Science.gov

Sample records for 3d breast ultrasound

  1. Freehand 3D ultrasound breast tumor segmentation

    NASA Astrophysics Data System (ADS)

    Liu, Qi; Ge, Yinan; Ou, Yue; Cao, Biao

    2007-12-01

    It is very important for physicians to accurately determine breast tumor location, size and shape in ultrasound image. The precision of breast tumor volume quantification relies on the accurate segmentation of the images. Given the known location and orientation of the ultrasound probe, We propose using freehand three dimensional (3D) ultrasound to acquire original images of the breast tumor and the surrounding tissues in real-time, after preprocessing with anisotropic diffusion filtering, the segmentation operation is performed slice by slice based on the level set method in the image stack. For the segmentation on each slice, the user can adjust the parameters to fit the requirement in the specified image in order to get the satisfied result. By the quantification procedure, the user can know the tumor size varying in different images in the stack. Surface rendering and interpolation are used to reconstruct the 3D breast tumor image. And the breast volume is constructed by the segmented contours in the stack of images. After the segmentation, the volume of the breast tumor in the 3D image data can be obtained.

  2. Chest wall segmentation in automated 3D breast ultrasound scans.

    PubMed

    Tan, Tao; Platel, Bram; Mann, Ritse M; Huisman, Henkjan; Karssemeijer, Nico

    2013-12-01

    In this paper, we present an automatic method to segment the chest wall in automated 3D breast ultrasound images. Determining the location of the chest wall in automated 3D breast ultrasound images is necessary in computer-aided detection systems to remove automatically detected cancer candidates beyond the chest wall and it can be of great help for inter- and intra-modal image registration. We show that the visible part of the chest wall in an automated 3D breast ultrasound image can be accurately modeled by a cylinder. We fit the surface of our cylinder model to a set of automatically detected rib-surface points. The detection of the rib-surface points is done by a classifier using features representing local image intensity patterns and presence of rib shadows. Due to attenuation of the ultrasound signal, a clear shadow is visible behind the ribs. Evaluation of our segmentation method is done by computing the distance of manually annotated rib points to the surface of the automatically detected chest wall. We examined the performance on images obtained with the two most common 3D breast ultrasound devices in the market. In a dataset of 142 images, the average mean distance of the annotated points to the segmented chest wall was 5.59 ± 3.08 mm.

  3. Breast tumour visualization using 3D quantitative ultrasound methods

    NASA Astrophysics Data System (ADS)

    Gangeh, Mehrdad J.; Raheem, Abdul; Tadayyon, Hadi; Liu, Simon; Hadizad, Farnoosh; Czarnota, Gregory J.

    2016-04-01

    Breast cancer is one of the most common cancer types accounting for 29% of all cancer cases. Early detection and treatment has a crucial impact on improving the survival of affected patients. Ultrasound (US) is non-ionizing, portable, inexpensive, and real-time imaging modality for screening and quantifying breast cancer. Due to these attractive attributes, the last decade has witnessed many studies on using quantitative ultrasound (QUS) methods in tissue characterization. However, these studies have mainly been limited to 2-D QUS methods using hand-held US (HHUS) scanners. With the availability of automated breast ultrasound (ABUS) technology, this study is the first to develop 3-D QUS methods for the ABUS visualization of breast tumours. Using an ABUS system, unlike the manual 2-D HHUS device, the whole patient's breast was scanned in an automated manner. The acquired frames were subsequently examined and a region of interest (ROI) was selected in each frame where tumour was identified. Standard 2-D QUS methods were used to compute spectral and backscatter coefficient (BSC) parametric maps on the selected ROIs. Next, the computed 2-D parameters were mapped to a Cartesian 3-D space, interpolated, and rendered to provide a transparent color-coded visualization of the entire breast tumour. Such 3-D visualization can potentially be used for further analysis of the breast tumours in terms of their size and extension. Moreover, the 3-D volumetric scans can be used for tissue characterization and the categorization of breast tumours as benign or malignant by quantifying the computed parametric maps over the whole tumour volume.

  4. Breast tumor angiogenesis analysis using 3D power Doppler ultrasound

    NASA Astrophysics Data System (ADS)

    Chang, Ruey-Feng; Huang, Sheng-Fang; Lee, Yu-Hau; Chen, Dar-Ren; Moon, Woo Kyung

    2006-03-01

    Angiogenesis is the process that correlates to tumor growth, invasion, and metastasis. Breast cancer angiogenesis has been the most extensively studied and now serves as a paradigm for understanding the biology of angiogenesis and its effects on tumor outcome and patient prognosis. Most studies on characterization of angiogenesis focus on pixel/voxel counts more than morphological analysis. Nevertheless, in cancer, the blood flow is greatly affected by the morphological changes, such as the number of vessels, branching pattern, length, and diameter. This paper presents a computer-aided diagnostic (CAD) system that can quantify vascular morphology using 3-D power Doppler ultrasound (US) on breast tumors. We propose a scheme to extract the morphological information from angiography and to relate them to tumor diagnosis outcome. At first, a 3-D thinning algorithm helps narrow down the vessels into their skeletons. The measurements of vascular morphology significantly rely on the traversing of the vascular trees produced from skeletons. Our study of 3-D assessment of vascular morphological features regards vessel count, length, bifurcation, and diameter of vessels. Investigations into 221 solid breast tumors including 110 benign and 111 malignant cases, the p values using the Student's t-test for all features are less than 0.05 indicating that the proposed features are deemed statistically significant. Our scheme focuses on the vascular architecture without involving the technique of tumor segmentation. The results show that the proposed method is feasible, and have a good agreement with the diagnosis of the pathologists.

  5. Analysis of 3D Subharmonic Ultrasound Signals from Patients with Known Breast Masses for Lesion Differentiation

    DTIC Science & Technology

    2012-10-01

    AD_____________ Award Number: W81XWH-11-1-0630 TITLE: Analysis of 3D Subharmonic Ultrasound Signals from Patients with Known Breast... Ultrasound Signals from Patients with Known Breast Masses for Lesion Differentiation 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-11-1-0630 5c...videos were obtained as part of a larger NIH funded clinical trial. The research 15. SUBJECT TERMS Breast Cancer, Ultrasound Imaging, Ultrasound

  6. Automated 3D ultrasound image segmentation for assistant diagnosis of breast cancer

    NASA Astrophysics Data System (ADS)

    Wang, Yuxin; Gu, Peng; Lee, Won-Mean; Roubidoux, Marilyn A.; Du, Sidan; Yuan, Jie; Wang, Xueding; Carson, Paul L.

    2016-04-01

    Segmentation of an ultrasound image into functional tissues is of great importance to clinical diagnosis of breast cancer. However, many studies are found to segment only the mass of interest and not all major tissues. Differences and inconsistencies in ultrasound interpretation call for an automated segmentation method to make results operator-independent. Furthermore, manual segmentation of entire three-dimensional (3D) ultrasound volumes is time-consuming, resource-intensive, and clinically impractical. Here, we propose an automated algorithm to segment 3D ultrasound volumes into three major tissue types: cyst/mass, fatty tissue, and fibro-glandular tissue. To test its efficacy and consistency, the proposed automated method was employed on a database of 21 cases of whole breast ultrasound. Experimental results show that our proposed method not only distinguishes fat and non-fat tissues correctly, but performs well in classifying cyst/mass. Comparison of density assessment between the automated method and manual segmentation demonstrates good consistency with an accuracy of 85.7%. Quantitative comparison of corresponding tissue volumes, which uses overlap ratio, gives an average similarity of 74.54%, consistent with values seen in MRI brain segmentations. Thus, our proposed method exhibits great potential as an automated approach to segment 3D whole breast ultrasound volumes into functionally distinct tissues that may help to correct ultrasound speed of sound aberrations and assist in density based prognosis of breast cancer.

  7. Automated 3D ultrasound image segmentation to aid breast cancer image interpretation.

    PubMed

    Gu, Peng; Lee, Won-Mean; Roubidoux, Marilyn A; Yuan, Jie; Wang, Xueding; Carson, Paul L

    2016-02-01

    Segmentation of an ultrasound image into functional tissues is of great importance to clinical diagnosis of breast cancer. However, many studies are found to segment only the mass of interest and not all major tissues. Differences and inconsistencies in ultrasound interpretation call for an automated segmentation method to make results operator-independent. Furthermore, manual segmentation of entire three-dimensional (3D) ultrasound volumes is time-consuming, resource-intensive, and clinically impractical. Here, we propose an automated algorithm to segment 3D ultrasound volumes into three major tissue types: cyst/mass, fatty tissue, and fibro-glandular tissue. To test its efficacy and consistency, the proposed automated method was employed on a database of 21 cases of whole breast ultrasound. Experimental results show that our proposed method not only distinguishes fat and non-fat tissues correctly, but performs well in classifying cyst/mass. Comparison of density assessment between the automated method and manual segmentation demonstrates good consistency with an accuracy of 85.7%. Quantitative comparison of corresponding tissue volumes, which uses overlap ratio, gives an average similarity of 74.54%, consistent with values seen in MRI brain segmentations. Thus, our proposed method exhibits great potential as an automated approach to segment 3D whole breast ultrasound volumes into functionally distinct tissues that may help to correct ultrasound speed of sound aberrations and assist in density based prognosis of breast cancer.

  8. Automated 3D Ultrasound Image Segmentation to Aid Breast Cancer Image Interpretation

    PubMed Central

    Gu, Peng; Lee, Won-Mean; Roubidoux, Marilyn A.; Yuan, Jie; Wang, Xueding; Carson, Paul L.

    2015-01-01

    Segmentation of an ultrasound image into functional tissues is of great importance to clinical diagnosis of breast cancer. However, many studies are found to segment only the mass of interest and not all major tissues. Differences and inconsistencies in ultrasound interpretation call for an automated segmentation method to make results operator-independent. Furthermore, manual segmentation of entire three-dimensional (3D) ultrasound volumes is time-consuming, resource-intensive, and clinically impractical. Here, we propose an automated algorithm to segment 3D ultrasound volumes into three major tissue types: cyst/mass, fatty tissue, and fibro-glandular tissue. To test its efficacy and consistency, the proposed automated method was employed on a database of 21 cases of whole breast ultrasound. Experimental results show that our proposed method not only distinguishes fat and non-fat tissues correctly, but performs well in classifying cyst/mass. Comparison of density assessment between the automated method and manual segmentation demonstrates good consistency with an accuracy of 85.7%. Quantitative comparison of corresponding tissue volumes, which uses overlap ratio, gives an average similarity of 74.54%, consistent with values seen in MRI brain segmentations. Thus, our proposed method exhibits great potential as an automated approach to segment 3D whole breast ultrasound volumes into functionally distinct tissues that may help to correct ultrasound speed of sound aberrations and assist in density based prognosis of breast cancer. PMID:26547117

  9. Breast Density Analysis with Automated Whole-Breast Ultrasound: Comparison with 3-D Magnetic Resonance Imaging.

    PubMed

    Chen, Jeon-Hor; Lee, Yan-Wei; Chan, Si-Wa; Yeh, Dah-Cherng; Chang, Ruey-Feng

    2016-05-01

    In this study, a semi-automatic breast segmentation method was proposed on the basis of the rib shadow to extract breast regions from 3-D automated whole-breast ultrasound (ABUS) images. The density results were correlated with breast density values acquired with 3-D magnetic resonance imaging (MRI). MRI images of 46 breasts were collected from 23 women without a history of breast disease. Each subject also underwent ABUS. We used Otsu's thresholding method on ABUS images to obtain local rib shadow information, which was combined with the global rib shadow information (extracted from all slice projections) and integrated with the anatomy's breast tissue structure to determine the chest wall line. The fuzzy C-means classifier was used to extract the fibroglandular tissues from the acquired images. Whole-breast volume (WBV) and breast percentage density (BPD) were calculated in both modalities. Linear regression was used to compute the correlation of density results between the two modalities. The consistency of density measurement was also analyzed on the basis of intra- and inter-operator variation. There was a high correlation of density results between MRI and ABUS (R(2) = 0.798 for WBV, R(2) = 0.825 for PBD). The mean WBV from ABUS images was slightly smaller than the mean WBV from MR images (MRI: 342.24 ± 128.08 cm(3), ABUS: 325.47 ± 136.16 cm(3), p < 0.05). In addition, the BPD calculated from MR images was smaller than the BPD from ABUS images (MRI: 24.71 ± 15.16%, ABUS: 28.90 ± 17.73%, p < 0.05). The intra-operator and inter-operator variant analysis results indicated that there was no statistically significant difference in breast density measurement variation between the two modalities. Our results revealed a high correlation in WBV and BPD between MRI and ABUS. Our study suggests that ABUS provides breast density information useful in the assessment of breast health.

  10. Automatic nipple detection on 3D images of an automated breast ultrasound system (ABUS)

    NASA Astrophysics Data System (ADS)

    Javanshir Moghaddam, Mandana; Tan, Tao; Karssemeijer, Nico; Platel, Bram

    2014-03-01

    Recent studies have demonstrated that applying Automated Breast Ultrasound in addition to mammography in women with dense breasts can lead to additional detection of small, early stage breast cancers which are occult in corresponding mammograms. In this paper, we proposed a fully automatic method for detecting the nipple location in 3D ultrasound breast images acquired from Automated Breast Ultrasound Systems. The nipple location is a valuable landmark to report the position of possible abnormalities in a breast or to guide image registration. To detect the nipple location, all images were normalized. Subsequently, features have been extracted in a multi scale approach and classification experiments were performed using a gentle boost classifier to identify the nipple location. The method was applied on a dataset of 100 patients with 294 different 3D ultrasound views from Siemens and U-systems acquisition systems. Our database is a representative sample of cases obtained in clinical practice by four medical centers. The automatic method could accurately locate the nipple in 90% of AP (Anterior-Posterior) views and in 79% of the other views.

  11. 3-D Ultrasound Vascularity Assessment for Breast Cancer Diagnosis

    DTIC Science & Technology

    1999-09-01

    34truth" data in classifying a given case as benign or malignant. Discrimination thresholds are determined using a linear Baysian classifier for the two...somewhat intuitive. The diagonal line represents a Baysian discrimination line, equally weighing the cost of false-positive and false-negative...threshold is lowered to produce a sensitivity of 100%. Using a 3D linear Baysian discrimination scheme (which produces a threshold plane), the average

  12. [Current status of 3D/4D volume ultrasound of the breast].

    PubMed

    Weismann, C; Hergan, K

    2007-06-01

    3D/4D volume ultrasound is an established method that offers various options for analyzing and presenting ultrasound volume data. The following imaging techniques are based on automatically acquired ultrasound volumes. The multiplanar view is the typical mode of 3D ultrasound data presentation. The niche mode view is a cut open view of the volume data set. The surface mode is a rendering technique that represents the data within a volume of interest (VOI) with different slice thicknesses (typically 1-4 mm) with a contrast-enhanced surface algorithm. Related to the diagnostic target, the transparency mode helps to present echopoor or echorich structures and their spatial relationships within the ultrasound volume. Glass body rendering is a special type of transparency mode that makes the grayscale data transparent and shows the color flow data in a surface render mode. The inversion mode offers a three-dimensional surface presentation of echopoor lesions. Volume Contrast Imaging (VCI) works with static 3D volume data and is able to be used with 4D for dynamic scanning. Volume calculation of a lesion and virtual computer-assisted organ analysis of the same lesion is performed with VoCal software. Tomographic Ultrasound Imaging (TUI) is the perfect tool to document static 3D ultrasound volumes. 3D/4D volume ultrasound of the breast provides diagnostic information of the coronal plane. In this plane benign lesions show the compression pattern sign, while malignant lesions show the retraction pattern or star pattern sign. The indeterminate pattern of a lesion combines signs of compression and retraction or star pattern in the coronal plane. Glass body rendering in combination with Power-Doppler, Color-Doppler or High-Definition Flow Imaging presents the intra- and peritumoral three-dimensional vascular architecture. 3D targeting shows correct or incorrect needle placement in all three planes after 2D or 4D needle guidance. In conclusion, it is safe to say that 3D/4D

  13. Clinical Evaluation of a 3-D Automatic Annotation Method for Breast Ultrasound Imaging.

    PubMed

    Jiang, Wei-Wei; Li, Cheng; Li, An-Hua; Zheng, Yong-Ping

    2016-04-01

    The routine clinical breast ultrasound annotation method is limited by the time it consumes, inconsistency, inaccuracy and incomplete notation. A novel 3-D automatic annotation method for breast ultrasound imaging has been developed that uses a spatial sensor to track and record conventional B-mode scanning so as to provide more objective annotation. The aim of the study described here was to test the feasibility of the automatic annotation method in clinical breast ultrasound scanning. An ultrasound scanning procedure using the new method was established. The new method and the conventional manual annotation method were compared in 46 breast cancer patients (49 ± 12 y). The time used for scanning a patient was recorded and compared for the two methods. Intra-observer and inter-observer experiments were performed, and intra-class correlation coefficients (ICCs) were calculated to analyze system reproducibility. The results revealed that the new annotation method had an average scanning time 36 s (42.9%) less than that of the conventional method. There were high correlations between the results of the two annotation methods (r = 0.933, p < 0.0001 for distance; r = 0.995, p < 0.0001 for radial angle). Intra-observer and inter-observer reproducibility was excellent, with all ICCs > 0.92. The results indicated that the 3-D automatic annotation method is reliable for clinical breast ultrasound scanning and can greatly reduce scanning time. Although large-scale clinical studies are still needed, this work verified that the new annotation method has potential to be a valuable tool in breast ultrasound examination.

  14. 3D Ultrasound Can Contribute to Planning CT to Define the Target for Partial Breast Radiotherapy

    SciTech Connect

    Berrang, Tanya S.; Truong, Pauline T. Popescu, Carmen; Drever, Laura; Kader, Hosam A.; Hilts, Michelle L.; Mitchell, Tracy; Soh, S.Y.; Sands, Letricia; Silver, Stuart; Olivotto, Ivo A.

    2009-02-01

    Purpose: The role of three-dimensional breast ultrasound (3D US) in planning partial breast radiotherapy (PBRT) is unknown. This study evaluated the accuracy of coregistration of 3D US to planning computerized tomography (CT) images, the seroma contouring consistency of radiation oncologists using the two imaging modalities and the clinical situations in which US was associated with improved contouring consistency compared to CT. Materials and Methods: Twenty consecutive women with early-stage breast cancer were enrolled prospectively after breast-conserving surgery. Subjects underwent 3D US at CT simulation for adjuvant RT. Three radiation oncologists independently contoured the seroma on separate CT and 3D US image sets. Seroma clarity, seroma volumes, and interobserver contouring consistency were compared between the imaging modalities. Associations between clinical characteristics and seroma clarity were examined using Pearson correlation statistics. Results: 3D US and CT coregistration was accurate to within 2 mm or less in 19/20 (95%) cases. CT seroma clarity was reduced with dense breast parenchyma (p = 0.035), small seroma volume (p < 0.001), and small volume of excised breast tissue (p = 0.01). US seroma clarity was not affected by these factors (p = NS). US was associated with improved interobserver consistency compared with CT in 8/20 (40%) cases. Of these 8 cases, 7 had low CT seroma clarity scores and 4 had heterogeneously to extremely dense breast parenchyma. Conclusion: 3D US can be a useful adjunct to CT in planning PBRT. Radiation oncologists were able to use US images to contour the seroma target, with improved interobserver consistency compared with CT in cases with dense breast parenchyma and poor CT seroma clarity.

  15. 3D Ultrasound Guidance of Autonomous Robotic Breast Biopsy: Feasibility Study

    PubMed Central

    Liang, Kaicheng; Rogers, Albert J.; Light, Edward D.; von Allmen, Daniel; Smith, Stephen W.

    2009-01-01

    Feasibility studies of autonomous robot biopsies in tissue have been conducted using real time 3D ultrasound combined with simple thresholding algorithms. The robot first autonomously processed 3D image volumes received from the ultrasound scanner to locate a metal rod target embedded in turkey breast tissue simulating a calcification, and in a separate experiment, the center of a water-filled void in the breast tissue simulating a cyst. In both experiments the robot then directed a needle to the desired target, with no user input required. Separate needle-touch experiments performed by the image-guided robot in a water tank yielded an rms error of 1.15 mm. PMID:19900753

  16. Analysis of 3D Subharmonic Ultrasound Signals from Patients with Known Breast Masses for Lesion Differentiation

    DTIC Science & Technology

    2013-10-01

    kinetics based on temporal data for 4D subharmonic breast ultrasound exams.  Applied these algorithms to an existing data set of contrast enhanced...Mattrey, H. Ojeda- Fournier, K. Wallace, C.L. Chalek, K.E. Thomenius, F. Forsberg. Initial 10 experiences with 4D subharmonic breast Imaging. Ultrasound ...to improve visualization of vascularity using 4D subharmonic breast imaging. Ultrasound Med Biol 2013; 39(5): S27. Scientific presentations: 1

  17. Automated 3D ultrasound elastography of the breast: a phantom validation study

    NASA Astrophysics Data System (ADS)

    Hendriks, Gijs A. G. M.; Holländer, Branislav; Menssen, Jan; Milkowski, Andy; Hansen, Hendrik H. G.; de Korte, Chris L.

    2016-04-01

    In breast cancer screening, the automated breast volume scanner (ABVS) was introduced as an alternative for mammography since the latter technique is less suitable for women with dense breasts. Although clinical studies show promising results, clinicians report two disadvantages: long acquisition times (>90 s) introducing breathing artefacts, and high recall rates due to detection of many small lesions of uncertain malignant potential. Technical improvements for faster image acquisition and better discrimination between benign and malignant lesions are thus required. Therefore, the aim of this study was to investigate if 3D ultrasound elastography using plane-wave imaging is feasible. Strain images of a breast elastography phantom were acquired by an ABVS-mimicking device that allowed axial and elevational movement of the attached transducer. Pre- and post-deformation volumes were acquired with different constant speeds (between 1.25 and 40.0 mm s-1) and by three protocols: Go-Go (pre- and post-volumes with identical start and end positions), Go-Return (similar to Go-Go with opposite scanning directions) and Control (pre- and post-volumes acquired per position, this protocol can be seen as reference). Afterwards, 2D and 3D cross-correlation and strain algorithms were applied to the acquired volumes and the results were compared. The Go-Go protocol was shown to be superior with better strain image quality (CNRe and SNRe) than Go-Return and to be similar as Control. This can be attributed to applying opposite mechanical forces to the phantom during the Go-Return protocol, leading to out-of-plane motion. This motion was partly compensated by using 3D cross-correlation. However, the quality was still inferior to Go-Go. Since these results were obtained in a phantom study with controlled deformations, the effect of possible uncontrolled in vivo tissue motion artefacts has to be addressed in future studies. In conclusion, it seems feasible to implement 3D ultrasound

  18. Automated linking of suspicious findings between automated 3D breast ultrasound volumes

    NASA Astrophysics Data System (ADS)

    Gubern-Mérida, Albert; Tan, Tao; van Zelst, Jan; Mann, Ritse M.; Karssemeijer, Nico

    2016-03-01

    Automated breast ultrasound (ABUS) is a 3D imaging technique which is rapidly emerging as a safe and relatively inexpensive modality for screening of women with dense breasts. However, reading ABUS examinations is very time consuming task since radiologists need to manually identify suspicious findings in all the different ABUS volumes available for each patient. Image analysis techniques to automatically link findings across volumes are required to speed up clinical workflow and make ABUS screening more efficient. In this study, we propose an automated system to, given the location in the ABUS volume being inspected (source), find the corresponding location in a target volume. The target volume can be a different view of the same study or the same view from a prior examination. The algorithm was evaluated using 118 linkages between suspicious abnormalities annotated in a dataset of ABUS images of 27 patients participating in a high risk screening program. The distance between the predicted location and the center of the annotated lesion in the target volume was computed for evaluation. The mean ± stdev and median distance error achieved by the presented algorithm for linkages between volumes of the same study was 7.75±6.71 mm and 5.16 mm, respectively. The performance was 9.54±7.87 and 8.00 mm (mean ± stdev and median) for linkages between volumes from current and prior examinations. The proposed approach has the potential to minimize user interaction for finding correspondences among ABUS volumes.

  19. Chest-wall segmentation in automated 3D breast ultrasound images using thoracic volume classification

    NASA Astrophysics Data System (ADS)

    Tan, Tao; van Zelst, Jan; Zhang, Wei; Mann, Ritse M.; Platel, Bram; Karssemeijer, Nico

    2014-03-01

    Computer-aided detection (CAD) systems are expected to improve effectiveness and efficiency of radiologists in reading automated 3D breast ultrasound (ABUS) images. One challenging task on developing CAD is to reduce a large number of false positives. A large amount of false positives originate from acoustic shadowing caused by ribs. Therefore determining the location of the chestwall in ABUS is necessary in CAD systems to remove these false positives. Additionally it can be used as an anatomical landmark for inter- and intra-modal image registration. In this work, we extended our previous developed chestwall segmentation method that fits a cylinder to automated detected rib-surface points and we fit the cylinder model by minimizing a cost function which adopted a term of region cost computed from a thoracic volume classifier to improve segmentation accuracy. We examined the performance on a dataset of 52 images where our previous developed method fails. Using region-based cost, the average mean distance of the annotated points to the segmented chest wall decreased from 7.57±2.76 mm to 6.22±2.86 mm.art.

  20. A semi-automated 3-D annotation method for breast ultrasound imaging: system development and feasibility study on phantoms.

    PubMed

    Jiang, Wei-wei; Li, An-hua; Zheng, Yong-Ping

    2014-02-01

    Spatial annotation is an essential step in breast ultrasound imaging, because the follow-up diagnosis and treatment are based on this annotation. However, the current method for annotation is manual and highly dependent on the operator's experience. Moreover, important spatial information, such as the probe tilt angle, cannot be indicated in the clinical 2-D annotations. To solve these problems, we developed a semi-automated 3-D annotation method for breast ultrasound imaging. A spatial sensor was fixed on an ultrasound probe to obtain the image spatial data. Three-dimensional virtual models of breast and probe were used to annotate image locations. After the reference points were recorded, this system displayed the image annotations automatically. Compared with the conventional manual annotation method, this new annotation system has higher accuracy as indicated by the phantom test results. In addition, this new annotation method has good repeatability, with intra-class correlation coefficients of 0.907 (average variation: ≤3.45%) and 0.937 (average variation: ≤2.85%) for the intra-rater and inter-rater tests, respectively. Breast phantom experiments simulating clinical breast scanning further indicated the feasibility of this system for clinical applications. This new annotation method is expected to facilitate more accurate, intuitive and rapid breast ultrasound diagnosis.

  1. Quantitative Analysis of Vascular Heterogeneity in Breast Lesions Using Contrast-Enhanced 3-D Harmonic and Subharmonic Ultrasound Imaging

    PubMed Central

    Sridharan, Anush; Eisenbrey, John R.; Machado, Priscilla; Ojeda-Fournier, Haydee; Wilkes, Annina; Sevrukov, Alexander; Mattrey, Robert F.; Wallace, Kirk; Chalek, Carl L.; Thomenius, Kai E.; Forsberg, Flemming

    2015-01-01

    Ability to visualize breast lesion vascularity and quantify the vascular heterogeneity using contrast-enhanced 3-D harmonic (HI) and subharmonic (SHI) ultrasound imaging was investigated in a clinical population. Patients (n = 134) identified with breast lesions on mammography were scanned using power Doppler imaging, contrast-enhanced 3-D HI, and 3-D SHI on a modified Logiq 9 scanner (GE Healthcare). A region of interest corresponding to ultrasound contrast agent flow was identified in 4D View (GE Medical Systems) and mapped to raw slice data to generate a map of time-intensity curves for the lesion volume. Time points corresponding to baseline, peak intensity, and washout of ultrasound contrast agent were identified and used to generate and compare vascular heterogeneity plots for malignant and benign lesions. Vascularity was observed with power Doppler imaging in 84 lesions (63 benign and 21 malignant). The 3-D HI showed flow in 8 lesions (5 benign and 3 malignant), whereas 3-D SHI visualized flow in 68 lesions (49 benign and 19 malignant). Analysis of vascular heterogeneity in the 3-D SHI volumes found benign lesions having a significant difference in vascularity between central and peripheral sections (1.71 ± 0.96 vs. 1.13 ± 0.79 dB, p < 0.001, respectively), whereas malignant lesions showed no difference (1.66 ± 1.39 vs. 1.24 ± 1.14 dB, p = 0.24), indicative of more vascular coverage. These preliminary results suggest quantitative evaluation of vascular heterogeneity in breast lesions using contrast-enhanced 3-D SHI is feasible and able to detect variations in vascularity between central and peripheral sections for benign and malignant lesions. PMID:25935933

  2. Quantitative analysis of vascular heterogeneity in breast lesions using contrast-enhanced 3-D harmonic and subharmonic ultrasound imaging.

