8 > CYP2C9 > CYP2C19 > CYP2B6 and an inhibitor of CYP2C8 and CYP2C9. To investigate the drug interaction potential of lesinurad, clinical drug interaction studies were conducted. Open-label studies in volunteers investigated the effects of single-/multiple-dose lesinurad on the pharmacokinetics of sildenafil and amlodipine (CYP3A4 induction), tolbutamide (CYP2C9 inhibition/induction), and repaglinide (CYP2C8 inhibition/induction). There was no apparent induction of CYP2C8 and CYP2C9 following repeated lesinurad administration, although no inhibition of CYP2C9 and modest inhibition of CYP2C8 were observed following single-dose lesinurad. Consistent with in vitro observations, lesinurad (200 mg once daily) was an inducer of CYP3A based on the effects on sildenafil exposure. Sildenafil exposure decreased by approximately 34% for Cmax and AUC when administered with multiple-dose lesinurad 200 mg and allopurinol 300 mg, relative to sildenafil alone. During lesinurad therapy, the possibility of reduced efficacy of concomitant drugs that are CYP3A substrates should be considered and their efficacy monitored because of induction of CYP3A by lesinurad.

  11. CYP2D6 and CYP2A6 biotransform dietary tyrosol into hydroxytyrosol.

    PubMed

    Rodríguez-Morató, Jose; Robledo, Patricia; Tanner, Julie-Anne; Boronat, Anna; Pérez-Mañá, Clara; Oliver Chen, C-Y; Tyndale, Rachel F; de la Torre, Rafael

    2017-02-15

    The dietary phenol tyrosol has been reported to be endogenously transformed into hydroxytyrosol, a potent antioxidant with multiple health benefits. In this work, we evaluated whether tyrosine hydroxylase (TH) and cytochrome P450s (CYPs) catalyzed this process. To assess TH involvement, Wistar rats were treated with α-methyl-L-tyrosine and tyrosol. Tyrosol was converted into hydroxytyrosol whilst α-methyl-L-tyrosine did not inhibit the biotransformation. The role of CYP was assessed in human liver microsomes (HLM) and tyrosol-to-hydroxytyrosol conversion was observed. Screening with selective enzymatic CYP inhibitors identified CYP2A6 as the major isoform involved in this process. Studies with baculosomes further demonstrated that CYP2D6 and CYP3A4 could transform tyrosol into hydroxytyrosol. Experiments using human genotyped livers showed an interindividual variability in hydroxytyrosol formation and supported findings that CYP2D6 and CYP2A6 mediated this reaction. The dietary health benefits of tyrosol-containing foods remain to be evaluated in light of CYP pharmacogenetics.

  12. Optimization of Clonazepam Therapy Adjusted to Patient’s CYP3A Status and NAT2 Genotype

    PubMed Central

    Tóth, Katalin; Csukly, Gábor; Sirok, Dávid; Belic, Ales; Kiss, Ádám; Háfra, Edit; Déri, Máté; Menus, Ádám; Bitter, István

    2016-01-01

    Background: The shortcomings of clonazepam therapy include tolerance, withdrawal symptoms, and adverse effects such as drowsiness, dizziness, and confusion leading to increased risk of falls. Inter-individual variability in the incidence of adverse events in patients partly originates from the differences in clonazepam metabolism due to genetic and nongenetic factors. Methods: Since the prominent role in clonazepam nitro-reduction and acetylation of 7-amino-clonazepam is assigned to CYP3A and N-acetyl transferase 2 enzymes, respectively, the association between the patients’ CYP3A status (CYP3A5 genotype, CYP3A4 expression) or N-acetyl transferase 2 acetylator phenotype and clonazepam metabolism (plasma concentrations of clonazepam and 7-amino-clonazepam) was evaluated in 98 psychiatric patients suffering from schizophrenia or bipolar disorders. Results: The patients’ CYP3A4 expression was found to be the major determinant of clonazepam plasma concentrations normalized by the dose and bodyweight (1263.5±482.9 and 558.5±202.4ng/mL per mg/kg bodyweight in low and normal expressers, respectively, P<.0001). Consequently, the dose requirement for the therapeutic concentration of clonazepam was substantially lower in low-CYP3A4 expresser patients than in normal expressers (0.029±0.011 vs 0.058±0.024mg/kg bodyweight, P<.0001). Furthermore, significantly higher (about 2-fold) plasma concentration ratio of 7-amino-clonazepam and clonazepam was observed in the patients displaying normal CYP3A4 expression and slower N-acetylation than all the others. Conclusion: Prospective assaying of CYP3A4 expression and N-acetyl transferase 2 acetylator phenotype can better identify the patients with higher risk of adverse reactions and can facilitate the improvement of personalized clonazepam therapy and withdrawal regimen. PMID:27639091

  13. [Identification of metabolites of epiberberine in rat liver microsomes and its inhibiting effects on CYP2D6].

    PubMed

    Yang, Xiao-Yan; Ye, Jing; Sun, Gui-Xia; Xue, Bao-Juan; Zhao, Yuan-Yuan; Miao, Pei-Pei; Su, Jin; Zhang, Yu-Jie

    2014-10-01

    Epiberberine, one of the most important isoquinoline alkaloid in Coptidis Rhizoma, possesses extensive pharmacological activities. In this paper, the liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to study phase I and phase II metabolites. A Thermo HPLC system (including Surveyor AS, Surveyor LC Pump, Surveyor PDA. USA) was used. The cocktail probe drugs method was imposed to determine the content change of metoprolol, dapsone, phenacetin, chlorzoxazone and tolbutamide simultaneously for evaluating the activity of CYP2D6, CYP3A4, CYP1A2, CYP2E1 and CYP2C9 under different concentrations of epiberberine in rat liver microsomes. The result showed that epiberberine may have phase I and phase II metabolism in the rat liver and two metabolites in phase I and three metabolites in phase II are identified in the temperature incubation system of in vitro liver microsomes. Epiberberine showed significant inhibition on CYP2D6 with IC50 value of 35.22 μmol L(-1), but had no obvious inhibiting effect on the activities of CYP3A4, CYP1A2, CYP2E1 and CYP2C9. The results indicated that epiberberine may be caused drug interactions based on CYP2D6 enzyme. This study aims to provide a reliable experimental basis for its further research and development of epiberberine.

  14. Modulation of CYPs, P-gp, and PXR by Eschscholzia californica (California Poppy) and Its Alkaloids.

    PubMed

    Manda, Vamshi K; Ibrahim, Mohamed A; Dale, Olivia R; Kumarihamy, Mallika; Cutler, Stephen J; Khan, Ikhlas A; Walker, Larry A; Muhammad, Ilias; Khan, Shabana I

    2016-04-01

    Eschscholzia californica, a native US plant, is traditionally used as a sedative, analgesic, and anxiolytic herb. With the rapid rise in the use of herbal supplements together with over-the-counter and prescription drugs, the risk for potential herb-drug interactions is also increasing. Most of the clinically relevant pharmacokinetic drug interactions occur due to modulation of cytochrome P450 enzymes (CYPs), P-glycoprotein, and the pregnane X receptor by concomitantly used herbs. This study aimed to determine the effects of an EtOH extract, aqueous extract (tea), basic CHCl3 fractions, and isolated major alkaloids, namely protopine (1), escholtzine (2), allocryptopine (3), and californidine (4), of E. californica on the activity of cytochrome P450s, P-glycoprotein and the pregnane X receptor. The EtOH extract and fractions showed strong time-dependent inhibition of CYP 3A4, CYP 2C9, and CYP 2C19, and reversible inhibition of CYP 2D6. Among the alkaloids, escholtzine (2) and allocryptopine (3) exhibited time-dependent inhibition of CYP 3A4, CYP 2C9, and CYP 2C19 (IC50 shift ratio > 2), while protopine (1) and allocryptopine (3) showed reversible inhibition of CYP 2D6 enzyme. A significant activation of the pregnane X receptor (> 2-fold) was observed with the EtOH extract, basic CHCl3 fraction, and alkaloids (except protopine), which resulted into an increased expression of mRNA and the activity of CYP 3A4 and CYP 1A2. The expression of P-glycoprotein was unaffected. However, aqueous extract (tea) and its main alkaloid californidine (4) did not affect cytochrome P450s, P-glycoprotein, or the pregnane X receptor. This data suggests that EtOH extract of E. californica and its major alkaloids have a potential of causing interactions with drugs that are metabolized by cytochrome P450s, while the tea seems to be safer.

  15. Important Role of CYP2J2 in Protein Kinase Inhibitor Degradation: A Possible Role in Intratumor Drug Disposition and Resistance

    PubMed Central

    Narjoz, Céline; Favre, Amélie; McMullen, Justin; Kiehl, Philippe; Montemurro, Michael; Figg, William D.; Beaune, Philippe; de Waziers, Isabelle; Rochat, Bertrand

    2014-01-01

    We have investigated in vitro the metabolic capability of 3 extrahepatic cytochromes P-450, CYP1A1, 1B1 and 2J2, known to be over-expressed in various tumors, to biotransform 5 tyrosine kinase inhibitors (TKI): dasatinib, imatinib, nilotinib, sorafenib and sunitinib. Moreover, mRNA expression of CYP1A1, 1B1, 2J2 and 3A4 in 6 hepatocellular and 14 renal cell carcinoma tumor tissues and their surrounding healthy tissues, was determined. Our results show that CYP1A1, 1B1 and especially 2J2 can rapidly biotransform the studied TKIs with a metabolic efficiency similar to that of CYP3A4. The mRNA expression of CYP1A1, 1B1, 2J2 and 3A4 in tumor biopsies has shown i) the strong variability of CYP expression and ii) distinct outliers showing high expression levels (esp. CYP2J2) that are compatible with high intratumoral CYP activity and tumor-specific TKI degradation. CYP2J2 inhibition could be a novel clinical strategy to specifically increase the intratumoral rather than plasma TKI levels, improving TKI efficacy and extending the duration before relapse. Such an approach would be akin to beta-lactamase inhibition, a classical strategy to avoid antibiotic degradation and resistance. PMID:24819355

  16. S33138 (N-[4-[2-[(3aS,9bR)-8-cyano-1,3a,4,9b-tetrahydro[1] benzopyrano[3,4-c]pyrrol-2(3H)-yl)-ethyl]phenyl-acetamide), a preferential dopamine D3 versus D2 receptor antagonist and potential antipsychotic agent: III. Actions in models of therapeutic activity and induction of side effects.

    PubMed

    Millan, Mark J; Loiseau, Florence; Dekeyne, Anne; Gobert, Alain; Flik, Gunnar; Cremers, Thomas I; Rivet, Jean-Michel; Sicard, Dorothée; Billiras, Rodolphe; Brocco, Mauricette

    2008-03-01

    In contrast to clinically available antipsychotics, the novel benzopyranopyrrolidine derivative, S33138 (N-[4-[2-[(3aS,9bR)-8-cyano-1,3a,4,9b-tetrahydro[1]benzopyrano[3,4-c]pyrrol-2(3H)-yl)-ethyl]phenyl-acetamide), behaves as a preferential antagonist of D(3) versus D(2) receptors and does not interact with histamine H(1) and muscarinic receptors. In contrast to haloperidol, clozapine, olanzapine, and risperidone, S33138 (0.16-2.5 mg/kg s.c.) did not disrupt performance in passive-avoidance and five-choice serial reaction time procedures. Furthermore, upon either systemic administration (0.04-2.5 mg/kg s.c.) or introduction into the frontal cortex (0.04-0.63 mug/side), S33138 potently attenuated the perturbation of social recognition by scopolamine or a prolonged intersession delay. Over a comparable and low-dose range, S33138 (0.04-0.63 mg/kg s.c.) elevated dialysis levels of acetylcholine in the frontal cortex of freely moving rats. At higher doses (2.5-10.0 mg/kg s.c.), S33138 also increased frontocortical levels of histamine, whereas monoamines, glutamate, glycine, and GABA were unaffected. By analogy to the other antipsychotics, S33138 (0.63-10.0 mg/kg s.c.) inhibited conditioned avoidance responses in rats, apomorphine-induced climbing in mice, and hyperlocomotion elicited by amphetamine, cocaine, dizocilpine, ketamine, and phencyclidine in rats. S33138 (0.16-2.5 mg/kg s.c.) also blocked the reduction of prepulse inhibition elicited by apomorphine. In comparison with the above actions, only "high" doses of S33138 (10.0-40.0 mg/kg s.c.) elicited catalepsy. To summarize, reflecting preferential blockade of D(3) versus D(2) receptors, S33138 preserves and/or enhances cognitive function, increases frontocortical cholinergic transmission, and is active in models of antipsychotic properties at doses well below those inducing catalepsy. In comparison with clinically available agents, S33138 displays, thus, a distinctive and promising profile of potential

  17. CYP450 Enzyme-Mediated Metabolism of TCAS and Its Inhibitory and Induced Effects on Metabolized Enzymes in Vitro.

    PubMed

    Shen, Guolin; Wang, Cheng; Zhou, Lili; Li, Lei; Chen, Huiming; Yu, Wenlian; Li, Haishan

    2015-09-02

    In this study, we investigated the enzymes catalyzing the phase I metabolism of thiacalixarene (TCAS) based on in vitro system including cDNA-expressed P450 enzymes, human liver microsomes plus inhibitors and monoclonal antibodies. In addition, the inhibitory potential of TCAS on major CYP450 drug metabolizing enzymes (CYP1A2, CYP2C9, CYP2B6, CYP2D6 and CYP3A4) was assessed. The results showed that CYP1A2 and CYP2C9 mediated TCAS hydroxylation. IC50 values for TCAS in rat and human liver microsomes were greater than 50 µM, and it demonstrated a weak inhibition of rat and human CYP450 enzymes. Finally, sandwiched hepatocytes were used to evaluate the induction of CYP1A and CYP3A to define the function of TCAS in vivo. The results showed that incubation of TCAS at different concentrations for 72 h failed to induce CYP1A and CYP3A. However, incubation of the cells with 50 and 100 µM TCAS caused a profound decrease in the activities of CYP1A and CYP3A, which was probably due to cytotoxic effects, suggesting that exposure to TCAS might be a health concern.

  18. CYP3A genotypes and treatment response in paediatric acute lymphoblastic leukaemia.

    PubMed

    Aplenc, Richard; Glatfelter, Wendy; Han, Peggy; Rappaport, Eric; La, Mei; Cnaan, Avital; Blackwood, M Anne; Lange, Beverly; Rebbeck, Timothy

    2003-07-01

    Acute lymphoblastic leukaemia (ALL) is the most common paediatric cancer with a cure rate of approximately 80%. Relapse occurs despite treatment stratification based on clinical criteria. Relapse risk in ALL may be related to simple nucleotide polymorphisms (SNPs) of enzymes that metabolize chemotherapeutic agents. We evaluated whether SNPs in the cytochrome P450 3A family (CYP3A4*1B, CYP3A5*3 and CYP3A5*6) were associated with relapse risk on a national Children's Cancer Group (CCG) paediatric ALL trial (CCG-1891). CCG-1891 enrolled 1204 patients, and obtained both relapse and toxicity data prospectively. One hundred and twenty-four relapsed patients and 409 non-relapsed patients were assayed for each SNP. CYP3A variants were not associated with an increased risk of relapse. However, patients with the CYP3A4*1B and CYP3A5*3 genotypes had a decreased risk of peripheral neuropathy that was statistically significant on univariate analysis. After correction for multiple comparisons, the association between CYP3A*1B and CYP3A5*3 genotypes approached, but did not reach, statistical significance. CYP3 genotypes may not significantly modify the risk of relapse in childhood ALL, but may modify the risk of toxicity.

  19. Effect of Ethanol on the Metabolic Characteristics of HIV-1 Integrase Inhibitor Elvitegravir and Elvitegravir/Cobicistat with CYP3A: An Analysis Using a Newly Developed LC-MS/MS Method.

    PubMed

    Midde, Narasimha M; Rahman, Mohammad A; Rathi, Chetan; Li, Junhao; Meibohm, Bernd; Li, Weihua; Kumar, Santosh

    2016-01-01

    Elvitegravir (EVG), an integrase inhibitor for the treatment HIV infection, is increasingly becoming the part of first-line antiretroviral therapy (ART) regimen. EVG is mainly metabolized through cytochrome P450 (CYP) 3A4. Previously, we have shown that ethanol alters ART-CYP3A4 interactions with protease inhibitors thereby altering their metabolisms. However, as EVG is a fairly new class of drug, its kinetic characteristics and the effect of ethanol on EVG-CYPP3A4 interaction is poorly understood. In this study, we characterized EVG and cobicistat (COBI)-boosted EVG metabolism in human microsomes followed by ethanol-EVG, ethanol-COBI-EVG interaction with CYP3A. First, we developed and validated a simple, sensitive, and robust liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantification of EVG in the human liver microsomes. The lower limit of quantification for the drug was at 0.003 μM (1.34 ng/ml). Extraction yield, matrix effects, drug stability, and calibration curves for the proposed method were validated according to the FDA guidelines. Time dependent kinetics data showed that 20mM ethanol decreases the apparent half-life of EVG degradation by ~50% compared to EVG alone. Our substrate kinetic results revealed that ethanol mildly decreases the catalytic efficiency for EVG metabolism. Inhibition studies demonstrated that EVG inhibits CYP3A4, and 20 mM ethanol causes a decrease in the IC50 of EVG. However, in the presence of COBI we were unable to determine these parameters effectively because COBI, being a strong inhibitor of CYP3A4, blocked the EVG/ethanol-CYP3A4 interactions. Docking studies predicted a shift of EVG or COBI binding to the active site of CYP3A4 in the presence of ethanol. Taken together, these results suggest that ethanol interacts with microsomal CYP3A and alters EVG-CYP3A4 interaction thereby altering EVG metabolism and inhibition of CYP3A4 by EVG. This finding has clinical significance because alcohol use is

  20. Effect of Ethanol on the Metabolic Characteristics of HIV-1 Integrase Inhibitor Elvitegravir and Elvitegravir/Cobicistat with CYP3A: An Analysis Using a Newly Developed LC-MS/MS Method

    PubMed Central

    Midde, Narasimha M.; Rahman, Mohammad A.; Rathi, Chetan; Li, Junhao; Meibohm, Bernd; Li, Weihua; Kumar, Santosh

    2016-01-01

    Elvitegravir (EVG), an integrase inhibitor for the treatment HIV infection, is increasingly becoming the part of first-line antiretroviral therapy (ART) regimen. EVG is mainly metabolized through cytochrome P450 (CYP) 3A4. Previously, we have shown that ethanol alters ART-CYP3A4 interactions with protease inhibitors thereby altering their metabolisms. However, as EVG is a fairly new class of drug, its kinetic characteristics and the effect of ethanol on EVG-CYPP3A4 interaction is poorly understood. In this study, we characterized EVG and cobicistat (COBI)-boosted EVG metabolism in human microsomes followed by ethanol-EVG, ethanol-COBI-EVG interaction with CYP3A. First, we developed and validated a simple, sensitive, and robust liquid chromatography–tandem mass spectrometry (LC-MS/MS) method for the quantification of EVG in the human liver microsomes. The lower limit of quantification for the drug was at 0.003 μM (1.34ng/ml). Extraction yield, matrix effects, drug stability, and calibration curves for the proposed method were validated according to the FDA guidelines. Time dependent kinetics data showed that 20mM ethanol decreases the apparent half-life of EVG degradation by ~50% compared to EVG alone. Our substrate kinetic results revealed that ethanol mildly decreases the catalytic efficiency for EVG metabolism. Inhibition studies demonstrated that EVG inhibits CYP3A4, and 20 mM ethanol causes a decrease in the IC50 of EVG. However, in the presence of COBI we were unable to determine these parameters effectively because COBI, being a strong inhibitor of CYP3A4, blocked the EVG/ethanol-CYP3A4 interactions. Docking studies predicted a shift of EVG or COBI binding to the active site of CYP3A4 in the presence of ethanol. Taken together, these results suggest that ethanol interacts with microsomal CYP3A and alters EVG-CYP3A4 interaction thereby altering EVG metabolism and inhibition of CYP3A4 by EVG. This finding has clinical significance because alcohol use is

