Science.gov

Sample records for 3d boundary element

  1. Dynamics of free subduction from 3-D boundary element modeling

    NASA Astrophysics Data System (ADS)

    Li, Zhong-Hai; Ribe, Neil M.

    2012-06-01

    In order better to understand the physical mechanisms underlying free subduction, we perform three-dimensional boundary-element numerical simulations of a dense fluid sheet with thickness h and viscosity η2 sinking in an `ambient mantle' with viscosity η1. The mantle layer is bounded above by a traction-free surface, and is either (1) infinitely deep or (2) underlain by a rigid boundary at a finite depth H + d, similar to the typical geometry used in laboratory experiments. Instantaneous solutions in configuration (1) show that the sheet's dimensionless `stiffness' S determines whether the slab's sinking speed is controlled by the viscosity of the ambient mantle (S < 1) or the viscosity of the sheet itself (S > 10). Time-dependent solutions with tracers in configuration (2) demonstrate a partial return flow around the leading edge of a retreating slab and return flow around its sides. The extra `edge drag' exerted by the flow around the sides causes transverse deformation of the slab, and makes the sinking speed of a 3-D slab up to 40% less than that of a 2-D slab. A systematic investigation of the slab's interaction with the bottom boundary as a function of η2/η1 and H/h delineates a rich regime diagram of different subduction modes (trench retreating, slab folding, trench advancing) and reveals a new `advancing-folding' mode in which slab folding is preceded by advancing trench motion. The solutions demonstrate that mode selection is controlled by the dip of the leading edge of the slab at the time when it first encounters the bottom boundary.

  2. An accurate quadrature technique for the contact boundary in 3D finite element computations

    NASA Astrophysics Data System (ADS)

    Duong, Thang X.; Sauer, Roger A.

    2015-01-01

    This paper presents a new numerical integration technique for 3D contact finite element implementations, focusing on a remedy for the inaccurate integration due to discontinuities at the boundary of contact surfaces. The method is based on the adaptive refinement of the integration domain along the boundary of the contact surface, and is accordingly denoted RBQ for refined boundary quadrature. It can be used for common element types of any order, e.g. Lagrange, NURBS, or T-Spline elements. In terms of both computational speed and accuracy, RBQ exhibits great advantages over a naive increase of the number of quadrature points. Also, the RBQ method is shown to remain accurate for large deformations. Furthermore, since the sharp boundary of the contact surface is determined, it can be used for various purposes like the accurate post-processing of the contact pressure. Several examples are presented to illustrate the new technique.

  3. BEST3D user's manual: Boundary Element Solution Technology, 3-Dimensional Version 3.0

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The theoretical basis and programming strategy utilized in the construction of the computer program BEST3D (boundary element solution technology - three dimensional) and detailed input instructions are provided for the use of the program. An extensive set of test cases and sample problems is included in the manual and is also available for distribution with the program. The BEST3D program was developed under the 3-D Inelastic Analysis Methods for Hot Section Components contract (NAS3-23697). The overall objective of this program was the development of new computer programs allowing more accurate and efficient three-dimensional thermal and stress analysis of hot section components, i.e., combustor liners, turbine blades, and turbine vanes. The BEST3D program allows both linear and nonlinear analysis of static and quasi-static elastic problems and transient dynamic analysis for elastic problems. Calculation of elastic natural frequencies and mode shapes is also provided.

  4. OPTIMIZATION OF 3-D IMAGE-GUIDED NEAR INFRARED SPECTROSCOPY USING BOUNDARY ELEMENT METHOD

    PubMed Central

    Srinivasan, Subhadra; Carpenter, Colin; Pogue, Brian W.; Paulsen, Keith D.

    2010-01-01

    Multimodality imaging systems combining optical techniques with MRI/CT provide high-resolution functional characterization of tissue by imaging molecular and vascular biomarkers. To optimize these hybrid systems for clinical use, faster and automatable algorithms are required for 3-D imaging. Towards this end, a boundary element model was used to incorporate tissue boundaries from MRI/CT into image formation process. This method uses surface rendering to describe light propagation in 3-D using diffusion equation. Parallel computing provided speedup of up to 54% in time of computation. Simulations showed that location of NIRS probe was crucial for quantitatively accurate estimation of tumor response. A change of up to 61% was seen between cycles 1 and 3 in monitoring tissue response to neoadjuvant chemotherapy. PMID:20523751

  5. 3D Multi-spectral Image-guided Near-infrared Spectroscopy using Boundary Element Method

    PubMed Central

    Srinivasan, Subhadra; Pogue, Brian W.; Paulsen, Keith D.

    2010-01-01

    Image guided (IG) Near-Infrared spectroscopy (NIRS) has the ability to provide high-resolution metabolic and vascular characterization of tissue, with clinical applications in diagnosis of breast cancer. This method is specific to multimodality imaging where tissue boundaries obtained from alternate modalities such as MRI/CT, are used for NIRS recovery. IG-NIRS is severely limited in 3D by challenges such as volumetric meshing of arbitrary anatomical shapes and computational burden encountered by existing models which use finite element method (FEM). We present an efficient and feasible alternative to FEM using boundary element method (BEM). The main advantage is the use of surface discretization which is reliable and more easily generated than volume grids in 3D and enables automation for large number of clinical data-sets. The BEM has been implemented for the diffusion equation to model light propagation in tissue. Image reconstruction based on BEM has been tested in a multi-threading environment using four processors which provides 60% improvement in computational time compared to a single processor. Spectral priors have been implemented in this framework and applied to a three-region problem with mean error of 6% in recovery of NIRS parameters. PMID:21179380

  6. iBem3D, a three-dimensional iterative boundary element method using angular dislocations for modeling geologic structures

    NASA Astrophysics Data System (ADS)

    Maerten, F.; Maerten, L.; Pollard, D. D.

    2014-11-01

    Most analytical solutions to engineering or geological problems are limited to simple geometries. For example, analytical solutions have been found to solve for stresses around a circular hole in a plate. To solve more complex problems, mathematicians and engineers have developed powerful computer-aided numerical methods, which can be categorized into two main types: differential methods and integral methods. The finite element method (FEM) is a differential method that was developed in the 1950s and is one of the most commonly used numerical methods today. Since its development, other differential methods, including the boundary element method (BEM), have been developed to solve different types of problems. The purpose of this paper is to describe iBem3D, formally called Poly3D, a C++ and modular 3D boundary element computer program based on the theory of angular dislocations for modeling three-dimensional (3D) discontinuities in an elastic, heterogeneous, isotropic whole- or half-space. After 20 years and more than 150 scientific publications, we present in detail the formulation behind this method, its enhancements over the years as well as some important applications in several domains of the geosciences. The main advantage of using this formulation, for describing geological objects such as faults, resides in the possibility of modeling complex geometries without gaps and overlaps between adjacent triangular dislocation elements, which is a significant shortcoming for models using rectangular dislocation elements. Reliability, speed, simplicity, and accuracy are enhanced in the latest version of the computer code. Industrial applications include subseismic fault modeling, fractured reservoir modeling, interpretation and validation of fault connectivity and reservoir compartmentalization, depleted area and fault reactivation, and pressurized wellbore stability. Academic applications include earthquake and volcano monitoring, hazard mitigation, and slope

  7. 3D finite element analysis of a metallic sphere scatterer comparison of first and second order vector absorbing boundary conditions

    NASA Astrophysics Data System (ADS)

    Kanellopoulos, V. N.; Webb, J. P.

    1993-03-01

    A 3D vector analysis of plane wave scattering by a metallic sphere using finite elements and Absorbing Boundary Conditions (ABCs) is presented. The ABCs are applied on the outer surface that truncates the infinitely extending domain. Mixed order curvilinear covariantprojection elements are used to avoid spurious corruptions. The second order ABC is superior to the first at no extra computational cost. The errors due to incomplete absorption decrease as the outer surface is moved further away from the scatterer. An error of about 1% in near-field values was obtained with the second order ABC, when the outer surface was less than half a wavelength from the scatterer. Une analyse tridimensionnelle vectorielle de la diffusion d'onde plane sur une sphère métallique utilisant des éléments finis et des Conditions aux Limites Absorbantes (CLA) est présentée. Les CLA sont appliquées sur la surface exteme tronquant le domaine s'étendant à l'infini. Des éléments curvilignes mixtes utilisant des projections covariantes sont utilisés pour éviter des solutions parasites. La CLA de second ordre est supérieure à celle de premier ordre sans effort de calcul additionnel. Les erreurs dues à l'absorption incomplète décroissent à mesure que l'on déplace la surface externe à une distance croissante du diffuseur. Un taux d'erreur d'environ 1 % dans les valeurs du champ proche a été obtenu avec les CLA de second ordre lorsque la surface externe était placée à une distance inférieure à une demi-longueur de la source de diffusion.

  8. TACO3D. 3-D Finite Element Heat Transfer Code

    SciTech Connect

    Mason, W.E.

    1992-03-04

    TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.

  9. Analytical finite element matrix elements and global matrix assembly for hierarchical 3-D vector basis functions within the hybrid finite element boundary integral method

    NASA Astrophysics Data System (ADS)

    Li, L.; Wang, K.; Li, H.; Eibert, T. F.

    2014-11-01

    A hybrid higher-order finite element boundary integral (FE-BI) technique is discussed where the higher-order FE matrix elements are computed by a fully analytical procedure and where the gobal matrix assembly is organized by a self-identifying procedure of the local to global transformation. This assembly procedure applys to both, the FE part as well as the BI part of the algorithm. The geometry is meshed into three-dimensional tetrahedra as finite elements and nearly orthogonal hierarchical basis functions are employed. The boundary conditions are implemented in a strong sense such that the boundary values of the volume basis functions are directly utilized within the BI, either for the tangential electric and magnetic fields or for the asssociated equivalent surface current densities by applying a cross product with the unit surface normals. The self-identified method for the global matrix assembly automatically discerns the global order of the basis functions for generating the matrix elements. Higher order basis functions do need more unknowns for each single FE, however, fewer FEs are needed to achieve the same satisfiable accuracy. This improvement provides a lot more flexibility for meshing and allows the mesh size to raise up to λ/3. The performance of the implemented system is evaluated in terms of computation time, accuracy and memory occupation, where excellent results with respect to precision and computation times of large scale simulations are found.

  10. 3-D Finite Element Heat Transfer

    1992-02-01

    TOPAZ3D is a three-dimensional implicit finite element computer code for heat transfer analysis. TOPAZ3D can be used to solve for the steady-state or transient temperature field on three-dimensional geometries. Material properties may be temperature-dependent and either isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functionalmore » representation of boundary conditions and internal heat generation. TOPAZ3D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.« less

  11. Characterizing accuracy of total hemoglobin recovery using contrast-detail analysis in 3D image-guided near infrared spectroscopy with the boundary element method

    PubMed Central

    Ghadyani, Hamid R.; Srinivasan, Subhadra; Pogue, Brian W.; Paulsen, Keith D.

    2010-01-01

    The quantification of total hemoglobin concentration (HbT) obtained from multi-modality image-guided near infrared spectroscopy (IG-NIRS) was characterized using the boundary element method (BEM) for 3D image reconstruction. Multi-modality IG-NIRS systems use a priori information to guide the reconstruction process. While this has been shown to improve resolution, the effect on quantitative accuracy is unclear. Here, through systematic contrast-detail analysis, the fidelity of IG-NIRS in quantifying HbT was examined using 3D simulations. These simulations show that HbT could be recovered for medium sized (20mm in 100mm total diameter) spherical inclusions with an average error of 15%, for the physiologically relevant situation of 2:1 or higher contrast between background and inclusion. Using partial 3D volume meshes to reduce the ill-posed nature of the image reconstruction, inclusions as small as 14mm could be accurately quantified with less than 15% error, for contrasts of 1.5 or higher. This suggests that 3D IG-NIRS provides quantitatively accurate results for sizes seen early in treatment cycle of patients undergoing neoadjuvant chemotherapy when the tumors are larger than 30mm. PMID:20720975

  12. Using the Low Freeze-in Height of Heavy Elements to Validate a Global 3D Solar Model with an Upper Chromospheric Boundary

    NASA Astrophysics Data System (ADS)

    Oran, R.; van der Holst, B.; Landi, E.; Gruesbeck, J. R.; Sokolov, I.; Manchester, W. B.; Gombosi, T. I.

    2012-12-01

    We present results from a global 3D magnetohydrodynamic (MHD) model extending from the top of the chromosphere to the inner heliosphere, combined with an ionic charge state evolution model for Carbon, Oxygen, Silicon and Iron ions. The MHD model is driven by Alfvenic turbulence, which is the sole source of heating. The inner boundary of the model is set at the top of the chromosphere with a temperature of 20,000K. Non ideal-MHD processes such as radiative cooling and electron heat conduction are included, as well as separate electron and proton temperatures. The speed, electron temperature and density distribution along magnetic field lines are extracted from the MHD solution and used as input to a charge state evolution model (Michigan Ionization Code, Landi et al. [2012]). Compared to similar analysis based on MHD models starting at the coronal base, where the electron temperature is already in the 1MK range, setting the inner boundary at 20,000K will allow us to fully characterize the evolution of the charge state distribution of the heavy elements accelerated into the slow and fast solar wind. In fact, the transition region is critical to the evolution of elements like Carbon and Oxygen, which are the most abundant heavy species observed by in-situ mass spectrometers. The predicted charge state distribution will be used to validate the global model in two ways. First, the predicted frozen-in charge state distribution can be directly compared to in-situ measurements in the heliosphere made by the SWICS instrument on board ACE and Ulysses. Second, the charge state values predicted in the inner corona (below 1.5 solar radii) can be combined with the CHIANTI database and the global model's 3D temperature and density distributions to calculate spectral line intensities and narrow-band images along any line of sight, to be compared with observations from the SOHO/EIT, STEREO/EUVI, Hinode/EIS and SDO/AIA instruments. We analyze both the solar minimum and maximum cases

  13. Lattice Boltzmann Method for 3-D Flows with Curved Boundary

    NASA Technical Reports Server (NTRS)

    Mei, Renwei; Shyy, Wei; Yu, Dazhi; Luo, Li-Shi

    2002-01-01

    In this work, we investigate two issues that are important to computational efficiency and reliability in fluid dynamics applications of the lattice, Boltzmann equation (LBE): (1) Computational stability and accuracy of different lattice Boltzmann models and (2) the treatment of the boundary conditions on curved solid boundaries and their 3-D implementations. Three athermal 3-D LBE models (D3QI5, D3Ql9, and D3Q27) are studied and compared in terms of efficiency, accuracy, and robustness. The boundary treatment recently developed by Filippova and Hanel and Met et al. in 2-D is extended to and implemented for 3-D. The convergence, stability, and computational efficiency of the 3-D LBE models with the boundary treatment for curved boundaries were tested in simulations of four 3-D flows: (1) Fully developed flows in a square duct, (2) flow in a 3-D lid-driven cavity, (3) fully developed flows in a circular pipe, and (4) a uniform flow over a sphere. We found that while the fifteen-velocity 3-D (D3Ql5) model is more prone to numerical instability and the D3Q27 is more computationally intensive, the 63Q19 model provides a balance between computational reliability and efficiency. Through numerical simulations, we demonstrated that the boundary treatment for 3-D arbitrary curved geometry has second-order accuracy and possesses satisfactory stability characteristics.

  14. Discrete elements for 3D microfluidics

    PubMed Central

    Bhargava, Krisna C.; Thompson, Bryant; Malmstadt, Noah

    2014-01-01

    Microfluidic systems are rapidly becoming commonplace tools for high-precision materials synthesis, biochemical sample preparation, and biophysical analysis. Typically, microfluidic systems are constructed in monolithic form by means of microfabrication and, increasingly, by additive techniques. These methods restrict the design and assembly of truly complex systems by placing unnecessary emphasis on complete functional integration of operational elements in a planar environment. Here, we present a solution based on discrete elements that liberates designers to build large-scale microfluidic systems in three dimensions that are modular, diverse, and predictable by simple network analysis techniques. We develop a sample library of standardized components and connectors manufactured using stereolithography. We predict and validate the flow characteristics of these individual components to design and construct a tunable concentration gradient generator with a scalable number of parallel outputs. We show that these systems are rapidly reconfigurable by constructing three variations of a device for generating monodisperse microdroplets in two distinct size regimes and in a high-throughput mode by simple replacement of emulsifier subcircuits. Finally, we demonstrate the capability for active process monitoring by constructing an optical sensing element for detecting water droplets in a fluorocarbon stream and quantifying their size and frequency. By moving away from large-scale integration toward standardized discrete elements, we demonstrate the potential to reduce the practice of designing and assembling complex 3D microfluidic circuits to a methodology comparable to that found in the electronics industry. PMID:25246553

  15. Diffractive optical element for creating visual 3D images.

    PubMed

    Goncharsky, Alexander; Goncharsky, Anton; Durlevich, Svyatoslav

    2016-05-01

    A method is proposed to compute and synthesize the microrelief of a diffractive optical element to produce a new visual security feature - the vertical 3D/3D switch effect. The security feature consists in the alternation of two 3D color images when the diffractive element is tilted up/down. Optical security elements that produce the new security feature are synthesized using electron-beam technology. Sample optical security elements are manufactured that produce 3D to 3D visual switch effect when illuminated by white light. Photos and video records of the vertical 3D/3D switch effect of real optical elements are presented. The optical elements developed can be replicated using standard equipment employed for manufacturing security holograms. The new optical security feature is easy to control visually, safely protected against counterfeit, and designed to protect banknotes, documents, ID cards, etc. PMID:27137530

  16. Shell Element Verification & Regression Problems for DYNA3D

    SciTech Connect

    Zywicz, E

    2008-02-01

    A series of quasi-static regression/verification problems were developed for the triangular and quadrilateral shell element formulations contained in Lawrence Livermore National Laboratory's explicit finite element program DYNA3D. Each regression problem imposes both displacement- and force-type boundary conditions to probe the five independent nodal degrees of freedom employed in the targeted formulation. When applicable, the finite element results are compared with small-strain linear-elastic closed-form reference solutions to verify select aspects of the formulations implementation. Although all problems in the suite depict the same geometry, material behavior, and loading conditions, each problem represents a unique combination of shell formulation, stabilization method, and integration rule. Collectively, the thirty-six new regression problems in the test suite cover nine different shell formulations, three hourglass stabilization methods, and three families of through-thickness integration rules.

  17. 3-D Finite Element Code Postprocessor

    1996-07-15

    TAURUS is an interactive post-processing application supporting visualization of finite element analysis results on unstructured grids. TAURUS provides the ability to display deformed geometries and contours or fringes of a large number of derived results on meshes consisting of beam, plate, shell, and solid type finite elements. Time history plotting is also available.

  18. On the Implementation of 3D Galerkin Boundary Integral Equations

    SciTech Connect

    Nintcheu Fata, Sylvain; Gray, Leonard J

    2010-01-01

    In this article, a reverse contribution technique is proposed to accelerate the construction of the dense influence matrices associated with a Galerkin approximation of singular and hypersingular boundary integral equations of mixed-type in potential theory. In addition, a general-purpose sparse preconditioner for boundary element methods has also been developed to successfully deal with ill-conditioned linear systems arising from the discretization of mixed boundary-value problems on non-smooth surfaces. The proposed preconditioner, which originates from the precorrected-FFT method, is sparse, easy to generate and apply in a Krylov subspace iterative solution of discretized boundary integral equations. Moreover, an approximate inverse of the preconditioner is implicitly built by employing an incomplete LU factorization. Numerical experiments involving mixed boundary-value problems for the Laplace equation are included to illustrate the performance and validity of the proposed techniques.

  19. Turbulence and transport in a 3D magnetic boundary

    NASA Astrophysics Data System (ADS)

    Agostini, Matteo; Carraro, Lorella; Ciaccio, Giovanni; de Masi, Gianluca; Rea, Cristina; Scarin, Paolo; Spizzo, Gianluca; Spolaore, Monica; Vianello, Nicola

    2014-10-01

    In present fusion devices the interaction between 3D magnetic field, edge kinetic properties and turbulence is a crucial issue; not only in intrinsically 3D configurations such as the stellarators, but also in tokamaks, where magnetic perturbations are applied to control ELMs and plasma wall interaction. In the RFX-mod reversed field pinch the spontaneous development at high plasma current of a helical magnetic state displays strong analogies with the aforementioned configurations. At the edge the presence of a stochastic layer and magnetic islands with a well-defined helical symmetry leads to a helical pattern of flow, pressure gradients and turbulent fluctuations: larger fluctuations and shorter correlation lengths are observed near the X-point of the magnetic island, where also a flow slowing-down occurs. Aim of this work is to study the effect of edge turbulence on particle transport in a 3D magnetic boundary, characterizing the properties of the edge blobs along the helical deformation. The magnetic topology also modifies kinetic properties, with higher pressure gradients observed close to the O-point of the island. The measurement of the time evolution of pressure gradient and blob characteristics, can clarify the mutual relation between these two quantities.

  20. 3D Finite Element Analysis of Particle-Reinforced Aluminum

    NASA Technical Reports Server (NTRS)

    Shen, H.; Lissenden, C. J.

    2002-01-01

    Deformation in particle-reinforced aluminum has been simulated using three distinct types of finite element model: a three-dimensional repeating unit cell, a three-dimensional multi-particle model, and two-dimensional multi-particle models. The repeating unit cell model represents a fictitious periodic cubic array of particles. The 3D multi-particle (3D-MP) model represents randomly placed and oriented particles. The 2D generalized plane strain multi-particle models were obtained from planar sections through the 3D-MP model. These models were used to study the tensile macroscopic stress-strain response and the associated stress and strain distributions in an elastoplastic matrix. The results indicate that the 2D model having a particle area fraction equal to the particle representative volume fraction of the 3D models predicted the same macroscopic stress-strain response as the 3D models. However, there are fluctuations in the particle area fraction in a representative volume element. As expected, predictions from 2D models having different particle area fractions do not agree with predictions from 3D models. More importantly, it was found that the microscopic stress and strain distributions from the 2D models do not agree with those from the 3D-MP model. Specifically, the plastic strain distribution predicted by the 2D model is banded along lines inclined at 45 deg from the loading axis while the 3D model prediction is not. Additionally, the triaxial stress and maximum principal stress distributions predicted by 2D and 3D models do not agree. Thus, it appears necessary to use a multi-particle 3D model to accurately predict material responses that depend on local effects, such as strain-to-failure, fracture toughness, and fatigue life.

  1. 3D unstructured mesh discontinuous finite element hydro

    SciTech Connect

    Prasad, M.K.; Kershaw, D.S.; Shaw, M.J.

    1995-07-01

    The authors present detailed features of the ICF3D hydrodynamics code used for inertial fusion simulations. This code is intended to be a state-of-the-art upgrade of the well-known fluid code, LASNEX. ICF3D employs discontinuous finite elements on a discrete unstructured mesh consisting of a variety of 3D polyhedra including tetrahedra, prisms, and hexahedra. The authors discussed details of how the ROE-averaged second-order convection was applied on the discrete elements, and how the C++ coding interface has helped to simplify implementing the many physics and numerics modules within the code package. The author emphasized the virtues of object-oriented design in large scale projects such as ICF3D.

  2. Beam and Truss Finite Element Verification for DYNA3D

    SciTech Connect

    Rathbun, H J

    2007-07-16

    The explicit finite element (FE) software program DYNA3D has been developed at Lawrence Livermore National Laboratory (LLNL) to simulate the dynamic behavior of structures, systems, and components. This report focuses on verification of beam and truss element formulations in DYNA3D. An efficient protocol has been developed to verify the accuracy of these structural elements by generating a set of representative problems for which closed-form quasi-static steady-state analytical reference solutions exist. To provide as complete coverage as practically achievable, problem sets are developed for each beam and truss element formulation (and their variants) in all modes of loading and physical orientation. Analyses with loading in the elastic and elastic-plastic regimes are performed. For elastic loading, the FE results are within 1% of the reference solutions for all cases. For beam element bending and torsion loading in the plastic regime, the response is heavily dependent on the numerical integration rule chosen, with higher refinement yielding greater accuracy (agreement to within 1%). Axial loading in the plastic regime produces accurate results (agreement to within 0.01%) for all integration rules and element formulations. Truss elements are also verified to provide accurate results (within 0.01%) for elastic and elastic-plastic loading. A sample problem to verify beam element response in ParaDyn, the parallel version DYNA3D, is also presented.

  3. Probabilistic boundary element method

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.; Raveendra, S. T.

    1989-01-01

    The purpose of the Probabilistic Structural Analysis Method (PSAM) project is to develop structural analysis capabilities for the design analysis of advanced space propulsion system hardware. The boundary element method (BEM) is used as the basis of the Probabilistic Advanced Analysis Methods (PADAM) which is discussed. The probabilistic BEM code (PBEM) is used to obtain the structural response and sensitivity results to a set of random variables. As such, PBEM performs analogous to other structural analysis codes such as finite elements in the PSAM system. For linear problems, unlike the finite element method (FEM), the BEM governing equations are written at the boundary of the body only, thus, the method eliminates the need to model the volume of the body. However, for general body force problems, a direct condensation of the governing equations to the boundary of the body is not possible and therefore volume modeling is generally required.

  4. Higher Order Lagrange Finite Elements In M3D

    SciTech Connect

    J. Chen; H.R. Strauss; S.C. Jardin; W. Park; L.E. Sugiyama; G. Fu; J. Breslau

    2004-12-17

    The M3D code has been using linear finite elements to represent multilevel MHD on 2-D poloidal planes. Triangular higher order elements, up to third order, are constructed here in order to provide M3D the capability to solve highly anisotropic transport problems. It is found that higher order elements are essential to resolve the thin transition layer characteristic of the anisotropic transport equation, particularly when the strong anisotropic direction is not aligned with one of the Cartesian coordinates. The transition layer is measured by the profile width, which is zero for infinite anisotropy. It is shown that only higher order schemes have the ability to make this layer converge towards zero when the anisotropy gets stronger and stronger. Two cases are considered. One has the strong transport direction partially aligned with one of the element edges, the other doesn't have any alignment. Both cases have the strong transport direction misaligned with the grid line by some angles.

  5. Advances in 3D electromagnetic finite element modeling

    SciTech Connect

    Nelson, E.M.

    1997-08-01

    Numerous advances in electromagnetic finite element analysis (FEA) have been made in recent years. The maturity of frequency domain and eigenmode calculations, and the growth of time domain applications is briefly reviewed. A high accuracy 3D electromagnetic finite element field solver employing quadratic hexahedral elements and quadratic mixed-order one-form basis functions will also be described. The solver is based on an object-oriented C++ class library. Test cases demonstrate that frequency errors less than 10 ppm can be achieved using modest workstations, and that the solutions have no contamination from spurious modes. The role of differential geometry and geometrical physics in finite element analysis is also discussed.

  6. 3D finite element simulations of high velocity projectile impact

    NASA Astrophysics Data System (ADS)

    Ožbolt, Joško; İrhan, Barış; Ruta, Daniela

    2015-09-01

    An explicit three-dimensional (3D) finite element (FE) code is developed for the simulation of high velocity impact and fragmentation events. The rate sensitive microplane material model, which accounts for large deformations and rate effects, is used as a constitutive law. In the code large deformation frictional contact is treated by forward incremental Lagrange multiplier method. To handle highly distorted and damaged elements the approach based on the element deletion is employed. The code is then used in 3D FE simulations of high velocity projectile impact. The results of the numerical simulations are evaluated and compared with experimental results. It is shown that it realistically predicts failure mode and exit velocities for different geometries of plain concrete slab. Moreover, the importance of some relevant parameters, such as contact friction, rate sensitivity, bulk viscosity and deletion criteria are addressed.

  7. Algorithms for Accurate and Fast Plotting of Contour Surfaces in 3D Using Hexahedral Elements

    NASA Astrophysics Data System (ADS)

    Singh, Chandan; Saini, Jaswinder Singh

    2016-07-01

    In the present study, Fast and accurate algorithms for the generation of contour surfaces in 3D are described using hexahedral elements which are popular in finite element analysis. The contour surfaces are described in the form of groups of boundaries of contour segments and their interior points are derived using the contour equation. The locations of contour boundaries and the interior points on contour surfaces are as accurate as the interpolation results obtained by hexahedral elements and thus there are no discrepancies between the analysis and visualization results.

  8. Algorithms for Accurate and Fast Plotting of Contour Surfaces in 3D Using Hexahedral Elements

    NASA Astrophysics Data System (ADS)

    Singh, Chandan; Saini, Jaswinder Singh

    2016-05-01

    In the present study, Fast and accurate algorithms for the generation of contour surfaces in 3D are described using hexahedral elements which are popular in finite element analysis. The contour surfaces are described in the form of groups of boundaries of contour segments and their interior points are derived using the contour equation. The locations of contour boundaries and the interior points on contour surfaces are as accurate as the interpolation results obtained by hexahedral elements and thus there are no discrepancies between the analysis and visualization results.

  9. Effect of a 3D surface depression on boundary layer transition

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Mughal, Shahid; Sherwin, Spencer J.

    2015-11-01

    The influence of a three-dimensional surface depression on the transitional boundary layer is investigated numerically. In the boundary layer transition, the primary mode is a Tollmien-Schlichting (TS) wave which is a viscous instability. These modes are receptive to surface roughness interacting with free stream disturbances and/or surface vibrations. In this paper, numerical calculations are carried out to investigate the effect of the depression on instability of the boundary layer. In order to implement linear analysis, two/three (2D/3D)-dimensional nonlinear Navier-Stokes equations are solved by spectral element method to generate base flows in a sufficient large domain. The linear analyses are done by the parabolic stability equations (PSE). Finally, a DNS calculation is done to simulate the boundary layer transition.

  10. 3D toroidal physics: Testing the boundaries of symmetry breakinga)

    NASA Astrophysics Data System (ADS)

    Spong, Donald A.

    2015-05-01

    Toroidal symmetry is an important concept for plasma confinement; it allows the existence of nested flux surface MHD equilibria and conserved invariants for particle motion. However, perfect symmetry is unachievable in realistic toroidal plasma devices. For example, tokamaks have toroidal ripple due to discrete field coils, optimized stellarators do not achieve exact quasi-symmetry, the plasma itself continually seeks lower energy states through helical 3D deformations, and reactors will likely have non-uniform distributions of ferritic steel near the plasma. Also, some level of designed-in 3D magnetic field structure is now anticipated for most concepts in order to provide the plasma control needed for a stable, steady-state fusion reactor. Such planned 3D field structures can take many forms, ranging from tokamaks with weak 3D edge localized mode suppression fields to stellarators with more dominant 3D field structures. This motivates the development of physics models that are applicable across the full range of 3D devices. Ultimately, the questions of how much symmetry breaking can be tolerated and how to optimize its design must be addressed for all fusion concepts. A closely coupled program of simulation, experimental validation, and design optimization is required to determine what forms and amplitudes of 3D shaping and symmetry breaking will be compatible with the requirements of future fusion reactors.

  11. 3D toroidal physics: Testing the boundaries of symmetry breaking

    SciTech Connect

    Spong, Donald A.

    2015-05-15

    Toroidal symmetry is an important concept for plasma confinement; it allows the existence of nested flux surface MHD equilibria and conserved invariants for particle motion. However, perfect symmetry is unachievable in realistic toroidal plasma devices. For example, tokamaks have toroidal ripple due to discrete field coils, optimized stellarators do not achieve exact quasi-symmetry, the plasma itself continually seeks lower energy states through helical 3D deformations, and reactors will likely have non-uniform distributions of ferritic steel near the plasma. Also, some level of designed-in 3D magnetic field structure is now anticipated for most concepts in order to provide the plasma control needed for a stable, steady-state fusion reactor. Such planned 3D field structures can take many forms, ranging from tokamaks with weak 3D edge localized mode suppression fields to stellarators with more dominant 3D field structures. This motivates the development of physics models that are applicable across the full range of 3D devices. Ultimately, the questions of how much symmetry breaking can be tolerated and how to optimize its design must be addressed for all fusion concepts. A closely coupled program of simulation, experimental validation, and design optimization is required to determine what forms and amplitudes of 3D shaping and symmetry breaking will be compatible with the requirements of future fusion reactors.

  12. Parallel 3D Mortar Element Method for Adaptive Nonconforming Meshes

    NASA Technical Reports Server (NTRS)

    Feng, Huiyu; Mavriplis, Catherine; VanderWijngaart, Rob; Biswas, Rupak

    2004-01-01

    High order methods are frequently used in computational simulation for their high accuracy. An efficient way to avoid unnecessary computation in smooth regions of the solution is to use adaptive meshes which employ fine grids only in areas where they are needed. Nonconforming spectral elements allow the grid to be flexibly adjusted to satisfy the computational accuracy requirements. The method is suitable for computational simulations of unsteady problems with very disparate length scales or unsteady moving features, such as heat transfer, fluid dynamics or flame combustion. In this work, we select the Mark Element Method (MEM) to handle the non-conforming interfaces between elements. A new technique is introduced to efficiently implement MEM in 3-D nonconforming meshes. By introducing an "intermediate mortar", the proposed method decomposes the projection between 3-D elements and mortars into two steps. In each step, projection matrices derived in 2-D are used. The two-step method avoids explicitly forming/deriving large projection matrices for 3-D meshes, and also helps to simplify the implementation. This new technique can be used for both h- and p-type adaptation. This method is applied to an unsteady 3-D moving heat source problem. With our new MEM implementation, mesh adaptation is able to efficiently refine the grid near the heat source and coarsen the grid once the heat source passes. The savings in computational work resulting from the dynamic mesh adaptation is demonstrated by the reduction of the the number of elements used and CPU time spent. MEM and mesh adaptation, respectively, bring irregularity and dynamics to the computer memory access pattern. Hence, they provide a good way to gauge the performance of computer systems when running scientific applications whose memory access patterns are irregular and unpredictable. We select a 3-D moving heat source problem as the Unstructured Adaptive (UA) grid benchmark, a new component of the NAS Parallel

  13. 3D toroidal physics: testing the boundaries of symmetry breaking

    NASA Astrophysics Data System (ADS)

    Spong, Don

    2014-10-01

    Toroidal symmetry is an important concept for plasma confinement; it allows the existence of nested flux surface MHD equilibria and conserved invariants for particle motion. However, perfect symmetry is unachievable in realistic toroidal plasma devices. For example, tokamaks have toroidal ripple due to discrete field coils, optimized stellarators do not achieve exact quasi-symmetry, the plasma itself continually seeks lower energy states through helical 3D deformations, and reactors will likely have non-uniform distributions of ferritic steel near the plasma. Also, some level of designed-in 3D magnetic field structure is now anticipated for most concepts in order to lead to a stable, steady-state fusion reactor. Such planned 3D field structures can take many forms, ranging from tokamaks with weak 3D ELM-suppression fields to stellarators with more dominant 3D field structures. There is considerable interest in the development of unified physics models for the full range of 3D effects. Ultimately, the questions of how much symmetry breaking can be tolerated and how to optimize its design must be addressed for all fusion concepts. Fortunately, significant progress is underway in theory, computation and plasma diagnostics on many issues such as magnetic surface quality, plasma screening vs. amplification of 3D perturbations, 3D transport, influence on edge pedestal structures, MHD stability effects, modification of fast ion-driven instabilities, prediction of energetic particle heat loads on plasma-facing materials, effects of 3D fields on turbulence, and magnetic coil design. A closely coupled program of simulation, experimental validation, and design optimization is required to determine what forms and amplitudes of 3D shaping and symmetry breaking will be compatible with future fusion reactors. The development of models to address 3D physics and progress in these areas will be described. This work is supported both by the US Department of Energy under Contract DE

  14. 3D Finite Element Trajectory Code with Adaptive Meshing

    NASA Astrophysics Data System (ADS)

    Ives, Lawrence; Bui, Thuc; Vogler, William; Bauer, Andy; Shephard, Mark; Beal, Mark; Tran, Hien

    2004-11-01

    Beam Optics Analysis, a new, 3D charged particle program is available and in use for the design of complex, 3D electron guns and charged particle devices. The code reads files directly from most CAD and solid modeling programs, includes an intuitive Graphical User Interface (GUI), and a robust mesh generator that is fully automatic. Complex problems can be set up, and analysis initiated in minutes. The program includes a user-friendly post processor for displaying field and trajectory data using 3D plots and images. The electrostatic solver is based on the standard nodal finite element method. The magnetostatic field solver is based on the vector finite element method and is also called during the trajectory simulation process to solve for self magnetic fields. The user imports the geometry from essentially any commercial CAD program and uses the GUI to assign parameters (voltages, currents, dielectric constant) and designate emitters (including work function, emitter temperature, and number of trajectories). The the mesh is generated automatically and analysis is performed, including mesh adaptation to improve accuracy and optimize computational resources. This presentation will provide information on the basic structure of the code, its operation, and it's capabilities.

  15. Elemental concentration distribution in human fingernails - A 3D study

    NASA Astrophysics Data System (ADS)

    Pineda-Vargas, C. A.; Mars, J. A.; Gihwala, D.

    2012-02-01

    The verification of pathologies has normally been based on analysis of blood (serum and plasma), and physiological tissue. Recently, nails and in particular human fingernails have become an important medium for pathological studies, especially those of environmental origin. The analytical technique of PIXE has been used extensively in the analysis of industrial samples and human tissue specimens. The application of the analytical technique to nails has been mainly to bulk samples. In this study we use micro-PIXE and -RBS, as both complementary and supplementary, to determine the elemental concentration distribution of human fingernails of individuals. We report on the 3D quantitative elemental concentration distributions (QECDs) of various elements that include C, N and O as major elements (10-20%), P, S, Cl, K and Ca as minor elements (1-10%) and Fe, Mn, Zn, Ti, Na, Mg, Cu, Ni, Cr, Rb, Br, Sr and Se as trace elements (less than 1%). For PIXE and RBS the specimens were bombarded with a 3 MeV proton beam. To ascertain any correlations in the quantitative elemental concentration distributions, a linear traverse analysis was performed across the width of the nail. Elemental distribution correlations were also obtained.

  16. Isoparametric 3-D Finite Element Mesh Generation Using Interactive Computer Graphics

    NASA Technical Reports Server (NTRS)

    Kayrak, C.; Ozsoy, T.

    1985-01-01

    An isoparametric 3-D finite element mesh generator was developed with direct interface to an interactive geometric modeler program called POLYGON. POLYGON defines the model geometry in terms of boundaries and mesh regions for the mesh generator. The mesh generator controls the mesh flow through the 2-dimensional spans of regions by using the topological data and defines the connectivity between regions. The program is menu driven and the user has a control of element density and biasing through the spans and can also apply boundary conditions, loads interactively.

  17. Application of edge-based finite elements and vector ABCs in 3D scattering

    NASA Technical Reports Server (NTRS)

    Chatterjee, A.; Jin, J. M.; Volakis, John L.

    1992-01-01

    A finite element absorbing boundary condition (FE-ABC) solution of the scattering by arbitrary 3-D structures is considered. The computational domain is discretized using edge-based tetrahedral elements. In contrast to the node-based elements, edge elements can treat geometries with sharp edges, are divergence-less, and easily satisfy the field continuity condition across dielectric interfaces. They do, however, lead to a higher unknown count but this is balanced by the greater sparsity of the resulting finite element matrix. Thus, the computation time required to solve such a system iteratively with a given degree of accuracy is less than the traditional node-based approach. The purpose is to examine the derivation and performance of the ABC's when applied to 2-D and 3-D problems and to discuss the specifics of our FE-ABC implementation.

  18. A finite element solver for 3-D compressible viscous flows

    NASA Technical Reports Server (NTRS)

    Reddy, K. C.; Reddy, J. N.; Nayani, S.

    1990-01-01

    Computation of the flow field inside a space shuttle main engine (SSME) requires the application of state of the art computational fluid dynamic (CFD) technology. Several computer codes are under development to solve 3-D flow through the hot gas manifold. Some algorithms were designed to solve the unsteady compressible Navier-Stokes equations, either by implicit or explicit factorization methods, using several hundred or thousands of time steps to reach a steady state solution. A new iterative algorithm is being developed for the solution of the implicit finite element equations without assembling global matrices. It is an efficient iteration scheme based on a modified nonlinear Gauss-Seidel iteration with symmetric sweeps. The algorithm is analyzed for a model equation and is shown to be unconditionally stable. Results from a series of test problems are presented. The finite element code was tested for couette flow, which is flow under a pressure gradient between two parallel plates in relative motion. Another problem that was solved is viscous laminar flow over a flat plate. The general 3-D finite element code was used to compute the flow in an axisymmetric turnaround duct at low Mach numbers.

  19. Finite element solver for 3-D compressible viscous flows

    NASA Technical Reports Server (NTRS)

    Reddy, K. C.; Reddy, J. N.

    1986-01-01

    The space shuttle main engine (SSME) has extremely complex internal flow structure. The geometry of the flow domain is three-dimensional with complicated topology. The flow is compressible, viscous, and turbulent with large gradients in flow quantities and regions of recirculations. The analysis of the flow field in SSME involves several tedious steps. One is the geometrical modeling of the particular zone of the SSME being studied. Accessing the geometry definition, digitalizing it, and developing surface interpolations suitable for an interior grid generator require considerable amount of manual labor. There are several types of grid generators available with some general-purpose finite element programs. An efficient and robust computational scheme for solving 3D Navier-Stokes equations has to be implemented. Post processing software has to be adapted to visualize and analyze the computed 3D flow field. The progress made in a project to develop software for the analysis of the flow is discussed. The technical approach to the development of the finite element scheme and the relaxation procedure are discussed. The three dimensional finite element code for the compressible Navier-Stokes equations is listed.

  20. 3D finite element model for treatment of cleft lip

    NASA Astrophysics Data System (ADS)

    Jiao, Chun; Hong, Dongming; Lu, Hongbing; Wang, Jianqi; Lin, Qin; Liang, Zhengrong

    2009-02-01

    Cleft lip is a congenital facial deformity with high occurrence rate in China. Surgical procedure involving Millard or Tennison methods is usually employed for treatment of cleft lip. However, due to the elasticity of the soft tissues and the mechanical interaction between skin and maxillary, the occurrence rate of facial abnormality or dehisce is still high after the surgery, leading to multiple operations of the patient. In this study, a framework of constructing a realistic 3D finite element model (FEM) for the treatment of cleft lip has been established. It consists of two major steps. The first one is the reconstruction of a 3D geometrical model of the cleft lip from scanning CT data. The second step is the build-up of a FEM for cleft lip using the geometric model, where the material property of all the tetrahedrons was calculated from the CT densities directly using an empirical curve. The simulation results demonstrated (1) the deformation procedure of the model step-by-step when forces were applied, (2) the stress distribution inside the model, and (3) the displacement of all elements in the model. With the computer simulation, the minimal force of having the cleft be repaired is predicted, as well as whether a given force sufficient for the treatment of a specific individual. It indicates that the proposed framework could integrate the treatment planning with stress analysis based on a realistic patient model.

  1. 3D Chemical and Elemental Imaging by STXM Spectrotomography

    SciTech Connect

    Wang, J.; Karunakaran, C.; Lu, Y.; Hormes, J.; Hitchcock, A. P.; Prange, A.; Franz, B.; Harkness, T.; Obst, M.

    2011-09-09

    Spectrotomography based on the scanning transmission x-ray microscope (STXM) at the 10ID-1 spectromicroscopy beamline of the Canadian Light Source was used to study two selected unicellular microorganisms. Spatial distributions of sulphur globules, calcium, protein, and polysaccharide in sulphur-metabolizing bacteria (Allochromatium vinosum) were determined at the S 2p, C 1s, and Ca 2p edges. 3D chemical mapping showed that the sulphur globules are located inside the bacteria with a strong spatial correlation with calcium ions (it is most probably calcium carbonate from the medium; however, with STXM the distribution and localization in the cell can be made visible, which is very interesting for a biologist) and polysaccharide-rich polymers, suggesting an influence of the organic components on the formation of the sulphur and calcium deposits. A second study investigated copper accumulating in yeast cells (Saccharomyces cerevisiae) treated with copper sulphate. 3D elemental imaging at the Cu 2p edge showed that Cu(II) is reduced to Cu(I) on the yeast cell wall. A novel needle-like wet cell sample holder for STXM spectrotomography studies of fully hydrated samples is discussed.

  2. 3-D Finite Element Analyses of the Egan Cavern Field

    SciTech Connect

    Klamerus, E.W.; Ehgartner, B.L.

    1999-02-01

    Three-dimensional finite element analyses were performed for the two gas-filled storage caverns at the Egan field, Jennings dome, Louisiana. The effects of cavern enlargement on surface subsidence, storage loss, and cavern stability were investigated. The finite element model simulated the leaching of caverns to 6 and 8 billion cubic feet (BCF) and examined their performance at various operating conditions. Operating pressures varied from 0.15 psi/ft to 0.9 psi/ft at the bottom of the lowest cemented casing. The analysis also examined the stability of the web or pillar of salt between the caverns under differential pressure loadings. The 50-year simulations were performed using JAC3D, a three dimensional finite element analysis code for nonlinear quasistatic solids. A damage criterion based on onset of dilatancy was used to evaluate cavern instability. Dilation results from the development of microfractures in salt and, hence, potential increases in permeability onset occurs well before large scale failure. The analyses predicted stable caverns throughout the 50-year period for the range of pressures investigated. Some localized salt damage was predicted near the bottom walls of the caverns if the caverns are operated at minimum pressure for long periods of time. Volumetric cavern closures over time due to creep were moderate to excessive depending on the salt creep properties and operating pressures. However, subsidence above the cavern field was small and should pose no problem, to surface facilities.

  3. 3D modeling of high-Tc superconductors by finite element software

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Coombs, T. A.

    2012-01-01

    A three-dimensional (3D) numerical model is proposed to solve the electromagnetic problems involving transport current and background field of a high-Tc superconducting (HTS) system. The model is characterized by the E-J power law and H-formulation, and is successfully implemented using finite element software. We first discuss the model in detail, including the mesh methods, boundary conditions and computing time. To validate the 3D model, we calculate the ac loss and trapped field solution for a bulk material and compare the results with the previously verified 2D solutions and an analytical solution. We then apply our model to test some typical problems such as superconducting bulk array and twisted conductors, which cannot be tackled by the 2D models. The new 3D model could be a powerful tool for researchers and engineers to investigate problems with a greater level of complicity.

  4. 3D finite element simulation of TIG weld pool

    NASA Astrophysics Data System (ADS)

    Kong, X.; Asserin, O.; Gounand, S.; Gilles, P.; Bergheau, J. M.; Medale, M.

    2012-07-01

    The aim of this paper is to propose a three-dimensional weld pool model for the moving gas tungsten arc welding (GTAW) process, in order to understand the main factors that limit the weld quality and improve the productivity, especially with respect to the welding speed. Simulation is a very powerful tool to help in understanding the physical phenomena in the weld process. A 3D finite element model of heat and fluid flow in weld pool considering free surface of the pool and traveling speed has been developed for the GTAW process. Cast3M software is used to compute all the governing equations. The free surface of the weld pool is calculated by minimizing the total surface energy. The combined effects of surface tension gradient, buoyancy force, arc pressure, arc drag force to drive the fluid flow is included in our model. The deformation of the weld pool surface and the welding speed affect fluid flow, heat flow and thus temperature gradients and molten pool dimensions. Welding trials study is presented to compare our numerical results with macrograph of the molten pool.

  5. Inflow/Outflow Boundary Conditions with Application to FUN3D

    NASA Technical Reports Server (NTRS)

    Carlson, Jan-Renee

    2011-01-01

    Several boundary conditions that allow subsonic and supersonic flow into and out of the computational domain are discussed. These boundary conditions are demonstrated in the FUN3D computational fluid dynamics (CFD) code which solves the three-dimensional Navier-Stokes equations on unstructured computational meshes. The boundary conditions are enforced through determination of the flux contribution at the boundary to the solution residual. The boundary conditions are implemented in an implicit form where the Jacobian contribution of the boundary condition is included and is exact. All of the flows are governed by the calorically perfect gas thermodynamic equations. Three problems are used to assess these boundary conditions. Solution residual convergence to machine zero precision occurred for all cases. The converged solution boundary state is compared with the requested boundary state for several levels of mesh densities. The boundary values converged to the requested boundary condition with approximately second-order accuracy for all of the cases.

  6. DREAM-3D and the importance of model inputs and boundary conditions

    NASA Astrophysics Data System (ADS)

    Friedel, Reiner; Tu, Weichao; Cunningham, Gregory; Jorgensen, Anders; Chen, Yue

    2015-04-01

    Recent work on radiation belt 3D diffusion codes such as the Los Alamos "DREAM-3D" code have demonstrated the ability of such codes to reproduce realistic magnetospheric storm events in the relativistic electron dynamics - as long as sufficient "event-oriented" boundary conditions and code inputs such as wave powers, low energy boundary conditions, background plasma densities, and last closed drift shell (outer boundary) are available. In this talk we will argue that the main limiting factor in our modeling ability is no longer our inability to represent key physical processes that govern the dynamics of the radiation belts (radial, pitch angle and energy diffusion) but rather our limitations in specifying accurate boundary conditions and code inputs. We use here DREAM-3D runs to show the sensitivity of the modeled outcomes to these boundary conditions and inputs, and also discuss alternate "proxy" approaches to obtain the required inputs from other (ground-based) sources.

  7. 3D microband boundary alignments and transitions in a cold rolled commercial purity aluminum alloy

    SciTech Connect

    George, C.; Soe, B.; King, K.; Quadir, M.Z.; Ferry, M.; Bassman, L.

    2013-05-15

    In the study of microband formation during plastic deformation of face centered cubic metals and alloys, two theories have been proposed regarding the orientations of their boundaries: (i) they are aligned parallel to crystallographic planes associated with dislocation glide (i.e. (111) planes in FCC metals), or (ii) they are aligned in accordance with the macroscopic stress state generated during deformation. In this study, high resolution 3D electron backscatter diffraction (3D EBSD) was used to investigate the morphology and crystallographic nature of microband boundaries within a 19 × 9 × 8.6 μm volume of a deformed grain in commercial purity aluminum cold rolled to 22% reduction. It was found that microband boundaries correspond to both theories of orientation. Additionally, a single surface may contain both crystallographic and non-crystallographic alignments. Misorientations across boundaries in the regions of microband triple junctions have been identified for both boundary alignments. - Highlights: ► Reconstruction of a 3D volume of crystallographic orientations from EBSD data ► Subgrain features accurately reconstructed using specially designed strategies. ► Microband boundaries contain crystallographic and non-crystallographic alignments. ► Boundaries form by crystallographic process but rotate to non-crystallographic.

  8. Parallel goal-oriented adaptive finite element modeling for 3D electromagnetic exploration

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Key, K.; Ovall, J.; Holst, M.

    2014-12-01

    We present a parallel goal-oriented adaptive finite element method for accurate and efficient electromagnetic (EM) modeling of complex 3D structures. An unstructured tetrahedral mesh allows this approach to accommodate arbitrarily complex 3D conductivity variations and a priori known boundaries. The total electric field is approximated by the lowest order linear curl-conforming shape functions and the discretized finite element equations are solved by a sparse LU factorization. Accuracy of the finite element solution is achieved through adaptive mesh refinement that is performed iteratively until the solution converges to the desired accuracy tolerance. Refinement is guided by a goal-oriented error estimator that uses a dual-weighted residual method to optimize the mesh for accurate EM responses at the locations of the EM receivers. As a result, the mesh refinement is highly efficient since it only targets the elements where the inaccuracy of the solution corrupts the response at the possibly distant locations of the EM receivers. We compare the accuracy and efficiency of two approaches for estimating the primary residual error required at the core of this method: one uses local element and inter-element residuals and the other relies on solving a global residual system using a hierarchical basis. For computational efficiency our method follows the Bank-Holst algorithm for parallelization, where solutions are computed in subdomains of the original model. To resolve the load-balancing problem, this approach applies a spectral bisection method to divide the entire model into subdomains that have approximately equal error and the same number of receivers. The finite element solutions are then computed in parallel with each subdomain carrying out goal-oriented adaptive mesh refinement independently. We validate the newly developed algorithm by comparison with controlled-source EM solutions for 1D layered models and with 2D results from our earlier 2D goal oriented

  9. Calculation by the finite element method of 3-D turbulent flow in a centrifugal pump

    NASA Astrophysics Data System (ADS)

    Combes, J. F.

    1992-02-01

    In order to solve industrial flow problems in complex geometries, a finite element code, N3S, was developed. It allows the computation of a wide variety of 2-D or 3-D unsteady incompressible flows, by solving the Reynolds averaged Navier-Stokes equations together with a k-epsilon turbulence model. Some recent developments of this code concern turbomachinery flows, where one has to take into account periodic boundary conditions, as well as Coriolis and centrifugal forces. The numerical treatment is based on a fractional step method: at each time step, an advection step is solved successively by means of a characteristic method; a diffusion step for the scalar terms; and finally, a Generalized Stokes Problem by using a preconditioned Uzawa algorithm. The space discretization uses a standard Galerkin finite element method with a mixed formulation for the velocity and pressure. An application is presented of this code to the flow inside a centrifugal pump which was extensively tested on several air and water test rigs, and for which many quasi-3-D or Euler calculations were reported. The present N3S calculation is made on a finite element mesh comprising about 28000 tetrahedrons and 43000 nodes.

  10. Heat Transfer Boundary Conditions in the RELAP5-3D Code

    SciTech Connect

    Richard A. Riemke; Cliff B. Davis; Richard R. Schultz

    2008-05-01

    The heat transfer boundary conditions used in the RELAP5-3D computer program have evolved over the years. Currently, RELAP5-3D has the following options for the heat transfer boundary conditions: (a) heat transfer correlation package option, (b) non-convective option (from radiation/conduction enclosure model or symmetry/insulated conditions), and (c) other options (setting the surface temperature to a volume fraction averaged fluid temperature of the boundary volume, obtaining the surface temperature from a control variable, obtaining the surface temperature from a time-dependent general table, obtaining the heat flux from a time-dependent general table, or obtaining heat transfer coefficients from either a time- or temperature-dependent general table). These options will be discussed, including the more recent ones.

  11. Recovering physical property information from subduction plate boundaries using 3D full-waveform seismic inversion

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Morgan, J. V.; Warner, M.

    2013-12-01

    Our understanding of subduction margin seismogenesis has been revolutionised in the last couple of decades with the discovery that the size of the seismogenic zone may not be controlled simply by temperature and a broad spectrum of seismic behaviour exists from stick-slip to stable sliding. Laboratory and numerical experiments suggest that physical properties, particularly fluid pressure may play an important role in controlling the seismic behaviour of subduction margins. Although drilling can provide information on physical properties along subduction thrust faults at point locations at relatively shallow depths, correlations between physical properties and seismic velocity using rock physics relationships are required to resolve physical properties along the margin and down-dip. Therefore, high resolution seismic velocity models are key to recovering physical property information at subduction plate boundaries away from drill sites. 3D Full waveform inversion (FWI) is a technique pioneered by the oil industry to obtain high-resolution high-fidelity models of physical properties in the sub-surface. 3D FWI involves the inversion of low-frequency (>2 to <7 Hz), early arriving (principally transmitted) seismic data, to recover the macro (intermediate to long-wavelength) velocity structure. Although 2D FWI has been used to improve velocity models of subduction plate boundaries before, 3D FWI has not yet been attempted. 3D inversions have superior convergence and accuracy, as they sample the subsurface with multi-azimuth multiply-crossing wavefields. In this contribution we perform a suite of synthetic tests to investigate if 3D FWI could be used to better resolve physical property information along subduction margin plate boundaries using conventionally collected 3D seismic data. We base our analysis on the Muroto Basin area of the Nankai margin and investigate if the acquisition parameters and geometry of the subduction margin render 3D seismic data collected across

  12. 3D prostate boundary segmentation from ultrasound images using 2D active shape models.

    PubMed

    Hodge, Adam C; Ladak, Hanif M

    2006-01-01

    Boundary outlining, or segmentation, of the prostate is an important task in diagnosis and treatment planning for prostate cancer. This paper describes an algorithm for semi-automatic, three-dimensional (3D) segmentation of the prostate boundary from ultrasound images based on two-dimensional (2D) active shape models (ASM) and rotation-based slicing. Evaluation of the algorithm used distance- and volume-based error metrics to compare algorithm generated boundary outlines to gold standard (manually generated) boundary outlines. The mean absolute distance between the algorithm and gold standard boundaries was 1.09+/-0.49 mm, the average percent absolute volume difference was 3.28+/-3.16%, and a 5x speed increase as compared manual planimetry was achieved. PMID:17946106

  13. The Wavelet Element Method. Part 2; Realization and Additional Features in 2D and 3D

    NASA Technical Reports Server (NTRS)

    Canuto, Claudio; Tabacco, Anita; Urban, Karsten

    1998-01-01

    The Wavelet Element Method (WEM) provides a construction of multiresolution systems and biorthogonal wavelets on fairly general domains. These are split into subdomains that are mapped to a single reference hypercube. Tensor products of scaling functions and wavelets defined on the unit interval are used on the reference domain. By introducing appropriate matching conditions across the interelement boundaries, a globally continuous biorthogonal wavelet basis on the general domain is obtained. This construction does not uniquely define the basis functions but rather leaves some freedom for fulfilling additional features. In this paper we detail the general construction principle of the WEM to the 1D, 2D and 3D cases. We address additional features such as symmetry, vanishing moments and minimal support of the wavelet functions in each particular dimension. The construction is illustrated by using biorthogonal spline wavelets on the interval.

  14. A 2-D Interface Element for Coupled Analysis of Independently Modeled 3-D Finite Element Subdomains

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1998-01-01

    Over the past few years, the development of the interface technology has provided an analysis framework for embedding detailed finite element models within finite element models which are less refined. This development has enabled the use of cascading substructure domains without the constraint of coincident nodes along substructure boundaries. The approach used for the interface element is based on an alternate variational principle often used in deriving hybrid finite elements. The resulting system of equations exhibits a high degree of sparsity but gives rise to a non-positive definite system which causes difficulties with many of the equation solvers in general-purpose finite element codes. Hence the global system of equations is generally solved using, a decomposition procedure with pivoting. The research reported to-date for the interface element includes the one-dimensional line interface element and two-dimensional surface interface element. Several large-scale simulations, including geometrically nonlinear problems, have been reported using the one-dimensional interface element technology; however, only limited applications are available for the surface interface element. In the applications reported to-date, the geometry of the interfaced domains exactly match each other even though the spatial discretization within each domain may be different. As such, the spatial modeling of each domain, the interface elements and the assembled system is still laborious. The present research is focused on developing a rapid modeling procedure based on a parametric interface representation of independently defined subdomains which are also independently discretized.

  15. 3D-Printing of Arteriovenous Malformations for Radiosurgical Treatment: Pushing Anatomy Understanding to Real Boundaries

    PubMed Central

    Pontoriero, Antonio; Iatì, Giuseppe; Marino, Daniele; La Torre, Domenico; Vinci, Sergio; Germanò, Antonino; Pergolizzi, Stefano; Tomasello, Francesco,

    2016-01-01

    Radiosurgery of arteriovenous malformations (AVMs) is a challenging procedure. Accuracy of target volume contouring is one major issue to achieve AVM obliteration while avoiding disastrous complications due to suboptimal treatment. We describe a technique to improve the understanding of the complex AVM angioarchitecture by 3D prototyping of individual lesions. Arteriovenous malformations of ten patients were prototyped by 3D printing using 3D rotational angiography (3DRA) as a template. A target volume was obtained using the 3DRA; a second volume was obtained, without awareness of the first volume, using 3DRA and the 3D-printed model. The two volumes were superimposed and the conjoint and disjoint volumes were measured. We also calculated the time needed to perform contouring and assessed the confidence of the surgeons in the definition of the target volumes using a six-point scale. The time required for the contouring of the target lesion was shorter when the surgeons used the 3D-printed model of the AVM (p=0.001). The average volume contoured without the 3D model was 5.6 ± 3 mL whereas it was 5.2 ± 2.9 mL with the 3D-printed model (p=0.003). The 3D prototypes proved to be spatially reliable. Surgeons were absolutely confident or very confident in all cases that the volume contoured using the 3D-printed model was plausible and corresponded to the real boundaries of the lesion. The total cost for each case was 50 euros whereas the cost of the 3D printer was 1600 euros. 3D prototyping of AVMs is a simple, affordable, and spatially reliable procedure that can be beneficial for radiosurgery treatment planning. According to our preliminary data, individual prototyping of the brain circulation provides an intuitive comprehension of the 3D anatomy of the lesion that can be rapidly and reliably translated into the target volume. PMID:27335707

  16. 3D-Printing of Arteriovenous Malformations for Radiosurgical Treatment: Pushing Anatomy Understanding to Real Boundaries.

    PubMed

    Conti, Alfredo; Pontoriero, Antonio; Iatì, Giuseppe; Marino, Daniele; La Torre, Domenico; Vinci, Sergio; Germanò, Antonino; Pergolizzi, Stefano; Tomasello, Francesco

    2016-01-01

    Radiosurgery of arteriovenous malformations (AVMs) is a challenging procedure. Accuracy of target volume contouring is one major issue to achieve AVM obliteration while avoiding disastrous complications due to suboptimal treatment. We describe a technique to improve the understanding of the complex AVM angioarchitecture by 3D prototyping of individual lesions. Arteriovenous malformations of ten patients were prototyped by 3D printing using 3D rotational angiography (3DRA) as a template. A target volume was obtained using the 3DRA; a second volume was obtained, without awareness of the first volume, using 3DRA and the 3D-printed model. The two volumes were superimposed and the conjoint and disjoint volumes were measured. We also calculated the time needed to perform contouring and assessed the confidence of the surgeons in the definition of the target volumes using a six-point scale. The time required for the contouring of the target lesion was shorter when the surgeons used the 3D-printed model of the AVM (p=0.001). The average volume contoured without the 3D model was 5.6 ± 3 mL whereas it was 5.2 ± 2.9 mL with the 3D-printed model (p=0.003). The 3D prototypes proved to be spatially reliable. Surgeons were absolutely confident or very confident in all cases that the volume contoured using the 3D-printed model was plausible and corresponded to the real boundaries of the lesion. The total cost for each case was 50 euros whereas the cost of the 3D printer was 1600 euros. 3D prototyping of AVMs is a simple, affordable, and spatially reliable procedure that can be beneficial for radiosurgery treatment planning. According to our preliminary data, individual prototyping of the brain circulation provides an intuitive comprehension of the 3D anatomy of the lesion that can be rapidly and reliably translated into the target volume. PMID:27335707

  17. Vector algorithms for geometrically nonlinear 3D finite element analysis

    NASA Technical Reports Server (NTRS)

    Whitcomb, John D.

    1989-01-01

    Algorithms for geometrically nonlinear finite element analysis are presented which exploit the vector processing capability of the VPS-32, which is closely related to the CYBER 205. By manipulating vectors (which are long lists of numbers) rather than individual numbers, very high processing speeds are obtained. Long vector lengths are obtained without extensive replication or reordering by storage of intermediate results in strategic patterns at all stages of the computations. Comparisons of execution times with those from programs using either scalar or other vector programming techniques indicate that the algorithms presented are quite efficient.

  18. Lagrange and average interpolation over 3D anisotropic elements

    NASA Astrophysics Data System (ADS)

    Acosta, Gabriel

    2001-10-01

    An average interpolation is introduced for 3-rectangles and tetrahedra, and optimal order error estimates in the H1 norm are proved. The constant in the estimate depends "weakly" (improving the results given in Durán (Math. Comp. 68 (1999) 187-199) on the uniformity of the mesh in each direction. For tetrahedra, the constant also depends on the maximum angle of the element. On the other hand, merging several known results (Acosta and Durán, SIAM J. Numer. Anal. 37 (1999) 18-36; Durán, Math. Comp. 68 (1999) 187-199; Krízek, SIAM J. Numer. Anal. 29 (1992) 513-520; Al Shenk, Math. Comp. 63 (1994) 105-119), we prove optimal order error for the -Lagrange interpolation in W1,p, p>2, with a constant depending on p as well as the maximum angle of the element. Again, under the maximum angle condition, optimal order error estimates are obtained in the H1 norm for higher degree interpolations.

  19. Finite Element Analysis of Mechanical Properties of 3D Four-directional Rectangular Braided Composites—Part 2: Validation of the 3D Finite Element Model

    NASA Astrophysics Data System (ADS)

    Li, Dian-Sen; Fang, Dai-Ning; Lu, Zi-Xing; Yang, Zhen-Yu; Jiang, Nan

    2010-08-01

    In the first part of the work, we have established a new parameterized three-dimensional (3D) finite element model (FEM) which precisely simulated the spatial configuration of the braiding yarns and considered the cross-section deformation as well as the surface contact relationship between the yarns. This paper presents a prediction of the effective elastic properties and the meso-scale mechanical response of 3D braided composites to verify the validation of the FEM. The effects of the braiding parameters on the mechanical properties are investigated in detail. By analyzing the deformation and stress nephogram of the model, a reasonable overall stress field is provided and the results well support the strength prediction. The results indicate it is convenient to predict all the elastic constants of 3D braided composites with different parameters simultaneously using the FEM. Moreover, the FEM can successfully predict the meso-scale mechanical response of 3D braided composites containing periodical structures.

  20. CFL3D Contribution to the AIAA Supersonic Shock Boundary Layer Interaction Workshop

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.

    2010-01-01

    This paper documents the CFL3D contribution to the AIAA Supersonic Shock Boundary Layer Interaction Workshop, held in Orlando, Florida in January 2010. CFL3D is a Reynolds-averaged Navier-Stokes code. Four shock boundary layer interaction cases are computed using a one-equation turbulence model widely used for other aerodynamic problems of interest. Two of the cases have experimental data available at the workshop, and two of the cases do not. The effect of grid, flux scheme, and thin-layer approximation are investigated. Comparisons are made to the available experimental data. All four cases exhibit strong three-dimensional behavior in and near the interaction regions, resulting from influences of the tunnel side-walls.

  1. OpenMP for 3D potential boundary value problems solved by PIES

    NASA Astrophysics Data System (ADS)

    KuŻelewski, Andrzej; Zieniuk, Eugeniusz

    2016-06-01

    The main purpose of this paper is examination of an application of modern parallel computing technique OpenMP to speed up the calculation in the numerical solution of parametric integral equations systems (PIES). The authors noticed, that solving more complex boundary problems by PIES sometimes requires large computing time. This paper presents the use of OpenMP and fast C++ linear algebra library Armadillo for boundary value problems modelled by 3D Laplace's equation and solved using PIES. The testing example shows that the use of mentioned technologies significantly increases speed of calculations in PIES.

  2. Segmentation of 3D EBSD data for subgrain boundary identification and feature characterization.

    PubMed

    Loeb, Andrew; Ferry, Michael; Bassman, Lori

    2016-02-01

    Subgrain structures formed during plastic deformation of metals can be observed by electron backscatter diffraction (EBSD) but are challenging to identify automatically. We have adapted a 2D image segmentation technique, fast multiscale clustering (FMC), to 3D EBSD data using a novel variance function to accommodate quaternion data. This adaptation, which has been incorporated into the free open source texture analysis software package MTEX, is capable of segmenting based on subtle and gradual variation as well as on sharp boundaries within the data. FMC has been further modified to group the resulting closed 3D segment boundaries into distinct coherent surfaces based on local normals of a triangulated surface. We demonstrate the excellent capabilities of this technique with application to 3D EBSD data sets generated from cold rolled aluminum containing well-defined microbands, cold rolled and partly recrystallized extra low carbon steel microstructure containing three magnitudes of boundary misorientations, and channel-die plane strain compressed Goss-oriented nickel crystal containing microbands with very subtle changes in orientation. PMID:26630071

  3. Coupled 2D-3D finite element method for analysis of a skin panel with a discontinuous stiffener

    NASA Technical Reports Server (NTRS)

    Wang, J. T.; Lotts, C. G.; Davis, D. D., Jr.; Krishnamurthy, T.

    1992-01-01

    This paper describes a computationally efficient analysis method which was used to predict detailed stress states in a typical composite compression panel with a discontinuous hat stiffener. A global-local approach was used. The global model incorporated both 2D shell and 3D brick elements connected by newly developed transition elements. Most of the panel was modeled with 2D elements, while 3D elements were employed to model the stiffener flange and the adjacent skin. Both linear and geometrically nonlinear analyses were performed on the global model. The effect of geometric nonlinearity induced by the eccentric load path due to the discontinuous hat stiffener was significant. The local model used a fine mesh of 3D brick elements to model the region at the end of the stiffener. Boundary conditions of the local 3D model were obtained by spline interpolation of the nodal displacements from the global analysis. Detailed in-plane and through-the-thickness stresses were calculated in the flange-skin interface near the end of the stiffener.

  4. Free-Boundary 3D Equilibria and Resistive Wall Instabilities with Extended-MHD

    NASA Astrophysics Data System (ADS)

    Ferraro, N. M.

    2015-11-01

    The interaction of the plasma with external currents, either imposed or induced, is a critical element of a wide range of important tokamak phenomena, including resistive wall mode (RWM) stability and feedback control, island penetration and locking, and disruptions. A model of these currents may be included within the domain of extended-MHD codes in a way that preserves the self-consistency, scalability, and implicitness of their numerical methods. Such a model of the resistive wall and non-axisymmetric coils is demonstrated using the M3D-C1 code for a variety of applications, including RWMs, perturbed non-axisymmetric equilibria, and a vertical displacement event (VDE) disruption. The calculated free-boundary equilibria, which include Spitzer resistivity, rotation, and two-fluid effects, are compared to external magnetic and internal thermal measurements for several DIII-D discharges. In calculations of the perturbed equilibria in ELM suppressed discharges, the tearing response at the top of the pedestal is found to correlate with the onset of ELM suppression. Nonlinear VDE calculations, initialized using a vertically unstable DIII-D equilibrium, resolve in both space and time the currents induced in the wall and on the plasma surface, and also the currents flowing between the plasma and the wall. The relative magnitude of these contributions and the total impulse to the wall depend on the resistive wall time, although the maximum axisymmetric force on the wall over the course of the VDE is found to be essentially independent of the wall conductivity. This research was supported by US DOE contracts DE-FG02-95ER54309, DE-FC02-04ER54698 and DE-AC52-07NA27344.