    PubMed

    Sridharan, Anush; Eisenbrey, John R; Machado, Priscilla; Ojeda-Fournier, Haydee; Wilkes, Annina; Sevrukov, Alexander; Mattrey, Robert F; Wallace, Kirk; Chalek, Carl L; Thomenius, Kai E; Forsberg, Flemming

    2015-03-01

    Ability to visualize breast lesion vascularity and quantify the vascular heterogeneity using contrast-enhanced 3-D harmonic (HI) and subharmonic (SHI) ultrasound imaging was investigated in a clinical population. Patients (n = 134) identified with breast lesions on mammography were scanned using power Doppler imaging, contrast-enhanced 3-D HI, and 3-D SHI on a modified Logiq 9 scanner (GE Healthcare). A region of interest corresponding to ultrasound contrast agent flow was identified in 4D View (GE Medical Systems) and mapped to raw slice data to generate a map of time-intensity curves for the lesion volume. Time points corresponding to baseline, peak intensity, and washout of ultrasound contrast agent were identified and used to generate and compare vascular heterogeneity plots for malignant and benign lesions. Vascularity was observed with power Doppler imaging in 84 lesions (63 benign and 21 malignant). The 3-D HI showed flow in 8 lesions (5 benign and 3 malignant), whereas 3-D SHI visualized flow in 68 lesions (49 benign and 19 malignant). Analysis of vascular heterogeneity in the 3-D SHI volumes found benign lesions having a significant difference in vascularity between central and peripheral sections (1.71 ± 0.96 vs. 1.13 ± 0.79 dB, p < 0.001, respectively), whereas malignant lesions showed no difference (1.66 ± 1.39 vs. 1.24 ± 1.14 dB, p = 0.24), indicative of more vascular coverage. These preliminary results suggest quantitative evaluation of vascular heterogeneity in breast lesions using contrast-enhanced 3-D SHI is feasible and able to detect variations in vascularity between central and peripheral sections for benign and malignant lesions.

  3. Diagnostic algorithm: how to make use of new 2D, 3D and 4D ultrasound technologies in breast imaging.

    PubMed

    Weismann, C F; Datz, L

    2007-11-01

    The aim of this publication is to present a time saving diagnostic algorithm consisting of two-dimensional (2D), three-dimensional (3D) and four-dimensional (4D) ultrasound (US) technologies. This algorithm of eight steps combines different imaging modalities and render modes which allow a step by step analysis of 2D, 3D and 4D diagnostic criteria. Advanced breast US systems with broadband high frequency linear transducers, full digital data management and high resolution are the actual basis for two-dimensional breast US studies in order to detect early breast cancer (step 1). The continuous developments of 2D US technologies including contrast resolution imaging (CRI) and speckle reduction imaging (SRI) have a direct influence on the high quality of three-dimensional and four-dimensional presentation of anatomical breast structures and pathological details. The diagnostic options provided by static 3D volume datasets according to US BI-RADS analogue assessment, concerning lesion shape, orientation, margin, echogenic rim sign, lesion echogenicity, acoustic transmission, associated calcifications, 3D criteria of the coronal plane, surrounding tissue composition (step 2) and lesion vascularity (step 6) are discussed. Static 3D datasets offer the combination of long axes distance measurements and volume calculations, which are the basis for an accurate follow-up in BI-RADS II and BI-RADS III lesions (step 3). Real time 4D volume contrast imaging (VCI) is able to demonstrate tissue elasticity (step 5). Glass body rendering is a static 3D tool which presents greyscale and colour information to study the vascularity and the vascular architecture of a lesion (step 6). Tomographic ultrasound imaging (TUI) is used for a slice by slice documentation in different investigation planes (A-,B- or C-plane) (steps 4 and 7). The final step 8 uses the panoramic view technique (XTD-View) to document the localisation within the breast and to make the position of a lesion simply

  4. Image guidance of breast cancer surgery using 3-D ultrasound images and augmented reality visualization.

    PubMed

    Sato, Y; Nakamoto, M; Tamaki, Y; Sasama, T; Sakita, I; Nakajima, Y; Monden, M; Tamura, S

    1998-10-01

    This paper describes augmented reality visualization for the guidance of breast-conservative cancer surgery using ultrasonic images acquired in the operating room just before surgical resection. By combining an optical three-dimensional (3-D) position sensor, the position and orientation of each ultrasonic cross section are precisely measured to reconstruct geometrically accurate 3-D tumor models from the acquired ultrasonic images. Similarly, the 3-D position and orientation of a video camera are obtained to integrate video and ultrasonic images in a geometrically accurate manner. Superimposing the 3-D tumor models onto live video images of the patient's breast enables the surgeon to perceive the exact 3-D position of the tumor, including irregular cancer invasions which cannot be perceived by touch, as if it were visible through the breast skin. Using the resultant visualization, the surgeon can determine the region for surgical resection in a more objective and accurate manner, thereby minimizing the risk of a relapse and maximizing breast conservation. The system was shown to be effective in experiments using phantom and clinical data.

  5. 3-D visualization and non-linear tissue classification of breast tumors using ultrasound elastography in vivo.

    PubMed

    Sayed, Ahmed; Layne, Ginger; Abraham, Jame; Mukdadi, Osama M

    2014-07-01

    The goal of the study described here was to introduce new methods for the classification and visualization of human breast tumors using 3-D ultrasound elastography. A tumor's type, shape and size are key features that can help the physician to decide the sort and extent of necessary treatment. In this work, tumor type, being either benign or malignant, was classified non-invasively for nine volunteer patients. The classification was based on estimating four parameters that reflect the tumor's non-linear biomechanical behavior, under multi-compression levels. Tumor prognosis using non-linear elastography was confirmed with biopsy as a gold standard. Three tissue classification parameters were found to be statistically significant with a p-value < 0.05, whereas the fourth non-linear parameter was highly significant, having a p-value < 0.001. Furthermore, each breast tumor's shape and size were estimated in vivo using 3-D elastography, and were enhanced using interactive segmentation. Segmentation with level sets was used to isolate the stiff tumor from the surrounding soft tissue. Segmentation also provided a reliable means to estimate tumors volumes. Four volumetric strains were investigated: the traditional normal axial strain, the first principal strain, von Mises strain and maximum shear strain. It was noted that these strains can provide varying degrees of boundary enhancement to the stiff tumor in the constructed elastograms. The enhanced boundary improved the performance of the segmentation process. In summary, the proposed methods can be employed as a 3-D non-invasive tool for characterization of breast tumors, and may provide early prognosis with minimal pain, as well as diminish the risk of late-stage breast cancer.

  6. Accuracy of Tumor Sizing in Breast Cancer: A Comparison of Strain Elastography, 3-D Ultrasound and Conventional B-Mode Ultrasound with and without Compound Imaging.

    PubMed

    Stachs, Angrit; Pandjaitan, Alexander; Martin, Annett; Stubert, Johannes; Hartmann, Steffi; Gerber, Bernd; Glass, Änne

    2016-12-01

    The objective of this study was to compare the accuracy of strain elastography (SE), 3-D ultrasound (US), B-mode US with compound imaging (CI) and B-mode US without compound imaging for lesion sizing in breast cancer. The prospective study included 93 patients with invasive breast cancer. The largest tumor diameters measured by B-mode US, B-mode US with CI, SE and 3-D US were compared in Bland-Altman plots versus pathology as reference. A general linear model repeated measures (GLM Rep) was applied to investigate factors influencing tumor sizing. All methods underestimated pathologic size, with SE (-0.08 ± 7.7 mm) and 3-D US (-1.4 ± 6.5 mm) having the smallest mean differences from pathology. Bland-Altman plots revealed that B-mode US, B-mode US with CI and 3-D US systematically underestimated large tumor sizes, and only SE was technically comparable to pathology. The study indicates that sonographic underestimation of tumor size occurs mainly in tumors >20 mm; in this subgroup, SE is superior to other ultrasound methods.

  7. An ultrasound tomography system with polyvinyl alcohol (PVA) moldings for coupling: in vivo results for 3-D pulse-echo imaging of the female breast.

    PubMed

    Koch, Andreas; Stiller, Florian; Lerch, Reinhard; Ermert, Helmut

    2015-02-01

    Full-angle spatial compounding (FASC) is a concept for pulse-echo imaging using an ultrasound tomography (UST) system. With FASC, resolution is increased and speckles are suppressed by averaging pulse-echo data from 360°. In vivo investigations have already shown a great potential for 2-D FASC in the female breast as well as for finger-joint imaging. However, providing a small number of images of parallel cross-sectional planes with enhanced image quality is not sufficient for diagnosis. Therefore, volume data (3-D) is needed. For this purpose, we further developed our UST add-on system to automatically rotate a motorized array (3-D probe) around the object of investigation. Full integration of external motor and ultrasound electronics control in a custom-made program allows acquisition of 3-D pulse-echo RF datasets within 10 min. In case of breast cancer imaging, this concept also enables imaging of near-thorax tissue regions which cannot be achieved by 2-D FASC. Furthermore, moldings made of polyvinyl alcohol hydrogel (PVA-H) have been developed as a new acoustic coupling concept. It has a great potential to replace the water bath technique in UST, which is a critical concept with respect to clinical investigations. In this contribution, we present in vivo results for 3-D FASC applied to imaging a female breast which has been placed in a PVA-H molding during data acquisition. An algorithm is described to compensate time-of-flight and consider refraction at the water-PVA-H molding and molding-tissue interfaces. Therefore, the mean speed of sound (SOS) for the breast tissue is estimated with an image-based method. Our results show that the PVA-H molding concept is applicable and feasible and delivers good results. 3-D FASC is superior to 2-D FASC and provides 3-D volume data at increased image quality.

  8. MO-DE-210-06: Development of a Supercompounded 3D Volumetric Ultrasound Image Guidance System for Prone Accelerated Partial Breast Irradiation (APBI)

    SciTech Connect

    Chiu, T; Hrycushko, B; Zhao, B; Jiang, S; Gu, X

    2015-06-15

    Purpose: For early-stage breast cancer, accelerated partial breast irradiation (APBI) is a cost-effective breast-conserving treatment. Irradiation in a prone position can mitigate respiratory induced breast movement and achieve maximal sparing of heart and lung tissues. However, accurate dose delivery is challenging due to breast deformation and lumpectomy cavity shrinkage. We propose a 3D volumetric ultrasound (US) image guidance system for accurate prone APBI Methods: The designed system, set beneath the prone breast board, consists of a water container, an US scanner, and a two-layer breast immobilization cup. The outer layer of the breast cup forms the inner wall of water container while the inner layer is attached to patient breast directly to immobilization. The US transducer scans is attached to the outer-layer of breast cup at the dent of water container. Rotational US scans in a transverse plane are achieved by simultaneously rotating water container and transducer, and multiple transverse scanning forms a 3D scan. A supercompounding-technique-based volumetric US reconstruction algorithm is developed for 3D image reconstruction. The performance of the designed system is evaluated with two custom-made gelatin phantoms containing several cylindrical inserts filled in with water (11% reflection coefficient between materials). One phantom is designed for positioning evaluation while the other is for scaling assessment. Results: In the positioning evaluation phantom, the central distances between the inserts are 15, 20, 30 and 40 mm. The distances on reconstructed images differ by −0.19, −0.65, −0.11 and −1.67 mm, respectively. In the scaling evaluation phantom, inserts are 12.7, 19.05, 25.40 and 31.75 mm in diameter. Measured inserts’ sizes on images differed by 0.23, 0.19, −0.1 and 0.22 mm, respectively. Conclusion: The phantom evaluation results show that the developed 3D volumetric US system can accurately localize target position and determine

  9. Multimodality CAD: combination of computerized classification techniques based on mammograms and 3D ultrasound volumes for improved accuracy in breast mass characterization

    NASA Astrophysics Data System (ADS)

    Sahiner, Berkman; Chan, Heang-Ping; Hadjiiski, Lubomir M.; Roubidoux, Marilyn A.; Paramagul, Chintana; Helvie, Mark A.; Zhou, Chuan

    2004-05-01

    Mammography and ultrasound (US) are two low-cost modalities that are commonly used by radiologists for evaluating breast masses and making biopsy recommendations. The goal of this study was to investigate computerized methods for combining information from these two modalities for mass characterization. Our data set consisted of 3D US images and mammograms of biopsy-proven solid breast masses from 60 patients. Thirty of the masses were malignant and 30 were benign. The US volume was obtained by scanning with an experimental 3D US image acquisition system. After computerized feature extraction from the 3D US images and mammograms, we investigated three methods (A, B and C) for combining the image features or classifier scores from different mammographic views and the US volumes. The classifier scores were analyzed using the receiver operating characteristic (ROC) methodology. The area Az under the ROC curve of the classifier based on US alone was 0.88+/-0.04 for testing Two classifiers were designed using the mammograms alone, with test Az values of 0.85+/-0.05 and 0.87+/-0.05, respectively. The test accuracy of combination methods A, B, and C were 0.89+/-0.04, 0.92+/-0.03, and 0.93+/-0.03, respectively. Our results indicate that combining the image features or classifier scores from the US and mammographic classification methods can improve the accuracy of computerized mass characterization.

  10. 3D ultrafast ultrasound imaging in vivo.

    PubMed

    Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-07

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra--and inter-observer variability.

  11. 3D ultrafast ultrasound imaging in vivo

    NASA Astrophysics Data System (ADS)

    Provost, Jean; Papadacci, Clement; Esteban Arango, Juan; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra—and inter-observer variability.

  12. 3D Ultrafast Ultrasound Imaging In Vivo

    PubMed Central

    Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-01-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative real-time imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in three dimensions based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32×32 matrix-array probe. Its capability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3-D Shear-Wave Imaging, 3-D Ultrafast Doppler Imaging and finally 3D Ultrafast combined Tissue and Flow Doppler. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3-D Ultrafast Doppler was used to obtain 3-D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, for the first time, the complex 3-D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, and the 3-D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3-D Ultrafast Ultrasound Imaging for the 3-D real-time mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra- and inter-observer variability. PMID:25207828

  13. Breast ultrasound.

    PubMed

    Ueno, E

    1996-03-01

    In ultrasound, ultrasonic images are formed by means of echoes among tissues with different acoustic impedance. Acoustic impedance is the product of sound speed and bulk modulus. The bulk modulus expresses the elasticity of an object, and in the human body, the value is increased by conditions such as fibrosis and calcification. The sound speed is usually high in elastic tissues and low in water. In the body, it is lowest in the fatty tissue. Ultrasound echoes are strong on the surface of bones which are hard and have a high sound speed. In organs filled with air such as the lungs, the bulk modulus is low and the sound speed is extremely low at 340 m/s, which produce strong echoes (the sound speed in solid tissues is 1,530 m/s). Human tissue is constructed of units smaller than the ultrasonic beam, and it is necessary to understand back-scattering in order to understand the ultrasonic images of these tissues. When ultrasound passes through tissue, it is absorbed as thermal energy and attenuated. Fiber is a tissue with a high absorption and attenuation rate. When the rate increases, the posterior echoes are attenuated. However, in masses with a high water content such as cysts, the posterior echoes are accentuated. This phenomenon is an important, basic finding for determining the properties of tumors. Breast cancer can be classified into two types: stellate carcinoma and circumscribed carcinoma. Since stellate carcinoma is rich in fiber, the posterior echoes are attenuated or lacking. However, circumscribed carcinoma has a high cellularity and the posterior echoes are accentuated. The same tendency is also seen in benign tumors. In immature fibroadenomas, posterior echoes are accentuated, while in fibroadenomas with hyalinosis, the posterior echoes are attenuated. Therefore, if the fundamentals of this tissue characterization and the histological features are understood, reading of ultrasound becomes easy. Color Doppler has also been developed and has contributed

  14. Ultrasound - Breast

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  15. Ultrasound - Breast

    MedlinePlus

    ... the examination. top of page What does the equipment look like? Ultrasound scanners consist of a console ... ultrasound that require biopsy are not cancers. Many facilities do not offer ultrasound screening, and the procedure ...

  16. Image guided radiation therapy applications for head and neck, prostate, and breast cancers using 3D ultrasound imaging and Monte Carlo dose calculations

    NASA Astrophysics Data System (ADS)

    Fraser, Danielle

    In radiation therapy an uncertainty in the delivered dose always exists because anatomic changes are unpredictable and patient specific. Image guided radiation therapy (IGRT) relies on imaging in the treatment room to monitor the tumour and surrounding tissue to ensure their prescribed position in the radiation beam. The goal of this thesis was to determine the dosimetric impact on the misaligned radiation therapy target for three cancer sites due to common setup errors; organ motion, tumour tissue deformation, changes in body habitus, and treatment planning errors. For this purpose, a novel 3D ultrasound system (Restitu, Resonant Medical, Inc.) was used to acquire a reference image of the target in the computed tomography simulation room at the time of treatment planning, to acquire daily images in the treatment room at the time of treatment delivery, and to compare the daily images to the reference image. The measured differences in position and volume between daily and reference geometries were incorporated into Monte Carlo (MC) dose calculations. The EGSnrc (National Research Council, Canada) family of codes was used to model Varian linear accelerators and patient specific beam parameters, as well as to estimate the dose to the target and organs at risk under several different scenarios. After validating the necessity of MC dose calculations in the pelvic region, the impact of interfraction prostate motion, and subsequent patient realignment under the treatment beams, on the delivered dose was investigated. For 32 patients it is demonstrated that using 3D conformal radiation therapy techniques and a 7 mm margin, the prescribed dose to the prostate, rectum, and bladder is recovered within 0.5% of that planned when patient setup is corrected for prostate motion, despite the beams interacting with a new external surface and internal tissue boundaries. In collaboration with the manufacturer, the ultrasound system was adapted from transabdominal imaging to neck

  17. Breast ultrasound

    MedlinePlus

    ... Sonogram of the breast Images Female breast References Hacker NF, Friedland ML. Breast disease. In: Hacker NF, Gambone JC, Hobel CJ, eds. Hacker and Moore's Essentials of Obstetrics and Gynecology . 6th ...

  18. 3D ultrasound computer tomography: update from a clinical study

    NASA Astrophysics Data System (ADS)

    Hopp, T.; Zapf, M.; Kretzek, E.; Henrich, J.; Tukalo, A.; Gemmeke, H.; Kaiser, C.; Knaudt, J.; Ruiter, N. V.

    2016-04-01

    Ultrasound Computer Tomography (USCT) is a promising new imaging method for breast cancer diagnosis. We developed a 3D USCT system and tested it in a pilot study with encouraging results: 3D USCT was able to depict two carcinomas, which were present in contrast enhanced MRI volumes serving as ground truth. To overcome severe differences in the breast shape, an image registration was applied. We analyzed the correlation between average sound speed in the breast and the breast density estimated from segmented MRIs and found a positive correlation with R=0.70. Based on the results of the pilot study we now carry out a successive clinical study with 200 patients. For this we integrated our reconstruction methods and image post-processing into a comprehensive workflow. It includes a dedicated DICOM viewer for interactive assessment of fused USCT images. A new preview mode now allows intuitive and faster patient positioning. We updated the USCT system to decrease the data acquisition time by approximately factor two and to increase the penetration depth of the breast into the USCT aperture by 1 cm. Furthermore the compute-intensive reflectivity reconstruction was considerably accelerated, now allowing a sub-millimeter volume reconstruction in approximately 16 minutes. The updates made it possible to successfully image first patients in our ongoing clinical study.

  19. Glasses for 3D ultrasound computer tomography: phase compensation

    NASA Astrophysics Data System (ADS)

    Zapf, M.; Hopp, T.; Ruiter, N. V.

    2016-03-01

    Ultrasound Computer Tomography (USCT), developed at KIT, is a promising new imaging system for breast cancer diagnosis, and was successfully tested in a pilot study. The 3D USCT II prototype consists of several hundreds of ultrasound (US) transducers on a semi-ellipsoidal aperture. Spherical waves are sequentially emitted by individual transducers and received in parallel by many transducers. Reflectivity volumes are reconstructed by synthetic aperture focusing (SAFT). However, straight forward SAFT imaging leads to blurred images due to system imperfections. We present an extension of a previously proposed approach to enhance the images. This approach includes additional a priori information and system characteristics. Now spatial phase compensation was included. The approach was evaluated with a simulation and clinical data sets. An increase in the image quality was observed and quantitatively measured by SNR and other metrics.

  20. Ultrasound scatter in heterogeneous 3D microstructures

    NASA Astrophysics Data System (ADS)

    Engle, B. J.; Roberts, R. A.; Grandin, R. J.

    2017-02-01

    This paper reports on a computational study of ultrasound propagation in heterogeneous metal microstructures. Random spatial fluctuations in elastic properties over a range of length scales relative to ultrasound wavelength can give rise to scatter-induced attenuation, backscatter noise, and phase front aberration. It is of interest to quantify the dependence of these phenomena on the microstructure parameters, for the purpose of quantifying deleterious consequences on flaw detectability, and for the purpose of material characterization. Valuable tools for estimation of microstructure parameters (e.g. grain size) through analysis of ultrasound backscatter have been developed based on approximate weak-scattering models. While useful, it is understood that these tools display inherent inaccuracy when multiple scattering phenomena significantly contribute to the measurement. It is the goal of this work to supplement weak scattering model predictions with corrections derived through application of an exact computational scattering model to explicitly prescribed microstructures.

  1. Ovarian tumor characterization using 3D ultrasound.

    PubMed

    Acharya, U Rajendra; Sree, S Vinitha; Krishnan, M Muthu Rama; Saba, Luca; Molinari, Filippo; Guerriero, Stefano; Suri, Jasjit S

    2012-12-01

    Among gynecological malignancies, ovarian cancer is the most frequent cause of death. Preoperative determination of whether a tumor is benign or malignant has often been found to be difficult. Because of such inconclusive findings from ultrasound images and other tests, many patients with benign conditions have been offered unnecessary surgeries thereby increasing patient anxiety and healthcare cost. The key objective of our work is to develop an adjunct Computer Aided Diagnostic (CAD) technique that uses ultrasound images of the ovary and image mining algorithms to accurately classify benign and malignant ovarian tumor images. In this algorithm, we extract texture features based on Local Binary Patterns (LBP) and Laws Texture Energy (LTE) and use them to build and train a Support Vector Machine (SVM) classifier. Our technique was validated using 1000 benign and 1000 malignant images, and we obtained a high accuracy of 99.9% using a SVM classifier with a Radial Basis Function (RBF) kernel. The high accuracy can be attributed to the determination of the novel combination of the 16 texture based features that quantify the subtle changes in the images belonging to both classes. The proposed algorithm has the following characteristics: cost-effectiveness, complete automation, easy deployment, and good end-user comprehensibility. We have also developed a novel integrated index, Ovarian Cancer Index (OCI), which is a combination of the texture features, to present the physicians with a more transparent adjunct technique for ovarian tumor classification.

  2. Effectiveness of evaluating tumor vascularization using 3D power Doppler ultrasound with high-definition flow technology in the prediction of the response to neoadjuvant chemotherapy for T2 breast cancer: a preliminary report

    NASA Astrophysics Data System (ADS)

    Shia, Wei-Chung; Chen, Dar-Ren; Huang, Yu-Len; Wu, Hwa-Koon; Kuo, Shou-Jen

    2015-10-01

    The aim of this study was to evaluate the effectiveness of advanced ultrasound (US) imaging of vascular flow and morphological features in the prediction of a pathologic complete response (pCR) and a partial response (PR) to neoadjuvant chemotherapy for T2 breast cancer. Twenty-nine consecutive patients with T2 breast cancer treated with six courses of anthracycline-based neoadjuvant chemotherapy were enrolled. Three-dimensional (3D) power Doppler US with high-definition flow (HDF) technology was used to investigate the blood flow in and morphological features of the tumors. Six vascularity quantization features, three morphological features, and two vascular direction features were selected and extracted from the US images. A support vector machine was used to evaluate the changes in vascularity after neoadjuvant chemotherapy, and pCR and PR were predicted on the basis of these changes. The most accurate prediction of pCR was achieved after the first chemotherapy cycle, with an accuracy of 93.1% and a specificity of 85.5%, while that of a PR was achieved after the second cycle, with an accuracy of 79.31% and a specificity of 72.22%. Vascularity data can be useful to predict the effects of neoadjuvant chemotherapy. Determination of changes in vascularity after neoadjuvant chemotherapy using 3D power Doppler US with HDF can generate accurate predictions of the patient response, facilitating early decision-making.

  3. Autonomous surgical robotics using 3-D ultrasound guidance: feasibility study.

    PubMed

    Whitman, John; Fronheiser, Matthew P; Ivancevich, Nikolas M; Smith, Stephen W

    2007-10-01

    The goal of this study was to test the feasibility of using a real-time 3D (RT3D) ultrasound scanner with a transthoracic matrix array transducer probe to guide an autonomous surgical robot. Employing a fiducial alignment mark on the transducer to orient the robot's frame of reference and using simple thresholding algorithms to segment the 3D images, we tested the accuracy of using the scanner to automatically direct a robot arm that touched two needle tips together within a water tank. RMS measurement error was 3.8% or 1.58 mm for an average path length of 41 mm. Using these same techniques, the autonomous robot also performed simulated needle biopsies of a cyst-like lesion in a tissue phantom. This feasibility study shows the potential for 3D ultrasound guidance of an autonomous surgical robot for simple interventional tasks, including lesion biopsy and foreign body removal.

  4. Linear tracking for 3-D medical ultrasound imaging.

    PubMed

    Huang, Qing-Hua; Yang, Zhao; Hu, Wei; Jin, Lian-Wen; Wei, Gang; Li, Xuelong

    2013-12-01

    As the clinical application grows, there is a rapid technical development of 3-D ultrasound imaging. Compared with 2-D ultrasound imaging, 3-D ultrasound imaging can provide improved qualitative and quantitative information for various clinical applications. In this paper, we proposed a novel tracking method for a freehand 3-D ultrasound imaging system with improved portability, reduced degree of freedom, and cost. We designed a sliding track with a linear position sensor attached, and it transmitted positional data via a wireless communication module based on Bluetooth, resulting in a wireless spatial tracking modality. A traditional 2-D ultrasound probe fixed to the position sensor on the sliding track was used to obtain real-time B-scans, and the positions of the B-scans were simultaneously acquired when moving the probe along the track in a freehand manner. In the experiments, the proposed method was applied to ultrasound phantoms and real human tissues. The results demonstrated that the new system outperformed a previously developed freehand system based on a traditional six-degree-of-freedom spatial sensor in phantom and in vivo studies, indicating its merit in clinical applications for human tissues and organs.

  5. Fast rendering scheme for 3D cylindrical ultrasound data

    NASA Astrophysics Data System (ADS)

    Choi, Jung Pill; Ra, Jong Beom

    2000-04-01

    3D ultrasound imaging is an emerging and prospective modality in the ultrasound scanning area. Since 3D ultrasound dat are often acquired by translation or rotation of 2D data acquisition systems, the data can be directly sampled on cylindrical or spherical structured girds rather tan on rectilinear grids. However, visualization of cylindrical or spherical data is more complex than that of rectilinear grids. Therefore, conventional rendering methods resample the grids into rectilinear grids and visualize the resampled rectilinear dat. However, resampling introduces an undesired resolution loss. In this paper a direct rendering scheme of cylindrical ultrasound data is considered. Even though cell sin cylindrical grids have different sizes, they are very similar in shape and contain some regularity. We use this similarity and regularity of cells to reduce rendering time in a projection-based rendering method. To achieve high sped rendering, we prose a simple projection ordering method and a fast projection method using a common edge table. And also, to produce good rendering results, an efficient bilinear interpolation scheme is prosed for the hexahedral projection. In this scheme, since weighting coefficients are calculated in the image plane, we can avoid calculating crossing point sin the object space. Based on the proposed techniques above, we can produce high resolution rendered images directly form a cylindrical 3D ultrasound data set.

  6. Midbrain segmentation in transcranial 3D ultrasound for Parkinson diagnosis.

    PubMed

    Ahmadi, Seyed-Ahmad; Baust, Maximilian; Karamalis, Athanasios; Plate, Annika; Boetzel, Kai; Klein, Tassilo; Navab, Nassir

    2011-01-01

    Ultrasound examination of the human brain through the temporal bone window, also called transcranial ultrasound (TC-US), is a completely non-invasive and cost-efficient technique, which has established itself for differential diagnosis of Parkinson's Disease (PD) in the past decade. The method requires spatial analysis of ultrasound hyperechogenicities produced by pathological changes within the Substantia Nigra (SN), which belongs to the basal ganglia within the midbrain. Related work on computer aided PD diagnosis shows the urgent need for an accurate and robust segmentation of the midbrain from 3D TC-US, which is an extremely difficult task due to poor image quality of TC-US. In contrast to 2D segmentations within earlier approaches, we develop the first method for semi-automatic midbrain segmentation from 3D TC-US and demonstrate its potential benefit on a database of 11 diagnosed Parkinson patients and 11 healthy controls.

  7. Tracked 3D ultrasound in radio-frequency liver ablation

    NASA Astrophysics Data System (ADS)

    Boctor, Emad M.; Fichtinger, Gabor; Taylor, Russell H.; Choti, Michael A.

    2003-05-01

    Recent studies have shown that radio frequency (RF) ablation is a simple, safe and potentially effective treatment for selected patients with liver metastases. Despite all recent therapeutic advancements, however, intra-procedural target localization and precise and consistent placement of the tissue ablator device are still unsolved problems. Various imaging modalities, including ultrasound (US) and computed tomography (CT) have been tried as guidance modalities. Transcutaneous US imaging, due to its real-time nature, may be beneficial in many cases, but unfortunately, fails to adequately visualize the tumor in many cases. Intraoperative or laparoscopic US, on the other hand, provides improved visualization and target imaging. This paper describes a system for computer-assisted RF ablation of liver tumors, combining navigational tracking of a conventional imaging ultrasound probe to produce 3D ultrasound imaging with a tracked RF ablation device supported by a passive mechanical arm and spatially registered to the ultrasound volume.