  1. Effect of diphenoxylate on CYP450 isoforms activity in rats

    PubMed Central

    Geng, Peiwu; Cai, Jinzhang; Wang, Shuanghu; Yang, Suping; Liu, Zezheng; Lin, Yingying; Wen, Congcong; Wang, Xianqin; Zhou, Yunfang; Zhang, Meiling

    2015-01-01

    In order to investigate the effects of diphenoxylate on the metabolic capacity of cytochrome P450 (CYP) enzymes, a cocktail method was employed to evaluate the activities of CYP2B6, CYP2D6, CYP2C19, CYP1A2, CYP3A4, CYP2C9. The rats were randomly divided into diphenoxylate group (Low, Medium, High) and control group. The diphenoxylate group rats were given 12, 24, 48 mg/kg (Low, Medium, High) diphenoxylate by continuous intragastric administration for 7 days. Six probe drugs bupropion, metroprolol omeprazole, phenacetin, testosterone and tolbutamide were given to rats through intragastric administration, and the plasma concentrations were determined by UPLC-MS/MS. Statistical pharmacokinetics difference for omeprazole, phenacetin and tolbutamide in rats were observed by comparing diphenoxylate group with control group. Continuous 7 days-intragastric administration of diphenoxylate induces the activities of CYP2C19, CYP1A2 and CYP2C9 of rats. Induction of drug metabolizing enzyme by diphenoxylate would reduce the efficacy of other drug. Additionally, high dosage diphenoxylate may cause hepatotoxicity. PMID:26770498

  2. Imperatorin is a mechanism-based inactivator of CYP2B6.

    PubMed

    Zheng, Liwei; Cao, Jiaojiao; Lu, Dan; Ji, Lin; Peng, Ying; Zheng, Jiang

    2015-01-01

    Imperatorin (IMP) is the major active ingredient in many common medicinal herbs. We examined the irreversible inhibitory effect of IMP on CYP2B6. IMP produced a time- and concentration-dependent inactivation of CYP2B6. About 70% of activity of CYP2B6 was suppressed after its incubation with 1.5 μM IMP for 9 minutes. KI and kinact were found to be 0.498 μM and 0.079 min(-1), respectively. The loss of CYP2B6 activity required the presence of NADPH. Glutathione and catalase/superoxide dismutase showed little protection against the IMP-induced enzyme inactivation. Ticlopidine, a substrate of CYP2B6, showed protection of the enzyme against the inactivation induced by IMP. The estimated partition ratio of the inactivation was approximately 4. Additionally, a γ-ketoenal intermediate was identified in microsomal incubations with IMP. CYP1A2, CYP2A6, CYP2B6, CYP2D6, CYP2E1, CYP3A4, and CYP3A5 were found to be involved in bioactivation of IMP. In conclusion, IMP is a mechanism-based inactivator of CYP2B6. The formation of γ-ketoenal intermediate may account for the enzyme inactivation.

  3. CYP2D plays a major role in berberine metabolism in liver of mice and humans.

    PubMed

    Guo, Ying; Li, Feng; Ma, Xiaochao; Cheng, Xingguo; Zhou, Honghao; Klaassen, Curtis D

    2011-11-01

    Berberine is a widely used plant extract for gastrointestinal infections, and is reported to have potential benefits in treatment for diabetes and hypercholesterolemia. It has been suggested that interactions between berberine-containing products and cytochromes P450 (CYPs) exist, but little is known about which CYPs mediate the metabolism of berberine in vivo. In this study, berberine metabolites in urine and feces of mice were analyzed, and the role that CYPs play in producing these metabolites were characterized in liver microsomes from mice (MLM) and humans (HLM), as well as recombinant human CYPs. Eleven berberine metabolites were identified in mice, including 5 unconjugated metabolites, mainly in feces, and 6 glucuronide and sulfate conjugates, predominantly in urine. Three novel berberine metabolites were observed. Three unconjugated metabolites of berberine were produced by MLM, HLM, and recombinant human CYPs. CYP2D6 was the primary recombinant human CYP producing these metabolites, followed by CYP1A2, 3A4, 2E1 and CYP2C19. The metabolism of berberine in MLM and HLM was decreased the most by a CYP2D inhibitor, and moderately by inhibitors of CYP1A and 3A. CYP2D plays a major role in berberine biotransformation, therefore, CYP2D6 pharmacogenetics and potential drug-drug interactions should be considered when berberine is used.

  4. Cytochrome P450 CYP3A in marsupials: cloning and characterisation of the second identified CYP3A subfamily member, isoform 3A78 from koala (Phascolarctos cinereus).

    PubMed

    El-Merhibi, Adaweyah; Ngo, Suong N T; Crittenden, Tamara A; Marchant, Ceilidh L; Stupans, Ieva; McKinnon, Ross A

    2011-11-01

    Cytochromes P450 (CYPs) are critically important in the oxidative metabolism of a diverse array of xenobiotics and endogenous substrates. Previously, we cloned and characterised the CYP2C, CYP4A, and CYP4B gene subfamilies from marsupials and demonstrated important species-differences in both activity and tissue expression of these CYP enzymes. Recently, we isolated the Eastern grey kangaroo CYP3A70. Here we have cloned and characterised the second identified member of marsupial CYP3A gene subfamily, CYP3A78 from the koala (Phascolarctos cinereus). In addition, we have examined the gender-differences in microsomal erythromycin N-demethylation activity (a CYP3A marker) and CYP3A protein expression across test marsupial species. Significant differences in hepatic erythromycin N-demethylation activity were observed between male and female koalas, with the activity detected in female koalas being 2.5-fold higher compared to that in male koalas (p<0.01). No gender-differences were observed in tammar wallaby or Eastern grey kangaroo. Immunoblot analysis utilising anti-human CYP3A4 antibody detected immunoreactive proteins in liver microsomes from all test male and female marsupials including the koala, tammar wallaby, and Eastern grey kangaroo, with no gender-differences detected across test marsupials. A 1610 bp koala hepatic CYP3A complete cDNA, designated CYP3A78, was cloned by reverse transcription-polymerase chain reaction approaches. It displays 64% nucleotide and 57% amino acid sequence identity to the Eastern grey kangaroo CYP3A70. The CYP3A78 cDNA encodes a protein of 515 amino acids, shares approximately 68% nucleotide and 56% amino acid sequence identity to human CYP3A4, and displays high sequence similarity to other published mammalian CYP3As from human, monkey, cow, pig, dog, rat, rabbit, mouse, hamster, and guinea pig. Collectively, this study provides primary molecular data regarding koala hepatic CYP3A78 gene and enables further functional analyses of CYP

  5. Individualization of tamoxifen therapy: much more than just CYP2D6 genotyping.

    PubMed

    Binkhorst, Lisette; Mathijssen, Ron H J; Jager, Agnes; van Gelder, Teun

    2015-03-01

    Clinical response to tamoxifen varies widely among women treated with this drug for hormone receptor-positive breast cancer. The principal active metabolite - endoxifen - is generated through hepatic metabolism of tamoxifen, with key roles for cytochrome P450 (CYP) CYP2D6 and CYP3A. By influencing endoxifen formation, genetic variants of CYP2D6 may affect response to tamoxifen. After a decade of research, examining the effects of CYP2D6 genetic variants on tamoxifen efficacy, there is still no agreement on the clinical utility of CYP2D6 genotype as biomarker for the prediction of breast cancer outcome, because studies revealed conflicting results. However, tamoxifen metabolism is complex and involves several other drug-metabolizing enzymes. Genetic variants of other CYP enzymes, including CYP3A4 and CYP2C9/19, as well as co-medication interfering with the metabolic activity of CYP2D6 and CYP3A4 have been shown to affect endoxifen concentrations and may also contribute to the variability in response to tamoxifen. Phenotyping strategies can predict endoxifen exposure more accurately than CYP2D6 genotype, but do not take into account all factors influencing endoxifen exposure. Therapeutic drug monitoring (TDM) is likely to be the optimal strategy for individualization of tamoxifen treatment. According to a growing amount of literature, endoxifen concentration seems to be a predictor of clinical outcome. The relationship between endoxifen levels and breast cancer outcomes has to be replicated and confirmed and the value of TDM should be evaluated in prospective clinical trials. Caution is advised regarding the concomitant use of medications which could interact with tamoxifen, including inhibitors and inducers of CYP enzymes.

  6. In vitro and in vivo small intestinal metabolism of CYP3A and UGT substrates in preclinical animals species and humans: species differences.

    PubMed

    Komura, Hiroshi; Iwaki, Masahiro

    2011-11-01

    Intestinal first-pass metabolism has a great impact on the bioavailability of cytochrome P450 3A4 (CYP3A) and/or uridine 5'-diphosphate (UDP)-glucoronosyltranferase (UGT) substrates in humans. In vitro and in vivo intestinal metabolism studies are essential for clarifying pharmacokinetics in animal species and for predicting the effects of human intestinal metabolism. We review species differences in intestinal metabolism both in vitro and in vivo. Based on mRNA expression levels, the major intestinal CYP3A isoform is CYP3A4 for humans, CYP3A4 (3A8) for monkeys, CYP3A9 for rats, cyp3a13 for mice, and CYP3A12 for dogs. Additionally, the intestinal-specific UGT would be UGT1A10 for humans, UGT1A8 for monkeys, and UGT1A7 for rats. In vitro and in vivo intestinal metabolism of CYP3A substrates were larger in monkeys than in humans, although a correlation in intestinal availability between monkeys and humans has been reported. Little information is available regarding species differences in in vitro and in vivo UGT activities; however, UGT-mediated in vivo intestinal metabolism has been demonstrated for raloxifene in humans and for baicalein in rats. Further assessment of intestinal metabolism, particularly for UGT substrates, is required to clarify the entire picture of species differences.

  7. Metoclopramide is metabolized by CYP2D6 and is a reversible inhibitor, but not inactivator, of CYP2D6.

    PubMed

    Livezey, Mara R; Briggs, Erran D; Bolles, Amanda K; Nagy, Leslie D; Fujiwara, Rina; Furge, Laura Lowe

    2014-04-01

    1. Metoclopramide is a widely used clinical drug in a variety of medical settings with rare acute dystonic events reported. The aim of this study was to assess a previous report of inactivation of CYP2D6 by metoclopramide, to determine the contribution of various CYPs to metoclopramide metabolism, and to identify the mono-oxygenated products of metoclopramide metabolism. 2. Metoclopramide interacted with CYP2D6 with Type I binding and a Ks value of 9.56 ± 1.09 µM. CYP2D6 was the major metabolizer of metoclopramide and the two major products were N-deethylation of the diethyl amine and N-hydroxylation on the phenyl ring amine. CYPs 1A2, 2C9, 2C19, and 3A4 also metabolized metoclopramide. 3. While reversible inhibition of CYP2D6 was noted, CYP2D6 inactivation by metoclopramide was not observed under conditions of varying concentration or varying time using Supersomes(TM) or pooled human liver microsomes. 4. The major metabolites of metoclopramide were N-hydroxylation and N-deethylation formed most efficiently by CYP2D6 but also formed by all CYPs examined. Also, while metoclopramide is metabolized primarily by CYP2D6, it is not a mechanism-based inactivator of CYP2D6 in vitro.

  8. Pharmacokinetics of chlorpheniramine, phenytoin, glipizide and nifedipine in an individual homozygous for the CYP2C9*3 allele.

    PubMed

    Kidd, R S; Straughn, A B; Meyer, M C; Blaisdell, J; Goldstein, J A; Dalton, J T

    1999-02-01

    Genetic polymorphisms in the cytochrome P450 (CYP) family are widely known to contribute to interindividual differences in the pharmacokinetics of many drugs. Several alleles for the CYP2C9 gene have been reported. Individuals homozygous for the Leu359 variant (CYP2C9*3) have been shown to have significantly lower drug clearances compared with Ile359 (CYP2C9*1) homozygous individuals. A male Caucasian who participated in six bioavailability studies in our laboratory over a period of several years showed extremely low clearance of two drugs: phenytoin and glipizide (both substrates of CYP2C9), but not for nifedipine (a CYP3A4 substrate) and chlorpheniramine (a CYP2D6 substrate). His oral clearance of phenytoin was 21% of the mean of the other 11 individuals participating in the study, and his oral clearance of glipizide, a second generation sulfonylurea structurally similar to tolbutamide, was only 188% of the mean of the other 10 individuals. However, his oral clearance of nifedipine and chlorpheniramine did not differ from individuals in other studies performed at our laboratories. An additional blood sample was obtained from this individual to determine if he possessed any of the known CYP2C9 or CYP2C19 allelic variants that would account for his poor clearance of the CYP2C9 substrates (phenytoin and glipizide) compared with the CYP3A4 (nifedipine) and CYP2D6 (chlorpheniramine) substrates. The results of the genotype testing showed that this individual was homozygous for the CYP2C9*3 allele and did not possess any of the known defective CYP2C19 alleles. This study establishes that the Leu359 mutation is responsible for the phenytoin and glipizide/tolbutamide poor metabolizer phenotype.

  9. Analysis of the impact of controlled release formulations on oral drug absorption, gut wall metabolism and relative bioavailability of CYP3A substrates using a physiologically-based pharmacokinetic model.

    PubMed

    Olivares-Morales, Andrés; Kamiyama, Yoshiteru; Darwich, Adam S; Aarons, Leon; Rostami-Hodjegan, Amin

    2015-01-25

    Controlled release (CR) formulations are usually designed to achieve similar exposure (AUC) levels as the marketed immediate release (IR) formulation. However, the AUC is often lower following CR compared to IR formulations. There are a few exceptions when the CR formulations have shown higher AUC. This study investigated the impact of CR formulations on oral drug absorption and CYP3A4-mediated gut wall metabolism. A review of the current literature on relative bioavailability (Frel) between CR and IR formulations of CYP3A substrates was conducted. This was followed by a systematic analysis to assess the impact of the release characteristics and the drug-specific factors (including metabolism and permeability) on oral bioavailability employing a physiologically-based pharmacokinetic (PBPK) modelling and simulation approach. From the literature review, only three CYP3A4 substrates showed higher Frel when formulated as CR. Several scenarios were investigated using the PBPK approach; in most of them, the oral absorption of CR formulations was lower as compared to the IR formulations. However, for highly permeable compounds that were CYP3A4 substrates the reduction in absorption was compensated by an increase in the fraction that escapes from first pass metabolism in the gut wall (FG), where the magnitude was dependent on CYP3A4 affinity. The systematic simulations of various interplays between different parameters demonstrated that BCS class 1 highly-cleared CYP3A4 substrates can display up to 220% higher relative bioavailability when formulated as CR compared to IR, in agreement with the observed data collected from the literature. The results and methodology of this study can be employed during the formulation development process in order to optimize drug absorption, especially for CYP3A4 substrates.

  10. Main contribution of the cytochrome P450 isoenzyme 1A2 (CYP1A2) to N-demethylation and 5-sulfoxidation of the phenothiazine neuroleptic chlorpromazine in human liver--A comparison with other phenothiazines.

    PubMed

    Wójcikowski, Jacek; Boksa, Jan; Daniel, Władysława A

    2010-10-15

    The aim of the present study was to identify cytochrome P450 (CYP) isoenzymes involved in the 5-sulfoxidation, mono-N-demethylation and di-N-demethylation of the aliphatic-type phenothiazine neuroleptic chlorpromazine in human liver. Experiments were performed in vitro using cDNA-expressed human CYP isoforms (Supersomes 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 3A4), liver microsomes from different donors and CYP-selective inhibitors. The obtained results indicate that CYP1A2 is the only CYP isoform that catalyzes the mono-N-demethylation and di-N-demethylation of chlorpromazine (100%) and is the main isoform responsible for chlorpromazine 5-sulfoxidation (64%) at a therapeutic concentration of the drug (10 microM). CYP3A4 contributes to a lesser degree to chlorpromazine 5-sulfoxidation (34%). The role of CYP2B6, CYP2C19 and CYP2D6 in catalyzing of the latter reaction is negligible (0.1-2%). Similar results were obtained at a higher, non-therapeutic concentration of the drug (100 microM); however, the contribution of CYP1A2 to chlorpromazine mono-N-demethylation was noticeably lower (75%), mostly in favour of CYP2C19 and CYP3A4 (about 12% each). The obtained results indicate that the catalysis of chlorpromazine N-demethylation and 5-sulfoxidation in humans exhibits a stricter CYP1A2 preference compared to the previously tested phenothiazines (promazine, perazine, and thioridazine). Hence pharmacokinetic interactions involving chlorpromazine and CYP1A2 substrates and inhibitors are likely to occur. Considering strong dopaminergic D(2), noradrenergic alpha(1) and cholinergic M(1) receptor blocking properties of chlorpromazine and some of its metabolites, as well as their serious side effects, the obtained results may be of pharmacological and clinical importance.

  11. Physiologically Based Pharmacokinetic Predictions of Tramadol Exposure Throughout Pediatric Life: an Analysis of the Different Clearance Contributors with Emphasis on CYP2D6 Maturation.

    PubMed

    T'jollyn, Huybrecht; Snoeys, Jan; Vermeulen, An; Michelet, Robin; Cuyckens, Filip; Mannens, Geert; Van Peer, Achiel; Annaert, Pieter; Allegaert, Karel; Van Bocxlaer, Jan; Boussery, Koen

    2015-11-01

    This paper focuses on the retrospective evaluation of physiologically based pharmacokinetic (PBPK) techniques used to mechanistically predict clearance throughout pediatric life. An intravenous tramadol retrograde PBPK model was set up in Simcyp® using adult clearance values, qualified for CYP2D6, CYP3A4, CYP2B6, and renal contributions. Subsequently, the model was evaluated for mechanistic prediction of total, CYP2D6-related, and renal clearance predictions in very early life. In two in vitro pediatric human liver microsomal (HLM) batches (1 and 3 months), O-desmethyltramadol and N-desmethyltramadol formation rates were compared with CYP2D6 and CYP3A4 activity, respectively. O-desmethyltramadol formation was mediated only by CYP2D6, while N-desmethyltramadol was mediated in part by CYP3A4. Additionally, the clearance maturation of the PBPK model predictions was compared to two in vivo maturation models (Hill and exponential) based on plasma concentration data, and to clearance estimations from a WinNonlin® fit of plasma concentration and urinary excretion data. Maturation of renal and CYP2D6 clearance is captured well in the PBPK model predictions, but total tramadol clearance is underpredicted. The most pronounced underprediction of total and CYP2D6-mediated clearance was observed in the age range of 2-13 years. In conclusion, the PBPK technique showed to be a powerful mechanistic tool capable of predicting maturation of CYP2D6 and renal tramadol clearance in early infancy, although some underprediction occurs between 2 and 13 years for total and CYP2D6-mediated tramadol clearance.

  12. Cytochrome P450 CYP3A in marsupials: cloning and identification of the first CYP3A subfamily member, isoform 3A70 from Eastern gray kangaroo (Macropus giganteus).