  5. Calculation of grain boundary normals directly from 3D microstructure images

    SciTech Connect

    Lieberman, E. J.; Rollett, A. D.; Lebensohn, R. A.; Kober, E. M.

    2015-03-11

    The determination of grain boundary normals is an integral part of the characterization of grain boundaries in polycrystalline materials. These normal vectors are difficult to quantify due to the discretized nature of available microstructure characterization techniques. The most common method to determine grain boundary normals is by generating a surface mesh from an image of the microstructure, but this process can be slow, and is subject to smoothing issues. A new technique is proposed, utilizing first order Cartesian moments of binary indicator functions, to determine grain boundary normals directly from a voxelized microstructure image. In order to validate the accuracy of this technique, the surface normals obtained by the proposed method are compared to those generated by a surface meshing algorithm. Specifically, the local divergence between the surface normals obtained by different variants of the proposed technique and those generated from a surface mesh of a synthetic microstructure constructed using a marching cubes algorithm followed by Laplacian smoothing is quantified. Next, surface normals obtained with the proposed method from a measured 3D microstructure image of a Ni polycrystal are used to generate grain boundary character distributions (GBCD) for Σ3 and Σ9 boundaries, and compared to the GBCD generated using a surface mesh obtained from the same image. Finally, the results show that the proposed technique is an efficient and accurate method to determine voxelized fields of grain boundary normals.

  6. Calculation of grain boundary normals directly from 3D microstructure images

    DOE PAGESBeta

    Lieberman, E. J.; Rollett, A. D.; Lebensohn, R. A.; Kober, E. M.

    2015-03-11

    The determination of grain boundary normals is an integral part of the characterization of grain boundaries in polycrystalline materials. These normal vectors are difficult to quantify due to the discretized nature of available microstructure characterization techniques. The most common method to determine grain boundary normals is by generating a surface mesh from an image of the microstructure, but this process can be slow, and is subject to smoothing issues. A new technique is proposed, utilizing first order Cartesian moments of binary indicator functions, to determine grain boundary normals directly from a voxelized microstructure image. In order to validate the accuracymore » of this technique, the surface normals obtained by the proposed method are compared to those generated by a surface meshing algorithm. Specifically, the local divergence between the surface normals obtained by different variants of the proposed technique and those generated from a surface mesh of a synthetic microstructure constructed using a marching cubes algorithm followed by Laplacian smoothing is quantified. Next, surface normals obtained with the proposed method from a measured 3D microstructure image of a Ni polycrystal are used to generate grain boundary character distributions (GBCD) for Σ3 and Σ9 boundaries, and compared to the GBCD generated using a surface mesh obtained from the same image. Finally, the results show that the proposed technique is an efficient and accurate method to determine voxelized fields of grain boundary normals.« less

  7. Vortex instabilities in 3D boundary layers: The relationship between Goertler and crossflow vortices

    NASA Technical Reports Server (NTRS)

    Bassom, Andrew; Hall, Philip

    1990-01-01

    The inviscid and viscous stability problems are addressed for a boundary layer which can support both Goertler and crossflow vortices. The change in structure of Goertler vortices is found when the parameter representing the degree of three-dimensionality of the basic boundary layer flow under consideration is increased. It is shown that crossflow vortices emerge naturally as this parameter is increased and ultimately become the only possible vortex instability of the flow. It is shown conclusively that at sufficiently large values of the crossflow there are no unstable Goertler vortices present in a boundary layer which, in the zero crossflow case, is centrifugally unstable. The results suggest that in many practical applications Goertler vortices cannot be a cause of transition because they are destroyed by the 3-D nature of the basic state. In swept wing flows the Goertler mechanism is probably not present for typical angles of sweep of about 20 degrees. Some discussion of the receptivity problem for vortex instabilities in weakly 3-D boundary layers is given; it is shown that inviscid modes have a coupling coefficient marginally smaller than those of the fastest growing viscous modes discussed recently by Denier, Hall, and Seddougui (1990). However the fact that the growth rates of the inviscid modes are the largest in most situations means that they are probably the most likely source of transition.

  8. Measurements of stress fields near a grain boundary: Exploring blocked arrays of dislocations in 3D

    DOE PAGESBeta

    Guo, Y.; Collins, D. M.; Tarleton, E.; Hofmann, F.; Tischler, J.; Liu, W.; Xu, R.; Wilkinson, A. J.; Britton, T. B.

    2015-06-24

    The interaction between dislocation pile-ups and grain boundaries gives rise to heterogeneous stress distributions when a structural metal is subjected to mechanical loading. Such stress heterogeneity leads to preferential sites for damage nucleation and therefore is intrinsically linked to the strength and ductility of polycrystalline metals. To date the majority of conclusions have been drawn from 2D experimental investigations at the sample surface, allowing only incomplete observations. Our purpose here is to significantly advance the understanding of such problems by providing quantitative measurements of the effects of dislocation pile up and grain boundary interactions in 3D. This is accomplished throughmore » the application of differential aperture X-ray Laue micro-diffraction (DAXM) and high angular resolution electron backscatter diffraction (HR-EBSD) techniques. Our analysis demonstrates a similar strain characterization capability between DAXM and HR-EBSD and the variation of stress intensity in 3D reveals that different parts of the same grain boundary may have different strengths in resisting slip transfer, likely due to the local grain boundary curvature.« less

  9. Measurements of stress fields near a grain boundary: Exploring blocked arrays of dislocations in 3D

    SciTech Connect

    Guo, Y.; Collins, D. M.; Tarleton, E.; Hofmann, F.; Tischler, J.; Liu, W.; Xu, R.; Wilkinson, A. J.; Britton, T. B.

    2015-06-24

    The interaction between dislocation pile-ups and grain boundaries gives rise to heterogeneous stress distributions when a structural metal is subjected to mechanical loading. Such stress heterogeneity leads to preferential sites for damage nucleation and therefore is intrinsically linked to the strength and ductility of polycrystalline metals. To date the majority of conclusions have been drawn from 2D experimental investigations at the sample surface, allowing only incomplete observations. Our purpose here is to significantly advance the understanding of such problems by providing quantitative measurements of the effects of dislocation pile up and grain boundary interactions in 3D. This is accomplished through the application of differential aperture X-ray Laue micro-diffraction (DAXM) and high angular resolution electron backscatter diffraction (HR-EBSD) techniques. Our analysis demonstrates a similar strain characterization capability between DAXM and HR-EBSD and the variation of stress intensity in 3D reveals that different parts of the same grain boundary may have different strengths in resisting slip transfer, likely due to the local grain boundary curvature.

  10. Edge-based finite element approach to the simulation of geoelectromagnetic induction in a 3-D sphere

    NASA Astrophysics Data System (ADS)

    Yoshimura, Ryokei; Oshiman, Naoto

    2002-02-01

    We present a new simulator based on an edge-based finite element method (FEM) for computing the global-scale electromagnetic (EM) induction responses in a 3-D conducting sphere excited by an external source current for a variety of frequencies. The formulation is in terms of the magnetic vector potential. The edge-element approach assigns the degrees of freedom to the edges rather than to the nodes of the element. This edge-element strictly satisfies the discontinuity of the normal boundary conditions without considering the enforced normal boundary conditions that are usually practiced in a node-based FEM. To verify our simulation code, we compare our results with those of other solvers for two test computations, corresponding to azimuthally symmetric and asymmetric models. The results are in good agreement with one another.

  11. 3D Simulation of the Entire Process of Earthquake Generation at Subduction-Zone Plate Boundaries

    NASA Astrophysics Data System (ADS)

    Matsu'Ura, M.; Hashimoto, C.; Fukuyama, E.

    2003-12-01

    In general, the entire process of earthquake generation consists of tectonic loading due to relative plate motion, quasi-static rupture nucleation, dynamic rupture propagation and stop, and restoration of fault strength. This process can be completely described by a coupled nonlinear system, which consists of an elastic/viscoelastic slip-response function that relates fault slip to shear stress change and a fault constitutive law that prescribes change in shear strength with fault slip and contact time. The shear stress and the shear strength are related with each other through boundary conditions on the fault. The driving force of this system is observed relative plate motion. The system to describe the earthquake generation cycle is conceptually quite simple. The complexity in practical modelling mainly comes from complexity in structure of the real earth. As a product of Crustal Activity Modelling Program (CAMP), which is one of the three main programs composing the Solid Earth Simulator project (1998-2003) promoted by MEXT, we have completed a physics-based predictive simulation model for the entire process of earthquake generation cycles in and around Japan, where the four plates of Pacific, North American, Philippine Sea and Eurasian are interacting with each other in a very complicated way. The total simulation system consists of a crust-mantle structure model, a tectonic loading model and a dynamic rupture model. First, we constructed a realistic 3D standard model of plate interfaces in and around Japan by applying an inversion technique to ISC hypocenter distribution data, and computed viscoelastic slip-response functions for this structure model. Second, we introduced the slip- and time-dependent fault constitutive law with an inherent strength-restoration mechanism as a basic equation governing the entire process of earthquake generation. Third, combining all these elements, we developed a simulation model for quasi-static stress accumulation due to

  12. Intuitive Terrain Reconstruction Using Height Observation-Based Ground Segmentation and 3D Object Boundary Estimation

    PubMed Central

    Song, Wei; Cho, Kyungeun; Um, Kyhyun; Won, Chee Sun; Sim, Sungdae

    2012-01-01

    Mobile robot operators must make rapid decisions based on information about the robot’s surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot’s array of sensors, but some upper parts of objects are beyond the sensors’ measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances. PMID:23235454

  13. Intuitive terrain reconstruction using height observation-based ground segmentation and 3D object boundary estimation.

    PubMed

    Song, Wei; Cho, Kyungeun; Um, Kyhyun; Won, Chee Sun; Sim, Sungdae

    2012-01-01

    Mobile robot operators must make rapid decisions based on information about the robot's surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot's array of sensors, but some upper parts of objects are beyond the sensors' measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances. PMID:23235454

  14. 3D reconstruction of grains in polycrystalline materials using a tessellation model with curved grain boundaries

    NASA Astrophysics Data System (ADS)

    Šedivý, Ondřej; Brereton, Tim; Westhoff, Daniel; Polívka, Leoš; Beneš, Viktor; Schmidt, Volker; Jäger, Aleš

    2016-06-01

    A compact and tractable representation of the grain structure of a material is an extremely valuable tool when carrying out an empirical analysis of the material's microstructure. Tessellations have proven to be very good choices for such representations. Most widely used tessellation models have convex cells with planar boundaries. Recently, however, a new tessellation model - called the generalised balanced power diagram (GBPD) - has been developed that is very flexible and can incorporate features such as curved boundaries and non-convexity of cells. In order to use a GBPD to describe the grain structure observed in empirical image data, the parameters of the model must be chosen appropriately. This typically involves solving a difficult optimisation problem. In this paper, we describe a method for fitting GBPDs to tomographic image data. This method uses simulated annealing to solve a suitably chosen optimisation problem. We then apply this method to both artificial data and experimental 3D electron backscatter diffraction (3D EBSD) data obtained in order to study the properties of fine-grained materials with superplastic behaviour. The 3D EBSD data required new alignment and segmentation procedures, which we also briefly describe. Our numerical experiments demonstrate the effectiveness of the simulated annealing approach (compared to heuristic fitting methods) and show that GBPDs are able to describe the structures of polycrystalline materials very well.

  15. Reconstruction of 3d grain boundaries from rock thin sections, using polarised light

    NASA Astrophysics Data System (ADS)

    Markus Hammes, Daniel; Peternell, Mark

    2016-04-01

    Grain boundaries affect the physical and chemical properties of polycrystalline materials significantly by initiating reactions and collecting impurities (Birchenall, 1959), and play an essential role in recrystallization (Doherty et al. 1997). In particular, the shape and crystallographic orientation of grain boundaries reveal the deformation and annealing history of rocks (Kruhl and Peternell 2002, Kuntcheva et al. 2006). However, there is a lack of non-destructive and easy-to-use computer supported methods to determine grain boundary geometries in 3D. The only available instrument using optical light to measure grain boundary angles is still the polarising microscope with attached universal stage; operated manually and time-consuming in use. Here we present a new approach to determine 3d grain boundary orientations from 2D rock thin sections. The data is recorded by using an automatic fabric analyser microscope (Peternell et al., 2010). Due to its unique arrangement of 9 light directions the highest birefringence colour due to each light direction and crystal orientation (retardation) can be determined at each pixel in the field of view. Retardation profiles across grain boundaries enable the calculation of grain boundary angle and direction. The data for all positions separating the grains are combined and further processed. In combination with the lateral position of the grain boundary, acquired using the FAME software (Hammes and Peternell, in review), the data is used to reconstruct a 3d grain boundary model. The processing of data is almost fully automatic by using MATLAB®. Only minor manual input is required. The applicability was demonstrated on quartzite samples, but the method is not solely restricted on quartz grains and other birefringent polycrystalline materials could be used instead. References: Birchenall, C.E., 1959: Physical Metallurgy. McGraw-Hill, New York. Doherty, R.D., Hughes, D.A., Humphreys, F.J., Jonas, J.J., Juul Jensen, D., Kassner, M

  16. Advanced quadratures and periodic boundary conditions in parallel 3D S{sub n} transport

    SciTech Connect

    Manalo, K.; Yi, C.; Huang, M.; Sjoden, G.

    2013-07-01

    Significant updates in numerical quadratures have warranted investigation with 3D Sn discrete ordinates transport. We show new applications of quadrature departing from level symmetric (S{sub 2}o). investigating 3 recently developed quadratures: Even-Odd (EO), Linear-Discontinuous Finite Element - Surface Area (LDFE-SA), and the non-symmetric Icosahedral Quadrature (IC). We discuss implementation changes to 3D Sn codes (applied to Hybrid MOC-Sn TITAN and 3D parallel PENTRAN) that can be performed to accommodate Icosahedral Quadrature, as this quadrature is not 90-degree rotation invariant. In particular, as demonstrated using PENTRAN, the properties of Icosahedral Quadrature are suitable for trivial application using periodic BCs versus that of reflective BCs. In addition to implementing periodic BCs for 3D Sn PENTRAN, we implemented a technique termed 'angular re-sweep' which properly conditions periodic BCs for outer eigenvalue iterative loop convergence. As demonstrated by two simple transport problems (3-group fixed source and 3-group reflected/periodic eigenvalue pin cell), we remark that all of the quadratures we investigated are generally superior to level symmetric quadrature, with Icosahedral Quadrature performing the most efficiently for problems tested. (authors)

  17. Meshing Preprocessor for the Mesoscopic 3D Finite Element Simulation of 2D and Interlock Fabric Deformation

    NASA Astrophysics Data System (ADS)

    Wendling, A.; Daniel, J. L.; Hivet, G.; Vidal-Sallé, E.; Boisse, P.

    2015-12-01

    Numerical simulation is a powerful tool to predict the mechanical behavior and the feasibility of composite parts. Among the available numerical approaches, as far as woven reinforced composites are concerned, 3D finite element simulation at the mesoscopic scale leads to a good compromise between realism and complexity. At this scale, the fibrous reinforcement is modeled by an interlacement of yarns assumed to be homogeneous that have to be accurately represented. Among the numerous issues induced by these simulations, the first one consists in providing a representative meshed geometrical model of the unit cell at the mesoscopic scale. The second one consists in enabling a fast data input in the finite element software (contacts definition, boundary conditions, elements reorientation, etc.) so as to obtain results within reasonable time. Based on parameterized 3D CAD modeling tool of unit-cells of dry fabrics already developed, this paper presents an efficient strategy which permits an automated meshing of the models with 3D hexahedral elements and to accelerate of several orders of magnitude the simulation data input. Finally, the overall modeling strategy is illustrated by examples of finite element simulation of the mechanical behavior of fabrics.

  18. Thermal analysis of 3D composites by a new fast multipole hybrid boundary node method

    NASA Astrophysics Data System (ADS)

    Miao, Yu; Wang, Qiao; Zhu, Hongping; Li, Yinping

    2014-01-01

    This paper applies the hybrid boundary node method (Hybrid BNM) for the thermal analysis of 3D composites. A new formulation is derived for the inclusion-based composites. In the new formulation, the unknowns of the interfaces are assembled only once in the final system equation, which can reduce nearly one half of degrees of freedom (DOFs) compared with the conventional multi-domain solver when there are lots of inclusions. A new version of the fast multipole method (FMM) is also coupled with the new formulation and the technique is applied to thermal analysis of composites with many inclusions. In the new fast multipole hybrid boundary node method (FM-HBNM), a diagonal form for translation operators is used and the method presented can be applied to the computation of more than 1,000,000 DOFs on a personal computer. Numerical examples are presented to analyze the thermal behavior of composites with many inclusions.

  19. 3D simulation of seismic wave propagation around a tunnel using the spectral element method

    NASA Astrophysics Data System (ADS)

    Lambrecht, L.; Friederich, W.

    2010-05-01

    We model seismic wave propagation in the environment of a tunnel for later application to reconnaissance. Elastic wave propagation can be simulated by different numerical techniques such as finite differences and pseudospectral methods. Their disadvantage is the lack of accuracy on free surfaces, numerical dispersion and inflexibility of the mesh. Here we use the software package SPECFEM3D_SESAME in an svn development version, which is based on the spectral element method (SEM) and can handle complex mesh geometries. A weak form of the elastic wave equation leads to a linear system of equations with a diagonal mass matrix, where the free surface boundary of the tunnel can be treated under realistic conditions and can be effectively implemented in parallel. We have designed a 3D external mesh including a tunnel and realistic features such as layers and holes to simulate elastic wave propagation in the zone around the tunnel. The source is acting at the tunnel surface so that we excite Rayleigh waves which propagate to the front face of the tunnel. A conversion takes place and a high amplitude S-wave is radiated in the direction of the tunnel axis. Reflections from perturbations in front of the tunnel can be measured by receivers implemented on the tunnel face. For a shallow tunnel the land surface has high influence on the wave propagation. By implementing additional receivers at this surface we intent to improve the prediction. It shows that the SEM is very capable to handle the complex geometry of the model and especially incorporates the free surfaces of the model.

  20. Development of a 3D finite element model of lens microcirculation

    PubMed Central

    2012-01-01

    Background It has been proposed that in the absence of a blood supply, the ocular lens operates an internal microcirculation system. This system delivers nutrients, removes waste products and maintains ionic homeostasis in the lens. The microcirculation is generated by spatial differences in membrane transport properties; and previously has been modelled by an equivalent electrical circuit and solved analytically. While effective, this approach did not fully account for all the anatomical and functional complexities of the lens. To encapsulate these complexities we have created a 3D finite element computer model of the lens. Methods Initially, we created an anatomically-correct representative mesh of the lens. We then implemented the Stokes and advective Nernst-Plank equations, in order to model the water and ion fluxes respectively. Next we complemented the model with experimentally-measured surface ionic concentrations as boundary conditions and solved it. Results Our model calculated the standing ionic concentrations and electrical potential gradients in the lens. Furthermore, it generated vector maps of intra- and extracellular space ion and water fluxes that are proposed to circulate throughout the lens. These fields have only been measured on the surface of the lens and our calculations are the first 3D representation of their direction and magnitude in the lens. Conclusion Values for steady state standing fields for concentration and electrical potential plus ionic and fluid fluxes calculated by our model exhibited broad agreement with observed experimental values. Our model of lens function represents a platform to integrate new experimental data as they emerge and assist us to understand how the integrated structure and function of the lens contributes to the maintenance of its transparency. PMID:22992294

  1. BOPACE 3-D (the Boeing Plastic Analysis Capability for 3-dimensional Solids Using Isoparametric Finite Elements)

    NASA Technical Reports Server (NTRS)

    Vos, R. G.; Straayer, J. W.

    1975-01-01

    The BOPACE 3-D is a finite element computer program, which provides a general family of three-dimensional isoparametric solid elements, and includes a new algorithm for improving the efficiency of the elastic-plastic-creep solution procedure. Theoretical, user, and programmer oriented sections are presented to describe the program.

  2. A new 3D finite element model of the IEC 60318-1 artificial ear

    NASA Astrophysics Data System (ADS)

    Bravo, Agustín; Barham, Richard; Ruiz, Mariano; López, Juan Manuel; DeArcas, Guillermo; Recuero, Manuel

    2008-08-01

    The artificial ear specified in IEC 60318-1 is used for the measurement of headphones and has been designed to present an acoustic load equivalent to that of normal human ears. In this respect it is specified in terms of an acoustical impedance, and modelled by a lumped parameter approach. However, this has some inherent frequency limitations and becomes less valid as the acoustic wavelength approaches the characteristic dimensions within the device. In addition, when sound propagates through structures such as narrow tubes, annular slits or over sharp corners, noticeable thermal and viscous effects take place causing further departure from the lumped parameter model. A new numerical model has therefore been developed, which gives proper consideration to the aforementioned effects. Both kinds of losses can be simulated by means of the LMS Virtual Lab acoustic software which facilitates finite and boundary element modelling of the whole artificial ear. A full 3D model of the artificial ear has therefore been developed based on key dimensional data found in IEC 60318-1. The model has been used to calculate the acoustical impedance, and the results compared with the corresponding data determined from the lumped parameter model. The numerical simulation of the artificial ear has been shown to provide realistic results, and is a powerful tool for developing a detailed understanding of the device. It is also proving valuable in the revision of IEC 60318-1 that is currently in progress.

  3. 3D Reconstruction of Interplanetary Scintillation (IPS) Remote-Sensing Data: Global Solar Wind Boundaries for Driving 3D-MHD Models

    NASA Astrophysics Data System (ADS)

    Yu, H.-S.; Jackson, B. V.; Hick, P. P.; Buffington, A.; Odstrcil, D.; Wu, C.-C.; Davies, J. A.; Bisi, M. M.; Tokumaru, M.

    2015-09-01

    The University of California, San Diego, time-dependent analyses of the heliosphere provide three-dimensional (3D) reconstructions of solar wind velocities and densities from observations of interplanetary scintillation (IPS). Using data from the Solar-Terrestrial Environment Laboratory, Japan, these reconstructions provide a real-time prediction of the global solar-wind density and velocity throughout the whole heliosphere with a temporal cadence of about one day (ips.ucsd.edu). Updates to this modeling effort continue: in the present article, near-Sun results extracted from the time-dependent 3D reconstruction are used as inner boundary conditions to drive 3D-MHD models ( e.g. ENLIL and H3D-MHD). This allows us to explore the differences between the IPS kinematic-model data-fitting procedure and current 3D-MHD modeling techniques. The differences in these techniques provide interesting insights into the physical principles governing the expulsion of coronal mass ejections (CMEs). Here we detail for the first time several specific CMEs and an induced shock that occurred in September 2011 that demonstrate some of the issues resulting from these analyses.

  4. A feasibility study of a 3-D finite element solution scheme for aeroengine duct acoustics

    NASA Technical Reports Server (NTRS)

    Abrahamson, A. L.

    1980-01-01

    The advantage from development of a 3-D model of aeroengine duct acoustics is the ability to analyze axial and circumferential liner segmentation simultaneously. The feasibility of a 3-D duct acoustics model was investigated using Galerkin or least squares element formulations combined with Gaussian elimination, successive over-relaxation, or conjugate gradient solution algorithms on conventional scalar computers and on a vector machine. A least squares element formulation combined with a conjugate gradient solver on a CDC Star vector computer initially appeared to have great promise, but severe difficulties were encountered with matrix ill-conditioning. These difficulties in conditioning rendered this technique impractical for realistic problems.

  5. Electron collisions with Fe-peak elements: Forbidden transitions between the low lying valence states 3d{sup 6}, 3d{sup 5}4s, and 3d{sup 5}4p of Fe III

    SciTech Connect

    McLaughlin, B.M. . E-mail: b.mclaughlin@qub.ac.uk; Scott, M.P.; Sunderland, A.G.; Noble, C.J.; Burke, V.M.; Ramsbottom, C.A.; Reid, R.H.G.; Hibbert, A.; Bell, K.L.; Burke, P.G.

    2007-01-15

    Effective collision strengths are presented for the Fe-peak element Fe III at electron temperatures (T {sub e} in degrees Kelvin) in the range 2 x 10{sup 3} to 1 x 10{sup 6}. Forbidden transitions results are given between the 3d{sup 6}, 3d{sup 5}4s, and the 3d{sup 5}4p manifolds applicable to the modeling of laboratory and astrophysical plasmas.

  6. Detection and Reconstruction of an Implicit Boundary Surface by Adaptively Expanding A Small Surface Patch in a 3D Image.

    PubMed

    Wang, Lisheng; Wang, Pai; Cheng, Liuhang; Ma, Yu; Wu, Shenzhi; Wang, Yu-Ping; Xu, Zongben

    2014-11-01

    In this paper we propose a novel and easy to use 3D reconstruction method. With the method, users only need to specify a small boundary surface patch in a 2D section image, and then an entire continuous implicit boundary surface (CIBS) can be automatically reconstructed from a 3D image. In the method, a hierarchical tracing strategy is used to grow the known boundary surface patch gradually in the 3D image. An adaptive detection technique is applied to detect boundary surface patches from different local regions. The technique is based on both context dependence and adaptive contrast detection as in the human vision system. A recognition technique is used to distinguish true boundary surface patches from the false ones in different cubes. By integrating these different approaches, a high-resolution CIBS model can be automatically reconstructed by adaptively expanding the small boundary surface patch in the 3D image. The effectiveness of our method is demonstrated by its applications to a variety of real 3D images, where the CIBS with complex shapes/branches and with varying gray values/gradient magnitudes can be well reconstructed. Our method is easy to use, which provides a valuable tool for 3D image visualization and analysis as needed in many applications. PMID:26355329

  7. An augmented Lagrangian finite element formulation for 3D contact of biphasic tissues.

    PubMed

    Guo, Hongqiang; Spilker, Robert L

    2014-01-01

    Biphasic contact analysis is essential to obtain a complete understanding of soft tissue biomechanics, and the importance of physiological structure on the joint biomechanics has long been recognised; however, up to date, there are no successful developments of biphasic finite element contact analysis for three-dimensional (3D) geometries of physiological joints. The aim of this study was to develop a finite element formulation for biphasic contact of 3D physiological joints. The augmented Lagrangian method was used to enforce the continuity of contact traction and fluid pressure across the contact interface. The biphasic contact method was implemented in the commercial software COMSOL Multiphysics 4.2(®) (COMSOL, Inc., Burlington, MA). The accuracy of the implementation was verified using 3D biphasic contact problems, including indentation with a flat-ended indenter and contact of glenohumeral cartilage layers. The ability of the method to model multibody biphasic contact of physiological joints was proved by a 3D knee model. The 3D biphasic finite element contact method developed in this study can be used to study the biphasic behaviours of the physiological joints. PMID:23181617

  8. Skin-friction measurements in a 3-D, supersonic shock-wave/boundary-layer interaction

    NASA Astrophysics Data System (ADS)

    Wideman, Jeffrey Kenneth

    An experimental study has been conducted in a three-dimensional, supersonic shockwave/boundary-layer interaction (3-D SW/BLI) with the intent of providing accurate experimental data for turbulence modeling and computational fluid dynamics (CFD) code validation. The experiment was performed in the High Reynolds Channel 1 (HRCI) wind tunnel at NASA Ames Research Center. The test was conducted at a Mach number of M(sub infinity) = 2.89 and at a Reynolds number of Re = 15 x 106/m. The model consisted of a sting-supported cylinder aligned with the tunnel axis and a 20 deg half-angle conical flare offset 1.27 cm from the cylinder centerline. The generated shock system was verified to be steady by schlieren visualization. The highlight of the study was the acquisition of 3-D skin-friction data by a laser interferometric skin friction (LISF) meter. Surface pressure measurements were obtained in 15 deg intervals around the cylinder and flare. Additional measurements included surface oil flow and laser light sheet illumination which were used to document the flow topology. Skin-friction measurements are proving to be a very challenging test of a CFD code predictive capability. However, at the present time there is a very limited amount of accurate skin-friction data in complex flows such as in 3-D SW/BLI. The LISF technique is advantageous as compared to other skin-friction measurement techniques for application in complex flows like the present since it is non-intrusive and is capable of performing measurements in flows with large shear and pressure gradients where the reliability of other techniques is questionable. Thus, the prevent skin-friction data will prove valuable to turbulence modeling and CFD code validation efforts.

  9. Multimode observations and 3D magnetic control of the boundary of a tokamak plasma

    NASA Astrophysics Data System (ADS)

    Levesque, J. P.; Rath, N.; Shiraki, D.; Angelini, S.; Bialek, J.; Byrne, P. J.; DeBono, B. A.; Hughes, P. E.; Mauel, M. E.; Navratil, G. A.; Peng, Q.; Rhodes, D. J.; Stoafer, C. C.

    2013-07-01

    We present high-resolution detection and control of the 3D magnetic boundary in the High Beta Tokamak-Extended Pulse (HBT-EP) device. Measurements of non-axisymmetric radial and poloidal fields are made using 216 magnetic sensors positioned near the plasma surface. Control of 3D fields is accomplished using 40 independent saddle coils attached to the passive stabilizing wall. The control coils are energized with high-power solid-state amplifiers, and massively parallel, high-throughput feedback control experiments are performed using low-latency connections between PCI Express analogue input and output modules and a graphics processing unit. The time evolution of unstable and saturated wall-stabilized external kink modes are studied with and without applying magnetic perturbations using the control coils. The 3D dynamic structure of the magnetic field surrounding the plasma is determined through biorthogonal decomposition using the full set of magnetic sensors without the need to fit either a Fourier or a model-based basis. Naturally occurring external kinks are composed of multiple independent helical modes. Smooth transitions between dominant poloidal mode numbers are observed for simultaneous n = 1 and n = 2 modes as the edge safety factor changes. Relative amplitudes of coexistent m/n = 3/1 and 6/2 modes depend on the plasma's major radius and edge safety factor. When stationary 3/1 magnetic perturbations are applied, the resonant response can be linear, saturated, or disruptive, depending upon the perturbation amplitude and the edge safety factor; increased plasma-wall interactions from the perturbed plasma are proposed as a saturation mechanism. Initial feedback experiments have used 40 sensors and 40 control coils, producing mode amplification or suppression, and acceleration or deceleration depending on the feedback phase angle.

  10. Charged-particle Gun Design with 3D Finite-element Methods

    NASA Astrophysics Data System (ADS)

    Humphries, Stanley

    2002-04-01

    The DARHT second-axis injector poses a major challenge for computer simulation. The relativistic electrons are subject to strong beam-generated electric and magnetic forces. The beam and applied fields are fully three-dimensional. Furthermore, accurate field calculations at surfaces are critical to model Child-law emission. Although several 2D relativistic beam codes are available, there is presently no 3D tool that can address all important processes in the DARHT injector. As a result, we created the OmniTrak 3D finite-element code suite. This talk gives a basic tutorial on finite-element methods with emphasis on electron gun design via the ray-tracing technique. Four main areas are covered: 1) the mesh as a tool to organize space, 2) transformation of the Poisson equation through the minimum residual principle, 3) orbit tracking in a complex environment and 4) handling self-consistent beam-generated fields. The components of a volume mesh (elements, nodes and facets) are reviewed. We consider motivations for choosing a 3D mesh style: structured versus unstructured, tetrahedrons versus hexahedrons. We discuss methods for taking volume integrals over arbitrary hexahedrons through normal coordinates and shape functions, leading to the fundamental field equations. The special problems of 3D magnetic field solutions and the advantages of the reduced potential method are outlined. Accurate field interpolations for orbit calculations require fast identification of occupied elements. A method for fast element identification that also yields the orbit penetration point on the element surface is described. The final topics are the assignment of charge and current to meshes from calculated orbits and techniques for space-charge-limited emission from multiple arbitrary 3D surfaces.

  11. Numerical solution of 3-D magnetotelluric using vector finite element method

    NASA Astrophysics Data System (ADS)

    Prihantoro, Rudy; Sutarno, Doddy; Nurhasan

    2015-09-01

    Magnetotelluric (MT) is a passive electromagnetic (EM) method which measure natural variations of electric and magnetic vector fields at the Earth surface to map subsurface electrical conductivity/resistivity structure. In this study, we obtained numerical solution of three-dimensional (3-D) MT using vector finite element method by solving second order Maxwell differential equation describing diffusion of plane wave through the conductive earth. Rather than the nodes of the element, the edges of the element is used as a vector basis to overcome the occurrence of nonphysical solutions that usually faced by scalar (node based) finite element method. Electric vector fields formulation was used and the resulting system of equation was solved using direct solution method to obtain the electric vector field distribution throughout the earth resistivity model structure. The resulting MT response functions was verified with 1-D layered Earth and 3-D2 COMMEMI outcropping structure. Good agreement is achieved for both structure models.

  12. Finite Element Code For 3D-Hydraulic Fracture Propagation Equations (3-layer).

    1992-03-24

    HYFRACP3D is a finite element program for simulation of a pseudo three-dimensional fracture geometries with a two-dimensional planar solution. The model predicts the height, width and winglength over time for a hydraulic fracture propagating in a three-layered system of rocks with variable rock mechanics properties.

  13. Experimental Investigation of the Near Wall Flow Structure of a Low Reynolds Number 3-D Turbulent Boundary Layer

    NASA Technical Reports Server (NTRS)

    Fleming, J. L.; Simpson, R. L.

    1997-01-01

    Laser Doppler velocimetry (LDV) measurements and hydrogen bubble flow visualization techniques were used to examine the near-wall flow structure of 2D and 3D turbulent boundary layers (TBLs) over a range of low Reynolds numbers. The goals of this research were (1) an increased understanding of the flow physics in the near wall region of turbulent boundary layers,(2) to observe and quantify differences between 2D and 3D TBL flow structures, and (3) to document Reynolds number effects for 3D TBLs. The LDV data have provided results detailing the turbulence structure of the 2D and 3D TBLs. These results include mean Reynolds stress distributions, flow skewing results, and U and V spectra. Effects of Reynolds number for the 3D flow were also examined. Comparison to results with the same 3D flow geometry but at a significantly higher Reynolds number provided unique insight into the structure of 3D TBLs. While the 3D mean and fluctuating velocities were found to be highly dependent on Reynolds number, a previously defined shear stress parameter was discovered to be invariant with Reynolds number. The hydrogen bubble technique was used as a flow visualization tool to examine the near-wall flow structure of 2D and 3D TBLs. Both the quantitative and qualitative results displayed larger turbulent fluctuations with more highly concentrated vorticity regions for the 2D flow.

  14. 3D finite element analysis of porous Ti-based alloy prostheses.

    PubMed

    Mircheski, Ile; Gradišar, Marko

    2016-11-01

    In this paper, novel designs of porous acetabular cups are created and tested with 3D finite element analysis (FEA). The aim is to develop a porous acetabular cup with low effective radial stiffness of the structure, which will be near to the architectural and mechanical behavior of the natural bone. For the realization of this research, a 3D-scanner technology was used for obtaining a 3D-CAD model of the pelvis bone, a 3D-CAD software for creating a porous acetabular cup, and a 3D-FEA software for virtual testing of a novel design of the porous acetabular cup. The results obtained from this research reveal that a porous acetabular cup from Ti-based alloys with 60 ± 5% porosity has the mechanical behavior and effective radial stiffness (Young's modulus in radial direction) that meet and exceed the required properties of the natural bone. The virtual testing with 3D-FEA of a novel design with porous structure during the very early stage of the design and the development of orthopedic implants, enables obtaining a new or improved biomedical implant for a relatively short time and reduced price. PMID:27015664

  15. Edge-based finite elements and vector ABCs applied to 3D scattering

    NASA Technical Reports Server (NTRS)

    Chatterjee, A.; Jin, J. M.; Volakis, John L.

    1992-01-01

    An edge based finite element formulation with vector absorbing boundary conditions is presented for scattering by composite structures having boundaries satisfying impedance and/or transition conditions. Remarkably accurate results are obtained by placing the mesh a small fraction of a wavelength away from the scatterer.

  16. 2D-3D hybrid stabilized finite element method for tsunami runup simulations

    NASA Astrophysics Data System (ADS)

    Takase, S.; Moriguchi, S.; Terada, K.; Kato, J.; Kyoya, T.; Kashiyama, K.; Kotani, T.

    2016-09-01

    This paper presents a two-dimensional (2D)-three-dimensional (3D) hybrid stabilized finite element method that enables us to predict a propagation process of tsunami generated in a hypocentral region, which ranges from offshore propagation to runup to urban areas, with high accuracy and relatively low computational costs. To be more specific, the 2D shallow water equation is employed to simulate the propagation of offshore waves, while the 3D Navier-Stokes equation is employed for the runup in urban areas. The stabilized finite element method is utilized for numerical simulations for both of the 2D and 3D domains that are independently discretized with unstructured meshes. The multi-point constraint and transmission methods are applied to satisfy the continuity of flow velocities and pressures at the interface between the resulting 2D and 3D meshes, since neither their spatial dimensions nor node arrangements are consistent. Numerical examples are presented to demonstrate the performance of the proposed hybrid method to simulate tsunami behavior, including offshore propagation and runup to urban areas, with substantially lower computation costs in comparison with full 3D computations.

  17. 2D-3D hybrid stabilized finite element method for tsunami runup simulations

    NASA Astrophysics Data System (ADS)

    Takase, S.; Moriguchi, S.; Terada, K.; Kato, J.; Kyoya, T.; Kashiyama, K.; Kotani, T.

    2016-05-01

    This paper presents a two-dimensional (2D)-three-dimensional (3D) hybrid stabilized finite element method that enables us to predict a propagation process of tsunami generated in a hypocentral region, which ranges from offshore propagation to runup to urban areas, with high accuracy and relatively low computational costs. To be more specific, the 2D shallow water equation is employed to simulate the propagation of offshore waves, while the 3D Navier-Stokes equation is employed for the runup in urban areas. The stabilized finite element method is utilized for numerical simulations for both of the 2D and 3D domains that are independently discretized with unstructured meshes. The multi-point constraint and transmission methods are applied to satisfy the continuity of flow velocities and pressures at the interface between the resulting 2D and 3D meshes, since neither their spatial dimensions nor node arrangements are consistent. Numerical examples are presented to demonstrate the performance of the proposed hybrid method to simulate tsunami behavior, including offshore propagation and runup to urban areas, with substantially lower computation costs in comparison with full 3D computations.

  18. Finite Element Analysis of Thermo-Mechanical Properties of 3D Braided Composites

    NASA Astrophysics Data System (ADS)

    Jiang, Li-li; Xu, Guo-dong; Cheng, Su; Lu, Xia-mei; Zeng, Tao

    2014-04-01

    This paper presents a modified finite element model (FEM) to investigate the thermo-mechanical properties of three-dimensional (3D) braided composite. The effective coefficients of thermal expansion (CTE) and the meso-scale mechanical response of 3D braided composites are predicted. The effects of the braiding angle and fiber volume fraction on the effective CTE are evaluated. The results are compared to the experimental data available in the literature to demonstrate the accuracy and reliability of the present method. The tensile stress distributions of the representative volume element (RVE) are also outlined. It is found that the stress of the braiding yarn has a significant increase with temperature rise; on the other hand, the temperature change has an insignificant effect on the stress of the matrix. In addition, a rapid decrease in the tensile strength of 3D braided composites is observed with the increase in temperature. It is revealed that the thermal conditions have a significant effect on the strength of 3D braided composites. The present method provides an effective tool to predict the stresses of 3D braided composites under thermo-mechanical loading.

  19. Time-stepping stability of continuous and discontinuous finite-element methods for 3-D wave propagation

    NASA Astrophysics Data System (ADS)

    Mulder, W. A.; Zhebel, E.; Minisini, S.

    2014-02-01

    We analyse the time-stepping stability for the 3-D acoustic wave equation, discretized on tetrahedral meshes. Two types of methods are considered: mass-lumped continuous finite elements and the symmetric interior-penalty discontinuous Galerkin method. Combining the spatial discretization with the leap-frog time-stepping scheme, which is second-order accurate and conditionally stable, leads to a fully explicit scheme. We provide estimates of its stability limit for simple cases, namely, the reference element with Neumann boundary conditions, its distorted version of arbitrary shape, the unit cube that can be partitioned into six tetrahedra with periodic boundary conditions and its distortions. The Courant-Friedrichs-Lewy stability limit contains an element diameter for which we considered different options. The one based on the sum of the eigenvalues of the spatial operator for the first-degree mass-lumped element gives the best results. It resembles the diameter of the inscribed sphere but is slightly easier to compute. The stability estimates show that the mass-lumped continuous and the discontinuous Galerkin finite elements of degree 2 have comparable stability conditions, whereas the mass-lumped elements of degree one and three allow for larger time steps.

  20. Multigrid direct numerical simulation of the whole process of flow transition in 3-D boundary layers

    NASA Technical Reports Server (NTRS)

    Liu, Chaoqun; Liu, Zhining

    1993-01-01

    A new technology was developed in this study which provides a successful numerical simulation of the whole process of flow transition in 3-D boundary layers, including linear growth, secondary instability, breakdown, and transition at relatively low CPU cost. Most other spatial numerical simulations require high CPU cost and blow up at the stage of flow breakdown. A fourth-order finite difference scheme on stretched and staggered grids, a fully implicit time marching technique, a semi-coarsening multigrid based on the so-called approximate line-box relaxation, and a buffer domain for the outflow boundary conditions were all used for high-order accuracy, good stability, and fast convergence. A new fine-coarse-fine grid mapping technique was developed to keep the code running after the laminar flow breaks down. The computational results are in good agreement with linear stability theory, secondary instability theory, and some experiments. The cost for a typical case with 162 x 34 x 34 grid is around 2 CRAY-YMP CPU hours for 10 T-S periods.

  1. Quiescent H-Mode 3D MHD Free-Boundary Equilibrium

    NASA Astrophysics Data System (ADS)

    Cooper, W. Anthony; Graves, Jonathan P.; Duval, Basil P.; Porte, Laurie; Sauter, Olivier; Tran, Trach-Minh; Brunetti, Daniele; Pfefferle, David; Raghunathan, Madhusudan; Faustin, Jonathan M.; Patten, Hamish; Kleiner, Andreas; Reimerdes, Holger

    2015-11-01

    Free boundary magnetohydrodynamic equilibrium states with spontaneous three dimensional deformations of the plasma-vacuum interface are computed with the 3D VMEC solver [Hirshman et al., Comput. Phys. Commun. 43 (1986) 143]. The structures we have obtained have the appearance of saturated ideal external kink/peeling modes. Large edge pressure gradients yield toroidal mode number n = 1 corrugations when the edge bootstrap current is large and n = 4 distortions when this current is small. The deformations of the plasma boundary region induces a nonaxisymmetric Pfirsch-Schlüter current that drives a field-aligned current ribbon which is consistent with experimental observations reported. We claim that the equilibrium states we compute model the Edge Harmonic Oscillation [K.H. Burrell et al., Phys. Plasmas 22 (2005) 021805. W.M. Solomon et al., Phys. Rev. Lett. 113 (2014) 135001] observed on DIII-D and the Outer Mode [E.R. Solano et al., Phys. Rev. Lett. 104 (2014) 135001] found in JET during Quiescent H-mode operation. This work was supported in part by the Swiss National Science Foundation.

  2. surf3d: A 3-D finite-element program for the analysis of surface and corner cracks in solids subjected to mode-1 loadings

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Newman, J. C., Jr.

    1993-01-01

    A computer program, surf3d, that uses the 3D finite-element method to calculate the stress-intensity factors for surface, corner, and embedded cracks in finite-thickness plates with and without circular holes, was developed. The cracks are assumed to be either elliptic or part eliptic in shape. The computer program uses eight-noded hexahedral elements to model the solid. The program uses a skyline storage and solver. The stress-intensity factors are evaluated using the force method, the crack-opening displacement method, and the 3-D virtual crack closure methods. In the manual the input to and the output of the surf3d program are described. This manual also demonstrates the use of the program and describes the calculation of the stress-intensity factors. Several examples with sample data files are included with the manual. To facilitate modeling of the user's crack configuration and loading, a companion program (a preprocessor program) that generates the data for the surf3d called gensurf was also developed. The gensurf program is a three dimensional mesh generator program that requires minimal input and that builds a complete data file for surf3d. The program surf3d is operational on Unix machines such as CRAY Y-MP, CRAY-2, and Convex C-220.

  3. A finite element analysis of a 3D auxetic textile structure for composite reinforcement

    NASA Astrophysics Data System (ADS)

    Ge, Zhaoyang; Hu, Hong; Liu, Yanping

    2013-08-01

    This paper reports the finite element analysis of an innovative 3D auxetic textile structure consisting of three yarn systems (weft, warp and stitch yarns). Different from conventional 3D textile structures, the proposed structure exhibits an auxetic behaviour under compression and can be used as a reinforcement to manufacture auxetic composites. The geometry of the structure is first described. Then a 3D finite element model is established using ANSYS software and validated by the experimental results. The deformation process of the structure at different compression strains is demonstrated, and the validated finite element model is finally used to simulate the auxetic behaviour of the structure with different structural parameters and yarn properties. The results show that the auxetic behaviour of the proposed structure increases with increasing compression strain, and all the structural parameters and yarn properties have significant effects on the auxetic behaviour of the structure. It is expected that the study could provide a better understanding of 3D auxetic textile structures and could promote their application in auxetic composites.

  4. Curvilinear Immersed Boundary Method for Simulating Fluid Structure Interaction with Complex 3D Rigid Bodies.

    PubMed

    Borazjani, Iman; Ge, Liang; Sotiropoulos, Fotis

    2008-08-10

    The sharp-interface CURVIB approach of Ge and Sotiropoulos [L. Ge, F. Sotiropoulos, A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries, Journal of Computational Physics 225 (2007) 1782-1809] is extended to simulate fluid structure interaction (FSI) problems involving complex 3D rigid bodies undergoing large structural displacements. The FSI solver adopts the partitioned FSI solution approach and both loose and strong coupling strategies are implemented. The interfaces between immersed bodies and the fluid are discretized with a Lagrangian grid and tracked with an explicit front-tracking approach. An efficient ray-tracing algorithm is developed to quickly identify the relationship between the background grid and the moving bodies. Numerical experiments are carried out for two FSI problems: vortex induced vibration of elastically mounted cylinders and flow through a bileaflet mechanical heart valve at physiologic conditions. For both cases the computed results are in excellent agreement with benchmark simulations and experimental measurements. The numerical experiments suggest that both the properties of the structure (mass, geometry) and the local flow conditions can play an important role in determining the stability of the FSI algorithm. Under certain conditions unconditionally unstable iteration schemes result even when strong coupling FSI is employed. For such cases, however, combining the strong-coupling iteration with under-relaxation in conjunction with the Aitken's acceleration technique is shown to effectively resolve the stability problems. A theoretical analysis is presented to explain the findings of the numerical experiments. It is shown that the ratio of the added mass to the mass of the structure as well as the sign of the local time rate of change of the force or moment imparted on the structure by the fluid determine the stability and convergence of the FSI

  5. Curvilinear Immersed Boundary Method for Simulating Fluid Structure Interaction with Complex 3D Rigid Bodies

    PubMed Central

    Borazjani, Iman; Ge, Liang; Sotiropoulos, Fotis

    2010-01-01

    The sharp-interface CURVIB approach of Ge and Sotiropoulos [L. Ge, F. Sotiropoulos, A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries, Journal of Computational Physics 225 (2007) 1782–1809] is extended to simulate fluid structure interaction (FSI) problems involving complex 3D rigid bodies undergoing large structural displacements. The FSI solver adopts the partitioned FSI solution approach and both loose and strong coupling strategies are implemented. The interfaces between immersed bodies and the fluid are discretized with a Lagrangian grid and tracked with an explicit front-tracking approach. An efficient ray-tracing algorithm is developed to quickly identify the relationship between the background grid and the moving bodies. Numerical experiments are carried out for two FSI problems: vortex induced vibration of elastically mounted cylinders and flow through a bileaflet mechanical heart valve at physiologic conditions. For both cases the computed results are in excellent agreement with benchmark simulations and experimental measurements. The numerical experiments suggest that both the properties of the structure (mass, geometry) and the local flow conditions can play an important role in determining the stability of the FSI algorithm. Under certain conditions unconditionally unstable iteration schemes result even when strong coupling FSI is employed. For such cases, however, combining the strong-coupling iteration with under-relaxation in conjunction with the Aitken’s acceleration technique is shown to effectively resolve the stability problems. A theoretical analysis is presented to explain the findings of the numerical experiments. It is shown that the ratio of the added mass to the mass of the structure as well as the sign of the local time rate of change of the force or moment imparted on the structure by the fluid determine the stability and convergence of the

  6. Plane shear flows of frictionless spheres: Kinetic theory and 3D soft-sphere discrete element method simulations

    SciTech Connect

    Vescovi, D.; Berzi, D.; Richard, P.

    2014-05-15

    We use existing 3D Discrete Element simulations of simple shear flows of spheres to evaluate the radial distribution function at contact that enables kinetic theory to correctly predict the pressure and the shear stress, for different values of the collisional coefficient of restitution. Then, we perform 3D Discrete Element simulations of plane flows of frictionless, inelastic spheres, sheared between walls made bumpy by gluing particles in a regular array, at fixed average volume fraction and distance between the walls. The results of the numerical simulations are used to derive boundary conditions appropriated in the cases of large and small bumpiness. Those boundary conditions are, then, employed to numerically integrate the differential equations of Extended Kinetic Theory, where the breaking of the molecular chaos assumption at volume fraction larger than 0.49 is taken into account in the expression of the dissipation rate. We show that the Extended Kinetic Theory is in very good agreement with the numerical simulations, even for coefficients of restitution as low as 0.50. When the bumpiness is increased, we observe that some of the flowing particles are stuck in the gaps between the wall spheres. As a consequence, the walls are more dissipative than expected, and the flows resemble simple shear flows, i.e., flows of rather constant volume fraction and granular temperature.

  7. Modelling crystal plasticity by 3D dislocation dynamics and the finite element method: The Discrete-Continuous Model revisited

    NASA Astrophysics Data System (ADS)

    Vattré, A.; Devincre, B.; Feyel, F.; Gatti, R.; Groh, S.; Jamond, O.; Roos, A.

    2014-02-01

    A unified model coupling 3D dislocation dynamics (DD) simulations with the finite element (FE) method is revisited. The so-called Discrete-Continuous Model (DCM) aims to predict plastic flow at the (sub-)micron length scale of materials with complex boundary conditions. The evolution of the dislocation microstructure and the short-range dislocation-dislocation interactions are calculated with a DD code. The long-range mechanical fields due to the dislocations are calculated by a FE code, taking into account the boundary conditions. The coupling procedure is based on eigenstrain theory, and the precise manner in which the plastic slip, i.e. the dislocation glide as calculated by the DD code, is transferred to the integration points of the FE mesh is described in full detail. Several test cases are presented, and the DCM is applied to plastic flow in a single-crystal Nickel-based superalloy.

  8. Application of 3D X-ray CT data sets to finite element analysis

    SciTech Connect

    Bossart, P.L.; Martz, H.E.; Brand, H.R.; Hollerbach, K.

    1995-08-31

    Finite Element Modeling (FEM) is becoming more important as industry drives toward concurrent engineering. A fundamental hindrance to fully exploiting the power of FEM is the human effort required to acquire complex part geometry, particularly as-built geometry, as a FEM mesh. Many Quantitative Non Destructive Evaluation (QNDE) techniques that produce three-dimensional (3D) data sets provide a substantial reduction in the effort required to apply FEM to as-built parts. This paper describes progress at LLNL on the application of 3D X-ray computed tomography (CT) data sets to more rapidly produce high-quality FEM meshes of complex, as-built geometries. Issues related to the volume segmentation of the 3D CT data as well as the use of this segmented data to tailor generic hexahedral FEM meshes to part specific geometries are discussed. The application of these techniques to FEM analysis in the medical field is reported here.

  9. Element-specific X-ray phase tomography of 3D structures at the nanoscale.

    PubMed

    Donnelly, Claire; Guizar-Sicairos, Manuel; Scagnoli, Valerio; Holler, Mirko; Huthwelker, Thomas; Menzel, Andreas; Vartiainen, Ismo; Müller, Elisabeth; Kirk, Eugenie; Gliga, Sebastian; Raabe, Jörg; Heyderman, Laura J

    2015-03-20

    Recent advances in fabrication techniques to create mesoscopic 3D structures have led to significant developments in a variety of fields including biology, photonics, and magnetism. Further progress in these areas benefits from their full quantitative and structural characterization. We present resonant ptychographic tomography, combining quantitative hard x-ray phase imaging and resonant elastic scattering to achieve ab initio element-specific 3D characterization of a cobalt-coated artificial buckyball polymer scaffold at the nanoscale. By performing ptychographic x-ray tomography at and far from the Co K edge, we are able to locate and quantify the Co layer in our sample to a 3D spatial resolution of 25 nm. With a quantitative determination of the electron density we can determine that the Co layer is oxidized, which is confirmed with microfluorescence experiments. PMID:25839287

  10. 3-D water vapor field in the atmospheric boundary layer observed with scanning differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Späth, Florian; Behrendt, Andreas; Muppa, Shravan Kumar; Metzendorf, Simon; Riede, Andrea; Wulfmeyer, Volker

    2016-04-01

    High-resolution three-dimensional (3-D) water vapor data of the atmospheric boundary layer (ABL) are required to improve our understanding of land-atmosphere exchange processes. For this purpose, the scanning differential absorption lidar (DIAL) of the University of Hohenheim (UHOH) was developed as well as new analysis tools and visualization methods. The instrument determines 3-D fields of the atmospheric water vapor number density with a temporal resolution of a few seconds and a spatial resolution of up to a few tens of meters. We present three case studies from two field campaigns. In spring 2013, the UHOH DIAL was operated within the scope of the HD(CP)2 Observational Prototype Experiment (HOPE) in western Germany. HD(CP)2 stands for High Definition of Clouds and Precipitation for advancing Climate Prediction and is a German research initiative. Range-height indicator (RHI) scans of the UHOH DIAL show the water vapor heterogeneity within a range of a few kilometers up to an altitude of 2 km and its impact on the formation of clouds at the top of the ABL. The uncertainty of the measured data was assessed for the first time by extending a technique to scanning data, which was formerly applied to vertical time series. Typically, the accuracy of the DIAL measurements is between 0.5 and 0.8 g m-3 (or < 6 %) within the ABL even during daytime. This allows for performing a RHI scan from the surface to an elevation angle of 90° within 10 min. In summer 2014, the UHOH DIAL participated in the Surface Atmosphere Boundary Layer Exchange (SABLE) campaign in southwestern Germany. Conical volume scans were made which reveal multiple water vapor layers in three dimensions. Differences in their heights in different directions can be attributed to different surface elevation. With low-elevation scans in the surface layer, the humidity profiles and gradients can be related to different land cover such as maize, grassland, and forest as well as different surface layer

  11. On a 3-D singularity element for computation of combined mode stress intensities

    NASA Technical Reports Server (NTRS)

    Atluri, S. N.; Kathiresan, K.

    1976-01-01

    A special three-dimensional singularity element is developed for the computation of combined modes 1, 2, and 3 stress intensity factors, which vary along an arbitrarily curved crack front in three dimensional linear elastic fracture problems. The finite element method is based on a displacement-hybrid finite element model, based on a modified variational principle of potential energy, with arbitrary element interior displacements, interelement boundary displacements, and element boundary tractions as variables. The special crack-front element used in this analysis contains the square root singularity in strains and stresses, where the stress-intensity factors K(1), K(2), and K(3) are quadratically variable along the crack front and are solved directly along with the unknown nodal displacements.

  12. Finite-element 3D simulation tools for high-current relativistic electron beams

    NASA Astrophysics Data System (ADS)

    Humphries, Stanley; Ekdahl, Carl

    2002-08-01

    The DARHT second-axis injector is a challenge for computer simulations. Electrons are subject to strong beam-generated forces. The fields are fully three-dimensional and accurate calculations at surfaces are critical. We describe methods applied in OmniTrak, a 3D finite-element code suite that can address DARHT and the full range of charged-particle devices. The system handles mesh generation, electrostatics, magnetostatics and self-consistent particle orbits. The MetaMesh program generates meshes of conformal hexahedrons to fit any user geometry. The code has the unique ability to create structured conformal meshes with cubic logic. Organized meshes offer advantages in speed and memory utilization in the orbit and field solutions. OmniTrak is a versatile charged-particle code that handles 3D electric and magnetic field solutions on independent meshes. The program can update both 3D field solutions from the calculated beam space-charge and current-density. We shall describe numerical methods for orbit tracking on a hexahedron mesh. Topics include: 1) identification of elements along the particle trajectory, 2) fast searches and adaptive field calculations, 3) interpolation methods to terminate orbits on material surfaces, 4) automatic particle generation on multiple emission surfaces to model space-charge-limited emission and field emission, 5) flexible Child law algorithms, 6) implementation of the dual potential model for 3D magnetostatics, and 7) assignment of charge and current from model particle orbits for self-consistent fields.

  13. 3D parallel computations of turbofan noise propagation using a spectral element method

    NASA Astrophysics Data System (ADS)

    Taghaddosi, Farzad

    2006-12-01

    A three-dimensional code has been developed for the simulation of tone noise generated by turbofan engine inlets using computational aeroacoustics. The governing equations are the linearized Euler equations, which are further simplified to a set of equations in terms of acoustic potential, using the irrotational flow assumption, and subsequently solved in the frequency domain. Due to the special nature of acoustic wave propagation, the spatial discretization is performed using a spectral element method, where a tensor product of the nth-degree polynomials based on Chebyshev orthogonal functions is used to approximate variations within hexahedral elements. Non-reflecting boundary conditions are imposed at the far-field using a damping layer concept. This is done by augmenting the continuity equation with an additional term without modifying the governing equations as in PML methods. Solution of the linear system of equations for the acoustic problem is based on the Schur complement method, which is a nonoverlapping domain decomposition technique. The Schur matrix is first solved using a matrix-free iterative method, whose convergence is accelerated with a novel local preconditioner. The solution in the entire domain is then obtained by finding solutions in smaller subdomains. The 3D code also contains a mean flow solver based on the full potential equation in order to take into account the effects of flow variations around the nacelle on the scattering of the radiated sound field. All aspects of numerical simulations, including building and assembling the coefficient matrices, implementation of the Schur complement method, and solution of the system of equations for both the acoustic and mean flow problems are performed on multiprocessors in parallel using the resources of the CLUMEQ Supercomputer Center. A large number of test cases are presented, ranging in size from 100 000-2 000 000 unknowns for which, depending on the size of the problem, between 8-48 CPU's are

  14. Experimental validation of boundary element methods for noise prediction

    NASA Technical Reports Server (NTRS)

    Seybert, A. F.; Oswald, Fred B.

    1992-01-01

    Experimental validation of methods to predict radiated noise is presented. A combined finite element and boundary element model was used to predict the vibration and noise of a rectangular box excited by a mechanical shaker. The predicted noise was compared to sound power measured by the acoustic intensity method. Inaccuracies in the finite element model shifted the resonance frequencies by about 5 percent. The predicted and measured sound power levels agree within about 2.5 dB. In a second experiment, measured vibration data was used with a boundary element model to predict noise radiation from the top of an operating gearbox. The predicted and measured sound power for the gearbox agree within about 3 dB.

  15. Collective strong coupling with homogeneous Rabi frequencies using a 3D lumped element microwave resonator

    NASA Astrophysics Data System (ADS)

    Angerer, Andreas; Astner, Thomas; Wirtitsch, Daniel; Sumiya, Hitoshi; Onoda, Shinobu; Isoya, Junichi; Putz, Stefan; Majer, Johannes

    2016-07-01

    We design and implement 3D-lumped element microwave cavities that spatially focus magnetic fields to a small mode volume. They allow coherent and uniform coupling to electron spins hosted by nitrogen vacancy centers in diamond. We achieve large homogeneous single spin coupling rates, with an enhancement of more than one order of magnitude compared to standard 3D cavities with a fundamental resonance at 3 GHz. Finite element simulations confirm that the magnetic field distribution is homogeneous throughout the entire sample volume, with a root mean square deviation of 1.54%. With a sample containing 1017 nitrogen vacancy electron spins, we achieve a collective coupling strength of Ω = 12 MHz, a cooperativity factor C = 27, and clearly enter the strong coupling regime. This allows to interface a macroscopic spin ensemble with microwave circuits, and the homogeneous Rabi frequency paves the way to manipulate the full ensemble population in a coherent way.

  16. Toward Verification of USM3D Extensions for Mixed Element Grids

    NASA Technical Reports Server (NTRS)

    Pandya, Mohagna J.; Frink, Neal T.; Ding, Ejiang; Parlette, Edward B.

    2013-01-01

    The unstructured tetrahedral grid cell-centered finite volume flow solver USM3D has been recently extended to handle mixed element grids composed of hexahedral, prismatic, pyramidal, and tetrahedral cells. Presently, two turbulence models, namely, baseline Spalart-Allmaras (SA) and Menter Shear Stress Transport (SST), support mixed element grids. This paper provides an overview of the various numerical discretization options available in the newly enhanced USM3D. Using the SA model, the flow solver extensions are verified on three two-dimensional test cases available on the Turbulence Modeling Resource website at the NASA Langley Research Center. The test cases are zero pressure gradient flat plate, planar shear, and bump-inchannel. The effect of cell topologies on the flow solution is also investigated using the planar shear case. Finally, the assessment of various cell and face gradient options is performed on the zero pressure gradient flat plate case.

  17. The 3D folding of metazoan genomes correlates with the association of similar repetitive elements

    PubMed Central

    Cournac, Axel; Koszul, Romain; Mozziconacci, Julien

    2016-01-01

    The potential roles of the numerous repetitive elements found in the genomes of multi-cellular organisms remain speculative. Several studies have suggested a role in stabilizing specific 3D genomic contacts. To test this hypothesis, we exploited inter-chromosomal contacts frequencies obtained from Hi-C experiments and show that the folding of the human, mouse and Drosophila genomes is associated with a significant co-localization of several specific repetitive elements, notably many elements of the SINE family. These repeats tend to be the oldest ones and are enriched in transcription factor binding sites. We propose that the co-localization of these repetitive elements may explain the global conservation of genome folding observed between homologous regions of the human and mouse genome. Taken together, these results support a contribution of specific repetitive elements in maintaining and/or reshaping genome architecture over evolutionary times. PMID:26609133

  18. Melting points and chemical bonding properties of 3d transition metal elements

    NASA Astrophysics Data System (ADS)

    Takahara, Wataru

    2014-08-01

    The melting points of 3d transition metal elements show an unusual local minimal peak at manganese across Period 4 in the periodic table. The chemical bonding properties of scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel and copper are investigated by the DV-Xα cluster method. The melting points are found to correlate with the bond overlap populations. The chemical bonding nature therefore appears to be the primary factor governing the melting points.

  19. ATHENA 3D: A finite element code for ultrasonic wave propagation

    NASA Astrophysics Data System (ADS)

    Rose, C.; Rupin, F.; Fouquet, T.; Chassignole, B.

    2014-04-01

    The understanding of wave propagation phenomena requires use of robust numerical models. 3D finite element (FE) models are generally prohibitively time consuming. However, advances in computing processor speed and memory allow them to be more and more competitive. In this context, EDF R&D developed the 3D version of the well-validated FE code ATHENA2D. The code is dedicated to the simulation of wave propagation in all kinds of elastic media and in particular, heterogeneous and anisotropic materials like welds. It is based on solving elastodynamic equations in the calculation zone expressed in terms of stress and particle velocities. The particularity of the code relies on the fact that the discretization of the calculation domain uses a Cartesian regular 3D mesh while the defect of complex geometry can be described using a separate (2D) mesh using the fictitious domains method. This allows combining the rapidity of regular meshes computation with the capability of modelling arbitrary shaped defects. Furthermore, the calculation domain is discretized with a quasi-explicit time evolution scheme. Thereby only local linear systems of small size have to be solved. The final step to reduce the computation time relies on the fact that ATHENA3D has been parallelized and adapted to the use of HPC resources. In this paper, the validation of the 3D FE model is discussed. A cross-validation of ATHENA 3D and CIVA is proposed for several inspection configurations. The performances in terms of calculation time are also presented in the cases of both local computer and computation cluster use.

  20. 3D Spectral Element Method Simulations Of The Seismic Response of Caracas (Venezuela) Basin

    NASA Astrophysics Data System (ADS)

    Delavaud, E.; Vilotte, J.; Festa, G.; Cupillard, P.

    2007-12-01

    We present here 3D numerical simulations of the response of the Caracas (Venezuela) valley up to 5 Hz for different scenarios of plane wave excitation based on the regional seismicity. Attention is focused on the effects of the 3D basin geometry and of the adjacent regional topography. The simulations are performed using Spectral Element method (SEM) together with an unstructured hexahedral mesh discretization and perfectly matched layers (PML). These simulations show 3D amplification phenomena associated with complex wave reflexion, diffraction and focalisation patterns linked to the geometry of the basin. Time and frequency analysis reveal some interesting features both in terms of amplification and energy residence in the basin. The low frequency amplification pattern is mainly controlled by the early response of the basin to the incident plane wave while the high frequency amplification patterns result mainly from late arrivals where complex 3D wave diffraction phenomena are dominating and the memory of the initial excitation is lost. Interestingly enough, it is shown that H/V method correctly predict the low frequency amplification pattern when apply to the late part of the recorded seismograms. The complex high frequency amplification pattern is shown to be associated with surface wave generation at, and propagation from, sharp edges of the basin. Importance of 3D phenomena is assessed by comparison with simple 2D simulations. Significant differences in terms of time of residence, energy and amplification levels point out the interest of complete 3D modeling. In conclusions some of the limitations associated with the use of unstructured hexahedral meshes will be adressed. Despite the use of unstructured meshing tool, modeling the geometry of geological basins remain a complex and time consuming task. Possible extensions using more elaborate techniques like non conforming domain decomposition will be also discussed in conclusion.

  1. On Boundary Misorientation Distribution Functions and How to Incorporate them into 3D Models of Microstructural Evolution

    SciTech Connect

    Godfrey, A.W.; Holm, E.A.; Hughes, D.A.; Miodownik, M.

    1998-12-23

    The fundamental difficulties incorporating experimentally obtained-boundary disorientation distributions (BMD) into 3D microstructural models are discussed. An algorithm is described which overcomes these difficulties. The boundary misorientations are treated as a statistical ensemble which is evolved toward the desired BMD using a Monte Carlo method. The application of this algorithm to a number complex arbitrary BMDs shows that the approach is effective for both conserved and non-conserved textures. The algorithm is successfully used to create the BMDs observed in deformation microstructure containing both incidental dislocation boundaries (IDBs) and geometrically necessary boundaries (GNBs).

  2. Equivalent Body Force Finite Elements Method and 3-D Earth Model Applied In 2004 Sumatra Earthquake

    NASA Astrophysics Data System (ADS)

    Qu, W.; Cheng, H.; Shi, Y.

    2015-12-01

    The 26 December 2004 Sumatra-Andaman earthquake with moment magnitude (Mw) of 9.1 to 9.3 is the first great earthquake recorded by digital broadband, high-dynamic-range seismometers and global positioning system (GPS) equipment, which recorded many high-quality geophysical data sets. The spherical curvature is not negligible in far field especially for large event and the real Earth is laterally inhomogeneity and the analytical results still are difficult to explain the geodetic measurements. We use equivalent body force finite elements method Zhang et al. (2015) and mesh the whole earth, to compute global co-seismic displacements using four fault slip models of the 2004 Sumatra earthquake provided by different authors. Comparisons of calculated co-seismic displacements and GPS show that the confidences are well in near field for four models, and the confidences are according to different models. In the whole four models, the Chlieh model (Chlieh et al., 2007) is the best as this slip model not only accord well with near field data but also far field data. And then we use the best slip model, Chlieh model to explore influence of three dimensional lateral earth structure on both layered spherically symmetric (PREM) and real 3-D heterogeneous earth model (Crust 1.0 model and GyPSuM). Results show that the effects of 3-D heterogeneous earth model are not negligible and decrease concomitantly with increasing distance from the epicenter. The relative effects of 3-D crust model are 23% and 40% for horizontal and vertical displacements, respectively. The effects of the 3-D mantle model are much smaller than that of 3-D crust model but with wider impacting area.

  3. Justification for a 2D versus 3D fingertip finite element model during static contact simulations.

    PubMed

    Harih, Gregor; Tada, Mitsunori; Dolšak, Bojan

    2016-10-01

    The biomechanical response of a human hand during contact with various products has not been investigated in details yet. It has been shown that excessive contact pressure on the soft tissue can result in discomfort, pain and also cumulative traumatic disorders. This manuscript explores the benefits and limitations of a simplified two-dimensional vs. an anatomically correct three-dimensional finite element model of a human fingertip. Most authors still use 2D FE fingertip models due to their simplicity and reduced computational costs. However we show that an anatomically correct 3D FE fingertip model can provide additional insight into the biomechanical behaviour. The use of 2D fingertip FE models is justified when observing peak contact pressure values as well as displacement during the contact for the given studied cross-section. On the other hand, an anatomically correct 3D FE fingertip model provides a contact pressure distribution, which reflects the fingertip's anatomy. PMID:26856769

  4. On 3-D inelastic analysis methods for hot section components. Volume 1: Special finite element models

    NASA Technical Reports Server (NTRS)

    Nakazawa, S.

    1988-01-01

    This annual status report presents the results of work performed during the fourth year of the 3-D Inelastic Analysis Methods for Hot Section Components program (NASA Contract NAS3-23697). The objective of the program is to produce a series of new computer codes permitting more accurate and efficient 3-D analysis of selected hot section components, i.e., combustor liners, turbine blades and turbine vanes. The computer codes embody a progression of math models and are streamlined to take advantage of geometrical features, loading conditions, and forms of material response that distinguish each group of selected components. Volume 1 of this report discusses the special finite element models developed during the fourth year of the contract.

