Science.gov

Sample records for 3b gene functional

  1. A highly conserved gene island of three genes on chromosome 3B of hexaploid wheat: diverse gene function and genomic structure maintained in a tightly linked block

    PubMed Central

    2010-01-01

    Background The complexity of the wheat genome has resulted from waves of retrotransposable element insertions. Gene deletions and disruptions generated by the fast replacement of repetitive elements in wheat have resulted in disruption of colinearity at a micro (sub-megabase) level among the cereals. In view of genomic changes that are possible within a given time span, conservation of genes between species tends to imply an important functional or regional constraint that does not permit a change in genomic structure. The ctg1034 contig completed in this paper was initially studied because it was assigned to the Sr2 resistance locus region, but detailed mapping studies subsequently assigned it to the long arm of 3B and revealed its unusual features. Results BAC shotgun sequencing of the hexaploid wheat (Triticum aestivum cv. Chinese Spring) genome has been used to assemble a group of 15 wheat BACs from the chromosome 3B physical map FPC contig ctg1034 into a 783,553 bp genomic sequence. This ctg1034 sequence was annotated for biological features such as genes and transposable elements. A three-gene island was identified among >80% repetitive DNA sequence. Using bioinformatics analysis there were no observable similarity in their gene functions. The ctg1034 gene island also displayed complete conservation of gene order and orientation with syntenic gene islands found in publicly available genome sequences of Brachypodium distachyon, Oryza sativa, Sorghum bicolor and Zea mays, even though the intergenic space and introns were divergent. Conclusion We propose that ctg1034 is located within the heterochromatic C-band region of deletion bin 3BL7 based on the identification of heterochromatic tandem repeats and presence of significant matches to chromodomain-containing gypsy LTR retrotransposable elements. We also speculate that this location, among other highly repetitive sequences, may account for the relative stability in gene order and orientation within the gene

  2. Functional Analysis of Genes Involved in the Biosynthesis of Enterocin NKR-5-3B, a Novel Circular Bacteriocin

    PubMed Central

    Perez, Rodney H.; Ishibashi, Naoki; Inoue, Tomoko; Himeno, Kohei; Masuda, Yoshimitsu; Sawa, Narukiko; Wilaipun, Pongtep; Leelawatcharamas, Vichien; Nakayama, Jiro; Sonomoto, Kenji

    2015-01-01

    ABSTRACT A putative biosynthetic gene cluster of the enterocin NKR-5-3B (Ent53B), a novel circular bacteriocin, was analyzed by sequencing the flanking regions around enkB, the Ent53B structural gene, using a fosmid library. A region approximately 9 kb in length was obtained, and the enkB1, enkB2, enkB3, and enkB4 genes, encoding putative biosynthetic proteins involved in the production, maturation, and secretion of Ent53B, were identified. We also determined the identity of proteins mediating self-immunity against the effects of Ent53B. Heterologous expression systems in various heterologous hosts, such as Enterococcus faecalis and Lactococcus lactis strains, were successfully established. The production and secretion of the mature Ent53B required the cooperative functions of five genes. Ent53B was produced only by those heterologous hosts that expressed protein products of the enkB, enkB1, enkB2, enkB3, and enkB4 genes. Moreover, self-immunity against the antimicrobial action of Ent53B was conferred by at least two independent mechanisms. Heterologous hosts harboring the intact enkB4 gene and/or a combination of intact enkB1 and enkB3 genes were immune to the inhibitory action of Ent53B. IMPORTANCE In addition to their potential application as food preservatives, circular bacteriocins are now considered possible alternatives to therapeutic antibiotics due to the exceptional stability conferred by their circular structure. The successful practical application of circular bacteriocins will become possible only if the molecular details of their biosynthesis are fully understood. The results of the present study offer a new perspective on the possible mechanism of circular bacteriocin biosynthesis. In addition, since some enterococcal strains are associated with pathogenicity, virulence, and drug resistance, the establishment of the first multigenus host heterologous production of Ent53B has very high practical significance, as it widens the scope of possible Ent53B

  3. ARID3B Directly Regulates Ovarian Cancer Promoting Genes

    PubMed Central

    Bobbs, Alexander; Gellerman, Katrina; Hallas, William Morgan; Joseph, Stancy; Yang, Chao; Kurkewich, Jeffrey; Cowden Dahl, Karen D.

    2015-01-01

    The DNA-binding protein AT-Rich Interactive Domain 3B (ARID3B) is elevated in ovarian cancer and increases tumor growth in a xenograft model of ovarian cancer. However, relatively little is known about ARID3B's function. In this study we perform the first genome wide screen for ARID3B direct target genes and ARID3B regulated pathways. We identified and confirmed numerous ARID3B target genes by chromatin immunoprecipitation (ChIP) followed by microarray and quantitative RT-PCR. Using motif-finding algorithms, we characterized a binding site for ARID3B, which is similar to the previously known site for the ARID3B paralogue ARID3A. Functionality of this predicted site was demonstrated by ChIP analysis. We next demonstrated that ARID3B induces expression of its targets in ovarian cancer cell lines. We validated that ARID3B binds to an epidermal growth factor receptor (EGFR) enhancer and increases mRNA expression. ARID3B also binds to the promoter of Wnt5A and its receptor FZD5. FZD5 is highly expressed in ovarian cancer cell lines, and is upregulated by exogenous ARID3B. Both ARID3B and FZD5 expression increase adhesion to extracellular matrix (ECM) components including collagen IV, fibronectin and vitronectin. ARID3B-increased adhesion to collagens II and IV require FZD5. This study directly demonstrates that ARID3B binds target genes in a sequence-specific manner, resulting in increased gene expression. Furthermore, our data indicate that ARID3B regulation of direct target genes in the Wnt pathway promotes adhesion of ovarian cancer cells. PMID:26121572

  4. A 3,000-loci transcription map of chromosome 3B unravels the structural and functional features of gene islands in hexaploid wheat.

    PubMed

    Rustenholz, Camille; Choulet, Frédéric; Laugier, Christel; Safár, Jan; Simková, Hana; Dolezel, Jaroslav; Magni, Federica; Scalabrin, Simone; Cattonaro, Federica; Vautrin, Sonia; Bellec, Arnaud; Bergès, Hélène; Feuillet, Catherine; Paux, Etienne

    2011-12-01

    To improve our understanding of the organization and regulation of the wheat (Triticum aestivum) gene space, we established a transcription map of a wheat chromosome (3B) by hybridizing a newly developed wheat expression microarray with bacterial artificial chromosome pools from a new version of the 3B physical map as well as with cDNA probes derived from 15 RNA samples. Mapping data for almost 3,000 genes showed that the gene space spans the whole chromosome 3B with a 2-fold increase of gene density toward the telomeres due to an increase in the number of genes in islands. Comparative analyses with rice (Oryza sativa) and Brachypodium distachyon revealed that these gene islands are composed mainly of genes likely originating from interchromosomal gene duplications. Gene Ontology and expression profile analyses for the 3,000 genes located along the chromosome revealed that the gene islands are enriched significantly in genes sharing the same function or expression profile, thereby suggesting that genes in islands acquired shared regulation during evolution. Only a small fraction of these clusters of cofunctional and coexpressed genes was conserved with rice and B. distachyon, indicating a recent origin. Finally, genes with the same expression profiles in remote islands (coregulation islands) were identified suggesting long-distance regulation of gene expression along the chromosomes in wheat.

  5. A 3,000-Loci Transcription Map of Chromosome 3B Unravels the Structural and Functional Features of Gene Islands in Hexaploid Wheat1[W

    PubMed Central

    Rustenholz, Camille; Choulet, Frédéric; Laugier, Christel; Šafář, Jan; Šimková, Hana; Doležel, Jaroslav; Magni, Federica; Scalabrin, Simone; Cattonaro, Federica; Vautrin, Sonia; Bellec, Arnaud; Bergès, Hélène; Feuillet, Catherine; Paux, Etienne

    2011-01-01

    To improve our understanding of the organization and regulation of the wheat (Triticum aestivum) gene space, we established a transcription map of a wheat chromosome (3B) by hybridizing a newly developed wheat expression microarray with bacterial artificial chromosome pools from a new version of the 3B physical map as well as with cDNA probes derived from 15 RNA samples. Mapping data for almost 3,000 genes showed that the gene space spans the whole chromosome 3B with a 2-fold increase of gene density toward the telomeres due to an increase in the number of genes in islands. Comparative analyses with rice (Oryza sativa) and Brachypodium distachyon revealed that these gene islands are composed mainly of genes likely originating from interchromosomal gene duplications. Gene Ontology and expression profile analyses for the 3,000 genes located along the chromosome revealed that the gene islands are enriched significantly in genes sharing the same function or expression profile, thereby suggesting that genes in islands acquired shared regulation during evolution. Only a small fraction of these clusters of cofunctional and coexpressed genes was conserved with rice and B. distachyon, indicating a recent origin. Finally, genes with the same expression profiles in remote islands (coregulation islands) were identified suggesting long-distance regulation of gene expression along the chromosomes in wheat. PMID:22034626

  6. Structural and functional partitioning of bread wheat chromosome 3B.

    PubMed

    Choulet, Frédéric; Alberti, Adriana; Theil, Sébastien; Glover, Natasha; Barbe, Valérie; Daron, Josquin; Pingault, Lise; Sourdille, Pierre; Couloux, Arnaud; Paux, Etienne; Leroy, Philippe; Mangenot, Sophie; Guilhot, Nicolas; Le Gouis, Jacques; Balfourier, Francois; Alaux, Michael; Jamilloux, Véronique; Poulain, Julie; Durand, Céline; Bellec, Arnaud; Gaspin, Christine; Safar, Jan; Dolezel, Jaroslav; Rogers, Jane; Vandepoele, Klaas; Aury, Jean-Marc; Mayer, Klaus; Berges, Hélène; Quesneville, Hadi; Wincker, Patrick; Feuillet, Catherine

    2014-07-18

    We produced a reference sequence of the 1-gigabase chromosome 3B of hexaploid bread wheat. By sequencing 8452 bacterial artificial chromosomes in pools, we assembled a sequence of 774 megabases carrying 5326 protein-coding genes, 1938 pseudogenes, and 85% of transposable elements. The distribution of structural and functional features along the chromosome revealed partitioning correlated with meiotic recombination. Comparative analyses indicated high wheat-specific inter- and intrachromosomal gene duplication activities that are potential sources of variability for adaption. In addition to providing a better understanding of the organization, function, and evolution of a large and polyploid genome, the availability of a high-quality sequence anchored to genetic maps will accelerate the identification of genes underlying important agronomic traits. PMID:25035497

  7. Critical role of ARID3B in the expression of pro-apoptotic p53-target genes and apoptosis.

    PubMed

    Pratama, Endrawan; Tian, Xiaohui; Lestari, Widya; Iseki, Sachiko; Ichwan, Solachuddin J A; Ikeda, Masa-Aki

    ARID3A and ARID3B are transcriptional targets of p53. Recently, it has been reported that ARID3A plays a critical role in the transcriptional activation of pro-arrest p21 in response to DNA damage. However, the role of ARID3B in the p53 regulatory pathway remains poorly understood. Here we show that ARID3A and ARID3B specifically bind to putative ARID3-binding sites in p53 target genes in vitro and in vivo. ARID3B and, to a lesser extent, ARID3A silencing blocked transcriptional activation of pro-apoptotic p53 target genes, such as PUMA, PIG3, and p53. Furthermore, ectopic ARID3B, to a lesser extent, ARID3A expression activated the pro-apoptotic gene expression, and only ARID3B induced apoptosis. Finally, ARID3B but not ARID3A silencing blocked apoptosis induction following DNA damage. These results indicated that, although ARID3B and ARID3A share overlapping functions, ARID3B play a key role in the expression of pro-apoptotic p53-target genes and apoptosis.

  8. Zebrafish Tshz3b negatively regulates Hox function in the developing hindbrain.

    PubMed

    Erickson, Timothy; Pillay, Laura M; Waskiewicz, Andrew J

    2011-09-01

    In flies, the zinc-finger protein Teashirt promotes trunk segmental identities, in part, by repressing the expression and function of anterior hox paralog group (PG) 1-4 genes that specify head fates. Anterior-posterior patterning of the vertebrate hindbrain also requires Hox PG 1-4 function, but the role of vertebrate teashirt-related genes in this process has not been investigated. In this work, we use overexpression and structure-function analyses to show that zebrafish tshz3b antagonizes Hox-dependent hindbrain segmentation. Ectopic Tshz3b perturbs the specification of rhombomere identities and leads to the caudal expansion of r1, the only rhombomere whose identity is specified independently of Hox function. This overexpression phenotype does not require the homeodomain and C-terminal zinc fingers that are unique to vertebrate Teashirt-related proteins, but does require that Tshz3b function as a repressor. Together, these results argue that the negative regulation of Hox PG 1-4 function is a conserved characteristic of Teashirt-related proteins.

  9. Copper-responsive gene expression in the methanotroph Methylosinus trichosporium OB3b.

    PubMed

    Kenney, Grace E; Sadek, Monica; Rosenzweig, Amy C

    2016-09-01

    Methanotrophic bacteria convert methane to methanol using methane monooxygenase (MMO) enzymes. In many strains, either an iron-containing soluble (sMMO) or a copper-containing particulate (pMMO) enzyme can be produced depending on copper availability; the mechanism of this copper switch has not been elucidated. A key player in methanotroph copper homeostasis is methanobactin (Mbn), a ribosomally produced, post-translationally modified natural product with a high affinity for copper. The Mbn precursor peptide is encoded within an operon that contains a range of putative transporters, regulators, and biosynthetic proteins, but the involvement of these genes in Mbn-related processes remains unclear. Extensive time-dependent qRT-PCR studies of Methylosinus trichosporium OB3b and the constitutive sMMO-producing mutant M. trichosporium OB3b PP358 show that the Mbn operon is indeed copper-regulated, providing experimental support for its bioinformatics-based identification. Moreover, the Mbn operon is co-regulated with the sMMO operon and reciprocally regulated with the pMMO operon. Within the Mbn and sMMO operons, a subset of regulatory genes exhibits a distinct and shared pattern of expression, consistent with their proposed functions as internal regulators. In addition, genome sequencing of the M. trichosporium OB3b PP358 mutant provides new evidence for the involvement of genes adjacent to the pMMO operon in methanotroph copper homeostasis.

  10. Copper-responsive gene expression in the methanotroph Methylosinus trichosporium OB3b.

    PubMed

    Kenney, Grace E; Sadek, Monica; Rosenzweig, Amy C

    2016-09-01

    Methanotrophic bacteria convert methane to methanol using methane monooxygenase (MMO) enzymes. In many strains, either an iron-containing soluble (sMMO) or a copper-containing particulate (pMMO) enzyme can be produced depending on copper availability; the mechanism of this copper switch has not been elucidated. A key player in methanotroph copper homeostasis is methanobactin (Mbn), a ribosomally produced, post-translationally modified natural product with a high affinity for copper. The Mbn precursor peptide is encoded within an operon that contains a range of putative transporters, regulators, and biosynthetic proteins, but the involvement of these genes in Mbn-related processes remains unclear. Extensive time-dependent qRT-PCR studies of Methylosinus trichosporium OB3b and the constitutive sMMO-producing mutant M. trichosporium OB3b PP358 show that the Mbn operon is indeed copper-regulated, providing experimental support for its bioinformatics-based identification. Moreover, the Mbn operon is co-regulated with the sMMO operon and reciprocally regulated with the pMMO operon. Within the Mbn and sMMO operons, a subset of regulatory genes exhibits a distinct and shared pattern of expression, consistent with their proposed functions as internal regulators. In addition, genome sequencing of the M. trichosporium OB3b PP358 mutant provides new evidence for the involvement of genes adjacent to the pMMO operon in methanotroph copper homeostasis. PMID:27087171

  11. Variation in the FcgammaR3B gene among distinct Brazilian populations.

    PubMed

    Covas, D T; Kashima, S; Guerreiro, J F; dos Santos, S E B; Zago, M A

    2005-02-01

    The FCGR3B gene codes for the FcgammaR3b receptor, which occurs in three polymorphic forms representing the human neutrophil antigens (HNA)-1a, HNA-1b, and HNA-1c. The alleles that code for these antigens are FCGR3B*1, FCGR3B*2, and FCGR3B*3, respectively. New variants of these alleles have been recently described. In order to study the frequency of these alleles and the occurrence of variant forms, we sequenced part of the FCGR3B gene in 149 individuals belonging to four distinct Brazilian populations, i.e., 60 Amerindians, 30 Whites of European descent, 30 Afro-Brazilians, and 30 Japanese. The FCGR3B*1 allele showed high frequency among Amerindians (0.850), with the value detected representing the highest frequency described thus far for this allele in population studies. Its frequency was 0.660 in the Japanese population studied, a value equal to that observed in Afro-Brazilians (0.600) and higher than that observed in Whites (0.480). The FCGR3B*3 allele was only found among Afro-Brazilians, where it occurred at a frequency of 0.080, which was lower than the frequency observed among Afro-North Americans (0.207) and Ugandans (0.166). Two variant haplotypes were detected among Amerindians and Afro-Brazilians, occurring in six individuals (four Amerindians and two Afro-Brazilians). The variant haplotype FCGR3B*1 A227G, which occurred in homozygosis in two Amerindians and in heterozygosis in two Afro-Brazilians, is described for the first time in the present report. In general, these data reveal variability in the frequency of alleles of the FCGR3B gene compared to other populations of the same genetic background in other regions of the world.

  12. Molecular characterization of a KIF3B-like kinesin gene in the testis of Octopus tankahkeei (Cephalopoda, Octopus).

    PubMed

    Dang, Ran; Zhu, Jun-Quan; Tan, Fu-Qing; Wang, Wei; Zhou, Hong; Yang, Wan-Xi

    2012-05-01

    KIF3B is known for maintaining and assembling cilia and flagellum. To date, the function of KIF3B and its relationship with KIF3A during spermiogenesis in the cephalopod Octopus tankahkeei remains unknown. In the present study, we characterized a gene encoding a homologue of rat KIF3B in the O. tankahkeei testis and examined its temporal and spatial expression pattern during spermiogenesis. The cDNA of KIF3B was obtained with degenerate and RACE PCR and the distribution pattern of ot-kif3b were observed with RT-PCR. The morphological development during spermiogenesis was illustrated by histological and transmission electron microscopy and mRNA expression of ot-kif3b was observed by in situ hybridization. The 2,365 nucleotides cDNA consisted of a 102 bp 5' untranslated region (UTR), a 2,208 bp open reading frame (ORF) encoding a protein of 736 amino acids, and a 55 bp 3' UTR. Multiple alignments revealed that the putative Ot-KIF3B shared 68, 68, 69, 68, and 67% identity with that of Homo sapiens, Mus musculus, Gallus gallus, Danio rerio, and Xenopus laevis, respectively, along with high identities with Ot-KIF3A in fundamental structures. Ot-kif3b transcripts appeared gradually in early spermatids, increased in intermediate spermatids and maximized in drastically remodeled and final spermatids. The kif3b gene is identified and its expression pattern is demonstrated for the first time in O. tankahkeei. Compared to ot-kif3a reported by our laboratory before, our data suggested that the putative heterodimeric motor proteins Ot-KIF3A/B may be involved in intraspermatic transport and might contribute to structural changes during spermiogenesis.

  13. Large exonic deletions in POLR3B gene cause POLR3-related leukodystrophy.

    PubMed

    Gutierrez, Mariana; Thiffault, Isabelle; Guerrero, Kether; Martos-Moreno, Gabriel Á; Tran, Luan T; Benko, William; van der Knaap, Marjo S; van Spaendonk, Rosalina M L; Wolf, Nicole I; Bernard, Geneviève

    2015-06-05

    POLR3-related (or 4H) leukodystrophy is an autosomal recessive disorder caused by mutations in POLR3A or POLR3B and is characterized by neurological and non-neurological features. In a small proportion of patients, no mutation in either gene or only one mutation is found. Analysis of the POLR3B cDNA revealed a large deletion of exons 21-22 in one case and of exons 26-27 in another case. These are the first reports of long deletions causing POLR3-related leukodystrophy, suggesting that deletions and duplications in POLR3A or POLR3B should be investigated in patients with a compatible phenotype, especially if one pathogenic variant has been identified.

  14. FCGR3B gene frequencies among ethnic Thai blood donors from a regional hospital in Eastern Thailand.

    PubMed

    Kongmaroeng, C; Kumkaen, K

    2015-02-01

    The FCGR3B gene encodes three human neutrophil antigens which consist of HNA-1a, HNA-1b, and HNA-1c. These antigens are encoded by three alleles in the FCGR3B locus: FCGR3B*01, FCGR3B*02, and FCGR3B*03 alleles, respectively. The frequencies of FCGR3B alleles have been reported in different ethnic populations. This study compared the FCGR3B gene frequencies among 230 unrelated healthy Eastern Thai blood donors in Rayong hospital with the previously published studies. The polymerase chain reaction-sequence-specific primers method was performed to determine FCGR3B genotypes. The results showed that the allele frequencies of FCGR3B*01, FCGR3B*02, and FCGR3B*03 were 0.722, 0.274, and 0.009, respectively. The FCGR3B*01 and FCGR3B*02 frequencies found in the Eastern Thais were similar to the previous reports investigating in Northern Thais, Chinese Han, Taiwanese, and Japanese populations. Interestingly, our data showed statistically significant difference (P < 0.05) to Central Thais, Korean, Indian, Turkish, Australian, Tunisian, American, German, and Italian populations. In addition, one FCGR3Bnull , which represents a gene deletion, was also found in this study. This information is important not only for the assessment of neutrophil antibody-mediated clinical conditions and for disease association studies but also for anthropological studies.

  15. Uptake and effect of rare earth elements on gene expression in Methylosinus trichosporium OB3b.

    PubMed

    Gu, Wenyu; Farhan Ul Haque, Muhammad; DiSpirito, Alan A; Semrau, Jeremy D

    2016-07-01

    It is well known that Methylosinus trichosporium OB3b has two forms of methane monooxygenase (MMO) responsible for the initial conversion of methane to methanol, a cytoplasmic (soluble) methane monooxygenase and a membrane-associated (particulate) methane monooxygenase, and that copper strongly regulates expression of these alternative forms of MMO. More recently, it has been discovered that M. trichosporium OB3b has multiple types of the methanol dehydrogenase (MeDH), i.e. the Mxa-type MeDH (Mxa-MeDH) and Xox-type MeDH (Xox-MeDH), and the expression of these two forms is regulated by the availability of the rare earth element (REE), cerium. Here, we extend these studies and show that lanthanum, praseodymium, neodymium and samarium also regulate expression of alternative forms of MeDH. The effect of these REEs on MeDH expression, however, was only observed in the absence of copper. Further, a mutant of M. trichosporium OB3b, where the Mxa-MeDH was knocked out, was able to grow in the presence of lanthanum, praseodymium and neodymium, but was not able to grow in the presence of samarium. Collectively, these data suggest that multiple levels of gene regulation by metals exist in M. trichosporium OB3b, but that copper overrides the effect of other metals by an as yet unknown mechanism. PMID:27190151

  16. Uptake and effect of rare earth elements on gene expression in Methylosinus trichosporium OB3b.

    PubMed

    Gu, Wenyu; Farhan Ul Haque, Muhammad; DiSpirito, Alan A; Semrau, Jeremy D

    2016-07-01

    It is well known that Methylosinus trichosporium OB3b has two forms of methane monooxygenase (MMO) responsible for the initial conversion of methane to methanol, a cytoplasmic (soluble) methane monooxygenase and a membrane-associated (particulate) methane monooxygenase, and that copper strongly regulates expression of these alternative forms of MMO. More recently, it has been discovered that M. trichosporium OB3b has multiple types of the methanol dehydrogenase (MeDH), i.e. the Mxa-type MeDH (Mxa-MeDH) and Xox-type MeDH (Xox-MeDH), and the expression of these two forms is regulated by the availability of the rare earth element (REE), cerium. Here, we extend these studies and show that lanthanum, praseodymium, neodymium and samarium also regulate expression of alternative forms of MeDH. The effect of these REEs on MeDH expression, however, was only observed in the absence of copper. Further, a mutant of M. trichosporium OB3b, where the Mxa-MeDH was knocked out, was able to grow in the presence of lanthanum, praseodymium and neodymium, but was not able to grow in the presence of samarium. Collectively, these data suggest that multiple levels of gene regulation by metals exist in M. trichosporium OB3b, but that copper overrides the effect of other metals by an as yet unknown mechanism.

  17. DNMT3B isoforms without catalytic activity stimulate gene body methylation as accessory proteins in somatic cells.

    PubMed

    Duymich, Christopher E; Charlet, Jessica; Yang, Xiaojing; Jones, Peter A; Liang, Gangning

    2016-04-28

    Promoter DNA methylation is a key epigenetic mechanism for stable gene silencing, but is correlated with expression when located in gene bodies. Maintenance and de novo DNA methylation by catalytically active DNA methyltransferases (DNMT1 and DNMT3A/B) require accessory proteins such as UHRF1 and DNMT3L. DNMT3B isoforms are widely expressed, although some do not have active catalytic domains and their expression can be altered during cell development and tumourigenesis, questioning their biological roles. Here, we show that DNMT3B isoforms stimulate gene body methylation and re-methylation after methylation-inhibitor treatment. This occurs independently of the isoforms' catalytic activity, demonstrating a similar functional role to the accessory protein DNMT3L, which is only expressed in undifferentiated cells and recruits DNMT3A to initiate DNA methylation. This unexpected role for DNMT3B suggests that it might substitute for the absent accessory protein DNMT3L to recruit DNMT3A in somatic cells.

  18. Disruption of SF3B1 results in deregulated expression and splicing of key genes and pathways in myelodysplastic syndrome hematopoietic stem and progenitor cells.

    PubMed

    Dolatshad, H; Pellagatti, A; Fernandez-Mercado, M; Yip, B H; Malcovati, L; Attwood, M; Przychodzen, B; Sahgal, N; Kanapin, A A; Lockstone, H; Scifo, L; Vandenberghe, P; Papaemmanuil, E; Smith, C W J; Campbell, P J; Ogawa, S; Maciejewski, J P; Cazzola, M; Savage, K I; Boultwood, J

    2015-05-01

    The splicing factor SF3B1 is the most commonly mutated gene in the myelodysplastic syndrome (MDS), particularly in patients with refractory anemia with ring sideroblasts (RARS). We investigated the functional effects of SF3B1 disruption in myeloid cell lines: SF3B1 knockdown resulted in growth inhibition, cell cycle arrest and impaired erythroid differentiation and deregulation of many genes and pathways, including cell cycle regulation and RNA processing. MDS is a disorder of the hematopoietic stem cell and we thus studied the transcriptome of CD34(+) cells from MDS patients with SF3B1 mutations using RNA sequencing. Genes significantly differentially expressed at the transcript and/or exon level in SF3B1 mutant compared with wild-type cases include genes that are involved in MDS pathogenesis (ASXL1 and CBL), iron homeostasis and mitochondrial metabolism (ALAS2, ABCB7 and SLC25A37) and RNA splicing/processing (PRPF8 and HNRNPD). Many genes regulated by a DNA damage-induced BRCA1-BCLAF1-SF3B1 protein complex showed differential expression/splicing in SF3B1 mutant cases. This is the first study to determine the target genes of SF3B1 mutation in MDS CD34(+) cells. Our data indicate that SF3B1 has a critical role in MDS by affecting the expression and splicing of genes involved in specific cellular processes/pathways, many of which are relevant to the known RARS pathophysiology, suggesting a causal link.

  19. Disruption of SF3B1 results in deregulated expression and splicing of key genes and pathways in myelodysplastic syndrome hematopoietic stem and progenitor cells

    PubMed Central

    Dolatshad, H; Pellagatti, A; Fernandez-Mercado, M; Yip, B H; Malcovati, L; Attwood, M; Przychodzen, B; Sahgal, N; Kanapin, A A; Lockstone, H; Scifo, L; Vandenberghe, P; Papaemmanuil, E; Smith, C W J; Campbell, P J; Ogawa, S; Maciejewski, J P; Cazzola, M; Savage, K I; Boultwood, J

    2015-01-01

    The splicing factor SF3B1 is the most commonly mutated gene in the myelodysplastic syndrome (MDS), particularly in patients with refractory anemia with ring sideroblasts (RARS). We investigated the functional effects of SF3B1 disruption in myeloid cell lines: SF3B1 knockdown resulted in growth inhibition, cell cycle arrest and impaired erythroid differentiation and deregulation of many genes and pathways, including cell cycle regulation and RNA processing. MDS is a disorder of the hematopoietic stem cell and we thus studied the transcriptome of CD34+ cells from MDS patients with SF3B1 mutations using RNA sequencing. Genes significantly differentially expressed at the transcript and/or exon level in SF3B1 mutant compared with wild-type cases include genes that are involved in MDS pathogenesis (ASXL1 and CBL), iron homeostasis and mitochondrial metabolism (ALAS2, ABCB7 and SLC25A37) and RNA splicing/processing (PRPF8 and HNRNPD). Many genes regulated by a DNA damage-induced BRCA1–BCLAF1–SF3B1 protein complex showed differential expression/splicing in SF3B1 mutant cases. This is the first study to determine the target genes of SF3B1 mutation in MDS CD34+ cells. Our data indicate that SF3B1 has a critical role in MDS by affecting the expression and splicing of genes involved in specific cellular processes/pathways, many of which are relevant to the known RARS pathophysiology, suggesting a causal link. PMID:25428262

  20. Stress-mediated Sin3B activation leads to negative regulation of subset of p53 target genes.

    PubMed

    Kadamb, Rama; Mittal, Shilpi; Bansal, Nidhi; Saluja, Daman

    2015-01-01

    The multiprotein SWI-independent 3 (Sin3)-HDAC (histone deacetylase) corepressor complex mediates gene repression through its interaction with DNA-binding factors and recruitment of chromatin-modifying proteins on to the promoters of target gene. Previously, an increased expression of Sin3B and tumour suppressor protein, p53 has been established upon adriamycin treatment. We, now provide evidence that Sin3B expression is significantly up-regulated under variety of stress conditions and this response is not stress-type specific. We observed that Sin3B expression is significantly up-regulated both at transcript and at protein level upon DNA damage induced by bleomycin drug, a radiomimetic agent. This increase in Sin3B expression upon stress is found to be p53-dependent and is associated with enhanced interaction of Sin3B with Ser(15) phosphorylated p53. Binding of Sin3-HDAC repressor complex on to the promoters of p53 target genes influences gene regulation by altering histone modifications (H3K9me3 and H3K27me3) at target genes. Furthermore, knockdown of Sin3B by shRNA severely compromises p53-mediated gene repression under stress conditions. Taken together, these results suggest that stress-induced Sin3B activation is p53-dependent and is essential for p53-mediated repression of its selective target genes. The present study has an implication in understanding the transrepression mechanism of p53 under DNA damaging conditions.

  1. The Ap3b1 gene regulates the ocular melanosome biogenesis and tyrosinase distribution differently from the Hps1 gene.

    PubMed

    Jing, Renwei; Dong, Xuan; Li, Kailin; Yan, Jie; Chen, Xiangyuan; Feng, Lijun

    2014-11-01

    Hermansky-Pudlak syndrome (HPS) is an autosomal recessive disorder in humans and mice. The pearl (pe) mouse, a mouse model for the human HPS-2, bears a mutation in Ap3b1 gene. Here we investigated the pigmentation in eyes of pearl (pe) mice, and compared it with our previously published data in pale ear (ep) mice. We revealed that the hypopigmentation in eyes of pearl mice was more severe than pale ear mice, especially in the neural crest-derived tissues. However, the total tyrosinase activity in eyes of pearl mice was stronger than pale ear mice, suggesting that the degradation of aberrantly transported tyrosinase in eyes of pearl mice was weaker than that of pale ear mice. Furthermore, the pigmentation in eyes of mice doubly heterozygous for Hps1 and Ap3b1 genes was similar to the wild-type, while the hypopigmentation in iris of double mutant mice was more severe than either single mutant. Besides, we found several previously reported characters in pale ear mice, including macromelanosomes in the neural crest-derived melanocytes and increased accumulation of lipofuscin in the RPE, were absent in pearl mice. Our study indicates that Ap3b1 gene play distinct roles in melanin production and tyrosinase distribution compared with Hps1 gene. PMID:25160823

  2. Evidence suggesting phosphodiesterase-3B regulation of NPY/AgRP gene expression in mHypoE-46 hypothalamic neurons.

    PubMed

    Anamthathmakula, Prashanth; Sahu, Maitrayee; Sahu, Abhiram

    2015-09-14

    Hypothalamic neurons expressing neuropeptide Y (NPY) and agouti related-protein (AgRP) are critical regulators of feeding behavior and body weight, and transduce the action of many peripheral signals including leptin and insulin. However, intracellular signaling molecules involved in regulating NPY/AgRP neuronal activity are incompletely understood. Since phosphodiesterase-3B (PDE3B) mediates the hypothalamic action of leptin and insulin on feeding, and is expressed in NPY/AgRP neurons, PDE3B could play a significant role in regulating NPY/AgRP neuronal activity. To investigate the direct regulation of NPY/AgRP neuronal activity by PDE3B, we examined the effects of gain-of-function or reduced function of PDE3B on NPY/AgRP gene expression in a clonal hypothalamic neuronal cell line, mHypoE-46, which endogenously express NPY, AgRP and PDE3B. Overexpression of PDE3B in mHypoE-46 cells with transfection of pcDNA-3.1-PDE3B expression plasmid significantly decreased NPY and AgRP mRNA levels and p-CREB levels as compared to the control plasmid. For the PDE3B knockdown study, mHypoE-46 cells transfected with lentiviral PDE3BshRNAmir plasmid or non-silencing lentiviral shRNAmir control plasmid were selected with puromycin, and stably transfected cells were grown in culture for 48h. Results showed that PDE3BshRNAmir mediated knockdown of PDE3B mRNA and protein levels (∼60-70%) caused an increase in both NPY and AgRP gene expression and in p-CREB levels. Together, these results demonstrate a reciprocal change in NPY and AgRP gene expression following overexpression and knockdown of PDE3B, and suggest a significant role for PDE3B in the regulation of NPY/AgRP gene expression in mHypoE-46 hypothalamic neurons.

  3. Stress-mediated Sin3B activation leads to negative regulation of subset of p53 target genes

    PubMed Central

    Kadamb, Rama; Mittal, Shilpi; Bansal, Nidhi; Saluja, Daman

    2015-01-01

    The multiprotein SWI-independent 3 (Sin3)–HDAC (histone deacetylase) corepressor complex mediates gene repression through its interaction with DNA-binding factors and recruitment of chromatin-modifying proteins on to the promoters of target gene. Previously, an increased expression of Sin3B and tumour suppressor protein, p53 has been established upon adriamycin treatment. We, now provide evidence that Sin3B expression is significantly up-regulated under variety of stress conditions and this response is not stress-type specific. We observed that Sin3B expression is significantly up-regulated both at transcript and at protein level upon DNA damage induced by bleomycin drug, a radiomimetic agent. This increase in Sin3B expression upon stress is found to be p53-dependent and is associated with enhanced interaction of Sin3B with Ser15 phosphorylated p53. Binding of Sin3–HDAC repressor complex on to the promoters of p53 target genes influences gene regulation by altering histone modifications (H3K9me3 and H3K27me3) at target genes. Furthermore, knockdown of Sin3B by shRNA severely compromises p53-mediated gene repression under stress conditions. Taken together, these results suggest that stress-induced Sin3B activation is p53-dependent and is essential for p53-mediated repression of its selective target genes. The present study has an implication in understanding the transrepression mechanism of p53 under DNA damaging conditions. PMID:26181367

  4. The RICE MINUTE-LIKE1 (RML1) gene, encoding a ribosomal large subunit protein L3B, regulates leaf morphology and plant architecture in rice

    PubMed Central

    Zheng, Ming; Wang, Yihua; Liu, Xi; Sun, Juan; Wang, Yunlong; Xu, Yang; Lv, Jia; Long, Wuhua; Zhu, Xiaopin; Guo, Xiuping; Jiang, Ling; Wang, Chunming; Wan, Jianmin

    2016-01-01

    Mutations of ribosomal proteins (RPs) are known to cause developmental abnormalities in yeast, mammals, and dicotyledonous plants; however, their effects have not been studied in rice. Here, we identifiy a ribosomal biogenesis mutant, rice minute-like1 (rml1) that displays a minute phenotype as evidenced by retarded growth and defects in the vascular system. We determine that RML1 encodes a ribosome large subunit protein 3B (RPL3B) in rice by means of map-based cloning and genetic complementation. RPL3B is abundantly expressed in all the tissues, whereas RPL3A, another RPL3 gene family member, is expressed at low levels. Notably, the expression level of RPL3A in the rml1 mutant is similar to that in the wild-type, suggesting that RPL3A provides no functional compensation for RPL3B in rml1 plants. Ribosomal profiles show that mutation of RPL3B leads to a significant reduction in free 60S ribosomal subunits and polysomes, indicating a ribosomal insufficiency in the rml1 mutant. Our results demonstrate that the ribosomal protein gene RPL3B is required for maintaining normal leaf morphology and plant architecture in rice through its regulation of ribosome biogenesis. PMID:27241493

  5. The Antagonistic Gene Paralogs Upf3a and Upf3b Govern Nonsense-Mediated RNA Decay.

    PubMed

    Shum, Eleen Y; Jones, Samantha H; Shao, Ada; Dumdie, Jennifer; Krause, Matthew D; Chan, Wai-Kin; Lou, Chih-Hong; Espinoza, Josh L; Song, Hye-Won; Phan, Mimi H; Ramaiah, Madhuvanthi; Huang, Lulu; McCarrey, John R; Peterson, Kevin J; De Rooij, Dirk G; Cook-Andersen, Heidi; Wilkinson, Miles F

    2016-04-01

    Gene duplication is a major evolutionary force driving adaptation and speciation, as it allows for the acquisition of new functions and can augment or diversify existing functions. Here, we report a gene duplication event that yielded another outcome--the generation of antagonistic functions. One product of this duplication event--UPF3B--is critical for the nonsense-mediated RNA decay (NMD) pathway, while its autosomal counterpart--UPF3A--encodes an enigmatic protein previously shown to have trace NMD activity. Using loss-of-function approaches in vitro and in vivo, we discovered that UPF3A acts primarily as a potent NMD inhibitor that stabilizes hundreds of transcripts. Evidence suggests that UPF3A acquired repressor activity through simple impairment of a critical domain, a rapid mechanism that may have been widely used in evolution. Mice conditionally lacking UPF3A exhibit "hyper" NMD and display defects in embryogenesis and gametogenesis. Our results support a model in which UPF3A serves as a molecular rheostat that directs developmental events.

  6. Hippocampal changes produced by overexpression of the human CHRNA5/A3/B4 gene cluster may underlie cognitive deficits rescued by nicotine in transgenic mice.

    PubMed

    Molas, Susanna; Gener, Thomas; Güell, Jofre; Martín, Mairena; Ballesteros-Yáñez, Inmaculada; Sanchez-Vives, Maria V; Dierssen, Mara

    2014-11-11

    Addiction involves long-lasting maladaptive changes including development of disruptive drug-stimuli associations. Nicotine-induced neuroplasticity underlies the development of tobacco addiction but also, in regions such as the hippocampus, the ability of this drug to enhance cognitive capabilities. Here, we propose that the genetic locus of susceptibility to nicotine addiction, the CHRNA5/A3/B4 gene cluster, encoding the α5, α3 and β4 subunits of the nicotinic acetylcholine receptors (nAChRs), may influence nicotine-induced neuroadaptations. We have used transgenic mice overexpressing the human cluster (TgCHRNA5/A3/B4) to investigate hippocampal structure and function in genetically susceptible individuals. TgCHRNA5/A3/B4 mice presented a marked reduction in the dendrite complexity of CA1 hippocampal pyramidal neurons along with an increased dendritic spine density. In addition, TgCHRNA5/A3/B4 exhibited increased VGLUT1/VGAT ratio in the CA1 region, suggesting an excitatory/inhibitory imbalance. These hippocampal alterations were accompanied by a significant impairment in short-term novelty recognition memory. Interestingly, chronic infusion of nicotine (3.25 mg/kg/d for 7 d) was able to rescue the reduced dendritic complexity, the excitatory/inhibitory imbalance and the cognitive impairment in TgCHRNA5/A3/B4. Our results suggest that chronic nicotine treatment may represent a compensatory strategy in individuals with altered expression of the CHRNA5/A3/B4 region.

  7. Functional Analysis of KIF3A and KIF3B during Spermiogenesis of Chinese Mitten Crab Eriocheir sinensis

    PubMed Central

    Lu, Yang; Wang, Qi; Wang, Da-Hui; Zhou, Hong; Hu, Yan-Jun; Yang, Wan-Xi

    2014-01-01

    Background Spermatogenesis represents the transformation process at the level of cellular development. KIF3A and KIF3B are believed to play some roles in the assembly and maintenance of flagella, intracellular transport of materials including organelles and proteins, and other unknown functions during this process. During spermatogenesis in Eriocheir sinensis, if the sperm shaping machinery is dependent on KIF3A and KIF3B remains unknown. Methodology/Principal Findings The cDNA of KIF3A and KIF3B were obtained by designing degenerate primers, 3′RACE, and 5′RACE. We detected the genetic presence of kif3a and kif3b in the heart, muscle, liver, gill, and testis of E. sinensis through RT-PCR. By western blot analysis, the protein presence of KIF3A and KIF3B in heart, muscle, gill, and testis reflected the content in protein level. Using in situ hybridization and immunofluorescence, we could track the dynamic location of KIF3A and KIF3B during different developmental phases of sperm. KIF3A and KIF3B were found surrounding the nucleus in early spermatids. In intermediate spermatids, these proteins expressed at high levels around the nucleus and extended to the final phase. During the nuclear shaping period, KIF3A and KIF3B reached their maximum in the late spermatids and were located around the nucleus and concentrated in the acrosome to some extent. Conclusions/Significance Our results revealed that KIF3A and KIF3B were involved in the nuclear and cellular morphogenesis at the levels of mRNA and protein. These proteins can potentially facilitate the intracellular transport of organelles, proteins, and other cargoes. The results represent the functions of KIF3A and KIF3B in the spermatogenesis of Crustacea and clarify phylogenetic relationships among the Decapoda. PMID:24870586

  8. Alteration of the SETBP1 Gene and Splicing Pathway Genes SF3B1, U2AF1, and SRSF2 in Childhood Acute Myeloid Leukemia

    PubMed Central

    Choi, Hyun-Woo; Kim, Hye-Ran; Baek, Hee-Jo; Kook, Hoon; Cho, Duck; Shin, Jong-Hee; Suh, Soon-Pal; Ryang, Dong-Wook

    2015-01-01

    Background Recurrent somatic SET-binding protein 1 (SETBP1) and splicing pathway gene mutations have recently been found in atypical chronic myeloid leukemia and other hematologic malignancies. These mutations have been comprehensively analyzed in adult AML, but not in childhood AML. We investigated possible alteration of the SETBP1, splicing factor 3B subunit 1 (SF3B1), U2 small nuclear RNA auxiliary factor 1 (U2AF1), and serine/arginine-rich splicing factor 2 (SRSF2) genes in childhood AML. Methods Cytogenetic and molecular analyses were performed to reveal chromosomal and genetic alterations. Sequence alterations in the SETBP1, SF3B1, U2AF1, and SRSF2 genes were examined by using direct sequencing in a cohort of 53 childhood AML patients. Results Childhood AML patients did not harbor any recurrent SETBP1 gene mutations, although our study did identify a synonymous mutation in one patient. None of the previously reported aberrations in the mutational hotspot of SF3B1, U2AF1, and SRSF2 were identified in any of the 53 patients. Conclusions Alterations of the SETBP1 gene or SF3B1, U2AF1, and SRSF2 genes are not common genetic events in childhood AML, implying that the mutations are unlikely to exert a driver effect in myeloid leukemogenesis during childhood. PMID:25553291

  9. The Rab GTPase RabG3b functions in autophagy and contributes to tracheary element differentiation in Arabidopsis.

    PubMed

    Kwon, Soon Il; Cho, Hong Joo; Jung, Jin Hee; Yoshimoto, Kohki; Shirasu, Ken; Park, Ohkmae K

    2010-10-01

    The tracheary elements (TEs) of the xylem serve as the water-conducting vessels of the plant vascular system. To achieve this, TEs undergo secondary cell wall thickening and cell death, during which the cell contents are completely removed. Cell death of TEs is a typical example of developmental programmed cell death that has been suggested to be autophagic. However, little evidence of autophagy in TE differentiation has been provided. The present study demonstrates that the small GTP binding protein RabG3b plays a role in TE differentiation through its function in autophagy. Differentiating wild type TE cells were found to undergo autophagy in an Arabidopsis culture system. Both autophagy and TE formation were significantly stimulated by overexpression of a constitutively active mutant (RabG3bCA), and were inhibited in transgenic plants overexpressing a dominant negative mutant (RabG3bDN) or RabG3b RNAi (RabG3bRNAi), a brassinosteroid insensitive mutant bri1-301, and an autophagy mutant atg5-1. Taken together, our results suggest that autophagy occurs during TE differentiation, and that RabG3b, as a component of autophagy, regulates TE differentiation.

  10. Biochemical genetics of opossum aldehyde dehydrogenase 3: evidence for three ALDH3A-like genes and an ALDH3B-like gene.

    PubMed

    Holmes, Roger S

    2010-04-01

    Mammalian ALDH3 isozymes participate in peroxidic and fatty aldehyde metabolism, and in anterior eye tissue UV-filtration. BLAT analyses were undertaken of the opossum genome using rat ALDH3A1, ALDH3A2, ALDH3B1, and ALDH3B2 amino acid sequences. Two predicted opossum ALDH3A1-like genes and an ALDH3A2-like gene were observed on chromosome 2, as well as an ALDH3B-like gene, which showed similar intron-exon boundaries with other mammalian ALDH3-like genes. Opossum ALDH3 subunit sequences and structures were highly conserved, including residues previously shown to be involved in catalysis and coenzyme binding for rat ALDH3A1. Eleven glycine residues were conserved for all of the opossum ALDH3-like sequences examined, including two glycine residues previously located within the stem of the rat ALDH3A1 active site funnel. Phylogeny studies of human, rat, opossum, and chicken ALDH3-like sequences indicated that the common ancestor for ALDH3A- and ALDH3B-like genes predates the appearance of birds during vertebrate evolution.

  11. Unique features of Erwinia chrysanthemi (Dickeya dadantii) RA3B genes involved in the blue indigoidine production.

    PubMed

    Chu, Mu-Kuei; Lin, Lee-Fong; Twu, Chung-Shing; Lin, Rong-Hwa; Lin, Yuan-Chuen; Hsu, Shih-Tien; Tzeng, Kuo-Ching; Huang, Hsiou-Chen

    2010-08-20

    Erwinia chrysanthemi (Ech) RA3B produces a large amount of blue indigoidine. Using Tn5-induced mutagenesis, three indigoidine-deficient mutants were generated. Followed by library screening, a 5.8kb fragment complemented mutants for indigoidine synthesis was cloned. This fragment contains four complete open-reading frames (ORFs), pecS, pecM, idgA, and idgB, and two partial ORFs, argG, and idgC. These genes are nearly identical to those in strain Ech3937. Primer extension assays demonstrated a clear transcriptional start site prior to idgA, while no promoter preceding idgB and idgC was detected, suggesting that idgA, idgB, and idgC are organized as one transcription unit. In contrast, indAB is separated from indC in Ech3937. Interestingly, an ERIC sequence was present between idgB and idgC in place of the promoter region of the homolog indC, which may contribute to the loss of promoter activity in RA3B. Futhermore, idgB mutant displayed much lighter blue color, while indB mutant appeared white on media. Overexpression of pecS in RA3B resulted in significantly reduced indigoidine production and idgC transcript. Moreover, gel shift and luxAB reporter assays revealed that PecS specifically binds to the sequence preceding idgA and inhibits gene expression, which is consistent with the results observed in Ech3937.

  12. Aberrant splicing of genes involved in haemoglobin synthesis and impaired terminal erythroid maturation in SF3B1 mutated refractory anaemia with ring sideroblasts.

    PubMed

    Conte, Simona; Katayama, Shintaro; Vesterlund, Liselotte; Karimi, Mohsen; Dimitriou, Marios; Jansson, Monika; Mortera-Blanco, Teresa; Unneberg, Per; Papaemmanuil, Elli; Sander, Birgitta; Skoog, Tiina; Campbell, Peter; Walfridsson, Julian; Kere, Juha; Hellström-Lindberg, Eva

    2015-11-01

    Refractory anaemia with ring sideroblasts (RARS) is distinguished by hyperplastic inefficient erythropoiesis, aberrant mitochondrial ferritin accumulation and anaemia. Heterozygous mutations in the spliceosome gene SF3B1 are found in a majority of RARS cases. To explore the link between SF3B1 mutations and anaemia, we studied mutated RARS CD34(+) marrow cells with regard to transcriptome sequencing, splice patterns and mutational allele burden during erythroid differentiation. Transcriptome profiling during early erythroid differentiation revealed a marked up-regulation of genes involved in haemoglobin synthesis and in the oxidative phosphorylation process, and down-regulation of mitochondrial ABC transporters compared to normal bone marrow. Moreover, mis-splicing of genes involved in transcription regulation, particularly haemoglobin synthesis, was confirmed, indicating a compromised haemoglobinization during RARS erythropoiesis. In order to define the phase during which erythroid maturation of SF3B1 mutated cells is most affected, we assessed allele burden during erythroid differentiation in vitro and in vivo and found that SF3B1 mutated erythroblasts showed stable expansion until late erythroblast stage but that terminal maturation to reticulocytes was significantly reduced. In conclusion, SF3B1 mutated RARS progenitors display impaired splicing with potential downstream consequences for genes of key importance for haemoglobin synthesis and terminal erythroid differentiation.

  13. E3B1, a human homologue of the mouse gene product Abi-1, sensitizes activation of Rap1 in response to epidermal growth factor

    SciTech Connect

    Jenei, Veronika; Andersson, Tommy; Jakus, Judit; Dib, Karim . E-mail: k.dib@qub.ac.uk

    2005-11-01

    E3B1, a human homologue of the mouse gene product Abi-1, has been implicated in growth-factor-mediated regulation of the small GTPases p21{sup Ras} and Rac. E3b1 is a regulator of Rac because it can form a complex with Sos-1 and eps8, and such a Sos-1-e3B1-eps8 complex serves as a guanine nucleotide exchange factor for Rac. In the present study, we found that overexpression of e3B1 in NIH3T3/EGFR cells sensitized EGF-induced activation of Rac1, whereas it had no impact on EGF-induced activation of p21{sup Ras}. Remarkably, we found that EGF-induced activation of the p21{sup Ras}-related GTPase Rap1 was also sensitized in NIH3T3/EGFR-e3B1 cells. Thus, in NIH3T3/EGFR-e3B1 cells, maximal EGF-induced activation of Rap1 occurs with a dose of EGF much lower than in NIH3T3/EGFR cells. We also report that overexpression of e3B1 in NIH3T3/EGFR cells renders EGF-induced activation of Rap1 completely dependent on Src tyrosine kinases but not on c-Abl. However, EGF-induced tyrosine phosphorylation of the Rap GEF C3G occurred regardless of whether e3B1 was overexpressed or not, and this did not involve Src tyrosine kinases. Accordingly, we propose that overexpression of e3B1 in NIH3T3/EGFR cells leads to mobilization of Src tyrosine kinases that participate in EGF-induced activation of Rap1 and inhibition of cell proliferation.

  14. Dnmt3b Prefers Germ Line Genes and Centromeric Regions: Lessons from the ICF Syndrome and Cancer and Implications for Diseases.

    PubMed

    Walton, Emma L; Francastel, Claire; Velasco, Guillaume

    2014-01-01

    The correct establishment and maintenance of DNA methylation patterns are critical for mammalian development and the control of normal cell growth and differentiation. DNA methylation has profound effects on the mammalian genome, including transcriptional repression, modulation of chromatin structure, X chromosome inactivation, genomic imprinting, and the suppression of the detrimental effects of repetitive and parasitic DNA sequences on genome integrity. Consistent with its essential role in normal cells and predominance at repetitive genomic regions, aberrant changes of DNA methylation patterns are a common feature of diseases with chromosomal and genomic instabilities. In this context, the functions of DNA methyltransferases (DNMTs) can be affected by mutations or alterations of their expression. DNMT3B, which is involved in de novo methylation, is of particular interest not only because of its important role in development, but also because of its dysfunction in human diseases. Expression of catalytically inactive isoforms has been associated with cancer risk and germ line hypomorphic mutations with the ICF syndrome (Immunodeficiency Centromeric instability Facial anomalies). In these diseases, global genomic hypomethylation affects repeated sequences around centromeric regions, which make up large blocks of heterochromatin, and is associated with chromosome instability, impaired chromosome segregation and perturbed nuclear architecture. The review will focus on recent data about the function of DNMT3B, and the consequences of its deregulated activity on pathological DNA hypomethylation, including the illicit activation of germ line-specific genes and accumulation of transcripts originating from repeated satellite sequences, which may represent novel physiopathological biomarkers for human diseases. Notably, we focus on cancer and the ICF syndrome, pathological contexts in which hypomethylation has been extensively characterized. We also discuss the potential

  15. Ras-Related Nuclear Protein Ran3B Gene Is Involved in Hormone Responses in the Embryogenic Callus of Dimocarpus longan Lour.

    PubMed Central

    Tian, Qilin; Lin, Yuling; Zhang, Dongmin; Lai, Ruilian; Lai, Zhongxiong

    2016-01-01

    Ras-related guanosine triphosphate (GTP)-binding nuclear protein (Ran) GTPases function as molecular switches and regulate diverse cellular events in eukaryotes. Our previous work suggested that DlRan3B is active during longan (Dimocarpus longan Lour.) somatic embryogenesis (SE) processes. Herein, subcellular localization of DlRan3B was found to be localized in the nucleus and expression profiling of DlRan3B was performed during longan SE and after exposure to plant hormones (indoleacetic acid (IAA), gibberellin A3 (GA3), salicylic acid (SA), methyl jasmonte (MeJA), and abscisic acid (ABA)). We cloned and sequenced 1569 bp of 5′-flanking sequence of DlRan3B (GenBank: JQ279697). Bioinformatic analysis indicated that the promoter contained plant hormone-related regulatory elements. Deletion analysis and responses to hormones identified stimulative and repressive regulatory elements in the DlRan3B promoter. The key elements included those responding to auxin, gibberellin, SA, MeJA, and ABA. DlRan3B was located in the nucleus and accumulated in the late stage of longan SE. The expression of DlRan3B was significantly induced by IAA, GA3, and ABA, but suppressed by SA and MeJA. Promoter transcription was induced by IAA and GA3, but suppressed by SA. Thus, DlRan3B might participate in auxin, gibberellin, and ABA responses during longan late SE, and DlRan3B is involved in phytohormone responsiveness. PMID:27271605

  16. Altered mRNA Splicing, Chondrocyte Gene Expression and Abnormal Skeletal Development due to SF3B4 Mutations in Rodriguez Acrofacial Dysostosis

    PubMed Central

    Nevarez, Lisette; Pogue, Robert; Krakow, Deborah; Cohn, Daniel H.

    2016-01-01

    The acrofacial dysostoses (AFD) are a genetically heterogeneous group of inherited disorders with craniofacial and limb abnormalities. Rodriguez syndrome is a severe, usually perinatal lethal AFD, characterized by severe retrognathia, oligodactyly and lower limb abnormalities. Rodriguez syndrome has been proposed to be a severe form of Nager syndrome, a non-lethal AFD that results from mutations in SF3B4, a component of the U2 small nuclear ribonucleoprotein particle (U2 snRNP). Furthermore, a case with a phenotype intermediate between Rodriguez and Nager syndromes has been shown to have an SF3B4 mutation. We identified heterozygosity for SF3B4 mutations in Rodriguez syndrome, confirming that the phenotype is a dominant disorder that is allelic with Nager syndrome. The mutations led to reduced SF3B4 synthesis and defects in mRNA splicing, primarily exon skipping. The mutations also led to reduced expression in growth plate chondrocytes of target genes, including the DLX5, DLX6, SOX9, and SOX6 transcription factor genes, which are known to be important for skeletal development. These data provide mechanistic insight toward understanding how SF3B4 mutations lead to the skeletal abnormalities observed in the acrofacial dysostoses. PMID:27622494

  17. Contribution of Variants in CHRNA5/A3/B4 Gene Cluster on Chromosome 15 to Tobacco Smoking: From Genetic Association to Mechanism.

    PubMed

    Wen, Li; Jiang, Keran; Yuan, Wenji; Cui, Wenyan; Li, Ming D

    2016-01-01

    and thereby permits more nicotine consumption. To gain a better understanding of the function of the highly significant genetic variants identified in this region in controlling smoking-related behaviors, in this communication, we provide an up-to-date review of the progress of studies focusing on the CHRNA5/A3/B4 gene cluster and its role in ND.

  18. Alternative splicing of basic chitinase gene PR3b in the low-nicotine mutants of Nicotiana tabacum L. cv. Burley 21

    PubMed Central

    Ma, Haoran; Wang, Feng; Wang, Wenjing; Yin, Guoying; Zhang, Dingyu; Ding, Yongqiang; Timko, Michael P.; Zhang, Hongbo

    2016-01-01

    Two unlinked semi-dominant loci, A (NIC1) and B (NIC2), control nicotine and related alkaloid biosynthesis in Burley tobaccos. Mutations in either or both loci (nic1 and nic2) lead to low nicotine phenotypes with altered environmental stress responses. Here we show that the transcripts derived from the pathogenesis-related (PR) protein gene PR3b are alternatively spliced to a greater extent in the nic1 and nic2 mutants of Burley 21 tobacco and the nic1nic2 double mutant. The alternative splicing results in a deletion of 65 nucleotides and introduces a premature stop codon into the coding region of PR3b that leads to a significant reduction of PR3b specific chitinase activity. Assays of PR3b splicing in F2 individuals derived from crosses between nic1 and nic2 mutants and wild-type plants showed that the splicing phenotype is controlled by the NIC1 and NIC2 loci, even though NIC1 and NIC2 are unlinked loci. Moreover, the transcriptional analyses showed that the splicing patterns of PR3b in the low-nicotine mutants were differentially regulated by jasmonate (JA) and ethylene (ET). These data suggest that the NIC1 and NIC2 loci display differential roles in regulating the alternative splicing of PR3b in Burley 21. The findings in this study have provided valuable information for extending our understanding of the broader effects of the low-nicotine mutants of Burley 21 and the mechanism by which JA and ET signalling pathways post-transcriptionally regulate the activity of PR3b protein. PMID:27664270

  19. Marker development, saturation mapping, and high-resolution mapping of the Septoria nodorum blotch susceptibility gene Snn3-B1 in wheat.

    PubMed

    Shi, Gongjun; Zhang, Zengcui; Friesen, Timothy L; Bansal, Urmil; Cloutier, Sylvie; Wicker, Thomas; Rasmussen, Jack B; Faris, Justin D

    2016-02-01

    Septoria nodorum blotch (SNB), caused by Parastagonospora nodorum, is a severe foliar and glume disease on durum and common wheat. Pathogen-produced necrotrophic effectors (NEs) are the major determinants for SNB on leaves. One such NE is SnTox3, which evokes programmed cell death and leads to disease when recognized by the wheat Snn3-B1 gene. Here, we developed saturated genetic linkage maps of the Snn3-B1 region using two F2 populations derived from the SnTox3-sensitive line Sumai 3 crossed with different SnTox3-insensitive lines. Markers were identified and/or developed from various resources including previously mapped simple sequence repeats, bin-mapped expressed sequence tags, single nucleotide polymorphisms, and whole genome survey sequences. Subsequent high-resolution mapping of the Snn3-B1 locus in 5600 gametes delineated the gene to a 1.5 cM interval. Analysis of micro-colinearity of the Snn3-B1 region indicated that it was highly disrupted compared to rice and Brachypodium distachyon. The screening of a collection of durum and common wheat cultivars with tightly linked markers indicated they are not diagnostic for the presence of Snn3-B1, but can be useful for marker-assisted selection if the SnTox3 reactions of lines are first determined. Finally, we developed an ethyl methanesulfonate-induced mutant population of Sumai 3 where the screening of 408 M2 families led to the identification of 17 SnTox3-insensitive mutants. These mutants along with the markers and high-resolution map developed in this research provide a strong foundation for the map-based cloning of Snn3-B1, which will broaden our understanding of the wheat-P. nodorum system and plant-necrotrophic pathogen interactions in general. PMID:26187026

  20. Genetic diversity of spike, 3a, 3b and e genes of infectious bronchitis viruses and emergence of new recombinants in Korea.

    PubMed

    Mo, Mei-Lan; Hong, Seung-Min; Kwon, Hyuk-Joon; Kim, Il-Hwan; Song, Chang-Seon; Kim, Jae-Hong

    2013-01-31

    The nucleotide sequences of a region including S1, S2, 3a, 3b and E genes of twenty-seven infectious bronchitis virus (IBV) isolates in Korea between 1990-2011 were determined and phylogenetic and computational recombination analyses were conducted. The sizes of coding regions of some genes varied among IBV isolates due to deletion or insertion of nucleotides; the nucleotide similarities of S1, S2, 3a, 3b and E genes among the 27 isolates were 75.9%-100.0%, 85%-100.0%, 64.0%-100.0%, 60.4%-100.0% and 83.1%-100.0%, respectively. According to phylogenetic analysis of S1 gene, the 27 isolates were divided into five genotypes, Mass, Korean-I (K-I), QX-like, KM91-like and New cluster 1. The phylogenetic trees based on the S2, 3a, 3b, E genes and S1-S2-3a-3b-E (S1-E) region nucleotide sequences did not closely follow the clustering based on the S1 sequence. The New cluster 1 prevalent during 2009 and 2010 was not found in 2011 but QX-like viruses became prevalent in 2011. The recombination analysis revealed two new S gene recombinants, 11036 and 11052 which might have been derived from recombinations between the New cluster 1 and QX-like viruses and between the K-I and H120 (vaccine) viruses, respectively. In conclusion, multiple IBV genotypes have co-circulated; QX-like viruses have recurred and new recombinants have emerged in Korea. This has enriched molecular epidemiology information of IBV and is useful for the control of IB in Korea.

  1. In vivo redundant function of the 3' IgH regulatory element HS3b in the mouse.

    PubMed

    Bébin, Anne-Gaëlle; Carrion, Claire; Marquet, Marie; Cogné, Nadine; Lecardeur, Sandrine; Cogné, Michel; Pinaud, Eric

    2010-04-01

    In the mouse, the regulatory region located at the 3' end of the IgH locus includes four transcriptional enhancers: HS3a, HS1-2, HS3b, and HS4; the first three lie in a quasi-palindromic structure. Although the upstream elements HS3a and HS1-2 proved dispensable for Ig expression and class switch recombination (CSR), the joint deletion of HS3b and HS4 led to a consistent decrease in IgH expression in resting B cells and to a major CSR defect. Within this pair of distal enhancers, it was questionable whether HS3b and HS4 could be considered individually as elements critical for IgH expression and/or CSR. Studies in HS4-deficient mice recently revealed the role of HS4 as restricted to Igmicro-chain expression from the pre-B to the mature B cell stage and left HS3b as the last candidate for CSR regulation. Our present study finally invalidates the hypothesis that CSR could mostly rely on HS3b itself. B cells from HS3b-deficient animals undergo normal proliferation, germline transcription, and CSR upon in vitro stimulation with LPS; in vivo Ag-specific responses are not affected. In conclusion, our study highlights a major effect of the global ambiance of the IgH locus; enhancers demonstrated as being strongly synergistic in transgenes turn out to be redundant in their endogenous context.

  2. Feasibility of establishing deletion of the late cornified envelope genes LCE3B and LCE3C as a susceptibility factor for psoriasis

    PubMed Central

    Bashir, Safia; Hassan, Iffat; Majid, Sabhiya; Bhat, Yasmeen Jabeen; Farooq, Rabia

    2016-01-01

    Background: Psoriasis is a chronic hyperproliferative inflammatory disease of the skin, genetic predisposition to which is well-established. The late cornified envelope genes LCE3B and LCE3C are involved in maintaining the integrity of skin barrier especially following skin barrier disruption. The deletion of these genes would lead to an impaired epidermal response following damage to the skin barrier thus predisposing to psoriatic lesions. This study aimed to evaluate the common deletion of late cornified envelope genes (LCE 3B/3C) in psoriasis patients of Kashmiri ethnic population of North India. Materials and Methods: It was a hospital-based, case-control study which included 100 psoriasis cases and an equal number of controls. Blood samples were obtained, and DNA was extracted from all the samples by a kit-based method. To determine the LCE3C_LCE3B-del genotype, a three-primer polymerase chain reaction assay was performed. Results: The genotype for the common LCE3C_LCE3B deletion in 100 psoriasis patients and 100 controls was determined. Among the cases, 17 cases were homozygous for insertion genotype (I/I), 40 cases were heterozygous for insertion/deletion genotype (I/D) and 43 cases were homozygous for deletion genotype (D/D), compared to controls where 20 cases were homozygous for insertion genotype (I/I), 45 cases were heterozygous for insertion/deletion genotype (I/D), and 35 cases were homozygous for deletion genotype (D/D). The del/del frequency was higher among psoriatic patients compared to controls (43% vs. 35%) although the difference was not statistically significant (P = 0.507). Conclusion: We hereby infer that LCE3C_LCE3B deletion does not appear to be associated with the risk of psoriasis in our population. PMID:27376048

  3. AtSAP130/AtSF3b-3 function is required for reproduction in Arabidopsis thaliana.

    PubMed

    Aki, Shiori; Nakai, Hideto; Aoyama, Takashi; Oka, Atsuhiro; Tsuge, Tomohiko

    2011-08-01

    Flowering plants produce multicellular gametophytes through an elaborate regulation of gametogenesis. During female and male gametogenesis in Arabidopsis thaliana, sporogenous cells differentiate and undergo meiosis to produce megaspores and microspores, which in turn go through mitosis to develop into multicellular gametophytes. Here we report that the Arabidopsis spliceosomal protein, SPLICEOSOME-ASSOCIATED PROTEIN 130 (AtSAP130), is required for proper reproduction. AtSAP130 is encoded by two genes, AtSAP130a and AtSAP130b. Plants with reduced expression of the AtSAP130 genes, induced by RNA interference, showed a defect in fertilization. Besides functional impairment observed in the female reproductive organs, analysis focusing on pollen development revealed defects in the transition from the microspore to the bicellular stage. Our results suggest that AtSAP130a and AtSAP130b play an indispensable role in specific spatiotemporal events in reproduction.

  4. Sulforaphane Reverses the Expression of Various Tumor Suppressor Genes by Targeting DNMT3B and HDAC1 in Human Cervical Cancer Cells.

    PubMed

    Ali Khan, Munawwar; Kedhari Sundaram, Madhumitha; Hamza, Amina; Quraishi, Uzma; Gunasekera, Dian; Ramesh, Laveena; Goala, Payal; Al Alami, Usama; Ansari, Mohammad Zeeshan; Rizvi, Tahir A; Sharma, Chhavi; Hussain, Arif

    2015-01-01

    Sulforaphane (SFN) may hinder carcinogenesis by altering epigenetic events in the cells; however, its molecular mechanisms are unclear. The present study investigates the role of SFN in modifying epigenetic events in human cervical cancer cells, HeLa. HeLa cells were treated with SFN (2.5 µM) for a period of 0, 24, 48, and 72 hours for all experiments. After treatment, expressions of DNMT3B, HDAC1, RARβ, CDH1, DAPK1, and GSTP1 were studied using RT-PCR while promoter DNA methylation of tumor suppressor genes (TSGs) was studied using MS-PCR. Inhibition assays of DNA methyl transferases (DNMTs) and histone deacetylases (HDACs) were performed at varying time points. Molecular modeling and docking studies were performed to explore the possible interaction of SFN with HDAC1 and DNMT3B. Time-dependent exposure to SFN decreases the expression of DNMT3B and HDAC1 and significantly reduces the enzymatic activity of DNMTs and HDACs. Molecular modeling data suggests that SFN may interact directly with DNMT3B and HDAC1 which may explain the inhibitory action of SFN. Interestingly, time-dependent reactivation of the studied TSGs via reversal of methylation in SFN treated cells correlates well with its impact on the epigenetic alterations accumulated during cancer development. Thus, SFN may have significant implications for epigenetic based therapy.

  5. Synthesis and photodynamic activity of unsymmetrical A3B tetraarylporphyrins functionalized with l-glutamate and their Zn(II) and Cu(II) metal complex derivatives.

    PubMed

    Arredondo-Espinoza, Eder U; López-Cortina, Susana T; Ramírez-Cabrera, Mónica A; Balderas-Rentería, Isaías

    2016-08-01

    Four novel unsymmetrical A3B porphyrins 1, 2, 3 and 4 were synthesized following Lindsey procedure. Porphyrins 3 and 4 include one and three l-glutamate groups, respectively, and all porphyrins were metallated with Zn(II) (1a-4a) or Cu(II) (1b-4b). Porphyrins and metalloporphyrins presented values of singlet oxygen quantum yields (ΦD) ranging from 0.21 to 0.67. The tetraaryl derivatives in this study showed phototoxicity in SiHa cells with IC50 values ranging from <0.01 to 6.56±0.11μM, the metalloporphyrin 4a showed the lowest IC50 value. Comparing the phototoxic activity between all porphyrins, functionalization of porphyrins with glutamate increased 100 times phototoxic activity (1 (IC50 4.81±0.34μM) vs. 3 (IC50 0.04±0.02μM) and 2 (IC50 5.19±0.42μM) vs. 4 (IC50 0.05±0.01μM)). This increased activity could be attributed to reduced hydrophobicity and increased ΦΔ, given by functionalization with l-glutamate. Metalloporphyrins 3a (IC50 0.04±0.01μM) and 4a (IC50<0.01μM) presented the best values ​​of phototoxic activity. Therefore, functionalization and zinc metalation increased the phototoxic activity. SiHa cells treated with porphyrins 3, 4, 3a and 4a at a final concentration of 10μM, showed increased activity of caspase-3 enzyme compared to the negative control; indicating the induction of apoptosis. Differential gene expression pattern in SiHa cells was determined; treatments with metalloporphyrins 4a and 4b were performed, respectively, comparing the expression with untreated control. Treatments in both cases showed similar gene expression pattern in upregulated genes, since they share about 25 biological pathways and a large number of genes. According to the new photophysical properties related to the structural improvement and phototoxic activity, these molecules may have the potential application as photosensitizers in the photodynamic therapy.

  6. Binding of the repressor complex REST-mSIN3b by small molecules restores neuronal gene transcription in Huntington's disease models.

    PubMed

    Conforti, Paola; Zuccato, Chiara; Gaudenzi, Germano; Ieraci, Alessandro; Camnasio, Stefano; Buckley, Noel J; Mutti, Cesare; Cotelli, Franco; Contini, Alessandro; Cattaneo, Elena

    2013-10-01

    Transcriptional dysregulation is a hallmark of Huntington's disease (HD) and one cause of this dysregulation is enhanced activity of the REST-mSIN3a-mSIN3b-CoREST-HDAC repressor complex, which silences transcription through REST binding to the RE1/NRSE silencer. Normally, huntingtin (HTT) prevents this binding, allowing expressing of REST target genes. Here, we aimed to identify HTT mimetics that disrupt REST complex formation in HD. From a structure-based virtual screening of 7 million molecules, we selected 94 compounds predicted to interfere with REST complex formation by targeting the PAH1 domain of mSIN3b. Primary screening using DiaNRSELuc8 cells revealed two classes of compounds causing a greater than two-fold increase in luciferase. In particular, quinolone-like compound 91 (C91) at a non-toxic nanomolar concentration reduced mSIN3b nuclear entry and occupancy at the RE1/NRSE within the Bdnf locus, and restored brain-derived neurotrophic factor (BDNF) protein levels in HD cells. The mRNA levels of other RE1/NRSE-regulated genes were similarly increased while non-REST-regulated genes were unaffected. C91 stimulated REST-regulated gene expression in HTT-knockdown Zebrafish and increased BDNF mRNA in the presence of mutant HTT. Thus, a combination of virtual screening and biological approaches can lead to compounds reducing REST complex formation, which may be useful in HD and in other pathological conditions. PMID:23800350

  7. Novel single nucleotide polymorphisms of the bovine methyltransferase 3b gene and their association with meat quality traits in beef cattle.