  8. 3D Subharmonic Ultrasound Imaging In Vitro and In Vivo

    PubMed Central

    Eisenbrey, John R.; Sridharan, Anush; Machado, Priscilla; Zhao, Hongjia; Halldorsdottir, Valgerdur G.; Dave, Jaydev K.; Liu, Ji-Bin; Park, Suhyun; Dianis, Scott; Wallace, Kirk; Thomenius, Kai E.; Forsberg, F.

    2012-01-01

    Rationale and Objectives While contrast-enhanced ultrasound imaging techniques such as harmonic imaging (HI) have evolved to reduce tissue signals using the nonlinear properties of the contrast agent, levels of background suppression have been mixed. Subharmonic imaging (SHI) offers near-complete tissue suppression by centering the receive bandwidth at half the transmitting frequency. In this work we demonstrate the feasibility of 3D SHI and compare it to 3D HI. Materials and Methods 3D HI and SHI were implemented on a Logiq 9 ultrasound scanner (GE Healthcare, Milwaukee, Wisconsin) with a 4D10L probe. Four-cycle SHI was implemented to transmit at 5.8 MHz and receive at 2.9 MHz, while 2-cycle HI was implemented to transmit at 5 MHz and receive at 10 MHz. The ultrasound contrast agent Definity (Lantheus Medical Imaging, North Billerica, MA) was imaged within a flow phantom and the lower pole of two canine kidneys in both HI and SHI modes. Contrast to tissue ratios (CTR) and rendered images were compared offline. Results SHI resulted in significant improvement in CTR levels relative to HI both in vitro (12.11±0.52 vs. 2.67±0.77, p<0.001) and in vivo (5.74±1.92 vs. 2.40±0.48, p=0.04). Rendered 3D SHI images provided better tissue suppression and a greater overall view of vessels in a flow phantom and canine renal vasculature. Conclusions The successful implementation of SHI in 3D allows imaging of vascular networks over a heterogeneous sample volume and should improve future diagnostic accuracy. Additionally, 3D SHI provides improved CTR values relative to 3D HI. PMID:22464198

  9. The Application of Ultrasound in 3D Bio-Printing.

    PubMed

    Zhou, Yufeng

    2016-05-05

    Three-dimensional (3D) bioprinting is an emerging and promising technology in tissue engineering to construct tissues and organs for implantation. Alignment of self-assembly cell spheroids that are used as bioink could be very accurate after droplet ejection from bioprinter. Complex and heterogeneous tissue structures could be built using rapid additive manufacture technology and multiple cell lines. Effective vascularization in the engineered tissue samples is critical in any clinical application. In this review paper, the current technologies and processing steps (such as printing, preparation of bioink, cross-linking, tissue fusion and maturation) in 3D bio-printing are introduced, and their specifications are compared with each other. In addition, the application of ultrasound in this novel field is also introduced. Cells experience acoustic radiation force in ultrasound standing wave field (USWF) and then accumulate at the pressure node at low acoustic pressure. Formation of cell spheroids by this method is within minutes with uniform size and homogeneous cell distribution. Neovessel formation from USWF-induced endothelial cell spheroids is significant. Low-intensity ultrasound could enhance the proliferation and differentiation of stem cells. Its use is at low cost and compatible with current bioreactor. In summary, ultrasound application in 3D bio-printing may solve some challenges and enhance the outcomes.

  10. Chest wall segmentation in automated 3D breast ultrasound using rib shadow enhancement and multi-plane cumulative probability enhanced map

    NASA Astrophysics Data System (ADS)

    Kim, Hyeonjin; Kim, Hannah; Hong, Helen

    2015-03-01

    We propose an automatic segmentation method of chest wall in 3D ABUS images using rib shadow enhancement and multi-planar cumulative probability enhanced map. For the identification of individual dark rib shadows, each rib shadow is enhanced using intensity transfer function and 3D sheet-like enhancement filtering. Then, wrongly enhanced intercostal regions and small fatty tissues are removed using coronal and sagittal cumulative probability enhanced maps. The large fatty tissues with globular and sheet-like shapes at the top of rib shadow are removed using shape and orientation analysis based on moment matrix. Detected chest walls are connected with cubic B-spline interpolation. Experimental results show that the Dice similarity coefficient of proposed method as comparison with two manually outlining results provides over 90% in average.

  11. Localization of liver tumors in freehand 3D laparoscopic ultrasound

    NASA Astrophysics Data System (ADS)

    Shahin, O.; Martens, V.; Besirevic, A.; Kleemann, M.; Schlaefer, A.

    2012-02-01

    The aim of minimally invasive laparoscopic liver interventions is to completely resect or ablate tumors while minimizing the trauma caused by the operation. However, restrictions such as limited field of view and reduced depth perception can hinder the surgeon's capabilities to precisely localize the tumor. Typically, preoperative data is acquired to find the tumor(s) and plan the surgery. Nevertheless, determining the precise position of the tumor is required, not only before but also during the operation. The standard use of ultrasound in hepatic surgery is to explore the liver and identify tumors. Meanwhile, the surgeon mentally builds a 3D context to localize tumors. This work aims to upgrade the use of ultrasound in laparoscopic liver surgery. We propose an approach to segment and localize tumors intra-operatively in 3D ultrasound. We reconstruct a 3D laparoscopic ultrasound volume containing a tumor. The 3D image is then preprocessed and semi-automatically segmented using a level set algorithm. During the surgery, for each subsequent reconstructed volume, a fast update of the tumor position is accomplished via registration using the previously segmented and localized tumor as a prior knowledge. The approach was tested on a liver phantom with artificial tumors. The tumors were localized in approximately two seconds with a mean error of less than 0.5 mm. The strengths of this technique are that it can be performed intra-operatively, it helps the surgeon to accurately determine the location, shape and volume of the tumor, and it is repeatable throughout the operation.

  12. 3D ultrasound imaging for prosthesis fabrication and diagnostic imaging

    SciTech Connect

    Morimoto, A.K.; Bow, W.J.; Strong, D.S.

    1995-06-01

    The fabrication of a prosthetic socket for a below-the-knee amputee requires knowledge of the underlying bone structure in order to provide pressure relief for sensitive areas and support for load bearing areas. The goal is to enable the residual limb to bear pressure with greater ease and utility. Conventional methods of prosthesis fabrication are based on limited knowledge about the patient`s underlying bone structure. A 3D ultrasound imaging system was developed at Sandia National Laboratories. The imaging system provides information about the location of the bones in the residual limb along with the shape of the skin surface. Computer assisted design (CAD) software can use this data to design prosthetic sockets for amputees. Ultrasound was selected as the imaging modality. A computer model was developed to analyze the effect of the various scanning parameters and to assist in the design of the overall system. The 3D ultrasound imaging system combines off-the-shelf technology for image capturing, custom hardware, and control and image processing software to generate two types of image data -- volumetric and planar. Both volumetric and planar images reveal definition of skin and bone geometry with planar images providing details on muscle fascial planes, muscle/fat interfaces, and blood vessel definition. The 3D ultrasound imaging system was tested on 9 unilateral below-the- knee amputees. Image data was acquired from both the sound limb and the residual limb. The imaging system was operated in both volumetric and planar formats. An x-ray CT (Computed Tomography) scan was performed on each amputee for comparison. Results of the test indicate beneficial use of ultrasound to generate databases for fabrication of prostheses at a lower cost and with better initial fit as compared to manually fabricated prostheses.

  13. Ultrasound-Guided Breast Biopsy

    MedlinePlus

    ... Breast Biopsy An ultrasound-guided breast biopsy uses sound waves to help locate a lump or abnormality ... exam. The transducer sends out inaudible, high—frequency sound waves into the body and then listens for ...

  14. Refraction Correction in 3D Transcranial Ultrasound Imaging

    PubMed Central

    Lindsey, Brooks D.; Smith, Stephen W.

    2014-01-01

    We present the first correction of refraction in three-dimensional (3D) ultrasound imaging using an iterative approach that traces propagation paths through a two-layer planar tissue model, applying Snell’s law in 3D. This approach is applied to real-time 3D transcranial ultrasound imaging by precomputing delays offline for several skull thicknesses, allowing the user to switch between three sets of delays for phased array imaging at the push of a button. Simulations indicate that refraction correction may be expected to increase sensitivity, reduce beam steering errors, and partially restore lost spatial resolution, with the greatest improvements occurring at the largest steering angles. Distorted images of cylindrical lesions were created by imaging through an acrylic plate in a tissue-mimicking phantom. As a result of correcting for refraction, lesions were restored to 93.6% of their original diameter in the lateral direction and 98.1% of their original shape along the long axis of the cylinders. In imaging two healthy volunteers, the mean brightness increased by 8.3% and showed no spatial dependency. PMID:24275538

  15. Dedicated 3D photoacoustic breast imaging

    PubMed Central

    Kruger, Robert A.; Kuzmiak, Cherie M.; Lam, Richard B.; Reinecke, Daniel R.; Del Rio, Stephen P.; Steed, Doreen

    2013-01-01

    Purpose: To report the design and imaging methodology of a photoacoustic scanner dedicated to imaging hemoglobin distribution throughout a human breast. Methods: The authors developed a dedicated breast photoacoustic mammography (PAM) system using a spherical detector aperture based on our previous photoacoustic tomography scanner. The system uses 512 detectors with rectilinear scanning. The scan shape is a spiral pattern whose radius varies from 24 to 96 mm, thereby allowing a field of view that accommodates a wide range of breast sizes. The authors measured the contrast-to-noise ratio (CNR) using a target comprised of 1-mm dots printed on clear plastic. Each dot absorption coefficient was approximately the same as a 1-mm thickness of whole blood at 756 nm, the output wavelength of the Alexandrite laser used by this imaging system. The target was immersed in varying depths of an 8% solution of stock Liposyn II-20%, which mimics the attenuation of breast tissue (1.1 cm−1). The spatial resolution was measured using a 6 μm-diameter carbon fiber embedded in agar. The breasts of four healthy female volunteers, spanning a range of breast size from a brassiere C cup to a DD cup, were imaged using a 96-mm spiral protocol. Results: The CNR target was clearly visualized to a depth of 53 mm. Spatial resolution, which was estimated from the full width at half-maximum of a profile across the PAM image of a carbon fiber, was 0.42 mm. In the four human volunteers, the vasculature was well visualized throughout the breast tissue, including to the chest wall. Conclusions: CNR, lateral field-of-view and penetration depth of our dedicated PAM scanning system is sufficient to image breasts as large as 1335 mL, which should accommodate up to 90% of the women in the United States. PMID:24320471

  16. Generation of 3D synthetic breast tissue

    NASA Astrophysics Data System (ADS)

    Elangovan, Premkumar; Dance, David R.; Young, Kenneth C.; Wells, Kevin

    2016-03-01

    Virtual clinical trials are an emergent approach for the rapid evaluation and comparison of various breast imaging technologies and techniques using computer-based modeling tools. A fundamental requirement of this approach for mammography is the use of realistic looking breast anatomy in the studies to produce clinically relevant results. In this work, a biologically inspired approach has been used to simulate realistic synthetic breast phantom blocks for use in virtual clinical trials. A variety of high and low frequency features (including Cooper's ligaments, blood vessels and glandular tissue) have been extracted from clinical digital breast tomosynthesis images and used to simulate synthetic breast blocks. The appearance of the phantom blocks was validated by presenting a selection of simulated 2D and DBT images interleaved with real images to a team of experienced readers for rating using an ROC paradigm. The average areas under the curve for 2D and DBT images were 0.53+/-.04 and 0.55+/-.07 respectively; errors are the standard errors of the mean. The values indicate that the observers had difficulty in differentiating the real images from simulated images. The statistical properties of simulated images of the phantom blocks were evaluated by means of power spectrum analysis. The power spectrum curves for real and simulated images closely match and overlap indicating good agreement.

  17. A 3D Level Set Method for Microwave Breast Imaging

    PubMed Central

    Colgan, Timothy J.; Hagness, Susan C.; Van Veen, Barry D.

    2015-01-01

    Objective Conventional inverse-scattering algorithms for microwave breast imaging result in moderate resolution images with blurred boundaries between tissues. Recent 2D numerical microwave imaging studies demonstrate that the use of a level set method preserves dielectric boundaries, resulting in a more accurate, higher resolution reconstruction of the dielectric properties distribution. Previously proposed level set algorithms are computationally expensive and thus impractical in 3D. In this paper we present a computationally tractable 3D microwave imaging algorithm based on level sets. Methods We reduce the computational cost of the level set method using a Jacobian matrix, rather than an adjoint method, to calculate Frechet derivatives. We demonstrate the feasibility of 3D imaging using simulated array measurements from 3D numerical breast phantoms. We evaluate performance by comparing full 3D reconstructions to those from a conventional microwave imaging technique. We also quantitatively assess the efficacy of our algorithm in evaluating breast density. Results Our reconstructions of 3D numerical breast phantoms improve upon those of a conventional microwave imaging technique. The density estimates from our level set algorithm are more accurate than those of conventional microwave imaging, and the accuracy is greater than that reported for mammographic density estimation. Conclusion Our level set method leads to a feasible level of computational complexity for full 3D imaging, and reconstructs the heterogeneous dielectric properties distribution of the breast more accurately than conventional microwave imaging methods. Significance 3D microwave breast imaging using a level set method is a promising low-cost, non-ionizing alternative to current breast imaging techniques. PMID:26011863

  18. Detection of Curved Robots using 3D Ultrasound.

    PubMed

    Ren, Hongliang; Vasilyev, Nikolay V; Dupont, Pierre E

    2011-09-25

    Three-dimensional ultrasound can be an effective imaging modality for image-guided interventions since it enables visualization of both the instruments and the tissue. For robotic applications, its realtime frame rates create the potential for image-based instrument tracking and servoing. These capabilities can enable improved instrument visualization, compensation for tissue motion as well as surgical task automation. Continuum robots, whose shape comprises a smooth curve along their length, are well suited for minimally invasive procedures. Existing techniques for ultrasound tracking, however, are limited to straight, laparoscopic-type instruments and thus are not applicable to continuum robot tracking. Toward the goal of developing tracking algorithms for continuum robots, this paper presents a method for detecting a robot comprised of a single constant curvature in a 3D ultrasound volume. Computational efficiency is achieved by decomposing the six-dimensional circle estimation problem into two sequential three-dimensional estimation problems. Simulation and experiment are used to evaluate the proposed method.

  19. A single element 3D ultrasound tomography system.

    PubMed

    Xiang Zhang; Fincke, Jonathan; Kuzmin, Andrey; Lempitsky, Victor; Anthony, Brian

    2015-08-01

    Over the past decade, substantial effort has been directed toward developing ultrasonic systems for medical imaging. With advances in computational power, previously theorized scanning methods such as ultrasound tomography can now be realized. In this paper, we present the design, error analysis, and initial backprojection images from a single element 3D ultrasound tomography system. The system enables volumetric pulse-echo or transmission imaging of distal limbs. The motivating clinical applications include: improving prosthetic fittings, monitoring bone density, and characterizing muscle health. The system is designed as a flexible mechanical platform for iterative development of algorithms targeting imaging of soft tissue and bone. The mechanical system independently controls movement of two single element ultrasound transducers in a cylindrical water tank. Each transducer can independently circle about the center of the tank as well as move vertically in depth. High resolution positioning feedback (~1μm) and control enables flexible positioning of the transmitter and the receiver around the cylindrical tank; exchangeable transducers enable algorithm testing with varying transducer frequencies and beam geometries. High speed data acquisition (DAQ) through a dedicated National Instrument PXI setup streams digitized data directly to the host PC. System positioning error has been quantified and is within limits for the imaging requirements of the motivating applications.

  20. Density-tapered spiral arrays for ultrasound 3-D imaging.

    PubMed

    Ramalli, Alessandro; Boni, Enrico; Savoia, Alessandro Stuart; Tortoli, Piero

    2015-08-01

    The current high interest in 3-D ultrasound imaging is pushing the development of 2-D probes with a challenging number of active elements. The most popular approach to limit this number is the sparse array technique, which designs the array layout by means of complex optimization algorithms. These algorithms are typically constrained by a few steering conditions, and, as such, cannot guarantee uniform side-lobe performance at all angles. The performance may be improved by the ungridded extensions of the sparse array technique, but this result is achieved at the expense of a further complication of the optimization process. In this paper, a method to design the layout of large circular arrays with a limited number of elements according to Fermat's spiral seeds and spatial density modulation is proposed and shown to be suitable for application to 3-D ultrasound imaging. This deterministic, aperiodic, and balanced positioning procedure attempts to guarantee uniform performance over a wide range of steering angles. The capabilities of the method are demonstrated by simulating and comparing the performance of spiral and dense arrays. A good trade-off for small vessel imaging is found, e.g., in the 60λ spiral array with 1.0λ elements and Blackman density tapering window. Here, the grating lobe level is -16 dB, the lateral resolution is lower than 6λ the depth of field is 120λ and, the average contrast is 10.3 dB, while the sensitivity remains in a 5 dB range for a wide selection of steering angles. The simulation results may represent a reference guide to the design of spiral sparse array probes for different application fields.

  1. 3D imaging options and ultrasound contrast agents for the ultrasound assessment of pediatric rheumatic patients.

    PubMed

    Madej, Tomasz

    2013-12-01

    The application of 3D imaging in pediatric rheumatology helps to make the assessment of inflammatory changes more objective and to estimate accurately their volume and the actual response to treatment in the course of follow-up examinations. Additional interesting opportunities are opened up by the vascularity analysis with the help of power Doppler and color Doppler in 3D imaging. Contrast-enhanced ultrasound examinations enable a more sensitive assessment of the vascularity of inflamed structures of the locomotor system, and a more accurate analysis of treatment's effect on changes in vascularity, and thereby the inflammation process activity, as compared to the classical options of power and color Doppler. The equipment required, time limitations, as well as the high price in the case of contrast-enhanced ultrasound, contribute to the fact that the 3D analysis of inflammatory changes and contrast-enhanced ultrasound examinations are not routinely applied for pediatric patients.

  2. Quantification of thyroid volume using 3-D ultrasound imaging.

    PubMed

    Kollorz, E K; Hahn, D A; Linke, R; Goecke, T W; Hornegger, J; Kuwert, T

    2008-04-01

    Ultrasound (US) is among the most popular diagnostic techniques today. It is non-invasive, fast, comparably cheap, and does not require ionizing radiation. US is commonly used to examine the size, and structure of the thyroid gland. In clinical routine, thyroid imaging is usually performed by means of 2-D US. Conventional approaches for measuring the volume of the thyroid gland or its nodules may therefore be inaccurate due to the lack of 3-D information. This work reports a semi-automatic segmentation approach for the classification, and analysis of the thyroid gland based on 3-D US data. The images are scanned in 3-D, pre-processed, and segmented. Several pre-processing methods, and an extension of a commonly used geodesic active contour level set formulation are discussed in detail. The results obtained by this approach are compared to manual interactive segmentations by a medical expert in five representative patients. Our work proposes a novel framework for the volumetric quantification of thyroid gland lobes, which may also be expanded to other parenchymatous organs.

  3. Crouzon syndrome associated with acanthosis nigricans: prenatal 2D and 3D ultrasound findings and postnatal 3D CT findings

    PubMed Central

    Nørgaard, Pernille; Hagen, Casper Petri; Hove, Hanne; Dunø, Morten; Nissen, Kamilla Rothe; Kreiborg, Sven; Jørgensen, Finn Stener

    2012-01-01

    Crouzon syndrome with acanthosis nigricans (CAN) is a very rare condition with an approximate prevalence of 1 per 1 million newborns. We add the first report on prenatal 2D and 3D ultrasound findings in CAN. In addition we present the postnatal 3D CT findings. The diagnosis was confirmed by molecular testing. PMID:23986840

  4. Registration of 3D ultrasound computer tomography and MRI for evaluation of tissue correspondences

    NASA Astrophysics Data System (ADS)

    Hopp, T.; Dapp, R.; Zapf, M.; Kretzek, E.; Gemmeke, H.; Ruiter, N. V.

    2015-03-01

    3D Ultrasound Computer Tomography (USCT) is a new imaging method for breast cancer diagnosis. In the current state of development it is essential to correlate USCT with a known imaging modality like MRI to evaluate how different tissue types are depicted. Due to different imaging conditions, e.g. with the breast subject to buoyancy in USCT, a direct correlation is demanding. We present a 3D image registration method to reduce positioning differences and allow direct side-by-side comparison of USCT and MRI volumes. It is based on a two-step approach including a buoyancy simulation with a biomechanical model and free form deformations using cubic B-Splines for a surface refinement. Simulation parameters are optimized patient-specifically in a simulated annealing scheme. The method was evaluated with in-vivo datasets resulting in an average registration error below 5mm. Correlating tissue structures can thereby be located in the same or nearby slices in both modalities and three-dimensional non-linear deformations due to the buoyancy are reduced. Image fusion of MRI volumes and USCT sound speed volumes was performed for intuitive display. By applying the registration to data of our first in-vivo study with the KIT 3D USCT, we could correlate several tissue structures in MRI and USCT images and learn how connective tissue, carcinomas and breast implants observed in the MRI are depicted in the USCT imaging modes.

  5. Validation of 3D ultrasound: CT registration of prostate images

    NASA Astrophysics Data System (ADS)

    Firle, Evelyn A.; Wesarg, Stefan; Karangelis, Grigoris; Dold, Christian

    2003-05-01

    All over the world 20% of men are expected to develop prostate cancer sometime in his life. In addition to surgery - being the traditional treatment for cancer - the radiation treatment is getting more popular. The most interesting radiation treatment regarding prostate cancer is Brachytherapy radiation procedure. For the safe delivery of that therapy imaging is critically important. In several cases where a CT device is available a combination of the information provided by CT and 3D Ultrasound (U/S) images offers advantages in recognizing the borders of the lesion and delineating the region of treatment. For these applications the CT and U/S scans should be registered and fused in a multi-modal dataset. Purpose of the present development is a registration tool (registration, fusion and validation) for available CT volumes with 3D U/S images of the same anatomical region, i.e. the prostate. The combination of these two imaging modalities interlinks the advantages of the high-resolution CT imaging and low cost real-time U/S imaging and offers a multi-modality imaging environment for further target and anatomy delineation. This tool has been integrated into the visualization software "InViVo" which has been developed over several years in Fraunhofer IGD in Darmstadt.

  6. Objective breast symmetry evaluation using 3-D surface imaging.

    PubMed

    Eder, Maximilian; Waldenfels, Fee V; Swobodnik, Alexandra; Klöppel, Markus; Pape, Ann-Kathrin; Schuster, Tibor; Raith, Stefan; Kitzler, Elena; Papadopulos, Nikolaos A; Machens, Hans-Günther; Kovacs, Laszlo

    2012-04-01

    This study develops an objective breast symmetry evaluation using 3-D surface imaging (Konica-Minolta V910(®) scanner) by superimposing the mirrored left breast over the right and objectively determining the mean 3-D contour difference between the 2 breast surfaces. 3 observers analyzed the evaluation protocol precision using 2 dummy models (n = 60), 10 test subjects (n = 300), clinically tested it on 30 patients (n = 900) and compared it to established 2-D measurements on 23 breast reconstructive patients using the BCCT.core software (n = 690). Mean 3-D evaluation precision, expressed as the coefficient of variation (VC), was 3.54 ± 0.18 for all human subjects without significant intra- and inter-observer differences (p > 0.05). The 3-D breast symmetry evaluation is observer independent, significantly more precise (p < 0.001) than the BCCT.core software (VC = 6.92 ± 0.88) and may play a part in an objective surgical outcome analysis after incorporation into clinical practice.

  7. Simulation of Autonomous Robotic Multiple-Core Biopsy by 3D Ultrasound Guidance

    PubMed Central

    Liang, Kaicheng; Rogers, Albert J.; Light, Edward D.; von Allmen, Daniel; Smith, Stephen W.

    2010-01-01

    An autonomous multiple-core biopsy system guided by real-time 3D ultrasound and operated by a robotic arm with 6+1 degrees of freedom has been developed. Using a specimen of turkey breast as a tissue phantom, our system was able to first autonomously locate the phantom in the image volume and then perform needle sticks in each of eight sectors in the phantom in a single session, with no human intervention required. Based on the fraction of eight sectors successfully sampled in an experiment of five trials, a success rate of 93% was recorded. This system could have relevance in clinical procedures that involve multiple needle-core sampling such as prostate or breast biopsy. PMID:20687279

  8. Development of a physical 3D anthropomorphic breast phantom

    SciTech Connect

    Carton, Ann-Katherine; Bakic, Predrag; Ullberg, Christer; Derand, Helen; Maidment, Andrew D. A.

    2011-02-15

    Purpose: Develop a technique to fabricate a 3D anthropomorphic breast phantom with known ground truth for image quality assessment of 2D and 3D breast x-ray imaging systems. Methods: The phantom design is based on an existing computer model that can generate breast voxel phantoms of varying composition, size, and shape. The physical phantom is produced in two steps. First, the portion of the voxel phantom consisting of the glandular tissue, skin, and Cooper's ligaments is separated into sections. These sections are then fabricated by high-resolution rapid prototyping using a single material with 50% glandular equivalence. The remaining adipose compartments are then filled using an epoxy-based resin (EBR) with 100% adipose equivalence. The phantom sections are stacked to form the physical anthropomorphic phantom. Results: The authors fabricated a prototype phantom corresponding to a 450 ml breast with 45% dense tissue, deformed to a 5 cm compressed thickness. Both the rapid prototype (RP) and EBR phantom materials are radiographically uniform. The coefficient of variation (CoV) of the relative attenuation between RP and EBR phantom samples was <1% and the CoV of the signal intensity within RP and EBR phantom samples was <1.5% on average. Digital mammography and reconstructed digital breast tomosynthesis images of the authors' phantom were reviewed by two radiologists; they reported that the images are similar in appearance to clinical images, noting there are still artifacts from air bubbles in the EBR. Conclusions: The authors have developed a technique to produce 3D anthropomorphic breast phantoms with known ground truth, yielding highly realistic x-ray images. Such phantoms may serve both qualitative and quantitative performance assessments for 2D and 3D breast x-ray imaging systems.

  9. A novel MR-guided interventional device for 3D circumferential access to breast tissue

    PubMed Central

    Smith, Matthew; Zhai, Xu; Harter, Ray; Sisney, Gale; Elezaby, Mai; Fain, Sean

    2008-01-01

    MRI is rapidly growing as a tool for image-guided procedures in the breast such as needle localizations, biopsy, and cryotherapy. The ability of MRI to resolve small (<1 cm) lesions allows earlier detection and diagnosis than with ultrasound. Most MR-guidance methods perform a two-dimensional compression of the breast that distorts tissue anatomy and limits medial access. This work presents a system for localizing breast lesions with 360° access to breast tissue. A novel system has been developed to perform breast lesion localization using MR guidance that uses a 3D radial coordinate system with four degrees of freedom. The device is combined with a novel breast RF coil for improved signal to noise and rotates 360° around the breast to allow medial, lateral, superior, and inferior access minimizing insertion depth to the target. Coil performance was evaluated using a human volunteer by comparing signal to noise from both the developed breast RF coil and a commercial seven-channel breast coil. The system was tested with a breast-shaped gel phantom containing randomly distributed MR-visible targets. MR-compatible localization needles were used to demonstrate the accuracy and feasibility of the concept for breast biopsy. Localization results were classified based on the relationship between the final needle tip position and the lesion. A 3D bladder concept was also tested using animal tissue to evaluate the device’s ability to immobilize deformable breast tissue during a needle insertion. The RF breast coil provided signal to noise values comparable to a seven-channel breast coil. The needle tip was in contact with the targeted lesion in 89% (25∕28) of all the trials and 100% (6∕6) of the trials with targeted lesions >6 mm. Target lesions were 3–4 mm in diameter for 47% (13∕28), 5–6 mm in diameter for 32% (9∕28), and over 6 mm in diameter for 21% (6∕28) of the trials, respectively. The 3D bladder concept was shown to immobilize a deformable animal

  10. 3D-2D ultrasound feature-based registration for navigated prostate biopsy: a feasibility study.

    PubMed

    Selmi, Sonia Y; Promayon, Emmanuel; Troccaz, Jocelyne

    2016-08-01

    The aim of this paper is to describe a 3D-2D ultrasound feature-based registration method for navigated prostate biopsy and its first results obtained on patient data. A system combining a low-cost tracking system and a 3D-2D registration algorithm was designed. The proposed 3D-2D registration method combines geometric and image-based distances. After extracting features from ultrasound images, 3D and 2D features within a defined distance are matched using an intensity-based function. The results are encouraging and show acceptable errors with simulated transforms applied on ultrasound volumes from real patients.