  5. Finite volume and finite element methods applied to 3D laminar and turbulent channel flows

    SciTech Connect

    Louda, Petr; Příhoda, Jaromír; Sváček, Petr; Kozel, Karel

    2014-12-10

    The work deals with numerical simulations of incompressible flow in channels with rectangular cross section. The rectangular cross section itself leads to development of various secondary flow patterns, where accuracy of simulation is influenced by numerical viscosity of the scheme and by turbulence modeling. In this work some developments of stabilized finite element method are presented. Its results are compared with those of an implicit finite volume method also described, in laminar and turbulent flows. It is shown that numerical viscosity can cause errors of same magnitude as different turbulence models. The finite volume method is also applied to 3D turbulent flow around backward facing step and good agreement with 3D experimental results is obtained.

  6. Improved Convergence and Robustness of USM3D Solutions on Mixed Element Grids (Invited)

    NASA Technical Reports Server (NTRS)

    Pandya, Mohagna J.; Diskin, Boris; Thomas, James L.; Frink, Neal T.

    2015-01-01

    Several improvements to the mixed-element USM3D discretization and defect-correction schemes have been made. A new methodology for nonlinear iterations, called the Hierarchical Adaptive Nonlinear Iteration Scheme (HANIS), has been developed and implemented. It provides two additional hierarchies around a simple and approximate preconditioner of USM3D. The hierarchies are a matrix-free linear solver for the exact linearization of Reynolds-averaged Navier Stokes (RANS) equations and a nonlinear control of the solution update. Two variants of the new methodology are assessed on four benchmark cases, namely, a zero-pressure gradient flat plate, a bump-in-channel configuration, the NACA 0012 airfoil, and a NASA Common Research Model configuration. The new methodology provides a convergence acceleration factor of 1.4 to 13 over the baseline solver technology.

  7. Implementation of wall boundary conditions for transpiration in F3D thin-layer Navier-Stokes code

    NASA Technical Reports Server (NTRS)

    Kandula, M.; Martin, F. W., Jr.

    1991-01-01

    Numerical boundary conditions for mass injection/suction at the wall are incorporated in the thin-layer Navier-Stokes code, F3D. The accuracy of the boundary conditions and the code is assessed by a detailed comparison of the predictions of velocity distributions and skin-friction coefficients with exact similarity solutions for laminar flow over a flat plate with variable blowing/suction, and measurements for turbulent flow past a flat plate with uniform blowing. In laminar flow, F3D predictions for friction coefficient compare well with exact similarity solution with and without suction, but produces large errors at moderate-to-large values of blowing. A slight Mach number dependence of skin-friction coefficient due to blowing in turbulent flow is computed by F3D code. Predicted surface pressures for turbulent flow past an airfoil with mass injection are in qualitative agreement with measurements for a flat plate.

  8. Spectral Element Modeling of 3D Site Effects in the Alpine Valley of Grenoble, France.

    NASA Astrophysics Data System (ADS)

    Chaljub, E.; Cornou, C.; Gueguen, P.; Causse, M.; Komatitsch, D.

    2004-12-01

    Sitting on top of a 3D Y-shaped basin filled mostly with late quaternary deposits, the city of Grenoble (French Alps) is subject to strong amplification of seismic motion (see the SISMOVALP web site). In order to assess the magnitude and 3D complexity of these site effects, we propose a spectral element modeling approach previously applied to the prediction of strong ground motion in the Los Angeles sedimentary basin (Komatitstch et al., 2004). The spectral element method naturally accounts for depth variations of the free surface and of internal interfaces, such as the contact between the sediments and the bedrock. It is also well suited to model the propagation of surface waves generated at the basin edges. The 3D spectral element mesh honors the stiff surface topography of the mountains surrounding the city, as well as the bedrock depth obtained from extensive gravimetric measurements. In the basin, we use a generic 1D velocity model derived from geophysical measurements performed in a deep borehole that reached the substratum at 550 m depth in 1999. Results and comparison to data are shown in the time and frequency domain for small-size (Mw=2.5 and Mw=3.5) local events recorded in the past years. Then, a Mw=5.5 strike-slip event is simulated on the eastern border of the basin along the Belledonne fault, and the results are compared to those obtained by the method of Empirical Green Functions. References: http://www-lgit.obs.ujf-grenoble.fr/sismovalp/ Simulations of ground motion in the Los Angeles basin based upon the spectral- element method, Dimitri Komatitsch, Qinya Liu, Jeroen Tromp, Peter Süss, Christiane Stidham and John H. Shaw, Bulletin of the Seismological Society of America, vol. 94, p 187-206 (2004).

  9. Anomalous surface segregation behaviour of some 3d elements in ferromagnetic iron.

    PubMed

    Gupta, Michèle; Gupta, Raju P

    2013-10-16

    The segregation of Cr in Fe is known to be anomalous since the barrier for surface segregation of Cr is not determined by the topmost surface layer, as one would expect, but rather by the subsurface layer where the energy of segregation is much larger and endothermic. This has been attributed to a complex interaction involving the antiferromagnetism of Cr and the ferromagnetism of Fe. We report in this paper the results of our ab initio electronic structure calculations on the segregation behaviour of all the 3d elements on the (1 0 0) surface of ferromagnetic iron in the hope of better understanding this phenomenon. We find a similar behaviour for the segregation of the next antiferromagnetic 3d element Mn in Fe, where the subsurface layer is also found to block the segregation of Mn to the surface. On the other hand, ferromagnetic Co exhibits a normal segregation behaviour. The elements Sc, Cu and Ni do not form solid solutions with ferromagnetic iron. The early elements Ti and V are non-magnetic in their metallic states, but are strongly polarized by Fe, and develop magnetic moments which are aligned antiferromagnetically to those of Fe atoms. While the subsurface layer blocks the segregation of Ti to the surface, no blocking behaviour is found for the segregation of V. The segregation behaviour of all these elements is strongly correlated with the displacement of the solute atoms on the surface of Fe. The elements showing anomalous segregation behaviour are all displaced upwards on the surface, while those showing normal segregation are pulled inwards. These results indicate that the antiferromagnetism of the segregating element plays the key role in the anomalous segregation behaviour in Fe. PMID:24047767

  10. 3D elemental sensitive imaging using transmission X-ray microscopy.

    PubMed

    Liu, Yijin; Meirer, Florian; Wang, Junyue; Requena, Guillermo; Williams, Phillip; Nelson, Johanna; Mehta, Apurva; Andrews, Joy C; Pianetta, Piero

    2012-09-01

    Determination of the heterogeneous distribution of metals in alloy/battery/catalyst and biological materials is critical to fully characterize and/or evaluate the functionality of the materials. Using synchrotron-based transmission x-ray microscopy (TXM), it is now feasible to perform nanoscale-resolution imaging over a wide X-ray energy range covering the absorption edges of many elements; combining elemental sensitive imaging with determination of sample morphology. We present an efficient and reliable methodology to perform 3D elemental sensitive imaging with excellent sample penetration (tens of microns) using hard X-ray TXM. A sample of an Al-Si piston alloy is used to demonstrate the capability of the proposed method. PMID:22349401

  11. A least-squares finite element method for 3D incompressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Lin, T. L.; Hou, Lin-Jun; Povinelli, Louis A.

    1993-01-01

    The least-squares finite element method (LSFEM) based on the velocity-pressure-vorticity formulation is applied to three-dimensional steady incompressible Navier-Stokes problems. This method can accommodate equal-order interpolations, and results in symmetric, positive definite algebraic system. An additional compatibility equation, i.e., the divergence of vorticity vector should be zero, is included to make the first-order system elliptic. The Newton's method is employed to linearize the partial differential equations, the LSFEM is used to obtain discretized equations, and the system of algebraic equations is solved using the Jacobi preconditioned conjugate gradient method which avoids formation of either element or global matrices (matrix-free) to achieve high efficiency. The flow in a half of 3D cubic cavity is calculated at Re = 100, 400, and 1,000 with 50 x 52 x 25 trilinear elements. The Taylor-Gortler-like vortices are observed at Re = 1,000.

  12. Dynamic Analysis of 2D Electromagnetic Resonant Optical Scanner Using 3D Finite Element Method

    NASA Astrophysics Data System (ADS)

    Hirata, Katsuhiro; Hong, Sara; Maeda, Kengo

    The optical scanner is a scanning device in which a laser beam is reflected by a mirror that can be rotated or oscillated. In this paper, we propose a new 2D electromagnetic resonant optical scanner that employs electromagnets and leaf springs. Torque characteristics and resonance characteristics of the scanner are analyzed using the 3D finite element method. The validity of the analysis is shown by comparing the characteristics inferred from the analysis with the characteristics of the prototype. Further, 2D resonance is investigated by introducing a superimposed-frequency current in a single coil.

  13. Dislocation Content Measured Via 3D HR-EBSD Near a Grain Boundary in an AlCu Oligocrystal

    NASA Technical Reports Server (NTRS)

    Ruggles, Timothy; Hochhalter, Jacob; Homer, Eric

    2016-01-01

    Interactions between dislocations and grain boundaries are poorly understood and crucial to mesoscale plasticity modeling. Much of our understanding of dislocation-grain boundary interaction comes from atomistic simulations and TEM studies, both of which are extremely limited in scale. High angular resolution EBSD-based continuum dislocation microscopy provides a way of measuring dislocation activity at length scales and accuracies relevant to crystal plasticity, but it is limited as a two-dimensional technique, meaning the character of the grain boundary and the complete dislocation activity is difficult to recover. However, the commercialization of plasma FIB dual-beam microscopes have made 3D EBSD studies all the more feasible. The objective of this work is to apply high angular resolution cross correlation EBSD to a 3D EBSD data set collected by serial sectioning in a FIB to characterize dislocation interaction with a grain boundary. Three dimensional high angular resolution cross correlation EBSD analysis was applied to an AlCu oligocrystal to measure dislocation densities around a grain boundary. Distortion derivatives associated with the plasma FIB serial sectioning were higher than expected, possibly due to geometric uncertainty between layers. Future work will focus on mitigating the geometric uncertainty and examining more regions of interest along the grain boundary to glean information on dislocation-grain boundary interaction.

  14. 3D Discrete Element Model with 1 Million Particles: an Example of Hydro-fracturing

    NASA Astrophysics Data System (ADS)

    Liu, C.; Pollard, D. D.

    2013-12-01

    The Discrete Element Method (DEM) permits large relative motion and breakage of elements, and does not require re-meshing, for example as would the Finite Element Method. DEM has a wide range of applications in the fields of solid-earth geophysics, geomechanics, mining engineering, and structural geology. However, due to the computational cost, particle numbers of discrete element models are generally less than a few tens of thousands, which limits the applications. A new 3D DEM system 'MatDEM' can complete dynamic simulations of one million particles. The conversion formulas between particle parameters and model mechanical properties were derived, and the conversion of energy in DEM can be simulated. In a recent paper (Liu et al., 2013, JGR), the analytical solutions of elastic properties and failure modes of a 2D close-packed discrete element model were proposed. Based on these theoretical results, it is easy to create materials using DEM, which have similar mechanical properties to rock. Given the mechanical properties and state of stress, geologists and engineers can investigate the characteristics of rock deformation and failure under different conditions. MatDEM provides an alternative way to study the micro-macro relationships of rock and soil, and the evolution of geologic structures. As an example, MatDEM was used to investigate the generation and development of fluid driven fractures around a micro pore. The simulation result of fractures of an anisotropic 3D model, which includes 1 million particles, is demonstrated. Via parallel computing technology, MatDEM may handle tens of millions of particles in near future. Left: Fluid pressure is applied in the pore to generate fractures. Right: Simulation results (black segments represent fractures).

  15. A 3D Frictional Segment-to-Segment Contact Method for Large Deformations and Quadratic Elements

    SciTech Connect

    Puso, M; Laursen, T; Solberg, J

    2004-04-01

    Node-on-segment contact is the most common form of contact used today but has many deficiencies ranging from potential locking to non-smooth behavior with large sliding. Furthermore, node-on-segment approaches are not at all applicable to higher order discretizations (e.g. quadratic elements). In a previous work, [3, 4] we developed a segment-to-segment contact approach for eight node hexahedral elements based on the mortar method that was applicable to large deformation mechanics. The approach proved extremely robust since it eliminated the over-constraint that caused 'locking' and provided smooth force variations in large sliding. Here, we extend this previous approach to treat frictional contact problems. In addition, the method is extended to 3D quadratic tetrahedrals and hexahedrals. The proposed approach is then applied to several challenging frictional contact problems that demonstrate its effectiveness.

  16. Description of a parallel, 3D, finite element, hydrodynamics-diffusion code

    SciTech Connect

    Milovich, J L; Prasad, M K; Shestakov, A I

    1999-04-11

    We describe a parallel, 3D, unstructured grid finite element, hydrodynamic diffusion code for inertial confinement fusion (ICF) applications and the ancillary software used to run it. The code system is divided into two entities, a controller and a stand-alone physics code. The code system may reside on different computers; the controller on the user's workstation and the physics code on a supercomputer. The physics code is composed of separate hydrodynamic, equation-of-state, laser energy deposition, heat conduction, and radiation transport packages and is parallelized for distributed memory architectures. For parallelization, a SPMD model is adopted; the domain is decomposed into a disjoint collection of subdomains, one per processing element (PE). The PEs communicate using MPI. The code is used to simulate the hydrodynamic implosion of a spherical bubble.

  17. Fully 3D-Printed Preconcentrator for Selective Extraction of Trace Elements in Seawater.

    PubMed

    Su, Cheng-Kuan; Peng, Pei-Jin; Sun, Yuh-Chang

    2015-07-01

    In this study, we used a stereolithographic 3D printing technique and polyacrylate polymers to manufacture a solid phase extraction preconcentrator for the selective extraction of trace elements and the removal of unwanted salt matrices, enabling accurate and rapid analyses of trace elements in seawater samples when combined with a quadrupole-based inductively coupled plasma mass spectrometer. To maximize the extraction efficiency, we evaluated the effect of filling the extraction channel with ordered cuboids to improve liquid mixing. Upon automation of the system and optimization of the method, the device allowed highly sensitive and interference-free determination of Mn, Ni, Zn, Cu, Cd, and Pb, with detection limits comparable with those of most conventional methods. The system's analytical reliability was further confirmed through analyses of reference materials and spike analyses of real seawater samples. This study suggests that 3D printing can be a powerful tool for building multilayer fluidic manipulation devices, simplifying the construction of complex experimental components, and facilitating the operation of sophisticated analytical procedures for most sample pretreatment applications. PMID:26101898

  18. A 3-D RBF-FD elliptic solver for irregular boundaries: modeling the atmospheric global electric circuit with topography

    NASA Astrophysics Data System (ADS)

    Bayona, V.; Flyer, N.; Lucas, G. M.; Baumgaertner, A. J. G.

    2015-04-01

    A numerical model based on Radial Basis Function-generated Finite Differences (RBF-FD) is developed for simulating the Global Electric Circuit (GEC) within the Earth's atmosphere, represented by a 3-D variable coefficient linear elliptic PDE in a spherically-shaped volume with the lower boundary being the Earth's topography and the upper boundary a sphere at 60 km. To our knowledge, this is (1) the first numerical model of the GEC to combine the Earth's topography with directly approximating the differential operators in 3-D space, and related to this (2) the first RBF-FD method to use irregular 3-D stencils for discretization to handle the topography. It benefits from the mesh-free nature of RBF-FD, which is especially suitable for modeling high-dimensional problems with irregular boundaries. The RBF-FD elliptic solver proposed here makes no limiting assumptions on the spatial variability of the coefficients in the PDE (i.e. the conductivity profile), the right hand side forcing term of the PDE (i.e. distribution of current sources) or the geometry of the lower boundary.

  19. 3D Functional Elements Deep Inside Silicon with Nonlinear Laser Lithography

    NASA Astrophysics Data System (ADS)

    Tokel, Onur; Turnali, Ahmet; Ergecen, Emre; Pavlov, Ihor; Ilday, Fatih Omer

    Functional optical and electrical elements fabricated on silicon (Si) constitute fundamental building blocks of electronics and Si-photonics. However, since the highly successful established lithography are geared towards surface processing, elements embedded inside Si simply do not exist. Here, we present a novel direct-laser writing method for positioning buried functional elements inside Si wafers. This new phenomenon is distinct from previous work, in that the surface of Si is not modified. By exploiting nonlinear interactions of a focused laser, permanent refractive index changes are induced inside Si. The imprinted index contrast is then used to demonstrate a plethora of functional elements and capabilities embedded inside Si. In particular, we demonstrate the first functional optical element inside Si, the first information-storage capability inside Si, creation of high-resolution subsurface holograms, buried multilevel structures, and complex 3D architectures in Si, none of which is currently possible with other methods. This new approach complements available techniques by taking advantage of the real estate under Si, and therefore can pave the way for creating entirely new multilevel devices through electronic-photonic integration.

  20. Flow transition with 2-D roughness elements in a 3-D channel

    NASA Technical Reports Server (NTRS)

    Liu, Zhining; Liu, Chaoquin; Mccormick, Stephen F.

    1993-01-01

    We develop a new numerical approach to study the spatially evolving instability of the streamwise dominant flow in the presence of roughness elements. The difficulty in handling the flow over the boundary surface with general geometry is removed by using a new conservative form of the governing equations and an analytical mapping. The numerical scheme uses second-order backward Euler in time, fourth-order central differences in all three spatial directions, and boundary-fitted staggered grids. A three-dimensional channel with multiple two-dimensional-type roughness elements is employed as the test case. Fourier analysis is used to decompose different Fourier modes of the disturbance. The results show that surface roughness leads to transition at lower Reynolds number than for smooth channels.

  1. Rn3D: A finite element code for simulating gas flow and radon transport in variably saturated, nonisothermal porous media. User`s manual, Version 1.0

    SciTech Connect

    Holford, D.J.

    1994-01-01

    This document is a user`s manual for the Rn3D finite element code. Rn3D was developed to simulate gas flow and radon transport in variably saturated, nonisothermal porous media. The Rn3D model is applicable to a wide range of problems involving radon transport in soil because it can simulate either steady-state or transient flow and transport in one-, two- or three-dimensions (including radially symmetric two-dimensional problems). The porous materials may be heterogeneous and anisotropic. This manual describes all pertinent mathematics related to the governing, boundary, and constitutive equations of the model, as well as the development of the finite element equations used in the code. Instructions are given for constructing Rn3D input files and executing the code, as well as a description of all output files generated by the code. Five verification problems are given that test various aspects of code operation, complete with example input files, FORTRAN programs for the respective analytical solutions, and plots of model results. An example simulation is presented to illustrate the type of problem Rn3D is designed to solve. Finally, instructions are given on how to convert Rn3D to simulate systems other than radon, air, and water.

  2. COMPLEX VARIABLE BOUNDARY ELEMENT METHOD: APPLICATIONS.

    USGS Publications Warehouse

    Hromadka, T.V., II; Yen, C.C.; Guymon, G.L.

    1985-01-01

    The complex variable boundary element method (CVBEM) is used to approximate several potential problems where analytical solutions are known. A modeling result produced from the CVBEM is a measure of relative error in matching the known boundary condition values of the problem. A CVBEM error-reduction algorithm is used to reduce the relative error of the approximation by adding nodal points in boundary regions where error is large. From the test problems, overall error is reduced significantly by utilizing the adaptive integration algorithm.

  3. Comparison between measured turbine stage performance and the predicted performance using quasi-3D flow and boundary layer analyses

    NASA Technical Reports Server (NTRS)

    Boyle, R. J.; Haas, J. E.; Katsanis, T.

    1984-01-01

    A method for calculating turbine stage performance is described. The usefulness of the method is demonstrated by comparing measured and predicted efficiencies for nine different stages. Comparisons are made over a range of turbine pressure ratios and rotor speeds. A quasi-3D flow analysis is used to account for complex passage geometries. Boundary layer analyses are done to account for losses due to friction. Empirical loss models are used to account for incidence, secondary flow, disc windage, and clearance losses.

  4. Prostate boundary segmentation from ultrasound images using 2D active shape models: optimisation and extension to 3D.

    PubMed

    Hodge, Adam C; Fenster, Aaron; Downey, Dónal B; Ladak, Hanif M

    2006-12-01

    Boundary outlining, or segmentation, of the prostate is an important task in diagnosis and treatment planning for prostate cancer. This paper describes an algorithm based on two-dimensional (2D) active shape models (ASM) for semi-automatic segmentation of the prostate boundary from ultrasound images. Optimisation of the 2D ASM for prostatic ultrasound was done first by examining ASM construction and image search parameters. Extension of the algorithm to three-dimensional (3D) segmentation was then done using rotational-based slicing. Evaluation of the 3D segmentation algorithm used distance- and volume-based error metrics to compare algorithm generated boundary outlines to gold standard (manually generated) boundary outlines. Minimum description length landmark placement for ASM construction, and specific values for constraints and image search were found to be optimal. Evaluation of the algorithm versus gold standard boundaries found an average mean absolute distance of 1.09+/-0.49 mm, an average percent absolute volume difference of 3.28+/-3.16%, and a 5x speed increase versus manual segmentation. PMID:16930764

  5. The MHOST finite element program: 3-D inelastic analysis methods for hot section components. Volume 2: User's manual

    NASA Technical Reports Server (NTRS)

    Nakazawa, Shohei

    1989-01-01

    The user options available for running the MHOST finite element analysis package is described. MHOST is a solid and structural analysis program based on the mixed finite element technology, and is specifically designed for 3-D inelastic analysis. A family of 2- and 3-D continuum elements along with beam and shell structural elements can be utilized, many options are available in the constitutive equation library, the solution algorithms and the analysis capabilities. The outline of solution algorithms is discussed along with the data input and output, analysis options including the user subroutines and the definition of the finite elements implemented in the program package.

  6. Extended volume and surface scatterometer for optical characterization of 3D-printed elements

    NASA Astrophysics Data System (ADS)

    Dannenberg, Florian; Uebeler, Denise; Weiß, Jürgen; Pescoller, Lukas; Weyer, Cornelia; Hahlweg, Cornelius

    2015-09-01

    The use of 3d printing technology seems to be a promising way for low cost prototyping, not only of mechanical, but also of optical components or systems. It is especially useful in applications where customized equipment repeatedly is subject to immediate destruction, as in experimental detonics and the like. Due to the nature of the 3D-printing process, there is a certain inner texture and therefore inhomogeneous optical behaviour to be taken into account, which also indicates mechanical anisotropy. Recent investigations are dedicated to quantification of optical properties of such printed bodies and derivation of corresponding optimization strategies for the printing process. Beside mounting, alignment and illumination means, also refractive and reflective elements are subject to investigation. The proposed measurement methods are based on an imaging nearfield scatterometer for combined volume and surface scatter measurements as proposed in previous papers. In continuation of last year's paper on the use of near field imaging, which basically is a reflective shadowgraph method, for characterization of glossy surfaces like printed matter or laminated material, further developments are discussed. The device has been extended for observation of photoelasticity effects and therefore homogeneity of polarization behaviour. A refined experimental set-up is introduced. Variation of plane of focus and incident angle are used for separation of various the images of the layers of the surface under test, cross and parallel polarization techniques are applied. Practical examples from current research studies are included.

  7. Solution of 3D inverse scattering problems by combined inverse equivalent current and finite element methods

    SciTech Connect

    Kılıç, Emre Eibert, Thomas F.

    2015-05-01

    An approach combining boundary integral and finite element methods is introduced for the solution of three-dimensional inverse electromagnetic medium scattering problems. Based on the equivalence principle, unknown equivalent electric and magnetic surface current densities on a closed surface are utilized to decompose the inverse medium problem into two parts: a linear radiation problem and a nonlinear cavity problem. The first problem is formulated by a boundary integral equation, the computational burden of which is reduced by employing the multilevel fast multipole method (MLFMM). Reconstructed Cauchy data on the surface allows the utilization of the Lorentz reciprocity and the Poynting's theorems. Exploiting these theorems, the noise level and an initial guess are estimated for the cavity problem. Moreover, it is possible to determine whether the material is lossy or not. In the second problem, the estimated surface currents form inhomogeneous boundary conditions of the cavity problem. The cavity problem is formulated by the finite element technique and solved iteratively by the Gauss–Newton method to reconstruct the properties of the object. Regularization for both the first and the second problems is achieved by a Krylov subspace method. The proposed method is tested against both synthetic and experimental data and promising reconstruction results are obtained.

  8. A 3D finite element ALE method using an approximate Riemann solution

    DOE PAGESBeta

    Chiravalle, V. P.; Morgan, N. R.

    2016-08-09

    Arbitrary Lagrangian–Eulerian finite volume methods that solve a multidimensional Riemann-like problem at the cell center in a staggered grid hydrodynamic (SGH) arrangement have been proposed. This research proposes a new 3D finite element arbitrary Lagrangian–Eulerian SGH method that incorporates a multidimensional Riemann-like problem. Here, two different Riemann jump relations are investigated. A new limiting method that greatly improves the accuracy of the SGH method on isentropic flows is investigated. A remap method that improves upon a well-known mesh relaxation and remapping technique in order to ensure total energy conservation during the remap is also presented. Numerical details and test problemmore » results are presented.« less

  9. Parallel 3D Finite Element Numerical Modelling of DC Electron Guns

    SciTech Connect

    Prudencio, E.; Candel, A.; Ge, L.; Kabel, A.; Ko, K.; Lee, L.; Li, Z.; Ng, C.; Schussman, G.; /SLAC

    2008-02-04

    In this paper we present Gun3P, a parallel 3D finite element application that the Advanced Computations Department at the Stanford Linear Accelerator Center is developing for the analysis of beam formation in DC guns and beam transport in klystrons. Gun3P is targeted specially to complex geometries that cannot be described by 2D models and cannot be easily handled by finite difference discretizations. Its parallel capability allows simulations with more accuracy and less processing time than packages currently available. We present simulation results for the L-band Sheet Beam Klystron DC gun, in which case Gun3P is able to reduce simulation time from days to some hours.

  10. 3D Dynamic Finite Element Analysis of the Nonuniform Residual Stress in Ultrasonic Impact Treatment Process

    NASA Astrophysics Data System (ADS)

    Hu, Shengsun; Guo, Chaobo; Wang, Dongpo; Wang, Zhijiang

    2016-07-01

    The nonuniform distributions of the residual stress were simulated by a 3D finite element model to analyze the elastic-plastic dynamic ultrasonic impact treatment (UIT) process of multiple impacts on the 2024 aluminum alloy. The evolution of the stress during the impact process was discussed. The successive impacts during the UIT process improve the uniformity of the plastic deformation and decrease the maximum compressive residual stress beneath the former impact indentations. The influences of different controlled parameters, including the initial impact velocity, pin diameter, pin tip, device moving, and offset distances, on the residual stress distributions were analyzed. The influences of the controlled parameters on the residual stress distributions are apparent in the offset direction due to the different surface coverage in different directions. The influences can be used to understand the UIT process and to obtain the desired residual stress by optimizing the controlled parameters.

  11. On 3-D inelastic analysis methods for hot section components. Volume 1: Special finite element models

    NASA Technical Reports Server (NTRS)

    Nakazawa, S.

    1987-01-01

    This Annual Status Report presents the results of work performed during the third year of the 3-D Inelastic Analysis Methods for Hot Section Components program (NASA Contract NAS3-23697). The objective of the program is to produce a series of new computer codes that permit more accurate and efficient three-dimensional analysis of selected hot section components, i.e., combustor liners, turbine blades, and turbine vanes. The computer codes embody a progression of mathematical models and are streamlined to take advantage of geometrical features, loading conditions, and forms of material response that distinguish each group of selected components. This report is presented in two volumes. Volume 1 describes effort performed under Task 4B, Special Finite Element Special Function Models, while Volume 2 concentrates on Task 4C, Advanced Special Functions Models.

  12. 3D Finite Element Study on: Bar Splinted Implants Supporting Partial Denture in the Reconstructed Mandible

    PubMed Central

    El-Anwar, Mohamed; Ghali, Rami; Aboelnagga, Mona

    2016-01-01

    AIM: This study aimed to estimate the stress patterns induced by the masticatory loads on a removable prosthesis supported and retained by bar splinted implants placed in the reconstructed mandible with two different clip materials and without clip, in the fibula-jaw bone and prosthesis using finite element analysis. METHODS: Two 3D finite element models were constructed, that models components were modeled on commercial CAD/CAM software then assembled into finite element package. Vertical loads were applied simulating the masticatory forces unilaterally in the resected site and bilaterally in the central fossa of the lower first molar as 100N (tension and compression). Analysis was based on the assumption full osseointegration between different types of bones, and between implants and fibula while fixing the top surface of the TMJ in place. RESULTS: The metallic bar connecting the three implants is insensitive to the clips material. Its supporting implants showed typical behavior with maximum stress values at the neck region. Fibula and jaw bone showed stresses within physiologic, while clips material effect seems to be very small due to its relatively small size. CONCLUSION: Switching loading force direction from tensile to compression did-not change the stresses and deformations distribution, but reversed their sign from positive to negative. PMID:27275353

  13. A NURBS-based generalized finite element scheme for 3D simulation of heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Safdari, Masoud; Najafi, Ahmad R.; Sottos, Nancy R.; Geubelle, Philippe H.

    2016-08-01

    A 3D NURBS-based interface-enriched generalized finite element method (NIGFEM) is introduced to solve problems with complex discontinuous gradient fields observed in the analysis of heterogeneous materials. The method utilizes simple structured meshes of hexahedral elements that do not necessarily conform to the material interfaces in heterogeneous materials. By avoiding the creation of conforming meshes used in conventional FEM, the NIGFEM leads to significant simplification of the mesh generation process. To achieve an accurate solution in elements that are crossed by material interfaces, the NIGFEM utilizes Non-Uniform Rational B-Splines (NURBS) to enrich the solution field locally. The accuracy and convergence of the NIGFEM are tested by solving a benchmark problem. We observe that the NIGFEM preserves an optimal rate of convergence, and provides additional advantages including the accurate capture of the solution fields in the vicinity of material interfaces and the built-in capability for hierarchical mesh refinement. Finally, the use of the NIGFEM in the computational analysis of heterogeneous materials is discussed.

  14. Improved MAGIC gel for higher sensitivity and elemental tissue equivalent 3D dosimetry

    SciTech Connect

    Zhu Xuping; Reese, Timothy G.; Crowley, Elizabeth M.; El Fakhri, Georges

    2010-01-15

    Purpose: Polymer-based gel dosimeter (MAGIC type) is a preferable phantom material for PET range verification of proton beam therapy. However, improvement in elemental tissue equivalency (specifically O/C ratio) is very desirable to ensure realistic time-activity measurements. Methods: Glucose and urea was added to the original MAGIC formulation to adjust the O/C ratio. The dose responses of the new formulations were tested with MRI transverse relaxation rate (R2) measurements. Results: The new ingredients improved not only the elemental composition but also the sensitivity of the MAGIC gel. The O/C ratios of our new gels agree with that of soft tissue within 1%. The slopes of dose response curves were 1.6-2.7 times larger with glucose. The melting point also increased by 5 deg. C. Further addition of urea resulted in a similar slope but with an increased intercept and a decreased melting point. Conclusions: Our improved MAGIC gel formulations have higher sensitivity and better elemental tissue equivalency for 3D dosimetry applications involving nuclear reactions.

  15. Improved MAGIC gel for higher sensitivity and elemental tissue equivalent 3D dosimetry

    PubMed Central

    Zhu, Xuping; Reese, Timothy G.; Crowley, Elizabeth M.; El Fakhri, Georges

    2010-01-01

    Purpose: Polymer-based gel dosimeter (MAGIC type) is a preferable phantom material for PET range verification of proton beam therapy. However, improvement in elemental tissue equivalency (specifically O∕C ratio) is very desirable to ensure realistic time-activity measurements. Methods: Glucose and urea was added to the original MAGIC formulation to adjust the O∕C ratio. The dose responses of the new formulations were tested with MRI transverse relaxation rate (R2) measurements. Results: The new ingredients improved not only the elemental composition but also the sensitivity of the MAGIC gel. The O∕C ratios of our new gels agree with that of soft tissue within 1%. The slopes of dose response curves were 1.6–2.7 times larger with glucose. The melting point also increased by 5 °C. Further addition of urea resulted in a similar slope but with an increased intercept and a decreased melting point. Conclusions: Our improved MAGIC gel formulations have higher sensitivity and better elemental tissue equivalency for 3D dosimetry applications involving nuclear reactions. PMID:20175480

  16. Introducing the Boundary Element Method with MATLAB

    ERIC Educational Resources Information Center

    Ang, Keng-Cheng

    2008-01-01

    The boundary element method provides an excellent platform for learning and teaching a computational method for solving problems in physical and engineering science. However, it is often left out in many undergraduate courses as its implementation is deemed to be difficult. This is partly due to the perception that coding the method requires…

  17. An inverse problem by boundary element method

    SciTech Connect

    Tran-Cong, T.; Nguyen-Thien, T.; Graham, A.L.

    1996-02-01

    Boundary Element Methods (BEM) have been established as useful and powerful tools in a wide range of engineering applications, e.g. Brebbia et al. In this paper, we report a particular three dimensional implementation of a direct boundary integral equation (BIE) formulation and its application to numerical simulations of practical polymer processing operations. In particular, we will focus on the application of the present boundary element technology to simulate an inverse problem in plastics processing.by extrusion. The task is to design profile extrusion dies for plastics. The problem is highly non-linear due to material viscoelastic behaviours as well as unknown free surface conditions. As an example, the technique is shown to be effective in obtaining the die profiles corresponding to a square viscoelastic extrudate under different processing conditions. To further illustrate the capability of the method, examples of other non-trivial extrudate profiles and processing conditions are also given.

  18. A fast and accurate method to predict 2D and 3D aerodynamic boundary layer flows

    NASA Astrophysics Data System (ADS)

    Bijleveld, H. A.; Veldman, A. E. P.

    2014-12-01

    A quasi-simultaneous interaction method is applied to predict 2D and 3D aerodynamic flows. This method is suitable for offshore wind turbine design software as it is a very accurate and computationally reasonably cheap method. This study shows the results for a NACA 0012 airfoil. The two applied solvers converge to the experimental values when the grid is refined. We also show that in separation the eigenvalues remain positive thus avoiding the Goldstein singularity at separation. In 3D we show a flow over a dent in which separation occurs. A rotating flat plat is used to show the applicability of the method for rotating flows. The shown capabilities of the method indicate that the quasi-simultaneous interaction method is suitable for design methods for offshore wind turbine blades.

  19. Active tectonics in Taiwan: insights from a 3-D viscous finite element model

    NASA Astrophysics Data System (ADS)

    Sun, Yujun; Liu, Mian; Dong, Shuwen; Zhang, Huai; Shi, Yaolin

    2015-12-01

    Taiwan is a young orogenic belt with complex spatial distributions of deformation and earthquakes. We have constructed a three-dimensional finite element model to explore how the interplays between lithospheric structure and plate boundary processes control the distribution of stress and strain rates in the Taiwan region. The model assumes a liberalized power-law rheology and incorporates main lithospheric structures; the model domain is loaded by the present-day crustal velocity applied at its boundaries. The model successfully reproduces the main features of the GPS-measured strain rate patterns and the earthquake-indicated stress states in the Taiwan region. The best fitting model requires the viscosity of the lower crust to be two orders of magnitude lower than that of the upper crust and lithospheric mantle. The calculated deviatoric stress is high in regions of thrust faulting and low in regions of extensional and strike-slip faulting, consistent with the spatial pattern of seismic intensity in Taiwan.

  20. Analysis of corner cracks at hole by a 3-D weight function method with stresses from finite element method

    NASA Technical Reports Server (NTRS)

    Zhao, W.; Newman, J. C., Jr.; Sutton, M. A.; Wu, X. R.; Shivakumar, K. N.

    1995-01-01

    Stress intensity factors for quarter-elliptical corner cracks emanating from a circular hole are determined using a 3-D weight function method combined with a 3-D finite element method. The 3-D finite element method is used to analyze uncracked configuration and provide stress distribution in the region where crack is to occur. Using this stress distribution as input, the 3-D weight function method is used to determine stress intensity factors. Three different loading conditions, i.e. remote tension, remote bending and wedge loading, are considered for a wide range in geometrical parameters. The significance in using 3-D uncracked stress distribution and the difference between single and double corner cracks are studied. Typical crack opening displacements are also provided. Comparisons are made with solutions available in the literature.

  1. XUV spectra of 2nd transition row elements: identification of 3d-4p and 3d-4f transition arrays

    NASA Astrophysics Data System (ADS)

    Lokasani, Ragava; Long, Elaine; Maguire, Oisin; Sheridan, Paul; Hayden, Patrick; O'Reilly, Fergal; Dunne, Padraig; Sokell, Emma; Endo, Akira; Limpouch, Jiri; O'Sullivan, Gerry

    2015-12-01

    The use of laser produced plasmas (LPPs) in extreme ultraviolet/soft x-ray lithography and metrology at 13.5 nm has been widely reported and recent research efforts have focused on developing next generation sources for lithography, surface morphology, patterning and microscopy at shorter wavelengths. In this paper, the spectra emitted from LPPs of the 2nd transition row elements from yttrium (Z = 39) to palladium (Z = 46), with the exception of zirconium (Z = 40) and technetium (Z = 43), produced by two Nd:YAG lasers which delivered up to 600 mJ in 7 ns and 230 mJ in 170 ps, respectively, are reported. Intense emission was observed in the 2-8 nm spectral region resulting from unresolved transition arrays (UTAs) due to 3d-4p, 3d-4f and 3p-3d transitions. These transitions in a number of ion stages of yttrium, niobium, ruthenium and rhodium were identified by comparison with results from Cowan code calculations and previous studies. The theoretical data were parameterized using the UTA formalism and the mean wavelength and widths were calculated and compared with experimental results.

  2. PDE-based geophysical modelling using finite elements: examples from 3D resistivity and 2D magnetotellurics

    NASA Astrophysics Data System (ADS)

    Schaa, R.; Gross, L.; du Plessis, J.

    2016-04-01

    We present a general finite-element solver, escript, tailored to solve geophysical forward and inverse modeling problems in terms of partial differential equations (PDEs) with suitable boundary conditions. Escript’s abstract interface allows geoscientists to focus on solving the actual problem without being experts in numerical modeling. General-purpose finite element solvers have found wide use especially in engineering fields and find increasing application in the geophysical disciplines as these offer a single interface to tackle different geophysical problems. These solvers are useful for data interpretation and for research, but can also be a useful tool in educational settings. This paper serves as an introduction into PDE-based modeling with escript where we demonstrate in detail how escript is used to solve two different forward modeling problems from applied geophysics (3D DC resistivity and 2D magnetotellurics). Based on these two different cases, other geophysical modeling work can easily be realized. The escript package is implemented as a Python library and allows the solution of coupled, linear or non-linear, time-dependent PDEs. Parallel execution for both shared and distributed memory architectures is supported and can be used without modifications to the scripts.

  3. Gap-Closing 3d Building Reconstruction by Aligning Boundaries of Roof Segments and Detecting Uncovered Details

    NASA Astrophysics Data System (ADS)

    Pohl, M.; Bulatov, D.

    2015-03-01

    We describe a work flow to border building faces which aims to obtain a detailed and closed building model. Initially, we use the estimated roof planes and the rasterized binary mask of the corresponding inlier set to generate bordering polygons. To close the gaps between the initial boundary polygons and between the polygons and the building ground outline, we introduce an algorithm to align boundaries which successfully works in 2.5D and 3D. To enhance the accuracy of the boundary alignment, we use additional reliable model entities such as cut lines and step lines between the initial estimated roof planes. All gaps that cannot be avoided by this procedure are afterwards covered by a method searching for uncovered details.

  4. A methodology to mesh mesoscopic representative volume element of 3D interlock woven composites impregnated with resin

    NASA Astrophysics Data System (ADS)

    Ha, Manh Hung; Cauvin, Ludovic; Rassineux, Alain

    2016-04-01

    We present a new numerical methodology to build a Representative Volume Element (RVE) of a wide range of 3D woven composites in order to determine the mechanical behavior of the fabric unit cell by a mesoscopic approach based on a 3D finite element analysis. Emphasis is put on the numerous difficulties of creating a mesh of these highly complex weaves embedded in a resin. A conforming mesh at the numerous interfaces between yarns is created by a multi-quadtree adaptation technique, which makes it possible thereafter to build an unstructured 3D mesh of the resin with tetrahedral elements. The technique is not linked with any specific tool, but can be carried out with the use of any 2D and 3D robust mesh generators.

  5. Performance analysis of high quality parallel preconditioners applied to 3D finite element structural analysis

    SciTech Connect

    Kolotilina, L.; Nikishin, A.; Yeremin, A.

    1994-12-31

    The solution of large systems of linear equations is a crucial bottleneck when performing 3D finite element analysis of structures. Also, in many cases the reliability and robustness of iterative solution strategies, and their efficiency when exploiting hardware resources, fully determine the scope of industrial applications which can be solved on a particular computer platform. This is especially true for modern vector/parallel supercomputers with large vector length and for modern massively parallel supercomputers. Preconditioned iterative methods have been successfully applied to industrial class finite element analysis of structures. The construction and application of high quality preconditioners constitutes a high percentage of the total solution time. Parallel implementation of high quality preconditioners on such architectures is a formidable challenge. Two common types of existing preconditioners are the implicit preconditioners and the explicit preconditioners. The implicit preconditioners (e.g. incomplete factorizations of several types) are generally high quality but require solution of lower and upper triangular systems of equations per iteration which are difficult to parallelize without deteriorating the convergence rate. The explicit type of preconditionings (e.g. polynomial preconditioners or Jacobi-like preconditioners) require sparse matrix-vector multiplications and can be parallelized but their preconditioning qualities are less than desirable. The authors present results of numerical experiments with Factorized Sparse Approximate Inverses (FSAI) for symmetric positive definite linear systems. These are high quality preconditioners that possess a large resource of parallelism by construction without increasing the serial complexity.

  6. Novel Discrete Element Method for 3D non-spherical granular particles.

    NASA Astrophysics Data System (ADS)

    Seelen, Luuk; Padding, Johan; Kuipers, Hans

    2015-11-01

    Granular materials are common in many industries and nature. The different properties from solid behavior to fluid like behavior are well known but less well understood. The main aim of our work is to develop a discrete element method (DEM) to simulate non-spherical granular particles. The non-spherical shape of particles is important, as it controls the behavior of the granular materials in many situations, such as static systems of packed particles. In such systems the packing fraction is determined by the particle shape. We developed a novel 3D discrete element method that simulates the particle-particle interactions for a wide variety of shapes. The model can simulate quadratic shapes such as spheres, ellipsoids, cylinders. More importantly, any convex polyhedron can be used as a granular particle shape. These polyhedrons are very well suited to represent non-rounded sand particles. The main difficulty of any non-spherical DEM is the determination of particle-particle overlap. Our model uses two iterative geometric algorithms to determine the overlap. The algorithms are robust and can also determine multiple contact points which can occur for these shapes. With this method we are able to study different applications such as the discharging of a hopper or silo. Another application the creation of a random close packing, to determine the solid volume fraction as a function of the particle shape.

  7. 3D scalar model as a 4D perfect conductor limit: Dimensional reduction and variational boundary conditions

    SciTech Connect

    Edery, Ariel; Graham, Noah; MacDonald, Ilana

    2009-06-15

    Under dimensional reduction, a system in D spacetime dimensions will not necessarily yield its D-1-dimensional analog version. Among other things, this result will depend on the boundary conditions and the dimension D of the system. We investigate this question for scalar and Abelian gauge fields under boundary conditions that obey the symmetries of the action. We apply our findings to the Casimir piston, an ideal system for detecting boundary effects. Our investigation is not limited to extra dimensions and we show that the original piston scenario proposed in 2004, a toy model involving a scalar field in 3D (2+1) dimensions, can be obtained via dimensional reduction from a more realistic 4D electromagnetic (EM) system. We show that for perfect conductor conditions, a D-dimensional EM field reduces to a D-1 scalar field and not its lower-dimensional version. For Dirichlet boundary conditions, no theory is recovered under dimensional reduction and the Casimir pressure goes to zero in any dimension. This ''zero Dirichlet'' result is useful for understanding the EM case. We then identify two special systems where the lower-dimensional version is recovered in any dimension: systems with perfect magnetic conductor (PMC) and Neumann boundary conditions. We show that these two boundary conditions can be obtained from a variational procedure in which the action vanishes outside the bounded region. The fields are free to vary on the surface and have zero modes, which survive after dimensional reduction.

  8. Automatic Generation of Boundary Conditions Using Demons Nonrigid Image Registration for Use in 3-D Modality-Independent Elastography

    PubMed Central

    Ou, Jao J.; Ong, Rowena E.; Miga, Michael I.

    2013-01-01

    Modality-independent elastography (MIE) is a method of elastography that reconstructs the elastic properties of tissue using images acquired under different loading conditions and a biomechanical model. Boundary conditions are a critical input to the algorithm and are often determined by time-consuming point correspondence methods requiring manual user input. This study presents a novel method of automatically generating boundary conditions by nonrigidly registering two image sets with a demons diffusion-based registration algorithm. The use of this method was successfully performed in silico using magnetic resonance and X-ray-computed tomography image data with known boundary conditions. These preliminary results produced boundary conditions with an accuracy of up to 80% compared to the known conditions. Demons-based boundary conditions were utilized within a 3-D MIE reconstruction to determine an elasticity contrast ratio between tumor and normal tissue. Two phantom experiments were then conducted to further test the accuracy of the demons boundary conditions and the MIE reconstruction arising from the use of these conditions. Preliminary results show a reasonable characterization of the material properties on this first attempt and a significant improvement in the automation level and viability of the method. PMID:21690002

  9. GPR simulation based on complex frequency shifted recursive integration PML boundary of 3D high order FDTD

    NASA Astrophysics Data System (ADS)

    Li, Jing; Zeng, Zhaofa; Huang, Ling; Liu, Fengshan

    2012-12-01

    When applying the finite difference time domain (FDTD) method in Ground Penetrating Radar (GPR) simulation, the absorbing boundary conditions (ABC) are used to mitigate undesired reflection that can arise at the model's truncation boundaries. The classical PML boundary can make spurious reflection for the waves, such as reaching to the PML interface with near-grazing angles, low frequency waves or evanescent waves. The non-split complex frequency shifted PML which base on recursive integration (CFS-RIPML) has a good absorption effect for these interference waves. Meanwhile, the recursive integration, which does not need split field component, can overcome the shortcoming of CFS technique that needs more intermediate variable and large memory. In addition, the high-order FDTD can improve calculation accuracy and reduce the error caused by numerical dispersion effectively. In this paper, we derive the 3D high-order FDTD method with CFS-RIPML boundary and apply it in GPR simulation. The results show that the CFS-RIPML has significantly better absorption effect and lower reflections error than UPML and PML boundary. Compared with the two-order, the high-order FDTD can improve calculation accuracy effectively with the same grid size. Combination with CFS-RIPML boundary and high-order FDTD can improve the reliability and calculation accuracy of GPR and other geophysics numerical simulation.

  10. A Multi-Compartment 3-D Finite Element Model of Rectocele and Its Interaction with Cystocele

    PubMed Central

    Luo, Jiajia; Chen, Luyun; Fenner, Dee E.; Ashton-Miller, James A.; DeLancey, John O. L.

    2015-01-01

    We developed a subject-specific 3-D finite element model to understand the mechanics underlying formation of female pelvic organ prolapse, specifically a rectocele and its interaction with a cystocele. The model was created from MRI 3-D geometry of a healthy 45 year-old multiparous woman. It included anterior and posterior vaginal walls, levator ani muscle, cardinal and uterosacral ligaments, anterior and posterior arcus tendineus fascia pelvis, arcus tendineus levator ani, perineal body, perineal membrane and anal sphincter. Material properties were mostly from the literature. Tissue impairment was modeled as decreased tissue stiffness based on previous clinical studies. Model equations were solved using Abaqus v 6.11. The sensitivity of anterior and posterior vaginal wall geometry was calculated for different combinations tissue impairments under increasing intraabdominal pressure. Prolapse size was reported as POP-Q point at point Bp for rectocele and point Ba for cystocele. Results show that a rectocele resulted from impairments of the levator ani and posterior compartment support. For 20% levator and 85% posterior support impairments, simulated rectocele size (at POP-Q point: Bp) increased 0.29 mm/cm H2O without apical impairment and 0.36 mm/cm H2O with 60% apical impairment, as intraabdominal pressures increased from 0 to 150 cm H2O. Apical support impairment could result in the development of either a cystocele or rectocele. Simulated repair of posterior compartment support decreased rectocele but increased a preexisting cystocele. We conclude that development of rectocele and cystocele depend on the presence of anterior, posterior, levator and/or or apical support impairments, as well as the interaction of the prolapse with the opposing compartment. PMID:25757664

  11. Turbulent boundary layer over 2D and 3D large-scale wavy walls

    NASA Astrophysics Data System (ADS)

    Chamorro, Leonardo P.; Hamed, Ali M.; Castillo, Luciano

    2015-11-01

    In this work, an experimental investigation of the developing and developed flow over two- and three-dimensional large-scale wavy walls was performed using high-resolution planar particle image velocimetry in a refractive-index-matching flume. The 2D wall is described by a sinusoidal wave in the streamwise direction with amplitude to wavelength ratio a/ λx = 0.05. The 3D wall is defined with an additional wave superimposed on the 2D wall in the spanwise direction with a/ λy = 0.1. The flow was characterized at Reynolds numbers of 4000 and 40000, based on the bulk velocity and the flume half height. Instantaneous velocity fields and time-averaged turbulence quantities reveal strong coupling between large-scale topography and the turbulence dynamics near the wall. Turbulence statistics show the presence of a well-structured shear layer that enhances the turbulence for the 2D wavy wall, whereas the 3D wall exhibits different flow dynamics and significantly lower turbulence levels, particularly for which shows about 30% reduction. The likelihood of recirculation bubbles, levels and spatial distribution of turbulence, and the rate of the turbulent kinetic energy production are shown to be severely affected when a single spanwise mode is superimposed on the 2D wall. POD analysis was also performed to further understand distinctive features of the flow structures due to surface topography.

  12. A parallel overset-curvilinear-immersed boundary framework for simulating complex 3D incompressible flows

    PubMed Central

    Borazjani, Iman; Ge, Liang; Le, Trung; Sotiropoulos, Fotis

    2013-01-01

    We develop an overset-curvilinear immersed boundary (overset-CURVIB) method in a general non-inertial frame of reference to simulate a wide range of challenging biological flow problems. The method incorporates overset-curvilinear grids to efficiently handle multi-connected geometries and increase the resolution locally near immersed boundaries. Complex bodies undergoing arbitrarily large deformations may be embedded within the overset-curvilinear background grid and treated as sharp interfaces using the curvilinear immersed boundary (CURVIB) method (Ge and Sotiropoulos, Journal of Computational Physics, 2007). The incompressible flow equations are formulated in a general non-inertial frame of reference to enhance the overall versatility and efficiency of the numerical approach. Efficient search algorithms to identify areas requiring blanking, donor cells, and interpolation coefficients for constructing the boundary conditions at grid interfaces of the overset grid are developed and implemented using efficient parallel computing communication strategies to transfer information among sub-domains. The governing equations are discretized using a second-order accurate finite-volume approach and integrated in time via an efficient fractional-step method. Various strategies for ensuring globally conservative interpolation at grid interfaces suitable for incompressible flow fractional step methods are implemented and evaluated. The method is verified and validated against experimental data, and its capabilities are demonstrated by simulating the flow past multiple aquatic swimmers and the systolic flow in an anatomic left ventricle with a mechanical heart valve implanted in the aortic position. PMID:23833331

  13. Slab Profile Encoding (PEN) for Minimizing Slab Boundary Artifact in 3D Diffusion-Weighted Multislab Acquisition*

    PubMed Central

    Van, Anh T; Aksoy, Murat; Holdsworth, Samantha J; Kopeinigg, Daniel; Vos, Sjoerd B; Bammer, Roland

    2014-01-01

    Purpose To propose a method for mitigating slab boundary artifacts in 3D multislab diffusion imaging with no or minimal increases in scan time. Methods The multislab acquisition was treated as parallel imaging acquisition where the slab profiles acted as the traditional receiver sensitivity profiles. All the slabs were then reconstructed simultaneously along the slab direction using Cartesian-based sensitivity encoding (SENSE) reconstruction. The slab profile estimation was performed using either a Bloch simulation or a calibration scan. Results Both phantom and in vivo results showed negligible slab boundary artifacts after reconstruction using the proposed method. The performance of the proposed method is comparable to the state-of-the-art slab combination method without the scan time penalty that depends on the number of acquired volumes. The obtained g-factor map of the SENSE reconstruction problem showed a maximum g-factor of 1.7 in the region of interest. Conclusion We proposed a novel method for mitigating slab boundary artifacts in 3D diffusion imaging by treating the multislab acquisition as a parallel imaging acquisition and reconstructing all slabs simultaneously using Cartesian SENSE. Unlike existing methods, the scan time increase, if any, does not scale with the number of image volumes acquired. PMID:24691843

  14. Interactive editing of 3D geological structures and tectonic history sketching via a rigid element method

    NASA Astrophysics Data System (ADS)

    Laurent, Gautier; Caumon, Guillaume; Jessell, Mark

    2015-01-01

    Numerical models of geological structures are generally built with a geometrical approach, which lacks an explicit representation of the deformation history and may lead to incompatible structures. We advocate that the deformation history should be investigated and represented from the very first steps of the modelling process, provided that a series of rapid, interactive or automated, deformation tools are available for local editing, forward modelling and restoration. In this paper, we define the specifications of such tools and emphasise the need for rapidity and robustness. We briefly review the different applications of deformation tools in geomodelling and the existing deformation algorithms. We select a deformation algorithm based on rigid elements, first presented in the Computer Graphics community, which we refer to as Reed. It is able to rapidly deform any kind of geometrical object, including points, lines or volumes, with an approximated mechanical behaviour. The objects to be deformed are embedded in rigid cells whose displacement is optimised by minimising a global cost function with respect to displacement boundary conditions. This cost function measures the difference in displacement between neighbouring elements. The embedded objects are then deformed based on their original position with respect to the rigid elements. We present the basis of our implementation of this algorithm and highlight its ability to fulfil the specifications we defined. Its application to geomodelling specific problems is illustrated through the construction of a synthetic structural model of multiply deformed layers with a forward modelling approach. A special boundary condition adapted to restore large folds is also presented and applied to the large anticline of Han-sur-Lesse, Belgium, which demonstrates the ability of this method to efficiently perform a volumetric restoration without global projections.

  15. FERM3D: A finite element R-matrix electron molecule scattering code

    NASA Astrophysics Data System (ADS)

    Tonzani, Stefano

    2007-01-01

    FERM3D is a three-dimensional finite element program, for the elastic scattering of a low energy electron from a general polyatomic molecule, which is converted to a potential scattering problem. The code is based on tricubic polynomials in spherical coordinates. The electron-molecule interaction is treated as a sum of three terms: electrostatic, exchange, and polarization. The electrostatic term can be extracted directly from ab initio codes ( GAUSSIAN 98 in the work described here), while the exchange term is approximated using a local density functional. A local polarization potential based on density functional theory [C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785] describes the long range attraction to the molecular target induced by the scattering electron. Photoionization calculations are also possible and illustrated in the present work. The generality and simplicity of the approach is important in extending electron-scattering calculations to more complex targets than it is possible with other methods. Program summaryTitle of program:FERM3D Catalogue identifier:ADYL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADYL_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested:Intel Xeon, AMD Opteron 64 bit, Compaq Alpha Operating systems or monitors under which the program has been tested:HP Tru64 Unix v5.1, Red Hat Linux Enterprise 3 Programming language used:Fortran 90 Memory required to execute with typical data:900 MB (neutral CO 2), 2.3 GB (ionic CO 2), 1.4 GB (benzene) No. of bits in a word:32 No. of processors used:1 Has the code been vectorized?:No No. of lines in distributed program, including test data, etc.:58 383 No. of bytes in distributed program, including test data, etc.:561 653 Distribution format:tar.gzip file CPC Program library subprograms used:ADDA, ACDP Nature of physical problem:Scattering of an

  16. A numerical method for solving the 3D unsteady incompressible Navier Stokes equations in curvilinear domains with complex immersed boundaries

    NASA Astrophysics Data System (ADS)

    Ge, Liang; Sotiropoulos, Fotis

    2007-08-01

    A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g. the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [A. Gilmanov, F. Sotiropoulos, A hybrid cartesian/immersed boundary method for simulating flows with 3d, geometrically complex, moving bodies, Journal of Computational Physics 207 (2005) 457-492.]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow

  17. 3-D inversion of magnetotelluric data using unstructured tetrahedral elements: applicability to data affected by topography

    NASA Astrophysics Data System (ADS)

    Usui, Yoshiya

    2015-08-01

    A 3-D magnetotelluric (MT) inversion code using unstructured tetrahedral elements has been developed in order to correct the topographic effect by directly incorporating it into computational grids. The electromagnetic field and response functions get distorted at the observation sites of MT surveys because of the undulating surface topography, and without correcting this distortion, the subsurface structure can be misinterpreted. Of the two methods proposed to correct the topographic effect, the method incorporating topography explicitly in the inversion is applicable to a wider range of surveys. For forward problems, it has been shown that the finite element method using unstructured tetrahedral elements is useful for the incorporation of topography. Therefore, this paper shows the applicability of unstructured tetrahedral elements in MT inversion using the newly developed code. The inversion code is capable of using the impedance tensor, the vertical magnetic transfer function (VMTF), and the phase tensor as observational data, and it estimates the subsurface resistivity values and the distortion tensor of each observation site. The forward part of the code was verified using two test models, one incorporating topographic effect and one without, and the verifications showed that the results were almost the same as those of previous works. The developed inversion code was then applied to synthetic data from a MT survey, and was verified as being able to recover the resistivity structure as well as other inversion codes. Finally, to confirm its applicability to the data affected by topography, inversion was performed using the synthetic data of the model that included two overlapping mountains. In each of the cases using the impedance tensor, the VMTF and the phase tensor, by including the topography in the mesh, the subsurface resistivity was determined more proficiently than in the case using the flat-surface mesh. Although the locations of the anomalies were

  18. A package for 3-D unstructured grid generation, finite-element flow solution and flow field visualization

    NASA Technical Reports Server (NTRS)

    Parikh, Paresh; Pirzadeh, Shahyar; Loehner, Rainald

    1990-01-01

    A set of computer programs for 3-D unstructured grid generation, fluid flow calculations, and flow field visualization was developed. The grid generation program, called VGRID3D, generates grids over complex configurations using the advancing front method. In this method, the point and element generation is accomplished simultaneously, VPLOT3D is an interactive, menudriven pre- and post-processor graphics program for interpolation and display of unstructured grid data. The flow solver, VFLOW3D, is an Euler equation solver based on an explicit, two-step, Taylor-Galerkin algorithm which uses the Flux Corrected Transport (FCT) concept for a wriggle-free solution. Using these programs, increasingly complex 3-D configurations of interest to aerospace community were gridded including a complete Space Transportation System comprised of the space-shuttle orbitor, the solid-rocket boosters, and the external tank. Flow solutions were obtained on various configurations in subsonic, transonic, and supersonic flow regimes.

  19. Implicit Approaches for Moving Boundaries in a 3-D Cartesian Method

    NASA Technical Reports Server (NTRS)

    Murman, Scott M.; Aftosmis, Michael J.; Berger, Marsha J.; Kwak, Dochan

    2003-01-01

    This work considers numerical simulation of three-dimensional flows with time-evolving boundaries. Such problems pose a variety of challenges for numerical schemes, and have received a substantial amount of attention in the recent literature. Since such simulations are unsteady, time-accurate solution of the governing equations is required. In special cases, the body motion can be treated by a uniform rigid motion of the computational domain. For the more general situation of relative-body motion, however, this simplification is unavailable and the simulations require a mechanism for ensuring that the mesh evolves with the moving boundaries. This involves a "remeshing" of the computational domain (either localized or global) at each physical timestep, and places a premium on both the speed and robustness of the remeshing algorithms. This work presents a method which includes unsteady flow simulation, rigid domain motion, and relative body motion using a time-evolving Cartesian grid system in three dimensions.

  20. A note on problems in 3D boundary layer computations in streamline coordinates

    NASA Astrophysics Data System (ADS)

    Scholtysik, M.; Bettelini, M.; Fanneløp, T. K.

    1994-01-01

    Turbulent boundary layers with convergent and divergent external streamlines over a flat plate in the neighbourhood of a plane of symmetry have been computed using a finite-difference method based on streamline coordinates. While the results for the divergent case are generally satisfactory, error growth has been observed for the convergent flowfield. This is most pronounced near the lateral boundary of the computational domain, but also occurs in the plane of symmetry. As an ad-hoc engineering solution, a modified and more restrictive definition of the domain of dependence is proposed, which eliminates the part of the computational domain where the largest error growth occurs. The observed tendency to instability in the convergent case is confirmed by a simplified stability analysis after von Neumann of the uncoupled governing equations.

  1. A 3D immersed finite element method with non-homogeneous interface flux jump for applications in particle-in-cell simulations of plasma-lunar surface interactions

    NASA Astrophysics Data System (ADS)

    Han, Daoru; Wang, Pu; He, Xiaoming; Lin, Tao; Wang, Joseph

    2016-09-01

    Motivated by the need to handle complex boundary conditions efficiently and accurately in particle-in-cell (PIC) simulations, this paper presents a three-dimensional (3D) linear immersed finite element (IFE) method with non-homogeneous flux jump conditions for solving electrostatic field involving complex boundary conditions using structured meshes independent of the interface. This method treats an object boundary as part of the simulation domain and solves the electric field at the boundary as an interface problem. In order to resolve charging on a dielectric surface, a new 3D linear IFE basis function is designed for each interface element to capture the electric field jump on the interface. Numerical experiments are provided to demonstrate the optimal convergence rates in L2 and H1 norms of the IFE solution. This new IFE method is integrated into a PIC method for simulations involving charging of a complex dielectric surface in a plasma. A numerical study of plasma-surface interactions at the lunar terminator is presented to demonstrate the applicability of the new method.

  2. A Navier-Stokes boundary element solver

    NASA Technical Reports Server (NTRS)

    Reddy, D. R.; Lafe, O.; Cheng, A. H-D.

    1995-01-01

    Using global interpolation functions (GIF's) boundary element solutions are obtained for two-dimensional laminar flows. Two schemes are proposed for handling the convective terms. The first treats convection as a forcing function, and converts the flow equations to pseudo-Poisson equations. In the second scheme, some convective effect is incorporated into the fundamental solution used in constructing the pertinent integral equations. The lid-driven cavity flow is selected as the benchmark problem.

  3. Gravity field determination using boundary element methods

    NASA Astrophysics Data System (ADS)

    Klees, Roland

    1993-09-01

    The Boundary Element Method (BEM), a numerical technique for solving boundary integral equations, is introduced to determine the earth's gravity field. After a short survey on its main principles, we apply this method to the fixed gravimetric boundary value problem (BVP), i.e. the determination of the earth's gravitational potential from measurements of the intensity of the gravity field in points on the earth's surface. We show how to linearize this nonlinear BVP using an implicit function theorem and how to transform the linearized BVP into a boundary integral equation using the single layer representation. A Galerkin method is used to transform the boundary integral equation using the single layer representation. A Galerkin method is used to transform the boundary integral equation into a linear system of equations. We discuss the major problems of this approach for setting up and solving the linear system. The BVP is numerically solved for a bounded part of the earth's surface using a high resolution reference gravity model, measured gravity values of high density, and a 50 ṡ 50 m2 digital terrain model to describe the earth's surface. We obtain a gravity field resolution of 1 ṡ 1 km2 with an accuracy of the order 10-3 to 10-4 in about 1 CPU-hour on a Siemens/Fujitsu SIMD vector pipeline machine using highly sophisticated numerical integration techniques and fast equation solvers. We conclude that BEM is a powerful numerical tool for solving boundary value problems and may be an alternative to classical geodetic techniques.

  4. CMAS 3D, a new program to visualize and project major elements compositions in the CMAS system

    NASA Astrophysics Data System (ADS)

    France, L.; Ouillon, N.; Chazot, G.; Kornprobst, J.; Boivin, P.

    2009-06-01

    CMAS 3D, developed in MATLAB ®, is a program to support visualization of major element chemical data in three dimensions. Such projections are used to discuss correlations, metamorphic reactions and the chemical evolution of rocks, melts or minerals. It can also project data into 2D plots. The CMAS 3D interface makes it easy to use, and does not require any knowledge of Matlab ® programming. CMAS 3D uses data compiled in a Microsoft Excel™ spreadsheet. Although useful for scientific research, the program is also a powerful tool for teaching.

  5. The ESyS_Particle: A New 3-D Discrete Element Model with Single Particle Rotation

    NASA Astrophysics Data System (ADS)

    Wang, Yucang; Mora, Peter

    In this paper, the Discrete Element Model (DEM) is reviewed, and the ESyS_Particle, our new version of DEM, is introduced. We particularly highlight some of the major physical concerns about DEMs and major differences between our model and most current DEMs. In the new model, single particle rotation is introduced and represented by a unit quaternion. For each 3-D particle, six degrees of freedom are employed: three for translational motion, and three for orientation. Six kinds of relative motions are permitted between two neighboring particles, and six interactions are transferred, i.e., radial, two shearing forces, twisting and two bending torques. The relative rotation between two particles is decomposed into two sequence-independent rotations such that all interactions due to the relative motions between interactive rigid bodies can be uniquely determined. This algorithm can give more accurate results because physical principles are obeyed. A theoretical analysis about how to choose the model parameters is presented. Several numerical tests have been carried out, the results indicate that most laboratory tests can be well reproduced using our model.

  6. Finite element modeling of a 3D coupled foot-boot model.

    PubMed

    Qiu, Tian-Xia; Teo, Ee-Chon; Yan, Ya-Bo; Lei, Wei

    2011-12-01

    Increasingly, musculoskeletal models of the human body are used as powerful tools to study biological structures. The lower limb, and in particular the foot, is of interest because it is the primary physical interaction between the body and the environment during locomotion. The goal of this paper is to adopt the finite element (FE) modeling and analysis approaches to create a state-of-the-art 3D coupled foot-boot model for future studies on biomechanical investigation of stress injury mechanism, foot wear design and parachute landing fall simulation. In the modeling process, the foot-ankle model with lower leg was developed based on Computed Tomography (CT) images using ScanIP, Surfacer and ANSYS. Then, the boot was represented by assembling the FE models of upper, insole, midsole and outsole built based on the FE model of the foot-ankle, and finally the coupled foot-boot model was generated by putting together the models of the lower limb and boot. In this study, the FE model of foot and ankle was validated during balance standing. There was a good agreement in the overall patterns of predicted and measured plantar pressure distribution published in literature. The coupled foot-boot model will be fully validated in the subsequent works under both static and dynamic loading conditions for further studies on injuries investigation in military and sports, foot wear design and characteristics of parachute landing impact in military. PMID:21676642

  7. 3D finite element simulation of effects of deflection rate on energy absorption for TRIP steel

    NASA Astrophysics Data System (ADS)

    Hayashi, Asuka; Pham, Hang; Iwamoto, Takeshi

    2015-09-01

    Recently, with the requirement of lighter weight and more safety for a design of automobile, energy absorption capability of structural materials has become important. TRIP (Transformation-induced Plasticity) steel is expected to apply to safety members because of excellent energy absorption capability and ductility. Past studies proved that such excellent characteristics in TRIP steel are dominated by strain-induced martensitic transformation (SIMT) during plastic deformation. Because SIMT strongly depends on deformation rate and temperature, an investigation of the effects of deformation rate and temperature on energy absorption in TRIP is essential. Although energy absorption capability of material can be estimated by J-integral experimentally by using pre-cracked specimen, it is difficult to determine volume fraction of martensite and temperature rise during the crack extension. In addition, their effects on J-integral, especially at high deformation rate in experiment might be quite hard. Thus, a computational prediction needs to be performed. In this study, bending deformation behavior of pre-cracked specimen until the onset point of crack extension are predicted by 3D finite element simulation based on the transformation kinetics model proposed by Iwamoto et al. (1998). It is challenged to take effects of temperature, volume fraction of martensite and deformation rate into account. Then, the mechanism for higher energy absorption characteristic will be discussed.

  8. The numerical integration and 3-D finite element formulation of a viscoelastic model of glass

    SciTech Connect

    Chambers, R.S.

    1994-08-01

    The use of glasses is widespread in making hermetic, insulating seals for many electronic components. Flat panel displays and fiber optic connectors are other products utilizing glass as a structural element. When glass is cooled from sealing temperatures, residual stresses are generated due to mismatches in thermal shrinkage created by the dissimilar material properties of the adjoining materials. Because glass is such a brittle material at room temperature, tensile residual stresses must be kept small to ensure durability and avoid cracking. Although production designs and the required manufacturing process development can be deduced empirically, this is an expensive and time consuming process that does not necessarily lead to an optimal design. Agile manufacturing demands that analyses be used to reduce development costs and schedules by providing insight and guiding the design process through the development cycle. To make these gains, however, viscoelastic models of glass must be available along with the right tool to use them. A viscoelastic model of glass can be used to simulate the stress and volume relaxation that occurs at elevated temperatures as the molecular structure of the glass seeks to equilibrate to the state of the supercooled liquid. The substance of the numerical treatment needed to support the implementation of the model in a 3-D finite element program is presented herein. An accurate second-order, central difference integrator is proposed for the constitutive equations, and numerical solutions are compared to those obtained with other integrators. Inherent convergence problems are reviewed and fixes are described. The resulting algorithms are generally applicable to the broad class of viscoelastic material models. First-order error estimates are used as a basis for developing a scheme for automatic time step controls, and several demonstration problems are presented to illustrate the performance of the methodology.