    PubMed

    Liu, X; Guo, X Y; Xu, X Z; Wu, M; Zhang, X; Li, Q; Ma, P P; Zhang, Y; Wang, C Y; Geng, F J; Qin, C H; Liu, L; Shi, W H; Wang, Y C; Yu, Y

    2012-08-16

    DNA methylation is essential for adipose deposition in mammals. We screened SNPs of the bovine DNA methyltransferase 3b (DNMT3b) gene in Snow Dragon beef, a commercial beef cattle population in China. Nine SNPs were found in the population and three of six novel SNPs were chosen for genotyping and analyzing a possible association with 16 meat quality traits. The frequencies of the alleles and genotypes of the three SNPs in Snow Dragon beef were similar to those in their terminal-paternal breed, Wagyu. Association analysis disclosed that SNP1 was not associated with any of the traits; SNP2 was significantly associated with lean meat color score and chuck short rib score, and SNP3 had a significant effect on dressing percentage and back-fat thickness in the beef population. The individuals with genotype GG for SNP2 had a 25.7% increase in lean meat color score and a 146% increase in chuck short rib score, compared with genotype AA. The cattle with genotype AG for SNP3 had 35.7 and 24% increases in dressing percentage and 28.8 and 29.2% increases in back-fat thickness, compared with genotypes GG and AA, respectively. Genotypic combination analysis revealed significant interactions between SNP1 and SNP2 and between SNP2 and SNP3 for the traits rib-eye area and live weight. We conclude that there is considerable evidence that DNMT3b is a determiner of beef quality traits.

  8. Antigen-bound C3b and C4b enhance antigen-presenting cell function in activation of human T-cell clones.

    PubMed

    Arvieux, J; Yssel, H; Colomb, M G

    1988-10-01

    The effect of complement fragments C3b and C4b, on the triggering of antigen-specific human T-cell clones by Epstein-Barr virus-transformed human lymphoblastoid B cells (LCL) when these fragments are covalently coupled to the antigen tetanus toxin (TT) is described. TT was chemically cross-linked to purified C3b [(TT-C3b)n], C4b [(TT-C4b)n] or bovine serum albumin [(TT-BSA)n] as a control. T-cell activation was quantified by tritiated thymidine incorporation and 51Cr release. (TT-C3b)n and (TT-C4b)n induced proliferative responses comparable to (TT-BSA)n but at 18-25 and 4-6 lower concentrations, respectively. This enhancing effect required the covalent cross-linking of the complement fragments to the antigen and involved intracellular processing of the latter by LCL. Antigen presentation was similarly enhanced when measuring the cytotoxic activity of a helper T-cell clone against LCL previously pulsed with (TT-C3b)n or (TT-C4b)n compared with (TT-BSA)n. Binding studies, carried out on LCL using TT radiolabelled with 125I before cross-linking, indicated that (TT-C3b)n and (TT-C4b)n gave three- to four-fold more binding than (TT-BSA)n. Addition of antibodies against CR1 and CR2 or proteolytic removal of these complement receptors with trypsin inhibited by about 60% the enhancing effect of TT-bound C3b and C4b in both binding and functional assays. These results indicate that binding of C3b or C4b to antigen enhances antigen-specific proliferative and cytotoxic responses of T cells by targeting opsonized antigen onto complement receptors CR1 and CR2 of LCL. The putative significance of these findings in terms of regulation of immune responses by complement is discussed.

  9. Antigen-bound C3b and C4b enhance antigen-presenting cell function in activation of human T-cell clones.

    PubMed

    Arvieux, J; Yssel, H; Colomb, M G

    1988-10-01

    The effect of complement fragments C3b and C4b, on the triggering of antigen-specific human T-cell clones by Epstein-Barr virus-transformed human lymphoblastoid B cells (LCL) when these fragments are covalently coupled to the antigen tetanus toxin (TT) is described. TT was chemically cross-linked to purified C3b [(TT-C3b)n], C4b [(TT-C4b)n] or bovine serum albumin [(TT-BSA)n] as a control. T-cell activation was quantified by tritiated thymidine incorporation and 51Cr release. (TT-C3b)n and (TT-C4b)n induced proliferative responses comparable to (TT-BSA)n but at 18-25 and 4-6 lower concentrations, respectively. This enhancing effect required the covalent cross-linking of the complement fragments to the antigen and involved intracellular processing of the latter by LCL. Antigen presentation was similarly enhanced when measuring the cytotoxic activity of a helper T-cell clone against LCL previously pulsed with (TT-C3b)n or (TT-C4b)n compared with (TT-BSA)n. Binding studies, carried out on LCL using TT radiolabelled with 125I before cross-linking, indicated that (TT-C3b)n and (TT-C4b)n gave three- to four-fold more binding than (TT-BSA)n. Addition of antibodies against CR1 and CR2 or proteolytic removal of these complement receptors with trypsin inhibited by about 60% the enhancing effect of TT-bound C3b and C4b in both binding and functional assays. These results indicate that binding of C3b or C4b to antigen enhances antigen-specific proliferative and cytotoxic responses of T cells by targeting opsonized antigen onto complement receptors CR1 and CR2 of LCL. The putative significance of these findings in terms of regulation of immune responses by complement is discussed. PMID:2973431

  10. Identification of three physically and functionally distinct binding sites for C3b in human complement factor H by deletion mutagenesis.

    PubMed Central

    Sharma, A K; Pangburn, M K

    1996-01-01

    Human complement factor H controls spontaneous activation of complement in plasma and appears to play a role in distinguishing host cells from activators of the alternative pathway of complement. In both mice and humans, the protein is composed of 20 homologous short consensus repeat (SCR) domains. The size of the protein suggests that portions of the structure outside the known C3b binding site (SCR 1-4) possess a significant biological role. We have expressed the full-length cDNA of factor H in the baculovirus system and have shown the recombinant protein to be fully active. Mutants of this full-length protein have now been prepared, purified, and examined for cofactor activity and binding to C3b and heparin. The results demonstrate (i) that factor H has at least three sites that bind C3b, (ii) that one of these sites is located in SCR domains 1-4, as has been shown by others, (iii) that a second site exists in the domain 6-10 region, (iv) that a third site resides in the SCR 16-20 region, and (v) that two heparin binding sites exist in factor H, one near SCR 13 and another in the SCR 6-10 region. Functional assays demonstrated that only the first C3b site located in SCR 1-4 expresses factor I cofactor activity. Mutant proteins lacking any one of the three C3b binding sites exhibited 6- to 8-fold reductions in affinity for C3b on sheep erythrocytes, indicating that all three sites contribute to the control of complement activation on erythrocytes. The identification of multiple functionally distinct sites on factor H clarifies many of the heretofore unexplainable behaviors of this protein, including the heterogeneous binding of factor H to surface-bound C3b, the effects of trypsin cleavage, and the differential control of complement activation on activators and nonactivators of the alternative pathway of complement. Images Fig. 2 Fig. 3 PMID:8855297

  11. Pyrrolo[2,3-b]quinoxalines as inhibitors of firefly luciferase: their Cu-mediated synthesis and evaluation as false positives in a reporter gene assay.

    PubMed

    Nakhi, Ali; Rahman, Md Shafiqur; Kishore, Ravada; Meda, Chandana Lakshmi T; Deora, Girdhar Singh; Parsa, Kishore V L; Pal, Manojit

    2012-10-15

    2-Substituted pyrrolo[2,3-b]quinoxalines having free NH were prepared directly from 3-alkynyl-2-chloroquinoxalines in a single pot by using readily available and inexpensive methane sulfonamide (or p-toluene sulfonamide) as an ammonia surrogate. The reaction proceeded in the presence of Cu(OAc)(2) affording the desired product in moderate yield. The crystal structure analysis of a representative compound and its supramolecular interactions are presented. Some of the compounds synthesized exhibited inhibitory activities against luciferase that was supported by the predictive binding mode of these compounds with luciferase enzyme through molecular docking studies. The key observations disclosed here can alert users of luciferase reporter gene assays for possible false positive results due to the direct inhibition of luciferase.

  12. Study on aggregation and electric properties in the micro-region of functionalized dithieno[2, 3-b: 3', 2'-d]thiophene (DTT) oligomers

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaohong; Huang, Xiaowei; Zhang, Jiajia; Lu, Zhijuan; Wang, Hua; Du, Zuliang

    2016-07-01

    Three kinds of 2,5,-diphenyl-dithienol[2, 3-b: 3', 2'-d]thiophene (DP-DTT), 2,5,-distyryl-dithienol[2, 3-b: 3', 2'-d]thiophene (DEP-DTT) and 2,5,-thienyl-dithienol[2, 3-b: 3', 2'-d]thiophene (DET-DTT) micro-region structure and electronic properties were studied. Thin films of these functionalized DTT oligomers were prepared in a one-step drop-casting deposition onto highly oriented pyrolytic graphite substrates. The surface structure of these films was characterized by atomic force microscopy (AFM). Conducting probe atomic force microscope (C-AFM) and Kelvin probe force microscope (KFM) were both used to characterize the electronic transport behavior and surface potential distribution. The substituents of DTT oligomers can greatly affect their aggregation and the hopping conductance mechanism was used to explain the Au-DTTs-HOPG junctions. KFM investigation revealed that these oligomers with different substituents have different highest occupied molecular orbital energy levels. The corresponding theoretical analysis reveals similar result to KFM characterization. The I-V results indicated that the aggregates of molecules were the dominating factor to their micro-region electrical transport.

  13. MANYEFFV3B

    2007-05-30

    MANYEFFV3B is a program to calculate bound state properties of light nuclei, mainly A=3 and A=4 systems, using realistic nucleon-nucleon interactions and, optionally, three-nucleon interaction derived within the chiral effective field theory. Also, the program is used to generate three-body effective interaction from the realistic NN+NNN potentials to be used in shell model calculations for heavier nuclei, typically p=shell nuclei. These calculations are referred to as ab initio no-core shell model calculations. The code outputsmore » eigenvalues and optionally wave functions of the investigated nuclei. Alternatively, the code outputs the three-body effective interactions matrix elements in relative-coordinate basis that needs to be further transformed to single-particle basis by a separate code in order to be used as input to shell model codes with three-body capability (MFD, Redstick). Several passes of the code are required in calculations for A>3 nuclei if three-body effective interaction is to be generated or used and also if NNN interaction is to be included.« less

  14. Sequence and expression of a xylanase gene from the hyperthermophile Thermotoga sp. strain FjSS3-B.1 and characterization of the recombinant enzyme and its activity on kraft pulp.

    PubMed Central

    Saul, D J; Williams, L C; Reeves, R A; Gibbs, M D; Bergquist, P L

    1995-01-01

    A gene expressing xylanase activity was isolated from a genomic library of Thermotoga sp. strain FjSS3-B.1. The sequence of the gene shows that it encodes a single domain, family 10 xylanase. The recombinant enzyme has extremely high thermal stability, activity over a relatively broad pH range, and activity on Pinus radiata kraft pulp. PMID:8526526

  15. Modeling SF3B1 Mutations in Cancer: Advances, Challenges, and Opportunities.

    PubMed

    Inoue, Daichi; Abdel-Wahab, Omar

    2016-09-12

    In this issue of Cancer Cell, Obeng et al. identify the consequences of expressing the most common mutation in the spliceosomal gene SF3B1 on hematopoiesis. The knockin mouse model described represents a valuable tool to dissect the effects of SF3B1 mutations on transformation, splicing, and less well-characterized functions of SF3B1. PMID:27622329

  16. Human Intellectual Disability Genes Form Conserved Functional Modules in Drosophila

    PubMed Central

    Oortveld, Merel A. W.; Keerthikumar, Shivakumar; Oti, Martin; Nijhof, Bonnie; Fernandes, Ana Clara; Kochinke, Korinna; Castells-Nobau, Anna; van Engelen, Eva; Ellenkamp, Thijs; Eshuis, Lilian; Galy, Anne; van Bokhoven, Hans; Habermann, Bianca; Brunner, Han G.; Zweier, Christiane; Verstreken, Patrik; Huynen, Martijn A.; Schenck, Annette

    2013-01-01

    Intellectual Disability (ID) disorders, defined by an IQ below 70, are genetically and phenotypically highly heterogeneous. Identification of common molecular pathways underlying these disorders is crucial for understanding the molecular basis of cognition and for the development of therapeutic intervention strategies. To systematically establish their functional connectivity, we used transgenic RNAi to target 270 ID gene orthologs in the Drosophila eye. Assessment of neuronal function in behavioral and electrophysiological assays and multiparametric morphological analysis identified phenotypes associated with knockdown of 180 ID gene orthologs. Most of these genotype-phenotype associations were novel. For example, we uncovered 16 genes that are required for basal neurotransmission and have not previously been implicated in this process in any system or organism. ID gene orthologs with morphological eye phenotypes, in contrast to genes without phenotypes, are relatively highly expressed in the human nervous system and are enriched for neuronal functions, suggesting that eye phenotyping can distinguish different classes of ID genes. Indeed, grouping genes by Drosophila phenotype uncovered 26 connected functional modules. Novel links between ID genes successfully predicted that MYCN, PIGV and UPF3B regulate synapse development. Drosophila phenotype groups show, in addition to ID, significant phenotypic similarity also in humans, indicating that functional modules are conserved. The combined data indicate that ID disorders, despite their extreme genetic diversity, are caused by disruption of a limited number of highly connected functional modules. PMID:24204314

  17. Genetic ablation of NMDA receptor subunit NR3B in mouse reveals motoneuronal and nonmotoneuronal phenotypes.

    PubMed

    Niemann, Stephan; Kanki, Hiroaki; Fukui, Yasuyuki; Takao, Keizo; Fukaya, Masahiro; Hynynen, Meri N; Churchill, Michael J; Shefner, Jeremy M; Bronson, Roderick T; Brown, Robert H; Watanabe, Masahiko; Miyakawa, Tsuyoshi; Itohara, Shigeyoshi; Hayashi, Yasunori

    2007-09-01

    NR3B is a modulatory subunit of the NMDA receptor, abundantly expressed in both cranial and spinal somatic motoneurons and at lower levels in other regions of the brain as well. Recently, we found the human NR3B gene (GRIN3B) to be highly genetically heterogeneous, and that approximately 10% of the normal European-American population lacks NR3B due to homozygous occurrence of a null allele in the gene. Therefore, it is especially important to understand the phenotypic consequences of the genetic loss of NR3B in both humans and animal models. We here provide results of behavioral analysis of mice genetically lacking NR3B, which is an ideal animal model due to homogeneity in genetic and environmental background. The NR3B(-/-) mice are viable and fertile. Consistent with the expression of NR3B in somatic motoneurons, the NR3B(-/-) mice showed a moderate but significant impairment in motor learning or coordination, and decreased activity in their home cages. Remarkably, the NR3B(-/-) mice showed a highly increased social interaction with their familiar cage mates in their home cage but moderately increased anxiety-like behaviour and decreased social interaction in a novel environment, consistent with the inhibitory role of NR3B on the functions of NMDA receptors. This work is the first reporting of the functional significance of NR3B in vivo and may give insight into the contribution of genetic variability of NR3B in the phenotypic heterogeneity among human population.

  18. Cancer-associated SF3B1 mutations affect alternative splicing by promoting alternative branchpoint usage

    PubMed Central

    Alsafadi, Samar; Houy, Alexandre; Battistella, Aude; Popova, Tatiana; Wassef, Michel; Henry, Emilie; Tirode, Franck; Constantinou, Angelos; Piperno-Neumann, Sophie; Roman-Roman, Sergio; Dutertre, Martin; Stern, Marc-Henri

    2016-01-01

    Hotspot mutations in the spliceosome gene SF3B1 are reported in ∼20% of uveal melanomas. SF3B1 is involved in 3′-splice site (3′ss) recognition during RNA splicing; however, the molecular mechanisms of its mutation have remained unclear. Here we show, using RNA-Seq analyses of uveal melanoma, that the SF3B1R625/K666 mutation results in deregulated splicing at a subset of junctions, mostly by the use of alternative 3′ss. Modelling the differential junctions in SF3B1WT and SF3B1R625/K666 cell lines demonstrates that the deregulated splice pattern strictly depends on SF3B1 status and on the 3'ss-sequence context. SF3B1WT knockdown or overexpression do not reproduce the SF3B1R625/K666 splice pattern, qualifying SF3B1R625/K666 as change-of-function mutants. Mutagenesis of predicted branchpoints reveals that the SF3B1R625/K666-promoted splice pattern is a direct result of alternative branchpoint usage. Altogether, this study provides a better understanding of the mechanisms underlying splicing alterations induced by mutant SF3B1 in cancer, and reveals a role for alternative branchpoints in disease. PMID:26842708

  19. Gene Chips and Functional Genomics

    NASA Astrophysics Data System (ADS)

    Hamadeh, Hisham; Afshari, Cynthia

    2000-11-01

    These past few years of scientific discovery will undoubtedly be remembered as the "genomics era," the period in which biologists succeeded in enumerating the sequence of nucleotides making up all, or at least most, of human DNA. And while this achievement has been heralded as a technological feat equal to the moon landing, it is only the first of many advances in DNA technology. Scientists are now faced with the task of understanding the meaning of the DNA sequence. Specifically, they want to learn how the DNA code relates to protein function. An important tool in the study of "functional genomics," is the cDNA microarray—also known as the gene chip. Inspired by computer microchips, gene chips allow scientists to monitor the expression of hundreds, even thousands, of genes in a fraction of the time it used to take to monitor the expression of a single one. By altering the conditions under which a particular tissue expresses genes—say, by exposing it to toxins or growth factors—scientists can determine the suite of genes expressed in different situations and hence start to get a handle on the function of these genes. The authors discuss this important new technology and some of its practical applications.

  20. Alkylphenol Xenoestrogens with Varying Carbon Chain Lengths Differentially and Potently Activate Signaling and Functional Responses in GH3/B6/F10 Somatomammotropes

    PubMed Central

    Kochukov, Mikhail Y.; Jeng, Yow-Jiun; Watson, Cheryl S.

    2009-01-01

    Background Alkylphenols varying in their side-chain lengths [ethyl-, propyl-, octyl-, and nonylphenol (EP, PP, OP, and NP, respectively)] and bisphenol A (BPA) represent a large group of structurally related xenoestrogens that have endocrine-disruptive effects. Their rapid nongenomic effects that depend on structure for cell signaling and resulting functions are unknown. Objectives We compared nongenomic estrogenic activities of alkylphenols with BPA and 17β-estradiol (E2) in membrane estrogen receptor-α–enriched GH3/B6/F10 pituitary tumor cells. These actions included calcium (Ca) signaling, prolactin (PRL) release, extracellular-regulated kinase (ERK) phosphorylation, and cell proliferation. Methods We imaged Ca using fura-2, measured PRL release via radioimmunoassay, detected ERK phosphorylation by fixed cell immunoassay, and estimated cell number using the crystal violet assay. Results All compounds caused increases in Ca oscillation frequency and intracellular Ca volume at 100 fM to 1 nM concentrations, although long-chain alkylphenols were most effective. All estrogens caused rapid PRL release at concentrations as low as 1 fM to 10 pM; the potency of EP, PP, and NP exceeded that of E2. All compounds at 1 nM produced similar increases in ERK phosphorylation, causing rapid peaks at 2.5–5 min, followed by inactivation and additional 60-min peaks (except for BPA). Dose–response patterns of ERK activation at 5 min were similar for E2, BPA, and PP, whereas EP caused larger effects. Only E2 and NP increased cell number. Some rapid estrogenic responses showed correlations with the hydrophobicity of estrogenic molecules; the more hydrophobic OP and NP were superior at Ca and cell proliferation responses, whereas the less hydrophobic EP and PP were better at ERK activations. Conclusions Alkylphenols are potent estrogens in evoking these nongenomic responses contributing to complex functions; their hydrophobicity can largely predict these behaviors. PMID

  1. Functional analysis of the two Brassica AP3 genes involved in apetalous and stamen carpelloid phenotypes.

    PubMed

    Zhang, Yanfeng; Wang, Xuefang; Zhang, Wenxue; Yu, Fei; Tian, Jianhua; Li, Dianrong; Guo, Aiguang

    2011-01-01

    The Arabidopsis homeotic genes APETALA3 (AP3) and PISTILLATA (PI) are B genes which encode MADS-box transcription factors and specify petal and stamen identities. In the current study, the stamen carpelloid (SC) mutants, HGMS and AMS, of B. rapa and B. napus were investigated and two types of AP3 genes, B.AP3.a and B.AP3.b, were functional characterized. B.AP3.a and B.AP3.b share high similarity in amino acid sequences except for 8 residues difference located at the C-terminus. Loss of this 8 residues in B.AP3.b led to the change of PI-derived motifs. Meanwhile, B.AP3.a specified petal and stamen development, whereas B.AP3.b only specified stamen development. In B. rapa, the mutations of both genes generated the SC mutant HGMS. In B. napus that contained two B.AP3.a and two B.AP3.b, loss of the two B.AP3.a functions was the key reason for the apetalous mutation, however, the loss-of-function in all four AP3 was related to the SC mutant AMS. We inferred that the 8 residues or the PI-derived motif in AP3 gene probably relates to petal formation.

  2. IKKβ/NFκBp65 activated by interleukin-13 targets the autophagy-related genes LC3B and beclin 1 in fibroblasts co-cultured with breast cancer cells

    PubMed Central

    LI, WEN-LIN; XIONG, LI-XIA; SHI, XIAO-YU; XIAO, LIANG; QI, GUAN-YUN; MENG, CHUANG

    2016-01-01

    Interleukin-13 (IL-13), a Th2 cytokine, plays an important role in fibrosis, inflammation, tissue hyperresponsiveness and tumor development. Although studies have demonstrated that IL-13 exerts its roles through signal transducer and activator of transcription 6 (STAT6) signaling pathway, recent studies have revealed that I kappa B kinase (IKK)/nuclear factor kappa B (NFκB) pathway may also be involved in. The aim of this study was to investigate whether IL-13 delivers signals to IKKβ/NFκBp65 and whether autophagy genes are IL-13-induced the activation of NFκBp65 transcriptional targets in fibroblasts of breast tumor stroma. We examined the phosphorylation of IKKβ, the activation of NFκBp65 and NFκBp65-targeted autophagy genes in fibroblasts co-cultured with breast cancer cells under the condition of IL-13 stimulation. Results of this study showed that IL-13 induced IKKβ phosphorylation in the fibroblast line ESF co-cultured with breast cancer cell line BT474, and subsequently NFκBp65 was activated and aimed at beclin 1 and microtubule-associated protein 1 light chain 3 B (MAP1LC3B or LC3B) in these ESF cells. BMS345541, an inhibitor of IKK/NFκB pathway, significantly inhibited the IL-13-induced the activation of NFκB and also inhibited NFκB-targeted beclin 1 and LC3B expression. Our results suggest that IL-13 regulates beclin 1 and LC3B expression through IKKβ/NFκBp65 in fibroblasts co-cultured with breast cancer cells, and IL-13 plays role in activating IKKβ/NFκBp65. PMID:27073433

  3. Molecular basis of the attenuated phenotype of human APOBEC3B DNA mutator enzyme.

    PubMed

    Caval, Vincent; Bouzidi, Mohamed S; Suspène, Rodolphe; Laude, Hélène; Dumargne, Marie-Charlotte; Bashamboo, Anu; Krey, Thomas; Vartanian, Jean-Pierre; Wain-Hobson, Simon

    2015-10-30

    The human APOBEC3A and APOBEC3B genes (A3A and A3B) encode DNA mutator enzymes that deaminate cytidine and 5-methylcytidine residues in single-stranded DNA (ssDNA). They are important sources of mutations in many cancer genomes which show a preponderance of CG->TA transitions. Although both enzymes can hypermutate chromosomal DNA in an experimental setting, only A3A can induce double strand DNA breaks, even though the catalytic domains of A3B and A3A differ by only 9% at the protein level. Accordingly we sought the molecular basis underlying A3B attenuation through the generation of A3A-A3B chimeras and mutants. It transpires that the N-terminal domain facilitates A3B activity while a handful of substitutions in the catalytic C-terminal domain impacting ssDNA binding serve to attenuate A3B compared to A3A. Interestingly, functional attenuation is also observed for the rhesus monkey rhA3B enzyme compared to rhA3A indicating that this genotoxic dichotomy has been selected for and maintained for some 38 million years. Expression of all human ssDNA cytidine deaminase genes is absent in mature sperm indicating they contribute to somatic mutation and cancer but not human diversity.

  4. Molecular basis of the attenuated phenotype of human APOBEC3B DNA mutator enzyme

    PubMed Central

    Caval, Vincent; Bouzidi, Mohamed S.; Suspène, Rodolphe; Laude, Hélène; Dumargne, Marie-Charlotte; Bashamboo, Anu; Krey, Thomas; Vartanian, Jean-Pierre; Wain-Hobson, Simon

    2015-01-01

    The human APOBEC3A and APOBEC3B genes (A3A and A3B) encode DNA mutator enzymes that deaminate cytidine and 5-methylcytidine residues in single-stranded DNA (ssDNA). They are important sources of mutations in many cancer genomes which show a preponderance of CG->TA transitions. Although both enzymes can hypermutate chromosomal DNA in an experimental setting, only A3A can induce double strand DNA breaks, even though the catalytic domains of A3B and A3A differ by only 9% at the protein level. Accordingly we sought the molecular basis underlying A3B attenuation through the generation of A3A-A3B chimeras and mutants. It transpires that the N-terminal domain facilitates A3B activity while a handful of substitutions in the catalytic C-terminal domain impacting ssDNA binding serve to attenuate A3B compared to A3A. Interestingly, functional attenuation is also observed for the rhesus monkey rhA3B enzyme compared to rhA3A indicating that this genotoxic dichotomy has been selected for and maintained for some 38 million years. Expression of all human ssDNA cytidine deaminase genes is absent in mature sperm indicating they contribute to somatic mutation and cancer but not human diversity. PMID:26384561

  5. Knock-out mutations of Arabidopsis SmD3-b induce pleotropic phenotypes through altered transcript splicing.

    PubMed

    Swaraz, A M; Park, Young-Doo; Hur, Yoonkang

    2011-05-01

    SmD3 is a core protein of small nuclear ribonucleoprotein (snRNP) essential for splicing of primary transcripts. To elucidate function of SmD3 protein in plants, phenotypes and gene expression of SmD3 knock-out and overexpressing mutants in Arabidopsis have been analyzed. smd3-a knock-out mutant or SmD3-a and SmD3-b overexpressors did not show phenotypic alteration. Knock-out of SmD3-b resulted in the pleotropic phenotypes of delayed flowering time and completion of life cycle, reduced root growth, partially defective leaf venation, abnormal numbers of trichome branches, and changed numbers of floral organs. Microarray data revealed that the smd3-b mutant had altered expression of genes related to the above phenotypes, indirectly suggesting that changed splicing of these genes may cause the observed phenotypes. Splicing of selected genes was either totally blocked or reduced in the smd3-b mutant, indicating the important role of SmD3-b in the process. A double knock-out mutant of smd3-a and smd3-b could not be generated, indicating possible redundant function of these two genes. All data indicate that SmD3-b may be major component of the spliceosomal snRNP in Arabidopsis, but the function of SmD3-a may be redundant.

  6. Termites as functional gene resources.

    PubMed

    Matsui, Toru; Tokuda, Gaku; Shinzato, Naoya

    2009-01-01

    Termites (Dictyoptera, Isoptera) comprise a complex assemblage of diverse species, roughly divided into so-called lower and higher termites. Lower termites harbor a dense and diverse population of prokaryotes and flagellated protists (single-cell eukaryotes) in their gut. Higher termites comprise only one apical family (Termitidae) but more than three-quarters of all termite species. While they also harbor a dense and diverse array of prokaryotes, higher termites typically lack flagellated protists. Although termites are regarded as harmful because of the ability to decompose cellulosic materials such as houses made of wood. Classical enrichment culture technique and recent metagenomic approach showed that the termites and/or their symbionts are potentially good resource of functional genes for industrial applications. Recent papers and patents showed termites and its symbionts have not only cellulolytic or lignin decomposition activity but also aromatic hydrocarbons degradation. These functions would be useful for biomass utilization, environmental remediation, and fine-chemicals production. In this review, along with the current patents of termite derived biochemical functions, future prospects for practical application based on the recent progress in metagenomic research are discussed.

  7. Boeing F3B-1

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Boeing F3B-1: While most Boeing F3B-1s served aboard the U. S. Navy aircraft carriers Lexington and Saratoga, this example flew in NACA hands at the Langley Memorial Aeronautical Laboratory in the late 1920's. Also known as the Boeing Model 77, the aircraft was powered by a Pratt & Whitney Wasp radial engine.

  8. FunGene: the functional gene pipeline and repository

    PubMed Central

    Fish, Jordan A.; Chai, Benli; Wang, Qiong; Sun, Yanni; Brown, C. Titus; Tiedje, James M.; Cole, James R.

    2013-01-01

    Ribosomal RNA genes have become the standard molecular markers for microbial community analysis for good reasons, including universal occurrence in cellular organisms, availability of large databases, and ease of rRNA gene region amplification and analysis. As markers, however, rRNA genes have some significant limitations. The rRNA genes are often present in multiple copies, unlike most protein-coding genes. The slow rate of change in rRNA genes means that multiple species sometimes share identical 16S rRNA gene sequences, while many more species share identical sequences in the short 16S rRNA regions commonly analyzed. In addition, the genes involved in many important processes are not distributed in a phylogenetically coherent manner, potentially due to gene loss or horizontal gene transfer. While rRNA genes remain the most commonly used markers, key genes in ecologically important pathways, e.g., those involved in carbon and nitrogen cycling, can provide important insights into community composition and function not obtainable through rRNA analysis. However, working with ecofunctional gene data requires some tools beyond those required for rRNA analysis. To address this, our Functional Gene Pipeline and Repository (FunGene; http://fungene.cme.msu.edu/) offers databases of many common ecofunctional genes and proteins, as well as integrated tools that allow researchers to browse these collections and choose subsets for further analysis, build phylogenetic trees, test primers and probes for coverage, and download aligned sequences. Additional FunGene tools are specialized to process coding gene amplicon data. For example, FrameBot produces frameshift-corrected protein and DNA sequences from raw reads while finding the most closely related protein reference sequence. These tools can help provide better insight into microbial communities by directly studying key genes involved in important ecological processes. PMID:24101916

  9. Genes2FANs: connecting genes through functional association networks

    PubMed Central

    2012-01-01

    Background Protein-protein, cell signaling, metabolic, and transcriptional interaction networks are useful for identifying connections between lists of experimentally identified genes/proteins. However, besides physical or co-expression interactions there are many ways in which pairs of genes, or their protein products, can be associated. By systematically incorporating knowledge on shared properties of genes from diverse sources to build functional association networks (FANs), researchers may be able to identify additional functional interactions between groups of genes that are not readily apparent. Results Genes2FANs is a web based tool and a database that utilizes 14 carefully constructed FANs and a large-scale protein-protein interaction (PPI) network to build subnetworks that connect lists of human and mouse genes. The FANs are created from mammalian gene set libraries where mouse genes are converted to their human orthologs. The tool takes as input a list of human or mouse Entrez gene symbols to produce a subnetwork and a ranked list of intermediate genes that are used to connect the query input list. In addition, users can enter any PubMed search term and then the system automatically converts the returned results to gene lists using GeneRIF. This gene list is then used as input to generate a subnetwork from the user’s PubMed query. As a case study, we applied Genes2FANs to connect disease genes from 90 well-studied disorders. We find an inverse correlation between the counts of links connecting disease genes through PPI and links connecting diseases genes through FANs, separating diseases into two categories. Conclusions Genes2FANs is a useful tool for interpreting the relationships between gene/protein lists in the context of their various functions and networks. Combining functional association interactions with physical PPIs can be useful for revealing new biology and help form hypotheses for further experimentation. Our finding that disease genes in

  10. Biological cluster evaluation for gene function prediction.

    PubMed

    Klie, Sebastian; Nikoloski, Zoran; Selbig, Joachim

    2014-06-01

    Recent advances in high-throughput omics techniques render it possible to decode the function of genes by using the "guilt-by-association" principle on biologically meaningful clusters of gene expression data. However, the existing frameworks for biological evaluation of gene clusters are hindered by two bottleneck issues: (1) the choice for the number of clusters, and (2) the external measures which do not take in consideration the structure of the analyzed data and the ontology of the existing biological knowledge. Here, we address the identified bottlenecks by developing a novel framework that allows not only for biological evaluation of gene expression clusters based on existing structured knowledge, but also for prediction of putative gene functions. The proposed framework facilitates propagation of statistical significance at each of the following steps: (1) estimating the number of clusters, (2) evaluating the clusters in terms of novel external structural measures, (3) selecting an optimal clustering algorithm, and (4) predicting gene functions. The framework also includes a method for evaluation of gene clusters based on the structure of the employed ontology. Moreover, our method for obtaining a probabilistic range for the number of clusters is demonstrated valid on synthetic data and available gene expression profiles from Saccharomyces cerevisiae. Finally, we propose a network-based approach for gene function prediction which relies on the clustering of optimal score and the employed ontology. Our approach effectively predicts gene function on the Saccharomyces cerevisiae data set and is also employed to obtain putative gene functions for an Arabidopsis thaliana data set.

  11. Discovery of Tumor Suppressor Gene Function.

    ERIC Educational Resources Information Center

    Oppenheimer, Steven B.

    1995-01-01

    This is an update of a 1991 review on tumor suppressor genes written at a time when understanding of how the genes work was limited. A recent major breakthrough in the understanding of the function of tumor suppressor genes is discussed. (LZ)

  12. Truncated DNMT3B isoform DNMT3B7 suppresses growth, induces differentiation, and alters DNA methylation in human neuroblastoma

    PubMed Central

    Ostler, Kelly R.; Yang, Qiwei; Looney, Timothy J.; Zhang, Li; Vasanthakumar, Aparna; Tian, Yufeng; Kocherginsky, Masha; Raimondi, Stacey L.; DeMaio, Jessica G.; Salwen, Helen R.; Gu, Song; Chlenski, Alexandre; Naranjo, Arlene; Gill, Amy; Peddinti, Radhika; Lahn, Bruce T.; Cohn, Susan L.; Godley, Lucy A.

    2012-01-01

    Epigenetic changes in pediatric neuroblastoma may contribute to the aggressive pathophysiology of this disease, but little is known about the basis for such changes. In this study, we examined a role for the DNA methyltransferase DNMT3B, in particular, the truncated isoform DNMT3B7 which is generated frequently in cancer. To investigate if aberrant DNMT3B transcripts alter DNA methylation, gene expression, and phenotypic character in neuroblastoma, we measured DNMT3B expression in primary tumors. Higher levels of DNMT3B7 were detected in differentiated ganglioneuroblastomas compared to undifferentiated neuroblastomas, suggesting that expression of DNMT3B7 may induce a less aggressive clinical phenotype. To test this hypothesis, we investigated the effects of enforced DNMT3B7 expression in neuroblastoma cells, finding a significant inhibition of cell proliferation in vitro and angiogenesis and tumor growth in vivo. DNMT3B7-positive cells had higher levels of total genomic methylation and a dramatic decrease in expression of the FOS and JUN family members that comprise AP1 transcription factors. Consistent with an established antagonistic relationship between AP1 expression and retinoic acid receptor activity, increased differentiation was seen in the DNMT3B7-expressing neuroblastoma cells following treatment with all-trans retinoic acid (ATRA) compared to controls. Our results indicate that DNMT3B7 modifies the epigenome in neuroblastoma cells to induce changes in gene expression, inhibit tumor growth, and increase sensitivity to ATRA. PMID:22815530

  13. Central auditory function of deafness genes.

    PubMed

    Willaredt, Marc A; Ebbers, Lena; Nothwang, Hans Gerd

    2014-06-01

    The highly variable benefit of hearing devices is a serious challenge in auditory rehabilitation. Various factors contribute to this phenomenon such as the diversity in ear defects, the different extent of auditory nerve hypoplasia, the age of intervention, and cognitive abilities. Recent analyses indicate that, in addition, central auditory functions of deafness genes have to be considered in this context. Since reduced neuronal activity acts as the common denominator in deafness, it is widely assumed that peripheral deafness influences development and function of the central auditory system in a stereotypical manner. However, functional characterization of transgenic mice with mutated deafness genes demonstrated gene-specific abnormalities in the central auditory system as well. A frequent function of deafness genes in the central auditory system is supported by a genome-wide expression study that revealed significant enrichment of these genes in the transcriptome of the auditory brainstem compared to the entire brain. Here, we will summarize current knowledge of the diverse central auditory functions of deafness genes. We furthermore propose the intimately interwoven gene regulatory networks governing development of the otic placode and the hindbrain as a mechanistic explanation for the widespread expression of these genes beyond the cochlea. We conclude that better knowledge of central auditory dysfunction caused by genetic alterations in deafness genes is required. In combination with improved genetic diagnostics becoming currently available through novel sequencing technologies, this information will likely contribute to better outcome prediction of hearing devices.

  14. Antagonistic functional duality of cancer genes.

    PubMed

    Stepanenko, A A; Vassetzky, Y S; Kavsan, V M

    2013-10-25

    Cancer evolution is a stochastic process both at the genome and gene levels. Most of tumors contain multiple genetic subclones, evolving in either succession or in parallel, either in a linear or branching manner, with heterogeneous genome and gene alterations, extensively rewired signaling networks, and addicted to multiple oncogenes easily switching with each other during cancer progression and medical intervention. Hundreds of discovered cancer genes are classified according to whether they function in a dominant (oncogenes) or recessive (tumor suppressor genes) manner in a cancer cell. However, there are many cancer "gene-chameleons", which behave distinctly in opposite way in the different experimental settings showing antagonistic duality. In contrast to the widely accepted view that mutant NADP(+)-dependent isocitrate dehydrogenases 1/2 (IDH1/2) and associated metabolite 2-hydroxyglutarate (R)-enantiomer are intrinsically "the drivers" of tumourigenesis, mutant IDH1/2 inhibited, promoted or had no effect on cell proliferation, growth and tumorigenicity in diverse experiments. Similar behavior was evidenced for dozens of cancer genes. Gene function is dependent on genetic network, which is defined by the genome context. The overall changes in karyotype can result in alterations of the role and function of the same genes and pathways. The diverse cell lines and tumor samples have been used in experiments for proving gene tumor promoting/suppressive activity. They all display heterogeneous individual karyotypes and disturbed signaling networks. Consequently, the effect and function of gene under investigation can be opposite and versatile in cells with different genomes that may explain antagonistic duality of cancer genes and the cell type- or the cellular genetic/context-dependent response to the same protein. Antagonistic duality of cancer genes might contribute to failure of chemotherapy. Instructive examples of unexpected activity of cancer genes and

  15. Pattern Genes Suggest Functional Connectivity of Organs.

    PubMed

    Qin, Yangmei; Pan, Jianbo; Cai, Meichun; Yao, Lixia; Ji, Zhiliang

    2016-05-26

    Human organ, as the basic structural and functional unit in human body, is made of a large community of different cell types that organically bound together. Each organ usually exerts highly specified physiological function; while several related organs work smartly together to perform complicated body functions. In this study, we present a computational effort to understand the roles of genes in building functional connection between organs. More specifically, we mined multiple transcriptome datasets sampled from 36 human organs and tissues, and quantitatively identified 3,149 genes whose expressions showed consensus modularly patterns: specific to one organ/tissue, selectively expressed in several functionally related tissues and ubiquitously expressed. These pattern genes imply intrinsic connections between organs. According to the expression abundance of the 766 selective genes, we consistently cluster the 36 human organs/tissues into seven functional groups: adipose &gland, brain, muscle, immune, metabolism, mucoid and nerve conduction. The organs and tissues in each group either work together to form organ systems or coordinate to perform particular body functions. The particular roles of specific genes and selective genes suggest that they could not only be used to mechanistically explore organ functions, but also be designed for selective biomarkers and therapeutic targets.

  16. Pattern Genes Suggest Functional Connectivity of Organs

    NASA Astrophysics Data System (ADS)

    Qin, Yangmei; Pan, Jianbo; Cai, Meichun; Yao, Lixia; Ji, Zhiliang

    2016-05-01

    Human organ, as the basic structural and functional unit in human body, is made of a large community of different cell types that organically bound together. Each organ usually exerts highly specified physiological function; while several related organs work smartly together to perform complicated body functions. In this study, we present a computational effort to understand the roles of genes in building functional connection between organs. More specifically, we mined multiple transcriptome datasets sampled from 36 human organs and tissues, and quantitatively identified 3,149 genes whose expressions showed consensus modularly patterns: specific to one organ/tissue, selectively expressed in several functionally related tissues and ubiquitously expressed. These pattern genes imply intrinsic connections between organs. According to the expression abundance of the 766 selective genes, we consistently cluster the 36 human organs/tissues into seven functional groups: adipose & gland, brain, muscle, immune, metabolism, mucoid and nerve conduction. The organs and tissues in each group either work together to form organ systems or coordinate to perform particular body functions. The particular roles of specific genes and selective genes suggest that they could not only be used to mechanistically explore organ functions, but also be designed for selective biomarkers and therapeutic targets.

  17. Functional genomics: Probing plant gene function and expression with transposons

    PubMed Central

    Martienssen, Robert A.

    1998-01-01

    Transposable elements provide a convenient and flexible means to disrupt plant genes, so allowing their function to be assessed. By engineering transposons to carry reporter genes and regulatory signals, the expression of target genes can be monitored and to some extent manipulated. Two strategies for using transposons to assess gene function are outlined here: First, the PCR can be used to identify plants that carry insertions into specific genes from among pools of heavily mutagenized individuals (site-selected transposon mutagenesis). This method requires that high copy transposons be used and that a relatively large number of reactions be performed to identify insertions into genes of interest. Second, a large library of plants, each carrying a unique insertion, can be generated. Each insertion site then can be amplified and sequenced systematically. These two methods have been demonstrated in maize, Arabidopsis, and other plant species, and the relative merits of each are discussed in the context of plant genome research. PMID:9482828

  18. Pyrano-[2,3b]-pyridines as potassium channel antagonists.

    PubMed

    Finlay, Heather J; Lloyd, John; Nyman, Michael; Conder, Mary Lee; West, Tonya; Levesque, Paul; Atwal, Karnail

    2008-04-15

    The design and synthesis of a series of highly functionalized pyrano-[2,3b]-pyridines is described. These compounds were assayed for their ability to block the I(Kur) channel encoded by the gene hKV1.5 in patch-clamped L-929 cells. Six of the compounds in this series showed sub-micromolar activity, the most potent being 4-(4-ethyl-benzenesulfonylamino)-3-hydroxy-2,2-dimethyl-3,4-dihydro-2H-pyrano[2,3b]-pyridine-6-carboxylic acid ethyl-phenyl-amide with an IC(50) of 378 nM.

  19. Missing gene identification using functional coherence scores

    PubMed Central

    Chitale, Meghana; Khan, Ishita K.; Kihara, Daisuke

    2016-01-01

    Reconstructing metabolic and signaling pathways is an effective way of interpreting a genome sequence. A challenge in a pathway reconstruction is that often genes in a pathway cannot be easily found, reflecting current imperfect information of the target organism. In this work, we developed a new method for finding missing genes, which integrates multiple features, including gene expression, phylogenetic profile, and function association scores. Particularly, for considering function association between candidate genes and neighboring proteins to the target missing gene in the network, we used Co-occurrence Association Score (CAS) and PubMed Association Score (PAS), which are designed for capturing functional coherence of proteins. We showed that adding CAS and PAS substantially improve the accuracy of identifying missing genes in the yeast enzyme-enzyme network compared to the cases when only the conventional features, gene expression, phylogenetic profile, were used. Finally, it was also demonstrated that the accuracy improves by considering indirect neighbors to the target enzyme position in the network using a proper network-topology-based weighting scheme. PMID:27552989

  20. Morpholinos: studying gene function in the chick

    PubMed Central

    Norris, Anneliese; Streit, Andrea

    2014-01-01

    The use of morpholinos for perturbing gene function in the chick, Gallus gallus, has led to many important discoveries in developmental biology. This technology makes use of in vivo electroporation, which allows gain and loss of function in a temporally, and spatially controlled manner. Using this method, morpholinos can be transfected into embryonic tissues from early to late developmental stages. In this article, we describe the methods currently used in our laboratory to knock down gene function using morpholinos in vivo. We also detail how morpholinos are used to provide consistency of the results, and describe two protocols to visualise the morpholino after electroporation. In addition, we provide guidance on avoiding potential pitfalls, and suggestions for troubleshooting solutions. These revised techniques provide a practical starting point for investigating gene function in the chick. PMID:24184187

  1. Studying Functions of All Yeast Genes Simultaneously

    NASA Technical Reports Server (NTRS)

    Stolc, Viktor; Eason, Robert G.; Poumand, Nader; Herman, Zelek S.; Davis, Ronald W.; Anthony Kevin; Jejelowo, Olufisayo

    2006-01-01

    A method of studying the functions of all the genes of a given species of microorganism simultaneously has been developed in experiments on Saccharomyces cerevisiae (commonly known as baker's or brewer's yeast). It is already known that many yeast genes perform functions similar to those of corresponding human genes; therefore, by facilitating understanding of yeast genes, the method may ultimately also contribute to the knowledge needed to treat some diseases in humans. Because of the complexity of the method and the highly specialized nature of the underlying knowledge, it is possible to give only a brief and sketchy summary here. The method involves the use of unique synthetic deoxyribonucleic acid (DNA) sequences that are denoted as DNA bar codes because of their utility as molecular labels. The method also involves the disruption of gene functions through deletion of genes. Saccharomyces cerevisiae is a particularly powerful experimental system in that multiple deletion strains easily can be pooled for parallel growth assays. Individual deletion strains recently have been created for 5,918 open reading frames, representing nearly all of the estimated 6,000 genetic loci of Saccharomyces cerevisiae. Tagging of each deletion strain with one or two unique 20-nucleotide sequences enables identification of genes affected by specific growth conditions, without prior knowledge of gene functions. Hybridization of bar-code DNA to oligonucleotide arrays can be used to measure the growth rate of each strain over several cell-division generations. The growth rate thus measured serves as an index of the fitness of the strain.

  2. Structure, expression and functions of MTA genes.

    PubMed

    Kumar, Rakesh; Wang, Rui-An

    2016-05-15

    Metastatic associated proteins (MTA) are integrators of upstream regulatory signals with the ability to act as master coregulators for modifying gene transcriptional activity. The MTA family includes three genes and multiple alternatively spliced variants. The MTA proteins neither have their own enzymatic activity nor have been shown to directly interact with DNA. However, MTA proteins interact with a variety of chromatin remodeling factors and complexes with enzymatic activities for modulating the plasticity of nucleosomes, leading to the repression or derepression of target genes or other extra-nuclear and nucleosome remodeling and histone deacetylase (NuRD)-complex independent activities. The functions of MTA family members are driven by the steady state levels and subcellular localization of MTA proteins, the dynamic nature of modifying signals and enzymes, the structural features and post-translational modification of protein domains, interactions with binding proteins, and the nature of the engaged and resulting features of nucleosomes in the proximity of target genes. In general, MTA1 and MTA2 are the most upregulated genes in human cancer and correlate well with aggressive phenotypes, therapeutic resistance, poor prognosis and ultimately, unfavorable survival of cancer patients. Here we will discuss the structure, expression and functions of the MTA family of genes in the context of cancer cells. PMID:26869315

  3. Functionalization of a protosynaptic gene expression network

    PubMed Central

    Conaco, Cecilia; Bassett, Danielle S.; Zhou, Hongjun; Arcila, Mary Luz; Degnan, Sandie M.; Degnan, Bernard M.; Kosik, Kenneth S.

    2012-01-01

    Assembly of a functioning neuronal synapse requires the precisely coordinated synthesis of many proteins. To understand the evolution of this complex cellular machine, we tracked the developmental expression patterns of a core set of conserved synaptic genes across a representative sampling of the animal kingdom. Coregulation, as measured by correlation of gene expression over development, showed a marked increase as functional nervous systems emerged. In the earliest branching animal phyla (Porifera), in which a nearly complete set of synaptic genes exists in the absence of morphological synapses, these “protosynaptic” genes displayed a lack of global coregulation although small modules of coexpressed genes are readily detectable by using network analysis techniques. These findings suggest that functional synapses evolved by exapting preexisting cellular machines, likely through some modification of regulatory circuitry. Evolutionarily ancient modules continue to operate seamlessly within the synapses of modern animals. This work shows that the application of network techniques to emerging genomic and expression data can provide insights into the evolution of complex cellular machines such as the synapse. PMID:22723359

  4. Gain of function mutations for paralogous Hox genes: implications for the evolution of Hox gene function.

    PubMed

    Pollock, R A; Sreenath, T; Ngo, L; Bieberich, C J

    1995-05-01

    To investigate the functions of paralogous Hox genes, we compared the phenotypic consequences of altering the embryonic patterns of expression of Hoxb-8 and Hoxc-8 in transgenic mice. A comparison of the phenotypic consequences of altered expression of the two paralogs in the axial skeletons of newborns revealed an array of common transformations as well as morphological changes unique to each gene. Divergence of function of the two paralogs was clearly evident in costal derivatives, where increased expression of the two genes affected opposite ends of the ribs. Many of the morphological consequences of expanding the mesodermal domain and magnitude of expression of either gene were atavistic, inducing the transformation of axial skeletal structures from a modern to an earlier evolutionary form. We propose that regional specialization of the vertebral column has been driven by regionalization of Hox gene function and that a major aspect of this evolutionary progression may have been restriction of Hox gene expression.

  5. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9

    PubMed Central

    Swiech, Lukasz; Heidenreich, Matthias; Banerjee, Abhishek; Habib, Naomi; Li, Yinqing; Trombetta, John; Sur, Mriganka; Zhang, Feng

    2015-01-01

    Probing gene function in the mammalian brain can be greatly assisted with methods to manipulate the genome of neurons in vivo. The clustered, regularly interspaced, short palindromic repeats (CRISPR)-associated endonuclease (Cas)9 from Streptococcus pyogenes (SpCas9)1 can be used to edit single or multiple genes in replicating eukaryotic cells, resulting in frame-shifting insertion/deletion (indel) mutations and subsequent protein depletion. Here, we delivered SpCas9 and guide RNAs using adeno-associated viral (AAV) vectors to target single (Mecp2) as well as multiple genes (Dnmt1, Dnmt3a and Dnmt3b) in the adult mouse brain in vivo. We characterized the effects of genome modifications in postmitotic neurons using biochemical, genetic, electrophysiological and behavioral readouts. Our results demonstrate that AAV-mediated SpCas9 genome editing can enable reverse genetic studies of gene function in the brain. PMID:25326897

  6. 18 CFR 3b.4 - Government contractors.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Government contractors. 3b.4 Section 3b.4 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... PERSONAL INFORMATION General § 3b.4 Government contractors. Systems of records operated by a...

  7. 18 CFR 3b.4 - Government contractors.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Government contractors. 3b.4 Section 3b.4 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... PERSONAL INFORMATION General § 3b.4 Government contractors. Systems of records operated by a...

  8. 18 CFR 3b.4 - Government contractors.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Government contractors. 3b.4 Section 3b.4 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... PERSONAL INFORMATION General § 3b.4 Government contractors. Systems of records operated by a...

  9. 18 CFR 3b.4 - Government contractors.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Government contractors. 3b.4 Section 3b.4 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... PERSONAL INFORMATION General § 3b.4 Government contractors. Systems of records operated by a...

  10. 18 CFR 3b.4 - Government contractors.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Government contractors. 3b.4 Section 3b.4 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... PERSONAL INFORMATION General § 3b.4 Government contractors. Systems of records operated by a...

  11. Evolution and function of de novo originated genes.

    PubMed

    Wu, Dong-Dong; Zhang, Ya-Ping

    2013-05-01

    De novo origination has recently been appreciated to be an important mechanism contributing to the origin of genes. Evidence indicates that de novo originated genes can evolve important and even essential functions rapidly. We present an "adaptation following neutrality" process to explain the evolution of essential function of new genes. How new de novo originated genes become involved in pathways and interact with other old genes, and the exact functions of these new genes, however, remains largely undocumented. Examinations of the function of de novo origin and the function of noncoding RNA genes should become more frequent and appreciated in the future studies.

  12. Retinoic acid negatively regulates dact3b expression in the hindbrain of zebrafish embryos

    PubMed Central

    Mandal, Amrita; Waxman, Joshua

    2014-01-01

    Wnt signaling plays important roles in normal development as well as pathophysiological conditions. The Dapper antagonist of β-catenin (Dact) proteins are modulators of both canonical and non-canonical Wnt signaling via direct interactions with Dishevelled (Dvl) and Van Gogh like-2 (Vangl2). Here, we report the dynamic expression patterns of two zebrafish dact3 paralogs during early embryonic development. Our whole mount in situ hybridization (WISH) analysis indicates that specific dact3a expression starts by the tailbud stage in adaxial cells. Later, it is expressed in the anterior lateral plate mesoderm, somites, migrating cranial neural crest, and hindbrain neurons. By comparison, dact3b expression initiates on the dorsal side at the dome stage and soon after is expressed in the dorsal forerunner cells (DFCs) during gastrulation. At later stages, dact3b expression becomes restricted to the branchial neurons of the hindbrain and to the 2nd pharyngeal arch. To investigate how zebrafish dact3 gene expression is regulated, we manipulated retinoic acid (RA) signaling during development and found it negatively regulates dact3b in the hindbrain. Our study is the first to document the expression of the paralogous zebrafish dact3 genes during early development and demonstrate dact3b can be regulated by RA signaling. Therefore, our study opens up new avenues to study Dact3 function in the development of multiple tissues and suggests a previously unappreciated cross regulation of Wnt signaling by RA signaling in the developing vertebrate hindbrain. PMID:25266145

  13. Insights into SAGA function during gene expression

    PubMed Central

    Rodríguez-Navarro, Susana

    2009-01-01

    Histone modifications are a crucial source of epigenetic control. SAGA (Spt–Ada–Gcn5 acetyltransferase) is a chromatin-modifying complex that contains two distinct enzymatic activities, Gcn5 and Ubp8, through which it acetylates and deubiquitinates histone residues, respectively, thereby enforcing a pattern of modifications that is decisive in regulating gene expression. Here, I discuss the latest contributions to understanding the roles of the SAGA complex, highlighting the characterization of the SAGA-deubiquitination module, and emphasizing the functions newly ascribed to SAGA during transcription elongation and messenger-RNA export. These findings suggest that a crosstalk exists between chromatin remodelling, transcription and messenger-RNA export, which could constitute a checkpoint for accurate gene expression. I focus particularly on the new components of human SAGA, which was recently discovered and confirms the conservation of the SAGA complex throughout evolution. PMID:19609321

  14. ALTERNATIVE OXIDASE: From Gene to Function.

    PubMed

    Vanlerberghe, Greg C.; McIntosh, Lee

    1997-06-01

    Plants, some fungi, and protists contain a cyanide-resistant, alternative mitochondrial respiratory pathway. This pathway branches at the ubiquinone pool and consists of an alternative oxidase encoded by the nuclear gene Aox1. Alternative pathway respiration is only linked to proton translocation at Complex 1 (NADH dehydrogenase). Alternative oxidase expression is influenced by stress stimuli-cold, oxidative stress, pathogen attack-and by factors constricting electron flow through the cytochrome pathway of respiration. Control is exerted at the levels of gene expression and in response to the availability of carbon and reducing potential. Posttranslational control involves reversible covalent modification of the alternative oxidase and activation by specific carbon metabolites. This dynamic system of coarse and fine control may function to balance upstream respiratory carbon metabolism and downstream electron transport when these coupled processes become imbalanced as a result of changes in the supply of, or demand for, carbon, reducing power, and ATP.

  15. Identification of the heparin binding site on adeno-associated virus serotype 3B (AAV-3B)

    SciTech Connect

    Lerch, Thomas F.; Chapman, Michael S.

    2012-02-05

    Adeno-associated virus is a promising vector for gene therapy. In the current study, the binding site on AAV serotype 3B for the heparan sulfate proteoglycan (HSPG) receptor has been characterized. X-ray diffraction identified a disaccharide binding site at the most positively charged region on the virus surface. The contributions of basic amino acids at this and other sites were characterized using site-directed mutagenesis. Both heparin and cell binding are correlated to positive charge at the disaccharide binding site, and transduction is significantly decreased in AAV-3B vectors mutated at this site to reduce heparin binding. While the receptor attachment sites of AAV-3B and AAV-2 are both in the general vicinity of the viral spikes, the exact amino acids that participate in electrostatic interactions are distinct. Diversity in the mechanisms of cell attachment by AAV serotypes will be an important consideration for the rational design of improved gene therapy vectors.

  16. Identification of the heparin binding site on adeno-associated virus serotype 3B (AAV-3B)

    SciTech Connect

    Lerch, Thomas F.; Chapman, Michael S.

    2012-05-24

    Adeno-associated virus is a promising vector for gene therapy. In the current study, the binding site on AAV serotype 3B for the heparan sulfate proteoglycan (HSPG) receptor has been characterized. X-ray diffraction identified a disaccharide binding site at the most positively charged region on the virus surface. The contributions of basic amino acids at this and other sites were characterized using site-directed mutagenesis. Both heparin and cell binding are correlated to positive charge at the disaccharide binding site, and transduction is significantly decreased in AAV-3B vectors mutated at this site to reduce heparin binding. While the receptor attachment sites of AAV-3B and AAV-2 are both in the general vicinity of the viral spikes, the exact amino acids that participate in electrostatic interactions are distinct. Diversity in the mechanisms of cell attachment by AAV serotypes will be an important consideration for the rational design of improved gene therapy vectors.

  17. The Activation of Phytophthora Effector Avr3b by Plant Cyclophilin is Required for the Nudix Hydrolase Activity of Avr3b.

    PubMed

    Kong, Guanghui; Zhao, Yao; Jing, Maofeng; Huang, Jie; Yang, Jin; Xia, Yeqiang; Kong, Liang; Ye, Wenwu; Xiong, Qin; Qiao, Yongli; Dong, Suomeng; Ma, Wenbo; Wang, Yuanchao

    2015-08-01

    Plant pathogens secrete an arsenal of effector proteins to impair host immunity. Some effectors possess enzymatic activities that can modify their host targets. Previously, we demonstrated that a Phytophthora sojae RXLR effector Avr3b acts as a Nudix hydrolase when expressed in planta; and this enzymatic activity is required for full virulence of P. sojae strain P6497 in soybean (Glycine max). Interestingly, recombinant Avr3b produced by E. coli does not have the hydrolase activity unless it was incubated with plant protein extracts. Here, we report the activation of Avr3b by a prolyl-peptidyl isomerase (PPIase), cyclophilin, in plant cells. Avr3b directly interacts with soybean cyclophilin GmCYP1, which activates the hydrolase activity of Avr3b in a PPIase activity-dependent manner. Avr3b contains a putative Glycine-Proline (GP) motif; which is known to confer cyclophilin-binding in other protein substrates. Substitution of the Proline (P132) in the putative GP motif impaired the interaction of Avr3b with GmCYP1; as a result, the mutant Avr3bP132A can no longer be activated by GmCYP1, and is also unable to promote Phytophthora infection. Avr3b elicits hypersensitive response (HR) in soybean cultivars producing the resistance protein Rps3b, but Avr3bP132A lost its ability to trigger HR. Furthermore, silencing of GmCYP1 rendered reduced cell death triggered by Avr3b, suggesting that GmCYP1-mediated Avr3b maturation is also required for Rps3b recognition. Finally, cyclophilins of Nicotiana benthamiana can also interact with Avr3b and activate its enzymatic activity. Overall, our results demonstrate that cyclophilin is a "helper" that activates the enzymatic activity of Avr3b after it is delivered into plant cells; as such, cyclophilin is required for the avirulence and virulence functions of Avr3b.

  18. The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists

    PubMed Central

    Huang, Da Wei; Sherman, Brad T; Tan, Qina; Collins, Jack R; Alvord, W Gregory; Roayaei, Jean; Stephens, Robert; Baseler, Michael W; Lane, H Clifford; Lempicki, Richard A

    2007-01-01

    The DAVID Gene Functional Classification Tool uses a novel agglomeration algorithm to condense a list of genes or associated biological terms into organized classes of related genes or biology, called biological modules. This organization is accomplished by mining the complex biological co-occurrences found in multiple sources of functional annotation. It is a powerful method to group functionally related genes and terms into a manageable number of biological modules for efficient interpretation of gene lists in a network context. PMID:17784955

  19. ARID3B: a Novel Regulator of the Kaposi's Sarcoma-Associated Herpesvirus Lytic Cycle

    PubMed Central

    Wood, Jennifer J.; Boyne, James R.; Paulus, Christina; Jackson, Brian R.; Nevels, Michael M.

    2016-01-01

    ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of commonly fatal malignancies of immunocompromised individuals, including primary effusion lymphoma (PEL) and Kaposi's sarcoma (KS). A hallmark of all herpesviruses is their biphasic life cycle—viral latency and the productive lytic cycle—and it is well established that reactivation of the KSHV lytic cycle is associated with KS pathogenesis. Therefore, a thorough appreciation of the mechanisms that govern reactivation is required to better understand disease progression. The viral protein replication and transcription activator (RTA) is the KSHV lytic switch protein due to its ability to drive the expression of various lytic genes, leading to reactivation of the entire lytic cycle. While the mechanisms for activating lytic gene expression have received much attention, how RTA impacts cellular function is less well understood. To address this, we developed a cell line with doxycycline-inducible RTA expression and applied stable isotope labeling of amino acids in cell culture (SILAC)-based quantitative proteomics. Using this methodology, we have identified a novel cellular protein (AT-rich interacting domain containing 3B [ARID3B]) whose expression was enhanced by RTA and that relocalized to replication compartments upon lytic reactivation. We also show that small interfering RNA (siRNA) knockdown or overexpression of ARID3B led to an enhancement or inhibition of lytic reactivation, respectively. Furthermore, DNA affinity and chromatin immunoprecipitation assays demonstrated that ARID3B specifically interacts with A/T-rich elements in the KSHV origin of lytic replication (oriLyt), and this was dependent on lytic cycle reactivation. Therefore, we have identified a novel cellular protein whose expression is enhanced by KSHV RTA with the ability to inhibit KSHV reactivation. IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of fatal malignancies of

  20. DNA cytosine and methylcytosine deamination by APOBEC3B: enhancing methylcytosine deamination by engineering APOBEC3B

    PubMed Central

    Fu, Yang; Ito, Fumiaki; Zhang, Gewen; Fernandez, Braulio; Yang, Hanjing; Chen, Xiaojiang S.

    2015-01-01

    APOBEC (apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like) is a family of enzymes that deaminates cytosine (C) to uracil (U) on nucleic acid. APOBEC3B (A3B) functions in innate immunity against intrinsic and invading retroelements and viruses. A3B can also induce genomic DNA mutations to cause cancer. A3B contains two cytosine deaminase domains (CD1, CD2), and there are conflicting reports about whether both domains are active. Here we demonstrate that only CD2 of A3B (A3BCD2) has C deamination activity. We also reveal that both A3B and A3BCD2 can deaminate methylcytosine (mC). Guided by structural and functional analysis, we successfully engineered A3BCD2 to gain over two orders of magnitude higher activity for mC deamination. Important determinants that contribute to the activity and selectivity for mC deamination have been identified, which reveals that multiple elements, rather than single ones, contribute to the mC deamination activity and selectivity in A3BCD2 and possibly other APOBECs. PMID:26195824

  1. 18 CFR 3b.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Definitions. 3b.2 Section 3b.2 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF... finger or voice print or a photograph; (e) System of records means a group of any records under...

  2. 18 CFR 3b.222 - Identification requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... identification, the system manager will require a signed statement from the individual asserting his identity and... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Identification requirements. 3b.222 Section 3b.222 Conservation of Power and Water Resources FEDERAL ENERGY...

  3. 18 CFR 3b.222 - Identification requirements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Identification requirements. 3b.222 Section 3b.222 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES COLLECTION, MAINTENANCE, USE, AND DISSEMINATION OF RECORDS...

  4. 18 CFR 3b.227 - Mailing lists.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Mailing lists. 3b.227 Section 3b.227 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES COLLECTION, MAINTENANCE, USE, AND DISSEMINATION OF RECORDS OF...

  5. 18 CFR 3b.223 - Fees.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Fees. 3b.223 Section 3b.223 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES COLLECTION, MAINTENANCE, USE, AND DISSEMINATION OF RECORDS OF IDENTIFIABLE...

  6. 18 CFR 3b.5 - Legal guardians.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Legal guardians. 3b.5 Section 3b.5 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES COLLECTION, MAINTENANCE, USE, AND DISSEMINATION OF RECORDS OF IDENTIFIABLE...

  7. 18 CFR 3b.250 - Specific exemptions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Specific exemptions. 3b.250 Section 3b.250 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES COLLECTION, MAINTENANCE, USE, AND DISSEMINATION OF RECORDS OF...

  8. 18 CFR 3b.250 - Specific exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Specific exemptions. 3b.250 Section 3b.250 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES COLLECTION, MAINTENANCE, USE, AND DISSEMINATION OF RECORDS OF...

  9. 18 CFR 3b.250 - Specific exemptions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Specific exemptions. 3b.250 Section 3b.250 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES COLLECTION, MAINTENANCE, USE, AND DISSEMINATION OF RECORDS OF...

  10. 18 CFR 3b.227 - Mailing lists.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Mailing lists. 3b.227 Section 3b.227 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES COLLECTION, MAINTENANCE, USE, AND DISSEMINATION OF RECORDS OF...

  11. 18 CFR 3b.250 - Specific exemptions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Specific exemptions. 3b.250 Section 3b.250 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES COLLECTION, MAINTENANCE, USE, AND DISSEMINATION OF RECORDS OF...

  12. 18 CFR 3b.5 - Legal guardians.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Legal guardians. 3b.5 Section 3b.5 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES COLLECTION, MAINTENANCE, USE, AND DISSEMINATION OF RECORDS OF IDENTIFIABLE...

  13. 18 CFR 3b.5 - Legal guardians.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Legal guardians. 3b.5 Section 3b.5 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES COLLECTION, MAINTENANCE, USE, AND DISSEMINATION OF RECORDS OF IDENTIFIABLE...

  14. 18 CFR 3b.5 - Legal guardians.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Legal guardians. 3b.5 Section 3b.5 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES COLLECTION, MAINTENANCE, USE, AND DISSEMINATION OF RECORDS OF IDENTIFIABLE...

  15. 18 CFR 3b.223 - Fees.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Fees. 3b.223 Section 3b.223 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES COLLECTION, MAINTENANCE, USE, AND DISSEMINATION OF RECORDS OF IDENTIFIABLE...

  16. 18 CFR 3b.223 - Fees.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Fees. 3b.223 Section 3b.223 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES COLLECTION, MAINTENANCE, USE, AND DISSEMINATION OF RECORDS OF IDENTIFIABLE...

  17. 18 CFR 3b.222 - Identification requirements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Identification requirements. 3b.222 Section 3b.222 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES COLLECTION, MAINTENANCE, USE, AND DISSEMINATION OF RECORDS...

  18. 18 CFR 3b.223 - Fees.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Fees. 3b.223 Section 3b.223 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES COLLECTION, MAINTENANCE, USE, AND DISSEMINATION OF RECORDS OF IDENTIFIABLE...

  19. 18 CFR 3b.1 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Purpose. 3b.1 Section 3b.1 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES COLLECTION, MAINTENANCE, USE, AND DISSEMINATION OF RECORDS OF IDENTIFIABLE...

  20. 18 CFR 3b.223 - Fees.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Fees. 3b.223 Section 3b.223 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES COLLECTION, MAINTENANCE, USE, AND DISSEMINATION OF RECORDS OF IDENTIFIABLE...

  1. 18 CFR 3b.5 - Legal guardians.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Legal guardians. 3b.5 Section 3b.5 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES COLLECTION, MAINTENANCE, USE, AND DISSEMINATION OF RECORDS OF IDENTIFIABLE...

  2. 18 CFR 3b.222 - Identification requirements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Identification requirements. 3b.222 Section 3b.222 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES COLLECTION, MAINTENANCE, USE, AND DISSEMINATION OF RECORDS...

  3. 18 CFR 3b.227 - Mailing lists.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Mailing lists. 3b.227 Section 3b.227 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES COLLECTION, MAINTENANCE, USE, AND DISSEMINATION OF RECORDS OF...

  4. 18 CFR 3b.1 - Purpose.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Purpose. 3b.1 Section 3b.1 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES COLLECTION, MAINTENANCE, USE, AND DISSEMINATION OF RECORDS OF IDENTIFIABLE...

  5. 18 CFR 3b.3 - Notice requirements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Notice requirements. 3b.3 Section 3b.3 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES COLLECTION, MAINTENANCE, USE, AND DISSEMINATION OF RECORDS OF...

  6. 18 CFR 3b.1 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Purpose. 3b.1 Section 3b.1 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES COLLECTION, MAINTENANCE, USE, AND DISSEMINATION OF RECORDS OF IDENTIFIABLE...

  7. 18 CFR 3b.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Definitions. 3b.2 Section 3b.2 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES COLLECTION, MAINTENANCE, USE, AND DISSEMINATION OF RECORDS OF IDENTIFIABLE...

  8. 18 CFR 3b.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Definitions. 3b.2 Section 3b.2 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES COLLECTION, MAINTENANCE, USE, AND DISSEMINATION OF RECORDS OF IDENTIFIABLE...

  9. 18 CFR 3b.1 - Purpose.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Purpose. 3b.1 Section 3b.1 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES COLLECTION, MAINTENANCE, USE, AND DISSEMINATION OF RECORDS OF IDENTIFIABLE...

  10. 18 CFR 3b.1 - Purpose.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Purpose. 3b.1 Section 3b.1 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES COLLECTION, MAINTENANCE, USE, AND DISSEMINATION OF RECORDS OF IDENTIFIABLE...

  11. 18 CFR 3b.3 - Notice requirements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Notice requirements. 3b.3 Section 3b.3 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES COLLECTION, MAINTENANCE, USE, AND DISSEMINATION OF RECORDS OF...

  12. 18 CFR 3b.3 - Notice requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Notice requirements. 3b.3 Section 3b.3 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES COLLECTION, MAINTENANCE, USE, AND DISSEMINATION OF RECORDS OF...

  13. 18 CFR 3b.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Definitions. 3b.2 Section 3b.2 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES COLLECTION, MAINTENANCE, USE, AND DISSEMINATION OF RECORDS OF IDENTIFIABLE...

  14. 18 CFR 3b.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Definitions. 3b.2 Section 3b.2 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES COLLECTION, MAINTENANCE, USE, AND DISSEMINATION OF RECORDS OF IDENTIFIABLE...

  15. 18 CFR 3b.3 - Notice requirements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Notice requirements. 3b.3 Section 3b.3 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES COLLECTION, MAINTENANCE, USE, AND DISSEMINATION OF RECORDS OF...

  16. 18 CFR 3b.227 - Mailing lists.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Mailing lists. 3b.227 Section 3b.227 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT... specifically authorized by law. This provision shall not be construed to require the withholding of names...