  11. Optimization of the aperture and the transducer characteristics of a 3D ultrasound computer tomography system

    NASA Astrophysics Data System (ADS)

    Ruiter, Nicole V.; Zapf, Michael; Hopp, Torsten; Dapp, Robin; Gemmeke, Hartmut

    2014-03-01

    A promising candidate for improved imaging of breast cancer is ultrasound computer tomography (USCT). The aim of this work was to design a new aperture for our full 3D USCT which extends the properties of the current aperture to a larger ROI fitting the buoyant breast in water and decreasing artifacts in transmission tomography. The optimization resulted in a larger opening angle of the transducers, a larger diameter of the aperture and an approximately homogeneous distribution of the transducers, with locally random distances. The developed optimization methods allow us to automatically generate an optimized aperture for given diameters of apertures and transducer arrays, as well as quantitative comparison to other arbitrary apertures. Thus, during the design phase of the next generation KIT 3D USCT, the image quality can be balanced against the specification parameters and given hardware and cost limitations. The methods can be applied for general aperture optimization, only limited by the assumptions of a hemispherical aperture and circular transducer arrays.

  12. Abdominal aortic aneurysm imaging with 3-D ultrasound: 3-D-based maximum diameter measurement and volume quantification.

    PubMed

    Long, A; Rouet, L; Debreuve, A; Ardon, R; Barbe, C; Becquemin, J P; Allaire, E

    2013-08-01

    The clinical reliability of 3-D ultrasound imaging (3-DUS) in quantification of abdominal aortic aneurysm (AAA) was evaluated. B-mode and 3-DUS images of AAAs were acquired for 42 patients. AAAs were segmented. A 3-D-based maximum diameter (Max3-D) and partial volume (Vol30) were defined and quantified. Comparisons between 2-D (Max2-D) and 3-D diameters and between orthogonal acquisitions were performed. Intra- and inter-observer reproducibility was evaluated. Intra- and inter-observer coefficients of repeatability (CRs) were less than 5.18 mm for Max3-D. Intra-observer and inter-observer CRs were respectively less than 6.16 and 8.71 mL for Vol30. The mean of normalized errors of Vol30 was around 7%. Correlation between Max2-D and Max3-D was 0.988 (p < 0.0001). Max3-D and Vol30 were not influenced by a probe rotation of 90°. Use of 3-DUS to quantify AAA is a new approach in clinical practice. The present study proposed and evaluated dedicated parameters. Their reproducibility makes the technique clinically reliable.

  13. 3D ultrasound image segmentation using multiple incomplete feature sets

    NASA Astrophysics Data System (ADS)

    Fan, Liexiang; Herrington, David M.; Santago, Peter, II

    1999-05-01

    We use three features, the intensity, texture and motion to obtain robust results for segmentation of intracoronary ultrasound images. Using a parameterized equation to describe the lumen-plaque and media-adventitia boundaries, we formulate the segmentation as a parameter estimation through a cost functional based on the posterior probability, which can handle the incompleteness of the features in ultrasound images by employing outlier detection.

  14. [Three- and four-dimensional (3D/4D) ultrasound in obstetric practice: review].

    PubMed

    Pavlova, E; Ivanov, St

    2014-01-01

    Three-dimensional (3D) ultrasound is following the natural development of the imaging technology. This review of the technical applications and clinical aspects of the three-dimensional ultrasound is focused on vizualiztion of the fetal anatomy and the possibilities of this new technology and to increase awareness of its present clinical usefulness. Consulting specialists understand fetal pathology better and can better plan postnatal interventions. 3D ultrasound is a promising imaging method to image the fetus. Here are presented the methods for visualization in obstetrics, and the place of the ultrasound imaging in prenatal diagnosis. The role and value of this method will be in the focus of further studies.

  15. Measuring Femoral Torsion In Vivo Using Freehand 3-D Ultrasound Imaging.

    PubMed

    Passmore, Elyse; Pandy, Marcus G; Graham, H Kerr; Sangeux, Morgan

    2016-02-01

    Despite variation in bone geometry, muscle and joint function is often investigated using generic musculoskeletal models. Patient-specific bone geometry can be obtained from computerised tomography, which involves ionising radiation, or magnetic resonance imaging (MRI), which is costly and time consuming. Freehand 3-D ultrasound provides an alternative to obtain bony geometry. The purpose of this study was to determine the accuracy and repeatability of 3-D ultrasound in measuring femoral torsion. Measurements of femoral torsion were performed on 10 healthy adults using MRI and 3-D ultrasound. Measurements of femoral torsion from 3-D ultrasound were, on average, smaller than those from MRI (mean difference = 1.8°; 95% confidence interval: -3.9°, 7.5°). MRI and 3-D ultrasound had Bland and Altman repeatability coefficients of 3.1° and 3.7°, respectively. Accurate measurements of femoral torsion were obtained with 3-D ultrasound offering the potential to acquire patient-specific bone geometry for musculoskeletal modelling. Three-dimensional ultrasound is non-invasive and relatively inexpensive and can be integrated into gait analysis.

  16. [Free hand acquisition, reconstruction and visualization of 3D and 4D ultrasound].

    PubMed

    Sakas, G; Walter, S; Grimm, M; Richtscheid, M

    2000-03-01

    3D Ultrasound will find in the next years a wide popularity under the medical imaging applications. The method expands the well-known sonography on the third dimension, therefore it becomes possible to generate spatial 3D views of internal organs. It is further possible to display static (3D) as well as dynamic organs (4D, e.g. pulsating heart). The clarity of the three-dimensional presentation supports very effectively the navigation. In this article we review the upgrading of conventional ultrasound devices on 3D and 4D capabilities, as well as the display of the datasets by corresponding visualisation and filtering approaches.

  17. Role of 3-D ultrasound in clinical obstetric practice: evolution over 20 years.

    PubMed

    Tonni, Gabriele; Martins, Wellington P; Guimarães Filho, Hélio; Araujo Júnior, Edward

    2015-05-01

    The use of 3-D ultrasound in obstetrics has undergone dramatic development over the past 20 years. Since the first publications on this application in clinical practice, several 3-D ultrasound techniques and rendering modes have been proposed and applied to the study of fetal brain, face and cardiac anatomy. In addition, 3-D ultrasound has improved calculations of the volume of fetal organs and limbs and estimations of fetal birth weight. And furthermore, angiographic patterns of fetal organs and the placenta have been assessed using 3-D power Doppler ultrasound quantification. In this review, we aim to summarize current evidence on the clinical relevance of these methodologies and their application in obstetric practice.

  18. Breast biopsy - ultrasound

    MedlinePlus

    ... Interventional . 1st ed. Philadelphia, PA: Elsevier Saunders; 2010. Katz VL, Dotters D. Breast diseases: diagnosis and treatment ... disease. In: Lentz GM, Lobo RA, Gershenson DM, Katz VL, eds. Comprehensive Gynecology . 6th ed. Philadelphia, PA: ...

  19. Incremental Volume Rendering Algorithm for Interactive 3D Ultrasound Imaging

    DTIC Science & Technology

    1991-02-01

    hidden surface removal, such effects as cutaway viewing of the 17 Rat -cache (16 samples organized as 4-ary tree) embedded in an array,1,f -f I I I I I I...70. [Stick84] Stickels, K. R., and Wann, L.S. (1984). "An Analysis of Three- Dimensional Reconstructive Echocardiography ." Ultrasound in Med. & Biol

  20. Computerized detection of breast cancer on automated breast ultrasound imaging of women with dense breasts

    SciTech Connect

    Drukker, Karen Sennett, Charlene A.; Giger, Maryellen L.

    2014-01-15

    Purpose: Develop a computer-aided detection method and investigate its feasibility for detection of breast cancer in automated 3D ultrasound images of women with dense breasts. Methods: The HIPAA compliant study involved a dataset of volumetric ultrasound image data, “views,” acquired with an automated U-Systems Somo•V{sup ®} ABUS system for 185 asymptomatic women with dense breasts (BI-RADS Composition/Density 3 or 4). For each patient, three whole-breast views (3D image volumes) per breast were acquired. A total of 52 patients had breast cancer (61 cancers), diagnosed through any follow-up at most 365 days after the original screening mammogram. Thirty-one of these patients (32 cancers) had a screening-mammogram with a clinically assigned BI-RADS Assessment Category 1 or 2, i.e., were mammographically negative. All software used for analysis was developed in-house and involved 3 steps: (1) detection of initial tumor candidates, (2) characterization of candidates, and (3) elimination of false-positive candidates. Performance was assessed by calculating the cancer detection sensitivity as a function of the number of “marks” (detections) per view. Results: At a single mark per view, i.e., six marks per patient, the median detection sensitivity by cancer was 50.0% (16/32) ± 6% for patients with a screening mammogram-assigned BI-RADS category 1 or 2—similar to radiologists’ performance sensitivity (49.9%) for this dataset from a prior reader study—and 45.9% (28/61) ± 4% for all patients. Conclusions: Promising detection sensitivity was obtained for the computer on a 3D ultrasound dataset of women with dense breasts at a rate of false-positive detections that may be acceptable for clinical implementation.

  1. Correlation of preoperative MRI and intraoperative 3D ultrasound to measure brain tissue shift

    NASA Astrophysics Data System (ADS)

    Gobbi, David G.; Lee, Belinda K. H.; Peters, Terence M.

    2001-05-01

    B-Mode ultrasound is often used during neurosurgery to provide intra-operative images of the brain though a craniotomy, but the use of 3D ultrasound during surgery is still in its infancy. We have developed a system that provides real-time freehand 3D ultrasound reconstruction at a reduced resolution. The reconstruction proceeds incrementally and the 3D image is overlayed, via a computer, on a pre-operative 3D MRI scan. This provides the operator with the necessary feedback to maintain a constant freehand sweep-rate, and also ensures that the sweep covers the desired anatomical volume. All of the ultrasound video frames are buffered, and a full-resolution, compounded reconstruction proceeds once the manual sweep is complete. We have also developed tools for manual tagging of homologous landmarks in the 3D MRI and 3D ultrasound volumes that use a piecewise cubic approximation of thin-plate spline interpolation to achieve interactive nonlinear registration and warping of the MRI volume to the ultrasound volume: Each time a homologous point-pair is identified by the use, the image of the warped MRI is updated on the computer screen after less than 0.5 s.

  2. A GPU-accelerated 3D Coupled Sub-sample Estimation Algorithm for Volumetric Breast Strain Elastography.

    PubMed

    Peng, Bo; Wang, Yuqi; Hall, Timothy J; Jiang, Jingfeng

    2017-01-31

    Our primary objective of this work was to extend a previously published 2D coupled sub-sample tracking algorithm for 3D speckle tracking in the framework of ultrasound breast strain elastography. In order to overcome heavy computational cost, we investigated the use of a graphic processing unit (GPU) to accelerate the 3D coupled sub-sample speckle tracking method. The performance of the proposed GPU implementation was tested using a tissue-mimicking (TM) phantom and in vivo breast ultrasound data. The performance of this 3D sub-sample tracking algorithm was compared with the conventional 3D quadratic subsample estimation algorithm. On the basis of these evaluations, we concluded that the GPU implementation of this 3D sub-sample estimation algorithm can provide high-quality strain data (i.e. high correlation between the pre- and the motion-compensated post-deformation RF echo data and high contrast-to-noise ratio strain images), as compared to the conventional 3D quadratic sub-sample algorithm. Using the GPU implementation of the 3D speckle tracking algorithm, volumetric strain data can be achieved relatively fast (approximately 20 seconds per volume [2.5 cm 2.5 cm 2.5 cm]).

  3. Cardiac Chamber Volumetric Assessment Using 3D Ultrasound - A Review.

    PubMed

    Pedrosa, João; Barbosa, Daniel; Almeida, Nuno; Bernard, Olivier; Bosch, Johan; D'hooge, Jan

    2016-01-01

    When designing clinical trials for testing novel cardiovascular therapies, it is highly relevant to understand what a given technology can provide in terms of information on the physiologic status of the heart and vessels. Ultrasound imaging has traditionally been the modality of choice to study the cardiovascular system as it has an excellent temporal resolution; it operates in real-time; it is very widespread and - not unimportant - it is cheap. Although this modality is mostly known clinically as a two-dimensional technology, it has recently matured into a true three-dimensional imaging technique. In this review paper, an overview is given of the available ultrasound technology for cardiac chamber quantification in terms of volume and function and evidence is given why these parameters are of value when testing the effect of new cardiovascular therapies.

  4. 3-D Ultrasound Guidance of Autonomous Robot for Location of Ferrous Shrapnel

    PubMed Central

    Rogers, Albert J.; Light, Edward D.

    2010-01-01

    Vibrations can be induced in ferromagnetic shrapnel by a variable electromagnet. Real time 3-D color Doppler ultrasound located the induced motion in a needle fragment and determined its 3-D position in the scanner coordinates. This information was used to guide a robot which moved a probe to touch the shrapnel fragment. PMID:19574140

  5. 3-D ultrasound guidance of autonomous robot for location of ferrous shrapnel.

    PubMed

    Rogers, Albert J; Light, Edward D; Smith, Stephen W

    2009-07-01

    Vibrations can be induced in ferromagnetic shrapnel by a variable electromagnet. Real time 3-D color Doppler ultrasound located the induced motion in a needle fragment and determined its 3-D position in the scanner coordinates. This information was used to guide a robot which moved a probe to touch the shrapnel fragment.

  6. Fast 3-d tomographic microwave imaging for breast cancer detection.

    PubMed

    Grzegorczyk, Tomasz M; Meaney, Paul M; Kaufman, Peter A; diFlorio-Alexander, Roberta M; Paulsen, Keith D

    2012-08-01

    Microwave breast imaging (using electromagnetic waves of frequencies around 1 GHz) has mostly remained at the research level for the past decade, gaining little clinical acceptance. The major hurdles limiting patient use are both at the hardware level (challenges in collecting accurate and noncorrupted data) and software level (often plagued by unrealistic reconstruction times in the tens of hours). In this paper we report improvements that address both issues. First, the hardware is able to measure signals down to levels compatible with sub-centimeter image resolution while keeping an exam time under 2 min. Second, the software overcomes the enormous time burden and produces similarly accurate images in less than 20 min. The combination of the new hardware and software allows us to produce and report here the first clinical 3-D microwave tomographic images of the breast. Two clinical examples are selected out of 400+ exams conducted at the Dartmouth Hitchcock Medical Center (Lebanon, NH). The first example demonstrates the potential usefulness of our system for breast cancer screening while the second example focuses on therapy monitoring.

  7. Transvaginal 3D Image-Guided High Intensity Focused Ultrasound Array

    NASA Astrophysics Data System (ADS)

    Held, Robert; Nguyen, Thuc Nghi; Vaezy, Shahram

    2005-03-01

    The goal of this project is to develop a transvaginal image-guided High Intensity Focused Ultrasound (HIFU) device using piezocomposite HIFU array technology, and commercially-available ultrasound imaging. Potential applications include treatment of uterine fibroids and abnormal uterine bleeding. The HIFU transducer was an annular phased array, with a focal length range of 30-60 mm, an elliptically-shaped aperture of 35×60 mm, and an operating frequency of 3 MHz. A pillow-shaped bag with water circulation will be used for coupling the HIFU energy into the tissue. An intra-cavity imaging probe (C9-5, Philips) was integrated with the HIFU array such that the focal axis of the HIFU transducer was within the image plane. The entire device will be covered by a gel-filled condom when inserted in the vaginal cavity. To control it, software packages were developed in the LabView programming environment. An imaging algorithm processed the ultrasound image to remove noise patterns due to the HIFU signal. The device will be equipped with a three-dimensional tracking system, using a six-degrees-of-freedom articulating arm. Necrotic lesions were produced in a tissue-mimicking phantom and a turkey breast sample for all focal lengths. Various HIFU doses allow various necrotic lesion shapes, including thin ellipsoidal, spherical, wide cylindrical, and teardrop-shaped. Software control of the device allows multiple foci to be activated sequentially for desired lesion patterns. Ultrasound imaging synchronization can be achieved using hardware signals obtained from the imaging system, or software signals determined empirically for various imaging probes. The image-guided HIFU device will provide a valuable tool in visualization of uterine fibroid tumors for the purposes of planning and subsequent HIFU treatment of the tumor, all in a 3D environment. The control system allows for various lesions of different shapes to be optimally positioned in the tumor to cover the entire tumor

  8. Molecular Predictors of 3D Morphogenesis by Breast Cancer Cell Lines in 3D Culture

    SciTech Connect

    Han, Ju; Chang, Hang; Giricz, Orsi; Lee, Genee; Baehner, Frederick; Gray, Joe; Bissell, Mina; Kenny, Paraic; Parvin, Bahram

    2010-02-01

    Correlative analysis of molecular markers with phenotypic signatures is the simplest model for hypothesis generation. In this paper, a panel of 24 breast cell lines was grown in 3D culture, their morphology was imaged through phase contrast microscopy, and computational methods were developed to segment and represent each colony at multiple dimensions. Subsequently, subpopulations from these morphological responses were identified through consensus clustering to reveal three clusters of round, grape-like, and stellate phenotypes. In some cases, cell lines with particular pathobiological phenotypes clustered together (e.g., ERBB2 amplified cell lines sharing the same morphometric properties as the grape-like phenotype). Next, associations with molecular features were realized through (i) differential analysis within each morphological cluster, and (ii) regression analysis across the entire panel of cell lines. In both cases, the dominant genes that are predictive of the morphological signatures were identified. Specifically, PPAR? has been associated with the invasive stellate morphological phenotype, which corresponds to triple-negative pathobiology. PPAR? has been validated through two supporting biological assays.

  9. Guided Interventions for Prostate Cancer Using 3D-Transurethral Ultrasound and MRI Fusion

    DTIC Science & Technology

    2015-10-01

    prostate may be visualized at once; improving image registration and reducing motion errors. 3D TUUS imaging has been demonstrated in a phantom setting... registration error 10-21 UCLA Milestone(s) Achieved: Validation of MR-TUUS image registration error with MRI and compared to 3D TRUS 21...TRUS ultrasound images of prostate phantom with 20 deg urethra bend, (left) 2D prostate image, (right) 3D volume of prostate phantom. 6 image

  10. 3D temperature field reconstruction using ultrasound sensing system

    NASA Astrophysics Data System (ADS)

    Liu, Yuqian; Ma, Tong; Cao, Chengyu; Wang, Xingwei

    2016-04-01

    3D temperature field reconstruction is of practical interest to the power, transportation and aviation industries and it also opens up opportunities for real time control or optimization of high temperature fluid or combustion process. In our paper, a new distributed optical fiber sensing system consisting of a series of elements will be used to generate and receive acoustic signals. This system is the first active temperature field sensing system that features the advantages of the optical fiber sensors (distributed sensing capability) and the acoustic sensors (non-contact measurement). Signals along multiple paths will be measured simultaneously enabled by a code division multiple access (CDMA) technique. Then a proposed Gaussian Radial Basis Functions (GRBF)-based approach can approximate the temperature field as a finite summation of space-dependent basis functions and time-dependent coefficients. The travel time of the acoustic signals depends on the temperature of the media. On this basis, the Gaussian functions are integrated along a number of paths which are determined by the number and distribution of sensors. The inversion problem to estimate the unknown parameters of the Gaussian functions can be solved with the measured times-of-flight (ToF) of acoustic waves and the length of propagation paths using the recursive least square method (RLS). The simulation results show an approximation error less than 2% in 2D and 5% in 3D respectively. It demonstrates the availability and efficiency of our proposed 3D temperature field reconstruction mechanism.

  11. A novel two-axis micromechanical scanning transducer for handheld 3D ultrasound and photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Huang, Chih-Hsien; Zou, Jun

    2016-03-01

    This paper reports the development of a new two-axis micromechanical scanning transducer for handheld 3D ultrasound imaging. It consists of a miniaturized single-element ultrasound transducer driven by a unique 2-axis liquid-immersible electromagnetic microactuator. With a mechanical scanning frequency of 19.532 Hz and an ultrasound pulse repetition rate of 5 kHz, the scanning transducer was scanned along 60 concentric paths with 256 detection points on each to simulate a physical 2D ultrasound transducer array of 60 × 256 elements. Using the scanning transducer, 3D pulse-echo ultrasound imaging of two silicon discs immersed in water as the imaging target was successfully conducted. The lateral resolution of the 3D ultrasound image was further improved with the synthetic aperture focusing technique (SAFT). The new two-axis micromechanical scanning transducer doesn't require complex and expensive multi-channel data acquisition (DAQ) electronics. Therefore, it could provide a new approach to achieve compact and low-cost 3D ultrasound and photoacoustic imaging systems, especially for handheld operations.

  12. Vascular Structure Identification in Intraoperative 3D Contrast-Enhanced Ultrasound Data

    PubMed Central

    Ilunga-Mbuyamba, Elisee; Avina-Cervantes, Juan Gabriel; Lindner, Dirk; Cruz-Aceves, Ivan; Arlt, Felix; Chalopin, Claire

    2016-01-01

    In this paper, a method of vascular structure identification in intraoperative 3D Contrast-Enhanced Ultrasound (CEUS) data is presented. Ultrasound imaging is commonly used in brain tumor surgery to investigate in real time the current status of cerebral structures. The use of an ultrasound contrast agent enables to highlight tumor tissue, but also surrounding blood vessels. However, these structures can be used as landmarks to estimate and correct the brain shift. This work proposes an alternative method for extracting small vascular segments close to the tumor as landmark. The patient image dataset involved in brain tumor operations includes preoperative contrast T1MR (cT1MR) data and 3D intraoperative contrast enhanced ultrasound data acquired before (3D-iCEUSstart) and after (3D-iCEUSend) tumor resection. Based on rigid registration techniques, a preselected vascular segment in cT1MR is searched in 3D-iCEUSstart and 3D-iCEUSend data. The method was validated by using three similarity measures (Normalized Gradient Field, Normalized Mutual Information and Normalized Cross Correlation). Tests were performed on data obtained from ten patients overcoming a brain tumor operation and it succeeded in nine cases. Despite the small size of the vascular structures, the artifacts in the ultrasound images and the brain tissue deformations, blood vessels were successfully identified. PMID:27070610

  13. Real-Time 3D Contrast-Enhanced Transcranial Ultrasound and Aberration Correction

    PubMed Central

    Ivancevich, Nikolas M.; Pinton, Gianmarco F.; Nicoletto, Heather A.; Bennett, Ellen; Laskowitz, Daniel T.; Smith, Stephen W.

    2008-01-01

    Contrast-enhanced (CE) transcranial ultrasound (US) and reconstructed 3D transcranial ultrasound have shown advantages over traditional methods in a variety of cerebrovascular diseases. We present the results from a novel ultrasound technique, namely real-time 3D contrast-enhanced transcranial ultrasound. Using real-time 3D (RT3D) ultrasound and micro-bubble contrast agent, we scanned 17 healthy volunteers via a single temporal window and 9 via the sub-occipital window and report our detection rates for the major cerebral vessels. In 71% of subjects, both of our observers identified the ipsilateral circle of Willis from the temporal window, and in 59% we imaged the entire circle of Willis. From the sub-occipital window, both observers detected the entire vertebrobasilar circulation in 22% of subjects, and in 44% the basilar artery. After performing phase aberration correction on one subject, we were able to increase the diagnostic value of the scan, detecting a vessel not present in the uncorrected scan. These preliminary results suggest that RT3D CE transcranial US and RT3D CE transcranial US with phase aberration correction have the potential to greatly impact the field of neurosonology. PMID:18395321

  14. Two-dimensional ultrasound measurement of thyroid gland volume: a new equation with higher correlation with 3-D ultrasound measurement.

    PubMed

    Ying, Michael; Yung, Dennis M C; Ho, Karen K L

    2008-01-01

    This study aimed to develop a new two-dimensional (2-D) ultrasound thyroid volume estimation equation using three-dimensional (3-D) ultrasound as the standard of reference, and to compare the thyroid volume estimation accuracy of the new equation with three previously reported equations. 2-D and 3-D ultrasound examinations of the thyroid gland were performed in 150 subjects with normal serum thyrotropin (TSH, thyroid-stimulating hormone) and free thyroxine (fT4) levels (63 men and 87 women, age range: 17 to 71 y). In each subject, the volume of both thyroid lobes was measured by 3-D ultrasound. On 2-D ultrasound, the craniocaudal (CC), lateromedial (LM) and anteroposterior (AP) dimensions of the thyroid lobes were measured. The equation was derived by correlating the volume of the thyroid lobes measured with 3-D ultrasound and the product of the three dimensions measured with 2-D ultrasound using linear regression analysis, in 75 subjects without thyroid nodule. The accuracy of thyroid volume estimation of the new equation and the three previously reported equations was evaluated and compared in another 75 subjects (without thyroid nodule, n = 30; with thyroid nodule, n = 45). It is suggested that volume of thyroid lobe may be estimated as: volume of thyroid lobe = 0.38.(CC.LM.AP) + 1.76. Result showed that the new equation (16.9% to 36.1%) had a significantly smaller thyroid volume estimation error than the previously reported equations (20.8% to 54.9%) (p < 0.05). There was a significantly larger thyroid volume estimation error when thyroid glands with nodules were examined (p < 0.05). With the use of the appropriate thyroid volume equation, 2-D ultrasound can be a useful alternative in thyroid volume measurement when 3-D ultrasound is not available.

  15. Real-time 3-D ultrasound scan conversion using a multicore processor.

    PubMed

    Zhuang, Bo; Shamdasani, Vijay; Sikdar, Siddhartha; Managuli, Ravi; Kim, Yongmin

    2009-07-01

    Real-time 3-D ultrasound scan conversion (SC) in software has not been practical due to its high computation and I/O data handling requirements. In this paper, we describe software-based 3-D SC with high volume rates using a multicore processor, Cell. We have implemented both 3-D SC approaches: 1) the separable 3-D SC where two 2-D coordinate transformations in orthogonal planes are performed in sequence and 2) the direct 3-D SC where the coordinate transformation is directly handled in 3-D. One Cell processor can scan-convert a 192 x 192 x 192 16-bit volume at 87.8 volumes/s with the separable 3-D SC algorithm and 28 volumes/s with the direct 3-D SC algorithm.

  16. GPU-accelerated 3D mipmap for real-time visualization of ultrasound volume data.

    PubMed

    Kwon, Koojoo; Lee, Eun-Seok; Shin, Byeong-Seok

    2013-10-01

    Ultrasound volume rendering is an efficient method for visualizing the shape of fetuses in obstetrics and gynecology. However, in order to obtain high-quality ultrasound volume rendering, noise removal and coordinates conversion are essential prerequisites. Ultrasound data needs to undergo a noise filtering process; otherwise, artifacts and speckle noise cause quality degradation in the final images. Several two-dimensional (2D) noise filtering methods have been used to reduce this noise. However, these 2D filtering methods ignore relevant information in-between adjacent 2D-scanned images. Although three-dimensional (3D) noise filtering methods are used, they require more processing time than 2D-based methods. In addition, the sampling position in the ultrasonic volume rendering process has to be transformed between conical ultrasound coordinates and Cartesian coordinates. We propose a 3D-mipmap-based noise reduction method that uses graphics hardware, as a typical 3D mipmap requires less time to be generated and less storage capacity. In our method, we compare the density values of the corresponding points on consecutive mipmap levels and find the noise area using the difference in the density values. We also provide a noise detector for adaptively selecting the mipmap level using the difference of two mipmap levels. Our method can visualize 3D ultrasound data in real time with 3D noise filtering.

  17. MRI-Derived 3-D-Printed Breast Phantom for Microwave Breast Imaging Validation

    PubMed Central

    Burfeindt, Matthew J.; Colgan, Timothy J.; Mays, R. Owen; Shea, Jacob D.; Behdad, Nader; Van Veen, Barry D.; Hagness, Susan C.

    2014-01-01

    We propose a 3-D-printed breast phantom for use in preclinical experimental microwave imaging studies. The phantom is derived from an MRI of a human subject; thus, it is anthropomorphic, and its interior is very similar to an actual distribution of fibroglandular tissues. Adipose tissue in the breast is represented by the solid plastic (printed) regions of the phantom, while fibroglandular tissue is represented by liquid-filled voids in the plastic. The liquid is chosen to provide a biologically relevant dielectric contrast with the printed plastic. Such a phantom enables validation of microwave imaging techniques. We describe the procedure for generating the 3-D-printed breast phantom and present the measured dielectric properties of the 3-D-printed plastic over the frequency range 0.5–3.5 GHz. We also provide an example of a suitable liquid for filling the fibroglandular voids in the plastic. PMID:25132808

  18. MRI-Derived 3-D-Printed Breast Phantom for Microwave Breast Imaging Validation.

    PubMed

    Burfeindt, Matthew J; Colgan, Timothy J; Mays, R Owen; Shea, Jacob D; Behdad, Nader; Van Veen, Barry D; Hagness, Susan C

    2012-01-01

    We propose a 3-D-printed breast phantom for use in preclinical experimental microwave imaging studies. The phantom is derived from an MRI of a human subject; thus, it is anthropomorphic, and its interior is very similar to an actual distribution of fibroglandular tissues. Adipose tissue in the breast is represented by the solid plastic (printed) regions of the phantom, while fibroglandular tissue is represented by liquid-filled voids in the plastic. The liquid is chosen to provide a biologically relevant dielectric contrast with the printed plastic. Such a phantom enables validation of microwave imaging techniques. We describe the procedure for generating the 3-D-printed breast phantom and present the measured dielectric properties of the 3-D-printed plastic over the frequency range 0.5-3.5 GHz. We also provide an example of a suitable liquid for filling the fibroglandular voids in the plastic.