  9. Dynamic rupture modeling of the 2011 M9 Tohoku earthquake with an unstructured 3D spectral element method

    NASA Astrophysics Data System (ADS)

    Galvez, P.; Ampuero, J. P.; Dalguer, L. A.; Nissen-Meyer, T.

    2011-12-01

    On March 11th 2011, a Mw 9 earthquake stroke Japan causing 28000 victims and triggering a devastating tsunami that caused severe damage along the Japanese coast. The exceptional amount of data recorded by this earthquake, with thousands of sensors located all over Japan, provides a great opportunity for seismologist and engineers to investigate in detail the rupture process in order to better understand the physics of this type of earthquakes and their associated effects, like tsunamis. Here we investigate, by means of dynamic rupture simulations, a plausible mechanism to explain key observations about the rupture process of the 2011 M9 Tohoku earthquake, including the spatial complementarity between high and low frequency aspects of slip (e.g, Simons et al, Science 2011, Meng et al, GRL 2011). To model the dynamic rupture of this event, we use a realistic non-planar fault geometry of the megathrust interface, using the unstructured 3D spectral element open source code SPECFEM3D-SESAME, in which we recently implemented the dynamic fault boundary conditions. This implementation follows the principles introduced by Ampuero (2002) and Kaneko et al. (2008) and involves encapsulated modules plugged into the code. Our current implementation provides the possibility of modeling dynamic rupture for multiple, non-planar faults governed by slip-weakening friction. We successfully verified the code in several SCEC benchmarks, including a 3D problem with branched faults, as well as modeling the rupture of subduction megathrust with a splay fault, finding results comparable to published results. Our first set of simulations is aimed at testing if the diversity of rupture phenomena during the 2011 M9 Tohoku earthquake (see Ampuero et al in this session) can be overall reproduced by assuming the most basic friction law, linear slip-weakening friction, but prescribing a spatially heterogeneous distribution of the critical slip weakening distance Dc and initial fault stresses. Our

  10. A novel vector potential formulation of 3D Navier-Stokes equations with through-flow boundaries by a local meshless method

    NASA Astrophysics Data System (ADS)

    Young, D. L.; Tsai, C. H.; Wu, C. S.

    2015-11-01

    An alternative vector potential formulation is used to solve the Navier-Stokes (N-S) equations in 3D incompressible viscous flow problems with and without through-flow boundaries. Difficulties of the vector potential formulation include the implementation of boundary conditions for through-flow boundaries and the numerical treatment of fourth-order partial differential equations. The advantages on the other hand are the automatic satisfaction of the continuity equation; and pressure is decoupled from the velocity. The objective of this paper is to introduce the appropriate gauge and boundary conditions on the vector potential formulation by a localized meshless method. To handle the divergence-free property, a Coulomb gauge condition is enforced on the vector potential to ensure its existence and uniqueness mathematically. We further improve the algorithm to through-flow problems for the boundary conditions of vector potential by introducing the concept of Stokes' theorem. Based on this innovation, there is no need to include an additional variable to tackle the through-flow fields. This process will greatly simplify the imposition of boundary conditions by the vector potential approach. Under certain conditions, the coupled fourth-order partial differential equations can be easily solved by using this meshless local differential quadrature (LDQ) method. Due to the LDQ capability to deal with the high order differential equations, this algorithm is very attractive to solve this fourth-order vector potential formulation for the N-S equations as comparing to the conventional numerical schemes such as finite element or finite difference methods. The proposed vector potential formulation is simpler and has improved accuracy and efficiency compared to other pressure-free or pressure-coupled algorithms. This investigation can be regarded as the first complete study to obtain the N-S solutions by vector potential formulation through a LDQ method. Two classic 3D benchmark

  11. A 3D, finite element model for baroclinic circulation on the Vancouver Island continental shelf

    USGS Publications Warehouse

    Walters, R.A.; Foreman, M.G.G.

    1992-01-01

    This paper describes the development and application of a 3-dimensional model of the barotropic and baroclinic circulation on the continental shelf west of Vancouver Island, Canada. A previous study with a 2D barotropic model and field data revealed that several tidal constituents have a significant baroclinic component (the K1 in particular). Thus we embarked on another study with a 3D model to study the baroclinic effects on the residual and several selected tidal constituents. The 3D model uses a harmonic expansion in time and a finite element discretization in space. All nonlinear terms are retained, including quadratic bottom stress, advection and wave transport (continuity nonlinearity). The equations are solved as a global and a local problem, where the global problem is the solution of the wave equation formulation of the shallow water equations, and the local problem is the solution of the momentum equation for the vertical velocity profile. These equations are coupled to the advection-diffusion equation for density so that density gradient forcing is included in the momentum equations. However, the study presented here describes diagnostic calculations for the baroclinic residual circulation only. The model is sufficiently efficient that it encourages sensitivity testing with a large number of model runs. In this sense, the model is akin to an extension of analytical solutions to the domain of irregular geometry and bottom topography where this parameter space can be explored in some detail. In particular, the consequences of the sigma coordinate system used by the model are explored. Test cases using an idealized representation of the continental shelf, shelf break and shelf slope, lead to an estimation of the velocity errors caused by interpolation errors inherent in the sigma coordinate system. On the basis of these estimates, the computational grid used in the 2D model is found to have inadequate resolution. Thus a new grid is generated with increased

  12. Robust and scalable 3-D geo-electromagnetic modelling approach using the finite element method

    NASA Astrophysics Data System (ADS)

    Grayver, Alexander V.; Bürg, Markus

    2014-07-01

    We present a robust and scalable solver for time-harmonic Maxwell's equations for problems with large conductivity contrasts, wide range of frequencies, stretched grids and locally refined meshes. The solver is part of the fully distributed adaptive 3-D electromagnetic modelling scheme which employs the finite element method and unstructured non-conforming hexahedral meshes for spatial discretization using the open-source software deal.II. We use the complex-valued electric field formulation and split it into two real-valued equations for which we utilize an optimal block-diagonal pre-conditioner. Application of this pre-conditioner requires the solution of two smaller real-valued symmetric problems. We solve them by using either a direct solver or the conjugate gradient method pre-conditioned with the recently introduced auxiliary space technique. The auxiliary space pre-conditioner reformulates the original problem in form of several simpler ones, which are then solved using highly efficient algebraic multigrid methods. In this paper, we consider the magnetotelluric case and verify our numerical scheme by using COMMEMI 3-D models. Afterwards, we run a series of numerical experiments and demonstrate that the solver converges in a small number of iterations for a wide frequency range and variable problem sizes. The number of iterations is independent of the problem size, but exhibits a mild dependency on frequency. To test the stability of the method on locally refined meshes, we have implemented a residual-based a posteriori error estimator and compared it with uniform mesh refinement for problems up to 200 million unknowns. We test the scalability of the most time consuming parts of our code and show that they fulfill the strong scaling assumption as long as each MPI process possesses enough degrees of freedom to alleviate communication overburden. Finally, we refer back to a direct solver-based pre-conditioner and analyse its complexity in time. The results show

  13. Boundary element and finite element coupling for aeroacoustics simulations

    NASA Astrophysics Data System (ADS)

    Balin, Nolwenn; Casenave, Fabien; Dubois, François; Duceau, Eric; Duprey, Stefan; Terrasse, Isabelle

    2015-08-01

    We consider the scattering of acoustic perturbations in the presence of a flow. We suppose that the space can be split into a zone where the flow is uniform and a zone where the flow is potential. In the first zone, we apply a Prandtl-Glauert transformation to recover the Helmholtz equation. The well-known setting of boundary element method for the Helmholtz equation is available. In the second zone, the flow quantities are space dependent, we have to consider a local resolution, namely the finite element method. Herein, we carry out the coupling of these two methods and present various applications and validation test cases. The source term is given through the decomposition of an incident acoustic field on a section of the computational domain's boundary. Validations against analytic, another numerical method and measurements on different test cases are presented.

  14. Skin-Friction Measurements in a 3-D, Supersonic Shock-Wave/Boundary-Layer Interaction

    NASA Technical Reports Server (NTRS)

    Wideman, J. K.; Brown, J. L.; Miles, J. B.; Ozcan, O.

    1994-01-01

    The experimental documentation of a three-dimensional shock-wave/boundary-layer interaction in a nominal Mach 3 cylinder, aligned with the free-stream flow, and 20 deg. half-angle conical flare offset 1.27 cm from the cylinder centerline. Surface oil flow, laser light sheet illumination, and schlieren were used to document the flow topology. The data includes surface-pressure and skin-friction measurements. A laser interferometric skin friction data. Included in the skin-friction data are measurements within separated regions and three-dimensional measurements in highly-swept regions. The skin-friction data will be particularly valuable in turbulence modeling and computational fluid dynamics validation.

  15. A Laplacian Equation Method for Numerical Generation of Boundary-Fitted 3D Orthogonal Grids

    NASA Astrophysics Data System (ADS)

    Theodoropoulos, T.; Bergeles, G. C.

    1989-06-01

    A sethod for generating boundary fitted orthogonal curvilinear grids in 3-dimensional space is described. The mapping between the curvilinear coordinates and the Cartesian coordinates is provided by a set of Laplace equations which, expressed in curvilinear coordinates, involve the components of the metric tensor and are therefore non-linear and coupled. An iterative algorithm is described, which achieves a numerical solution. Grids appropriate for the calculation of flow fields over complex topography or in complex flow passages as those found in turbomachinery, and for other engineering applications can be constructed using the proposed method. Various examples are presented and plotted in perspective, and data for the assessment of the properties of the resulting meshes is provided.

  16. Determination of inclusion's boundary in quasi-3d part-homogeneous media by geoelectrical probing method

    NASA Astrophysics Data System (ADS)

    Krizsky, V.

    2003-04-01

    The problems of definition inclusion's boundaries in part-homogeneous media are actual in ore-mineral and oil-gas exploring geophysics. Interpolating spline-function S(t) , which approximate guide-line of cylindrical inclusion or generatrix-line of surface S of rotation body Ω_0 , which located in medium Ω_k of horizontally-stratified half-space, is obtained as normal quasi-solution in the W_2^1 [a,b] . Spline S(t) minimize the A.N. Tichonov functional F^α (S(t)) = left\\| {u(S(t),P,A) - u^e(P,A)} right\\|L_2 (E × E) + α left\\| {S(t)} right\\|W_2^1 [a,b], where u^e (P,A) - experimental potential data on area E × E ( P,A in E ), P - pointed receiver and A - pointed source of direct current, α- regularization parameter, u(S(t),P,A) - solution of direct problem about potential field of pointed source A in horizontally-stratified medium. The solution of direct problem can be defined by combine methods of integral transforms and integral equations. The problem of the determination parametric-given boundary is reduced to the problem of the determination limited component of finite dimensional vector. Extremum of functional F^α (S(t)) is obtained by variation type algorithm based on the Hook-Jeves method, which is conformed for searching the badly ravine functions minimum. Designed software programs have allowed us to conduct the computer experiment.

  17. The Double Hierarchy Method. A parallel 3D contact method for the interaction of spherical particles with rigid FE boundaries using the DEM

    NASA Astrophysics Data System (ADS)

    Santasusana, Miquel; Irazábal, Joaquín; Oñate, Eugenio; Carbonell, Josep Maria

    2016-07-01

    In this work, we present a new methodology for the treatment of the contact interaction between rigid boundaries and spherical discrete elements (DE). Rigid body parts are present in most of large-scale simulations. The surfaces of the rigid parts are commonly meshed with a finite element-like (FE) discretization. The contact detection and calculation between those DE and the discretized boundaries is not straightforward and has been addressed by different approaches. The algorithm presented in this paper considers the contact of the DEs with the geometric primitives of a FE mesh, i.e. facet, edge or vertex. To do so, the original hierarchical method presented by Horner et al. (J Eng Mech 127(10):1027-1032, 2001) is extended with a new insight leading to a robust, fast and accurate 3D contact algorithm which is fully parallelizable. The implementation of the method has been developed in order to deal ideally with triangles and quadrilaterals. If the boundaries are discretized with another type of geometries, the method can be easily extended to higher order planar convex polyhedra. A detailed description of the procedure followed to treat a wide range of cases is presented. The description of the developed algorithm and its validation is verified with several practical examples. The parallelization capabilities and the obtained performance are presented with the study of an industrial application example.

  18. The Double Hierarchy Method. A parallel 3D contact method for the interaction of spherical particles with rigid FE boundaries using the DEM

    NASA Astrophysics Data System (ADS)

    Santasusana, Miquel; Irazábal, Joaquín; Oñate, Eugenio; Carbonell, Josep Maria

    2016-04-01

    In this work, we present a new methodology for the treatment of the contact interaction between rigid boundaries and spherical discrete elements (DE). Rigid body parts are present in most of large-scale simulations. The surfaces of the rigid parts are commonly meshed with a finite element-like (FE) discretization. The contact detection and calculation between those DE and the discretized boundaries is not straightforward and has been addressed by different approaches. The algorithm presented in this paper considers the contact of the DEs with the geometric primitives of a FE mesh, i.e. facet, edge or vertex. To do so, the original hierarchical method presented by Horner et al. (J Eng Mech 127(10):1027-1032, 2001) is extended with a new insight leading to a robust, fast and accurate 3D contact algorithm which is fully parallelizable. The implementation of the method has been developed in order to deal ideally with triangles and quadrilaterals. If the boundaries are discretized with another type of geometries, the method can be easily extended to higher order planar convex polyhedra. A detailed description of the procedure followed to treat a wide range of cases is presented. The description of the developed algorithm and its validation is verified with several practical examples. The parallelization capabilities and the obtained performance are presented with the study of an industrial application example.

  19. Validating 3D Seismic Velocity Models Using the Spectral Element Method

    NASA Astrophysics Data System (ADS)

    Maceira, M.; Rowe, C. A.; Allen, R. M.; Obrebski, M. J.

    2010-12-01

    As seismic instrumentation, data storage and dissemination and computational power improve, seismic velocity models attempt to resolve smaller structures and cover larger areas. However, it is unclear how accurate these velocity models are and, while the best models available are used for event determination, it is difficult to put uncertainties on seismic event parameters. Model validation is typically done using resolution tests that assume the imaging theory used is accurate and thus only considers the impact of the data coverage on resolution. We present the results of a more rigorous approach to model validation via full three-dimensional waveform propagation using Spectral Element Methods (SEM). This approach makes no assumptions about the theory used to generate the models but require substantial computational resources. We first validate 3D tomographic models for the Western USA generated using both ray-theoretical and finite-frequency methods. The Dynamic North America (DNA) Models of P- and S- velocity structure (DNA09-P and DNA09-S) use teleseismic body-wave traveltime residuals recorded at over 800 seismic stations provided by the Earthscope USArray and regional seismic networks. We performed systematic computations of synthetics for the dataset used to generate the DNA models. Direct comparison of these synthetic seismograms to the actual observations allows us to accurately assess and validate the models. Implementation of the method for a densely instrumented region such as that covered by the DNA model provides a useful testbed for the validation methods that we will subsequently apply to other, more challenging study areas.

  20. Numerical Modeling of 3-D Dynamics of Ultrasound Contrast Agent Microbubbles Using the Boundary Integral Method

    NASA Astrophysics Data System (ADS)

    Calvisi, Michael; Manmi, Kawa; Wang, Qianxi

    2014-11-01

    Ultrasound contrast agents (UCAs) are microbubbles stabilized with a shell typically of lipid, polymer, or protein and are emerging as a unique tool for noninvasive therapies ranging from gene delivery to tumor ablation. The nonspherical dynamics of contrast agents are thought to play an important role in both diagnostic and therapeutic applications, for example, causing the emission of subharmonic frequency components and enhancing the uptake of therapeutic agents across cell membranes and tissue interfaces. A three-dimensional model for nonspherical contrast agent dynamics based on the boundary integral method is presented. The effects of the encapsulating shell are approximated by adapting Hoff's model for thin-shell, spherical contrast agents to the nonspherical case. A high-quality mesh of the bubble surface is maintained by implementing a hybrid approach of the Lagrangian method and elastic mesh technique. Numerical analyses for the dynamics of UCAs in an infinite liquid and near a rigid wall are performed in parameter regimes of clinical relevance. The results show that the presence of a coating significantly reduces the oscillation amplitude and period, increases the ultrasound pressure amplitude required to incite jetting, and reduces the jet width and velocity.

  1. The Rufous Hummingbird in hovering flight -- full-body 3D immersed boundary simulation

    NASA Astrophysics Data System (ADS)

    Ferreira de Sousa, Paulo; Luo, Haoxiang; Bocanegra Evans, Humberto

    2009-11-01

    Hummingbirds are an interesting case study for the development of micro-air vehicles since they combine the high flight stability of insects with the low metabolic power per unit of body mass of bats, during hovering flight. In this study, simulations of a full-body hummingbird in hovering flight were performed at a Reynolds number around 3600. The simulations employ a versatile sharp-interface immersed boundary method recently enhanced at our lab that can treat thin membranes and solid bodies alike. Implemented on a Cartesian mesh, the numerical method allows us to capture the vortex dynamics of the wake accurately and efficiently. The whole-body simulation will allow us to clearly identify the three general patterns of flow velocity around the body of the hummingbird referred in Altshuler et al. (Exp Fluids 46 (5), 2009). One focus of the current study is to understand the interaction between the wakes of the two wings at the end of the upstroke, and how the tail actively defects the flow to contribute to pitch stability. Another focus of the study will be to identify the pair of unconnected loops underneath each wing.

  2. Program Helps Generate Boundary-Element Mathematical Models

    NASA Technical Reports Server (NTRS)

    Goldberg, R. K.

    1995-01-01

    Composite Model Generation-Boundary Element Method (COM-GEN-BEM) computer program significantly reduces time and effort needed to construct boundary-element mathematical models of continuous-fiber composite materials at micro-mechanical (constituent) scale. Generates boundary-element models compatible with BEST-CMS boundary-element code for anlaysis of micromechanics of composite material. Written in PATRAN Command Language (PCL).

  3. SIMULATIONS OF 2D AND 3D THERMOCAPILLARY FLOWS BY A LEAST-SQUARES FINITE ELEMENT METHOD. (R825200)

    EPA Science Inventory

    Numerical results for time-dependent 2D and 3D thermocapillary flows are presented in this work. The numerical algorithm is based on the Crank-Nicolson scheme for time integration, Newton's method for linearization, and a least-squares finite element method, together with a matri...

  4. The MHOST finite element program: 3-D inelastic analysis methods for hot section components. Volume 3: Systems' manual

    NASA Technical Reports Server (NTRS)

    Nakazawa, Shohei

    1989-01-01

    The internal structure is discussed of the MHOST finite element program designed for 3-D inelastic analysis of gas turbine hot section components. The computer code is the first implementation of the mixed iterative solution strategy for improved efficiency and accuracy over the conventional finite element method. The control structure of the program is covered along with the data storage scheme and the memory allocation procedure and the file handling facilities including the read and/or write sequences.

  5. Regional airflow and particle distribution in the lung with a 3D-1D coupled subject-specific boundary condition

    NASA Astrophysics Data System (ADS)

    Choi, Jiwoong; Yin, Youbing; Hoffman, Eric; Tawhai, Merryn; Lin, Ching-Long

    2010-11-01

    Correct prediction of regional distribution of inhaled aerosol particles is vital to improve pulmonary medicine. Physiologically consistent regional ventilations of airflow and aerosol particles are simulated with a 3D-1D coupled subject-specific boundary condition (BC). In 3D CT-resolved 7-generation airways, large eddy simulations are performed to capture detailed airflow characteristics and Lagrangian particle simulations are carried to track the particle transport and deposition. Results are compared with two traditional outlet BCs: uniform velocity and uniform pressure. Proposed BC is eligible for physiologically consistent airflow distribution in the lung, while the others are not. The regional ventilation and deposition of particles reflect the regional ventilation of airflow. In this study, two traditional BCs yield up to 98% (334%) over-prediction in lobar particle ventilation (deposition) fraction. Upper to lower particle ventilation ratios of both left and right lungs read ˜0.4 with the proposed BC, while those for the other two BCs vary with the error up to 73%.

  6. Application of Plenoptic PIV for 3D Velocity Measurements Over Roughness Elements in a Refractive Index Matched Facility

    NASA Astrophysics Data System (ADS)

    Thurow, Brian; Johnson, Kyle; Kim, Taehoon; Blois, Gianluca; Best, Jim; Christensen, Ken

    2014-11-01

    The application of Plenoptic PIV in a Refractive Index Matched (RIM) facility housed at Illinois is presented. Plenoptic PIV is an emerging 3D diagnostic that exploits the light-field imaging capabilities of a plenoptic camera. Plenoptic cameras utilize a microlens array to measure the position and angle of light rays captured by the camera. 3D/3C velocity fields are determined through application of the MART algorithm for volume reconstruction and a conventional 3D cross-correlation PIV algorithm. The RIM facility is a recirculating tunnel with a 62.5% aqueous solution of sodium iodide used as the working fluid. Its resulting index of 1.49 is equal to that of acrylic. Plenoptic PIV was used to measure the 3D velocity field of a turbulent boundary layer flow over a smooth wall, a single wall-mounted hemisphere and a full array of hemispheres (i.e. a rough wall) with a k/ δ ~ 4.6. Preliminary time averaged and instantaneous 3D velocity fields will be presented. This material is based upon work supported by the National Science Foundation under Grant No. 1235726.

  7. Symmetric Galerkin boundary formulations employing curved elements

    NASA Technical Reports Server (NTRS)

    Kane, J. H.; Balakrishna, C.

    1993-01-01

    Accounts of the symmetric Galerkin approach to boundary element analysis (BEA) have recently been published. This paper attempts to add to the understanding of this method by addressing a series of fundamental issues associated with its potential computational efficiency. A new symmetric Galerkin theoretical formulation for both the (harmonic) heat conduction and the (biharmonic) elasticity problem that employs regularized singular and hypersingular boundary integral equations (BIEs) is presented. The novel use of regularized BIEs in the Galerkin context is shown to allow straightforward incorporation of curved, isoparametric elements. A symmetric reusable intrinsic sample point (RISP) numerical integration algorithm is shown to produce a Galerkin (i.e., double) integration strategy that is competitive with its counterpart (i.e., singular) integration procedure in the collocation BEA approach when the time saved in the symmetric equation solution phase is also taken into account. This new formulation is shown to be capable of employing hypersingular BIEs while obviating the requirement of C 1 continuity, a fact that allows the employment of the popular continuous element technology. The behavior of the symmetric Galerkin BEA method with regard to both direct and iterative equation solution operations is also addressed. A series of example problems are presented to quantify the performance of this symmetric approach, relative to the more conventional unsymmetric BEA, in terms of both accuracy and efficiency. It is concluded that appropriate implementations of the symmetric Galerkin approach to BEA indeed have the potential to be competitive with, if not superior to, collocation-based BEA, for large-scale problems.

  8. Spectral element modeling of 3D wave propagation in the Earth: the graver part of the spectrum

    NASA Astrophysics Data System (ADS)

    Chaljub, E.; Valette, B.

    2003-04-01

    The Spectral Element Method (SEM) has been recently established as a new reference to compute synthetic seismograms in 3D models of the Earth. So far, all the studies involving the SEM have been performed within the Cowling approximation, i. e. neglecting the variations of the gravity field during wave propagation. For low-frequency studies (typically less than 5 mHz) the previous assumption fails and the complete treatment of self-gravitation has to be considered. This requires the introduction of the mass redistribution potential (MRP) which has to satisfy Poisson's equation everywhere in space. Unlike spherical harmonics approaches, the use of a grid based method does not provide a natural framework for the resolution of the exterior problem. However, we show that a Dirichlet-to-Neumann operator at the surface of the Earth provides a simple and efficient solution to this problem. A special attention is needed for the fluid parts to avoid spurious oscillations. To this end, we introduce a general two-potentials formulation which allows to take any density stratification into account. Contrary to other studies that considered the velocity potential, our decomposition is applied to the displacement field in order to obtain natural solid-fluid boundary conditions for the MRP. At each time step, the MRP is computed from the displacement field through a preconditioned conjugate gradient algorithm. This procedure has to be accurate enough in order to ensure a stable calculation on long time series. Some examples of synthetic seismograms computed in spherical Earth models illustrate the accuracy of our approach.

  9. Analysis of surface cracks at hole by a 3-D weight function method with stresses from finite element method

    NASA Technical Reports Server (NTRS)

    Zhao, W.; Newman, J. C., Jr.; Sutton, M. A.; Shivakumar, K. N.; Wu, X. R.

    1995-01-01

    Parallel with the work in Part-1, stress intensity factors for semi-elliptical surface cracks emanating from a circular hole are determined. The 3-D weight function method with the 3D finite element solutions for the uncracked stress distribution as in Part-1 is used for the analysis. Two different loading conditions, i.e. remote tension and wedge loading, are considered for a wide range in geometrical parameters. Both single and double surface cracks are studied and compared with other solutions available in the literature. Typical crack opening displacements are also provided.

  10. A three dimensional immersed smoothed finite element method (3D IS-FEM) for fluid-structure interaction problems

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Qian; Liu, G. R.; Khoo, Boo Cheong

    2013-02-01

    A three-dimensional immersed smoothed finite element method (3D IS-FEM) using four-node tetrahedral element is proposed to solve 3D fluid-structure interaction (FSI) problems. The 3D IS-FEM is able to determine accurately the physical deformation of the nonlinear solids placed within the incompressible viscous fluid governed by Navier-Stokes equations. The method employs the semi-implicit characteristic-based split scheme to solve the fluid flows and smoothed finite element methods to calculate the transient dynamics responses of the nonlinear solids based on explicit time integration. To impose the FSI conditions, a novel, effective and sufficiently general technique via simple linear interpolation is presented based on Lagrangian fictitious fluid meshes coinciding with the moving and deforming solid meshes. In the comparisons to the referenced works including experiments, it is clear that the proposed 3D IS-FEM ensures stability of the scheme with the second order spatial convergence property; and the IS-FEM is fairly independent of a wide range of mesh size ratio.

  11. 3-D stress analysis in laminated plates using a combination of ANSYS and sub-element/deficient approximation function analysis

    SciTech Connect

    Bogdanovich, A.; Pastore, C.; Kumar, V.; German, M.

    1994-12-31

    The method of combining the use of ANSYS SOLID 46 finite element and the sub-element/deficient approximation function (SEDAF) analysis is developed and demonstrated on the benchmark problem of Pagano. The algorithm incorporates a primary displacement calculation using ANSYS and the successive stress calculation using 3-D SEDAF analysis. A special mathematical procedure aimed to convert the global displacement output of the commercial finite element code into the local displacement input of the SEDAF analysis is presented. The results show a considerably higher accuracy provided by this combination compared to the original ANSYS results when calculating both the in-plane and transverse stresses, especially for their values at the interfaces. After some generalization, the presented ANSYS/SEDAF algorithm seems to be promising for obtaining a sufficiently accurate 3-D stress distributions in any structural analysis problem allowing for the application of ANSYS code.

  12. Comparison of Gap Elements and Contact Algorithm for 3D Contact Analysis of Spiral Bevel Gears

    NASA Technical Reports Server (NTRS)

    Bibel, G. D.; Tiku, K.; Kumar, A.; Handschuh, R.

    1994-01-01

    Three dimensional stress analysis of spiral bevel gears in mesh using the finite element method is presented. A finite element model is generated by solving equations that identify tooth surface coordinates. Contact is simulated by the automatic generation of nonpenetration constraints. This method is compared to a finite element contact analysis conducted with gap elements.

  13. Multigrid mapping and box relaxation for simulation of the whole process of flow transition in 3-D boundary layers

    SciTech Connect

    Liu, C.; Liu, Z.

    1994-12-31

    A new multilevel technology was developed in this study which provides a successful numerical simulation for the whole process of flow transition in 3-D flat plate boundary layers, including linear growth, secondary instability, breakdown, and transition on a relatively coarse grid with low CPU cost. A fourth-order finite difference scheme on stretched and staggered grids, a fully implicit time-marching technique, a semi-coarsening multigrid based on the so-called approximate line-box relaxation, and a buffer domain for the outflow boundary conditions were all employed for high-order accuracy, good stability, and fast convergence. A new fine-coarse-fine grid mapping technique was developed to catch the large eddies and represent main roles of small eddies to keep the code running after the laminar flow breaks down. The computational results are in good agreement with linear stability theory, secondary instability theory, and some experiments. The computation also reproduced the K-type and C-type transition observed by laboratory experiments. The CPU cost for a typical case is around 2-9 CRAY-YMP hours.

  14. 3D element imaging using NSECT for the detection of renal cancer: a simulation study in MCNP.

    PubMed

    Viana, R S; Agasthya, G A; Yoriyaz, H; Kapadia, A J

    2013-09-01

    This work describes a simulation study investigating the application of neutron stimulated emission computed tomography (NSECT) for noninvasive 3D imaging of renal cancer in vivo. Using MCNP5 simulations, we describe a method of diagnosing renal cancer in the body by mapping the 3D distribution of elements present in tumors using the NSECT technique. A human phantom containing the kidneys and other major organs was modeled in MCNP5. The element composition of each organ was based on values reported in literature. The two kidneys were modeled to contain elements reported in renal cell carcinoma (RCC) and healthy kidney tissue. Simulated NSECT scans were executed to determine the 3D element distribution of the phantom body. Elements specific to RCC and healthy kidney tissue were then analyzed to identify the locations of the diseased and healthy kidneys and generate tomographic images of the tumor. The extent of the RCC lesion inside the kidney was determined using 3D volume rendering. A similar procedure was used to generate images of each individual organ in the body. Six isotopes were studied in this work - (32)S, (12)C, (23)Na, (14)N, (31)P and (39)K. The results demonstrated that through a single NSECT scan performed in vivo, it is possible to identify the location of the kidneys and other organs within the body, determine the extent of the tumor within the organ, and to quantify the differences between cancer and healthy tissue-related isotopes with p ≤ 0.05. All of the images demonstrated appropriate concentration changes between the organs, with some discrepancy observed in (31)P, (39)K and (23)Na. The discrepancies were likely due to the low concentration of the elements in the tissue that were below the current detection sensitivity of the NSECT technique. PMID:23920157

  15. 3D element imaging using NSECT for the detection of renal cancer: a simulation study in MCNP

    NASA Astrophysics Data System (ADS)

    Viana, R. S.; Agasthya, G. A.; Yoriyaz, H.; Kapadia, A. J.

    2013-09-01

    This work describes a simulation study investigating the application of neutron stimulated emission computed tomography (NSECT) for noninvasive 3D imaging of renal cancer in vivo. Using MCNP5 simulations, we describe a method of diagnosing renal cancer in the body by mapping the 3D distribution of elements present in tumors using the NSECT technique. A human phantom containing the kidneys and other major organs was modeled in MCNP5. The element composition of each organ was based on values reported in literature. The two kidneys were modeled to contain elements reported in renal cell carcinoma (RCC) and healthy kidney tissue. Simulated NSECT scans were executed to determine the 3D element distribution of the phantom body. Elements specific to RCC and healthy kidney tissue were then analyzed to identify the locations of the diseased and healthy kidneys and generate tomographic images of the tumor. The extent of the RCC lesion inside the kidney was determined using 3D volume rendering. A similar procedure was used to generate images of each individual organ in the body. Six isotopes were studied in this work—32S, 12C, 23Na, 14N, 31P and 39K. The results demonstrated that through a single NSECT scan performed in vivo, it is possible to identify the location of the kidneys and other organs within the body, determine the extent of the tumor within the organ, and to quantify the differences between cancer and healthy tissue-related isotopes with p ≤ 0.05. All of the images demonstrated appropriate concentration changes between the organs, with some discrepancy observed in 31P, 39K and 23Na. The discrepancies were likely due to the low concentration of the elements in the tissue that were below the current detection sensitivity of the NSECT technique.

  16. 3-D Quantum Transport Solver Based on the Perfectly Matched Layer and Spectral Element Methods for the Simulation of Semiconductor Nanodevices

    PubMed Central

    Cheng, Candong; Lee, Joon-Ho; Lim, Kim Hwa; Massoud, Hisham Z.; Liu, Qing Huo

    2007-01-01

    A 3-D quantum transport solver based on the spectral element method (SEM) and perfectly matched layer (PML) is introduced to solve the 3-D Schrödinger equation with a tensor effective mass. In this solver, the influence of the environment is replaced with the artificial PML open boundary extended beyond the contact regions of the device. These contact regions are treated as waveguides with known incident waves from waveguide mode solutions. As the transmitted wave function is treated as a total wave, there is no need to decompose it into waveguide modes, thus significantly simplifying the problem in comparison with conventional open boundary conditions. The spectral element method leads to an exponentially improving accuracy with the increase in the polynomial order and sampling points. The PML region can be designed such that less than −100 dB outgoing waves are reflected by this artificial material. The computational efficiency of the SEM solver is demonstrated by comparing the numerical and analytical results from waveguide and plane-wave examples, and its utility is illustrated by multiple-terminal devices and semiconductor nanotube devices. PMID:18037971

  17. Distinct element method analyses of fuel spheres in the PBMR core using PFC{sup 3D}

    SciTech Connect

    Polson, Alexander G.

    2004-07-01

    The Pebble Bed Modular Reactor, or PBMR, is a High Temperature Gas Reactor that contains a large number of graphite fuel spheres that circulate in its core. The dynamics of these spheres, combined with thermal contraction and expansion, causes various loading cases on the reactor structures. A Distinct Element Method, or DEM, as implemented in the Particle Flow Code in 3D, or PFC{sup 3D}, is used at PBMR (Pty) Ltd to model the fuel sphere dynamics in the reactor core. This paper presents a few exploratory studies where PFC{sup 3D} was used to investigate the interaction between fuel spheres and structural components in the PBMR, as well as the packing efficiency of the spheres in the core. (author)

  18. A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies

    NASA Astrophysics Data System (ADS)

    Gilmanov, Anvar; Sotiropoulos, Fotis

    2005-08-01

    A numerical method is developed for solving the 3D, unsteady, incompressible Navier-Stokes equations in Cartesian domains containing immersed boundaries of arbitrary geometrical complexity moving with prescribed kinematics. The governing equations are discretized on a hybrid staggered/non-staggered grid layout using second-order accurate finite-difference formulas. The discrete equations are integrated in time via a second-order accurate dual-time-stepping, artificial compressibility iteration scheme. Unstructured, triangular meshes are employed to discretize complex immersed boundaries. The nodes of the surface mesh constitute a set of Lagrangian control points used to track the motion of the flexible body. At every instant in time, the influence of the body on the flow is accounted for by applying boundary conditions at Cartesian grid nodes located in the exterior but in the immediate vicinity of the body by reconstructing the solution along the local normal to the body surface. Grid convergence tests are carried out for the flow induced by an oscillating sphere in a cubic cavity, which show that the method is second-order accurate. The method is validated by applying it to calculate flow in a Cartesian domain containing a rigid sphere rotating at constant angular velocity as well as flow induced by a flapping wing. The ability of the method to simulate flows in domains with arbitrarily complex moving bodies is demonstrated by applying to simulate flow past an undulating fish-like body and flow past an anatomically realistic planktonic copepod performing an escape-like maneuver.

  19. Waveform prediction with travel time model LLNL-G3D assessed by Spectral-Element simulation

    NASA Astrophysics Data System (ADS)

    Morency, C.; Simmons, N. A.; Myers, S. C.; Johannesson, G.; Matzel, E.

    2013-12-01

    Seismic monitoring requires accurate prediction of travel times, amplitudes, and whole waveforms. As a first step towards developing a model that is suited to seismic monitoring, LLNL developed the LLNL-G3D P-wave travel time model (Simmons et al., 2012, JGR) to improve seismic event location accuracy. LLNL-G3D fulfills the need to predict travel times from events occurring anywhere in the globe to stations ranging from local to teleseismic distances. Prediction over this distance range requires explicit inclusion of detailed 3-dimensional structure from Earths surface to the core. An open question is how well a model optimized to fit P-wave travel time data can predict waveforms? We begin to address this question by using the P-wave velocities in LLNL-G3D as a proxy for S-wave velocity and density, then performing waveform simulations via the SPECFEM3D_GLOBE spectral-element code. We assess the ability of LLNL-G3D to predict waveforms and draw comparisons to other 3D models available in SPECFEM3D_GLOBE package and widely used in the scientific community. Although we do not expect the P-wave model to perform as well as waveform based models, we view our effort as a first step towards accurate prediction of time times, amplitudes and full waveforms based on a single model. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  20. Extended displacement discontinuity boundary integral equation and boundary element method for cracks in thermo-magneto-electro-elastic media

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Dang, HuaYang; Xu, GuangTao; Fan, CuiYing; Zhao, MingHao

    2016-08-01

    The extended displacement discontinuity boundary integral equation (EDDBIE) and boundary element method is developed for the analysis of planar cracks of arbitrary shape in the isotropic plane of three-dimensional (3D) transversely isotropic thermo-magneto-electro-elastic (TMEE) media. The extended displacement discontinuities (EDDs) include conventional displacement discontinuity, electric potential discontinuity, magnetic potential discontinuity, as well as temperature discontinuity across crack faces; correspondingly, the extended stresses represent conventional stress, electric displacement, magnetic induction and heat flux. Employing a Hankel transformation, the fundamental solutions for unit point EDDs in 3D transversely isotropic TMEE media are derived. The EDDBIEs for a planar crack of arbitrary shape in the isotropic plane of a 3D transversely isotropic TMEE medium are then established. Using the boundary integral equation method, the singularities of near-crack border fields are obtained and the extended stress field intensity factors are expressed in terms of the EDDs on crack faces. According to the analogy between the EDDBIEs for an isotropic thermoelastic material and TMEE medium, an analogical solution method for crack problems of a TMEE medium is proposed for coupled multi-field loadings. Employing constant triangular elements, the EDDBIEs are discretized and numerically solved. As an application, the problems of an elliptical crack subjected to combined mechanical-electric-magnetic-thermal loadings are investigated.

  1. The scs' boundary element: characterization of boundary element-associated factors.

    PubMed

    Hart, C M; Zhao, K; Laemmli, U K

    1997-02-01

    Boundary elements are thought to define the peripheries of chromatin domains and to restrict enhancer-promoter interactions to their target genes within their domains. We previously characterized a cDNA encoding the BEAF-32A protein (32A), which binds with high affinity to the scs' boundary element from the Drosophila melanogaster 87A7 hsp70 locus. Here, we report a second protein, BEAF-32B, that differs from 32A only in its amino terminus. Unlike 32A, it has the same DNA binding specificity as the complete BEAF activity affinity purified from Drosophila. We characterize three domains in these proteins. Heterocomplex formation is mediated by their identical carboxy-terminal domains, and DNA binding is mediated by their unique amino-terminal domains. The identical middle domains of 32A and 32B are dispensable for the functions described here, although they may be important for boundary element function. 32A and 32B apparently form trimers, and the ratio of 32A to 32B varies at different loci on polytene chromosomes as judged by immunofluorescence. The scs' element contains a high- and low-affinity binding site for BEAF. We observed that interaction with the low-affinity site is facilitated by binding to the high-affinity site some 200 bp distant. PMID:9001253

  2. Using Global Plate Velocity Boundary Conditions for Embedded Regional Geodynamic Models: Application to 3-D Modeling of the Early Rifting of the South Atlantic

    NASA Astrophysics Data System (ADS)

    Taramón, Jorge M.; Morgan, Jason P.; Pérez-Gussinyé, Marta

    2016-04-01

    The treatment of far-field boundary conditions is one of the most poorly resolved issues for regional modeling of geodynamic processes. In viscous flow, the choice of far-field boundary conditions often strongly shapes the large-scale structure of a geosimulation. The mantle velocity field along the sidewalls and base of a modeling region is typically much more poorly known than the geometry of past global motions of the surface plates as constrained by global plate motion reconstructions. For regional rifting models it has become routine to apply highly simplified 'plate spreading' or 'uniform rifting' boundary conditions to a 3-D model that limits its ability to simulate the geodynamic evolution of a specific rifted margin. One way researchers are exploring the sensitivity of regional models to uncertain boundary conditions is to use a nested modeling approach in which a global model is used to determine a large-scale flow pattern that is imposed as a constraint along the boundaries of the region to be modeled. Here we explore the utility of a different approach that takes advantage of the ability of finite element models to use unstructured meshes than can embed much higher resolution sub-regions. Here we demonstrate the workflow and code tools that we created to generate this unstructured mesh: solver based on springs, guide-mesh and routines to improve the quality, e.g., closeness to a regular tetrahedron, of the tetrahedral elements of the mesh. Note that the same routines are used to generate a new mesh in the remeshing of a distorted Lagrangian mesh. In our initial project to validate this approach, we create a global spherical shell mesh in which a higher resolution sub-region is created around the nascent South Atlantic Rifting Margin. Global Plate motion BCs and plate boundaries are applied for the time of the onset of rifting, continuing through several 10s of Ma of rifting. Thermal, compositional, and melt-related buoyancy forces are only non

  3. Composite micromechanical modeling using the boundary element method

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Hopkins, Dale A.

    1993-01-01

    The use of the boundary element method for analyzing composite micromechanical behavior is demonstrated. Stress-strain, heat conduction, and thermal expansion analyses are conducted using the boundary element computer code BEST-CMS, and the results obtained are compared to experimental observations, analytical calculations, and finite element analyses. For each of the analysis types, the boundary element results agree reasonably well with the results from the other methodologies, with explainable discrepancies. Overall, the boundary element method shows promise in providing an alternative method to analyze composite micromechanical behavior.

  4. 3D Wind Reconstruction and Turbulence Estimation in the Boundary Layer from Doppler Lidar Measurements using Particle Method

    NASA Astrophysics Data System (ADS)

    Rottner, L.; Baehr, C.

    2014-12-01

    Turbulent phenomena in the atmospheric boundary layer (ABL) are characterized by small spatial and temporal scales which make them difficult to observe and to model.New remote sensing instruments, like Doppler Lidar, give access to fine and high-frequency observations of wind in the ABL. This study suggests to use a method of nonlinear estimation based on these observations to reconstruct 3D wind in a hemispheric volume, and to estimate atmospheric turbulent parameters. The wind observations are associated to particle systems which are driven by a local turbulence model. The particles have both fluid and stochastic properties. Therefore, spatial averages and covariances may be deduced from the particles. Among the innovative aspects, we point out the absence of the common hypothesis of stationary-ergodic turbulence and the non-use of particle model closure hypothesis. Every time observations are available, 3D wind is reconstructed and turbulent parameters such as turbulent kinectic energy, dissipation rate, and Turbulent Intensity (TI) are provided. This study presents some results obtained using real wind measurements provided by a five lines of sight Lidar. Compared with classical methods (e.g. eddy covariance) our technic renders equivalent long time results. Moreover it provides finer and real time turbulence estimations. To assess this new method, we suggest computing independently TI using different observation types. First anemometer data are used to have TI reference.Then raw and filtered Lidar observations have also been compared. The TI obtained from raw data is significantly higher than the reference one, whereas the TI estimated with the new algorithm has the same order.In this study we have presented a new class of algorithm to reconstruct local random media. It offers a new way to understand turbulence in the ABL, in both stable or convective conditions. Later, it could be used to refine turbulence parametrization in meteorological meso-scale models.

  5. 3D Finite Element Analysis of Spider Non-isothermal Forging Process

    NASA Astrophysics Data System (ADS)

    Niu, Ling; Wei, Wei; Wei, Kun Xia; Alexandrov, Igor V.; Hu, Jing

    2016-05-01

    The differences of effective stress, effective strain, velocity field, and the load-time curves between the spider isothermal and non-isothermal forging processes are investigated by making full use of 3D FEA, and verified by the production experiment of spider forging. Effective stress is mainly concentrated on the pin, and becomes lower closer to the front of the pin. The maximum effective strain in the non-isothermal forging is lower than that in the isothermal. The great majority of strain in the non-isothermal forging process is 1.76, which is larger than the strain of 1.31 in the isothermal forging. The maximum load required in the isothermal forging is higher than that in the non-isothermal. The maximum experimental load and deformation temperature in the spider production are in good agreement with those in the non-isothermal FEA. The results indicate that the non-isothermal 3D FEA results can guide the design of the spider forging process.

  6. 3D Finite Element Analysis of Spider Non-isothermal Forging Process

    NASA Astrophysics Data System (ADS)

    Niu, Ling; Wei, Wei; Wei, Kun Xia; Alexandrov, Igor V.; Hu, Jing

    2016-06-01

    The differences of effective stress, effective strain, velocity field, and the load-time curves between the spider isothermal and non-isothermal forging processes are investigated by making full use of 3D FEA, and verified by the production experiment of spider forging. Effective stress is mainly concentrated on the pin, and becomes lower closer to the front of the pin. The maximum effective strain in the non-isothermal forging is lower than that in the isothermal. The great majority of strain in the non-isothermal forging process is 1.76, which is larger than the strain of 1.31 in the isothermal forging. The maximum load required in the isothermal forging is higher than that in the non-isothermal. The maximum experimental load and deformation temperature in the spider production are in good agreement with those in the non-isothermal FEA. The results indicate that the non-isothermal 3D FEA results can guide the design of the spider forging process.

  7. 3D imaging with the light sword optical element and deconvolution of distance-dependent point spread functions

    NASA Astrophysics Data System (ADS)

    Makowski, Michal; Petelczyc, Krzysztof; Kolodziejczyk, Andrzej; Jaroszewicz, Zbigniew; Ducin, Izabela; Kakarenko, Karol; Siemion, Agnieszka; Siemion, Andrzej; Suszek, Jaroslaw; Sypek, Maciej; Wojnowski, Dariusz

    2010-12-01

    The experimental demonstration of a blind deconvolution method on an imaging system with a Light Sword optical element (LSOE) used instead of a lens. Try-and-error deconvolution of known Point Spread Functions (PSF) from an input image captured on a single CCD camera is done. By establishing the optimal PSF providing the optimal contrast of optotypes seen in a frame, one can know the defocus parameter and hence the object distance. Therefore with a single exposure on a standard CCD camera we gain information on the depth of a 3-D scene. Exemplary results for a simple scene containing three optotypes at three distances from the imaging element are presented.

  8. Energy Dispersive X-ray Tomography for 3D Elemental Mapping of Individual Nanoparticles.

    PubMed

    Slater, Thomas J A; Lewis, Edward A; Haigh, Sarah J

    2016-01-01

    Energy dispersive X-ray spectroscopy within the scanning transmission electron microscope (STEM) provides accurate elemental analysis with high spatial resolution, and is even capable of providing atomically resolved elemental maps. In this technique, a highly focused electron beam is incident upon a thin sample and the energy of emitted X-rays is measured in order to determine the atomic species of material within the beam path. This elementally sensitive spectroscopy technique can be extended to three dimensional tomographic imaging by acquiring multiple spectrum images with the sample tilted along an axis perpendicular to the electron beam direction. Elemental distributions within single nanoparticles are often important for determining their optical, catalytic and magnetic properties. Techniques such as X-ray tomography and slice and view energy dispersive X-ray mapping in the scanning electron microscope provide elementally sensitive three dimensional imaging but are typically limited to spatial resolutions of > 20 nm. Atom probe tomography provides near atomic resolution but preparing nanoparticle samples for atom probe analysis is often challenging. Thus, elementally sensitive techniques applied within the scanning transmission electron microscope are uniquely placed to study elemental distributions within nanoparticles of dimensions 10-100 nm. Here, energy dispersive X-ray (EDX) spectroscopy within the STEM is applied to investigate the distribution of elements in single AgAu nanoparticles. The surface segregation of both Ag and Au, at different nanoparticle compositions, has been observed. PMID:27403838

  9. Sliding interleaved kY (SLINKY) acquisition: a novel 3D MRA technique with suppressed slab boundary artifact.

    PubMed

    Liu, K; Rutt, B K

    1998-01-01

    This work addresses the elimination of the slab boundary artifact (SBA) or venetian blind artifact in three-dimensional multiple overlapped thin slab acquisition (3D MOTSA) for magnetic resonance angiography (MRA). Our method uses a sliding-slab, interleaved kY (SLINKY) data acquisition strategy, equalizing flow-related signal intensity weighting across the entire slab dimension. This technique demodulates signal intensity changes along the slab direction and can essentially eliminate the SBA while retaining the same or better imaging time efficiency than that of conventional MOTSA, providing robustness to complicated flow patterns and thereby resulting in more accurate depiction of vascular morphology. In addition, this technique does not need specialized reconstruction and extra computation. The unique penalty of this technique is the sensitivity to phase inconsistency in the data. Both phantom and in vivo experiments verify the clinical significance of the technique. The new MRA images acquired with this imaging technique show highly reliable mapping of vascular morphology without the SBA and reduction of signal voids in complex/slow flow regions. PMID:9702893

  10. A 3-D spectral-element and frequency-wave number hybrid method for high-resolution seismic array imaging

    NASA Astrophysics Data System (ADS)

    Tong, Ping; Komatitsch, Dimitri; Tseng, Tai-Lin; Hung, Shu-Huei; Chen, Chin-Wu; Basini, Piero; Liu, Qinya

    2014-10-01

    We present a three-dimensional (3-D) hybrid method that interfaces the spectral-element method (SEM) with the frequency-wave number (FK) technique to model the propagation of teleseismic plane waves beneath seismic arrays. The accuracy of the resulting 3-D SEM-FK hybrid method is benchmarked against semianalytical FK solutions for 1-D models. The accuracy of 2.5-D modeling based on 2-D SEM-FK hybrid method is also investigated through comparisons to this 3-D hybrid method. Synthetic examples for structural models of the Alaska subduction zone and the central Tibet crust show that this method is capable of accurately capturing interactions between incident plane waves and local heterogeneities. This hybrid method presents an essential tool for the receiver function and scattering imaging community to verify and further improve their techniques. These numerical examples also show the promising future of the 3-D SEM-FK hybrid method in high-resolution regional seismic imaging based on waveform inversions of converted/scattered waves recorded by seismic array.

  11. 3D laser inspection of fuel assembly grid spacers for nuclear reactors based on diffractive optical elements

    NASA Astrophysics Data System (ADS)

    Finogenov, L. V.; Lemeshko, Yu A.; Zav'yalov, P. S.; Chugui, Yu V.

    2007-06-01

    Ensuring the safety and high operation reliability of nuclear reactors takes 100% inspection of geometrical parameters of fuel assemblies, which include the grid spacers performed as a cellular structure with fuel elements. The required grid spacer geometry of assembly in the transverse and longitudinal cross sections is extremely important for maintaining the necessary heat regime. A universal method for 3D grid spacer inspection using a diffractive optical element (DOE), which generates as the structural illumination a multiple-ring pattern on the inner surface of a grid spacer cell, is investigated. Using some DOEs one can inspect the nomenclature of all produced grids. A special objective has been developed for forming the inner surface cell image. The problems of diffractive elements synthesis, projecting optics calculation, adjusting methods as well as calibration of the experimental measuring system are considered. The algorithms for image processing for different constructive elements of grids (cell, channel hole, outer grid spacer rim) and the experimental results are presented.

  12. A Dielectric-Filled Waveguide Antenna Element for 3D Imaging Radar in High Temperature and Excessive Dust Conditions.

    PubMed

    Xu, Ding; Li, Zhiping; Chen, Xianzhong; Wang, Zhengpeng; Wu, Jianhua

    2016-01-01

    Three-dimensional information of the burden surface in high temperature and excessive dust industrial conditions has been previously hard to obtain. This paper presents a novel microstrip-fed dielectric-filled waveguide antenna element which is resistant to dust and high temperatures. A novel microstrip-to-dielectric-loaded waveguide transition was developed. A cylinder and cuboid composite structure was employed at the terminal of the antenna element, which improved the return loss performance and reduced the size. The proposed antenna element was easily integrated into a T-shape multiple-input multiple-output (MIMO) imaging radar system and tested in both the laboratory environment and real blast furnace environment. The measurement results show that the proposed antenna element works very well in industrial 3D imaging radar. PMID:27556469

  13. Development and testing of stable, invariant, isoparametric curvilinear 2- and 3-D hybrid-stress elements

    NASA Technical Reports Server (NTRS)

    Punch, E. F.; Atluri, S. N.

    1984-01-01

    Linear and quadratic Serendipity hybrid-stress elements are examined in respect of stability, coordinate invariance, and optimality. A formulation based upon symmetry group theory successfully addresses these issues in undistorted geometries and is fully detailed for plane elements. The resulting least-order stable invariant stress polynomials can be applied as astute approximations in distorted cases through a variety of tensor components and variational principles. A distortion sensitivity study for two- and three-dimensional elements provides favorable numerical comparisons with the assumed displacement method.

  14. High sensitivity and high resolution element 3D analysis by a combined SIMS-SPM instrument.

    PubMed

    Fleming, Yves; Wirtz, Tom

    2015-01-01

    Using the recently developed SIMS-SPM prototype, secondary ion mass spectrometry (SIMS) data was combined with topographical data from the scanning probe microscopy (SPM) module for five test structures in order to obtain accurate chemical 3D maps: a polystyrene/polyvinylpyrrolidone (PS/PVP) polymer blend, a nickel-based super-alloy, a titanium carbonitride-based cermet, a reticle test structure and Mg(OH)2 nanoclusters incorporated inside a polymer matrix. The examples illustrate the potential of this combined approach to track and eliminate artefacts related to inhomogeneities of the sputter rates (caused by samples containing various materials, different phases or having a non-flat surface) and inhomogeneities of the secondary ion extraction efficiencies due to local field distortions (caused by topography with high aspect ratios). In this respect, this paper presents the measured relative sputter rates between PVP and PS as well as in between the different phases of the TiCN cermet. PMID:26171285

  15. Generalized finite element method enrichment functions for curved singularities in 3D fracture mechanics problems

    NASA Astrophysics Data System (ADS)

    Pereira, J. P.; Duarte, C. A.; Jiao, X.; Guoy, D.

    2009-06-01

    This paper presents a study of generalized enrichment functions for 3D curved crack fronts. Two coordinate systems used in the definition of singular curved crack front enrichment functions are analyzed. In the first one, a set of Cartesian coordinate systems defined along the crack front is used. In the second case, the geometry of the crack front is approximated by a set of curvilinear coordinate systems. A description of the computation of derivatives of enrichment functions and curvilinear base vectors is presented. The coordinate systems are automatically defined using geometrical information provided by an explicit representation of the crack surface. A detailed procedure to accurately evaluate the surface normal, conormal and tangent vectors along curvilinear crack fronts in explicit crack surface representations is also presented. An accurate and robust definition of orthonormal vectors along crack fronts is crucial for the proper definition of enrichment functions. Numerical experiments illustrate the accuracy and robustness of the proposed approaches.

  16. GENSURF: A mesh generator for 3D finite element analysis of surface and corner cracks in finite thickness plates subjected to mode-1 loadings

    NASA Technical Reports Server (NTRS)

    Raju, I. S.

    1992-01-01

    A computer program that generates three-dimensional (3D) finite element models for cracked 3D solids was written. This computer program, gensurf, uses minimal input data to generate 3D finite element models for isotropic solids with elliptic or part-elliptic cracks. These models can be used with a 3D finite element program called surf3d. This report documents this mesh generator. In this manual the capabilities, limitations, and organization of gensurf are described. The procedures used to develop 3D finite element models and the input for and the output of gensurf are explained. Several examples are included to illustrate the use of this program. Several input data files are included with this manual so that the users can edit these files to conform to their crack configuration and use them with gensurf.

  17. Confocal (micro)-XRF for 3D anlaysis of elements distribution in hot environmental particles

    SciTech Connect

    Bielewski, M; Eriksson, M; Himbert, J; Simon, R; Betti, M; Hamilton, T F

    2007-11-27

    Studies on the fate and transport of radioactive contaminates in the environment are often constrained by a lack of knowledge on the elemental distribution and general behavior of particulate bound radionuclides contained in hot particles. A number of hot particles were previously isolated from soil samples collected at former U.S. nuclear test sites in the Marshall Islands and characterized using non-destructive techniques [1]. The present investigation at HASYLAB is a part of larger research program at ITU regarding the characterization of environmental radioactive particles different locations and source-terms. Radioactive particles in the environment are formed under a number of different release scenarios and, as such, their physicochemical properties may provide a basis for identifying source-term specific contamination regimes. Consequently, studies on hot particles are not only important in terms of studying the elemental composition and geochemical behavior of hot particles but may also lead to advances in assessing the long-term impacts of radioactive contamination on the environment. Six particles isolated from soil samples collected at the Marshall Islands were studied. The element distribution in the particles was determined by confocal {micro}-XRF analysis using the ANKA FLUO beam line. The CRL (compound refractive lens) was used to focus the exciting beam and the polycapillary half lens to collimate the detector. The dimensions of confocal spot were measured by 'knife edge scanning' method with thin gold structure placed at Si wafer. The values of 3.1 x 1.4 x 18.4 {micro}m were achieved if defined as FWHMs of measured L?intensity profiles and when the19.1 keV exciting radiation was used. The collected XRF spectra were analyzed offline with AXIL [2] software to obtain net intensities of element characteristic lines.Further data processing and reconstruction of element distribution was done with the software 'R' [3] dedicated for statistical

  18. 3-d finite element model development for biomechanics: a software demonstration

    SciTech Connect

    Hollerbach, K.; Hollister, A.M.; Ashby, E.

    1997-03-01

    Finite element analysis is becoming an increasingly important part of biomechanics and orthopedic research, as computational resources become more powerful, and data handling algorithms become more sophisticated. Until recently, tools with sufficient power did not exist or were not accessible to adequately model complicated, three-dimensional, nonlinear biomechanical systems. In the past, finite element analyses in biomechanics have often been limited to two-dimensional approaches, linear analyses, or simulations of single tissue types. Today, we have the resources to model fully three-dimensional, nonlinear, multi-tissue, and even multi-joint systems. The authors will present the process of developing these kinds of finite element models, using human hand and knee examples, and will demonstrate their software tools.

  19. Simulation of 3D tumor cell growth using nonlinear finite element method.

    PubMed

    Dong, Shoubing; Yan, Yannan; Tang, Liqun; Meng, Junping; Jiang, Yi

    2016-06-01

    We propose a novel parallel computing framework for a nonlinear finite element method (FEM)-based cell model and apply it to simulate avascular tumor growth. We derive computation formulas to simplify the simulation and design the basic algorithms. With the increment of the proliferation generations of tumor cells, the FEM elements may become larger and more distorted. Then, we describe a remesh and refinement processing of the distorted or over large finite elements and the parallel implementation based on Message Passing Interface to improve the accuracy and efficiency of the simulation. We demonstrate the feasibility and effectiveness of the FEM model and the parallelization methods in simulations of early tumor growth. PMID:26213205

  20. 3D microoptical elements formed in a photostructurable germanium silicate by direct laser writing

    NASA Astrophysics Data System (ADS)

    Malinauskas, M.; Žukauskas, A.; Purlys, V.; Gaidukevičiu¯tė, A.; Balevičius, Z.; Piskarskas, A.; Fotakis, C.; Pissadakis, S.; Gray, D.; Gadonas, R.; Vamvakaki, M.; Farsari, M.

    2012-12-01

    We present our investigations into the fabrication of three-dimensional microoptical elements by the direct femtosecond laser writing of a germanium-silicon photosensitive hybrid material. Germanium glass composites are very interesting for optical applications as they are photosensitive, and maintain high optical transparency in the visible and near-infrared bands of the spectrum. Here, we have used a germanium containing hybrid material to make nanophotonic structures and microoptical elements such as photonic crystal templates, prisms and spatial polarization plates, both on flat surfaces and fiber tips. Our results show that this germanium silicate composite is an excellent material for microoptics fabrication.

  1. High sensitivity and high resolution element 3D analysis by a combined SIMS–SPM instrument

    PubMed Central

    Wirtz, Tom

    2015-01-01

    Summary Using the recently developed SIMS–SPM prototype, secondary ion mass spectrometry (SIMS) data was combined with topographical data from the scanning probe microscopy (SPM) module for five test structures in order to obtain accurate chemical 3D maps: a polystyrene/polyvinylpyrrolidone (PS/PVP) polymer blend, a nickel-based super-alloy, a titanium carbonitride-based cermet, a reticle test structure and Mg(OH)2 nanoclusters incorporated inside a polymer matrix. The examples illustrate the potential of this combined approach to track and eliminate artefacts related to inhomogeneities of the sputter rates (caused by samples containing various materials, different phases or having a non-flat surface) and inhomogeneities of the secondary ion extraction efficiencies due to local field distortions (caused by topography with high aspect ratios). In this respect, this paper presents the measured relative sputter rates between PVP and PS as well as in between the different phases of the TiCN cermet. PMID:26171285

  2. Orthodontic intrusion of maxillary incisors: a 3D finite element method study

    PubMed Central

    Saga, Armando Yukio; Maruo, Hiroshi; Argenta, Marco André; Maruo, Ivan Toshio; Tanaka, Orlando Motohiro

    2016-01-01

    Objective: In orthodontic treatment, intrusion movement of maxillary incisors is often necessary. Therefore, the objective of this investigation is to evaluate the initial distribution patterns and magnitude of compressive stress in the periodontal ligament (PDL) in a simulation of orthodontic intrusion of maxillary incisors, considering the points of force application. Methods: Anatomic 3D models reconstructed from cone-beam computed tomography scans were used to simulate maxillary incisors intrusion loading. The points of force application selected were: centered between central incisors brackets (LOAD 1); bilaterally between the brackets of central and lateral incisors (LOAD 2); bilaterally distal to the brackets of lateral incisors (LOAD 3); bilaterally 7 mm distal to the center of brackets of lateral incisors (LOAD 4). Results and Conclusions: Stress concentrated at the PDL apex region, irrespective of the point of orthodontic force application. The four load models showed distinct contour plots and compressive stress values over the midsagittal reference line. The contour plots of central and lateral incisors were not similar in the same load model. LOAD 3 resulted in more balanced compressive stress distribution. PMID:27007765

  3. Periodic Boundary Conditions in the ALEGRA Finite Element Code

    SciTech Connect

    AIDUN,JOHN B.; ROBINSON,ALLEN C.; WEATHERBY,JOE R.

    1999-11-01

    This document describes the implementation of periodic boundary conditions in the ALEGRA finite element code. ALEGRA is an arbitrary Lagrangian-Eulerian multi-physics code with both explicit and implicit numerical algorithms. The periodic boundary implementation requires a consistent set of boundary input sets which are used to describe virtual periodic regions. The implementation is noninvasive to the majority of the ALEGRA coding and is based on the distributed memory parallel framework in ALEGRA. The technique involves extending the ghost element concept for interprocessor boundary communications in ALEGRA to additionally support on- and off-processor periodic boundary communications. The user interface, algorithmic details and sample computations are given.

  4. 3D holographic head mounted display using holographic optical elements with astigmatism aberration compensation.

    PubMed

    Yeom, Han-Ju; Kim, Hee-Jae; Kim, Seong-Bok; Zhang, HuiJun; Li, BoNi; Ji, Yeong-Min; Kim, Sang-Hoo; Park, Jae-Hyeung

    2015-12-14

    We propose a bar-type three-dimensional holographic head mounted display using two holographic optical elements. Conventional stereoscopic head mounted displays may suffer from eye fatigue because the images presented to each eye are two-dimensional ones, which causes mismatch between the accommodation and vergence responses of the eye. The proposed holographic head mounted display delivers three-dimensional holographic images to each eye, removing the eye fatigue problem. In this paper, we discuss the configuration of the bar-type waveguide head mounted displays and analyze the aberration caused by the non-symmetric diffraction angle of the holographic optical elements which are used as input and output couplers. Pre-distortion of the hologram is also proposed in the paper to compensate the aberration. The experimental results show that proposed head mounted display can present three-dimensional see-through holographic images to each eye with correct focus cues. PMID:26698993

  5. The Dark Side of EDX Tomography: Modeling Detector Shadowing to Aid 3D Elemental Signal Analysis.

    PubMed

    Yeoh, Catriona S M; Rossouw, David; Saghi, Zineb; Burdet, Pierre; Leary, Rowan K; Midgley, Paul A

    2015-06-01

    A simple model is proposed to account for the loss of collected X-ray signal by the shadowing of X-ray detectors in the scanning transmission electron microscope. The model is intended to aid the analysis of three-dimensional elemental data sets acquired using energy-dispersive X-ray tomography methods where shadow-free specimen holders are unsuitable or unavailable. The model also provides a useful measure of the detection system geometry. PMID:25790959

  6. Dynamic earthquake rupture modelled with an unstructured 3-D spectral element method applied to the 2011 M9 Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Galvez, P.; Ampuero, J.-P.; Dalguer, L. A.; Somala, S. N.; Nissen-Meyer, T.

    2014-08-01

    An important goal of computational seismology is to simulate dynamic earthquake rupture and strong ground motion in realistic models that include crustal heterogeneities and complex fault geometries. To accomplish this, we incorporate dynamic rupture modelling capabilities in a spectral element solver on unstructured meshes, the 3-D open source code SPECFEM3D, and employ state-of-the-art software for the generation of unstructured meshes of hexahedral elements. These tools provide high flexibility in representing fault systems with complex geometries, including faults with branches and non-planar faults. The domain size is extended with progressive mesh coarsening to maintain an accurate resolution of the static field. Our implementation of dynamic rupture does not affect the parallel scalability of the code. We verify our implementation by comparing our results to those of two finite element codes on benchmark problems including branched faults. Finally, we present a preliminary dynamic rupture model of the 2011 Mw 9.0 Tohoku earthquake including a non-planar plate interface with heterogeneous frictional properties and initial stresses. Our simulation reproduces qualitatively the depth-dependent frequency content of the source and the large slip close to the trench observed for this earthquake.

  7. A Spectral Element Ocean Model on the Cray T3D: the interannual variability of the Mediterranean Sea general circulation

    NASA Astrophysics Data System (ADS)

    Molcard, A. J.; Pinardi, N.; Ansaloni, R.

    A new numerical model, SEOM (Spectral Element Ocean Model, (Iskandarani et al, 1994)), has been implemented in the Mediterranean Sea. Spectral element methods combine the geometric flexibility of finite element techniques with the rapid convergence rate of spectral schemes. The current version solves the shallow water equations with a fifth (or sixth) order accuracy spectral scheme and about 50.000 nodes. The domain decomposition philosophy makes it possible to exploit the power of parallel machines. The original MIMD master/slave version of SEOM, written in F90 and PVM, has been ported to the Cray T3D. When critical for performance, Cray specific high-performance one-sided communication routines (SHMEM) have been adopted to fully exploit the Cray T3D interprocessor network. Tests performed with highly unstructured and irregular grid, on up to 128 processors, show an almost linear scalability even with unoptimized domain decomposition techniques. Results from various case studies on the Mediterranean Sea are shown, involving realistic coastline geometry, and monthly mean 1000mb winds from the ECMWF's atmospheric model operational analysis from the period January 1987 to December 1994. The simulation results show that variability in the wind forcing considerably affect the circulation dynamics of the Mediterranean Sea.

  8. A 3D finite element simulation model for TBM tunnelling in soft ground

    NASA Astrophysics Data System (ADS)

    Kasper, Thomas; Meschke, Günther

    2004-12-01

    A three-dimensional finite element simulation model for shield-driven tunnel excavation is presented. The model takes into account all relevant components of the construction process (the soil and the ground water, the tunnel boring machine with frictional contact to the soil, the hydraulic jacks, the tunnel lining and the tail void grouting). The paper gives a detailed description of the model components and the stepwise procedure to simulate the construction process. The soil and the grout material are modelled as saturated porous media using a two-field finite element formulation. This allows to take into account the groundwater, the grouting pressure and the fluid interaction between the soil and slurry at the cutting face and between the soil and grout around the tail void. A Cam-Clay plasticity model is used to describe the material behaviour of cohesive soils. The cementitious grouting material in the tail void is modelled as an ageing elastic material with time-dependent stiffness and permeability. To allow for an automated computation of arbitrarily long and also curvilinear driving paths with suitable finite element meshes, the simulation procedure has been fully automated. The simulation of a tunnel advance in soft cohesive soil below the ground water table is presented and the results are compared with measurements taken from the literature. Copyright

  9. Multiphysics Simulations of the Complex 3D Geometry of the High Flux Isotope Reactor Fuel Elements Using COMSOL

    SciTech Connect

    Freels, James D; Jain, Prashant K

    2011-01-01

    A research and development project is ongoing to convert the currently operating High Flux Isotope Reactor (HFIR) of Oak Ridge National Laboratory (ORNL) from highly-enriched Uranium (HEU U3O8) fuel to low-enriched Uranium (LEU U-10Mo) fuel. Because LEU HFIR-specific testing and experiments will be limited, COMSOL is chosen to provide the needed multiphysics simulation capability to validate against the HEU design data and calculations, and predict the performance of the LEU fuel for design and safety analyses. The focus of this paper is on the unique issues associated with COMSOL modeling of the 3D geometry, meshing, and solution of the HFIR fuel plate and assembled fuel elements. Two parallel paths of 3D model development are underway. The first path follows the traditional route through examination of all flow and heat transfer details using the Low-Reynolds number k-e turbulence model provided by COMSOL v4.2. The second path simplifies the fluid channel modeling by taking advantage of the wealth of knowledge provided by decades of design and safety analyses, data from experiments and tests, and HFIR operation. By simplifying the fluid channel, a significant level of complexity and computer resource requirements are reduced, while also expanding the level and type of analysis that can be performed with COMSOL. Comparison and confirmation of validity of the first (detailed) and second (simplified) 3D modeling paths with each other, and with available data, will enable an expanded level of analysis. The detailed model will be used to analyze hot-spots and other micro fuel behavior events. The simplified model will be used to analyze events such as routine heat-up and expansion of the entire fuel element, and flow blockage. Preliminary, coarse-mesh model results of the detailed individual fuel plate are presented. Examples of the solution for an entire fuel element consisting of multiple individual fuel plates produced by the simplified model are also presented.