  17. 18 CFR 3b.227 - Mailing lists.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Mailing lists. 3b.227 Section 3b.227 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT... specifically authorized by law. This provision shall not be construed to require the withholding of names...

  18. A comprehensive negative regulatory program controlled by Brn3b to ensure ganglion cell specification from multipotential retinal precursors.

    PubMed

    Qiu, Feng; Jiang, Haisong; Xiang, Mengqing

    2008-03-26

    The retinal ganglion cells (RGCs) are the sole output neurons in the retina that form the optic nerve and convey light signals detected by photoreceptors to the higher visual system. Their degeneration and damage caused by glaucoma and injury can lead to blindness. During retinogenesis, RGCs are specified from a population of multipotential precursors capable of generating RGC, amacrine, horizontal, and cone cells. How the RGC fate is selected from these multiple neuron fates is unknown at present. Here we show that the previously unsuspected POU domain transcription factor Brn3b (brain-specific homeobox/POU domain protein 3b) plays such a critical role. Loss of Brn3b function in mice leads to misspecification of early RGC precursors as late-born RGC, amacrine, and horizontal cells, whereas misexpressed Brn3b suppresses non-RGC cell fates but promotes the RGC fate. Microarray profiling and other molecular analyses reveal that, in RGC precursors, Brn3b normally represses the expression of a network of retinogenic factor genes involved in fate commitment and differentiation of late-born RGC, amacrine, horizontal, and cone cells. Our data suggest that Brn3b specifies the RGC fate from multipotential precursors not only by promoting RGC differentiation but also by suppressing non-RGC differentiation programs as a safeguard mechanism. PMID:18367606

  19. Clock gene evolution and functional divergence.

    PubMed

    Tauber, Eran; Last, Kim S; Olive, Peter J W; Kyriacou, C P

    2004-10-01

    In considering the impact of the earth's changing geophysical conditions during the history of life, it is surprising to learn that the earth's rotational period may have been as short as 4 h, as recently as 1900 million years ago (or 1.9 billion years ago). The implications of such figures for the origin and evolution of clocks are considerable, and the authors speculate on how this short rotational period might have influenced the development of the "protoclock" in early microorganisms, such as the Cyanobacteria, during the geological periodsin which they arose and flourished. They then discuss the subsequent duplication of clock genes that took place around and after the Cambrian period, 543 million years ago, and its consequences. They compare the relative divergences of the canonical clock genes, which reveal the Per family to be the most rapidly evolving. In addition, the authors use a statistical test to predict which residues within the PER and CRY families may have undergone functional specialization.

  20. Sf3b4-depleted Xenopus embryos: A model to study the pathogenesis of craniofacial defects in Nager syndrome.

    PubMed

    Devotta, Arun; Juraver-Geslin, Hugo; Gonzalez, Jose Antonio; Hong, Chang-Soo; Saint-Jeannet, Jean-Pierre

    2016-07-15

    Mandibulofacial dysostosis (MFD) is a human developmental disorder characterized by defects of the facial bones. It is the second most frequent craniofacial malformation after cleft lip and palate. Nager syndrome combines many features of MFD with a variety of limb defects. Mutations in SF3B4 (splicing factor 3b, subunit 4) gene, which encodes a component of the pre-mRNA spliceosomal complex, were recently identified as a cause of Nager syndrome, accounting for 60% of affected individuals. Nothing is known about the cellular pathogenesis underlying Nager type MFD. Here we describe the first animal model for Nager syndrome, generated by knocking down Sf3b4 function in Xenopus laevis embryos, using morpholino antisense oligonucleotides. Our results indicate that Sf3b4-depleted embryos show reduced expression of the neural crest genes sox10, snail2 and twist at the neural plate border, associated with a broadening of the neural plate. This phenotype can be rescued by injection of wild-type human SF3B4 mRNA but not by mRNAs carrying mutations that cause Nager syndrome. At the tailbud stage, morphant embryos had decreased sox10 and tfap2a expression in the pharyngeal arches, indicative of a reduced number of neural crest cells. Later in development, Sf3b4-depleted tadpoles exhibited hypoplasia of neural crest-derived craniofacial cartilages, phenocopying aspects of the craniofacial skeletal defects seen in Nager syndrome patients. With this animal model we are now poised to gain important insights into the etiology and pathogenesis of Nager type MFD, and to identify the molecular targets of Sf3b4. PMID:26874011

  1. Identification of 11 pseudogenes in the DNA methyltransferase gene family in rodents and humans and implications for the functional loci.

    PubMed

    Lees-Murdock, Diane J; McLoughlin, Gerard A; McDaid, Jennifer R; Quinn, Lisa M; O'Doherty, Alan; Hiripi, László; Hack, Catherine J; Walsh, Colum P

    2004-07-01

    DNA (cytosine-5-)-methyltransferase genes are important for normal development in mice and humans. We describe here 11 pseudogenes spread among human, mouse, and rat belonging to this gene family, ranging from 1 pseudogene in humans to 7 in rat, all belonging to the Dnmt3 subfamily. All except 1 rat Dnmt3b pseudogene appear to be transcriptionally silent. Dnmt3a2, a transcript variant of Dnmt3a starting at an alternative promoter, had the highest number of processed pseudogenes, while none were found for the canonical Dnmt3a, suggesting the former transcript is more highly expressed in germ cells. Comparison of human, mouse, and rat Dnmt3a2 sequences also suggests that human exon 8 is a recent acquisition. Alignment of the 3'UTR of Dnmt3a2 among the functional genes and the processed pseudogenes suggested that a second polyadenylation site downstream of the RefSeq poly(A) was being used in mice, resulting in a longer 3'UTR, a finding confirmed by RT-PCR in mouse tissues. We also found conserved cytoplasmic polyadenylation elements, usually implicated in regulating translation in oocytes, in Dnmt3b and Dnmt1. Expression of DNMT3B in the mouse oocyte was confirmed by immunocytochemistry. These results clarify the structure of a number of loci in the three species examined and provide some useful insights into the structure and evolution of this gene family.

  2. Non-functional genes repaired at the RNA level.

    PubMed

    Burger, Gertraud

    2016-01-01

    Genomes and genes continuously evolve. Gene sequences undergo substitutions, deletions or nucleotide insertions; mobile genetic elements invade genomes and interleave in genes; chromosomes break, even within genes, and pieces reseal in reshuffled order. To maintain functional gene products and assure an organism's survival, two principal strategies are used - either repair of the gene itself or of its product. I will introduce common types of gene aberrations and how gene function is restored secondarily, and then focus on systematically fragmented genes found in a poorly studied protist group, the diplonemids. Expression of their broken genes involves restitching of pieces at the RNA-level, and substantial RNA editing, to compensate for point mutations. I will conclude with thoughts on how such a grotesquely unorthodox system may have evolved, and why this group of organisms persists and thrives since tens of millions of years.

  3. PoplarGene: poplar gene network and resource for mining functional information for genes from woody plants.

    PubMed

    Liu, Qi; Ding, Changjun; Chu, Yanguang; Chen, Jiafei; Zhang, Weixi; Zhang, Bingyu; Huang, Qinjun; Su, Xiaohua

    2016-01-01

    Poplar is not only an important resource for the production of paper, timber and other wood-based products, but it has also emerged as an ideal model system for studying woody plants. To better understand the biological processes underlying various traits in poplar, e.g., wood development, a comprehensive functional gene interaction network is highly needed. Here, we constructed a genome-wide functional gene network for poplar (covering ~70% of the 41,335 poplar genes) and created the network web service PoplarGene, offering comprehensive functional interactions and extensive poplar gene functional annotations. PoplarGene incorporates two network-based gene prioritization algorithms, neighborhood-based prioritization and context-based prioritization, which can be used to perform gene prioritization in a complementary manner. Furthermore, the co-functional information in PoplarGene can be applied to other woody plant proteomes with high efficiency via orthology transfer. In addition to poplar gene sequences, the webserver also accepts Arabidopsis reference gene as input to guide the search for novel candidate functional genes in PoplarGene. We believe that PoplarGene (http://bioinformatics.caf.ac.cn/PoplarGene and http://124.127.201.25/PoplarGene) will greatly benefit the research community, facilitating studies of poplar and other woody plants. PMID:27515999

  4. PoplarGene: poplar gene network and resource for mining functional information for genes from woody plants

    PubMed Central

    Liu, Qi; Ding, Changjun; Chu, Yanguang; Chen, Jiafei; Zhang, Weixi; Zhang, Bingyu; Huang, Qinjun; Su, Xiaohua

    2016-01-01

    Poplar is not only an important resource for the production of paper, timber and other wood-based products, but it has also emerged as an ideal model system for studying woody plants. To better understand the biological processes underlying various traits in poplar, e.g., wood development, a comprehensive functional gene interaction network is highly needed. Here, we constructed a genome-wide functional gene network for poplar (covering ~70% of the 41,335 poplar genes) and created the network web service PoplarGene, offering comprehensive functional interactions and extensive poplar gene functional annotations. PoplarGene incorporates two network-based gene prioritization algorithms, neighborhood-based prioritization and context-based prioritization, which can be used to perform gene prioritization in a complementary manner. Furthermore, the co-functional information in PoplarGene can be applied to other woody plant proteomes with high efficiency via orthology transfer. In addition to poplar gene sequences, the webserver also accepts Arabidopsis reference gene as input to guide the search for novel candidate functional genes in PoplarGene. We believe that PoplarGene (http://bioinformatics.caf.ac.cn/PoplarGene and http://124.127.201.25/PoplarGene) will greatly benefit the research community, facilitating studies of poplar and other woody plants. PMID:27515999

  5. Functional Gene Group Summarization by Clustering MEDLINE Abstract Sentences

    PubMed Central

    Yang, Jianji; Cohen, Aaron M.; Hersh, William R.

    2006-01-01

    Tools to automatically summarize functional gene group information from the biomedical literature will help genomics researchers both better interpret gene expression data and understand biological pathways. In this study, we built a system that takes in a set of genes and MEDLINE records and outputs clusters of genes along with summaries of each cluster by sentence extraction from MEDLINE abstracts. Our preliminary use-case evaluation shows that this approach can identify gene clusters similar to manually generated groupings. PMID:17238770

  6. Functional-network-based gene set analysis using gene-ontology.

    PubMed

    Chang, Billy; Kustra, Rafal; Tian, Weidong

    2013-01-01

    To account for the functional non-equivalence among a set of genes within a biological pathway when performing gene set analysis, we introduce GOGANPA, a network-based gene set analysis method, which up-weights genes with functions relevant to the gene set of interest. The genes are weighted according to its degree within a genome-scale functional network constructed using the functional annotations available from the gene ontology database. By benchmarking GOGANPA using a well-studied P53 data set and three breast cancer data sets, we will demonstrate the power and reproducibility of our proposed method over traditional unweighted approaches and a competing network-based approach that involves a complex integrated network. GOGANPA's sole reliance on gene ontology further allows GOGANPA to be widely applicable to the analysis of any gene-ontology-annotated genome. PMID:23418449

  7. Examining emergence of functional gene clustering in a simulated evolution.

    PubMed

    Yerushalmi, Uri; Teicher, Mina

    2007-10-01

    Recent research suggests that rather than being random, gene order may be coupled with gene functionality. These findings may be explained by mechanisms that require physical proximity such as co-expression and co-regulation. Alternatively, they may be due to evolutionary-dynamics forces, as expressed in genetic drift or linkage disequilibrium. This paper proposes a biologically plausible model for evolutionary development. Using the model, which includes natural selection and the development of gene networks and cellular organisms, the co-evolution of recombination rate and gene functionality is examined. The results presented here are compatible with previous biological findings showing that functionally related genes are clustered. These results imply that evolutionary pressure in a complex environment is sufficient for the emergence of gene order that is coupled with functionality. They shed further light on the mechanisms that may cause such gene clusters.

  8. Phosphodiesterase 3B (PDE3B) regulates NLRP3 inflammasome in adipose tissue

    PubMed Central

    Ahmad, Faiyaz; Chung, Youn Wook; Tang, Yan; Hockman, Steven C.; Liu, Shiwei; Khan, Yusuf; Huo, Kevin; Billings, Eric; Amar, Marcelo J.; Remaley, Alan T.; Manganiello, Vincent C.

    2016-01-01

    Activation of inflammation in white adipose tissue (WAT), includes infiltration/expansion of WAT macrophages, contributes pathogenesis of obesity, insulin resistance, and metabolic syndrome. The inflammasome comprises an intracellular sensor (NLR), caspase-1 and the adaptor ASC. Inflammasome activation leads to maturation of caspase-1 and processing of IL1β, contributing to many metabolic disorders and directing adipocytes to a more insulin-resistant phenotype. Ablation of PDE3B in WAT prevents inflammasome activation by reducing expression of NLRP3, caspase-1, ASC, AIM2, TNFα, IL1β and proinflammatory genes. Following IP injection of lipopolysaccharide (LPS), serum levels of IL1β and TNFα were reduced in PDE3B−/−mice compared to WT. Activation of signaling cascades, which mediate inflammasome responses, were modulated in PDE3B−/−mice WAT, including smad, NFAT, NFkB, and MAP kinases. Moreover, expression of chemokine CCL2, MCP-1 and its receptor CCR2, which play an important role in macrophage chemotaxis, were reduced in WAT of PDE3B−/−mice. In addition, atherosclerotic plaque formation was significantly reduced in the aorta of apoE−/−/PDE3B−/−and LDL-R−/−/PDE3B−/−mice compared to apoE−/−and LDL-R−/−mice, respectively. Obesity-induced changes in serum-cholesterol were blocked in PDE3B−/−mice. Collectively, these data establish a role for PDE3B in modulating inflammatory response, which may contribute to a reduced inflammatory state in adipose tissue. PMID:27321128

  9. Functional Conservation and Divergence of Four Ginger AP1/AGL9 MADS–Box Genes Revealed by Analysis of Their Expression and Protein–Protein Interaction, and Ectopic Expression of AhFUL Gene in Arabidopsis

    PubMed Central

    Song, Juanjuan; Sun, Wei; Xia, Kuaifei; Liao, Jingping; Zhang, Mingyong

    2014-01-01

    Alpinia genus are known generally as ginger–lilies for showy flowers in the ginger family, Zingiberaceae, and their floral morphology diverges from typical monocotyledon flowers. However, little is known about the functions of ginger MADS–box genes in floral identity. In this study, four AP1/AGL9 MADS–box genes were cloned from Alpinia hainanensis, and protein–protein interactions (PPIs) and roles of the four genes in floral homeotic conversion and in floral evolution are surveyed for the first time. AhFUL is clustered to the AP1lineage, AhSEP4 and AhSEP3b to the SEP lineage, and AhAGL6–like to the AGL6 lineage. The four genes showed conserved and divergent expression patterns, and their encoded proteins were localized in the nucleus. Seven combinations of PPI (AhFUL–AhSEP4, AhFUL–AhAGL6–like, AhFUL–AhSEP3b, AhSEP4–AhAGL6–like, AhSEP4–AhSEP3b, AhAGL6–like–AhSEP3b, and AhSEP3b–AhSEP3b) were detected, and the PPI patterns in the AP1/AGL9 lineage revealed that five of the 10 possible combinations are conserved and three are variable, while conclusions cannot yet be made regarding the other two. Ectopic expression of AhFUL in Arabidopsis thaliana led to early flowering and floral organ homeotic conversion to sepal–like or leaf–like. Therefore, we conclude that the four A. hainanensis AP1/AGL9 genes show functional conservation and divergence in the floral identity from other MADS–box genes. PMID:25461565

  10. Gene delivery by functional inorganic nanocarriers.

    PubMed

    Loh, Xian Jun; Lee, Tung-Chun

    2012-08-01

    Gene delivery into cells to elicit cellular response has received a great attention recently. Viruses, lipids, peptides, cationic polymers and certain inorganic nanomaterials have been reported as gene delivery vectors. In this review, we focus on the recent literature on gene delivery using inorganic nanoparticles. This emerging field of study is concisely summarized and illustrated by selected examples and recent patents. New approaches and directions towards the practical use of multifunctional nanocarriers are highlighted.

  11. Characterization of the functional gene and several processed pseudogenes in the human triosephosphate isomerase gene family.

    PubMed Central

    Brown, J R; Daar, I O; Krug, J R; Maquat, L E

    1985-01-01

    The functional gene and three intronless pseudogenes for human triosephosphate isomerase were isolated from a recombinant DNA library and characterized in detail. The functional gene spans 3.5 kilobase pairs and is split into seven exons. Its promoter contains putative TATA and CCAAT boxes and is extremely rich in G and C residues (76%). The pseudogenes share a high degree of homology with the functional gene but contain mutations that preclude the synthesis of an active triosephosphate isomerase enzyme. Sequence divergence calculations indicate that these pseudogenes arose approximately 18 million years ago. We present evidence that there is a single functional gene in the human triosephosphate isomerase gene family. Images PMID:4022011

  12. Expression and functional analysis of genes encoding cytokinin receptor-like histidine kinase in maize (Zea mays L.).

    PubMed

    Wang, Bo; Chen, Yanhong; Guo, Baojian; Kabir, Muhammad Rezaul; Yao, Yingyin; Peng, Huiru; Xie, Chaojie; Zhang, Yirong; Sun, Qixin; Ni, Zhongfu

    2014-08-01

    Cytokinin signaling is vital for plant growth and development which function via the two-component system (TCS). As one of the key component of TCS, transmembrane histidine kinases (HK) are encoded by a small gene family in plants. In this study, we focused on expression and functional analysis of cytokinin receptor-like HK genes (ZmHK) in maize. Firstly, bioinformatics analysis revealed that seven cloned ZmHK genes have different expression patterns during maize development. Secondly, ectopic expression by CaMV35S promoter in Arabidopsis further revealed that functional differentiation exists among these seven members. Among them, the ZmHK1a2-OX transgenic line has the lowest germination rate in the dark, ZmHK1-OX and ZmHK2a2-OX can delay leaf senescence, and seed size of ZmHK1-OX, ZmHK1a2-OX, ZmHK2-OX, ZmHK3b-OX and ZmHK2a2-OX was obviously reduced as compared to wild type. Additionally, ZmHK genes play opposite roles in shoot and root development; all ZmHK-OX transgenic lines display obvious shorter root length and reduced number of lateral roots, but enhanced shoot development compared with the wild type. Most notably, Arabidopsis response regulator ARR5 gene was up-regulated in ZmHK1-OX, ZmHK1a2-OX, ZmHK2-OX, ZmHK3b-OX and ZmHK2a2-OX as compared to wild type. Although the causal link between ZmHK genes and cytokinin signaling pathway is still an area to be further elucidated, these findings reflected that the diversification of ZmHK genes expression patterns and functions occurred in the course of maize evolution, indicating that some ZmHK genes might play different roles during maize development.

  13. Expression and functional analysis of genes encoding cytokinin receptor-like histidine kinase in maize (Zea mays L.).

    PubMed

    Wang, Bo; Chen, Yanhong; Guo, Baojian; Kabir, Muhammad Rezaul; Yao, Yingyin; Peng, Huiru; Xie, Chaojie; Zhang, Yirong; Sun, Qixin; Ni, Zhongfu

    2014-08-01

    Cytokinin signaling is vital for plant growth and development which function via the two-component system (TCS). As one of the key component of TCS, transmembrane histidine kinases (HK) are encoded by a small gene family in plants. In this study, we focused on expression and functional analysis of cytokinin receptor-like HK genes (ZmHK) in maize. Firstly, bioinformatics analysis revealed that seven cloned ZmHK genes have different expression patterns during maize development. Secondly, ectopic expression by CaMV35S promoter in Arabidopsis further revealed that functional differentiation exists among these seven members. Among them, the ZmHK1a2-OX transgenic line has the lowest germination rate in the dark, ZmHK1-OX and ZmHK2a2-OX can delay leaf senescence, and seed size of ZmHK1-OX, ZmHK1a2-OX, ZmHK2-OX, ZmHK3b-OX and ZmHK2a2-OX was obviously reduced as compared to wild type. Additionally, ZmHK genes play opposite roles in shoot and root development; all ZmHK-OX transgenic lines display obvious shorter root length and reduced number of lateral roots, but enhanced shoot development compared with the wild type. Most notably, Arabidopsis response regulator ARR5 gene was up-regulated in ZmHK1-OX, ZmHK1a2-OX, ZmHK2-OX, ZmHK3b-OX and ZmHK2a2-OX as compared to wild type. Although the causal link between ZmHK genes and cytokinin signaling pathway is still an area to be further elucidated, these findings reflected that the diversification of ZmHK genes expression patterns and functions occurred in the course of maize evolution, indicating that some ZmHK genes might play different roles during maize development. PMID:24585212

  14. Evolution of new functions de novo and from preexisting genes.

    PubMed

    Andersson, Dan I; Jerlström-Hultqvist, Jon; Näsvall, Joakim

    2015-06-01

    How the enormous structural and functional diversity of new genes and proteins was generated (estimated to be 10(10)-10(12) different proteins in all organisms on earth [Choi I-G, Kim S-H. 2006. Evolution of protein structural classes and protein sequence families. Proc Natl Acad Sci 103: 14056-14061] is a central biological question that has a long and rich history. Extensive work during the last 80 years have shown that new genes that play important roles in lineage-specific phenotypes and adaptation can originate through a multitude of different mechanisms, including duplication, lateral gene transfer, gene fusion/fission, and de novo origination. In this review, we focus on two main processes as generators of new functions: evolution of new genes by duplication and divergence of pre-existing genes and de novo gene origination in which a whole protein-coding gene evolves from a noncoding sequence. PMID:26032716

  15. A role for phosphodiesterase 3B in acquisition of brown fat characteristics by white adipose tissue in male mice.

    PubMed

    Guirguis, Emilia; Hockman, Steven; Chung, Youn Wook; Ahmad, Faiyaz; Gavrilova, Oksana; Raghavachari, Nalini; Yang, Yanqin; Niu, Gang; Chen, Xiaoyuan; Yu, Zu Xi; Liu, Shiwei; Degerman, Eva; Manganiello, Vincent

    2013-09-01

    Obesity is linked to various diseases, including insulin resistance, diabetes, and cardiovascular disorders. The idea of inducing white adipose tissue (WAT) to assume characteristics of brown adipose tissue (BAT), and thus gearing it to fat burning instead of storage, is receiving serious consideration as potential treatment for obesity and related disorders. Phosphodiesterase 3B (PDE3B) links insulin- and cAMP-signaling networks in tissues associated with energy metabolism, including WAT. We used C57BL/6 PDE3B knockout (KO) mice to elucidate mechanisms involved in the formation of BAT in epididymal WAT (EWAT) depots. Examination of gene expression profiles in PDE3B KO EWAT revealed increased expression of several genes that block white and promote brown adipogenesis, such as C-terminal binding protein, bone morphogenetic protein 7, and PR domain containing 16, but a clear BAT-like phenotype was not completely induced. However, acute treatment of PDE3B KO mice with the β3-adrenergic agonist, CL316243, markedly increased the expression of cyclooxygenase-2, which catalyzes prostaglandin synthesis and is thought to be important in the formation of BAT in WAT and the elongation of very long-chain fatty acids 3, which is linked to BAT recruitment upon cold exposure, causing a clear shift toward fat burning and the induction of BAT in KO EWAT. These data provide insight into the mechanisms of BAT formation in mouse EWAT, suggesting that, in a C57BL/6 background, an increase in cAMP, caused by ablation of PDE3B and administration of CL316243, may promote differentiation of prostaglandin-responsive progenitor cells in the EWAT stromal vascular fraction into functional brown adipocytes.

  16. Reconstruction of a Functional Human Gene Network, with an Application for Prioritizing Positional Candidate Genes

    PubMed Central

    Franke, Lude; Bakel, Harm van; Fokkens, Like; de Jong, Edwin D.; Egmont-Petersen, Michael; Wijmenga, Cisca

    2006-01-01

    Most common genetic disorders have a complex inheritance and may result from variants in many genes, each contributing only weak effects to the disease. Pinpointing these disease genes within the myriad of susceptibility loci identified in linkage studies is difficult because these loci may contain hundreds of genes. However, in any disorder, most of the disease genes will be involved in only a few different molecular pathways. If we know something about the relationships between the genes, we can assess whether some genes (which may reside in different loci) functionally interact with each other, indicating a joint basis for the disease etiology. There are various repositories of information on pathway relationships. To consolidate this information, we developed a functional human gene network that integrates information on genes and the functional relationships between genes, based on data from the Kyoto Encyclopedia of Genes and Genomes, the Biomolecular Interaction Network Database, Reactome, the Human Protein Reference Database, the Gene Ontology database, predicted protein-protein interactions, human yeast two-hybrid interactions, and microarray coexpressions. We applied this network to interrelate positional candidate genes from different disease loci and then tested 96 heritable disorders for which the Online Mendelian Inheritance in Man database reported at least three disease genes. Artificial susceptibility loci, each containing 100 genes, were constructed around each disease gene, and we used the network to rank these genes on the basis of their functional interactions. By following up the top five genes per artificial locus, we were able to detect at least one known disease gene in 54% of the loci studied, representing a 2.8-fold increase over random selection. This suggests that our method can significantly reduce the cost and effort of pinpointing true disease genes in analyses of disorders for which numerous loci have been reported but for which

  17. Inferring gene expression dynamics via functional regression analysis

    PubMed Central

    Müller, Hans-Georg; Chiou, Jeng-Min; Leng, Xiaoyan

    2008-01-01

    Background Temporal gene expression profiles characterize the time-dynamics of expression of specific genes and are increasingly collected in current gene expression experiments. In the analysis of experiments where gene expression is obtained over the life cycle, it is of interest to relate temporal patterns of gene expression associated with different developmental stages to each other to study patterns of long-term developmental gene regulation. We use tools from functional data analysis to study dynamic changes by relating temporal gene expression profiles of different developmental stages to each other. Results We demonstrate that functional regression methodology can pinpoint relationships that exist between temporary gene expression profiles for different life cycle phases and incorporates dimension reduction as needed for these high-dimensional data. By applying these tools, gene expression profiles for pupa and adult phases are found to be strongly related to the profiles of the same genes obtained during the embryo phase. Moreover, one can distinguish between gene groups that exhibit relationships with positive and others with negative associations between later life and embryonal expression profiles. Specifically, we find a positive relationship in expression for muscle development related genes, and a negative relationship for strictly maternal genes for Drosophila, using temporal gene expression profiles. Conclusion Our findings point to specific reactivation patterns of gene expression during the Drosophila life cycle which differ in characteristic ways between various gene groups. Functional regression emerges as a useful tool for relating gene expression patterns from different developmental stages, and avoids the problems with large numbers of parameters and multiple testing that affect alternative approaches. PMID:18226220

  18. 18 CFR 3b.250 - Specific exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... PERSONAL INFORMATION Rules for Exemptions § 3b.250 Specific exemptions. Any system of records maintained by... identity of a confidential source who furnished the information to the Government under an express promise that his identity would be held in confidence, or, prior to September 27, 1975, under an...

  19. 18 CFR 3b.222 - Identification requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... IDENTIFIABLE PERSONAL INFORMATION Rules for Disclosure of Records § 3b.222 Identification requirements. The... personal identifier if known to the individual. A comparison of the signatures of the requester and those in the record will be used to determine identity. (c) If the system manager determines that the...

  20. Functional Gene Networks: R/Bioc package to generate and analyse gene networks derived from functional enrichment and clustering

    PubMed Central

    Aibar, Sara; Fontanillo, Celia; Droste, Conrad; De Las Rivas, Javier

    2015-01-01

    Summary: Functional Gene Networks (FGNet) is an R/Bioconductor package that generates gene networks derived from the results of functional enrichment analysis (FEA) and annotation clustering. The sets of genes enriched with specific biological terms (obtained from a FEA platform) are transformed into a network by establishing links between genes based on common functional annotations and common clusters. The network provides a new view of FEA results revealing gene modules with similar functions and genes that are related to multiple functions. In addition to building the functional network, FGNet analyses the similarity between the groups of genes and provides a distance heatmap and a bipartite network of functionally overlapping genes. The application includes an interface to directly perform FEA queries using different external tools: DAVID, GeneTerm Linker, TopGO or GAGE; and a graphical interface to facilitate the use. Availability and implementation: FGNet is available in Bioconductor, including a tutorial. URL: http://bioconductor.org/packages/release/bioc/html/FGNet.html Contact: jrivas@usal.es Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25600944

  1. MiR-221 promotes stemness of breast cancer cells by targeting DNMT3b

    PubMed Central

    Roscigno, Giuseppina; Quintavalle, Cristina; Donnarumma, Elvira; Puoti, Ilaria; Diaz-Lagares, Angel; Iaboni, Margherita; Fiore, Danilo; Russo, Valentina; Todaro, Matilde; Romano, Giulia; Thomas, Renato; Cortino, Giuseppina; Gaggianesi, Miriam; Esteller, Manel; Croce, Carlo M.; Condorelli, Gerolama

    2016-01-01

    Cancer stem cells (CSCs) are a small part of the heterogeneous tumor cell population possessing self-renewal and multilineage differentiation potential as well as a great ability to sustain tumorigenesis. The molecular pathways underlying CSC phenotype are not yet well characterized. MicroRNAs (miRs) are small noncoding RNAs that play a powerful role in biological processes. Early studies have linked miRs to the control of self-renewal and differentiation in normal and cancer stem cells. We aimed to study the functional role of miRs in human breast cancer stem cells (BCSCs), also named mammospheres. We found that miR-221 was upregulated in BCSCs compared to their differentiated counterpart. Similarly, mammospheres from T47D cells had an increased level of miR-221 compared to differentiated cells. Transfection of miR-221 in T47D cells increased the number of mammospheres and the expression of stem cell markers. Among miR-221's targets, we identified DNMT3b. Furthermore, in BCSCs we found that DNMT3b repressed the expression of various stemness genes, such as Nanog and Oct 3/4, acting on the methylation of their promoters, partially reverting the effect of miR-221 on stemness. We hypothesize that miR-221 contributes to breast cancer tumorigenicity by regulating stemness, at least in part through the control of DNMT3b expression. PMID:26556862

  2. The Activation of Phytophthora Effector Avr3b by Plant Cyclophilin is Required for the Nudix Hydrolase Activity of Avr3b

    PubMed Central

    Kong, Guanghui; Zhao, Yao; Jing, Maofeng; Huang, Jie; Yang, Jin; Xia, Yeqiang; Kong, Liang; Ye, Wenwu; Xiong, Qin; Qiao, Yongli; Dong, Suomeng; Ma, Wenbo; Wang, Yuanchao

    2015-01-01

    Plant pathogens secrete an arsenal of effector proteins to impair host immunity. Some effectors possess enzymatic activities that can modify their host targets. Previously, we demonstrated that a Phytophthora sojae RXLR effector Avr3b acts as a Nudix hydrolase when expressed in planta; and this enzymatic activity is required for full virulence of P. sojae strain P6497 in soybean (Glycine max). Interestingly, recombinant Avr3b produced by E. coli does not have the hydrolase activity unless it was incubated with plant protein extracts. Here, we report the activation of Avr3b by a prolyl-peptidyl isomerase (PPIase), cyclophilin, in plant cells. Avr3b directly interacts with soybean cyclophilin GmCYP1, which activates the hydrolase activity of Avr3b in a PPIase activity-dependent manner. Avr3b contains a putative Glycine-Proline (GP) motif; which is known to confer cyclophilin-binding in other protein substrates. Substitution of the Proline (P132) in the putative GP motif impaired the interaction of Avr3b with GmCYP1; as a result, the mutant Avr3bP132A can no longer be activated by GmCYP1, and is also unable to promote Phytophthora infection. Avr3b elicits hypersensitive response (HR) in soybean cultivars producing the resistance protein Rps3b, but Avr3bP132A lost its ability to trigger HR. Furthermore, silencing of GmCYP1 rendered reduced cell death triggered by Avr3b, suggesting that GmCYP1-mediated Avr3b maturation is also required for Rps3b recognition. Finally, cyclophilins of Nicotiana benthamiana can also interact with Avr3b and activate its enzymatic activity. Overall, our results demonstrate that cyclophilin is a “helper” that activates the enzymatic activity of Avr3b after it is delivered into plant cells; as such, cyclophilin is required for the avirulence and virulence functions of Avr3b. PMID:26317500

  3. When natural selection gives gene function the cold shoulder.

    PubMed

    Cutter, Asher D; Jovelin, Richard

    2015-11-01

    It is tempting to invoke organismal selection as perpetually optimizing the function of any given gene. However, natural selection can drive genic functional change without improvement of biochemical activity, even to the extinction of gene activity. Detrimental mutations can creep in owing to linkage with other selectively favored loci. Selection can promote functional degradation, irrespective of genetic drift, when adaptation occurs by loss of gene function. Even stabilizing selection on a trait can lead to divergence of the underlying molecular constituents. Selfish genetic elements can also proliferate independent of any functional benefits to the host genome. Here we review the logic and evidence for these diverse processes acting in genome evolution. This collection of distinct evolutionary phenomena - while operating through easily understandable mechanisms - all contribute to the seemingly counterintuitive notion that maintenance or improvement of a gene's biochemical function sometimes do not determine its evolutionary fate. PMID:26411745

  4. When natural selection gives gene function the cold shoulder.

    PubMed

    Cutter, Asher D; Jovelin, Richard

    2015-11-01

    It is tempting to invoke organismal selection as perpetually optimizing the function of any given gene. However, natural selection can drive genic functional change without improvement of biochemical activity, even to the extinction of gene activity. Detrimental mutations can creep in owing to linkage with other selectively favored loci. Selection can promote functional degradation, irrespective of genetic drift, when adaptation occurs by loss of gene function. Even stabilizing selection on a trait can lead to divergence of the underlying molecular constituents. Selfish genetic elements can also proliferate independent of any functional benefits to the host genome. Here we review the logic and evidence for these diverse processes acting in genome evolution. This collection of distinct evolutionary phenomena - while operating through easily understandable mechanisms - all contribute to the seemingly counterintuitive notion that maintenance or improvement of a gene's biochemical function sometimes do not determine its evolutionary fate.

  5. Functionalized organic nanotubes as tubular nonviral gene transfer vector.

    PubMed

    Ding, Wuxiao; Wada, Momoyo; Kameta, Naohiro; Minamikawa, Hiroyuki; Shimizu, Toshimi; Masuda, Mitsutoshi

    2011-11-30

    Tubular nanomaterials are expected to represent a novel nonviral gene transfer vectors due to the unique morphology and potential biological functionalities. Here we rationally constructed functionalized organic nanotubes (ONTs) for gene delivery through the co-assembly of bipolar glycolipid, arginine-lipid and PEG-lipid. The arginine- and PEG-functionalized ONTs efficiently formed complexes with plasmid DNA without aggregation, and protect DNA from enzymatic degradation; while the arginine-functionalized ONTs aggregated with DNA as large bundles. Long ONTs exceeding 1μm in length was rarely taken up into the cells, while those with a length of 400-800nm could effectively deliver plasmid DNA into cells and induce high transgene expression of green fluorescense protein. This study demonstrated the usefulness of functionalized ONT in gene delivery, and the functionalized ONT represents a novel type of tubular nonviral gene transfer vector.

  6. Function does not follow form in gene regulatory circuits

    PubMed Central

    Payne, Joshua L.; Wagner, Andreas

    2015-01-01

    Gene regulatory circuits are to the cell what arithmetic logic units are to the chip: fundamental components of information processing that map an input onto an output. Gene regulatory circuits come in many different forms, distinct structural configurations that determine who regulates whom. Studies that have focused on the gene expression patterns (functions) of circuits with a given structure (form) have examined just a few structures or gene expression patterns. Here, we use a computational model to exhaustively characterize the gene expression patterns of nearly 17 million three-gene circuits in order to systematically explore the relationship between circuit form and function. Three main conclusions emerge. First, function does not follow form. A circuit of any one structure can have between twelve and nearly thirty thousand distinct gene expression patterns. Second, and conversely, form does not follow function. Most gene expression patterns can be realized by more than one circuit structure. And third, multifunctionality severely constrains circuit form. The number of circuit structures able to drive multiple gene expression patterns decreases rapidly with the number of these patterns. These results indicate that it is generally not possible to infer circuit function from circuit form, or vice versa. PMID:26290154

  7. GSK3B and MAPT Polymorphisms Are Associated with Grey Matter and Intracranial Volume in Healthy Individuals

    PubMed Central

    Dobson-Stone, Carol; Polly, Patsie; Korgaonkar, Mayuresh S.; Williams, Leanne M.; Gordon, Evian; Schofield, Peter R.; Mather, Karen; Armstrong, Nicola J.; Wen, Wei; Sachdev, Perminder S.; Kwok, John B. J.

    2013-01-01

    The microtubule-associated protein tau gene (MAPT) codes for a protein that plays an integral role in stabilisation of microtubules and axonal transport in neurons. As well as its role in susceptibility to neurodegeneration, previous studies have found an association between the MAPT haplotype and intracranial volume and regional grey matter volumes in healthy adults. The glycogen synthase kinase-3β gene (GSK3B) codes for a serine/threonine kinase that phosphorylates various proteins, including tau, and has also been associated with risk for neurodegenerative disorders and schizophrenia. We examined the effects of MAPT and two functional promoter polymorphisms in GSK3B (rs3755557 and rs334558) on total grey matter and intracranial volume in three independent cohorts totaling 776 neurologically healthy individuals. In vitro analyses revealed a significant effect of rs3755557 on gene expression, and altered binding of at least two transcription factors, Octamer transcription factor 1 (Oct-1) and Pre-B-cell leukemia transcription factor 1 (Pbx-1), to the GSK3B promoter. Meta-analysis across the three cohorts revealed a significant effect of rs3755557 on total grey matter volume (summary B = 0.082, 95% confidence interval = 0.037–0.128) and intracranial volume (summary B = 0.113, 95% confidence interval = 0.082–0.144). No significant effect was observed for MAPT H1/H2 diplotype or GSK3B rs334558 on total grey matter or intracranial volume. Our genetic and biochemical analyses have identified a role for GSK3B in brain development, which could have important aetiological implications for neurodegenerative and neurodevelopmental disorders. PMID:23951236

  8. Horizontal functional gene transfer from bacteria to fishes

    PubMed Central

    Sun, Bao-Fa; Li, Tong; Xiao, Jin-Hua; Jia, Ling-Yi; Liu, Li; Zhang, Peng; Murphy, Robert W.; He, Shun-Min; Huang, Da-Wei

    2015-01-01

    Invertebrates can acquire functional genes via horizontal gene transfer (HGT) from bacteria but fishes are not known to do so. We provide the first reliable evidence of one HGT event from marine bacteria to fishes. The HGT appears to have occurred after emergence of the teleosts. The transferred gene is expressed and regulated developmentally. Its successful integration and expression may change the genetic and metabolic repertoire of fishes. In addition, this gene contains conserved domains and similar tertiary structures in fishes and their putative donor bacteria. Thus, it may function similarly in both groups. Evolutionary analyses indicate that it evolved under purifying selection, further indicating its conserved function. We document the first likely case of HGT of functional gene from prokaryote to fishes. This discovery certifies that HGT can influence vertebrate evolution. PMID:26691285

  9. Human kidney anion exchanger 1 interacts with kinesin family member 3B (KIF3B)

    SciTech Connect

    Duangtum, Natapol; Junking, Mutita; Sawasdee, Nunghathai; Cheunsuchon, Boonyarit; Limjindaporn, Thawornchai; Yenchitsomanus, Pa-thai

    2011-09-16

    Highlights: {yields} Impaired trafficking of kAE1 causes distal renal tubular acidosis (dRTA). {yields} The interaction between kAE1 and kinesin family member 3B (KIF3B) is reported. {yields} The co-localization between kAE and KIF3B was detected in human kidney tissues. {yields} A marked reduction of kAE1 on the cell membrane was observed when KIF3B was knockdown. {yields} KFI3B plays an important role in trafficking of kAE1 to the plasma membrane. -- Abstract: Impaired trafficking of human kidney anion exchanger 1 (kAE1) to the basolateral membrane of {alpha}-intercalated cells of the kidney collecting duct leads to the defect of the Cl{sup -}/HCO{sub 3}{sup -} exchange and the failure of proton (H{sup +}) secretion at the apical membrane of these cells, causing distal renal tubular acidosis (dRTA). In the sorting process, kAE1 interacts with AP-1 mu1A, a subunit of AP-1A adaptor complex. However, it is not known whether kAE1 interacts with motor proteins in its trafficking process to the plasma membrane or not. We report here that kAE1 interacts with kinesin family member 3B (KIF3B) in kidney cells and a dileucine motif at the carboxyl terminus of kAE1 contributes to this interaction. We have also demonstrated that kAE1 co-localizes with KIF3B in human kidney tissues and the suppression of endogenous KIF3B in HEK293T cells by small interfering RNA (siRNA) decreases membrane localization of kAE1 but increases its intracellular accumulation. All results suggest that KIF3B is involved in the trafficking of kAE1 to the plasma membrane of human kidney {alpha}-intercalated cells.

  10. Saliva Microbiota Carry Caries-Specific Functional Gene Signatures

    PubMed Central

    Chang, Xingzhi; Yuan, Xiao; Tu, Qichao; Yuan, Tong; Deng, Ye; Hemme, Christopher L.; Van Nostrand, Joy; Cui, Xinping; He, Zhili; Chen, Zhenggang; Guo, Dawei; Yu, Jiangbo; Zhang, Yue; Zhou, Jizhong; Xu, Jian

    2014-01-01

    Human saliva microbiota is phylogenetically divergent among host individuals yet their roles in health and disease are poorly appreciated. We employed a microbial functional gene microarray, HuMiChip 1.0, to reconstruct the global functional profiles of human saliva microbiota from ten healthy and ten caries-active adults. Saliva microbiota in the pilot population featured a vast diversity of functional genes. No significant distinction in gene number or diversity indices was observed between healthy and caries-active microbiota. However, co-presence network analysis of functional genes revealed that caries-active microbiota was more divergent in non-core genes than healthy microbiota, despite both groups exhibited a similar degree of conservation at their respective core genes. Furthermore, functional gene structure of saliva microbiota could potentially distinguish caries-active patients from healthy hosts. Microbial functions such as Diaminopimelate epimerase, Prephenate dehydrogenase, Pyruvate-formate lyase and N-acetylmuramoyl-L-alanine amidase were significantly linked to caries. Therefore, saliva microbiota carried disease-associated functional signatures, which could be potentially exploited for caries diagnosis. PMID:24533043

  11. APOBEC3B-Mediated Cytidine Deamination Is Required for Estrogen Receptor Action in Breast Cancer

    PubMed Central

    Periyasamy, Manikandan; Patel, Hetal; Lai, Chun-Fui; Nguyen, Van T.M.; Nevedomskaya, Ekaterina; Harrod, Alison; Russell, Roslin; Remenyi, Judit; Ochocka, Anna Maria; Thomas, Ross S.; Fuller-Pace, Frances; Győrffy, Balázs; Caldas, Carlos; Navaratnam, Naveenan; Carroll, Jason S.; Zwart, Wilbert; Coombes, R. Charles; Magnani, Luca; Buluwela, Laki; Ali, Simak

    2015-01-01

    Summary Estrogen receptor α (ERα) is the key transcriptional driver in a large proportion of breast cancers. We report that APOBEC3B (A3B) is required for regulation of gene expression by ER and acts by causing C-to-U deamination at ER binding regions. We show that these C-to-U changes lead to the generation of DNA strand breaks through activation of base excision repair (BER) and to repair by non-homologous end-joining (NHEJ) pathways. We provide evidence that transient cytidine deamination by A3B aids chromatin modification and remodelling at the regulatory regions of ER target genes that promotes their expression. A3B expression is associated with poor patient survival in ER+ breast cancer, reinforcing the physiological significance of A3B for ER action. PMID:26411678

  12. Combining many interaction networks to predict gene function and analyze gene lists.

    PubMed

    Mostafavi, Sara; Morris, Quaid

    2012-05-01

    In this article, we review how interaction networks can be used alone or in combination in an automated fashion to provide insight into gene and protein function. We describe the concept of a "gene-recommender system" that can be applied to any large collection of interaction networks to make predictions about gene or protein function based on a query list of proteins that share a function of interest. We discuss these systems in general and focus on one specific system, GeneMANIA, that has unique features and uses different algorithms from the majority of other systems.

  13. Functionalization of Microporous Lanthanide-Based Metal-Organic Frameworks by Dicarboxylate Ligands with Methyl-Substituted Thieno[2,3-b]thiophene Groups: Sensing Activities and Magnetic Properties.

    PubMed

    Wang, Suna; Cao, Tingting; Yan, Hui; Li, Yunwu; Lu, Jing; Ma, Ranran; Li, Dacheng; Dou, Jianmin; Bai, Junfeng

    2016-06-01

    From a methyl-substituted thieno[2,3-b]thiophene dicarboxylate, three types of three-dimensional (3-D) microporous lanthanide-based metal-organic frameworks, {[Ln(DMTDC)1.5(H2O)2]·DEF}n (type I, Ln = Eu 1, Tb 2), {[Ln(DMTDC)1.5(H2O)2]·0.5DMF·0.5H2O}n (type II, Ln = Gd 3, Dy 4, Er 5), and {[Ln4(DMTDC)6(DMF)2]·0.5DMF·1.5H2O}n (type III, Ln = Er 6) (H2DMTDC = 3,4-dimethylthieno[2,3-b]thiophene-2,5-dicarboxylic acid, DEF = N,N'-diethylformamide, DMF = N,N'-dimethylformamide), have been solventhermally synthesized. Types I and II are isostructural, which exhibit 1-D triangular channels constructed by double-stranded rod-shaped {Ln(CO2)2}n chains. Type III demonstrates an intriguing framework with triple-stranded rod-shaped {Ln(CO2)3}n chains arranged along the (1,1,0) and (1,-1,0) axes and possesses two kinds of triangular channels along two axes, respectively. Immobilization of the Lewis basic sites of thiophene groups induced gas adsorption and sensing properties into these microporous frameworks. Complexes 5(Er) and 6(Er) display moderate adsorption properties toward N2 and CO2, and the Qst of CO2 are as high as 36.3 and 34.8 kJ mol(-1), respectively. Complexes 1(Eu) and 2(Tb) exhibit sensing properties toward nitrobenzene, acetone, and the Cu(2+) ion in both DMF and aqueous solution. Complex 3(Gd) shows a significant magnetocaloric effect with ΔSm = 24.3 J·kg(-1)·K(-1) at 3.0 K and 7 T. Complex 4(Dy) exhibits slow magnetic relaxation with the energy barrier Δ/kB of 48.29 K. PMID:27168002

  14. Two Drosophila melanogaster tropomyosin genes: structural and functional aspects.

    PubMed Central

    Karlik, C C; Fyrberg, E A

    1986-01-01

    We compared the structure and function of the two Drosophila melanogaster tropomyosin genes. The most striking structural aspect was their size disparity. Codons 1 through 257 of gene 2 occupied 833 nucleotides and contained only one intron, whereas the corresponding region of gene 1 occupied 17.5 kilobases and was interrupted by eight introns. The intron-exon arrangement of gene 1 reflected evolutionary expansion of tropomyosin via 42- and 49-residue duplications, which are probably actin-binding domains. Functionally, gene 1 was considerably more complex than gene 2; it was active in both muscle and nonmuscle cell lineages, had at least five variable exons, and specified a minimum of five developmentally regulated isoforms. Two of these isoforms, which accumulated only in flight muscles, were unprecedented fusion proteins in which the tropomyosin sequence was joined to a carboxy-terminal proline-rich domain. Images PMID:3097506

  15. Drosophila duplicate genes evolve new functions on the fly.

    PubMed

    Assis, Raquel

    2014-01-01

    Gene duplication is thought to play a key role in phenotypic innovation. While several processes have been hypothesized to drive the retention and functional evolution of duplicate genes, their genomic contributions have never been determined. We recently developed the first genome-wide method to classify these processes by comparing distances between expression profiles of duplicate genes and their ancestral single-copy orthologs. Application of our approach to spatial gene expression profiles in two Drosophila species revealed that a majority of young duplicate genes possess new functions, and that new functions are acquired rapidly-often within a few million years. Surprisingly, new functions tend to arise in younger copies of duplicate gene pairs. Moreover, we found that young duplicates are often specifically expressed in testes, whereas old duplicates are broadly expressed across several tissues, providing strong support for the hypothetical "out-of-testes" origin of new genes. In this Extra View, I discuss our findings in the context of theoretical predictions about gene duplication, with a particular emphasis on the importance of natural selection in the evolution of novel phenotypes.

  16. Efflux Pump Control Alters Synthetic Gene Circuit Function.

    PubMed

    Diao, Junchen; Charlebois, Daniel A; Nevozhay, Dmitry; Bódi, Zoltán; Pál, Csaba; Balázsi, Gábor

    2016-07-15

    Synthetic biology aims to design new biological systems for predefined purposes, such as the controlled secretion of biofuels, pharmaceuticals, or other chemicals. Synthetic gene circuits regulating an efflux pump from the ATP-binding cassette (ABC) protein family could achieve this. However, ABC efflux pumps can also drive out intracellular inducer molecules that control the gene circuits. This will introduce an implicit feedback that could alter gene circuit function in ways that are poorly understood. Here, we used two synthetic gene circuits inducible by tetracycline family molecules to regulate the expression of a yeast ABC pump (Pdr5p) that pumps out the inducer. Pdr5p altered the dose-responses of the original gene circuits substantially in Saccharomyces cerevisiae. While one aspect of the change could be attributed to the efflux pumping function of Pdr5p, another aspect remained unexplained. Quantitative modeling indicated that reduced regulator gene expression in addition to efflux pump function could fully explain the altered dose-responses. These predictions were validated experimentally. Overall, we highlight how efflux pumps can alter gene circuit dynamics and demonstrate the utility of mathematical modeling in understanding synthetic gene circuit function in new circumstances.

  17. Functional requirements driving the gene duplication in 12 Drosophila species

    PubMed Central

    2013-01-01

    Background Gene duplication supplies the raw materials for novel gene functions and many gene families arisen from duplication experience adaptive evolution. Most studies of young duplicates have focused on mammals, especially humans, whereas reports describing their genome-wide evolutionary patterns across the closely related Drosophila species are rare. The sequenced 12 Drosophila genomes provide the opportunity to address this issue. Results In our study, 3,647 young duplicate gene families were identified across the 12 Drosophila species and three types of expansions, species-specific, lineage-specific and complex expansions, were detected in these gene families. Our data showed that the species-specific young duplicate genes predominated (86.6%) over the other two types. Interestingly, many independent species-specific expansions in the same gene family have been observed in many species, even including 11 or 12 Drosophila species. Our data also showed that the functional bias observed in these young duplicate genes was mainly related to responses to environmental stimuli and biotic stresses. Conclusions This study reveals the evolutionary patterns of young duplicates across 12 Drosophila species on a genomic scale. Our results suggest that convergent evolution acts on young duplicate genes after the species differentiation and adaptive evolution may play an important role in duplicate genes for adaption to ecological factors and environmental changes in Drosophila. PMID:23945147

  18. Developmentally distinct MYB genes encode functionally equivalent proteins in Arabidopsis.

    PubMed

    Lee, M M; Schiefelbein, J

    2001-05-01

    The duplication and divergence of developmental control genes is thought to have driven morphological diversification during the evolution of multicellular organisms. To examine the molecular basis of this process, we analyzed the functional relationship between two paralogous MYB transcription factor genes, WEREWOLF (WER) and GLABROUS1 (GL1), in Arabidopsis. The WER and GL1 genes specify distinct cell types and exhibit non-overlapping expression patterns during Arabidopsis development. Nevertheless, reciprocal complementation experiments with a series of gene fusions showed that WER and GL1 encode functionally equivalent proteins, and their unique roles in plant development are entirely due to differences in their cis-regulatory sequences. Similar experiments with a distantly related MYB gene (MYB2) showed that its product cannot functionally substitute for WER or GL1. Furthermore, an analysis of the WER and GL1 proteins shows that conserved sequences correspond to specific functional domains. These results provide new insights into the evolution of the MYB gene family in Arabidopsis, and, more generally, they demonstrate that novel developmental gene function may arise solely by the modification of cis-regulatory sequences.

  19. GeneMANIA: Fast gene network construction and function prediction for Cytoscape

    PubMed Central

    Montojo, Jason; Zuberi, Khalid; Rodriguez, Harold; Bader, Gary D.; Morris, Quaid

    2014-01-01

    The GeneMANIA Cytoscape app enables users to construct a composite gene-gene functional interaction network from a gene list. The resulting network includes the genes most related to the original list, and functional annotations from Gene Ontology. The edges are annotated with details about the publication or data source the interactions were derived from. The app leverages GeneMANIA’s database of 1800+ networks, containing over 500 million interactions spanning 8 organisms: A. thaliana, C. elegans, D. melanogaster, D. rerio, H. sapiens, M. musculus, R. norvegicus, and S. cerevisiae. Users may also import their own organisms, networks, and expression profiles. The app is compatible with Cytoscape versions 2 and 3. PMID:25254104

  20. Gene Overexpression Resources in Cereals for Functional Genomics and Discovery of Useful Genes

    PubMed Central

    Abe, Kiyomi; Ichikawa, Hiroaki

    2016-01-01

    Identification and elucidation of functions of plant genes is valuable for both basic and applied research. In addition to natural variation in model plants, numerous loss-of-function resources have been produced by mutagenesis with chemicals, irradiation, or insertions of transposable elements or T-DNA. However, we may be unable to observe loss-of-function phenotypes for genes with functionally redundant homologs and for those essential for growth and development. To offset such disadvantages, gain-of-function transgenic resources have been exploited. Activation-tagged lines have been generated using obligatory overexpression of endogenous genes by random insertion of an enhancer. Recent progress in DNA sequencing technology and bioinformatics has enabled the preparation of genomewide collections of full-length cDNAs (fl-cDNAs) in some model species. Using the fl-cDNA clones, a novel gain-of-function strategy, Fl-cDNA OvereXpressor gene (FOX)-hunting system, has been developed. A mutant phenotype in a FOX line can be directly attributed to the overexpressed fl-cDNA. Investigating a large population of FOX lines could reveal important genes conferring favorable phenotypes for crop breeding. Alternatively, a unique loss-of-function approach Chimeric REpressor gene Silencing Technology (CRES-T) has been developed. In CRES-T, overexpression of a chimeric repressor, composed of the coding sequence of a transcription factor (TF) and short peptide designated as the repression domain, could interfere with the action of endogenous TF in plants. Although plant TFs usually consist of gene families, CRES-T is effective, in principle, even for the TFs with functional redundancy. In this review, we focus on the current status of the gene-overexpression strategies and resources for identifying and elucidating novel functions of cereal genes. We discuss the potential of these research tools for identifying useful genes and phenotypes for application in crop breeding. PMID

  1. Degradation of the cancer genomic DNA deaminase APOBEC3B by SIV Vif.

    PubMed

    Land, Allison M; Wang, Jiayi; Law, Emily K; Aberle, Ryan; Kirmaier, Andrea; Krupp, Annabel; Johnson, Welkin E; Harris, Reuben S

    2015-11-24

    APOBEC3B is a newly identified source of mutation in many cancers, including breast, head/neck, lung, bladder, cervical, and ovarian. APOBEC3B is a member of the APOBEC3 family of enzymes that deaminate DNA cytosine to produce the pro-mutagenic lesion, uracil. Several APOBEC3 family members function to restrict virus replication. For instance, APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H combine to restrict HIV-1 in human lymphocytes. HIV-1 counteracts these APOBEC3s with the viral protein Vif, which targets the relevant APOBEC3s for proteasomal degradation. While APOBEC3B does not restrict HIV-1 and is not targeted by HIV-1 Vif in CD4-positive T cells, we asked whether related lentiviral Vif proteins could degrade APOBEC3B. Interestingly, several SIV Vif proteins are capable of promoting APOBEC3B degradation, with SIVmac239 Vif proving the most potent. This likely occurs through the canonical polyubiquitination mechanism as APOBEC3B protein levels are restored by MG132 treatment and by altering a conserved E3 ligase-binding motif. We further show that SIVmac239 Vif can prevent APOBEC3B mediated geno/cytotoxicity and degrade endogenous APOBEC3B in several cancer cell lines. Our data indicate that the APOBEC3B degradation potential of SIV Vif is an effective tool for neutralizing the cancer genomic DNA deaminase APOBEC3B. Further optimization of this natural APOBEC3 antagonist may benefit cancer therapy.

  2. Measuring semantic similarities by combining gene ontology annotations and gene co-function networks

    SciTech Connect

    Peng, Jiajie; Uygun, Sahra; Kim, Taehyong; Wang, Yadong; Rhee, Seung Y.; Chen, Jin

    2015-02-14

    Background: Gene Ontology (GO) has been used widely to study functional relationships between genes. The current semantic similarity measures rely only on GO annotations and GO structure. This limits the power of GO-based similarity because of the limited proportion of genes that are annotated to GO in most organisms. Results: We introduce a novel approach called NETSIM (network-based similarity measure) that incorporates information from gene co-function networks in addition to using the GO structure and annotations. Using metabolic reaction maps of yeast, Arabidopsis, and human, we demonstrate that NETSIM can improve the accuracy of GO term similarities. We also demonstrate that NETSIM works well even for genomes with sparser gene annotation data. We applied NETSIM on large Arabidopsis gene families such as cytochrome P450 monooxygenases to group the members functionally and show that this grouping could facilitate functional characterization of genes in these families. Conclusions: Using NETSIM as an example, we demonstrated that the performance of a semantic similarity measure could be significantly improved after incorporating genome-specific information. NETSIM incorporates both GO annotations and gene co-function network data as a priori knowledge in the model. Therefore, functional similarities of GO terms that are not explicitly encoded in GO but are relevant in a taxon-specific manner become measurable when GO annotations are limited.

  3. Measuring semantic similarities by combining gene ontology annotations and gene co-function networks

    DOE PAGES

    Peng, Jiajie; Uygun, Sahra; Kim, Taehyong; Wang, Yadong; Rhee, Seung Y.; Chen, Jin

    2015-02-14

    Background: Gene Ontology (GO) has been used widely to study functional relationships between genes. The current semantic similarity measures rely only on GO annotations and GO structure. This limits the power of GO-based similarity because of the limited proportion of genes that are annotated to GO in most organisms. Results: We introduce a novel approach called NETSIM (network-based similarity measure) that incorporates information from gene co-function networks in addition to using the GO structure and annotations. Using metabolic reaction maps of yeast, Arabidopsis, and human, we demonstrate that NETSIM can improve the accuracy of GO term similarities. We also demonstratemore » that NETSIM works well even for genomes with sparser gene annotation data. We applied NETSIM on large Arabidopsis gene families such as cytochrome P450 monooxygenases to group the members functionally and show that this grouping could facilitate functional characterization of genes in these families. Conclusions: Using NETSIM as an example, we demonstrated that the performance of a semantic similarity measure could be significantly improved after incorporating genome-specific information. NETSIM incorporates both GO annotations and gene co-function network data as a priori knowledge in the model. Therefore, functional similarities of GO terms that are not explicitly encoded in GO but are relevant in a taxon-specific manner become measurable when GO annotations are limited.« less

  4. Monitoring Murine Skeletal Muscle Function for Muscle Gene Therapy

    PubMed Central

    Hakim, Chady H.; Li, Dejia; Duan, Dongsheng

    2011-01-01

    The primary function of skeletal muscle is to generate force. Muscle force production is compromised in various forms of acquired and/or inherited muscle diseases. An important goal of muscle gene therapy is to recover muscle strength. Genetically engineered mice and spontaneous mouse mutants are readily available for preclinical muscle gene therapy studies. In this chapter, we outlined the methods commonly used for measuring murine skeletal muscle function. These include ex vivo and in situ analysis of the contractile profile of a single intact limb muscle (the extensor digitorium longus for ex vivo assay and the tibialis anterior muscle for in situ assay), grip force analysis, and downhill treadmill exercise. Force measurement in a single muscle is extremely useful for pilot testing of new gene therapy protocols by local gene transfer. Grip force and treadmill assessments offer body-wide evaluation following systemic muscle gene therapy. PMID:21194022

  5. Surrogate splicing for functional analysis of sesquiterpene synthase genes.

    PubMed

    Wu, Shuiqin; Schoenbeck, Mark A; Greenhagen, Bryan T; Takahashi, Shunji; Lee, Sungbeom; Coates, Robert M; Chappell, Joseph

    2005-07-01

    A method for the recovery of full-length cDNAs from predicted terpene synthase genes containing introns is described. The approach utilizes Agrobacterium-mediated transient expression coupled with a reverse transcription-polydeoxyribonucleotide chain reaction assay to facilitate expression cloning of processed transcripts. Subsequent expression of intronless cDNAs in a suitable prokaryotic host provides for direct functional testing of the encoded gene product. The method was optimized by examining the expression of an intron-containing beta-glucuronidase gene agroinfiltrated into petunia (Petunia hybrida) leaves, and its utility was demonstrated by defining the function of two previously uncharacterized terpene synthases. A tobacco (Nicotiana tabacum) terpene synthase-like gene containing six predicted introns was characterized as having 5-epi-aristolochene synthase activity, while an Arabidopsis (Arabidopsis thaliana) gene previously annotated as a terpene synthase was shown to possess a novel sesquiterpene synthase activity for alpha-barbatene, thujopsene, and beta-chamigrene biosynthesis. PMID:15965019

  6. Functions of the gene products of Escherichia coli.

    PubMed Central

    Riley, M

    1993-01-01

    A list of currently identified gene products of Escherichia coli is given, together with a bibliography that provides pointers to the literature on each gene product. A scheme to categorize cellular functions is used to classify the gene products of E. coli so far identified. A count shows that the numbers of genes concerned with small-molecule metabolism are on the same order as the numbers concerned with macromolecule biosynthesis and degradation. One large category is the category of tRNAs and their synthetases. Another is the category of transport elements. The categories of cell structure and cellular processes other than metabolism are smaller. Other subjects discussed are the occurrence in the E. coli genome of redundant pairs and groups of genes of identical or closely similar function, as well as variation in the degree of density of genetic information in different parts of the genome. PMID:7508076

  7. Ranking, selecting, and prioritising genes with desirability functions.

    PubMed

    Lazic, Stanley E

    2015-01-01

    In functional genomics experiments, researchers often select genes to follow-up or validate from a long list of differentially expressed genes. Typically, sharp thresholds are used to bin genes into groups such as significant/non-significant or fold change above/below a cut-off value, and ad hoc criteria are also used such as favouring well-known genes. Binning, however, is inefficient and does not take the uncertainty of the measurements into account. Furthermore, p-values, fold-changes, and other outcomes are treated as equally important, and relevant genes may be overlooked with such an approach. Desirability functions are proposed as a way to integrate multiple selection criteria for ranking, selecting, and prioritising genes. These functions map any variable to a continuous 0-1 scale, where one is maximally desirable and zero is unacceptable. Multiple selection criteria are then combined to provide an overall desirability that is used to rank genes. In addition to p-values and fold-changes, further experimental results and information contained in databases can be easily included as criteria. The approach is demonstrated with a breast cancer microarray data set. The functions and an example data set can be found in the desiR package on CRAN (https://cran.r-project.org/web/packages/desiR/) and the development version is available on GitHub (https://github.com/stanlazic/desiR). PMID:26644980

  8. A complementation method for functional analysis of mammalian genes

    PubMed Central

    Gonzalez-Santos, Juana Maria; Cao, Huibi; Wang, Anan; Koehler, David R.; Martin, Bernard; Navab, Roya; Hu, Jim

    2005-01-01

    Our progress in understanding mammalian gene function has lagged behind that of gene identification. New methods for mammalian gene functional analysis are needed to accelerate the process. In yeast, the powerful genetic shuffle system allows deletion of any chromosomal gene by homologous recombination and episomal expression of a mutant allele in the same cell. Here, we report a method for mammalian cells, which employs a helper-dependent adenoviral (HD-Ad) vector to synthesize small hairpin (sh) RNAs to knock-down the expression of an endogenous gene by targeting untranslated regions (UTRs). The vector simultaneously expresses an exogenous version of the same gene (wild-type or mutant allele) lacking the UTRs for functional analysis. We demonstrated the utility of the method by using PRPF3, which encodes the human RNA splicing factor Hprp3p. Recently, missense mutations in PRPF3 were found to cause autosomal-dominant Retinitis Pigmentosa, a form of genetic eye diseases affecting the retina. We knocked-down endogenous PRPF3 in multiple cell lines and rescued the phenotype (cell death) with exogenous PRPF3 cDNA, thereby creating a genetic complementation method. Because Ad vectors can efficiently transduce a wide variety of cell types, and many tissues in vivo, this method could have a wide application for gene function studies. PMID:15944448

  9. Ranking, selecting, and prioritising genes with desirability functions.

    PubMed

    Lazic, Stanley E

    2015-01-01

    In functional genomics experiments, researchers often select genes to follow-up or validate from a long list of differentially expressed genes. Typically, sharp thresholds are used to bin genes into groups such as significant/non-significant or fold change above/below a cut-off value, and ad hoc criteria are also used such as favouring well-known genes. Binning, however, is inefficient and does not take the uncertainty of the measurements into account. Furthermore, p-values, fold-changes, and other outcomes are treated as equally important, and relevant genes may be overlooked with such an approach. Desirability functions are proposed as a way to integrate multiple selection criteria for ranking, selecting, and prioritising genes. These functions map any variable to a continuous 0-1 scale, where one is maximally desirable and zero is unacceptable. Multiple selection criteria are then combined to provide an overall desirability that is used to rank genes. In addition to p-values and fold-changes, further experimental results and information contained in databases can be easily included as criteria. The approach is demonstrated with a breast cancer microarray data set. The functions and an example data set can be found in the desiR package on CRAN (https://cran.r-project.org/web/packages/desiR/) and the development version is available on GitHub (https://github.com/stanlazic/desiR).

  10. Potentiation of NK cytotoxicity by antibody-C3b/iC3b heteroconjugates.

    PubMed

    Yefenof, E; Benizri, R; Reiter, Y; Klein, E; Fishelson, Z

    1990-02-15

    The interaction of two Burkitt lymphoma lines, Raji and Rael, with human C and NK cells was analyzed. Raji cells activate the alternative C pathway (ACP) and then bind C3 fragments. Consequently, the cells become more sensitive to lysis by CR3-bearing NK cells but not to C lysis. In contrast, Rael cells are poor ACP activators, do not bind C3 fragments, and are therefore resistant to C-dependent NK lysis. As suggested earlier, the difference between Raji and Rael could be attributed to the presence or absence of CR2, respectively, on their surface. To potentiate C- and NK-dependent lysis of target cells, we generated heteroconjugates composed of a murine antitransferrin receptor mAb and of human C C3b or iC3b. Antibody-C3b conjugates induced C3 deposition on Rael cells and elevated C3 deposition on Raji cells in human serum. Both Raji and Rael cells coated with antibody-C3b conjugates were efficiently lyzed by the cytolytic ACP in human serum. This conjugate had a small enhancing effect on target cell lysis by NK cells which could be markedly increased by combined treatment of the target cell with antibody-C3b conjugate and C5-depleted human serum. On the other hand, antibody-iC3b conjugates efficiently potentiated lysis of target cells by NK cells in the absence of serum. The iC3b-directed cytotoxicity was mediated by CR3-bearing NK effector cells. Anti-C3 but not anti-mouse Ig antibodies abrogated the activity of the antibody-iC3b conjugate. These results further demonstrate that NK cytotoxicity may be potentiated by opsonizing the target cells with C3 fragments and suggest that antibody-C3b/iC3b conjugates could be potent tools for targeting and potentiation of the lytic action of both C and NK cells against tumor cells.

  11. Potentiation of NK cytotoxicity by antibody-C3b/iC3b heteroconjugates.

    PubMed

    Yefenof, E; Benizri, R; Reiter, Y; Klein, E; Fishelson, Z

    1990-02-15

    The interaction of two Burkitt lymphoma lines, Raji and Rael, with human C and NK cells was analyzed. Raji cells activate the alternative C pathway (ACP) and then bind C3 fragments. Consequently, the cells become more sensitive to lysis by CR3-bearing NK cells but not to C lysis. In contrast, Rael cells are poor ACP activators, do not bind C3 fragments, and are therefore resistant to C-dependent NK lysis. As suggested earlier, the difference between Raji and Rael could be attributed to the presence or absence of CR2, respectively, on their surface. To potentiate C- and NK-dependent lysis of target cells, we generated heteroconjugates composed of a murine antitransferrin receptor mAb and of human C C3b or iC3b. Antibody-C3b conjugates induced C3 deposition on Rael cells and elevated C3 deposition on Raji cells in human serum. Both Raji and Rael cells coated with antibody-C3b conjugates were efficiently lyzed by the cytolytic ACP in human serum. This conjugate had a small enhancing effect on target cell lysis by NK cells which could be markedly increased by combined treatment of the target cell with antibody-C3b conjugate and C5-depleted human serum. On the other hand, antibody-iC3b conjugates efficiently potentiated lysis of target cells by NK cells in the absence of serum. The iC3b-directed cytotoxicity was mediated by CR3-bearing NK effector cells. Anti-C3 but not anti-mouse Ig antibodies abrogated the activity of the antibody-iC3b conjugate. These results further demonstrate that NK cytotoxicity may be potentiated by opsonizing the target cells with C3 fragments and suggest that antibody-C3b/iC3b conjugates could be potent tools for targeting and potentiation of the lytic action of both C and NK cells against tumor cells. PMID:2303717

  12. GSK3A Is Redundant with GSK3B in Modulating Drug Resistance and Chemotherapy-Induced Necroptosis

    PubMed Central

    Grassilli, Emanuela; Ianzano, Leonarda; Bonomo, Sara; Missaglia, Carola; Cerrito, Maria Grazia; Giovannoni, Roberto; Masiero, Laura; Lavitrano, Marialuisa

    2014-01-01

    Glycogen Synthase Kinase-3 alpha (GSK3A) and beta (GSK3B) isoforms are encoded by distinct genes, are 98% identical within their kinase domain and perform similar functions in several settings; however, they are not completely redundant and, depending on the cell type and differentiative status, they also play unique roles. We recently identified a role for GSK3B in drug resistance by demonstrating that its inhibition enables necroptosis in response to chemotherapy in p53-null drug-resistant colon carcinoma cells. We report here that, similarly to GSK3B, also GSK3A silencing/inhibition does not affect cell proliferation or cell cycle but only abolishes growth after treatment with DNA-damaging chemotherapy. In particular, blocking GSK3A impairs DNA repair upon exposure to DNA-damaging drugs. As a consequence, p53-null cells overcome their inability to undergo apoptosis and mount a necroptotic response, characterized by absence of caspase activation and RIP1-independent, PARP-dependent AIF nuclear re-localization. We therefore conclude that GSK3A is redundant with GSK3B in regulating drug-resistance and chemotherapy-induced necroptosis and suggest that inhibition of only one isoform, or rather partial inhibition of overall cellular GSK3 activity, is enough to re-sensitize drug-resistant cells to chemotherapy. PMID:24984063

  13. The use of gene clusters to infer functional coupling.

    SciTech Connect

    Overbeek, R.; Fonstein, M.; D'Souza, M.; Pusch, G. D.; Mathematics and Computer Science; Integrated Genomics; Univ. of Chicago

    1999-03-01

    Previously, we presented evidence that it is possible to predict functional coupling between genes based on conservation of gene clusters between genomes. With the rapid increase in the availability of prokaryotic sequence data, it has become possible to verify and apply the technique. In this paper, we extend our characterization of the parameters that determine the utility of the approach, and we generalize the approach in a way that supports detection of common classes of functionally coupled genes (e.g., transport and signal transduction clusters). Now that the analysis includes over 30 complete or nearly complete genomes, it has become clear that this approach will play a significant role in supporting efforts to assign functionality to the remaining uncharacterized genes in sequenced genomes.