  19. Contrast enhanced ultrasound of breast cancer

    PubMed Central

    Cassano, E; Rizzo, S; Bozzini, A; Menna, S; Bellomi, M

    2006-01-01

    The importance of ultrasound examination in the diagnosis of breast cancer has been widely demonstrated. During the last few years, the introduction of ultrasound contrast media has been considered a promising tool for studying the vascular pattern of focal lesions within the breast. Our purpose was to assess whether contrast-enhanced (CE) ultrasound examination, performed using specific contrast imaging modes, can be helpful for detection and characterization of breast lesions, and for prediction of the response of breast cancer to therapy. PMID:16478698

  20. The Ultrasound Brain Helmet: Simultaneous Multi-transducer 3D Transcranial Ultrasound Imaging

    NASA Astrophysics Data System (ADS)

    Lindsey, Brooks D.

    In this work, I examine the problem of rapid imaging of stroke and present ultrasound-based approaches for addressing it. Specifically, this dissertation discusses aberration and attenuation due to the skull as sources of image degradation and presents a prototype system for simultaneous 3D bilateral imaging via both temporal acoustic windows. This system uses custom sparse array transducers built on flexible multilayer circuits that can be positioned for simultaneous imaging via both temporal acoustic windows, allowing for registration and fusion of multiple real-time 3D scans of cerebral vasculature. I examine hardware considerations for new matrix arrays—transducer design and interconnects—in this application. Specifically, it is proposed that signal-to-noise ratio (SNR) may be increased by reducing the length of probe cables. This claim is evaluated as part of the presented system through simulation, experimental data, and in vivo imaging. Ultimately, gains in SNR of 7 dB are realized by replacing a standard probe cable with a much shorter flex interconnect; higher gains may be possible using ribbon-based probe cables. In vivo images are presented depicting cerebral arteries with and without the use of microbubble contrast agent that have been registered and fused using a search algorithm which maximizes normalized cross-correlation. The scanning geometry of a brain helmet-type system is also utilized to allow each matrix array to serve as a correction source for the opposing array. Aberration is estimated using cross-correlation of RF channel signals followed by least mean squares solution of the resulting overdetermined system. Delay maps are updated and real-time 3D scanning resumes. A first attempt is made at using multiple arrival time maps to correct multiple unique aberrators within a single transcranial imaging volume, i.e. several isoplanatic patches. This adaptive imaging technique, which uses steered unfocused waves transmitted by the opposing or

  1. Registering preprocedure volumetric images with intraprocedure 3-D ultrasound using an ultrasound imaging model.

    PubMed

    King, A P; Rhode, K S; Ma, Y; Yao, C; Jansen, C; Razavi, R; Penney, G P

    2010-03-01

    For many image-guided interventions there exists a need to compute the registration between preprocedure image(s) and the physical space of the intervention. Real-time intraprocedure imaging such as ultrasound (US) can be used to image the region of interest directly and provide valuable anatomical information for computing this registration. Unfortunately, real-time US images often have poor signal-to-noise ratio and suffer from imaging artefacts. Therefore, registration using US images can be challenging and significant preprocessing is often required to make the registrations robust. In this paper we present a novel technique for computing the image-to-physical registration for minimally invasive cardiac interventions using 3-D US. Our technique uses knowledge of the physics of the US imaging process to reduce the amount of preprocessing required on the 3-D US images. To account for the fact that clinical US images normally undergo significant image processing before being exported from the US machine our optimization scheme allows the parameters of the US imaging model to vary. We validated our technique by computing rigid registrations for 12 cardiac US/magnetic resonance imaging (MRI) datasets acquired from six volunteers and two patients. The technique had mean registration errors of 2.1-4.4 mm, and 75% capture ranges of 5-30 mm. We also demonstrate how the same approach can be used for respiratory motion correction: on 15 datasets acquired from five volunteers the registration errors due to respiratory motion were reduced by 45%-92%.

  2. Proximal femoral focal deficiency of the fetus - early 3D/4D prenatal ultrasound diagnosis.

    PubMed

    Kudla, Marek J; Beczkowska-Kielek, Aleksandra; Kutta, Katarzyna; Partyka-Lasota, Justyna

    2016-09-01

    Proximal Femoral Focal Deficiency (PFFD) is a rare congenital syndrome of unknown etiology. Additional disorders can be present up to 70% of PFFD cases. Management (including termination) depends on the severity of the malformation. We present a case of a 32-year-old woman referred for routine ultrasound examination in the 12th week of pregnancy. Detailed 3D/4D evaluation revealed asymmetry of lower limbs and diagnosis of isolated PFFD was established. Parents were fully informed and decided to continue the pregnancy. We stress here the importance of early 3D/4D ultrasound diagnosis. Our paper presents the earliest case where the diagnosis of PFFD was established with 3D/4D ultrasound.

  3. FPGA-based real-time anisotropic diffusion filtering of 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Castro-Pareja, Carlos R.; Dandekar, Omkar S.; Shekhar, Raj

    2005-02-01

    Three-dimensional ultrasonic imaging, especially the emerging real-time version of it, is particularly valuable in medical applications such as echocardiography, obstetrics and surgical navigation. A known problem with ultrasound images is their high level of speckle noise. Anisotropic diffusion filtering has been shown to be effective in enhancing the visual quality of 3D ultrasound images and as preprocessing prior to advanced image processing. However, due to its arithmetic complexity and the sheer size of 3D ultrasound images, it is not possible to perform online, real-time anisotropic diffusion filtering using standard software implementations. We present an FPGA-based architecture that allows performing anisotropic diffusion filtering of 3D images at acquisition rates, thus enabling the use of this filtering technique in real-time applications, such as visualization, registration and volume rendering.

  4. Computer-Assisted Hepatocellular Carcinoma Ablation Planning Based on 3-D Ultrasound Imaging.

    PubMed

    Li, Kai; Su, Zhongzhen; Xu, Erjiao; Guan, Peishan; Li, Liu-Jun; Zheng, Rongqin

    2016-08-01

    To evaluate computer-assisted hepatocellular carcinoma (HCC) ablation planning based on 3-D ultrasound, 3-D ultrasound images of 60 HCC lesions from 58 patients were obtained and transferred to a research toolkit. Compared with virtual manual ablation planning (MAP), virtual computer-assisted ablation planning (CAP) consumed less time and needle insertion numbers and exhibited a higher rate of complete tumor coverage and lower rate of critical structure injury. In MAP, junior operators used less time, but had more critical structure injury than senior operators. For large lesions, CAP performed better than MAP. For lesions near critical structures, CAP resulted in better outcomes than MAP. Compared with MAP, CAP based on 3-D ultrasound imaging was more effective and achieved a higher rate of complete tumor coverage and a lower rate of critical structure injury; it is especially useful for junior operators and with large lesions, and lesions near critical structures.

  5. 3D reconstruction of a carotid bifurcation from 2D transversal ultrasound images.

    PubMed

    Yeom, Eunseop; Nam, Kweon-Ho; Jin, Changzhu; Paeng, Dong-Guk; Lee, Sang-Joon

    2014-12-01

    Visualizing and analyzing the morphological structure of carotid bifurcations are important for understanding the etiology of carotid atherosclerosis, which is a major cause of stroke and transient ischemic attack. For delineation of vasculatures in the carotid artery, ultrasound examinations have been widely employed because of a noninvasive procedure without ionizing radiation. However, conventional 2D ultrasound imaging has technical limitations in observing the complicated 3D shapes and asymmetric vasodilation of bifurcations. This study aims to propose image-processing techniques for better 3D reconstruction of a carotid bifurcation in a rat by using 2D cross-sectional ultrasound images. A high-resolution ultrasound imaging system with a probe centered at 40MHz was employed to obtain 2D transversal images. The lumen boundaries in each transverse ultrasound image were detected by using three different techniques; an ellipse-fitting, a correlation mapping to visualize the decorrelation of blood flow, and the ellipse-fitting on the correlation map. When the results are compared, the third technique provides relatively good boundary extraction. The incomplete boundaries of arterial lumen caused by acoustic artifacts are somewhat resolved by adopting the correlation mapping and the distortion in the boundary detection near the bifurcation apex was largely reduced by using the ellipse-fitting technique. The 3D lumen geometry of a carotid artery was obtained by volumetric rendering of several 2D slices. For the 3D vasodilatation of the carotid bifurcation, lumen geometries at the contraction and expansion states were simultaneously depicted at various view angles. The present 3D reconstruction methods would be useful for efficient extraction and construction of the 3D lumen geometries of carotid bifurcations from 2D ultrasound images.

  6. Registration of 2D cardiac images to real-time 3D ultrasound volumes for 3D stress echocardiography

    NASA Astrophysics Data System (ADS)

    Leung, K. Y. Esther; van Stralen, Marijn; Voormolen, Marco M.; van Burken, Gerard; Nemes, Attila; ten Cate, Folkert J.; Geleijnse, Marcel L.; de Jong, Nico; van der Steen, Antonius F. W.; Reiber, Johan H. C.; Bosch, Johan G.

    2006-03-01

    Three-dimensional (3D) stress echocardiography is a novel technique for diagnosing cardiac dysfunction, by comparing wall motion of the left ventricle under different stages of stress. For quantitative comparison of this motion, it is essential to register the ultrasound data. We propose an intensity based rigid registration method to retrieve two-dimensional (2D) four-chamber (4C), two-chamber, and short-axis planes from the 3D data set acquired in the stress stage, using manually selected 2D planes in the rest stage as reference. The algorithm uses the Nelder-Mead simplex optimization to find the optimal transformation of one uniform scaling, three rotation, and three translation parameters. We compared registration using the SAD, SSD, and NCC metrics, performed on four resolution levels of a Gaussian pyramid. The registration's effectiveness was assessed by comparing the 3D positions of the registered apex and mitral valve midpoints and 4C direction with the manually selected results. The registration was tested on data from 20 patients. Best results were found using the NCC metric on data downsampled with factor two: mean registration errors were 8.1mm, 5.4mm, and 8.0° in the apex position, mitral valve position, and 4C direction respectively. The errors were close to the interobserver (7.1mm, 3.8mm, 7.4°) and intraobserver variability (5.2mm, 3.3mm, 7.0°), and better than the error before registration (9.4mm, 9.0mm, 9.9°). We demonstrated that the registration algorithm visually and quantitatively improves the alignment of rest and stress data sets, performing similar to manual alignment. This will improve automated analysis in 3D stress echocardiography.

  7. 3D/4D sonographic evaluation of amniotic band syndrome in early pregnancy: a supplement to 2D ultrasound.

    PubMed

    Hata, Toshiyuki; Tanaka, Hirokazu; Noguchi, Junko

    2011-06-01

    We present two cases of amniotic band syndrome diagnosed using two-dimensional (2D) ultrasound with three-dimensional (3D)/four-dimensional (4D) ultrasound in early pregnancy. In Case 1, at 13 weeks' gestation, multiple amniotic bands, acrania, the absence of fingers and amputation of the toes bilaterally were clearly shown using transvaginal 3D/4D ultrasound. In Case 2, at 15 weeks' gestation, several amniotic bands, acrania and a cleft lip were depicted with transabdominal 3D/4D ultrasound. The spatial relationship between the amniotic bands and the fetus was clearly visualized and easily discernible by 3D/4D ultrasound. The parents and families could readily understand the fetal conditions and undergo counseling; they then choose the option of termination of pregnancy. 3D/4D ultrasound has the potential to be a supplement to conventional 2D ultrasound in evaluating amniotic band syndrome.

  8. Mapping cardiac fiber orientations from high-resolution DTI to high-frequency 3D ultrasound

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Wagner, Mary B.; Fei, Baowei

    2014-03-01

    The orientation of cardiac fibers affects the anatomical, mechanical, and electrophysiological properties of the heart. Although echocardiography is the most common imaging modality in clinical cardiac examination, it can only provide the cardiac geometry or motion information without cardiac fiber orientations. If the patient's cardiac fiber orientations can be mapped to his/her echocardiography images in clinical examinations, it may provide quantitative measures for diagnosis, personalized modeling, and image-guided cardiac therapies. Therefore, this project addresses the feasibility of mapping personalized cardiac fiber orientations to three-dimensional (3D) ultrasound image volumes. First, the geometry of the heart extracted from the MRI is translated to 3D ultrasound by rigid and deformable registration. Deformation fields between both geometries from MRI and ultrasound are obtained after registration. Three different deformable registration methods were utilized for the MRI-ultrasound registration. Finally, the cardiac fiber orientations imaged by DTI are mapped to ultrasound volumes based on the extracted deformation fields. Moreover, this study also demonstrated the ability to simulate electricity activations during the cardiac resynchronization therapy (CRT) process. The proposed method has been validated in two rat hearts and three canine hearts. After MRI/ultrasound image registration, the Dice similarity scores were more than 90% and the corresponding target errors were less than 0.25 mm. This proposed approach can provide cardiac fiber orientations to ultrasound images and can have a variety of potential applications in cardiac imaging.

  9. Augmented Reality Imaging System: 3D Viewing of a Breast Cancer

    PubMed Central

    Douglas, David B.; Boone, John M.; Petricoin, Emanuel; Liotta, Lance; Wilson, Eugene

    2016-01-01

    Objective To display images of breast cancer from a dedicated breast CT using Depth 3-Dimensional (D3D) augmented reality. Methods A case of breast cancer imaged using contrast-enhanced breast CT (Computed Tomography) was viewed with the augmented reality imaging, which uses a head display unit (HDU) and joystick control interface. Results The augmented reality system demonstrated 3D viewing of the breast mass with head position tracking, stereoscopic depth perception, focal point convergence and the use of a 3D cursor and joy-stick enabled fly through with visualization of the spiculations extending from the breast cancer. Conclusion The augmented reality system provided 3D visualization of the breast cancer with depth perception and visualization of the mass's spiculations. The augmented reality system should be further researched to determine the utility in clinical practice. PMID:27774517

  10. OVERALL PROCEDURES PROTOCOL AND PATIENT ENROLLMENT PROTOCOL: TESTING FEASIBILITY OF 3D ULTRASOUND DATA ACQUISITION AND RELIABILITY OF DATA RETRIEVAL FROM STORED 3D IMAGES

    EPA Science Inventory

    The purpose of this study is to examine the feasibility of collecting, transmitting,

    and analyzing 3-D ultrasound data in the context of a multi-center study of pregnant

    women. The study will also examine the reliability of measurements obtained from 3-D

    imag...

  11. 3D ultrasound estimation of the effective volume for popliteal block at the level of division.

    PubMed

    Sala-Blanch, X; Franco, J; Bergé, R; Marín, R; López, A M; Agustí, M

    2017-03-01

    Local anaesthetic injection between the tibial and commmon peroneal nerves within connective tissue sheath results in a predictable diffusion and allows for a reduction in the volume needed to achieve a consistent sciatic popliteal block. Using 3D ultrasound volumetric acquisition, we quantified the visible volume in contact with the nerve along a 5cm segment.

  12. Visualization of hepatic arteries with 3D ultrasound during intra-arterial therapies

    NASA Astrophysics Data System (ADS)

    Gérard, Maxime; Tang, An; Badoual, Anaïs.; Michaud, François; Bigot, Alexandre; Soulez, Gilles; Kadoury, Samuel

    2016-03-01

    Liver cancer represents the second most common cause of cancer-related mortality worldwide. The prognosis is poor with an overall mortality of 95%. Moreover, most hepatic tumors are unresectable due to their advanced stage at discovery or poor underlying liver function. Tumor embolization by intra-arterial approaches is the current standard of care for advanced cases of hepatocellular carcinoma. These therapies rely on the fact that the blood supply of primary hepatic tumors is predominantly arterial. Feedback on blood flow velocities in the hepatic arteries is crucial to ensure maximal treatment efficacy on the targeted masses. Based on these velocities, the intra-arterial injection rate is modulated for optimal infusion of the chemotherapeutic drugs into the tumorous tissue. While Doppler ultrasound is a well-documented technique for the assessment of blood flow, 3D visualization of vascular anatomy with ultrasound remains challenging. In this paper we present an image-guidance pipeline that enables the localization of the hepatic arterial branches within a 3D ultrasound image of the liver. A diagnostic Magnetic resonance angiography (MRA) is first processed to automatically segment the hepatic arteries. A non-rigid registration method is then applied on the portal phase of the MRA volume with a 3D ultrasound to enable the visualization of the 3D mesh of the hepatic arteries in the Doppler images. To evaluate the performance of the proposed workflow, we present initial results from porcine models and patient images.

  13. Validity Study of Vertebral Rotation Measurement Using 3-D Ultrasound in Adolescent Idiopathic Scoliosis.

    PubMed

    Wang, Qian; Li, Meng; Lou, Edmond H M; Chu, Winnie C W; Lam, Tsz-Ping; Cheng, Jack C Y; Wong, Man-Sang

    2016-07-01

    This study aimed to assess the validity of 3-D ultrasound measurements on the vertebral rotation of adolescent idiopathic scoliosis (AIS) under clinical settings. Thirty curves (mean Cobb angle: 21.7° ± 15.9°) from 16 patients with AIS were recruited. 3-D ultrasound and magnetic resonance imaging scans were performed at the supine position. Each of the two raters measured the apical vertebral rotation using the center of laminae (COL) method in the 3-D ultrasound images and the Aaro-Dahlborn method in the magnetic resonance images. The intra- and inter-reliability of the COL method was demonstrated by the intra-class correlation coefficient (ICC) (both [2, K] >0.9, p < 0.05). The COL method showed no significant difference (p < 0.05) compared with the Aaro-Dahlborn method. Furthermore, the agreement between these two methods was demonstrated by the Bland-Altman method, and high correlation was found (r > 0.9, p < 0.05). These results validated the proposed 3-D ultrasound method in the measurements of vertebral rotation in the patients with AIS.

  14. Modeling of multi-view 3D freehand radio frequency ultrasound.

    PubMed

    Klein, T; Hansson, M; Navab, Nassir

    2012-01-01

    Nowadays ultrasound (US) examinations are typically performed with conventional machines providing two dimensional imagery. However, there exist a multitude of applications where doctors could benefit from three dimensional ultrasound providing better judgment, due to the extended spatial view. 3D freehand US allows acquisition of images by means of a tracking device attached to the ultrasound transducer. Unfortunately, view dependency makes the 3D representation of ultrasound a non-trivial task. To address this we model speckle statistics, in envelope-detected radio frequency (RF) data, using a finite mixture model (FMM), assuming a parametric representation of data, in which the multiple views are treated as components of the FMM. The proposed model is show-cased with registration, using an ultrasound specific distribution based pseudo-distance, and reconstruction tasks, performed on the manifold of Gamma model parameters. Example field of application is neurology using transcranial US, as this domain requires high accuracy and data systematically features low SNR, making intensity based registration difficult. In particular, 3D US can be specifically used to improve differential diagnosis of Parkinson's disease (PD) compared to conventional approaches and is therefore of high relevance for future application.

  15. Flow integration transform: detecting shapes in matrix-array 3D ultrasound data

    NASA Astrophysics Data System (ADS)

    Stetten, George D.; Caines, Michael; von Ramm, Olaf T.

    1995-03-01

    Matrix-array ultrasound produces real-time 3D images of the heart, by employing a square array of transducers to steer the ultrasound beam in three dimensions electronically with no moving parts. Other 3D modalities such as MR, MUGA, and CT require the use of gated studies, which combine many cardiac cycles to produce a single average cycle. Three- dimensional ultrasound eliminates this restriction, in theory permitting the continuous measurement of cardiac ventricular volume, which we call the volumetricardiogram. Towards implementing the volumetricardiogram, we have developed the flow integration transform (FIT), which operates on a 2D slice within the volumetric ultrasound data. The 3D ultrasound machine's scan converter produces a set of such slices in real time, at any desired location and orientation, to which the FIT may then be applied. Although lacking rotational or scale invariance, the FIT is designed to operate in dedicated hardware where an entire transform could be completed within a few microseconds with present integrated circuit technology. This speed would permit the application of a large battery of test shapes, or the evolution of the test shape to converge on that of the actual target.

  16. Tubular Enhanced Geodesic Active Contours for Continuum Robot Detection using 3D Ultrasound.

    PubMed

    Ren, Hongliang; Dupont, Pierre E

    2012-01-01

    Three dimensional ultrasound is a promising imaging modality for minimally invasive robotic surgery. As the robots are typically metallic, they interact strongly with the sound waves in ways that are not modeled by the ultrasound system's signal processing algorithms. Consequently, they produce substantial imaging artifacts that can make image guidance difficult, even for experienced surgeons. This paper introduces a new approach for detecting curved continuum robots in 3D ultrasound images. The proposed approach combines geodesic active contours with a speed function that is based on enhancing the "tubularity" of the continuum robot. In particular, it takes advantage of the known robot diameter along its length. It also takes advantage of the fact that the robot surface facing the ultrasound probe provides the most accurate image. This method, termed Tubular Enhanced Geodesic Active Contours (TEGAC), is demonstrated through ex vivo intracardiac experiments to offer superior performance compared to conventional active contours.

  17. Passive markers for tracking surgical instruments in real-time 3-D ultrasound imaging.

    PubMed

    Stoll, Jeffrey; Ren, Hongliang; Dupont, Pierre E

    2012-03-01

    A family of passive echogenic markers is presented by which the position and orientation of a surgical instrument can be determined in a 3-D ultrasound volume, using simple image processing. Markers are attached near the distal end of the instrument so that they appear in the ultrasound volume along with the instrument tip. They are detected and measured within the ultrasound image, thus requiring no external tracking device. This approach facilitates imaging instruments and tissue simultaneously in ultrasound-guided interventions. Marker-based estimates of instrument pose can be used in augmented reality displays or for image-based servoing. Design principles for marker shapes are presented that ensure imaging system and measurement uniqueness constraints are met. An error analysis is included that can be used to guide marker design and which also establishes a lower bound on measurement uncertainty. Finally, examples of marker measurement and tracking algorithms are presented along with experimental validation of the concepts.

  18. Variational approach to reconstruct surface from sparse and nonparallel contours in freehand 3D ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Deng, Shuangcheng; Jiang, Lipei; Cao, Yingyu; Zhang, Junwen; Zheng, Haiyang

    2012-01-01

    The 3D reconstruction for freehand 3D ultrasound is a challenging issue because the recorded B-scans are not only sparse, but also non-parallel (actually they may intersect each other). Conventional volume reconstruction methods can't reconstruct sparse data efficiently while not introducing geometrical artifacts, and conventional surface reconstruction methods can't reconstruct surfaces from contours that are arbitrarily oriented in 3D space. We developed a new surface reconstruction method for freehand 3D ultrasound. It is based on variational implicit function which is presented by Greg Turk for shape transformation. In the new method, we first constructed on- & off-surface constraints from the segmented contours of all recorded B-scans, then used a variational interpolation technique to get a single implicit function in 3D. Finally, the implicit function was evaluated to extract the zero-valued surface as reconstruction result. Two experiment was conducted to assess our variational surface reconstruction method, and the experiment results have shown that the new method is capable of reconstructing surface smoothly from sparse contours which can be arbitrarily oriented in 3D space.

  19. Multi-resolution Gabor wavelet feature extraction for needle detection in 3D ultrasound

    NASA Astrophysics Data System (ADS)

    Pourtaherian, Arash; Zinger, Svitlana; Mihajlovic, Nenad; de With, Peter H. N.; Huang, Jinfeng; Ng, Gary C.; Korsten, Hendrikus H. M.

    2015-12-01

    Ultrasound imaging is employed for needle guidance in various minimally invasive procedures such as biopsy guidance, regional anesthesia and brachytherapy. Unfortunately, a needle guidance using 2D ultrasound is very challenging, due to a poor needle visibility and a limited field of view. Nowadays, 3D ultrasound systems are available and more widely used. Consequently, with an appropriate 3D image-based needle detection technique, needle guidance and interventions may significantly be improved and simplified. In this paper, we present a multi-resolution Gabor transformation for an automated and reliable extraction of the needle-like structures in a 3D ultrasound volume. We study and identify the best combination of the Gabor wavelet frequencies. High precision in detecting the needle voxels leads to a robust and accurate localization of the needle for the intervention support. Evaluation in several ex-vivo cases shows that the multi-resolution analysis significantly improves the precision of the needle voxel detection from 0.23 to 0.32 at a high recall rate of 0.75 (gain 40%), where a better robustness and confidence were confirmed in the practical experiments.

  20. Distributed network, wireless and cloud computing enabled 3-D ultrasound; a new medical technology paradigm.

    PubMed

    Meir, Arie; Rubinsky, Boris

    2009-11-19

    Medical technologies are indispensable to modern medicine. However, they have become exceedingly expensive and complex and are not available to the economically disadvantaged majority of the world population in underdeveloped as well as developed parts of the world. For example, according to the World Health Organization about two thirds of the world population does not have access to medical imaging. In this paper we introduce a new medical technology paradigm centered on wireless technology and cloud computing that was designed to overcome the problems of increasing health technology costs. We demonstrate the value of the concept with an example; the design of a wireless, distributed network and central (cloud) computing enabled three-dimensional (3-D) ultrasound system. Specifically, we demonstrate the feasibility of producing a 3-D high end ultrasound scan at a central computing facility using the raw data acquired at the remote patient site with an inexpensive low end ultrasound transducer designed for 2-D, through a mobile device and wireless connection link between them. Producing high-end 3D ultrasound images with simple low-end transducers reduces the cost of imaging by orders of magnitude. It also removes the requirement of having a highly trained imaging expert at the patient site, since the need for hand-eye coordination and the ability to reconstruct a 3-D mental image from 2-D scans, which is a necessity for high quality ultrasound imaging, is eliminated. This could enable relatively untrained medical workers in developing nations to administer imaging and a more accurate diagnosis, effectively saving the lives of people.

  1. Integrated Interventional Devices For Real Time 3D Ultrasound Imaging and Therapy

    NASA Astrophysics Data System (ADS)

    Smith, Stephen W.; Lee, Warren; Gentry, Kenneth L.; Pua, Eric C.; Light, Edward D.

    2006-05-01

    Two recent advances have expanded the potential of medical ultrasound: the introduction of real-time 3-D ultrasound imaging with catheter, transesophageal and laparoscopic probes and the development of interventional ultrasound therapeutic systems for focused ultrasound surgery, ablation and ultrasound enhanced drug delivery. This work describes devices combining both technologies. A series of transducer probes have been designed, fabricated and tested including: 1) a 12 French side scanning catheter incorporating a 64 element matrix array for imaging at 5MHz and a piston ablation transducer operating at 10 MHz. 2) a 14 Fr forward-scanning catheter integrating a 112 element 2-D array for imaging at 5 MHz encircled by an ablation annulus operating at 10 MHz. Finite element modeling was then used to simulate catheter annular and linear phased array transducers for ablation. 3) Linear phased array transducers were built to confirm the finite element analysis at 4 and 8 MHz including a mechanically focused 86 element 9 MHz array which transmits an ISPTA of 29.3 W/cm2 and creates a lesion in 2 minutes. 4) 2-D arrays of 504 channels operating at 5 MHz have been developed for transesophageal and laparascopic 3D imaging as well as therapeutic heating. All the devices image the heart anatomy including atria, valves, septa and en face views of the pulmonary veins.

  2. Application of 3D and 2D quantitative shear wave elastography (SWE) to differentiate between benign and malignant breast masses

    PubMed Central

    Tian, Jie; Liu, Qianqi; Wang, Xi; Xing, Ping; Yang, Zhuowen; Wu, Changjun

    2017-01-01

    As breast cancer tissues are stiffer than normal tissues, shear wave elastography (SWE) can locally quantify tissue stiffness and provide histological information. Moreover, tissue stiffness can be observed on three-dimensional (3D) colour-coded elasticity maps. Our objective was to evaluate the diagnostic performances of quantitative features in differentiating breast masses by two-dimensional (2D) and 3D SWE. Two hundred ten consecutive women with 210 breast masses were examined with B-mode ultrasound (US) and SWE. Quantitative features of 3D and 2D SWE were assessed, including elastic modulus standard deviation (ESDE) measured on SWE mode images and ESDU measured on B-mode images, as well as maximum elasticity (Emax). Adding quantitative features to B-mode US improved the diagnostic performance (p < 0.05) and reduced false-positive biopsies (p < 0.0001). The area under the receiver operating characteristic curve (AUC) of 3D SWE was similar to that of 2D SWE for ESDE (p = 0.026) and ESDU (p = 0.159) but inferior to that of 2D SWE for Emax (p = 0.002). Compared with ESDU, ESDE showed a higher AUC on 2D (p = 0.0038) and 3D SWE (p = 0.0057). Our study indicates that quantitative features of 3D and 2D SWE can significantly improve the diagnostic performance of B-mode US, especially 3D SWE ESDE, which shows considerable clinical value. PMID:28106134

  3. Development of a 3D ultrasound-guided prostate biopsy system

    NASA Astrophysics Data System (ADS)

    Cool, Derek; Sherebrin, Shi; Izawa, Jonathan; Fenster, Aaron

    2007-03-01

    Biopsy of the prostate using ultrasound guidance is the clinical gold standard for diagnosis of prostate adenocarinoma. However, because early stage tumors are rarely visible under US, the procedure carries high false-negative rates and often patients require multiple biopsies before cancer is detected. To improve cancer detection, it is imperative that throughout the biopsy procedure, physicians know where they are within the prostate and where they have sampled during prior biopsies. The current biopsy procedure is limited to using only 2D ultrasound images to find and record target biopsy core sample sites. This information leaves ambiguity as the physician tries to interpret the 2D information and apply it to their 3D workspace. We have developed a 3D ultrasound-guided prostate biopsy system that provides 3D intra-biopsy information to physicians for needle guidance and biopsy location recording. The system is designed to conform to the workflow of the current prostate biopsy procedure, making it easier for clinical integration. In this paper, we describe the system design and validate its accuracy by performing an in vitro biopsy procedure on US/CT multi-modal patient-specific prostate phantoms. A clinical sextant biopsy was performed by a urologist on the phantoms and the 3D models of the prostates were generated with volume errors less than 4% and mean boundary errors of less than 1 mm. Using the 3D biopsy system, needles were guided to within 1.36 +/- 0.83 mm of 3D targets and the position of the biopsy sites were accurately localized to 1.06 +/- 0.89 mm for the two prostates.