  10. Analysis of Composite Skin-Stiffener Debond Specimens Using Volume Elements and a Shell/3D Modeling Technique

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Minguet, Pierre J.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    The debonding of a skin/stringer specimen subjected to tension was studied using three-dimensional volume element modeling and computational fracture mechanics. Mixed mode strain energy release rates were calculated from finite element results using the virtual crack closure technique. The simulations revealed an increase in total energy release rate in the immediate vicinity of the free edges of the specimen. Correlation of the computed mixed-mode strain energy release rates along the delamination front contour with a two-dimensional mixed-mode interlaminar fracture criterion suggested that in spite of peak total energy release rates at the free edge the delamination would not advance at the edges first. The qualitative prediction of the shape of the delamination front was confirmed by X-ray photographs of a specimen taken during testing. The good correlation between prediction based on analysis and experiment demonstrated the efficiency of a mixed-mode failure analysis for the investigation of skin/stiffener separation due to delamination in the adherents. The application of a shell/3D modeling technique for the simulation of skin/stringer debond in a specimen subjected to three-point bending is also demonstrated. The global structure was modeled with shell elements. A local three-dimensional model, extending to about three specimen thicknesses on either side of the delamination front was used to capture the details of the damaged section. Computed total strain energy release rates and mixed-mode ratios obtained from shell/3D simulations were in good agreement with results obtained from full solid models. The good correlations of the results demonstrated the effectiveness of the shell/3D modeling technique for the investigation of skin/stiffener separation due to delamination in the adherents.

  11. Development of a 3D finite element model evaluating air-coupled ultrasonic measurements of nonlinear Rayleigh waves

    NASA Astrophysics Data System (ADS)

    Uhrig, Matthias P.; Kim, Jin-Yeon; Jacobs, Laurence J.

    2016-02-01

    This research presents a 3D numerical finite element (FE) model which, previously developed, precisely simulates non-contact, air-coupled measurements of nonlinear Rayleigh wave propagation. The commercial FE-solver ABAQUS is used to perform the simulations. First, frequency dependent pressure wave attenuation is investigated numerically to reconstruct the sound pressure distribution along the active surface of the non-contact receiver. Second, constitutive law and excitation source properties are optimized to match nonlinear ultrasonic experimental data. Finally, the FE-model data are fit with analytical solutions showing a good agreement and thus, indicating the significance of the study performed.

  12. The Combined Finite-Discrete Element Method applied to the Study of Rock Fracturing Behavior in 3D

    SciTech Connect

    Rougier, Esteban; Bradley, Christopher R.; Broom, Scott T.; Knight, Earl E.; Munjiza, Ante; Sussman, Aviva J.; Swift, Robert P.

    2011-01-01

    Since its introduction the combined finite-discrete element method (FEM/DEM), has become an excellent tool to address a wide range of problems involving fracturing and fragmentation of solids. Within the context of rock mechanics, the FEM/DEM method has been applied to many complex industrial problems such as block caving, deep mining techniques, rock blasting, seismic waves, packing problems, rock crushing problems, etc. In the real world most of the problems involving fracture and fragmentation of solids are three dimensional problems. With the aim of addressing these problems an improved 2D/3D FEM/DEM capability has been developed at Los Alamos National Laboratory (LANL). These capabilities include state of the art 3D contact detection, contact interaction, constitutive material models, and fracture models. In this paper, Split Hopkinson Pressure Bar (SHPB) Brazilian experiments are simulated using this improved 2D/3D FEM/DEM approach which is implemented in LANL's MUNROU (Munjiza-Rougier) code. The results presented in this work show excellent agreement with both the SHPB experiments and previous 2D numerical simulations performed by other FEM/DEM research groups.

  13. Modeling the influence of particle morphology on the fracture behavior of silica sand using a 3D discrete element method

    NASA Astrophysics Data System (ADS)

    Cil, Mehmet B.; Alshibli, Khalid A.

    2015-02-01

    The constitutive behavior and deformation characteristics of uncemented granular materials are to a large extent derived from the fabric or geometry of the particle structure and the interparticle friction resulting from normal forces acting on particles or groups of particles. Granular materials consist of discrete particles with a fabric (microstructure) that changes under loading. Synchrotron micro-computed tomography (SMT) has emerged as a powerful non-destructive 3D scanning technique to study geomaterials. In this paper, SMT was used to acquire in situ scans of the oedometry test of a column of three silica sand particles. The sand is known as ASTM 20-30 Ottawa sand, and has a grain size between US sieves #20 (0.841 mm) and #30 (0.595 mm). The characteristics and evolution of particle fracture in sand were examined using SMT images, and a 3D discrete element method (DEM) was used to model the fracture behavior of sand particles. It adopts the bonded particle model to generate a crushable agglomerate that consists of a large number of small spherical sub-particles. The agglomerate shape matches the 3D physical shape of the tested sand particles by mapping the particle morphology from the SMT images. The paper investigates and discusses the influence of agglomerate packing (i.e., the number and size distribution of spherical sub-particles that constitute the agglomerate) and agglomerate shape on the fracture behavior of crushable particles.

  14. A new heat transfer analysis in machining based on two steps of 3D finite element modelling and experimental validation

    NASA Astrophysics Data System (ADS)

    Haddag, B.; Kagnaya, T.; Nouari, M.; Cutard, T.

    2013-01-01

    Modelling machining operations allows estimating cutting parameters which are difficult to obtain experimentally and in particular, include quantities characterizing the tool-workpiece interface. Temperature is one of these quantities which has an impact on the tool wear, thus its estimation is important. This study deals with a new modelling strategy, based on two steps of calculation, for analysis of the heat transfer into the cutting tool. Unlike the classical methods, considering only the cutting tool with application of an approximate heat flux at the cutting face, estimated from experimental data (e.g. measured cutting force, cutting power), the proposed approach consists of two successive 3D Finite Element calculations and fully independent on the experimental measurements; only the definition of the behaviour of the tool-workpiece couple is necessary. The first one is a 3D thermomechanical modelling of the chip formation process, which allows estimating cutting forces, chip morphology and its flow direction. The second calculation is a 3D thermal modelling of the heat diffusion into the cutting tool, by using an adequate thermal loading (applied uniform or non-uniform heat flux). This loading is estimated using some quantities obtained from the first step calculation, such as contact pressure, sliding velocity distributions and contact area. Comparisons in one hand between experimental data and the first calculation and at the other hand between measured temperatures with embedded thermocouples and the second calculation show a good agreement in terms of cutting forces, chip morphology and cutting temperature.

  15. A Lagrange-Galerkin hp-Finite Element Method for a 3D Nonhydrostatic Ocean Model

    NASA Astrophysics Data System (ADS)

    Galán del Sastre, Pedro; Bermejo, Rodolfo

    2016-03-01

    We introduce in this paper a Lagrange-Galerkin hp-finite element method to calculate the numerical solution of a nonhydrostatic ocean model. The Lagrange-Galerkin method yields a Stokes-like problem the solution of which is computed by a second-order rotational splitting scheme that separates the calculation of the velocity and pressure, the latter is decomposed into hydrostatic and nonhydrostatic components. We have tested the method in flows where the nonhydrostatic effects are important. The results are very encouraging.

  16. Probabilistic Fatigue Damage Prognosis Using a Surrogate Model Trained Via 3D Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Leser, Patrick E.; Hochhalter, Jacob D.; Newman, John A.; Leser, William P.; Warner, James E.; Wawrzynek, Paul A.; Yuan, Fuh-Gwo

    2015-01-01

    Utilizing inverse uncertainty quantification techniques, structural health monitoring can be integrated with damage progression models to form probabilistic predictions of a structure's remaining useful life. However, damage evolution in realistic structures is physically complex. Accurately representing this behavior requires high-fidelity models which are typically computationally prohibitive. In the present work, a high-fidelity finite element model is represented by a surrogate model, reducing computation times. The new approach is used with damage diagnosis data to form a probabilistic prediction of remaining useful life for a test specimen under mixed-mode conditions.

  17. Topology optimization of 3D compliant actuators by a sequential element rejection and admission method

    NASA Astrophysics Data System (ADS)

    Ansola, R.; Veguería, E.; Alonso, C.; Querin, O. M.

    2016-03-01

    This work presents a sequential element rejection and admission (SERA) method for optimum topology design of three dimensional compliant actuators. The proposed procedure has been successfully applied to several topology optimization problems, but most investigations for compliant devices design have been focused on planar systems. This investigation aims to progress on this line, where a generalization of the method for three dimensional topology optimization is explored. The methodology described in this work is useful for the synthesis of high performance flexure based micro and nano manipulation applications demanding for both sensing and control of motion and force trajectories. In this case the goal of the topology optimization problem is to design an actuator that transfers work from the input point to the output port in a structurally efficient way. Here we will use the classical formulation where the displacement performed on a work piece modelled by a spring is maximized. The technique implemented works with two separate criteria for the rejection and admission of elements to efficiently achieve the optimum design and overcomes problems encountered by other evolutionary methods when dealing with compliant mechanisms design. The use of the algorithm is demonstrated through several numerical examples.

  18. 3D finite element modelling of guided wave scattering at delaminations in composites

    NASA Astrophysics Data System (ADS)

    Murat, Bibi Intan Suraya; Fromme, Paul

    2016-02-01

    Carbon fiber laminate composites are increasingly used for aerospace structures as they offer a number of advantages including a good strength to weight ratio. However, impact during the operation and servicing of the aircraft can lead to barely visible and difficult to detect damage. Depending on the severity of the impact, delaminations can occur, reducing the load carrying capacity of the structure. Efficient nondestructive testing of composite panels can be achieved using guided ultrasonic waves propagating along the structure. The guided wave (A0 Lamb wave mode) scattering at delaminations was modeled using full three-dimensional Finite Element (FE) simulations. The influence of the delamination size was systematically investigated from a parameter study. A significant influence of the delamination width on the guided wave scattering was found, especially on the angular dependency of the scattered guided wave amplitude. The sensitivity of guided ultrasonic waves for the detection of delamination damage in composite panels is discussed.

  19. Finite element methods of analysis for 3D inviscid compressible flows

    NASA Technical Reports Server (NTRS)

    Peraire, Jaime

    1990-01-01

    The applicants have developed a finite element based approach for the solution of three-dimensional compressible flows. The procedure enables flow solutions to be obtained on tetrahedral discretizations of computational domains of complex form. A further development was the incorporation of a solution adaptive mesh strategy in which the adaptivity is achieved by complete remeshing of the solution domain. During the previous year, the applicants were working with the Advanced Aerodynamics Concepts Branch at NASA Ames Research Center with an implementation of the basic meshing and solution procedure. The objective of the work to be performed over this twelve month period was the transfer of the adaptive mesh technology and also the undertaking of basic research into alternative flow algorithms for the Euler equations on unstructured meshes.

  20. Sub-100-nm 3D-elemental mapping of frozen-hydrated cells using the bionanoprobe

    NASA Astrophysics Data System (ADS)

    Chen, Si; Yuan, Ye; Deng, Junjing; Mak, Rachel; Jin, Qiaoling; Paunesku, Tatjana; Gleber, Sophie C.; Vine, David; Flachenecker, Claus; Hornberger, Benjamin; Shu, Deming; Lai, Barry; Maser, Jörg; Finney, Lydia; Roehrig, Christian; VonOsinski, Jay; Bolbat, Michael; Brister, Keith; Jacobsen, Chris; Woloschak, Gayle; Vogt, Stefan

    2013-09-01

    Hard X-ray fluorescence microscopy is one of the most sensitive techniques to perform trace elemental analysis of unsectioned biological samples, such as cells and tissues. As the spatial resolution increases beyond sub-micron scale, conventional sample preparation method, which involves dehydration, may not be sufficient for preserving subcellular structures in the context of radiation-induced artifacts. Imaging of frozen-hydrated samples under cryogenic conditions is the only reliable way to fully preserve the three dimensional structures of the samples while minimizing the loss of diffusible ions. To allow imaging under this hydrated "natural-state" condition, we have developed the Bionanoprobe (BNP), a hard X-ray fluorescence nanoprobe with cryogenic capabilities, dedicated to studying trace elements in frozen-hydrated biological systems. The BNP is installed at an undulator beamline at Life Sciences Collaboration Access Team at the Advanced Photon Source. It provides a spatial resolution of 30 nm for fluorescence imaging by using Fresnel zone plates as nanofocusing optics. Differential phase contrast imaging is carried out in parallel to fluorescence imaging by using a quadrant photodiode mounted downstream of the sample. By employing a liquid-nitrogen-cooled sample stage and cryo specimen transfer mechanism, the samples are well maintained below 110 K during both transfer and X-ray imaging. The BNP is capable for automated tomographic dataset collection, which enables visualization of internal structures and composition of samples in a nondestructive manner. In this presentation, we will describe the instrument design principles, quantify instrument performance, and report the early results that were obtained from frozen-hydrated whole cells.

  1. Simulation of dielectrophoretic assembly of carbon nanotubes using 3D finite element analysis.

    PubMed

    Berger, S D; McGruer, N E; Adams, G G

    2015-04-17

    One of the most important methods for selective and repeatable assembly of carbon nanotubes (CNTs) is alternating current dielectrophoresis (DEP). This method has been demonstrated experimentally as a viable technique for nano-scale manufacturing of novel CNT based devices. Previous numerical analyses have studied the motion of nanotubes, the volume from which they are assembled, and the rate of assembly, but have been restricted by various simplifying assumptions. In this paper we present a method for simulating the motion and behavior of CNTs subjected to dielectrophoresis using a three-dimensional electrostatic finite element analysis. By including the CNT in the finite element model, we can accurately predict the effect of the CNT on the electric field and the resulting force distribution across the CNT can be determined. We have used this information to calculate the motion of CNTs assembling onto the electrodes, and show how they tend to move towards the center of an electrode and come into contact at highly skewed angles. Our analysis suggests that the CNTs move to the electrode gap only after initially contacting the electrodes. We have also developed a model of the elastic deformation of CNTs as they approach the electrodes demonstrating how the induced forces can significantly alter the CNT shape during assembly. These results show that the CNT does not behave as a rigid body when in close proximity to the electrodes. In the future this method can be applied to a variety of real electrode geometries on a case-by-case basis and will provide more detailed insight into the specific motion and assembly parameters necessary for effective DEP assembly. PMID:25804394

  2. Simulation of dielectrophoretic assembly of carbon nanotubes using 3D finite element analysis

    NASA Astrophysics Data System (ADS)

    Berger, S. D.; McGruer, N. E.; Adams, G. G.

    2015-04-01

    One of the most important methods for selective and repeatable assembly of carbon nanotubes (CNTs) is alternating current dielectrophoresis (DEP). This method has been demonstrated experimentally as a viable technique for nano-scale manufacturing of novel CNT based devices. Previous numerical analyses have studied the motion of nanotubes, the volume from which they are assembled, and the rate of assembly, but have been restricted by various simplifying assumptions. In this paper we present a method for simulating the motion and behavior of CNTs subjected to dielectrophoresis using a three-dimensional electrostatic finite element analysis. By including the CNT in the finite element model, we can accurately predict the effect of the CNT on the electric field and the resulting force distribution across the CNT can be determined. We have used this information to calculate the motion of CNTs assembling onto the electrodes, and show how they tend to move towards the center of an electrode and come into contact at highly skewed angles. Our analysis suggests that the CNTs move to the electrode gap only after initially contacting the electrodes. We have also developed a model of the elastic deformation of CNTs as they approach the electrodes demonstrating how the induced forces can significantly alter the CNT shape during assembly. These results show that the CNT does not behave as a rigid body when in close proximity to the electrodes. In the future this method can be applied to a variety of real electrode geometries on a case-by-case basis and will provide more detailed insight into the specific motion and assembly parameters necessary for effective DEP assembly.

  3. A Simulation of crustal deformation around sourthwest Japan using 3D Finite Element Method

    NASA Astrophysics Data System (ADS)

    Oma, T.; Ito, T.; Sasajima, R.

    2015-12-01

    In southwest Japan, the Philippine Sea plate is subducting beneath the Amurian plate at the Nankai Trough. Megathrust earthquakes have been occurred with recurrence intervals of about 100-150 years. Previous studies have estimated co-seismic slip distribution at the 1944 Tokankai and the 1946 Nankai earthquakes and interplate plate coupling along the Nankai Trough. Many of previous studies employed a homogeneous elastic half space or elastic and viscoelastic layers structure. However, these assumptions as mentioned above are inadequate, since inhomogeneous structure is exceled in the real earth result from subducting plate. Therefore, in order to estimate the effect of inhomogeneous structure on the crustal deformation, we calculate crustal deformation due to Megathrust earthquake using 3-dimensional Finite Element Method (FEM). We use FEM software PyLith v2.1. In this study, we construct a finite element mesh with the region of 3000km(SW) × 2300km(NS) × 400km(depth) cover Japanese Islands, using Cubit 13.0. This mesh is considered topography, the Philippine Sea plate, the Pacific plate, Moho discontinuity, and curvature of the earth. In order to examine differences of surface displacement between inhomogeneous and homogeneous structures, we use co-seismic slip distribution of the 1944 and 1946 earthquakes estimated by Sagiya and Thatcher (1999). In result, surface elastic response under inhomogeneous structure becomes 30% larger than it's homogeneous structure at the Muroto cape. This difference indicates that co-seismic slip or plate coupling distribution estimated from Green's function under an assumption of homogeneous structure is overestimated. Then, we calculate viscoelastic response assuming Maxwell rheology model and viscosity as 1×1019. As a result, predicted horizontal velocity of viscoelastic response due to the events corresponds to 10 % of observed present deformation. It suggest that spatial pattern of plate coupling might be change when we

  4. Direct Determination of 3D Distribution of Elemental Composition in Single Semiconductor Nanoislands by Scanning Auger Microscopy.

    PubMed

    Ponomaryov, Semyon S; Yukhymchuk, Volodymyr O; Lytvyn, Peter M; Valakh, Mykhailo Ya

    2016-12-01

    An application of scanning Auger microscopy with ion etching technique and effective compensation of thermal drift of the surface analyzed area is proposed for direct local study of composition distribution in the bulk of single nanoislands. For GexSi1 - x-nanoislands obtained by MBE of Ge on Si-substrate gigantic interdiffusion mixing takes place both in the open and capped nanostructures. Lateral distributions of the elemental composition as well as concentration-depth profiles were recorded. 3D distribution of the elemental composition in the d-cluster bulk was obtained using the interpolation approach by lateral composition distributions in its several cross sections and concentration-depth profile. It was shown that there is a germanium core in the nanoislands of both nanostructure types, which even penetrates the substrate. In studied nanostructures maximal Ge content in the nanoislands may reach about 40 at.%. PMID:26909783

  5. Stress analysis of a rectangular implant in laminated composites using 2-D and 3-D finite elements

    NASA Technical Reports Server (NTRS)

    Chow, Wai T.; Graves, Michael J.

    1992-01-01

    An analysis method using the FEM based on the Hellinger-Reissner variation principle has been developed to determine the 3-D stresses and displacements near a rectangular implant inside a laminated composite material. Three-dimensional elements are employed in regions where the interlaminar stress is considered to be significant; 2-D elements are used in other areas. Uniaxially loaded graphite-epoxy laminates have been analyzed; the implant was modeled as four plies of 3501/6 epoxy located in the middle of the laminate. It is shown that the interlaminar stresses are an order of magnitude lower than the stress representing the applied far-field load. The stress concentration factors of both the interlaminar and in-plane stresses depend on the stacking sequence of the laminate.

  6. On the development of NURBS-based isogeometric solid shell elements: 2D problems and preliminary extension to 3D

    NASA Astrophysics Data System (ADS)

    Bouclier, R.; Elguedj, T.; Combescure, A.

    2013-11-01

    This work deals with the development of 2D solid shell non-uniform rational B-spline elements. We address a static problem, that can be solved with a 2D model, involving a thin slender structure under small perturbations. The plane stress, plane strain and axisymmetric assumption can be made. projection and reduced integration techniques are considered to deal with the locking phenomenon. The use of the approach leads to the implementation of two strategies insensitive to locking: the first strategy is based on a 1D projection of the mean strain across the thickness; the second strategy undertakes to project all the strains onto a suitably chosen 2D space. Conversely, the reduced integration approach based on Gauss points is less expensive, but only alleviates locking and is limited to quadratic approximations. The performance of the various 2D elements developed is assessed through several numerical examples. Simple extensions of these techniques to 3D are finally performed.

  7. An ultra-high element density pMUT array with low crosstalk for 3-D medical imaging.

    PubMed

    Yang, Yi; Tian, He; Wang, Yu-Feng; Shu, Yi; Zhou, Chang-Jian; Sun, Hui; Zhang, Cang-Hai; Chen, Hao; Ren, Tian-Ling

    2013-01-01

    A ~1 MHz piezoelectric micromachined ultrasonic transducer (pMUT) array with ultra-high element density and low crosstalk is proposed for the first time. This novel pMUT array is based on a nano-layer spin-coating lead zirconium titanium film technique and can be fabricated with high element density using a relatively simple process. Accordingly, key fabrication processes such as thick piezoelectric film deposition, low-stress Si-SOI bonding and bulk silicon removal have been successfully developed. The novel fine-pitch 6 × 6 pMUT arrays can all work at the desired frequency (~1 MHz) with good uniformity, high performance and potential IC integration compatibility. The minimum interspace is ~20 μm, the smallest that has ever been achieved to the best of our knowledge. These arrays can be potentially used to steer ultrasound beams and implement high quality 3-D medical imaging applications. PMID:23896705

  8. Direct Determination of 3D Distribution of Elemental Composition in Single Semiconductor Nanoislands by Scanning Auger Microscopy

    NASA Astrophysics Data System (ADS)

    Ponomaryov, Semyon S.; Yukhymchuk, Volodymyr O.; Lytvyn, Peter M.; Valakh, Mykhailo Ya

    2016-02-01

    An application of scanning Auger microscopy with ion etching technique and effective compensation of thermal drift of the surface analyzed area is proposed for direct local study of composition distribution in the bulk of single nanoislands. For GexSi1 - x-nanoislands obtained by MBE of Ge on Si-substrate gigantic interdiffusion mixing takes place both in the open and capped nanostructures. Lateral distributions of the elemental composition as well as concentration-depth profiles were recorded. 3D distribution of the elemental composition in the d-cluster bulk was obtained using the interpolation approach by lateral composition distributions in its several cross sections and concentration-depth profile. It was shown that there is a germanium core in the nanoislands of both nanostructure types, which even penetrates the substrate. In studied nanostructures maximal Ge content in the nanoislands may reach about 40 at.%.

  9. Determination of mass attenuation coefficients and effective atomic numbers for compounds of the 3d transition elements

    NASA Astrophysics Data System (ADS)

    Yılmaz, Demet; Boydaş, Elif; Cömert, Esra

    2016-08-01

    In this study, we aimed to determine mass attenuation coefficient (μm) and effective atomic number (Zeff) for some compounds of the 3d transition elements such as CoO, CoF2, CoF3, Cr2O3, CrF2, CrF3, FeO, Fe2O3, MnO2, TiO2, V2O3, VF3, V2O5, VF4 and ZnO at 19.63 and 22.10 keV photon energies by using an HPGe detector with a resolution of 182 eV at 5.9 keV. The experimental results of μm are compared with the theoretical results. Also, effective atomic numbers of compounds of the 3d transition elements have been determined by using experimental and theoretical mass attenuation coefficients. The agreement of measured values of effective atomic numbers with theoretical calculations is quite satisfactory.

  10. Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method.

    PubMed

    Tay, W B; van Oudheusden, B W; Bijl, H

    2014-09-01

    The numerical simulation of an insect-sized 'X-wing' type biplane flapping wing configuration is performed in 3D using an immersed boundary method solver at Reynolds numbers equal to 1000 (1 k) and 5 k, based on the wing's root chord length. This X-wing type flapping configuration draws its inspiration from Delfly, a bio-inspired ornithopter MAV which has two pairs of wings flapping in anti-phase in a biplane configuration. The objective of the present investigation is to assess the aerodynamic performance when the original Delfly flapping wing micro-aerial vehicle (FMAV) is reduced to the size of an insect. Results show that the X-wing configuration gives more than twice the average thrust compared with only flapping the upper pair of wings of the X-wing. However, the X-wing's average thrust is only 40% that of the upper wing flapping at twice the stroke angle. Despite this, the increased stability which results from the smaller lift and moment variation of the X-wing configuration makes it more suited for sharp image capture and recognition. These advantages make the X-wing configuration an attractive alternative design for insect-sized FMAVS compared to the single wing configuration. In the Reynolds number comparison, the vorticity iso-surface plot at a Reynolds number of 5 k revealed smaller, finer vortical structures compared to the simulation at 1 k, due to vortices' breakup. In comparison, the force output difference is much smaller between Re = 1 k and 5 k. Increasing the body inclination angle generates a uniform leading edge vortex instead of a conical one along the wingspan, giving higher lift. Understanding the force variation as the body inclination angle increases will allow FMAV designers to optimize the thrust and lift ratio for higher efficiency under different operational requirements. Lastly, increasing the spanwise flexibility of the wings increases the thrust slightly but decreases the efficiency. The thrust result is similar to one of the

  11. 3D-Trajectories Adopted by Coding and Regulatory DNA Elements: First-Passage Times for Genomic Interactions

    PubMed Central

    Lucas, Joseph S.; Zhang, Yaojun; Dudko, Olga K.; Murre, Cornelis

    2014-01-01

    SUMMARY During B lymphocyte development, immunoglobulin heavy chain variable (VH), diversity (DH) and joining (JH) segments assemble to generate a diverse antigen receptor repertoire. Here we have marked the distal VH and DH-JH-Eμ regions with Tet-operator binding sites and traced their 3D-trajectories in pro-B cells transduced with a retrovirus encoding Tet-repressor-EGFP. We found that these elements displayed fractional Langevin motion (fLm) due to the viscoelastic hindrance from the surrounding network of proteins and chromatin fibers. Using fractional Langevin dynamics modeling, we found that, with high probability, DHJH elements reach a VH element within minutes. Spatial confinement emerged as the dominant parameter that determined the frequency of such encounters. We propose that the viscoelastic nature of the nuclear environment causes coding elements and regulatory elements to bounce back and forth in a spring-like fashion until specific genomic interactions are established and that spatial confinement of topological domains largely controls first-passage times for genomic interactions. PMID:24998931

  12. Modeling Three-Phase Compositional Flow on Complex 3D Unstructured Grids with Higher-Order Finite Element Methods

    NASA Astrophysics Data System (ADS)

    Moortgat, J.; Firoozabadi, A.

    2013-12-01

    Most problems of interest in hydrogeology and subsurface energy resources involve complex heterogeneous geological formations. Such domains are most naturally represented in numerical reservoir simulations by unstructured computational grids. Finite element methods are a natural choice to describe fluid flow on unstructured meshes, because the governing equations can be readily discretized for any grid-element geometry. In this work, we consider the challenging problem of fully compositional three-phase flow in 3D unstructured grids, discretized by tetrahedra, prisms, or hexahedra, and compare to simulations on 3D structured grids. We employ a combination of mixed hybrid finite element methods to solve for the pressure and flux fields in a fractional flow formulation, and higher-order discontinuous Galerkin methods for the mass transport equations. These methods are well suited to simulate flow in heterogeneous and fractured reservoirs, because they provide a globally continuous pressure and flux field, while allowing for sharp discontinuities in the phase properties, such as compositions and saturations. The increased accuracy from using higher-order methods improves the modeling of highly non-linear flow, such as gravitational and viscous fingering. We present several numerical examples to study convergence rates and the (lack of) sensitivity to gridding/mesh orientation, and mesh quality. These examples consider gravity depletion, water and gas injection in oil saturated subsurface reservoirs with species exchange between up to three fluid phases. The examples demonstrate the wide applicability of our chosen finite element methods in the study of challenging multiphase flow problems in porous, geometrically complex, subsurface media.

  13. Solution of Exterior Acoustic Problems by the Boundary Element Method.

    NASA Astrophysics Data System (ADS)

    Kirkup, Stephen Martin

    Available from UMI in association with The British Library. The boundary element method is described and investigated, especially in respect of its application to exterior two -dimensional Laplace problems. Both empirical and algebraic analyses (including the effects of approximation of the boundary and boundary functions and the precision of the evaluation of the discrete forms) are developed. Methods for the automatic evaluation of the discrete forms of the Laplace and Helmholtz integral operators are reviewed and extended. Boundary element methods for the solution of exterior Helmholtz problems with general (but most importantly Neumann) boundary conditions are reviewed and some are explicitly stated using a new notation. Boundary element methods based on the boundary integral equations introduced by Brakhage & Werner/ Leis/ Panich/ Kussmaul (indirect) and Burton & Miller (direct) are given prime consideration and implemented for three -dimensional problems. The influence of the choice of weighting parameter on the performance of the methods is explored and further guidance is given. The application of boundary element methods and methods based on the Rayleigh integral to acoustic radiation problems are considered. Methods for speeding up their solution via the boundary element method are developed. Library subroutines for the solution of acoustic radiation problems are described and demonstrated. Computational techniques for the problem of predicting the noise produced by a running engine are reviewed and appraised. The application of the boundary element method to low-noise engine design and in the design of noise shields is considered. The boundary element method is applied to the Ricardo crankcase simulation rig, which is an engine -like structure. A comparison of predicted and measured sound power spectra is given.

  14. Solution of exterior acoustic problems by the boundary element method

    NASA Astrophysics Data System (ADS)

    Kirkup, Stephen Martin

    The boundary element method is described and investigated, especially in respect of its application to exterior two-dimensional Laplace problems. Both empirical and algebraic analyses (including the effects of approximation of the boundary and boundary functions and the precision of the evaluation of the discrete forms) are developed. Methods for the automatic evaluation of the discrete forms of the Laplace and Helmholtz integral operators are reviewed and extended. Boundary element methods for the solution of exterior Helmholtz problems with general (but most importantly Neumann) boundary conditions are reviewed and some are explicitly stated using a new notation. Boundary element methods based on the boundary integral equations introduced by Brakhage and Werner/Leis/Panich/Kussmaul (indirect) and Burton and Miller (direct) are given prime consideration and implemented for three-dimensional problems. The influence of the choice of weighting parameter on the performance of the methods is explored and further guidance is given. The application of boundary element methods and methods based on the Rayleigh integral to acoustic radiation problems are considered. Methods for speeding up their solution via the boundary element method are developed. Library subroutines for the solution of acoustic radiation problems are described and demonstrated. Computational techniques for the problem of predicting the noise produced by a running engine are reviewed and appraised. The application of the boundary element method to low-noise engine design and in the design of noise shields is considered. The boundary element method is applied to the Ricardo crankcase simulation rig, which is an engine-like structure. A comparison of predicted and measured sound power spectra is given.

  15. Study of Multi Pass Equal Channel Angular Pressing Using 3D Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Setia, Rajat; Sharma, Rahul Swarup; Sharma, Shanti Swarup; Raj, K. Hans

    2011-01-01

    Equal Channel Angular Pressing (ECAP) has emerged as most prominent Severe Plastic Deformation (SPD) technique used to produce an ultrafine grained (UFG) structure in metals in order to improve their mechanical and physical properties. In this work Finite Element modeling of ECAP is attempted in FORGE 2007 environment. Four passes of the ECAP process of 10mm square shaped AL 6061 billet were carried out for routes A, BA and C for different channel angles and values of coefficient of friction to investigate their influence on the billet. The models were developed assuming a range of friction conditions at the billet-die contact region considering eight distinct friction coefficient (μ) values of 0.0, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35 and 0.40, respectively. The simulations are carried out using three distinct situations of die channel angles (Φ), 90°, 105°, and 120° respectively. Route `BA' emerged as a better method among the three routes studied and 90° channel angle appeared to be optimal in terms of producing high equivalent strain.

  16. Bone stress and strain modification in diastema closure: 3D analysis using finite element method.

    PubMed

    Geramy, Allahyar; Bouserhal, Joseph; Martin, Domingo; Baghaeian, Pedram

    2015-09-01

    The aim of this study was to analyse the stress and strain distribution in the alveolar bone between two central incisors in the process of diastema closure with a constant force. A 3-dimensional computer modeling based on finite element techniques was used for this purpose. A model of an anterior segment of the mandible containing cortical bone, spongy bone, gingivae, PDL and two central incisors with a bracket in the labial surface of each tooth were designed. The von Mises stress and strain was evaluated in alveolar bone along a path of nodes defined in a cresto-apical direction in the midline between two teeth. It was observed that stress and strain of alveolar bone increased in midline with a constant force to close the diastema regardless of the type of movement in gradual steps of diastema closure, however the stress was higher in the tipping movement than the bodily so it can be suggested that a protocol of force system modification should be introduced to compensate for the stress and strain changes caused by the reduced distance to avoid the unwanted stress alteration during the diastema closure. PMID:26277458

  17. Electron scattering from large molecules: a 3d finite element R-matrix approach

    NASA Astrophysics Data System (ADS)

    Tonzani, Stefano; Greene, Chris H.

    2005-05-01

    To solve the Schr"odinger equation for scattering of a low energy electron from a molecule, we present a three-dimensional finite element R-matrix method [S. Tonzani and C. H. Greene, J. Chem. Phys. 122 01411, (2005)]. Using the static exchange and local density approximations, we can use directly the molecular potentials extracted from ab initio codes (GAUSSIAN 98 in the work described here). A local polarization potential based on density functional theory [F. A. Gianturco and A. Rodriguez-Ruiz, Phys. Rev. A 47, 1075 (1993)] approximately describes the long range attraction to the molecular target induced by the scattering electron without adjustable parameters. We have used this approach successfully in calculations of cross sections for small and medium sized molecules (like SF6, XeF6, C60 and Uracil). This method will be useful to treat the electron-induced dynamics of extended molecular systems, possibly of biological interest, where oth er more complex ab initio methods are difficult to apply.

  18. 3D reconstruction of bony elements of the knee joint and finite element analysis of total knee prosthesis obtained from the reconstructed model

    PubMed Central

    Djoudi, Farid

    2013-01-01

    Two separate themes are presented in this paper. Aims The first theme is to present a graphical modeling approach of human anatomical structures namely, the femur and the tibia. The second theme involves making a finite element analysis of stresses, displacements and deformations in prosthetic implants (the femoral implant and the polyethylene insert). Objectives The graphical modeling approach comes in two parts. The first is the segmentation of MRI scanned images, retrieved in DICOM format for edge detection. In the second part, 3D-CAD models are generated from the results of the segmentation stage. The finite element analysis is done by first extracting the prosthetic implants from the reconstructed 3D-CAD model, then do a finite element analysis of these implants under objectively determined conditions such as; forces, allowed displacements, the materials composing implant, and the coefficient of friction. Conclusion The objective of this work is to implement an interface for exchanging data between 2D MRI images obtained from a medical diagnosis of a patient and the 3D-CAD model used in various applications, such as; the extraction of the implants, stress analysis at the knee joint and can serve as an aid to surgery, also predict the behavior of the prosthetic implants vis-a-vis the forces acting on the knee joints. PMID:24396234

  19. A Regularized Galerkin Boundary Element Method (RGBEM) for Simulating Potential Flow About Zero Thickness Bodies

    SciTech Connect

    GHARAKHANI,ADRIN; WOLFE,WALTER P.

    1999-10-01

    the collocation points. Unfortunately, the development of elements with C{sup 1} continuity for the potential jumps is quite complicated in 3-D. To this end, the application of Galerkin ''smoothing'' to the boundary integral equations removes the singularity at the collocation points; thus allowing the use of C{sup o} elements and potential jump distributions [4]. Successful implementations of the Galerkin Boundary Element Method to 2-D conduction [4] and elastostatic [5] problems have been reported in the literature. Thus far, the singularity removal algorithms have been based on a posterior and mathematically complex reasoning, which have required Taylor series expansion and limit processes. The application of these strategies to 3-D is expected to be significantly more complicated. In this report, we develop the formulation for a ''Regularized'' Galerkin Boundary Element Method (RGBEM). The regularization procedure involves simple manipulations using vector calculus to reduce the singularity of the hypersingular boundary integral equation by two orders for C{sup o} elements. For the case of linear potential jump distributions over plane triangles the regularized integral is simplified considerably to a double surface integral of the Green function. This is the case implemented and tested in this report. Using the example problem of flow normal to a square flat plate, the linear RGBEM predictions are demonstrated here to be more accurate, to converge faster, and to be significantly less spiked than the solutions obtained by the vortex loop method.

  20. On domain decomposition preconditioner of BPS type for finite element discretizations of 3D elliptic equations

    NASA Astrophysics Data System (ADS)

    Korneev, V. G.

    2012-09-01

    BPS is a well known an efficient and rather general domain decomposition Dirichlet-Dirichlet type preconditioner, suggested in the famous series of papers Bramble, Pasciak and Schatz (1986-1989). Since then, it has been serving as the origin for the whole family of domain decomposition Dirichlet-Dirichlet type preconditioners-solvers as for h so hp discretizations of elliptic problems. For its original version, designed for h discretizations, the named authors proved the bound O(1 + log2 H/ h) for the relative condition number under some restricting conditions on the domain decomposition and finite element discretization. Here H/ h is the maximal relation of the characteristic size H of a decomposition subdomain to the mesh parameter h of its discretization. It was assumed that subdomains are images of the reference unite cube by trilinear mappings. Later similar bounds related to h discretizations were proved for more general domain decompositions, defined by means of coarse tetrahedral meshes. These results, accompanied by the development of some special tools of analysis aimed at such type of decompositions, were summarized in the book of Toselli and Widlund (2005). This paper is also confined to h discretizations. We further expand the range of admissible domain decompositions for constructing BPS preconditioners, in which decomposition subdomains can be convex polyhedrons, satisfying some conditions of shape regularity. We prove the bound for the relative condition number with the same dependence on H/ h as in the bound given above. Along the way to this result, we simplify the proof of the so called abstract bound for the relative condition number of the domain decomposition preconditioner. In the part, related to the analysis of the interface sub-problem preconditioning, our technical tools are generalization of those used by Bramble, Pasciak and Schatz.

  1. Simulating hydroplaning of submarine landslides by quasi 3D depth averaged finite element method

    NASA Astrophysics Data System (ADS)

    De Blasio, Fabio; Battista Crosta, Giovanni

    2014-05-01

    G.B. Crosta, H. J. Chen, and F.V. De Blasio Dept. Of Earth and Environmental Sciences, Università degli Studi di Milano Bicocca, Milano, Italy Klohn Crippen Berger, Calgary, Canada Subaqueous debris flows/submarine landslides, both in the open ocean as well as in fresh waters, exhibit extremely high mobility, quantified by a ratio between vertical to horizontal displacement of the order 0.01 or even much less. It is possible to simulate subaqueous debris flows with small-scale experiments along a flume or a pool using a cohesive mixture of clay and sand. The results have shown a strong enhancement of runout and velocity compared to the case in which the same debris flow travels without water, and have indicated hydroplaning as a possible explanation (Mohrig et al. 1998). Hydroplaning is started when the snout of the debris flow travels sufficiently fast. This generates lift forces on the front of the debris flow exceeding the self-weight of the sediment, which so begins to travel detached from the bed, literally hovering instead of flowing. Clearly, the resistance to flow plummets because drag stress against water is much smaller than the shear strength of the material. The consequence is a dramatic increase of the debris flow speed and runout. Does the process occur also for subaqueous landslides and debris flows in the ocean, something twelve orders of magnitude larger than the experimental ones? Obviously, no experiment will ever be capable to replicate this size, one needs to rely on numerical simulations. Results extending a depth-integrated numerical model for debris flows (Imran et al., 2001) indicate that hydroplaning is possible (De Blasio et al., 2004), but more should be done especially with alternative numerical methodologies. In this work, finite element methods are used to simulate hydroplaning using the code MADflow (Chen, 2014) adopting a depth averaged solution. We ran some simulations on the small scale of the laboratory experiments, and secondly

  2. Equivariant preconditioners for boundary element methods

    SciTech Connect

    Tausch, J.

    1994-12-31

    In this paper the author proposes and discusses two preconditioners for boundary integral equations on domains which are nearly symmetric. The preconditioners under consideration are equivariant, that is, they commute with a group of permutation matrices. Numerical experiments demonstrate their efficiency for the GMRES method.

  3. Integrated modelling of toroidal rotation with the 3D non-local drift-kinetic code and boundary models for JT-60U analyses and predictive simulations

    NASA Astrophysics Data System (ADS)

    Honda, M.; Satake, S.; Suzuki, Y.; Yoshida, M.; Hayashi, N.; Kamiya, K.; Matsuyama, A.; Shinohara, K.; Matsunaga, G.; Nakata, M.; Ide, S.; Urano, H.

    2015-07-01

    The integrated simulation framework for toroidal momentum transport is developed, which self-consistently calculates the neoclassical toroidal viscosity (NTV), the radial electric field {{E}r} and the resultant toroidal rotation {{V}φ} together with the scrape-off-layer (SOL) physics-based boundary model. The coupling of three codes, the 1.5D transport code TOPICS, the three-dimensional (3D) equilibrium code VMEC and the 3D δ f drift-kinetic equation solver FORTEC-3D, makes it possible to calculate the NTV due to the non-axisymmetric perturbed magnetic field caused by toroidal field coils. Analyses reveal that the NTV significantly influences {{V}φ} in JT-60U and {{E}r} holds the key to determine the NTV profile. The sensitivity of the {{V}φ} profile to the boundary rotation necessitates a boundary condition modelling for toroidal momentum. Owing to the high-resolution measurement system in JT-60U, the {{E}r} gradient is found to be virtually zero at the separatrix regardless of toroidal rotation velocities. Focusing on {{E}r} , the boundary model of toroidal momentum is developed in conjunction with the SOL/divertor plasma code D5PM. This modelling realizes self-consistent predictive simulations for operation scenario development in ITER.

  4. Electronic structure of trioxide, oxoperoxide, oxosuperoxide, and ozonide clusters of the 3d elements: density functional theory study.

    PubMed

    Uzunova, Ellie L

    2011-03-01

    The trioxide clusters with stoichiometry MO3, and the structural isomers with side-on and end-on bonded oxygen atoms, are studied by DFT with the B1LYP functional. For the first half of the 3d elements row (Sc to Cr), pyramidal or distorted pyramidal structures dominate among the trioxide and oxoperoxide ground states, while the remaining elements form planar trioxides, oxoperoxides, oxosuperoxides, and ozonides. Low-lying trioxide clusters are formed by Ti, V, Cr, and Mn, among which the distorted pyramidal VO3 in the (2)A'' state, the pyramidal CrO3 in the (1)A1 state, and the planar MnO3 in the (2)A1' state are global minima. With the exception of the middle-row elements Mn, Fe, and Co, the magnetic moment of the ground-state clusters is formed with a major contribution from unpaired electrons located at the oxygen atoms. The stability of trioxides and oxoperoxides toward release of molecular oxygen is significantly higher for Sc, Ti, and V than for the remaining elements of the row. A trend of increasing the capability to dissociate one oxygen molecule is observed from Cr to Cu, with the exception of OFe(O2) being more reactive than OCo(O2). A gradual increase of reactivity from Ti to Cu is observed for the complete fragmentation reaction M + O + O2. PMID:21299242

  5. The MHOST finite element program: 3-D inelastic analysis methods for hot section components. Volume 1: Theoretical manual

    NASA Technical Reports Server (NTRS)

    Nakazawa, Shohei

    1991-01-01

    Formulations and algorithms implemented in the MHOST finite element program are discussed. The code uses a novel concept of the mixed iterative solution technique for the efficient 3-D computations of turbine engine hot section components. The general framework of variational formulation and solution algorithms are discussed which were derived from the mixed three field Hu-Washizu principle. This formulation enables the use of nodal interpolation for coordinates, displacements, strains, and stresses. Algorithmic description of the mixed iterative method includes variations for the quasi static, transient dynamic and buckling analyses. The global-local analysis procedure referred to as the subelement refinement is developed in the framework of the mixed iterative solution, of which the detail is presented. The numerically integrated isoparametric elements implemented in the framework is discussed. Methods to filter certain parts of strain and project the element discontinuous quantities to the nodes are developed for a family of linear elements. Integration algorithms are described for linear and nonlinear equations included in MHOST program.

  6. Experimental validation of 3D printed patient-specific implants using digital image correlation and finite element analysis.

    PubMed

    Sutradhar, Alok; Park, Jaejong; Carrau, Diana; Miller, Michael J

    2014-09-01

    With the dawn of 3D printing technology, patient-specific implant designs are set to have a paradigm shift. A topology optimization method in designing patient-specific craniofacial implants has been developed to ensure adequate load transfer mechanism and restore the form and function of the mid-face. Patient-specific finite element models are used to design these implants and to validate whether they are viable for physiological loading such as mastication. Validation of these topology optimized finite element models using mechanical testing is a critical step. Instead of inserting the implants into a cadaver or patient, we embed the implants into the computer-aided skull model of a patient and, fuse them together to 3D print the complete skull model with the implant. Masticatory forces are applied in the molar region to simulate chewing and measure the stress-strain trajectory. Until recently, strain gages have been used to measure strains for validation. Digital Image Correlation (DIC) method is a relatively new technique for full-field strain measurement which provides a continuous deformation field data. The main objective of this study is to validate the finite element model of patient-specific craniofacial implants against the strain data from the DIC obtained during the mastication simulation and show that the optimized shapes provide adequate load-transfer mechanism. Patient-specific models are obtained from CT scans. The principal maximum and minimum strains are compared. The computational and experimental approach to designing patient-specific implants proved to be a viable technique for mid-face craniofacial reconstruction. PMID:24992729

  7. Time-sequential autostereoscopic 3-D display with a novel directional backlight system based on volume-holographic optical elements.

    PubMed

    Hwang, Yong Seok; Bruder, Friedrich-Karl; Fäcke, Thomas; Kim, Seung-Cheol; Walze, Günther; Hagen, Rainer; Kim, Eun-Soo

    2014-04-21

    A novel directional backlight system based on volume-holographic optical elements (VHOEs) is demonstrated for time-sequential autostereoscopic three-dimensional (3-D) flat-panel displays. Here, VHOEs are employed to control the direction of light for a time-multiplexed display for each of the left and the right view. Those VHOEs are fabricated by recording interference patterns between collimated reference beams and diverging object beams for each of the left and right eyes on the volume holographic recording material. For this, self-developing photopolymer films (Bayfol® HX) were used, since those simplify the manufacturing process of VHOEs substantially. Here, the directional lights are similar to the collimated reference beams that were used to record the VHOEs and create two diffracted beams similar to the object beams used for recording the VHOEs. Then, those diffracted beams read the left and right images alternately shown on the LCD panel and form two converging viewing zones in front of the user's eyes. By this he can perceive the 3-D image. Theoretical predictions and experimental results are presented and the performance of the developed prototype is shown. PMID:24787867

  8. An efficient formulation of the coupled finite element-integral equation technique for solving large 3D scattering problems

    NASA Technical Reports Server (NTRS)

    Cwik, T.; Jamnejad, V.; Zuffada, C.

    1993-01-01

    It is often desirable to calculate the electromagnetic fields inside and about a complicated system of scattering bodies, as well as in their far-field region. The finite element method (FE) is well suited to solving the interior problem, but the domain has to be limited to a manageable size. At the truncation of the FE mesh one can either impose approximate (absorbing) boundary conditions or set up an integral equation (IE) for the fields scattered from the bodies. The latter approach is preferable since it results in higher accuracy. Hence, the two techniques can be successfully combined by introducing a surface that encloses the scatterers, applying a FE model to the inner volume and setting up an IE for the tangential fields components on the surface. Here the continuity of the tangential fields is used bo obtain a consistent solution. A few coupled FE-IE methods have recently appeared in the literature. The approach presented here has the advantage of using edge-based finite elements, a type of finite elements with degrees of freedom associated with edges of the mesh. Because of their properties, they are better suited than the conventional node based elements to represent electromagnetic fields, particularly when inhomogeneous regions are modeled, since the node based elements impose an unnatural continuity of all field components across boundaries of mesh elements. Additionally, our approach is well suited to handle large size problems and lends itself to code parallelization. We will discuss the salient features that make our approach very efficient from the standpoint of numerical computation, and the fields and RCS of a few objects are illustrated as examples.

  9. 3D Finite Element Analysis of Some Structural Modified PC Sleeper with the Vibration Characteristics between Sleeper and Ballast

    NASA Astrophysics Data System (ADS)

    Sakai, Hirotaka; Urakawa, Fumihiro; Aikawa, Akira; Namura, Akira

    The vibration of concrete sleepers is an important factor engendering track deterioration. In this paper, we created a three-dimensional finite element model to reproduce a prestressed concrete (PC) sleeper in detail, expressing influence of ballast layers with a 3D spring series and dampers to reproduce their vibration and dynamic characteristics. Determination of these parameters bases on the experimental modal analysis using an impact excitation technique for PC sleepers by adjusting the accelerance between the analytical results and experimental results. Furthermore, we compared the difference of these characteristics between normal sleepers and those with some structural modifications. Analytical results clarified that such means as sleeper width extension and increased sleeper thickness will influence the reduction of ballasted track vibration as improvements of PC sleepers.

  10. 3D Finite Element Modelling of Cutting Forces in Drilling Fibre Metal Laminates and Experimental Hole Quality Analysis

    NASA Astrophysics Data System (ADS)

    Giasin, Khaled; Ayvar-Soberanis, Sabino; French, Toby; Phadnis, Vaibhav

    2016-07-01

    Machining Glass fibre aluminium reinforced epoxy (GLARE) is cumbersome due to distinctively different mechanical and thermal properties of its constituents, which makes it challenging to achieve damage-free holes with the acceptable surface quality. The proposed work focuses on the study of the machinability of thin (~2.5 mm) GLARE laminate. Drilling trials were conducted to analyse the effect of feed rate and spindle speed on the cutting forces and hole quality. The resulting hole quality metrics (surface roughness, hole size, circularity error, burr formation and delamination) were assessed using surface profilometry and optical scanning techniques. A three dimensional (3D) finite-element (FE) model of drilling GLARE laminate was also developed using ABAQUS/Explicit to help understand the mechanism of drilling GLARE. The homogenised ply-level response of GLARE laminate was considered in the FE model to predict cutting forces in the drilling process.

  11. Experimental Investigation and 3D Finite Element Prediction of Temperature Distribution during Travelling Heat Sourced from Oxyacetylene Flame

    NASA Astrophysics Data System (ADS)

    Umar Alkali, Adam; Lenggo Ginta, Turnad; Majdi Abdul-Rani, Ahmad

    2015-04-01

    This paper presents a 3D transient finite element modelling of the workpiece temperature field produced during the travelling heat sourced from oxyacetylene flame. The proposed model was given in terms of preheat-only test applicable during thermally enhanced machining using the oxyacetylene flame as a heat source. The FEA model as well as the experimental test investigated the surface temperature distribution on 316L stainless steel at scanning speed of 100mm/min, 125mm/min 160mm/min, 200mm/min and 250mm/min. The parametric properties of the heat source maintained constant are; lead distance Ld =10mm, focus height Fh=7.5mm, oxygen gas pressure Poxy=15psi and acetylene gas pressure Pacty=25psi. An experimental validation of the temperature field induced on type 316L stainless steel reveal that temperature distribution increases when the travelling speed decreases.

  12. ZIP3D: An elastic and elastic-plastic finite-element analysis program for cracked bodies

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Newman, J. C., Jr.

    1990-01-01

    ZIP3D is an elastic and an elastic-plastic finite element program to analyze cracks in three dimensional solids. The program may also be used to analyze uncracked bodies or multi-body problems involving contacting surfaces. For crack problems, the program has several unique features including the calculation of mixed-mode strain energy release rates using the three dimensional virtual crack closure technique, the calculation of the J integral using the equivalent domain integral method, the capability to extend the crack front under monotonic or cyclic loading, and the capability to close or open the crack surfaces during cyclic loading. The theories behind the various aspects of the program are explained briefly. Line-by-line data preparation is presented. Input data and results for an elastic analysis of a surface crack in a plate and for an elastic-plastic analysis of a single-edge-crack-tension specimen are also presented.

  13. 3D Finite Element Model for Writing Long-Period Fiber Gratings by CO2 Laser Radiation

    PubMed Central

    Coelho, João M. P.; Nespereira, Marta; Abreu, Manuel; Rebordão, José

    2013-01-01

    In the last years, mid-infrared radiation emitted by CO2 lasers has become increasing popular as a tool in the development of long-period fiber gratings. However, although the development and characterization of the resulting sensing devices have progressed quickly, further research is still necessary to consolidate functional models, especially regarding the interaction between laser radiation and the fiber's material. In this paper, a 3D finite element model is presented to simulate the interaction between laser radiation and an optical fiber and to determine the resulting refractive index change. Dependence with temperature of the main parameters of the optical fiber materials (with special focus on the absorption of incident laser radiation) is considered, as well as convection and radiation losses. Thermal and residual stress analyses are made for a standard single mode fiber, and experimental results are presented. PMID:23941908

  14. Mixed-hybrid and vertex-discontinuous-Galerkin finite element modeling of multiphase compositional flow on 3D unstructured grids

    NASA Astrophysics Data System (ADS)

    Moortgat, Joachim; Firoozabadi, Abbas

    2016-06-01

    Problems of interest in hydrogeology and hydrocarbon resources involve complex heterogeneous geological formations. Such domains are most accurately represented in reservoir simulations by unstructured computational grids. Finite element methods accurately describe flow on unstructured meshes with complex geometries, and their flexible formulation allows implementation on different grid types. In this work, we consider for the first time the challenging problem of fully compositional three-phase flow in 3D unstructured grids, discretized by any combination of tetrahedra, prisms, and hexahedra. We employ a mass conserving mixed hybrid finite element (MHFE) method to solve for the pressure and flux fields. The transport equations are approximated with a higher-order vertex-based discontinuous Galerkin (DG) discretization. We show that this approach outperforms a face-based implementation of the same polynomial order. These methods are well suited for heterogeneous and fractured reservoirs, because they provide globally continuous pressure and flux fields, while allowing for sharp discontinuities in compositions and saturations. The higher-order accuracy improves the modeling of strongly non-linear flow, such as gravitational and viscous fingering. We review the literature on unstructured reservoir simulation models, and present many examples that consider gravity depletion, water flooding, and gas injection in oil saturated reservoirs. We study convergence rates, mesh sensitivity, and demonstrate the wide applicability of our chosen finite element methods for challenging multiphase flow problems in geometrically complex subsurface media.

  15. Algebraic multigrid preconditioning within parallel finite-element solvers for 3-D electromagnetic modelling problems in geophysics

    NASA Astrophysics Data System (ADS)

    Koldan, Jelena; Puzyrev, Vladimir; de la Puente, Josep; Houzeaux, Guillaume; Cela, José María

    2014-06-01

    We present an elaborate preconditioning scheme for Krylov subspace methods which has been developed to improve the performance and reduce the execution time of parallel node-based finite-element (FE) solvers for 3-D electromagnetic (EM) numerical modelling in exploration geophysics. This new preconditioner is based on algebraic multigrid (AMG) that uses different basic relaxation methods, such as Jacobi, symmetric successive over-relaxation (SSOR) and Gauss-Seidel, as smoothers and the wave front algorithm to create groups, which are used for a coarse-level generation. We have implemented and tested this new preconditioner within our parallel nodal FE solver for 3-D forward problems in EM induction geophysics. We have performed series of experiments for several models with different conductivity structures and characteristics to test the performance of our AMG preconditioning technique when combined with biconjugate gradient stabilized method. The results have shown that, the more challenging the problem is in terms of conductivity contrasts, ratio between the sizes of grid elements and/or frequency, the more benefit is obtained by using this preconditioner. Compared to other preconditioning schemes, such as diagonal, SSOR and truncated approximate inverse, the AMG preconditioner greatly improves the convergence of the iterative solver for all tested models. Also, when it comes to cases in which other preconditioners succeed to converge to a desired precision, AMG is able to considerably reduce the total execution time of the forward-problem code-up to an order of magnitude. Furthermore, the tests have confirmed that our AMG scheme ensures grid-independent rate of convergence, as well as improvement in convergence regardless of how big local mesh refinements are. In addition, AMG is designed to be a black-box preconditioner, which makes it easy to use and combine with different iterative methods. Finally, it has proved to be very practical and efficient in the

  16. A Curved, Elastostatic Boundary Element for Plane Anisotropic Structures

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S.; Klang, Eric C.

    2001-01-01

    The plane-stress equations of linear elasticity are used in conjunction with those of the boundary element method to develop a novel curved, quadratic boundary element applicable to structures composed of anisotropic materials in a state of plane stress or plane strain. The curved boundary element is developed to solve two-dimensional, elastostatic problems of arbitrary shape, connectivity, and material type. As a result of the anisotropy, complex variables are employed in the fundamental solution derivations for a concentrated unit-magnitude force in an infinite elastic anisotropic medium. Once known, the fundamental solutions are evaluated numerically by using the known displacement and traction boundary values in an integral formulation with Gaussian quadrature. All the integral equations of the boundary element method are evaluated using one of two methods: either regular Gaussian quadrature or a combination of regular and logarithmic Gaussian quadrature. The regular Gaussian quadrature is used to evaluate most of the integrals along the boundary, and the combined scheme is employed for integrals that are singular. Individual element contributions are assembled into the global matrices of the standard boundary element method, manipulated to form a system of linear equations, and the resulting system is solved. The interior displacements and stresses are found through a separate set of auxiliary equations that are derived using an Airy-type stress function in terms of complex variables. The capabilities and accuracy of this method are demonstrated for a laminated-composite plate with a central, elliptical cutout that is subjected to uniform tension along one of the straight edges of the plate. Comparison of the boundary element results for this problem with corresponding results from an analytical model show a difference of less than 1%.

  17. An analysis of the mechanical parameters used for finite element compression of a high-resolution 3D breast phantom

    PubMed Central

    Hsu, Christina M. L.; Palmeri, Mark L.; Segars, W. Paul; Veress, Alexander I.; Dobbins, James T.

    2011-01-01

    Purpose: The authors previously introduced a methodology to generate a realistic three-dimensional (3D), high-resolution, computer-simulated breast phantom based on empirical data. One of the key components of such a phantom is that it provides a means to produce a realistic simulation of clinical breast compression. In the current study, they have evaluated a finite element (FE) model of compression and have demonstrated the effect of a variety of mechanical properties on the model using a dense mesh generated from empirical breast data. While several groups have demonstrated an effective compression simulation with lower density finite element meshes, the presented study offers a mesh density that is able to model the morphology of the inner breast structures more realistically than lower density meshes. This approach may prove beneficial for multimodality breast imaging research, since it provides a high level of anatomical detail throughout the simulation study. Methods: In this paper, the authors describe methods to improve the high-resolution performance of a FE compression model. In order to create the compressible breast phantom, dedicated breast CT data was segmented and a mesh was generated with 4-noded tetrahedral elements. Using an explicit FE solver to simulate breast compression, several properties were analyzed to evaluate their effect on the compression model including: mesh density, element type, density, and stiffness of various tissue types, friction between the skin and the compression plates, and breast density. Following compression, a simulated projection was generated to demonstrate the ability of the compressible breast phantom to produce realistic simulated mammographic images. Results: Small alterations in the properties of the breast model can change the final distribution of the tissue under compression by more than 1 cm; which ultimately results in different representations of the breast model in the simulated images. The model

  18. Improved three-dimensional bubble dynamics model based on boundary element method

    NASA Astrophysics Data System (ADS)

    Zhang, A. M.; Liu, Y. L.

    2015-08-01

    Some new theoretical and numerical techniques are adopted in an improved 3D bubble dynamics model based on Boundary Element Method. Firstly, a numerical model under the incompressible potential assumption is established for 3D bubble dynamics, and the traditional technique for the vortex ring induced potential at the reference point in axisymmetric model is extended to arbitrary location in 3D model. Then, to homogenize the boundaries' mesh density, new Density Potential Method is put forward inspired by the Elastic Mesh Technique. It's combined together with the topology optimization based on edge swapping procedure to maintain a desirable mesh for the large deformation problem. Through the verification and the comparison by simulating a benchmark case, the improved model demonstrates good accuracy and stability. Particularly, more toroidal bubble evolution detailed features are captured which are in accordance with the axisymmetric model. Finally, bubble dynamics under different circumstances are simulated with the improved 3D numerical model presented in this paper, which shows that the improved model is also robust.

  19. Electrodynamic boundary conditions for planar arrays of thin magnetic elements

    SciTech Connect

    Lisenkov, Ivan; Tyberkevych, Vasyl; Slavin, Andrei; Nikitov, Sergei

    2015-08-24

    Approximate electrodynamic boundary conditions are derived for an array of dipolarly coupled magnetic elements. It is assumed that the elements' thickness is small compared to the wavelength of an electromagnetic wave in a free space. The boundary conditions relate electric and magnetic fields existing at the top and bottom sides of the array through the averaged uniform dynamic magnetization of the array. This dynamic magnetization is determined by the collective dynamic eigen-excitations (spin wave modes) of the array and is found using the external magnetic susceptibility tensor. The problem of oblique scattering of a plane electromagnetic wave on the array is considered to illustrate the use of the derived boundary conditions.

  20. 3D Quantification of Wall Shear Stress and Oscillatory Shear Index Using a Finite-Element Method in 3D CINE PC-MRI Data of the Thoracic Aorta.

    PubMed

    Sotelo, Julio; Urbina, Jesus; Valverde, Israel; Tejos, Cristian; Irarrazaval, Pablo; Andia, Marcelo E; Uribe, Sergio; Hurtado, Daniel E

    2016-06-01

    Several 2D methods have been proposed to estimate WSS and OSI from PC-MRI, neglecting the longitudinal velocity gradients that typically arise in cardiovascular flow, particularly on vessel geometries whose cross section and centerline orientation strongly vary in the axial direction. Thus, the contribution of longitudinal velocity gradients remains understudied. In this work, we propose a 3D finite-element method for the quantification of WSS and OSI from 3D-CINE PC-MRI that accounts for both in-plane and longitudinal velocity gradients. We demonstrate the convergence and robustness of the method on cylindrical geometries using a synthetic phantom based on the Poiseuille flow equation. We also show that, in the presence of noise, the method is both stable and accurate. Using computational fluid dynamics simulations, we show that the proposed 3D method results in more accurate WSS estimates than those obtained from a 2D analysis not considering out-of-plane velocity gradients. Further, we conclude that for irregular geometries the accurate prediction of WSS requires the consideration of longitudinal gradients in the velocity field. Additionally, we compute 3D maps of WSS and OSI for 3D-CINE PC-MRI data sets from an aortic phantom and sixteen healthy volunteers and two patients. The OSI values show a greater dispersion than WSS, which is strongly dependent on the PC-MRI resolution. We envision that the proposed 3D method will improve the estimation of WSS and OSI from 3D-CINE PC-MRI images, allowing for more accurate estimates in vessels with pathologies that induce high longitudinal velocity gradients, such as coarctations and aneurisms. PMID:26780787

  1. Indirect boundary element method to simulate elastic wave propagation in piecewise irregular and flat regions

    NASA Astrophysics Data System (ADS)

    Perton, Mathieu; Contreras-Zazueta, Marcial A.; Sánchez-Sesma, Francisco J.

    2016-06-01

    A new implementation of indirect boundary element method allows simulating the elastic wave propagation in complex configurations made of embedded regions that are homogeneous with irregular boundaries or flat layers. In an older implementation, each layer of a flat layered region would have been treated as a separated homogeneous region without taking into account the flat boundary information. For both types of regions, the scattered field results from fictitious sources positioned along their boundaries. For the homogeneous regions, the fictitious sources emit as in a full-space and the wave field is given by analytical Green's functions. For flat layered regions, fictitious sources emit as in an unbounded flat layered region and the wave field is given by Green's functions obtained from the discrete wavenumber (DWN) method. The new implementation allows then reducing the length of the discretized boundaries but DWN Green's functions require much more computation time than the full-space Green's functions. Several optimization steps are then implemented and commented. Validations are presented for 2-D and 3-D problems. Higher efficiency is achieved in 3-D.

  2. Finite element solution theory for three-dimensional boundary flows

    NASA Technical Reports Server (NTRS)

    Baker, A. J.

    1974-01-01

    A finite element algorithm is derived for the numerical solution of a three-dimensional flow field described by a system of initial-valued, elliptic boundary value partial differential equations. The familiar three-dimensional boundary layer equations belong to this description when diffusional processes in only one coordinate direction are important. The finite element algorithm transforms the original description into large order systems of ordinary differential equations written for the dependent variables discretized at node points of an arbitrarily irregular computational lattice. The generalized elliptic boundary conditions is piecewise valid for each dependent variable on boundaries that need not explicitly coincide with coordinate surfaces. Solutions for sample problems in laminar and turbulent boundary flows illustrate favorable solution accuracy, convergence, and versatility.

  3. Assessment of a 3-D boundary layer code to predict heat transfer and flow losses in a turbine

    NASA Technical Reports Server (NTRS)

    Anderson, O. L.

    1984-01-01

    Zonal concepts are utilized to delineate regions of application of three-dimensional boundary layer (DBL) theory. The zonal approach requires three distinct analyses. A modified version of the 3-DBL code named TABLET is used to analyze the boundary layer flow. This modified code solves the finite difference form of the compressible 3-DBL equations in a nonorthogonal surface coordinate system which includes coriolis forces produced by coordinate rotation. These equations are solved using an efficient, implicit, fully coupled finite difference procedure. The nonorthogonal surface coordinate system is calculated using a general analysis based on the transfinite mapping of Gordon which is valid for any arbitrary surface. Experimental data is used to determine the boundary layer edge conditions. The boundary layer edge conditions are determined by integrating the boundary layer edge equations, which are the Euler equations at the edge of the boundary layer, using the known experimental wall pressure distribution. Starting solutions along the inflow boundaries are estimated by solving the appropriate limiting form of the 3-DBL equations.

  4. Capabilities of wind tunnels with two-adaptive walls to minimize boundary interference in 3-D model testing

    NASA Technical Reports Server (NTRS)

    Rebstock, Rainer; Lee, Edwin E., Jr.

    1989-01-01

    An initial wind tunnel test was made to validate a new wall adaptation method for 3-D models in test sections with two adaptive walls. First part of the adaptation strategy is an on-line assessment of wall interference at the model position. The wall induced blockage was very small at all test conditions. Lift interference occurred at higher angles of attack with the walls set aerodynamically straight. The adaptation of the top and bottom tunnel walls is aimed at achieving a correctable flow condition. The blockage was virtually zero throughout the wing planform after the wall adjustment. The lift curve measured with the walls adapted agreed very well with interference free data for Mach 0.7, regardless of the vertical position of the wing in the test section. The 2-D wall adaptation can significantly improve the correctability of 3-D model data. Nevertheless, residual spanwise variations of wall interference are inevitable.

  5. A combined application of boundary-element and Runge-Kutta methods in three-dimensional elasticity and poroelasticity

    NASA Astrophysics Data System (ADS)

    Igumnov, Leonid; Ipatov, Aleksandr; Belov, Aleksandr; Petrov, Andrey

    2015-09-01

    The report presents the development of the time-boundary element methodology and a description of the related software based on a stepped method of numerical inversion of the integral Laplace transform in combination with a family of Runge-Kutta methods for analyzing 3-D mixed initial boundary-value problems of the dynamics of inhomogeneous elastic and poro-elastic bodies. The results of the numerical investigation are presented. The investigation methodology is based on direct-approach boundary integral equations of 3-D isotropic linear theories of elasticity and poroelasticity in Laplace transforms. Poroelastic media are described using Biot models with four and five base functions. With the help of the boundary-element method, solutions in time are obtained, using the stepped method of numerically inverting Laplace transform on the nodes of Runge-Kutta methods. The boundary-element method is used in combination with the collocation method, local element-by-element approximation based on the matched interpolation model. The results of analyzing wave problems of the effect of a non-stationary force on elastic and poroelastic finite bodies, a poroelastic half-space (also with a fictitious boundary) and a layered half-space weakened by a cavity, and a half-space with a trench are presented. Excitation of a slow wave in a poroelastic medium is studied, using the stepped BEM-scheme on the nodes of Runge-Kutta methods.

  6. Assessment of entrainment and deposition for a potential landslide in Lushan area, central Taiwan by 3D discrete element simulation

    NASA Astrophysics Data System (ADS)

    Lu, C.; Tang, C.; Hu, J.; Chan, Y.; Chi, C.

    2011-12-01

    The subtropical climate and annual average about four typhoons, combined with frequent earthquakes trigger the landslide hazards in mountainous area in Taiwan. The potential Lushan landslide area is located at a famous hotspring district of Nantou County in central Taiwan which slides frequently due to heavy rainfall during pouring rain or typhoon seasons. Lushan landslide demonstrates a typical deep-seated (up to 80 meters) creep deformation of a slate rock slope with high dip angles. Under the weathering effects, the slide surface is currently extending to the lower slope was formed by the coalescing of the joints on the upper eastern slope as well as the interface between the sandy slate and the slate on the upper western slope. In this study, we simulate the process of Lushan landslide by using PFC3D, which is conducted by adopting the 3D granular discrete element method. In this simulation, we assume the whole sliding block as an inhomogeneous layer of weaken slate. We extrapolate the slip plane depth according to the result of borehole, TDR and RIF profiles. The main landslide area is about 18 hectares and the volume is about 9 million cubic meters, which is filled with 30 thousand ball elements. The topography is represented by 25,620 wall elements based on the 5m digital elevation model. We set 9 monitoring balls on surface to monitor the velocity and run-out path. According to the field work, we defined the weak planes by the strike and dip of cleavage and joint. From our results, the run-out zone is about 40 hectares. The debris will cover whole Lushan hotspring district in 20 seconds and all rock mass will almost stop after 150 seconds. The predicted maximum velocity is about 40m/s. According to the velocity profile, we can see three and four times accelerations from monitored particles. The collision of particles during sliding and complex terrain explains the fluctuation of velocity profile with time. The numerical results of this study will provide

  7. Boundary element analysis of post-tensioned slabs

    NASA Astrophysics Data System (ADS)

    Rashed, Youssef F.