  14. The Use of Gene Clusters to Infer Functional Coupling

    NASA Astrophysics Data System (ADS)

    Overbeek, Ross; Fonstein, Michael; D'Souza, Mark; Pusch, Gordon D.; Maltsev, Natalia

    1999-03-01

    Previously, we presented evidence that it is possible to predict functional coupling between genes based on conservation of gene clusters between genomes. With the rapid increase in the availability of prokaryotic sequence data, it has become possible to verify and apply the technique. In this paper, we extend our characterization of the parameters that determine the utility of the approach, and we generalize the approach in a way that supports detection of common classes of functionally coupled genes (e.g., transport and signal transduction clusters). Now that the analysis includes over 30 complete or nearly complete genomes, it has become clear that this approach will play a significant role in supporting efforts to assign functionality to the remaining uncharacterized genes in sequenced genomes.

  15. Molecular Basis of Klotho: From Gene to Function in Aging

    PubMed Central

    Xu, Yuechi

    2015-01-01

    The discovery of the Klotho (KL) gene, which was originally identified as a putative aging-suppressor gene, has generated tremendous interest and has advanced understanding of the aging process. In mice, the overexpression of the KL gene extends the life span, whereas mutations to the KL gene shorten the life span. The human KL gene encodes the α-Klotho protein, which is a multifunctional protein that regulates the metabolism of phosphate, calcium, and vitamin D. α-Klotho also may function as a hormone, although the α-Klotho receptor(s) has not been found. Point mutations of the KL gene in humans are associated with hypertension and kidney disease, which suggests that α-Klotho may be essential to the maintenance of normal renal function. Three α-Klotho protein types with potentially different functions have been identified: a full-length transmembrane α-Klotho, a truncated soluble α-Klotho, and a secreted α-Klotho. Recent evidence suggests that α-Klotho suppresses the insulin and Wnt signaling pathways, inhibits oxidative stress, and regulates phosphatase and calcium absorption. In this review, we provide an update on recent advances in the understanding of the molecular, genetic, biochemical, and physiological properties of the KL gene. Specifically, this review focuses on the structure of the KL gene and the factors that regulate KL gene transcription, the key sites in the regulation of α-Klotho enzyme activity, the α-Klotho signaling pathways, and the molecular mechanisms that underlie α-Klotho function. This current understanding of the molecular biology of the α-Klotho protein may offer new insights into its function and role in aging. PMID:25695404

  16. Cost benefit theory and optimal design of gene regulation functions

    NASA Astrophysics Data System (ADS)

    Kalisky, Tomer; Dekel, Erez; Alon, Uri

    2007-12-01

    Cells respond to the environment by regulating the expression of genes according to environmental signals. The relation between the input signal level and the expression of the gene is called the gene regulation function. It is of interest to understand the shape of a gene regulation function in terms of the environment in which it has evolved and the basic constraints of biological systems. Here we address this by presenting a cost-benefit theory for gene regulation functions that takes into account temporally varying inputs in the environment and stochastic noise in the biological components. We apply this theory to the well-studied lac operon of E. coli. The present theory explains the shape of this regulation function in terms of temporal variation of the input signals, and of minimizing the deleterious effect of cell-cell variability in regulatory protein levels. We also apply the theory to understand the evolutionary tradeoffs in setting the number of regulatory proteins and for selection of feed-forward loops in genetic circuits. The present cost-benefit theory can be used to understand the shape of other gene regulatory functions in terms of environment and noise constraints.

  17. Calreticulin: one protein, one gene, many functions.

    PubMed Central

    Michalak, M; Corbett, E F; Mesaeli, N; Nakamura, K; Opas, M

    1999-01-01

    The endoplasmic reticulum (ER) plays a critical role in the synthesis and chaperoning of membrane-associated and secreted proteins. The membrane is also an important site of Ca(2+) storage and release. Calreticulin is a unique ER luminal resident protein. The protein affects many cellular functions, both in the ER lumen and outside of the ER environment. In the ER lumen, calreticulin performs two major functions: chaperoning and regulation of Ca(2+) homoeostasis. Calreticulin is a highly versatile lectin-like chaperone, and it participates during the synthesis of a variety of molecules, including ion channels, surface receptors, integrins and transporters. The protein also affects intracellular Ca(2+) homoeostasis by modulation of ER Ca(2+) storage and transport. Studies on the cell biology of calreticulin revealed that the ER membrane is a very dynamic intracellular compartment affecting many aspects of cell physiology. PMID:10567207

  18. An integrated genomic analysis of gene-function correlation on schizophrenia susceptibility genes.

    PubMed

    Chu, Tearina T; Liu, Ying

    2010-05-01

    Schizophrenia is a highly complex inheritable disease characterized by numerous genetic susceptibility elements, each contributing a modest increase in risk for the disease. Although numerous linkage or association studies have identified a large set of schizophrenia-associated loci, many are controversial. In addition, only a small portion of these loci overlaps with the large cumulative pool of genes that have shown changes of expression in schizophrenia. Here, we applied a genomic gene-function approach to identify susceptibility loci that show direct effect on gene expression, leading to functional abnormalities in schizophrenia. We carried out an integrated analysis by cross-examination of the literature-based susceptibility loci with the schizophrenia-associated expression gene list obtained from our previous microarray study (Journal of Human Genetics (2009) 54: 665-75) using bioinformatic tools, followed by confirmation of gene expression changes using qPCR. We found nine genes (CHGB, SLC18A2, SLC25A27, ESD, C4A/C4B, TCP1, CHL1 and CTNNA2) demonstrate gene-function correlation involving: synapse and neurotransmission; energy metabolism and defense mechanisms; and molecular chaperone and cytoskeleton. Our findings further support the roles of these genes in genetic influence and functional consequences on the development of schizophrenia. It is interesting to note that four of the nine genes are located on chromosome 6, suggesting a special chromosomal vulnerability in schizophrenia.

  19. Protein Expression for Novel Prognostic Markers (Cyclins D1, D2, D3, B1, B2, ITGβ7, FGFR3, PAX5) Correlate With Previously Reported Gene Expression Profile Patterns in Plasma Cell Myeloma.

    PubMed

    Mansoor, Adnan; Akhter, Ariz; Pournazari, Payam; Mahe, Etienne; Shariff, Sami; Farooq, Fahad; Elyamany, Ghaleb; Shahbani-Rad, Meer-Taher; Rashid-Kolvear, Fariborz

    2015-01-01

    Among plasma cell myeloma (PCM) patients, gene expression profiling (GEP)-based molecular classification has proven to be an independent predictor of survival, after autologous stem cell transplantation. However, GEP has limited routine clinical applicability given its complex methodology, high cost, and limited availability in clinical laboratories. In this study, we have evaluated biomarkers identified from GEP discoveries, utilizing immunohistochemistry (IHC) platform in a cohort of PCM patients. IHC staining for cyclins B1, B2, D1, D2, D3, FGFR3, PAX5, and integrin β7 (ITGβ7) was performed on the bone marrow biopsies of 93 newly diagnosed PCM patients. Expression of FGFR3 was noted in 10 (11%) samples correlating completely with t(4;14)(p16;q32) results (P<0.001); however, the association between FGFR3 and cyclin D2 expression was not significant (P=0.14). ITGβ7 expression was present in 9/93 (9%) patients and all these samples also demonstrated upregulated expression of cyclin D2 (P=0.014). Expression of cyclins D1, D2, and D3 was variable in this cohort. Positive protein expression of cyclin D1 was noted in 30/93 (32%), D2 in 17/93 (18%), and D3 in 5/93 (5%) samples. Coexpression of cyclins D1 and D2 was observed in 13/93 (14%) samples, whereas 28 (30%) samples were negative for all the 3 cyclin D proteins. Cyclin B1 was not expressed in any sample, despite adequate staining in positive controls. Cyclin B2 was expressed in 33/93 (35%) and PAX5 protein was noted in 7/93 (8%) samples. In summary, we have demonstrated that mRNA-based prognostic markers can be detected by routine IHC in decalcified bone marrow samples. This approach may provide a useful tool for the wider adoption of prognostic makers for risk stratification of PCM patients. We anticipate that such an approach might allow patients with high-risk immunoprofiles to be considered for other potential novel therapeutic agents, potentially sparing some patients the toxicity of stem cell transplant.

  20. A novel method to quantify gene set functional association based on gene ontology.

    PubMed

    Lv, Sali; Li, Yan; Wang, Qianghu; Ning, Shangwei; Huang, Teng; Wang, Peng; Sun, Jie; Zheng, Yan; Liu, Weisha; Ai, Jing; Li, Xia

    2012-05-01

    Numerous gene sets have been used as molecular signatures for exploring the genetic basis of complex disorders. These gene sets are distinct but related to each other in many cases; therefore, efforts have been made to compare gene sets for studies such as those evaluating the reproducibility of different experiments. Comparison in terms of biological function has been demonstrated to be helpful to biologists. We improved the measurement of semantic similarity to quantify the functional association between gene sets in the context of gene ontology and developed a web toolkit named Gene Set Functional Similarity (GSFS; http://bioinfo.hrbmu.edu.cn/GSFS). Validation based on protein complexes for which the functional associations are known demonstrated that the GSFS scores tend to be correlated with sequence similarity scores and that complexes with high GSFS scores tend to be involved in the same functional catalogue. Compared with the pairwise method and the annotation method, the GSFS shows better discrimination and more accurately reflects the known functional catalogues shared between complexes. Case studies comparing differentially expressed genes of prostate tumour samples from different microarray platforms and identifying coronary heart disease susceptibility pathways revealed that the method could contribute to future studies exploring the molecular basis of complex disorders.

  1. Using Immediate-Early Genes to Map Hippocampal Subregional Functions

    ERIC Educational Resources Information Center

    Kubik, Stepan; Miyashita, Teiko; Guzowski, John F.

    2007-01-01

    Different functions have been suggested for the hippocampus and its subdivisions along both transversal and longitudinal axes. Expression of immediate-early genes (IEGs) has been used to map specific functions onto neuronal activity in different areas of the brain including the hippocampus (IEG imaging). Here we review IEG studies on hippocampal…

  2. Locational distribution of gene functional classes in Arabidopsis thaliana

    PubMed Central

    Riley, Michael C; Clare, Amanda; King, Ross D

    2007-01-01

    Background We are interested in understanding the locational distribution of genes and their functions in genomes, as this distribution has both functional and evolutionary significance. Gene locational distribution is known to be affected by various evolutionary processes, with tandem duplication thought to be the main process producing clustering of homologous sequences. Recent research has found clustering of protein structural families in the human genome, even when genes identified as tandem duplicates have been removed from the data. However, this previous research was hindered as they were unable to analyse small sample sizes. This is a challenge for bioinformatics as more specific functional classes have fewer examples and conventional statistical analyses of these small data sets often produces unsatisfactory results. Results We have developed a novel bioinformatics method based on Monte Carlo methods and Greenwood's spacing statistic for the computational analysis of the distribution of individual functional classes of genes (from GO). We used this to make the first comprehensive statistical analysis of the relationship between gene functional class and location on a genome. Analysis of the distribution of all genes except tandem duplicates on the five chromosomes of A. thaliana reveals that the distribution on chromosomes I, II, IV and V is clustered at P = 0.001. Many functional classes are clustered, with the degree of clustering within an individual class generally consistent across all five chromosomes. A novel and surprising result was that the locational distribution of some functional classes were significantly more evenly spaced than would be expected by chance. Conclusion Analysis of the A. thaliana genome reveals evidence of unexplained order in the locational distribution of genes. The same general analysis method can be applied to any genome, and indeed any sequential data involving classes. PMID:17397552

  3. Annotation of gene function in citrus using gene expression information and co-expression networks

    PubMed Central

    2014-01-01

    Background The genus Citrus encompasses major cultivated plants such as sweet orange, mandarin, lemon and grapefruit, among the world’s most economically important fruit crops. With increasing volumes of transcriptomics data available for these species, Gene Co-expression Network (GCN) analysis is a viable option for predicting gene function at a genome-wide scale. GCN analysis is based on a “guilt-by-association” principle whereby genes encoding proteins involved in similar and/or related biological processes may exhibit similar expression patterns across diverse sets of experimental conditions. While bioinformatics resources such as GCN analysis are widely available for efficient gene function prediction in model plant species including Arabidopsis, soybean and rice, in citrus these tools are not yet developed. Results We have constructed a comprehensive GCN for citrus inferred from 297 publicly available Affymetrix Genechip Citrus Genome microarray datasets, providing gene co-expression relationships at a genome-wide scale (33,000 transcripts). The comprehensive citrus GCN consists of a global GCN (condition-independent) and four condition-dependent GCNs that survey the sweet orange species only, all citrus fruit tissues, all citrus leaf tissues, or stress-exposed plants. All of these GCNs are clustered using genome-wide, gene-centric (guide) and graph clustering algorithms for flexibility of gene function prediction. For each putative cluster, gene ontology (GO) enrichment and gene expression specificity analyses were performed to enhance gene function, expression and regulation pattern prediction. The guide-gene approach was used to infer novel roles of genes involved in disease susceptibility and vitamin C metabolism, and graph-clustering approaches were used to investigate isoprenoid/phenylpropanoid metabolism in citrus peel, and citric acid catabolism via the GABA shunt in citrus fruit. Conclusions Integration of citrus gene co-expression networks

  4. COMT gene locus: new functional variants.

    PubMed

    Meloto, Carolina B; Segall, Samantha K; Smith, Shad; Parisien, Marc; Shabalina, Svetlana A; Rizzatti-Barbosa, Célia M; Gauthier, Josée; Tsao, Douglas; Convertino, Marino; Piltonen, Marjo H; Slade, Gary Dmitri; Fillingim, Roger B; Greenspan, Joel D; Ohrbach, Richard; Knott, Charles; Maixner, William; Zaykin, Dmitri; Dokholyan, Nikolay V; Reenilä, Ilkka; Männistö, Pekka T; Diatchenko, Luda

    2015-10-01

    Catechol-O-methyltransferase (COMT) metabolizes catecholaminergic neurotransmitters. Numerous studies have linked COMT to pivotal brain functions such as mood, cognition, response to stress, and pain. Both nociception and risk of clinical pain have been associated with COMT genetic variants, and this association was shown to be mediated through adrenergic pathways. Here, we show that association studies between COMT polymorphic markers and pain phenotypes in 2 independent cohorts identified a functional marker, rs165774, situated in the 3' untranslated region of a newfound splice variant, (a)-COMT. Sequence comparisons showed that the (a)-COMT transcript is highly conserved in primates, and deep sequencing data demonstrated that (a)-COMT is expressed across several human tissues, including the brain. In silico analyses showed that the (a)-COMT enzyme features a distinct C-terminus structure, capable of stabilizing substrates in its active site. In vitro experiments demonstrated not only that (a)-COMT is catalytically active but also that it displays unique substrate specificity, exhibiting enzymatic activity with dopamine but not epinephrine. They also established that the pain-protective A allele of rs165774 coincides with lower COMT activity, suggesting contribution to decreased pain sensitivity through increased dopaminergic rather than decreased adrenergic tone, characteristic of reference isoforms. Our results provide evidence for an essential role of the (a)-COMT isoform in nociceptive signaling and suggest that genetic variations in (a)-COMT isoforms may contribute to individual variability in pain phenotypes. PMID:26207649

  5. COMT gene locus: new functional variants

    PubMed Central

    Meloto, Carolina B.; Segall, Samantha K.; Smith, Shad; Parisien, Marc; Shabalina, Svetlana A.; Rizzatti-Barbosa, Célia M.; Gauthier, Josée; Tsao, Douglas; Convertino, Marino; Piltonen, Marjo H.; Slade, Gary Dmitri; Fillingim, Roger B.; Greenspan, Joel D.; Ohrbach, Richard; Knott, Charles; Maixner, William; Zaykin, Dmitri; Dokholyan, Nikolay V.; Reenilä, Ilkka; Männistö, Pekka T.; Diatchenko, Luda

    2015-01-01

    Abstract Catechol-O-methyltransferase (COMT) metabolizes catecholaminergic neurotransmitters. Numerous studies have linked COMT to pivotal brain functions such as mood, cognition, response to stress, and pain. Both nociception and risk of clinical pain have been associated with COMT genetic variants, and this association was shown to be mediated through adrenergic pathways. Here, we show that association studies between COMT polymorphic markers and pain phenotypes in 2 independent cohorts identified a functional marker, rs165774, situated in the 3′ untranslated region of a newfound splice variant, (a)-COMT. Sequence comparisons showed that the (a)-COMT transcript is highly conserved in primates, and deep sequencing data demonstrated that (a)-COMT is expressed across several human tissues, including the brain. In silico analyses showed that the (a)-COMT enzyme features a distinct C-terminus structure, capable of stabilizing substrates in its active site. In vitro experiments demonstrated not only that (a)-COMT is catalytically active but also that it displays unique substrate specificity, exhibiting enzymatic activity with dopamine but not epinephrine. They also established that the pain-protective A allele of rs165774 coincides with lower COMT activity, suggesting contribution to decreased pain sensitivity through increased dopaminergic rather than decreased adrenergic tone, characteristic of reference isoforms. Our results provide evidence for an essential role of the (a)-COMT isoform in nociceptive signaling and suggest that genetic variations in (a)-COMT isoforms may contribute to individual variability in pain phenotypes. PMID:26207649

  6. Gene evolution and functions of extracellular matrix proteins in teeth

    PubMed Central

    Yoshizaki, Keigo; Yamada, Yoshihiko

    2013-01-01

    The extracellular matrix (ECM) not only provides physical support for tissues, but it is also critical for tissue development, homeostasis and disease. Over 300 ECM molecules have been defined as comprising the “core matrisome” in mammals through the analysis of whole genome sequences. During tooth development, the structure and functions of the ECM dynamically change. In the early stages, basement membranes (BMs) separate two cell layers of the dental epithelium and the mesenchyme. Later in the differentiation stages, the BM layer is replaced with the enamel matrix and the dentin matrix, which are secreted by ameloblasts and odontoblasts, respectively. The enamel matrix genes and the dentin matrix genes are each clustered in two closed regions located on human chromosome 4 (mouse chromosome 5), except for the gene coded for amelogenin, the major enamel matrix protein, which is located on the sex chromosomes. These genes for enamel and dentin matrix proteins are derived from a common ancestral gene, but as a result of evolution, they diverged in terms of their specific functions. These matrix proteins play important roles in cell adhesion, polarity, and differentiation and mineralization of enamel and dentin matrices. Mutations of these genes cause diseases such as odontogenesis imperfect (OI) and amelogenesis imperfect (AI). In this review, we discuss the recently defined terms matrisome and matrixome for ECMs, as well as focus on genes and functions of enamel and dentin matrix proteins. PMID:23539364

  7. Functional gene diversity of oolitic sands from Great Bahama Bank.

    PubMed

    Diaz, M R; Van Norstrand, J D; Eberli, G P; Piggot, A M; Zhou, J; Klaus, J S

    2014-05-01

    Despite the importance of oolitic depositional systems as indicators of climate and reservoirs of inorganic C, little is known about the microbial functional diversity, structure, composition, and potential metabolic processes leading to precipitation of carbonates. To fill this gap, we assess the metabolic gene carriage and extracellular polymeric substance (EPS) development in microbial communities associated with oolitic carbonate sediments from the Bahamas Archipelago. Oolitic sediments ranging from high-energy 'active' to lower energy 'non-active' and 'microbially stabilized' environments were examined as they represent contrasting depositional settings, mostly influenced by tidal flows and wave-generated currents. Functional gene analysis, which employed a microarray-based gene technology, detected a total of 12,432 of 95,847 distinct gene probes, including a large number of metabolic processes previously linked to mineral precipitation. Among these, gene-encoding enzymes for denitrification, sulfate reduction, ammonification, and oxygenic/anoxygenic photosynthesis were abundant. In addition, a broad diversity of genes was related to organic carbon degradation, and N2 fixation implying these communities has metabolic plasticity that enables survival under oligotrophic conditions. Differences in functional genes were detected among the environments, with higher diversity associated with non-active and microbially stabilized environments in comparison with the active environment. EPS showed a gradient increase from active to microbially stabilized communities, and when combined with functional gene analysis, which revealed genes encoding EPS-degrading enzymes (chitinases, glucoamylase, amylases), supports a putative role of EPS-mediated microbial calcium carbonate precipitation. We propose that carbonate precipitation in marine oolitic biofilms is spatially and temporally controlled by a complex consortium of microbes with diverse physiologies, including

  8. Transferred interbacterial antagonism genes augment eukaryotic innate immune function.

    PubMed

    Chou, Seemay; Daugherty, Matthew D; Peterson, S Brook; Biboy, Jacob; Yang, Youyun; Jutras, Brandon L; Fritz-Laylin, Lillian K; Ferrin, Michael A; Harding, Brittany N; Jacobs-Wagner, Christine; Yang, X Frank; Vollmer, Waldemar; Malik, Harmit S; Mougous, Joseph D

    2015-02-01

    Horizontal gene transfer allows organisms to rapidly acquire adaptive traits. Although documented instances of horizontal gene transfer from bacteria to eukaryotes remain rare, bacteria represent a rich source of new functions potentially available for co-option. One benefit that genes of bacterial origin could provide to eukaryotes is the capacity to produce antibacterials, which have evolved in prokaryotes as the result of eons of interbacterial competition. The type VI secretion amidase effector (Tae) proteins are potent bacteriocidal enzymes that degrade the cell wall when delivered into competing bacterial cells by the type VI secretion system. Here we show that tae genes have been transferred to eukaryotes on at least six occasions, and that the resulting domesticated amidase effector (dae) genes have been preserved for hundreds of millions of years through purifying selection. We show that the dae genes acquired eukaryotic secretion signals, are expressed within recipient organisms, and encode active antibacterial toxins that possess substrate specificity matching extant Tae proteins of the same lineage. Finally, we show that a dae gene in the deer tick Ixodes scapularis limits proliferation of Borrelia burgdorferi, the aetiologic agent of Lyme disease. Our work demonstrates that a family of horizontally acquired toxins honed to mediate interbacterial antagonism confers previously undescribed antibacterial capacity to eukaryotes. We speculate that the selective pressure imposed by competition between bacteria has produced a reservoir of genes encoding diverse antimicrobial functions that are tailored for co-option by eukaryotic innate immune systems. PMID:25470067

  9. Sucrose metabolism gene families and their biological functions.

    PubMed

    Jiang, Shu-Ye; Chi, Yun-Hua; Wang, Ji-Zhou; Zhou, Jun-Xia; Cheng, Yan-Song; Zhang, Bao-Lan; Ma, Ali; Vanitha, Jeevanandam; Ramachandran, Srinivasan

    2015-11-30

    Sucrose, as the main product of photosynthesis, plays crucial roles in plant development. Although studies on general metabolism pathway were well documented, less information is available on the genome-wide identification of these genes, their expansion and evolutionary history as well as their biological functions. We focused on four sucrose metabolism related gene families including sucrose synthase, sucrose phosphate synthase, sucrose phosphate phosphatase and UDP-glucose pyrophosphorylase. These gene families exhibited different expansion and evolutionary history as their host genomes experienced differentiated rates of the whole genome duplication, tandem and segmental duplication, or mobile element mediated gene gain and loss. They were evolutionarily conserved under purifying selection among species and expression divergence played important roles for gene survival after expansion. However, we have detected recent positive selection during intra-species divergence. Overexpression of 15 sorghum genes in Arabidopsis revealed their roles in biomass accumulation, flowering time control, seed germination and response to high salinity and sugar stresses. Our studies uncovered the molecular mechanisms of gene expansion and evolution and also provided new insight into the role of positive selection in intra-species divergence. Overexpression data revealed novel biological functions of these genes in flowering time control and seed germination under normal and stress conditions.

  10. Sucrose metabolism gene families and their biological functions

    PubMed Central

    Jiang, Shu-Ye; Chi, Yun-Hua; Wang, Ji-Zhou; Zhou, Jun-Xia; Cheng, Yan-Song; Zhang, Bao-Lan; Ma, Ali; Vanitha, Jeevanandam; Ramachandran, Srinivasan

    2015-01-01

    Sucrose, as the main product of photosynthesis, plays crucial roles in plant development. Although studies on general metabolism pathway were well documented, less information is available on the genome-wide identification of these genes, their expansion and evolutionary history as well as their biological functions. We focused on four sucrose metabolism related gene families including sucrose synthase, sucrose phosphate synthase, sucrose phosphate phosphatase and UDP-glucose pyrophosphorylase. These gene families exhibited different expansion and evolutionary history as their host genomes experienced differentiated rates of the whole genome duplication, tandem and segmental duplication, or mobile element mediated gene gain and loss. They were evolutionarily conserved under purifying selection among species and expression divergence played important roles for gene survival after expansion. However, we have detected recent positive selection during intra-species divergence. Overexpression of 15 sorghum genes in Arabidopsis revealed their roles in biomass accumulation, flowering time control, seed germination and response to high salinity and sugar stresses. Our studies uncovered the molecular mechanisms of gene expansion and evolution and also provided new insight into the role of positive selection in intra-species divergence. Overexpression data revealed novel biological functions of these genes in flowering time control and seed germination under normal and stress conditions. PMID:26616172

  11. Molecular and Functional Characterization of Broccoli EMBRYONIC FLOWER 2 Genes

    PubMed Central

    Chen, Long-Fang O.; Lin, Chun-Hung; Lai, Ying-Mi; Huang, Jia-Yuan; Sung, Zinmay Renee

    2012-01-01

    Polycomb group (PcG) proteins regulate major developmental processes in Arabidopsis. EMBRYONIC FLOWER 2 (EMF2), the VEFS domain-containing PcG gene, regulates diverse genetic pathways and is required for vegetative development and plant survival. Despite widespread EMF2-like sequences in plants, little is known about their function other than in Arabidopsis and rice. To study the role of EMF2 in broccoli (Brassica oleracea var. italica cv. Elegance) development, we identified two broccoli EMF2 (BoEMF2) genes with sequence homology to and a similar gene expression pattern to that in Arabidopsis (AtEMF2). Reducing their expression in broccoli resulted in aberrant phenotypes and gene expression patterns. BoEMF2 regulates genes involved in diverse developmental and stress programs similar to AtEMF2 in Arabidopsis. However, BoEMF2 differs from AtEMF2 in the regulation of flower organ identity, cell proliferation and elongation, and death-related genes, which may explain the distinct phenotypes. The expression of BoEMF2.1 in the Arabidopsis emf2 mutant (Rescued emf2) partially rescued the mutant phenotype and restored the gene expression pattern to that of the wild type. Many EMF2-mediated molecular and developmental functions are conserved in broccoli and Arabidopsis. Furthermore, the restored gene expression pattern in Rescued emf2 provides insights into the molecular basis of PcG-mediated growth and development. PMID:22537758

  12. Human kidney anion exchanger 1 interacts with kinesin family member 3B (KIF3B).

    PubMed

    Duangtum, Natapol; Junking, Mutita; Sawasdee, Nunghathai; Cheunsuchon, Boonyarit; Limjindaporn, Thawornchai; Yenchitsomanus, Pa-thai

    2011-09-16

    Impaired trafficking of human kidney anion exchanger 1 (kAE1) to the basolateral membrane of α-intercalated cells of the kidney collecting duct leads to the defect of the Cl(-)/HCO(3)(-) exchange and the failure of proton (H(+)) secretion at the apical membrane of these cells, causing distal renal tubular acidosis (dRTA). In the sorting process, kAE1 interacts with AP-1 mu1A, a subunit of AP-1A adaptor complex. However, it is not known whether kAE1 interacts with motor proteins in its trafficking process to the plasma membrane or not. We report here that kAE1 interacts with kinesin family member 3B (KIF3B) in kidney cells and a dileucine motif at the carboxyl terminus of kAE1 contributes to this interaction. We have also demonstrated that kAE1 co-localizes with KIF3B in human kidney tissues and the suppression of endogenous KIF3B in HEK293T cells by small interfering RNA (siRNA) decreases membrane localization of kAE1 but increases its intracellular accumulation. All results suggest that KIF3B is involved in the trafficking of kAE1 to the plasma membrane of human kidney α-intercalated cells. PMID:21871436

  13. Convergence in pigmentation at multiple levels: mutations, genes and function

    PubMed Central

    Manceau, Marie; Domingues, Vera S.; Linnen, Catherine R.; Rosenblum, Erica Bree; Hoekstra, Hopi E.

    2010-01-01

    Convergence—the independent evolution of the same trait by two or more taxa—has long been of interest to evolutionary biologists, but only recently has the molecular basis of phenotypic convergence been identified. Here, we highlight studies of rapid evolution of cryptic coloration in vertebrates to demonstrate that phenotypic convergence can occur at multiple levels: mutations, genes and gene function. We first show that different genes can be responsible for convergent phenotypes even among closely related populations, for example, in the pale beach mice inhabiting Florida's Gulf and Atlantic coasts. By contrast, the exact same mutation can create similar phenotypes in distantly related species such as mice and mammoths. Next, we show that different mutations in the same gene need not be functionally equivalent to produce similar phenotypes. For example, separate mutations produce divergent protein function but convergent pale coloration in two lizard species. Similarly, mutations that alter the expression of a gene in different ways can, nevertheless, result in similar phenotypes, as demonstrated by sister species of deer mice. Together these studies underscore the importance of identifying not only the genes, but also the precise mutations and their effects on protein function, that contribute to adaptation and highlight how convergence can occur at different genetic levels. PMID:20643733

  14. Convergence in pigmentation at multiple levels: mutations, genes and function.

    PubMed

    Manceau, Marie; Domingues, Vera S; Linnen, Catherine R; Rosenblum, Erica Bree; Hoekstra, Hopi E

    2010-08-27

    Convergence--the independent evolution of the same trait by two or more taxa--has long been of interest to evolutionary biologists, but only recently has the molecular basis of phenotypic convergence been identified. Here, we highlight studies of rapid evolution of cryptic coloration in vertebrates to demonstrate that phenotypic convergence can occur at multiple levels: mutations, genes and gene function. We first show that different genes can be responsible for convergent phenotypes even among closely related populations, for example, in the pale beach mice inhabiting Florida's Gulf and Atlantic coasts. By contrast, the exact same mutation can create similar phenotypes in distantly related species such as mice and mammoths. Next, we show that different mutations in the same gene need not be functionally equivalent to produce similar phenotypes. For example, separate mutations produce divergent protein function but convergent pale coloration in two lizard species. Similarly, mutations that alter the expression of a gene in different ways can, nevertheless, result in similar phenotypes, as demonstrated by sister species of deer mice. Together these studies underscore the importance of identifying not only the genes, but also the precise mutations and their effects on protein function, that contribute to adaptation and highlight how convergence can occur at different genetic levels. PMID:20643733

  15. Functional and regulatory interactions between Hox and extradenticle genes

    PubMed Central

    Azpiazu, Natalia; Morata, Ginés

    1998-01-01

    The homeobox gene extradenticle (exd) acts as a cofactor of Hox function both in Drosophila and vertebrates. It has been shown that the distribution of the Exd protein is developmentally regulated at the post-translational level; in the regions where exd is not functional Exd is present only in the cell cytoplasm, whereas it accumulates in the nuclei of cells requiring exd function. We show that the subcellular localization of Exd is regulated by the BX-C genes and that each BX-C gene can prevent or reduce nuclear translocation of Exd to different extents. In spite of this negative regulation, two BX-C genes, Ultrabithorax and abdominal-A, require exd activity for their maintenance and function. We propose that mutual interactions between Exd and BX-C proteins ensure the correct amounts of interacting molecules. As the Hoxd10 gene has the same properties as Drosophila BX-C genes, we suggest that the control mechanism of subcellular distribution of Exd found in Drosophila probably operates in other organisms as well. PMID:9436985

  16. Additive functions in boolean models of gene regulatory network modules.

    PubMed

    Darabos, Christian; Di Cunto, Ferdinando; Tomassini, Marco; Moore, Jason H; Provero, Paolo; Giacobini, Mario

    2011-01-01

    Gene-on-gene regulations are key components of every living organism. Dynamical abstract models of genetic regulatory networks help explain the genome's evolvability and robustness. These properties can be attributed to the structural topology of the graph formed by genes, as vertices, and regulatory interactions, as edges. Moreover, the actual gene interaction of each gene is believed to play a key role in the stability of the structure. With advances in biology, some effort was deployed to develop update functions in boolean models that include recent knowledge. We combine real-life gene interaction networks with novel update functions in a boolean model. We use two sub-networks of biological organisms, the yeast cell-cycle and the mouse embryonic stem cell, as topological support for our system. On these structures, we substitute the original random update functions by a novel threshold-based dynamic function in which the promoting and repressing effect of each interaction is considered. We use a third real-life regulatory network, along with its inferred boolean update functions to validate the proposed update function. Results of this validation hint to increased biological plausibility of the threshold-based function. To investigate the dynamical behavior of this new model, we visualized the phase transition between order and chaos into the critical regime using Derrida plots. We complement the qualitative nature of Derrida plots with an alternative measure, the criticality distance, that also allows to discriminate between regimes in a quantitative way. Simulation on both real-life genetic regulatory networks show that there exists a set of parameters that allows the systems to operate in the critical region. This new model includes experimentally derived biological information and recent discoveries, which makes it potentially useful to guide experimental research. The update function confers additional realism to the model, while reducing the complexity

  17. Additive Functions in Boolean Models of Gene Regulatory Network Modules

    PubMed Central

    Darabos, Christian; Di Cunto, Ferdinando; Tomassini, Marco; Moore, Jason H.; Provero, Paolo; Giacobini, Mario

    2011-01-01

    Gene-on-gene regulations are key components of every living organism. Dynamical abstract models of genetic regulatory networks help explain the genome's evolvability and robustness. These properties can be attributed to the structural topology of the graph formed by genes, as vertices, and regulatory interactions, as edges. Moreover, the actual gene interaction of each gene is believed to play a key role in the stability of the structure. With advances in biology, some effort was deployed to develop update functions in Boolean models that include recent knowledge. We combine real-life gene interaction networks with novel update functions in a Boolean model. We use two sub-networks of biological organisms, the yeast cell-cycle and the mouse embryonic stem cell, as topological support for our system. On these structures, we substitute the original random update functions by a novel threshold-based dynamic function in which the promoting and repressing effect of each interaction is considered. We use a third real-life regulatory network, along with its inferred Boolean update functions to validate the proposed update function. Results of this validation hint to increased biological plausibility of the threshold-based function. To investigate the dynamical behavior of this new model, we visualized the phase transition between order and chaos into the critical regime using Derrida plots. We complement the qualitative nature of Derrida plots with an alternative measure, the criticality distance, that also allows to discriminate between regimes in a quantitative way. Simulation on both real-life genetic regulatory networks show that there exists a set of parameters that allows the systems to operate in the critical region. This new model includes experimentally derived biological information and recent discoveries, which makes it potentially useful to guide experimental research. The update function confers additional realism to the model, while reducing the complexity

  18. Genes for Plant Autophagy: Functions and Interactions

    PubMed Central

    Kim, Soon-Hee; Kwon, Chian; Lee, Jae-Hoon; Chung, Taijoon

    2012-01-01

    Autophagy, or self-consuming of cytoplasmic constituents in a lytic compartment, plays a crucial role in nutrient recycling, development, cell homeostasis, and defense against pathogens and toxic products. Autophagy in plant cells uses a conserved machinery of core Autophagy-related (Atg) proteins. Recently, research on plant autophagy has been expanding and other components interacting with the core Atg proteins are being revealed. In addition, growing evidence suggests that autophagy communicates with other cellular pathways such as the ubiquitin-proteasome system, protein secretory pathway, and endocytic pathway. An increase in our understanding of plant autophagy will undoubtedly help test the hypothesized functions of plant autophagy in programmed cell death, vacuole biogenesis, and responses to biotic, abiotic, and nutritional stresses. In this review, we summarize recent progress on these topics and suggest topics for future research, after inspecting common phenotypes of current Arabidopsis atg mutants. PMID:22772908

  19. Crumbs 3b promotes tight junctions in an ezrin-dependent manner in mammalian cells

    PubMed Central

    Tilston-Lünel, Andrew M.; Haley, Kathryn E.; Schlecht, Nicolas F.; Wang, Yanhua; Chatterton, Abigail L.D.; Moleirinho, Susana; Watson, Ailsa; Hundal, Harinder S.; Prystowsky, Michael B.; Gunn-Moore, Frank J.; Reynolds, Paul A.

    2016-01-01

    Crumbs 3 (CRB3) is a component of epithelial junctions, which has been implicated in apical-basal polarity, apical identity, apical stability, cell adhesion, and cell growth. CRB3 undergoes alternative splicing to yield two variants: CRB3a and CRB3b. Here, we describe novel data demonstrating that, as with previous studies on CRB3a, CRB3b also promotes the formation of tight junctions (TJs). However, significantly we demonstrate that the 4.1-ezrin–radixin–moesin-binding motif of CRB3b is required for CRB3b functionality and that ezrin binds to the FBM of CRB3b. Furthermore, we show that ezrin contributes to CRB3b functionality and the correct distribution of TJ proteins. We demonstrate that both CRB3 isoforms are required for the production of functionally mature TJs and also the localization of ezrin to the plasma membrane. Finally, we demonstrate that reduced CRB3b expression in head and neck squamous cell carcinoma (HNSCC) correlates with cytoplasmic ezrin, a biomarker for aggressive disease, and shows evidence that while CRB3a expression has no effect, low CRB3b and high cytoplasmic ezrin expression combined may be prognostic for HNSCC. PMID:27190314

  20. SF3B1 haploinsufficiency leads to formation of ring sideroblasts in myelodysplastic syndromes.

    PubMed

    Visconte, Valeria; Rogers, Heesun J; Singh, Jarnail; Barnard, John; Bupathi, Manoj; Traina, Fabiola; McMahon, James; Makishima, Hideki; Szpurka, Hadrian; Jankowska, Anna; Jerez, Andres; Sekeres, Mikkael A; Saunthararajah, Yogen; Advani, Anjali S; Copelan, Edward; Koseki, Haruhiko; Isono, Kyoichi; Padgett, Richard A; Osman, Sami; Koide, Kazunori; O'Keefe, Christine; Maciejewski, Jaroslaw P; Tiu, Ramon V

    2012-10-18

    Whole exome/genome sequencing has been fundamental in the identification of somatic mutations in the spliceosome machinery in myelodysplastic syndromes (MDSs) and other hematologic disorders. SF3B1, splicing factor 3b subunit 1 is mutated in 60%-80% of refractory anemia with ring sideroblasts (RARS) and RARS associated with thrombocytosis (RARS-T), 2 distinct subtypes of MDS and MDS/myeloproliferative neoplasms (MDSs/MPNs). An idiosyncratic feature of RARS/RARS-T is the presence of abnormal sideroblasts characterized by iron overload in the mitochondria, called RS. Based on the high frequency of mutations of SF3B1 in RARS/RARS-T, we investigated the consequences of SF3B1 alterations. Ultrastructurally, SF3B1 mutants showed altered iron distribution characterized by coarse iron deposits compared with wild-type RARS patients by transmission electron microscopy. SF3B1 knockdown experiments in K562 cells resulted in down-regulation of U2-type intron-splicing by RT-PCR. RNA-sequencing analysis of SF3B1 mutants showed differentially used genes relevant in MDS pathogenesis, such as ASXL1, CBL, EZH, and RUNX families. A SF3B pharmacologic inhibitor, meayamycin, induced the formation of RS in healthy BM cells. Further, BM aspirates of Sf3b1 heterozygous knockout mice showed RS by Prussian blue. In conclusion, we report the first experimental evidence of the association between SF3B1 and RS phenotype. Our data suggest that SF3B1 haploinsufficiency leads to RS formation.

  1. [Structure and function of neural plasticity-related gene products].

    PubMed

    Yamagata, K; Sugiura, H; Suzuki, K

    1998-08-01

    We have isolated novel immediate early genes (IEGs) from the hippocampus by differential cloning techniques. These mRNAs are induced by synaptic activity and translated into proteins that may affect neural function. We have analyzed a variety of "effector" immediate early genes. These mRNAs encode: 1) cytoplasmic proteins, such as cyclooxygenase-2, a small G protein, Rheb, and a cytoskeleton-associated protein, Arc; 2) membrane-bound proteins, such as the cell adhesion protein Arcadlin, and a neurite-outgrowth protein, Neuritin; and 3) a secreted protein, Narp. We hypothesize that physiological stimulation induces "effector" proteins that might strengthen synaptic connections of activated synapses. In contrast, pathological conditions such as epilepsy or drug addiction may accelerate overproduction of these gene products, which cause abnormal synapse formation. Gene targeting and in vivo gene transfer techniques are required to prove this hypothesis. PMID:9866829

  2. Gene function analysis in osteosarcoma based on microarray gene expression profiling

    PubMed Central

    Zhao, Liang; Zhang, Jinghua; Tan, Hongyu; Wang, Weidong; Liu, Yilin; Song, Ruipeng; Wang, Limin

    2015-01-01

    Osteosa rcoma is an aggressive malignant neoplasm that exhibits osteoblastic differentiation and produces malignant osteoid. The aim of this study was to find feature genes associated with osteosarcoma and correlative gene functions which can distinguish cancer tissues from non-tumor tissues. Gene expression profile GSE14359 was downloaded from Gene Expression Omnibus (GEO) database, including 10 osteosarcoma samples and 2 normal samples. The differentially expressed genes (DEGs) between osteosarcoma and normal specimens were identified using limma package of R. DAVID was applied to mine osteosarcoma associated genes and analyze the GO enrichment on gene functions and KEGG pathways. Then, corresponding protein-protein interaction (PPI) network of DEGs was constructed based on the data collected from STRING datasets. Principal component of top10 DEGs and PPI network of top 20 DEGs were further analyzed. Finally, transcription factors were predicted by uploading the two groups of DEGs to TfactS database. A total of 437 genes, including 114 up-regulated genes and 323 down-regulated genes, were filtered as DEGs, of which 46 were associated with osteosarcoma by Disease Module. GO and KEGG pathway enrichment analysis showed that genes mainly affected the process of immune response and the development of skeletal and vascular system. The PPI network analysis elucidated that hemoglobin and histocompatibility proteins and enzymes, which were associated with immune response, were closely associated with osteosarcoma. Transcription factors MYC and SP1 were predicted to be significantly related to osteosarcoma. The discovery of gene functions and transcription factors has the potential to use in clinic for diagnosis of osteosarcoma in future. In addition, it will pave the way to studying mechanism and effective therapies for osteosarcoma. PMID:26379830

  3. Evolution of the glutamine synthetase gene, one of the oldest existing and functioning genes.

    PubMed Central

    Kumada, Y; Benson, D R; Hillemann, D; Hosted, T J; Rochefort, D A; Thompson, C J; Wohlleben, W; Tateno, Y

    1993-01-01

    We performed molecular phylogenetic analyses of glutamine synthetase (GS) genes in order to investigate their evolutionary history. The analyses were done on 30 DNA sequences of the GS gene which included both prokaryotes and eukaryotes. Two types of GS genes are known at present: the GSI gene found so far only in prokaryotes and the GSII gene found in both prokaryotes and eukaryotes. Our study has shown that the two types of GS gene were produced by a gene duplication which preceded, perhaps by > 1000 million years, the divergence of eukaryotes and prokaryotes. The results are consistent with the facts that (i) GS is a key enzyme of nitrogen metabolism found in all extant life forms and (ii) the oldest biological fossils date back 3800 million years. Thus, we suggest that GS genes are one of the oldest existing and functioning genes in the history of gene evolution and that GSI genes should also exist in eukaryotes. Furthermore, our study may stimulate investigation on the evolution of "preprokaryotes," by which we mean the organisms that existed during the era between the origin of life and the divergence of prokaryotes and eukaryotes. PMID:8096645

  4. Cellular functions of genetically imprinted genes in human and mouse as annotated in the gene ontology.

    PubMed

    Hamed, Mohamed; Ismael, Siba; Paulsen, Martina; Helms, Volkhard

    2012-01-01

    By analyzing the cellular functions of genetically imprinted genes as annotated in the Gene Ontology for human and mouse, we found that imprinted genes are often involved in developmental, transport and regulatory processes. In the human, paternally expressed genes are enriched in GO terms related to the development of organs and of anatomical structures. In the mouse, maternally expressed genes regulate cation transport as well as G-protein signaling processes. Furthermore, we investigated if imprinted genes are regulated by common transcription factors. We identified 25 TF families that showed an enrichment of binding sites in the set of imprinted genes in human and 40 TF families in mouse. In general, maternally and paternally expressed genes are not regulated by different transcription factors. The genes Nnat, Klf14, Blcap, Gnas and Ube3a contribute most to the enrichment of TF families. In the mouse, genes that are maternally expressed in placenta are enriched for AP1 binding sites. In the human, we found that these genes possessed binding sites for both, AP1 and SP1. PMID:23226257

  5. Functional analysis of the BIN 2 genes of cotton.

    PubMed

    Sun, Yan; Allen, Randy D

    2005-08-01

    Brassinosteroids (BR) promote the elongation of cotton fibers and may be a factor in determining their final length. To begin to understand the role of BR-mediated responses in the development of cotton fibers we have characterized the BIN 2 genes of cotton. BIN 2 is a member of the shaggy-like protein kinase family that has been identified as a negative regulator of BR signaling in Arabidopsis. Sequence analyses indicate that the tetraploid cotton genome includes four genes with strong sequence similarity to BIN 2. These genes fall into two distinct subclasses based on sequence and expression patterns. Sequence comparisons with corresponding genes from cotton species that have the diploid A and D genomes, respectively, shows that each pair of genes comprises homeologs derived from the A and D sub-genomes. Transgenic Arabidopsis plants that express these cotton BIN 2 cDNAs show reduced growth and similar phenotypes to the semi-dominant bin 2 mutant plants. These results indicate that the cotton BIN 2 genes encode functional BIN 2 isoforms that can inhibit BR signaling. Further analyses of the function of BIN 2 genes and their possible roles in determining fiber yield and quality are underway. PMID:15973517

  6. Function and expression pattern of nonsyndromic deafness genes

    PubMed Central

    Hilgert, Nele; Smith, Richard J.H.; Van Camp, Guy

    2010-01-01

    Hearing loss is the most common sensory disorder, present in 1 of every 500 newborns. To date, 46 genes have been identified that cause nonsyndromic hearing loss, making it an extremely heterogeneous trait. This review provides a comprehensive overview of the inner ear function and expression pattern of these genes. In general, they are involved in hair bundle morphogenesis, form constituents of the extracellular matrix, play a role in cochlear ion homeostasis or serve as transcription factors. During the past few years, our knowledge of genes involved in hair bundle morphogenesis has increased substantially. We give an up-to-date overview of both the nonsyndromic and Usher syndrome genes involved in this process, highlighting proteins that interact to form macromolecular complexes. For every gene, we also summarize its expression pattern and impact on hearing at the functional level. Gene-specific cochlear expression is summarized in a unique table by structure/cell type and is illustrated on a cochlear cross-section, which is available online via the Hereditary Hearing Loss Homepage. This review should provide auditory scientists the most relevant information for all identified nonsyndromic deafness genes. PMID:19601806

  7. Breaking restricted taxonomic functionality by dual resistance genes.

    PubMed

    Narusaka, Mari; Kubo, Yasuyuki; Hatakeyama, Katsunori; Imamura, Jun; Ezura, Hiroshi; Nanasato, Yoshihiko; Tabei, Yutaka; Takano, Yoshitaka; Shirasu, Ken; Narusaka, Yoshihiro

    2013-06-01

    NB-LRR-type disease resistance (R) genes have been used in traditional breeding programs for crop protection. However, functional transfer of NB-LRR-type R genes to plants in taxonomically distinct families to establish pathogen resistance has not been successful. Here we demonstrate that a pair of Arabidopsis (Brassicaceae) NB-LRR-type R genes, RPS4 and RRS1, properly function in two other Brassicaceae, Brassica rapa and B. napus, but also in two Solanaceae, Nicotiana benthamiana and tomato (Solanum lycopersicum). The solanaceous plants transformed with RPS4/RRS1 confer bacterial effector-specific immunity responses. Furthermore, RPS4 and RRS1, which confer resistance to a fungal pathogen Colletotrichum higginsianum in Brassicaceae, also protect against Colletotrichum orbiculare in cucumber (Cucurbitaceae). Thus the successful transfer of two R genes at the family level overcomes restricted taxonomic functionality. This implies that the downstream components of R genes must be highly conserved and interfamily utilization of R genes can be a powerful strategy to combat pathogens.

  8. Cancer-Associated SF3B1 Hotspot Mutations Induce Cryptic 3' Splice Site Selection through Use of a Different Branch Point.

    PubMed

    Darman, Rachel B; Seiler, Michael; Agrawal, Anant A; Lim, Kian H; Peng, Shouyong; Aird, Daniel; Bailey, Suzanna L; Bhavsar, Erica B; Chan, Betty; Colla, Simona; Corson, Laura; Feala, Jacob; Fekkes, Peter; Ichikawa, Kana; Keaney, Gregg F; Lee, Linda; Kumar, Pavan; Kunii, Kaiko; MacKenzie, Crystal; Matijevic, Mark; Mizui, Yoshiharu; Myint, Khin; Park, Eun Sun; Puyang, Xiaoling; Selvaraj, Anand; Thomas, Michael P; Tsai, Jennifer; Wang, John Y; Warmuth, Markus; Yang, Hui; Zhu, Ping; Garcia-Manero, Guillermo; Furman, Richard R; Yu, Lihua; Smith, Peter G; Buonamici, Silvia

    2015-11-01

    Recurrent mutations in the spliceosome are observed in several human cancers, but their functional and therapeutic significance remains elusive. SF3B1, the most frequently mutated component of the spliceosome in cancer, is involved in the recognition of the branch point sequence (BPS) during selection of the 3' splice site (ss) in RNA splicing. Here, we report that common and tumor-specific splicing aberrations are induced by SF3B1 mutations and establish aberrant 3' ss selection as the most frequent splicing defect. Strikingly, mutant SF3B1 utilizes a BPS that differs from that used by wild-type SF3B1 and requires the canonical 3' ss to enable aberrant splicing during the second step. Approximately 50% of the aberrantly spliced mRNAs are subjected to nonsense-mediated decay resulting in downregulation of gene and protein expression. These findings ascribe functional significance to the consequences of SF3B1 mutations in cancer. PMID:26565915

  9. Loss of gene function and evolution of human phenotypes

    PubMed Central

    Oh, Hye Ji; Choi, Dongjin; Goh, Chul Jun; Hahn, Yoonsoo

    2015-01-01

    Humans have acquired many distinct evolutionary traits after the human-chimpanzee divergence. These phenotypes have resulted from genetic changes that occurred in the human genome and were retained by natural selection. Comparative primate genome analyses reveal that loss-of-function mutations are common in the human genome. Some of these gene inactivation events were revealed to be associated with the emergence of advantageous phenotypes and were therefore positively selected and fixed in modern humans (the “less-ismore” hypothesis). Representative cases of human gene inactivation and their functional implications are presented in this review. Functional studies of additional inactive genes will provide insight into the molecular mechanisms underlying acquisition of various human-specific traits. [BMB Reports 2015; 48(7): 373-379] PMID:25887751

  10. Haploid Strategies for Functional Validation of Plant Genes.

    PubMed

    Shen, Yaou; Pan, Guangtang; Lübberstedt, Thomas

    2015-10-01

    Increasing knowledge of plant genome sequences requires the development of more reliable and efficient genetic approaches for genotype-phenotype validation. Functional identification of plant genes is generally achieved by a combination of creating genetic modifications and observing the according phenotype, which begins with forward-genetic methods represented by random physical and chemical mutagenesis and move towards reverse-genetic tools as targeted genome editing. A major bottleneck is time need to produce modified homozygous genotypes that can actually be used for phenotypic validation. Herein, we comprehensively address and compare available experimental approaches for functional validation of plant genes, and propose haploid strategies to reduce the time needed and cost consumed for establishing gene function. PMID:26409779

  11. Electronic structure, optical properties and the mechanism of the B3-B8 phase transition of BeSe: insights from hybrid functionals, lattice dynamics and NPH molecular dynamics.

    PubMed

    Dutta, Rajkrishna; Alptekin, Sebahaddin; Mandal, Nibir

    2013-03-27

    We have investigated the electronic structure and the mechanism of the pressure induced phase transition of beryllium selenide (BeSe) by employing a first-principles pseudopotential method within the framework of density functional theory. Our study demonstrates that use of the hybrid PBE0 functional (PBE stands for Perdew, Burke and Ernzerhof) leads to significant improvement in the band gap calculations, compared to those using either of the common density functionals (local density approximation (LDA) and generalized gradient approximation (GGA)), which severely underestimate the band gap of BeSe. The band gap obtained from the hybrid PBE0 functional shows excellent agreement with available experimental data. A constant-pressure (NPH) first-principles molecular dynamics (FPMD) approach has been adopted to characterize the first-order pressure induced phase transition from the zinc blende (ZB) to the nickel arsenide (NiAs) structure. We have shown that the FPMD simulation overestimates the transition pressure P(T) (compared to static enthalpy and experimental data) due to overpressure in the simulation box. The MD simulation reveals the structural pathway (cubic → orthorhombic → monoclinic → hexagonal), leading from the ZB phase to the NiAs phase. To find an explanation for the phase transition we calculated the vibrational and elastic properties under pressure. Negative Grüneisen parameters were obtained for the transverse acoustic phonon modes at the X and L high symmetry points. However, no mechanical instability or imaginary frequencies were found at pressures near P(T). Thus the transition results from a thermodynamic instability rather than an elastic/dynamical one. We have also calculated the optical properties of both the B3 and B8 phases, such as the real and imaginary parts of the dielectric constant, reflectivity, loss function and refractive index, and compared them with the existing experimental and theoretical data. An abrupt decrease is

  12. Applications and advantages of virus-induced gene silencing for gene function studies in plants.

    PubMed

    Burch-Smith, Tessa M; Anderson, Jeffrey C; Martin, Gregory B; Dinesh-Kumar, S P

    2004-09-01

    Virus-induced gene silencing (VIGS) is a recently developed gene transcript suppression technique for characterizing the function of plant genes. The approach involves cloning a short sequence of a targeted plant gene into a viral delivery vector. The vector is used to infect a young plant, and in a few weeks natural defense mechanisms of the plant directed at suppressing virus replication also result in specific degradation of mRNAs from the endogenous plant gene that is targeted for silencing. VIGS is rapid (3-4 weeks from infection to silencing), does not require development of stable transformants, allows characterization of phenotypes that might be lethal in stable lines, and offers the potential to silence either individual or multiple members of a gene family. Here we briefly review the discoveries that led to the development of VIGS and what is known about the experimental requirements for effective silencing. We describe the methodology of VIGS and how it can be optimized and used for both forward and reverse genetics studies. Advantages and disadvantages of VIGS compared with other loss-of-function approaches available for plants are discussed, along with how the limitations of VIGS might be overcome. Examples are reviewed where VIGS has been used to provide important new insights into the roles of specific genes in plant development and plant defense responses. Finally, we examine the future prospects for VIGS as a powerful tool for assessing and characterizing the function of plant genes. PMID:15315635

  13. PHYLOGENOMICS - GUIDED VALIDATION OF FUNCTION FOR CONSERVED UNKNOWN GENES

    SciTech Connect

    V, DE CRECY-LAGARD; D, HANSON A

    2012-01-03

    Identifying functions for all gene products in all sequenced organisms is a central challenge of the post-genomic era. However, at least 30-50% of the proteins encoded by any given genome are of unknown function, or wrongly or vaguely annotated. Many of these 'unknown' proteins are common to prokaryotes and plants. We accordingly set out to predict and experimentally test the functions of such proteins. Our approach to functional prediction is integrative, coupling the extensive post-genomic resources available for plants with comparative genomics based on hundreds of microbial genomes, and functional genomic datasets from model microorganisms. The early phase is computer-assisted; later phases incorporate intellectual input from expert plant and microbial biochemists. The approach thus bridges the gap between automated homology-based annotations and the classical gene discovery efforts of experimentalists, and is much more powerful than purely computational approaches to identifying gene-function associations. Among Arabidopsis genes, we focused on those (2,325 in total) that (i) are unique or belong to families with no more than three members, (ii) are conserved between plants and prokaryotes, and (iii) have unknown or poorly known functions. Computer-assisted selection of promising targets for deeper analysis was based on homology .. independent characteristics associated in the SEED database with the prokaryotic members of each family, specifically gene clustering and phyletic spread, as well as availability of functional genomics data, and publications that could link candidate families to general metabolic areas, or to specific functions. In-depth comparative genomic analysis was then performed for about 500 top candidate families, which connected ~55 of them to general areas of metabolism and led to specific functional predictions for a subset of ~25 more. Twenty predicted functions were experimentally tested in at least one prokaryotic organism via reverse

  14. Integrative data-mining tools to link gene and function.

    PubMed

    El Yacoubi, Basma; de Crécy-Lagard, Valérie

    2014-01-01

    Information derived from genomic and post-genomic data can be efficiently used to link gene and function. Several web-based platforms have been developed to mine these types of data by integrating different tools. This method paper is designed to allow the user to navigate these platforms in order to make functional predictions. The main focus is on phylogenetic distribution and physical clustering tools, but other tools such as pathway reconstruction, gene fusions, and analysis of high-throughput experimental data are also surveyed.

  15. Tandem riboswitch architectures exhibit complex gene control functions.

    PubMed

    Sudarsan, Narasimhan; Hammond, Ming C; Block, Kirsten F; Welz, Rüdiger; Barrick, Jeffrey E; Roth, Adam; Breaker, Ronald R

    2006-10-13

    Riboswitches are structured RNAs typically located in the 5' untranslated regions of bacterial mRNAs that bind metabolites and control gene expression. Most riboswitches sense one metabolite and function as simple genetic switches. However, we found that the 5' region of the Bacillus clausii metE messenger RNA includes two riboswitches that respond to S-adenosylmethionine and coenzyme B12. This tandem arrangement yields a composite gene control system that functions as a two-input Boolean NOR logic gate. These findings and the discovery of additional tandem riboswitch architectures reveal how simple RNA elements can be assembled to make sophisticated genetic decisions without involving protein factors. PMID:17038623

  16. Effects of a recombinant complement component C3b functional fragment α2MR (α2-macroglobulin receptor) additive on the immune response of juvenile orange-spotted grouper (Epinephelus coioides) after the exposure to cold shock challenge.

    PubMed

    Luo, Sheng-Wei; Cai, Luo; Qi, Zeng-Hua; Wang, Cong; Liu, Yuan; Wang, Wei-Na

    2015-08-01

    The effects of Ec-α2MR (Epinephelus coiodes-α2-macroglobulin receptor) on growth performance, enzymatic activity, respiratory burst, MDA level, total antioxidant capacity, DPPH radical scavenging percentage and immune-related gene expressions of the juvenile orange-spotted grouper were evaluated. The commercial diet supplemented with α2MR additive was used to feed the orange-spotted grouper for six weeks. Although a slight increase was observed in the specific growth rate, survival rate and weight gain, no significance was observed among different group. After the feeding trial, the groupers were exposed to cold stress. Respiratory burst activity and MDA level decreased significantly in α2MR additive group by comparing with the control and additive control group, while a sharp increase of ACP activity, ALP activity, total antioxidant capacity and DPPH radial scavenging percentage was observed in α2MR additive group. qRT-PCR analyses confirmed that the up-regulated mRNA expressions of C3, TNF1, TNF2, IL-6, CTL, LysC, SOD1 and SOD2 were observed in α2MR additive group at 20 °C. These results showed that α2MR additive may moderate the immune response in grouper following cold shock challenge. PMID:25917969

  17. Effects of a recombinant complement component C3b functional fragment α2MR (α2-macroglobulin receptor) additive on the immune response of juvenile orange-spotted grouper (Epinephelus coioides) after the exposure to cold shock challenge.

    PubMed

    Luo, Sheng-Wei; Cai, Luo; Qi, Zeng-Hua; Wang, Cong; Liu, Yuan; Wang, Wei-Na

    2015-08-01

    The effects of Ec-α2MR (Epinephelus coiodes-α2-macroglobulin receptor) on growth performance, enzymatic activity, respiratory burst, MDA level, total antioxidant capacity, DPPH radical scavenging percentage and immune-related gene expressions of the juvenile orange-spotted grouper were evaluated. The commercial diet supplemented with α2MR additive was used to feed the orange-spotted grouper for six weeks. Although a slight increase was observed in the specific growth rate, survival rate and weight gain, no significance was observed among different group. After the feeding trial, the groupers were exposed to cold stress. Respiratory burst activity and MDA level decreased significantly in α2MR additive group by comparing with the control and additive control group, while a sharp increase of ACP activity, ALP activity, total antioxidant capacity and DPPH radial scavenging percentage was observed in α2MR additive group. qRT-PCR analyses confirmed that the up-regulated mRNA expressions of C3, TNF1, TNF2, IL-6, CTL, LysC, SOD1 and SOD2 were observed in α2MR additive group at 20 °C. These results showed that α2MR additive may moderate the immune response in grouper following cold shock challenge.

  18. The systematic functional characterisation of Xq28 genes prioritises candidate disease genes

    PubMed Central

    Kolb-Kokocinski, Anja; Mehrle, Alexander; Bechtel, Stephanie; Simpson, Jeremy C; Kioschis, Petra; Wiemann, Stefan; Wellenreuther, Ruth; Poustka, Annemarie

    2006-01-01

    Background Well known for its gene density and the large number of mapped diseases, the human sub-chromosomal region Xq28 has long been a focus of genome research. Over 40 of approximately 300 X-linked diseases map to this region, and systematic mapping, transcript identification, and mutation analysis has led to the identification of causative genes for 26 of these diseases, leaving another 17 diseases mapped to Xq28, where the causative gene is still unknown. To expedite disease gene identification, we have initiated the functional characterisation of all known Xq28 genes. Results By using a systematic approach, we describe the Xq28 genes by RNA in situ hybridisation and Northern blotting of the mouse orthologs, as well as subcellular localisation and data mining of the human genes. We have developed a relational web-accessible database with comprehensive query options integrating all experimental data. Using this database, we matched gene expression patterns with affected tissues for 16 of the 17 remaining Xq28 linked diseases, where the causative gene is unknown. Conclusion By using this systematic approach, we have prioritised genes in linkage regions of Xq28-mapped diseases to an amenable number for mutational screens. Our database can be queried by any researcher performing highly specified searches including diseases not listed in OMIM or diseases that might be linked to Xq28 in the future. PMID:16503986

  19. Inference of gene regulation functions from dynamic transcriptome data

    PubMed Central

    Hillenbrand, Patrick; Maier, Kerstin C; Cramer, Patrick; Gerland, Ulrich

    2016-01-01

    To quantify gene regulation, a function is required that relates transcription factor binding to DNA (input) to the rate of mRNA synthesis from a target gene (output). Such a ‘gene regulation function’ (GRF) generally cannot be measured because the experimental titration of inputs and simultaneous readout of outputs is difficult. Here we show that GRFs may instead be inferred from natural changes in cellular gene expression, as exemplified for the cell cycle in the yeast S. cerevisiae. We develop this inference approach based on a time series of mRNA synthesis rates from a synchronized population of cells observed over three cell cycles. We first estimate the functional form of how input transcription factors determine mRNA output and then derive GRFs for target genes in the CLB2 gene cluster that are expressed during G2/M phase. Systematic analysis of additional GRFs suggests a network architecture that rationalizes transcriptional cell cycle oscillations. We find that a transcription factor network alone can produce oscillations in mRNA expression, but that additional input from cyclin oscillations is required to arrive at the native behaviour of the cell cycle oscillator. DOI: http://dx.doi.org/10.7554/eLife.12188.001 PMID:27652904

  20. The function and evolution of Wnt genes in arthropods.

    PubMed

    Murat, Sophie; Hopfen, Corinna; McGregor, Alistair P

    2010-11-01

    Wnt signalling is required for a wide range of developmental processes, from cleavage to patterning and cell migration. There are 13 subfamilies of Wnt ligand genes and this diverse repertoire appeared very early in metazoan evolution. In this review, we first summarise the known Wnt gene repertoire in various arthropods. Insects appear to have lost several Wnt subfamilies, either generally, such as Wnt3, or in lineage specific patterns, for example, the loss of Wnt7 in Anopheles. In Drosophila and Acyrthosiphon, only seven and six Wnt subfamilies are represented, respectively; however, the finding of nine Wnt genes in Tribolium suggests that arthropods had a larger repertoire ancestrally. We then discuss what is currently known about the expression and developmental function of Wnt ligands in Drosophila and other insects in comparison to other arthropods, such as the spiders Achaearanea and Cupiennius. We conclude that studies of Wnt genes have given us much insight into the developmental roles of some of these ligands. However, given the frequent loss of Wnt genes in insects and the derived development of Drosophila, further studies of these important genes are required in a broader range of arthropods to fully understand their developmental function and evolution.

  1. New insights into the organization, recombination, expression and functional mechanism of low molecular weight glutenin subunit genes in bread wheat.

    PubMed

    Dong, Lingli; Zhang, Xiaofei; Liu, Dongcheng; Fan, Huajie; Sun, Jiazhu; Zhang, Zhongjuan; Qin, Huanju; Li, Bin; Hao, Shanting; Li, Zhensheng; Wang, Daowen; Zhang, Aimin; Ling, Hong-Qing

    2010-01-01

    The bread-making quality of wheat is strongly influenced by multiple low molecular weight glutenin subunit (LMW-GS) proteins expressed in the seeds. However, the organization, recombination and expression of LMW-GS genes and their functional mechanism in bread-making are not well understood. Here we report a systematic molecular analysis of LMW-GS genes located at the orthologous Glu-3 loci (Glu-A3, B3 and D3) of bread wheat using complementary approaches (genome wide characterization of gene members, expression profiling, proteomic analysis). Fourteen unique LMW-GS genes were identified for Xiaoyan 54 (with superior bread-making quality). Molecular mapping and recombination analyses revealed that the three Glu-3 loci of Xiaoyan 54 harbored dissimilar numbers of LMW-GS genes and covered different genetic distances. The number of expressed LMW-GS in the seeds was higher in Xiaoyan 54 than in Jing 411 (with relatively poor bread-making quality). This correlated with the finding of higher numbers of active LMW-GS genes at the A3 and D3 loci in Xiaoyan 54. Association analysis using recombinant inbred lines suggested that positive interactions, conferred by genetic combinations of the Glu-3 locus alleles with more numerous active LMW-GS genes, were generally important for the recombinant progenies to attain high Zeleny sedimentation value (ZSV), an important indicator of bread-making quality. A higher number of active LMW-GS genes tended to lead to a more elevated ZSV, although this tendency was influenced by genetic background. This work provides substantial new insights into the genomic organization and expression of LMW-GS genes, and molecular genetic evidence suggesting that these genes contribute quantitatively to bread-making quality in hexaploid wheat. Our analysis also indicates that selection for high numbers of active LMW-GS genes can be used for improvement of bread-making quality in wheat breeding. PMID:20975830

  2. New Insights into the Organization, Recombination, Expression and Functional Mechanism of Low Molecular Weight Glutenin Subunit Genes in Bread Wheat

    PubMed Central

    Fan, Huajie; Sun, Jiazhu; Zhang, Zhongjuan; Qin, Huanju; Li, Bin; Hao, Shanting; Li, Zhensheng; Wang, Daowen; Zhang, Aimin; Ling, Hong-Qing

    2010-01-01

    The bread-making quality of wheat is strongly influenced by multiple low molecular weight glutenin subunit (LMW-GS) proteins expressed in the seeds. However, the organization, recombination and expression of LMW-GS genes and their functional mechanism in bread-making are not well understood. Here we report a systematic molecular analysis of LMW-GS genes located at the orthologous Glu-3 loci (Glu-A3, B3 and D3) of bread wheat using complementary approaches (genome wide characterization of gene members, expression profiling, proteomic analysis). Fourteen unique LMW-GS genes were identified for Xiaoyan 54 (with superior bread-making quality). Molecular mapping and recombination analyses revealed that the three Glu-3 loci of Xiaoyan 54 harbored dissimilar numbers of LMW-GS genes and covered different genetic distances. The number of expressed LMW-GS in the seeds was higher in Xiaoyan 54 than in Jing 411 (with relatively poor bread-making quality). This correlated with the finding of higher numbers of active LMW-GS genes at the A3 and D3 loci in Xiaoyan 54. Association analysis using recombinant inbred lines suggested that positive interactions, conferred by genetic combinations of the Glu-3 locus alleles with more numerous active LMW-GS genes, were generally important for the recombinant progenies to attain high Zeleny sedimentation value (ZSV), an important indicator of bread-making quality. A higher number of active LMW-GS genes tended to lead to a more elevated ZSV, although this tendency was influenced by genetic background. This work provides substantial new insights into the genomic organization and expression of LMW-GS genes, and molecular genetic evidence suggesting that these genes contribute quantitatively to bread-making quality in hexaploid wheat. Our analysis also indicates that selection for high numbers of active LMW-GS genes can be used for improvement of bread-making quality in wheat breeding. PMID:20975830

  3. Elucidation of gene function using C-5 propyne antisense oligonucleotides.

    PubMed

    Flanagan, W M; Su, L L; Wagner, R W

    1996-09-01

    Identification of human disease-causing genes continues to be an intense area of research. While cloning of genes may lead to diagnostic tests, development of a cure requires an understanding of the gene's function in both normal and diseased cells. Thus, there exists a need for a reproducible and simple method to elucidate gene function. We evaluate C-5 propyne pyrimidine modified phosphorothioate antisense oligonucleotides (ONs) targeted against two human cell cycle proteins that are aberrantly expressed in breast cancer: p34cdc2 kinase and cyclin B1. Dose-dependent, sequence-specific, and gene-specific inhibition of both proteins was achieved at nanomolar concentrations of ONs in normal and breast cancer cells. Precise binding of the antisense ONs to their target RNA was absolutely required for antisense activity. Four or six base-mismatched ONs eliminated antisense activity confirming the sequence specificity of the antisense ONs. Antisense inhibition of p34cdc2 kinase resulted in a significant accumulation of cells in the Gap2/mitosis phase of the cell cycle in normal cells, but caused little effect on cell cycle progression in breast cancer cells. These data demonstrate the potency, specificity, and utility of C-5 propyne modified antisense ONs as biological tools and illustrate the redundancy of cell cycle protein function that can occur in cancer cells. PMID:9631067

  4. Motifs emerge from function in model gene regulatory networks

    PubMed Central

    Burda, Z.; Krzywicki, A.; Martin, O. C.; Zagorski, M.