  4. Accurate Diagnosis of Severe Hypospadias Using 2D and 3D Ultrasounds

    PubMed Central

    López Ramón y Cajal, Carlos; Marín Ortiz, Elena; Sarmiento Carrera, Nerea

    2016-01-01

    The hypospadias is the most common urogenital anomaly of male neonates but the prenatal diagnosis of this is often missed before birth. We present the prenatal diagnosis of a severe penoscrotal hypospadias using 2D and 3D ultrasounds. 3D sonography allowed us the best evaluation of the genitals and their anatomical relations. This ample detailed study allowed us to show the findings to the parents and the pediatric surgeon and to configure the best information about the prognosis and surgical treatment. PMID:27774326

  5. Review of three-dimensional (3D) surface imaging for oncoplastic, reconstructive and aesthetic breast surgery.

    PubMed

    O'Connell, Rachel L; Stevens, Roger J G; Harris, Paul A; Rusby, Jennifer E

    2015-08-01

    Three-dimensional surface imaging (3D-SI) is being marketed as a tool in aesthetic breast surgery. It has recently also been studied in the objective evaluation of cosmetic outcome of oncological procedures. The aim of this review is to summarise the use of 3D-SI in oncoplastic, reconstructive and aesthetic breast surgery. An extensive literature review was undertaken to identify published studies. Two reviewers independently screened all abstracts and selected relevant articles using specific inclusion criteria. Seventy two articles relating to 3D-SI for breast surgery were identified. These covered endpoints such as image acquisition, calculations and data obtainable, comparison of 3D and 2D imaging and clinical research applications of 3D-SI. The literature provides a favourable view of 3D-SI. However, evidence of its superiority over current methods of clinical decision making, surgical planning, communication and evaluation of outcome is required before it can be accepted into mainstream practice.

  6. Combined photoacoustic and ultrasound imaging of human breast in vivo in the mammographic geometry

    NASA Astrophysics Data System (ADS)

    Xie, Zhixing; Lee, Won-Mean; Hooi, Fong Ming; Fowlkes, J. Brian; Pinsky, Renee W.; Mueller, Dean; Wang, Xueding; Carson, Paul L.

    2013-03-01

    This photoacoustic volume imaging (PAVI) system is designed to study breast cancer detection and diagnosis in the mammographic geometry in combination with automated 3D ultrasound (AUS). The good penetration of near-infrared (NIR) light and high receiving sensitivity of a broad bandwidth, 572 element, 2D PVDF array at a low center-frequency of 1MHz were utilized with 20 channel simultaneous acquisition. The feasibility of this system in imaging optically absorbing objects in deep breast tissues was assessed first through experiments on ex vivo whole breasts. The blood filled pseudo lesions were imaged at depths up to 49 mm in the specimens. In vivo imaging of human breasts has been conducted. 3D PAVI image stacks of human breasts were coregistered and compared with 3D ultrasound image stacks of the same breasts. Using the designed system, PAVI shows satisfactory imaging depth and sensitivity for coverage of the entire breast when imaged from both sides with mild compression in the mammographic geometry. With its unique soft tissue contrast and excellent sensitivity to the tissue hemodynamic properties of fractional blood volume and blood oxygenation, PAVI, as a complement to 3D ultrasound and digital tomosynthesis mammography, might well contribute to detection, diagnosis and prognosis for breast cancer.

  7. Registration of Real-Time 3-D Ultrasound to Tomographic Images of the Abdominal Aorta.

    PubMed

    Brekken, Reidar; Iversen, Daniel Høyer; Tangen, Geir Arne; Dahl, Torbjørn

    2016-08-01

    The purpose of this study was to develop an image-based method for registration of real-time 3-D ultrasound to computed tomography (CT) of the abdominal aorta, targeting future use in ultrasound-guided endovascular intervention. We proposed a method in which a surface model of the aortic wall was segmented from CT, and the approximate initial location of this model relative to the ultrasound volume was manually indicated. The model was iteratively transformed to automatically optimize correspondence to the ultrasound data. Feasibility was studied using data from a silicon phantom and in vivo data from a volunteer with previously acquired CT. Through visual evaluation, the ultrasound and CT data were seen to correspond well after registration. Both aortic lumen and branching arteries were well aligned. The processing was done offline, and the registration took approximately 0.2 s per ultrasound volume. The results encourage further patient studies to investigate accuracy, robustness and clinical value of the approach.

  8. Random Walk Based Segmentation for the Prostate on 3D Transrectal Ultrasound Images.

    PubMed

    Ma, Ling; Guo, Rongrong; Tian, Zhiqiang; Venkataraman, Rajesh; Sarkar, Saradwata; Liu, Xiabi; Nieh, Peter T; Master, Viraj V; Schuster, David M; Fei, Baowei

    2016-02-27

    This paper proposes a new semi-automatic segmentation method for the prostate on 3D transrectal ultrasound images (TRUS) by combining the region and classification information. We use a random walk algorithm to express the region information efficiently and flexibly because it can avoid segmentation leakage and shrinking bias. We further use the decision tree as the classifier to distinguish the prostate from the non-prostate tissue because of its fast speed and superior performance, especially for a binary classification problem. Our segmentation algorithm is initialized with the user roughly marking the prostate and non-prostate points on the mid-gland slice which are fitted into an ellipse for obtaining more points. Based on these fitted seed points, we run the random walk algorithm to segment the prostate on the mid-gland slice. The segmented contour and the information from the decision tree classification are combined to determine the initial seed points for the other slices. The random walk algorithm is then used to segment the prostate on the adjacent slice. We propagate the process until all slices are segmented. The segmentation method was tested in 32 3D transrectal ultrasound images. Manual segmentation by a radiologist serves as the gold standard for the validation. The experimental results show that the proposed method achieved a Dice similarity coefficient of 91.37±0.05%. The segmentation method can be applied to 3D ultrasound-guided prostate biopsy and other applications.

  9. Fast and robust 3D ultrasound registration--block and game theoretic matching.

    PubMed

    Banerjee, Jyotirmoy; Klink, Camiel; Peters, Edward D; Niessen, Wiro J; Moelker, Adriaan; van Walsum, Theo

    2015-02-01

    Real-time 3D US has potential for image guidance in minimally invasive liver interventions. However, motion caused by patient breathing makes it hard to visualize a localized area, and to maintain alignment with pre-operative information. In this work we develop a fast affine registration framework to compensate in real-time for liver motion/displacement due to breathing. The affine registration of two consecutive ultrasound volumes in time is performed using block-matching. For a set of evenly distributed points in one volume and their correspondences in the other volume, we propose a robust outlier rejection method to reject false matches. The inliers are then used to determine the affine transformation. The approach is evaluated on 13 4D ultrasound sequences acquired from 8 subjects. For 91 pairs of 3D ultrasound volumes selected from these sequences, a mean registration error of 1.8mm is achieved. A graphics processing unit (GPU) implementation runs the 3D US registration at 8 Hz.

  10. Random walk based segmentation for the prostate on 3D transrectal ultrasound images

    NASA Astrophysics Data System (ADS)

    Ma, Ling; Guo, Rongrong; Tian, Zhiqiang; Venkataraman, Rajesh; Sarkar, Saradwata; Liu, Xiabi; Nieh, Peter T.; Master, Viraj V.; Schuster, David M.; Fei, Baowei

    2016-03-01

    This paper proposes a new semi-automatic segmentation method for the prostate on 3D transrectal ultrasound images (TRUS) by combining the region and classification information. We use a random walk algorithm to express the region information efficiently and flexibly because it can avoid segmentation leakage and shrinking bias. We further use the decision tree as the classifier to distinguish the prostate from the non-prostate tissue because of its fast speed and superior performance, especially for a binary classification problem. Our segmentation algorithm is initialized with the user roughly marking the prostate and non-prostate points on the mid-gland slice which are fitted into an ellipse for obtaining more points. Based on these fitted seed points, we run the random walk algorithm to segment the prostate on the mid-gland slice. The segmented contour and the information from the decision tree classification are combined to determine the initial seed points for the other slices. The random walk algorithm is then used to segment the prostate on the adjacent slice. We propagate the process until all slices are segmented. The segmentation method was tested in 32 3D transrectal ultrasound images. Manual segmentation by a radiologist serves as the gold standard for the validation. The experimental results show that the proposed method achieved a Dice similarity coefficient of 91.37+/-0.05%. The segmentation method can be applied to 3D ultrasound-guided prostate biopsy and other applications.

  11. Random Walk Based Segmentation for the Prostate on 3D Transrectal Ultrasound Images

    PubMed Central

    Ma, Ling; Guo, Rongrong; Tian, Zhiqiang; Venkataraman, Rajesh; Sarkar, Saradwata; Liu, Xiabi; Nieh, Peter T.; Master, Viraj V.; Schuster, David M.; Fei, Baowei

    2016-01-01

    This paper proposes a new semi-automatic segmentation method for the prostate on 3D transrectal ultrasound images (TRUS) by combining the region and classification information. We use a random walk algorithm to express the region information efficiently and flexibly because it can avoid segmentation leakage and shrinking bias. We further use the decision tree as the classifier to distinguish the prostate from the non-prostate tissue because of its fast speed and superior performance, especially for a binary classification problem. Our segmentation algorithm is initialized with the user roughly marking the prostate and non-prostate points on the mid-gland slice which are fitted into an ellipse for obtaining more points. Based on these fitted seed points, we run the random walk algorithm to segment the prostate on the mid-gland slice. The segmented contour and the information from the decision tree classification are combined to determine the initial seed points for the other slices. The random walk algorithm is then used to segment the prostate on the adjacent slice. We propagate the process until all slices are segmented. The segmentation method was tested in 32 3D transrectal ultrasound images. Manual segmentation by a radiologist serves as the gold standard for the validation. The experimental results show that the proposed method achieved a Dice similarity coefficient of 91.37±0.05%. The segmentation method can be applied to 3D ultrasound-guided prostate biopsy and other applications. PMID:27660383

  12. Top-orthogonal-to-bottom-electrode (TOBE) CMUT arrays for 3-D ultrasound imaging.

    PubMed

    Sampaleanu, Alex; Zhang, Peiyu; Kshirsagar, Abhijeet; Moussa, Walied; Zemp, Roger J

    2014-02-01

    Two-dimensional ultrasound arrays hold great promise for 3-D imaging; however, wiring of each channel becomes impractical for large arrays or for small-footprint catheter probes for which the number of wires must be limited. Capacitive micromachined ultrasound transducers offer a promising solution for such 2-D array applications, but channel routing is still non-trivial. A top-orthogonal-to-bottom-electrode (TOBE) 2-D CMUT array architecture is presented along with row-column addressing schemes for low-channel-count 3-D ultrasound imaging. An N × N TOBE array is capable of obtaining 3-D images using only 2N channels. An interfacing scheme is presented in which transmit-receive signals are routed along rows while bias voltages are applied along columns, effectively allowing for single-element transmit/receive control. Simulations demonstrated potentially finer resolution and improved side lobe suppression over a previously published row-column-based imaging method. Laser vibrometer testing was done to measure membrane displacement in air and confirmed that single-element air-coupled actuation in transmit mode could be achieved using our proposed interfacing scheme. Acoustic testing was also performed in both transmit and receive modes to characterize the ability of the proposed interfacing scheme to achieve dominant-element transmission and reception in immersion operation. It was seen that membrane displacement in both modes was indeed largely confined to the active area.

  13. 3D ultrasound Nakagami imaging for radiation-induced vaginal fibrosis

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Rossi, Peter; Shelton, Joseph; Bruner, Debrorah; Tridandapani, Srini; Liu, Tian

    2014-03-01

    Radiation-induced vaginal fibrosis is a debilitating side-effect affecting up to 80% of women receiving radiotherapy for their gynecological (GYN) malignancies. Despite the significant incidence and severity, little research has been conducted to identify the pathophysiologic changes of vaginal toxicity. In a previous study, we have demonstrated that ultrasound Nakagami shape and PDF parameters can be used to quantify radiation-induced vaginal toxicity. These Nakagami parameters are derived from the statistics of ultrasound backscattered signals to capture the physical properties (e.g., arrangement and distribution) of the biological tissues. In this paper, we propose to expand this Nakagami imaging concept from 2D to 3D to fully characterize radiation-induced changes to the vaginal wall within the radiation treatment field. A pilot study with 5 post-radiotherapy GYN patients was conducted using a clinical ultrasound scanner (6 MHz) with a mechanical stepper. A serial of 2D ultrasound images, with radio-frequency (RF) signals, were acquired at 1 mm step size. The 2D Nakagami shape and PDF parameters were calculated from the RF signal envelope with a sliding window, and then 3D Nakagami parameter images were generated from the parallel 2D images. This imaging method may be useful as we try to monitor radiation-induced vaginal injury, and address vaginal toxicities and sexual dysfunction in women after radiotherapy for GYN malignancies.

  14. Screening for Stromal and Matrix Effects in 3D Microenvironments of Breast Cancer Cells

    NASA Astrophysics Data System (ADS)

    Montanez-Sauri, Sara I.

    Breast cancer progression ensures through the acquisition of genetic mutations, the uncontrollable growth of cells, and their progression to invasion. Studies have shown that the surrounding three-dimensional (3D) microenvironment can also influence breast cancer cell progression by controlling the morphology, differentiation, proliferation, and migration of cells. However, most of the currently available in vitro screening platforms are based on the two-dimensional (2D) culture of cells, and do not provide cells with the complex 3D microenvironment that exists in vivo. Therefore, there is a need for more biologically relevant in vitro platforms to help decipher the complexity of the microenvironment and its influence in breast cancer. In this dissertation we present an automated microfluidic platform that allows to efficiently screen for the effect of multiple matrix and stromal microenvironment in 3D cultures of breast cancer cells. Several extracellular matrix (ECM) compositions and stromal cells are included in the 3D microenvironments to examine their influence on breast cancer cell behavior. The screening results suggest that collagen gels with fibronectin might be influencing paracrine signals between breast cancer cells and stromal cells. The ability of the platform to culture and treat cells in 3D microenvironments offers a powerful screening tool for the identification of compounds and interactions using more in vivo-like 3D microenvironments. The identification of these mechanisms will increase our current understanding of breast cancer, and will aid in the identification of potential therapeutics.

  15. Methods for 2-D and 3-D Endobronchial Ultrasound Image Segmentation.

    PubMed

    Zang, Xiaonan; Bascom, Rebecca; Gilbert, Christopher; Toth, Jennifer; Higgins, William

    2016-07-01

    Endobronchial ultrasound (EBUS) is now commonly used for cancer-staging bronchoscopy. Unfortunately, EBUS is challenging to use and interpreting EBUS video sequences is difficult. Other ultrasound imaging domains, hampered by related difficulties, have benefited from computer-based image-segmentation methods. Yet, so far, no such methods have been proposed for EBUS. We propose image-segmentation methods for 2-D EBUS frames and 3-D EBUS sequences. Our 2-D method adapts the fast-marching level-set process, anisotropic diffusion, and region growing to the problem of segmenting 2-D EBUS frames. Our 3-D method builds upon the 2-D method while also incorporating the geodesic level-set process for segmenting EBUS sequences. Tests with lung-cancer patient data showed that the methods ran fully automatically for nearly 80% of test cases. For the remaining cases, the only user-interaction required was the selection of a seed point. When compared to ground-truth segmentations, the 2-D method achieved an overall Dice index = 90.0% ±4.9%, while the 3-D method achieved an overall Dice index = 83.9 ± 6.0%. In addition, the computation time (2-D, 0.070 s/frame; 3-D, 0.088 s/frame) was two orders of magnitude faster than interactive contour definition. Finally, we demonstrate the potential of the methods for EBUS localization in a multimodal image-guided bronchoscopy system.

  16. A 5-MHz cylindrical dual-layer transducer array for 3-D transrectal ultrasound imaging.

    PubMed

    Chen, Yuling; Nguyen, Man; Yen, Jesse T

    2012-07-01

    Two-dimensional transrectal ultrasound (TRUS) is being used in guiding prostate biopsies and treatments. In many cases, the TRUS probes are moved manually or mechanically to acquire volumetric information, making the imaging slow, user dependent, and unreliable. A real-time three-dimensional (3-D) TRUS system could improve reliability and volume rates of imaging during these procedures. In this article, the authors present a 5-MHz cylindrical dual-layer transducer array capable of real-time 3-D transrectal ultrasound without any mechanically moving parts. Compared with fully sampled 2-D arrays, this design substantially reduces the channel count and fabrication complexity. This dual-layer transducer uses PZT elements for transmit and P[VDF-TrFE] copolymer elements for receive, respectively. The mechanical flexibility of both diced PZT and copolymer makes it practical for transrectal applications. Full synthetic aperture 3-D data sets were acquired by interfacing the transducer with a Verasonics Data Acquisition System. Offline 3-D beamforming was then performed to obtain volumes of two wire phantoms and a cyst phantom. Generalized coherence factor was applied to improve the contrast of images. The measured -6-dB fractional bandwidth of the transducer was 62% with a center frequency of 5.66 MHz. The measured lateral beamwidths were 1.28 mm and 0.91 mm in transverse and longitudinal directions, respectively, compared with a simulated beamwidth of 0.92 mm and 0.74 mm.

  17. 3D ultrasound volume stitching using phase symmetry and harris corner detection for orthopaedic applications

    NASA Astrophysics Data System (ADS)

    Dalvi, Rupin; Hacihaliloglu, Ilker; Abugharbieh, Rafeef

    2010-03-01

    Stitching of volumes obtained from three dimensional (3D) ultrasound (US) scanners improves visualization of anatomy in many clinical applications. Fast but accurate volume registration remains the key challenge in this area.We propose a volume stitching method based on efficient registration of 3D US volumes obtained from a tracked US probe. Since the volumes, after adjusting for probe motion, are coarsely registered, we obtain salient correspondence points in the central slices of these volumes. This is done by first removing artifacts in the US slices using intensity invariant local phase image processing and then applying the Harris Corner detection algorithm. Fast sub-volume registration on a small neighborhood around the points then gives fast, accurate 3D registration parameters. The method has been tested on 3D US scans of phantom and real human radius and pelvis bones and a phantom human fetus. The method has also been compared to volumetric registration, as well as feature based registration using 3D-SIFT. Quantitative results show average post-registration error of 0.33mm which is comparable to volumetric registration accuracy (0.31mm) and much better than 3D-SIFT based registration which failed to register the volumes. The proposed method was also much faster than volumetric registration (~4.5 seconds versus 83 seconds).

  18. An efficient calibration method for freehand 3-D ultrasound imaging systems.

    PubMed

    Leotta, Daniel F

    2004-07-01

    A phantom has been developed to quickly calibrate a freehand 3-D ultrasound (US) imaging system. Calibration defines the spatial relationship between the US image plane and an external tracking device attached to the scanhead. The phantom consists of a planar array of strings and beads, and a set of out-of-plane strings that guide the user to proper scanhead orientation for imaging. When an US image plane is coincident with the plane defined by the strings, the calibration parameters are calculated by matching of homologous points in the image and phantom. The resulting precision and accuracy of the 3-D imaging system are similar to those achieved with a more complex calibration procedure. The 3-D reconstruction performance of the calibrated system is demonstrated with a magnetic tracking system, but the method could be applied to other tracking devices.

  19. The establishment of a 3D breast photography service in medical illustration.

    PubMed

    Winder, R J; Ruddock, A; Hendren, K; O'Neill, P; Boyd, L A; McCaughan, E; McIntosh, S A

    2014-05-01

    This paper aims to describe the development of a 3D breast photography service managed by the Medical Illustration Department, in the Belfast Health and Social Care Trust, Northern Ireland. Dedicated 3D breast photography equipment was installed in Medical Illustration for 18 months. Women were referred for a variety of indications including pre- and post-surgical assessment. A dedicated 3D breast photography protocol was developed locally and this requires further refinement to allow reproducibility in other centres. There are image/data artefacts associated with this technology and special techniques are required to reduce these. Specialist software is necessary for clinicians and scientists to use 3D breast photography data in surgical planning and measurement of surgical outcome.

  20. Breast density measurement: 3D cone beam computed tomography (CBCT) images versus 2D digital mammograms

    NASA Astrophysics Data System (ADS)

    Han, Tao; Lai, Chao-Jen; Chen, Lingyun; Liu, Xinming; Shen, Youtao; Zhong, Yuncheng; Ge, Shuaiping; Yi, Ying; Wang, Tianpeng; Yang, Wei T.; Shaw, Chris C.

    2009-02-01

    Breast density has been recognized as one of the major risk factors for breast cancer. However, breast density is currently estimated using mammograms which are intrinsically 2D in nature and cannot accurately represent the real breast anatomy. In this study, a novel technique for measuring breast density based on the segmentation of 3D cone beam CT (CBCT) images was developed and the results were compared to those obtained from 2D digital mammograms. 16 mastectomy breast specimens were imaged with a bench top flat-panel based CBCT system. The reconstructed 3D CT images were corrected for the cupping artifacts and then filtered to reduce the noise level, followed by using threshold-based segmentation to separate the dense tissue from the adipose tissue. For each breast specimen, volumes of the dense tissue structures and the entire breast were computed and used to calculate the volumetric breast density. BI-RADS categories were derived from the measured breast densities and compared with those estimated from conventional digital mammograms. The results show that in 10 of 16 cases the BI-RADS categories derived from the CBCT images were lower than those derived from the mammograms by one category. Thus, breasts considered as dense in mammographic examinations may not be considered as dense with the CBCT images. This result indicates that the relation between breast cancer risk and true (volumetric) breast density needs to be further investigated.

  1. Accuracy assessment of high frequency 3D ultrasound for digital impression-taking of prepared teeth

    NASA Astrophysics Data System (ADS)

    Heger, Stefan; Vollborn, Thorsten; Tinschert, Joachim; Wolfart, Stefan; Radermacher, Klaus

    2013-03-01

    Silicone based impression-taking of prepared teeth followed by plaster casting is well-established but potentially less reliable, error-prone and inefficient, particularly in combination with emerging techniques like computer aided design and manufacturing (CAD/CAM) of dental prosthesis. Intra-oral optical scanners for digital impression-taking have been introduced but until now some drawbacks still exist. Because optical waves can hardly penetrate liquids or soft-tissues, sub-gingival preparations still need to be uncovered invasively prior to scanning. High frequency ultrasound (HFUS) based micro-scanning has been recently investigated as an alternative to optical intra-oral scanning. Ultrasound is less sensitive against oral fluids and in principal able to penetrate gingiva without invasively exposing of sub-gingival preparations. Nevertheless, spatial resolution as well as digitization accuracy of an ultrasound based micro-scanning system remains a critical parameter because the ultrasound wavelength in water-like media such as gingiva is typically smaller than that of optical waves. In this contribution, the in-vitro accuracy of ultrasound based micro-scanning for tooth geometry reconstruction is being investigated and compared to its extra-oral optical counterpart. In order to increase the spatial resolution of the system, 2nd harmonic frequencies from a mechanically driven focused single element transducer were separated and corresponding 3D surface models were calculated for both fundamentals and 2nd harmonics. Measurements on phantoms, model teeth and human teeth were carried out for evaluation of spatial resolution and surface detection accuracy. Comparison of optical and ultrasound digital impression taking indicate that, in terms of accuracy, ultrasound based tooth digitization can be an alternative for optical impression-taking.

  2. Strain-Initialized Robust Bone Surface Detection in 3-D Ultrasound.

    PubMed

    Hussain, Mohammad Arafat; Hodgson, Antony J; Abugharbieh, Rafeef

    2017-03-01

    Three-dimensional ultrasound has been increasingly considered as a safe radiation-free alternative to radiation-based fluoroscopic imaging for surgical guidance during computer-assisted orthopedic interventions, but because ultrasound images contain significant artifacts, it is challenging to automatically extract bone surfaces from these images. We propose an effective way to extract 3-D bone surfaces using a surface growing approach that is seeded from 2-D bone contours. The initial 2-D bone contours are estimated from a combination of ultrasound strain images and envelope power images. Novel features of the proposed method include: (i) improvement of a previously reported 2-D strain imaging-based bone segmentation method by incorporation of a depth-dependent cumulative power of the envelope into the elastographic data; (ii) incorporation of an echo decorrelation measure-based weight to fuse the strain and envelope maps; (iii) use of local statistics of the bone surface candidate points to detect the presence of any bone discontinuity; and (iv) an extension of our 2-D bone contour into a 3-D bone surface by use of an effective surface growing approach. Our new method produced average improvements in the mean absolute error of 18% and 23%, respectively, on 2-D and 3-D experimental phantom data, compared with those of two state-of-the-art bone segmentation methods. Validation on 2-D and 3-D clinical in vivo data also reveals, respectively, an average improvement in the mean absolute fitting error of 55% and an 18-fold improvement in the computation time.

  3. 3D registration method based on scattered point cloud from B-model ultrasound image

    NASA Astrophysics Data System (ADS)

    Hu, Lei; Xu, Xiaojun; Wang, Lifeng; Guo, Na; Xie, Feng

    2017-01-01

    The paper proposes a registration method on 3D point cloud of the bone tissue surface extracted by B-mode ultrasound image and the CT model . The B-mode ultrasound is used to get two-dimensional images of the femur tissue . The binocular stereo vision tracker is used to obtain spatial position and orientation of the optical positioning device fixed on the ultrasound probe. The combining of the two kind of data generates 3D point cloud of the bone tissue surface. The pixel coordinates of the bone surface are automatically obtained from ultrasound image using an improved local phase symmetry (phase symmetry, PS) . The mapping of the pixel coordinates on the ultrasound image and 3D space is obtained through a series of calibration methods. In order to detect the effect of registration, six markers are implanted on a complete fresh pig femoral .The actual coordinates of the marks are measured with two methods. The first method is to get the coordinates with measuring tools under a coordinate system. The second is to measure the coordinates of the markers in the CT model registered with 3D point cloud using the ICP registration algorithm under the same coordinate system. Ten registration experiments are carried out in the same way. Error results are obtained by comparing the two sets of mark point coordinates obtained by two different methods. The results is that a minimum error is 1.34mm, the maximum error is 3.22mm,and the average error of 2.52mm; ICP registration algorithm calculates the average error of 0.89mm and a standard deviation of 0.62mm.This evaluation standards of registration accuracy is different from the average error obtained by the ICP registration algorithm. It can be intuitive to show the error caused by the operation of clinical doctors. Reference to the accuracy requirements of different operation in the Department of orthopedics, the method can be apply to the bone reduction and the anterior cruciate ligament surgery.

  4. Development of a Wireless and Near Real-Time 3D Ultrasound Strain Imaging System.

    PubMed

    Chen, Zhaohong; Chen, Yongdong; Huang, Qinghua

    2016-04-01

    Ultrasound elastography is an important medical imaging tool for characterization of lesions. In this paper, we present a wireless and near real-time 3D ultrasound strain imaging system. It uses a 3D translating device to control a commercial linear ultrasound transducer to collect pre-compression and post-compression radio-frequency (RF) echo signal frames. The RF frames are wirelessly transferred to a high-performance server via a local area network (LAN). A dynamic programming strain estimation algorithm is implemented with the compute unified device architecture (CUDA) on the graphic processing unit (GPU) in the server to calculate the strain image after receiving a pre-compression RF frame and a post-compression RF frame at the same position. Each strain image is inserted into a strain volume which can be rendered in near real-time. We take full advantage of the translating device to precisely control the probe movement and compression. The GPU-based parallel computing techniques are designed to reduce the computation time. Phantom and in vivo experimental results demonstrate that our system can generate strain volumes with good quality and display an incrementally reconstructed volume image in near real-time.