    PubMed

    El-Merhibi, Adaweyah; Ngo, Suong N T; Marchant, Ceilidh L; Height, Tamara A; Stupans, Ieva; McKinnon, Ross A

    2012-09-15

    Australian marsupials are unique fauna that have evolved and adapted to unique environments and thus it is likely that their detoxification systems differ considerably from those of well-studied eutherian mammals. Knowledge of these processes in marsupials is therefore vital to understanding the consequences of exposure to xenobiotics. Cytochromes P450 (CYPs) are critically important in the oxidative metabolism of a diverse array of both xenobiotics and endogenous substrates. In this study we have cloned and characterized CYP3A70, the first identified member of the CYP3A gene subfamily from Eastern gray kangaroo (Macropus giganteus). A 1665 base pair kangaroo hepatic CYP3A complete cDNA, designated CYP3A70, was cloned by reverse transcription-polymerase chain reaction approaches, which encodes a protein of 506 amino acids. The CYP3A70 cDNA shares approximately 71% nucleotide and 65% amino acid sequence homology to human CYP3A4 and displays high sequence similarity to other published mammalian CYP3As from human, monkey, cow, pig, dog, rat, rabbit, mouse, hamster, and guinea pig. Transfection of the CYP3A70 cDNAs into 293T cells resulted in stable cell lines expressing a CYP3A immuno-reactive protein that was recognized by a goat anti-human CYP3A4 polyclonal antibody. The anti-human CYP3A4 antibody also detected immunoreactive proteins in liver microsomes from all test marsupials, including the kangaroo, koala, wallaby, and wombat, with multiple CYP3A immunoreactive bands observed in kangaroo and wallaby tissues. Relatively, very low CYP catalytic activity was detected for the kangaroo CYP3A70 cDNA-expressed proteins (19.6 relative luminescent units/μg protein), which may be due to low protein expression levels. Collectively, this study provides primary molecular data regarding the Eastern kangaroo hepatic CYP3A70 gene and enables further functional analyses of CYP3A enzymes in marsupials.

  13. Identification of endocrine disrupting chemicals activating SXR-mediated transactivation of CYP3A and CYP7A1.

    PubMed

    Zhou, Tingting; Cong, Shuyan; Sun, Shiying; Sun, Hongmiao; Zou, Renlong; Wang, Shengli; Wang, Chunyu; Jiao, Jiao; Goto, Kiminobu; Nawata, Hajime; Yanase, Toshihiko; Zhao, Yue

    2013-01-05

    Endocrine disrupting chemicals (EDCs) have emerged as a major public health issue because of their potentially disruptive effects on physiological hormonal actions. SXR (steroid xenobiotic receptor), also known as NR1I2, regulates CYP3A expression in response to exogenous chemicals, such as EDCs, after binding to SXRE (SXR response element). In our study, luciferase assay showed that 14 out of 55 EDCs could enhance SXR-mediated rat or human CYP3A gene transcription nearly evenly, and could also activate rat CYP7A1 gene transcription by cross-interaction of SXR and LXRE (LXRα response element). SXR diffused in the nucleus without ligand, whereas intranuclear foci of liganded SXR were produced. Furthermore, endogenous mRNA expression of CYP3A4 gene was enhanced by the 14 positive EDCs. Our results suggested a probable mechanism of EDCs disrupting the steroid or xenobiotic metabolism homeostasis via SXR.

  14. Assessment of effect of Zhu-tan Tong-luo decoction on CYP450 isoforms activity of rats.

    PubMed

    Jin, Yongxi; Shao, Lingjiu; Li, Gaowen; Shao, Mengmeng; Zhi, Yinghao; Zhu, Wenzong

    2015-01-01

    In order to investigate the effects of Zhu-tan Tong-luo decoction on the metabolic capacity of cytochrome P450 (CYP) enzymes, a cocktail method was employed to evaluate the activities of CYP2B6, CYP2C19, CYP1A2, CYP3A4, CYP2C9, CYP2D6. The rats were randomly divided into acute Zhu-Tan Tong-Luo decoction group (Low, High), chronic Zhu-Tan Tong-Luo decoction group (Low, High) and control group. The acute group rats were given 0.6, 1.2 g/kg (Low, High) Zhu-tan Tong-luo decoction by intragastric administration for 1 day, and the chronic group for 14 days. Six probe drugs bupropion, omeprazole, phenacetin, testosterone, tolbutamide, and metroprolol were given to rats through intragastric administration, and the plasma concentrations were determined by UPLC-MS/MS. There statistical pharmacokinetics differences for omeprazole, phenacetin, testosterone, tolbutamide, and metroprolol in rats were observed by comparing acute Zhu-tan Tong-luo decoction group with control group; and statistical pharmacokinetics differences for bupropion, omeprazole, phenacetin, testosterone, tolbutamide, and metroprolol were observed by comparing chronic Zhu-Tan Tong-Luo decoction group with control group. After intragastric administration of Zhu-Tan Tong-Luo decoction may slightly induce the activities of CYP2B6, CYP2C19, CYP1A2, CYP3A4, CYP2C9, CYP2D6 of rats. Induction of drug metabolizing enzyme by Zhu-Tan Tong-Luo decoction would reduce the efficacy of other drug. Additional, there no statistical difference for biochemical results after 1 or 14 intragastric administration of Zhu-Tan Tong-Luo decoction.

  15. Induction of hepatic CYP3A enzymes by pregnancy-related hormones: studies in human hepatocytes and hepatic cell lines.

    PubMed

    Papageorgiou, Ioannis; Grepper, Susan; Unadkat, Jashvant D

    2013-02-01

    CYP3A activity is induced by approximately 2-fold during the third trimester of human pregnancy. Placental growth hormone (PGH), estrogens (primarily 17β-estradiol), cortisol, and progesterone have the potential to modulate CYP3A activity. Therefore, we determined whether the elevated plasma concentrations of these hormones during pregnancy induce hepatic CYP3A expression. We incubated sandwich-cultured human hepatocytes (SCHH) from premenopausal female donors (n = 2) with the physiologic (unbound, 1× total) and the 10× total third trimester hormone plasma concentrations (individually and in combination) and determined their effect on CYP3A activity and the transcripts of CYP3A4, CYP3A5, and the respective hormone receptors (growth hormone receptor, glucocorticoid receptor, and estrogen receptor alpha). Of all the hormones, cortisol was the most potent inducer of CYP3A activity and CYP3A4, CYP3A5 mRNA expression. The combination of PGH/growth hormone and cortisol induced CYP3A activity and expression significantly more than did cortisol alone. When incubated with the unbound or total plasma concentration of all the hormones, CYP3A activity in SCHH was induced to an extent comparable to that observed in vivo during the third trimester. These hormones had only a modest effect on the mRNA expression of the hormone receptors. The pattern of induction observed in SCHH was reproduced in HepaRG cells but not in HuH7/HepG2 cells. SCHH or HepaRG cells could be used to determine the mechanistic basis of CYP3A induction during pregnancy and to predict the magnitude of induction likely to be observed during the first and second trimesters, when phenotyping studies to measure in vivo CYP3A activity are logistically difficult to perform.

  16. Assessment of effect of Zhu-tan Tong-luo decoction on CYP450 isoforms activity of rats

    PubMed Central

    Jin, Yongxi; Shao, Lingjiu; Li, Gaowen; Shao, Mengmeng; Zhi, Yinghao; Zhu, Wenzong

    2015-01-01

    In order to investigate the effects of Zhu-tan Tong-luo decoction on the metabolic capacity of cytochrome P450 (CYP) enzymes, a cocktail method was employed to evaluate the activities of CYP2B6, CYP2C19, CYP1A2, CYP3A4, CYP2C9, CYP2D6. The rats were randomly divided into acute Zhu-Tan Tong-Luo decoction group (Low, High), chronic Zhu-Tan Tong-Luo decoction group (Low, High) and control group. The acute group rats were given 0.6, 1.2 g/kg (Low, High) Zhu-tan Tong-luo decoction by intragastric administration for 1 day, and the chronic group for 14 days. Six probe drugs bupropion, omeprazole, phenacetin, testosterone, tolbutamide, and metroprolol were given to rats through intragastric administration, and the plasma concentrations were determined by UPLC-MS/MS. There statistical pharmacokinetics differences for omeprazole, phenacetin, testosterone, tolbutamide, and metroprolol in rats were observed by comparing acute Zhu-tan Tong-luo decoction group with control group; and statistical pharmacokinetics differences for bupropion, omeprazole, phenacetin, testosterone, tolbutamide, and metroprolol were observed by comparing chronic Zhu-Tan Tong-Luo decoction group with control group. After intragastric administration of Zhu-Tan Tong-Luo decoction may slightly induce the activities of CYP2B6, CYP2C19, CYP1A2, CYP3A4, CYP2C9, CYP2D6 of rats. Induction of drug metabolizing enzyme by Zhu-Tan Tong-Luo decoction would reduce the efficacy of other drug. Additional, there no statistical difference for biochemical results after 1 or 14 intragastric administration of Zhu-Tan Tong-Luo decoction. PMID:26629097

  17. Food-drug interactions via human cytochrome P450 3A (CYP3A).

    PubMed

    Fujita, Ken-ichi

    2004-01-01

    Food-drug interactions have been reported to occur in various systems in the body. The causes of these interactions are mainly divided into pharmacodynamic and pharmacokinetic processes. Among these processes, drug metabolism plays a crucial role in drug interactions. Metabolic food-drug interactions occur when a certain food alters the activity of a drug-metabolizing enzyme, leading to a modulation of the pharmacokinetics of drugs metabolized by the enzyme. A variety of interactions have been documented so far. Foods consisting of complex chemical mixtures, such as fruits, alcoholic beverages, teas, and herbs, possess the ability to inhibit or induce the activity of drug-metabolizing enzymes. According to results obtained thus far, cytochrome P450 3A4 (CYP3A4) appears to be a key enzyme in food-drug interactions. For example, interactions of grapefruit juice with felodipine and cyclosporine, red wine with cyclosporine, and St John's wort with various medicines including cyclosporine, have been demonstrated. The results indicate the requirement of dosage adjustment to maintain drug concentrations within their therapeutic windows. The CYP3A4-related interaction by food components may be related to the high level of expression of CYP3A4 in the small intestine, as well as its broad substrate specificity, as CYP3A4 is responsible for the metabolism of more than 50% of clinical pharmaceuticals. This review article summarizes the findings obtained to date concerning food-drug interactions and their clinical implications. It seems likely that more information regarding such interactions will accumulate in the future, and awareness is necessary for achieving optimal drug therapy.

  18. Increased hospital stay and allograft dysfunction in renal transplant recipients with Cyp2c19 AA variant in SNP rs4244285.

    PubMed

    Bosó, Virginia; Herrero, María José; Bea, Sergio; Galiana, María; Marrero, Patricia; Marqués, María Remedios; Hernández, Julio; Sánchez-Plumed, Jaime; Poveda, José Luis; Aliño, Salvador F

    2013-02-01

    Pharmacogenetics correlates certain genetic variants, such as single nucleotide polymorphisms (SNPs), with blood drug levels, efficacy, and adverse effects of the treatment. Tacrolimus is mainly metabolized via CYP3A4/5, whereas CYP2C19 and CYP3A4/5 are responsible for omeprazole metabolism. Omeprazole inhibits tacrolimus metabolism via CYP3A5 in patients carrying variant alleles of CYP2C19, increasing tacrolimus blood concentrations. Seventy-five renal transplant recipients treated with tacrolimus and concomitant omeprazole were genotyped in a panel of 37 SNPs with use of Sequenom MassArray. The patients with CYP2C19*2/*2 genotype (n = 4) showed a median posttransplantation hospital stay of 27.5 days (95% confidence interval [CI], 23-39 days), compared with 12 days (95% CI, 10-15 days) in patients with CYP2C19*1/*1 or CYP2C19*1/*2 (n = 71; P = 0.016, Kruskal-Wallis test).The difference in hospital stay was directly correlated with an increase in tacrolimus levels (C(min)/[dose/weight]) during the first week after trasplantation (in 59 patients with data on levels; P = 0.021, Kruskal-Wallis), excluding the patients with atypical metabolisms due to CYP3A5*1/*3 or CYP3A5*1/*1 genotype. Recipients with CYP2C19*2/*2 genotype also showed allograft delayed function (acute tubular necrosis in 3 patients). Genotyping of CYP3A5 and CYP2C19 in renal transplantation should be considered to be of interest when treating with tacrolimus and omeprazole, because CYP2C19*2/*2 variant indirectly elicits an increase of tacrolimus blood levels and, in our study population, the adverse effects described.

  19. Cytochrome P450 CYP3A in human renal cell cancer

    PubMed Central

    Murray, G I; McFadyen, M C E; Mitchell, R T; Cheung, Y-L; Kerr, A C; Melvin, W T

    1999-01-01

    Renal cell cancer is the main malignant tumour of the kidney and has an increasing incidence. This type of tumour has a poor prognosis and shows intrinsic resistance to several anti-cancer drugs. The CYP3A P450 family, which consists of three closely related forms, is involved in the oxidative activation and deactivation of a variety of carcinogens and several anti-cancer drugs. In this study the presence and cellular localization of CYP3A has been investigated using a combination of immunohistochemistry, immunoblotting and reverse transcriptase polymerase chain reaction (RT-PCR) in renal cell cancer and corresponding normal kidney. CYP3A was consistently expressed in both renal call cancer and in normal kidney. In renal cell cancer, CYP3A was localized to tumour cells and in normal kidney the predominant cellular localization of CYP3A was to proximal tubular epithelial cells. RT-PCR showed that both CYP3A5 mRNA and CYP3A7 mRNA were consistently present in both tumour and normal samples, while CYP3A4 mRNA was present in 65% of tumours and 90% of normal samples. This study indicates that individual members of the CYP3A family are expressed in renal cell cancer. The presence of CYP3A in renal cell cancer might be important in the metabolic potentiation as well as the detoxification of chemotherapeutic agents used to renal cancer. © 1999 Cancer Research Campaign PMID:10206301

  20. Species differences in in vitro and in vivo small intestinal metabolism of CYP3A substrates.

    PubMed

    Komura, Hiroshi; Iwaki, Masahiro

    2008-05-01

    Intestinal first-pass metabolism has a great impact on the bioavailability of CYP3A substrates in humans, and the in vivo impact has quantitatively been evaluated using CYP3A inhibitors or inducers. In vitro and in vivo preclinical investigations for intestinal metabolism are essential in clarifying pharmacokinetic behavior in animal species and predicting the effect of intestinal metabolism in the human. In this review, we will discuss species differences in intestinal CYP3A enzymes, and CYP3A-mdediated intestinal elimination. Identical CYP3A4 enzyme is expressed in human intestine and liver, but different CYP3A enzymes in both tissues of the mouse and rat are found, that is, respective intestinal enzyme is considered as cyp3a13 and CYP3A62. There is little information on CYP3A enzymes in the monkey and dog intestine, unlike the liver. In vitro metabolic activities of midazolam and nisoldipine are higher in the human and monkey than in the rat. In vivo assessment of cyclosporine, midazolam, nifedipine, tacrolimus, and verapamil has been reported in various species (monkey, rat, mouse, and/or dog) including the human. For midazolam, the monkey shows significant in vivo intestinal metabolism, as evidenced in the human. The monkey might be an appropriate animal model for evaluating small intestinal first-pass metabolism of CYP3A substrates.

  1. Variability in Expression of CYP3A5 in Human Fetal Liver.

    PubMed

    Vyhlidal, Carrie A; Pearce, Robin E; Gaedigk, Roger; Calamia, Justina C; Shuster, Diana L; Thummel, Kenneth E; Leeder, J Steven

    2015-08-01

    Members of the cytochrome P450 3A (CYP3A) subfamily of drug metabolizing enzymes exhibit developmental changes in expression in human liver characterized by a transition between CYP3A7 and CYP3A4 over the first few years of life. In contrast, the developmental expression of CYP3A5 is less well understood due to polymorphic expression of the enzyme in human tissues as a result of the prevalence of the CYP3A5*3 allele, which leads to alternative splicing. We further explored the expression of CYP3A5 and the impact of alternative splicing on the variability of CYP3A5 functional activity in a large bank of human prenatal liver samples (7 to 32 weeks of age postconception). The expression of normally spliced CYP3A5 mRNA in all human fetal liver samples varied 235-fold whereas CYP3A5 SV1 mRNA was only detected in fetal liver samples with at least one CYP3A5*3 allele. Formation of 1'-OH midazolam (MDZ) varied 79-fold, and the ratio of 1'-OH MDZ to 4-OH MDZ varied 8-fold and depended on the presence or absence of the CYP3A5*3 allele. Formation of 4-OH MDZ was significantly associated with 1'-OH MDZ (r(2) = 0.76, P < 0.0001) but varied (36-fold) independently of CYP3A5 genotype or expression. The substantial interindividual variability that remains even after stratification for CYP3A5 genotype suggests that factors such as environmental exposure and epigenetic alterations act in addition to genetic variation to contribute to the variability of CYP3A5 expression in human prenatal liver.

  2. CYP450 polymorphisms as risk factors for early-onset lung cancer: gender-specific differences.

    PubMed

    Timofeeva, Maria N; Kropp, Silke; Sauter, Wiebke; Beckmann, Lars; Rosenberger, Albert; Illig, Thomas; Jäger, Birgit; Mittelstrass, Kirstin; Dienemann, Hendrik; Bartsch, Helmut; Bickeböller, Heike; Chang-Claude, Jenny C; Risch, Angela; Wichmann, Heinz-Erich

    2009-07-01

    Cytochrome P450 (CYP) enzymes, involved in metabolism of tobacco carcinogens, are also involved in estrogen metabolism and many are regulated by estrogens. These genes may thus be of relevance to gender-specific differences in lung cancer risk, particularly in early-onset lung cancer, where a high proportion of women is observed. We conducted a case-control study to investigate genetic polymorphisms in cytochromes that might modify the risk of developing early-onset lung cancer. In total, 638 Caucasian patients under the age of 51 with primary lung cancer and 1300 cancer-free control individuals, matched by age and sex, were included in this analysis. Thirteen polymorphisms in the CYP1A1, CYP1B1, CYP2A13, CYP3A4 and CYP3A5 genes were analyzed. No significant association was found for any of the analyzed polymorphisms and lung cancer risk overall. However, among women, a significantly increased risk of early-onset lung cancer was observed for carriers of the minor allele of CYP1B1 SNP rs1056836 [odds ratio (OR) 1.97; 95% confidence interval (CI) 1.32-2.94; P < 0.001]. Also, a non-significant increase in lung cancer risk was observed in the group of women carriers of the minor allele of CYP2A13 SNP rs1709084 (OR 1.64; 95% CI 1.00-2.70; P = 0.05). The effect of these two polymorphisms was shown to be modified by smoking. Haplotype analysis was performed for CYP1B1 and CYP2A13. No differences between cases and controls were observed for both genes (P = 0.63 and P = 0.42 for CYP1B1 and CYP2A13, respectively). Our results suggest that the CYP1B1 and the CYP2A13 genotypes may contribute to individual susceptibility to early-onset lung cancer in women.

  3. Localization and mRNA expression of CYP3A and P-glycoprotein in human duodenum as a function of age.

    PubMed

    Fakhoury, May; Litalien, Catherine; Medard, Yves; Cavé, Hélène; Ezzahir, Nadia; Peuchmaur, Michel; Jacqz-Aigrain, Evelyne

    2005-11-01

    Cytochromes P450 3A (CYP3A) and P-glycoprotein (P-gp) are mainly located in enterocytes and hepatocytes. The CYP3A/P-gp system contributes to the first-pass metabolism of many drugs, resulting in a limited bioavailability. During the neonatal period, a shift between CYP3A7, the fetal form, and CYP3A4 occurs in the liver, but data on the expression of the CYP3A/P-gp complex in the intestine are very limited. A total of 59 normal duodenal biopsies from white children aged 1 month to 17 years were studied. Localization of the proteins by immunohistochemistry analysis was performed using a polyclonal antibody, Nuage anti-CYP3A, and a monoclonal antibody, C494 anti-P-gp. The mRNA quantification was performed using highly specific real-time reverse transcription-polymerase chain reaction. Villin mRNA quantification was used for normalization. CYP3A protein was detected in all enterocytes in the samples from patients over 6 months of age, whereas it was not in younger samples. P-gp protein was expressed at the apical and upper lateral surfaces of the enterocytes. CYP3A isoforms and P-gp mRNA levels were highly variable. CYP3A4 and CYP3A5 mRNA levels were high during the first year of life and decreased with age, whereas CYP3A7 was detected at a low level in 64% of samples, whatever the age. P-gp mRNA expression level was also highly variable. Our results showed that neonates and infants had a significant expression of CYP3A and P-gp mRNA in the intestine, suggesting a different maturation profile of CYP3A and P-gp with age in the liver and the intestine.