    2011-01-01

    Gene regulatory networks allow the control of gene expression patterns in living cells. The study of network topology has revealed that certain subgraphs of interactions or “motifs” appear at anomalously high frequencies. We ask here whether this phenomenon may emerge because of the functions carried out by these networks. Given a framework for describing regulatory interactions and dynamics, we consider in the space of all regulatory networks those that have prescribed functional capabilities. Markov Chain Monte Carlo sampling is then used to determine how these functional networks lead to specific motif statistics in the interactions. In the case where the regulatory networks are constrained to exhibit multistability, we find a high frequency of gene pairs that are mutually inhibitory and self-activating. In contrast, networks constrained to have periodic gene expression patterns (mimicking for instance the cell cycle) have a high frequency of bifan-like motifs involving four genes with at least one activating and one inhibitory interaction. PMID:21960444

  5. Evolution of the vertebrate paralemmin gene family: ancient origin of gene duplicates suggests distinct functions.

    PubMed

    Hultqvist, Greta; Ocampo Daza, Daniel; Larhammar, Dan; Kilimann, Manfred W

    2012-01-01

    Paralemmin-1 is a protein implicated in plasma membrane dynamics, the development of filopodia, neurites and dendritic spines, as well as the invasiveness and metastatic potential of cancer cells. However, little is known about its mode of action, or about the biological functions of the other paralemmin isoforms: paralemmin-2, paralemmin-3 and palmdelphin. We describe here evolutionary analyses of the paralemmin gene family in a broad range of vertebrate species. Our results suggest that the four paralemmin isoform genes (PALM1, PALM2, PALM3 and PALMD) arose by quadruplication of an ancestral gene in the two early vertebrate genome duplications. Paralemmin-1 and palmdelphin were further duplicated in the teleost fish specific genome duplication. We identified a unique sequence motif common to all paralemmins, consisting of 11 highly conserved residues of which four are invariant. A single full-length paralemmin homolog with this motif was identified in the genome of the sea lamprey Petromyzon marinus and an isolated putative paralemmin motif could be detected in the genome of the lancelet Branchiostoma floridae. This allows us to conclude that the paralemmin gene family arose early and has been maintained throughout vertebrate evolution, suggesting functional diversification and specific biological roles of the paralemmin isoforms. The paralemmin genes have also maintained specific features of gene organisation and sequence. This includes the occurrence of closely linked downstream genes, initially identified as a readthrough fusion protein with mammalian paralemmin-2 (Palm2-AKAP2). We have found evidence for such an arrangement for paralemmin-1 and -2 in several vertebrate genomes, as well as for palmdelphin and paralemmin-3 in teleost fish genomes, and suggest the name paralemmin downstream genes (PDG) for this new gene family. Thus, our findings point to ancient roles for paralemmins and distinct biological functions of the gene duplicates. PMID:22855693

  6. Functional annotation of rare gene aberration drivers of pancreatic cancer.

    PubMed

    Tsang, Yiu Huen; Dogruluk, Turgut; Tedeschi, Philip M; Wardwell-Ozgo, Joanna; Lu, Hengyu; Espitia, Maribel; Nair, Nikitha; Minelli, Rosalba; Chong, Zechen; Chen, Fengju; Chang, Qing Edward; Dennison, Jennifer B; Dogruluk, Armel; Li, Min; Ying, Haoqiang; Bertino, Joseph R; Gingras, Marie-Claude; Ittmann, Michael; Kerrigan, John; Chen, Ken; Creighton, Chad J; Eterovic, Karina; Mills, Gordon B; Scott, Kenneth L

    2016-01-01

    As we enter the era of precision medicine, characterization of cancer genomes will directly influence therapeutic decisions in the clinic. Here we describe a platform enabling functionalization of rare gene mutations through their high-throughput construction, molecular barcoding and delivery to cancer models for in vivo tumour driver screens. We apply these technologies to identify oncogenic drivers of pancreatic ductal adenocarcinoma (PDAC). This approach reveals oncogenic activity for rare gene aberrations in genes including NAD Kinase (NADK), which regulates NADP(H) homeostasis and cellular redox state. We further validate mutant NADK, whose expression provides gain-of-function enzymatic activity leading to a reduction in cellular reactive oxygen species and tumorigenesis, and show that depletion of wild-type NADK in PDAC cell lines attenuates cancer cell growth in vitro and in vivo. These data indicate that annotating rare aberrations can reveal important cancer signalling pathways representing additional therapeutic targets. PMID:26806015

  7. Functional annotation of rare gene aberration drivers of pancreatic cancer

    PubMed Central

    Tsang, Yiu Huen; Dogruluk, Turgut; Tedeschi, Philip M.; Wardwell-Ozgo, Joanna; Lu, Hengyu; Espitia, Maribel; Nair, Nikitha; Minelli, Rosalba; Chong, Zechen; Chen, Fengju; Chang, Qing Edward; Dennison, Jennifer B.; Dogruluk, Armel; Li, Min; Ying, Haoqiang; Bertino, Joseph R.; Gingras, Marie-Claude; Ittmann, Michael; Kerrigan, John; Chen, Ken; Creighton, Chad J.; Eterovic, Karina; Mills, Gordon B.; Scott, Kenneth L.

    2016-01-01

    As we enter the era of precision medicine, characterization of cancer genomes will directly influence therapeutic decisions in the clinic. Here we describe a platform enabling functionalization of rare gene mutations through their high-throughput construction, molecular barcoding and delivery to cancer models for in vivo tumour driver screens. We apply these technologies to identify oncogenic drivers of pancreatic ductal adenocarcinoma (PDAC). This approach reveals oncogenic activity for rare gene aberrations in genes including NAD Kinase (NADK), which regulates NADP(H) homeostasis and cellular redox state. We further validate mutant NADK, whose expression provides gain-of-function enzymatic activity leading to a reduction in cellular reactive oxygen species and tumorigenesis, and show that depletion of wild-type NADK in PDAC cell lines attenuates cancer cell growth in vitro and in vivo. These data indicate that annotating rare aberrations can reveal important cancer signalling pathways representing additional therapeutic targets. PMID:26806015

  8. PRODH gene is associated with executive function in schizophrenic families.

    PubMed

    Li, Tao; Ma, Xiaohong; Hu, Xun; Wang, Yingcheng; Yan, Chengying; Meng, Huaqing; Liu, Xiehe; Toulopoulou, Timothea; Murray, Robin M; Collier, David A

    2008-07-01

    The aim of this study was to investigate the relationship between polymorphisms in the PRODH and COMT genes and selected neurocognitive functions. Six SNPs in PRODH and two SNPs in COMT were genotyped in 167 first-episode schizophrenic families who had been assessed by a set of 14 neuropsychological tests. Neuropsychological measures were selected as quantitative traits for association analysis. The haplotype of SNPs PRODH 1945T/C and PRODH 1852G/A was associated with impaired performance on the Tower of Hanoi, a problem-solving task mainly reflecting planning capacity. There was no significant evidence for association with any other neuropsychological traits for other SNPs or haplotypes of paired SNPs in the two genes. This study takes previous findings of association between PRODH and schizophrenia further by associating variation within the gene with performance on a neurocognitive trait characteristic of the illness. It fails to confirm previous reports of an association between COMT and cognitive function. PMID:18163391

  9. Analysis of gene functions in Maize chlorotic mottle virus.

    PubMed

    Scheets, Kay

    2016-08-15

    Gene functions of strains of Maize chlorotic mottle virus, which comprises the monotypic genus Machlomovirus, have not been previously identified. In this study mutagenesis of the seven genes encoded in maize chlorotic mottle virus (MCMV) showed that the genes with positional and sequence similarity to their homologs in viruses of related tombusvirid genera had similar functions. p50 and its readthrough protein p111 are the only proteins required for replication in maize protoplasts, and they function at a low level in trans. Two movement proteins, p7a and p7b, and coat protein, encoded on subgenomic RNA1, are required for cell-to-cell movement in maize, and p7a and p7b function in trans. A unique protein, p31, expressed as a readthrough extension of p7a, is required for efficient systemic infection. The 5' proximal MCMV gene encodes a unique 32kDa protein that is not required for replication or movement. Transcripts lacking p32 expression accumulate to about 1/3 the level of wild type transcripts in protoplasts and produce delayed, mild infections in maize plants. Additional studies on p32, p31 and the unique amino-terminal region of p50 are needed to further characterize the life cycle of this unique tombusvirid. PMID:27242072

  10. XIST repression in the absence of DNMT1 and DNMT3B.

    PubMed

    Vasques, Luciana R; Stabellini, Raquel; Xue, Fei; Tian, X Cindy; Soukoyan, Marina; Pereira, Lygia V

    2005-01-01

    X chromosome inactivation (XCI) in human and mice involves XIST/Xist gene expression from the inactive X (Xi) and repression from the active X (Xa). Repression of the XIST/Xist gene on the Xa has been associated with methylation of its 5' region. In mice, Dnmt1 has been shown to be involved in the methylation and transcriptional repression of Xist on Xa. We examined maintenance of XIST gene repression on Xa in HCT116 cell lines knockout for either DNMT1 or DNMT3B and for DNMT1 and DNMT3B simultaneously. Methylation of the XIST promoter and XIST transcriptional repression is sustained in DNMT1-, DNMT3B- and DNMT1/DNMT3B knockout cells. Despite global DNA demethylation, the double knockout cells present only partial demethylation of the XIST promoter, which is not sufficient for gene reactivation. In contrast, global DNA demethylation with 5-aza-2'-deoxycytidine leads to XIST expression. Therefore, in these human cells maintenance of XIST methylation is controlled differently than global genomic methylation and in the absence of both DNMT1 and DNMT3B.

  11. Using riboswitches to regulate gene expression and define gene function in mycobacteria.

    PubMed

    Van Vlack, Erik R; Seeliger, Jessica C

    2015-01-01

    Mycobacteria include both environmental species and many pathogenic species such as Mycobacterium tuberculosis, an intracellular pathogen that is the causative agent of tuberculosis in humans. Inducible gene expression is a powerful tool for examining gene function and essentiality, both in in vitro culture and in host cell infections. The theophylline-inducible artificial riboswitch has recently emerged as an alternative to protein repressor-based systems. The riboswitch is translationally regulated and is combined with a mycobacterial promoter that provides transcriptional control. We here provide methods used by our laboratory to characterize the riboswitch response to theophylline in reporter strains, recombinant organisms containing riboswitch-regulated endogenous genes, and in host cell infections. These protocols should facilitate the application of both existing and novel artificial riboswitches to the exploration of gene function in mycobacteria. PMID:25605389

  12. A TonB-Dependent Transporter Is Responsible for Methanobactin Uptake by Methylosinus trichosporium OB3b

    PubMed Central

    Gu, Wenyu; Farhan Ul Haque, Muhammad; Baral, Bipin S.; Turpin, Erick A.; Bandow, Nathan L.; Kremmer, Elisabeth; Flatley, Andrew; Zischka, Hans; DiSpirito, Alan A.

    2016-01-01

    Methanobactin, a small modified polypeptide synthesized by methanotrophs for copper uptake, has been found to be chromosomally encoded. The gene encoding the polypeptide precursor of methanobactin, mbnA, is part of a gene cluster that also includes several genes encoding proteins of unknown function (but speculated to be involved in methanobactin formation) as well as mbnT, which encodes a TonB-dependent transporter hypothesized to be responsible for methanobactin uptake. To determine if mbnT is truly responsible for methanobactin uptake, a knockout was constructed in Methylosinus trichosporium OB3b using marker exchange mutagenesis. The resulting M. trichosporium mbnT::Gmr mutant was found to be able to produce methanobactin but was unable to internalize it. Further, if this mutant was grown in the presence of copper and exogenous methanobactin, copper uptake was significantly reduced. Expression of mmoX and pmoA, encoding polypeptides of the soluble methane monooxygenase (sMMO) and particulate methane monooxygenase (pMMO), respectively, also changed significantly when methanobactin was added, which indicates that the mutant was unable to collect copper under these conditions. Copper uptake and gene expression, however, were not affected in wild-type M. trichosporium OB3b, indicating that the TonB-dependent transporter encoded by mbnT is responsible for methanobactin uptake and that methanobactin is a key mechanism used by methanotrophs for copper uptake. When the mbnT::Gmr mutant was grown under a range of copper concentrations in the absence of methanobactin, however, the phenotype of the mutant was indistinguishable from that of wild-type M. trichosporium OB3b, indicating that this methanotroph has multiple mechanisms for copper uptake. PMID:26773085

  13. Warming Alters Expressions of Microbial Functional Genes Important to Ecosystem Functioning

    PubMed Central

    Xue, Kai; Xie, Jianping; Zhou, Aifen; Liu, Feifei; Li, Dejun; Wu, Liyou; Deng, Ye; He, Zhili; Van Nostrand, Joy D.; Luo, Yiqi; Zhou, Jizhong

    2016-01-01

    Soil microbial communities play critical roles in ecosystem functioning and are likely altered by climate warming. However, so far, little is known about effects of warming on microbial functional gene expressions. Here, we applied functional gene array (GeoChip 3.0) to analyze cDNA reversely transcribed from total RNA to assess expressed functional genes in active soil microbial communities after nine years of experimental warming in a tallgrass prairie. Our results showed that warming significantly altered the community wide gene expressions. Specifically, expressed genes for degrading more recalcitrant carbon were stimulated by warming, likely linked to the plant community shift toward more C4 species under warming and to decrease the long-term soil carbon stability. In addition, warming changed expressed genes in labile C degradation and N cycling in different directions (increase and decrease), possibly reflecting the dynamics of labile C and available N pools during sampling. However, the average abundances of expressed genes in phosphorus and sulfur cycling were all increased by warming, implying a stable trend of accelerated P and S processes which might be a mechanism to sustain higher plant growth. Furthermore, the expressed gene composition was closely related to both dynamic (e.g., soil moisture) and stable environmental attributes (e.g., C4 leaf C or N content), indicating that RNA analyses could also capture certain stable trends in the long-term treatment. Overall, this study revealed the importance of elucidating functional gene expressions of soil microbial community in enhancing our understanding of ecosystem responses to warming. PMID:27199978

  14. Warming Alters Expressions of Microbial Functional Genes Important to Ecosystem Functioning.

    PubMed

    Xue, Kai; Xie, Jianping; Zhou, Aifen; Liu, Feifei; Li, Dejun; Wu, Liyou; Deng, Ye; He, Zhili; Van Nostrand, Joy D; Luo, Yiqi; Zhou, Jizhong

    2016-01-01

    Soil microbial communities play critical roles in ecosystem functioning and are likely altered by climate warming. However, so far, little is known about effects of warming on microbial functional gene expressions. Here, we applied functional gene array (GeoChip 3.0) to analyze cDNA reversely transcribed from total RNA to assess expressed functional genes in active soil microbial communities after nine years of experimental warming in a tallgrass prairie. Our results showed that warming significantly altered the community wide gene expressions. Specifically, expressed genes for degrading more recalcitrant carbon were stimulated by warming, likely linked to the plant community shift toward more C4 species under warming and to decrease the long-term soil carbon stability. In addition, warming changed expressed genes in labile C degradation and N cycling in different directions (increase and decrease), possibly reflecting the dynamics of labile C and available N pools during sampling. However, the average abundances of expressed genes in phosphorus and sulfur cycling were all increased by warming, implying a stable trend of accelerated P and S processes which might be a mechanism to sustain higher plant growth. Furthermore, the expressed gene composition was closely related to both dynamic (e.g., soil moisture) and stable environmental attributes (e.g., C4 leaf C or N content), indicating that RNA analyses could also capture certain stable trends in the long-term treatment. Overall, this study revealed the importance of elucidating functional gene expressions of soil microbial community in enhancing our understanding of ecosystem responses to warming.

  15. SF3B1 mutations constitute a novel therapeutic target in breast cancer

    PubMed Central

    Maguire, Sarah L; Leonidou, Andri; Wai, Patty; Marchiò, Caterina; Ng, Charlotte KY; Sapino, Anna; Salomon, Anne-Vincent; Reis-Filho, Jorge S; Weigelt, Britta; Natrajan, Rachael C

    2015-01-01

    Mutations in genes encoding proteins involved in RNA splicing have been found to occur at relatively high frequencies in several tumour types including myelodysplastic syndromes, chronic lymphocytic leukaemia, uveal melanoma, and pancreatic cancer, and at lower frequencies in breast cancer. To investigate whether dysfunction in RNA splicing is implicated in the pathogenesis of breast cancer, we performed a re-analysis of published exome and whole genome sequencing data. This analysis revealed that mutations in spliceosomal component genes occurred in 5.6% of unselected breast cancers, including hotspot mutations in the SF3B1 gene, which were found in 1.8% of unselected breast cancers. SF3B1 mutations were significantly associated with ER-positive disease, AKT1 mutations, and distinct copy number alterations. Additional profiling of hotspot mutations in a panel of special histological subtypes of breast cancer showed that 16% and 6% of papillary and mucinous carcinomas of the breast harboured the SF3B1 K700E mutation. RNA sequencing identified differentially spliced events expressed in tumours with SF3B1 mutations including the protein coding genes TMEM14C, RPL31, DYNL11, UQCC, and ABCC5, and the long non-coding RNA CRNDE. Moreover, SF3B1 mutant cell lines were found to be sensitive to the SF3b complex inhibitor spliceostatin A and treatment resulted in perturbation of the splicing signature. Albeit rare, SF3B1 mutations result in alternative splicing events, and may constitute drivers and a novel therapeutic target in a subset of breast cancers. © 2014 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. PMID:25424858

  16. Fenton-treated functionalized diamond nanoparticles as gene delivery system.

    PubMed

    Martín, Roberto; Alvaro, Mercedes; Herance, José Raúl; García, Hermenegildo

    2010-01-26

    When raw diamond nanoparticles (Dnp, 7 nm average particle size) obtained from detonation are submitted to harsh Fenton-treatment, the resulting material becomes free of amorphous soot matter and the process maintains the crystallinity, reduces the particle size (4 nm average particle size), increases the surface OH population, and increases water solubility. All these changes are beneficial for subsequent Dnp covalent functionalization and for the ability of Dnp to cross cell membranes. Fenton-treated Dnps have been functionalized with thionine and the resulting sample has been observed in HeLa cell nuclei. A triethylammonium-functionalized Dnp pairs electrostatically with a plasmid having the green fluorescent protein gene and acts as gene delivery system permitting the plasmid to cross HeLa cell membrane, something that does not occur for the plasmid alone without assistance of polycationic Dnp. PMID:20047335

  17. Towards revealing the functions of all genes in plants.

    PubMed

    Rhee, Seung Yon; Mutwil, Marek

    2014-04-01

    The great recent progress made in identifying the molecular parts lists of organisms revealed the paucity of our understanding of what most of the parts do. In this review, we introduce computational and statistical approaches and omics data used for inferring gene function in plants, with an emphasis on network-based inference. We also discuss caveats associated with network-based function predictions such as performance assessment, annotation propagation, the guilt-by-association concept, and the meaning of hubs. Finally, we note the current limitations and possible future directions such as the need for gold standard data from several species, unified access to data and tools, quantitative comparison of data and tool quality, and high-throughput experimental validation platforms for systematic gene function elucidation in plants.

  18. Nucleotide substitutions revealing specific functions of Polycomb group genes.

    PubMed

    Bajusz, Izabella; Sipos, László; Pirity, Melinda K

    2015-04-01

    POLYCOMB group (PCG) proteins belong to the family of epigenetic regulators of genes playing important roles in differentiation and development. Mutants of PcG genes were isolated first in the fruit fly, Drosophila melanogaster, resulting in spectacular segmental transformations due to the ectopic expression of homeotic genes. Homologs of Drosophila PcG genes were also identified in plants and in vertebrates and subsequent experiments revealed the general role of PCG proteins in the maintenance of the repressed state of chromatin through cell divisions. The past decades of gene targeting experiments have allowed us to make significant strides towards understanding how the network of PCG proteins influences multiple aspects of cellular fate determination during development. Being involved in the transmission of specific expression profiles of different cell lineages, PCG proteins were found to control wide spectra of unrelated epigenetic processes in vertebrates, such as stem cell plasticity and renewal, genomic imprinting and inactivation of X-chromosome. PCG proteins also affect regulation of metabolic genes being important for switching programs between pluripotency and differentiation. Insight into the precise roles of PCG proteins in normal physiological processes has emerged from studies employing cell culture-based systems and genetically modified animals. Here we summarize the findings obtained from PcG mutant fruit flies and mice generated to date with a focus on PRC1 and PRC2 members altered by nucleotide substitutions resulting in specific alleles. We also include a compilation of lessons learned from these models about the in vivo functions of this complex protein family. With multiple knockout lines, sophisticated approaches to study the consequences of peculiar missense point mutations, and insights from complementary gain-of-function systems in hand, we are now in a unique position to significantly advance our understanding of the molecular basis of

  19. Plant Ion Channels: Gene Families, Physiology, and Functional Genomics Analyses

    PubMed Central

    Ward, John M.; Mäser, Pascal; Schroeder, Julian I.

    2016-01-01

    Distinct potassium, anion, and calcium channels in the plasma membrane and vacuolar membrane of plant cells have been identified and characterized by patch clamping. Primarily owing to advances in Arabidopsis genetics and genomics, and yeast functional complementation, many of the corresponding genes have been identified. Recent advances in our understanding of ion channel genes that mediate signal transduction and ion transport are discussed here. Some plant ion channels, for example, ALMT and SLAC anion channel subunits, are unique. The majority of plant ion channel families exhibit homology to animal genes; such families include both hyperpolarization-and depolarization-activated Shaker-type potassium channels, CLC chloride transporters/channels, cyclic nucleotide–gated channels, and ionotropic glutamate receptor homologs. These plant ion channels offer unique opportunities to analyze the structural mechanisms and functions of ion channels. Here we review gene families of selected plant ion channel classes and discuss unique structure-function aspects and their physiological roles in plant cell signaling and transport. PMID:18842100

  20. Use of functional gene arrays for elucidating in situ biodegradation

    PubMed Central

    Nostrand, Joy D. Van; He, Zhili; Zhou, Jizhong

    2012-01-01

    Microarrays have revolutionized the study of microbiology by providing a high-throughput method for examining thousands of genes with a single test and overcome the limitations of many culture-independent approaches. Functional gene arrays (FGA) probe a wide range of genes involved in a variety of functions of interest to microbial ecology (e.g., carbon degradation, N fixation, metal resistance) from many different microorganisms, cultured and uncultured. The most comprehensive FGA to date is the GeoChip array, which targets tens of thousands of genes involved in the geochemical cycling of carbon, nitrogen, phosphorus, and sulfur, metal resistance and reduction, energy processing, antibiotic resistance and contaminant degradation as well as phylogenetic information (gyrB). Since the development of GeoChips, many studies have been performed using this FGA and have shown it to be a powerful tool for rapid, sensitive, and specific examination of microbial communities in a high-throughput manner. As such, the GeoChip is well-suited for linking geochemical processes with microbial community function and structure. This technology has been used successfully to examine microbial communities before, during, and after in situ bioremediation at a variety of contaminated sites. These studies have expanded our understanding of biodegradation and bioremediation processes and the associated microorganisms and environmental conditions responsible. This review provides an overview of FGA development with a focus on the GeoChip and highlights specific GeoChip studies involving in situ bioremediation. PMID:23049526

  1. Colorectal cancer risk genes are functionally enriched in regulatory pathways.

    PubMed

    Lu, Xi; Cao, Mingming; Han, Su; Yang, Youlin; Zhou, Jin

    2016-01-01

    Colorectal cancer (CRC) is a common complex disease caused by the combination of genetic variants and environmental factors. Genome-wide association studies (GWAS) have been performed and reported some novel CRC susceptibility variants. However, the potential genetic mechanisms for newly identified CRC susceptibility variants are still unclear. Here, we selected 85 CRC susceptibility variants with suggestive association P < 1.00E-05 from the National Human Genome Research Institute GWAS catalog. To investigate the underlying genetic pathways where these newly identified CRC susceptibility genes are significantly enriched, we conducted a functional annotation. Using two kinds of SNP to gene mapping methods including the nearest upstream and downstream gene method and the ProxyGeneLD, we got 128 unique CRC susceptibility genes. We then conducted a pathway analysis in GO database using the corresponding 128 genes. We identified 44 GO categories, 17 of which are regulatory pathways. We believe that our results may provide further insight into the underlying genetic mechanisms for these newly identified CRC susceptibility variants. PMID:27146020

  2. Colorectal cancer risk genes are functionally enriched in regulatory pathways

    PubMed Central

    Lu, Xi; Cao, Mingming; Han, Su; Yang, Youlin; Zhou, Jin

    2016-01-01

    Colorectal cancer (CRC) is a common complex disease caused by the combination of genetic variants and environmental factors. Genome-wide association studies (GWAS) have been performed and reported some novel CRC susceptibility variants. However, the potential genetic mechanisms for newly identified CRC susceptibility variants are still unclear. Here, we selected 85 CRC susceptibility variants with suggestive association P < 1.00E-05 from the National Human Genome Research Institute GWAS catalog. To investigate the underlying genetic pathways where these newly identified CRC susceptibility genes are significantly enriched, we conducted a functional annotation. Using two kinds of SNP to gene mapping methods including the nearest upstream and downstream gene method and the ProxyGeneLD, we got 128 unique CRC susceptibility genes. We then conducted a pathway analysis in GO database using the corresponding 128 genes. We identified 44 GO categories, 17 of which are regulatory pathways. We believe that our results may provide further insight into the underlying genetic mechanisms for these newly identified CRC susceptibility variants. PMID:27146020

  3. Functional optimization of gene clusters by combinatorial design and assembly.

    PubMed

    Smanski, Michael J; Bhatia, Swapnil; Zhao, Dehua; Park, YongJin; B A Woodruff, Lauren; Giannoukos, Georgia; Ciulla, Dawn; Busby, Michele; Calderon, Johnathan; Nicol, Robert; Gordon, D Benjamin; Densmore, Douglas; Voigt, Christopher A

    2014-12-01

    Large microbial gene clusters encode useful functions, including energy utilization and natural product biosynthesis, but genetic manipulation of such systems is slow, difficult and complicated by complex regulation. We exploit the modularity of a refactored Klebsiella oxytoca nitrogen fixation (nif) gene cluster (16 genes, 103 parts) to build genetic permutations that could not be achieved by starting from the wild-type cluster. Constraint-based combinatorial design and DNA assembly are used to build libraries of radically different cluster architectures by varying part choice, gene order, gene orientation and operon occupancy. We construct 84 variants of the nifUSVWZM operon, 145 variants of the nifHDKY operon, 155 variants of the nifHDKYENJ operon and 122 variants of the complete 16-gene pathway. The performance and behavior of these variants are characterized by nitrogenase assay and strand-specific RNA sequencing (RNA-seq), and the results are incorporated into subsequent design cycles. We have produced a fully synthetic cluster that recovers 57% of wild-type activity. Our approach allows the performance of genetic parts to be quantified simultaneously in hundreds of genetic contexts. This parallelized design-build-test-learn cycle, which can access previously unattainable regions of genetic space, should provide a useful, fast tool for genetic optimization and hypothesis testing.

  4. Comparative genomics of Geobacter chemotaxis genes reveals diverse signaling function

    PubMed Central

    Tran, Hoa T; Krushkal, Julia; Antommattei, Frances M; Lovley, Derek R; Weis, Robert M

    2008-01-01

    Background Geobacter species are δ-Proteobacteria and are often the predominant species in a variety of sedimentary environments where Fe(III) reduction is important. Their ability to remediate contaminated environments and produce electricity makes them attractive for further study. Cell motility, biofilm formation, and type IV pili all appear important for the growth of Geobacter in changing environments and for electricity production. Recent studies in other bacteria have demonstrated that signaling pathways homologous to the paradigm established for Escherichia coli chemotaxis can regulate type IV pili-dependent motility, the synthesis of flagella and type IV pili, the production of extracellular matrix material, and biofilm formation. The classification of these pathways by comparative genomics improves the ability to understand how Geobacter thrives in natural environments and better their use in microbial fuel cells. Results The genomes of G. sulfurreducens, G. metallireducens, and G. uraniireducens contain multiple (~70) homologs of chemotaxis genes arranged in several major clusters (six, seven, and seven, respectively). Unlike the single gene cluster of E. coli, the Geobacter clusters are not all located near the flagellar genes. The probable functions of some Geobacter clusters are assignable by homology to known pathways; others appear to be unique to the Geobacter sp. and contain genes of unknown function. We identified large numbers of methyl-accepting chemotaxis protein (MCP) homologs that have diverse sensing domain architectures and generate a potential for sensing a great variety of environmental signals. We discuss mechanisms for class-specific segregation of the MCPs in the cell membrane, which serve to maintain pathway specificity and diminish crosstalk. Finally, the regulation of gene expression in Geobacter differs from E. coli. The sequences of predicted promoter elements suggest that the alternative sigma factors σ28 and σ54 play a role

  5. Leptin receptor expressing neurons express phosphodiesterase-3B (PDE3B) and leptin induces STAT3 activation in PDE3B neurons in the mouse hypothalamus.

    PubMed

    Sahu, Maitrayee; Sahu, Abhiram

    2015-11-01

    Leptin signaling in the hypothalamus is critical for normal food intake and body weight regulation. Cumulative evidence suggests that besides the signal transducer and activator of transcription-3 (STAT3) pathway, several non-STAT3 pathways including the phosphodiesterase-3B (PDE3B) pathway mediate leptin signaling in the hypothalamus. We have shown that PDE3B is localized in various hypothalamic sites implicated in the regulation of energy homeostasis and that the anorectic and body weight reducing effects of leptin are mediated by the activation of PDE3B. It is still unknown if PDE3B is expressed in the long form of the leptin-receptor (ObRb)-expressing neurons in the hypothalamus and whether leptin induces STAT3 activation in PDE3B-expressing neurons. In this study, we examined co-localization of PDE3B with ObRb neurons in various hypothalamic nuclei in ObRb-GFP mice that were treated with leptin (5mg/kg, ip) for 2h. Results showed that most of the ObRb neurons in the arcuate nucleus (ARC, 93%), ventromedial nucleus (VMN, 94%), dorsomedial nucleus (DMN, 95%), ventral premammillary nucleus (PMv, 97%) and lateral hypothalamus (LH, 97%) co-expressed PDE3B. We next examined co-localization of p-STAT3 and PDE3B in the hypothalamus in C57BL6 mice that were treated with leptin (5mg/kg, ip) for 1h. The results showed that almost all p-STAT3 positive neurons in different hypothalamic nuclei including ARC, VMN, DMN, LH and PMv areas expressed PDE3B. These results suggest the possibility for a direct role for the PDE3B pathway in mediating leptin action in the hypothalamus.

  6. Interspecies variations in Bordetella catecholamine receptor gene regulation and function.

    PubMed

    Brickman, Timothy J; Suhadolc, Ryan J; Armstrong, Sandra K

    2015-12-01

    Bordetella bronchiseptica can use catecholamines to obtain iron from transferrin and lactoferrin via uptake pathways involving the BfrA, BfrD, and BfrE outer membrane receptor proteins, and although Bordetella pertussis has the bfrD and bfrE genes, the role of these genes in iron uptake has not been demonstrated. In this study, the bfrD and bfrE genes of B. pertussis were shown to be functional in B. bronchiseptica, but neither B. bronchiseptica bfrD nor bfrE imparted catecholamine utilization to B. pertussis. Gene fusion analyses found that expression of B. bronchiseptica bfrA was increased during iron starvation, as is common for iron receptor genes, but that expression of the bfrD and bfrE genes of both species was decreased during iron limitation. As shown previously for B. pertussis, bfrD expression in B. bronchiseptica was also dependent on the BvgAS virulence regulatory system; however, in contrast to the case in B. pertussis, the known modulators nicotinic acid and sulfate, which silence Bvg-activated genes, did not silence expression of bfrD in B. bronchiseptica. Further studies using a B. bronchiseptica bvgAS mutant expressing the B. pertussis bvgAS genes revealed that the interspecies differences in bfrD modulation are partly due to BvgAS differences. Mouse respiratory infection experiments determined that catecholamine utilization contributes to the in vivo fitness of B. bronchiseptica and B. pertussis. Additional evidence of the in vivo importance of the B. pertussis receptors was obtained from serologic studies demonstrating pertussis patient serum reactivity with the B. pertussis BfrD and BfrE proteins. PMID:26371128

  7. Interspecies Variations in Bordetella Catecholamine Receptor Gene Regulation and Function

    PubMed Central

    Brickman, Timothy J.; Suhadolc, Ryan J.

    2015-01-01

    Bordetella bronchiseptica can use catecholamines to obtain iron from transferrin and lactoferrin via uptake pathways involving the BfrA, BfrD, and BfrE outer membrane receptor proteins, and although Bordetella pertussis has the bfrD and bfrE genes, the role of these genes in iron uptake has not been demonstrated. In this study, the bfrD and bfrE genes of B. pertussis were shown to be functional in B. bronchiseptica, but neither B. bronchiseptica bfrD nor bfrE imparted catecholamine utilization to B. pertussis. Gene fusion analyses found that expression of B. bronchiseptica bfrA was increased during iron starvation, as is common for iron receptor genes, but that expression of the bfrD and bfrE genes of both species was decreased during iron limitation. As shown previously for B. pertussis, bfrD expression in B. bronchiseptica was also dependent on the BvgAS virulence regulatory system; however, in contrast to the case in B. pertussis, the known modulators nicotinic acid and sulfate, which silence Bvg-activated genes, did not silence expression of bfrD in B. bronchiseptica. Further studies using a B. bronchiseptica bvgAS mutant expressing the B. pertussis bvgAS genes revealed that the interspecies differences in bfrD modulation are partly due to BvgAS differences. Mouse respiratory infection experiments determined that catecholamine utilization contributes to the in vivo fitness of B. bronchiseptica and B. pertussis. Additional evidence of the in vivo importance of the B. pertussis receptors was obtained from serologic studies demonstrating pertussis patient serum reactivity with the B. pertussis BfrD and BfrE proteins. PMID:26371128

  8. Interspecies variations in Bordetella catecholamine receptor gene regulation and function.

    PubMed

    Brickman, Timothy J; Suhadolc, Ryan J; Armstrong, Sandra K

    2015-12-01

    Bordetella bronchiseptica can use catecholamines to obtain iron from transferrin and lactoferrin via uptake pathways involving the BfrA, BfrD, and BfrE outer membrane receptor proteins, and although Bordetella pertussis has the bfrD and bfrE genes, the role of these genes in iron uptake has not been demonstrated. In this study, the bfrD and bfrE genes of B. pertussis were shown to be functional in B. bronchiseptica, but neither B. bronchiseptica bfrD nor bfrE imparted catecholamine utilization to B. pertussis. Gene fusion analyses found that expression of B. bronchiseptica bfrA was increased during iron starvation, as is common for iron receptor genes, but that expression of the bfrD and bfrE genes of both species was decreased during iron limitation. As shown previously for B. pertussis, bfrD expression in B. bronchiseptica was also dependent on the BvgAS virulence regulatory system; however, in contrast to the case in B. pertussis, the known modulators nicotinic acid and sulfate, which silence Bvg-activated genes, did not silence expression of bfrD in B. bronchiseptica. Further studies using a B. bronchiseptica bvgAS mutant expressing the B. pertussis bvgAS genes revealed that the interspecies differences in bfrD modulation are partly due to BvgAS differences. Mouse respiratory infection experiments determined that catecholamine utilization contributes to the in vivo fitness of B. bronchiseptica and B. pertussis. Additional evidence of the in vivo importance of the B. pertussis receptors was obtained from serologic studies demonstrating pertussis patient serum reactivity with the B. pertussis BfrD and BfrE proteins.

  9. Inference of gene function based on gene fusion events: the rosetta-stone method.

    PubMed

    Suhre, Karsten

    2007-01-01

    The method described in this chapter can be used to infer putative functional links between two proteins. The basic idea is based on the principle of "guilt by association." It is assumed that two proteins, which are found to be transcribed by a single transcript in one (or several) genomes are likely to be functionally linked, for example by acting in a same metabolic pathway or by forming a multiprotein complex. This method is of particular interest for studying genes that exhibit no, or only remote, homologies with already well-characterized proteins. Combined with other non-homology based methods, gene fusion events may yield valuable information for hypothesis building on protein function, and may guide experimental characterization of the target protein, for example by suggesting potential ligands or binding partners. This chapter uses the FusionDB database (http://www.igs.cnrs-mrs.fr/FusionDB/) as source of information. FusionDB provides a characterization of a large number of gene fusion events at hand of multiple sequence alignments. Orthologous genes are included to yield a comprehensive view of the structure of a gene fusion event. Phylogenetic tree reconstruction is provided to evaluate the history of a gene fusion event, and three-dimensional protein structure information is used, where available, to further characterize the nature of the gene fusion. For genes that are not comprised in FusionDB, some instructions are given as how to generate a similar type of information, based solely on publicly available web tools that are listed here.

  10. Efficient and Targeted Transduction of Nonhuman Primate Liver With Systemically Delivered Optimized AAV3B Vectors.

    PubMed

    Li, Shaoyong; Ling, Chen; Zhong, Li; Li, Mengxin; Su, Qin; He, Ran; Tang, Qiushi; Greiner, Dale L; Shultz, Leonard D; Brehm, Michael A; Flotte, Terence R; Mueller, Christian; Srivastava, Arun; Gao, Guangping

    2015-12-01

    Recombinant adeno-associated virus serotype 3B (rAAV3B) can transduce cultured human liver cancer cells and primary human hepatocytes efficiently. Serine (S)- and threonine (T)-directed capsid modifications further augment its transduction efficiency. Systemically delivered capsid-optimized rAAV3B vectors can specifically target cancer cells in a human liver cancer xenograft model, suggesting their potential use for human liver-directed gene therapy. Here, we compared transduction efficiencies of AAV3B and AAV8 vectors in cultured primary human hepatocytes and cancer cells as well as in human and mouse hepatocytes in a human liver xenograft NSG-PiZ mouse model. We also examined the safety and transduction efficacy of wild-type (WT) and capsid-optimized rAAV3B in the livers of nonhuman primates (NHPs). Intravenously delivered S663V+T492V (ST)-modified self-complementary (sc) AAV3B-EGFP vectors led to liver-targeted robust enhanced green fluorescence protein (EGFP) expression in NHPs without apparent hepatotoxicity. Intravenous injections of both WT and ST-modified rAAV3B.ST-rhCG vectors also generated stable super-physiological levels of rhesus chorionic gonadotropin (rhCG) in NHPs. The vector genome predominantly targeted the liver. Clinical chemistry and histopathology examinations showed no apparent vector-related toxicity. Our studies should be important and informative for clinical development of optimized AAV3B vectors for human liver-directed gene therapy.

  11. Degradation of the cancer genomic DNA deaminase APOBEC3B by SIV Vif

    PubMed Central

    Land, Allison M.; Wang, Jiayi; Law, Emily K.; Aberle, Ryan; Kirmaier, Andrea; Krupp, Annabel; Johnson, Welkin E.; Harris, Reuben S.

    2015-01-01

    APOBEC3B is a newly identified source of mutation in many cancers, including breast, head/neck, lung, bladder, cervical, and ovarian. APOBEC3B is a member of the APOBEC3 family of enzymes that deaminate DNA cytosine to produce the pro-mutagenic lesion, uracil. Several APOBEC3 family members function to restrict virus replication. For instance, APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H combine to restrict HIV-1 in human lymphocytes. HIV-1 counteracts these APOBEC3s with the viral protein Vif, which targets the relevant APOBEC3s for proteasomal degradation. While APOBEC3B does not restrict HIV-1 and is not targeted by HIV-1 Vif in CD4-positive T cells, we asked whether related lentiviral Vif proteins could degrade APOBEC3B. Interestingly, several SIV Vif proteins are capable of promoting APOBEC3B degradation, with SIVmac239 Vif proving the most potent. This likely occurs through the canonical polyubiquitination mechanism as APOBEC3B protein levels are restored by MG132 treatment and by altering a conserved E3 ligase-binding motif. We further show that SIVmac239 Vif can prevent APOBEC3B mediated geno/cytotoxicity and degrade endogenous APOBEC3B in several cancer cell lines. Our data indicate that the APOBEC3B degradation potential of SIV Vif is an effective tool for neutralizing the cancer genomic DNA deaminase APOBEC3B. Further optimization of this natural APOBEC3 antagonist may benefit cancer therapy. PMID:26544511

  12. Family expansion and gene rearrangements contributed to the functional specialization of PRDM genes in vertebrates

    PubMed Central

    Fumasoni, Irene; Meani, Natalia; Rambaldi, Davide; Scafetta, Gaia; Alcalay, Myriam; Ciccarelli, Francesca D

    2007-01-01

    Background Progressive diversification of paralogs after gene expansion is essential to increase their functional specialization. However, mode and tempo of this divergence remain mostly unclear. Here we report the comparative analysis of PRDM genes, a family of putative transcriptional regulators involved in human tumorigenesis. Results Our analysis assessed that the PRDM genes originated in metazoans, expanded in vertebrates and further duplicated in primates. We experimentally showed that fast-evolving paralogs are poorly expressed, and that the most recent duplicates, such as primate-specific PRDM7, acquire tissue-specificity. PRDM7 underwent major structural rearrangements that decreased the number of encoded Zn-Fingers and modified gene splicing. Through internal duplication and activation of a non-canonical splice site (GC-AG), PRDM7 can acquire a novel intron. We also detected an alternative isoform that can retain the intron in the mature transcript and that is predominantly expressed in human melanocytes. Conclusion Our findings show that (a) molecular evolution of paralogs correlates with their expression pattern; (b) gene diversification is obtained through massive genomic rearrangements; and (c) splicing modification contributes to the functional specialization of novel genes. PMID:17916234

  13. Combinatorial Gene Regulatory Functions Underlie Ultraconserved Elements in Drosophila

    PubMed Central

    Warnefors, Maria; Hartmann, Britta; Thomsen, Stefan; Alonso, Claudio R.

    2016-01-01

    Ultraconserved elements (UCEs) are discrete genomic elements conserved across large evolutionary distances. Although UCEs have been linked to multiple facets of mammalian gene regulation their extreme evolutionary conservation remains largely unexplained. Here, we apply a computational approach to investigate this question in Drosophila, exploring the molecular functions of more than 1,500 UCEs shared across the genomes of 12 Drosophila species. Our data indicate that Drosophila UCEs are hubs for gene regulatory functions and suggest that UCE sequence invariance originates from their combinatorial roles in gene control. We also note that the gene regulatory roles of intronic and intergenic UCEs (iUCEs) are distinct from those found in exonic UCEs (eUCEs). In iUCEs, transcription factor (TF) and epigenetic factor binding data strongly support iUCE roles in transcriptional and epigenetic regulation. In contrast, analyses of eUCEs indicate that they are two orders of magnitude more likely than the expected to simultaneously include protein-coding sequence, TF-binding sites, splice sites, and RNA editing sites but have reduced roles in transcriptional or epigenetic regulation. Furthermore, we use a Drosophila cell culture system and transgenic Drosophila embryos to validate the notion of UCE combinatorial regulatory roles using an eUCE within the Hox gene Ultrabithorax and show that its protein-coding region also contains alternative splicing regulatory information. Taken together our experiments indicate that UCEs emerge as a result of combinatorial gene regulatory roles and highlight common features in mammalian and insect UCEs implying that similar processes might underlie ultraconservation in diverse animal taxa. PMID:27247329

  14. Combinatorial Gene Regulatory Functions Underlie Ultraconserved Elements in Drosophila.

    PubMed

    Warnefors, Maria; Hartmann, Britta; Thomsen, Stefan; Alonso, Claudio R

    2016-09-01

    Ultraconserved elements (UCEs) are discrete genomic elements conserved across large evolutionary distances. Although UCEs have been linked to multiple facets of mammalian gene regulation their extreme evolutionary conservation remains largely unexplained. Here, we apply a computational approach to investigate this question in Drosophila, exploring the molecular functions of more than 1,500 UCEs shared across the genomes of 12 Drosophila species. Our data indicate that Drosophila UCEs are hubs for gene regulatory functions and suggest that UCE sequence invariance originates from their combinatorial roles in gene control. We also note that the gene regulatory roles of intronic and intergenic UCEs (iUCEs) are distinct from those found in exonic UCEs (eUCEs). In iUCEs, transcription factor (TF) and epigenetic factor binding data strongly support iUCE roles in transcriptional and epigenetic regulation. In contrast, analyses of eUCEs indicate that they are two orders of magnitude more likely than the expected to simultaneously include protein-coding sequence, TF-binding sites, splice sites, and RNA editing sites but have reduced roles in transcriptional or epigenetic regulation. Furthermore, we use a Drosophila cell culture system and transgenic Drosophila embryos to validate the notion of UCE combinatorial regulatory roles using an eUCE within the Hox gene Ultrabithorax and show that its protein-coding region also contains alternative splicing regulatory information. Taken together our experiments indicate that UCEs emerge as a result of combinatorial gene regulatory roles and highlight common features in mammalian and insect UCEs implying that similar processes might underlie ultraconservation in diverse animal taxa. PMID:27247329

  15. Functional conservation of the promoter regions of vertebrate tyrosinase genes.

    PubMed

    Sato, S; Tanaka, M; Miura, H; Ikeo, K; Gojobori, T; Takeuchi, T; Yamamoto, H

    2001-11-01

    Tyrosinase is the key enzyme for synthesizing melanin pigments, which primarily determine mammalian skin coloration. Considering the important roles of pigments in the evolution and the adaptation of vertebrates, phylogenetic changes in the coding and flanking regulatory sequences of the tyrosinase gene are particularly intriguing. We have now cloned cDNA encoding tyrosinase from Japanese quail and snapping turtle. These nonmammalian cDNA are highly homologous to those of the mouse and human tyrosinases, whereas the 5' flanking sequences are far less conserved except for a few short sequence motifs. Nevertheless, we demonstrate that the 5' flanking sequences from the quail or turtle tyrosinase genes are capable of directing the expression of a fused mouse tyrosinase cDNA when introduced into cultured mouse albino melanocytes. This experimental method, which reveals the functional conservation of regulatory sequences in one cell type (the melanocyte), may be utilized to evaluate phylogenetic differences in mechanisms controlling specific gene expression in many other types of cells. We also provide evidence that the 5' flanking sequences from these nonmammalian genes are functional in vivo by producing transgenic mice. Phylogenetic changes of vertebrate tyrosinase promoters and the possible involvement of conserved sequence motifs in melanocyte-specific expression of tyrosinase are discussed. PMID:11764277

  16. Bacterial Genes in the Aphid Genome: Absence of Functional Gene Transfer from Buchnera to Its Host

    PubMed Central

    Nikoh, Naruo; McCutcheon, John P.; Kudo, Toshiaki; Miyagishima, Shin-ya; Moran, Nancy A.; Nakabachi, Atsushi

    2010-01-01

    Genome reduction is typical of obligate symbionts. In cellular organelles, this reduction partly reflects transfer of ancestral bacterial genes to the host genome, but little is known about gene transfer in other obligate symbioses. Aphids harbor anciently acquired obligate mutualists, Buchnera aphidicola (Gammaproteobacteria), which have highly reduced genomes (420–650 kb), raising the possibility of gene transfer from ancestral Buchnera to the aphid genome. In addition, aphids often harbor other bacteria that also are potential sources of transferred genes. Previous limited sampling of genes expressed in bacteriocytes, the specialized cells that harbor Buchnera, revealed that aphids acquired at least two genes from bacteria. The newly sequenced genome of the pea aphid, Acyrthosiphon pisum, presents the first opportunity for a complete inventory of genes transferred from bacteria to the host genome in the context of an ancient obligate symbiosis. Computational screening of the entire A. pisum genome, followed by phylogenetic and experimental analyses, provided strong support for the transfer of 12 genes or gene fragments from bacteria to the aphid genome: three LD–carboxypeptidases (LdcA1, LdcA2,ψLdcA), five rare lipoprotein As (RlpA1-5), N-acetylmuramoyl-L-alanine amidase (AmiD), 1,4-beta-N-acetylmuramidase (bLys), DNA polymerase III alpha chain (ψDnaE), and ATP synthase delta chain (ψAtpH). Buchnera was the apparent source of two highly truncated pseudogenes (ψDnaE and ψAtpH). Most other transferred genes were closely related to genes from relatives of Wolbachia (Alphaproteobacteria). At least eight of the transferred genes (LdcA1, AmiD, RlpA1-5, bLys) appear to be functional, and expression of seven (LdcA1, AmiD, RlpA1-5) are highly upregulated in bacteriocytes. The LdcAs and RlpAs appear to have been duplicated after transfer. Our results excluded the hypothesis that genome reduction in Buchnera has been accompanied by gene transfer to the host

  17. Gene-Specific Function Prediction for Non-Synonymous Mutations in Monogenic Diabetes Genes

    PubMed Central

    Li, Quan; Liu, Xiaoming; Gibbs, Richard A.; Boerwinkle, Eric; Polychronakos, Constantin; Qu, Hui-Qi

    2014-01-01

    The rapid progress of genomic technologies has been providing new opportunities to address the need of maturity-onset diabetes of the young (MODY) molecular diagnosis. However, whether a new mutation causes MODY can be questionable. A number of in silico methods have been developed to predict functional effects of rare human mutations. The purpose of this study is to compare the performance of different bioinformatics methods in the functional prediction of nonsynonymous mutations in each MODY gene, and provides reference matrices to assist the molecular diagnosis of MODY. Our study showed that the prediction scores by different methods of the diabetes mutations were highly correlated, but were more complimentary than replacement to each other. The available in silico methods for the prediction of diabetes mutations had varied performances across different genes. Applying gene-specific thresholds defined by this study may be able to increase the performance of in silico prediction of disease-causing mutations. PMID:25136813

  18. Remote Control of Gene Function by Local Translation

    PubMed Central

    Jung, Hosung; Gkogkas, Christos G.; Sonenberg, Nahum; Holt, Christine E.

    2014-01-01

    The subcellular position of a protein is a key determinant of its function. Mounting evidence indicates that RNA localization, where specific mRNAs are transported subcellularly and subsequently translated in response to localized signals, is an evolutionarily conserved mechanism to control protein localization. On-site synthesis confers novel signaling properties to a protein and helps to maintain local proteome homeostasis. Local translation plays particularly important roles in distal neuronal compartments, and dysregulated RNA localization and translation cause defects in neuronal wiring and survival. Here, we discuss key findings in this area and possible implications of this adaptable and swift mechanism for spatial control of gene function. PMID:24679524

  19. CHEMICAL GENETICS: LIGAND-BASED DISCOVERY OF GENE FUNCTION

    PubMed Central

    Stockwell, Brent R.

    2011-01-01

    Chemical genetics is the study of gene-product function in a cellular or organismal context using exogenous ligands. In this approach, small molecules that bind directly to proteins are used to alter protein function, enabling a kinetic analysis of the in vivo consequences of these changes. Recent advances have strongly enhanced the power of exogenous ligands such that they can resemble genetic mutations in terms of their general applicability and target specificity. The growing sophistication of this approach raises the possibility of its application to any biological process. PMID:11253651

  20. Gene3D: comprehensive structural and functional annotation of genomes.

    PubMed

    Yeats, Corin; Lees, Jonathan; Reid, Adam; Kellam, Paul; Martin, Nigel; Liu, Xinhui; Orengo, Christine

    2008-01-01

    Gene3D provides comprehensive structural and functional annotation of most available protein sequences, including the UniProt, RefSeq and Integr8 resources. The main structural annotation is generated through scanning these sequences against the CATH structural domain database profile-HMM library. CATH is a database of manually derived PDB-based structural domains, placed within a hierarchy reflecting topology, homology and conservation and is able to infer more ancient and divergent homology relationships than sequence-based approaches. This data is supplemented with Pfam-A, other non-domain structural predictions (i.e. coiled coils) and experimental data from UniProt. In order to enhance the investigations possible with this data, we have also incorporated a variety of protein annotation resources, including protein-protein interaction data, GO functional assignments, KEGG pathways, FUNCAT functional descriptions and links to microarray expression data. All of this data can be accessed through a newly re-designed website that has a focus on flexibility and clarity, with searches that can be restricted to a single genome or across the entire sequence database. Currently Gene3D contains over 3.5 million domain assignments for nearly 5 million proteins including 527 completed genomes. This is available at: http://gene3d.biochem.ucl.ac.uk/ PMID:18032434

  1. Rare SF3B1 R625 mutations in cutaneous melanoma.

    PubMed

    Kong, Yong; Krauthammer, Michael; Halaban, Ruth

    2014-08-01

    RNA splicing is the cellular process that has only recently been found to be an important target for various cancers. Among the spliceosome genes that are involved in cancers, SF3B1 is most frequently mutated. Recurrent mutation in codon 625 has been found in uveal melanoma, but this mutation has not been identified in cutaneous melanoma. We used whole-exome sequencing to explore the mutational landscape of 295 melanoma samples, 231 of which are cutaneous melanoma. Among these cutaneous melanoma samples, we found two samples with R625 mutation in SF3B1 gene. The results were validated by Sanger sequencing. We conclude that SF3B1 R625 mutation does occur in cutaneous melanoma, although with a low frequency (∼1%).

  2. Role of Arabidopsis RabG3b and autophagy in tracheary element differentiation.

    PubMed

    Kwon, Soon Il; Cho, Hong Joo; Park, Ohkmae K

    2010-11-01

    The vascular system of plants consists of two conducting tissues, xylem and phloem, which differentiate from procambium cells. Xylem serves as a transporting system for water and signaling molecules and is formed by sequential developmental processes, including cell division/expansion, secondary cell wall deposition, vacuole collapse and programmed cell death (PCD). PCD during xylem differentiation is accomplished by degradation of cytoplasmic constituents, and it is required for the formation of hollow vessels, known as tracheary elements (TEs). Our recent study revealed that the small GTPase RabG3b acts as a regulator of TE differentiation through its autophagic activation. By using an Arabidopsis in vitro cell culture system, we showed that autophagy is activated during TE differentiation. Overexpression of a constitutively active RabG3b (RabG3bCA) significantly enhances both autophagy and TE differentiation, which are consistently suppressed in transgenic plants overexpressing a dominant negative form (RabG3bDN) or RabG3b RNAi (RabG3bRNAi), a brassinosteroid-insensitive mutant bri1-301 and an autophagy mutant atg5-1. On the basis of our results, we propose that RabG3b functions as a component of autophagy and regulates TE differentiation by activating the process of PCD.

  3. Assay Development for the Discovery of Semaphorin 3B Inducing Agents from Natural Product Sources

    PubMed Central

    Yong, Yeonjoong; Pan, Li; Ren, Yulin; Fatima, Nighat; Ahmed, Safia; Chang, Leng Chee; Zhang, Xiaoli; Kinghorn, A. Douglas; Swanson, Steven M.; Carcache de Blanco, Esperanza J.

    2014-01-01

    Semaphorins are a class of membrane-bound and secreted proteins. They have been found to regulate basic cell functions such as axonal growth cone guidance and recent studies have focused on their effect on tumor progression. Semaphorin 3B (Sema 3B) particularly is a secreted protein that has been known to modulate proliferation and apoptosis, processes that are critical for tumor progression and development. In spite of its importance, there is yet no high-throughput screening assay available to detect or quantify the expression of Sema 3B for natural product anticancer drug discovery purposes. Therefore, the development of a new high-throughput bioassay for the discovery of Sema 3B inducing agents from natural product sources is described herein. A wide variety of pure compounds and extracts from plants and microorganisms has been found suitable for screening using this Sema 3B assay to detect and quantify the effect of Sema 3B inducing agents and thereby identify new selective bioactive Sema 3B lead compounds for anticancer drug discovery and development. Also, this new bioassay procedure is based on a high-throughput platform using an enzyme-linked immunosorbent assay that involves the optimization of sensitivity and selectivity levels as well as accuracy, reproducibility, robustness, and cost effectiveness. PMID:25016954

  4. Gene Perturbation Atlas (GPA): a single-gene perturbation repository for characterizing functional mechanisms of coding and non-coding genes.

    PubMed

    Xiao, Yun; Gong, Yonghui; Lv, Yanling; Lan, Yujia; Hu, Jing; Li, Feng; Xu, Jinyuan; Bai, Jing; Deng, Yulan; Liu, Ling; Zhang, Guanxiong; Yu, Fulong; Li, Xia

    2015-01-01

    Genome-wide transcriptome profiling after gene perturbation is a powerful means of elucidating gene functional mechanisms in diverse contexts. The comprehensive collection and analysis of the resulting transcriptome profiles would help to systematically characterize context-dependent gene functional mechanisms and conduct experiments in biomedical research. To this end, we collected and curated over 3000 transcriptome profiles in human and mouse from diverse gene perturbation experiments, which involved 1585 different perturbed genes (microRNAs, lncRNAs and protein-coding genes) across 1170 different cell lines/tissues. For each profile, we identified differential genes and their associated functions and pathways, constructed perturbation networks, predicted transcription regulation and cancer/drug associations, and assessed cooperative perturbed genes. Based on these transcriptome analyses, the Gene Perturbation Atlas (GPA) can be used to detect (i) novel or cell-specific functions and pathways affected by perturbed genes, (ii) protein interactions and regulatory cascades affected by perturbed genes, and (iii) perturbed gene-mediated cooperative effects. The GPA is a user-friendly database to support the rapid searching and exploration of gene perturbations. Particularly, we visualized functional effects of perturbed genes from multiple perspectives. In summary, the GPA is a valuable resource for characterizing gene functions and regulatory mechanisms after single-gene perturbations. The GPA is freely accessible at http://biocc.hrbmu.edu.cn/GPA/. PMID:26039571

  5. Gene Perturbation Atlas (GPA): a single-gene perturbation repository for characterizing functional mechanisms of coding and non-coding genes.

    PubMed

    Xiao, Yun; Gong, Yonghui; Lv, Yanling; Lan, Yujia; Hu, Jing; Li, Feng; Xu, Jinyuan; Bai, Jing; Deng, Yulan; Liu, Ling; Zhang, Guanxiong; Yu, Fulong; Li, Xia

    2015-06-03

    Genome-wide transcriptome profiling after gene perturbation is a powerful means of elucidating gene functional mechanisms in diverse contexts. The comprehensive collection and analysis of the resulting transcriptome profiles would help to systematically characterize context-dependent gene functional mechanisms and conduct experiments in biomedical research. To this end, we collected and curated over 3000 transcriptome profiles in human and mouse from diverse gene perturbation experiments, which involved 1585 different perturbed genes (microRNAs, lncRNAs and protein-coding genes) across 1170 different cell lines/tissues. For each profile, we identified differential genes and their associated functions and pathways, constructed perturbation networks, predicted transcription regulation and cancer/drug associations, and assessed cooperative perturbed genes. Based on these transcriptome analyses, the Gene Perturbation Atlas (GPA) can be used to detect (i) novel or cell-specific functions and pathways affected by perturbed genes, (ii) protein interactions and regulatory cascades affected by perturbed genes, and (iii) perturbed gene-mediated cooperative effects. The GPA is a user-friendly database to support the rapid searching and exploration of gene perturbations. Particularly, we visualized functional effects of perturbed genes from multiple perspectives. In summary, the GPA is a valuable resource for characterizing gene functions and regulatory mechanisms after single-gene perturbations. The GPA is freely accessible at http://biocc.hrbmu.edu.cn/GPA/.

  6. Functional analyses of cellulose synthase genes in flax (Linum usitatissimum) by virus-induced gene silencing.

    PubMed

    Chantreau, Maxime; Chabbert, Brigitte; Billiard, Sylvain; Hawkins, Simon; Neutelings, Godfrey

    2015-12-01

    Flax (Linum usitatissimum) bast fibres are located in the stem cortex where they play an important role in mechanical support. They contain high amounts of cellulose and so are used for linen textiles and in the composite industry. In this study, we screened the annotated flax genome and identified 14 distinct cellulose synthase (CESA) genes using orthologous sequences previously identified. Transcriptomics of 'primary cell wall' and 'secondary cell wall' flax CESA genes showed that some were preferentially expressed in different organs and stem tissues providing clues as to their biological role(s) in planta. The development for the first time in flax of a virus-induced gene silencing (VIGS) approach was used to functionally evaluate the biological role of different CESA genes in stem tissues. Quantification of transcript accumulation showed that in many cases, silencing not only affected targeted CESA clades, but also had an impact on other CESA genes. Whatever the targeted clade, inactivation by VIGS affected plant growth. In contrast, only clade 1- and clade 6-targeted plants showed modifications in outer-stem tissue organization and secondary cell wall formation. In these plants, bast fibre number and structure were severely impacted, suggesting that the targeted genes may play an important role in the establishment of the fibre cell wall. Our results provide new fundamental information about cellulose biosynthesis in flax that should facilitate future plant improvement/engineering.

  7. Gene3D: modelling protein structure, function and evolution.

    PubMed

    Yeats, Corin; Maibaum, Michael; Marsden, Russell; Dibley, Mark; Lee, David; Addou, Sarah; Orengo, Christine A

    2006-01-01

    The Gene3D release 4 database and web portal (http://cathwww.biochem.ucl.ac.uk:8080/Gene3D) provide a combined structural, functional and evolutionary view of the protein world. It is focussed on providing structural annotation for protein sequences without structural representatives--including the complete proteome sets of over 240 different species. The protein sequences have also been clustered into whole-chain families so as to aid functional prediction. The structural annotation is generated using HMM models based on the CATH domain families; CATH is a repository for manually deduced protein domains. Amongst the changes from the last publication are: the addition of over 100 genomes and the UniProt sequence database, domain data from Pfam, metabolic pathway and functional data from COGs, KEGG and GO, and protein-protein interaction data from MINT and BIND. The website has been rebuilt to allow more sophisticated querying and the data returned is presented in a clearer format with greater functionality. Furthermore, all data can be downloaded in a simple XML format, allowing users to carry out complex investigations at their own computers.

  8. Polymorphism in Serotonin Receptor 3B Is Associated with Pain Catastrophizing

    PubMed Central

    Horjales-Araujo, Emilia; Demontis, Ditte; Lund, Ellen Kielland; Finnerup, Nanna Brix; Børglum, Anders D.; Jensen, Troels Staehelin; Svensson, Peter; Vase, Lene

    2013-01-01

    Pain catastrophizing, a coping style characterized by excessively negative thoughts and emotions in relation to pain, is one of the psychological factors that most markedly predicts variability in the perception of pain; however, only little is known about the underlying neurobiology. The aim of this study was to test for associations between psychological variables, such as pain catastrophizing, anxiety and depression, and selected polymorphisms in genes related to monoaminergic neurotransmission, in particular serotonin pathway genes. Three hundred seventy-nine healthy participants completed a set of psychological questionnaires: the Pain Catastrophizing Scale (PCS), the State-Trait Anxiety Inventory and Beck’s Depression Inventory, and were genotyped for 15 single nucleotide polymorphisms (SNPs) in nine genes. The SNP rs1176744 located in the serotonin receptor 3B gene (5-HTR3B) was found to be associated with pain catastrophizing scores: both the global score and the subscales of magnification and helplessness. This is the first study to show an association between 5-HTR3B and PCS scores, thus suggesting a role of the serotonin pathway in pain catastrophizing. Since 5-HTR3B has previously been associated with descending pain modulation pathways, future studies will be of great interest to elucidate the molecular pathways involved in the relation between serotonin, its receptors and pain catastrophizing. PMID:24244382

  9. Sugarcane Functional Genomics: Gene Discovery for Agronomic Trait Development

    PubMed Central

    Menossi, M.; Silva-Filho, M. C.; Vincentz, M.; Van-Sluys, M.-A.; Souza, G. M.

    2008-01-01

    Sugarcane is a highly productive crop used for centuries as the main source of sugar and recently to produce ethanol, a renewable bio-fuel energy source. There is increased interest in this crop due to the impending need to decrease fossil fuel usage. Sugarcane has a highly polyploid genome. Expressed sequence tag (EST) sequencing has significantly contributed to gene discovery and expression studies used to associate function with sugarcane genes. A significant amount of data exists on regulatory events controlling responses to herbivory, drought, and phosphate deficiency, which cause important constraints on yield and on endophytic bacteria, which are highly beneficial. The means to reduce drought, phosphate deficiency, and herbivory by the sugarcane borer have a negative impact on the environment. Improved tolerance for these constraints is being sought. Sugarcane's ability to accumulate sucrose up to 16% of its culm dry weight is a challenge for genetic manipulation. Genome-based technology such as cDNA microarray data indicates genes associated with sugar content that may be used to develop new varieties improved for sucrose content or for traits that restrict the expansion of the cultivated land. The genes can also be used as molecular markers of agronomic traits in traditional breeding programs. PMID:18273390

  10. p53 genes function to restrain mobile elements.

    PubMed

    Wylie, Annika; Jones, Amanda E; D'Brot, Alejandro; Lu, Wan-Jin; Kurtz, Paula; Moran, John V; Rakheja, Dinesh; Chen, Kenneth S; Hammer, Robert E; Comerford, Sarah A; Amatruda, James F; Abrams, John M

    2016-01-01

    Throughout the animal kingdom, p53 genes govern stress response networks by specifying adaptive transcriptional responses. The human member of this gene family is mutated in most cancers, but precisely how p53 functions to mediate tumor suppression is not well understood. Using Drosophila and zebrafish models, we show that p53 restricts retrotransposon activity and genetically interacts with components of the piRNA (piwi-interacting RNA) pathway. Furthermore, transposon eruptions occurring in the p53(-) germline were incited by meiotic recombination, and transcripts produced from these mobile elements accumulated in the germ plasm. In gene complementation studies, normal human p53 alleles suppressed transposons, but mutant p53 alleles from cancer patients could not. Consistent with these observations, we also found patterns of unrestrained retrotransposons in p53-driven mouse and human cancers. Furthermore, p53 status correlated with repressive chromatin marks in the 5' sequence of a synthetic LINE-1 element. Together, these observations indicate that ancestral functions of p53 operate through conserved mechanisms to contain retrotransposons. Since human p53 mutants are disabled for this activity, our findings raise the possibility that p53 mitigates oncogenic disease in part by restricting transposon mobility.

  11. p53 genes function to restrain mobile elements.

    PubMed

    Wylie, Annika; Jones, Amanda E; D'Brot, Alejandro; Lu, Wan-Jin; Kurtz, Paula; Moran, John V; Rakheja, Dinesh; Chen, Kenneth S; Hammer, Robert E; Comerford, Sarah A; Amatruda, James F; Abrams, John M

    2016-01-01

    Throughout the animal kingdom, p53 genes govern stress response networks by specifying adaptive transcriptional responses. The human member of this gene family is mutated in most cancers, but precisely how p53 functions to mediate tumor suppression is not well understood. Using Drosophila and zebrafish models, we show that p53 restricts retrotransposon activity and genetically interacts with components of the piRNA (piwi-interacting RNA) pathway. Furthermore, transposon eruptions occurring in the p53(-) germline were incited by meiotic recombination, and transcripts produced from these mobile elements accumulated in the germ plasm. In gene complementation studies, normal human p53 alleles suppressed transposons, but mutant p53 alleles from cancer patients could not. Consistent with these observations, we also found patterns of unrestrained retrotransposons in p53-driven mouse and human cancers. Furthermore, p53 status correlated with repressive chromatin marks in the 5' sequence of a synthetic LINE-1 element. Together, these observations indicate that ancestral functions of p53 operate through conserved mechanisms to contain retrotransposons. Since human p53 mutants are disabled for this activity, our findings raise the possibility that p53 mitigates oncogenic disease in part by restricting transposon mobility. PMID:26701264

  12. p53 genes function to restrain mobile elements

    PubMed Central

    Wylie, Annika; Jones, Amanda E.; D'Brot, Alejandro; Lu, Wan-Jin; Kurtz, Paula; Moran, John V.; Rakheja, Dinesh; Chen, Kenneth S.; Hammer, Robert E.; Comerford, Sarah A.; Amatruda, James F.; Abrams, John M.

    2016-01-01

    Throughout the animal kingdom, p53 genes govern stress response networks by specifying adaptive transcriptional responses. The human member of this gene family is mutated in most cancers, but precisely how p53 functions to mediate tumor suppression is not well understood. Using Drosophila and zebrafish models, we show that p53 restricts retrotransposon activity and genetically interacts with components of the piRNA (piwi-interacting RNA) pathway. Furthermore, transposon eruptions occurring in the p53− germline were incited by meiotic recombination, and transcripts produced from these mobile elements accumulated in the germ plasm. In gene complementation studies, normal human p53 alleles suppressed transposons, but mutant p53 alleles from cancer patients could not. Consistent with these observations, we also found patterns of unrestrained retrotransposons in p53-driven mouse and human cancers. Furthermore, p53 status correlated with repressive chromatin marks in the 5′ sequence of a synthetic LINE-1 element. Together, these observations indicate that ancestral functions of p53 operate through conserved mechanisms to contain retrotransposons. Since human p53 mutants are disabled for this activity, our findings raise the possibility that p53 mitigates oncogenic disease in part by restricting transposon mobility. PMID:26701264

  13. DNMT3B7, a truncated DNMT3B isoform expressed in human tumors, disrupts embryonic development and accelerates lymphomagenesis

    PubMed Central

    Shah, Mrinal Y.; Vasanthakumar, Aparna; Barnes, Natalie Y.; Figueroa, Maria E.; Kamp, Anna; Hendrick, Christopher; Ostler, Kelly R.; Davis, Elizabeth M.; Lin, Shang; Anastasi, John; Le Beau, Michelle M.; Moskowitz, Ivan; Melnick, Ari; Pytel, Peter; Godley, Lucy A.

    2010-01-01

    Epigenetic changes are among the most common alterations observed in cancer cells, yet the mechanism by which cancer cells acquire and maintain abnormal DNA methylation patterns is not understood. Cancer cells have an altered distribution of DNA methylation and express aberrant DNA methyltransferase 3B transcripts, which encode truncated proteins, some of which lack the C-terminal catalytic domain. To test if a truncated DNMT3B isoform disrupts DNA methylation in vivo, we constructed two lines of transgenic mice expressing DNMT3B7, a truncated DNMT3B isoform commonly found in cancer cells. DNMT3B7 transgenic mice exhibit altered embryonic development, including lymphopenia, craniofacial abnormalities, and cardiac defects, similar to Dnmt3b-deficient animals, but rarely develop cancer. However, when DNMT3B7 transgenic are bred with Eμ-Myc transgenic mice, which model aggressive B cell lymphoma, DNMT3B7 expression increases the frequency of mediastinal lymphomas in Eμ-Myc animals. Eμ-Myc/DNMT3B7 mediastinal lymphomas have more chromosomal rearrangements, increased global DNA methylation levels, and more locus-specific perturbations in DNA methylation patterns compared to Eμ-Myc lymphomas. These data represent the first in vivo modeling of cancer-associated DNA methylation changes and suggest that truncated DNMT3B isoforms contribute to the re-distribution of DNA methylation characterizing virtually every human tumor. PMID:20587527

  14. DNMT3B7, a truncated DNMT3B isoform expressed in human tumors, disrupts embryonic development and accelerates lymphomagenesis.

    PubMed

    Shah, Mrinal Y; Vasanthakumar, Aparna; Barnes, Natalie Y; Figueroa, Maria E; Kamp, Anna; Hendrick, Christopher; Ostler, Kelly R; Davis, Elizabeth M; Lin, Shang; Anastasi, John; Le Beau, Michelle M; Moskowitz, Ivan P; Melnick, Ari; Pytel, Peter; Godley, Lucy A

    2010-07-15

    Epigenetic changes are among the most common alterations observed in cancer cells, yet the mechanism by which cancer cells acquire and maintain abnormal DNA methylation patterns is not understood. Cancer cells have an altered distribution of DNA methylation and express aberrant DNA methyltransferase 3B transcripts, which encode truncated proteins, some of which lack the COOH-terminal catalytic domain. To test if a truncated DNMT3B isoform disrupts DNA methylation in vivo, we constructed two lines of transgenic mice expressing DNMT3B7, a truncated DNMT3B isoform commonly found in cancer cells. DNMT3B7 transgenic mice exhibit altered embryonic development, including lymphopenia, craniofacial abnormalities, and cardiac defects, similar to Dnmt3b-deficient animals, but rarely develop cancer. However, when DNMT3B7 transgenic mice are bred with Emicro-Myc transgenic mice, which model aggressive B-cell lymphoma, DNMT3B7 expression increases the frequency of mediastinal lymphomas in Emicro-Myc animals. Emicro-Myc/DNMT3B7 mediastinal lymphomas have more chromosomal rearrangements, increased global DNA methylation levels, and more locus-specific perturbations in DNA methylation patterns compared with Emicro-Myc lymphomas. These data represent the first in vivo modeling of cancer-associated DNA methylation changes and suggest that truncated DNMT3B isoforms contribute to the redistribution of DNA methylation characterizing virtually every human tumor.