    2015-06-01

    In this paper, the boundary element method is applied to carry out the structural analysis of post-tensioned flat slabs. The shear-deformable plate-bending model is employed. The effect of the pre-stressing cables is taken into account via the equivalent load method. The formulation is automated using a computer program, which uses quadratic boundary elements. Verification samples are presented, and finally a practical application is analyzed where results are compared against those obtained from the finite element method. The proposed method is efficient in terms of computer storage and processing time as well as the ease in data input and modifications.

  8. 3D finite element analysis of immediate loading of single wide versus double implants for replacing mandibular molar

    PubMed Central

    Desai, Shrikar R.; Karthikeyan, I.; Gaddale, Reetika

    2013-01-01

    Purpose: The purpose of this finite element study was to compare the stresses, strains, and displacements of double versus single implant in immediate loading for replacing mandibular molar. Materials and Methods: Two 3D FEM (finite element method) models were made to simulate implant designs. The first model used 5-mm-wide diameter implant to support a single molar crown. The second model used 3.75-3.75 double implant design. Anisotropic properties were assigned to bone model. Each model was analyzed with single force magnitude (100 N) in vertical axis. Results: This FEM study suggested that micromotion can be controlled better for double implants compared to single wide-diameter implants. The Von Mises stress for double implant showed 74.44% stress reduction compared to that of 5-mm implant. The Von Mises elastic strain was reduced by 61% for double implant compared to 5-mm implant. Conclusion: Within the limitations of the study, when the mesiodistal space for artificial tooth is more than 12.5 mm, under immediate loading, the double implant support should be considered. PMID:24554890

  9. 3-D solution of flow in an infinite square array of circular tubes by using boundary-fitted coordinate system

    SciTech Connect

    Chen, B.C.J.; Chien, T.H.; Sha, W.T.; Kim, J.H.

    1982-01-01

    Heat transfer and fluid flow over circular tubes have wide applications in the design of heat exchangers and nuclear reactors. However, it is often difficult to accurately calculate the detailed velocity and temperature distributions of the flow because of the complex geometry involved in the analysis, and a lack of an appropriate coordinate system for the analysis. Boundary conditions on the surfaces of the tubes are often interpolated. This interpolation process introduces inaccuracy. To overcome this difficulty, the present study used the technique of the boundary-fitted coordinate system. In this technique, all the physical boundaries are transformed into constant coordinate lines in the transformed coordinates. Therefore, the boundary conditions can be specified on the grid points without interpolation.

  10. The effect of thread design on stress distribution in a solid screw implant: a 3D finite element analysis.

    PubMed

    Eraslan, Oğuz; Inan, Ozgür

    2010-08-01

    The biomechanical behavior of implant thread plays an important role on stresses at implant-bone interface. Information about the effect of different thread profiles upon the bone stresses is limited. The purpose of this study was to evaluate the effects of different implant thread designs on stress distribution characteristics at supporting structures. In this study, three-dimensional (3D) finite element (FE) stress-analysis method was used. Four types of 3D mathematical models simulating four different thread-form configurations for a solid screw implant was prepared with supporting bone structure. V-thread (1), buttress (2), reverse buttress (3), and square thread designs were simulated. A 100-N static axial occlusal load was applied to occlusal surface of abutment to calculate the stress distributions. Solidworks/Cosmosworks structural analysis programs were used for FE modeling/analysis. The analysis of the von Mises stress values revealed that maximum stress concentrations were located at loading areas of implant abutments and cervical cortical bone regions for all models. Stress concentration at cortical bone (18.3 MPa) was higher than spongious bone (13.3 MPa), and concentration of first thread (18 MPa) was higher than other threads (13.3 MPa). It was seen that, while the von Mises stress distribution patterns at different implant thread models were similar, the concentration of compressive stresses were different. The present study showed that the use of different thread form designs did not affect the von Mises concentration at supporting bone structure. However, the compressive stress concentrations differ by various thread profiles. PMID:19543925

  11. Design sensitivity analysis of three-dimensional body by boundary element method and its application to shape optimization

    NASA Astrophysics Data System (ADS)

    Yamazaki, Koetsu; Sakamoto, Jiro; Kitano, Masami

    1993-02-01

    A design sensitivity calculation technique based on the implicit differentiation method is formulated for isoparametric boundary elements for three-dimensional (3D) shape optimization problems. The practical sensitivity equations for boundary displacements and stresses are derived, and the efficiency and accuracy of the technique are compared with the semi-analytic method by implementing the sensitivity analysis of typical and basic shape design problems numerically. The sensitivity calculation technique is then applied to the minimum weight design problems of 3D bodies under stress constraints, such as the shape optimization of the ellipsoidal cavity in a cube and the connecting rod, where the Taylor series approximation, based on the boundary element sensitivity analysis at current design point, is adopted for the efficient implementation of the optimization.

  12. Analysis of random structure-acoustic interaction problems using coupled boundary element and finite element methods

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Pates, Carl S., III

    1994-01-01

    A coupled boundary element (BEM)-finite element (FEM) approach is presented to accurately model structure-acoustic interaction systems. The boundary element method is first applied to interior, two and three-dimensional acoustic domains with complex geometry configurations. Boundary element results are very accurate when compared with limited exact solutions. Structure-interaction problems are then analyzed with the coupled FEM-BEM method, where the finite element method models the structure and the boundary element method models the interior acoustic domain. The coupled analysis is compared with exact and experimental results for a simplistic model. Composite panels are analyzed and compared with isotropic results. The coupled method is then extended for random excitation. Random excitation results are compared with uncoupled results for isotropic and composite panels.

  13. Automatic generation of boundary conditions using Demons non-rigid image registration for use in 3D modality-independent elastography

    NASA Astrophysics Data System (ADS)

    Pheiffer, Thomas S.; Ou, Jao J.; Miga, Michael I.

    2010-02-01

    Modality-independent elastography (MIE) is a method of elastography that reconstructs the elastic properties of tissue using images acquired under different loading conditions and a biomechanical model. Boundary conditions are a critical input to the algorithm, and are often determined by time-consuming point correspondence methods requiring manual user input. Unfortunately, generation of accurate boundary conditions for the biomechanical model is often difficult due to the challenge of accurately matching points between the source and target surfaces and consequently necessitates the use of large numbers of fiducial markers. This study presents a novel method of automatically generating boundary conditions by non-rigidly registering two image sets with a Demons diffusion-based registration algorithm. The use of this method was successfully performed in silico using magnetic resonance and X-ray computed tomography image data with known boundary conditions. These preliminary results have produced boundary conditions with accuracy of up to 80% compared to the known conditions. Finally, these boundary conditions were utilized within a 3D MIE reconstruction to determine an elasticity contrast ratio between tumor and normal tissue. Preliminary results show a reasonable characterization of the material properties on this first attempt and a significant improvement in the automation level and viability of the method.

  14. The Distributed Lambda (?) Model (DLM): A 3-D, Finite-Element Muscle Model Based on Feldman's ? Model; Assessment of Orofacial Gestures

    ERIC Educational Resources Information Center

    Nazari, Mohammad Ali; Perrier, Pascal; Payan, Yohan

    2013-01-01

    Purpose: The authors aimed to design a distributed lambda model (DLM), which is well adapted to implement three-dimensional (3-D), finite-element descriptions of muscles. Method: A muscle element model was designed. Its stress-strain relationships included the active force-length characteristics of the ? model along the muscle fibers, together…

  15. Parallel computation using boundary elements in solid mechanics

    NASA Technical Reports Server (NTRS)

    Chien, L. S.; Sun, C. T.

    1990-01-01

    The inherent parallelism of the boundary element method is shown. The boundary element is formulated by assuming the linear variation of displacements and tractions within a line element. Moreover, MACSYMA symbolic program is employed to obtain the analytical results for influence coefficients. Three computational components are parallelized in this method to show the speedup and efficiency in computation. The global coefficient matrix is first formed concurrently. Then, the parallel Gaussian elimination solution scheme is applied to solve the resulting system of equations. Finally, and more importantly, the domain solutions of a given boundary value problem are calculated simultaneously. The linear speedups and high efficiencies are shown for solving a demonstrated problem on Sequent Symmetry S81 parallel computing system.

  16. DYNA3D: A nonlinear, explicit, three-dimensional finite element code for solid and structural mechanics, User manual. Revision 1

    SciTech Connect

    Whirley, R.G.; Engelmann, B.E.

    1993-11-01

    This report is the User Manual for the 1993 version of DYNA3D, and also serves as a User Guide. DYNA3D is a nonlinear, explicit, finite element code for analyzing the transient dynamic response of three-dimensional solids and structures. The code is fully vectorized and is available on several computer platforms. DYNA3D includes solid, shell, beam, and truss elements to allow maximum flexibility in modeling physical problems. Many material models are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects, and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding and single surface contact. Rigid materials provide added modeling flexibility. A material model driver with interactive graphics display is incorporated into DYNA3D to permit accurate modeling of complex material response based on experimental data. Along with the DYNA3D Example Problem Manual, this document provides the information necessary to apply DYNA3D to solve a wide range of engineering analysis problems.

  17. A dual reciprocal boundary element formulation for viscous flows

    NASA Technical Reports Server (NTRS)

    Lafe, Olu

    1993-01-01

    The advantages inherent in the boundary element method (BEM) for potential flows are exploited to solve viscous flow problems. The trick is the introduction of a so-called dual reciprocal technique in which the convective terms are represented by a global function whose unknown coefficients are determined by collocation. The approach, which is necessarily iterative, converts the governing partial differential equations into integral equations via the distribution of fictitious sources or dipoles of unknown strength on the boundary. These integral equations consist of two parts. The first is a boundary integral term, whose kernel is the unknown strength of the fictitious sources and the fundamental solution of a convection-free flow problem. The second part is a domain integral term whose kernel is the convective portion of the governing PDEs. The domain integration can be transformed to the boundary by using the dual reciprocal (DR) concept. The resulting formulation is a pure boundary integral computational process.

  18. Treatment of domain integrals in boundary element methods

    SciTech Connect

    Nintcheu Fata, Sylvain

    2012-01-01

    A systematic and rigorous technique to calculate domain integrals without a volume-fitted mesh has been developed and validated in the context of a boundary element approximation. In the proposed approach, a domain integral involving a continuous or weakly-singular integrand is first converted into a surface integral by means of straight-path integrals that intersect the underlying domain. Then, the resulting surface integral is carried out either via analytic integration over boundary elements or by use of standard quadrature rules. This domain-to-boundary integral transformation is derived from an extension of the fundamental theorem of calculus to higher dimension, and the divergence theorem. In establishing the method, it is shown that the higher-dimensional version of the first fundamental theorem of calculus corresponds to the well-known Poincare lemma. The proposed technique can be employed to evaluate integrals defined over simply- or multiply-connected domains with Lipschitz boundaries which are embedded in an Euclidean space of arbitrary but finite dimension. Combined with the singular treatment of surface integrals that is widely available in the literature, this approach can also be utilized to effectively deal with boundary-value problems involving non-homogeneous source terms by way of a collocation or a Galerkin boundary integral equation method using only the prescribed surface discretization. Sample problems associated with the three-dimensional Poisson equation and featuring the Newton potential are successfully solved by a constant element collocation method to validate this study.

  19. Examination of Buoyancy-Reduction Effect in Induction-Heating Cookers by Using 3D Finite Element Method

    NASA Astrophysics Data System (ADS)

    Yonetsu, Daigo; Tanaka, Kazufumi; Hara, Takehisa

    In recent years, induction-heating (IH) cookers that can be used to heat nonmagnetic metals such as aluminum have been produced. Occasionally, a light pan moves on a glass plate due to buoyancy when heated by an IH cooker. In some IH cookers, an aluminum plate is mounted between the glass plate and the coil in order to reduce the buoyancy effect. The objective of this research is to evaluate the buoyancy-reduction effect and the heating effect of buoyancy-reduction plates. Eddy current analysis is carried out by 3D finite element method, and the electromagnetic force and the heat distribution on the heating plate are calculated. After this calculation is performed, the temperature distribution of the heating plate is calculated by heat transfer analysis. It is found that the shape, area, and the position of the buoyancy reduction plate strongly affect the buoyancy and the heat distribution. The impact of the shape, area, and position of the buoyancy reduction plate was quantified. The phenomena in the heating were elucidated qualitatively.

  20. Finite element generation of arbitrary 3-D fracture networks for flow analysis in complicated discrete fracture networks

    NASA Astrophysics Data System (ADS)

    Zhang, Qi-Hua

    2015-10-01

    Finite element generation of complicated fracture networks is the core issue and source of technical difficulty in three-dimensional (3-D) discrete fracture network (DFN) flow models. Due to the randomness and uncertainty in the configuration of a DFN, the intersection lines (traces) are arbitrarily distributed in each face (fracture and other surfaces). Hence, subdivision of the fractures is an issue relating to subdivision of two-dimensional (2-D) domains with arbitrarily-distributed constraints. When the DFN configuration is very complicated, the well-known approaches (e.g. Voronoi Delaunay-based methods and advancing-front techniques) cannot operate properly. This paper proposes an algorithm to implement end-to-end connection between traces to subdivide 2-D domains into closed loops. The compositions of the vertices in the common edges between adjacent loops (which may belong to a single fracture or two connected fractures) are thus ensured to be topologically identical. The paper then proposes an approach for triangulating arbitrary loops which does not add any nodes to ensure consistency of the meshes at the common edges. In addition, several techniques relating to tolerance control and improving code robustness are discussed. Finally, the equivalent permeability of the rock mass is calculated for some very complicated DFNs (the DFN may contain 1272 fractures, 633 connected fractures, and 16,270 closed loops). The results are compared with other approaches to demonstrate the veracity and efficiency of the approach proposed in this paper.

  1. Stress-strain distribution at bone-implant interface of two splinted overdenture systems using 3D finite element analysis

    PubMed Central

    2013-01-01

    PURPOSE This study was accomplished to assess the biomechanical state of different retaining methods of bar implant-overdenture. MATERIALS AND METHODS Two 3D finite element models were designed. The first model included implant overdenture retained by Hader-clip attachment, while the second model included two extracoronal resilient attachment (ERA) studs added distally to Hader splint bar. A non-linear frictional contact type was assumed between overdentures and mucosa to represent sliding and rotational movements among different attachment components. A 200 N was applied at the molar region unilaterally and perpendicular to the occlusal plane. Additionally, the mandible was restrained at their ramus ends. The maximum equivalent stress and strain (von Mises) were recorded and analyzed at the bone-implant interface level. RESULTS The values of von Mises stress and strain of the first model at bone-implant interface were higher than their counterparts of the second model. Stress concentration and high value of strain were recognized surrounding implant of the unloaded side in both models. CONCLUSION There were different patterns of stress-strain distribution at bone-implant interface between the studied attachment designs. Hader bar-clip attachment showed better biomechanical behavior than adding ERA studs distal to hader bar. PMID:24049576

  2. Numerical modeling of the 3D dynamics of ultrasound contrast agent microbubbles using the boundary integral method

    NASA Astrophysics Data System (ADS)

    Wang, Qianxi; Manmi, Kawa; Calvisi, Michael L.

    2015-02-01

    Ultrasound contrast agents (UCAs) are microbubbles stabilized with a shell typically of lipid, polymer, or protein and are emerging as a unique tool for noninvasive therapies ranging from gene delivery to tumor ablation. While various models have been developed to describe the spherical oscillations of contrast agents, the treatment of nonspherical behavior has received less attention. However, the nonspherical dynamics of contrast agents are thought to play an important role in therapeutic applications, for example, enhancing the uptake of therapeutic agents across cell membranes and tissue interfaces, and causing tissue ablation. In this paper, a model for nonspherical contrast agent dynamics based on the boundary integral method is described. The effects of the encapsulating shell are approximated by adapting Hoff's model for thin-shell, spherical contrast agents. A high-quality mesh of the bubble surface is maintained by implementing a hybrid approach of the Lagrangian method and elastic mesh technique. The numerical model agrees well with a modified Rayleigh-Plesset equation for encapsulated spherical bubbles. Numerical analyses of the dynamics of UCAs in an infinite liquid and near a rigid wall are performed in parameter regimes of clinical relevance. The oscillation amplitude and period decrease significantly due to the coating. A bubble jet forms when the amplitude of ultrasound is sufficiently large, as occurs for bubbles without a coating; however, the threshold amplitude required to incite jetting increases due to the coating. When a UCA is near a rigid boundary subject to acoustic forcing, the jet is directed towards the wall if the acoustic wave propagates perpendicular to the boundary. When the acoustic wave propagates parallel to the rigid boundary, the jet direction has components both along the wave direction and towards the boundary that depend mainly on the dimensionless standoff distance of the bubble from the boundary. In all cases, the jet

  3. Modelling of the steady state thermal behaviour of a permanent magnet direct current motor with commutator. 3D finite elements study

    NASA Astrophysics Data System (ADS)

    Bernard, R.; Glises, R.; Chamagne, D.; Cuchet, D.; Kauffmann, J. M.

    1999-08-01

    The aim of this work concerns the development and the validation of a thermal steady state model applied to a permanent magnet direct current motor with commutator. The rated power of the machine is 120 W. Design has been realized thanks to the thermal modulus of the computation software with the finite element method Flux3D. It is shown in this work how it is possible to use only the heat equation to simulate the thermal behaviour of the motor. It implies calculating of new fluid conductivities (considering also all thermal modes) by comparison of calculated and experimental temperatures. To realize these 3D modelizations, it is necessary to know and to locate all the losses of the motor which are considered as thermal sources. The experimental temperatures are given by 40 chromel-alumel thermocouples of 100 μm diameter located in the rotor and the stator of the machine. Numerical computations use Dirichlet boundary layer conditions given by an IR camera. Ce travail concerne le développement et la validation d'un modèle de simulation du comportement thermique tridimensionnel en régime permanent d'un moteur électrique de 120 watt à courant continu, à aimants permanents et à collecteur. Le logiciel est développé à partir du code de calculs par éléments finis Flux3D. L'équation de la chaleur modélise l'ensemble des transferts thermiques du moteur. Cela nécessite de recaler certains paramètres fluides par comparaison des températures simulées et expérimentales. Une séparation détaillée des différentes pertes est nécessaire pour obtenir une bonne précision finale. Un banc d'essais thermiques permet d'obtenir à l'aide de 40 thermocouples (chromel-alumel de 100 μm de diamètre) les températures au stator et au rotor. Une caméra thermographique infrarouge donne les conditions aux limites de Dirichlet nécessaires à la modélisation.

  4. Numerical simulation of heat transfer and flow structure in 3-D turbulent boundary layer with imbedded longitudinal vortex

    SciTech Connect

    Jeong, J.Y.; Ryou, H.S.

    1997-03-01

    Heat transfer characteristics and flow structure in turbulent flows through a flat plate three-dimensional turbulent boundary layer containing built-in vortex generators have been analyzed by means of the space marching Crank-Nicolson finite difference method. The method solves the slender flow approximation of the steady three-dimensional Navier-Stokes and energy equations. This study used the eddy diffusivity model and standard {kappa}-{epsilon} model to predict heat transfer and flow field in the turbulent flow with imbedded longitudinal vortex. The results show boundary layer distortion due to vortices, such as strong spanwise flow divergence and boundary layer thinning. The heat transfer and skin friction show relatively good results in comparison with experimental data. The vortex core moves slightly away from the wall and grows slowly; consequently, the vortex influences the flow over a very long distance downstream. The enhancement of the heat transfer in the vicinity of the wall is due to the increasing spanwise separation of the vortices as they develop in the streamwise direction.

  5. Generation of 3D shape, density, cortical thickness and finite element mesh of proximal femur from a DXA image.

    PubMed

    Väänänen, Sami P; Grassi, Lorenzo; Flivik, Gunnar; Jurvelin, Jukka S; Isaksson, Hanna

    2015-08-01

    Areal bone mineral density (aBMD), as measured by dual-energy X-ray absorptiometry (DXA), predicts hip fracture risk only moderately. Simulation of bone mechanics based on DXA imaging of the proximal femur, may help to improve the prediction accuracy. Therefore, we collected three (1-3) image sets, including CT images and DXA images of 34 proximal cadaver femurs (set 1, including 30 males, 4 females), 35 clinical patient CT images of the hip (set 2, including 27 males, 8 females) and both CT and DXA images of clinical patients (set 3, including 12 female patients). All CT images were segmented manually and landmarks were placed on both femurs and pelvises. Two separate statistical appearance models (SAMs) were built using the CT images of the femurs and pelvises in sets 1 and 2, respectively. The 3D shape of the femur was reconstructed from the DXA image by matching the SAMs with the DXA images. The orientation and modes of variation of the SAMs were adjusted to minimize the sum of the absolute differences between the projection of the SAMs and a DXA image. The mesh quality and the location of the SAMs with respect to the manually placed control points on the DXA image were used as additional constraints. Then, finite element (FE) models were built from the reconstructed shapes. Mean point-to-surface distance between the reconstructed shape and CT image was 1.0 mm for cadaver femurs in set 1 (leave-one-out test) and 1.4 mm for clinical subjects in set 3. The reconstructed volumetric BMD showed a mean absolute difference of 140 and 185 mg/cm(3) for set 1 and set 3 respectively. The generation of the SAM and the limitation of using only one 2D image were found to be the most significant sources of errors in the shape reconstruction. The noise in the DXA images had only small effect on the accuracy of the shape reconstruction. DXA-based FE simulation was able to explain 85% of the CT-predicted strength of the femur in stance loading. The present method can be used to

  6. High-order Boundary Behavior and the Incorporation of Spectral Hyperviscosity in Turbulence Models on General Bounded Regions in 3-D

    NASA Astrophysics Data System (ADS)

    Avrin, Joel

    2014-11-01

    In a bounded region in 3-D the velocity field u for the Navier-Stokes system satisfies in the no-slip case the familiar condition u = 0 on the boundary. We show further that if the boundary and the forcing data satisfy reasonably general smoothness assumptions then Au = 0 on the boundary as well where A is the Stokes operator (i.e. Au is the divergence-free part of -∇2 u). We apply this result to subgrid-scale modeling by noting that in a number of computational turbulence experiments hyperviscosity has been added to the NS system as an approximation to spectral eddy viscosity, but a rigorous definition of this technique and a qualitative theory for it has been restricted to the idealized case of box regions with periodic boundary conditions imposed on each face. But under the above smoothness assumptions the fact that Au = 0 on the boundary now allows us in the no-slip case to rigorously define adding hyperviscosity to the Navier-Stokes system on otherwise general bounded regions. We can also obtain a foundational qualitative theory for this system as well as for spectral hyperviscosity, which adds hyperviscosity only to the high frequencies past a cutoff wavenumber.

  7. Receptivity of a laminar boundary layer to the interaction of a three-dimensional roughness element with time-harmonic free-stream disturbances

    NASA Technical Reports Server (NTRS)

    Tadjfar, M.; Bodonyi, R. J.

    1992-01-01

    Receptivity of a laminar boundary layer to the interaction of time-harmonic free-stream disturbances with a 3D roughness element is studied. The 3D nonlinear triple-deck equations are solved numerically to provide the basic steady-state motion. At high Reynolds numbers, the governing equations for the unsteady motion are the unsteady linearized 3D triple-deck equations. These equations can only be solved numerically. In the absence of any roughness element, the free-stream disturbances, to the first order, produce the classical Stokes flow, in the thin Stokes layer near the wall (on the order of our lower deck). However, with the introduction of a small 3D roughness element, the interaction between the hump and the Stokes flow introduces a spectrum of all spatial disturbances inside the boundary layer.

  8. 3D modeling of heat transfer and gas flow in a grooved ring fuel element for nuclear thermal propulsion

    NASA Astrophysics Data System (ADS)

    Barkett, Laura Ashley

    In the past, fuel elements with multiple axial coolant channels have been used in nuclear propulsion applications. A novel fuel element concept that reduces weight and increases efficiency uses a stack of grooved rings. Each fuel ring consists of a hole on the interior and grooves across the top face. Many grooved ring configurations have been modeled, and a single flow channel for each design has been analyzed. For increased efficiency, a fuel ring with a higher surface-area-to-volume ratio is ideal. When grooves are shallower and they have a lower surface area, the results show that the exit temperature is higher. By coupling the physics of fluid flow with those of heat transfer, the effects on the cooler gas flowing through the grooves of the hot, fissioning ring can be predicted. Models also show differences in velocities and temperatures after dense boundary nodes are applied. Parametric studies were done to show how a pressure drop across the length of the channels will affect the exit temperatures of the gas. Geometric optimization was done to show the temperature distributions and pressure drops that result from the manipulation of various parameters, and the effects of model scaling was also investigated. The inverse Graetz numbers are plotted against Nusselt numbers, and the results of these values suggest that the gas quickly becomes fully developed, laminar flow, rather than constant turbulent conditions.

  9. 3d-3d correspondence revisited

    NASA Astrophysics Data System (ADS)

    Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-01

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  10. NIKE3D: an implicit, finite-deformation, finite element code for analyzing the static and dynamic response of three-dimensional solids

    SciTech Connect

    Hallquist, J.O.

    1981-01-01

    A user's manual is provided for NIKE3D, a fully implicit three-dimensional finite element code for analyzing the large deformation static and dynamic response of inelastic solids. A contact-impact algorithm permits gaps and sliding along material interfaces. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 8-node constant pressure solid elements. Bandwidth minimization is optional. Post-processors for NIKE3D include GRAPE for plotting deformed shapes and stress contours and DYNAP for plotting time histories.

  11. Interpolation functions in the immersed boundary and finite element methods

    NASA Astrophysics Data System (ADS)

    Wang, Xingshi; Zhang, Lucy T.

    2010-03-01

    In this paper, we review the existing interpolation functions and introduce a finite element interpolation function to be used in the immersed boundary and finite element methods. This straightforward finite element interpolation function for unstructured grids enables us to obtain a sharper interface that yields more accurate interfacial solutions. The solution accuracy is compared with the existing interpolation functions such as the discretized Dirac delta function and the reproducing kernel interpolation function. The finite element shape function is easy to implement and it naturally satisfies the reproducing condition. They are interpolated through only one element layer instead of smearing to several elements. A pressure jump is clearly captured at the fluid-solid interface. Two example problems are studied and results are compared with other numerical methods. A convergence test is thoroughly conducted for the independent fluid and solid meshes in a fluid-structure interaction system. The required mesh size ratio between the fluid and solid domains is obtained.

  12. Characterization of a contaminated wellfield using 3D electrical resistivity tomography implemented with geostatistical, discontinuous boundary, and known conductivity constraints

    SciTech Connect

    Johnson, Timothy C.; Versteeg, Roelof J.; Rockhold, Mark L.; Slater, Lee D.; Ntarlagiannis, Dimitrios; Greenwood, William J.; Zachara, John M.

    2012-09-17

    Continuing advancements in subsurface electrical resistivity tomography (ERT) are giving the method increasing capability for understanding shallow subsurface properties and processes. The inability of ERT imaging data to uniquely resolve subsurface structure and the corresponding need include constraining information remains one of the greatest limitations, and provides one of the greatest opportunities, for further advancing the utility of the method. In this work we describe and demonstrate a method of incorporating constraining information into an ERT imaging algorithm in the form on discontinuous boundaries, known values, and spatial covariance information. We demonstrate the approach by imaging a uranium-contaminated wellfield at the Hanford Site in southwestern Washington State, USA. We incorporate into the algorithm known boundary information and spatial covariance structure derived from the highly resolved near-borehole regions of a regularized ERT inversion. The resulting inversion provides a solution which fits the ERT data (given the estimated noise level), honors the spatial covariance structure throughout the model, and is consistent with known bulk-conductivity discontinuities. The results are validated with core-scale measurements, and display a significant improvement in accuracy over the standard regularized inversion, revealing important subsurface structure known influence flow and transport at the site.

  13. Three-dimensional Stress Analysis Using the Boundary Element Method

    NASA Technical Reports Server (NTRS)

    Wilson, R. B.; Banerjee, P. K.

    1984-01-01

    The boundary element method is to be extended (as part of the NASA Inelastic Analysis Methods program) to the three-dimensional stress analysis of gas turbine engine hot section components. The analytical basis of the method (as developed in elasticity) is outlined, its numerical implementation is summarized, and the approaches to be followed in extending the method to include inelastic material response indicated.

  14. Boundary control of parabolic systems - Finite-element approximation

    NASA Technical Reports Server (NTRS)

    Lasiecka, I.

    1980-01-01

    The finite element approximation of a Dirichlet type boundary control problem for parabolic systems is considered. An approach based on the direct approximation of an input-output semigroup formula is applied. Error estimates are derived for optimal state and optimal control, and it is noted that these estimates are actually optimal with respect to the approximation theoretic properties.

  15. Treatment of body forces in boundary element design sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Saigal, Sunil; Kane, James H.; Aithal, R.; Cheng, Jizu

    1989-01-01

    The inclusion of body forces has received a good deal of attention in boundary element research. The consideration of such forces is essential in the desgin of high performance components such as fan and turbine disks in a gas turbine engine. Due to their critical performance requirements, optimal shapes are often desired for these components. The boundary element method (BEM) offers the possibility of being an efficient method for such iterative analysis as shape optimization. The implicit-differentiation of the boundary integral equations is performed to obtain the sensitivity equations. The body forces are accounted for by either the particular integrals for uniform body forces or by a surface integration for non-uniform body forces. The corresponding sensitivity equations for both these cases are presented. The validity of present formulations is established through a close agreement with exact analytical results.

  16. The birth of a dinosaur footprint: Subsurface 3D motion reconstruction and discrete element simulation reveal track ontogeny

    PubMed Central

    2014-01-01

    Locomotion over deformable substrates is a common occurrence in nature. Footprints represent sedimentary distortions that provide anatomical, functional, and behavioral insights into trackmaker biology. The interpretation of such evidence can be challenging, however, particularly for fossil tracks recovered at bedding planes below the originally exposed surface. Even in living animals, the complex dynamics that give rise to footprint morphology are obscured by both foot and sediment opacity, which conceals animal–substrate and substrate–substrate interactions. We used X-ray reconstruction of moving morphology (XROMM) to image and animate the hind limb skeleton of a chicken-like bird traversing a dry, granular material. Foot movement differed significantly from walking on solid ground; the longest toe penetrated to a depth of ∼5 cm, reaching an angle of 30° below horizontal before slipping backward on withdrawal. The 3D kinematic data were integrated into a validated substrate simulation using the discrete element method (DEM) to create a quantitative model of limb-induced substrate deformation. Simulation revealed that despite sediment collapse yielding poor quality tracks at the air–substrate interface, subsurface displacements maintain a high level of organization owing to grain–grain support. Splitting the substrate volume along “virtual bedding planes” exposed prints that more closely resembled the foot and could easily be mistaken for shallow tracks. DEM data elucidate how highly localized deformations associated with foot entry and exit generate specific features in the final tracks, a temporal sequence that we term “track ontogeny.” This combination of methodologies fosters a synthesis between the surface/layer-based perspective prevalent in paleontology and the particle/volume-based perspective essential for a mechanistic understanding of sediment redistribution during track formation. PMID:25489092

  17. Structural stability of posterior retainer design for resin-bonded prostheses: a 3D finite element study.

    PubMed

    Lin, Jie; Zheng, Zhiqiang; Shinya, Akikazu; Matinlinna, Jukka Pekka; Botelho, Michael George; Shinya, Akiyoshi

    2015-09-01

    The purpose of this in vitro study was to compare the stress distribution and natural frequency of different shape and thickness retainer designs for maxillary posterior resin-bonded prostheses using finite element (FE) method. A 3D FE model of a three unit posterior resin-bonded prosthesis analysis model was generated. Three different shaped retainer designs, viz. C-shaped (three axial surface wraparounds), D-shaped (three axial surface wraparounds with central groove) and O-shaped (360° wraparounds), and three different thicknesses, viz., 0.4, 0.8, and 1.2 mm, resin-bonded prostheses were used in this study. The resin-bonded prosthesis analysis model was imported into an FE analysis software (ANSYS 10.0, ANSYS, USA) and attribution of material properties. The nodes at the bottom surface of the roots were assigned fixed zero displacement in the three spatial dimensions. A simulated angle of 45° loading of a 100 N force was applied to the node of the pontic lingual cusp surface. The stress distributions and corresponding natural frequencies were analyzed and resolved. The C-shaped retainer for 0.4 mm thickness recorded the greatest von Mises stresses of 71.4 MPa for all three groups. C-shaped, D-shaped and O-shaped retainer presented natural frequencies 3,988, 7,754, and 10,494 Hz, respectively. D-shaped retainer and O-shaped retainer increased natural frequencies and structural rigidity over the traditional C-shaped retainer. The maximum von Mises stresses values of the remaining tooth and prosthesis decreased with greater retainer thickness. D-shaped retainer and O-shaped retainer increased natural frequencies and structural rigidity over the traditional C-shaped retainer. PMID:25200313

  18. A posteriori pointwise error estimates for the boundary element method

    SciTech Connect

    Paulino, G.H.; Gray, L.J.; Zarikian, V.

    1995-01-01

    This report presents a new approach for a posteriori pointwise error estimation in the boundary element method. The estimator relies upon the evaluation of hypersingular integral equations, and is therefore intrinsic to the boundary integral equation approach. This property allows some theoretical justification by mathematically correlating the exact and estimated errors. A methodology is developed for approximating the error on the boundary as well as in the interior of the domain. In the interior, error estimates for both the function and its derivatives (e.g. potential and interior gradients for potential problems, displacements and stresses for elasticity problems) are presented. Extensive computational experiments have been performed for the two dimensional Laplace equation on interior domains, employing Dirichlet and mixed boundary conditions. The results indicate that the error estimates successfully track the form of the exact error curve. Moreover, a reasonable estimate of the magnitude of the actual error is also obtained.

  19. Boundary-element shape sensitivity analysis for thermal problems with nonlinear boundary conditions

    NASA Technical Reports Server (NTRS)

    Kane, James H.; Wang, Hua

    1991-01-01

    Implicit differentiation of the discretized boundary integral equations governing the conduction of heat in solid objects subjected to nonlinear boundary conditions is shown to generate an accurate and economical approach for the computation of shape sensitivities for this class of problems. This approach involves the employment of analytical derivatives of boundary-element kernel functions with respect to shape design variables. A formulation is presented that can consistently account for both temperature-dependent convection and radiation boundary conditions. Several iterative strategies are presented for the solution of the resulting sets of nonlinear equations and the computational performances examined in detail. Multizone analysis and zone condensation strategies are demonstrated to provide substantive computational economies in this process for models with either localized nonlinear boundary conditions or regions of geometric insensitivity to design variables. A series of nonlinear example problems are presented that have closed-form solutions.

  20. 3D Finite Element Modelling for the investigation of the cavity effect in extensometric rock-deformation measurements

    NASA Astrophysics Data System (ADS)

    Kis, M.; Detzky, G.; Koppán, A.

    2012-04-01

    phenomenon in general. Authors calculated the deformations of a simple-geometry 3D cavity, which is caused by variable gravity loads. Dependence of the cavity effect on changing of distinct elastic properties in categorized models has been investigated. Authors introduced qualifying parameter fields calculated using the results of the FE modelling (nodal displacements as a model answer for the gravity load), in order to characterize the effect. Modelling results can be used as an estimation not only for the absolute cavity effect rate of the intended arrangement, furthermore the sensitivity of the given system against a particular geometric property. As an application example finite element modelling were carried out in order to estimate the influence of the complicated cavity system surrounding the "Budapest-Matyashegy" Gravity and Geodynamical Observatory of the Eotvos Lorand Geophysical Institute of Hungary.

  1. Optic disc boundary segmentation from diffeomorphic demons registration of monocular fundus image sequences versus 3D visualization of stereo fundus image pairs for automated early stage glaucoma assessment

    NASA Astrophysics Data System (ADS)

    Gatti, Vijay; Hill, Jason; Mitra, Sunanda; Nutter, Brian

    2014-03-01

    Despite the current availability in resource-rich regions of advanced technologies in scanning and 3-D imaging in current ophthalmology practice, world-wide screening tests for early detection and progression of glaucoma still consist of a variety of simple tools, including fundus image-based parameters such as CDR (cup to disc diameter ratio) and CAR (cup to disc area ratio), especially in resource -poor regions. Reliable automated computation of the relevant parameters from fundus image sequences requires robust non-rigid registration and segmentation techniques. Recent research work demonstrated that proper non-rigid registration of multi-view monocular fundus image sequences could result in acceptable segmentation of cup boundaries for automated computation of CAR and CDR. This research work introduces a composite diffeomorphic demons registration algorithm for segmentation of cup boundaries from a sequence of monocular images and compares the resulting CAR and CDR values with those computed manually by experts and from 3-D visualization of stereo pairs. Our preliminary results show that the automated computation of CDR and CAR from composite diffeomorphic segmentation of monocular image sequences yield values comparable with those from the other two techniques and thus may provide global healthcare with a cost-effective yet accurate tool for management of glaucoma in its early stage.

  2. Immersed boundary Eulerian-Lagrangian 3D simulation of pyroclastic density currents: numerical scheme and experimental validation

    NASA Astrophysics Data System (ADS)

    Doronzo, Domenico Maria; de Tullio, Marco; Pascazio, Giuseppe; Dellino, Pierfrancesco

    2010-05-01

    Pyroclastic density currents are ground hugging, hot, gas-particle flows representing the most hazardous events of explosive volcanism. Their impact on structures is a function of dynamic pressure, which expresses the lateral load that such currents exert over buildings. In this paper we show how analog experiments can be matched with numerical simulations for capturing the essential physics of the multiphase flow. We used an immersed boundary scheme for the mesh generation, which helped in reconstructing the steep velocity and particle concentration gradients near the ground surface. Results show that the calculated values of dynamic pressure agree reasonably with the experimental measurements. These outcomes encourage future application of our method for the assessment of the impact of pyroclastic density currents at the natural scale.

  3. A time-domain finite element boundary integration method for ultrasonic nondestructive evaluation.

    PubMed

    Shi, Fan; Choi, Wonjae; Skelton, Elizabeth A; Lowe, Michael J S; Craster, Richard V

    2014-12-01

    A 2-D and 3-D numerical modeling approach for calculating the elastic wave scattering signals from complex stress-free defects is evaluated. In this method, efficient boundary integration across the complex boundary of the defect is coupled with a time-domain finite element (FE) solver. The model is designed to simulate time-domain ultrasonic nondestructive evaluation in bulk media. This approach makes use of the hybrid concept of linking a local numerical model to compute the near-field scattering behavior and theoretical mathematical formulas for postprocessing to calculate the received signals. It minimizes the number of monitoring signals from the FE calculation so that the computation effort in postprocessing decreases significantly. In addition, by neglecting the conventional regular monitoring box, the region for FE calculation can be made smaller. In this paper, the boundary integral method is implemented in a commercial FE code, and it is validated by comparing the scattering signals with results from corresponding full FE models. The coupled method is then implemented in real inspection scenarios in both 2-D and 3-D, and the accuracy and the efficiency are demonstrated. The limitations of the proposed model and future works are also discussed. PMID:25474780

  4. A wideband fast multipole boundary element method for half-space/plane-symmetric acoustic wave problems

    NASA Astrophysics Data System (ADS)

    Zheng, Chang-Jun; Chen, Hai-Bo; Chen, Lei-Lei

    2013-04-01

    This paper presents a novel wideband fast multipole boundary element approach to 3D half-space/plane-symmetric acoustic wave problems. The half-space fundamental solution is employed in the boundary integral equations so that the tree structure required in the fast multipole algorithm is constructed for the boundary elements in the real domain only. Moreover, a set of symmetric relations between the multipole expansion coefficients of the real and image domains are derived, and the half-space fundamental solution is modified for the purpose of applying such relations to avoid calculating, translating and saving the multipole/local expansion coefficients of the image domain. The wideband adaptive multilevel fast multipole algorithm associated with the iterative solver GMRES is employed so that the present method is accurate and efficient for both lowand high-frequency acoustic wave problems. As for exterior acoustic problems, the Burton-Miller method is adopted to tackle the fictitious eigenfrequency problem involved in the conventional boundary integral equation method. Details on the implementation of the present method are described, and numerical examples are given to demonstrate its accuracy and efficiency.

  5. A Comprehensive 3D Finite Element Model of a Thermoelectric Module Used in a Power Generator: A Transient Performance Perspective

    NASA Astrophysics Data System (ADS)

    Wu, Guangxi; Yu, Xiong

    2015-06-01

    Thermoelectric power generator has potential for small-scale and distributed power generation because of its high durability and scalability. It is very important to realize that the transient behavior of thermoelectric modules (TEM) affects a thermoelectric generator's response to dynamic working environments. Traditionally, researchers have used simplified models to describe the behavior of thermoelectric modules. In this paper we propose a comprehensive mathematical model that considers the effect of variations of chemical potential and carrier density, which are ignored by traditional models. Finite element models based on this new model are used to simulate the transient behavior of a thermoelectric module subjected to rapid changes in boundary temperature or working load. Simulation results show that transition times of thermoelectric modules affected by temperature change are much longer than those of modules affected by changes in electrical load resistance. Sudden changes in working temperature cause voltage overshoot of the TEM output, which, however, is not observed in responses to sudden changes of load resistance. Comparisons also show there are significant differences between the behavior of TEM predicted by use of this new comprehensive model and that predicted by use of traditional models, particularly for the high-temperature intrinsic ionization region and the low-temperature weak ionization region. This implies that chemical potential and carrier density variations, which are taken into account by this new model but ignored by traditional models, have major effects on the performance of TEM.

  6. Deformation of plate boundaries associated with subduction of continental margins: insights from 3D thermo-mechanical laboratory experiments (Invited)

    NASA Astrophysics Data System (ADS)

    Boutelier, D. A.; Cruden, A. R.

    2013-12-01

    -dimensional. Three-dimensional, non-cylindrical thermomechanical laboratory experiments of arc-continent collision investigate the impact of the flexural strength of the orogen and along-strike coupling of the neighboring segments of the plate boundary in the cases of diachronous collisions because of obliquity of the subducting passive margin or obliquity of the convergence in the subduction zone. The experiments reveal that deformation is continuous along-strike, but also fundamentally three-dimensional. Progressive along-strike structural variations arise because coupling between neighboring segments induces either advanced or delayed failure of the arc lithosphere and passive margin. The modeling results suggest that orogenic belts should experience deeper subduction of continental crust and hence higher-pressure metamorphism where the two plates first collided than elsewhere along the plate boundary where collision subsequently propagated. Furthermore, during the initial stage of collision the accretionary wedge is partially subducted, which leads to lubrication of the interplate zone and a reduction of shear traction. Therefore, a large convergence obliquity angle does not produce a migrating fore-arc sliver. Rather, the pressure force generated by subduction of the buoyant continental crust causes fore-arc motion. It follows that convergence obliquity during collision does not yield trench-parallel deformation of the fore arc and its influence on the collision process is limited.

  7. MRI-driven accretion on to magnetized stars: global 3D MHD simulations of magnetospheric and boundary layer regimes

    NASA Astrophysics Data System (ADS)

    Romanova, M. M.; Ustyugova, G. V.; Koldoba, A. V.; Lovelace, R. V. E.

    2012-03-01

    We discuss results of global three-dimensional magnetohydrodynamic simulations of accretion on to a rotating magnetized star with a tilted dipole magnetic field, where the accretion is driven by the magnetorotational instability (MRI). The simulations show that MRI-driven turbulence develops in the disc, and angular momentum is transported outwards primarily due to the magnetic stress. The turbulent flow is strongly inhomogeneous and the densest matter is in azimuthally stretched turbulent cells. We investigate two regimes of accretion: a magnetospheric regime and a boundary layer (BL) regime. In the magnetospheric regime, the magnetic field of the star is dynamically important: the accretion disc is truncated by the star's magnetic field within a few stellar radii from the star's surface, and matter flows to the star in funnel streams. The funnel streams flow towards the south and north magnetic poles but are not equal due to the inhomogeneity of the flow. The hotspots on the stellar surface are not symmetric as well. In the BL regime, the magnetic field of the star is dynamically unimportant, and matter accretes on to the surface of the star through the BL. The magnetic field in the inner disc is strongly amplified by the shear of the accretion flow, and the matter and magnetic stresses become comparable. Accreting matter forms a belt-shaped hot region on the surface of the star. The belt has inhomogeneous density distribution which varies in time due to variable accretion rate. The peaks in the variability curve are associated with accretion of individual turbulent cells. They show 20-50 per cent density amplifications at periods of ˜5-10 dynamical time-scales at the surface of the star. Spiral waves in the disc are excited in both magnetospheric and BL regimes of accretion. Results of simulations can be applied to classical T Tauri stars, accreting brown dwarfs, millisecond pulsars, dwarf novae cataclysmic variables and other stars with magnetospheres smaller

  8. Chromatin boundary elements organize genomic architecture and developmental gene regulation in Drosophila Hox clusters

    PubMed Central

    Ma, Zhibo; Li, Mo; Roy, Sharmila; Liu, Kevin J; Romine, Matthew L; Lane, Derrick C; Patel, Sapna K; Cai, Haini N

    2016-01-01

    The three-dimensional (3D) organization of the eukaryotic genome is critical for its proper function. Evidence suggests that extensive chromatin loops form the building blocks of the genomic architecture, separating genes and gene clusters into distinct functional domains. These loops are anchored in part by a special type of DNA elements called chromatin boundary elements (CBEs). CBEs were originally found to insulate neighboring genes by blocking influences of transcriptional enhancers or the spread of silent chromatin. However, recent results show that chromatin loops can also play a positive role in gene regulation by looping out intervening DNA and “delivering” remote enhancers to gene promoters. In addition, studies from human and model organisms indicate that the configuration of chromatin loops, many of which are tethered by CBEs, is dynamically regulated during cell differentiation. In particular, a recent work by Li et al has shown that the SF1 boundary, located in the Drosophila Hox cluster, regulates local genes by tethering different subsets of chromatin loops: One subset enclose a neighboring gene ftz, limiting its access by the surrounding Scr enhancers and restrict the spread of repressive histones during early embryogenesis; and the other loops subdivide the Scr regulatory region into independent domains of enhancer accessibility. The enhancer-blocking activity of these CBE elements varies greatly in strength and tissue distribution. Further, tandem pairing of SF1 and SF2 facilitate the bypass of distal enhancers in transgenic flies, providing a mechanism for endogenous enhancers to circumvent genomic interruptions resulting from chromosomal rearrangement. This study demonstrates how a network of chromatin boundaries, centrally organized by SF1, can remodel the 3D genome to facilitate gene regulation during development. PMID:27621770

  9. Chromatin boundary elements organize genomic architecture and developmental gene regulation in Drosophila Hox clusters.

    PubMed

    Ma, Zhibo; Li, Mo; Roy, Sharmila; Liu, Kevin J; Romine, Matthew L; Lane, Derrick C; Patel, Sapna K; Cai, Haini N

    2016-08-26

    The three-dimensional (3D) organization of the eukaryotic genome is critical for its proper function. Evidence suggests that extensive chromatin loops form the building blocks of the genomic architecture, separating genes and gene clusters into distinct functional domains. These loops are anchored in part by a special type of DNA elements called chromatin boundary elements (CBEs). CBEs were originally found to insulate neighboring genes by blocking influences of transcriptional enhancers or the spread of silent chromatin. However, recent results show that chromatin loops can also play a positive role in gene regulation by looping out intervening DNA and "delivering" remote enhancers to gene promoters. In addition, studies from human and model organisms indicate that the configuration of chromatin loops, many of which are tethered by CBEs, is dynamically regulated during cell differentiation. In particular, a recent work by Li et al has shown that the SF1 boundary, located in the Drosophila Hox cluster, regulates local genes by tethering different subsets of chromatin loops: One subset enclose a neighboring gene ftz, limiting its access by the surrounding Scr enhancers and restrict the spread of repressive histones during early embryogenesis; and the other loops subdivide the Scr regulatory region into independent domains of enhancer accessibility. The enhancer-blocking activity of these CBE elements varies greatly in strength and tissue distribution. Further, tandem pairing of SF1 and SF2 facilitate the bypass of distal enhancers in transgenic flies, providing a mechanism for endogenous enhancers to circumvent genomic interruptions resulting from chromosomal rearrangement. This study demonstrates how a network of chromatin boundaries, centrally organized by SF1, can remodel the 3D genome to facilitate gene regulation during development. PMID:27621770

  10. NIKE3D a nonlinear, implicit, three-dimensional finite element code for solid and structural mechanics user's manual update summary

    SciTech Connect

    Puso, M; Maker, B N; Ferencz, R M; Hallquist, J O

    2000-03-24

    This report provides the NIKE3D user's manual update summary for changes made from version 3.0.0 April 24, 1995 to version 3.3.6 March 24,2000. The updates are excerpted directly from the code printed output file (hence the Courier font and formatting), are presented in chronological order and delineated by NIKE3D version number. NIKE3D is a fully implicit three-dimensional finite element code for analyzing the finite strain static and dynamic response of inelastic solids, shells, and beams. Spatial discretization is achieved by the use of 8-node solid elements, 2-node truss and beam elements, and 4-node membrane and shell elements. Thirty constitutive models are available for representing a wide range of elastic, plastic, viscous, and thermally dependent material behavior. Contact-impact algorithms permit gaps, frictional sliding, and mesh discontinuities along material interfaces. Several nonlinear solution strategies are available, including Full-, Modified-, and Quasi-Newton methods. The resulting system of simultaneous linear equations is either solved iteratively by an element-by-element method, or directly by a direct factorization method.

  11. Comparison of 3-D finite element model of ashlar masonry with 2-D numerical models of ashlar masonry

    NASA Astrophysics Data System (ADS)

    Beran, Pavel

    2016-06-01

    3-D state of stress in heterogeneous ashlar masonry can be also computed by several suitable chosen 2-D numerical models of ashlar masonry. The results obtained from 2-D numerical models well correspond to the results obtained from 3-D numerical model. The character of thermal stress is the same. While using 2-D models the computational time is reduced more than hundredfold and therefore this method could be used for computation of thermal stresses during long time periods with 10 000 of steps.

  12. Stiffened plate bending analysis by the boundary element method

    NASA Astrophysics Data System (ADS)

    Fernandes, G. R.; Venturini, W. S.

    In this work, the plate bending formulation of the boundary element method (BEM) based on the Kirchhoff's hypothesis, is extended to the analysis of stiffened elements usually present in building floor structures. Particular integral representations are derived to take directly into account the interactions between the beams forming grid and surface elements. Equilibrium and compatibility conditions are automatically imposed by the integral equations, which treat this composite structure as a single body. Two possible procedures are shown for dealing with plate domain stiffened by beams. In the first, the beam element is considered as a stiffer region requiring therefore the discretization of two internal lines with two unknowns per node. In the second scheme, the number of degrees of freedom along the interface is reduced by two by assuming that the cross-section motion is defined by three independent components only.

  13. Boundary element based multiresolution shape optimisation in electrostatics

    NASA Astrophysics Data System (ADS)

    Bandara, Kosala; Cirak, Fehmi; Of, Günther; Steinbach, Olaf; Zapletal, Jan

    2015-09-01

    We consider the shape optimisation of high-voltage devices subject to electrostatic field equations by combining fast boundary elements with multiresolution subdivision surfaces. The geometry of the domain is described with subdivision surfaces and different resolutions of the same geometry are used for optimisation and analysis. The primal and adjoint problems are discretised with the boundary element method using a sufficiently fine control mesh. For shape optimisation the geometry is updated starting from the coarsest control mesh with increasingly finer control meshes. The multiresolution approach effectively prevents the appearance of non-physical geometry oscillations in the optimised shapes. Moreover, there is no need for mesh regeneration or smoothing during the optimisation due to the absence of a volume mesh. We present several numerical experiments and one industrial application to demonstrate the robustness and versatility of the developed approach.

  14. A finite element boundary integral formulation for radiation and scattering by cavity antennas using tetrahedral elements

    NASA Technical Reports Server (NTRS)

    Gong, J.; Volakis, J. L.; Chatterjee, A.; Jin, J. M.

    1992-01-01

    A hybrid finite element boundary integral formulation is developed using tetrahedral and/or triangular elements for discretizing the cavity and/or aperture of microstrip antenna arrays. The tetrahedral elements with edge based linear expansion functions are chosen for modeling the volume region and triangular elements are used for discretizing the aperture. The edge based expansion functions are divergenceless thus removing the requirement to introduce a penalty term and the tetrahedral elements permit greater geometrical adaptability than the rectangular bricks. The underlying theory and resulting expressions are discussed in detail together with some numerical scattering examples for comparison and demonstration.

  15. A boundary element method for steady incompressible thermoviscous flow

    NASA Technical Reports Server (NTRS)

    Dargush, G. F.; Banerjee, P. K.

    1991-01-01

    A boundary element formulation is presented for moderate Reynolds number, steady, incompressible, thermoviscous flows. The governing integral equations are written exclusively in terms of velocities and temperatures, thus eliminating the need for the computation of any gradients. Furthermore, with the introduction of reference velocities and temperatures, volume modeling can often be confined to only a small portion of the problem domain, typically near obstacles or walls. The numerical implementation includes higher order elements, adaptive integration and multiregion capability. Both the integral formulation and implementation are discussed in detail. Several examples illustrate the high level of accuracy that is obtainable with the current method.

  16. Ga, Ca, and 3d transition element (Cr through Zn) partitioning among spinel-lherzolite phases from the Lanzo massif, Italy: Analytical results and crystal chemistry

    SciTech Connect

    Wogelius, R.A.; Fraser, D.G.

    1994-06-01

    Ultramafic rocks exposed in Lanzo massif, Italy is a record of mantle geochemistry, melting, sub-solidus re-equilibration. Plagioclase(+ spinel)-lherzolite samples were analyzed by Scanning Proton Microscopy, other techniques. Previous work postulated partial melting events and a two-stage sub-solidus cooling history; this paper notes Ga enrichment on spinel-clinopyroxene grain boundaries, high Ga and transition element content of spinel, and pyroxene zonation in Ca and Al. Trace element levels in olivine and orthopyroxene are also presented. Zoning trends are interpreted as due to diffusion during cooling. Olivine-clinopyroxene Cr and Ca exchange as well as clinopyroxene and spinel zonation trends indicate that the massif experienced at least two sub-solidus cooling episodes, one at 20 kbar to 1000 C and one at 8 kbar <750C. Ga levels in cores of Lanzo high-Cr spinels are high (82-66 ppM) relative to other mantle spinels (66-40 ppM), indicating enrichment. Ga content of ultramafic spinels apparently increases with Cr content; this may be due to: increased Ga solubility stemming from crystal chemical effects and/or higher Ga activities in associated silicate melts. Thus, during melting, high-Cr residual spinel may tend to buffer solid-phase Ga level. These spinels are not only rich in Ga and Cr (max 26.37 el. wt %), but also in Fe (max 21.07 el. wt %), Mn (max 3400 ppM), and Zn (max 2430 ppM). These enrichments are again due to melt extraction and partitioning into spinel structure. Low Ni (min 1050 ppM) levels are due to unsuccessful competition of Ni with Cr for octahedral structural sites caused by crystal field. Comparisons of change in partitioning vs Cr content among several 3d transition elements for spinels from Lanzo, other localities allow us to separate crystal field effects from bulk chemical effects and to show that in typical assemblages, inversion of olivine-spinel partition coefficient for Ni from <1 to >1 should occur at 11% el. wt. Cr in spinel.

  17. Validation of the RPLUS3D Code for Supersonic Inlet Applications Involving Three-Dimensional Shock Wave-Boundary Layer Interactions

    NASA Technical Reports Server (NTRS)

    Kapoor, Kamlesh; Anderson, Bernhard H.; Shaw, Robert J.

    1994-01-01

    A three-dimensional computational fluid dynamics code, RPLUS3D, which was developed for the reactive propulsive flows of ramjets and scramjets, was validated for glancing shock wave-boundary layer interactions. Both laminar and turbulent flows were studied. A supersonic flow over a wedge mounted on a flat plate was numerically simulated. For the laminar case, the static pressure distribution, velocity vectors, and particle traces on the flat plate were obtained. For turbulent flow, both the Baldwin-Lomax and Chien two-equation turbulent models were used. The static pressure distributions, pitot pressure, and yaw angle profiles were computed. In addition, the velocity vectors and particle traces on the flat plate were also obtained from the computed solution. Overall, the computed results for both laminar and turbulent cases compared very well with the experimentally obtained data.

  18. 3D Global PIC simulation of Alfvenic transition layers at the cusp outer boundary during IMF rotations from north to south

    NASA Astrophysics Data System (ADS)

    Cai, D. S.; Lembege, B.; Esmaeili, A.; Nishikawa, K.

    2013-12-01

    Statistical experimental observations of the cusp boundaries from CLUSTER mission made by Lavraud et al. (2005) have clearly evidenced the presence of a transition layer inside the magnetosheath near the outer boundary of the cusp. This layer characterized by Log(MA)~ 1 allows a transition from super-Alfvenic to sub-Alfvenic bulk flow from the exterior to the interior side of the outer cusp and has been mainly observed experimentally under northward interplanetary magnetic field (IMF). The role of this layer is important in order to understand the flow variations (and later the entry and precipitation of particles) when penetrating the outer boundary of the cusp. In order to analyze this layer, a large 3D PIC simulation of the global solar wind-terrestrial magnetosphere interaction have been performed, and the attention has been focused on the cusp region and its nearby surrounding during IMF rotation from north to south. Present results retrieve quite well the presence of this layer within the meridian plane for exactly northward IMF, but its location differs in the sense that it is located slightly below the X reconnection region associated to the nearby magnetopause (above the outer boundary of the cusp). In order to clarify this question, an extensive study has been performed as follows: (i) a 3D mapping of this transition layer in order to analyze more precisely the thickness, the location and the spatial extension of this layer on the magnetosphere flanks for a fixed Northward IMF configuration; (ii) a parametric study in order to analyze the impact of the IMF rotation from north to south on the persistence and the main features of this transition layer. The locations of this transition layer slightly radially expand and shrink during the IMF rotation and the thickness of the layer increases during the rotation. We show how these transition layers render the flow from super to sub Alfvenic and allow the particles enter into the magnetic cusp region. Alfven

  19. A boundary element method for detection of damages and self-diagnosis of transducers using electro-mechanical impedance

    NASA Astrophysics Data System (ADS)

    Zou, Fangxin; Aliabadi, M. H.

    2015-09-01

    In this paper, for the first time, a boundary element method (BEM) for modelling the electro-mechanical responses of three-dimensional structures is reported. Within an electro-mechanically coupled system, the host structure is formulated using the 3D dual boundary element method in order to be able to take into account the possible existence of cracks, and the piezoelectric transducers, which are the key to measuring electro-mechanical impedance (EMI), are modelled using a semi-analytical finite element approach. The analyses of the coupled system are performed in the frequency domain. The EMI signatures computed by the BEM developed in this work show excellent agreement with those obtained using the finite element method and from experiments. Using parametric studies, the potential of using EMI signatures for the detection of damages in structures and for the self-diagnosis of transducers is assessed.

  20. Nonlinear Boundary Conditions in Simulations of Electrochemical Experiments Using the Boundary Element Method.

    NASA Astrophysics Data System (ADS)

    Träuble, Markus; Kirchner, Carolina Nunes; Wittstock, Gunther

    2007-12-01

    The use of the boundary element method (BEM) in simulating steady-state experiments of scanning electrochemical microscopy in feedback mode and in generation-collection mode using complex three dimensional geometries has been shown in previous papers. In the context of generation-collection mode experiments, catalytic reaction mechanisms of immobilized enzymes are of great interest. Due to the catalytic reaction behaviour, which can be described by nonlinear Michaelis-Menten kinetics, the modelling of such systems results in solving a diffusion equation with nonlinear boundary conditions. In this article it is described how such nonlinear reaction mechanisms can be treated with the BEM.

  1. Fabrication of 4, 5, or 6-fold symmetric 3D photonic structures using single beam and single reflective optical element based holographic lithography

    NASA Astrophysics Data System (ADS)

    George, D.; Lutkenhaus, J.; Lowell, D.; Philipose, U.; Zhang, H.; Poole, Z.; Chen, K.; Lin, Y.

    2015-03-01

    Here we present the holographic fabrication of large area 3D photonic structures using a single reflective optical element (ROE) with a single beam, single exposure process. The ROE consists of a 3D printed plastic support that houses 4, 5, or 6-fold symmetrically arranged reflecting surfaces which redirect a central beam into multiple side beams in an umbrella configuration to be used in multi-beam holography. With a circular polarized beam incident to silicon wafer reflecting surfaces at the Brewster angle, multiple linearly s-polarized side beams are generated. 3D photonic crystal structures of woodpile, Penrose quasi-crystal, and hexagonal symmetry were produced with ROEs that have 4+1, 5+1 and 6+1 beam configurations, respectively. Since the ROE design can be readily changed and implemented for different photonic crystal structures, this fabrication method is more versatile and cost effective than currently comparable single optical methods like prisms and phase masks.

  2. Application of the boundary element method to transient heat conduction

    NASA Technical Reports Server (NTRS)

    Dargush, G. F.; Banerjee, P. K.

    1991-01-01

    An advanced boundary element method (BEM) is presented for the transient heat conduction analysis of engineering components. The numerical implementation necessarily includes higher-order conforming elements, self-adaptive integration and a multiregion capability. Planar, three-dimensional and axisymmetric analyses are all addressed with a consistent time-domain convolution approach, which completely eliminates the need for volume discretization for most practical analyses. The resulting general purpose algorithm establishes BEM as an attractive alternative to the more familiar finite difference and finite element methods for this class of problems. Several detailed numerical examples are included to emphasize the accuracy, stability and generality of the present BEM. Furthermore, a new efficient treatment is introduced for bodies with embedded holes. This development provides a powerful analytical tool for transient solutions of components, such as casting moulds and turbine blades, which are cumbersome to model when employing the conventional domain-based methods.

  3. Tailoring the coercivity in ferromagnetic ZnO thin films by 3d and 4f elements codoping

    SciTech Connect

    Lee, J. J.; Xing, G. Z. Yi, J. B.; Li, S.; Chen, T.; Ionescu, M.

    2014-01-06

    Cluster free, Co (3d) and Eu (4f) doped ZnO thin films were prepared using ion implantation technique accompanied by post annealing treatments. Compared with the mono-doped ZnO thin films, the samples codoped with Co and Eu exhibit a stronger magnetization with a giant coercivity of 1200 Oe at ambient temperature. This was further verified through x-ray magnetic circular dichroism analysis, revealing the exchange interaction between the Co 3d electrons and the localized carriers induced by Eu{sup 3+} ions codoping. The insight gained with modulating coercivity in magnetic oxides opens up an avenue for applications requiring non-volatility in spintronic devices.

  4. FEMFLOW3D; a finite-element program for the simulation of three-dimensional aquifers; version 1.0

    USGS Publications Warehouse

    Durbin, Timothy J.; Bond, Linda D.

    1998-01-01

    This document also includes model validation, source code, and example input and output files. Model validation was performed using four test problems. For each test problem, the results of a model simulation with FEMFLOW3D were compared with either an analytic solution or the results of an independent numerical approach. The source code, written in the ANSI x3.9-1978 FORTRAN standard, and the complete input and output of an example problem are listed in the appendixes.

  5. Application of a quasi-3D inviscid flow and boundary layer analysis to the hub-shroud contouring of a radial turbine

    NASA Technical Reports Server (NTRS)

    Civinskas, K. C.; Povinelli, L. A.

    1984-01-01

    Application of a quasi-3D approach to the aerodynamic analysis of several radial turbine configurations is described. The objective was to improve the rotor aerodynamic characteristics by hub-shroud contouring. The approach relies on available 2D inviscid methods coupled with boundary layer analysis to calculate profile, mixing, and endwall losses. Windage, tip clearance, incidence, and secondary flow losses are estimated from correlations. To eliminate separation along the hub and blade suction surfaces of a baseline rotor, the analysis was also applied to three alternate hub-shroud geometries. Emphasis was on elimination an inducer velocity overshoot as well as increasing hub velocities. While separation was never eliminated, the extent of the separated area was progressively reduced. Results are presented in terms of mid-channel and blade surface velocities; kinetic energy loss coefficients; and efficiency. The calculation demonstrates a first step for a systematic approach to radial turbine design that can be used to identify and control aerodynamic characteristics that ultimately determine heat transfer and component life. Experimentation will be required to assess the extent to which flow and boundary layer behavior were predicted correctly.

  6. Structure of two-dimensional and three-dimensional turbulent boundary layers with sparsely distributed roughness elements

    NASA Astrophysics Data System (ADS)

    George, Jacob

    The present study deals with the effects of sparsely distributed three-dimensional elements on two-dimensional (2-D) and three-dimensional (3-D) turbulent boundary layers (TBL) such as those that occur on submarines, ship hulls, etc. This study was achieved in three parts: Part 1 dealt with the cylinders when placed individually in the turbulent boundary layers, thereby considering the effect of a single perturbation on the TBL; Part 2 considered the effects when the same individual elements were placed in a sparse and regular distribution, thus studying the response of the flow to a sequence of perturbations; and in Part 3, the distributions were subjected to 3-D turbulent boundary layers, thus examining the effects of streamwise and spanwise pressure gradients on the same perturbed flows as considered in Part 2. The 3-D turbulent boundary layers were generated by an idealized wing-body junction flow. Detailed 3-velocity-component Laser-Doppler Velocimetry (LDV) and other measurements were carried out to understand and describe the rough-wall flow structure. The measurements include mean velocities, turbulence quantities (Reynolds stresses and triple products), skin friction, surface pressure and oil flow visualizations in 2-D and 3-D rough-wall flows for Reynolds numbers, based on momentum thickness, greater than 7000. Very uniform circular cylindrical roughness elements of 0.38mm, 0.76mm and 1.52mm height (k) were used in square and diagonal patterns, yielding six different roughness geometries of rough-wall surface. For the 2-D rough-wall flows, the roughness Reynolds numbers, k +, based on the element height (k) and the friction velocity (Utau), range from 26 to 131. Results for the 2-D rough-wall flows reveal that the velocity-defect law is similar for both smooth and rough surfaces, and the semi-logarithmic velocity-distribution curve is shifted by an amount DeltaU/U, depending on the height of the roughness element, showing that Delta U/Utau is a function

  7. Finite-element numerical modeling of atmospheric turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Lee, H. N.; Kao, S. K.

    1979-01-01

    A dynamic turbulent boundary-layer model in the neutral atmosphere is constructed, using a dynamic turbulent equation of the eddy viscosity coefficient for momentum derived from the relationship among the turbulent dissipation rate, the turbulent kinetic energy and the eddy viscosity coefficient, with aid of the turbulent second-order closure scheme. A finite-element technique was used for the numerical integration. In preliminary results, the behavior of the neutral planetary boundary layer agrees well with the available data and with the existing elaborate turbulent models, using a finite-difference scheme. The proposed dynamic formulation of the eddy viscosity coefficient for momentum is particularly attractive and can provide a viable alternative approach to study atmospheric turbulence, diffusion and air pollution.

  8. Task reports on developing techniques for scattering by 3D composite structures and to generate new solutions in diffraction theory using higher order boundary conditions

    NASA Technical Reports Server (NTRS)

    Volakis, John L.

    1990-01-01

    There are two tasks described in this report. First, an extension of a two dimensional formulation is presented for a three dimensional body of revolution. With the introduction of a Fourier expansion of the vector electric and magnetic fields, a coupled two dimensional system is generated and solved via the finite element method. An exact boundary condition is employed to terminate the mesh and the fast fourier transformation is used to evaluate the boundary integrals for low O(n) memory demand when an iterative solution algorithm is used. Second, the diffraction by a material discontinuity in a thick dielectric/ferrite layer is considered by modeling the layer as a distributed current sheet obeying generalized sheet transition conditions (GSTC's).

  9. Study of the tsunamigenic rupture process of the 2011 Tohoku earthquake using a 3D Finite Element Model

    NASA Astrophysics Data System (ADS)

    Romano, Fabrizio; Trasatti, Elisa; Lorito, Stefano; Piromallo, Claudia; Piatanesi, Alessio; Cocco, Massimo; Murphy, Shane; Tonini, Roberto; Volpe, Manuela; Brizuela, Beatriz

    2016-04-01

    The study of the 2011 Tohoku earthquake revealed some new aspects in the rupture process of a megathrust event. Indeed, despite its magnitude Mw 9.0, this earthquake was characterized by a spatially limited rupture area and, contrary to the common view that the shallow portion of the subduction interface mainly experiences aseismic slip, the seismic rupture propagated onto the Japan trench with very large slip (> 50 m). Starting from slip distributions obtained by joint inversion of tsunami and geodetic data, we discuss the sensitivity of the tsunami impact predictions to the complexity of the modelling strategy. We use numerical tools ranging from a homogeneous half-space dislocation model (considering only vertical sea-floor displacement and tsunami propagation in the linear shallow-water approximation) to the more complex 3D-FEM model (with heterogeneous elastic parameters derived from 3D seismic tomography), including horizontal displacement and non-hydrostatic dispersive tsunami modeling. This research is funded by the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 603839 (Project ASTARTE - Assessment, Strategy and Risk Reduction for Tsunamis in Europe)

  10. Comparison of stress distributions in a simple tubular joint using 3-D finite element, photoelastic and strain gauge techniques

    SciTech Connect

    Fessler, H.; Edwards, C.D.

    1983-05-01

    Combined strip and rosette gauge measurements and results from three-dimensional, finite element calculations are in excellent agreement with frozen stress photoelastic results for an efficient shape of cast-steel node under axial, brace loading. Three different meshes showed that two layers of elements through the thickness are needed.

  11. TACO (2D AND 3D). Taco

    SciTech Connect

    Mason, W.E.

    1983-03-01

    A set of finite element codes for the solution of nonlinear, two-dimensional (TACO2D) and three-dimensional (TACO3D) heat transfer problems. Performs linear and nonlinear analyses of both transient and steady state heat transfer problems. Has the capability to handle time or temperature dependent material properties. Materials may be either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions and loadings are available including temperature, flux, convection, radiation, and internal heat generation.