  4. Determination of Human Hepatic CYP2C8 and CYP1A2 Age-Dependent Expression to Support Human Health Risk Assessment for Early Ages.

    PubMed

    Song, Gina; Sun, Xueying; Hines, Ronald N; McCarver, D Gail; Lake, Brian G; Osimitz, Thomas G; Creek, Moire R; Clewell, Harvey J; Yoon, Miyoung

    2017-02-22

    Predicting age-specific metabolism is important for evaluating age-related drug and chemical sensitivity. Multiple cytochrome P450s (CYP) and carboxylesterase (CES) enzymes are responsible for human pyrethroid metabolism. Complete ontogeny data for each enzyme is needed to support in vitro to in vivo extrapolation (IVIVE). This study was designed to determine age-dependent human hepatic CYP2C8 expression, for which only limited ontogeny data are available, and to further define CYP1A2 ontogeny. CYP2C8 and 1A2 protein levels were measured by quantitative Western blotting using liver microsomal samples prepared from 222 subjects with ages ranging from 8 weeks gestation to 18 years after birth. The median CYP2C8 expression was significantly greater among samples from subjects older than 35 postnatal days (n=122) compared to fetal samples and those from very young infants (fetal to 35 days postnatal, n=100) (0.00 vs. 13.38 pmol/mg microsomal protein; p<0.0001). In contrast, the median CYP1A2 expression was significantly greater after 15 months postnatal age (n=55) than in fetal and younger postnatal samples (fetal to 15 months postnatal, n=167) (0.0167 vs. 2.354 pmol/mg microsomal protein; p<0.0001). CYP2C8, but not CYP1A2, protein levels, significantly correlated with those of CYP2C9, CYP2C19, and CYP3A4 (p<0.001) consistent with CYP2C8 and CYP1A2 ontogeny being probably controlled by different mechanisms. This study provides key data for physiologically based pharmacokinetic model-based prediction of age-dependent pyrethroid metabolism, which will be used for IVIVE to support pyrethroid risk assessment for early life stages.

  5. Peroxisome proliferator-activated receptor alpha, PPARα, directly regulates transcription of cytochrome P450 CYP2C8

    PubMed Central

    Thomas, Maria; Winter, Stefan; Klumpp, Britta; Turpeinen, Miia; Klein, Kathrin; Schwab, Matthias; Zanger, Ulrich M.

    2015-01-01

    The cytochrome P450, CYP2C8, metabolizes more than 60 clinically used drugs as well as endogenous substances including retinoic acid and arachidonic acid. However, predictive factors for interindividual variability in the efficacy and toxicity of CYP2C8 drug substrates are essentially lacking. Recently we demonstrated that peroxisome proliferator-activated receptor alpha (PPARα), a nuclear receptor primarily involved in control of lipid and energy homeostasis directly regulates the transcription of CYP3A4. Here we investigated the potential regulation of CYP2C8 by PPARα. Two linked intronic SNPs in PPARα (rs4253728, rs4823613) previously associated with hepatic CYP3A4 status showed significant association with CYP2C8 protein level in human liver samples (N = 150). Furthermore, siRNA-mediated knock-down of PPARα in HepaRG human hepatocyte cells resulted in up to ∼60 and ∼50% downregulation of CYP2C8 mRNA and activity, while treatment with the PPARα agonist WY14,643 lead to an induction by >150 and >100%, respectively. Using chromatin immunoprecipitation scanning assay we identified a specific upstream gene region that is occupied in vivo by PPARα. Electromobility shift assay demonstrated direct binding of PPARα to a DR-1 motif located at positions –2762/–2775 bp upstream of the CYP2C8 transcription start site. We further validated the functional activity of this element using luciferase reporter gene assays in HuH7 cells. Moreover, based on our previous studies we demonstrated that WNT/β-catenin acts as a functional inhibitor of PPARα-mediated inducibility of CYP2C8 expression. In conclusion, our data suggest direct involvement of PPARα in both constitutive and inducible regulation of CYP2C8 expression in human liver, which is further modulated by WNT/β-catenin pathway. PPARA gene polymorphism could have a modest influence on CYP2C8 phenotype. PMID:26582990

  6. Identifying a Selective Substrate and Inhibitor Pair for the Evaluation of CYP2J2 Activity

    PubMed Central

    Lee, Caroline A.; Jones, J. P.; Katayama, Jonathan; Kaspera, Rüdiger; Jiang, Ying; Freiwald, Sascha; Smith, Evan; Walker, Gregory S.

    2012-01-01

    CYP2J2, an arachidonic acid epoxygenase, is recognized for its role in the first-pass metabolism of astemizole and ebastine. To fully assess the role of CYP2J2 in drug metabolism, a selective substrate and potent specific chemical inhibitor are essential. In this study, we report amiodarone 4-hydoxylation as a specific CYP2J2-catalyzed reaction with no CYP3A4, or other drug-metabolizing enzyme, involvement. Amiodarone 4-hydroxylation enabled the determination of liver relative activity factor and intersystem extrapolation factor for CYP2J2. Amiodarone 4-hydroxylation correlated with astemizole O-demethylation but not with CYP2J2 protein content in a sample of human liver microsomes. To identify a specific CYP2J2 inhibitor, 138 drugs were screened using terfenadine and astemizole as probe substrates with recombinant CYP2J2. Forty-two drugs inhibited CYP2J2 activity by ≥50% at 30 μM, but inhibition was substrate-dependent. Of these, danazol was a potent inhibitor of both hydroxylation of terfenadine (IC50 = 77 nM) and O-demethylation of astemizole (Ki = 20 nM), and inhibition was mostly competitive. Danazol inhibited CYP2C9, CYP2C8, and CYP2D6 with IC50 values of 1.44, 1.95, and 2.74 μM, respectively. Amiodarone or astemizole were included in a seven-probe cocktail for cytochrome P450 (P450) drug-interaction screening potential, and astemizole demonstrated a better profile because it did not appreciably interact with other P450 probes. Thus, danazol, amiodarone, and astemizole will facilitate the ability to determine the metabolic role of CYP2J2 in hepatic and extrahepatic tissues. PMID:22328583

  7. Identifying a selective substrate and inhibitor pair for the evaluation of CYP2J2 activity.

    PubMed

    Lee, Caroline A; Jones, J P; Katayama, Jonathan; Kaspera, Rüdiger; Jiang, Ying; Freiwald, Sascha; Smith, Evan; Walker, Gregory S; Totah, Rheem A

    2012-05-01

    CYP2J2, an arachidonic acid epoxygenase, is recognized for its role in the first-pass metabolism of astemizole and ebastine. To fully assess the role of CYP2J2 in drug metabolism, a selective substrate and potent specific chemical inhibitor are essential. In this study, we report amiodarone 4-hydoxylation as a specific CYP2J2-catalyzed reaction with no CYP3A4, or other drug-metabolizing enzyme, involvement. Amiodarone 4-hydroxylation enabled the determination of liver relative activity factor and intersystem extrapolation factor for CYP2J2. Amiodarone 4-hydroxylation correlated with astemizole O-demethylation but not with CYP2J2 protein content in a sample of human liver microsomes. To identify a specific CYP2J2 inhibitor, 138 drugs were screened using terfenadine and astemizole as probe substrates with recombinant CYP2J2. Forty-two drugs inhibited CYP2J2 activity by ≥50% at 30 μM, but inhibition was substrate-dependent. Of these, danazol was a potent inhibitor of both hydroxylation of terfenadine (IC(50) = 77 nM) and O-demethylation of astemizole (K(i) = 20 nM), and inhibition was mostly competitive. Danazol inhibited CYP2C9, CYP2C8, and CYP2D6 with IC(50) values of 1.44, 1.95, and 2.74 μM, respectively. Amiodarone or astemizole were included in a seven-probe cocktail for cytochrome P450 (P450) drug-interaction screening potential, and astemizole demonstrated a better profile because it did not appreciably interact with other P450 probes. Thus, danazol, amiodarone, and astemizole will facilitate the ability to determine the metabolic role of CYP2J2 in hepatic and extrahepatic tissues.

  8. Comparative human-horse sequence analysis of the CYP3A subfamily gene cluster.

    PubMed

    Schmitz, A; Demmel, S; Peters, L M; Leeb, T; Mevissen, M; Haase, B

    2010-12-01

    Cytochrome P450 enzymes (CYP450s) represent a superfamily of haem-thiolate proteins. CYP450s are most abundant in the liver, a major site of drug metabolism, and play key roles in the metabolism of a variety of substrates, including drugs and environmental contaminants. Interaction of two or more different drugs with the same enzyme can account for adverse effects and failure of therapy. Human CYP3A4 metabolizes about 50% of all known drugs, but little is known about the orthologous CYP450s in horses. We report here the genomic organization of the equine CYP3A gene cluster as well as a comparative analysis with the human CYP3A gene cluster. The equine CYP450 genes of the 3A family are located on ECA 13 between 6.97-7.53 Mb, in a region syntenic to HSA 7 99.05-99.35 Mb. Seven potential, closely linked equine CYP3A genes were found, in contrast to only four genes in the human genome. RNA was isolated from an equine liver sample, and the approximately 1.5-kb coding sequence of six CYP3A genes could be amplified by RT-PCR. Sequencing of the RT-PCR products revealed numerous hitherto unknown single nucleotide polymorphisms (SNPs) in these six CYP3A genes, and one 6-bp deletion compared to the reference sequence (EquCab2.0). The presence of the variants was confirmed in a sample of genomic DNA from the same horse. In conclusion, orthologous genes for the CYP3A family exist in horses, but their number differs from those of the human CYP3A gene family. CYP450 genes of the same family show high homology within and between mammalian species, but can be highly polymorphic.

  9. In vitro inhibition of human CYP2E1 and CYP3A by quercetin and myricetin in hepatic microsomes is not gender dependent.

    PubMed

    Östlund, Johanna; Zlabek, Vladimir; Zamaratskaia, Galia

    2017-04-15

    This is the first in vitro study to investigate gender-related differences in the regulation of human cytochrome P450 by the flavonoids. Activities of CYP2E1 and CYP3A were measured in the presence of quercetin, myricetin, or isorhamnetin in hepatic microsomal pools from male and female donors. Hydroxylation of p-nitrophenol (PNPH) was measured to determine CYP2E1 activity, and O-dealkylation of 7-benzyloxy-4-trifluoromethylcoumarin (BFC) was measured to determine CYP3A activity. Quercetin, but not myricetin or isorhamnetin, competitively inhibited PNPH activity in human recombinant cDNA-expressed CYP2E1 with the Ki=52.1±6.31μM. In the human microsomes, slight inhibition of PNPH activity by quercetin was not considered as physiologically relevant. Quercetin inhibited BFC activity in human recombinant cDNA-expressed CYP3A4 competitively with the Ki=15.4±1.52μM, and myricetin - noncompetitively with the Ki=74.6±7.99μM. The degree of inhibition by quercetin was similar between genders. Myricetin showed somewhat stronger inhibition in female pools, but the Ki values were higher than physiologically relevant concentrations. Isorhamnetin did not affect either PNPH or BFC activity. We concluded that observed inhibition of CYP2E1 and CYP3A by some flavonols were not gender-dependent.

  10. The Influence of Standardized Valeriana officinalis Extract on the CYP3A1 Gene Expression by Nuclear Receptors in In Vivo Model

    PubMed Central

    Mrozikiewicz, Przemyslaw M.; Karasiewicz, Monika; Mikolajczak, Przemyslaw L.; Ozarowski, Marcin; Grzeskowiak, Edmund

    2014-01-01

    Valeriana officinalis is one of the most popular medicinal plants commonly used as a sedative and sleep aid. It is suggested that its pharmacologically active compounds derived from the root may modulate the CYP3A4 gene expression by activation of pregnane X receptor (PXR) or constitutive androstane receptor (CAR) and lead to pharmacokinetic herb-drug interactions. The aim of the study was to determine the influence of valerian on the expression level of CYP3A1 (homologue to human CYP3A4) as well as nuclear receptors PXR, CAR, RXR, GR, and HNF-4α. Male Wistar rats were given standardized valerian extract (300 mg/kg/day, p.o.) for 3 and 10 days. The expression in liver tissue was analyzed by using real-time PCR. Our result showed a decrease of CYP3A1 expression level by 35% (P = 0.248) and 37% (P < 0.001), respectively. Moreover, Valeriana exhibited statistically significant reduction in RXR (approximately 28%) only after 3-day treatment. We also demonstrated a decrease in the amount HNF-4α by 22% (P = 0.005) and 32% (P = 0.012), respectively. In case of CAR, the increase of expression level by 46% (P = 0.023) was noted. These findings suggest that Valeriana officinalis extract can decrease the CYP3A4 expression and therefore may lead to interactions with synthetic drugs metabolized by this enzyme. PMID:25302309

  11. Minor furanocoumarins and coumarins in grapefruit peel oil as inhibitors of human cytochrome P450 3A4

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel cyclic acetal of 6',7'-dihydroxy-7-geranyloxycoumarin (marmin) and two novel cyclic acetals of 6',7'-dihydroxybergamottin were isolated from nonvolatile residues of grapefruit peel oil. Other known compounds, marmin, 7-geranyloxycoumarin, bergamottin, and 6',7'-dihydroxybergamottin were also...

  12. 17 CFR 240.3a4-1 - Associated persons of an issuer deemed not to be brokers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... communication or delivering such communication through the mails or other means that does not involve oral... communication is approved by a partner, officer or director of the issuer; (B) Responding to inquiries of a potential purchaser in a communication initiated by the potential purchaser; Provided, however, That...

  13. Metabolic activation of o-phenylphenol to a major cytotoxic metabolite, phenylhydroquinone: role of human CYP1A2 and rat CYP2C11/CYP2E1.

    PubMed

    Ozawa, S; Ohta, K; Miyajima, A; Kurebayashi, H; Sunouchi, M; Shimizu, M; Murayama, N; Matsumoto, Y; Fukuoka, M; Ohno, Y

    2000-10-01

    1. The in vitro metabolic activation of o-phenylphenol has been evaluated as yielding a toxic metabolite, 2,5-dihydroxybiphenyl (phenylhydroquinone), by p-hydroxylation in liver microsomes of rat and human. The involvement of rat CYP2C11, CYP2E1 and human CYP1A2 in the p-hydroxylation of o-phenylphenol is suggested. 2. 2,3- and phenylhydroquinone, which induced DNA single-strand scission in the presence of 1 microM CuCl2, were the most cytotoxic chemicals examined to cultured mammalian cell lines among o-phenylphenol, m-phenylphenol, p-phenylphenol, 2,2'-, 4,4'-, 2,3- and phenylhydroquinone. 3. Rat and human liver microsomes catalysed the formation of phenylhydroquinone, but not 2,3-dihydroxybiphenyl, using o-phenylphenol as a substrate. A higher rate of metabolic activation of o-phenylphenol was observed with livers of the male than the female rats by 5.6- and 2.6-fold respectively. 4. Inhibitory antibodies against the male-specific CYP2C11 inhibited hepatic o-phenylphenol p-hydroxylation in the male F344 and Sprague-Dawley rat by > 70%. Liver microsomes from the isoniazid-treated rats produced 1.8- and 3-fold induction of o-phenylphenol p-hydroxylation and chlorzoxazone 6-hydroxylation (a CYP2E1-dependent activity) respectively. 5. Human CYP1A2, expressed by baculovirus-mediated cDNA expression systems, exhibited a remarkably higher capacity for o-phenylphenol p-hydroxylation at concentrations of 5 (> 5-fold), 50 (> 2-fold) and 500 microM (> 2-fold) than CYP2A, CYP2B, CYP2Cs, CYP2D6, CYP2E1 and CYP3A4 on the basis of pmol P450. 6. Among various CYP inhibitors tested here, 7,8-benzoflavone and furafylline, typical human CYP1A2 inhibitors, inhibited the microsomal p-hydroxylation of o-phenylphenol in human livers most potently by 70 and 50% respectively. 7. The results thus indicate the involvement of rat CYP2C11/CYP2E1 and human CYP1A2 in the hepatic p-hydroxylation of o-phenylphenol.

  14. Metabolic Pathways of Inhaled Glucocorticoids by the CYP3A Enzymes

    PubMed Central

    Moore, Chad D.; Roberts, Jessica K.; Orton, Christopher R.; Murai, Takahiro; Fidler, Trevor P.; Reilly, Christopher A.; Ward, Robert M.

    2013-01-01

    Asthma is one of the most prevalent diseases in the world, for which the mainstay treatment has been inhaled glucocorticoids (GCs). Despite the widespread use of these drugs, approximately 30% of asthma sufferers exhibit some degree of steroid insensitivity or are refractory to inhaled GCs. One hypothesis to explain this phenomenon is interpatient variability in the clearance of these compounds. The objective of this research is to determine how metabolism of GCs by the CYP3A family of enzymes could affect their effectiveness in asthmatic patients. In this work, the metabolism of four frequently prescribed inhaled GCs, triamcinolone acetonide, flunisolide, budesonide, and fluticasone propionate, by the CYP3A family of enzymes was studied to identify differences in their rates of clearance and to identify their metabolites. Both interenzyme and interdrug variability in rates of metabolism and metabolic fate were observed. CYP3A4 was the most efficient metabolic catalyst for all the compounds, and CYP3A7 had the slowest rates. CYP3A5, which is particularly relevant to GC metabolism in the lungs, was also shown to efficiently metabolize triamcinolone acetonide, budesonide, and fluticasone propionate. In contrast, flunisolide was only metabolized via CYP3A4, with no significant turnover by CYP3A5 or CYP3A7. Common metabolites included 6β-hydroxylation and Δ6-dehydrogenation for triamcinolone acetonide, budesonide, and flunisolide. The structure of Δ6-flunisolide was unambiguously established by NMR analysis. Metabolism also occurred on the D-ring substituents, including the 21-carboxy metabolites for triamcinolone acetonide and flunisolide. The novel metabolite 21-nortriamcinolone acetonide was also identified by liquid chromatography–mass spectrometry and NMR analysis. PMID:23143891

  15. [Furanocoumarins contents and cytochrome P450 3A (CYP3A) inhibitory activities of various processed fruit peel products: outflow of 6',7'-Dihydroxybergamottin during processing treatment of peel].

    PubMed

    Ishihara, Masaru; Toda, Hikaru; Sunagane, Nobuyoshi; Ohta, Takafumi

    2011-01-01

    Furanocoumarins (FCs) such as bergamottin (BG) and 6',7'-dihydroxybergamottin (DHBG) contained in grapefruits are known to be cytochrome P450 3A4 (CYP3A4) inhibitors. These are contained in larger quantity in peel than in pulp, and therefore, processed peel products possibly have strong CYP3A4 inhibitory activity. The CYP3A4 inhibitory potency of these processed peel products, however, remains to be elucidated. The FC content and CYP3A inhibitory activities of various processed fruit peel products were investigated. CYP3A inhibitory activities of crystallized grapefruit peel, grapefruit marmalade, lemon peel and bitter orange slice were close to that of 100% grapefruit juice, while the activities of yuzu slice, pomelo (buntan) marmalade and crystallized iyokan peel were very weak, 1/8-1/20 of 100% grapefruit juice. The maximum BG content was 5.6 µg/g in lemon peel. The maximum DHBG content was 7.2 µg/g in crystallized grapefruit peel, about 1/30 that of raw peel. Grapefruit marmalade and crystallized grapefruit peel contained similar amounts of FCs to 100% grapefruit juice, but FCs were not detected in pomelo (buntan) marmalade or crystallized iyokan peel. Good correlation (r=0.78) was observed between the FC contents of these peel products and those CYP3A inhibitory activities. Preparation of homemade grapefruit marmalade and crystallized peel revealed that considerably lower DHBG content in these products and lower CYP3A inhibitory activity than anticipated were attributable to outflow of DHBG to broth during boiling of the raw peel.