  15. Dissecting the Gene Network of Dietary Restriction to Identify Evolutionarily Conserved Pathways and New Functional Genes

    PubMed Central

    Wuttke, Daniel; Connor, Richard; Vora, Chintan; Craig, Thomas; Li, Yang; Wood, Shona; Vasieva, Olga; Shmookler Reis, Robert; Tang, Fusheng; de Magalhães, João Pedro

    2012-01-01

    Dietary restriction (DR), limiting nutrient intake from diet without causing malnutrition, delays the aging process and extends lifespan in multiple organisms. The conserved life-extending effect of DR suggests the involvement of fundamental mechanisms, although these remain a subject of debate. To help decipher the life-extending mechanisms of DR, we first compiled a list of genes that if genetically altered disrupt or prevent the life-extending effects of DR. We called these DR–essential genes and identified more than 100 in model organisms such as yeast, worms, flies, and mice. In order for other researchers to benefit from this first curated list of genes essential for DR, we established an online database called GenDR (http://genomics.senescence.info/diet/). To dissect the interactions of DR–essential genes and discover the underlying lifespan-extending mechanisms, we then used a variety of network and systems biology approaches to analyze the gene network of DR. We show that DR–essential genes are more conserved at the molecular level and have more molecular interactions than expected by chance. Furthermore, we employed a guilt-by-association method to predict novel DR–essential genes. In budding yeast, we predicted nine genes related to vacuolar functions; we show experimentally that mutations deleting eight of those genes prevent the life-extending effects of DR. Three of these mutants (OPT2, FRE6, and RCR2) had extended lifespan under ad libitum, indicating that the lack of further longevity under DR is not caused by a general compromise of fitness. These results demonstrate how network analyses of DR using GenDR can be used to make phenotypically relevant predictions. Moreover, gene-regulatory circuits reveal that the DR–induced transcriptional signature in yeast involves nutrient-sensing, stress responses and meiotic transcription factors. Finally, comparing the influence of gene expression changes during DR on the interactomes of multiple

  16. Dissecting the gene network of dietary restriction to identify evolutionarily conserved pathways and new functional genes.

    PubMed

    Wuttke, Daniel; Connor, Richard; Vora, Chintan; Craig, Thomas; Li, Yang; Wood, Shona; Vasieva, Olga; Shmookler Reis, Robert; Tang, Fusheng; de Magalhães, João Pedro

    2012-01-01

    Dietary restriction (DR), limiting nutrient intake from diet without causing malnutrition, delays the aging process and extends lifespan in multiple organisms. The conserved life-extending effect of DR suggests the involvement of fundamental mechanisms, although these remain a subject of debate. To help decipher the life-extending mechanisms of DR, we first compiled a list of genes that if genetically altered disrupt or prevent the life-extending effects of DR. We called these DR-essential genes and identified more than 100 in model organisms such as yeast, worms, flies, and mice. In order for other researchers to benefit from this first curated list of genes essential for DR, we established an online database called GenDR (http://genomics.senescence.info/diet/). To dissect the interactions of DR-essential genes and discover the underlying lifespan-extending mechanisms, we then used a variety of network and systems biology approaches to analyze the gene network of DR. We show that DR-essential genes are more conserved at the molecular level and have more molecular interactions than expected by chance. Furthermore, we employed a guilt-by-association method to predict novel DR-essential genes. In budding yeast, we predicted nine genes related to vacuolar functions; we show experimentally that mutations deleting eight of those genes prevent the life-extending effects of DR. Three of these mutants (OPT2, FRE6, and RCR2) had extended lifespan under ad libitum, indicating that the lack of further longevity under DR is not caused by a general compromise of fitness. These results demonstrate how network analyses of DR using GenDR can be used to make phenotypically relevant predictions. Moreover, gene-regulatory circuits reveal that the DR-induced transcriptional signature in yeast involves nutrient-sensing, stress responses and meiotic transcription factors. Finally, comparing the influence of gene expression changes during DR on the interactomes of multiple organisms led

  17. Functional Analysis of a Putative Dothistromin Toxin MFS Transporter Gene

    PubMed Central

    Bradshaw, Rosie E.; Feng, Zhilun; Schwelm, Arne; Yang, Yongzhi; Zhang, Shuguang

    2009-01-01

    Dothistromin is a non-host selective toxin produced by the pine needle pathogen Dothistroma septosporum. Dothistromin is not required for pathogenicity, but may have a role in competition and niche protection. To determine how D. septosporum tolerates its own toxin, a putative dothistromin transporter, DotC, was investigated. Studies with mutants lacking a functional dotC gene, overproducing DotC, or with a DotC-GFP fusion gene, did not provide conclusive evidence of a role in dothistromin efflux. The mutants revealed a major effect of DotC on dothistromin biosynthesis but were resistant to exogenous dothistromin. Intracellular localization studies suggest that compartmentalization may be important for dothistromin tolerance. PMID:22069539

  18. Biological interpretation of genome-wide association studies using predicted gene functions.

    PubMed

    Pers, Tune H; Karjalainen, Juha M; Chan, Yingleong; Westra, Harm-Jan; Wood, Andrew R; Yang, Jian; Lui, Julian C; Vedantam, Sailaja; Gustafsson, Stefan; Esko, Tonu; Frayling, Tim; Speliotes, Elizabeth K; Boehnke, Michael; Raychaudhuri, Soumya; Fehrmann, Rudolf S N; Hirschhorn, Joel N; Franke, Lude

    2015-01-19

    The main challenge for gaining biological insights from genetic associations is identifying which genes and pathways explain the associations. Here we present DEPICT, an integrative tool that employs predicted gene functions to systematically prioritize the most likely causal genes at associated loci, highlight enriched pathways and identify tissues/cell types where genes from associated loci are highly expressed. DEPICT is not limited to genes with established functions and prioritizes relevant gene sets for many phenotypes.

  19. Functional imaging: monitoring heme oxygenase-1 gene expression in vivo

    NASA Astrophysics Data System (ADS)

    Zhang, Weisheng; Reilly-Contag, Pamela; Stevenson, David K.; Contag, Christopher H.

    1999-07-01

    The regulation of genetic elements can be monitored in living animals using photoproteins as reporters. Heme oxygenase (HO) is the key catabolic enzyme in the heme degradation pathway. Here, HO expression serves as a model for in vivo functional imaging of transcriptional regulation of a clinically relevant gene. HO enzymatic activity is inhibited by heme analogs, metalloporphyrins, but many members of this family of compounds also activate transcription of the HO-1 promoter. The degree of transcriptional activation by twelve metalloporphyrins, differing at the central metal and porphyrin ring substituents, was evaluated in both NIH 3T3 stable lines and transgenic animals containing HO-1 promoter-luciferase gene fusions. In the correlative cell culture assays, the metalloporphyrins increased transcription form the full length HO promoter fusion to varying degrees, but none increased transcription from a truncated HO-1 promoter. These results suggested that one or both of the two distal enhancer elements located at -4 and -10 Kb upstream from transcriptional start are required for HO-1 induction by heme and its analogs. The full-length HO-1-luc fusion was then evaluated as a transgene in mice. It was possible to monitor the effects of the metalloporphyrins, SnMP and ZnPP, in living animals over time. This spatiotemporal analyses of gene expression in vivo implied that alterations in porphyrin ring substituents and the central metal may affect the extent of gene activation. These data further indicate that using photoprotein reporters, subtle differences in gene expression can be monitored in living animals.

  20. Functional characterization of GPC-1 genes in hexaploid wheat

    PubMed Central

    Pearce, Stephen; Jun, Yan; Uauy, Cristobal; Tabbita, Facundo; Fahima, Tzion; Slade, Ann; Dubcovsky, Jorge; Distelfeld, Assaf

    2016-01-01

    In wheat, monocarpic senescence is a tightly regulated process during which nitrogen (N) and micronutrients stored pre-anthesis are remobilized from vegetative tissues to the developing grains. Recently, a close connection between senescence and remobilization was shown through the map-based cloning of the GPC (Grain Protein Content) gene in wheat. GPC-B1 encodes a NAC transcription factor associated with earlier senescence and increased grain protein, iron and zinc content, and is deleted or non-functional in most commercial wheat varieties. In the current research, we identified 'loss of function' ethyl methane sulphonate mutants for the two GPC-B1 homoeologous genes; GPC-A1 and GPC-D1, in a hexaploid wheat mutant population. The single gpc-a1 and gpc-d1 mutants, the double gpc-1 mutant and control lines were grown under field conditions at four locations and were characterized for senescence, GPC, micronutrients and yield parameters. Our results show a significant delay in senescence in both the gpc-a1 and gpc-d1 single mutants and an even stronger effect in the gpc-1 double mutant in all the environments tested in this study. The accumulation of total N in the developing grains showed a similar increase in the control and gpc-1 plants until 25 days after anthesis (DAA) but at 41 and 60 DAA the control plants had higher Grain N content than the gpc-1 mutants. At maturity, GPC in all mutants was significantly lower than in control plants while grain weight was unaffected. These results demonstrate that theGPC-A1 and GPC-D1 genes have a redundant function and play a major role in the regulation of monocarpic senescence and nutrient remobilization in wheat. PMID:24170335

  1. Discriminative local subspaces in gene expression data for effective gene function prediction

    PubMed Central

    Gutiérrez, Rodrigo A.; Soto, Alvaro

    2012-01-01

    Motivation: Massive amounts of genome-wide gene expression data have become available, motivating the development of computational approaches that leverage this information to predict gene function. Among successful approaches, supervised machine learning methods, such as Support Vector Machines (SVMs), have shown superior prediction accuracy. However, these methods lack the simple biological intuition provided by co-expression networks (CNs), limiting their practical usefulness. Results: In this work, we present Discriminative Local Subspaces (DLS), a novel method that combines supervised machine learning and co-expression techniques with the goal of systematically predict genes involved in specific biological processes of interest. Unlike traditional CNs, DLS uses the knowledge available in Gene Ontology (GO) to generate informative training sets that guide the discovery of expression signatures: expression patterns that are discriminative for genes involved in the biological process of interest. By linking genes co-expressed with these signatures, DLS is able to construct a discriminative CN that links both, known and previously uncharacterized genes, for the selected biological process. This article focuses on the algorithm behind DLS and shows its predictive power using an Arabidopsis thaliana dataset and a representative set of 101 GO terms from the Biological Process Ontology. Our results show that DLS has a superior average accuracy than both SVMs and CNs. Thus, DLS is able to provide the prediction accuracy of supervised learning methods while maintaining the intuitive understanding of CNs. Availability: A MATLAB® implementation of DLS is available at http://virtualplant.bio.puc.cl/cgi-bin/Lab/tools.cgi Contact: tfpuelma@uc.cl Supplementary Information: Supplementary data are available at http://bioinformatics.mpimp-golm.mpg.de/. PMID:22820203

  2. Epigenetic regulation of macrophage polarization by DNA methyltransferase 3b.

    PubMed

    Yang, Xiaosong; Wang, Xianfeng; Liu, Dongxu; Yu, Liqing; Xue, Bingzhong; Shi, Hang

    2014-04-01

    Adipose tissue macrophages (ATMs) undergo a phenotypic switch from alternatively activated antiinflammatory M2 macrophages in lean individuals to classically activated proinflammatory M1 macrophages in obese subjects. However, the molecular mechanism underlying this process remains unclear. In this study we aim to determine whether DNA methyltransferase 3b (DNMT3b) regulates macrophage polarization and inflammation. We found that the expression of DNMT3b was significantly induced in macrophages exposed to the saturated fatty acid stearate, was higher in ATMs isolated from obese mice, but was significantly lower in alternatively activated M2 vs classically activated M1 ATMs, suggesting a role for DNMT3b in regulation of macrophage polarization and inflammation in obesity. DNMT3b knockdown promoted macrophage polarization to alternatively activated M2 phenotype and suppressed macrophage inflammation, whereas overexpressing DNMT3b did the opposite. Importantly, in a macrophage-adipocyte coculture system, we found that DNMT3b knockdown significantly improved adipocyte insulin signaling. The promoter of peroxisome proliferator activated receptor (PPAR)γ1, a key transcriptional factor that regulates macrophage polarization, is enriched with CpG sites. Chromatin immunoprecipitation assays showed that DNMT3b bound to the methylation region at PPARγ1 promoter, which was further enhanced by stearate. Moreover, pyrosequencing analysis revealed that stearate increased DNA methylation at PPARγ1, which was prevented by DNMT3b deficiency. Therefore, our data demonstrate that DNMT3b plays an important role in regulating macrophage polarization through epigenetic mechanisms. In obesity, elevated saturated fatty acids enhance DNMT3b expression, leading to DNA methylation at the PPARγ1 promoter, which may contribute to deregulated adipose tissue macrophage polarization, inflammation, and insulin resistance.

  3. Effects of Lu-Do-Huang Extract (LDHE) on Apoptosis Induction in Human Hep3B Cells.

    PubMed

    Huang, Hui-Yu; Chen, Li-Han; Liu, Chen-Wei; Chien, Ting-Yi; Yu, Yu-Ping; Kao, Yu-Yu; Yang, Jo-Hsuan; Tsai, Ying-Chieh

    2015-06-30

    Lu-Do-Huang (Pracparatum mungo) is a fermented mung bean [corrected] (Vigna radiata) and has long been used as a traditional and functional food in Traditional Chinese Medicine, especially for treating a variety of liver disorders. The present study aimed to evaluate the apoptotic effects of Lu-Do-Huang ethanol extract (LDHE) on Hep3B cells, a human hepatoma cell line. A variety of cellular assays, flow cytometry and immunoblotting were used. Our results showed that LDHE significantly inhibited Hep3B cells growth. Additionally, the cell cycle assay showed that LDHE prevented Hep3B cell entry into S phase and led to an arrest of Hep3B cells in the G₀/G₁ phase. LDHE induced Hep3B cells to undergo apoptosis as determined through Hep3B cell morphology changes, increase of apoptotic bodies, apoptotic cells, DNA fragmentations and caspase activity. We further examined the protein expression of TRADD, FADD, and Bax to verify the possible apoptotic pathways. The results indicated that LDHE-induced apoptosis in Hep3B cells might be mediated [corrected] by an extrinsic signaling pathway leading to an induction of apoptosis in Hep3B cells. In conclusion, LDHE induced apoptosis and cell cycle arrest in Hep3B cells. Our data provide the evidences regarding the anti-hepatoma potential of LDHE in Hep3B cells.

  4. Mouse histone H2A and H2B genes: four functional genes and a pseudogene undergoing gene conversion with a closely linked functional gene.

    PubMed Central

    Liu, T J; Liu, L; Marzluff, W F

    1987-01-01

    The sequence of five mouse histone genes, two H2a and three H2b genes on chromosome 13 has been determined. The three H2b genes all code for different proteins, each differing in two amino acids from the others. The H2b specific elements present 5' to H2b genes from other species are present in all three mouse H2b genes. All three H2b genes are expressed in the same relative amounts in three different mouse cell lines and fetal mice. The H2b gene with the H2b specific sequence closest to the TATAA sequence is expressed in the highest amount. One of the H2a genes lacks the first 9 amino acids, the promoter region, the last 3 amino acids and contains an altered 3' end sequence. Despite these multiple defects, there is only one nucleotide change between the two H2a genes from codon 9 to 126. This indicates that a recent gene conversion has occurred between these two genes. The similarity of the nucleotide sequences in the coding regions of mouse histone genes is probably due to gene conversion events targeted precisely at the coding region. Images PMID:3562244

  5. 18 CFR 3b.225 - Written consent for disclosure.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Written consent for disclosure. 3b.225 Section 3b.225 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... United States for a civil or criminal law enforcement activity if the activity is authorized by law,...

  6. 18 CFR 3b.225 - Written consent for disclosure.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Written consent for disclosure. 3b.225 Section 3b.225 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... United States for a civil or criminal law enforcement activity if the activity is authorized by law,...

  7. 18 CFR 3b.226 - Accounting of disclosures.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Accounting of disclosures. 3b.226 Section 3b.226 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES COLLECTION, MAINTENANCE, USE, AND DISSEMINATION OF RECORDS...

  8. 18 CFR 3b.226 - Accounting of disclosures.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Accounting of disclosures. 3b.226 Section 3b.226 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES COLLECTION, MAINTENANCE, USE, AND DISSEMINATION OF RECORDS...

  9. 18 CFR 3b.203 - Rules of conduct.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Rules of conduct. 3b.203 Section 3b.203 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES COLLECTION, MAINTENANCE, USE, AND DISSEMINATION OF RECORDS OF...

  10. 18 CFR 3b.203 - Rules of conduct.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Rules of conduct. 3b.203 Section 3b.203 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES COLLECTION, MAINTENANCE, USE, AND DISSEMINATION OF RECORDS OF...

  11. 18 CFR 3b.203 - Rules of conduct.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Rules of conduct. 3b.203 Section 3b.203 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES COLLECTION, MAINTENANCE, USE, AND DISSEMINATION OF RECORDS OF...

  12. 18 CFR 3b.203 - Rules of conduct.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Rules of conduct. 3b.203 Section 3b.203 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES COLLECTION, MAINTENANCE, USE, AND DISSEMINATION OF RECORDS OF...

  13. 18 CFR 3b.226 - Accounting of disclosures.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Accounting of disclosures. 3b.226 Section 3b.226 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES COLLECTION, MAINTENANCE, USE, AND DISSEMINATION OF RECORDS...

  14. 18 CFR 3b.203 - Rules of conduct.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Rules of conduct. 3b.203 Section 3b.203 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES COLLECTION, MAINTENANCE, USE, AND DISSEMINATION OF RECORDS OF...

  15. 27 CFR 21.36 - Formula No. 3-B.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... and Authorized Uses § 21.36 Formula No. 3-B. (a) Formula. To every 100 gallons of alcohol add: One gallon of pine tar, U.S.P. (b) Authorized uses. (1) As a solvent: 111.Hair and scalp preparations. 141... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Formula No. 3-B....

  16. 27 CFR 21.36 - Formula No. 3-B.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... and Authorized Uses § 21.36 Formula No. 3-B. (a) Formula. To every 100 gallons of alcohol add: One gallon of pine tar, U.S.P. (b) Authorized uses. (1) As a solvent: 111.Hair and scalp preparations. 141... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Formula No. 3-B....

  17. 27 CFR 21.36 - Formula No. 3-B.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... and Authorized Uses § 21.36 Formula No. 3-B. (a) Formula. To every 100 gallons of alcohol add: One gallon of pine tar, U.S.P. (b) Authorized uses. (1) As a solvent: 111.Hair and scalp preparations. 141... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Formula No. 3-B....

  18. 27 CFR 21.36 - Formula No. 3-B.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... and Authorized Uses § 21.36 Formula No. 3-B. (a) Formula. To every 100 gallons of alcohol add: One gallon of pine tar, U.S.P. (b) Authorized uses. (1) As a solvent: 111.Hair and scalp preparations. 141... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Formula No. 3-B....

  19. 27 CFR 21.36 - Formula No. 3-B.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... and Authorized Uses § 21.36 Formula No. 3-B. (a) Formula. To every 100 gallons of alcohol add: One gallon of pine tar, U.S.P. (b) Authorized uses. (1) As a solvent: 111.Hair and scalp preparations. 141... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Formula No. 3-B....

  20. A yeast functional screen predicts new candidate ALS disease genes

    PubMed Central

    Couthouis, Julien; Hart, Michael P.; Shorter, James; DeJesus-Hernandez, Mariely; Erion, Renske; Oristano, Rachel; Liu, Annie X.; Ramos, Daniel; Jethava, Niti; Hosangadi, Divya; Epstein, James; Chiang, Ashley; Diaz, Zamia; Nakaya, Tadashi; Ibrahim, Fadia; Kim, Hyung-Jun; Solski, Jennifer A.; Williams, Kelly L.; Mojsilovic-Petrovic, Jelena; Ingre, Caroline; Boylan, Kevin; Graff-Radford, Neill R.; Dickson, Dennis W.; Clay-Falcone, Dana; Elman, Lauren; McCluskey, Leo; Greene, Robert; Kalb, Robert G.; Lee, Virginia M.-Y.; Trojanowski, John Q.; Ludolph, Albert; Robberecht, Wim; Andersen, Peter M.; Nicholson, Garth A.; Blair, Ian P.; King, Oliver D.; Bonini, Nancy M.; Van Deerlin, Vivianna; Rademakers, Rosa; Mourelatos, Zissimos; Gitler, Aaron D.

    2011-01-01

    Amyotrophic lateral sclerosis (ALS) is a devastating and universally fatal neurodegenerative disease. Mutations in two related RNA-binding proteins, TDP-43 and FUS, that harbor prion-like domains, cause some forms of ALS. There are at least 213 human proteins harboring RNA recognition motifs, including FUS and TDP-43, raising the possibility that additional RNA-binding proteins might contribute to ALS pathogenesis. We performed a systematic survey of these proteins to find additional candidates similar to TDP-43 and FUS, followed by bioinformatics to predict prion-like domains in a subset of them. We sequenced one of these genes, TAF15, in patients with ALS and identified missense variants, which were absent in a large number of healthy controls. These disease-associated variants of TAF15 caused formation of cytoplasmic foci when expressed in primary cultures of spinal cord neurons. Very similar to TDP-43 and FUS, TAF15 aggregated in vitro and conferred neurodegeneration in Drosophila, with the ALS-linked variants having a more severe effect than wild type. Immunohistochemistry of postmortem spinal cord tissue revealed mislocalization of TAF15 in motor neurons of patients with ALS. We propose that aggregation-prone RNA-binding proteins might contribute very broadly to ALS pathogenesis and the genes identified in our yeast functional screen, coupled with prion-like domain prediction analysis, now provide a powerful resource to facilitate ALS disease gene discovery. PMID:22065782

  1. Function of PPR proteins in plastid gene expression.

    PubMed

    Shikanai, Toshiharu; Fujii, Sota

    2013-01-01

    PPR proteins form a huge family in flowering plants and are involved in RNA maturation in plastids and mitochondria. These proteins are sequence-specific RNA-binding proteins that recruit the machinery of RNA processing. We summarize progress in the research on the functional mechanisms of divergent RNA maturation and on the mechanism by which RNA sequences are recognized. We further focus on two topics. RNA editing is an enigmatic process of RNA maturation in organelles, in which members of the PLS subfamily contribute to target site recognition. As the first topic, we speculate on why the PLS subfamily was selected by the RNA editing machinery. Second, we discuss how the regulation of plastid gene expression contributes to efficient photosynthesis. Although the molecular functions of PPR proteins have been studied extensively, information on the physiological significance of regulation by these proteins remains very limited.

  2. Roles of Hox genes: what we have learnt from gain of function and loss of function mutations in the mouse.

    PubMed

    Mark, M; Lufkin, T; Dollé, P; Dierich, A; LeMeur, M; Chambon, P

    1993-09-01

    Transgenic mice expressing ectopically a gene from one of the Hox complexes, and mice carrying a null mutation in a Hox gene, provide useful tools for studying the roles of this gene family during development. Here, we discuss the phenotypes of two kinds of Hox mutant mice which show that vertebrate Hox genes are functional homologues of Drosophila genes of the HOM-C complex.

  3. P3b, consciousness, and complex unconscious processing.

    PubMed

    Silverstein, Brian H; Snodgrass, Michael; Shevrin, Howard; Kushwaha, Ramesh

    2015-12-01

    How can perceptual consciousness be indexed in humans? Recent work with ERPs suggests that P3b, a relatively late component, may be a neural correlate of consciousness (NCC). This proposal dovetails with currently prevailing cognitive theory regarding the nature of conscious versus unconscious processes, which holds that the latter are simple and very brief, whereas consciousness is ostensibly required for more durable, complex cognitive processing. Using a P3b oddball paradigm, we instead show that P3b and even later, related slow wave activity occur under rigorously subliminal conditions. Additional principal component analysis (PCA) further differentiated the presence of both P3a and P3b components, demonstrating that the latter indeed occurred subliminally. Collectively, our results suggest that complex, sustained cognitive processing can occur unconsciously and that P3b is not an NCC after all.

  4. Spaceflight effects on T lymphocyte distribution, function and gene expression

    PubMed Central

    Gridley, Daila S.; Slater, James M.; Luo-Owen, Xian; Rizvi, Asma; Chapes, Stephen K.; Stodieck, Louis S.; Ferguson, Virginia L.; Pecaut, Michael J.

    2009-01-01

    The immune system is highly sensitive to stressors present during spaceflight. The major emphasis of this study was on the T lymphocytes in C57BL/6NTac mice after return from a 13-day space shuttle mission (STS-118). Spleens and thymuses from flight animals (FLT) and ground controls similarly housed in animal enclosure modules (AEM) were evaluated within 3–6 h after landing. Phytohemagglutinin-induced splenocyte DNA synthesis was significantly reduced in FLT mice when based on both counts per minute and stimulation indexes (P < 0.05). Flow cytometry showed that CD3+ T and CD19+ B cell counts were low in spleens from the FLT group, whereas the number of NK1.1+ natural killer (NK) cells was increased (P < 0.01 for all three populations vs. AEM). The numerical changes resulted in a low percentage of T cells and high percentage of NK cells in FLT animals (P < 0.05). After activation of spleen cells with anti-CD3 monoclonal antibody, interleukin-2 (IL-2) was decreased, but IL-10, interferon-γ, and macrophage inflammatory protein-1α were increased in FLT mice (P < 0.05). Analysis of cancer-related genes in the thymus showed that the expression of 30 of 84 genes was significantly affected by flight (P < 0.05). Genes that differed from AEM controls by at least 1.5-fold were Birc5, Figf, Grb2, and Tert (upregulated) and Fos, Ifnb1, Itgb3, Mmp9, Myc, Pdgfb, S100a4, Thbs, and Tnf (downregulated). Collectively, the data show that T cell distribution, function, and gene expression are significantly modified shortly after return from the spaceflight environment. PMID:18988762

  5. Human tRNA genes function as chromatin insulators.

    PubMed

    Raab, Jesse R; Chiu, Jonathan; Zhu, Jingchun; Katzman, Sol; Kurukuti, Sreenivasulu; Wade, Paul A; Haussler, David; Kamakaka, Rohinton T

    2012-01-18

    Insulators help separate active chromatin domains from silenced ones. In yeast, gene promoters act as insulators to block the spread of Sir and HP1 mediated silencing while in metazoans most insulators are multipartite autonomous entities. tDNAs are repetitive sequences dispersed throughout the human genome and we now show that some of these tDNAs can function as insulators in human cells. Using computational methods, we identified putative human tDNA insulators. Using silencer blocking, transgene protection and repressor blocking assays we show that some of these tDNA-containing fragments can function as barrier insulators in human cells. We find that these elements also have the ability to block enhancers from activating RNA pol II transcribed promoters. Characterization of a putative tDNA insulator in human cells reveals that the site possesses chromatin signatures similar to those observed at other better-characterized eukaryotic insulators. Enhanced 4C analysis demonstrates that the tDNA insulator makes long-range chromatin contacts with other tDNAs and ETC sites but not with intervening or flanking RNA pol II transcribed genes.

  6. Functional analysis of NLP genes from Botrytis elliptica.

    PubMed

    Staats, Martijn; VAN Baarlen, Peter; Schouten, Alexander; VAN Kan, Jan A L

    2007-03-01

    SUMMARY We functionally analysed two Nep1-like protein (NLP) genes from Botrytis elliptica (a specialized pathogen of lily), encoding proteins homologous to the necrosis and ethylene-inducing protein (NEP1) from Fusarium oxysporum. Single gene replacement mutants were made for BeNEP1 and BeNEP2, providing the first example of transformation and successful targeted mutagenesis in this fungus. The virulence of both mutants on lily leaves was not affected. BeNEP1 and BeNEP2 were individually expressed in the yeast Pichia pastoris, and the necrosis-inducing activity was tested by infiltration of both proteins into leaves of several monocots and eudicots. Necrotic symptoms developed on the eudicots tobacco, Nicotiana benthamiana and Arabidopsis thaliana, and cell death was induced in tomato cell suspensions. No necrotic symptoms developed on leaves of the monocots rice, maize and lily. These results support the hypothesis that the necrosis-inducing activity of NLPs is limited to eudicots. We conclude that NLPs are not essential virulence factors and they do not function as host-selective toxins for B. elliptica.

  7. Gene-environment interaction and male reproductive function.

    PubMed

    Axelsson, Jonatan; Bonde, Jens Peter; Giwercman, Yvonne L; Rylander, Lars; Giwercman, Aleksander

    2010-05-01

    As genetic factors can hardly explain the changes taking place during short time spans, environmental and lifestyle-related factors have been suggested as the causes of time-related deterioration of male reproductive function. However, considering the strong heterogeneity of male fecundity between and within populations, genetic variants might be important determinants of the individual susceptibility to the adverse effects of environment or lifestyle. Although the possible mechanisms of such interplay in relation to the reproductive system are largely unknown, some recent studies have indicated that specific genotypes may confer a larger risk of male reproductive disorders following certain exposures. This paper presents a critical review of animal and human evidence on how genes may modify environmental effects on male reproductive function. Some examples have been found that support this mechanism, but the number of studies is still limited. This type of interaction studies may improve our understanding of normal physiology and help us to identify the risk factors to male reproductive malfunction. We also shortly discuss other aspects of gene-environment interaction specifically associated with the issue of reproduction, namely environmental and lifestyle factors as the cause of sperm DNA damage. It remains to be investigated to what extent such genetic changes, by natural conception or through the use of assisted reproductive techniques, are transmitted to the next generation, thereby causing increased morbidity in the offspring.

  8. Clock gene evolution: seasonal timing, phylogenetic signal, or functional constraint?

    PubMed

    Krabbenhoft, Trevor J; Turner, Thomas F

    2014-01-01

    Genetic determinants of seasonal reproduction are not fully understood but may be important predictors of organism responses to climate change. We used a comparative approach to study the evolution of seasonal timing within a fish community in a natural common garden setting. We tested the hypothesis that allelic length variation in the PolyQ domain of a circadian rhythm gene, Clock1a, corresponded to interspecific differences in seasonal reproductive timing across 5 native and 1 introduced cyprinid fishes (n = 425 individuals) that co-occur in the Rio Grande, NM, USA. Most common allele lengths were longer in native species that initiated reproduction earlier (Spearman's r = -0.70, P = 0.23). Clock1a allele length exhibited strong phylogenetic signal and earlier spawners were evolutionarily derived. Aside from length variation in Clock1a, all other amino acids were identical across native species, suggesting functional constraint over evolutionary time. Interestingly, the endangered Rio Grande silvery minnow (Hybognathus amarus) exhibited less allelic variation in Clock1a and observed heterozygosity was 2- to 6-fold lower than the 5 other (nonimperiled) species. Reduced genetic variation in this functionally important gene may impede this species' capacity to respond to ongoing environmental change. PMID:24558102

  9. The dystrophin gene and cognitive function in the general population

    PubMed Central

    Vojinovic, Dina; Adams, Hieab HH; van der Lee, Sven J; Ibrahim-Verbaas, Carla A; Brouwer, Rutger; van den Hout, Mirjam CGN; Oole, Edwin; van Rooij, Jeroen; Uitterlinden, Andre; Hofman, Albert; van IJcken, Wilfred FJ; Aartsma-Rus, Annemieke; van Ommen, GertJan B; Ikram, M Arfan; van Duijn, Cornelia M; Amin, Najaf

    2015-01-01

    The aim of our study is to investigate whether single-nucleotide dystrophin gene (DMD) variants associate with variability in cognitive functions in healthy populations. The study included 1240 participants from the Erasmus Rucphen family (ERF) study and 1464 individuals from the Rotterdam Study (RS). The participants whose exomes were sequenced and who were assessed for various cognitive traits were included in the analysis. To determine the association between DMD variants and cognitive ability, linear (mixed) modeling with adjustment for age, sex and education was used. Moreover, Sequence Kernel Association Test (SKAT) was used to test the overall association of the rare genetic variants present in the DMD with cognitive traits. Although no DMD variant surpassed the prespecified significance threshold (P<1 × 10−4), rs147546024:A>G showed strong association (β=1.786, P-value=2.56 × 10−4) with block-design test in the ERF study, while another variant rs1800273:G>A showed suggestive association (β=−0.465, P-value=0.002) with Mini-Mental State Examination test in the RS. Both variants are highly conserved, although rs147546024:A>G is an intronic variant, whereas rs1800273:G>A is a missense variant in the DMD which has a predicted damaging effect on the protein. Further gene-based analysis of DMD revealed suggestive association (P-values=0.087 and 0.074) with general cognitive ability in both cohorts. In conclusion, both single variant and gene-based analyses suggest the existence of variants in the DMD which may affect cognitive functioning in the general populations. PMID:25227141

  10. The Lipid-Modifying Enzyme SMPDL3B Negatively Regulates Innate Immunity

    PubMed Central

    Heinz, Leonhard X.; Baumann, Christoph L.; Köberlin, Marielle S.; Snijder, Berend; Gawish, Riem; Shui, Guanghou; Sharif, Omar; Aspalter, Irene M.; Müller, André C.; Kandasamy, Richard K.; Breitwieser, Florian P.; Pichlmair, Andreas; Bruckner, Manuela; Rebsamen, Manuele; Blüml, Stephan; Karonitsch, Thomas; Fauster, Astrid; Colinge, Jacques; Bennett, Keiryn L.; Knapp, Sylvia; Wenk, Markus R.; Superti-Furga, Giulio

    2015-01-01

    Summary Lipid metabolism and receptor-mediated signaling are highly intertwined processes that cooperate to fulfill cellular functions and safeguard cellular homeostasis. Activation of Toll-like receptors (TLRs) leads to a complex cellular response, orchestrating a diverse range of inflammatory events that need to be tightly controlled. Here, we identified the GPI-anchored Sphingomyelin Phosphodiesterase, Acid-Like 3B (SMPDL3B) in a mass spectrometry screening campaign for membrane proteins co-purifying with TLRs. Deficiency of Smpdl3b in macrophages enhanced responsiveness to TLR stimulation and profoundly changed the cellular lipid composition and membrane fluidity. Increased cellular responses could be reverted by re-introducing affected ceramides, functionally linking membrane lipid composition and innate immune signaling. Finally, Smpdl3b-deficient mice displayed an intensified inflammatory response in TLR-dependent peritonitis models, establishing its negative regulatory role in vivo. Taken together, our results identify the membrane-modulating enzyme SMPDL3B as a negative regulator of TLR signaling that functions at the interface of membrane biology and innate immunity. PMID:26095358

  11. What's that gene (or protein)? Online resources for exploring functions of genes, transcripts, and proteins

    PubMed Central

    Hutchins, James R. A.

    2014-01-01

    The genomic era has enabled research projects that use approaches including genome-scale screens, microarray analysis, next-generation sequencing, and mass spectrometry–based proteomics to discover genes and proteins involved in biological processes. Such methods generate data sets of gene, transcript, or protein hits that researchers wish to explore to understand their properties and functions and thus their possible roles in biological systems of interest. Recent years have seen a profusion of Internet-based resources to aid this process. This review takes the viewpoint of the curious biologist wishing to explore the properties of protein-coding genes and their products, identified using genome-based technologies. Ten key questions are asked about each hit, addressing functions, phenotypes, expression, evolutionary conservation, disease association, protein structure, interactors, posttranslational modifications, and inhibitors. Answers are provided by presenting the latest publicly available resources, together with methods for hit-specific and data set–wide information retrieval, suited to any genome-based analytical technique and experimental species. The utility of these resources is demonstrated for 20 factors regulating cell proliferation. Results obtained using some of these are discussed in more depth using the p53 tumor suppressor as an example. This flexible and universally applicable approach for characterizing experimental hits helps researchers to maximize the potential of their projects for biological discovery. PMID:24723265

  12. High-throughput approaches to understanding gene function and mapping network architecture in bacteria.

    PubMed

    Brochado, Ana Rita; Typas, Athanasios

    2013-04-01

    Advances in sequencing technology have provided an unprecedented view of bacterial diversity, along with a daunting number of novel genes. Within this new reality lies the challenge of developing large-scale approaches to assign function to the new genes and place them in pathways. Here, we highlight recent advances on this front, focusing on how high-throughput gene-gene, gene-drug and drug-drug interactions can yield functional and mechanistic inferences in bacteria. PMID:23403119

  13. Microbial Functional Gene Diversity with a Shift of Subsurface Redox Conditions during In Situ Uranium Reduction

    PubMed Central

    Liang, Yuting; Van Nostrand, Joy D.; N′Guessan, Lucie A.; Peacock, Aaron D.; Deng, Ye; Long, Philip E.; Resch, C. Tom; Wu, Liyou; He, Zhili; Li, Guanghe; Hazen, Terry C.; Lovley, Derek R.

    2012-01-01

    To better understand the microbial functional diversity changes with subsurface redox conditions during in situ uranium bioremediation, key functional genes were studied with GeoChip, a comprehensive functional gene microarray, in field experiments at a uranium mill tailings remedial action (UMTRA) site (Rifle, CO). The results indicated that functional microbial communities altered with a shift in the dominant metabolic process, as documented by hierarchical cluster and ordination analyses of all detected functional genes. The abundance of dsrAB genes (dissimilatory sulfite reductase genes) and methane generation-related mcr genes (methyl coenzyme M reductase coding genes) increased when redox conditions shifted from Fe-reducing to sulfate-reducing conditions. The cytochrome genes detected were primarily from Geobacter sp. and decreased with lower subsurface redox conditions. Statistical analysis of environmental parameters and functional genes indicated that acetate, U(VI), and redox potential (Eh) were the most significant geochemical variables linked to microbial functional gene structures, and changes in microbial functional diversity were strongly related to the dominant terminal electron-accepting process following acetate addition. The study indicates that the microbial functional genes clearly reflect the in situ redox conditions and the dominant microbial processes, which in turn influence uranium bioreduction. Microbial functional genes thus could be very useful for tracking microbial community structure and dynamics during bioremediation. PMID:22327592

  14. Arid3b Is Critical for B Lymphocyte Development.

    PubMed

    Kurkewich, Jeffrey L; Klopfenstein, Nathan; Hallas, William M; Wood, Christian; Sattler, Rachel A; Das, Chhaya; Tucker, Haley; Dahl, Richard; Cowden Dahl, Karen D

    2016-01-01

    Arid3a and Arid3b belong to a subfamily of ARID (AT-rich interaction domain) transcription factors. The Arid family is involved in regulating chromatin accessibility, proliferation, and differentiation. Arid3a and Arid3b are closely related and share a unique REKLES domain that mediates their homo- and hetero-multimerization. Arid3a was originally isolated as a B cell transcription factor binding to the AT rich matrix attachment regions (MARS) of the immunoglobulin heavy chain intronic enhancer. Deletion of Arid3a results in a highly penetrant embryonic lethality with severe defects in erythropoiesis and hematopoietic stem cells (HSCs). The few surviving Arid3a-/- (<1%) animals have decreased HSCs and early progenitors in the bone marrow, but all mature lineages are normally represented in the bone marrow and periphery except for B cells. Arid3b-/- animals die around E7.5 precluding examination of hematopoietic development. So it is unclear whether the phenotype of Arid3a loss on hematopoiesis is dependent or independent of Arid3b. In this study we circumvented this limitation by also examining hematopoiesis in mice with a conditional allele of Arid3b. Bone marrow lacking Arid3b shows decreased common lymphoid progenitors (CLPs) and downstream B cell populations while the T cell and myeloid lineages are unchanged, reminiscent of the adult hematopoietic defect in Arid3a mice. Unlike Arid3a-/- mice, HSC populations are unperturbed in Arid3b-/- mice. This study demonstrates that HSC development is independent of Arid3b, whereas B cell development requires both Arid3a and Arid3b transcription factors. PMID:27537840

  15. Arid3b Is Critical for B Lymphocyte Development

    PubMed Central

    Kurkewich, Jeffrey L.; Klopfenstein, Nathan; Hallas, William M.; Wood, Christian; Sattler, Rachel A.; Das, Chhaya; Tucker, Haley; Dahl, Richard; Cowden Dahl, Karen D.

    2016-01-01

    Arid3a and Arid3b belong to a subfamily of ARID (AT-rich interaction domain) transcription factors. The Arid family is involved in regulating chromatin accessibility, proliferation, and differentiation. Arid3a and Arid3b are closely related and share a unique REKLES domain that mediates their homo- and hetero-multimerization. Arid3a was originally isolated as a B cell transcription factor binding to the AT rich matrix attachment regions (MARS) of the immunoglobulin heavy chain intronic enhancer. Deletion of Arid3a results in a highly penetrant embryonic lethality with severe defects in erythropoiesis and hematopoietic stem cells (HSCs). The few surviving Arid3a-/- (<1%) animals have decreased HSCs and early progenitors in the bone marrow, but all mature lineages are normally represented in the bone marrow and periphery except for B cells. Arid3b-/- animals die around E7.5 precluding examination of hematopoietic development. So it is unclear whether the phenotype of Arid3a loss on hematopoiesis is dependent or independent of Arid3b. In this study we circumvented this limitation by also examining hematopoiesis in mice with a conditional allele of Arid3b. Bone marrow lacking Arid3b shows decreased common lymphoid progenitors (CLPs) and downstream B cell populations while the T cell and myeloid lineages are unchanged, reminiscent of the adult hematopoietic defect in Arid3a mice. Unlike Arid3a-/- mice, HSC populations are unperturbed in Arid3b-/- mice. This study demonstrates that HSC development is independent of Arid3b, whereas B cell development requires both Arid3a and Arid3b transcription factors. PMID:27537840

  16. [Construction and function identification of luciferase reporter gene vectors containing SNPs in NFKBIA gene 3'UTR].

    PubMed

    Yang, Shuo; Li, Jia-li; Bi, Hui-chang; Zhou, Shou-ning; Liu, Xiao-man; Zeng, Hang; Hu, Bing-fang; Huang, Min

    2016-01-01

    This study aims to investigate the function of two SNPs (rs8904C > T and rs696G >A) in 3' untranslated region (3'UTR) of NFKBIA gene by constructing luciferase reporter gene. A patient's genomic DNA with rs8904 CC and rs696 GA genotype was used as the PCR template. Full-length 3'UTR of NFKBIA gene was amplified by different primers. After sequencing validation, these fragments were inserted to the luciferase reporter vector, pGL3-promoter to construct recombinant plasmids containing four kinds of haplotypes, pGL3-rs8904C/rs696G, pGL3-rs8904C/rs696A, pGL3-rs8904T/rs696G and pGL3-rs8904T/rs696A. Then these plasmids were transfected into LS174T cells and the luciferase activity was detected. Compared with pGL3-vector transfected cells (negative control), the luciferase activity of the four kinds of recombinant plasmids was significantly decreased (P < 0.001). For rs696G > A, the luciferase activity of the recombinant plasmids containing A allele (pGL3-rs8904C/rs696A and pGL3-rs8904T/rs696A) was about 45.1% (P < 0.05) and 56.1% (P < 0.001) lower than those containing G allele (pGL3-rs8904C/rs696G and pGL3-rs8904T/rs696G), respectively. For rs8904C > T, there were no significant differences in the luciferase activity between the recombinant plasmids containing T allele and those with C allele. Together, the luciferase reporter gene vectors containing SNPs in NFKBIA gene 3'UTR were constructed successfully and rs696G > A could decrease the luciferase activity while rs8904C >T didn't have much effect on the luciferase activity. PMID:27405166

  17. [Construction and function identification of luciferase reporter gene vectors containing SNPs in NFKBIA gene 3'UTR].

    PubMed

    Yang, Shuo; Li, Jia-li; Bi, Hui-chang; Zhou, Shou-ning; Liu, Xiao-man; Zeng, Hang; Hu, Bing-fang; Huang, Min

    2016-01-01

    This study aims to investigate the function of two SNPs (rs8904C > T and rs696G >A) in 3' untranslated region (3'UTR) of NFKBIA gene by constructing luciferase reporter gene. A patient's genomic DNA with rs8904 CC and rs696 GA genotype was used as the PCR template. Full-length 3'UTR of NFKBIA gene was amplified by different primers. After sequencing validation, these fragments were inserted to the luciferase reporter vector, pGL3-promoter to construct recombinant plasmids containing four kinds of haplotypes, pGL3-rs8904C/rs696G, pGL3-rs8904C/rs696A, pGL3-rs8904T/rs696G and pGL3-rs8904T/rs696A. Then these plasmids were transfected into LS174T cells and the luciferase activity was detected. Compared with pGL3-vector transfected cells (negative control), the luciferase activity of the four kinds of recombinant plasmids was significantly decreased (P < 0.001). For rs696G > A, the luciferase activity of the recombinant plasmids containing A allele (pGL3-rs8904C/rs696A and pGL3-rs8904T/rs696A) was about 45.1% (P < 0.05) and 56.1% (P < 0.001) lower than those containing G allele (pGL3-rs8904C/rs696G and pGL3-rs8904T/rs696G), respectively. For rs8904C > T, there were no significant differences in the luciferase activity between the recombinant plasmids containing T allele and those with C allele. Together, the luciferase reporter gene vectors containing SNPs in NFKBIA gene 3'UTR were constructed successfully and rs696G > A could decrease the luciferase activity while rs8904C >T didn't have much effect on the luciferase activity.

  18. Functional divergence in tandemly duplicated Arabidopsis thaliana trypsin inhibitor genes.

    PubMed Central

    Clauss, M J; Mitchell-Olds, T

    2004-01-01

    In multigene families, variation among loci and alleles can contribute to trait evolution. We explored patterns of functional and genetic variation in six duplicated Arabidopsis thaliana trypsin inhibitor (ATTI) loci. We demonstrate significant variation in constitutive and herbivore-induced transcription among ATTI loci that show, on average, 65% sequence divergence. Significant variation in ATTI expression was also found between two molecularly defined haplotype classes. Population genetic analyses for 17 accessions of A. thaliana showed that six ATTI loci arranged in tandem within 10 kb varied 10-fold in nucleotide diversity, from 0.0009 to 0.0110, and identified a minimum of six recombination events throughout the tandem array. We observed a significant peak in nucleotide and indel polymorphism spanning ATTI loci in the interior of the array, due primarily to divergence between the two haplotype classes. Significant deviation from the neutral equilibrium model for individual genes was interpreted within the context of intergene linkage disequilibrium and correlated patterns of functional differentiation. In contrast to the outcrosser Arabidopsis lyrata for which recombination is observed even within ATTI loci, our data suggest that response to selection was slowed in the inbreeding, annual A. thaliana because of interference among functionally divergent ATTI loci. PMID:15082560

  19. Predicting Gene-Regulation Functions: Lessons from Temperate Bacteriophages

    PubMed Central

    Teif, Vladimir B.

    2010-01-01

    Gene-regulation functions (GRF) provide a unique characteristic of a cis-regulatory module (CRM), relating the concentrations of transcription factors (input) to the promoter activities (output). The challenge is to predict GRFs from the sequence. Here we systematically consider the lysogeny-lysis CRMs of different temperate bacteriophages such as the Lactobacillus casei phage A2, Escherichia coli phages λ, and 186 and Lactococcal phage TP901-1. This study allowed explaining a recent experimental puzzle on the role of Cro protein in the lambda switch. Several general conclusions have been drawn: 1), long-range interactions, multilayer assembly and DNA looping may lead to complex GRFs that cannot be described by linear functions of binding site occupancies; 2), in general, GRFs cannot be described by the Boolean logic, whereas a three-state non-Boolean logic suffices for the studied examples; 3), studied CRMs of the intact phages seemed to have a similar GRF topology (the number of plateaus and peaks corresponding to different expression regimes); we hypothesize that functionally equivalent CRMs might have topologically equivalent GRFs for a larger class of genetic systems; and 4) within a given GRF class, a set of mechanistic-to-mathematical transformations has been identified, which allows shaping the GRF before carrying out a system-level analysis. PMID:20371324

  20. Functional Module Analysis for Gene Coexpression Networks with Network Integration

    PubMed Central

    Zhang, Shuqin; Zhao, Hongyu

    2015-01-01

    Network has been a general tool for studying the complex interactions between different genes, proteins and other small molecules. Module as a fundamental property of many biological networks has been widely studied and many computational methods have been proposed to identify the modules in an individual network. However, in many cases a single network is insufficient for module analysis due to the noise in the data or the tuning of parameters when building the biological network. The availability of a large amount of biological networks makes network integration study possible. By integrating such networks, more informative modules for some specific disease can be derived from the networks constructed from different tissues, and consistent factors for different diseases can be inferred. In this paper, we have developed an effective method for module identification from multiple networks under different conditions. The problem is formulated as an optimization model, which combines the module identification in each individual network and alignment of the modules from different networks together. An approximation algorithm based on eigenvector computation is proposed. Our method outperforms the existing methods, especially when the underlying modules in multiple networks are different in simulation studies. We also applied our method to two groups of gene coexpression networks for humans, which include one for three different cancers, and one for three tissues from the morbidly obese patients. We identified 13 modules with 3 complete subgraphs, and 11 modules with 2 complete subgraphs, respectively. The modules were validated through Gene Ontology enrichment and KEGG pathway enrichment analysis. We also showed that the main functions of most modules for the corresponding disease have been addressed by other researchers, which may provide the theoretical basis for further studying the modules experimentally. PMID:26451826

  1. DING proteins: numerous functions, elusive genes, a potential for health.

    PubMed

    Bernier, François

    2013-09-01

    DING proteins, named after their conserved N-terminus, form an overlooked protein family whose members were generally discovered through serendipity. It is characterized by an unusually high sequence conservation, even between distantly related species, and by an outstanding diversity of activities and ligands. They all share a demonstrated capacity to bind phosphate with high affinity or at least a predicted phosphate-binding site. However, DING protein genes are conspicuously absent from databases. The many novel family members identified in recent years have confirmed that DING proteins are ubiquitous not only in animals and plants but probably also in prokaryotes. At the functional level, there is increasing evidence that they participate in many health-related processes such as cancers as well as bacterial (Pseudomonas) and viral (HIV) infections, by mechanisms that are now beginning to be understood. They thus represent potent targets for the development of novel therapeutic approaches, especially against HIV. The few genomic sequences that are now available are starting to give some clues on why DING protein genes and mRNAs are well conserved and difficult to clone. This could open a new era of research, of both fundamental and applied importance. PMID:23743708

  2. Regulation and Function of Adult Neurogenesis. From Genes to Cognition

    DOE PAGES

    Aimone, J. B.; Li, Y.; Lee, S. W.; Clemenson, G. D.; Deng, W.; Gage, F. H.

    2014-10-01

    Adult neurogenesis in the hippocampus is a notable process due not only to its uniqueness and potential impact on cognition but also to its localized vertical integration of different scales of neuroscience, ranging from molecular and cellular biology to behavior. Our review summarizes the recent research regarding the process of adult neurogenesis from these different perspectives, with particular emphasis on the differentiation and development of new neurons, the regulation of the process by extrinsic and intrinsic factors, and their ultimate function in the hippocampus circuit. Arising from a local neural stem cell population, new neurons progress through several stages ofmore » maturation, ultimately integrating into the adult dentate gyrus network. Furthermore, the increased appreciation of the full neurogenesis process, from genes and cells to behavior and cognition, makes neurogenesis both a unique case study for how scales in neuroscience can link together and suggests neurogenesis as a potential target for therapeutic intervention for a number of disorders.« less

  3. Regulation and Function of Adult Neurogenesis: From Genes to Cognition

    PubMed Central

    Aimone, James B.; Li, Yan; Lee, Star W.; Clemenson, Gregory D.; Deng, Wei; Gage, Fred H.

    2014-01-01

    Adult neurogenesis in the hippocampus is a notable process due not only to its uniqueness and potential impact on cognition but also to its localized vertical integration of different scales of neuroscience, ranging from molecular and cellular biology to behavior. This review summarizes the recent research regarding the process of adult neurogenesis from these different perspectives, with particular emphasis on the differentiation and development of new neurons, the regulation of the process by extrinsic and intrinsic factors, and their ultimate function in the hippocampus circuit. Arising from a local neural stem cell population, new neurons progress through several stages of maturation, ultimately integrating into the adult dentate gyrus network. The increased appreciation of the full neurogenesis process, from genes and cells to behavior and cognition, makes neurogenesis both a unique case study for how scales in neuroscience can link together and suggests neurogenesis as a potential target for therapeutic intervention for a number of disorders. PMID:25287858

  4. Regulation and Function of Adult Neurogenesis. From Genes to Cognition

    SciTech Connect

    Aimone, J. B.; Li, Y.; Lee, S. W.; Clemenson, G. D.; Deng, W.; Gage, F. H.

    2014-10-01

    Adult neurogenesis in the hippocampus is a notable process due not only to its uniqueness and potential impact on cognition but also to its localized vertical integration of different scales of neuroscience, ranging from molecular and cellular biology to behavior. Our review summarizes the recent research regarding the process of adult neurogenesis from these different perspectives, with particular emphasis on the differentiation and development of new neurons, the regulation of the process by extrinsic and intrinsic factors, and their ultimate function in the hippocampus circuit. Arising from a local neural stem cell population, new neurons progress through several stages of maturation, ultimately integrating into the adult dentate gyrus network. Furthermore, the increased appreciation of the full neurogenesis process, from genes and cells to behavior and cognition, makes neurogenesis both a unique case study for how scales in neuroscience can link together and suggests neurogenesis as a potential target for therapeutic intervention for a number of disorders.

  5. HFE gene: Structure, function, mutations, and associated iron abnormalities.

    PubMed

    Barton, James C; Edwards, Corwin Q; Acton, Ronald T

    2015-12-15

    The hemochromatosis gene HFE was discovered in 1996, more than a century after clinical and pathologic manifestations of hemochromatosis were reported. Linked to the major histocompatibility complex (MHC) on chromosome 6p, HFE encodes the MHC class I-like protein HFE that binds beta-2 microglobulin. HFE influences iron absorption by modulating the expression of hepcidin, the main controller of iron metabolism. Common HFE mutations account for ~90% of hemochromatosis phenotypes in whites of western European descent. We review HFE mapping and cloning, structure, promoters and controllers, and coding region mutations, HFE protein structure, cell and tissue expression and function, mouse Hfe knockouts and knockins, and HFE mutations in other mammals with iron overload. We describe the pertinence of HFE and HFE to mechanisms of iron homeostasis, the origin and fixation of HFE polymorphisms in European and other populations, and the genetic and biochemical basis of HFE hemochromatosis and iron overload.

  6. fabp4 is central to eight obesity associated genes: a functional gene network-based polymorphic study.

    PubMed

    Bag, Susmita; Ramaiah, Sudha; Anbarasu, Anand

    2015-01-01

    Network study on genes and proteins offers functional basics of the complexity of gene and protein, and its interacting partners. The gene fatty acid-binding protein 4 (fabp4) is found to be highly expressed in adipose tissue, and is one of the most abundant proteins in mature adipocytes. Our investigations on functional modules of fabp4 provide useful information on the functional genes interacting with fabp4, their biochemical properties and their regulatory functions. The present study shows that there are eight set of candidate genes: acp1, ext2, insr, lipe, ostf1, sncg, usp15, and vim that are strongly and functionally linked up with fabp4. Gene ontological analysis of network modules of fabp4 provides an explicit idea on the functional aspect of fabp4 and its interacting nodes. The hierarchal mapping on gene ontology indicates gene specific processes and functions as well as their compartmentalization in tissues. The fabp4 along with its interacting genes are involved in lipid metabolic activity and are integrated in multi-cellular processes of tissues and organs. They also have important protein/enzyme binding activity. Our study elucidated disease-associated nsSNP prediction for fabp4 and it is interesting to note that there are four rsID׳s (rs1051231, rs3204631, rs140925685 and rs141169989) with disease allelic variation (T104P, T126P, G27D and G90V respectively). On the whole, our gene network analysis presents a clear insight about the interactions and functions associated with fabp4 gene network.

  7. Data Integration and Applications of Functional Gene Networks in Drosophila Melanogaster

    ERIC Educational Resources Information Center

    Costello, James Christopher

    2009-01-01

    Understanding the function of every gene in the genome is a central goal in the biological sciences. This includes full characterization of a genes phenotypic effects, molecular interactions, the evolutionary forces that shape its function(s), and how these functions interrelate. Despite a long history and considerable effort to understand all…

  8. Hypogonadotropic hypogonadism in mice lacking a functional Kiss1 gene.

    PubMed

    d'Anglemont de Tassigny, Xavier; Fagg, Lisa A; Dixon, John P C; Day, Kate; Leitch, Harry G; Hendrick, Alan G; Zahn, Dirk; Franceschini, Isabelle; Caraty, Alain; Carlton, Mark B L; Aparicio, Samuel A J R; Colledge, William H

    2007-06-19

    The G protein-coupled receptor GPR54 (AXOR12, OT7T175) is central to acquisition of reproductive competency in mammals. Peptide ligands (kisspeptins) for this receptor are encoded by the Kiss1 gene, and administration of exogenous kisspeptins stimulates hypothalamic gonadotropin-releasing hormone (GnRH) release in several species, including humans. To establish that kisspeptins are the authentic agonists of GPR54 in vivo and to determine whether these ligands have additional physiological functions we have generated mice with a targeted disruption of the Kiss1 gene. Kiss1-null mice are viable and healthy with no apparent abnormalities but fail to undergo sexual maturation. Mutant female mice do not progress through the estrous cycle, have thread-like uteri and small ovaries, and do not produce mature Graffian follicles. Mutant males have small testes, and spermatogenesis arrests mainly at the early haploid spermatid stage. Both sexes have low circulating gonadotropin (luteinizing hormone and follicle-stimulating hormone) and sex steroid (beta-estradiol or testosterone) hormone levels. Migration of GnRH neurons into the hypothalamus appears normal with appropriate axonal connections to the median eminence and total GnRH content. The hypothalamic-pituitary axis is functional in these mice as shown by robust luteinizing hormone secretion after peripheral administration of kisspeptin. The virtually identical phenotype of Gpr54- and Kiss1-null mice provides direct proof that kisspeptins are the true physiological ligand for the GPR54 receptor in vivo. Kiss1 also does not seem to play a vital role in any other physiological processes other than activation of the hypothalamic-pituitary-gonadal axis, and loss of Kiss1 cannot be overcome by compensatory mechanisms.

  9. Hypogonadotropic hypogonadism in mice lacking a functional Kiss1 gene

    PubMed Central

    d'Anglemont de Tassigny, Xavier; Fagg, Lisa A.; Dixon, John P. C.; Day, Kate; Leitch, Harry G.; Hendrick, Alan G.; Zahn, Dirk; Franceschini, Isabelle; Caraty, Alain; Carlton, Mark B. L.; Aparicio, Samuel A. J. R.; Colledge, William H.

    2007-01-01

    The G protein-coupled receptor GPR54 (AXOR12, OT7T175) is central to acquisition of reproductive competency in mammals. Peptide ligands (kisspeptins) for this receptor are encoded by the Kiss1 gene, and administration of exogenous kisspeptins stimulates hypothalamic gonadotropin-releasing hormone (GnRH) release in several species, including humans. To establish that kisspeptins are the authentic agonists of GPR54 in vivo and to determine whether these ligands have additional physiological functions we have generated mice with a targeted disruption of the Kiss1 gene. Kiss1-null mice are viable and healthy with no apparent abnormalities but fail to undergo sexual maturation. Mutant female mice do not progress through the estrous cycle, have thread-like uteri and small ovaries, and do not produce mature Graffian follicles. Mutant males have small testes, and spermatogenesis arrests mainly at the early haploid spermatid stage. Both sexes have low circulating gonadotropin (luteinizing hormone and follicle-stimulating hormone) and sex steroid (β-estradiol or testosterone) hormone levels. Migration of GnRH neurons into the hypothalamus appears normal with appropriate axonal connections to the median eminence and total GnRH content. The hypothalamic–pituitary axis is functional in these mice as shown by robust luteinizing hormone secretion after peripheral administration of kisspeptin. The virtually identical phenotype of Gpr54- and Kiss1-null mice provides direct proof that kisspeptins are the true physiological ligand for the GPR54 receptor in vivo. Kiss1 also does not seem to play a vital role in any other physiological processes other than activation of the hypothalamic–pituitary–gonadal axis, and loss of Kiss1 cannot be overcome by compensatory mechanisms. PMID:17563351

  10. Functional characterization of EMSY gene amplification in human cancers.

    PubMed

    Wilkerson, Paul M; Dedes, Konstantin J; Wetterskog, Daniel; Mackay, Alan; Lambros, Maryou B; Mansour, Marthe; Frankum, Jessica; Lord, Christopher J; Natrajan, Rachael; Ashworth, Alan; Reis-Filho, Jorge S

    2011-09-01

    The 11q13-q14 locus is frequently amplified in human cancers, with a complex structure harbouring multiple potential oncogenic drivers. The EMSY gene has been proposed as a driver of the third core of the 11q13-q14 amplicon. This gene encodes a protein reported to be a BRCA2-binding partner, which when over-expressed would lead to impairment of BRCA2 functions and could constitute a mechanism for BRCA2 inactivation in non-hereditary breast and ovarian cancers. We hypothesized that if EMSY amplification abrogates BRCA2 functions, cells harbouring this aberration would be unable to elicit competent homologous recombination DNA repair and, therefore, may have increased sensitivity to genotoxic therapies and potent PARP inhibitors. Microarray-based comparative genomic hybridization of cell lines from distinct tumour sites, including breast, ovary, pancreas, oesophagus, lung and the oral cavity, led to the identification of 10 cell lines with EMSY amplification and 18 without. EMSY amplification was shown to correlate with EMSY mRNA levels, although not all cell lines harbouring EMSY amplification displayed EMSY mRNA or protein over-expression. RNA interference-mediated silencing of EMSY did not lead to a reduction in cell viability in tumour models harbouring EMSY amplification. Cell lines with and without EMSY amplification displayed a similar ability to elicit RAD51 foci in response to DNA damaging agents, and similar sensitivity to cisplatin and olaparib. Taken together, this suggests that EMSY is unlikely to be a driver of the 11q13-q14 amplicon and does not have a dominant role in modulating the response to agents targeting cells with defective homologous recombination.

  11. Mining functional relationships in feature subspaces from gene expression profiles and drug activity profiles.

    PubMed

    Bao, Lei; Guo, Tao; Sun, Zhirong

    2002-04-10

    In an effort to determine putative functional relationships between gene expression patterns and drug activity patterns of 60 human cancer cell lines, a novel method was developed to discover local associations within cell line subsets. The association of drug-gene pairs is an explorative way of discovering gene markers that predict clinical tumor sensitivity to therapy. Nine drug-gene networks were discovered, as well as dozens of gene-gene and drug-drug networks. Three drug-gene networks with well studied members were discussed and the literature shows that hypothetical functional relationships exist. Therefore, this method enables the gathering of new information beyond global associations.

  12. 18 CFR 3b.201 - Content of records.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... required to be accomplished by statute or by executive order of the President. Pursuant to § 3b.3(a)(4) of..., freedom of speech and of the press, and freedom of assembly and petition. In determining whether or not...

  13. 18 CFR 3b.201 - Content of records.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... required to be accomplished by statute or by executive order of the President. Pursuant to § 3b.3(a)(4) of..., freedom of speech and of the press, and freedom of assembly and petition. In determining whether or not...

  14. 18 CFR 3b.201 - Content of records.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... required to be accomplished by statute or by executive order of the President. Pursuant to § 3b.3(a)(4) of..., freedom of speech and of the press, and freedom of assembly and petition. In determining whether or not...

  15. 18 CFR 3b.201 - Content of records.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... required to be accomplished by statute or by executive order of the President. Pursuant to § 3b.3(a)(4) of..., freedom of speech and of the press, and freedom of assembly and petition. In determining whether or not...

  16. Ascribing Functions to Genes: Journey Towards Genetic Improvement of Rice Via Functional Genomics.

    PubMed

    Mustafiz, Ananda; Kumari, Sumita; Karan, Ratna

    2016-06-01

    Rice, one of the most important cereal crops for mankind, feeds more than half the world population. Rice has been heralded as a model cereal owing to its small genome size, amenability to easy transformation, high synteny to other cereal crops and availability of complete genome sequence. Moreover, sequence wealth in rice is getting more refined and precise due to resequencing efforts. This humungous resource of sequence data has confronted research fraternity with a herculean challenge as well as an excellent opportunity to functionally validate expressed as well as regulatory portions of the genome. This will not only help us in understanding the genetic basis of plant architecture and physiology but would also steer us towards developing improved cultivars. No single technique can achieve such a mammoth task. Functional genomics through its diverse tools viz. loss and gain of function mutants, multifarious omics strategies like transcriptomics, proteomics, metabolomics and phenomics provide us with the necessary handle. A paradigm shift in technological advances in functional genomics strategies has been instrumental in generating considerable amount of information w.r.t functionality of rice genome. We now have several databases and online resources for functionally validated genes but despite that we are far from reaching the desired milestone of functionally characterizing each and every rice gene. There is an urgent need for a common platform, for information already available in rice, and collaborative efforts between researchers in a concerted manner as well as healthy public-private partnership, for genetic improvement of rice crop better able to handle the pressures of climate change and exponentially increasing population. PMID:27252584

  17. Ascribing Functions to Genes: Journey Towards Genetic Improvement of Rice Via Functional Genomics.

    PubMed

    Mustafiz, Ananda; Kumari, Sumita; Karan, Ratna

    2016-06-01

    Rice, one of the most important cereal crops for mankind, feeds more than half the world population. Rice has been heralded as a model cereal owing to its small genome size, amenability to easy transformation, high synteny to other cereal crops and availability of complete genome sequence. Moreover, sequence wealth in rice is getting more refined and precise due to resequencing efforts. This humungous resource of sequence data has confronted research fraternity with a herculean challenge as well as an excellent opportunity to functionally validate expressed as well as regulatory portions of the genome. This will not only help us in understanding the genetic basis of plant architecture and physiology but would also steer us towards developing improved cultivars. No single technique can achieve such a mammoth task. Functional genomics through its diverse tools viz. loss and gain of function mutants, multifarious omics strategies like transcriptomics, proteomics, metabolomics and phenomics provide us with the necessary handle. A paradigm shift in technological advances in functional genomics strategies has been instrumental in generating considerable amount of information w.r.t functionality of rice genome. We now have several databases and online resources for functionally validated genes but despite that we are far from reaching the desired milestone of functionally characterizing each and every rice gene. There is an urgent need for a common platform, for information already available in rice, and collaborative efforts between researchers in a concerted manner as well as healthy public-private partnership, for genetic improvement of rice crop better able to handle the pressures of climate change and exponentially increasing population.

  18. Association of tissue lineage and gene expression: conservatively and differentially expressed genes define common and special functions of tissues

    PubMed Central

    2010-01-01

    Background Embryogenesis is the process by which the embryo is formed, develops, and establishes developmental hierarchies of tissues. The recent advance in microarray technology made it possible to investigate the tissue specific patterns of gene expression and their relationship with tissue lineages. This study is focused on how tissue specific functions, tissue lineage, and cell differentiation are correlated, which is essential to understand embryonic development and organism complexity. Results We performed individual gene and gene set based analysis on multiple tissue expression data, in association with the classic topology of mammalian fate maps of embryogenesis. For each sub-group of tissues on the fate map, conservatively, differentially and correlatively expressed genes or gene sets were identified. Tissue distance was found to correlate with gene expression divergence. Tissues of the ectoderm or mesoderm origins from the same segments on the fate map shared more similar expression pattern than those from different origins. Conservatively expressed genes or gene sets define common functions in a tissue group and are related to tissue specific diseases, which is supported by results from Gene Ontology and KEGG pathway analysis. Gene expression divergence is larger in certain human tissues than in the mouse homologous tissues. Conclusion The results from tissue lineage and gene expression analysis indicate that common function features of neighbor tissue groups were defined by the conservatively expressed genes and were related to tissue specific diseases, and differentially expressed genes contribute to the functional divergence of tissues. The difference of gene expression divergence in human and mouse homologous tissues reflected the organism complexity, i.e. distinct neural development levels and different body sizes. PMID:21172044

  19. Gene mining in halophytes: functional identification of stress tolerance genes in Lepidium crassifolium.

    PubMed

    Rigó, Gábor; Valkai, Ildikó; Faragó, Dóra; Kiss, Edina; Van Houdt, Sara; Van de Steene, Nancy; Hannah, Matthew A; Szabados, László

    2016-09-01

    Extremophile plants are valuable sources of genes conferring tolerance traits, which can be explored to improve stress tolerance of crops. Lepidium crassifolium is a halophytic relative of the model plant Arabidopsis thaliana, and displays tolerance to salt, osmotic and oxidative stresses. We have employed the modified Conditional cDNA Overexpression System to transfer a cDNA library from L. crassifolium to the glycophyte A. thaliana. By screening for salt, osmotic and oxidative stress tolerance through in vitro growth assays and non-destructive chlorophyll fluorescence imaging, 20 Arabidopsis lines were identified with superior performance under restrictive conditions. Several cDNA inserts were cloned and confirmed to be responsible for the enhanced tolerance by analysing independent transgenic lines. Examples include full-length cDNAs encoding proteins with high homologies to GDSL-lipase/esterase or acyl CoA-binding protein or proteins without known function, which could confer tolerance to one or several stress conditions. Our results confirm that random gene transfer from stress tolerant to sensitive plant species is a valuable tool to discover novel genes with potential for biotechnological applications. PMID:27343166

  20. The clustering of functionally related genes contributes to CNV-mediated disease

    PubMed Central

    Andrews, Tallulah; Honti, Frantisek; Pfundt, Rolph; de Leeuw, Nicole; Hehir-Kwa, Jayne; Vulto-van Silfhout, Anneke; de Vries, Bert; Webber, Caleb

    2015-01-01

    Clusters of functionally related genes can be disrupted by a single copy number variant (CNV). We demonstrate that the simultaneous disruption of multiple functionally related genes is a frequent and significant characteristic of de novo CNVs in patients with developmental disorders (P = 1 × 10−3). Using three different functional networks, we identified unexpectedly large numbers of functionally related genes within de novo CNVs from two large independent cohorts of individuals with developmental disorders. The presence of multiple functionally related genes was a significant predictor of a CNV's pathogenicity when compared to CNVs from apparently healthy individuals and a better predictor than the presence of known disease or haploinsufficient genes for larger CNVs. The functionally related genes found in the de novo CNVs belonged to 70% of all clusters of functionally related genes found across the genome. De novo CNVs were more likely to affect functional clusters and affect them to a greater extent than benign CNVs (P = 6 × 10−4). Furthermore, such clusters of functionally related genes are phenotypically informative: Different patients possessing CNVs that affect the same cluster of functionally related genes exhibit more similar phenotypes than expected (P < 0.05). The spanning of multiple functionally similar genes by single CNVs contributes substantially to how these variants exert their pathogenic effects. PMID:25887030

  1. Chromosome substitution strains: gene discovery functional analysis and systems studies

    PubMed Central

    Nadeau, Joseph H.; Forejt, Jiri; Takada, Toyoyuki; Shiroishi, Toshihiko

    2014-01-01

    Laboratory mice are valuable in biomedical research in part because of the extraordinary diversity of genetic resources that are available for studies of complex genetic traits and as models for human biology and disease. Chromosome substitution strains (CSSs) are important in this resource portfolio because of their demonstrated use for gene discovery, genetic and epigenetic studies, functional characterizations, and systems analysis. CSSs are made by replacing a single chromosome in a host strain with the corresponding chromosome from a donor strain. A complete CSS panel involves a total of 22 engineered inbred strains, one for each of the 19 autosomes, one each for the X and Y chromosomes, and one for mitochondria. A genome survey simply involves comparing each phenotype for each of the CSSs with the phenotypes of the host strain. The CSS panels that are available for laboratory mice have been used to dissect a remarkable variety of phenotypes and to characterize an impressive array of disease models. These surveys have revealed considerable phenotypic diversity even among closely related progenitor strains, evidence for strong epistasis and for heritable epigenetic changes. Perhaps most importantly, and presumably because of their unique genetic constitution, CSSs, and congenic strains derived from them, the genetic variants underlying quantitative trait loci (QTLs) are readily identified and functionally characterized. Together these studies show that CSSs are important resource for laboratory mice. PMID:22961226

  2. Functional Gene Composition, Diversity and Redundancy in Microbial Stream Biofilm Communities

    PubMed Central

    Dopheide, Andrew; Lear, Gavin; He, Zhili; Zhou, Jizhong; Lewis, Gillian D.