  12. 3D acoustic wave modelling with time-space domain dispersion-relation-based finite-difference schemes and hybrid absorbing boundary conditions

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Sen, Mrinal K.

    2011-09-01

    Most conventional finite-difference methods adopt second-order temporal and (2M)th-order spatial finite-difference stencils to solve the 3D acoustic wave equation. When spatial finite-difference stencils devised from the time-space domain dispersion relation are used to replace these conventional spatial finite-difference stencils devised from the space domain dispersion relation, the accuracy of modelling can be increased from second-order along any directions to (2M)th-order along 48 directions. In addition, the conventional high-order spatial finite-difference modelling accuracy can be improved by using a truncated finite-difference scheme. In this paper, we combine the time-space domain dispersion-relation-based finite difference scheme and the truncated finite-difference scheme to obtain optimised spatial finite-difference coefficients and thus to significantly improve the modelling accuracy without increasing computational cost, compared with the conventional space domain dispersion-relation-based finite difference scheme. We developed absorbing boundary conditions for the 3D acoustic wave equation, based on predicting wavefield values in a transition area by weighing wavefield values from wave equations and one-way wave equations. Dispersion analyses demonstrate that high-order spatial finite-difference stencils have greater accuracy than low-order spatial finite-difference stencils for high frequency components of wavefields, and spatial finite-difference stencils devised in the time-space domain have greater precision than those devised in the space domain under the same discretisation. The modelling accuracy can be improved further by using the truncated spatial finite-difference stencils. Stability analyses show that spatial finite-difference stencils devised in the time-space domain have better stability condition. Numerical modelling experiments for homogeneous, horizontally layered and Society of Exploration Geophysicists/European Association of

  13. Combined magnetic vector-scalar potential finite element computation of 3D magnetic field and performance of modified Lundell alternators in Space Station applications. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Wang, Ren H.

    1991-01-01

    A method of combined use of magnetic vector potential (MVP) based finite element (FE) formulations and magnetic scalar potential (MSP) based FE formulations for computation of three-dimensional (3D) magnetostatic fields is developed. This combined MVP-MSP 3D-FE method leads to considerable reduction by nearly a factor of 3 in the number of unknowns in comparison to the number of unknowns which must be computed in global MVP based FE solutions. This method allows one to incorporate portions of iron cores sandwiched in between coils (conductors) in current-carrying regions. Thus, it greatly simplifies the geometries of current carrying regions (in comparison with the exclusive MSP based methods) in electric machinery applications. A unique feature of this approach is that the global MSP solution is single valued in nature, that is, no branch cut is needed. This is again a superiority over the exclusive MSP based methods. A Newton-Raphson procedure with a concept of an adaptive relaxation factor was developed and successfully used in solving the 3D-FE problem with magnetic material anisotropy and nonlinearity. Accordingly, this combined MVP-MSP 3D-FE method is most suited for solution of large scale global type magnetic field computations in rotating electric machinery with very complex magnetic circuit geometries, as well as nonlinear and anisotropic material properties.

  14. Axisymmetric Boundary Element Method for vesicles in a capillary

    NASA Astrophysics Data System (ADS)

    Trozzo, R.; Boedec, G.; Leonetti, M.; Jaeger, M.

    2015-05-01

    The problem of a vesicle transported by a fluid flow can present a large range of length scales. One example is the case of a vesicle producing a tether, and eventually pearls, in an elongational flow. Another case occurs when a lubrication film is formed, such as during the short range interaction between two vesicles. Such problems are still challenging for 3D simulations. On the other hand, a good understanding could be obtained by first considering the axisymmetric regime when such a regime exists. An axisymmetric model could then be used, without the criticisms that can be made of a 2D approach. We propose such a model, primarily interested in flows through narrow cylindrical capillaries. Two options are compared, with and without explicit representation of the capillary boundaries by a mesh. The numerical effort is characterized as a function of the vesicle's initial shape, the flow magnitude and the confinement. The model is able to treat typical configurations of red blood cells flowing through very narrow pores with extremely thin lubrication films.

  15. Telomerase RNA stem terminus element affects template boundary element function, telomere sequence, and shelterin binding

    PubMed Central

    Webb, Christopher J.; Zakian, Virginia A.

    2015-01-01

    The stem terminus element (STE), which was discovered 13 y ago in human telomerase RNA, is required for telomerase activity, yet its mode of action is unknown. We report that the Schizosaccharomyces pombe telomerase RNA, TER1 (telomerase RNA 1), also contains a STE, which is essential for telomere maintenance. Cells expressing a partial loss-of-function TER1 STE allele maintained short stable telomeres by a recombination-independent mechanism. Remarkably, the mutant telomere sequence was different from that of wild-type cells. Generation of the altered sequence is explained by reverse transcription into the template boundary element, demonstrating that the STE helps maintain template boundary element function. The altered telomeres bound less Pot1 (protection of telomeres 1) and Taz1 (telomere-associated in Schizosaccharomyces pombe 1) in vivo. Thus, the S. pombe STE, although distant from the template, ensures proper telomere sequence, which in turn promotes proper assembly of the shelterin complex. PMID:26305931

  16. A combined finite element-boundary element formulation for solution of axially symmetric bodies

    NASA Technical Reports Server (NTRS)

    Collins, Jeffrey D.; Volakis, John L.

    1991-01-01

    A new method is presented for the computation of electromagnetic scattering from axially symmetric bodies. To allow the simulation of inhomogeneous cross sections, the method combines the finite element and boundary element techniques. Interior to a fictitious surface enclosing the scattering body, the finite element method is used which results in a sparce submatrix, whereas along the enclosure the Stratton-Chu integral equation is enforced. By choosing the fictitious enclosure to be a right circular cylinder, most of the resulting boundary integrals are convolutional and may therefore be evaluated via the FFT with which the system is iteratively solved. In view of the sparce matrix associated with the interior fields, this reduces the storage requirement of the entire system to O(N) making the method attractive for large scale computations. The details of the corresponding formulation and its numerical implementation are described.

  17. LayTracks3D: A new approach for meshing general solids using medial axis transform

    SciTech Connect

    Quadros, William Roshan

    2015-08-22

    This study presents an extension of the all-quad meshing algorithm called LayTracks to generate high quality hex-dominant meshes of general solids. LayTracks3D uses the mapping between the Medial Axis (MA) and the boundary of the 3D domain to decompose complex 3D domains into simpler domains called Tracks. Tracks in 3D have no branches and are symmetric, non-intersecting, orthogonal to the boundary, and the shortest path from the MA to the boundary. These properties of tracks result in desired meshes with near cube shape elements at the boundary, structured mesh along the boundary normal with any irregular nodes restricted to the MA, and sharp boundary feature preservation. The algorithm has been tested on a few industrial CAD models and hex-dominant meshes are shown in the Results section. Work is underway to extend LayTracks3D to generate all-hex meshes.

  18. Fluorescence photon migration by the boundary element method

    SciTech Connect

    Fedele, Francesco; Eppstein, Margaret J. . E-mail: maggie.eppstein@uvm.edu; Laible, Jeffrey P.; Godavarty, Anuradha; Sevick-Muraca, Eva M.

    2005-11-20

    The use of the boundary element method (BEM) is explored as an alternative to the finite element method (FEM) solution methodology for the elliptic equations used to model the generation and transport of fluorescent light in highly scattering media, without the need for an internal volume mesh. The method is appropriate for domains where it is reasonable to assume the fluorescent properties are regionally homogeneous, such as when using highly specific molecularly targeted fluorescent contrast agents in biological tissues. In comparison to analytical results on a homogeneous sphere, BEM predictions of complex emission fluence are shown to be more accurate and stable than those of the FEM. Emission fluence predictions made with the BEM using a 708-node mesh, with roughly double the inter-node spacing of boundary nodes as in a 6956-node FEM mesh, match experimental frequency-domain fluorescence emission measurements acquired on a 1087 cm{sup 3} breast-mimicking phantom at least as well as those of the FEM, but require only 1/8 to 1/2 the computation time.

  19. Can the modeling for simplification of a dental implant surface affect the accuracy of 3D finite element analysis?

    PubMed

    Verri, Fellippo Ramos; Cruz, Ronaldo Silva; de Souza Batista, Victor Eduardo; Almeida, Daniel Augusto de Faria; Verri, Ana Caroline Gonçales; Lemos, Cleidiel Aparecido de Araújo; Santiago Júnior, Joel Ferreira; Pellizzer, Eduardo Piza

    2016-11-01

    The aim of this study was to assess stress/strain of different implant modeling simplifications by 3D-FEA. Three variation of external hexagon implant (Ø3.75 × 10 mm) supporting one molar crown were simulated: A (no threads); B (slightly threads simplification); C (original design). 200 N (axial) and 100 N (oblique) were applied. Cortical bone was evaluated by maximum principal stress and microstrain qualitatively and quantitatively (ANOVA and Tukey post hoc (p < 0.05)). Higher stress levels (p < 0.05) were observed in model A. Models B and C presented similar stress transmission. It was possible to conclude that slightly simplification should be used for studies evaluating stress transferring for bone tissue. PMID:27082041

  20. High hardness BaCb-(BxOy/BN) composites with 3D mesh-like fine grain-boundary structure by reactive spark plasma sintering.

    PubMed

    Vasylkiv, Oleg; Borodianska, Hanna; Badica, Petre; Grasso, Salvatore; Sakka, Yoshio; Tok, Alfred; Su, Liap Tat; Bosman, Michael; Ma, Jan

    2012-02-01

    Boron carbide B4C powders were subject to reactive spark plasma sintering (also known as field assisted sintering, pulsed current sintering or plasma assisted sintering) under nitrogen atmosphere. For an optimum hexagonal BN (h-BN) content estimated from X-ray diffraction measurements at approximately 0.4 wt%, the as-prepared BaCb-(BxOy/BN) ceramic shows values of Berkovich and Vickers hardness of 56.7 +/- 3.1 GPa and 39.3 +/- 7.6 GPa, respectively. These values are higher than for the vacuum SPS processed B4C pristine sample and the h-BN -mechanically-added samples. XRD and electronic microscopy data suggest that in the samples produced by reactive SPS in N2 atmosphere, and containing an estimated amount of 0.3-1.5% h-BN, the crystallite size of the boron carbide grains is decreasing with the increasing amount of N2, while for the newly formed lamellar h-BN the crystallite size is almost constant (approximately 30-50 nm). BN is located at the grain boundaries between the boron carbide grains and it is wrapped and intercalated by a thin layer of boron oxide. BxOy/BN forms a fine and continuous 3D mesh-like structure that is a possible reason for good mechanical properties. PMID:22629879

  1. Quantitative 3D elemental analysis inside plant roots by means of synchrotron confocal micro X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Terzano, R.; Vekemans, B.; Tomasi, N.; Spagnuolo, M.; Schoonjans, T.; Vincze, L.; Pinton, R.; Cesco, S.; Ruggiero, P.

    2009-04-01

    The knowledge of the distribution and concentration of elements within plants is a fundamental step to better understand how these plants uptake specific elements from the medium of growth and how they manage acquisition and compartmentalisation of nutrients as well as toxic metals. For some elements, either nutrients or toxicants, it can be of relevance to know their concentration level within microscopic volumes in plant organs, where they are stored or accumulated. Usually, this type of microscopic analysis requires complex cutting procedures and extensive sample manipulations. In this research, the technique of synchrotron micro X-ray fluorescence in the confocal mode was applied to image the distribution of elements in selected key-planes of tomato roots without the need of any sample preparation, except washing and freeze-drying. Using this method, a first polycapillary lens focussed the X-ray beam with an energy of 12.4 keV down to a 20 µm beam that is penetrating the sample, and a second polycapillary half-lens, that was positioned at the detection side at 90 degrees to the first polycapillary, could then restrict further the view on this irradiated volume to a defined microscopic volume (typically 20x20x20 µm3) from which the induced fluorescent radiation is finally collected by the energy dispersive detector. In this way, it was possible to investigate the concentration levels of some elements such as K, Ca, Mn, Fe, Cu and Zn within the roots of tomato plants. The quantification was performed by means of a dedicated XRF Fundamental Parameter (FP) method in order to calculate the concentrations of trace elements within the analysed plants. Utilizing fundamental atomic parameters, the applied FP method is taking into account the influence of sample self-absorption and especially the specific detection processes by the polycapillary lens. Quantification was assessed and validated by using different standards: NIST SRM 1573a (trace elements in tomato leaves

  2. A contact algorithm for 3D discrete and finite element contact problems based on penalty function method

    NASA Astrophysics Data System (ADS)

    Zang, Mengyan; Gao, Wei; Lei, Zhou

    2011-11-01

    A contact algorithm in the context of the combined discrete element (DE) and finite element (FE) method is proposed. The algorithm, which is based on the node-to-surface method used in finite element method, treats each spherical discrete element as a slave node and the surfaces of the finite element domain as the master surfaces. The contact force on the contact interface is processed by using a penalty function method. Afterward, a modification of the combined DE/FE method is proposed. Following that, the corresponding numerical code is implemented into the in-house developed code. To test the accuracy of the proposed algorithm, the impact between two identical bars and the vibration process of a laminated glass plate under impact of elastic sphere are simulated in elastic range. By comparing the results with the analytical solution and/or that calculated by using LS-DYNA, it is found that they agree with each other very well. The accuracy of the algorithm proposed in this paper is proved.

  3. Free Tools and Strategies for the Generation of 3D Finite Element Meshes: Modeling of the Cardiac Structures

    PubMed Central

    Pavarino, E.; Neves, L. A.; Machado, J. M.; de Godoy, M. F.; Shiyou, Y.; Momente, J. C.; Zafalon, G. F. D.; Pinto, A. R.; Valêncio, C. R.

    2013-01-01

    The Finite Element Method is a well-known technique, being extensively applied in different areas. Studies using the Finite Element Method (FEM) are targeted to improve cardiac ablation procedures. For such simulations, the finite element meshes should consider the size and histological features of the target structures. However, it is possible to verify that some methods or tools used to generate meshes of human body structures are still limited, due to nondetailed models, nontrivial preprocessing, or mainly limitation in the use condition. In this paper, alternatives are demonstrated to solid modeling and automatic generation of highly refined tetrahedral meshes, with quality compatible with other studies focused on mesh generation. The innovations presented here are strategies to integrate Open Source Software (OSS). The chosen techniques and strategies are presented and discussed, considering cardiac structures as a first application context. PMID:23762031

  4. 3D modeling of metallic grain growth

    SciTech Connect

    George, D.; Carlson, N.; Gammel, J.T.; Kuprat, A.

    1999-06-01

    This paper will describe simulating metallic grain growth using the Gradient Weighted Moving Finite Elements code, GRAIN3D. The authors also describe the set of mesh topology change operations developed to respond to changes in the physical topology such as the collapse of grains and to maintain uniform calculational mesh quality. Validation of the method is demonstrated by comparison to analytic calculations. The authors present results of multigrain simulations where grain boundaries evolve by mean curvature motion and include results which incorporate grain boundary orientation dependence.

  5. Discontinuous and smooth 3D structure of the upper mantle and crust across and along the Eurasia-Africa plate boundary

    NASA Astrophysics Data System (ADS)

    Marone, F.; van der Meijde, M.; van der Lee, S.; Giardini, D.

    2003-04-01

    We have acquired and analyzed new seismological data to investigate and map seismic discontinuities and to image smooth 3DS-velocity structure of the upper mantle and crust of the Africa-Eurasia suture zone. The results of this effort have a resolution that is complementary to that of existing studies. The new data have been recorded at 25 broadband seismic stations (MIDSEA project), temporarily deployed across and along the plate boundary region. We used additional seismic data from permanent networks in the region. We jointly inverted linear constraints on Moho depth and upper mantleS-velocity structure obtained by waveform modeling (ofS- and surface wave trains) and from point estimates of crustal thickness (from receiver function, gravity and active-source seismic studies). This joint inversion has yielded a Moho map and a 3D upper mantleS-velocity model. The Moho map shows strong lateral variations, which confirm the complex evolution of this plate boundary region. The Moho appears to be deeper than 45 km beneath mountain ranges (e.g. Alps), while in locations dominated by extension it is found shallower than 15 km (e.g. Algero-Provençal Basin). Beneath the eastern Atlantic Ocean, the crust may be up to 5 km thicker than standard oceanic crust (6 km). Serpentinization of the sub-Moho mantle at the Mid-Atlantic ridge could be a process contributing to the imaging of an anomalously deep apparent Moho in this region. Depsite the high level of heterogeneity, the region appears to be very close to isostatic equilibrium. The 3D upper mantleS-velocity structure shows strong correlation between the imaged heterogeneities and the tectonics along the plate boundary. The Eurasia-Africa suture zone manifests itself in the upper mantle mainly as a belt of fast material representing subducted oceanic lithosphere. A new, striking and resolved feature of our model is a high velocity anomaly imaged beneath eastern Spain between 250 and 500 km depth. We suggest that this fast

  6. 3-D Mesh Generation Nonlinear Systems

    1994-04-07

    INGRID is a general-purpose, three-dimensional mesh generator developed for use with finite element, nonlinear, structural dynamics codes. INGRID generates the large and complex input data files for DYNA3D, NIKE3D, FACET, and TOPAZ3D. One of the greatest advantages of INGRID is that virtually any shape can be described without resorting to wedge elements, tetrahedrons, triangular elements or highly distorted quadrilateral or hexahedral elements. Other capabilities available are in the areas of geometry and graphics. Exact surfacemore » equations and surface intersections considerably improve the ability to deal with accurate models, and a hidden line graphics algorithm is included which is efficient on the most complicated meshes. The primary new capability is associated with the boundary conditions, loads, and material properties required by nonlinear mechanics programs. Commands have been designed for each case to minimize user effort. This is particularly important since special processing is almost always required for each load or boundary condition.« less

  7. Mobile 3D television: development of core technological elements and user-centered evaluation methods toward an optimized system

    NASA Astrophysics Data System (ADS)

    Gotchev, Atanas; Smolic, Aljoscha; Jumisko-Pyykkö, Satu; Strohmeier, Dominik; Bozdagi Akar, Gozde; Merkle, Philipp; Daskalov, Nikolai

    2009-02-01

    A European consortium of six partners has been developing core technological components of a mobile 3D television system over DVB-H channel. In this overview paper, we present our current results on developing optimal methods for stereo-video content creation, coding and transmission and emphasize their significance for the power-constrained mobile platform, equipped with auto-stereoscopic display. We address the user requirements by applying modern usercentered approaches taking into account different user groups and usage contexts in contrast to the laboratory assessment methods which, though standardized, offer limited applicability to real applications. To this end, we have been aiming at developing a methodological framework for the whole system development process. One of our goals has been to further develop the user-centered approach towards experienced quality of critical system components. In this paper, we classify different research methods and technological solutions analyzing their pros and constraints. Based on this analysis we present the user-centered methodological framework being used throughout the whole development process of the system and aimed at achieving the best performance and quality appealing to the end user.

  8. Forensic seismology and boundary element method application vis-à-vis ROKS Cheonan underwater explosion

    NASA Astrophysics Data System (ADS)

    Kim, So Gu

    2013-12-01

    On March 26, 2010 an underwater explosion (UWE) led to the sinking of the ROKS Cheonan. The official Multinational Civilian-Military Joint Investigation Group (MCMJIG) report concluded that the cause of the underwater explosion was a 250 kg net explosive weight (NEW) detonation at a depth of 6-9 m from a DPRK "CHT-02D" torpedo. Kim and Gitterman (2012a) determined the NEW and seismic magnitude as 136 kg at a depth of approximately 8m and 2.04, respectively using basic hydrodynamics based on theoretical and experimental methods as well as spectral analysis and seismic methods. The purpose of this study was to clarify the cause of the UWE via more detailed methods using bubble dynamics and simulation of propellers as well as forensic seismology. Regarding the observed bubble pulse period of 0.990 s, 0.976 s and 1.030 s were found in case of a 136 NEW at a detonation depth of 8 m using the boundary element method (BEM) and 3D bubble shape simulations derived for a 136 kg NEW detonation at a depth of 8 m approximately 5 m portside from the hull centerline. Here we show through analytical equations, models and 3D bubble shape simulations that the most probable cause of this underwater explosion was a 136 kg NEW detonation at a depth of 8m attributable to a ROK littoral "land control" mine (LCM).

  9. Numerical improvement of the three-dimensional indirect boundary element method

    NASA Astrophysics Data System (ADS)

    Ortiz-Aleman, C.; Gil-Zepeda, S. A.; Luzon, F.; Sanchez-Sesma, F. J.

    2003-04-01

    In recent years, several numerical techniques for the estimation of the seismic response in complex geologic configurations have been developed. The flexibility and versatility of these techniques have increased along with the improvement of computational systems, and they altogether have allowed the study of 3D geometries to model several sedimentary basins around the world. In this article we study the structure of the linear systems derived from the Indirect Boundary Element Method (IBEM). We apply a LU-sparse decomposition solver to the inversion of the IBEM coefficient matrix in order to optimise the numerical burden of such method. As pointed out before, special emphasis is given to understanding the main features of ground motion in sedimentary basins. We compute the seismic response of a 3D alluvial valley of irregular shape, as originally proposed by Sánchez-Sesma and Luzón (1995), and we establish comparisons on time consumption and memory allocation. Inversion of linear systems by using this new algorithm lead us to a significant saving on CPU time and memory allocation relative to the original IBEM formulation. Results represent an extension in the range of application of the IBEM method.

  10. Boundary element method approach to magnetostatic wave problems

    NASA Astrophysics Data System (ADS)

    Yashiro, K.; Ohkawa, S.; Miyazaki, M.

    1985-03-01

    In this paper, the technique for application of the boundary element method (BEM) to analysis of magnetostatic waves (MSWs) is established. To show the availability of the technique, two types of waveguides for the MSW are studied; one is a waveguide constituting a YIG slab shielded with metal plates and the other is a waveguide consisting of an unshielded YIG slab. With the former structure the results obtained by the present technique are compared with the analytical solutions, and with the latter the BEM is compared with Marcatili's approximate method since there is no analytical solution in this case. Those comparisons are performed successfully for both cases. The paper concludes that the BEM is useful and effective for analysis of a wide range of MSW problems.

  11. Boundary element analysis on vector and parallel computers

    NASA Technical Reports Server (NTRS)

    Kane, J. H.

    1994-01-01

    Boundary element analysis (BEA) can be characterized as a numerical technique that generally shifts the computational burden in the analysis toward numerical integration and the solution of nonsymmetric and either dense or blocked sparse systems of algebraic equations. Researchers have explored the concept that the fundamental characteristics of BEA can be exploited to generate effective implementations on vector and parallel computers. In this paper, the results of some of these investigations are discussed. The performance of overall algorithms for BEA on vector supercomputers, massively data parallel single instruction multiple data (SIMD), and relatively fine grained distributed memory multiple instruction multiple data (MIMD) computer systems is described. Some general trends and conclusions are discussed, along with indications of future developments that may prove fruitful in this regard.

  12. Effects of vertical interarch space and abutment height on stress distributions: a 3D finite element analysis.

    PubMed

    Naveau, Adrien; Renault, Patrick; Pierrisnard, Laurent

    2009-06-01

    This three dimensional Finite Element Analysis study investigated stress distribution and intensity in implants restored with cemented or screwed crown. Two parameters varied: interarch space and abutment height. Highest stresses occurred at the cervical area in all models. Stresses increased mainly with vertical interarch space highness, and secondarily with abutments shortness. From a mechanical point of view, bone and prosthetics components supporting cemented crowns were not as solicited as with screwed crowns. PMID:19645311

  13. Three dimensional boundary element solutions for eddy current nondestructive evaluation

    NASA Astrophysics Data System (ADS)

    Yang, Ming; Song, Jiming; Nakagawa, Norio

    2014-02-01

    The boundary integral equations (BIE) method is a numerical computational method of solving linear partial differential equations which have been formulated as integral equations. It can be applied in many areas of engineering and science including fluid mechanics, acoustics, electromagnetics, and fracture mechanics. The eddy current problem is formulated by the BIE and discretized into matrix equations by the method of moments (MoM) or the boundary element method (BEM). The three dimensional arbitrarily shaped objects are described by a number of triangular patches. The Stratton-Chu formulation is specialized for the conductive medium. The equivalent electric and magnetic surface currents are expanded in terms of Rao-Wilton-Glisson (RWG) vector basis function while the normal component of magnetic field is expanded in terms of the pulse basis function. Also, a low frequency approximation is applied in the external medium. Additionally, we introduce Auld's impedance formulas to calculate impedance variation. There are very good agreements between numerical results and those from theory and/or experiments for a finite cross-section above a wedge.

  14. Comparison of 2D Finite Element Modeling Assumptions with Results From 3D Analysis for Composite Skin-Stiffener Debonding

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Paris, Isbelle L.; OBrien, T. Kevin; Minguet, Pierre J.

    2004-01-01

    The influence of two-dimensional finite element modeling assumptions on the debonding prediction for skin-stiffener specimens was investigated. Geometrically nonlinear finite element analyses using two-dimensional plane-stress and plane-strain elements as well as three different generalized plane strain type approaches were performed. The computed skin and flange strains, transverse tensile stresses and energy release rates were compared to results obtained from three-dimensional simulations. The study showed that for strains and energy release rate computations the generalized plane strain assumptions yielded results closest to the full three-dimensional analysis. For computed transverse tensile stresses the plane stress assumption gave the best agreement. Based on this study it is recommended that results from plane stress and plane strain models be used as upper and lower bounds. The results from generalized plane strain models fall between the results obtained from plane stress and plane strain models. Two-dimensional models may also be used to qualitatively evaluate the stress distribution in a ply and the variation of energy release rates and mixed mode ratios with delamination length. For more accurate predictions, however, a three-dimensional analysis is required.

  15. 3D model reconstruction of underground goaf

    NASA Astrophysics Data System (ADS)

    Fang, Yuanmin; Zuo, Xiaoqing; Jin, Baoxuan

    2005-10-01

    Constructing 3D model of underground goaf, we can control the process of mining better and arrange mining work reasonably. However, the shape of goaf and the laneway among goafs are very irregular, which produce great difficulties in data-acquiring and 3D model reconstruction. In this paper, we research on the method of data-acquiring and 3D model construction of underground goaf, building topological relation among goafs. The main contents are as follows: a) The paper proposed an efficient encoding rule employed to structure the field measurement data. b) A 3D model construction method of goaf is put forward, which by means of combining several TIN (triangulated irregular network) pieces, and an efficient automatic processing algorithm of boundary of TIN is proposed. c) Topological relation of goaf models is established. TIN object is the basic modeling element of goaf 3D model, and the topological relation among goaf is created and maintained by building the topological relation among TIN objects. Based on this, various 3D spatial analysis functions can be performed including transect and volume calculation of goaf. A prototype is developed, which can realized the model and algorithm proposed in this paper.

  16. Simulation of the enhancement factor from an individual 3D hemisphere-on-post field emitter by using finite elements method.

    PubMed

    Roveri, D S; Sant'Anna, G M; Bertan, H H; Mologni, J F; Alves, M A R; Braga, E S

    2016-01-01

    This paper presents a 3D computational framework for evaluating electrostatic properties of a single field emitter characterized by the hemisphere-on-post geometry. Numerical simulations employed the finite elements method by using Ansys-Maxwell software. Extensive parametric simulations were focused on the threshold distance from which the emitter field enhancement factor (γ) becomes independent from the anode-substrate gap (G). This investigation allowed demonstrating that the ratio between G and the emitter height (h) is a reliable reference for a broad range of emitter dimensions; furthermore, results permitted establishing G/h ≥ 2.2 as the threshold condition for setting the anode without affecting γ. PMID:26555324

  17. Solid modeling techniques to build 3D finite element models of volcanic systems: An example from the Rabaul Caldera system, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Ronchin, Erika; Masterlark, Timothy; Molist, Joan Martí; Saunders, Steve; Tao, Wei

    2013-03-01

    Simulating the deformation of active volcanoes is challenging due to inherent mechanical complexities associated with heterogeneous distributions of rheologic properties and irregular geometries associated with the topography and bathymetry. From geologic and tomographic studies we know that geologic bodies naturally have complex 3D shapes. Finite element models (FEMs) are capable of simulating the pressurization of magma intrusions into mechanical domains with arbitrary geometric and geologic complexity. We construct FEMs comprising pressurization (due to magma intrusion) within an assemblage of 3D parts having common mechanical properties for Rabaul Caldera, Papua New Guinea. We use information of material properties distributed on discrete points mainly deduced from topography, geology, seismicity, and tomography of Rabaul Caldera to first create contours of each part and successively to generate each 3D part shape by lofting the volume through the contours. The implementation of Abaqus CAE with Python scripts allows for automated execution of hundreds of commands necessary for the construction of the parts having substantial geometric complexity. The lofted solids are then assembled to form the composite model of Rabaul Caldera, having a geometrically complex loading configuration and distribution of rheologic properties. Comparison between predicted and observed deformation led us to identify multiple deformation sources (0.74 MPa change in pressure in the magma chamber and 0.17 m slip along the ring fault) responsible for the displacements measured at Matupit Island between August 1992 and August 1993.

  18. COMGEN-BEM: Boundary element model generation for composite materials micromechanical analysis

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.

    1992-01-01

    Composite Model Generation-Boundary Element Method (COMGEN-BEM) is a program developed in PATRAN command language (PCL) which generates boundary element models of continuous fiber composites at the micromechanical (constituent) scale. Based on the entry of a few simple parameters such as fiber volume fraction and fiber diameter, the model geometry and boundary element model are generated. In addition, various mesh densities, material properties, fiber orientation angles, loads, and boundary conditions can be specified. The generated model can then be translated to a format consistent with a boundary element analysis code such as BEST-CMS.

  19. Component mode synthesis methods applied to 3D heterogeneous core calculations, using the mixed dual finite element solver MINOS

    SciTech Connect

    Guerin, P.; Baudron, A. M.; Lautard, J. J.

    2006-07-01

    This paper describes a new technique for determining the pin power in heterogeneous core calculations. It is based on a domain decomposition with overlapping sub-domains and a component mode synthesis technique for the global flux determination. Local basis functions are used to span a discrete space that allows fundamental global mode approximation through a Galerkin technique. Two approaches are given to obtain these local basis functions: in the first one (Component Mode Synthesis method), the first few spatial eigenfunctions are computed on each sub-domain, using periodic boundary conditions. In the second one (Factorized Component Mode Synthesis method), only the fundamental mode is computed, and we use a factorization principle for the flux in order to replace the higher order Eigenmodes. These different local spatial functions are extended to the global domain by defining them as zero outside the sub-domain. These methods are well-fitted for heterogeneous core calculations because the spatial interface modes are taken into account in the domain decomposition. Although these methods could be applied to higher order angular approximations - particularly easily to a SPN approximation - the numerical results we provide are obtained using a diffusion model. We show the methods' accuracy for reactor cores loaded with UOX and MOX assemblies, for which standard reconstruction techniques are known to perform poorly. Furthermore, we show that our methods are highly and easily parallelizable. (authors)

  20. A new simple multidomain fast multipole boundary element method

    NASA Astrophysics Data System (ADS)

    Huang, S.; Liu, Y. J.

    2016-09-01

    A simple multidomain fast multipole boundary element method (BEM) for solving potential problems is presented in this paper, which can be applied to solve a true multidomain problem or a large-scale single domain problem using the domain decomposition technique. In this multidomain BEM, the coefficient matrix is formed simply by assembling the coefficient matrices of each subdomain and the interface conditions between subdomains without eliminating any unknown variables on the interfaces. Compared with other conventional multidomain BEM approaches, this new approach is more efficient with the fast multipole method, regardless how the subdomains are connected. Instead of solving the linear system of equations directly, the entire coefficient matrix is partitioned and decomposed using Schur complement in this new approach. Numerical results show that the new multidomain fast multipole BEM uses fewer iterations in most cases with the iterative equation solver and less CPU time than the traditional fast multipole BEM in solving large-scale BEM models. A large-scale fuel cell model with more than 6 million elements was solved successfully on a cluster within 3 h using the new multidomain fast multipole BEM.

  1. A new simple multidomain fast multipole boundary element method

    NASA Astrophysics Data System (ADS)

    Huang, S.; Liu, Y. J.

    2016-06-01

    A simple multidomain fast multipole boundary element method (BEM) for solving potential problems is presented in this paper, which can be applied to solve a true multidomain problem or a large-scale single domain problem using the domain decomposition technique. In this multidomain BEM, the coefficient matrix is formed simply by assembling the coefficient matrices of each subdomain and the interface conditions between subdomains without eliminating any unknown variables on the interfaces. Compared with other conventional multidomain BEM approaches, this new approach is more efficient with the fast multipole method, regardless how the subdomains are connected. Instead of solving the linear system of equations directly, the entire coefficient matrix is partitioned and decomposed using Schur complement in this new approach. Numerical results show that the new multidomain fast multipole BEM uses fewer iterations in most cases with the iterative equation solver and less CPU time than the traditional fast multipole BEM in solving large-scale BEM models. A large-scale fuel cell model with more than 6 million elements was solved successfully on a cluster within 3 h using the new multidomain fast multipole BEM.

  2. Transient fluid-structure interaction of elongated bodies by finite-element method using elliptical and spheroidal absorbing boundaries.

    PubMed

    Bhattacharyya, S K; Premkumar, R

    2003-12-01

    In a domain method of solution of exterior scalar wave equation, the radiation condition needs to be imposed on a truncation boundary of the modeling domain. The Bayliss, Gunzberger, and Turkel (BGT) boundary dampers, which require a circular cylindrical and spherical truncation boundaries in two-(2D) and three-(3D)-dimensional problems, respectively, have been particularly successful in the analysis of scattering and radiation problems. However, for an elongated body, elliptical (2D) or spheroidal (3D) truncation boundaries have potential to reduce the size of modeling domain and hence computational effort. For harmonic problems, such extensions of the first- and second-order BGT dampers are available in the literature. In this paper, BGT dampers in both elliptical and spheroidal coordinate systems have been developed for transient problems involving acoustic radiation as well as fluid-structure interaction and implemented in the context of finite-element method based upon unsymmetric pressure-displacement formulation. Applications to elongated radiators and shells are reported using several numerical examples with excellent comparisons. It is demonstrated that significant computational economy can be achieved for elongated bodies with the use of these dampers. PMID:14714787

  3. Transient fluid-structure interaction of elongated bodies by finite-element method using elliptical and spheroidal absorbing boundaries

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, S. K.; Premkumar, R.

    2003-12-01

    In a domain method of solution of exterior scalar wave equation, the radiation condition needs to be imposed on a truncation boundary of the modeling domain. The Bayliss, Gunzberger, and Turkel (BGT) boundary dampers, which require a circular cylindrical and spherical truncation boundaries in two-(2D) and three-(3D)-dimensional problems, respectively, have been particularly successful in the analysis of scattering and radiation problems. However, for an elongated body, elliptical (2D) or spheroidal (3D) truncation boundaries have potential to reduce the size of modeling domain and hence computational effort. For harmonic problems, such extensions of the first- and second-order BGT dampers are available in the literature. In this paper, BGT dampers in both elliptical and spheroidal coordinate systems have been developed for transient problems involving acoustic radiation as well as fluid-structure interaction and implemented in the context of finite-element method based upon unsymmetric pressure-displacement formulation. Applications to elongated radiators and shells are reported using several numerical examples with excellent comparisons. It is demonstrated that significant computational economy can be achieved for elongated bodies with the use of these dampers.

  4. Back Analysis of the 2014 San Leo Landslide Using Combined Terrestrial Laser Scanning and 3D Distinct Element Modelling

    NASA Astrophysics Data System (ADS)

    Spreafico, Margherita Cecilia; Francioni, Mirko; Cervi, Federico; Stead, Doug; Bitelli, Gabriele; Ghirotti, Monica; Girelli, Valentina Alena; Lucente, Claudio Corrado; Tini, Maria Alessandra; Borgatti, Lisa

    2016-06-01

    Landslides of the lateral spreading type, involving brittle geological units overlying ductile terrains, are a common occurrence in the sandstone and limestone plateaux of the northern Apennines of Italy. The edges of these plateaux are often the location of rapid landslide phenomena, such as rock slides, rock falls and topples. In this paper, we present a back analysis of a recent landslide (February 2014), involving the north-eastern sector of the San Leo rock slab (northern Apennines, Emilia-Romagna Region) which is a representative example of this type of phenomena. The aquifer hosted in the fractured slab, due to its relatively higher secondary permeability in comparison to the lower clayey units leads to the development of perennial and ephemeral springs at the contact between the two units. The related piping erosion phenomena, together with slope processes in the clay-shales have led to the progressive undermining of the slab, eventually predisposing large-scale landslides. Stability analyses were conducted coupling terrestrial laser scanning (TLS) and distinct element methods (DEMs). TLS point clouds were analysed to determine the pre- and post-failure geometry, the extension of the detachment area and the joint network characteristics. The block dimensions in the landslide deposit were mapped and used to infer the spacing of the discontinuities for insertion into the numerical model. Three-dimensional distinct element simulations were conducted, with and without undermining of the rock slab. The analyses allowed an assessment of the role of the undermining, together with the presence of an almost vertical joint set, striking sub-parallel to the cliff orientation, on the development of the slope instability processes. Based on the TLS and on the numerical simulation results, an interpretation of the landslide mechanism is proposed.

  5. A coupled finite-element, boundary-integral method for simulating ultrasonic flowmeters.

    PubMed

    Bezdĕk, Michal; Landes, Hermann; Rieder, Alfred; Lerch, Reinhard

    2007-03-01

    Today's most popular technology of ultrasonic flow measurement is based on the transit-time principle. In this paper, a numerical simulation technique applicable to the analysis of transit-time flowmeters is presented. A flowmeter represents a large simulation problem that also requires computation of acoustic fields in moving media. For this purpose, a novel boundary integral method, the Helmholtz integral-ray tracing method (HIRM), is derived and validated. HIRM is applicable to acoustic radiation problems in arbitrary mean flows at low Mach numbers and significantly reduces the memory demands in comparison with the finite-element method (FEM). It relies on an approximate free-space Green's function which makes use of the ray tracing technique. For simulation of practical acoustic devices, a hybrid simulation scheme consisting of FEM and HIRM is proposed. The coupling of FEM and HIRM is facilitated by means of absorbing boundaries in combination with a new, reflection-free, acoustic-source formulation. Using the coupled FEM-HIRM scheme, a full three-dimensional (3-D) simulation of a complete transit-time flowmeter is performed for the first time. The obtained simulation results are in good agreement with measurements both at zero flow and under flow conditions. PMID:17375833

  6. A time series generalized functional model based method for vibration-based damage precise localization in structures consisting of 1D, 2D, and 3D elements

    NASA Astrophysics Data System (ADS)

    Sakaris, C. S.; Sakellariou, J. S.; Fassois, S. D.

    2016-06-01

    This study focuses on the problem of vibration-based damage precise localization via data-based, time series type, methods for structures consisting of 1D, 2D, or 3D elements. A Generalized Functional Model Based method is postulated based on an expanded Vector-dependent Functionally Pooled ARX (VFP-ARX) model form, capable of accounting for an arbitrary structural topology. The FP model's operating parameter vector elements are properly constrained to reflect any given topology. Damage localization is based on operating parameter vector estimation within the specified topology, so that the location estimate and its uncertainty bounds are statistically optimal. The method's effectiveness is experimentally demonstrated through damage precise localization on a laboratory spatial truss structure using various damage scenarios and a single pair of random excitation - vibration response signals in a low and limited frequency bandwidth.

  7. Efficacy of adding a supporting implant in stress distribution of long-span fixed partial dentures: a 3D finite element analysis

    PubMed Central

    Shurbaji Mozayek, Rami; Allaf, Mirza; B. Abuharb, Mohammad

    2016-01-01

    Background. Long span is seen in many clinical situations. Treatmentplanning options of these cases are difficult and may require FPD, RPD or ISP. Each option has its own disadvantages, including mechanical problems, patient comfort and cost. This article will evaluate the stress distribution of a different treatment option, which consists of adding a single sup-porting implant to the FPD by using 3D finite element analysis. Methods. Three models, each consisting of 5 units, were created as follows: 1. Tooth Pontic Pontic Pontic Tooth; 2. Tooth Pontic Implant Pontic Tooth; 3. Tooth Pontic Pontic Implant Tooth. An axial force was applied to the prostheses by using 3D finite element method and stresses were evaluated. Results. The maximum stress was found in the prostheses in all the models; the highest stress values in all the shared components of the models were almost similar. Stress in implants was lower in the second model than the third one. Conclusion. Adding a supporting implant in long-span FPD has no advantages while it has the disadvantages of complicating treatment and the complications that may occur to the implant and surrounding bone. PMID:27429723

  8. Efficacy of adding a supporting implant in stress distribution of long-span fixed partial dentures: a 3D finite element analysis.

    PubMed

    Shurbaji Mozayek, Rami; Allaf, Mirza; B Abuharb, Mohammad

    2016-01-01

    Background. Long span is seen in many clinical situations. Treatmentplanning options of these cases are difficult and may require FPD, RPD or ISP. Each option has its own disadvantages, including mechanical problems, patient comfort and cost. This article will evaluate the stress distribution of a different treatment option, which consists of adding a single sup-porting implant to the FPD by using 3D finite element analysis. Methods. Three models, each consisting of 5 units, were created as follows: 1. Tooth Pontic Pontic Pontic Tooth; 2. Tooth Pontic Implant Pontic Tooth; 3. Tooth Pontic Pontic Implant Tooth. An axial force was applied to the prostheses by using 3D finite element method and stresses were evaluated. Results. The maximum stress was found in the prostheses in all the models; the highest stress values in all the shared components of the models were almost similar. Stress in implants was lower in the second model than the third one. Conclusion. Adding a supporting implant in long-span FPD has no advantages while it has the disadvantages of complicating treatment and the complications that may occur to the implant and surrounding bone. PMID:27429723

  9. Efficient combination of a 3D Quasi-Newton inversion algorithm and a vector dual-primal finite element tearing and interconnecting method

    NASA Astrophysics Data System (ADS)

    Voznyuk, I.; Litman, A.; Tortel, H.

    2015-08-01

    A Quasi-Newton method for reconstructing the constitutive parameters of three-dimensional (3D) penetrable scatterers from scattered field measurements is presented. This method is adapted for handling large-scale electromagnetic problems while keeping the memory requirement and the time flexibility as low as possible. The forward scattering problem is solved by applying the finite-element tearing and interconnecting full-dual-primal (FETI-FDP2) method which shares the same spirit as the domain decomposition methods for finite element methods. The idea is to split the computational domain into smaller non-overlapping sub-domains in order to simultaneously solve local sub-problems. Various strategies are proposed in order to efficiently couple the inversion algorithm with the FETI-FDP2 method: a separation into permanent and non-permanent subdomains is performed, iterative solvers are favorized for resolving the interface problem and a marching-on-in-anything initial guess selection further accelerates the process. The computational burden is also reduced by applying the adjoint state vector methodology. Finally, the inversion algorithm is confronted to measurements extracted from the 3D Fresnel database.

  10. Development of Femoral Head Interior Supporting Device and 3D Finite Element Analysis of its Application in the Treatment of Femoral Head Avascular Necrosis

    PubMed Central

    Xiao, Dongmin; Ye, Ming; Li, Xinfa; Yang, Lifeng

    2015-01-01

    Background The aim of this study was to develop and perform the 3D finite element analysis of a femoral head interior supporting device (FHISD). Material/Methods The 3D finite element model was developed to analyze the surface load of femoral head and analyze the stress and strain of the femoral neck, using the normal femoral neck, decompressed bone graft, and FHISD-implanted bone graft models. Results The stress in the normal model concentrated around the femoral calcar, with displacement of 0.3556±0.1294 mm. In the decompressed bone graft model, the stress concentrated on the femur calcar and top and lateral sides of femoral head, with the displacement larger than the normal (0.4163±0.1310 mm). In the FHISD-implanted bone graft model, the stress concentrated on the segment below the lesser trochanter superior to the femur, with smaller displacement than the normal (0.1856±0.0118 mm). Conclusions FHISD could effectively maintain the biomechanical properties of the femoral neck. PMID:26010078

  11. Enhancement of the excitation efficiency of a torsional wave PPM EMAT array for pipe inspection by optimizing the element number of the array based on 3-D FEM.

    PubMed

    Wang, Yugang; Wu, Xinjun; Sun, Pengfei; Li, Jian

    2015-01-01

    Electromagnetic acoustic transducers (EMATs) can generate non-dispersive T(0,1) mode guided waves in a metallic pipe for nondestructive testing (NDT) by using a periodic permanent magnet (PPM) EMAT circular array. In order to enhance the excitation efficiency of the sensor, the effects of varying the number of elements of the array on the excitation efficiency is studied in this paper. The transduction process of the PPM EMAT array is studied based on 3-D finite element method (FEM). The passing signal amplitude of the torsional wave is obtained to represent the excitation efficiency of the sensor. Models with different numbers of elements are established and the results are compared to obtain an optimal element number. The simulation result is verified by experiments. It is shown that after optimization, the amplitudes of both the passing signal and defect signal with the optimal element number are increased by 29%, which verifies the feasibility of this optimal method. The essence of the optimization is to find the best match between the static magnetic field and the eddy current field in a limited circumferential space to obtain the maximum circumferential Lorentz force. PMID:25654722

  12. Enhancement of the Excitation Efficiency of a Torsional Wave PPM EMAT Array for Pipe Inspection by Optimizing the Element Number of the Array Based on 3-D FEM

    PubMed Central

    Wang, Yugang; Wu, Xinjun; Sun, Pengfei; Li, Jian

    2015-01-01

    Electromagnetic acoustic transducers (EMATs) can generate non-dispersive T(0,1) mode guided waves in a metallic pipe for nondestructive testing (NDT) by using a periodic permanent magnet (PPM) EMAT circular array. In order to enhance the excitation efficiency of the sensor, the effects of varying the number of elements of the array on the excitation efficiency is studied in this paper. The transduction process of the PPM EMAT array is studied based on 3-D finite element method (FEM). The passing signal amplitude of the torsional wave is obtained to represent the excitation efficiency of the sensor. Models with different numbers of elements are established and the results are compared to obtain an optimal element number. The simulation result is verified by experiments. It is shown that after optimization, the amplitudes of both the passing signal and defect signal with the optimal element number are increased by 29%, which verifies the feasibility of this optimal method. The essence of the optimization is to find the best match between the static magnetic field and the eddy current field in a limited circumferential space to obtain the maximum circumferential Lorentz force. PMID:25654722

  13. Feasibility of 3-D MRI of Proximal Femur Microarchitecture at 3 T using 26 Receive Elements without and with Parallel Imaging

    PubMed Central

    Chang, Gregory; Deniz, Cem; Honig, Stephen; Rajapakse, Chamith S.; Egol, Kenneth; Regatte, Ravinder R.; Brown, Ryan

    2013-01-01

    Purpose High-resolution imaging of deeper anatomy such as the hip is challenging due to low signal-to-noise ratio (SNR), necessitating long scan times. Multi-element coils can increase SNR and reduce scan time through parallel imaging (PI). We assessed the feasibility of using a 26-element receive coil setup to perform 3 T MRI of proximal femur microarchitecture without and with PI. Materials and Methods This study had institutional review board approval. We scanned thirteen subjects on a 3 T scanner using 26 receive-elements and a 3-D FLASH sequence without and with PI (acceleration factors (AF) 2, 3, 4). We assessed SNR, depiction of individual trabeculae, PI performance (1/g-factor), and image quality with PI (1=non-visualization to 5=excellent). Results SNR maps demonstrate higher SNR for the 26-element setup compared to a 12-element setup for hip MRI. Without PI, individual proximal femur trabeculae were well-depicted, including microarchitectural deterioration in osteoporotic subjects. With PI, 1/g values for the 26-element/12-element receive-setup were 0.71/0.45, 0.56/0.25, and 0.44/0.08 at AF2, AF3, and AF4, respectively. Image quality was: AF1, excellent (4.8±0.4); AF2, good (4.2±1.0); AF3, average (3.3±1.0); AF4, non-visualization (1.4±0.9). Conclusion A 26-element receive-setup permits 3 T MRI of proximal femur microarchitecture with good image quality up to PI AF2. PMID:24711013

  14. Cranial performance in the Komodo dragon (Varanus komodoensis) as revealed by high-resolution 3-D finite element analysis

    PubMed Central

    Moreno, Karen; Wroe, Stephen; Clausen, Philip; McHenry, Colin; D’Amore, Domenic C; Rayfield, Emily J; Cunningham, Eleanor

    2008-01-01

    The Komodo dragon (Varanus komodoensis) displays a unique hold and pull-feeding technique. Its delicate ‘space-frame’ skull morphology differs greatly from that apparent in most living large prey specialists and is suggestive of a high degree of optimization, wherein use of materials is minimized. Here, using high-resolution finite element modelling based on dissection and in vivo bite and pull data, we present results detailing the mechanical performance of the giant lizard's skull. Unlike most modern predators, V. komodoensis applies minimal input from the jaw muscles when butchering prey. Instead it uses series of actions controlled by postcranial muscles. A particularly interesting feature of the performance of the skull is that it reveals considerably lower overall stress when these additional extrinsic forces are added to those of the jaw adductors. This remarkable reduction in stress in response to additional force is facilitated by both internal and external bone anatomy. Functional correlations obtained from these analyses also provide a solid basis for the interpretation of feeding ecology in extinct species, including dinosaurs and sabre-tooth cats, with which V. komodoensis shares various cranial and dental characteristics. PMID:18510503

  15. Stress analysis of a complete maxillary denture under various drop impact conditions: a 3D finite element study.

    PubMed

    Sunbuloglu, Emin

    2015-01-01

    Complete maxillary dentures are one of the most economic and easy ways of treatment for edentulous patients and are still widely used. However, their survival rate is slightly above three years. It is presumed that the failure reasons are not only due to normal fatigue but also emerge from damage based on unavoidable improper usage. Failure types other than long-term fatigue, such as over-deforming, also influence the effective life span of dentures. A hypothesis is presumed, stating that the premature/unexpected failures may be initiated by impact on dentures, which can be related to dropping them on the ground or other effects such as biting crispy food. Thus, the behavior of a complete maxillary denture under impact loading due to drop on a rigid surface was investigated using the finite element method utilizing explicit time integration and a rate-sensitive elastoplastic material model of polymethylmethacrylate (PMMA). Local permanent deformations have been observed along with an emphasis on frenulum region of the denture, regardless of the point of impact. Contact stresses at the tooth-denture base were also investigated. The spread of energy within the structure via wave propagation is seen to play a critical role in this fact. Stress-wave propagation is also seen to be an important factor that decreases the denture's fatigue life. PMID:24945936

  16. 3D hybrid tectono-stochastic modeling of naturally fractured reservoir: Application of finite element method and stochastic simulation technique

    NASA Astrophysics Data System (ADS)

    Gholizadeh Doonechaly, N.; Rahman, S. S.

    2012-05-01

    Simulation of naturally fractured reservoirs offers significant challenges due to the lack of a methodology that can utilize field data. To date several methods have been proposed by authors to characterize naturally fractured reservoirs. Among them is the unfolding/folding method which offers some degree of accuracy in estimating the probability of the existence of fractures in a reservoir. Also there are statistical approaches which integrate all levels of field data to simulate the fracture network. This approach, however, is dependent on the availability of data sources, such as seismic attributes, core descriptions, well logs, etc. which often make it difficult to obtain field wide. In this study a hybrid tectono-stochastic simulation is proposed to characterize a naturally fractured reservoir. A finite element based model is used to simulate the tectonic event of folding and unfolding of a geological structure. A nested neuro-stochastic technique is used to develop the inter-relationship between the data and at the same time it utilizes the sequential Gaussian approach to analyze field data along with fracture probability data. This approach has the ability to overcome commonly experienced discontinuity of the data in both horizontal and vertical directions. This hybrid technique is used to generate a discrete fracture network of a specific Australian gas reservoir, Palm Valley in the Northern Territory. Results of this study have significant benefit in accurately describing fluid flow simulation and well placement for maximal hydrocarbon recovery.

  17. Cranial performance in the Komodo dragon (Varanus komodoensis) as revealed by high-resolution 3-D finite element analysis.

    PubMed

    Moreno, Karen; Wroe, Stephen; Clausen, Philip; McHenry, Colin; D'Amore, Domenic C; Rayfield, Emily J; Cunningham, Eleanor

    2008-06-01

    The Komodo dragon (Varanus komodoensis) displays a unique hold and pull-feeding technique. Its delicate 'space-frame' skull morphology differs greatly from that apparent in most living large prey specialists and is suggestive of a high degree of optimization, wherein use of materials is minimized. Here, using high-resolution finite element modelling based on dissection and in vivo bite and pull data, we present results detailing the mechanical performance of the giant lizard's skull. Unlike most modern predators, V. komodoensis applies minimal input from the jaw muscles when butchering prey. Instead it uses series of actions controlled by postcranial muscles. A particularly interesting feature of the performance of the skull is that it reveals considerably lower overall stress when these additional extrinsic forces are added to those of the jaw adductors. This remarkable reduction in stress in response to additional force is facilitated by both internal and external bone anatomy. Functional correlations obtained from these analyses also provide a solid basis for the interpretation of feeding ecology in extinct species, including dinosaurs and sabre-tooth cats, with which V. komodoensis shares various cranial and dental characteristics. PMID:18510503

  18. Modeling the steady-state ISV (in situ vitrification) process: A 3-D finite element analysis of coupled thermal-electric fields

    SciTech Connect

    Langerman, M.A.

    1990-09-01

    Steady-state modeling considerations for simulating the in situ vitrification (ISV) process are documented based upon the finite element numerical approach. Recommendations regarding boundary condition specifications and mesh discretization are presented. The effects of several parameters on the ISV process response are calculated and the results discussed. The parameters investigated include: (1) electrode depth, (2) ambient temperature, (3) supplied current, (4) electrical conductivity, (5) electrode separation, and (6) soil/waste characterization. 13 refs., 29 figs., 1 tab.

  19. Dynamic pulse buckling of cylindrical shells under axial impact: A comparison of 2D and 3D finite element calculations with experimental data

    SciTech Connect

    Hoffman, E.L.; Ammerman, D.J.

    1995-04-01

    A series of tests investigating dynamic pulse buckling of a cylindrical shell under axial impact is compared to several 2D and 3D finite element simulations of the event. The purpose of the work is to investigate the performance of various analysis codes and element types on a problem which is applicable to radioactive material transport packages, and ultimately to develop a benchmark problem to qualify finite element analysis codes for the transport package design industry. Four axial impact tests were performed on 4 in-diameter, 8 in-long, 304 L stainless steel cylinders with a 3/16 in wall thickness. The cylinders were struck by a 597 lb mass with an impact velocity ranging from 42.2 to 45.1 ft/sec. During the impact event, a buckle formed at each end of the cylinder, and one of the two buckles became unstable and collapsed. The instability occurred at the top of the cylinder in three tests and at the bottom in one test. Numerical simulations of the test were performed using the following codes and element types: PRONTO2D with axisymmetric four-node quadrilaterals; PRONTO3D with both four-node shells and eight-node hexahedrons; and ABAQUS/Explicit with axisymmetric two-node shells and four-node quadrilaterals, and 3D four-node shells and eight-node hexahedrons. All of the calculations are compared to the tests with respect to deformed shape and impact load history. As in the tests, the location of the instability is not consistent in all of the calculations. However, the calculations show good agreement with impact load measurements with the exception of an initial load spike which is proven to be the dynamic response of the load cell to the impact. Finally, the PRONIT02D calculation is compared to the tests with respect to strain and acceleration histories. Accelerometer data exhibited good qualitative agreement with the calculations. The strain comparisons show that measurements are very sensitive to gage placement.

  20. Strain-rate sensitivity of foam materials: A numerical study using 3D image-based finite element model

    NASA Astrophysics Data System (ADS)

    Sun, Yongle; Li, Q. M.; Withers, P. J.

    2015-09-01

    Realistic simulations are increasingly demanded to clarify the dynamic behaviour of foam materials, because, on one hand, the significant variability (e.g. 20% scatter band) of foam properties and the lack of reliable dynamic test methods for foams bring particular difficulty to accurately evaluate the strain-rate sensitivity in experiments; while on the other hand numerical models based on idealised cell structures (e.g. Kelvin and Voronoi) may not be sufficiently representative to capture the actual structural effect. To overcome these limitations, the strain-rate sensitivity of the compressive and tensile properties of closed-cell aluminium Alporas foam is investigated in this study by means of meso-scale realistic finite element (FE) simulations. The FE modelling method based on X-ray computed tomography (CT) image is introduced first, as well as its applications to foam materials. Then the compression and tension of Alporas foam at a wide variety of applied nominal strain-rates are simulated using FE model constructed from the actual cell geometry obtained from the CT image. The stain-rate sensitivity of compressive strength (collapse stress) and tensile strength (0.2% offset yield point) are evaluated when considering different cell-wall material properties. The numerical results show that the rate dependence of cell-wall material is the main cause of the strain-rate hardening of the compressive and tensile strengths at low and intermediate strain-rates. When the strain-rate is sufficiently high, shock compression is initiated, which significantly enhances the stress at the loading end and has complicated effect on the stress at the supporting end. The plastic tensile wave effect is evident at high strain-rates, but shock tension cannot develop in Alporas foam due to the softening associated with single fracture process zone occurring in tensile response. In all cases the micro inertia of individual cell walls subjected to localised deformation is found to

  1. The Coupled Spectral Element/Normal Mode Method: Application to the Testing of Several Approximations Based on Normal Mode Theory for the Computation of Seismograms in a Realistic 3D Earth.

    NASA Astrophysics Data System (ADS)

    Capdeville, Y.; Gung, Y.; Romanowicz, B.

    2002-12-01

    The spectral element method (SEM) has recently been adapted successfully for global spherical earth wave propagation applications. Its advantage is that it provides a way to compute exact seismograms in a 3D earth, without restrictions on the size or wavelength of lateral heterogeneity at any depth, and can handle diffraction and other interactions with major structural boundaries. Its disadvantage is that it is computationally heavy. In order to partly address this drawback, a coupled SEM/normal mode method was developed (Capdeville et al., 2000). This enables us to more efficiently compute bodywave seismograms to realistically short periods (10s or less). In particular, the coupled SEM/normal mode method is a powerful tool to test the validity of some analytical approximations that are currently used in global waveform tomography, and that are considerably faster computationally. Here, we focus on several approximations based on normal mode perturbation theory: the classical "path-average approximation" (PAVA) introduced by Woodhouse and Dziewonski (1984) and well suited for fundamental mode surface waves (1D sensitivity kernels); the non-linear asymptotic coupling theory (NACT), which introduces coupling between mode branches and 2D kernels in the vertical plane containing the source and the receiver (Li and Tanimoto, 1993; Li and Romanowicz, 1995); an extension of NACT which includes out of plane focusing terms computed asymptotically (e.g. Romanowicz, 1987) and introduces 3D kernels; we also consider first order perturbation theory without asymptotic approximations, such as developed for example by Dahlen et al. (2000). We present the results of comparisons of realistic seismograms for different models of heterogeneity, varying the strength and sharpness of the heterogeneity and its location in depth in the mantle. We discuss the consequences of different levels of approximations on our ability to resolve 3D heterogeneity in the earth's mantle.

  2. Lubrication approximation in completed double layer boundary element method

    NASA Astrophysics Data System (ADS)

    Nasseri, S.; Phan-Thien, N.; Fan, X.-J.

    This paper reports on the results of the numerical simulation of the motion of solid spherical particles in shear Stokes flows. Using the completed double layer boundary element method (CDLBEM) via distributed computing under Parallel Virtual Machine (PVM), the effective viscosity of suspension has been calculated for a finite number of spheres in a cubic array, or in a random configuration. In the simulation presented here, the short range interactions via lubrication forces are also taken into account, via the range completer in the formulation, whenever the gap between two neighbouring particles is closer than a critical gap. The results for particles in a simple cubic array agree with the results of Nunan and Keller (1984) and Stoksian Dynamics of Brady etal. (1988). To evaluate the lubrication forces between particles in a random configuration, a critical gap of 0.2 of particle's radius is suggested and the results are tested against the experimental data of Thomas (1965) and empirical equation of Krieger-Dougherty (Krieger, 1972). Finally, the quasi-steady trajectories are obtained for time-varying configuration of 125 particles.

  3. Boundary Element Microhydrodynamics: Stagnation of flow in protein cavities

    NASA Astrophysics Data System (ADS)

    Aragon, Sergio; Hahn, David

    2007-03-01

    A very precise boundary element solution of the exact Stokes flow surface integral equation has been implemented in our Fortan 90 program BEST. In our previous work (Aragon & Hahn, Biophys. J. 2006, 91: 1591-1603; J. Chem. Theory and Comput. 2006, 2: 1416-1428) we obtained very precise values of the tensorial transport properties (translation, rotation, and intrinsic viscosity) for a large set of proteins with a uniform water hydration thickness of 0.11 nm. In this work, we utilize the surface stress distribution thus obtained to evaluate the flow field as a function of distance away from the hydrodynamic surface for a variety of surface features in a dimpled sphere (test case) and for the proteins myoglobin, lysozyme, and human serum albumin. We demonstrate that solvent in small to large pockets on the hydrodynamic surface moves with the protein with distances up to 2 nm for deep pockets regardless of the direction of motion of the protein. On the other hand, the fluid flow pattern on protruding portions of the hydrodynamic surface decays much more rapidly with distance from the surface. The implications of these results with respect to the amount of water of associated with the surface and the rate of transport to active enzymatic sites in stirred solutions is discussed.

  4. 3D-finite element analyses of cusp movements in a human upper premolar, restored with adhesive resin-based composites.

    PubMed

    Ausiello, P; Apicella, A; Davidson, C L; Rengo, S

    2001-10-01

    The combination of diverse materials and complex geometry makes stress distribution analysis in teeth very complicated. Simulation in a computerized model might enable a study of the simultaneous interaction of the many variables. A 3D solid model of a human maxillary premolar was prepared and exported into a 3D-finite element model (FEM). Additionally, a generic class II MOD cavity preparation and restoration was simulated in the FEM model by a proper choice of the mesh volumes. A validation procedure of the FEM model was executed based on a comparison of theoretical calculations and experimental data. Different rigidities were assigned to the adhesive system and restorative materials. Two different stress conditions were simulated: (a) stresses arising from the polymerization shrinkage and (b) stresses resulting from shrinkage stress in combination with vertical occlusal loading. Three different cases were analyzed: a sound tooth, a tooth with a class II MOD cavity, adhesively restored with a high (25 GPa) and one with a low (12.5GPa) elastic modulus composite. The cusp movements induced by polymerization stress and (over)-functional occlusal loading were evaluated. While cusp displacement was higher for the more rigid composites due to the pre-stressing from polymerization shrinkage, cusp movements turned out to be lower for the more flexible composites in case the restored tooth which was stressed by the occlusal loading. This preliminary study by 3D FEA on adhesively restored teeth with a class II MOD cavity indicated that Young's modulus values of the restorative materials play an essential role in the success of the restoration. Premature failure due to stresses arising from polymerization shrinkage and occlusal loading can be prevented by proper selection and combination of materials. PMID:11522306

  5. Asymptotic boundary conditions with immersed finite elements for interface magnetostatic/electrostatic field problems with open boundary

    NASA Astrophysics Data System (ADS)

    Chu, Yuchuan; Cao, Yong; He, Xiaoming; Luo, Min

    2011-11-01

    Many of the magnetostatic/electrostatic field problems encountered in aerospace engineering, such as plasma sheath simulation and ion neutralization process in space, are not confined to finite domain and non-interface problems, but characterized as open boundary and interface problems. Asymptotic boundary conditions (ABC) and immersed finite elements (IFE) are relatively new tools to handle open boundaries and interface problems respectively. Compared with the traditional truncation approach, asymptotic boundary conditions need a much smaller domain to achieve the same accuracy. When regular finite element methods are applied to an interface problem, it is necessary to use a body-fitting mesh in order to obtain the optimal convergence rate. However, immersed finite elements possess the same optimal convergence rate on a Cartesian mesh, which is critical to many applications. This paper applies immersed finite element methods and asymptotic boundary conditions to solve an interface problem arising from electric field simulation in composite materials with open boundary. Numerical examples are provided to demonstrate the high global accuracy of the IFE method with ABC based on Cartesian meshes, especially around both interface and boundary. This algorithm uses a much smaller domain than the truncation approach in order to achieve the same accuracy.

  6. The 3D flow structures generated by a pair of cubic roughness elements in a turbulent channel flow resolved using holographic microscopy

    NASA Astrophysics Data System (ADS)

    Gao, Jian; Katz, Joseph

    2015-11-01

    In studies of turbulent flows over rough walls, considerable efforts have been put on the overall effects of roughness parameters such as roughness height and spatial arrangement on the mean profiles and turbulence statistics. However there is very little experimental data on the generation, evolution, and interaction among roughness-initiated turbulent structures, which are essential for elucidating the near-wall turbulence production. As a first step, we approach this problem experimentally by applying digital holographic microscopy (DHM) to measure the flow and turbulence around a pair of cubic roughness elements embedded in the inner part of a high Reynolds number turbulent channel flow (Reτ = 2000 - 5000). The ratio of half-channel height (h) to cube height (a) is 25, and the cubes are aligned in the spanwise direction, and separated by 1.5 a. DHM provides high-resolution three-dimensional (3D) three-component (3C) velocity distributions. The presentation discusses methods to improve the data accuracy, both during the hologram acquisition and particle tracking phases. First, we compare and mutually validate velocity fields obtained from a two-view DHM system. Subsequently, during data processing, the seven criteria used for particle tracking is validated and augmented by planar tracking of particle image projections. Sample results reveal instantaneous 3D velocity fields and vortical structures resolved in fine details of several wall units. Funded by NSF and ONR.

  7. Investigation and optimization of a finite element simulation of transducer array systems for 3D ultrasound computer tomography with respect to electrical impedance characteristics

    NASA Astrophysics Data System (ADS)

    Kohout, B.; Pirinen, J.; Ruiter, N. V.

    2012-03-01

    The established standard screening method to detect breast cancer is X-ray mammography. However X-ray mammography often has low contrast for tumors located within glandular tissue. A new approach is 3D Ultrasound Computer Tomography (USCT), which is expected to detect small tumors at an early stage. This paper describes the development, improvement and the results of Finite Element Method (FEM) simulations of the Transducer Array System (TAS) used in our 3D USCT. The focus of this work is on researching the influence of meshing and material parameters on the electrical impedance curves. Thereafter, these findings are used to optimize the simulation model. The quality of the simulation was evaluated by comparing simulated impedance characteristics with measured data of the real TAS. The resulting FEM simulation model is a powerful tool to analyze and optimize transducer array systems applied for USCT. With this simulation model, the behavior of TAS for different geometry modifications was researched. It provides a means to understand the acoustical performances inside of any ultrasound transducer represented by its electrical impedance characteristic.

  8. Computation of Sound Propagation by Boundary Element Method

    NASA Technical Reports Server (NTRS)

    Guo, Yueping

    2005-01-01

    This report documents the development of a Boundary Element Method (BEM) code for the computation of sound propagation in uniform mean flows. The basic formulation and implementation follow the standard BEM methodology; the convective wave equation and the boundary conditions on the surfaces of the bodies in the flow are formulated into an integral equation and the method of collocation is used to discretize this equation into a matrix equation to be solved numerically. New features discussed here include the formulation of the additional terms due to the effects of the mean flow and the treatment of the numerical singularities in the implementation by the method of collocation. The effects of mean flows introduce terms in the integral equation that contain the gradients of the unknown, which is undesirable if the gradients are treated as additional unknowns, greatly increasing the sizes of the matrix equation, or if numerical differentiation is used to approximate the gradients, introducing numerical error in the computation. It is shown that these terms can be reformulated in terms of the unknown itself, making the integral equation very similar to the case without mean flows and simple for numerical implementation. To avoid asymptotic analysis in the treatment of numerical singularities in the method of collocation, as is conventionally done, we perform the surface integrations in the integral equation by using sub-triangles so that the field point never coincide with the evaluation points on the surfaces. This simplifies the formulation and greatly facilitates the implementation. To validate the method and the code, three canonic problems are studied. They are respectively the sound scattering by a sphere, the sound reflection by a plate in uniform mean flows and the sound propagation over a hump of irregular shape in uniform flows. The first two have analytical solutions and the third is solved by the method of Computational Aeroacoustics (CAA), all of which

  9. Non-invasive measurement of cholesterol in human blood by impedance technique: an investigation by 3D finite element field modelling

    NASA Astrophysics Data System (ADS)

    Aristovich, Ekaterina; Khan, Sanowar

    2013-06-01

    This paper concerns detection of particle concentration (e.g. cholesterol) in conductive media (e.g. human blood) by impedance technique. The technique is based on changes in the impedance measurement across a given conducting medium due to changes in the particle concentration. The impedance is calculated by calculating the current through the conducting media produced by electric field distribution between two electrodes. This is done by modelling and computation of 3D electric fields between the electrodes for known voltages applied between them using the well-known finite element method (FEM). The complexity of such FE models is attributed to particle distribution, their geometric and material parameters, and their shape and size which can be of many orders of magnitude smaller than the overall problem domain under investigation. This paper overcomes this problem by adopting an effective particle coagulation (aggregation) strategy in FE modelling without significantly affecting the accuracy of field computation.

  10. Full-vectorial finite element method based eigenvalue algorithm for the analysis of 2D photonic crystals with arbitrary 3D anisotropy.