  16. CYP2B6 SNPs are associated with methadone dose required for effective treatment of opioid addiction.

    PubMed

    Levran, Orna; Peles, Einat; Hamon, Sara; Randesi, Matthew; Adelson, Miriam; Kreek, Mary Jeanne

    2013-07-01

    Adequate methadone dosing in methadone maintenance treatment (MMT) for opioid addiction is critical for therapeutic success. One of the challenges in dose determination is the inter-individual variability in dose-response. Methadone metabolism is attributed primarily to cytochrome P450 enzymes CYP3A4, CYP2B6 and CYP2D6. The CYP2B6*6 allele [single nucleotide polymorphisms (SNPs) 785A>G (rs2279343) and 516G>T (rs3745274)] was associated with slow methadone metabolism. To explore the effects of CYP2B6*6 allele on methadone dose requirement, it was genotyped in a well-characterized sample of 74 Israeli former heroin addicts in MMT. The sample is primarily of Middle Eastern/European ancestry, based on ancestry informative markers (AIMs). Only patients with no major co-medication that may affect methadone metabolism were included. The stabilizing daily methadone dose in this sample ranges between 13 and 260mg (mean 140±52mg). The mean methadone doses required by subjects homozygous for the variant alleles of the CYP2B6 SNPs 785A>G and 516G>T (88, 96mg, respectively) were significantly lower than those of the heterozygotes (133, 129mg, respectively) and the non-carriers (150, 151mg, respectively) (nominal P=0.012, 0.048, respectively). The results remain significant after controlling for age, sex and the ABCB1 SNP 1236C>T (rs1128503), which was previously shown to be associated with high methadone dose requirement in this population (P=0.006, 0.030, respectively). An additional 77 CYP2B6, CYP3A4 and CYP2D6 SNPs were genotyped. Of these, 24 SNPs were polymorphic and none showed significant association with methadone dose. Further studies are necessary to replicate these preliminary findings in additional subjects and other populations.

  17. Update on allele nomenclature for human cytochromes P450 and the Human Cytochrome P450 Allele (CYP-allele) Nomenclature Database.

    PubMed

    Sim, Sarah C; Ingelman-Sundberg, Magnus

    2013-01-01

    Interindividual variability in xenobiotic metabolism and drug response is extensive and genetic factors play an important role in this variation. A majority of clinically used drugs are substrates for the cytochrome P450 (CYP) enzyme system and interindividual variability in expression and function of these enzymes is a major factor for explaining individual susceptibility for adverse drug reactions and drug response. Because of the existence of many polymorphic CYP genes, for many of which the number of allelic variants is continually increasing, a universal and official nomenclature system is important. Since 1999, all functionally relevant polymorphic CYP alleles are named and published on the Human Cytochrome P450 Allele (CYP-allele) Nomenclature Web site (http://www.cypalleles.ki.se). Currently, the database covers nomenclature of more than 660 alleles in a total of 30 genes that includes 29 CYPs as well as the cytochrome P450 oxidoreductase (POR) gene. On the CYP-allele Web site, each gene has its own Webpage, which lists the alleles with their nucleotide changes, their functional consequences, and links to publications identifying or characterizing the alleles. CYP2D6, CYP2C9, CYP2C19, and CYP3A4 are the most important CYPs in terms of drug metabolism, which is also reflected in their corresponding highest number of Webpage hits at the CYP-allele Web site.The main advantage of the CYP-allele database is that it offers a rapid online publication of CYP-alleles and their effects and provides an overview of peer-reviewed data to the scientific community. Here, we provide an update of the CYP-allele database and the associated nomenclature.

  18. Evaluation of the Effects of S-Allyl-L-cysteine, S-Methyl-L-cysteine, trans-S-1-Propenyl-L-cysteine, and Their N-Acetylated and S-Oxidized Metabolites on Human CYP Activities.

    PubMed

    Amano, Hirotaka; Kazamori, Daichi; Itoh, Kenji

    2016-01-01

    Three major organosulfur compounds of aged garlic extract, S-allyl-L-cysteine (SAC), S-methyl-L-cysteine (SMC), and trans-S-1-propenyl-L-cysteine (S1PC), were examined for their effects on the activities of five major isoforms of human CYP enzymes: CYP1A2, 2C9, 2C19, 2D6, and 3A4. The metabolite formation from probe substrates for the CYP isoforms was examined in human liver microsomes in the presence of organosulfur compounds at 0.01-1 mM by using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Allicin, a major component of garlic, inhibited CYP1A2 and CYP3A4 activity by 21-45% at 0.03 mM. In contrast, a CYP2C9-catalyzed reaction was enhanced by up to 1.9 times in the presence of allicin at 0.003-0.3 mM. SAC, SMC, and S1PC had no effect on the activities of the five isoforms, except that S1PC inhibited CYP3A4-catalyzed midazolam 1'-hydroxylation by 31% at 1 mM. The N-acetylated metabolites of the three compounds inhibited the activities of several isoforms to a varying degree at 1 mM. N-Acetyl-S-allyl-L-cysteine and N-acetyl-S-methyl-L-cysteine inhibited the reactions catalyzed by CYP2D6 and CYP1A2, by 19 and 26%, respectively, whereas trans-N-acetyl-S-1-propenyl-L-cysteine showed weak to moderate inhibition (19-49%) of CYP1A2, 2C19, 2D6, and 3A4 activities. On the other hand, both the N-acetylated and S-oxidized metabolites of SAC, SMC, and S1PC had little effect on the reactions catalyzed by the five isoforms. These results indicated that SAC, SMC, and S1PC have little potential to cause drug-drug interaction due to CYP inhibition or activation in vivo, as judged by their minimal effects (IC50>1 mM) on the activities of five major isoforms of human CYP in vitro.

  19. Inhibition of Major Drug Metabolizing CYPs by Common Herbal Medicines used by HIV/AIDS Patients in Africa– Implications for Herb-Drug Interactions

    PubMed Central

    Awortwe, Charles; Bouic, Patrick J.; Masimirembwa, Collen M.; Rosenkranz, Bernd

    2015-01-01

    The purpose of this study was to evaluate the potential risk of common herbal medicines used by HIV-infected patients in Africa for herb-drug interactions (HDI). High throughput screening assays consisting of recombinant Cytochrome P450 enzymes (CYPs) and fluorescent probes, and parallel artificial membrane permeability assays (PAMPA) were used. The potential of herbal medicines to cause HDI was ranked according to FDA guidelines for reversible inhibition and categorization of time dependent inhibition was based on the normalized ratio. CYPs 1A2 and 3A4 were most inhibited by the herbal extracts. H. hemerocallidea (IC50 = 0.63 μg/mL and 58 μg/mL) and E. purpurea (IC50 = 20 μg/mL and 12 μg/mL) were the potent inhibitors of CYPs 1A2 and 3A4 respectively. L. frutescens and H. hemerocallidea showed clear time dependent inhibition on CYP3A4. Furthermore, the inhibitory effect of both H. hemerocallidea and L. frutescens before and after PAMPA were identical. The results indicate potential HDI of H. hemerocallidea, L. frutescens and E. purpurea with substrates of the affected enzymes if maximum in vivo concentration is achieved. PMID:24475926

  20. Effect of cyp2d6*10 allele on the pharmacokinetics of loratadine in chinese subjects.

    PubMed

    Yin, Ophelia Q P; Shi, X J; Tomlinson, B; Chow, Moses S S

    2005-09-01

    Loratadine is known to be a substrate for both CYP3A4 and CYP2D6 based on a previous in vitro study. In view of the large interindividual variability in loratadine pharmacokinetics and the greater genetically determined variability of CYP2D6 activity than of CYP3A4 in vivo, we hypothesized that CYP2D6 polymorphisms may contribute to the pharmacokinetic variability of loratadine. The purpose of this study was to evaluate the effect of CYP2D6 genotype (specifically the CYP2D6*10 allele) on the pharmacokinetics of loratadine in Chinese subjects. Three groups of healthy male Chinese subjects were enrolled: group I, homozygous CYP2D6*1 (*1/*1, n=4); group II, heterozygous CYP2D6*10 (*1/*10 or *2/*10, n=6); and group III, homozygous CYP2D6*10 (*10/*10, n=7) carriers. Each subject received a single oral dose of 20 mg of loratadine under fasting conditions. Multiple blood samples were collected over 48 h, and the plasma concentrations of loratadine and its metabolite desloratadine were determined by high-performance liquid chromatography. In comparing homozygous CYP2D6*10 (group III) to heterozygous CYP2D6*10 (group II) to homozygous CYP2D6*1 (group I) subjects, loratadine oral clearance values were 7.17+/- 2.54 versus 11.06+/-1.70 versus 14.59+/-2.43 l/h/kg, respectively [one-way analysis of variance (ANOVA), p<0.01], and the corresponding metabolic ratios [area under the plasma concentration-time curve (AUC)(desloratadine)/AUC(loratadine)] were 1.55+/-0.73 versus 2.47+/- 0.46 versus 3.32+/- 0.49, respectively (one-way ANOVA, p<0.05), indicating a gene-dose effect. The results demonstrated that CYP2D6 polymorphism prevalent in the Chinese population significantly affected loratadine pharmacokinetics.

  1. The enhanced atorvastatin hepatotoxicity in diabetic rats was partly attributed to the upregulated hepatic Cyp3a and SLCO1B1

    PubMed Central

    Shu, Nan; Hu, Mengyue; Ling, Zhaoli; Liu, Peihua; Wang, Fan; Xu, Ping; Zhong, Zeyu; Sun, Binbin; Zhang, Mian; Li, Feng; Xie, Qiushi; Liu, Xiaodong; Liu, Li

    2016-01-01

    Liver injury is a common adverse effect of atorvastatin. This study aimed to investigate atorvastatin-induced hepatotoxicity in diabetic rats induced by high-fat diet combined with streptozotocin. The results showed that 40 mg/kg atorvastatin was lethal to diabetic rats, whose mean survival time was 6.2 days. Severe liver injury also occurred in diabetic rats treated with 10 mg/kg and 20 mg/kg atorvastatin. The in vitro results indicated that atorvastatin cytotoxicity in hepatocytes of diabetic rats was more severe than normal and high-fat diet feeding rats. Expressions and activities of hepatic Cyp3a and SLCO1B1 were increased in diabetic rats, which were highly correlated with hepatotoxicity. Antioxidants (glutathione and N-Acetylcysteine), Cyp3a inhibitor ketoconazole and SLCO1B1 inhibitor gemfibrozil suppressed cytotoxicity and ROS formation in primary hepatocytes of diabetic rats. In HepG2 cells, up-regulations of CYP3A4 and SLCO1B1 potentiated hepatotoxicity and ROS generation, whereas knockdowns of CYP3A4 and SLCO1B1 as well as CYP3A4/SLCO1B1 inhibitions showed the opposite effects. Phenobarbital pretreatment was used to induce hepatic Cyp3a and SLCO1B1 in rats. Phenobarbital aggravated atorvastatin-induced hepatotoxicity, while decreased plasma exposure of atorvastatin. All these findings demonstrated that the upregulations of hepatic Cyp3a and SLCO1B1 in diabetic rats potentiated atorvastatin-induced hepatotoxicity via increasing ROS formation. PMID:27624558

  2. Mass spectrometric detection of CYP450 adducts following oxidative desulfuration of methyl parathion.

    PubMed

    Kyle, Patrick B; Smith, Stanley V; Baker, Rodney C; Kramer, Robert E

    2013-07-01

    Cytochrome P450 (CYP)-mediated desulfuration of methyl parathion results in mechanism-based inhibition of the enzyme. Although previous data suggest that reactive sulfur is released and binds to the apoprotein, the identities of neither the adduct(s) nor the affected amino acid(s) have been clearly determined. In this study, nanospray tandem mass spectroscopy was used to analyze peptide digests of CYP resolved by SDS-PAGE from liver microsomes of male rats following incubation in the absence or presence of methyl parathion. Oxidative desulfuration was confirmed by measurement of methyl paraoxon, and inhibition of specific CYP isozymes was determined by measurement of testosterone hydroxylation. Total CYP content was quantified spectrophotometrically. Incubation of microsomes with methyl parathion decreased CYP content by 58%. This effect was not associated with a comparable increase in absorbance at 420 nm, suggesting the displacement of heme from the apoprotein. Rates of testosterone 2β- and 6β-hydroxylation, respectively, were reduced to 8 and 2%, implicating CYP3A and CYP2C11 in the oxidative desulfuration of methyl parathion. Mass spectrometric analysis identified 96 amu adducts to cysteines 64 and 378 of CYP3A1. In addition, a peptide containing cysteine 433 that coordinates with heme was possibly modified as it was detected in control, but not methyl parathion samples. A comparison of rat CYP3A1 with human CYP3A4 suggests that cysteines 64 and 378 reside along the substrate channel, remote from the active site. Alteration of these residues might modulate substrate entry to the binding pocket of the enzyme.

  3. Prediction of fraction metabolized via CYP3A in humans utilizing cryopreserved human hepatocytes from a set of 12 single donors.

    PubMed

    Desbans, C; Hilgendorf, C; Lutz, M; Bachellier, P; Zacharias, T; Weber, J C; Dolgos, H; Richert, L; Ungell, A-L

    2014-01-01

    1.  It has previously been demonstrated that metabolism of drugs via a single enzymatic pathway, particularly CYP3A4, is associated with increased risk for drug-drug interactions (DDI). Quantitative experimental systems as well as integrated prediction models to assess such risk during the preclinical phase are highly warranted. 2.  The present study was designed to systematically investigate the performance of human cryopreserved hepatocytes in suspension to predict fraction metabolized via CYP3A (fmCYP3A) by assessing the ketoconazole sensitive intrinsic clearance (CLint) for five prototypical CYP3A substrates with varying degree of CYP3A dependent CLint in twelve individual hepatocyte batches. 3.  We demonstrate that in contrast to well predicted mean hepatic metabolic clearance (CLH) and mean fmCYP3A data, the variability in CYP3A contribution for compounds having multiple metabolic pathways cannot be predicted from inhibition experiments using ketoconazole as inhibitor. Instead, data in the present paper indicate that the variability is larger after inhibition of CYP3A for compounds having multiple metabolic pathways. 4.  It is therefore recommended to estimate the average CLint and fmCYP3A for a given test compound in a series (n = 10) of individual human hepatocyte batches.

  4. The Investigational Drug VT-1129 Is a Highly Potent Inhibitor of Cryptococcus Species CYP51 but Only Weakly Inhibits the Human Enzyme

    PubMed Central

    Warrilow, Andrew G. S.; Parker, Josie E.; Price, Claire L.; Nes, W. David; Garvey, Edward P.; Hoekstra, William J.; Schotzinger, Robert J.; Kelly, Diane E.

    2016-01-01

    Cryptococcosis is a life-threatening disease often associated with HIV infection. Three Cryptococcus species CYP51 enzymes were purified and catalyzed the 14α-demethylation of lanosterol, eburicol, and obtusifoliol. The investigational agent VT-1129 bound tightly to all three CYP51 proteins (dissociation constant [Kd] range, 14 to 25 nM) with affinities similar to those of fluconazole, voriconazole, itraconazole, clotrimazole, and ketoconazole (Kd range, 4 to 52 nM), whereas VT-1129 bound weakly to human CYP51 (Kd, 4.53 μM). VT-1129 was as effective as conventional triazole antifungal drugs at inhibiting cryptococcal CYP51 activity (50% inhibitory concentration [IC50] range, 0.14 to 0.20 μM), while it only weakly inhibited human CYP51 activity (IC50, ∼600 μM). Furthermore, VT-1129 weakly inhibited human CYP2C9, CYP2C19, and CYP3A4, suggesting a low drug-drug interaction potential. Finally, the cellular mode of action for VT-1129 was confirmed to be CYP51 inhibition, resulting in the depletion of ergosterol and ergosta-7-enol and the accumulation of eburicol, obtusifolione, and lanosterol/obtusifoliol in the cell membranes. PMID:27161631

  5. In vitro profiling of the metabolism and drug-drug interaction of tofogliflozin, a potent and highly specific sodium-glucose co-transporter 2 inhibitor, using human liver microsomes, human hepatocytes, and recombinant human CYP.

    PubMed

    Yamane, Mizuki; Kawashima, Kosuke; Yamaguchi, Koji; Nagao, Shunsuke; Sato, Mika; Suzuki, Masayuki; Honda, Kiyofumi; Hagita, Hitoshi; Kuhlmann, Olaf; Poirier, Agnes; Fowler, Stephen; Funk, Christoph; Simon, Sandrine; Aso, Yoshinori; Ikeda, Sachiya; Ishigai, Masaki

    2015-03-01

    Abstract 1. The metabolism and drug-drug interaction (DDI) risk of tofogliflozin, a potent and highly specific sodium-glucose co-transporter 2 inhibitor, were evaluated by in vitro studies using human liver microsomes, human hepatocytes, and recombinant human CYPs. 2. The main metabolite of tofogliflozin was the carboxylated derivative (M1) in human hepatocytes, which was the same as in vivo. The metabolic pathway of tofogliflozin to M1 was considered to be as follows: first, tofogliflozin was catalyzed to the primary hydroxylated derivative (M4) by CYP2C18, CYP4A11 and CYP4F3B, then M4 was oxidized to M1. 3. Tofogliflozin had no induction potential on CYP1A2 and CYP3A4. Neither tofogliflozin nor M1 had inhibition potential on CYPs, with the exception of a weak CYP2C19 inhibition by M1. 4. Not only are multiple metabolic enzymes involved in the tofogliflozin metabolism, but the drug is also excreted into urine after oral administration, indicating that tofogliflozin is eliminated through multiple pathways. Thus, the exposure of tofogliflozin would not be significantly altered by DDI caused by any co-administered drugs. Also, tofogliflozin seems not to cause significant DDI of co-administered drugs because tofogliflozin has no CYP induction or inhibition potency, and the main metabolite M1 has no clinically relevant CYP inhibition potency.

  6. Human Placental Lactogen Induces CYP2E1 Expression via PI 3-Kinase Pathway in Female Human Hepatocytes

    PubMed Central

    Lee, Jin Kyung; Chung, Hye Jin; Fischer, Liam; Fischer, James; Gonzalez, Frank J.

    2014-01-01

    The state of pregnancy is known to alter hepatic drug metabolism. Hormones that rise during pregnancy are potentially responsible for the changes. Here we report the effects of prolactin (PRL), placental lactogen (PL), and growth hormone variant (GH-v) on expression of major hepatic cytochromes P450 expression and a potential molecular mechanism underlying CYP2E1 induction by PL. In female human hepatocytes, PRL and GH-v showed either no effect or small and variable effects on mRNA expression of CYP1A2, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1, 3A4, and 3A5. On the other hand, PL increased expression level of CYP2E1 mRNA with corresponding increases in CYP2E1 protein and activity levels. Results from hepatocytes and HepaRG cells indicate that PL does not affect the expression or activity of HNF1α, the known transcriptional activator of basal CYP2E1 expression. Furthermore, transient transfection studies and Western blot results showed that STAT signaling, the previously known mediator of PL actions in certain tissues, does not play a role in CYP2E1 induction by PL. A chemical inhibitor of PI3-kinase signaling significantly repressed the CYP2E1 induction by PL in human hepatocytes, suggesting involvement of PI3-kinase pathway in CYP2E1 regulation by PL. CYP2E1-humanized mice did not exhibit enhanced CYP2E1 expression during pregnancy, potentially because of interspecies differences in PL physiology. Taken together, these results indicate that PL induces CYP2E1 expression via PI3-kinase pathway in human hepatocytes. PMID:24408518

  7. Rational development of 4-aminopyridyl-based inhibitors targeting Trypanosoma cruzi CYP51 as anti-Chagas agents

    PubMed Central

    Choi, Jun Yong; Calvet, Claudia M.; Gunatilleke, Shamila S.; Ruiz, Claudia; Cameron, Michael D.; McKerrow, James H.; Podust, Larissa M.; Roush, William R.