    2015-01-01

    We surveyed the functional gene composition and diversity of microbial biofilm communities in 18 New Zealand streams affected by different types of catchment land use, using a comprehensive functional gene array, GeoChip 3.0. A total of 5,371 nutrient cycling and energy metabolism genes within 65 gene families were detected among all samples (342 to 2,666 genes per stream). Carbon cycling genes were most common, followed by nitrogen cycling genes, with smaller proportions of sulphur, phosphorus cycling and energy metabolism genes. Samples from urban and native forest streams had the most similar functional gene composition, while samples from exotic forest and rural streams exhibited the most variation. There were significant differences between nitrogen and sulphur cycling genes detected in native forest and urban samples compared to exotic forest and rural samples, attributed to contrasting proportions of nitrogen fixation, denitrification, and sulphur reduction genes. Most genes were detected only in one or a few samples, with only a small minority occurring in all samples. Nonetheless, 42 of 65 gene families occurred in every sample and overall proportions of gene families were similar among samples from contrasting streams. This suggests the existence of functional gene redundancy among different stream biofilm communities despite contrasting taxonomic composition. PMID:25849814

  3. PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees.

    PubMed

    Mi, Huaiyu; Muruganujan, Anushya; Thomas, Paul D

    2013-01-01

    The data and tools in PANTHER-a comprehensive, curated database of protein families, trees, subfamilies and functions available at http://pantherdb.org-have undergone continual, extensive improvement for over a decade. Here, we describe the current PANTHER process as a whole, as well as the website tools for analysis of user-uploaded data. The main goals of PANTHER remain essentially unchanged: the accurate inference (and practical application) of gene and protein function over large sequence databases, using phylogenetic trees to extrapolate from the relatively sparse experimental information from a few model organisms. Yet the focus of PANTHER has continually shifted toward more accurate and detailed representations of evolutionary events in gene family histories. The trees are now designed to represent gene family evolution, including inference of evolutionary events, such as speciation and gene duplication. Subfamilies are still curated and used to define HMMs, but gene ontology functional annotations can now be made at any node in the tree, and are designed to represent gain and loss of function by ancestral genes during evolution. Finally, PANTHER now includes stable database identifiers for inferred ancestral genes, which are used to associate inferred gene attributes with particular genes in the common ancestral genomes of extant species.

  4. Functional cloning and characterization of antibiotic resistance genes from the chicken gut microbiome.

    PubMed

    Zhou, Wei; Wang, Ying; Lin, Jun

    2012-04-01

    Culture-independent sampling in conjunction with a functional cloning approach identified diverse antibiotic resistance genes for different classes of antibiotics in gut microbiomes from both conventionally raised and free-range chickens. Many of the genes are phylogenetically distant from known resistance genes. Two unique genes that conferred ampicillin and spectinomycin resistance were also functional in Campylobacter, a distant relative of the Escherichia coli host used to generate the genomic libraries.

  5. Evolution and Functional Classification of Vertebrate Gene Deserts

    SciTech Connect

    Ovcharenko, I; Loots, G; Nobrega, M; Hardison, R; Miller, W; Stubbs, L

    2004-07-14

    Gene deserts, long stretches of DNA sequence devoid of protein coding genes, span approximately one quarter of the human genome. Through human-chicken genome comparisons we were able to characterized one third of human gene deserts as evolutionarily stable - they are highly conserved in vertebrates, resist chromosomal rearrangements, and contain multiple conserved non-coding elements physically linked to their neighboring genes. A linear relationship was observed between human and chicken orthologous stable gene deserts, where the human deserts appear to have expanded homogeneously by a uniform accumulation of repetitive elements. Stable gene deserts are associated with key vertebrate genes that construct the framework of vertebrate development; many of which encode transcription factors. We show that the regulatory machinery governing genes associated with stable gene deserts operates differently from other regions in the human genome and relies heavily on distant regulatory elements. The regulation guided by these elements is independent of the distance between the gene and its distant regulatory element, or the distance between two distant regulatory cassettes. The location of gene deserts and their associated genes in the genome is independent of chromosomal length or content presenting these regions as well-bounded regions evolving separately from the rest of the genome.

  6. Functionalized nanoparticles for AMF-induced gene and drug delivery

    NASA Astrophysics Data System (ADS)

    Biswas, Souvik

    The properties and broad applications of nano-magnetic colloids have generated much interest in recent years. Specially, Fe3O4 nanoparticles have attracted a great deal of attention since their magnetic properties can be used for hyperthermia treatment or drug targeting. For example, enhanced levels of intracellular gene delivery can be achieved using Fe3O4 nano-vectors in the presence of an external magnetic field, a process known as 'magnetofection'. The low cytotoxicity, tunable particle size, ease of surface functionalization, and ability to generate thermal energy using an external alternating magnetic field (AMF) are properties have propelled Fe3O4 research to the forefront of nanoparticle research. The strategy of nanoparticle-mediated, AMF-induced heat generation has been used to effect intracellular hyperthermia. One application of this 'magnetic hyperthermia' is heat activated local delivery of a therapeutic effector (e.g.; drug or polynucleotide). This thesis describes the development of a magnetic nano-vector for AMF-induced, heat-activated pDNA and small molecule delivery. The use of heat-inducible vectors, such as heat shock protein ( hsp) genes, is a promising mode of gene therapy that would restrict gene expression to a local region by focusing a heat stimulus only at a target region. We thus aimed to design an Fe3O4 nanoparticle-mediated gene transfer vehicle for AMF-induced localized gene expression. We opted to use 'click' oximation techniques to assemble the magnetic gene transfer vector. Chapter 2 describes the synthesis, characterization, and transfection studies of the oxime ether lipid-based nano-magnetic vectors MLP and dMLP. The synthesis and characterization of a novel series of quaternary ammonium aminooxy reagents (2.1--2.4) is described. These cationic aminooxy compounds were loaded onto nanoparticles for ligation with carbonyl groups and also to impart a net positive charge on the nanoparticle surface. Our studies indicated that the

  7. Spatial patterns of denitrification and its functional genes in peatlands

    NASA Astrophysics Data System (ADS)

    Mander, Ülo; Ligi, Teele; Truu, Marika; Truu, Jaak; Pärn, Jaan; Egorov, Sergey; Järveoja, Järvi; Vohla, Christina; Maddison, Martin; Soosaar, Kaido; Oopkaup, Kristjan; Teemusk, Alar; Preem, Jens-Konrad; Uuemaa, Evelyn

    2014-05-01

    This study is aimed to analyse relationships between the environmental factors and the spatial distribution of the main functional genes nirS, nirK, and nosZ regulating the denitrification process. Variations in hydrological regime, soil temperature and peat quality have been taken into the consideration at both local and global scale. Measurements of greenhouse gas (GHG) emissions using static chambers, groundwater analysis, gas and peat sampling for further laboratory analysis has been conducted in various peatlands in Iceland (two study areas, 2011), Transylvania/Romania (2012), Santa Catarina/Brazil (2012), Quebec/Canada (2012), Bashkortostan/Russian Federation (two study areas, 2012), Sichuan/China (2012), Estonia (two study areas, 2012), Florida/USA (2013, Sologne/France (2013), Jugra in West Siberia/Russia (2013), Uganda (2013), French Guyana (two study areas, 2013), Tasmania (two study areas, 2014) and New Zealand (two study areas, 2014). In each study area at least 2 transects along the groundwater depth gradient, one preferably in undisturbed, another one in drained area, and at least 3 rows of sampling sites (3-5 replicate chambers and 1 piezometer and soil sampling plot in each) in both has been established for studies. In each transect GHG emission was measured during 2-3 days in at least 5 sessions. In addition, organic sediments from the artificial riverine wetlands in Ohio/USA in 2009 and relevant gas emission studies have been used in the analyses. In the laboratories of Estonian University of Life Sciences and the University of Tartu, the peat chemical quality (pH, N, P, C, NH4, NO3) and N2O, CO2, and CH4 concentration in gas samples (50mL glass bottles and exetainers) were analysed. The peat samples for further pyrosequencing and qPCR analyses are stored in fridge by -22oC. This presentation will consider the variation of GHG emissions and hydrological conditions in the study sites. In addition, several selected biophysical factors will be taken

  8. Validation of FY-3B MWRI Rain Rate over China

    NASA Astrophysics Data System (ADS)

    Xu, B.; Jiang, L.; Shi, C.; Xie, P.; You, R.

    2012-12-01

    As part of the collaboration between China Meteorological Administration (CMA) National Meteorological Information Centre (NMIC) and NOAA Climate Prediction Center (CPC), a new system is being developed to construct half hourly satellite precipitation estimate on a 0.05olat/lon grid over China by combining NOAA series, DMSP series, and CMA FY-3B Polar Microwave rain rate with TMI rain rate. Foundation to the development of the PMW rain rate combining algorithm is the validation of those passive microwave (PMW) - based rain rate retrievals. Since FY-3B is new and not included as inputs to CMORPH, and other established high-resolution satellite precipitation products, we focus our work here on the validation and error quantification of the FY-3B PMW rain rate retrievals. This is done by comparisons with the combined PMW product (MWCOMB) of NOAA/CPC and against a gauge-based analysis of hourly precipitation over China derived from gauge reports of dense station networks. Overall, the monthly mean rain rate distribution of FY-3B agrees very well with MWCOMB except for a little under-estimate over ocean. In the latitudinal profiles, we can see a very close agreement between the FY-3B retrievals and the MWCOMB over land, but there is an obvious general under estimates over ocean. Pattern correlation between FY-3B and MWCOMB is relatively high over both land and ocean. From more works on PDF check of 30-min precipitation, over a 0.25 degree grid, we can clearly see FY3B presents lower PDF for weak precipitation, especially over ocean and reasonable agreements in PDF over land. A gauge-based analysis of hourly precipitation derived from over 30000 station reports is used to validate FY-3B PMW rain rate. In order to compare, 7 PMW rain rate of different satellite, including TMI, NOAA-18, NOAA-19, Metop-A, DMSP-S16, DMSP-S17, DMSP-S18, are also compared with the gauge-based analysis. FY-3B's bias is a little higher than NOAA-18 over whole China, western China and eastern

  9. Platelet microparticles reprogram macrophage gene expression and function.

    PubMed

    Laffont, Benoit; Corduan, Aurélie; Rousseau, Matthieu; Duchez, Anne-Claire; Lee, Chan Ho C; Boilard, Eric; Provost, Patrick

    2016-01-01

    Platelet microparticles (MPs) represent the most abundant MPs subtype in the circulation, and can mediate intercellular communication through delivery of bioactives molecules, such as cytokines, proteins, lipids and RNAs. Here, we show that platelet MPs can be internalised by primary human macrophages and deliver functional miR-126-3p. The increase in macrophage miR-126-3p levels was not prevented by actinomycin D, suggesting that it was not due to de novo gene transcription. Platelet MPs dose-dependently downregulated expression of four predicted mRNA targets of miR-126-3p, two of which were confirmed also at the protein level. The mRNA downregulatory effects of platelet MPs were abrogated by expression of a neutralising miR-126-3p sponge, implying the involvement of miR-126-3p. Transcriptome-wide, microarray analyses revealed that as many as 66 microRNAs and 653 additional RNAs were significantly and differentially expressed in macrophages upon exposure to platelet MPs. More specifically, platelet MPs induced an upregulation of 34 microRNAs and a concomitant downregulation of 367 RNAs, including mRNAs encoding for cytokines/chemokines CCL4, CSF1 and TNF. These changes were associated with reduced CCL4, CSF1 and TNF cytokine/chemokine release by macrophages, and accompanied by a marked increase in their phagocytic capacity. These findings demonstrate that platelet MPs can modify the transcriptome of macrophages, and reprogram their function towards a phagocytic phenotype. PMID:26333874

  10. DNMT3B7 Expression Promotes Tumor Progression to a More Aggressive Phenotype in Breast Cancer Cells

    PubMed Central

    Brambert, Patrick R.; Kelpsch, Daniel J.; Hameed, Rabia; Desai, Charmi V.; Calafiore, Gianfranco; Godley, Lucy A.; Raimondi, Stacey L.

    2015-01-01

    Epigenetic changes, such as DNA methylation, have been shown to promote breast cancer progression. However, the mechanism by which cancer cells acquire and maintain abnormal DNA methylation is not well understood. We have previously identified an aberrant splice form of a DNA methyltransferase, DNMT3B7, expressed in virtually all cancer cell lines but at very low levels in normal cells. Furthermore, aggressive MDA-MB-231 breast cancer cells have been shown to express increased levels of DNMT3B7 compared to poorly invasive MCF-7 cells, indicating that DNMT3B7 may have a role in promoting a more invasive phenotype. Using data gathered from The Cancer Genome Atlas, we show that DNMT3B7 expression is increased in breast cancer patient tissues compared to normal tissue. To determine the mechanism by which DNMT3B7 was functioning in breast cancer cells, two poorly invasive breast cancer cell lines, MCF-7 and T-47D, were stably transfected with a DNMT3B7 expression construct. Expression of DNMT3B7 led to hypermethylation and down-regulation of E-cadherin, altered localization of β-catenin, as well as increased adhesion turnover, cell proliferation, and anchorage-independent growth. The novel results presented in this study suggest a role for DNMT3B7 in the progression of breast cancer to a more aggressive state and the potential for future development of novel therapeutics. PMID:25607950

  11. Unbiased Functional Clustering of Gene Variants with a Phenotypic-Linkage Network

    PubMed Central

    Honti, Frantisek; Meader, Stephen; Webber, Caleb

    2014-01-01

    Groupwise functional analysis of gene variants is becoming standard in next-generation sequencing studies. As the function of many genes is unknown and their classification to pathways is scant, functional associations between genes are often inferred from large-scale omics data. Such data types—including protein–protein interactions and gene co-expression networks—are used to examine the interrelations of the implicated genes. Statistical significance is assessed by comparing the interconnectedness of the mutated genes with that of random gene sets. However, interconnectedness can be affected by confounding bias, potentially resulting in false positive findings. We show that genes implicated through de novo sequence variants are biased in their coding-sequence length and longer genes tend to cluster together, which leads to exaggerated p-values in functional studies; we present here an integrative method that addresses these bias. To discern molecular pathways relevant to complex disease, we have inferred functional associations between human genes from diverse data types and assessed them with a novel phenotype-based method. Examining the functional association between de novo gene variants, we control for the heretofore unexplored confounding bias in coding-sequence length. We test different data types and networks and find that the disease-associated genes cluster more significantly in an integrated phenotypic-linkage network than in other gene networks. We present a tool of superior power to identify functional associations among genes mutated in the same disease even after accounting for significant sequencing study bias and demonstrate the suitability of this method to functionally cluster variant genes underlying polygenic disorders. PMID:25166029

  12. Fingersomatotopy in area 3b: an fMRI-study

    PubMed Central

    van Westen, Danielle; Fransson, Peter; Olsrud, Johan; Rosén, Birgitta; Lundborg, Göran; Larsson, Elna-Marie

    2004-01-01

    Background The primary sensory cortex (S1) in the postcentral gyrus is comprised of four areas that each contain a body map, where the representation of the hand is located with the thumb most laterally, anteriorly and inferiorly and the little finger most medially, posteriorly and superiorly. Previous studies on somatotopy using functional MRI have either used low field strength, have included a small number of subjects or failed to attribute activations to any area within S1. In the present study we included twenty subjects, who were investigated at 3 Tesla (T). We focused specifically on Brodmann area 3b, which neurons have discrete receptive fields with a potentially more clearcut somatotopic organisation. The spatial distribution for all fingers' peak activation was determined and group as well as individual analysis was performed. Results Activation maps from 18 subjects were of adequate quality; in 17 subjects activations were present for all fingers and these data were further analysed. In the group analysis the thumb was located most laterally, anteriorly and inferiorly with the other fingers sequentially positioned more medially, posteriorly and superiorly. At the individual level this somatotopic relationship was present for the thumb and little finger, with a higher variability for the fingers in between. The Euclidian distance between the first and fifth finger was 17.2 mm, between the first and second finger 10.6 mm and between the remaining fingers on average 6.3 mm. Conclusion Results from the group analysis, that is both the location of the fingers and the Euclidian distances, are well comparable to results from previous studies using a wide range of modalities. On the subject level the spatial localisation of the fingers showed a less stringent somatotopic order so that the location of a finger in a single subject cannot be predicted from the group result. PMID:15320953

  13. Integrative analysis of cancer genes in a functional interactome.

    PubMed

    Ung, Matthew H; Liu, Chun-Chi; Cheng, Chao

    2016-01-01

    The post-genomic era has resulted in the accumulation of high-throughput cancer data from a vast array of genomic technologies including next-generation sequencing and microarray. As such, the large amounts of germline variant and somatic mutation data that have been generated from GWAS and sequencing projects, respectively, show great promise in providing a systems-level view of these genetic aberrations. In this study, we analyze publicly available GWAS, somatic mutation, and drug target data derived from large databanks using a network-based approach that incorporates directed edge information under a randomized network hypothesis testing procedure. We show that these three classes of disease-associated nodes exhibit non-random topological characteristics in the context of a functional interactome. Specifically, we show that drug targets tend to lie upstream of somatic mutations and disease susceptibility germline variants. In addition, we introduce a new approach to measuring hierarchy between drug targets, somatic mutants, and disease susceptibility genes by utilizing directionality and path length information. Overall, our results provide new insight into the intrinsic relationships between these node classes that broaden our understanding of cancer. In addition, our results align with current knowledge on the therapeutic actionability of GWAS and somatic mutant nodes, while demonstrating relationships between node classes from a global network perspective. PMID:27356765

  14. Functional Expression of an Orchid Fragrance Gene in Lactococcus lactis

    PubMed Central

    Song, Adelene Ai Lian; Abdullah, Janna O.; Abdullah, Mohd Puad; Shafee, Norazizah; Rahim, Raha A.

    2012-01-01

    Vanda Mimi Palmer (VMP), an orchid hybrid of Vanda tesselata and Vanda Tan Chay Yan is a highly scented tropical orchid which blooms all year round. Previous studies revealed that VMP produces a variety of isoprenoid volatiles during daylight. Isoprenoids are well known to contribute significantly to the scent of most fragrant plants. They are a large group of secondary metabolites which may possess valuable characteristics such as flavor, fragrance and toxicity and are produced via two pathways, the mevalonate (MVA) pathway or/and the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway. In this study, a sesquiterpene synthase gene denoted VMPSTS, previously isolated from a floral cDNA library of VMP was cloned and expressed in Lactococcus lactis to characterize the functionality of the protein. L. lactis, a food grade bacterium which utilizes the mevalonate pathway for isoprenoid production was found to be a suitable host for the characterization of plant terpene synthases. Through recombinant expression of VMPSTS, it was revealed that VMPSTS produced multiple sesquiterpenes and germacrene D dominates its profile. PMID:22408409

  15. Integrative analysis of cancer genes in a functional interactome

    PubMed Central

    Ung, Matthew H.; Liu, Chun-Chi; Cheng, Chao

    2016-01-01

    The post-genomic era has resulted in the accumulation of high-throughput cancer data from a vast array of genomic technologies including next-generation sequencing and microarray. As such, the large amounts of germline variant and somatic mutation data that have been generated from GWAS and sequencing projects, respectively, show great promise in providing a systems-level view of these genetic aberrations. In this study, we analyze publicly available GWAS, somatic mutation, and drug target data derived from large databanks using a network-based approach that incorporates directed edge information under a randomized network hypothesis testing procedure. We show that these three classes of disease-associated nodes exhibit non-random topological characteristics in the context of a functional interactome. Specifically, we show that drug targets tend to lie upstream of somatic mutations and disease susceptibility germline variants. In addition, we introduce a new approach to measuring hierarchy between drug targets, somatic mutants, and disease susceptibility genes by utilizing directionality and path length information. Overall, our results provide new insight into the intrinsic relationships between these node classes that broaden our understanding of cancer. In addition, our results align with current knowledge on the therapeutic actionability of GWAS and somatic mutant nodes, while demonstrating relationships between node classes from a global network perspective. PMID:27356765

  16. Crystal structure of inactive form of Rab3B

    SciTech Connect

    Zhang, Wei; Shen, Yang; Jiao, Ronghong; Liu, Yanli; Deng, Lingfu; Qi, Chao

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer This is the first structural information of human Rab3B. Black-Right-Pointing-Pointer To provides a structural basis for the GDP/GTP switch in controlling the activity of Rab3. Black-Right-Pointing-Pointer The charge distribution of Rab3B indicates its unique roles in vesicular trafficking. -- Abstract: Rab proteins are the largest family of ras-related GTPases in eukaryotic cells. They act as directional molecular switches at membrane trafficking, including vesicle budding, cargo sorting, transport, tethering, and fusion. Here, we generated and crystallized the Rab3B:GDP complex. The structure of the complex was solved to 1.9 A resolution and the structural base comparison with other Rab3 members provides a structural basis for the GDP/GTP switch in controlling the activity of small GTPase. The comparison of charge distribution among the members of Rab3 also indicates their different roles in vesicular trafficking.

  17. Annotating the Function of the Human Genome with Gene Ontology and Disease Ontology.

    PubMed

    Hu, Yang; Zhou, Wenyang; Ren, Jun; Dong, Lixiang; Wang, Yadong; Jin, Shuilin; Cheng, Liang

    2016-01-01

    Increasing evidences indicated that function annotation of human genome in molecular level and phenotype level is very important for systematic analysis of genes. In this study, we presented a framework named Gene2Function to annotate Gene Reference into Functions (GeneRIFs), in which each functional description of GeneRIFs could be annotated by a text mining tool Open Biomedical Annotator (OBA), and each Entrez gene could be mapped to Human Genome Organisation Gene Nomenclature Committee (HGNC) gene symbol. After annotating all the records about human genes of GeneRIFs, 288,869 associations between 13,148 mRNAs and 7,182 terms, 9,496 associations between 948 microRNAs and 533 terms, and 901 associations between 139 long noncoding RNAs (lncRNAs) and 297 terms were obtained as a comprehensive annotation resource of human genome. High consistency of term frequency of individual gene (Pearson correlation = 0.6401, p = 2.2e - 16) and gene frequency of individual term (Pearson correlation = 0.1298, p = 3.686e - 14) in GeneRIFs and GOA shows our annotation resource is very reliable. PMID:27635398

  18. Annotating the Function of the Human Genome with Gene Ontology and Disease Ontology

    PubMed Central

    Hu, Yang; Zhou, Wenyang; Ren, Jun; Dong, Lixiang

    2016-01-01

    Increasing evidences indicated that function annotation of human genome in molecular level and phenotype level is very important for systematic analysis of genes. In this study, we presented a framework named Gene2Function to annotate Gene Reference into Functions (GeneRIFs), in which each functional description of GeneRIFs could be annotated by a text mining tool Open Biomedical Annotator (OBA), and each Entrez gene could be mapped to Human Genome Organisation Gene Nomenclature Committee (HGNC) gene symbol. After annotating all the records about human genes of GeneRIFs, 288,869 associations between 13,148 mRNAs and 7,182 terms, 9,496 associations between 948 microRNAs and 533 terms, and 901 associations between 139 long noncoding RNAs (lncRNAs) and 297 terms were obtained as a comprehensive annotation resource of human genome. High consistency of term frequency of individual gene (Pearson correlation = 0.6401, p = 2.2e − 16) and gene frequency of individual term (Pearson correlation = 0.1298, p = 3.686e − 14) in GeneRIFs and GOA shows our annotation resource is very reliable. PMID:27635398

  19. Annotating the Function of the Human Genome with Gene Ontology and Disease Ontology

    PubMed Central

    Hu, Yang; Zhou, Wenyang; Ren, Jun; Dong, Lixiang

    2016-01-01

    Increasing evidences indicated that function annotation of human genome in molecular level and phenotype level is very important for systematic analysis of genes. In this study, we presented a framework named Gene2Function to annotate Gene Reference into Functions (GeneRIFs), in which each functional description of GeneRIFs could be annotated by a text mining tool Open Biomedical Annotator (OBA), and each Entrez gene could be mapped to Human Genome Organisation Gene Nomenclature Committee (HGNC) gene symbol. After annotating all the records about human genes of GeneRIFs, 288,869 associations between 13,148 mRNAs and 7,182 terms, 9,496 associations between 948 microRNAs and 533 terms, and 901 associations between 139 long noncoding RNAs (lncRNAs) and 297 terms were obtained as a comprehensive annotation resource of human genome. High consistency of term frequency of individual gene (Pearson correlation = 0.6401, p = 2.2e − 16) and gene frequency of individual term (Pearson correlation = 0.1298, p = 3.686e − 14) in GeneRIFs and GOA shows our annotation resource is very reliable.

  20. Negative autoregulation of BMP dependent transcription by SIN3B splicing reveals a role for RBM39

    PubMed Central

    Faherty, Noel; Benson, Matthew; Sharma, Eshita; Lee, Angela; Howarth, Alison; Lockstone, Helen; Ebner, Daniel; Bhattacharya, Shoumo

    2016-01-01

    BMP signalling is negatively autoregulated by several genes including SMAD6, Noggin and Gremlin, and autoregulators are possible targets for enhancing BMP signalling in disorders such as fibrosis and pulmonary hypertension. To identify novel negative regulators of BMP signalling, we used siRNA screening in mouse C2C12 cells with a BMP-responsive luciferase reporter. Knockdown of several splicing factors increased BMP4-dependent transcription and target gene expression. Knockdown of RBM39 produced the greatest enhancement in BMP activity. Transcriptome-wide RNA sequencing identified a change in Sin3b exon usage after RBM39 knockdown. SIN3B targets histone deacetylases to chromatin to repress transcription. In mouse, Sin3b produces long and short isoforms, with the short isoform lacking the ability to recruit HDACs. BMP4 induced a shift in SIN3B expression to the long isoform, and this change in isoform ratio was prevented by RBM39 knockdown. Knockdown of long isoform SIN3B enhanced BMP4-dependent transcription, whereas knockdown of the short isoform did not. We propose that BMP4-dependent transcription is negatively autoregulated in part by SIN3B alternative splicing, and that RBM39 plays a role in this process. PMID:27324164

  1. Detector production for the R3B Si-tracker

    NASA Astrophysics Data System (ADS)

    Borri, M.; Lemmon, R.; Thornhill, J.; Bate, R.; Chartier, M.; Clague, N.; Herzberg, R.-D.; Labiche, M.; Lindsay, S.; Nolan, P.; Pearce, F.; Powell, W.; Wells, D.

    2016-11-01

    R3B is a fixed target experiment which will study reactions with relativistic radioactive beams at FAIR. Its Si-tracker will surround the target volume and it will detect light charged-particles like protons. The detector technology in use consists of double-sided silicon strip sensors wire bonded to the custom made R3B-ASIC. The tracker allows for a maximum of two outer layers and one inner layer. This paper reports on the production of detectors necessary to build the minimum tracking configuration: one inner layer and one outer layer.

  2. Functional Inducible Nitric Oxide Synthase Gene Variants Associate With Hypertension

    PubMed Central

    Nikkari, Seppo T.; Määttä, Kirsi M.; Kunnas, Tarja A.

    2015-01-01

    Abstract Increased inducible nitric oxide synthase (iNOS) activity and expression has been associated with hypertension, but less is known whether the 2 known functional polymorphic sites in the iNOS gene (g.–1026 C/A (rs2779249), g.2087 G/A (rs2297518)) affect susceptibility to hypertension. The objective of this study was to investigate the association between the genetic variants of iNOS and diagnosed hypertension in a Finnish cohort. This study included 320 hypertensive cases and 439 healthy controls. All participants were 50-year-old men and women and the data were collected from the Tampere adult population cardiovascular risk study (TAMRISK). DNA was extracted from buccal swabs and iNOS single nucleotide polymorphisms (SNPs) were analyzed using KASP genotyping PCR. Data analysis was done by logistic regression. At the age of 50 years, the SNP rs2779249 (C/A) associated significantly with hypertension (P = 0.009); specifically, subjects carrying the A-allele had higher risk of hypertension compared to those carrying the CC genotype (OR = 1.47; CI = 1.08–2.01; P = 0.015). In addition, a 15-year follow-up period (35, 40, and 45 years) of the same individuals showed that carriers of the A-allele had more often hypertension in all of the studied age-groups. The highest risk for developing hypertension was obtained among 35-year-old subjects (odds ratio [OR] 3.83; confidence interval [CI] = 1.20–12.27; P = 0.024). Those carrying variant A had also significantly higher readings of both systolic (P = 0.047) and diastolic (P = 0.048) blood pressure during the follow-up. No significant associations between rs2297518 (G/A) variants alone and hypertension were found. However, haplotype analysis of rs2779249 and rs2297518 revealed that individuals having haplotype H3 which combines both A alleles (CA–GA, 19.7% of individuals) was more commonly found in the hypertensive group than in the normotensive group (OR = 2.01; CI = 1

  3. Eukaryotic genes of archaebacterial origin are more important than the more numerous eubacterial genes, irrespective of function.

    PubMed

    Cotton, James A; McInerney, James O

    2010-10-01

    The traditional tree of life shows eukaryotes as a distinct lineage of living things, but many studies have suggested that the first eukaryotic cells were chimeric, descended from both Eubacteria (through the mitochondrion) and Archaebacteria. Eukaryote nuclei thus contain genes of both eubacterial and archaebacterial origins, and these genes have different functions within eukaryotic cells. Here we report that archaebacterium-derived genes are significantly more likely to be essential to yeast viability, are more highly expressed, and are significantly more highly connected and more central in the yeast protein interaction network. These findings hold irrespective of whether the genes have an informational or operational function, so that many features of eukaryotic genes with prokaryotic homologs can be explained by their origin, rather than their function. Taken together, our results show that genes of archaebacterial origin are in some senses more important to yeast metabolism than genes of eubacterial origin. This importance reflects these genes' origin as the ancestral nuclear component of the eukaryotic genome. PMID:20852068

  4. Genes, environment and gene expression in colon tissue: a pathway approach to determining functionality.

    PubMed

    Slattery, Martha L; Pellatt, Daniel F; Wolff, Roger K; Lundgreen, Abbie

    2016-01-01

    Genetic and environmental factors have been shown to work together to alter cancer risk. In this study we evaluate previously identified gene and lifestyle interactions in a candidate pathway that were associated with colon cancer risk to see if these interactions altered gene expression. We analyzed non-tumor RNA-seq data from 144 colon cancer patients who had genotype, recent cigarette smoking, diet, body mass index (BMI), and recent aspirin/non-steroidal anti-inflammatory use data. Using a false discovery rate of 0.1, we evaluated differential gene expression between high and low levels of lifestyle exposure and genotypes using DESeq2. Thirteen pathway genes and 17 SNPs within those genes were associated with altered expression of other genes in the pathway. BMI, NSAIDs use and dietary components of the oxidative balance score (OBS) also were associated with altered gene expression. SNPs previously identified as interacting with these lifestyle factors, altered expression of pathway genes. NSAIDs interacted with 10 genes (15 SNPs) within those genes to alter expression of 28 pathway genes; recent cigarette smoking interacted with seven genes (nine SNPs) to alter expression of 27 genes. BMI interacted with FLT1, KDR, SEPN1, TERT, TXNRD2, and VEGFA to alter expression of eight genes. Three genes (five SNPs) interacted with OBS to alter expression of 12 genes. These data provide support for previously identified lifestyle and gene interactions associated with colon cancer in that they altered expression of key pathway genes. The need to consider lifestyle factors in conjunction with genetic factors is illustrated.

  5. Targeting Fungal Genes by Diced siRNAs: A Rapid Tool to Decipher Gene Function in Aspergillus nidulans

    PubMed Central

    Kalleda, Natarajaswamy; Naorem, Aruna; Manchikatla, Rajam V.

    2013-01-01

    Background Gene silencing triggered by chemically synthesized small interfering RNAs (siRNAs) has become a powerful tool for deciphering gene function in many eukaryotes. However, prediction and validation of a single siRNA duplex specific to a target gene is often ineffective. RNA interference (RNAi) with synthetic siRNA suffers from lower silencing efficacy, off-target effects and is cost-intensive, especially for functional genomic studies. With the explosion of fungal genomic information, there is an increasing need to analyze gene function in a rapid manner. Therefore, studies were performed in order to investigate the efficacy of gene silencing induced by RNase III-diced-siRNAs (d-siRNA) in model filamentous fungus, Aspergillus nidulans. Methodology/Principal Findings Stable expression of heterologous reporter gene in A. nidulans eases the examination of a new RNAi-induction route. Hence, we have optimized Agrobacterium tumefaciens-mediated transformation (AMT) of A. nidulans for stable expression of sGFP gene. This study demonstrates that the reporter GFP gene stably introduced into A. nidulans can be effectively silenced by treatment of GFP-d-siRNAs. We have shown the down-regulation of two endogenous genes, AnrasA and AnrasB of A. nidulans by d-siRNAs. We have also elucidated the function of an uncharacterized Ras homolog, rasB gene, which was found to be involved in hyphal growth and development. Further, silencing potency of d-siRNA was higher as compared to synthetic siRNA duplex, targeting AnrasA. Silencing was shown to be sequence-specific, since expression profiles of other closely related Ras family genes in d-siRNA treated AnrasA and AnrasB silenced lines exhibited no change in gene expression. Conclusions/Significance We have developed and applied a fast, specific and efficient gene silencing approach for elucidating gene function in A. nidulans using d-siRNAs. We have also optimized an efficient AMT in A. nidulans, which is useful for stable

  6. Identification of genes needed for regeneration, stem cell function, and tissue homeostasis by systematic gene perturbation in planaria

    PubMed Central

    Reddien, Peter W.; Bermange, Adam L.; Murfitt, Kenneth J.; Jennings, Joya R.; Alvarado, Alejandro Sánchez

    2007-01-01

    Summary Planarians have been a classic model system for the study of regeneration, tissue homeostasis, and stem cell biology for over a century, but have not historically been accessible to extensive genetic manipulation. Here we utilize RNA-mediated genetic interference (RNAi) to introduce large-scale gene inhibition studies to the classic planarian system. 1065 genes were screened. Phenotypes associated with the RNAi of 240 genes identify many specific defects in the process of regeneration and define the major categories of defects planarians display following gene perturbations. We assessed the effects of inhibiting genes with RNAi on tissue homeostasis in intact animals and stem cell (neoblast) proliferation in amputated animals identifying candidate stem cell, regeneration, and homeostasis regulators. Our study demonstrates the great potential of RNAi for the systematic exploration of gene function in understudied organisms and establishes planarians as a powerful model for the molecular genetic study of stem cells, regeneration, and tissue homeostasis. PMID:15866156

  7. Clinical spectrum of 4H leukodystrophy caused by POLR3A and POLR3B mutations

    PubMed Central

    Vanderver, Adeline; van Spaendonk, Rosalina M.L.; Schiffmann, Raphael; Brais, Bernard; Bugiani, Marianna; Sistermans, Erik; Catsman-Berrevoets, Coriene; Kros, Johan M.; Pinto, Pedro Soares; Pohl, Daniela; Tirupathi, Sandya; Strømme, Petter; de Grauw, Ton; Fribourg, Sébastien; Demos, Michelle; Pizzino, Amy; Naidu, Sakkubai; Guerrero, Kether; van der Knaap, Marjo S.; Bernard, Geneviève

    2014-01-01

    Objective: To study the clinical and radiologic spectrum and genotype–phenotype correlation of 4H (hypomyelination, hypodontia, hypogonadotropic hypogonadism) leukodystrophy caused by mutations in POLR3A or POLR3B. Methods: We performed a multinational cross-sectional observational study of the clinical, radiologic, and molecular characteristics of 105 mutation-proven cases. Results: The majority of patients presented before 6 years with gross motor delay or regression. Ten percent had an onset beyond 10 years. The disease course was milder in patients with POLR3B than in patients with POLR3A mutations. Other than the typical neurologic, dental, and endocrine features, myopia was seen in almost all and short stature in 50%. Dental and hormonal findings were not invariably present. Mutations in POLR3A and POLR3B were distributed throughout the genes. Except for French Canadian patients, patients from European backgrounds were more likely to have POLR3B mutations than other populations. Most patients carried the common c.1568T>A POLR3B mutation on one allele, homozygosity for which causes a mild phenotype. Systematic MRI review revealed that the combination of hypomyelination with relative T2 hypointensity of the ventrolateral thalamus, optic radiation, globus pallidus, and dentate nucleus, cerebellar atrophy, and thinning of the corpus callosum suggests the diagnosis. Conclusions: 4H is a well-recognizable clinical entity if all features are present. Mutations in POLR3A are associated with a more severe clinical course. MRI characteristics are helpful in addressing the diagnosis, especially if patients lack the cardinal non-neurologic features. PMID:25339210

  8. An Unsupervised Approach to Predict Functional Relations between Genes Based on Expression Data

    PubMed Central

    Altaf-Ul-Amin, Md.; Sato, Tetsuo; Ono, Naoaki; Kanaya, Shigehiko

    2014-01-01

    This work presents a novel approach to predict functional relations between genes using gene expression data. Genes may have various types of relations between them, for example, regulatory relations, or they may be concerned with the same protein complex or metabolic/signaling pathways and obviously gene expression data should contain some clues to such relations. The present approach first digitizes the log-ratio type gene expression data of S. cerevisiae to a matrix consisting of 1, 0, and −1 indicating highly expressed, no major change, and highly suppressed conditions for genes, respectively. For each gene pair, a probability density mass function table is constructed indicating nine joint probabilities. Then gene pairs were selected based on linear and probabilistic relation between their profiles indicated by the sum of probability density masses in selected points. The selected gene pairs share many Gene Ontology terms. Furthermore a network is constructed by selecting a large number of gene pairs based on FDR analysis and the clustering of the network generates many modules rich with similar function genes. Also, the promoters of the gene sets in many modules are rich with binding sites of known transcription factors indicating the effectiveness of the proposed approach in predicting regulatory relations. PMID:24800208

  9. Analysis of CATMA transcriptome data identifies hundreds of novel functional genes and improves gene models in the Arabidopsis genome

    PubMed Central

    Aubourg, Sébastien; Martin-Magniette, Marie-Laure; Brunaud, Véronique; Taconnat, Ludivine; Bitton, Frédérique; Balzergue, Sandrine; Jullien, Pauline E; Ingouff, Mathieu; Thareau, Vincent; Schiex, Thomas; Lecharny, Alain; Renou, Jean-Pierre

    2007-01-01

    Background Since the finishing of the sequencing of the Arabidopsis thaliana genome, the Arabidopsis community and the annotator centers have been working on the improvement of gene annotation at the structural and functional levels. In this context, we have used the large CATMA resource on the Arabidopsis transcriptome to search for genes missed by different annotation processes. Probes on the CATMA microarrays are specific gene sequence tags (GSTs) based on the CDS models predicted by the Eugene software. Among the 24 576 CATMA v2 GSTs, 677 are in regions considered as intergenic by the TAIR annotation. We analyzed the cognate transcriptome data in the CATMA resource and carried out data-mining to characterize novel genes and improve gene models. Results The statistical analysis of the results of more than 500 hybridized samples distributed among 12 organs provides an experimental validation for 465 novel genes. The hybridization evidence was confirmed by RT-PCR approaches for 88% of the 465 novel genes. Comparisons with the current annotation show that these novel genes often encode small proteins, with an average size of 137 aa. Our approach has also led to the improvement of pre-existing gene models through both the extension of 16 CDS and the identification of 13 gene models erroneously constituted of two merged CDS. Conclusion This work is a noticeable step forward in the improvement of the Arabidopsis genome annotation. We increased the number of Arabidopsis validated genes by 465 novel transcribed genes to which we associated several functional annotations such as expression profiles, sequence conservation in plants, cognate transcripts and protein motifs. PMID:17980019

  10. 18 CFR 3b.225 - Written consent for disclosure.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Written consent for... IDENTIFIABLE PERSONAL INFORMATION Rules for Disclosure of Records § 3b.225 Written consent for disclosure. (a... communication to any person, or to any other agency, unless it has the written request by, or the prior...

  11. 18 CFR 3b.225 - Written consent for disclosure.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Written consent for... IDENTIFIABLE PERSONAL INFORMATION Rules for Disclosure of Records § 3b.225 Written consent for disclosure. (a... communication to any person, or to any other agency, unless it has the written request by, or the prior...

  12. 18 CFR 3b.225 - Written consent for disclosure.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Written consent for... IDENTIFIABLE PERSONAL INFORMATION Rules for Disclosure of Records § 3b.225 Written consent for disclosure. (a... communication to any person, or to any other agency, unless it has the written request by, or the prior...

  13. 18 CFR 3b.226 - Accounting of disclosures.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Accounting of... IDENTIFIABLE PERSONAL INFORMATION Rules for Disclosure of Records § 3b.226 Accounting of disclosures. (a) The....225(b) (5) and (7). (b) Each system manager will retain the accounting made under paragraph (a)...

  14. 18 CFR 3b.226 - Accounting of disclosures.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Accounting of... IDENTIFIABLE PERSONAL INFORMATION Rules for Disclosure of Records § 3b.226 Accounting of disclosures. (a) The....225(b) (5) and (7). (b) Each system manager will retain the accounting made under paragraph (a)...

  15. Zebrafish Hoxa and Evx-2 genes: cloning, developmental expression and implications for the functional evolution of posterior Hox genes.

    PubMed

    Sordino, P; Duboule, D; Kondo, T

    1996-10-01

    Vertebrate Hox genes are required for the establishment of regional identities along body axes. This gene family is strongly conserved among vertebrates, even in bony fish which display less complex ranges of axial morphologies. We have analysed the structural organization and expression of Abd-B related zebrafish HoxA cluster genes (Hoxa-9, Hoxa-10, Hoxa-11 and Hoxa-13) as well as of Evx-2, a gene closely linked to the HoxD complex. We show that the genomic organization of Hoxa genes in fish resembles that of tetrapods albeit intergenic distances are shorter. During development of the fish trunk, Hoxa genes are coordinately expressed, whereas in pectoral fins, they display transcript domains similar to those observed in developing tetrapod limbs. Likewise, the Evx-2 gene seems to respond to both Hox- and Evx-types of regulation. During fin development, this latter gene is expressed as the neighbouring Hox genes, in contrast to its expression in the central nervous system which does not comply with colinearity and extends up to anterior parts of the brain. These results are discussed in the context of the functional evolution of Hoxa versus Hoxd genes and their different roles in building up paired appendages. PMID:8951794

  16. Expression Pattern Similarities Support the Prediction of Orthologs Retaining Common Functions after Gene Duplication Events.

    PubMed

    Das, Malay; Haberer, Georg; Panda, Arup; Das Laha, Shayani; Ghosh, Tapas Chandra; Schäffner, Anton R

    2016-08-01

    The identification of functionally equivalent, orthologous genes (functional orthologs) across genomes is necessary for accurate transfer of experimental knowledge from well-characterized organisms to others. This frequently relies on automated, coding sequence-based approaches such as OrthoMCL, Inparanoid, and KOG, which usually work well for one-to-one homologous states. However, this strategy does not reliably work for plants due to the occurrence of extensive gene/genome duplication. Frequently, for one query gene, multiple orthologous genes are predicted in the other genome, and it is not clear a priori from sequence comparison and similarity which one preserves the ancestral function. We have studied 11 organ-dependent and stress-induced gene expression patterns of 286 Arabidopsis lyrata duplicated gene groups and compared them with the respective Arabidopsis (Arabidopsis thaliana) genes to predict putative expressologs and nonexpressologs based on gene expression similarity. Promoter sequence divergence as an additional tool to substantiate functional orthology only partially overlapped with expressolog classification. By cloning eight A. lyrata homologs and complementing them in the respective four Arabidopsis loss-of-function mutants, we experimentally proved that predicted expressologs are indeed functional orthologs, while nonexpressologs or nonfunctionalized orthologs are not. Our study demonstrates that even a small set of gene expression data in addition to sequence homologies are instrumental in the assignment of functional orthologs in the presence of multiple orthologs. PMID:27303025

  17. Transcriptome profiling to identify genes involved in peroxisome assembly and function.

    PubMed

    Smith, Jennifer J; Marelli, Marcello; Christmas, Rowan H; Vizeacoumar, Franco J; Dilworth, David J; Ideker, Trey; Galitski, Timothy; Dimitrov, Krassen; Rachubinski, Richard A; Aitchison, John D

    2002-07-22

    Yeast cells were induced to proliferate peroxisomes, and microarray transcriptional profiling was used to identify PEX genes encoding peroxins involved in peroxisome assembly and genes involved in peroxisome function. Clustering algorithms identified 224 genes with expression profiles similar to those of genes encoding peroxisomal proteins and genes involved in peroxisome biogenesis. Several previously uncharacterized genes were identified, two of which, YPL112c and YOR084w, encode proteins of the peroxisomal membrane and matrix, respectively. Ypl112p, renamed Pex25p, is a novel peroxin required for the regulation of peroxisome size and maintenance. These studies demonstrate the utility of comparative gene profiling as an alternative to functional assays to identify genes with roles in peroxisome biogenesis.

  18. Evaluation of T3B fingerprinting for identification of clinical and environmental Sporothrix species.

    PubMed

    Oliveira, Manoel Marques Evangelista; Franco-Duarte, Ricardo; Romeo, Orazio; Pais, Célia; Criseo, Giuseppe; Sampaio, Paula; Zancope-Oliveira, Rosely Maria

    2015-03-01

    In this study, PCR fingerprinting using the universal primer T3B was applied to distinguish among clinical and environmental species of the Sporothrix complex, Sporothrix brasiliensis, S. globosa, S. mexicana, S. pallida, S. luriei and S. schenckii sensu stricto. The T3B fingerprinting generated clearly distinct banding patterns, allowing the correct identification of all 43 clinical and environmental isolates at the species level, what was confirmed by partial calmodulin gene sequence analyses. This technique is reproducible and provides the identification of all species of the Sporothrix complex with sufficient accuracy to be applied in clinical mycology laboratories as well as in epidemiological studies in order to obtain a better understanding of the epidemiology of sporotrichosis.

  19. Investigation on the decolorizing mechanism of Pseudomonas sp. R1 on reactive red X-3B.

    PubMed

    Zeng, Xinping; Zhang, Min; Li, Weihao; Li, Chang; Tang, Wenwei

    2014-01-01

    A strain of Pseudomonas aeruginosa (Pseudomonas sp. R1), which can efficiently decolorize reactive red X-3B, was isolated from activated sludge in a dye plant, and the decolorizing mechanism was explored in this paper. The result shows that Pseudomonas sp. R1 has very good capability for decolorization of reactive red X-3B and the decolorization rate is increased by 9.1% after optimization of the experimental parameters, which means that 89.6% of the reactive red can be removed. Investigation on decolorization mechanism showed that the decolorizing capability of Pseudomonassp. R1 was significantly affected after plasmids in Pseudomonassp. R1 were eliminated by acridine orange (AO). Meanwhile, E. coli DH5a could gain decolorizing capability after transformed with the plasmids. Plasmid elimination and transformation tests proved that the decolorizing gene in Pseudomonas sp. R1 exists in the plasmid.

  20. Crystal structure of DPF3b in complex with an acetylated histone peptide.

    PubMed

    Li, Weiguo; Zhao, Anthony; Tempel, Wolfram; Loppnau, Peter; Liu, Yanli

    2016-09-01

    Histone acetylation plays an important role in chromatin dynamics and is associated with active gene transcription. This modification is written by acetyltransferases, erased by histone deacetylases and read out by bromodomain containing proteins, and others such as tandem PHD fingers of DPF3b. Here we report the high resolution crystal structure of the tandem PHD fingers of DPF3b in complex with an H3K14ac peptide. In the complex structure, the histone peptide adopts an α-helical conformation, unlike previously observed by NMR, but similar to a previously reported MOZ-H3K14ac complex structure. Our crystal structure adds to existing evidence that points to the α-helix as a natural conformation of histone tails as they interact with histone-associated proteins. PMID:27402533

  1. Ternary borides Nb7Fe3B8 and Ta7Fe3B8 with Kagome-type iron framework.

    PubMed

    Zheng, Qiang; Gumeniuk, Roman; Borrmann, Horst; Schnelle, Walter; Tsirlin, Alexander A; Rosner, Helge; Burkhardt, Ulrich; Reissner, Michael; Grin, Yuri; Leithe-Jasper, Andreas

    2016-06-21

    Two new ternary borides TM7Fe3B8 (TM = Nb, Ta) were synthesized by high-temperature thermal treatment of samples obtained by arc-melting. This new type of structure with space group P6/mmm, comprises TM slabs containing isolated planar hexagonal [B6] rings and iron centered TM columns in a Kagome type of arrangement. Chemical bonding analysis in Nb7Fe3B8 by means of the electron localizability approach reveals two-center interactions forming the Kagome net of Fe and embedded B, while weaker multicenter bonding present between this net and Nb atoms. Magnetic susceptibility measurements reveal antiferromagnetic order below TN = 240 K for Nb7Fe3B8 and TN = 265 K for Ta7Fe3B8. Small remnant magnetization below 0.01μB per f.u. is observed in the antiferromagnetic state. The bulk nature of the magnetic transistions was confirmed by the hyperfine splitting of the Mössbauer spectra, the sizable anomalies in the specific heat capacity, and the kinks in the resistivity curves. The high-field paramagnetic susceptibilities fitted by the Curie-Weiss law show effective paramagnetic moments μeff≈ 3.1μB/Fe in both compounds. The temperature dependence of the electrical resistivity also reveals metallic character of both compounds. Density functional calculations corroborate the metallic behaviour of both compounds and demonstrate the formation of a sizable local magnetic moment on the Fe-sites. They indicate the presence of both antiferro- and ferrromagnetic interactions.

  2. A Comprehensive, CRISPR-based Functional Analysis of Essential Genes in Bacteria.

    PubMed

    Peters, Jason M; Colavin, Alexandre; Shi, Handuo; Czarny, Tomasz L; Larson, Matthew H; Wong, Spencer; Hawkins, John S; Lu, Candy H S; Koo, Byoung-Mo; Marta, Elizabeth; Shiver, Anthony L; Whitehead, Evan H; Weissman, Jonathan S; Brown, Eric D; Qi, Lei S; Huang, Kerwyn Casey; Gross, Carol A

    2016-06-01

    Essential gene functions underpin the core reactions required for cell viability, but their contributions and relationships are poorly studied in vivo. Using CRISPR interference, we created knockdowns of every essential gene in Bacillus subtilis and probed their phenotypes. Our high-confidence essential gene network, established using chemical genomics, showed extensive interconnections among distantly related processes and identified modes of action for uncharacterized antibiotics. Importantly, mild knockdown of essential gene functions significantly reduced stationary-phase survival without affecting maximal growth rate, suggesting that essential protein levels are set to maximize outgrowth from stationary phase. Finally, high-throughput microscopy indicated that cell morphology is relatively insensitive to mild knockdown but profoundly affected by depletion of gene function, revealing intimate connections between cell growth and shape. Our results provide a framework for systematic investigation of essential gene functions in vivo broadly applicable to diverse microorganisms and amenable to comparative analysis. PMID:27238023

  3. Association of HSD17B3 and HSD3B1 polymorphisms with acne vulgaris in Southwestern Han Chinese.

    PubMed

    Yang, Xiao-Yan; Wu, Wen-Juan; Yang, Cheng; Yang, Ting; He, Jun-Dong; Yang, Zhi; He, Li

    2013-01-01

    Acne vulgaris is a very common skin disorder. Previous studies have indicated that genetic background factors play key roles in the onset of acne. Our previous investigation implicated several genes in the androgen metabolism pathway with acne vulgaris in the Han Chinese population. Thus, we further investigated genes and genetic variants that play important roles in this pathway for their relationship with the pathology of acne. In this study, a total of 610 subjects, including 403 acne patients and 207 healthy controls, were genotyped for 15 single-nucleotide polymorphisms in HSD3B1 and HSD17B3 genes. This study shows that rs6428829 in HSD3B1 was associated with acne vulgaris in Han patients from Southwest China, even after adjusting for age and sex. The GG genotype was associated with an increased risk of acne vulgaris (p < 0.05) and G allele carriers were associated with an increased risk of acne vulgaris (p < 0.05). In addition, the haplotype AAT in HSD3B1 significantly increased the risk of acne vulgaris in the case-control study (p < 0.05). Furthermore, for another gene in this pathway, HSD17B3, the haplotype H8 was significantly associated with an increased risk of acne vulgaris. Based on these analyses, our study indicates that the cutaneous androgen metabolism-regulated genes HSD3B1 and HSD17B3 increase the susceptibility to acne vulgaris in Han Chinese from Southwest China.

  4. Definition of Historical Models of Gene Function and Their Relation to Students' Understanding of Genetics

    ERIC Educational Resources Information Center

    Gericke, Niklas Markus; Hagberg, Mariana

    2007-01-01

    Models are often used when teaching science. In this paper historical models and students' ideas about genetics are compared. The historical development of the scientific idea of the gene and its function is described and categorized into five historical models of gene function. Differences and similarities between these historical models are made…

  5. Characterization and Functional Analysis of PEBP Family Genes in Upland Cotton (Gossypium hirsutum L.).

    PubMed

    Zhang, Xiaohong; Wang, Congcong; Pang, Chaoyou; Wei, Hengling; Wang, Hantao; Song, Meizhen; Fan, Shuli; Yu, Shuxun

    2016-01-01

    Upland cotton (Gossypium hirsutum L.) is a naturally occurring photoperiod-sensitive perennial plant species. However, sensitivity to the day length was lost during domestication. The phosphatidylethanolamine-binding protein (PEBP) gene family, of which three subclades have been identified in angiosperms, functions to promote and suppress flowering in photoperiod pathway. Recent evidence indicates that PEBP family genes play an important role in generating mobile flowering signals. We isolated homologues of the PEBP gene family in upland cotton and examined their regulation and function. Nine PEBP-like genes were cloned and phylogenetic analysis indicated the genes belonged to four subclades (FT, MFT, TFL1 and PEBP). Cotton PEBP-like genes showed distinct expression patterns in relation to different cotton genotypes, photoperiod responsive and cultivar maturity. The GhFT gene expression of a semi-wild race of upland cotton were strongly induced under short day condition, whereas the GhPEBP2 gene expression was induced under long days. We also elucidated that GhFT but not GhPEBP2 interacted with FD-like bZIP transcription factor GhFD and promote flowering under both long- and short-day conditions. The present result indicated that GhPEBP-like genes may perform different functions. This work corroborates the involvement of PEBP-like genes in photoperiod response and regulation of flowering time in different cotton genotypes, and contributes to an improved understanding of the function of PEBP-like genes in cotton. PMID:27552108

  6. Characterization and Functional Analysis of PEBP Family Genes in Upland Cotton (Gossypium hirsutum L.).

    PubMed

    Zhang, Xiaohong; Wang, Congcong; Pang, Chaoyou; Wei, Hengling; Wang, Hantao; Song, Meizhen; Fan, Shuli; Yu, Shuxun

    2016-01-01

    Upland cotton (Gossypium hirsutum L.) is a naturally occurring photoperiod-sensitive perennial plant species. However, sensitivity to the day length was lost during domestication. The phosphatidylethanolamine-binding protein (PEBP) gene family, of which three subclades have been identified in angiosperms, functions to promote and suppress flowering in photoperiod pathway. Recent evidence indicates that PEBP family genes play an important role in generating mobile flowering signals. We isolated homologues of the PEBP gene family in upland cotton and examined their regulation and function. Nine PEBP-like genes were cloned and phylogenetic analysis indicated the genes belonged to four subclades (FT, MFT, TFL1 and PEBP). Cotton PEBP-like genes showed distinct expression patterns in relation to different cotton genotypes, photoperiod responsive and cultivar maturity. The GhFT gene expression of a semi-wild race of upland cotton were strongly induced under short day condition, whereas the GhPEBP2 gene expression was induced under long days. We also elucidated that GhFT but not GhPEBP2 interacted with FD-like bZIP transcription factor GhFD and promote flowering under both long- and short-day conditions. The present result indicated that GhPEBP-like genes may perform different functions. This work corroborates the involvement of PEBP-like genes in photoperiod response and regulation of flowering time in different cotton genotypes, and contributes to an improved understanding of the function of PEBP-like genes in cotton.

  7. Characterization and Functional Analysis of PEBP Family Genes in Upland Cotton (Gossypium hirsutum L.)

    PubMed Central

    Wang, Congcong; Pang, Chaoyou; Wei, Hengling; Wang, Hantao; Song, Meizhen; Fan, Shuli; Yu, Shuxun

    2016-01-01

    Upland cotton (Gossypium hirsutum L.) is a naturally occurring photoperiod-sensitive perennial plant species. However, sensitivity to the day length was lost during domestication. The phosphatidylethanolamine-binding protein (PEBP) gene family, of which three subclades have been identified in angiosperms, functions to promote and suppress flowering in photoperiod pathway. Recent evidence indicates that PEBP family genes play an important role in generating mobile flowering signals. We isolated homologues of the PEBP gene family in upland cotton and examined their regulation and function. Nine PEBP-like genes were cloned and phylogenetic analysis indicated the genes belonged to four subclades (FT, MFT, TFL1 and PEBP). Cotton PEBP-like genes showed distinct expression patterns in relation to different cotton genotypes, photoperiod responsive and cultivar maturity. The GhFT gene expression of a semi-wild race of upland cotton were strongly induced under short day condition, whereas the GhPEBP2 gene expression was induced under long days. We also elucidated that GhFT but not GhPEBP2 interacted with FD-like bZIP transcription factor GhFD and promote flowering under both long- and short-day conditions. The present result indicated that GhPEBP-like genes may perform different functions. This work corroborates the involvement of PEBP-like genes in photoperiod response and regulation of flowering time in different cotton genotypes, and contributes to an improved understanding of the function of PEBP-like genes in cotton. PMID:27552108

  8. Effective Boolean dynamics analysis to identify functionally important genes in large-scale signaling networks.

    PubMed

    Trinh, Hung-Cuong; Kwon, Yung-Keun

    2015-11-01

    Efficiently identifying functionally important genes in order to understand the minimal requirements of normal cellular development is challenging. To this end, a variety of structural measures have been proposed and their effectiveness has been investigated in recent literature; however, few studies have shown the effectiveness of dynamics-based measures. This led us to investigate a dynamic measure to identify functionally important genes, and the effectiveness of which was verified through application on two large-scale human signaling networks. We specifically consider Boolean sensitivity-based dynamics against an update-rule perturbation (BSU) as a dynamic measure. Through investigations on two large-scale human signaling networks, we found that genes with relatively high BSU values show slower evolutionary rate and higher proportions of essential genes and drug targets than other genes. Gene-ontology analysis showed clear differences between the former and latter groups of genes. Furthermore, we compare the identification accuracies of essential genes and drug targets via BSU and five well-known structural measures. Although BSU did not always show the best performance, it effectively identified the putative set of genes, which is significantly different from the results obtained via the structural measures. Most interestingly, BSU showed the highest synergy effect in identifying the functionally important genes in conjunction with other measures. Our results imply that Boolean-sensitive dynamics can be used as a measure to effectively identify functionally important genes in signaling networks.

  9. Evolutionary Fates and Dynamic Functionalization of Young Duplicate Genes in Arabidopsis Genomes1[OPEN

    PubMed Central

    Wang, Jun; Tao, Feng; Marowsky, Nicholas C.; Fan, Chuanzhu

    2016-01-01

    Gene duplication is a primary means to generate genomic novelties, playing an essential role in speciation and adaptation. Particularly in plants, a high abundance of duplicate genes has been maintained for significantly long periods of evolutionary time. To address the manner in which young duplicate genes were derived primarily from small-scale gene duplication and preserved in plant genomes and to determine the underlying driving mechanisms, we generated transcriptomes to produce the expression profiles of five tissues in Arabidopsis thaliana and the closely related species Arabidopsis lyrata and Capsella rubella. Based on the quantitative analysis metrics, we investigated the evolutionary processes of young duplicate genes in Arabidopsis. We determined that conservation, neofunctionalization, and specialization are three main evolutionary processes for Arabidopsis young duplicate genes. We explicitly demonstrated the dynamic functionalization of duplicate genes along the evolutionary time scale. Upon origination, duplicates tend to maintain their ancestral functions; but as they survive longer, they might be likely to develop distinct and novel functions. The temporal evolutionary processes and functionalization of plant duplicate genes are associated with their ancestral functions, dynamic DNA methylation levels, and histone modification abundances. Furthermore, duplicate genes tend to be initially expressed in pollen and then to gain more interaction partners over time. Altogether, our study provides novel insights into the dynamic retention processes of young duplicate genes in plant genomes. PMID:27485883

  10. Evolutionary Fates and Dynamic Functionalization of Young Duplicate Genes in Arabidopsis Genomes.

    PubMed

    Wang, Jun; Tao, Feng; Marowsky, Nicholas C; Fan, Chuanzhu

    2016-09-01

    Gene duplication is a primary means to generate genomic novelties, playing an essential role in speciation and adaptation. Particularly in plants, a high abundance of duplicate genes has been maintained for significantly long periods of evolutionary time. To address the manner in which young duplicate genes were derived primarily from small-scale gene duplication and preserved in plant genomes and to determine the underlying driving mechanisms, we generated transcriptomes to produce the expression profiles of five tissues in Arabidopsis thaliana and the closely related species Arabidopsis lyrata and Capsella rubella Based on the quantitative analysis metrics, we investigated the evolutionary processes of young duplicate genes in Arabidopsis. We determined that conservation, neofunctionalization, and specialization are three main evolutionary processes for Arabidopsis young duplicate genes. We explicitly demonstrated the dynamic functionalization of duplicate genes along the evolutionary time scale. Upon origination, duplicates tend to maintain their ancestral functions; but as they survive longer, they might be likely to develop distinct and novel functions. The temporal evolutionary processes and functionalization of plant duplicate genes are associated with their ancestral functions, dynamic DNA methylation levels, and histone modification abundances. Furthermore, duplicate genes tend to be initially expressed in pollen and then to gain more interaction partners over time. Altogether, our study provides novel insights into the dynamic retention processes of young duplicate genes in plant genomes. PMID:27485883

  11. [Functional polymorphisms in clock genes and circadian rhythm sleep disorders].

    PubMed

    Ebisawa, Takashi

    2007-06-01

    Polymorphisms in clock genes induce circadian rhythm sleep disorders. Mutations in Per2 gene (S662G) or Casein Kinasel delta (CK16) gene (T44A) cause Familial advanced sleep phase syndrome. Missense polymorphisms in Per3 (V647G) and CK1e (S408N) genes increase or decrease the risk of developing delayed sleep phase syndrome. All of these polymorphisms seem to affect the phosphorylation of the clock proteins. Some of the polymorphisms in CK1, which shows reduced enzyme activity in vitro, induced increased phosphorylation of PER proteins in in vivo assays. Careful attention should be paid to analyze the complex system composed of feedback loops, such as the biological clock. PMID:17633519

  12. Comparative and functional analysis of cardiovascular-related genes

    SciTech Connect

    Cheng, Jan-Fang; Pennacchio, Len A.

    2003-09-01

    The ability to detect putative cis-regulatory elements in cardiovascular-related genes has been accelerated by the availability of genomic sequence data from numerous vertebrate species and the recent development of comparative genomic tools. This improvement is anticipated to lead to a better understanding of the complex regulatory architecture of cardiovascular (CV) genes and how genetic variants in these non-coding regions can potentially play a role in cardiovascular disease. This manuscript reviews a recently established database dedicated to the comparative sequence analysis of 250 human CV genes of known importance, 37 of which currently contain sequence comparison data for organisms beyond those of human, mouse and rat. These data have provided a glimpse into the variety of possible insights from deep vertebrate sequence comparisons and the identification of putative gene regulatory elements.

  13. Characterization of MAT gene functions in the life cycle of Sclerotinia sclerotiorum reveals a lineage-specific MAT gene functioning in apothecium morphogenesis.

    PubMed

    Doughan, Benjamin; Rollins, Jeffrey A

    2016-09-01

    Sclerotinia sclerotiorum (Lib.) de Bary is a phytopathogenic fungus that relies on the completion of the sexual cycle to initiate aerial infections. The sexual cycle produces apothecia required for inoculum dispersal. In this study, insight into the regulation of apothecial multicellular development was pursued through functional characterization of mating-type genes. These genes are hypothesized to encode master regulatory proteins required for aspects of sexual development ranging from fertilization through fertile fruiting body development. Experimentally, loss-of-function mutants were created for the conserved core mating-type genes (MAT1-1-1, and MAT1-2-1), and the lineage-specific genes found only in S. sclerotiorum and closely related fungi (MAT1-1-5, and MAT1-2-4). The MAT1-1-1, MAT1-1-5, and MAT1-2-1 mutants are able to form ascogonia but are blocked in all aspects of apothecium development. These mutants also exhibit defects in secondary sexual characters including lower numbers of spermatia. The MAT1-2-4 mutants are delayed in carpogenic germination accompanied with altered disc morphogenesis and ascospore production. They too produce lower numbers of spermatia. All four MAT gene mutants showed alterations in the expression of putative pheromone precursor (Ppg-1) and pheromone receptor (PreA, PreB) genes. Our findings support the involvement of MAT genes in sexual fertility, gene regulation, meiosis, and morphogenesis in S. sclerotiorum. PMID:27567717

  14. Detecting adaptive evolution and functional divergence in aminocyclopropane-1-carboxylate synthase (ACS) gene family.

    PubMed

    Zhang, Ti-Cao; Qiao, Qin; Zhong, Yang

    2012-06-01

    Ethylene is an essential plant gaseous hormone that controls many aspects of plant growth and development, especially the fruit ripening. It is important to know how this hormone is synthesized and how its production is regulated to understand the roles of ethylene in plant development. The aminocyclopropane-1-carboxylate synthase (ACS) gene is a rate-limiting enzyme in the ethylene biosynthesis pathway, which is encoded by a highly divergent multi-gene family in plant species. Although many ACS genes have been cloned from a wide variety of plant species previously, their origin and evolutionary process are still not clear. In this study, we conducted a phylogenetic analysis based on an updated dataset including 107 members of plant ACS genes and eight ACS-like genes from animal as well as six AATase genes. The motifs were identified and the positive selection and functional divergence in the ACS gene family were detected. The results obtained from these analyses are consistent with previous division of the ACS gene family in angiosperm, i.e., three distinct clades, and show that the duplications of three subclades (I, II and III) ACS genes have occurred after the divergence of gymnosperm and angiosperm. We conclude that the ACS genes could have experienced three times significant positive selection as they underwent expansion in land plants and gain the full-scale ethylene biosynthesis and regulatory functions, and all plant ACS genes originated from plant-ACS-like genes which come from AATase genes.

  15. GO-At: in silico prediction of gene function in Arabidopsis thaliana by combining heterogeneous data.

    PubMed

    Bradford, James R; Needham, Chris J; Tedder, Philip; Care, Matthew A; Bulpitt, Andrew J; Westhead, David R

    2010-02-01

    Despite recent advances, accurate gene function prediction remains an elusive goal, with very few methods directly applicable to the plant Arabidopsis thaliana. In this study, we present GO-At (gene ontology prediction in A. thaliana), a method that combines five data types (co-expression, sequence, phylogenetic profile, interaction and gene neighbourhood) to predict gene function in Arabidopsis. Using a simple, yet powerful two-step approach, GO-At first generates a list of genes ranked in descending order of probability of functional association with the query gene. Next, a prediction score is automatically assigned to each function in this list based on the assumption that functions appearing most frequently at the top of the list are most likely to represent the function of the query gene. In this way, the second step provides an effective alternative to simply taking the 'best hit' from the first list, and achieves success rates of up to 79%. GO-At is applicable across all three GO categories: molecular function, biological process and cellular component, and can assign functions at multiple levels of annotation detail. Furthermore, we demonstrate GO-At's ability to predict functions of uncharacterized genes by identifying ten putative golgins/Golgi-associated proteins amongst 8219 genes of previously unknown cellular component and present independent evidence to support our predictions. A web-based implementation of GO-At (http://www.bioinformatics.leeds.ac.uk/goat) is available, providing a unique resource for plant researchers to make predictions for uncharacterized genes and predict novel functions in Arabidopsis.

  16. Genome-Wide Identification and Functional Classification of Tomato (Solanum lycopersicum) Aldehyde Dehydrogenase (ALDH) Gene Superfamily

    PubMed Central

    Lopez-Valverde, Francisco J.; Robles-Bolivar, Paula; Lima-Cabello, Elena; Gachomo, Emma W.; Kotchoni, Simeon O.

    2016-01-01

    Aldehyde dehydrogenases (ALDHs) is a protein superfamily that catalyzes the oxidation of aldehyde molecules into their corresponding non-toxic carboxylic acids, and responding to different environmental stresses, offering promising genetic approaches for improving plant adaptation. The aim of the current study is the functional analysis for systematic identification of S. lycopersicum ALDH gene superfamily. We performed genome-based ALDH genes identification and functional classification, phylogenetic relationship, structure and catalytic domains analysis, and microarray based gene expression. Twenty nine unique tomato ALDH sequences encoding 11 ALDH families were identified, including a unique member of the family 19 ALDH. Phylogenetic analysis revealed 13 groups, with a conserved relationship among ALDH families. Functional structure analysis of ALDH2 showed a catalytic mechanism involving Cys-Glu couple. However, the analysis of ALDH3 showed no functional gene duplication or potential neo-functionalities. Gene expression analysis reveals that particular ALDH genes might respond to wounding stress increasing the expression as ALDH2B7. Overall, this study reveals the complexity of S. lycopersicum ALDH gene superfamily and offers new insights into the structure-functional features and evolution of ALDH gene families in vascular plants. The functional characterization of ALDHs is valuable and promoting molecular breeding in tomato for the improvement of stress tolerance and signaling. PMID:27755582

  17. Identification of Novel Gene Targets and Functions of p21-Activated Kinase 1 during DNA Damage by Gene Expression Profiling

    PubMed Central

    Motwani, Mona; Li, Da-Qiang; Horvath, Anelia; Kumar, Rakesh

    2013-01-01

    P21-activated kinase 1 (PAK1), a serine/threonine protein kinase, modulates many cellular processes by phosphorylating its downstream substrates. In addition to its role in the cytoplasm, PAK1 also affects gene transcription due to its nuclear localization and association with chromatin. It is now recognized that PAK1 kinase activity and its nuclear translocation are rapidly stimulated by ionizing radiation (IR), and that PAK1 activation is a component of the DNA damage response. Owing to the role of PAK1 in the cell survival, its association with the chromatin, and now, stimulation by ionizing radiation, we hypothesize that PAK1 may be contributing to modulation of genes with roles in cellular processes that might be important in the DNA damage response. The purpose of this study was to identify new PAK1 targets in response to ionizing radiation with putative role in the DNA damage response. We examined the effect of IR on the gene expression patterns in the murine embryonic fibroblasts with or without Pak1 using microarray technology. Differentially expressed transcripts were identified using Gene Spring GX 10.0.2. Pathway, network, functional analyses and gene family classification were carried out using Kyoto Encyclopedia of Genes and Genomes (KEGG), Ingenuity Pathway, Gene Ontology and PANTHER respectively. Selective targets of PAK1 were validated by RT-qPCR. For the first time, we provide a genome-wide analysis of PAK1 and identify its targets with potential roles in the DNA damage response. Gene Ontology analysis identified genes in the IR-stimulated cells that were involved in cell cycle arrest and cell death. Pathway analysis revealed p53 pathway being most influenced by IR responsive, PAK1 targets. Gene family of transcription factors was over represented and gene networks involved in DNA replication, repair and cellular signaling were identified. In brief, this study identifies novel PAK1 dependent IR responsive genes which reveal new aspects of PAK1

  18. Homologous Elements hs3a and hs3b in the 3′ Regulatory Region of the Murine Immunoglobulin Heavy Chain (Igh) Locus Are Both Dispensable for Class-switch Recombination*

    PubMed Central

    Yan, Yi; Pieretti, Joyce; Ju, Zhongliang; Wei, Shiniu; Christin, John R.; Bah, Fatmata; Birshtein, Barbara K.; Eckhardt, Laurel A.