  5. Benchmarking of state-of-the-art needle detection algorithms in 3D ultrasound data volumes

    NASA Astrophysics Data System (ADS)

    Pourtaherian, Arash; Zinger, Svitlana; de With, Peter H. N.; Korsten, Hendrikus H. M.; Mihajlovic, Nenad

    2015-03-01

    Ultrasound-guided needle interventions are widely practiced in medical diagnostics and therapy, i.e. for biopsy guidance, regional anesthesia or for brachytherapy. Needle guidance using 2D ultrasound can be very challenging due to the poor needle visibility and the limited field of view. Since 3D ultrasound transducers are becoming more widely used, needle guidance can be improved and simplified with appropriate computer-aided analyses. In this paper, we compare two state-of-the-art 3D needle detection techniques: a technique based on line filtering from literature and a system employing Gabor transformation. Both algorithms utilize supervised classification to pre-select candidate needle voxels in the volume and then fit a model of the needle on the selected voxels. The major differences between the two approaches are in extracting the feature vectors for classification and selecting the criterion for fitting. We evaluate the performance of the two techniques using manually-annotated ground truth in several ex-vivo situations of different complexities, containing three different needle types with various insertion angles. This extensive evaluation provides better understanding on the limitations and advantages of each technique under different acquisition conditions, which is leading to the development of improved techniques for more reliable and accurate localization. Benchmarking results that the Gabor features are better capable of distinguishing the needle voxels in all datasets. Moreover, it is shown that the complete processing chain of the Gabor-based method outperforms the line filtering in accuracy and stability of the detection results.

  6. Methods for using 3-D ultrasound speckle tracking in biaxial mechanical testing of biological tissue samples.

    PubMed

    Yap, Choon Hwai; Park, Dae Woo; Dutta, Debaditya; Simon, Marc; Kim, Kang

    2015-04-01

    Being multilayered and anisotropic, biological tissues such as cardiac and arterial walls are structurally complex, making the full assessment and understanding of their mechanical behavior challenging. Current standard mechanical testing uses surface markers to track tissue deformations and does not provide deformation data below the surface. In the study described here, we found that combining mechanical testing with 3-D ultrasound speckle tracking could overcome this limitation. Rat myocardium was tested with a biaxial tester and was concurrently scanned with high-frequency ultrasound in three dimensions. The strain energy function was computed from stresses and strains using an iterative non-linear curve-fitting algorithm. Because the strain energy function consists of terms for the base matrix and for embedded fibers, spatially varying fiber orientation was also computed by curve fitting. Using finite-element simulations, we first validated the accuracy of the non-linear curve-fitting algorithm. Next, we compared experimentally measured rat myocardium strain energy function values with those in the literature and found a matching order of magnitude. Finally, we retained samples after the experiments for fiber orientation quantification using histology and found that the results satisfactorily matched those computed in the experiments. We conclude that 3-D ultrasound speckle tracking can be a useful addition to traditional mechanical testing of biological tissues and may provide the benefit of enabling fiber orientation computation.

  7. Correlation of pre-operative MRI and intra-operative 3D ultrasound to measure brain tissue shift

    NASA Astrophysics Data System (ADS)

    Gobbi, David G.; Comeau, Roch M.; Lee, Belinda K. H.; Peters, Terence M.

    2000-04-01

    The usefulness of stereotactic neurosurgery performed via a craniotomy is limited because the craniotomy leads to a brain tissue shift of 10 mm on average. We have recently completed an examination of 2D intra-operative ultrasound as a means of visualization and measurement of brain shift. A commercial 3D tracking system was used for real-time registration of the ultrasound video to pre-operative MR images, and annotation of the images was used to measure the shift. More than 15 surgical cases have been performed thus far with the 2D system. We are now undertaking phantom studies with tracked 3D ultrasound, and have developed sophisticated tools for real- time overlay of ultrasound and MRI volumes. These tools include a virtual-reality view of the ultrasound probe with live ultrasound video superimposed over a 3D -rendered MRI of the brain, as well as 3D ultrasound/MRI transparency overlay views. Algorithms to automatically extract landmarks from MRI and 3D ultrasound images are under development. We aim to use these landmarks to automatically generate nonlinear warp transformations to correct the pre-operative MRI as well as surgical target coordinates for brain shift. Portions of the C++ code developed for this project have been contributed to the open-source Visualization Toolkit (VTK).

  8. Real-time 3-d intracranial ultrasound with an endoscopic matrix array transducer.

    PubMed

    Light, Edward D; Mukundan, Srinivasan; Wolf, Patrick D; Smith, Stephen W

    2007-08-01

    A transducer originally designed for transesophageal echocardiography (TEE) was adapted for real-time volumetric endoscopic imaging of the brain. The transducer consists of a 36 x 36 array with an interelement spacing of 0.18 mm. There are 504 transmitting and 252 receive channels placed in a regular pattern in the array. The operating frequency is 4.5 MHz with a -6 dB bandwidth of 30%. The transducer is fabricated on a 10-layer flexible circuit from Microconnex (Snoqualmie, WA, USA). The purpose of this study is to evaluate the clinical feasibility of real-time 3-D intracranial ultrasound with this device. The Volumetrics Medical Imaging (Durham, NC, USA) 3-D scanner was used to obtain images in a canine model. A transcalvarial acoustic window was created under general anesthesia in the animal laboratory by placing a 10-mm burr hole in the high parietal calvarium of a 50-kg canine subject. The burr-hole was placed in a left parasagittal location to avoid the sagittal sinus, and the transducer was placed against the intact dura mater for ultrasound imaging. Images of the lateral ventricles were produced, including real-time 3-D guidance of a needle puncture of one ventricle. In a second canine subject, contrast-enhanced 3-D Doppler color flow images were made of the cerebral vessels including the complete Circle of Willis. Clinical applications may include real-time 3-D guidance of cerebrospinal fluid extraction from the lateral ventricles and bedside evaluation of critically ill patients where computed tomography and magnetic resonance imaging techniques are unavailable.

  9. Accuracy of volume measurement using 3D ultrasound and development of CT-3D US image fusion algorithm for prostate cancer radiotherapy

    SciTech Connect

    Baek, Jihye; Huh, Jangyoung; Hyun An, So; Oh, Yoonjin; Kim, Myungsoo; Kim, DongYoung; Chung, Kwangzoo; Cho, Sungho; Lee, Rena

    2013-02-15

    Purpose: To evaluate the accuracy of measuring volumes using three-dimensional ultrasound (3D US), and to verify the feasibility of the replacement of CT-MR fusion images with CT-3D US in radiotherapy treatment planning. Methods: Phantoms, consisting of water, contrast agent, and agarose, were manufactured. The volume was measured using 3D US, CT, and MR devices. A CT-3D US and MR-3D US image fusion software was developed using the Insight Toolkit library in order to acquire three-dimensional fusion images. The quality of the image fusion was evaluated using metric value and fusion images. Results: Volume measurement, using 3D US, shows a 2.8 {+-} 1.5% error, 4.4 {+-} 3.0% error for CT, and 3.1 {+-} 2.0% error for MR. The results imply that volume measurement using the 3D US devices has a similar accuracy level to that of CT and MR. Three-dimensional image fusion of CT-3D US and MR-3D US was successfully performed using phantom images. Moreover, MR-3D US image fusion was performed using human bladder images. Conclusions: 3D US could be used in the volume measurement of human bladders and prostates. CT-3D US image fusion could be used in monitoring the target position in each fraction of external beam radiation therapy. Moreover, the feasibility of replacing the CT-MR image fusion to the CT-3D US in radiotherapy treatment planning was verified.

  10. A compact robotic apparatus and method for 3-D ultrasound guided prostate therapy

    NASA Astrophysics Data System (ADS)

    Bax, Jeffrey; Gardi, Lori; Montreuil, Jacques; Smith, David; Fenster, Aaron

    2007-03-01

    Ultrasound imaging has revolutionized the treatment of prostate cancer by producing increasingly accurate models of the prostate and influencing sophisticated targeting procedures for the insertion of radioactive seeds during brachytherapy. Three-dimensional (3D) ultrasound imaging, which allows 3D models of the prostate to be constructed from a series of two-dimensional images, helps to accurately target and implant seeds into the prostate. We have developed a compact robotic apparatus, as well as an effective method for guiding and controlling the insertion of transperineal needles into the prostate. This device has been designed to accurately guide a needle in 3D space so that the needle can be inserted into the prostate at an angle that does not interfere with the pubic arch. The physician can adjust manually or automatically the position of the apparatus in order to place several radioactive seeds into the prostate at designated target locations. Because many physicians are wary of conducting robotic surgical procedures, the apparatus has been developed so that the physician can position the needle for manual insertion and apply a method for manually releasing the needle without damaging the apparatus or endangering the patient.

  11. Pitch-catch phase aberration correction of multiple isoplanatic patches for 3-D transcranial ultrasound imaging.

    PubMed

    Lindsey, Brooks D; Smith, Stephen W

    2013-03-01

    Having previously presented the ultrasound brain helmet, a system for simultaneous 3-D ultrasound imaging via both temporal bone acoustic windows, the scanning geometry of this system is utilized to allow each matrix array to serve as a correction source for the opposing array. Aberration is estimated using cross-correlation of RF channel signals, followed by least mean squares solution of the resulting overdetermined system. Delay maps are updated and real-time 3-D scanning resumes. A first attempt is made at using multiple arrival time maps to correct multiple unique aberrators within a single transcranial imaging volume, i.e., several isoplanatic patches. This adaptive imaging technique, which uses steered unfocused waves transmitted by the opposing, or beacon, array, updates the transmit and receive delays of 5 isoplanatic patches within a 64° x 64° volume. In phantom experiments, color flow voxels above a common threshold have also increased by an average of 92%, whereas color flow variance decreased by an average of 10%. This approach has been applied to both temporal acoustic windows of two human subjects, yielding increases in echo brightness in 5 isoplanatic patches with a mean value of 24.3 ± 9.1%, suggesting that such a technique may be beneficial in the future for performing noninvasive 3-D color flow imaging of cerebrovascular disease, including stroke.

  12. Using 3D Super-Resolution Microscopy to Probe Breast Cancer Stem Cells and Their Microenvironment

    DTIC Science & Technology

    2014-05-01

    microenvironments on breast cancer by creating arrays of polydimethlysiloxane (PDMS) microposts of different stiffness and sizes and seeded them with MCF-7 cells...of MCF-7s. Finally, with QPI, we investigated the real-time response of breast- cancer cells to different microenvironmental cues . We thus have...controls this cellular phenotype. To realize this goal, we had proposed to use 3D super-resolution microscopy to visualize how individual breast CaSCs

  13. Design considerations for ultrasound detectors in photoacoustic breast imaging

    NASA Astrophysics Data System (ADS)

    Xia, Wenfeng; Piras, Daniele; Singh, Mithun K. A.; van Hespen, Johan C. G.; van Veldhoven, Spiridon; Prins, Christian; van Leeuwen, Ton G.; Steenbergen, Wiendelft; Manohar, Srirang

    2013-03-01

    The ultrasound detector is the heart of a photoacoustic imaging system. In photoacoustic imaging of the breast there is a requirement to detect tumors located a few centimeters deep in tissue, where the light is heavily attenuated. Thus a sensitive ultrasound transducer is of crucial importance. As the frequency content of photoacoustic waves are inversely proportional to the dimensions of the absorbing structures, and in tissue can range from hundreds of kHz to tens of MHz, a broadband ultrasound transducer is required centered on an optimum frequency. A single element piezoelectric transducer structurally consists of the active piezoelectric material, front- and back-matching layers and a backing layer. To have both high sensitivity and broad bandwidth, the materials, their acoustic characteristics and their dimensions should be carefully chosen. In this paper, we present design considerations of an ultrasound transducer for imaging the breast such as the detector sensitivity and frequency response, which guides the selection of active material, matching layers and their geometries. We iterate between simulation of detector performance and experimental characterization of functional models to arrive at an optimized implementation. For computer simulation, we use 1D KLM and 3D finite-element based models. The optimized detector has a large-aperture possessing a center frequency of 1 MHz with fractional bandwidth of more than 80%. The measured minimum detectable pressure is 0.5 Pa, which is two orders of magnitude lower than the detector used in the Twente photoacoustic mammoscope.

  14. 3D visualization of strain in abdominal aortic aneurysms based on navigated ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Brekken, Reidar; Kaspersen, Jon Harald; Tangen, Geir Arne; Dahl, Torbjørn; Hernes, Toril A. N.; Myhre, Hans Olav

    2007-03-01

    The criterion for recommending treatment of an abdominal aortic aneurysm is that the diameter exceeds 50-55 mm or shows a rapid increase. Our hypothesis is that a more accurate prediction of aneurysm rupture is obtained by estimating arterial wall strain from patient specific measurements. Measuring strain in specific parts of the aneurysm reveals differences in load or tissue properties. We have previously presented a method for in vivo estimation of circumferential strain by ultrasound. In the present work, a position sensor attached to the ultrasound probe was used for combining several 2D ultrasound sectors into a 3D model. The ultrasound was registered to a computed-tomography scan (CT), and the strain values were mapped onto a model segmented from these CT data. This gave an intuitive coupling between anatomy and strain, which may benefit both data acquisition and the interpretation of strain. In addition to potentially provide information relevant for assessing the rupture risk of the aneurysm in itself, this model could be used for validating simulations of fluid-structure interactions. Further, the measurements could be integrated with the simulations in order to increase the amount of patient specific information, thus producing a more reliable and accurate model of the biomechanics of the individual aneurysm. This approach makes it possible to extract several parameters potentially relevant for predicting rupture risk, and may therefore extend the basis for clinical decision making.

  15. Using rotation for steerable needle detection in 3D color-Doppler ultrasound images.

    PubMed

    Mignon, Paul; Poignet, Philippe; Troccaz, Jocelyne

    2015-08-01

    This paper demonstrates a new way to detect needles in 3D color-Doppler volumes of biological tissues. It uses rotation to generate vibrations of a needle using an existing robotic brachytherapy system. The results of our detection for color-Doppler and B-Mode ultrasound are compared to a needle location reference given by robot odometry and robot ultrasound calibration. Average errors between detection and reference are 5.8 mm on needle tip for B-Mode images and 2.17 mm for color-Doppler images. These results show that color-Doppler imaging leads to more robust needle detection in noisy environment with poor needle visibility or when needle interacts with other objects.

  16. Improved Visualization of Intracranial Vessels with Intraoperative Coregistration of Rotational Digital Subtraction Angiography and Intraoperative 3D Ultrasound

    PubMed Central

    Podlesek, Dino; Meyer, Tobias; Morgenstern, Ute; Schackert, Gabriele; Kirsch, Matthias

    2015-01-01

    Introduction Ultrasound can visualize and update the vessel status in real time during cerebral vascular surgery. We studied the depiction of parent vessels and aneurysms with a high-resolution 3D intraoperative ultrasound imaging system during aneurysm clipping using rotational digital subtraction angiography as a reference. Methods We analyzed 3D intraoperative ultrasound in 39 patients with cerebral aneurysms to visualize the aneurysm intraoperatively and the nearby vascular tree before and after clipping. Simultaneous coregistration of preoperative subtraction angiography data with 3D intraoperative ultrasound was performed to verify the anatomical assignment. Results Intraoperative ultrasound detected 35 of 43 aneurysms (81%) in 39 patients. Thirty-nine intraoperative ultrasound measurements were matched with rotational digital subtraction angiography and were successfully reconstructed during the procedure. In 7 patients, the aneurysm was partially visualized by 3D-ioUS or was not in field of view. Post-clipping intraoperative ultrasound was obtained in 26 and successfully reconstructed in 18 patients (69%) despite clip related artefacts. The overlap between 3D-ioUS aneurysm volume and preoperative rDSA aneurysm volume resulted in a mean accuracy of 0.71 (Dice coefficient). Conclusions Intraoperative coregistration of 3D intraoperative ultrasound data with preoperative rotational digital subtraction angiography is possible with high accuracy. It allows the immediate visualization of vessels beyond the microscopic field, as well as parallel assessment of blood velocity, aneurysm and vascular tree configuration. Although spatial resolution is lower than for standard angiography, the method provides an excellent vascular overview, advantageous interpretation of 3D-ioUS and immediate intraoperative feedback of the vascular status. A prerequisite for understanding vascular intraoperative ultrasound is image quality and a successful match with preoperative

  17. Measurement of anastomosis geometry in lower extremity bypass grafts with 3-D ultrasound imaging.

    PubMed

    Leotta, Daniel F; Primozich, Jean F; Lowe, Christopher M; Karr, Leni N; Bergelin, Robert O; Beach, Kirk W; Zierler, R Eugene

    2005-10-01

    The attachment sites of lower extremity bypass grafts are known to exhibit a wide range of geometries. Factors that determine the geometry of a given anastomosis include graft material, graft site, native vessel size, graft size and individual patient anatomy. Therefore, it is difficult to specify a standard anastomosis geometry before surgery and difficult to predict the effect of the geometry on long-term graft patency. We have used 3-D ultrasound imaging to study 46 proximal anastomoses of lower limb bypass grafts. We have developed methods to characterize the 3-D geometry of the anastomosis in terms of component sizes and angles. These detailed geometric measurements describe a range of anastomosis geometries and establish standardized parameters across cases that can be used to relate anastomosis geometry to outcome.

  18. 3-D Ultrasound Vascularity Assessment for Breast Cancer Diagnosis

    DTIC Science & Technology

    1998-09-01

    of detecting and displaying amplitude imaging, co-registration, elastography ; panies have begun to market contrast and frequency contents of the...flow in larger numbers of patients, will further beam can break the bubble and release portal veins in patients with cirrhosis and clarify the role of...has markedly increased echogenicity, and the portal veins are markedly echogenic (arrows). Some portal veins shadow from the amount of contrast agent

  19. 3-D Ultrasound Vascularity Assessment for Breast Cancer Diagnosis

    DTIC Science & Technology

    2000-09-01

    in the lower inner quadrant. One of the in vivo match, under the current mapping transformation, a volumes is displayed in Fig. 14, together with a... inner and outer boundary, rjo and rgo, Correlation coefficients between the registered scans and were defined as in Fig. 5. The difference between r9o...with inner and outer boundaries of the spheres drawn in white. the 0Q scan. The SNR was computed in the same blocks The registration errors for these

  20. In Vivo Validation of a 3-D Ultrasound System for Imaging the Lateral Ventricles of Neonates.

    PubMed

    Kishimoto, Jessica; Fenster, Aaron; Lee, David S C; de Ribaupierre, Sandrine

    2016-04-01

    Intra-ventricular hemorrhage, with the resultant cerebral ventricle dilation, is a common cause of brain injury in preterm neonates. Clinically, monitoring is performed using 2-D ultrasound (US); however, its clinical utility in dilation is limited because it cannot provide accurate measurements of irregular volumes such as those of the ventricles, and this might delay treatment until the patient's condition deteriorates severely. We have developed a 3-D US system to image the lateral ventricles of neonates within the confines of incubators. We describe an in vivo ventricle volume validation study in two parts: (i) comparisons between ventricle volumes derived from 3-D US and magnetic resonance images obtained within 24 h; and (ii) the difference between 3-D US ventricle volumes before and after clinically necessary interventions (ventricle taps), which remove cerebral spinal fluid. Magnetic resonance imaging ventricle volumes were found to be 13% greater than 3-D US ventricle volumes; however, we observed high correlations (R(2) = 0.99) when comparing the two modalities. Differences in ventricle volume pre- and post-intervention compared with the reported volume of cerebrospinal fluid removed also were highly correlated (R(2) = 0.93); the slope was not found to be statistically significantly different from 1 (p < 0.05), and the y-intercept was not found to be statistically different from 0 (p < 0.05). Comparison between 3-D US images can detect the volume change after neonatal intra-ventricular hemorrhage. This could be used to determine which patients will have progressive ventricle dilation and allow for more timely surgical interventions. However, 3-D US ventricle volumes should not be directly compared with magnetic resonance imaging ventricle volumes.

  1. Evaluation of Gastric Volumes: Comparison of 3-D Ultrasound and Magnetic Resonance Imaging.

    PubMed

    Buisman, Wijnand J; Mauritz, Femke A; Westerhuis, Wouter E; Gilja, Odd Helge; van der Zee, David C; van Herwaarden-Lindeboom, Maud Y A

    2016-07-01

    To investigate gastric accommodation, accurate measurements of gastric volumes are necessary. An excellent technique to measure gastric volumes is dynamic magnetic resonance imaging (MRI). Unfortunately, dynamic MRI is expensive and not always available. A new 3-D ultrasound (US) method using a matrix transducer was developed to measure gastric volumes. In this prospective study, 14 healthy volunteers underwent a dynamic MRI and a 3-D US. Gastric volumes were calculated with intra-gastric liquid content and total gastric volume. Mean postprandial liquid gastric content was 397 ± 96.5 mL. Mean volume difference was 1.0 mL with limits of agreement of -8.9 to 10.9 mL. When gastric air was taken into account, mean total gastric volume was 540 ± 115.4 mL SD. Mean volume difference was 2.3 mL with limits of agreement of -21.1 to 26.4 mL. The matrix 3-D US showed excellent agreement with dynamic MRI. Therefore matrix 3-D US is a reliable alternative to measure gastric volumes.

  2. A 3D printed nano bone matrix for characterization of breast cancer cell and osteoblast interactions

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Castro, Nathan J.; Cui, Haitao; Zhou, Xuan; Boualam, Benchaa; McGrane, Robert; Glazer, Robert I.; Zhang, Lijie Grace

    2016-08-01

    Bone metastasis is one of the most prevalent complications of late-stage breast cancer, in which the native bone matrix components, including osteoblasts, are intimately involved in tumor progression. The development of a successful in vitro model would greatly facilitate understanding the underlying mechanism of breast cancer bone invasion as well as provide a tool for effective discovery of novel therapeutic strategies. In the current study, we fabricated a series of in vitro bone matrices composed of a polyethylene glycol hydrogel and nanocrystalline hydroxyapatite of varying concentrations to mimic the native bone microenvironment for the investigation of breast cancer bone metastasis. A stereolithography-based three-dimensional (3D) printer was used to fabricate the bone matrices with precisely controlled architecture. The interaction between breast cancer cells and osteoblasts was investigated in the optimized bone matrix. Using a Transwell® system to separate the two cell lines, breast cancer cells inhibited osteoblast proliferation, while osteoblasts stimulated breast cancer cell growth, whereas, both cell lines increased IL-8 secretion. Breast cancer cells co-cultured with osteoblasts within the 3D bone matrix formed multi-cellular spheroids in comparison to two-dimensional monolayers. These findings validate the use of our 3D printed bone matrices as an in vitro metastasis model, and highlights their potential for investigating breast cancer bone metastasis.

  3. Treatment envelope evaluation in transcranial magnetic resonance-guided focused ultrasound utilizing 3D MR thermometry

    PubMed Central

    2014-01-01

    Background Current clinical targets for transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS) are all located close to the geometric center of the skull convexity, which minimizes challenges related to focusing the ultrasound through the skull bone. Non-central targets will have to be reached to treat a wider variety of neurological disorders and solid tumors. Treatment envelope studies utilizing two-dimensional (2D) magnetic resonance (MR) thermometry have previously been performed to determine the regions in which therapeutic levels of FUS can currently be delivered. Since 2D MR thermometry was used, very limited information about unintended heating in near-field tissue/bone interfaces could be deduced. Methods In this paper, we present a proof-of-concept treatment envelope study with three-dimensional (3D) MR thermometry monitoring of FUS heatings performed in a phantom and a lamb model. While the moderate-sized transducer used was not designed for transcranial geometries, the 3D temperature maps enable monitoring of the entire sonication field of view, including both the focal spot and near-field tissue/bone interfaces, for full characterization of all heating that may occur. 3D MR thermometry is achieved by a combination of k-space subsampling and a previously described temporally constrained reconstruction method. Results We present two different types of treatment envelopes. The first is based only on the focal spot heating—the type that can be derived from 2D MR thermometry. The second type is based on the relative near-field heating and is calculated as the ratio between the focal spot heating and the near-field heating. This utilizes the full 3D MR thermometry data achieved in this study. Conclusions It is shown that 3D MR thermometry can be used to improve the safety assessment in treatment envelope evaluations. Using a non-optimal transducer, it is shown that some regions where therapeutic levels of FUS can be delivered, as suggested by

  4. Accuracy Evaluation of a 3D Ultrasound-guided Biopsy System.

    PubMed

    Wooten, Walter J; Nye, Jonathan A; Schuster, David M; Nieh, Peter T; Master, Viraj A; Votaw, John R; Fei, Baowei

    2013-03-14

    Early detection of prostate cancer is critical in maximizing the probability of successful treatment. Current systematic biopsy approach takes 12 or more randomly distributed core tissue samples within the prostate and can have a high potential, especially with early disease, for a false negative diagnosis. The purpose of this study is to determine the accuracy of a 3D ultrasound-guided biopsy system. Testing was conducted on prostate phantoms created from an agar mixture which had embedded markers. The phantoms were scanned and the 3D ultrasound system was used to direct the biopsy. Each phantom was analyzed with a CT scan to obtain needle deflection measurements. The deflection experienced throughout the biopsy process was dependent on the depth of the biopsy target. The results for markers at a depth of less than 20 mm, 20-30 mm, and greater than 30 mm were 3.3 mm, 4.7 mm, and 6.2 mm, respectively. This measurement encapsulates the entire biopsy process, from the scanning of the phantom to the firing of the biopsy needle. Increased depth of the biopsy target caused a greater deflection from the intended path in most cases which was due to an angular incidence of the biopsy needle. Although some deflection was present, this system exhibits a clear advantage in the targeted biopsy of prostate cancer and has the potential to reduce the number of false negative biopsies for large lesions.

  5. Accuracy evaluation of a 3D ultrasound-guided biopsy system

    NASA Astrophysics Data System (ADS)

    Wooten, Walter J.; Nye, Jonathan A.; Schuster, David M.; Nieh, Peter T.; Master, Viraj A.; Votaw, John R.; Fei, Baowei

    2013-03-01

    Early detection of prostate cancer is critical in maximizing the probability of successful treatment. Current systematic biopsy approach takes 12 or more randomly distributed core tissue samples within the prostate and can have a high potential, especially with early disease, for a false negative diagnosis. The purpose of this study is to determine the accuracy of a 3D ultrasound-guided biopsy system. Testing was conducted on prostate phantoms created from an agar mixture which had embedded markers. The phantoms were scanned and the 3D ultrasound system was used to direct the biopsy. Each phantom was analyzed with a CT scan to obtain needle deflection measurements. The deflection experienced throughout the biopsy process was dependent on the depth of the biopsy target. The results for markers at a depth of less than 20 mm, 20-30 mm, and greater than 30 mm were 3.3 mm, 4.7 mm, and 6.2 mm, respectively. This measurement encapsulates the entire biopsy process, from the scanning of the phantom to the firing of the biopsy needle. Increased depth of the biopsy target caused a greater deflection from the intended path in most cases which was due to an angular incidence of the biopsy needle. Although some deflection was present, this system exhibits a clear advantage in the targeted biopsy of prostate cancer and has the potential to reduce the number of false negative biopsies for large lesions.

  6. Segmentation of Skin Tumors in High-Frequency 3-D Ultrasound Images.

    PubMed

    Sciolla, Bruno; Cowell, Lester; Dambry, Thibaut; Guibert, Benoît; Delachartre, Philippe

    2017-01-01

    High-frequency 3-D ultrasound imaging is an informative tool for diagnosis, surgery planning and skin lesion examination. The purpose of this article was to describe a semi-automated segmentation tool providing easy access to the extent, shape and volume of a lesion. We propose an adaptive log-likelihood level-set segmentation procedure using non-parametric estimates of the intensity distribution. The algorithm has a single parameter to control the smoothness of the contour, and we describe how a fixed value yields satisfactory segmentation results with an average Dice coefficient of D = 0.76. The algorithm is implemented on a grid, which increases the speed by a factor of 100 compared with a standard pixelwise segmentation. We compare the method with parametric methods making the hypothesis of Rayleigh or Nakagami distributed signals, and illustrate that our method has greater robustness with similar computational speed. Benchmarks are made on realistic synthetic ultrasound images and a data set of nine clinical 3-D images acquired with a 50-MHz imaging system. The proposed algorithm is suitable for use in a clinical context as a post-processing tool.

  7. Real-time 3D surface-image-guided beam setup in radiotherapy of breast cancer

    SciTech Connect

    Djajaputra, David; Li Shidong

    2005-01-01

    We describe an approach for external beam radiotherapy of breast cancer that utilizes the three-dimensional (3D) surface information of the breast. The surface data of the breast are obtained from a 3D optical camera that is rigidly mounted on the ceiling of the treatment vault. This 3D camera utilizes light in the visible range therefore it introduces no ionization radiation to the patient. In addition to the surface topographical information of the treated area, the camera also captures gray-scale information that is overlaid on the 3D surface image. This allows us to visualize the skin markers and automatically determine the isocenter position and the beam angles in the breast tangential fields. The field sizes and shapes of the tangential, supraclavicular, and internal mammary gland fields can all be determined according to the 3D surface image of the target. A least-squares method is first introduced for the tangential-field setup that is useful for compensation of the target shape changes. The entire process of capturing the 3D surface data and subsequent calculation of beam parameters typically requires less than 1 min. Our tests on phantom experiments and patient images have achieved the accuracy of 1 mm in shift and 0.5 deg. in rotation. Importantly, the target shape and position changes in each treatment session can both be corrected through this real-time image-guided system.