    2013-01-01

    A new series of 4-aminopyridyl-based lead inhibitors targeting Trypanosoma cruzi CYP51 (TcCYP51) has been developed using structure-based drug design as well as structure-property relationship (SPR) analyses. The screening hit starting point, LP10 (KD ≤ 42 nM; EC50 of 0.65 µM), has been optimized to give the potential leads 14t, 27i, 27q, 27r, and 27t, that have low nanomolar binding affinity to TcCYP51 and significant activity against T. cruzi amastigotes cultured in human myoblasts (EC50 = 14–18 nM for 27i and 27r). Many of the optimized compounds have improved microsome stability, and most are selective against human CYPs 1A2, 2D6 and 3A4 (<50% inhibition at 1 µM). A rationale for the improvement of microsome stability and selectivity of inhibitors against human metabolic CYP enzymes is presented. In addition, the binding mode of 14t with the T. brucei CYP51 (TbCYP51) ortholog has been characterized by x-ray structure analysis. PMID:24079662

  8. The correlation between CYP2D6 isoenzyme activity and haloperidol efficacy and safety profile in patients with alcohol addiction during the exacerbation of the addiction

    PubMed Central

    Sychev, Dmitry Alekseevich; Zastrozhin, Mikhail Sergeevich; Smirnov, Valery Valerieevich; Grishina, Elena Anatolievna; Savchenko, Ludmila Mikhailovna; Bryun, Evgeny Alekseevich

    2016-01-01

    Background Today, it is proved that isoenzymes CYP2D6 and CYP3A4 are involved in metabolism of haloperidol. In our previous investigation, we found a medium correlation between the efficacy and safety of haloperidol and the activity of CYP3A4 in patients with alcohol abuse. Objective The aim of this study was to evaluate the correlation between the activity of CYP2D6 and the efficacy and safety of haloperidol in patients with diagnosed alcohol abuse. Methods The study involved 70 men (average age: 40.83±9.92 years) with alcohol addiction. A series of psychometric scales were used in the research. The activity of CYP2D6 was evaluated by high-performance liquid chromatography with mass spectrometry using the ratio of 6-hydroxy-1,2,3,4-tetrahydro-beta-carboline to pinoline. Genotyping of CYP2D6 (1846G>A) was performed using real-time polymerase chain reaction. Results According to results of correlation analysis, statistically significant values of Spearman correlation coefficient (rs) between the activity of CYP2D6 and the difference of points in psychometric scale were obtained in patients receiving haloperidol in injection form (Sheehan Clinical Anxiety Rating Scale =−0.721 [P<0.001] and Udvald for Kliniske Undersogelser Side Effect Rating Scale =0.692 [P<0.001]) and in those receiving haloperidol in tablet form (Covi Anxiety Scale =−0.851 [P<0.001] and Udvald for Kliniske Undersogelser Side Effect Rating Scale =0.797 [P<0.001]). Conclusion This study demonstrated the correlations between the activity of CYP2D6 isozyme and the efficacy and safety of haloperidol in patients with alcohol addiction. PMID:27695358

  9. In vitro metabolism of testosterone in the horse liver and involvement of equine CYPs 3A89, 3A94 and 3A95.

    PubMed

    Schmitz, A; Zielinski, J; Dick, B; Mevissen, M

    2014-08-01

    Testosterone (TES) 6-β-hydroxylation is a significant metabolic step in the biotransformation of TES in human liver microsomes and reflects cytochrome P450 (CYP) 3A4/5 specific metabolic activity. Several CYP3A enzymes have been annotated in the horse genome, but functional characterization is missing. This descriptive study investigates TES metabolism in the horse liver in vitro and the qualitative contribution of three CYP3A isoforms of the horse. Metabolism of TES was investigated by using equine hepatocyte primary cultures and liver microsomes. Chemical inhibitors were used to determine the CYPs involved in TES biotransformation in equine microsomes. Single CYPs 3A89, 3A94, and 3A95, recombinantly expressed in V79 hamster lung fibroblasts, were incubated with TES and the fluorescent metabolite 7-benzyloxy-4-trifluoromethylcoumarin (BFC). The effect of ketoconazole and troleandomycin was evaluated on single CYPs. Testosterone metabolites were analyzed by HPLC and confirmed by GC/MS. In hepatocyte primary cultures, the most abundant metabolite was androstenedione (AS), whereas in liver microsomes, 6-β-hydroxytestosterone showed the largest peak. Formation of 6-β-hydroxytestosterone and 11-β-hydroxytestosterone in liver microsomes was inhibited by ketoconazole, troleandomycin, and quercetin. Equine recombinant CYP3A95 catalyzed 11-β-hydroxylation of testosterone (TES). Metabolism of BFC was significantly inhibited by ketoconazole in CYP3A95, whereas troleandomycin affected the activities of CYP3A94 and CYP3A95. Both inhibitors had no significant effect on CYP3A89. Metabolic reactions and effects of inhibitors differed between the equine CYP3A isoforms investigated. This has to be considered in future in vitro studies.

  10. Mechanism of ritonavir changes in methadone pharmacokinetics and pharmacodynamics: II. Ritonavir effects on CYP3A and P-glycoprotein activities.

    PubMed

    Kharasch, E D; Bedynek, P S; Walker, A; Whittington, D; Hoffer, C

    2008-10-01

    Ritonavir diminishes methadone plasma concentrations, an effect attributed to CYP3A induction, but the actual mechanisms are unknown. We determined short-term (2-day) and steady-state (2-week) ritonavir effects on intestinal and hepatic CYP3A4/5 (probed with intravenous (IV) and oral alfentanil (ALF) and with miosis) and P-glycoprotein (P-gp) (fexofenadine), and on methadone pharmacokinetics and pharmacodynamics in healthy volunteers. Acute ritonavir increased the area under the concentration-time curve (AUC)(0-infinity)/dose ratio (ritonavir/control) for oral ALF 25-fold. Steady-state ritonavir increased the AUC(0-Infinity)/dose ratio for IV and oral ALF 4- and 10-fold, respectively; reduced hepatic extraction (from 0.26 to 0.07) and intestinal extraction (from 0.51 to 0); and increased bioavailability (from 37 to 95%). Acute ritonavir inhibits first-pass CYP3A > 96%. Chronic ritonavir inhibits hepatic CYP3A (> 70%) and first-pass CYP3A (> 90%). Acute and steady-state ritonavir increased the fexofenadine AUC(0-infinity) 2.8- and 1.4-fold, respectively, suggesting P-gp inhibition. Steady-state compared with acute ritonavir caused mild apparent induction of P-gp and hepatic CYP3A, but net inhibition still predominated. Ritonavir inhibited both intestinal and hepatic CYP3A and drug transport. ALF miosis noninvasively determined CYP3A inhibition by ritonavir.

  11. Drug interactions with HMG-CoA reductase inhibitors (statins): the importance of CYP enzymes, transporters and pharmacogenetics.

    PubMed

    Neuvonen, Pertti J

    2010-03-01

    HMG-CoA reductase inhibitors (statins) can cause skeletal muscle toxicity; the risk of toxicity is elevated by drug interactions and pharmacogenetic factors that increase the concentration of statins in the plasma. Statins are substrates for several membrane transporters that may mediate drug interactions. Inhibitors of the organic anion transporting polypeptide 1B1 can decrease the hepatic uptake of many statins, as well as the therapeutic index of these agents. Potent inhibitors of cytochrome P450 (CYP)3A4 can significantly increase the plasma concentrations of the active forms of simvastatin, lovastatin and atorvastatin. Fluvastatin, which is metabolized by CYP2C9, is less prone to pharmacokinetic interactions, while pravastatin, rosuvastatin and pitavastatin are not susceptible to any CYP inhibition. An understanding of the mechanisms of statin interactions will help to minimize drug interactions and to develop statins that are less prone to adverse interactions.

  12. RS-WebPredictor: a server for predicting CYP-mediated sites of metabolism on drug-like molecules

    PubMed Central

    Zaretzki, Jed; Bergeron, Charles; Huang, Tao-wei; Rydberg, Patrik; Swamidass, S. Joshua; Breneman, Curt M.

    2013-01-01

    Summary: Regioselectivity-WebPredictor (RS-WebPredictor) is a server that predicts isozyme-specific cytochrome P450 (CYP)-mediated sites of metabolism (SOMs) on drug-like molecules. Predictions may be made for the promiscuous 2C9, 2D6 and 3A4 CYP isozymes, as well as CYPs 1A2, 2A6, 2B6, 2C8, 2C19 and 2E1. RS-WebPredictor is the first freely accessible server that predicts the regioselectivity of the last six isozymes. Server execution time is fast, taking on average 2s to encode a submitted molecule and 1s to apply a given model, allowing for high-throughput use in lead optimization projects. Availability: RS-WebPredictor is accessible for free use at http://reccr.chem.rpi.edu/Software/RS-WebPredictor/ Contact: brenec@rpi.edu PMID:23242264

  13. Effects of the differentiated keratinocyte phenotype on expression levels of CYP1-4 family genes in human skin cells

    SciTech Connect

    Du Liping; Neis, Mark M.; Ladd, Patricia A.; Yost, Garold S.; Keeney, Diane S. . E-mail: diane.keeney@vanderbilt.edu

    2006-06-01

    Epoxyeicosatrienoic acids produced by mouse CYP2B19 have been implicated in mechanisms regulating epidermal cornification (Ladd, P.A., Du, L., Capdevila, J.H., Mernaugh, R., Keeney, D.S., 2003. Epoxyeicosatrienoic acids activate transglutaminases in situ and induce cornification of epidermal keratinocytes. J. Biol. Chem. 278, 35184-35192). In this study, we aimed to identify CYPs that are up-regulated during keratinocyte differentiation and potentially responsible for epoxyeicosatrienoic acid formation in human skin. The cellular differentiation state of human epidermal cell cultures was manipulated to resemble the basal, spinous, and granular cell phenotypes in vivo. Changes in CYP mRNA levels were measured as a function of differentiation state for a panel of 15 CYPs that included known and putative arachidonate monooxygenases. Quantitative real-time PCR analyses showed that all of the CYPs were expressed in differentiating epidermal cell cultures and in human epidermis, with the exception of CYP2B6, which was poorly expressed in vitro. Six CYPs were strongly up-regulated at Day 6 and Day 8 of in vitro differentiation (CYP4B1, 2W1, 2C18, 3A4, 2C19, 2C9); the increase in mRNA levels ranged from 27- to 356-fold. Only CYP2U1 mRNA levels decreased (6-fold change) during cellular differentiation. Six CYPs showed little variation (<2-fold change) in mRNA levels during in vitro differentiation (CYP2S1, 2J2, 1B1, 1A1, 2E1, 2D6). No single CYP was identifiable as being a functional counterpart to CYP2B19 in mouse skin since none qualified as being mainly responsible for epidermal epoxyeicosatrienoic acid formation. Rather, the data suggest that epoxyeicosatrienoic acids in human skin are formed by several CYPs expressed in different cell layers of the epidermis. This would predict that CYP-derived eicosanoids have different functions in different epidermal cell layers.

  14. Alprazolam as an in vivo probe for studying induction of CYP3A in cynomolgus monkeys.

    PubMed

    Ohtsuka, Tatsuyuki; Yoshikawa, Takahiro; Kozakai, Kazumasa; Tsuneto, Yumi; Uno, Yasuhiro; Utoh, Masahiro; Yamazaki, Hiroshi; Kume, Toshiyuki

    2010-10-01

    Induction of the cytochrome P450 (P450) enzyme is a major concern in the drug discovery processes. To predict the clinical significance of enzyme induction, it is helpful to investigate pharmacokinetic alterations of a coadministered drug in a suitable animal model. In this study, we focus on the induction of CYP3A, which is involved in the metabolism of approximately 50% of marketed drugs and is inducible in both the liver and intestine. As a marker substrate for CYP3A activity, alprazolam (APZ) was selected and characterized using recombinant CYP3A enzymes expressed in Escherichia coli. Both human CYP3A4 and its cynomolgus P450 ortholog predominantly catalyzed APZ 4-hydroxylation with sigmoidal kinetics. When administered intravenously and orally to cynomolgus monkeys, APZ had moderate clearance; its first-pass extraction ratio after oral dosing was estimated to be 0.09 in the liver and 0.45 in the intestine. Pretreatment with multiple doses of rifampicin (20 mg/kg p.o. for 5 days), a known CYP3A inducer, significantly decreased plasma concentrations of APZ after intravenous and oral administrations (0.5 mg/kg), and first-pass extraction ratios were increased to 0.39 in the liver and 0.63 in the intestine. The results were comparable to those obtained in clinical drug-drug interaction (DDI) reports related to CYP3A induction, although the rate of recovery of CYP3A activity seemed to be slower than rates estimated in clinical studies. In conclusion, pharmacokinetic studies using APZ as a probe in monkeys may provide useful information regarding the prediction of clinical DDIs due to CYP3A induction.

  15. A 96-well plate assay for CYP4503A induction using cryopreserved human hepatocytes.

    PubMed

    Kamiguchi, Naomi; Aoyama, Eiji; Okuda, Teruaki; Moriwaki, Toshiya

    2010-11-01

    A reliable and practical CYP3A induction assay with cryopreserved human hepatocytes in a 96-well format was developed. Various 96-well plates with different basement membrane were evaluated using prototypical inducers, rifampicin, phenytoin, and carbamazepine. Thin-layer (TL) Matrigel was found to yield the highest basal and induced levels of CYP3A activity as determined by testosterone 6β-hydroxylation. Concentration-dependent CYP3A induction of rifampicin was reproducible with the EC(50) values of 0.36 ± 0.28 μM from four batches of human hepatocytes using the 96-well plate with TL Matrigel. The rank order of induction potency for nine inducers or noninducers at a concentration of 10 μM were well comparable among the multiple donors, by expressing the results as percentage of change compared with the positive control, 10 μM rifampicin. Cotreatment of avasimibe or efavirenz with 10 μM rifampicin was found to reduce CYP3A activities induced by rifampicin at a lower rate than treatment with rifampicin alone, whereas treatment with phenobarbital and carbamazepine had no effect. From a comparison of induced CYP3A activities and gene expression levels, there were compounds that would cause induction of CYP3A4 mRNA but not activity, presumably due to their inhibitory effect on CYP3A activity. The cotreatment assay of test compound with rifampicin allows us to exclude the false-negative results caused by the cytotoxicity and/or the mechanism-based inactivation, when the drug candidate's ability for CYP3A induction is evaluating the enzyme activity. This 96-well plate assay, which is robust, reproducible, and convenient, has demonstrated the paramount applicability to the early drug discovery stage.

  16. Effects of Kampo medicines on CYP and P-gp activity in vitro.

    PubMed

    Ito, Kiyomi; Satoh, Toshiyuki; Watanabe, Yuka; Ikarashi, Nobutomo; Asano, Takayuki; Morita, Toshimi; Sugiyama, Kiyoshi

    2008-05-01

    The Kampo medicines are more and more often used in recent years, usually together with the Western drugs. The need for the investigation of drug interactions between Kampo medicines and Western drugs are, therefore, widely recognized. In the present study, the effects of 3 Kampo medicines (Rikkunshito, Yokukansan and Boiogito) on the activity of cytochrome P450 (CYP), a superfamily of drug-metabolizing enzymes, were investigated in an in vitro study using human CYP recombinants. Their effects on the P-glycoprotein (P-gp), one of the major drug transporters, were also evaluated by the ATPase assay using human P-gp membranes and verapamil as a substrate. The inhibition rate of Rikkunshito, Yokukansan and Boiogito on human CYP3A4, 2C9, 2C19, 2D6 and 2E1 was less than 50% at the concentrations below 0.1 mg/ml except for the inhibition of CYP2D6 by Boiogito. Furthermore, none of the Kampo medicines affected the ATPase activity at the concentrations lower than 0.1 mg/ml, either in the absence or presence of verapamil, indicating their low inhibitory potency against P-gp. These findings indicate that Rikkunshito, Yokukansan and Boiogito are unlikely to cause clinically relevant drug interactions involving the inhibition of major CYP isozymes and P-gp.

  17. In Vitro Biotransformation of Two Human CYP3A Probe Substrates and Their Inhibition during Early Zebrafish Development

    PubMed Central

    Verbueken, Evy; Alsop, Derek; Saad, Moayad A.; Pype, Casper; Van Peer, Els M.; Casteleyn, Christophe R.; Van Ginneken, Chris J.; Wilson, Joanna; Van Cruchten, Steven J.

    2017-01-01

    At present, the zebrafish embryo is increasingly used as an alternative animal model to screen for developmental toxicity after exposure to xenobiotics. Since zebrafish embryos depend on their own drug-metabolizing capacity, knowledge of their intrinsic biotransformation is pivotal in order to correctly interpret the outcome of teratogenicity assays. Therefore, the aim of this in vitro study was to assess the activity of cytochrome P450 (CYP)—a group of drug-metabolizing enzymes—in microsomes from whole zebrafish embryos (ZEM) of 5, 24, 48, 72, 96 and 120 h post-fertilization (hpf) by means of a mammalian CYP substrate, i.e., benzyloxy-methyl-resorufin (BOMR). The same CYP activity assays were performed in adult zebrafish liver microsomes (ZLM) to serve as a reference for the embryos. In addition, activity assays with the human CYP3A4-specific Luciferin isopropyl acetal (Luciferin-IPA) as well as inhibition studies with ketoconazole and CYP3cide were carried out to identify CYP activity in ZLM. In the present study, biotransformation of BOMR was detected at 72 and 96 hpf; however, metabolite formation was low compared with ZLM. Furthermore, Luciferin-IPA was not metabolized by the zebrafish. In conclusion, the capacity of intrinsic biotransformation in zebrafish embryos appears to be lacking during a major part of organogenesis. PMID:28117738

  18. Variability of CYP3A7 expression in human fetal liver.

    PubMed

    Leeder, J Steven; Gaedigk, Roger; Marcucci, Kenda A; Gaedigk, Andrea; Vyhlidal, Carrie A; Schindel, Bradley P; Pearce, Robin E

    2005-08-01

    Fetal liver CYP3A7 plays an important role in placental estriol synthesis during pregnancy, yet little is known concerning the extent or consequences of variability in expression. The purpose of this investigation was to characterize the variability in CYP3A7 expression using several phenotypic measures in a panel of 54 fetal livers ranging in age from 76 days to 32 weeks gestation. CYP3A7 mRNA expression was measured using quantitative polymerase chain reaction, whereas immunoreactive CYP3A7 was determined using an affinity-purified antipeptide antibody. Variability in catalytic activity was evaluated using testosterone and dehydroepiandrosterone (DHEA) as substrates. Across the entire panel, CYP3A7 was the most abundant CYP3A mRNA species present and varied 634-fold from 151 to 95,700 transcripts/ng total RNA, corrected for 18S ribosomal RNA. CYP3A4 expression was minimal based on mRNA expression (1000-fold lower than CYP3A7) and the ratio of testosterone 2alpha- (T2alphaH) to 6beta- (T6betaH) hydroxylation. T2alphaH and T6betaH were highly correlated (r(2) = 0.859), and the correlation increased (r(2) = 0.974) in livers with CYP3A5*3/*3 genotypes implying that the same enzyme (CYP3A7) generated both products. Overall, T2alphaH and DHEA16alphaH activities varied 175- and 250-fold, respectively. A subset of five samples had extremely low mRNA, protein, and catalytic activity, possibly due to pathology affecting fetal viability (anencephaly, porencephaly). In the remaining samples, T2alphaH activity varied 6.7-fold (358 +/- 142, range 97 to 643 pmol/min/mg) and DHEA16alphaH activity varied 6.2-fold (8.07 +/- 2.87, range 2.41 to 14.9 nmol/min/mg). Observed variability in CYP3A7 activity was not related to CYP3A7*2, and alternative regulatory mechanisms require further investigation.