    2011-01-01

    Immunoglobulin heavy chain (IgH) genes are formed, tested, and modified to yield diverse, specific, and high affinity antibody responses to antigen. The processes involved must be regulated, however, to avoid unintended damage to chromosomes. The 3′ regulatory region of the Igh locus plays a major role in regulating class-switch recombination (CSR), the process by which antibody effector functions are modified during an immune response. Loss of all known enhancer-like elements in this region dramatically impairs CSR, but individual element deletions have no effect on this process. In the present study, we explored the hypothesis that an underlying functional redundancy in the homologous elements hs3a and hs3b was masking the importance of either element to CSR. Several transgenic mouse lines were generated, each carrying a bacterial artificial chromosome transgene that mimicked Igh locus structure but in which hs3a was missing and hs3b was flanked by loxP sites. Matings to Cyclization Recombination Enzyme-expressing mice established “pairs” of lines that differed only in the presence or absence of hs3b. Remarkably, CSR remained robust in the absence of both hs3a and hs3b, suggesting that the remaining two elements of the 3′ regulatory region, hs1.2 and hs4, although individually dispensable for CSR, are, together, sufficient to support CSR. PMID:21673112

  19. Homologous elements hs3a and hs3b in the 3' regulatory region of the murine immunoglobulin heavy chain (Igh) locus are both dispensable for class-switch recombination.

    PubMed

    Yan, Yi; Pieretti, Joyce; Ju, Zhongliang; Wei, Shiniu; Christin, John R; Bah, Fatmata; Birshtein, Barbara K; Eckhardt, Laurel A

    2011-08-01

    Immunoglobulin heavy chain (IgH) genes are formed, tested, and modified to yield diverse, specific, and high affinity antibody responses to antigen. The processes involved must be regulated, however, to avoid unintended damage to chromosomes. The 3' regulatory region of the Igh locus plays a major role in regulating class-switch recombination (CSR), the process by which antibody effector functions are modified during an immune response. Loss of all known enhancer-like elements in this region dramatically impairs CSR, but individual element deletions have no effect on this process. In the present study, we explored the hypothesis that an underlying functional redundancy in the homologous elements hs3a and hs3b was masking the importance of either element to CSR. Several transgenic mouse lines were generated, each carrying a bacterial artificial chromosome transgene that mimicked Igh locus structure but in which hs3a was missing and hs3b was flanked by loxP sites. Matings to Cyclization Recombination Enzyme-expressing mice established "pairs" of lines that differed only in the presence or absence of hs3b. Remarkably, CSR remained robust in the absence of both hs3a and hs3b, suggesting that the remaining two elements of the 3' regulatory region, hs1.2 and hs4, although individually dispensable for CSR, are, together, sufficient to support CSR. PMID:21673112

  20. Homologous elements hs3a and hs3b in the 3' regulatory region of the murine immunoglobulin heavy chain (Igh) locus are both dispensable for class-switch recombination.

    PubMed

    Yan, Yi; Pieretti, Joyce; Ju, Zhongliang; Wei, Shiniu; Christin, John R; Bah, Fatmata; Birshtein, Barbara K; Eckhardt, Laurel A

    2011-08-01

    Immunoglobulin heavy chain (IgH) genes are formed, tested, and modified to yield diverse, specific, and high affinity antibody responses to antigen. The processes involved must be regulated, however, to avoid unintended damage to chromosomes. The 3' regulatory region of the Igh locus plays a major role in regulating class-switch recombination (CSR), the process by which antibody effector functions are modified during an immune response. Loss of all known enhancer-like elements in this region dramatically impairs CSR, but individual element deletions have no effect on this process. In the present study, we explored the hypothesis that an underlying functional redundancy in the homologous elements hs3a and hs3b was masking the importance of either element to CSR. Several transgenic mouse lines were generated, each carrying a bacterial artificial chromosome transgene that mimicked Igh locus structure but in which hs3a was missing and hs3b was flanked by loxP sites. Matings to Cyclization Recombination Enzyme-expressing mice established "pairs" of lines that differed only in the presence or absence of hs3b. Remarkably, CSR remained robust in the absence of both hs3a and hs3b, suggesting that the remaining two elements of the 3' regulatory region, hs1.2 and hs4, although individually dispensable for CSR, are, together, sufficient to support CSR.

  1. Heterocyst-specific flavodiiron protein Flv3B enables oxic diazotrophic growth of the filamentous cyanobacterium Anabaena sp. PCC 7120

    PubMed Central

    Ermakova, Maria; Battchikova, Natalia; Richaud, Pierre; Leino, Hannu; Kosourov, Sergey; Isojärvi, Janne; Peltier, Gilles; Flores, Enrique; Cournac, Laurent; Allahverdiyeva, Yagut; Aro, Eva-Mari

    2014-01-01

    Flavodiiron proteins are known to have crucial and specific roles in photoprotection of photosystems I and II in cyanobacteria. The filamentous, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 contains, besides the four flavodiiron proteins Flv1A, Flv2, Flv3A, and Flv4 present in vegetative cells, two heterocyst-specific flavodiiron proteins, Flv1B and Flv3B. Here, we demonstrate that Flv3B is responsible for light-induced O2 uptake in heterocysts, and that the absence of the Flv3B protein severely compromises the growth of filaments in oxic, but not in microoxic, conditions. It is further demonstrated that Flv3B-mediated photosynthetic O2 uptake has a distinct role in heterocysts which cannot be substituted by respiratory O2 uptake in the protection of nitrogenase from oxidative damage and, thus, in an efficient provision of nitrogen to filaments. In line with this conclusion, the Δflv3B strain has reduced amounts of nitrogenase NifHDK subunits and shows multiple symptoms of nitrogen deficiency in the filaments. The apparent imbalance of cytosolic redox state in Δflv3B heterocysts also has a pronounced influence on the amounts of different transcripts and proteins. Therefore, an O2-related mechanism for control of gene expression is suggested to take place in heterocysts. PMID:25002499

  2. Heterocyst-specific flavodiiron protein Flv3B enables oxic diazotrophic growth of the filamentous cyanobacterium Anabaena sp. PCC 7120.

    PubMed

    Ermakova, Maria; Battchikova, Natalia; Richaud, Pierre; Leino, Hannu; Kosourov, Sergey; Isojärvi, Janne; Peltier, Gilles; Flores, Enrique; Cournac, Laurent; Allahverdiyeva, Yagut; Aro, Eva-Mari

    2014-07-29

    Flavodiiron proteins are known to have crucial and specific roles in photoprotection of photosystems I and II in cyanobacteria. The filamentous, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 contains, besides the four flavodiiron proteins Flv1A, Flv2, Flv3A, and Flv4 present in vegetative cells, two heterocyst-specific flavodiiron proteins, Flv1B and Flv3B. Here, we demonstrate that Flv3B is responsible for light-induced O2 uptake in heterocysts, and that the absence of the Flv3B protein severely compromises the growth of filaments in oxic, but not in microoxic, conditions. It is further demonstrated that Flv3B-mediated photosynthetic O2 uptake has a distinct role in heterocysts which cannot be substituted by respiratory O2 uptake in the protection of nitrogenase from oxidative damage and, thus, in an efficient provision of nitrogen to filaments. In line with this conclusion, the Δflv3B strain has reduced amounts of nitrogenase NifHDK subunits and shows multiple symptoms of nitrogen deficiency in the filaments. The apparent imbalance of cytosolic redox state in Δflv3B heterocysts also has a pronounced influence on the amounts of different transcripts and proteins. Therefore, an O2-related mechanism for control of gene expression is suggested to take place in heterocysts.

  3. Heterocyst-specific flavodiiron protein Flv3B enables oxic diazotrophic growth of the filamentous cyanobacterium Anabaena sp. PCC 7120.

    PubMed

    Ermakova, Maria; Battchikova, Natalia; Richaud, Pierre; Leino, Hannu; Kosourov, Sergey; Isojärvi, Janne; Peltier, Gilles; Flores, Enrique; Cournac, Laurent; Allahverdiyeva, Yagut; Aro, Eva-Mari

    2014-07-29

    Flavodiiron proteins are known to have crucial and specific roles in photoprotection of photosystems I and II in cyanobacteria. The filamentous, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 contains, besides the four flavodiiron proteins Flv1A, Flv2, Flv3A, and Flv4 present in vegetative cells, two heterocyst-specific flavodiiron proteins, Flv1B and Flv3B. Here, we demonstrate that Flv3B is responsible for light-induced O2 uptake in heterocysts, and that the absence of the Flv3B protein severely compromises the growth of filaments in oxic, but not in microoxic, conditions. It is further demonstrated that Flv3B-mediated photosynthetic O2 uptake has a distinct role in heterocysts which cannot be substituted by respiratory O2 uptake in the protection of nitrogenase from oxidative damage and, thus, in an efficient provision of nitrogen to filaments. In line with this conclusion, the Δflv3B strain has reduced amounts of nitrogenase NifHDK subunits and shows multiple symptoms of nitrogen deficiency in the filaments. The apparent imbalance of cytosolic redox state in Δflv3B heterocysts also has a pronounced influence on the amounts of different transcripts and proteins. Therefore, an O2-related mechanism for control of gene expression is suggested to take place in heterocysts. PMID:25002499

  4. SNP in starch biosynthesis genes associated with nutritional and functional properties of rice

    PubMed Central

    Kharabian-Masouleh, Ardashir; Waters, Daniel L. E.; Reinke, Russell F.; Ward, Rachelle; Henry, Robert J.

    2012-01-01

    Starch is a major component of human diets. The relative contribution of variation in the genes of starch biosynthesis to the nutritional and functional properties of the rice was evaluated in a rice breeding population. Sequencing 18 genes involved in starch synthesis in a population of 233 rice breeding lines discovered 66 functional SNPs in exonic regions. Five genes, AGPS2b, Isoamylase1, SPHOL, SSIIb and SSIVb showed no polymorphism. Association analysis found 31 of the SNP were associated with differences in pasting and cooking quality properties of the rice lines. Two genes appear to be the major loci controlling traits under human selection in rice, GBSSI (waxy gene) and SSIIa. GBSSI influenced amylose content and retrogradation. Other genes contributing to retrogradation were GPT1, SSI, BEI and SSIIIa. SSIIa explained much of the variation in cooking characteristics. Other genes had relatively small effects. PMID:22870386

  5. A functional gene array for detection of bacterial virulence elements

    SciTech Connect

    Jaing, C

    2007-11-01

    We report our development of the first of a series of microarrays designed to detect pathogens with known mechanisms of virulence and antibiotic resistance. By targeting virulence gene families as well as genes unique to specific biothreat agents, these arrays will provide important data about the pathogenic potential and drug resistance profiles of unknown organisms in environmental samples. To validate our approach, we developed a first generation array targeting genes from Escherichia coli strains K12 and CFT073, Enterococcus faecalis and Staphylococcus aureus. We determined optimal probe design parameters for microorganism detection and discrimination, measured the required target concentration, and assessed tolerance for mismatches between probe and target sequences. Mismatch tolerance is a priority for this application, due to DNA sequence variability among members of gene families. Arrays were created using the NimbleGen Maskless Array Synthesizer at Lawrence Livermore National Laboratory. Purified genomic DNA from combinations of one or more of the four target organisms, pure cultures of four related organisms, and environmental aerosol samples with spiked-in genomic DNA were hybridized to the arrays. Based on the success of this prototype, we plan to design further arrays in this series, with the goal of detecting all known virulence and antibiotic resistance gene families in a greatly expanded set of organisms.

  6. The function of homeobox genes and lncRNAs in cancer

    PubMed Central

    Wang, Yingchao; Dang, Yuan; Liu, Jingfeng; Ouyang, Xiaojuan

    2016-01-01

    Recently, the homeobox (HOX) gene family has been reported as a factor in tumorigenesis. In the human genome, the HOX gene family contains 4 clusters with 39 genes and multiple transcripts. Mutation or abnormal expression of genes is responsible for developmental disorders. In addition, changes in the levels and activation of certain HOX genes has been associated with the development of cancer. Long non-coding RNAs (lncRNAs) have also been identified to serve critical functions in cancer. Although a limited number of lncRNAs have been previously investigated, the list of functional lncRNA genes has recently grown. Two of the most important and well-studied lncRNAs and HOX transcript genes are HOX transcript antisense RNA (HOTAIR) and HOXA distal transcript antisense RNA (HOTTIP). The present study aimed to review not only the function of the HOTAIR and HOTTIP genes in certain forms of cancer, but also to review other HOX genes and protein functions in cancer, particularly HOX family genes associated with lncRNAs. PMID:27588114

  7. Dramatic Increases of Soil Microbial Functional Gene Diversity at the Treeline Ecotone of Changbai Mountain

    PubMed Central

    Shen, Congcong; Shi, Yu; Ni, Yingying; Deng, Ye; Van Nostrand, Joy D.; He, Zhili; Zhou, Jizhong; Chu, Haiyan

    2016-01-01

    The elevational and latitudinal diversity patterns of microbial taxa have attracted great attention in the past decade. Recently, the distribution of functional attributes has been in the spotlight. Here, we report a study profiling soil microbial communities along an elevation gradient (500–2200 m) on Changbai Mountain. Using a comprehensive functional gene microarray (GeoChip 5.0), we found that microbial functional gene richness exhibited a dramatic increase at the treeline ecotone, but the bacterial taxonomic and phylogenetic diversity based on 16S rRNA gene sequencing did not exhibit such a similar trend. However, the β-diversity (compositional dissimilarity among sites) pattern for both bacterial taxa and functional genes was similar, showing significant elevational distance-decay patterns which presented increased dissimilarity with elevation. The bacterial taxonomic diversity/structure was strongly influenced by soil pH, while the functional gene diversity/structure was significantly correlated with soil dissolved organic carbon (DOC). This finding highlights that soil DOC may be a good predictor in determining the elevational distribution of microbial functional genes. The finding of significant shifts in functional gene diversity at the treeline ecotone could also provide valuable information for predicting the responses of microbial functions to climate change. PMID:27524983

  8. Dramatic Increases of Soil Microbial Functional Gene Diversity at the Treeline Ecotone of Changbai Mountain.

    PubMed

    Shen, Congcong; Shi, Yu; Ni, Yingying; Deng, Ye; Van Nostrand, Joy D; He, Zhili; Zhou, Jizhong; Chu, Haiyan

    2016-01-01

    The elevational and latitudinal diversity patterns of microbial taxa have attracted great attention in the past decade. Recently, the distribution of functional attributes has been in the spotlight. Here, we report a study profiling soil microbial communities along an elevation gradient (500-2200 m) on Changbai Mountain. Using a comprehensive functional gene microarray (GeoChip 5.0), we found that microbial functional gene richness exhibited a dramatic increase at the treeline ecotone, but the bacterial taxonomic and phylogenetic diversity based on 16S rRNA gene sequencing did not exhibit such a similar trend. However, the β-diversity (compositional dissimilarity among sites) pattern for both bacterial taxa and functional genes was similar, showing significant elevational distance-decay patterns which presented increased dissimilarity with elevation. The bacterial taxonomic diversity/structure was strongly influenced by soil pH, while the functional gene diversity/structure was significantly correlated with soil dissolved organic carbon (DOC). This finding highlights that soil DOC may be a good predictor in determining the elevational distribution of microbial functional genes. The finding of significant shifts in functional gene diversity at the treeline ecotone could also provide valuable information for predicting the responses of microbial functions to climate change. PMID:27524983

  9. A piggyBac transposon gene trap for the analysis of gene expression and function in Drosophila.

    PubMed Central

    Bonin, Christopher P; Mann, Richard S

    2004-01-01

    P-element-based gene and enhancer trap strategies have provided a wealth of information on the expression and function of genes in Drosophila melanogaster. Here we present a new vector that utilizes the simple insertion requirements of the piggyBac transposon, coupled to a splice acceptor (SA) site fused to the sequence encoding enhanced green fluorescent protein (EGFP) and a transcriptional terminator. Mobilization of the piggyBac splice site gene trap vector (PBss) was accomplished by heat-shock-induced expression of piggyBac transposase (PBase). We show that insertion of PBss into genes leads to fusions between the gene's mRNA and the PBss-encoded EGFP transcripts. As heterozygotes, these fusions report the normal pattern of expression of the trapped gene. As homozygotes, these fusions can inactivate the gene and lead to lethality. Molecular characterization of PBss insertion events shows that they are single copy, that they always occur at TTAA sequences, and that splicing utilizes the engineered splice site in PBss. In those instances where protein-EGFP fusions are predicted to occur, the subcellular localization of the wild-type protein can be inferred from the localization of the EGFP fusion protein. These experiments highlight the utility of the PBss system for expanding the functional genomics tools that are available in Drosophila. PMID:15342518

  10. Late Type 3b Endoleak with an Endurant Endograft

    PubMed Central

    Barburoglu, Mehmet; Acunas, Bulent; Onal, Yilmaz; Ugurlucan, Murat; Sayin, Omer Ali; Alpagut, Ufuk

    2015-01-01

    Endovascular stent grafting with different commercially available stent graft systems is widely applied for the treatment of abdominal aortic aneurysms with high success rates in the current era. Various types of endoleaks are potential complications of the procedure. They usually occur in the early period. In this report, we present type 3b endoleak occurring 14 months after a successful endovascular abdominal aortic aneurysm repair with a Medtronic Endurant stent graft. PMID:26798537

  11. Functional characterization of cotton genes responsive to Verticillium dahliae through bioinformatics and reverse genetics strategies

    PubMed Central

    Xu, Lian; Zhang, Wenwen; He, Xin; Liu, Min; Zhang, Kun; Shaban, Muhammad; Sun, Longqing; Zhu, Jiachen; Luo, Yijing; Yuan, Daojun; Zhang, Xianlong; Zhu, Longfu

    2014-01-01

    Verticillium wilt causes dramatic cotton yield loss in China. Although some genes or biological processes involved in the interaction between cotton and Verticillium dahliae have been identified, the molecular mechanism of cotton resistance to this disease is still poorly understood. The basic innate immune response for defence is somewhat conserved among plant species to defend themselves in complex environments, which makes it possible to characterize genes involved in cotton immunity based on information from model plants. With the availability of Arabidopsis databases, a data-mining strategy accompanied by virus-induced gene silencing (VIGS) and heterologous expression were adopted in cotton and tobacco, respectively, for global screening and gene function characterization. A total of 232 Arabidopsis genes putatively involved in basic innate immunity were screened as candidate genes, and bioinformatic analysis suggested a role of these genes in the immune response. In total, 38 homologous genes from cotton were singled out to characterize their response to V. dahliae and methyl jasmonate treatment through quantitative real-time PCR. The results revealed that 24 genes were differentially regulated by pathogen inoculation, and most of these genes responded to both Verticillium infection and jasmonic acid stimuli. Furthermore, the efficiency of the strategy was illustrated by the functional identification of six candidate genes via heterologous expression in tobacco or a knock-down approach using VIGS in cotton. Functional categorization of these 24 differentially expressed genes as well as functional analysis suggest that reactive oxygen species, salicylic acid- and jasmonic acid-signalling pathways are involved in the cotton disease resistance response to V. dahliae. Our data demonstrate how information from model plants can allow the rapid translation of information into non-model species without complete genome sequencing, via high-throughput screening and

  12. Functional characterization of cotton genes responsive to Verticillium dahliae through bioinformatics and reverse genetics strategies.

    PubMed

    Xu, Lian; Zhang, Wenwen; He, Xin; Liu, Min; Zhang, Kun; Shaban, Muhammad; Sun, Longqing; Zhu, Jiachen; Luo, Yijing; Yuan, Daojun; Zhang, Xianlong; Zhu, Longfu

    2014-12-01

    Verticillium wilt causes dramatic cotton yield loss in China. Although some genes or biological processes involved in the interaction between cotton and Verticillium dahliae have been identified, the molecular mechanism of cotton resistance to this disease is still poorly understood. The basic innate immune response for defence is somewhat conserved among plant species to defend themselves in complex environments, which makes it possible to characterize genes involved in cotton immunity based on information from model plants. With the availability of Arabidopsis databases, a data-mining strategy accompanied by virus-induced gene silencing (VIGS) and heterologous expression were adopted in cotton and tobacco, respectively, for global screening and gene function characterization. A total of 232 Arabidopsis genes putatively involved in basic innate immunity were screened as candidate genes, and bioinformatic analysis suggested a role of these genes in the immune response. In total, 38 homologous genes from cotton were singled out to characterize their response to V. dahliae and methyl jasmonate treatment through quantitative real-time PCR. The results revealed that 24 genes were differentially regulated by pathogen inoculation, and most of these genes responded to both Verticillium infection and jasmonic acid stimuli. Furthermore, the efficiency of the strategy was illustrated by the functional identification of six candidate genes via heterologous expression in tobacco or a knock-down approach using VIGS in cotton. Functional categorization of these 24 differentially expressed genes as well as functional analysis suggest that reactive oxygen species, salicylic acid- and jasmonic acid-signalling pathways are involved in the cotton disease resistance response to V. dahliae. Our data demonstrate how information from model plants can allow the rapid translation of information into non-model species without complete genome sequencing, via high-throughput screening and

  13. Functional microarray analysis of nitrogen and carbon cycling genes across an Antarctic latitudinal transect.

    PubMed

    Yergeau, Etienne; Kang, Sanghoon; He, Zhili; Zhou, Jizhong; Kowalchuk, George A

    2007-06-01

    Soil-borne microbial communities were examined via a functional gene microarray approach across a southern polar latitudinal gradient to gain insight into the environmental factors steering soil N- and C-cycling in terrestrial Antarctic ecosystems. The abundance and diversity of functional gene families were studied for soil-borne microbial communities inhabiting a range of environments from 51 degrees S (cool temperate-Falkland Islands) to 72 degrees S (cold rock desert-Coal Nunatak). The recently designed functional gene array used contains 24,243 oligonucleotide probes and covers >10,000 genes in >150 functional groups involved in nitrogen, carbon, sulfur and phosphorus cycling, metal reduction and resistance and organic contaminant degradation (He et al. 2007). The detected N- and C-cycle genes were significantly different across different sampling locations and vegetation types. A number of significant trends were observed regarding the distribution of key gene families across the environments examined. For example, the relative detection of cellulose degradation genes was correlated with temperature, and microbial C-fixation genes were more present in plots principally lacking vegetation. With respect to the N-cycle, denitrification genes were linked to higher soil temperatures, and N2-fixation genes were linked to plots mainly vegetated by lichens. These microarray-based results were confirmed for a number of gene families using specific real-time PCR, enzymatic assays and process rate measurements. The results presented demonstrate the utility of an integrated functional gene microarray approach in detecting shifts in functional community properties in environmental samples and provide insight into the forces driving important processes of terrestrial Antarctic nutrient cycling. PMID:18043626

  14. Functional microarray analysis of nitrogen and carbon cycling genes across an Antarctic latitudinal transect.

    PubMed

    Yergeau, Etienne; Kang, Sanghoon; He, Zhili; Zhou, Jizhong; Kowalchuk, George A

    2007-06-01

    Soil-borne microbial communities were examined via a functional gene microarray approach across a southern polar latitudinal gradient to gain insight into the environmental factors steering soil N- and C-cycling in terrestrial Antarctic ecosystems. The abundance and diversity of functional gene families were studied for soil-borne microbial communities inhabiting a range of environments from 51 degrees S (cool temperate-Falkland Islands) to 72 degrees S (cold rock desert-Coal Nunatak). The recently designed functional gene array used contains 24,243 oligonucleotide probes and covers >10,000 genes in >150 functional groups involved in nitrogen, carbon, sulfur and phosphorus cycling, metal reduction and resistance and organic contaminant degradation (He et al. 2007). The detected N- and C-cycle genes were significantly different across different sampling locations and vegetation types. A number of significant trends were observed regarding the distribution of key gene families across the environments examined. For example, the relative detection of cellulose degradation genes was correlated with temperature, and microbial C-fixation genes were more present in plots principally lacking vegetation. With respect to the N-cycle, denitrification genes were linked to higher soil temperatures, and N2-fixation genes were linked to plots mainly vegetated by lichens. These microarray-based results were confirmed for a number of gene families using specific real-time PCR, enzymatic assays and process rate measurements. The results presented demonstrate the utility of an integrated functional gene microarray approach in detecting shifts in functional community properties in environmental samples and provide insight into the forces driving important processes of terrestrial Antarctic nutrient cycling.

  15. APOSTLE: 11 TRANSIT OBSERVATIONS OF TrES-3b

    SciTech Connect

    Kundurthy, P.; Becker, A. C.; Agol, E.; Barnes, R.; Williams, B.

    2013-02-10

    The Apache Point Survey of Transit Lightcurves of Exoplanets (APOSTLE) observed 11 transits of TrES-3b over two years in order to constrain system parameters and look for transit timing and depth variations. We describe an updated analysis protocol for APOSTLE data, including the reduction pipeline, transit model, and Markov Chain Monte Carlo analyzer. Our estimates of the system parameters for TrES-3b are consistent with previous estimates to within the 2{sigma} confidence level. We improved the errors (by 10%-30%) on system parameters such as the orbital inclination (i {sub orb}), impact parameter (b), and stellar density ({rho}{sub *}) compared to previous measurements. The near-grazing nature of the system, and incomplete sampling of some transits, limited our ability to place reliable uncertainties on individual transit depths and hence we do not report strong evidence for variability. Our analysis of the transit timing data shows no evidence for transit timing variations and our timing measurements are able to rule out super-Earth and gas giant companions in low-order mean motion resonance with TrES-3b.

  16. Functional Analysis of the Arabidopsis TETRASPANIN Gene Family in Plant Growth and Development1[OPEN

    PubMed Central

    Wang, Feng; Muto, Antonella; Van de Velde, Jan; Neyt, Pia; Himanen, Kristiina; Vandepoele, Klaas; Van Lijsebettens, Mieke

    2015-01-01

    TETRASPANIN (TET) genes encode conserved integral membrane proteins that are known in animals to function in cellular communication during gamete fusion, immunity reaction, and pathogen recognition. In plants, functional information is limited to one of the 17 members of the Arabidopsis (Arabidopsis thaliana) TET gene family and to expression data in reproductive stages. Here, the promoter activity of all 17 Arabidopsis TET genes was investigated by pAtTET::NUCLEAR LOCALIZATION SIGNAL-GREEN FLUORESCENT PROTEIN/β-GLUCURONIDASE reporter lines throughout the life cycle, which predicted functional divergence in the paralogous genes per clade. However, partial overlap was observed for many TET genes across the clades, correlating with few phenotypes in single mutants and, therefore, requiring double mutant combinations for functional investigation. Mutational analysis showed a role for TET13 in primary root growth and lateral root development and redundant roles for TET5 and TET6 in leaf and root growth through negative regulation of cell proliferation. Strikingly, a number of TET genes were expressed in embryonic and seedling progenitor cells and remained expressed until the differentiation state in the mature plant, suggesting a dynamic function over developmental stages. The cis-regulatory elements together with transcription factor-binding data provided molecular insight into the sites, conditions, and perturbations that affect TET gene expression and positioned the TET genes in different molecular pathways; the data represent a hypothesis-generating resource for further functional analyses. PMID:26417009

  17. An integrated probabilistic approach for gene function prediction using multiple sources of high-throughput data.

    PubMed

    Zhang, Chao; Joshi, Trupti; Lin, Guan Ning; Xu, Dong

    2008-01-01

    Characterising gene function is one of the major challenging tasks in the post-genomic era. Various approaches have been developed to integrate multiple sources of high-throughput data to predict gene function. Most of those approaches are just used for research purpose and have not been implemented as publicly available tools. Even for those implemented applications, almost all of them are still web-based 'prediction servers' that have to be managed by specialists. This paper introduces a systematic method for integrating various sources of high-throughput data to predict gene function and analyse our prediction results and evaluates its performances based on the competition for mouse gene function prediction (MouseFunc). A stand-alone Java-based software package 'GeneFAS' is freely available at http://digbio. missouri.eduigenefas.

  18. Identifying arsenic trioxide (ATO) functions in leukemia cells by using time series gene expression profiles.

    PubMed

    Yang, Hong; Lin, Shan; Cui, Jingru

    2014-02-10

    Arsenic trioxide (ATO) is presently the most active single agent in the treatment of acute promyelocytic leukemia (APL). In order to explore the molecular mechanism of ATO in leukemia cells with time series, we adopted bioinformatics strategy to analyze expression changing patterns and changes in transcription regulation modules of time series genes filtered from Gene Expression Omnibus database (GSE24946). We totally screened out 1847 time series genes for subsequent analysis. The KEGG (Kyoto encyclopedia of genes and genomes) pathways enrichment analysis of these genes showed that oxidative phosphorylation and ribosome were the top 2 significantly enriched pathways. STEM software was employed to compare changing patterns of gene expression with assigned 50 expression patterns. We screened out 7 significantly enriched patterns and 4 tendency charts of time series genes. The result of Gene Ontology showed that functions of times series genes mainly distributed in profiles 41, 40, 39 and 38. Seven genes with positive regulation of cell adhesion function were enriched in profile 40, and presented the same first increased model then decreased model as profile 40. The transcription module analysis showed that they mainly involved in oxidative phosphorylation pathway and ribosome pathway. Overall, our data summarized the gene expression changes in ATO treated K562-r cell lines with time and suggested that time series genes mainly regulated cell adhesive. Furthermore, our result may provide theoretical basis of molecular biology in treating acute promyelocytic leukemia.

  19. Expression profiling of hypothetical genes in Desulfovibrio vulgaris leads to improved functional annotation

    SciTech Connect

    Elias, Dwayne A.; Mukhopadhyay, Aindrila; Joachimiak, Marcin P.; Drury, Elliott C.; Redding, Alyssa M.; Yen, Huei-Che B.; Fields, Matthew W.; Hazen, Terry C.; Arkin, Adam P.; Keasling, Jay D.; Wall, Judy D.

    2008-10-27

    Hypothetical and conserved hypothetical genes account for>30percent of sequenced bacterial genomes. For the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough, 347 of the 3634 genes were annotated as conserved hypothetical (9.5percent) along with 887 hypothetical genes (24.4percent). Given the large fraction of the genome, it is plausible that some of these genes serve critical cellular roles. The study goals were to determine which genes were expressed and provide a more functionally based annotation. To accomplish this, expression profiles of 1234 hypothetical and conserved genes were used from transcriptomic datasets of 11 environmental stresses, complemented with shotgun LC-MS/MS and AMT tag proteomic data. Genes were divided into putatively polycistronic operons and those predicted to be monocistronic, then classified by basal expression levels and grouped according to changes in expression for one or multiple stresses. 1212 of these genes were transcribed with 786 producing detectable proteins. There was no evidence for expression of 17 predicted genes. Except for the latter, monocistronic gene annotation was expanded using the above criteria along with matching Clusters of Orthologous Groups. Polycistronic genes were annotated in the same manner with inferences from their proximity to more confidently annotated genes. Two targeted deletion mutants were used as test cases to determine the relevance of the inferred functional annotations.

  20. Afforestation alters the composition of functional genes in soil and biogeochemical processes in South American grasslands

    SciTech Connect

    Berthrong, Sean T; Schadt, Christopher Warren; Pineiro, Gervasio; Jackson, Robert B

    2009-01-01

    Soil microbes are highly diverse and control most soil biogeochemical reactions. We examined how microbial functional genes and biogeochemical pools responded to the altered chemical inputs accompanying land use change. We examined paired native grasslands and adjacent Eucalyptus plantations (previously grassland) in Uruguay, a region that lacked forests before European settlement. Along with measurements of soil carbon, nitrogen, and bacterial diversity, we analyzed functional genes using the GeoChip 2.0 microarray, which simultaneously quantified several thousand genes involved in soil carbon and nitrogen cycling. Plantations and grassland differed significantly in functional gene profiles, bacterial diversity, and biogeochemical pool sizes. Most grassland profiles were similar, but plantation profiles generally differed from those of grasslands due to differences in functional gene abundance across diverse taxa. Eucalypts decreased ammonification and N fixation functional genes by 11% and 7.9% (P < 0.01), which correlated with decreased microbial biomass N and more NH{sub 4}{sup +} in plantation soils. Chitinase abundance decreased 7.8% in plantations compared to levels in grassland (P = 0.017), and C polymer-degrading genes decreased by 1.5% overall (P < 0.05), which likely contributed to 54% (P < 0.05) more C in undecomposed extractable soil pools and 27% less microbial C (P < 0.01) in plantation soils. In general, afforestation altered the abundance of many microbial functional genes, corresponding with changes in soil biogeochemistry, in part through altered abundance of overall functional gene types rather than simply through changes in specific taxa. Such changes in microbial functional genes correspond with altered C and N storage and have implications for long-term productivity in these soils.

  1. Functional gene group analysis indicates no role for heterotrimeric G proteins in cognitive ability.

    PubMed

    Hill, W David; de Leeuw, Christiaan; Davies, Gail; Liewald, David Cherry McLachlan; Payton, Anthony; Craig, Leone C A; Whalley, Lawrence J; Horan, Mike; Ollier, William; Starr, John M; Pendleton, Neil; Posthuma, Danielle; Bates, Timothy C; Deary, Ian J

    2014-01-01

    Previous functional gene group analyses implicated common single nucleotide polymorphisms (SNPs) in heterotrimeric G protein coding genes as being associated with differences in human intelligence. Here, we sought to replicate this finding using five independent cohorts of older adults including current IQ and childhood IQ, and using both gene- and SNP-based analytic strategies. No significant associations were found between variation in heterotrimeric G protein genes and intelligence in any cohort at either of the two time points. These results indicate that, whereas G protein systems are important in cognition, common genetic variation in these genes is unlikely to be a substantial influence on human intelligence differences. PMID:24626473

  2. Baculoviruses deficient in ie1 gene function abrogate viral gene expression in transduced mammalian cells

    SciTech Connect

    Efrose, Rodica; Swevers, Luc; Iatrou, Kostas

    2010-10-25

    One of the newest niches for baculoviruses-based technologies is their use as vectors for mammalian cell transduction and gene therapy applications. However, an outstanding safety issue related to such use is the residual expression of viral genes in infected mammalian cells. Here we show that infectious baculoviruses lacking the major transcriptional regulator, IE1, can be produced in insect host cells stably transformed with IE1 expression constructs lacking targets of homologous recombination that could promote the generation of wt-like revertants. Such ie1-deficient baculoviruses are unable to direct viral gene transcription to any appreciable degree and do not replicate in normal insect host cells. Most importantly, the residual viral gene expression, which occurs in mammalian cells infected with wt baculoviruses is reduced 10 to 100 fold in cells infected with ie1-deficient baculoviruses. Thus, ie1-deficient baculoviruses offer enhanced safety features to baculovirus-based vector systems destined for use in gene therapy applications.

  3. Management with willow short rotation coppice increase the functional gene diversity and functional activity of a heavy metal polluted soil.

    PubMed

    Xue, K; van Nostrand, J D; Vangronsveld, J; Witters, N; Janssen, J O; Kumpiene, J; Siebielec, G; Galazka, R; Giagnoni, L; Arenella, M; Zhou, J-Z; Renella, G

    2015-11-01

    We studied the microbial functional diversity, biochemical activity, heavy metals (HM) availability and soil toxicity of Cd, Pb and Zn contaminated soils, kept under grassland or short rotation coppice (SRC) to attenuate the risks associated with HM contamination and restore the soil ecological functions. Soil microbial functional diversity was analyzed by the GeoChip, a functional gene microarray containing probes for genes involved in nutrient cycling, metal resistance and stress response. Soil under SRC showed a higher abundance of microbial genes involved in C, N, P and S cycles and resistance to various HM, higher microbial biomass, respiration and enzyme activity rates, and lower HM availability than the grassland soil. The linkages between functional genes of soil microbial communities and soil chemical properties, HM availability and biochemical activity were also investigated. Soil toxicity and N, P and Pb availability were important factors in shaping the microbial functional diversity, as determined by CCA. We concluded that in HM contaminated soils the microbial functional diversity was positively influenced by SRC management through the reduction of HM availability and soil toxicity increase of nutrient cycling. The presented results can be important in predicting the long term environmental sustainability of plant-based soil remediation.

  4. An improved chemically inducible gene switch that functions in the monocotyledonous plant sugar cane.

    PubMed

    Kinkema, Mark; Geijskes, R Jason; Shand, Kylie; Coleman, Heather D; De Lucca, Paulo C; Palupe, Anthony; Harrison, Mark D; Jepson, Ian; Dale, James L; Sainz, Manuel B

    2014-03-01

    Chemically inducible gene switches can provide precise control over gene expression, enabling more specific analyses of gene function and expanding the plant biotechnology toolkit beyond traditional constitutive expression systems. The alc gene expression system is one of the most promising chemically inducible gene switches in plants because of its potential in both fundamental research and commercial biotechnology applications. However, there are no published reports demonstrating that this versatile gene switch is functional in transgenic monocotyledonous plants, which include some of the most important agricultural crops. We found that the original alc gene switch was ineffective in the monocotyledonous plant sugar cane, and describe a modified alc system that is functional in this globally significant crop. A promoter consisting of tandem copies of the ethanol receptor inverted repeat binding site, in combination with a minimal promoter sequence, was sufficient to give enhanced sensitivity and significantly higher levels of ethanol inducible gene expression. A longer CaMV 35S minimal promoter than was used in the original alc gene switch also substantially improved ethanol inducibility. Treating the roots with ethanol effectively induced the modified alc system in sugar cane leaves and stem, while an aerial spray was relatively ineffective. The extension of this chemically inducible gene expression system to sugar cane opens the door to new opportunities for basic research and crop biotechnology.

  5. EvoCor: a platform for predicting functionally related genes using phylogenetic and expression profiles.

    PubMed

    Dittmar, W James; McIver, Lauren; Michalak, Pawel; Garner, Harold R; Valdez, Gregorio

    2014-07-01

    The wealth of publicly available gene expression and genomic data provides unique opportunities for computational inference to discover groups of genes that function to control specific cellular processes. Such genes are likely to have co-evolved and be expressed in the same tissues and cells. Unfortunately, the expertise and computational resources required to compare tens of genomes and gene expression data sets make this type of analysis difficult for the average end-user. Here, we describe the implementation of a web server that predicts genes involved in affecting specific cellular processes together with a gene of interest. We termed the server 'EvoCor', to denote that it detects functional relationships among genes through evolutionary analysis and gene expression correlation. This web server integrates profiles of sequence divergence derived by a Hidden Markov Model (HMM) and tissue-wide gene expression patterns to determine putative functional linkages between pairs of genes. This server is easy to use and freely available at http://pilot-hmm.vbi.vt.edu/.

  6. An improved chemically inducible gene switch that functions in the monocotyledonous plant sugar cane.

    PubMed

    Kinkema, Mark; Geijskes, R Jason; Shand, Kylie; Coleman, Heather D; De Lucca, Paulo C; Palupe, Anthony; Harrison, Mark D; Jepson, Ian; Dale, James L; Sainz, Manuel B

    2014-03-01

    Chemically inducible gene switches can provide precise control over gene expression, enabling more specific analyses of gene function and expanding the plant biotechnology toolkit beyond traditional constitutive expression systems. The alc gene expression system is one of the most promising chemically inducible gene switches in plants because of its potential in both fundamental research and commercial biotechnology applications. However, there are no published reports demonstrating that this versatile gene switch is functional in transgenic monocotyledonous plants, which include some of the most important agricultural crops. We found that the original alc gene switch was ineffective in the monocotyledonous plant sugar cane, and describe a modified alc system that is functional in this globally significant crop. A promoter consisting of tandem copies of the ethanol receptor inverted repeat binding site, in combination with a minimal promoter sequence, was sufficient to give enhanced sensitivity and significantly higher levels of ethanol inducible gene expression. A longer CaMV 35S minimal promoter than was used in the original alc gene switch also substantially improved ethanol inducibility. Treating the roots with ethanol effectively induced the modified alc system in sugar cane leaves and stem, while an aerial spray was relatively ineffective. The extension of this chemically inducible gene expression system to sugar cane opens the door to new opportunities for basic research and crop biotechnology. PMID:24142380

  7. Systematic Analysis of Integrated Gene Functional Network of Four Chronic Stress-related Lifestyle Disorders

    PubMed Central

    Roy, Souvick; Chakraborty, Abhik; Ghosh, Chinmoy; Banerjee, Birendranath

    2015-01-01

    Background: Stress is a term used to define factors involved in changes in the physiological balances resulting in disease conditions. Chronic exposure to stress conditions in modern lifestyles has resulted in a group of disorders called lifestyle disorders. Genetic background and environmental factors are interrelated to lifestyle in determining the health status of individuals. Hence, identification of disease-associated genes is the primary step toward explanations of pathogenesis of these diseases. In functional genomics, large-scale molecular and physiological data are used for the identification of causative genes associated with a disease. Aim: The objective of our study was to find a common set of genes involved in chronic stress-related lifestyle diseases such as cardiovascular diseases (CVDs), type 2 diabetes (T2D), hypertension (HTN), and obesity. Materials and Methods: In our study, we have performed a systematic analysis of the functional gene network of four chronic stress-related lifestyle diseases by retrieving genes from published databases. We have tried to systematically construct a functional protein-protein interaction (PPI) network. The goals of establishing this network were the functional enrichment study of interacting partners as well as functional disease ontology annotation (FunDO) of the enriched genes. Results: This study enabled the identification of key genes involved in these stress-related lifestyle diseases by prioritizing candidate genes based on their degree of involvement. In this systematic analysis, we have found key genes for these diseases based on their involvement and association at the gene network level and PPI. Conclusion: We have deciphered a group of genes that in combination play a crucial role and may impact the function of the whole genome in the four lifestyle disorders mentioned. PMID:27330735

  8. Elevated autophagy gene expression in adipose tissue of obese humans: A potential non-cell-cycle-dependent function of E2F1

    PubMed Central

    Haim, Yulia; Blüher, Matthias; Slutsky, Noa; Goldstein, Nir; Klöting, Nora; Harman-Boehm, Ilana; Kirshtein, Boris; Ginsberg, Doron; Gericke, Martin; Guiu Jurado, Esther; Kovsan, Julia; Tarnovscki, Tanya; Kachko, Leonid; Bashan, Nava; Gepner, Yiftach; Shai, Iris; Rudich, Assaf

    2015-01-01

    Autophagy genes' expression is upregulated in visceral fat in human obesity, associating with obesity-related cardio-metabolic risk. E2F1 (E2F transcription factor 1) was shown in cancer cells to transcriptionally regulate autophagy. We hypothesize that E2F1 regulates adipocyte autophagy in obesity, associating with endocrine/metabolic dysfunction, thereby, representing non-cell-cycle function of this transcription factor. E2F1 protein (N=69) and mRNA (N=437) were elevated in visceral fat of obese humans, correlating with increased expression of ATG5 (autophagy-related 5), MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 β), but not with proliferation/cell-cycle markers. Elevated E2F1 mainly characterized the adipocyte fraction, whereas MKI67 (marker of proliferation Ki-67) was elevated in the stromal-vascular fraction of adipose tissue. In human visceral fat explants, chromatin-immunoprecipitation revealed body mass index (BMI)-correlated increase in E2F1 binding to the promoter of MAP1LC3B, but not to the classical cell cycle E2F1 target, CCND1 (cyclin D1). Clinically, omental fat E2F1 expression correlated with insulin resistance, circulating free-fatty-acids (FFA), and with decreased circulating ADIPOQ/adiponectin, associations attenuated by adjustment for autophagy genes. Overexpression of E2F1 in HEK293 cells enhanced promoter activity of several autophagy genes and autophagic flux, and sensitized to further activation of autophagy by TNF. Conversely, mouse embryonic fibroblast (MEF)-derived adipocytes from e2f1 knockout mice (e2f1−/−) exhibited lower autophagy gene expression and flux, were more insulin sensitive, and secreted more ADIPOQ. Furthermore, e2f1−/− MEF-derived adipocytes, and autophagy-deficient (by Atg7 siRNA) adipocytes were resistant to cytokines-induced decrease in ADIPOQ secretion. Jointly, upregulated E2F1 sensitizes adipose tissue autophagy to inflammatory stimuli, linking visceral obesity to adipose and systemic

  9. Intracompartmental and Intercompartmental Transcriptional Networks Coordinate the Expression of Genes for Organellar Functions1[W

    PubMed Central

    Leister, Dario; Wang, Xi; Haberer, Georg; Mayer, Klaus F.X.; Kleine, Tatjana

    2011-01-01

    Genes for mitochondrial and chloroplast proteins are distributed between the nuclear and organellar genomes. Organelle biogenesis and metabolism, therefore, require appropriate coordination of gene expression in the different compartments to ensure efficient synthesis of essential multiprotein complexes of mixed genetic origin. Whereas organelle-to-nucleus signaling influences nuclear gene expression at the transcriptional level, organellar gene expression (OGE) is thought to be primarily regulated posttranscriptionally. Here, we show that intracompartmental and intercompartmental transcriptional networks coordinate the expression of genes for organellar functions. Nearly 1,300 ATH1 microarray-based transcriptional profiles of nuclear and organellar genes for mitochondrial and chloroplast proteins in the model plant Arabidopsis (Arabidopsis thaliana) were analyzed. The activity of genes involved in organellar energy production (OEP) or OGE in each of the organelles and in the nucleus is highly coordinated. Intracompartmental networks that link the OEP and OGE gene sets serve to synchronize the expression of nucleus- and organelle-encoded proteins. At a higher regulatory level, coexpression of organellar and nuclear OEP/OGE genes typically modulates chloroplast functions but affects mitochondria only when chloroplast functions are perturbed. Under conditions that induce energy shortage, the intercompartmental coregulation of photosynthesis genes can even override intracompartmental networks. We conclude that dynamic intracompartmental and intercompartmental transcriptional networks for OEP and OGE genes adjust the activity of organelles in response to the cellular energy state and environmental stresses, and we identify candidate cis-elements involved in the transcriptional coregulation of nuclear genes. Regarding the transcriptional regulation of chloroplast genes, novel tentative target genes of σ factors are identified. PMID:21775496

  10. RNA interference can be used to disrupt gene function in tardigrades

    PubMed Central

    Tenlen, Jennifer R.; McCaskill, Shaina; Goldstein, Bob

    2012-01-01

    How morphological diversity arises is a key question in evolutionary developmental biology. As a long-term approach to address this question, we are developing the water bear Hypsibius dujardini (Phylum Tardigrada) as a model system. We expect that using a close relative of two well-studied models, Drosophila (Phylum Arthropoda) and Caenorhabditis elegans (Phylum Nematoda), will facilitate identifying genetic pathways relevant to understanding the evolution of development. Tardigrades are also valuable research subjects for investigating how organisms and biological materials can survive extreme conditions. Methods to disrupt gene activity are essential to each of these efforts, but no such method yet exists for the Phylum Tardigrada. We developed a protocol to disrupt tardigrade gene functions by double-stranded RNA-mediated RNA interference (RNAi). We show that targeting tardigrade homologs of essential developmental genes by RNAi produced embryonic lethality, whereas targeting green fluorescent protein did not. Disruption of gene functions appears to be relatively specific by two criteria: targeting distinct genes resulted in distinct phenotypes that were consistent with predicted gene functions, and by RT-PCR, RNAi reduced the level of a target mRNA and not a control mRNA. These studies represent the first evidence that gene functions can be disrupted by RNAi in the phylum Tardigrada. Our results form a platform for dissecting tardigrade gene functions for understanding the evolution of developmental mechanisms and survival in extreme environments. PMID:23187800

  11. RNA interference can be used to disrupt gene function in tardigrades.

    PubMed

    Tenlen, Jennifer R; McCaskill, Shaina; Goldstein, Bob

    2013-05-01

    How morphological diversity arises is a key question in evolutionary developmental biology. As a long-term approach to address this question, we are developing the water bear Hypsibius dujardini (Phylum Tardigrada) as a model system. We expect that using a close relative of two well-studied models, Drosophila (Phylum Arthropoda) and Caenorhabditis elegans (Phylum Nematoda), will facilitate identifying genetic pathways relevant to understanding the evolution of development. Tardigrades are also valuable research subjects for investigating how organisms and biological materials can survive extreme conditions. Methods to disrupt gene activity are essential to each of these efforts, but no such method yet exists for the Phylum Tardigrada. We developed a protocol to disrupt tardigrade gene functions by double-stranded RNA-mediated RNA interference (RNAi). We showed that targeting tardigrade homologs of essential developmental genes by RNAi produced embryonic lethality, whereas targeting green fluorescent protein did not. Disruption of gene functions appears to be relatively specific by two criteria: targeting distinct genes resulted in distinct phenotypes that were consistent with predicted gene functions and by RT-PCR, RNAi reduced the level of a target mRNA and not a control mRNA. These studies represent the first evidence that gene functions can be disrupted by RNAi in the phylum Tardigrada. Our results form a platform for dissecting tardigrade gene functions for understanding the evolution of developmental mechanisms and survival in extreme environments.

  12. RNA interference can be used to disrupt gene function in tardigrades.

    PubMed

    Tenlen, Jennifer R; McCaskill, Shaina; Goldstein, Bob

    2013-05-01

    How morphological diversity arises is a key question in evolutionary developmental biology. As a long-term approach to address this question, we are developing the water bear Hypsibius dujardini (Phylum Tardigrada) as a model system. We expect that using a close relative of two well-studied models, Drosophila (Phylum Arthropoda) and Caenorhabditis elegans (Phylum Nematoda), will facilitate identifying genetic pathways relevant to understanding the evolution of development. Tardigrades are also valuable research subjects for investigating how organisms and biological materials can survive extreme conditions. Methods to disrupt gene activity are essential to each of these efforts, but no such method yet exists for the Phylum Tardigrada. We developed a protocol to disrupt tardigrade gene functions by double-stranded RNA-mediated RNA interference (RNAi). We showed that targeting tardigrade homologs of essential developmental genes by RNAi produced embryonic lethality, whereas targeting green fluorescent protein did not. Disruption of gene functions appears to be relatively specific by two criteria: targeting distinct genes resulted in distinct phenotypes that were consistent with predicted gene functions and by RT-PCR, RNAi reduced the level of a target mRNA and not a control mRNA. These studies represent the first evidence that gene functions can be disrupted by RNAi in the phylum Tardigrada. Our results form a platform for dissecting tardigrade gene functions for understanding the evolution of developmental mechanisms and survival in extreme environments. PMID:23187800

  13. Functional analysis of 1440 Escherichia coli genes using the combination of knock-out library and phenotype microarrays.

    PubMed

    Ito, Mikito; Baba, Tomoya; Mori, Hirotada; Mori, Hideo

    2005-07-01

    Escherichia coli is one of the best elucidated organisms. However, about 40% of E. coli genes have not been assigned to their function yet. We analyzed 1440 single gene knock-out mutants using the GN2-MicroPlate, which permits assay of 95 carbon-source utilizations simultaneously. In the knock-out library there are 1044 of so called y-genes with no apparent function. The raw dataset was analyzed and genes were interrelated by the clustering method of the GeneSpring software. In the resulted dendrogram of genes, a group of genes with known and related function tended to be assembled into a cluster. Our clustering method would be useful for functional assignment of so called y-genes with no apparent function, since the resulted dendrogram could connect y-genes to phenotype and function of well-studied genes.

  14. Finding New Order in Biological Functions from the Network Structure of Gene Annotations

    PubMed Central

    Glass, Kimberly; Girvan, Michelle

    2015-01-01

    The Gene Ontology (GO) provides biologists with a controlled terminology that describes how genes are associated with functions and how functional terms are related to one another. These term-term relationships encode how scientists conceive the organization of biological functions, and they take the form of a directed acyclic graph (DAG). Here, we propose that the network structure of gene-term annotations made using GO can be employed to establish an alternative approach for grouping functional terms that captures intrinsic functional relationships that are not evident in the hierarchical structure established in the GO DAG. Instead of relying on an externally defined organization for biological functions, our approach connects biological functions together if they are performed by the same genes, as indicated in a compendium of gene annotation data from numerous different sources. We show that grouping terms by this alternate scheme provides a new framework with which to describe and predict the functions of experimentally identified sets of genes. PMID:26588252

  15. Diverse Gene Expression in Human Regulatory T Cell Subsets Uncovers Connection between Regulatory T Cell Genes and Suppressive Function.

    PubMed

    Hua, Jing; Davis, Scott P; Hill, Jonathan A; Yamagata, Tetsuya

    2015-10-15

    Regulatory T (Treg) cells have a critical role in the control of immunity, and their diverse subpopulations may allow adaptation to different types of immune responses. In this study, we analyzed human Treg cell subpopulations in the peripheral blood by performing genome-wide expression profiling of 40 Treg cell subsets from healthy donors. We found that the human peripheral blood Treg cell population is comprised of five major genomic subgroups, represented by 16 tractable subsets with a particular cell surface phenotype. These subsets possess a range of suppressive function and cytokine secretion and can exert a genomic footprint on target effector T (Teff) cells. Correlation analysis of variability in gene expression in the subsets identified several cell surface molecules associated with Treg suppressive function, and pharmacological interrogation revealed a set of genes having causative effect. The five genomic subgroups of Treg cells imposed a preserved pattern of gene expression on Teff cells, with a varying degree of genes being suppressed or induced. Notably, there was a cluster of genes induced by Treg cells that bolstered an autoinhibitory effect in Teff cells, and this induction appears to be governed by a different set of genes than ones involved in counteracting Teff activation. Our work shows an example of exploiting the diversity within human Treg cell subpopulations to dissect Treg cell biology. PMID:26371251

  16. The Code of Silence: Widespread Associations Between Synonymous Codon Biases and Gene Function.

    PubMed

    Supek, Fran

    2016-01-01

    Some mutations in gene coding regions exchange one synonymous codon for another, and thus do not alter the amino acid sequence of the encoded protein. Even though they are often called 'silent,' these mutations may exhibit a plethora of effects on the living cell. Therefore, they are often selected during evolution, causing synonymous codon usage biases in genomes. Comparative analyses of bacterial, archaeal, fungal, and human cancer genomes have found many links between a gene's biological role and the accrual of synonymous mutations during evolution. In particular, highly expressed genes in certain functional categories are enriched with optimal codons, which are decoded by the abundant tRNAs, thus enhancing the speed and accuracy of the translating ribosome. The set of genes exhibiting codon adaptation differs between genomes, and these differences show robust associations to organismal phenotypes. In addition to selection for translation efficiency, other distinct codon bias patterns have been found in: amino acid starvation genes, cyclically expressed genes, tissue-specific genes in animals and plants, oxidative stress response genes, cellular differentiation genes, and oncogenes. In addition, genomes of organisms harboring tRNA modifications exhibit particular codon preferences. The evolutionary trace of codon bias patterns across orthologous genes may be examined to learn about a gene's relevance to various phenotypes, or, more generally, its function in the cell. PMID:26538122

  17. Gene Expression and Functional Annotation of the Human and Mouse Choroid Plexus Epithelium

    PubMed Central

    Janssen, Sarah F.; van der Spek, Sophie J. F.; ten Brink, Jacoline B.; Essing, Anke H. W.; Gorgels, Theo G. M. F.; van der Spek, Peter J.; Jansonius, Nomdo M.; Bergen, Arthur A. B.

    2013-01-01

    Background The choroid plexus epithelium (CPE) is a lobed neuro-epithelial structure that forms the outer blood-brain barrier. The CPE protrudes into the brain ventricles and produces the cerebrospinal fluid (CSF), which is crucial for brain homeostasis. Malfunction of the CPE is possibly implicated in disorders like Alzheimer disease, hydrocephalus or glaucoma. To study human genetic diseases and potential new therapies, mouse models are widely used. This requires a detailed knowledge of similarities and differences in gene expression and functional annotation between the species. The aim of this study is to analyze and compare gene expression and functional annotation of healthy human and mouse CPE. Methods We performed 44k Agilent microarray hybridizations with RNA derived from laser dissected healthy human and mouse CPE cells. We functionally annotated and compared the gene expression data of human and mouse CPE using the knowledge database Ingenuity. We searched for common and species specific gene expression patterns and function between human and mouse CPE. We also made a comparison with previously published CPE human and mouse gene expression data. Results Overall, the human and mouse CPE transcriptomes are very similar. Their major functionalities included epithelial junctions, transport, energy production, neuro-endocrine signaling, as well as immunological, neurological and hematological functions and disorders. The mouse CPE presented two additional functions not found in the human CPE: carbohydrate metabolism and a more extensive list of (neural) developmental functions. We found three genes specifically expressed in the mouse CPE compared to human CPE, being ACE, PON1 and TRIM3 and no human specifically expressed CPE genes compared to mouse CPE. Conclusion Human and mouse CPE transcriptomes are very similar, and display many common functionalities. Nonetheless, we also identified a few genes and pathways which suggest that the CPE between mouse and

  18. Population and Functional Genomics of Neisseria Revealed with Gene-by-Gene Approaches

    PubMed Central

    Harrison, Odile B.

    2016-01-01

    Rapid low-cost whole-genome sequencing (WGS) is revolutionizing microbiology; however, complementary advances in accessible, reproducible, and rapid analysis techniques are required to realize the potential of these data. Here, investigations of the genus Neisseria illustrated the gene-by-gene conceptual approach to the organization and analysis of WGS data. Using the gene and its link to phenotype as a starting point, the BIGSdb database, which powers the PubMLST databases, enables the assembly of large open-access collections of annotated genomes that provide insight into the evolution of the Neisseria, the epidemiology of meningococcal and gonococcal disease, and mechanisms of Neisseria pathogenicity. PMID:27098959

  19. Inheritance of a functional mouse metallothionein gene in tobacco

    SciTech Connect

    Maiti, I.B.; Wagner, G.J.; Yeargan, R.; Hunt, A.G. )

    1989-04-01

    Morphologically normal plants were obtained from progeny (Ro, R1 and R2) originating from tobacco leaf tissue transformed with Agrobacterium tumefaciens containing a chimeric gene for kanamycin resistance an the mouse metallothionein cDNA gene directed by the constitutive promote 35S from CaMV. Integration and expression in R1 progeny was demonstrated by Southern, Northern blot analysis and metallothionein assay. Kanamycin resistance analysis of R1 and R2 progeny showed inheritance to be as a dominant Mendelian trait. Seedlings obtained from self-fertilized transgenic tobacco are more tolerant to cadmium stress than nontransformed controls. Cadmium accumulation in leaves of transgenic seedlings exposed to a low, field-like Cd concentration was about 20% lower than that in nontransformed controls.

  20. The first intron of the murine beta-casein gene contains a functional promoter.

    PubMed

    Kolb, Andreas

    2003-07-11

    Caseins are the major milk proteins in most mammals. Together with calcium and phosphate they form the casein micelle. The corresponding casein genes are clustered in mammalian genomes and their expression is coordinately regulated with regard to developmental and tissue specificity. Casein gene promoters are responsive to lactogenic hormones, cell-matrix, and cell-cell interactions. Transcriptional enhancer elements are found in the 5(') upstream regions of casein genes but have also been detected in the first intron of the bovine beta-casein gene. We show here that the first intron of the murine beta-casein gene has three discernible functions. First, transcriptional enhancer elements present in the intron increase the basal activity of the beta-casein promoter. In addition, these intronic enhancer elements augment the induction of the beta-casein promoter by lactogenic hormones. Finally, we demonstrate that the first intron of the murine beta-casein gene contains a functional promoter.

  1. Transcriptional networks driving enhancer function in the CFTR gene.

    PubMed

    Kerschner, Jenny L; Harris, Ann

    2012-09-01

    A critical cis-regulatory element for the CFTR (cystic fibrosis transmembrane conductance regulator) gene is located in intron 11, 100 kb distal to the promoter, with which it interacts. This sequence contains an intestine-selective enhancer and associates with enhancer signature proteins, such as p300, in addition to tissue-specific TFs (transcription factors). In the present study we identify critical TFs that are recruited to this element and demonstrate their importance in regulating CFTR expression. In vitro DNase I footprinting and EMSAs (electrophoretic mobility-shift assays) identified four cell-type-selective regions that bound TFs in vitro. ChIP (chromatin immunoprecipitation) identified FOXA1/A2 (forkhead box A1/A2), HNF1 (hepatocyte nuclear factor 1) and CDX2 (caudal-type homeobox 2) as in vivo trans-interacting factors. Mutation of their binding sites in the intron 11 core compromised its enhancer activity when measured by reporter gene assay. Moreover, siRNA (small interfering RNA)-mediated knockdown of CDX2 caused a significant reduction in endogenous CFTR transcription in intestinal cells, suggesting that this factor is critical for the maintenance of high levels of CFTR expression in these cells. The ChIP data also demonstrate that these TFs interact with multiple cis-regulatory elements across the CFTR locus, implicating a more global role in intestinal expression of the gene.

  2. Enantioselective Degradation Mechanism of Beta-Cypermethrin in Soil From the Perspective of Functional Genes.

    PubMed

    Yang, Zhong-Hua; Ji, Guo-Dong

    2015-12-01

    The behavior and mechanisms of the enantioselective degradation of beta-cypermethrin were studied in soil. The four isomers were degraded at different rates, and the enantiomer fractions of alpha-cypermethrin and theta-cypermethrin exceeded 0.5. Moreover, 3-phenoxybenzoic acid, phenol, and protocatechuic acid were detected; based on the presence of these metabolites, we predicted the degradation pathway and identified the functional genes that are related to this degradation process. We established quantitative relationships between the data on degradation kinetics and functional genes; we found that the quantitative relationships between different enantiomers differed even under the same conditions, and the genes pobA and pytH played key roles in limiting the degradation rate. Data obtained using path analysis revealed that the same gene had different direct and indirect effects on the degradation of different isomers. A mechanism was successfully proposed to explain the selective degradation of chiral compounds based on the perspective of functional genes.

  3. Predictive Integration of Gene Ontology-Driven Similarity and Functional Interactions

    PubMed Central

    Wang, Haiying; Zheng, Huiru; Bodenreider, Olivier; Chesneau, Alban

    2015-01-01

    There is a need to develop methods to automatically incorporate prior knowledge to support the prediction and validation of novel functional associations. One such important source is represented by the Gene Ontology (GO)™ and the many model organism databases of gene products annotated to the GO. We investigated quantitative relationships between the GO-driven similarity of genes and their functional interactions by analyzing different types of associations in Saccharomyces cerevisiae and Caenorhabditis elegans. Interacting genes exhibited significantly higher levels of GO-driven similarity (GOS) in comparison to random pairs of genes used as a surrogate for negative interactions. The Biological Process hierarchy provides more reliable results for co-regulatory and protein-protein interactions. GOS represent a relevant resource to support prediction of functional networks in combination with other resources. PMID:25698910

  4. Functional Dissection of an Alternatively Spliced Herpesvirus Gene by Splice Site Mutagenesis

    PubMed Central

    Schommartz, Tim; Loroch, Stefan; Alawi, Malik; Grundhoff, Adam; Sickmann, Albert

    2016-01-01

    ABSTRACT Herpesviruses have large and complex DNA genomes. The largest among the herpesviruses, those of the cytomegaloviruses, include over 170 genes. Although most herpesvirus gene products are expressed from unspliced transcripts, a substantial number of viral transcripts are spliced. Some viral transcripts are subject to alternative splicing, which leads to the expression of several proteins from a single gene. Functional analysis of individual proteins derived from an alternatively spliced gene is difficult, as deletion and nonsense mutagenesis, both common methods used in the generation of viral gene knockout mutants, affect several or all gene products at the same time. Here, we show that individual gene products of an alternatively spliced herpesvirus gene can be inactivated selectively by mutagenesis of the splice donor or acceptor site and by intron deletion or substitution mutagenesis. We used this strategy to dissect the essential M112/113 gene of murine cytomegalovirus (MCMV), which encodes the MCMV Early 1 (E1) proteins. The expression of each of the four E1 protein isoforms was inactivated individually, and the requirement for each isoform in MCMV replication was analyzed in fibroblasts, endothelial cells, and macrophages. We show that the E1 p87 isoform, but not the p33, p36, and p38 isoforms, is essential for viral replication in cell culture. Moreover, the presence of one of the two medium-size isoforms (p36 or p38) and the presence of intron 1, but not its specific sequence, are required for viral replication. This study demonstrates the usefulness of splice site mutagenesis for the functional analysis of alternatively spliced herpesvirus genes. IMPORTANCE Herpesviruses include up to 170 genes in their DNA genomes. The functions of most viral gene products remain poorly defined. The construction of viral gene knockout mutants has thus been an important tool for functional analysis of viral proteins. However, this strategy is of limited use when

  5. Crystal structure of inactive form of Rab3B

    SciTech Connect

    Zhang, Wei; Shen, Yang; Jiao, Ronghong; Liu, Yanli; Deng, Lingfu; Qi, Chao

    2012-06-28

    Rab proteins are the largest family of ras-related GTPases in eukaryotic cells. They act as directional molecular switches at membrane trafficking, including vesicle budding, cargo sorting, transport, tethering, and fusion. Here, we generated and crystallized the Rab3B:GDP complex. The structure of the complex was solved to 1.9 {angstrom} resolution and the structural base comparison with other Rab3 members provides a structural basis for the GDP/GTP switch in controlling the activity of small GTPase. The comparison of charge distribution among the members of Rab3 also indicates their different roles in vesicular trafficking.

  6. Selecting causal genes from genome-wide association studies via functionally-coherent subnetworks

    PubMed Central

    Taşan, Murat; Musso, Gabriel; Hao, Tong; Vidal, Marc; MacRae, Calum A.; Roth, Frederick P.

    2015-01-01

    While genome-wide association (GWA) studies have linked thousands of loci to human diseases, the causal genes and variants at these loci generally remain unknown. Although investigators typically focus on genes closest to the associated polymorphisms, the causal gene is often more distal. Relying on the literature to help prioritize additional candidate genes at associated loci can draw attention away from less-characterized causal genes. Here we describe a strategy that uses genome-scale ‘co-function’ networks to identify sets of mutually functionally related genes spanning multiple GWA loci. Using associations from ~100 GWA studies covering ten cancer types, this approach outperforms the common alternative strategy in ranking known cancer genes. The strategy’s power grows with more GWA loci, offering an increasing opportunity to elucidate causes of complex human disease. PMID:25532137

  7. Investigating essential gene function in Mycobacterium tuberculosis using an efficient CRISPR interference system

    PubMed Central

    Singh, Atul K.; Carette, Xavier; Potluri, Lakshmi-Prasad; Sharp, Jared D.; Xu, Ranfei; Prisic, Sladjana; Husson, Robert N.

    2016-01-01

    Despite many methodological advances that have facilitated investigation of Mycobacterium tuberculosis pathogenesis, analysis of essential gene function in this slow-growing pathogen remains difficult. Here, we describe an optimized CRISPR-based method to inhibit expression of essential genes based on the inducible expression of an enzymatically inactive Cas9 protein together with gene-specific guide RNAs (CRISPR interference). Using this system to target several essential genes of M. tuberculosis, we achieved marked inhibition of gene expression resulting in growth inhibition, changes in susceptibility to small molecule inhibitors and disruption of normal cell morphology. Analysis of expression of genes containing sequences similar to those targeted by individual guide RNAs did not reveal significant off-target effects. Advantages of this approach include the ability to compare inhibited gene expression to native levels of expression, lack of the need to alter the M. tuberculosis chromosome, the potential to titrate the extent of transcription inhibition, and the ability to avoid off-target effects. Based on the consistent inhibition of transcription and the simple cloning strategy described in this work, CRISPR interference provides an efficient approach to investigate essential gene function that may be particularly useful in characterizing genes of unknown function and potential targets for novel small molecule inhibitors. PMID:27407107

  8. Modeling Type 2 Diabetes GWAS Candidate Gene Function in hESCs.

    PubMed

    Rutter, Guy A

    2016-09-01

    Type 2 diabetes is a complex polygenic disorder that affects about 1 in 12 adults. In this issue of Cell Stem Cell, Zeng et al. (2016) elegantly combine CRISPR-based gene editing in hESCs with directed β cell differentiation to investigate the functions of genes highlighted by genome-wide association studies (GWAS) for this disease. PMID:27588741

  9. Functional network analysis of genes differentially expressed during xylogenesis in soc1ful woody Arabidopsis plants.

    PubMed

    Davin, Nicolas; Edger, Patrick P; Hefer, Charles A; Mizrachi, Eshchar; Schuetz, Mathias; Smets, Erik; Myburg, Alexander A; Douglas, Carl J; Schranz, Michael E; Lens, Frederic

    2016-06-01

    Many plant genes are known to be involved in the development of cambium and wood, but how the expression and functional interaction of these genes determine the unique biology of wood remains largely unknown. We used the soc1ful loss of function mutant - the woodiest genotype known in the otherwise herbaceous model plant Arabidopsis - to investigate the expression and interactions of genes involved in secondary growth (wood formation). Detailed anatomical observations of the stem in combination with mRNA sequencing were used to assess transcriptome remodeling during xylogenesis in wild-type and woody soc1ful plants. To interpret the transcriptome changes, we constructed functional gene association networks of differentially expressed genes using the STRING database. This analysis revealed functionally enriched gene association hubs that are differentially expressed in herbaceous and woody tissues. In particular, we observed the differential expression of genes related to mechanical stress and jasmonate biosynthesis/signaling during wood formation in soc1ful plants that may be an effect of greater tension within woody tissues. Our results suggest that habit shifts from herbaceous to woody life forms observed in many angiosperm lineages could have evolved convergently by genetic changes that modulate the gene expression and interaction network, and thereby redeploy the conserved wood developmental program. PMID:26952251

  10. From metagenomic gene discovery to enzymatic breakdown of crosslinks in agricultural fibers for functional products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    From the rumen microflora, more than twenty novel genes involved in the hydrolysis of glucuronoarabinoxylans have been discovered and isolated. The specific genes functioning in the breakdown of crosslinkages have been cloned and expressed in E. coli, and the active enzymes purified and extensively ...

  11. Endosperm transfer cell-specific genes and proteins: structure, function and applications in biotechnology

    PubMed Central

    Lopato, Sergiy; Borisjuk, Nikolai; Langridge, Peter; Hrmova, Maria

    2014-01-01

    Endosperm transfer cells (ETC) are one of four main types of cells in endosperm. A characteristic feature of ETC is the presence of cell wall in-growths that create an enlarged plasma membrane surface area. This specialized cell structure is important for the specific function of ETC, which is to transfer nutrients from maternal vascular tissue to endosperm. ETC-specific genes are of particular interest to plant biotechnologists, who use genetic engineering to improve grain quality and yield characteristics of important field crops. The success of molecular biology-based approaches to manipulating ETC function is dependent on a thorough understanding of the functions of ETC-specific genes and ETC-specific promoters. The aim of this review is to summarize the existing data on structure and function of ETC-specific genes and their products. Potential applications of ETC-specific genes, and in particular their promoters for biotechnology will be discussed. PMID:24578704

  12. Functional domains of the Xenopus laevis 5S gene promoter.

    PubMed Central

    Pieler, T; Oei, S L; Hamm, J; Engelke, U; Erdmann, V A

    1985-01-01

    To study the fine structure of the Xenopus laevis somatic 5S gene internal control region, we have created 15 different transversions using mutagenic oligonucleotide primers. The effects of these mutations on 5S DNA transcription in vitro as well as on stable complex formation with transcription factor TF III A and TF III C in crude nuclear extracts were analyzed. Mutations in the common class III 5' promoter element (nucleotides 50-61 in the 5S gene) interfere with transcription activity and stable complex formation whenever they contradict the tDNA box A consensus sequence. The second promoter element is defined by a major sequence block (nucleotides 80-89, box C) and two additional internal residues (70 and 71) at a distance of roughly one helical turn from both the major 3' and 5' control sequences; these tw