    PubMed

    Hsu, Sen-Ming; Chang, Hung-Chun

    2007-11-26

    A full-vectorial finite element method based eigenvalue algorithm is developed to analyze the band structures of two-dimensional (2D) photonic crystals (PCs) with arbitray 3D anisotropy for in-planewave propagations, in which the simple transverse-electric (TE) or transverse-magnetic (TM) modes may not be clearly defined. By taking all the field components into consideration simultaneously without decoupling of the wave modes in 2D PCs into TE and TM modes, a full-vectorial matrix eigenvalue equation, with the square of the wavenumber as the eigenvalue, is derived. We examine the convergence behaviors of this algorithm and analyze 2D PCs with arbitrary anisotropy using this algorithm to demonstrate its correctness and usefulness by explaining the numerical results theoretically. PMID:19550864

  11. Exact geometry solid-shell element based on a sampling surfaces technique for 3D stress analysis of doubly-curved composite shells

    NASA Astrophysics Data System (ADS)

    Kulikov, G. M.; Mamontov, A. A.; Plotnikova, S. V.; Mamontov, S. A.

    2015-11-01

    A hybrid-mixed ANS four-node shell element by using the sampling surfaces (SaS) technique is developed. The SaS formulation is based on choosing inside the nth layer In not equally spaced SaS parallel to the middle surface of the shell in order to introduce the displacements of these surfaces as basic shell variables. Such choice of unknowns with the consequent use of Lagrange polynomials of degree In - 1 in the thickness direction for each layer permits the presentation of the layered shell formulation in a very compact form. The SaS are located inside each layer at Chebyshev polynomial nodes that allows one to minimize uniformly the error due to the Lagrange interpolation. To implement the efficient analytical integration throughout the element, the enhanced ANS method is employed. The proposed hybrid-mixed four-node shell element is based on the Hu-Washizu variational equation and exhibits a superior performance in the case of coarse meshes. It could be useful for the 3D stress analysis of thick and thin doubly-curved shells since the SaS formulation gives the possibility to obtain numerical solutions with a prescribed accuracy, which asymptotically approach the exact solutions of elasticity as the number of SaS tends to infinity.

  12. High-resolution high-sensitivity elemental imaging by secondary ion mass spectrometry: from traditional 2D and 3D imaging to correlative microscopy

    NASA Astrophysics Data System (ADS)

    Wirtz, T.; Philipp, P.; Audinot, J.-N.; Dowsett, D.; Eswara, S.

    2015-10-01

    Secondary ion mass spectrometry (SIMS) constitutes an extremely sensitive technique for imaging surfaces in 2D and 3D. Apart from its excellent sensitivity and high lateral resolution (50 nm on state-of-the-art SIMS instruments), advantages of SIMS include high dynamic range and the ability to differentiate between isotopes. This paper first reviews the underlying principles of SIMS as well as the performance and applications of 2D and 3D SIMS elemental imaging. The prospects for further improving the capabilities of SIMS imaging are discussed. The lateral resolution in SIMS imaging when using the microprobe mode is limited by (i) the ion probe size, which is dependent on the brightness of the primary ion source, the quality of the optics of the primary ion column and the electric fields in the near sample region used to extract secondary ions; (ii) the sensitivity of the analysis as a reasonable secondary ion signal, which must be detected from very tiny voxel sizes and thus from a very limited number of sputtered atoms; and (iii) the physical dimensions of the collision cascade determining the origin of the sputtered ions with respect to the impact site of the incident primary ion probe. One interesting prospect is the use of SIMS-based correlative microscopy. In this approach SIMS is combined with various high-resolution microscopy techniques, so that elemental/chemical information at the highest sensitivity can be obtained with SIMS, while excellent spatial resolution is provided by overlaying the SIMS images with high-resolution images obtained by these microscopy techniques. Examples of this approach are given by presenting in situ combinations of SIMS with transmission electron microscopy (TEM), helium ion microscopy (HIM) and scanning probe microscopy (SPM).

  13. High-resolution high-sensitivity elemental imaging by secondary ion mass spectrometry: from traditional 2D and 3D imaging to correlative microscopy.

    PubMed

    Wirtz, T; Philipp, P; Audinot, J-N; Dowsett, D; Eswara, S

    2015-10-30

    Secondary ion mass spectrometry (SIMS) constitutes an extremely sensitive technique for imaging surfaces in 2D and 3D. Apart from its excellent sensitivity and high lateral resolution (50 nm on state-of-the-art SIMS instruments), advantages of SIMS include high dynamic range and the ability to differentiate between isotopes. This paper first reviews the underlying principles of SIMS as well as the performance and applications of 2D and 3D SIMS elemental imaging. The prospects for further improving the capabilities of SIMS imaging are discussed. The lateral resolution in SIMS imaging when using the microprobe mode is limited by (i) the ion probe size, which is dependent on the brightness of the primary ion source, the quality of the optics of the primary ion column and the electric fields in the near sample region used to extract secondary ions; (ii) the sensitivity of the analysis as a reasonable secondary ion signal, which must be detected from very tiny voxel sizes and thus from a very limited number of sputtered atoms; and (iii) the physical dimensions of the collision cascade determining the origin of the sputtered ions with respect to the impact site of the incident primary ion probe. One interesting prospect is the use of SIMS-based correlative microscopy. In this approach SIMS is combined with various high-resolution microscopy techniques, so that elemental/chemical information at the highest sensitivity can be obtained with SIMS, while excellent spatial resolution is provided by overlaying the SIMS images with high-resolution images obtained by these microscopy techniques. Examples of this approach are given by presenting in situ combinations of SIMS with transmission electron microscopy (TEM), helium ion microscopy (HIM) and scanning probe microscopy (SPM). PMID:26436905

  14. NFE approximation for the e/a determination for 3d-transition metal elements and their intermetallic compounds with Al and Zn

    NASA Astrophysics Data System (ADS)

    Sato, H.; Inukai, M.; Zijlstra, E. S.; Mizutani, U.

    2013-08-01

    First-principles full-potential linearized augmented plane wave (FLAPW) band calculations with subsequent FLAPW-Fourier analyses have been performed for elements from K to Cu in period 4 of the periodic table to determine the effective electrons per atom ratio (e/a). For the series of 3d-transition metals (TM), the determination of the square of the Fermi diameter ? , from which e/a is derived, has been recognized not to be straightforward because of the presence of a huge anomaly associated with the TM-d states across the Fermi level in the energy dispersion relation for electrons outside the muffin-tin sphere. The nearly free electron (NFE) approximation is newly devised to circumvent this difficulty. The centre of gravity energy ? is calculated from the energy distribution of the square of the Fourier coefficients for the FLAPW state ? . The NFE dispersion relation is constructed for the set of ? and ? in combination with the tetrahedron method. The resulting e/a values are distributed over positive numbers in the vicinity of unity for elements from Ti to Co. Instead, the e/a values for the early elements K, Ca and Sc and the late TM elements Ni and Cu were determined to be close to one, two, three, 0.50 and unity, respectively, using our previously designed local reading method. In addition, the composition dependence of e/a values for intermetallic compounds in X-TM (X = Al and Zn) alloy systems was studied to justify an appropriate choice between the local reading and NFE methods for respective elements.

  15. Experimental validation of finite element and boundary element methods for predicting structural vibration and radiated noise

    NASA Technical Reports Server (NTRS)

    Seybert, A. F.; Wu, T. W.; Wu, X. F.

    1994-01-01

    This research report is presented in three parts. In the first part, acoustical analyses were performed on modes of vibration of the housing of a transmission of a gear test rig developed by NASA. The modes of vibration of the transmission housing were measured using experimental modal analysis. The boundary element method (BEM) was used to calculate the sound pressure and sound intensity on the surface of the housing and the radiation efficiency of each mode. The radiation efficiency of each of the transmission housing modes was then compared to theoretical results for a finite baffled plate. In the second part, analytical and experimental validation of methods to predict structural vibration and radiated noise are presented. A rectangular box excited by a mechanical shaker was used as a vibrating structure. Combined finite element method (FEM) and boundary element method (BEM) models of the apparatus were used to predict the noise level radiated from the box. The FEM was used to predict the vibration, while the BEM was used to predict the sound intensity and total radiated sound power using surface vibration as the input data. Vibration predicted by the FEM model was validated by experimental modal analysis; noise predicted by the BEM was validated by measurements of sound intensity. Three types of results are presented for the total radiated sound power: sound power predicted by the BEM model using vibration data measured on the surface of the box; sound power predicted by the FEM/BEM model; and sound power measured by an acoustic intensity scan. In the third part, the structure used in part two was modified. A rib was attached to the top plate of the structure. The FEM and BEM were then used to predict structural vibration and radiated noise respectively. The predicted vibration and radiated noise were then validated through experimentation.

  16. 3-D magnetotelluric inversion including topography using deformed hexahedral edge finite elements and direct solvers parallelized on SMP computers - Part I: forward problem and parameter Jacobians

    NASA Astrophysics Data System (ADS)

    Kordy, M.; Wannamaker, P.; Maris, V.; Cherkaev, E.; Hill, G.

    2016-01-01

    We have developed an algorithm, which we call HexMT, for 3-D simulation and inversion of magnetotelluric (MT) responses using deformable hexahedral finite elements that permit incorporation of topography. Direct solvers parallelized on symmetric multiprocessor (SMP), single-chassis workstations with large RAM are used throughout, including the forward solution, parameter Jacobians and model parameter update. In Part I, the forward simulator and Jacobian calculations are presented. We use first-order edge elements to represent the secondary electric field (E), yielding accuracy O(h) for E and its curl (magnetic field). For very low frequencies or small material admittivities, the E-field requires divergence correction. With the help of Hodge decomposition, the correction may be applied in one step after the forward solution is calculated. This allows accurate E-field solutions in dielectric air. The system matrix factorization and source vector solutions are computed using the MKL PARDISO library, which shows good scalability through 24 processor cores. The factorized matrix is used to calculate the forward response as well as the Jacobians of electromagnetic (EM) field and MT responses using the reciprocity theorem. Comparison with other codes demonstrates accuracy of our forward calculations. We consider a popular conductive/resistive double brick structure, several synthetic topographic models and the natural topography of Mount Erebus in Antarctica. In particular, the ability of finite elements to represent smooth topographic slopes permits accurate simulation of refraction of EM waves normal to the slopes at high frequencies. Run-time tests of the parallelized algorithm indicate that for meshes as large as 176 × 176 × 70 elements, MT forward responses and Jacobians can be calculated in ˜1.5 hr per frequency. Together with an efficient inversion parameter step described in Part II, MT inversion problems of 200-300 stations are computable with total run times

  17. Magmatic Systems in 3-D

    NASA Astrophysics Data System (ADS)

    Kent, G. M.; Harding, A. J.; Babcock, J. M.; Orcutt, J. A.; Bazin, S.; Singh, S.; Detrick, R. S.; Canales, J. P.; Carbotte, S. M.; Diebold, J.

    2002-12-01

    Multichannel seismic (MCS) images of crustal magma chambers are ideal targets for advanced visualization techniques. In the mid-ocean ridge environment, reflections originating at the melt-lens are well separated from other reflection boundaries, such as the seafloor, layer 2A and Moho, which enables the effective use of transparency filters. 3-D visualization of seismic reflectivity falls into two broad categories: volume and surface rendering. Volumetric-based visualization is an extremely powerful approach for the rapid exploration of very dense 3-D datasets. These 3-D datasets are divided into volume elements or voxels, which are individually color coded depending on the assigned datum value; the user can define an opacity filter to reject plotting certain voxels. This transparency allows the user to peer into the data volume, enabling an easy identification of patterns or relationships that might have geologic merit. Multiple image volumes can be co-registered to look at correlations between two different data types (e.g., amplitude variation with offsets studies), in a manner analogous to draping attributes onto a surface. In contrast, surface visualization of seismic reflectivity usually involves producing "fence" diagrams of 2-D seismic profiles that are complemented with seafloor topography, along with point class data, draped lines and vectors (e.g. fault scarps, earthquake locations and plate-motions). The overlying seafloor can be made partially transparent or see-through, enabling 3-D correlations between seafloor structure and seismic reflectivity. Exploration of 3-D datasets requires additional thought when constructing and manipulating these complex objects. As numbers of visual objects grow in a particular scene, there is a tendency to mask overlapping objects; this clutter can be managed through the effective use of total or partial transparency (i.e., alpha-channel). In this way, the co-variation between different datasets can be investigated

  18. Prediction of Residual Stress Distributions in Welded Sections of P92 Pipes with Small Diameter and Thick Wall based on 3D Finite Element Simulation

    NASA Astrophysics Data System (ADS)

    Wang, Xiaowei; Gong, Jianming; Zhao, Yanping; Wang, Yanfei

    2015-05-01

    This study used ABAQUS finite element (FE) software to investigate the residual stress distributions of P92 welded pipes in both the as-weld and post weld heat treated (PWHT) condition. Sequential coupling quasi-static thermo-mechanical in conjunction with moving double ellipsoidal heat source and an element add/remove technique to simulate deposition of new weld material, are combined in the 3D FE analysis. To validate the simulation results, the residual stresses in axial direction at the surface of pipe were measured by X-ray diffraction technique and compared with the results of FE analysis. Detailed characteristic distributions of the residual stresses are discussed. Results show that the FE model can predict the residual stress distributions satisfactorily. Highest residual stresses on the outer surface are found in the last weld bead to be deposited. And the highest tensile residual stress for the full welded section take place in heat affected zone (HAZ) near the middle thickness. Larger residual sstress can be found around the welding start point along the pipe circumference. Comparison of heat treated specimen and untreated specimen illustrates that PWHT has a strong effect on the residual stress field.

  19. Adapting Data Processing To Compare Model and Experiment Accurately: A Discrete Element Model and Magnetic Resonance Measurements of a 3D Cylindrical Fluidized Bed.

    PubMed

    Boyce, Christopher M; Holland, Daniel J; Scott, Stuart A; Dennis, John S

    2013-12-18

    Discrete element modeling is being used increasingly to simulate flow in fluidized beds. These models require complex measurement techniques to provide validation for the approximations inherent in the model. This paper introduces the idea of modeling the experiment to ensure that the validation is accurate. Specifically, a 3D, cylindrical gas-fluidized bed was simulated using a discrete element model (DEM) for particle motion coupled with computational fluid dynamics (CFD) to describe the flow of gas. The results for time-averaged, axial velocity during bubbling fluidization were compared with those from magnetic resonance (MR) experiments made on the bed. The DEM-CFD data were postprocessed with various methods to produce time-averaged velocity maps for comparison with the MR results, including a method which closely matched the pulse sequence and data processing procedure used in the MR experiments. The DEM-CFD results processed with the MR-type time-averaging closely matched experimental MR results, validating the DEM-CFD model. Analysis of different averaging procedures confirmed that MR time-averages of dynamic systems correspond to particle-weighted averaging, rather than frame-weighted averaging, and also demonstrated that the use of Gaussian slices in MR imaging of dynamic systems is valid. PMID:24478537

  20. Adapting Data Processing To Compare Model and Experiment Accurately: A Discrete Element Model and Magnetic Resonance Measurements of a 3D Cylindrical Fluidized Bed

    PubMed Central

    2013-01-01

    Discrete element modeling is being used increasingly to simulate flow in fluidized beds. These models require complex measurement techniques to provide validation for the approximations inherent in the model. This paper introduces the idea of modeling the experiment to ensure that the validation is accurate. Specifically, a 3D, cylindrical gas-fluidized bed was simulated using a discrete element model (DEM) for particle motion coupled with computational fluid dynamics (CFD) to describe the flow of gas. The results for time-averaged, axial velocity during bubbling fluidization were compared with those from magnetic resonance (MR) experiments made on the bed. The DEM-CFD data were postprocessed with various methods to produce time-averaged velocity maps for comparison with the MR results, including a method which closely matched the pulse sequence and data processing procedure used in the MR experiments. The DEM-CFD results processed with the MR-type time-averaging closely matched experimental MR results, validating the DEM-CFD model. Analysis of different averaging procedures confirmed that MR time-averages of dynamic systems correspond to particle-weighted averaging, rather than frame-weighted averaging, and also demonstrated that the use of Gaussian slices in MR imaging of dynamic systems is valid. PMID:24478537

  1. A multi-patch nonsingular isogeometric boundary element method using trimmed elements

    NASA Astrophysics Data System (ADS)

    Wang, Yingjun; Benson, David J.; Nagy, Attila P.

    2015-07-01

    One of the major goals of isogeometric analysis is direct design-to-analysis, i.e., using computer-aided design (CAD) files for analysis without the need for mesh generation. One of the primary obstacles to achieving this goal is CAD models are based on surfaces, and not volumes. The boundary element method (BEM) circumvents this difficulty by directly working with the surfaces. The standard basis functions in CAD are trimmed nonuniform rational B-spline (NURBS). NURBS patches are the tensor product of one-dimensional NURBS, making the construction of arbitrary surfaces difficult. Trimmed NURBS use curves to trim away regions of the patch to obtain the desired shape. By coupling trimmed NURBS with a nonsingular BEM, the formulation proposed here comes close achieving the goal of direct design to analysis. Example calculations demonstrate its efficiency and accuracy.

  2. Three-Dimensional Boundary-Layer program (BL3D) for swept subsonic or supersonic wings with application to laminar flow control

    NASA Technical Reports Server (NTRS)

    Iyer, Venkit

    1993-01-01

    The theory, formulation, and solution of three-dimensional, compressible attached laminar flows, applied to swept wings in subsonic or supersonic flow are discussed. Several new features and modifications to an earlier general procedure described in NASA CR 4269, Jan. 1990 are incorporated. Details of interfacing the boundary-layer computation with solution of the inviscid Euler equations are discussed. A description of the computer program, complete with user's manual and example cases, is also included. Comparison of solutions with Navier-Stokes computations with or without boundary-layer suction is given. Output of solution profiles and derivatives required in boundary-layer stability analysis is provided.

  3. A combined finite element-boundary element formulation for solution of two-dimensional problems via CGFFT

    NASA Technical Reports Server (NTRS)

    Collins, Jeffery D.; Jin, Jian-Ming; Volakis, John L.

    1990-01-01

    A method for the computation of electromagnetic scattering from arbitrary two-dimensional bodies is presented. The method combines the finite element and boundary element methods leading to a system for solution via the conjugate gradient Fast Fourier Transform (FFT) algorithm. Two forms of boundaries aimed at reducing the storage requirement of the boundary integral are investigated. It is shown that the boundary integral becomes convolutional when a circular enclosure is chosen, resulting in reduced storage requirement when the system is solved via the conjugate gradient FFT method. The same holds for the ogival enclosure, except that some of the boundary integrals are not convolutional and must be carefully treated to maintain O(N) memory requirement. Results for several circular and ogival structures are presented and shown to be in excellent agreement with those obtained by traditional methods.

  4. A pseudo-3D approach based on electron backscatter diffraction and backscatter electron imaging to study the character of phase boundaries between Mg and long period stacking ordered phase in a Mg–2Y–Zn alloy

    SciTech Connect

    Afshar, Mehran Zaefferer, Stefan

    2015-03-15

    In Mg–2 at.% Y–1 at.% Zn alloys, the LPSO (Long Period Stacking Ordered) phase is important to improve mechanical properties of the material. The aim of this paper is to present a study on the phase boundary character in these two-phase alloys. Using EBSD pattern analysis it was found that the 24R structure is the dominant LPSO phase structure in the current alloy. The phase boundary character between the Mg matrix and the LPSO phase was investigated using an improved pseudo-3D EBSD (electron backscatter diffraction) technique in combination with BSE or SE (backscatter or secondary electron) imaging. A large amount of very low-angle phase boundaries was detected. The (0 0 0 2) plane in the Mg matrix which is parallel to the (0 0 0 24) plane in the LPSO phase was found to be the most frequent plane for these phase boundaries. This plane is supposed to be the habit plane of the eutectic co-solidification of the Mg matrix and the LPSO phase. - Highlights: • It is shown that for the investigated alloy the LPSO phase has mainly 24R crystal structure. • A new method is presented which allows accurate determination of the 5-parameter grain or phase boundary character. • It is found that the low-angle phase boundaries appearing in the alloy all have basal phase boundary planes.

  5. Validation of finite element and boundary element methods for predicting structural vibration and radiated noise

    NASA Technical Reports Server (NTRS)

    Seybert, A. F.; Wu, X. F.; Oswald, Fred B.

    1992-01-01

    Analytical and experimental validation of methods to predict structural vibration and radiated noise are presented. A rectangular box excited by a mechanical shaker was used as a vibrating structure. Combined finite element method (FEM) and boundary element method (BEM) models of the apparatus were used to predict the noise radiated from the box. The FEM was used to predict the vibration, and the surface vibration was used as input to the BEM to predict the sound intensity and sound power. Vibration predicted by the FEM model was validated by experimental modal analysis. Noise predicted by the BEM was validated by sound intensity measurements. Three types of results are presented for the total radiated sound power: (1) sound power predicted by the BEM modeling using vibration data measured on the surface of the box; (2) sound power predicted by the FEM/BEM model; and (3) sound power measured by a sound intensity scan. The sound power predicted from the BEM model using measured vibration data yields an excellent prediction of radiated noise. The sound power predicted by the combined FEM/BEM model also gives a good prediction of radiated noise except for a shift of the natural frequencies that are due to limitations in the FEM model.

  6. A comparison of boundary element and finite element methods for modeling axisymmetric polymeric drop deformation

    NASA Astrophysics Data System (ADS)

    Hooper, Russell; Toose, Matthijs; Macosko, Christopher W.; Derby, Jeffrey J.

    2001-12-01

    A modified boundary element method (BEM) and the DEVSS-G finite element method (FEM) are applied to model the deformation of a polymeric drop suspended in another fluid subjected to start-up uniaxial extensional flow. The effects of viscoelasticity, via the Oldroyd-B differential model, are considered for the drop phase using both FEM and BEM and for both the drop and matrix phases using FEM. Where possible, results are compared with the linear deformation theory. Consistent predictions are obtained among the BEM, FEM, and linear theory for purely Newtonian systems and between FEM and linear theory for fully viscoelastic systems. FEM and BEM predictions for viscoelastic drops in a Newtonian matrix agree very well at short times but differ at longer times, with worst agreement occurring as critical flow strength is approached. This suggests that the dominant computational advantages held by the BEM over the FEM for this and similar problems may diminish or even disappear when the issue of accuracy is appropriately considered. Fully viscoelastic problems, which are only feasible using the FEM formulation, shed new insight on the role of viscoelasticity of the matrix fluid in drop deformation. Copyright

  7. Task reports on developing techniques for scattering by 3D composite structures and to generate new solutions in diffraction theory using higher order boundary conditions

    NASA Technical Reports Server (NTRS)

    Volakis, John L.

    1991-01-01

    There are two tasks described in this report. First, an extension of a two dimensional formulation is presented for a three dimensional body of revolution. A Fourier series expansion of the vector electric and magnetic fields is employed to reduce the dimensionality of the system, and an exact boundary condition is employed to terminate the mesh. The mesh termination boundary is chosen such that it leads to convolutional boundary operators for low O(n) memory demand. Second, rigorous uniform geometrical theory of diffraction (UTD) diffraction coefficients are presented for a coated convex cylinder simulated with generalized impedance boundary conditions. Ray solutions are obtained which remain valid in the transition region and reduce uniformly those in the deep lit and shadow regions. A uniform asymptotic solution is also presented for observations in the close vicinity of the cylinder.

  8. Prediction of sound fields in acoustical cavities using the boundary element method. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Kipp, C. R.; Bernhard, R. J.

    1985-01-01

    A method was developed to predict sound fields in acoustical cavities. The method is based on the indirect boundary element method. An isoparametric quadratic boundary element is incorporated. Pressure, velocity and/or impedance boundary conditions may be applied to a cavity by using this method. The capability to include acoustic point sources within the cavity is implemented. The method is applied to the prediction of sound fields in spherical and rectangular cavities. All three boundary condition types are verified. Cases with a point source within the cavity domain are also studied. Numerically determined cavity pressure distributions and responses are presented. The numerical results correlate well with available analytical results.

  9. Chromosome boundary elements and regulation of heterochromatin spreading

    PubMed Central

    Wang, Jiyong; Lawry, Stephanie T.; Cohen, Allison L.; Jia, Songtao

    2014-01-01

    Chromatin is generally classified as euchromatin or heterochromatin, each with distinct histone modifications, compaction levels, and gene expression patterns. Although the proper formation of heterochromatin is essential for maintaining genome integrity and regulating gene expression, heterochromatin can also spread into neighboring regions in a sequence-independent manner, leading to the inactivation of genes. Because the distance of heterochromatin spreading is stochastic, the formation of boundaries, which block the spreading of heterochromatin, is critical for maintaining stable gene expression patterns. Here we review the current understanding of the mechanisms underlying heterochromatin spreading and boundary formation. PMID:25192661

  10. A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries

    PubMed Central

    Ge, Liang; Sotiropoulos, Fotis

    2008-01-01

    A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [1]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow through a mechanical, bileaflet heart valve mounted in a model straight aorta with an anatomical-like triple sinus. PMID:19194533

  11. A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries.

    PubMed

    Ge, Liang; Sotiropoulos, Fotis

    2007-08-01

    A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [1]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow through a mechanical, bileaflet heart valve mounted in a model straight aorta with an anatomical-like triple sinus. PMID:19194533

  12. Some solutions of the 3D Laplace equation in a layer with oscillating boundary describing an array of nanotubes and an application to cold field emission. I. Regular array

    NASA Astrophysics Data System (ADS)

    Brüning, J.; Dobrokhotov, S. Yu.; Minenkov, D. S.

    2011-12-01

    The aim of this paper is to construct solutions of the Dirichlet problem for the 3D Laplace equation in a layer with highly oscillating boundary. The boundary simulates the surface of a nanotube array, and the solutions are applied to compute the cold field electron emission. We suggest a family of exact solutions that solve the problem for a boundary with appropriate geometry. These solutions, along with the Fowler-Nordheim formula, allow one to present explicit asymptotic formulas for the electric field and the emission current. In this part of the paper, we consider the main mathematical aspects, restricting ourselves to the analysis of properties of the potential created by a single tube and a regular array of tubes. In the next part, we shall consider some cases corresponding to nonregular arrays of tubes and concrete physical examples.

  13. Implementation of the Blade Element Momentum Method into a High-Resolution 3-D Atmospheric Model: Evaluating a Parameterization for Wind Turbines

    NASA Astrophysics Data System (ADS)

    Sta. Maria, M.; Ketefian, G. S.; Jacobson, M. Z.

    2010-12-01

    In order to simulate better the effects of wind turbines on meteorology and climate, a parameterization based on the Blade Element Momentum (BEM) theory was developed and integrated into a high-resolution 3-D non-hydrostatic atmospheric model that conserves several domain-integrated quantities. The BEM model calculates the forces the blade exerts on the atmosphere and feeds it back as body forces in the momentum equations of the atmospheric model. Since the BEM method calculates these forces along a turbine blade, the parameterization allows for model spatial resolutions on the order of a few to tens of meters. This study examines the advantages and limitations of such a parameterization. The BEM calculates the rotational force that the blades exert on the air, and this study investigates whether this parameterization is able to capture rotation in the wake. The dependency on model resolution is also studied to determine the optimum model resolution for simulating wind turbine-atmosphere interactions. The atmospheric model is also used to estimate the distance downwind of a turbine at which wind speeds recover. This is an important parameter for determining optimal wind farm spacing. Model results will be compared with previous parameterizations and wake data gathered in the field and from wind tunnel studies.

  14. An elastic/viscoelastic finite element analysis method for crustal deformation using a 3-D island-scale high-fidelity model

    NASA Astrophysics Data System (ADS)

    Ichimura, Tsuyoshi; Agata, Ryoichiro; Hori, Takane; Hirahara, Kazuro; Hashimoto, Chihiro; Hori, Muneo; Fukahata, Yukitoshi

    2016-07-01

    As a result of the accumulation of high-resolution observation data, 3-D high-fidelity crustal structure data for large domains are becoming available. However, it has been difficult to use such data to perform elastic/viscoelastic crustal deformation analyses in large domains with quality assurance of the numerical simulation that guarantees convergence of the numerical solution with respect to the discretization size because the costs of analysis are significantly high. This paper proposes a method of constructing a high-fidelity crustal structure finite element (FE) model using high-fidelity crustal structure data and fast FE analysis to reduce the costs of analysis (based on automatic FE model generation for parallel computation, OpenMP/MPI hybrid parallel computation on distributed memory computers, a geometric multigrid, variable preconditioning and multiple precision arithmetic). Using the proposed methods, we construct 10 billion degree-of-freedom high-fidelity crustal structure FE models for the entire Japan, and conduct elastic/viscoelastic crustal deformation analysis using this model with enough high accuracy of the numerical simulation.

  15. 3D finite element simulation of microstructure evolution in blade forging of Ti-6Al-4V alloy based on the internal state variable models

    NASA Astrophysics Data System (ADS)

    Luo, Jiao; Wu, Bin; Li, Miao-Quan

    2012-02-01

    The physically-based internal state variable (ISV) models were used to describe the changes of dislocation density, grain size, and flow stress in the high temperature deformation of titanium alloys in this study. The constants of the present models could be identified based on experimental results, which were conducted at deformation temperatures ranging from 1093 K to 1303 K, height reductions ranging from 20% to 60%, and the strain rates of 0.001, 0.01, 0.1, 1.0, and 10.0 s-1. The physically-based internal state variable models were implemented into the commercial finite element (FE) code. Then, a three-dimensional (3D) FE simulation system coupling of deformation, heat transfer, and microstructure evolution was developed for the blade forging of Ti-6Al-4V alloy. FE analysis was carried out to simulate the microstructure evolution in the blade forging of Ti-6Al-4V alloy. Finally, the blade forging tests of Ti-6Al-4V alloy were performed to validate the results of FE simulation. According to the tensile tests, it is seen that the mechanical properties, such as tensile strength and elongation, satisfy the application requirements well. The maximum and minimum differences between the calculated and experimental grain size of primary α phase are 11.71% and 4.23%, respectively. Thus, the industrial trials show a good agreement with FE simulation of blade forging.

  16. Genetic and phenotypic analysis of the mouse mutant mh2J, an Ap3d allele caused by IAP element insertion.

    PubMed

    Kantheti, Prameela; Diaz, Maria E; Peden, Andrew E; Seong, Eunju E; Dolan, David F; Robinson, Margaret S; Noebels, Jeffrey L; Burmeister, Margit L

    2003-03-01

    Mocha (mh), a mouse model for Hermansky-Pudlak syndrome (HPS), is characterized by platelet storage pool deficiency, pigment dilution, and deafness as well as neurological abnormalities. The trans-Golgi/endosome adaptor-related complex AP-3 is missing in mh mice owing to a deletion in the gene encoding the delta subunit. Mice mutant for a second allele, mh(2J), are as hyperactive as mh, and display both spike wave absence and generalized tonic clonic seizures, but have less coat color dilution, no hearing loss, and no hypersynchronized EEG. Here we show that the mh(2J) mutation is due to an IAP element insertion in the Ap3d gene leading to a C-terminally truncated protein. Despite correct assembly of the AP-3 complex and localization to the trans-Golgi network and endosomes, AP-3 function in neurons remains impaired. While mh mice show a severe reduction of vesicular zinc (TIMM staining) owing to mislocalization and degradation of the Zinc transporter ZnT-3, the TIMM and ZnT-3 staining patterns in mh(2J) varies, with normal expression in hippocampal mossy fibers, but abnormal patterns in neocortex. These results indicate that the N-terminal portion of the delta subunit is sufficient for AP-3 complex assembly and subcellular localization to the TGN/endosomes, while subsequent function is regulated in part by cell-specific interactions with the C-terminal portion. PMID:12647238

  17. First-principles study of site occupancy of 3d, 4d and 5d transition-metal elements in L10TiAl

    SciTech Connect

    Jiang, Chao

    2008-01-01

    Using a statistical-mechanical Wagner-Schottky model parametrized by first-principles density-functional (DFT-GGA) calculations on 32-atom supercells, we predict the lattice site occupancy of 3d (Ti-Cu), 4d (Zr-Ag) and 5d (Hf-Au) transition-metal elements in L10 TiAl intermetallic compound as a function of both alloy composition and temperature. The effects of local atomic relaxations, anisotropic lattice distortions, as well as magnetism on point defect energetics are fully taken into account. Our calculations show that, at all alloy compositions and temperatures, Zr and Hf consistently show a preference for the Ti sublattice, while Co, Ru, Rh, Pd, Ag, Re, Os, Ir, Pt and Au consistently show a preference for the Al sublattice. In contrast, the site preference of V, Cr, Mn, Fe, Ni, Cu, Nb, Mo, Tc, Ta and W strongly depend on both alloy stoichiometry and temperature. Our calculated results compare favorably with the existing theoretical and experimental studies in the literature.

  18. Implementation of a 3D porcine lumbar finite element model for the simulation of monolithic spinal rods with variable flexural stiffness.

    PubMed

    Brummund, Martin; Brailovski, Vladimir; Facchinello, Yann; Petit, Yvan; Mac-Thiong, Jean-Marc

    2015-08-01

    Monolithic superelastic-elastoplastic spinal rods (MSER) are promising candidates to provide (i) dynamic stabilisation in spinal segments prone to mechanical stress concentration and adjacent segment disease and (ii) to provide fusion-ready stabilization in spinal segments at risk of implant failure. However, the stiffness distributions along the rod's longitudinal axis that best meet clinical requirements remain unknown. The present study is part of a mixed numerical experimental research project and aims at the implementation of a 3D finite element model of the porcine lumbar spine to study the role of MSER material properties and stiffness distributions on the intradiscal pressure distribution in the adjacent segment. In this paper, preliminary intradiscal pressure predictions obtained at one functional spinal unit are presented. Due to a lack of porcine material property data, these predictions were obtained on the basis of uncalibrated human vertebral disc data which were taken from the literature. The results indicate that human annulus and nucleus data predict experimental porcine in vivo and in vitro data reasonably well for the compressive forces of varying magnitudes. PMID:26736412

  19. Effect of type of luting agents on stress distribution in the bone surrounding implants supporting a three-unit fixed dental prosthesis: 3D finite element analysis

    PubMed Central

    Ghasemi, Ehsan; Abedian, Alireza; Iranmanesh, Pedram; Khazaei, Saber

    2015-01-01

    Background: Osseointegration of dental implants is influenced by many biomechanical factors that may be related to stress distribution. The aim of this study was to evaluate the effect of type of luting agent on stress distribution in the bone surrounding implants, which support a three-unit fixed dental prosthesis (FDP) using finite element (FE) analysis. Materials and Methods: A 3D FE model of a three-unit FDP was designed replacing the maxillary first molar with maxillary second premolar and second molar as the abutments using CATIA V5R18 software and analyzed with ABAQUS/CAE 6.6 version. The model was consisted of 465108 nodes and 86296 elements and the luting agent thickness was considered 25 μm. Three load conditions were applied on eight points in each functional cusp in horizontal (57.0 N), vertical (200.0 N) and oblique (400.0 N, θ = 120°) directions. Five different luting agents were evaluated. All materials were assumed to be linear elastic, homogeneous, time independent and isotropic. Results: For all luting agent types, the stress distribution pattern in the cortical bone, connectors, implant and abutment regions was almost uniform among the three loads. Furthermore, the maximum von Mises stress of the cortical bone was at the palatal side of second premolar. Likewise, the maximum von Mises stress in the connector region was in the top and bottom of this part. Conclusion: Luting agents transfer the load to cortical bone and different types of luting agents do not affect the pattern of load transfer. PMID:25709676

  20. 3-D thermal analysis using finite difference technique with finite element model for improved design of components of rocket engine turbomachines for Space Shuttle Main Engine SSME

    NASA Technical Reports Server (NTRS)

    Sohn, Kiho D.; Ip, Shek-Se P.

    1988-01-01

    Three-dimensional finite element models were generated and transferred into three-dimensional finite difference models to perform transient thermal analyses for the SSME high pressure fuel turbopump's first stage nozzles and rotor blades. STANCOOL was chosen to calculate the heat transfer characteristics (HTCs) around the airfoils, and endwall effects were included at the intersections of the airfoils and platforms for the steady-state boundary conditions. Free and forced convection due to rotation effects were also considered in hollow cores. Transient HTCs were calculated by taking ratios of the steady-state values based on the flow rates and fluid properties calculated at each time slice. Results are presented for both transient plots and three-dimensional color contour isotherm plots; they were also converted into universal files to be used for FEM stress analyses.

  1. The impact of non-local buoyancy flux on the convective boundary layer development as simulated by a 3-D TKE-based subgrid mixing scheme in a mesoscale model

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Bao, Jian-Wen; Chen, Baode

    2016-04-01

    This presentation highlights a study in which a series of dry convective boundary layer (CBL) simulations are carried out using a generalized 3-dimensional (3-D) TKE-based parameterization scheme of sub-grid turbulent mixing in the Weather Research and Forecasting (WRF) model. The simulated characteristics of dry CBL are analyzed for the purpose of evaluating this scheme in comparison with a commonly-used scheme for sub-grid turbulent mixing in NWP models (i.e., the Mellor-Yamada 1.5-order TKE scheme). The same surface layer scheme is used in all the simulations so that only the sensitivity of the WRF model to different parameterizations of the sub-grid turbulent mixing above the surface layer is examined. The effect of horizontal grid resolution on the simulated CBL is also examined by running the model with grid sizes of 200, 400 m, 600 m, 1 km and 3 km. We will first compare the characteristics of the simulated CBL using the two schemes with the WRF LES dataset. We will then illustrate the importance of including the non-local component in the vertical buoyancy specification in the 3-D TKE-based scheme. Finally, comparing the results from the simulations against coarse-grained WRF LES dataset, we will show the feasibility and advantage of replacing conventional planetary boundary layer parameterization schemes with a scale-aware 3-D TKE-based scheme in the WRF model.

  2. Computer-aided structural engineering (CASE) project: Application of finite-element, grid generation, and scientific visualization techniques to 2-D and 3-d seepage and ground-water modeling. Final report

    SciTech Connect

    Tracy, F.T.

    1991-09-01

    This report describes new advances in the computational modeling of ground water and seepage using the finite element method (FEM) in conjunction with tools and techniques typically used by the aerospace engineers. The unsolved environmental issues regarding our hazardous and toxic waste problems must be resolved, and significant resources must be placed on this effort. Some military bases are contaminated with hazardous waste that has entered the groundwater domain. A groundwater model that takes into account contaminant flow is therefore critical. First, an extension of the technique of generating an orthogonal structured grid (using the Cauchy-Riemann equations) to automatically generate a flow net for two-dimensional (2-D) steady-state seepage problems is presented for various boundary conditions. Second, a complete implementation of a three-dimensional (3-D) seepage package is described where (1) grid generation is accomplished using the EAGLE program, (2) the seepage and groundwater analysis for either confined or unconfined steady-state flow, homogeneous or inhomogeneous media, and isotropic or anisotropic soil is accomplished with no restriction on the FE grid or requirement of an initial guess of the free surface for unconfined flow problems, and (3) scientific visualization is accomplished using the program FAST developed by NASA.

  3. An axisymmetric boundary element formulation of sound wave propagation in fluids including viscous and thermal losses.

    PubMed

    Cutanda-Henríquez, Vicente; Juhl, Peter Møller

    2013-11-01

    The formulation presented in this paper is based on the boundary element method (BEM) and implements Kirchhoff's decomposition into viscous, thermal, and acoustic components, which can be treated independently everywhere in the domain except on the boundaries. The acoustic variables with losses are solved using extended boundary conditions that assume (i) negligible temperature fluctuations at the boundary and (ii) normal and tangential matching of the boundary's particle velocity. The proposed model does not require constructing a special mesh for the viscous and thermal boundary layers as is the case with the existing finite element method (FEM) implementations with losses. The suitability of this approach is demonstrated using an axisymmetrical BEM and two test cases where the numerical results are compared with analytical solutions. PMID:24180751

  4. Study on the Influence of the Refinement of a 3-D Finite Element Mesh in Springback Evaluation of Plane-Strain Channel Sections

    NASA Astrophysics Data System (ADS)

    Padmanabhan, R.; Oliveira, M. C.; Baptista, A. J.; Alves, J. L.; Menezes, L. F.

    2007-05-01

    Springback phenomenon associated with the elastic properties of sheet metals makes the design of forming dies a complex task. Thus, to develop consistent algorithms for springback compensation an accurate prediction of the amount of springback is mandatory. The numerical simulation using the finite element method is consensually the only feasible method to predict springback. However, springback prediction is a very complicated task and highly sensitive to various numerical parameters of finite elements (FE), such as: type, order, integration scheme, shape and size, as well the time integration formulae and the unloading strategy. All these numerical parameters make numerical simulation of springback more sensitive to numerical tolerances than the forming operation. In case of an unconstrained cylindrical bending, the in-plane to thickness FE size ratio is more relevant than the number of FE layers through-thickness, for the numerical prediction of final stress and strain states, variables of paramount importance for an accurate springback prediction. The aim of the present work is to evaluate the influence of the refinement of a 3-D FE mesh, namely the in-plane mesh refinement and the number of through-thickness FE layers, in springback prediction. The selected example corresponds to the first stage of the "Numisheet'05 Benchmark♯3", which consists basically in the sheet forming of a channel section in an industrial-scale channel draw die. The physical drawbeads are accurately taken into account in the numerical model in order to accurately reproduce its influence during the forming process simulation. FEM simulations were carried out with the in-house code DD3IMP. Solid finite elements were used. They are recommended for accuracy in FE springback simulation when the ratio between the tool radius and blank thickness is lower than 5-6. In the selected example the drawbead radius is 4.0 mm. The influence of the FE mesh refinement in springback prediction is

  5. Finite Element Modeling of Crustal Deformation in the North American Caribbean Plate Boundary Zone

    NASA Technical Reports Server (NTRS)

    Lundgren, P.; Russo, R.

    1995-01-01

    We have developed 2-dimensional spherical shell finite element models of elastic displacement in the North American-Caribbean (NA-Ca) plate boundary zone (PBZ) in order to quantify crust and fault motions in the PBZ.

  6. An application of boundary element method calculations to hearing aid systems: The influence of the human head

    NASA Astrophysics Data System (ADS)

    Rasmussen, Karsten B.; Juhl, Peter

    2001-05-01

    Boundary element method (BEM) calculations are used for the purpose of predicting the acoustic influence of the human head in two cases. In the first case the sound source is the mouth and in the second case the sound is plane waves arriving from different directions in the horizontal plane. In both cases the sound field is studied in relation to two positions above the right ear being representative of hearing aid microphone positions. Both cases are relevant for hearing aid development. The calculations are based upon a direct BEM implementation in Matlab. The meshing is based on the original geometrical data files describing the B&K Head and Torso Simulator 4128 combined with a 3D scan of the pinna.

  7. Evidence for a single impact at the Cretaceous-Tertiary boundary from trace elements

    NASA Technical Reports Server (NTRS)

    Gilmour, Iain; Anders, Edward

    1988-01-01

    Not only meteoritic elements (Ir, Ni, Au, Pt metals), but also some patently non-meteoritic elements (As, Sb) are enriched at the K-T boundary. Eight enriched elements at 7 K-T sites were compared and it was found that: All have fairly constant proportions to Ir and Kilauea (invoked as an example of a volcanic source of Ir by opponents of the impact theory) has too little of 7 of these 8 elements to account for the boundary enrichments. The distribution of trace elements at the K-T boundary was reexamined using data from 11 sites for which comprehensive are available. The meteoritic component can be assessed by first normalizing the data to Ir, the most obviously extraterrestrial element, and then to Cl chondrites. The double normalization reduces the concentration range from 11 decades to 5 and also facilitates the identification of meteoritic elements. At sites where trace elements were analyzed in sub-divided samples of boundary clay, namely, Caravaca (SP), Stevns Klint (DK), Flaxbourne River (NZ) and Woodside Creek (NZ), Sb, As and Zn are well correlated with Ir across the boundary implying a common deposition mechanism. Elemental carbon is also enriched by up to 10,000 x in boundary clay from 5 K-T sides and is correlated with Ir across the boundary at Woodside Creek. While biomass would appear to be the primary fuel source for this carbon a contribution from a fossil fuel source may be necessary in order to account for the observed C abundance.

  8. Three-dimensional shape optimization using the boundary element method

    NASA Astrophysics Data System (ADS)

    Yamazaki, Koetsu; Sakamoto, Jiro; Kitano, Masami

    1994-06-01

    A practical design sensitivity calculation technique of displacements and stresses for three-dimensional bodies based on the direct differentiation method of discrete boundary integral equations is formulated in detail. Then the sensitivity calculation technique is applied to determine optimum shapes of minimum weight subjected to stress constraints, where an approximated subproblem is constructed repeatedly and solved sequentially by the mathematical programming method. The shape optimization technique suggested here is applied to determine optimum shapes of a cavity in a cube and a connecting rod.

  9. Three-dimensional shape optimization using boundary element method

    NASA Astrophysics Data System (ADS)

    Yamazaki, Koetsu; Sakamoto, Jiro; Kitano, Masami

    1993-04-01

    A practical design sensitivity calculation technique of displacements and stresses for three-dimensional bodies based on the direct differentiation method of discrete boundary integral equations is formulated in detail. Then, the sensitivity calculation technique is applied to determine optimum shapes of minimum weight subjected to stress constraints, where an approximated subproblem is constructed repeatedly and solved sequentially by the mathematical programming method. The shape optimization technique suggested here is applied to determine optimum shapes of a cavity shape in a cube and a connecting rod.

  10. Preliminary 3-D finite element analyses of the triggering mechanism of an occasional reactivation of a large landslide in stiff clays

    NASA Astrophysics Data System (ADS)

    Lollino, Piernicola; Fazio, Nunzio Luciano; Vennari, Carmela; Parise, Mario

    2015-04-01

    In December 2013 a large landslide occurred along a clay slope located at the south-western outskirts of the Montescaglioso village (Basilicata, Southern Italy) as a consequence of intense and prolonged rainfalls that presumably caused a significant increment of the pore water pressures in the slope. The slope is formed of stiff clays belonging to the formation of the Subappennine Blue Clays, which are over-consolidated and characterized by medium plasticity. According to aerial photos dating back to 1950s, the slope was already affected by previous landslide processes, so that the examined landslide process can be classified as an occasional reactivation according to the well-known classification of Cruden & Varnes (1996). Also, during the last decades several man-made actions in the area resulted in strong changes in the original water surface network that could have played some role in the slope reactivation. Based on displacement data, obtained from a monitoring system installed few days after the phenomenon, and still in function, at present the landslide does not show relevant signs of activity. Preliminary 2-D and 3-D finite element analyses have been carried out to investigate the factors that controlled the mechanism of reactivation of the landslide. The numerical model has been setup based on the available topographical, geological and geomorphological information, the geotechnical properties of the involved soils and the information concerning the piezometric regime in the slope. The results indicate that the mobilized shear strength of the clays ranges between the typical post-peak and residual values for this type of material and confirmed that the strong increment of the pore water pressures in the slope induced by the exceptional rainfalls occurred in the previous days can be identified as the main triggering factor of the reactivation.

  11. TH-C-12A-08: New Compact 10 MV S-Band Linear Accelerator: 3D Finite-Element Design and Monte Carlo Dose Simulations

    SciTech Connect

    Baillie, D; St Aubin, J; Fallone, B; Steciw, S

    2014-06-15

    Purpose: To design a new compact S-band linac waveguide capable of producing a 10 MV x-ray beam, while maintaining the length (27.5 cm) of current 6 MV waveguides. This will allow higher x-ray energies to be used in our linac-MRI systems with the same footprint. Methods: Finite element software COMSOL Multiphysics was used to design an accelerator cavity matching one published in an experiment breakdown study, to ensure that our modeled cavities do not exceed the threshold electric fields published. This cavity was used as the basis for designing an accelerator waveguide, where each cavity of the full waveguide was tuned to resonate at 2.997 GHz by adjusting the cavity diameter. The RF field solution within the waveguide was calculated, and together with an electron-gun phase space generated using Opera3D/SCALA, were input into electron tracking software PARMELA to compute the electron phase space striking the x-ray target. This target phase space was then used in BEAM Monte Carlo simulations to generate percent depth doses curves for this new linac, which were then used to re-optimize the waveguide geometry. Results: The shunt impedance, Q-factor, and peak-to-mean electric field ratio were matched to those published for the breakdown study to within 0.1% error. After tuning the full waveguide, the peak surface fields are calculated to be 207 MV/m, 13% below the breakdown threshold, and a d-max depth of 2.42 cm, a D10/20 value of 1.59, compared to 2.45 cm and 1.59, respectively, for the simulated Varian 10 MV linac and brehmsstrahlung production efficiency 20% lower than a simulated Varian 10 MV linac. Conclusion: This work demonstrates the design of a functional 27.5 cm waveguide producing 10 MV photons with characteristics similar to a Varian 10 MV linac.

  12. A comparison of 1D analytical model and 3D finite element analysis with experiments for a rosen-type piezoelectric transformer.

    PubMed

    Boukazouha, F; Poulin-Vittrant, G; Tran-Huu-Hue, L P; Bavencoffe, M; Boubenider, F; Rguiti, M; Lethiecq, M

    2015-07-01

    This article is dedicated to the study of Piezoelectric Transformers (PTs), which offer promising solutions to the increasing need for integrated power electronics modules within autonomous systems. The advantages offered by such transformers include: immunity to electromagnetic disturbances; ease of miniaturisation for example, using conventional micro fabrication processes; and enhanced performance in terms of voltage gain and power efficiency. Central to the adequate description of such transformers is the need for complex analytical modeling tools, especially if one is attempting to include combined contributions due to (i) mechanical phenomena owing to the different propagation modes which differ at the primary and secondary sides of the PT; and (ii) electrical phenomena such as the voltage gain and power efficiency, which depend on the electrical load. The present work demonstrates an original one-dimensional (1D) analytical model, dedicated to a Rosen-type PT and simulation results are successively compared against that of a three-dimensional (3D) Finite Element Analysis (COMSOL Multiphysics software) and experimental results. The Rosen-type PT studied here is based on a single layer soft PZT (P191) with corresponding dimensions 18 mm × 3 mm × 1.5 mm, which operated at the second harmonic of 176 kHz. Detailed simulational and experimental results show that the presented 1D model predicts experimental measurements to within less than 10% error of the voltage gain at the second and third resonance frequency modes. Adjustment of the analytical model parameters is found to decrease errors relative to experimental voltage gain to within 1%, whilst a 2.5% error on the output admittance magnitude at the second resonance mode were obtained. Relying on the unique assumption of one-dimensionality, the present analytical model appears as a useful tool for Rosen-type PT design and behavior understanding. PMID:25753623

  13. Density functional study of the stable oxidation states and the binding of oxygen in MO4 clusters of the 3d elements.

    PubMed

    Uzunova, Ellie L

    2011-10-01

    The tetraoxide clusters with stoichiometry MO(4), and the structural isomers with side-on and end-on bonded dioxygen, are studied by DFT with the B1LYP functional. Diperoxides M(O(2))(2) are the most stable clusters at the beginning (Sc, Ti) and at the end of the row (Co-Cu), the latter being planar. For V, Cr, and Mn, the dioxoperoxides O(2)M(O(2)) are the most stable isomers. Low-spin states are dominant for the nonplanar diperoxides M(O(2))(2) and dioxoperoxides O(2)M(O(2)), and the local magnetic moment at the metal cations is small. The local charge on the metal cation center is higher in the diperoxides of Sc and Ti; it drops significantly in the dioxoperoxides of V and Cr. The iron dioxosuperoxide in the (3)A'' state, which contains end-on bonded dioxygen, OOFeO(2), is an exception with higher charge on Fe. In the planar diperoxides of Co, Ni, and Cu, oxygen-to-metal charge transfer is significant, and the local charge on the metal cation is close to 1. In all tetraoxygen clusters of the 3d elements, the cation center remains strongly electrophilic and interacts with Ar atoms from the inert-gas matrix, where the clusters are trapped for IR spectral studies. Significant frequency shifts in the matrix are found for the dioxoperoxide of vanadium, O(2)V(O(2)), the dioxosuperoxide of iron, OOFeO(2), and the nickel diperoxide, Ni(O(2))(2). PMID:21875076

  14. A 3D finite element-based model order reduction method for parametric resonance and whirling analysis of anisotropic rotor-bearing systems

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Wang, Yu; Zi, Yanyang; He, Zhengjia

    2015-12-01

    A generalized and efficient model for rotating anisotropic rotor-bearing systems is presented in this paper with full considerations of the system's anisotropy in stiffness, inertia and damping. Based on the 3D finite element model and the model order reduction method, the effects of anisotropy in shaft and bearings on the forced response and whirling of anisotropic rotor-bearing systems are systematically investigated. First, the coefficients of journal bearings are transformed from the fixed frame to the rotating one. Due to the anisotropy in shaft and bearings, the motion is governed by differential equations with periodically time-variant coefficients. Then, a free-interface complex component mode synthesis (CMS) method is employed to generate efficient reduced-order models (ROM) for the periodically time-variant systems. In order to solve the obtained equations, a variant of Hill's method for systems with multiple harmonic excitations is developed. Four dimensionless parameters are defined to quantify the types and levels of anisotropy of bearings. Finally, the effects of the four types of anisotropy on the forced response and whirl orbits are studied. Numerical results show that the anisotropy of bearings in stiffness splits the sole resonant peak into two isolated ones, but the anisotropy of bearings in damping coefficients mainly affect the response amplitudes. Moreover, the whirl orbits become much more complex when the shaft and bearings are both anisotropic. In addition, the cross-coupling stiffness coefficients of bearings significantly affect the dynamic behaviors of the systems and cannot be neglected, though they are often much smaller than the principle stiffness terms.

  15. Development of a 3D finite element acoustic model to predict the sound reduction index of stud based double-leaf walls

    NASA Astrophysics Data System (ADS)

    Arjunan, A.; Wang, C. J.; Yahiaoui, K.; Mynors, D. J.; Morgan, T.; Nguyen, V. B.; English, M.

    2014-11-01

    Building standards incorporating quantitative acoustical criteria to ensure adequate sound insulation are now being implemented. Engineers are making great efforts to design acoustically efficient double-wall structures. Accordingly, efficient simulation models to predict the acoustic insulation of double-leaf wall structures are needed. This paper presents the development of a numerical tool that can predict the frequency dependent sound reduction index R of stud based double-leaf walls at one-third-octave band frequency range. A fully vibro-acoustic 3D model consisting of two rooms partitioned using a double-leaf wall, considering the structure and acoustic fluid coupling incorporating the existing fluid and structural solvers are presented. The validity of the finite element (FE) model is assessed by comparison with experimental test results carried out in a certified laboratory. Accurate representation of the structural damping matrix to effectively predict the R values are studied. The possibilities of minimising the simulation time using a frequency dependent mesh model was also investigated. The FEA model presented in this work is capable of predicting the weighted sound reduction index Rw along with A-weighted pink noise C and A-weighted urban noise Ctr within an error of 1 dB. The model developed can also be used to analyse the acoustically induced frequency dependent geometrical behaviour of the double-leaf wall components to optimise them for best acoustic performance. The FE modelling procedure reported in this paper can be extended to other building components undergoing fluid-structure interaction (FSI) to evaluate their acoustic insulation.

  16. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  17. A Global Interpolation Function (GIF) boundary element code for viscous flows

    NASA Technical Reports Server (NTRS)

    Reddy, D. R.; Lafe, O.; Cheng, A. H-D.

    1995-01-01

    Using global interpolation functions (GIF's), boundary element solutions are obtained for two- and three-dimensional viscous flows. The solution is obtained in the form of a boundary integral plus a series of global basis functions. The unknown coefficients of the GIF's are determined to ensure the satisfaction of the governing equations at selected collocation points. The values of the coefficients involved in the boundary integral equations are determined by enforcing the boundary conditions. Both primitive variable and vorticity-velocity formulations are examined.

  18. BOOK REVIEW: Finite Element and Boundary Element Applications in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Ueta, Tsuyoshi

    2003-08-01

    L Ramdas Ram-Mohan Oxford: Oxford University Press (2002) £26.50 (paperback), ISBN 0-19-852522-2 Although this book is one of the Oxford Texts in Applied and Engineering Mathematics, we may think of it as a physics book. It explains how to solve the problem of quantum mechanics using the finite element method (FEM) and the boundary element method (BEM). Many examples analysing actual problems are also shown. As for the ratio of the number of pages of FEM and BEM, the former occupies about 80%. This is, however, reasonable reflecting the flexibility of FEM. Although many explanations of FEM and BEM exist, most are written using special mathematical expressions and numerical computation fields. However, this book is written in the `language of physicists' throughout. I think that it is very readable and easy to understand for physicists. In the derivation of FEM and the argument on calculation accuracy, the action integral and a variation principle are used consistently. In the numerical computation of matrices, such as simultaneous equations and eigen value problems, a description of important points is also fully given. Moreover, the practical problems which become important in the electron device design field and the condensed matter physics field are dealt with as example computations, so that this book is very practical and applicable. It is characteristic and interesting that FEM is applied to solve the Schrödinger and Poisson equations consistently, and to the solution of the Ginzburg--Landau equation in superconductivity. BEM is applied to treat electric field enhancements due to surface plasmon excitations at metallic surfaces. A number of references are cited at the end of all the chapters, and this is very helpful. The description of quantum mechanics is also made appropriately and the actual application of quantum mechanics in condensed matter physics can also be surveyed. In the appendices, the mathematical foundation, such as numerical quadrature

  19. Indirect boundary element method to simulate elastic wave propagation in piecewise irregular and flat regions

    NASA Astrophysics Data System (ADS)

    Perton, Mathieu; Contreras-Zazueta, Marcial A.; Sánchez-Sesma, Francisco J.

    2016-04-01

    A new implementation of IBEM allows simulating the elastic wave propagation in complex configurations made of embedded regions that are or homogeneous with irregular boundaries or flat layers. In an older implementation, each layer of a flat layered region would have been treated as a separated homogeneous region without taking into account the flat boundary information. For both types of regions, the scattered field results from fictitious sources positioned along their boundaries. For the homogeneous regions, the fictitious sources emit as in a full-space and the wave field is given by analytical Green's functions. For flat layered regions, fictitious sources emit as in an unbounded flat layered region and the wave field is given by Green's functions obtained from the Discrete Wave Number (DWN) method. The new implementation allows then reducing the length of the discretized boundaries but DWN Green's functions require much more computation time than the full space Green's functions. Several optimization steps are then implemented and commented. Validations are presented for 2D and 3D problems. Higher efficiency is achieved in 3D.

  20. GEN3D Ver. 1.37

    2012-01-04

    GEN3D is a three-dimensional mesh generation program. The three-dimensional mesh is generated by mapping a two-dimensional mesh into threedimensions according to one of four types of transformations: translating, rotating, mapping onto a spherical surface, and mapping onto a cylindrical surface. The generated three-dimensional mesh can then be reoriented by offsetting, reflecting about an axis, and revolving about an axis. GEN3D can be used to mesh geometries that are axisymmetric or planar, but, due to three-dimensionalmore » loading or boundary conditions, require a three-dimensional finite element mesh and analysis. More importantly, it can be used to mesh complex three-dimensional geometries composed of several sections when the sections can be defined in terms of transformations of two dimensional geometries. The code GJOIN is then used to join the separate sections into a single body. GEN3D reads and writes twodimensional and threedimensional mesh databases in the GENESIS database format; therefore, it is compatible with the preprocessing, postprocessing, and analysis codes used by the Engineering Analysis Department at Sandia National Laboratories, Albuquerque, NM.« less

  1. Virtual boundary element method for multistage depressed collector of traveling-wave tubes

    SciTech Connect

    Lai Jianqiang; Gong Yubin; Yin Hairong; Duan Zhaoyun; Wei Yanyu

    2011-04-15

    In this study, virtual boundary element (VBE) method has been employed in multistage depressed collector (MDC) simulation for high efficiency traveling-wave tubes (TWTs). The basic idea of this method is establishing a mapping relation between the source on the real and virtual boundaries. When calculating the potential of the problem field, the virtual source on virtual boundary is only used, instead of the source on real boundary. We discussed the distance between the virtual and real boundaries and the discrete density of virtual boundary, which are closely related to the calculation accuracy. Based on the VBE method, a new computer aided design code CCAD is developed for the MDC system of high efficiency TWT. The results of simulations performed on an axisymmetric four-stage depressed collector are reported. The advantages of VBE method mainly lie in fast calculation and accurate solution. This is of benefit to designing high efficiency MDC thus developing high efficiency TWT, especially for space TWT.

  2. Computation of consistent boundary quantities in finite element thermal-fluid solutions

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.

    1982-01-01

    The consistent boundary quantity method for computing derived quantities from finite element nodal variable solutions is investigated. The method calculates consistent, continuous boundary surface quantities such as heat fluxes, flow velocities, and surface tractions from nodal variables such as temperatures, velocity potentials, and displacements. Consistent and lumped coefficient matrix solutions for such problems are compared. The consistent approach may produce more accurate boundary quantities, but spurious oscillations may be produced in the vicinity of discontinuities. The uncoupled computations of the lumped approach provide greater flexibility in dealing with discontinuities and provide increased computational efficiency. The consistent boundary quantity approach can be applied to solution boundaries other than those with Dirichlet boundary conditions, and provides more accurate results than the customary method of differentiation of interpolation polynomials.

  3. Approximate analytic solutions to 3D unconfined groundwater flow within regional 2D models

    NASA Astrophysics Data System (ADS)

    Luther, K.; Haitjema, H. M.

    2000-04-01

    We present methods for finding approximate analytic solutions to three-dimensional (3D) unconfined steady state groundwater flow near partially penetrating and horizontal wells, and for combining those solutions with regional two-dimensional (2D) models. The 3D solutions use distributed singularities (analytic elements) to enforce boundary conditions on the phreatic surface and seepage faces at vertical wells, and to maintain fixed-head boundary conditions, obtained from the 2D model, at the perimeter of the 3D model. The approximate 3D solutions are analytic (continuous and differentiable) everywhere, including on the phreatic surface itself. While continuity of flow is satisfied exactly in the infinite 3D flow domain, water balance errors can occur across the phreatic surface.

  4. Patient-specific geometrical modeling of orthopedic structures with high efficiency and accuracy for finite element modeling and 3D printing.

    PubMed

    Huang, Huajun; Xiang, Chunling; Zeng, Canjun; Ouyang, Hanbin; Wong, Kelvin Kian Loong; Huang, Wenhua

    2015-12-01

    We improved the geometrical modeling procedure for fast and accurate reconstruction of orthopedic structures. This procedure consists of medical image segmentation, three-dimensional geometrical reconstruction, and assignment of material properties. The patient-specific orthopedic structures reconstructed by this improved procedure can be used in the virtual surgical planning, 3D printing of real orthopedic structures and finite element analysis. A conventional modeling consists of: image segmentation, geometrical reconstruction, mesh generation, and assignment of material properties. The present study modified the conventional method to enhance software operating procedures. Patient's CT images of different bones were acquired and subsequently reconstructed to give models. The reconstruction procedures were three-dimensional image segmentation, modification of the edge length and quantity of meshes, and the assignment of material properties according to the intensity of gravy value. We compared the performance of our procedures to the conventional procedures modeling in terms of software operating time, success rate and mesh quality. Our proposed framework has the following improvements in the geometrical modeling: (1) processing time: (femur: 87.16 ± 5.90 %; pelvis: 80.16 ± 7.67 %; thoracic vertebra: 17.81 ± 4.36 %; P < 0.05); (2) least volume reduction (femur: 0.26 ± 0.06 %; pelvis: 0.70 ± 0.47, thoracic vertebra: 3.70 ± 1.75 %; P < 0.01) and (3) mesh quality in terms of aspect ratio (femur: 8.00 ± 7.38 %; pelvis: 17.70 ± 9.82 %; thoracic vertebra: 13.93 ± 9.79 %; P < 0.05) and maximum angle (femur: 4.90 ± 5.28 %; pelvis: 17.20 ± 19.29 %; thoracic vertebra: 3.86 ± 3.82 %; P < 0.05). Our proposed patient-specific geometrical modeling requires less operating time and workload, but the orthopedic structures were generated at a higher rate of success as compared with the conventional method. It is expected to benefit the surgical planning of orthopedic

  5. Deformation of forearcs caused by subduction of aseismic ridges: The role of ridge orientation and convergence direction investigated with 3D finite-element models

    NASA Astrophysics Data System (ADS)

    Zeumann, Stefanie; Hampel, Andrea

    2015-04-01

    Subduction of aseismic oceanic ridges causes considerable deformation of the forearc region. To investigate the role of ridge orientation relative to the margin and convergence direction on the style of forearc deformation, we developed a series of 3D finite-elemente models, in which a rigid oceanic plate carrying the model ridge subducts beneath a deformable forearc wedge. Experiments were carried out for angles of 30°, 60° and 90° between the ridge axis and the trench and for different convergence directions. In the experiments, in which the ridge axis is parallel to the convergence direction, the ridge is stationary; in all other experiments, the ridge migrates along the margin and thus affects different regions of the forearc. Our results show that the ridge indents and uplifts the forearc in all models. For obliquely subducting ridges the displacement and strain fields become highly asymmetric regardless if the ridge is stationary or migrates along the forearc. Only if the ridge is stationary and oriented perpendicular to the margin, the deformation is symmetric relative to the ridge axis. Stationary ridges show uplift only above the ridge tip, whereas a migrating ridge causes a wave of uplift above the leading flank of the ridge followed by subsidence above the trailing flank. Horizontal strain components show domains of both extension and shortening, with extension occurring above the ridge tip and shortening above the ridge flanks. To compare our results with natural case studies, we computed additional models reflecting the setting of the stationary Cocos Ridge subducting beneath southern Costa Rica and of the Nazca Ridge, which migrates along the Peruvian margin. The results of these adjusted models are in good agreement with field observations. For the model of the Cocos Ridge the highest degree of shortening occurs normal to the margin, which coincides with the location of a thrust belt in the forearc of Costa Rica with its maximum shortening inboard

  6. Laminar-Turbulent Transition Behind Discrete Roughness Elements in a High-Speed Boundary Layer

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan M.; Li, Fei; Wu, Minwei; Chang, Chau-Lyan; Edwards, Jack R., Jr.; Kegerise, Michael; King, Rudolph

    2010-01-01

    Computations are performed to study the flow past an isolated roughness element in a Mach 3.5, laminar, flat plate boundary layer. To determine the effects of the roughness element on the location of laminar-turbulent transition inside the boundary layer, the instability characteristics of the stationary wake behind the roughness element are investigated over a range of roughness heights. The wake flow adjacent to the spanwise plane of symmetry is characterized by a narrow region of increased boundary layer thickness. Beyond the near wake region, the centerline streak is surrounded by a pair of high-speed streaks with reduced boundary layer thickness and a secondary, outer pair of lower-speed streaks. Similar to the spanwise periodic pattern of streaks behind an array of regularly spaced roughness elements, the above wake structure persists over large distances and can sustain strong enough convective instabilities to cause an earlier onset of transition when the roughness height is sufficiently large. Time accurate computations are performed to clarify additional issues such as the role of the nearfield of the roughness element during the generation of streak instabilities, as well as to reveal selected details of their nonlinear evolution. Effects of roughness element shape on the streak amplitudes and the interactions between multiple roughness elements aligned along the flow direction are also investigated.

  7. Boundary element method for calculation of elastic wave transmission in two-dimensional phononic crystals

    NASA Astrophysics Data System (ADS)

    Li, FengLian; Wang, YueSheng; Zhang, ChuanZeng

    2016-06-01

    A boundary element method (BEM) is presented to compute the transmission spectra of two-dimensional (2-D) phononic crystals of a square lattice which are finite along the x-direction and infinite along the y-direction. The cross sections of the scatterers may be circular or square. For a periodic cell, the boundary integral equations of the matrix and the scatterers are formulated. Substituting the periodic boundary conditions and the interface continuity conditions, a linear equation set is formed, from which the elastic wave transmission can be obtained. From the transmission spectra, the band gaps can be identified, which are compared with the band structures of the corresponding infinite systems. It is shown that generally the transmission spectra completely correspond to the band structures. In addition, the accuracy and the efficiency of the boundary element method are analyzed and discussed.

  8. Calculation of compressible boundary layer flow about airfoils by a finite element/finite difference method

    NASA Technical Reports Server (NTRS)

    Strong, Stuart L.; Meade, Andrew J., Jr.

    1992-01-01

    Preliminary results are presented of a finite element/finite difference method (semidiscrete Galerkin method) used to calculate compressible boundary layer flow about airfoils, in which the group finite element scheme is applied to the Dorodnitsyn formulation of the boundary layer equations. The semidiscrete Galerkin (SDG) method promises to be fast, accurate and computationally efficient. The SDG method can also be applied to any smoothly connected airfoil shape without modification and possesses the potential capability of calculating boundary layer solutions beyond flow separation. Results are presented for low speed laminar flow past a circular cylinder and past a NACA 0012 airfoil at zero angle of attack at a Mach number of 0.5. Also shown are results for compressible flow past a flat plate for a Mach number range of 0 to 10 and results for incompressible turbulent flow past a flat plate. All numerical solutions assume an attached boundary layer.

  9. New Efficient Dynamic 3-D Boundary Integral Equation Method and Application to Non-Planar Fault Geometry Dipping in Elastic Half Space

    NASA Astrophysics Data System (ADS)

    Ando, R.

    2014-12-01

    The boundary integral equation method formulated in the real space and time domain (BIEM-ST) has been used as a powerful tool to analyze the earthquake rupture dynamics on non-planar faults. Generally, BIEM is more accurate than volumetric methods such as the finite difference method and the finite difference method. With the recent development of the high performance computing environment, the earthquake rupture simulation studies have been conducted considering three dimensional realistic fault geometry models. However, the utility of BIEM-ST has been limited due to its heavy computational demanding increased depending on square of time steps (N2), which was needed to evaluate the historic integration. While BIEM can be efficient with the spectral domain formulation, the applications of such a method are limited to planar fault cases. In this study, we propose a new method to reduce the calculation time of BIEM-ST to linear of time step (N) without degrading the accuracy in the 3 dimensional modeling space. We extends the method proposed earlier for the case of the 2 dimensional framework, applying the asymptotic ex