  19. TSU-16, (Z)-3-[(2,4-dimethylpyrrol-5-yl)methylidenyl]-2-indolinone, is a potent activator of aryl hydrocarbon receptor and increases CYP1A1 and CYP1A2 expression in human hepatocytes.

    PubMed

    Matsuoka-Kawano, Kazuaki; Yoshinari, Kouichi; Nagayama, Sekio; Yamazoe, Yasushi

    2010-04-15

    (Z)-3-[(2,4-dimethylpyrrol-5-yl)methylidenyl]-2-indolinone (TSU-16), is a potent anti-angiogenic agent that inhibits the tyrosine kinase of vascular endothelial growth factor receptor-2. In clinical trials with daily or twice weekly intravenous administration of TSU-16, its increased clearance was observed. To understand the mechanism underlying this observation, we have investigated the TSU-16-mediated regulation of cytochrome P450 expression. In human hepatocytes, TSU-16 increased mRNA levels of CYP1A1 and CYP1A2, but not CYP2B6 and CYP3A4. The extent of increase and profiles of the time-dependent changes in CYP1A1 and CYP1A2 mRNA levels after TSU-16 treatment were similar to those after treatment with 3-methylcholanthrene (3MC), a well-known activator of the aryl hydrocarbon receptor (AhR). In reporter assays using a plasmid construct that contained the human CYP1A1 5'-flanking region including the region crucial for the AhR-dependent transcription of both human CYP1A1 and CYP1A2, TSU-16 treatment increased reporter activities to an extent similar to that obtained with 3MC. Treatment of HepG2 cells and human hepatocytes with AhR-targeting siRNA suppressed the increase in both mRNA levels and CYP1A activities after treatment with TSU-16 as well as after that with omeprazole or 3MC. TSU-16 also time-dependently reduced cellular AhR protein levels in HepG2 cells to a similar extent with 3MC treatment. Furthermore, we demonstrated that unlabeled TSU-16 and 3MC but not omeprazole completely inhibited the specific binding of [(3)H]-3MC to mouse Hepa1c1c7 cytosol, suggesting TSU-16 as an AhR ligand. In conclusion, our present results suggest that TSU-16 binds to and activates AhR to enhance the expression of both human CYP1A1 and CYP1A2. Because TSU-16 is metabolized mainly by CYP1A2, its increased clearance after repeated dosing may be attributed to the enhanced expression of hepatic CYP1A2.

  20. CYP3A Specifically Catalyzes 1β-Hydroxylation of Deoxycholic Acid: Characterization and Enzymatic Synthesis of a Potential Novel Urinary Biomarker for CYP3A Activity.

    PubMed

    Hayes, Martin A; Li, Xue-Qing; Grönberg, Gunnar; Diczfalusy, Ulf; Andersson, Tommy B

    2016-09-01

    The endogenous bile acid metabolite 1β-hydroxy-deoxycholic acid (1β-OH-DCA) excreted in human urine may be used as a sensitive CYP3A biomarker in drug development reflecting in vivo CYP3A activity. An efficient and stereospecific enzymatic synthesis of 1β-OH-DCA was developed using a Bacillus megaterium (BM3) cytochrome P450 (P450) mutant, and its structure was confirmed by nuclear magnetic resonance (NMR) spectroscopy. A [(2)H4]-labeled analog of 1β-OH-DCA was also prepared. The major hydroxylated metabolite of deoxycholic acid (DCA) in human liver microsomal incubations was identified as 1β-OH-DCA by comparison with the synthesized reference analyzed by UPLC-HRMS. Its formation was strongly inhibited by CYP3A inhibitor ketoconazole. Screening of 21 recombinant human cytochrome P450 (P450) enzymes showed that, with the exception of extrahepatic CYP46A1, the most abundant liver P450 subfamily CYP3A, including CYP3A4, 3A5, and 3A7, specifically catalyzed 1β-OH-DCA formation. This indicated that 1β-hydroxylation of DCA may be a useful marker reaction for CYP3A activity in vitro. The metabolic pathways of DCA and 1β-OH-DCA in human hepatocytes were predominantly via glycine and, to a lesser extent, via taurine and sulfate conjugation. The potential utility of 1β-hydroxylation of DCA as a urinary CYP3A biomarker was illustrated by comparing the ratio of 1β-OH-DCA:DCA in a pooled spot urine sample from six healthy control subjects to a sample from one patient treated with carbamazepine, a potent CYP3A inducer; 1β-OH-DCA:DCA was considerably higher in the patient versus controls (ratio 2.8 vs. 0.4). Our results highlight the potential of 1β-OH-DCA as a urinary biomarker in clinical CYP3A DDI studies.

  1. Identification and characterization of reactive metabolites in myristicin-mediated mechanism-based inhibition of CYP1A2.

    PubMed

    Yang, Ai-Hong; He, Xin; Chen, Jun-Xiu; He, Li-Na; Jin, Chun-Huan; Wang, Li-Li; Zhang, Fang-Liang; An, Li-Jun

    2015-07-25

    Myristicin belongs to the methylenedioxyphenyl or allyl-benzene family of compounds, which are found widely in plants of the Umbelliferae family, such as parsley and carrot. Myristicin is also the major active component in the essential oils of mace and nutmeg. However, this compound can cause adverse reactions, particularly when taken inappropriately or in overdoses. One important source of toxicity of natural products arises from their metabolic biotransformations into reactive metabolites. Myristicin contains a methylenedioxyphenyl substructure, and this specific structural feature may allow compounds to cause a mechanism-based inhibition of cytochrome P450 enzymes and produce reactive metabolites. Therefore, the aim of this work was to identify whether the role of myristicin in CYP enzyme inhibition is mechanism-based inhibition and to gain further information regarding the structure of the resulting reactive metabolites. CYP cocktail assays showed that myristicin most significantly inhibits CYP1A2 among five CYP enzymes (CYP1A2, CYP2D6, CYP2E1, CYP3A4 and CYP2C19) from human liver microsomes. The 3.21-fold IC50 shift value of CYP1A2 indicates that myristicin may be a mechanism-based inhibitor of CYP1A2. Next, reduced glutathione was shown to block the inhibition of CYP1A2, indicating that myristicin utilized a mechanism-based inhibition. Phase I metabolism assays identified two metabolites, 5-allyl-1-methoxy-2,3-dihydroxybenzene (M1) and 1'-hydroxymyristicin or 2',3'-epoxy-myristicin (M2). Reduced glutathione capturing assays captured the glutathione-M1 adduct, and the reactive metabolites were identified using UPLC-MS(2) as a quinone and its tautomer. Thus, it was concluded that myristicin is a mechanism-based inhibitor of CYP1A2, and the reactive metabolites are quinone tautomers. Additionally, the cleavage process of the glutathione-M1 adduct was analyzed in further detail. This study provides additional information on the metabolic mechanism of myristicin

  2. Guanfu base A, an antiarrhythmic alkaloid of Aconitum coreanum, Is a CYP2D6 inhibitor of human, monkey, and dog isoforms.

    PubMed

    Sun, Jianguo; Peng, Ying; Wu, Hui; Zhang, Xueyuan; Zhong, Yunxi; Xiao, Yanan; Zhang, Fengyi; Qi, Huanhuan; Shang, Lili; Zhu, Jianping; Sun, Yue; Liu, Ke; Liu, Jinghan; A, Jiye; Ho, Rodney J Y; Wang, Guangji

    2015-05-01

    Guanfu base A (GFA) is a novel heterocyclic antiarrhythmic drug isolated from Aconitum coreanum (Lèvl.) rapaics and is currently in a phase IV clinical trial in China. However, no study has investigated the influence of GFA on cytochrome P450 (P450) drug metabolism. We characterized the potency and specificity of GFA CYP2D inhibition based on dextromethorphan O-demethylation, a CYP2D6 probe substrate of activity in human, mouse, rat, dog, and monkey liver microsomes. In addition, (+)-bufuralol 1'-hydroxylation was used as a CYP2D6 probe for the recombinant form (rCYP2D6), 2D1 (rCYP2D1), and 2D2 (rCYP2D2) activities. Results show that GFA is a potent noncompetitive inhibitor of CYP2D6, with inhibition constant Ki = 1.20 ± 0.33 μM in human liver microsomes (HLMs) and Ki = 0.37 ± 0.16 μM for the human recombinant form (rCYP2D6). GFA is also a potent competitive inhibitor of CYP2D in monkey (Ki = 0.38 ± 0.12 μM) and dog (Ki = 2.4 ± 1.3 μM) microsomes. However, GFA has no inhibitory activity on mouse or rat CYP2Ds. GFA did not exhibit any inhibition activity on human recombinant CYP1A2, 2A6, 2C8, 2C19, 3A4, or 3A5, but showed slight inhibition of 2B6 and 2E1. Preincubation of HLMs and rCYP2D6 resulted in the inactivation of the enzyme, which was attenuated by GFA or quinidine. Beagle dogs treated intravenously with dextromethorphan (2 mg/ml) after pretreatment with GFA injection showed reduced CYP2D metabolic activity, with the Cmax of dextrorphan being one-third that of the saline-treated group and area under the plasma concentration-time curve half that of the saline-treated group. This study suggests that GFA is a specific CYP2D6 inhibitor that might play a role in CYP2D6 medicated drug-drug interaction.

  3. Isolation and identification of intestinal CYP3A inhibitors from cranberry (Vaccinium macrocarpon) using human intestinal microsomes.

    PubMed

    Kim, Eunkyung; Sy-Cordero, Arlene; Graf, Tyler N; Brantley, Scott J; Paine, Mary F; Oberlies, Nicholas H

    2011-02-01

    Cranberry juice is used routinely, especially among women and the elderly, to prevent and treat urinary tract infections. These individuals are likely to be taking medications concomitantly with cranberry juice, leading to concern about potential drug-dietary substance interactions, particularly in the intestine, which, along with the liver, is rich in expression of the prominent drug metabolizing enzyme, cytochrome P450 3A (CYP3A). Using a systematic in vitro-in vivo approach, a cranberry juice product was identified recently that elicited a pharmacokinetic interaction with the CYP3A probe substrate midazolam in 16 healthy volunteers. Relative to water, cranberry juice inhibited intestinal first-pass midazolam metabolism. In vitro studies were initiated to identify potential enteric CYP3A inhibitors from cranberry via a bioactivity-directed fractionation approach involving dried whole cranberry [Vaccinium macrocarpon Ait. (Ericaceae)], midazolam, and human intestinal microsomes (HIM). Three triterpenes (maslinic acid, corosolic acid, and ursolic acid) were isolated. The inhibitory potency (IC(50)) of maslinic acid, corosolic acid, and ursolic acid was 7.4, 8.8, and < 10 µM, respectively, using HIM as the enzyme source and 2.8, 4.3, and < 10 µM, respectively, using recombinant CYP3A4 as the enzyme source. These in vitro inhibitory potencies, which are within the range of those reported for two CYP3A inhibitory components in grapefruit juice, suggest that these triterpenes may have contributed to the midazolam-cranberry juice interaction observed in the clinical study.

  4. Development of a Physiologically-Based Pharmacokinetic Model for Sirolimus: Predicting Bioavailability Based on Intestinal CYP3A Content

    PubMed Central

    Emoto, C; Fukuda, T; Cox, S; Christians, U; Vinks, A A

    2013-01-01

    Sirolimus is an inhibitor of mammalian target of rapamycin (mTOR) and is increasingly being used in transplantation and cancer therapies. Sirolimus has low oral bioavailability and exhibits large pharmacokinetic variability. The underlying mechanisms for this variability have not been explored to a large extent. Sirolimus metabolism was characterized by in vitro intrinsic clearance estimation. Pathway contribution ranked from CYP3A4 > CYP3A5 > CYP2C8. With the well stirred and Qgut models sirolimus bioavailability was predicted at 15%. Interindividual differences in bioavailability could be attributed to variable intestinal CYP3A expression. The physiologically-based pharmacokinetics (PBPK) model developed in Simcyp predicted a high distribution of sirolimus into adipose tissue and another elimination pathway in addition to CYP-mediated metabolism. PBPK model predictive performance was acceptable with Cmax and area under the curve (AUC) estimates within 20% of observed data in a dose escalation study. The model also showed potential to assess the impact of hepatic impairment and drug–drug interaction (DDI) on sirolimus pharmacokinetics. PMID:23884207

  5. High Nitrogen Explosives. Part 1. 2,6-Dinitropyridines and Dibenzo-1,3a, 4,6a-Tetraazapentalenes

    DTIC Science & Technology

    1994-09-01

    explosive material. Ritter and Licht prepared 2,4,6-trinitropyridine-l-oxide (Reference 4), but found it to be like pentaerythritol tetranitrate ( PETN ...Density 1.81 (1.86) g/cm 3 VofD 8370 rn’s Vof D 8730 nVs VoID 8780 nVs PETN -like hwo% 70 cm hWo% 179 an In a related program (Reference 7) it was shown...N- NO2 H2 N NO2 NO 2 HN NO 2 (34) (35) 0 O-N, O, NO 2 NO2 H2N NO 2 TABLE 3. 1H-NMR Chemical Shifts of 2-Phenylbenzotriltzles. Chemical shift 3 34

  6. Capable Reader Program: Lesson Plan Guide. Units A1; A2; A3; A4; [and] A5. Pilot Year 1979-1980, Final Edition 1980-1981.

    ERIC Educational Resources Information Center

    Casper, Donna; And Others

    Part of a curriculum series for academically gifted elementary students in the area of reading, the five lesson plan guides are intended to provide teachers with suggested activities stressing high levels of reading comprehension as well as encouraging teachers to use their own ideas. Each guide focuses on one of the following major objectives:…

  7. Biotransformations of 6',7'-dihydroxybergamottin and 6',7'-epoxybergamottin by the citrus-pathogenic fungi diminish cytochrome P450 3A4 inhibitory activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Penicillium digitatum, as well as five other citrus pathogenic species, (P. ulaiense Link, Geotrichum citri Link, Botrytis cinerea P. Micheli ex Pers., Lasiodiplodia theobromae (Pat.)Griffon & Maubl. and Phomopsis citri (teleomorph Diaporthe citri)) was observed to convert 6',7'-epoxybergamottin (1)...

  8. The effects of Andrographis paniculata (Burm.f.) Nees extract and diterpenoids on the CYP450 isoforms' activities, a review of possible herb-drug interaction risks.

    PubMed

    Tan, Mei Lan; Lim, Lin Ee

    2015-01-01

    Andrographis paniculata (Burm.f.) Nees is a popular medicinal plant and its components are used in various traditional product preparations. However, its herb-drug interactions risks remain unclear. This review specifically discusses the various published studies carried out to evaluate the effects of Andrographis paniculata (Burm.f.) Nees plant extracts and diterpenoids on the CYP450 metabolic enzyme and if the plant components pose a possible herb-drug interaction risk. Unfortunately, the current data are insufficient to indicate if the extracts or diterpenoids can be labeled as in vitro CYP1A2, CYP2C9 or CYP3A4 inhibitors. A complete CYP inhibition assay utilizing human liver microsomes and the derivation of relevant parameters to predict herb-drug interaction risks may be necessary for these isoforms. However, based on the current studies, none of the extracts and diterpenoids exhibited CYP450 induction activity in human hepatocytes or human-derived cell lines. It is crucial that a well-defined experimental design is needed to make a meaningful herb-drug interaction prediction.

  9. Thunbergia laurifolia extract minimizes the adverse effects of toxicants by regulating P-glycoprotein activity, CYP450, and lipid metabolism gene expression in HepG2 cells.

    PubMed

    Rocejanasaroj, A; Tencomnao, T; Sangkitikomol, W

    2014-01-10

    Thunbergia laurifolia (TL) is widely used as an antidote in Thai traditional medicine against toxic substances such as alcohol, pesticides, arsenic, and strychnine. We found that the lyophilized form of TL in 80% ethanol possessed the antioxidant levels within the range 23,163.9 ± 1457.4 Trolox equivalents mM/kg dry mass and 899.8 ± 14.5 gallic acid equivalents mM/kg dry mass using the oxygen radical absorbance capacity assay and the Folin Ciocalteu phenol assay, respectively. TL extract (TLE) at a high dose (3000 mg/L) induced cytotoxicity according to the neutral red assay and the MTT assay. However, TLE doses of 800-3000 mg/L could reduce intracellular oxidative stress in a dose-dependent manner (P < 0.05) using the dichlorodihydrofluorescein diacetate assay. TLE significantly enhanced the mRNA expression of CYP1A1, CYP1A2, CYP2B6, CYP3A4, and PPARg, but it significantly inhibited the mRNA expression of CYP3A7, CYP2D6, and CYP2E1 (P < 0.05) by reverse transcription-polymerase chain reaction. Moreover, TLE could increase the activity of a multidrug transporter, P-glycoprotein, which accelerated the excretion of toxic substances from HepG2 cells. It is suggested that TLE may be beneficial for detoxification by reducing oxidative stress, minimizing toxicity by regulating the expression CYP450 mRNAs for suitable production of CYP450 isoenzymes, and increasing PPARγ mRNA expression and P-glycoprotein activity in HepG2 cells, thereby maintaining xenobiotic biotransformation balance.

  10. The role of human cytochrome P450 enzymes in the formation of 2-hydroxymetronidazole: CYP2A6 is the high affinity (low Km) catalyst.

    PubMed

    Pearce, Robin E; Cohen-Wolkowiez, Michael; Sampson, Mario R; Kearns, Gregory L

    2013-09-01

    Despite metronidazole's widespread clinical use since the 1960s, the specific enzymes involved in its biotransformation have not been previously identified. Hence, in vitro studies were conducted to identify and characterize the cytochrome P450 enzymes involved in the formation of the major metabolite, 2-hydroxymetronidazole. Formation of 2-hydroxymetronidazole in human liver microsomes was consistent with biphasic, Michaelis-Menten kinetics. Although several cDNA-expressed P450 enzymes catalyzed 2-hydroxymetronidazole formation at a supratherapeutic concentration of metronidazole (2000 μM), at a "therapeutic concentration" of 100 μM only CYPs 2A6, 3A4, 3A5, and 3A7 catalyzed metronidazole 2-hydroxylation at rates substantially greater than control vector, and CYP2A6 catalyzed 2-hydroxymetronidazole formation at rates 6-fold higher than the next most active enzyme. Kinetic studies with these recombinant enzymes revealed that CYP2A6 has a Km = 289 μM which is comparable to the Km for the high-affinity (low-Km) enzyme in human liver microsomes, whereas the Km values for the CYP3A enzymes corresponded with the low-affinity (high-Km) component. The sample-to-sample variation in 2-hydroxymetronidazole formation correlated significantly with CYP2A6 activity (r ≥ 0.970, P < 0.001) at substrate concentrations of 100 and 300 μM. Selective chemical inhibitors of CYP2A6 inhibited metronidazole 2-hydroxylation in a concentration-dependent manner and inhibitory antibodies against CYP2A6 virtually eliminated metronidazole 2-hydroxylation (>99%). Chemical and antibody inhibitors of other P450 enzymes had little or no effect on metronidazole 2-hydroxylation. These results suggest that CYP2A6 is the primary catalyst responsible for the 2-hydroxylation of metronidazole, a reaction that may function as a marker of CYP2A6 activity both in vitro and in vivo.

  11. RS-Predictor models augmented with SMARTCyp reactivities: robust metabolic regioselectivity predictions for nine CYP isozymes.

    PubMed

    Zaretzki, Jed; Rydberg, Patrik; Bergeron, Charles; Bennett, Kristin P; Olsen, Lars; Breneman, Curt M

    2012-06-25

    RS-Predictor is a tool for creating pathway-independent, isozyme-specific, site of metabolism (SOM) prediction models using any set of known cytochrome P450 (CYP) substrates and metabolites. Until now, the RS-Predictor method was only trained and validated on CYP 3A4 data, but in the present study, we report on the versatility the RS-Predictor modeling paradigm by creating and testing regioselectivity models for substrates of the nine most important CYP isozymes. Through curation of source literature, we have assembled 680 substrates distributed among CYPs 1A2, 2A6, 2B6, 2C19, 2C8, 2C9, 2D6, 2E1, and 3A4, the largest publicly accessible collection of P450 ligands and metabolites released to date. A comprehensive investigation into the importance of different descriptor classes for identifying the regioselectivity mediated by each isozyme is made through the generation of multiple independent RS-Predictor models for each set of isozyme substrates. Two of these models include a density functional theory (DFT) reactivity descriptor derived from SMARTCyp. Optimal combinations of RS-Predictor and SMARTCyp are shown to have stronger performance than either method alone, while also exceeding the accuracy of the commercial regioselectivity prediction methods distributed by Optibrium and Schrödinger, correctly identifying a large proportion of the metabolites in each substrate set within the top two rank-positions: 1A2 (83.0%), 2A6 (85.7%), 2B6 (82.1%), 2C19 (86.2%), 2C8 (83.8%), 2C9 (84.5%), 2D6 (85.9%), 2E1 (82.8%), 3A4 (82.3%), and merged (86.0%). Comprehensive datamining of each substrate set and careful statistical analyses of the predictions made by the different models revealed new insights into molecular features that control metabolic regioselectivity and enable accurate prospective prediction of likely SOMs.

  12. CYP2C8*3 predicts benefit/risk profile in breast cancer patients receiving neoadjuvant paclitaxel

    PubMed Central

    Motsinger-Reif, Alison A.; Drobish, Amy; Winham, Stacey J.; McLeod, Howard L.; Carey, Lisa A.; Dees, E. Claire

    2013-01-01

    Paclitaxel is one of the most frequently used chemotherapeutic agents for the treatment of breast cancer patients. Using a candidate gene approach, we hypothesized that polymorphisms in genes relevant to the metabolism and transport of paclitaxel are associated with treatment efficacy and toxicity. Patient and tumor characteristics and treatment outcomes were collected prospectively for breast cancer patients treated with paclitaxel-containing regimens in the neoadjuvant setting. Treatment response was measured before and after each phase of treatment by clinical tumor measurement and categorized according to RECIST criteria, while toxicity data were collected from physician notes. The primary endpoint was achievement of clinical complete response (cCR) and secondary endpoints included clinical response rate (complete response + partial response) and grade 3+ peripheral neuropathy. The genotypes and haplotypes assessed were CYP1B1*3, CYP2C8*3, CYP3A4*1B/CYP3A5*3C, and ABCB1*2. A total of 111 patients were included in this study. Overall, cCR was 30.1 % to the paclitaxel component. CYP2C8*3 carriers (23/111, 20.7 %) had higher rates of cCR (55 % vs. 23 %; OR = 3.92 [95 % CI: 1.46–10.48], corrected p = 0.046). In the secondary toxicity analysis, we observed a trend toward greater risk of severe neuropathy (22 % vs. 8 %; OR = 3.13 [95 % CI: 0.89–11.01], uncorrected p = 0.075) in subjects carrying the CYP2C8*3 variant. Other polymorphisms interrogated were not significantly associated with response or toxicity. Patients carrying CYP2C8*3 are more likely to achieve clinical complete response from neoadjuvant paclitaxel treatment, but may also be at increased risk of experiencing severe peripheral neurotoxicity. PMID:22527101

  13. Synthesis, biological evaluation and molecular modelling studies of methyleneimidazole substituted biaryls as inhibitors of human 17alpha-hydroxylase-17,20-lyase (CYP17). Part I: Heterocyclic modifications of the core structure.

    PubMed

    Jagusch, Carsten; Negri, Matthias; Hille, Ulrike E; Hu, Qingzhong; Bartels, Marc; Jahn-Hoffmann, Kerstin; Pinto-Bazurco Mendieta, Mariano A E; Rodenwaldt, Barbara; Müller-Vieira, Ursula; Schmidt, Dirk; Lauterbach, Thomas; Recanatini, Maurizio; Cavalli, Andrea; Hartmann, Rolf W

    2008-02-15

    Novel chemical entities were prepared via Suzuki and S(N) reaction as AC-ring substrate mimetics of CYP17. The synthesised compounds 1-31 were tested for activity using human CYP17 expressed in Escherichia coli. Promising compounds were tested for selectivity against hepatic CYP enzymes (3A4, 2D6, 1A2, 2C9, 2C19, 2B6). Two potent inhibitors (27, IC50 = 373 nM/28, IC50 = 953 nM) were further examined in rats regarding their effects on plasma testosterone levels and their pharmacokinetic properties. Compound 28 was similarly active as abiraterone and showed better pharmacokinetic properties (higher bioavailability, t(1/2) 9.5 h vs 1.6 h). Docking studies revealed two new binding modes different from the one of the substrates and steroidal inhibitors.

  14. A Systematic Approach to Evaluate Herb-Drug Interaction Mechanisms: Investigation of Milk Thistle Extracts and Eight Isolated Constituents as CYP3A Inhibitors

    PubMed Central

    Brantley, Scott J.; Graf, Tyler N.; Oberlies, Nicholas H.

    2013-01-01

    Despite increasing recognition of potential untoward interactions between herbal products and conventional medications, a standard system for prospective assessment of these interactions remains elusive. This information gap was addressed by evaluating the drug interaction liability of the model herbal product milk thistle (Silybum marianum) with the CYP3A probe substrate midazolam. The inhibitory effects of commercially available milk thistle extracts and isolated constituents on midazolam 1′-hydroxylation were screened using human liver and intestinal microsomes. Relative to vehicle, the extract silymarin and constituents silybin A, isosilybin A, isosilybin B, and silychristin at 100 μM demonstrated >50% inhibition of CYP3A activity with at least one microsomal preparation, prompting IC50 determination. The IC50s for isosilybin B and silychristin were ∼60 and 90 μM, respectively, whereas those for the remaining constituents were >100 μM. Extracts and constituents that contained the 1,4-dioxane moiety demonstrated a >1.5-fold shift in IC50 when tested as potential mechanism-based inhibitors. The semipurified extract, silibinin, and the two associated constituents (silybin A and silybin B) demonstrated mechanism-based inhibition of recombinant CYP3A4 (KI, ∼100 μM; kinact, ∼0.20 min−1) but not microsomal CYP3A activity. The maximum predicted increases in midazolam area under the curve using the static mechanistic equation and recombinant CYP3A4 data were 1.75-fold, which may necessitate clinical assessment. Evaluation of the interaction liability of single herbal product constituents, in addition to commercially available extracts, will enable elucidation of mechanisms underlying potential clinically significant herb-drug interactions. Application of this framework to other herbal products would permit predictions of herb-drug interactions and assist in prioritizing clinical evaluation. PMID:23801821

  15. A predominate role of CYP1A2 for the metabolism of nabumetone to the active metabolite, 6-methoxy-2-naphthylacetic acid, in human liver microsomes.

    PubMed

    Turpeinen, Miia; Hofmann, Ute; Klein, Kathrin; Mürdter, Thomas; Schwab, Matthias; Zanger, Ulrich M

    2009-05-01

    Nabumetone, a widely used nonsteroidal anti-inflammatory drug, requires biotransformation into 6-methoxy-2-naphthylacetic acid (6-MNA), a close structural analog to naproxen, to achieve its analgesic and anti-inflammatory effects. Despite its wide use, the enzymes involved in metabolism have not been identified. In the present study, several in vitro approaches were used to identify the cytochrome P450 (P450) enzyme(s) responsible for 6-MNA formation. In human liver microsomes (HLMs) 6-MNA formation displayed monophasic Michaelis-Menten kinetics with apparent K(m) and V(max) values (mean +/- S.D.) of 75.1 +/- 15.3 microM and 1304 +/- 226 pmol/min/mg protein, respectively, and formation rate of 6-MNA varied approximately 5.5-fold (179-983 pmol/min/mg protein). 6-MNA activity correlated strongly with both CYP1A2-mediated phenacetin O-deethylation activity and CYP1A2 protein content (r = 0.85 and 0.74, respectively; p < 0.0001 for both). Additional correlations were found with model activities of CYP2C19 and CYP3A4. Of 11 cDNA-expressed recombinant P450s used, recombinant CYP1A2 was the major form catalyzing the 6-MNA formation with an apparent K(m) of 45 microM and V(max) of 8.7 pmol/min/pmol P450. Minor fractions were catalyzed by recombinant P450s CYP1A1, CYP2B6, CYP2C19, CYP2D6, and CYP2E1. Experiments with P450-selective chemical inhibitors and monoclonal anti-P450 antibodies showed that furafylline, a mechanism-based inhibitor CYP1A2, and anti-CYP1A2 antibody markedly inhibited 6-MNA formation, whereas inhibitors for other P450s did not show significant inhibitory effects. Taken together, these studies indicate that the formation of the active metabolite of nabumetone, 6-MNA, is predominantly catalyzed by CYP1A2 in HLMs with only minor contribution of other P450s.

  16. The use of HepaRG and human hepatocyte data in predicting CYP induction drug-drug interactions via static equation and dynamic mechanistic modelling approaches.

    PubMed

    Grime, Ken; Ferguson, Douglas D; Riley, Robert J

    2010-12-01

    The method of predicting CYP induction drug-drug interactions (DDIs) from a relative induction score (RIS) calibration has been developed to provide a novel model facilitating predictions for any CYP-inducer substrate combination by inclusion of parameters such as the fraction of hepatic clearance mediated by a specific CYP and fraction of the dose escaping intestinal extraction. In vitro HepaRG CYP3A4 induction data were used as a basis for the approach and a large number of DDIs were well predicted. Primary human hepatocyte data were also used to make predictions, using the HepaRG calibration as a foundation. Similar predictive accuracy suggests that HepaRG and primary hepatocyte data can be used inter-changeably within the same laboratory. A comparison of this 'indirect' calibration method with a direct in vitro-in vivo scaling approach was made and investigations undertaken to define the most appropriate in vivo inducer concentration to use. Additionally, a reasonably effective prediction model based on F(2) (the concentration of inducer taken to increase the CYP mRNA 2-fold above background) was established. An accurate prediction for the CYP1A2-dependent omeprazole-caffeine interaction was also made, demonstrating that the methods are useful for the evaluation of DDIs from induction involving mechanisms other than PXR activation. Finally, a dynamic mechanistic model accounting for the simultaneous influence of CYP induction and reversible and irreversible CYP inhibition in both the liver and intestine was written to provide a prediction of the overall DDI when several interactions occur concurrently. The rationale for using the various models described, alongside commercially available prediction tools, at various stages of the drug discovery process is described.

  17. Synthesis, biological evaluation, and molecular modeling studies of methylene imidazole substituted biaryls as inhibitors of human 17alpha-hydroxylase-17,20-lyase (CYP17)--part II: Core rigidification and influence of substituents at the methylene bridge.

    PubMed

    Hu, Qingzhong; Negri, Matthias; Jahn-Hoffmann, Kerstin; Zhuang, Yan; Olgen, Sureyya; Bartels, Marc; Müller-Vieira, Ursula; Lauterbach, Thomas; Hartmann, Rolf W

    2008-08-15

    Thirty-five novel substituted imidazolyl methylene biphenyls have been synthesized as CYP17 inhibitors for the potential treatment of prostate cancer. Their activities have been tested with recombinant human CYP17 expressed in Escherichia coli. Promising compounds were tested for selectivity against CYP11B1, CYP11B2, and hepatic CYP enzymes 3A4, 1A2, 2B6 and 2D6. The core rigidified compounds (30-35) were the most active ones, being much more potent than Ketoconazole and reaching the activity of Abiraterone. However, they were not very selective. Another rather potent and more selective inhibitor (compound 23, IC(50)=345 nM) was further examined in rats regarding plasma testosterone levels and pharmacokinetic properties. Compared to the reference Abiraterone, 23 was more active in vivo, showed a longer plasma half-life (10h) and a higher bioavailability. Using our CYP17 homology protein model, docking studies with selected compounds were performed to study possible interactions between inhibitors and amino acid residues of the active site.

  18. CYP2B6*6 genotype and high efavirenz plasma concentration but not nevirapine are associated with low lumefantrine plasma exposure and poor treatment response in HIV-malaria-coinfected patients.

    PubMed

    Maganda, B A; Minzi, O M S; Ngaimisi, E; Kamuhabwa, A A R; Aklillu, E

    2016-02-01

    We investigated the influence of efavirenz (EFV)- or nevirapine (NVP)-based antiretroviral therapy (ART) on lumefantrine plasma exposure in HIV-malaria-coinfected patients and implication of pharmacogenetic variations. A total of 269 HIV patients with uncomplicated falciparum malaria on NVP-based ART (NVP-arm), EFV-based ART (EFV-arm) or not receiving ART (control-arm) were enrolled and treated with artemether-lumefantrine. Day-7 lumefantrine, baseline EFV and NVP plasma concentrations, and CYP2B6*6,*18, CYP3A4*1B, CYP3A5*3,*6,*7, ABCB1 c.3435C>T and ABCB1 c.4036A>G genotypes were determined. The median day-7 lumefantrine plasma concentration was significantly lower in the EFV-arm compared with that in NVP- and control-arm. High EFV plasma concentrations and CYP2B6*6/*6 genotype significantly correlated with low lumefantrine plasma concentrations and high rate of recurrent parasitemia. No significant effect of NVP-based ART on lumefantrine exposure was observed. In conclusion, owing to long-term CYP3A induction, EFV-based ART cotreatment significantly reduces lumefantrine plasma exposure leading to poor malaria treatment response, which is more pronounced in CYP2B6 slow metabolizers.

  19. RS-Predictor models augmented with SMARTCyp reactivities: Robust metabolic regioselectivity predictions for nine CYP isozymes

    PubMed Central

    Zaretzki, Jed; Rydberg, Patrik; Bergeron, Charles; Bennett, Kristin P.; Olsen, Lars

    2012-01-01

    RS-Predictor is a tool for creating pathway-independent, isozyme-specific site of metabolism (SOM) prediction models using any set of known cytochrome P450 substrates and metabolites. Until now, the RS-Predictor method was only trained and validated on CYP 3A4 data, but in the present study we report on the versatility the RS-Predictor modeling paradigm by creating and testing regioselectivity models for substrates of the nine most important CYP isozymes. Through curation of source literature, we have assembled 680 substrates distributed among CYPs 1A2, 2A6, 2B6, 2C19, 2C8, 2C9, 2D6, 2E1 and 3A4, which we believe is the largest publicly accessible collection of P450 ligands and metabolites ever released. A comprehensive investigation into the importance of different descriptor classes for predicting the regioselectivity of each isozyme is made through the generation of multiple independent RS-Predictor models for each set of isozyme substrates. Two of these models include a DFT reactivity descriptor derived from SMARTCyp. Optimal combinations of RS-Predictor and SMARTCyp are shown to have stronger performance than either method alone, while also exceeding the accuracy of the commercial regioselectivity prediction methods distributed by StarDrop and Schrödinger, correctly identifying a large proportion of the metabolites in each substrate set within the top two rank-positions: 1A2(83.0%), 2A6(85.7%), 2B6(82.1%), 2C19(86.2%), 2C8(83.8%), 2C9(84.5%), 2D6(85.9%), 2E1(82.8%), 3A4(82.3%) and merged(86.0%). Comprehensive datamining of each substrate set and careful statistical analyses of the predictions made by the different models revealed new insights into molecular features that control metabolic regioselectivity and enable accurate prospective prediction of likely SOMs. PMID:22524152

  20. C5-hydroxylation of liquiritigenin is catalyzed selectively by CYP1A2.

    PubMed

    Wang, Ao-Xue; Hu, Ying; Liu, Hui-Xin; Qi, Xiao-Yi; Liu, Yong; Tu, Cai-Xia; Yang, Ling

    2011-05-01

    Liquiritigenin (7,4'-dihydroxyflavone), the primary active component of a traditional Chinese medicine Glycyrrhizae radix, has a wide range of pharmacological activities. Six oxidative metabolites of liquiritigenin (7,3',4'-trihydroxyflavone, a hydroxyl quinine metabolite, two A-ring dihydroxymetabolites, 7,4'-dihydroxyflavone, and 7-hydroxychromone) have been detected in rat liver microsomes (RLMs), and one CYP3A4-catalyzed metabolite (7,4'-dihydroxyflavone) has been identified in human liver microsomes (HLMs) recently. In this study, a novel mono-hydroxylated metabolite was detected in reaction catalyzed by HLMs, and was identified as 4',5,7-trihydroxyflavanone by comparing the tandem mass spectra and the chromatographic retention time with that of the standard compound. Significant difference in CL(int) (9-fold) was found between these two oxidative pathways of liquiritigenin, and C5-hydroxylation pathway was identified as the major oxidative metabolism of liquiritigenin. The study with chemical selective inhibitor, cDNA-expressed human CYPs, correlation assay, and kinetic study demonstrated that CYP1A2 was the specific isozyme responsible for the C5-hydroxylation metabolism of liquiritigenin in HLMs.

  1. Impact of Tetrahydropalmatine on the Pharmacokinetics of Probe Drugs for CYP1A2, 2D6 and 3A Isoenzymes in Beagle Dogs.

    PubMed

    Zhao, Yong; Liang, Aihua; Zhang, Yushi; Li, Chunying; Yi, Yan; Nilsen, Odd Georg

    2016-06-01

    Tetrahydropalmatine (Tet) exhibit multiple pharmacological activities and is used frequently by clinical practitioners. In this study, we evaluate the in vivo effects of single and repeated oral Tet administrations on CYP1A2, 2D6 and 3A activities in six beagle dogs in a randomized, controlled, open-label, crossover study. A cocktail approach, with dosages of the probe drugs caffeine (3.0 mg/kg), metoprolol (2.33 mg/kg) and midazolam (0.45 mg/kg), was used to measure cytochrome P450 (CYP) metabolic activities. The cocktail was administered orally as a single dose (12 mg/kg) 1 day prior to and 4 days after repeated oral Tet administrations (12 mg/kg three times daily). The probe drugs and their metabolites in plasma were quantified simultaneously by a validated HPLC technique, and non-compartmental parameters were used to evaluate metabolic variables for assessment of CYP inhibition or induction. Tet had no or minor impact on the pharmacokinetics and metabolism of the probe drugs caffeine and metoprolol, CYP1A2 and CYP2D6 substrates, respectively. However, Tet increased AUC0-24 h and decreased AUCratio(0-24 h) (1-hydroxymidazolam/midazolam ratio) for midazolam statistically significant, both in single or multiple dosing of Tet, with up to 39 or 57% increase for AUC0-24 h and 29% or 22 decrease for AUCratio(0-24 h), respectively, in line with previous in vitro findings for its CYP3A4 inhibition. The extensive use of Tet and herbal medicines containing Tet makes Tet a candidate for further evaluation of CYP3A-mediated herb-drug interactions. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Enantioselective inhibition of Cytochrome P450-mediated drug metabolism by a novel antithrombotic agent, S002-333: Major effect on CYP2B6.

    PubMed

    Bhateria, Manisha; Ramakrishna, Rachumallu; Puttrevu, Santosh Kumar; Saxena, Anil K; Bhatta, Rabi Sankar

    2016-08-25

    A significant number of new chemical entities (NCEs) fail in drug discovery due to inhibition of Cytochrome P450 (CYP) enzymes. Therefore, to avert costly drug failure at the clinical phase it becomes indispensable to evaluate the CYP inhibition profile of NCEs early in drug discovery. In light of these concerns, we envisioned to investigate the inhibitory effects of S002-333 [2-(4-methoxy-benzenesulfonyl)-2,3,4,9-tetrahydro-1H-b-carboxylic acid amide], a novel and potent antithrombotic agent, on nine major CYP enzymes (CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1 and 3A4) of human liver microsomes (HLM). S002-333 exists as racemic mixture of S004-1032 (R-isomer) and S007-1558 (S-isomer), consequently, we further examined the enantioselective differences of S002-333 in the inhibition of human CYP enzymes. Of the CYP enzymes tested, CYP2B6-catalyzed bup