  8. Design and test of a PC-based portable three-dimensional ultrasound software system Ultra3D.

    PubMed

    Xu, X George; Hum Na, Yong; Zhang, Tiantian

    2008-02-01

    Currently, portable ultrasound units lack three-dimensional (3D) image display, limiting their potential usefulness especially under remote and hostile operating environments where information must be intuitive and objective. A freehand 3D image processing and visualization software package, Ultra3D, has been developed and tested, especially to work with a miniaturized linear-array transducer probe that is connected to a laptop PC. This paper presents the software design and method to integrate Ultra3D into Terason's miniaturized SmartProbe for freehand 3D ultrasound imaging. Since images generated by Ultra3D are in a digital imaging and communications in medicine (DICOM) format, data sharing with others is easy.

  9. An object-oriented simulator for 3D digital breast tomosynthesis imaging system.

    PubMed

    Seyyedi, Saeed; Cengiz, Kubra; Kamasak, Mustafa; Yildirim, Isa

    2013-01-01

    Digital breast tomosynthesis (DBT) is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART) were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT) imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI) helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART) and total variation regularized reconstruction techniques (ART+TV) are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM) values.

  10. Experimental Evaluation of Ultrasound-Guided 3D Needle Steering in Biological Tissue

    PubMed Central

    Abayazid, Momen; Vrooijink, Gustaaf J.; Patil, Sachin; Alterovitz, Ron; Misra, Sarthak

    2014-01-01

    Purpose In this paper, we present a system capable of automatically steering bevel-tip flexible needles under ultrasound guidance towards stationary and moving targets in gelatin phantoms and biological tissue while avoiding stationary and moving obstacles. We use three-dimensional (3D) ultrasound to track the needle tip during the procedure. Methods Our system uses a fast sampling-based path planner to compute and periodically update a feasible path to the target that avoids obstacles. We then use a novel control algorithm to steer the needle along the path in a manner that reduces the number of needle rotations, thus reducing tissue damage. We present experimental results for needle insertion procedures for both stationary and moving targets and obstacles for up to 90 mm of needle insertion. Results We obtained a mean targeting error of 0.32 ± 0.10 mm and 0.38 ± 0.19 mm in gelatin-based phantom and biological tissue, respectively. Conclusions The achieved submillimeter accuracy suggests that our approach is sufficient to target the smallest lesions (ϕ2 mm) that can be detected using state-of-the-art ultrasound imaging systems. PMID:24562744

  11. Craniosynostosis: prenatal diagnosis by 2D/3D ultrasound, magnetic resonance imaging and computed tomography.

    PubMed

    Helfer, Talita Micheletti; Peixoto, Alberto Borges; Tonni, Gabriele; Araujo Júnior, Edward

    2016-09-01

    Craniosynostosis is defined as the process of premature fusion of one or more of the cranial sutures. It is a common condition that occurs in about 1 to 2,000 live births. Craniosynostosis may be classified in primary or secondary. It is also classified as nonsyndromic or syndromic. According to suture commitment, craniosynostosis may affect a single suture or multiple sutures. There is a wide range of syndromes involving craniosynostosis and the most common are Apert, Pffeifer, Crouzon, Shaethre-Chotzen and Muenke syndromes. The underlying etiology of nonsyndromic craniosynostosis is unknown. Mutations in the fibroblast growth factor (FGF) signalling pathway play a crucial role in the etiology of craniosynostosis syndromes. Prenatal ultrasound`s detection rate of craniosynostosis is low. Nowadays, different methods can be applied for prenatal diagnosis of craniosynostosis, such as two-dimensional (2D) and three-dimensional (3D) ultrasound, magnetic resonance imaging (MRI), computed tomography (CT) scan and, finally, molecular diagnosis. The presence of craniosynostosis may affect the birthing process. Fetuses with craniosynostosis also have higher rates of perinatal complications. In order to avoid the risks of untreated craniosynostosis, children are usually treated surgically soon after postnatal diagnosis.

  12. Thermal analysis of the surrounding anatomy during 3-D MRI-guided transurethral ultrasound prostate therapy

    NASA Astrophysics Data System (ADS)

    Burtnyk, Mathieu; Chopra, Rajiv; Bronskill, Michael

    2010-03-01

    Previous numerical simulations have shown that MRI-guided transurethral ultrasound therapy can generate highly accurate volumes of thermal coagulation conforming to 3-D human prostate geometries. The goal of this work is to simulate, quantify and evaluate the thermal impact of these treatments on the rectum, pelvic bone, neurovascular bundles (NVB) and urinary sphincters. This study used twenty 3-D anatomical models of prostate cancer patients and detailed bio-acoustic simulations incorporating an active feedback algorithm which controlled a rotating, planar ultrasound transducer (17-4×3 mm elements, 4.7/9.7 MHz, 10 Wac/cm2). Heating of the adjacent surrounding anatomy was evaluated using thermal tolerances reported in the literature. Heating of the rectum poses the most important safety concern and is influenced largely by the water temperature flowing through an endorectal cooling device; temperatures of 7-37° C are required to limit potential damage to less than 10 mm3 on the outer 1 mm layer of rectum. Significant heating of the pelvic bone was predicted in 30% of the patient models with an ultrasound frequency of 4.7 MHz; setting the frequency to 9.7 MHz when the bone is less than 10 mm away from the prostate reduced heating in all cases below the threshold for irreversible damage. Heating of the NVB was significant in 75% of the patient models in the absence of treatment planning; this proportion was reduced to 5% by using treatment margins of up to 4 mm. To avoid damaging the urinary sphincters, margins from the transducer of 2-4 mm should be used, depending on the transurethral cooling temperature. Simulations show that MRI-guided transurethral therapy can treat the entire prostate accurately. Strategies have been developed which, along with careful treatment planning, can be used to avoid causing thermal injury to the rectum, pelvic bone, NVB and urinary sphincters.

  13. Fast myocardial strain estimation from 3D ultrasound through elastic image registration with analytic regularization

    NASA Astrophysics Data System (ADS)

    Chakraborty, Bidisha; Heyde, Brecht; Alessandrini, Martino; D'hooge, Jan

    2016-04-01

    Image registration techniques using free-form deformation models have shown promising results for 3D myocardial strain estimation from ultrasound. However, the use of this technique has mostly been limited to research institutes due to the high computational demand, which is primarily due to the computational load of the regularization term ensuring spatially smooth cardiac strain estimates. Indeed, this term typically requires evaluating derivatives of the transformation field numerically in each voxel of the image during every iteration of the optimization process. In this paper, we replace this time-consuming step with a closed-form solution directly associated with the transformation field resulting in a speed up factor of ~10-60,000, for a typical 3D B-mode image of 2503 and 5003 voxels, depending upon the size and the parametrization of the transformation field. The performance of the numeric and the analytic solutions was contrasted by computing tracking and strain accuracy on two realistic synthetic 3D cardiac ultrasound sequences, mimicking two ischemic motion patterns. Mean and standard deviation of the displacement errors over the cardiac cycle for the numeric and analytic solutions were 0.68+/-0.40 mm and 0.75+/-0.43 mm respectively. Correlations for the radial, longitudinal and circumferential strain components at end-systole were 0.89, 0.83 and 0.95 versus 0.90, 0.88 and 0.92 for the numeric and analytic regularization respectively. The analytic solution matched the performance of the numeric solution as no statistically significant differences (p>0.05) were found when expressed in terms of bias or limits-of-agreement.

  14. Realistic microwave breast models through T1-weighted 3-D MRI data.

    PubMed

    Tunçay, Ahmet Hakan; Akduman, Ibrahim

    2015-02-01

    In this paper we present an effective method for developing realistic numerical three-dimensional (3-D) microwave breast models of different shape, size, and tissue density. These models are especially convenient for microwave breast cancer imaging applications and numerical analysis of human breast-microwave interactions. As in the recent studies on this area, anatomical information of the breast tissue is collected from T1-weighted 3-D MRI data of different patients' in prone position. The method presented in this paper offers significant improvements including efficient noise reduction and tissue segmentation, nonlinear mapping of electromagnetic properties, realistically asymmetric phantom shape, and a realistic classification of breast phantoms. Our method contains a five-step approach where each MRI voxel is classified and mapped to the appropriate dielectric properties. In the first step, the MRI data are denoised by estimating and removing the bias field from each slice, after which the voxels are segmented into two main tissues as fibro-glandular and adipose. Using the distribution of the voxel intensities in MRI histogram, two nonlinear mapping functions are generated for dielectric permittivity and conductivity profiles, which allow each MRI voxel to map to its proper dielectric properties. Obtained dielectric profiles are then converted into 3-D numerical breast phantoms using several image processing techniques, including morphologic operations, filtering. Resultant phantoms are classified according to their adipose content, which is a critical parameter that affects penetration depth during microwave breast imaging.

  15. Early detection of liver fibrosis in rats using 3-D ultrasound Nakagami imaging: a feasibility evaluation.

    PubMed

    Ho, Ming-Chih; Tsui, Po-Hsiang; Lee, Yu-Hsin; Chen, Yung-Sheng; Chen, Chiung-Nien; Lin, Jen-Jen; Chang, Chien-Cheng

    2014-09-01

    We investigated the feasibility of using 3-D ultrasound Nakagami imaging to detect the early stages of liver fibrosis in rats. Fibrosis was induced in livers of rats (n = 60) by intraperitoneal injection of 0.5% dimethylnitrosamine (DMN). Group 1 was the control group, and rats in groups 2-6 received DMN injections for 1-5 weeks, respectively. Each rat was sacrificed to perform 3-D ultrasound scanning of the liver in vitro using a single-element transducer of 6.5 MHz. The 3-D raw data acquired at a sampling rate of 50 MHz were used to construct 3-D Nakagami images. The liver specimen was further used for histologic analysis with hematoxylin and eosin and Masson staining to score the degree of liver fibrosis. The results indicate that the Metavir scores of the hematoxylin and eosin-stained sections in Groups 1-4 were 0 (defined as early liver fibrosis in this study), and those in groups 5 and 6 ranged from 1 to 2 and 2 to 3, respectively. To quantify the degree of early liver fibrosis, the histologic sections with Masson stain were analyzed to calculate the number of fiber-related blue pixels. The number of blue pixels increased from (2.36 ± 0.79) × 10(4) (group 1) to (7.68 ± 2.62) × 10(4) (group 4) after DMN injections for 3 weeks, indicating that early stages of liver fibrosis were successfully induced in rats. The Nakagami parameter increased from 0.36 ± 0.02 (group 1) to 0.55 ± 0.03 (group 4), with increasing numbers of blue pixels in the Masson-stained sections (p-value < 0.05, t-test). We concluded that 3-D Nakagami imaging has potential in the early detection of liver fibrosis in rats and may serve as an image-based pathologic model to visually track fibrosis formation and growth.

  16. 3D endobronchial ultrasound reconstruction and analysis for multimodal image-guided bronchoscopy

    NASA Astrophysics Data System (ADS)

    Zang, Xiaonan; Bascom, Rebecca; Gilbert, Christopher R.; Toth, Jennifer W.; Higgins, William E.

    2014-03-01

    State-of-the-art image-guided intervention (IGI) systems for lung-cancer management draw upon high-resolution three-dimensional multi-detector computed-tomography (MDCT) images and bronchoscopic video. An MDCT scan provides a high-resolution three-dimensional (3D) image of the chest that is used for preoperative procedure planning, while bronchoscopy gives live intraoperative video of the endobronchial airway tree structure. However, because neither source provides live extraluminal information on suspect nodules or lymph nodes, endobronchial ultrasound (EBUS) is often introduced during a procedure. Unfortunately, existing IGI systems provide no direct synergistic linkage between the MDCT/video data and EBUS data. Hence, EBUS proves difficult to use and can lead to inaccurate interpretations. To address this drawback, we present a prototype of a multimodal IGI system that brings together the various image sources. The system enables 3D reconstruction and visualization of structures depicted in the 2D EBUS video stream. It also provides a set of graphical tools that link the EBUS data directly to the 3D MDCT and bronchoscopic video. Results using phantom and human data indicate that the new system could potentially enable smooth natural incorporation of EBUS into the system-level work flow of bronchoscopy.

  17. A new combined prior based reconstruction method for compressed sensing in 3D ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Uddin, Muhammad S.; Islam, Rafiqul; Tahtali, Murat; Lambert, Andrew J.; Pickering, Mark R.

    2015-03-01

    Ultrasound (US) imaging is one of the most popular medical imaging modalities, with 3D US imaging gaining popularity recently due to its considerable advantages over 2D US imaging. However, as it is limited by long acquisition times and the huge amount of data processing it requires, methods for reducing these factors have attracted considerable research interest. Compressed sensing (CS) is one of the best candidates for accelerating the acquisition rate and reducing the data processing time without degrading image quality. However, CS is prone to introduce noise-like artefacts due to random under-sampling. To address this issue, we propose a combined prior-based reconstruction method for 3D US imaging. A Laplacian mixture model (LMM) constraint in the wavelet domain is combined with a total variation (TV) constraint to create a new regularization regularization prior. An experimental evaluation conducted to validate our method using synthetic 3D US images shows that it performs better than other approaches in terms of both qualitative and quantitative measures.

  18. The Effect of Ultrasound Stimulation on the Cytoskeletal Organization of Chondrocytes Seeded In 3D Matrices

    PubMed Central

    Noriega, Sandra; Hasanova, Gulnara; Subramanian, Anuradha

    2013-01-01

    The impact of low intensity diffuse ultrasound (LIDUS) stimulation on the cytoskeletal organization of chondrocytes seeded in 3D scaffolds was evaluated. Chondrocytes seeded on 3D chitosan matrices were exposed to LIDUS at 5.0 MHz (~15kPa, 51-secs, 4-applications/day) in order to study the organization of actin, tubulin and vimentin. The results showed that actin presented a cytosolic punctuated distribution, tubulin presented a quasi parallel organization of microtubules whereas vimentin distribution was unaffected. Chondrocytes seeded on 3D scaffolds responded to US stimulation by the disruption of actin stress fibers and were sensitive to the presence of ROCK inhibitor (Y27632). The gene expression of ROCK-I, a key element in the formation of stress fibers and mDia1, was significantly up-regulated under the application of US. We conclude that the results of both the cytoskeletal analyses and gene expression support the argument that the presence of punctuated actin upon US stimulation was accompanied by the up-regulation of the RhoA/ROCK pathway. PMID:22987069

  19. Intracranial Catheter for Integrated 3D Ultrasound Imaging & Hyperthermia: Feasibility Study

    NASA Astrophysics Data System (ADS)

    Herickhoff, Carl D.; Light, Edward D.; Bing, Kristin Frinkley; Mukundan, Srinivasan; Grant, Gerald A.; Wolf, Patrick D.; Dixon-Tulloch, Ellen; Shih, Timothy; Hsu, Stephen J.; Smith, Stephen W.

    2009-04-01

    In this study, we investigated the feasibility of an intracranial catheter transducer capable of real-time 3D (RT3D) imaging and ultrasound hyperthermia, for application in the visualization and treatment of tumors in the brain. We designed and constructed a 12 Fr, integrated matrix and linear array catheter transducer prototype for combined RT3D imaging and heating capability. This dual-mode catheter incorporated 153 matrix array elements and 11 linear array elements, on a 0.2 mm pitch, with a total aperture size of 8.4 mm×2.3 mm. This array achieved a 3.5° C in vitro temperature rise at a 2 cm focal distance in tissue-mimicking material. The dual-mode catheter prototype was compared with a Siemens 10 Fr AcuNav™ catheter as a gold standard in experiments assessing image quality and therapeutic potential, and both probes were used in a canine brain model to image anatomical structures and color Doppler blood flow and to attempt in vivo heating.

  20. Spatiotemporal non-rigid image registration for 3D ultrasound cardiac motion estimation

    NASA Astrophysics Data System (ADS)

    Loeckx, D.; Ector, J.; Maes, F.; D'hooge, J.; Vandermeulen, D.; Voigt, J.-U.; Heidbüchel, H.; Suetens, P.

    2007-03-01

    We present a new method to evaluate 4D (3D + time) cardiac ultrasound data sets by nonrigid spatio-temporal image registration. First, a frame-to-frame registration is performed that yields a dense deformation field. The deformation field is used to calculate local spatiotemporal properties of the myocardium, such as the velocity, strain and strain rate. The field is also used to propagate particular points and surfaces, representing e.g. the endo-cardial surface over the different frames. As such, the 4D path of these point is obtained, which can be used to calculate the velocity by which the wall moves and the evolution of the local surface area over time. The wall velocity is not angle-dependent as in classical Doppler imaging, since the 4D data allows calculating the true 3D motion. Similarly, all 3D myocardium strain components can be estimated. Combined they result in local surface area or volume changes which van be color-coded as a measure of local contractability. A diagnostic method that strongly benefits from this technique is cardiac motion and deformation analysis, which is an important aid to quantify the mechanical properties of the myocardium.

  1. Defining the medial-lateral axis of an anatomical femur coordinate system using freehand 3D ultrasound imaging.

    PubMed

    Passmore, Elyse; Sangeux, Morgan

    2016-03-01

    Hip rotation from gait analysis informs clinical decisions regarding correction of femoral torsional deformities. However, it is among the least repeatable due to discrepancies in determining the medial-lateral axis of the femur. Conventional or functional calibration methods may be used to define the axis but there is no benchmark to evaluate these methods. Freehand 3D ultrasound, the coupling of ultrasound with 3D motion capture, may provide such a benchmark. We measured the accuracy in vitro and repeatability in vivo of determining the femur condylar axis from freehand 3D ultrasound. The condylar axis provided the reference medial-lateral axis of the femur and was used to evaluate one conventional method and three functional calibration methods, applied to three calibration movements. Ten healthy subjects (20 limbs) underwent 3D gait analysis and freehand 3D ultrasound. The functional calibration methods were a transformation technique, a geometrical method and a method that minimises variance of knee varus-valgus kinematics (DynaKAD). The conventional method used markers over the femoral epicondyles. The condylar axis determined by 3D ultrasound showed good accuracy in vitro, 1.6° (SD: 0.3°) and good repeatability in vivo, 0.2° (RSMD: 2.3°). The DynaKAD method applied to the walking calibration movement determined the medial-lateral axis closest to the ultrasound reference. The average angular difference in the transverse plane was 3.1° (SD: 6.1°). Freehand 3D ultrasound offers an accurate, non-invasive and relatively fast method to locate the medial-lateral axis of the femur for gait analysis.

  2. Segmentation of the common carotid artery with active shape models from 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Jin, Jiaoying; He, Wanji; Yuchi, Ming; Ding, Mingyue

    2012-03-01

    Carotid atherosclerosis is a major cause of stroke, a leading cause of death and disability. In this paper, we develop and evaluate a new segmentation method for outlining both lumen and adventitia (inner and outer walls) of common carotid artery (CCA) from three-dimensional ultrasound (3D US) images for carotid atherosclerosis diagnosis and evaluation. The data set consists of sixty-eight, 17× 2× 2, 3D US volume data acquired from the left and right carotid arteries of seventeen patients (eight treated with 80mg atorvastain and nine with placebo), who had carotid stenosis of 60% or more, at baseline and after three months of treatment. We investigate the use of Active Shape Models (ASMs) to segment CCA inner and outer walls after statin therapy. The proposed method was evaluated with respect to expert manually outlined boundaries as a surrogate for ground truth. For the lumen and adventitia segmentations, respectively, the algorithm yielded Dice Similarity Coefficient (DSC) of 93.6%+/- 2.6%, 91.8%+/- 3.5%, mean absolute distances (MAD) of 0.28+/- 0.17mm and 0.34 +/- 0.19mm, maximum absolute distances (MAXD) of 0.87 +/- 0.37mm and 0.74 +/- 0.49mm. The proposed algorithm took 4.4 +/- 0.6min to segment a single 3D US images, compared to 11.7+/-1.2min for manual segmentation. Therefore, the method would promote the translation of carotid 3D US to clinical care for the fast, safety and economical monitoring of the atherosclerotic disease progression and regression during therapy.

  3. Quantification of cerebral ventricle volume change of preterm neonates using 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Chen, Yimin; Kishimoto, Jessica; Qiu, Wu; de Ribaupierre, Sandrine; Fenster, Aaron; Chiu, Bernard

    2015-03-01

    Intraventricular hemorrhage (IVH) is a major cause of brain injury in preterm neonates. Quantitative measurement of ventricular dilation or shrinkage is important for monitoring patients and in evaluation of treatment options. 3D ultrasound (US) has been used to monitor the ventricle volume as a biomarker for ventricular dilation. However, volumetric quantification does not provide information as to where dilation occurs. The location where dilation occurs may be related to specific neurological problems later in life. For example, posterior horn enlargement, with thinning of the corpus callosum and parietal white matter fibres, could be linked to poor visuo-spatial abilities seen in hydrocephalic children. In this work, we report on the development and application of a method used to analyze local surface change of the ventricles of preterm neonates with IVH from 3D US images. The technique is evaluated using manual segmentations from 3D US images acquired in two imaging sessions. The surfaces from baseline and follow-up were registered and then matched on a point-by-point basis. The distance between each pair of corresponding points served as an estimate of local surface change of the brain ventricle at each vertex. The measurements of local surface change were then superimposed on the ventricle surface to produce the 3D local surface change map that provide information on the spatio-temporal dilation pattern of brain ventricles following IVH. This tool can be used to monitor responses to different treatment options, and may provide important information for elucidating the deficiencies a patient will have later in life.

  4. Mitral valve analysis using a novel 3D holographic display: a feasibility study of 3D ultrasound data converted to a holographic screen.

    PubMed

    Beitnes, Jan Otto; Klæboe, Lars Gunnar; Karlsen, Jørn Skaarud; Urheim, Stig

    2015-02-01

    The aim of the present study was to test the feasibility of analyzing 3D ultrasound data on a novel holographic display. An increasing number of mini-invasive procedures for mitral valve repair require more effective visualization to improve patient safety and speed of procedures. A novel 3D holographic display has been developed and may have the potential to guide interventional cardiac procedures in the near future. Forty patients with degenerative mitral valve disease were analyzed. All had complete 2D transthoracic (TTE) and transoesophageal (TEE) echocardiographic examinations. In addition, 3D TTE of the mitral valve was obtained and recordings were converted from the echo machine to the holographic screen. Visual inspection of the mitral valve during surgery or TEE served as the gold standard. 240 segments were analyzed by 2 independent observers. A total of 53 segments were prolapsing. The majority included P2 (31), the remaining located at A2 (8), A3 (6), P3 (5), P1 (2) and A1 (1). The sensitivity and specificity of the 3D display was 87 and 99 %, respectively (observer I), and for observer II 85 and 97 %, respectively. The accuracies and precisions were 96.7 and 97.9 %, respectively, (observer I), 94.3 and 88.2 % (observer II), and inter-observer agreement was 0.954 with Cohen's Kappa 0.86. We were able to convert 3D ultrasound data to the holographic display. A very high accuracy and precision was shown, demonstrating the feasibility of analyzing 3D echo of the mitral valve on the holographic screen.

  5. Grebe dysplasia - prenatal diagnosis based on rendered 3-D ultrasound images of fetal limbs.

    PubMed

    Goncalves, Luis F; Berger, Julie A; Macknis, Jacqueline K; Bauer, Samuel T; Bloom, David A

    2017-01-01

    Grebe dysplasia is a rare skeletal dysplasia characterized by severe acromesomelic shortening of the long bones in a proximal to distal gradient of severity, with bones of the hands and feet more severely affected than those of the forearms and legs, which in turn are more severely affected than the humeri and femora. In addition, the bones of the lower extremities tend to be more severely affected than the bones of the upper extremities. Despite the severe skeletal deformities, the condition is not lethal and surviving individuals can have normal intelligence. Herein we report a case of Grebe dysplasia diagnosed at 20 weeks of gestation. Rendered 3-D ultrasound images of the fetal limbs, particularly of the characteristic tiny and globular-looking fingers and toes, were instrumental in accurately characterizing the phenotype prenatally.

  6. Computerized Analysis of MR and Ultrasound Images of Breast Lesions

    DTIC Science & Technology

    2001-07-01

    Yearbook of Radiology) 3. Horsch K, Giger ML, Venta LA, Huo Z, Vyborny CJ; Computer-aided diagnosis of breast lesions on ultrasound. Proceedings...International Workshop on Digital Mammography. Toronto, Canada, June, 2000. 4. Horsch K, Giger ML, Venta LA, Vyborny CJ: Automatic segmentation of breast...lesions on ultrasound. Medical Physics (in press). 5. Horsch K, Giger ML, Venta LA, Vyborny CJ: Computerized diagnosis of breast lesions on ultrasound

  7. CISUS: an integrated 3D ultrasound system for IGT using a modular tracking API

    NASA Astrophysics Data System (ADS)

    Boctor, Emad M.; Viswanathan, Anand; Pieper, Steve; Choti, Michael A.; Taylor, Russell H.; Kikinis, Ron; Fichtinger, Gabor

    2004-05-01

    Ultrasound has become popular in clinical/surgical applications, both as the primary image guidance modality and also in conjunction with other modalities like CT or MRI. Three dimensional ultrasound (3DUS) systems have also demonstrated usefulness in image-guided therapy (IGT). At the same time, however, current lack of open-source and open-architecture multi-modal medical visualization systems prevents 3DUS from fulfilling its potential. Several stand-alone 3DUS systems, like Stradx or In-Vivo exist today. Although these systems have been found to be useful in real clinical setting, it is difficult to augment their functionality and integrate them in versatile IGT systems. To address these limitations, a robotic/freehand 3DUS open environment (CISUS) is being integrated into the 3D Slicer, an open-source research tool developed for medical image analysis and surgical planning. In addition, the system capitalizes on generic application programming interfaces (APIs) for tracking devices and robotic control. The resulting platform-independent open-source system may serve as a valuable tool to the image guided surgery community. Other researchers could straightforwardly integrate the generic CISUS system along with other functionalities (i.e. dual view visualization, registration, real-time tracking, segmentation, etc) to rapidly create their medical/surgical applications. Our current driving clinical application is robotically assisted and freehand 3DUS-guided liver ablation, which is fully being integrated under the CISUS-3D Slicer. Initial functionality and pre-clinical feasibility are demonstrated on phantom and ex-vivo animal models.

  8. Comparison of 3-D synthetic aperture phased-array ultrasound imaging and parallel beamforming.

    PubMed

    Rasmussen, Morten Fischer; Jensen, Jørgen Arendt

    2014-10-01

    This paper demonstrates that synthetic aperture imaging (SAI) can be used to achieve real-time 3-D ultrasound phased-array imaging. It investigates whether SAI increases the image quality compared with the parallel beamforming (PB) technique for real-time 3-D imaging. Data are obtained using both simulations and measurements with an ultrasound research scanner and a commercially available 3.5- MHz 1024-element 2-D transducer array. To limit the probe cable thickness, 256 active elements are used in transmit and receive for both techniques. The two imaging techniques were designed for cardiac imaging, which requires sequences designed for imaging down to 15 cm of depth and a frame rate of at least 20 Hz. The imaging quality of the two techniques is investigated through simulations as a function of depth and angle. SAI improved the full-width at half-maximum (FWHM) at low steering angles by 35%, and the 20-dB cystic resolution by up to 62%. The FWHM of the measured line spread function (LSF) at 80 mm depth showed a difference of 20% in favor of SAI. SAI reduced the cyst radius at 60 mm depth by 39% in measurements. SAI improved the contrast-to-noise ratio measured on anechoic cysts embedded in a tissue-mimicking material by 29% at 70 mm depth. The estimated penetration depth on the same tissue-mimicking phantom shows that SAI increased the penetration by 24% compared with PB. Neither SAI nor PB achieved the design goal of 15 cm penetration depth. This is likely due to the limited transducer surface area and a low SNR of the experimental scanner used.

  9. Portable and accurate 3D scanner for breast implant design and reconstructive plastic surgery

    NASA Astrophysics Data System (ADS)

    Rigotti, Camilla; Borghese, Nunzio A.; Ferrari, Stefano; Baroni, Guido; Ferrigno, Giancarlo

    1998-06-01

    In order to evaluate the proper breast implant, the surgeon relies on a standard set of measurements manually taken on the subject. This approach does not allow to obtain an accurate reconstruction of the breast shape and asymmetries can easily arise after surgery. The purpose of this work is to present a method which can help the surgeon in the choice of the shape and dimensions of a prosthesis allowing for a perfect symmetry between the prosthesis and the controlateral breast and can be used as a 3D visual feedback in plastic surgery.

  10. Nonlinear 3-D simulation of high-intensity focused ultrasound therapy in the Kidney.

    PubMed

    Suomi, Visa; Jaros, Jiri; Treeby, Bradley; Cleveland, Robin

    2016-08-01

    Kidney cancer is a severe disease which can be treated non-invasively using high-intensity focused ultrasound (HIFU) therapy. However, tissue in front of the transducer and the deep location of kidney can cause significant losses to the efficiency of the treatment. The effect of attenuation, refraction and reflection due to different tissue types on HIFU therapy of the kidney was studied using a nonlinear ultrasound simulation model. The geometry of the tissue was derived from a computed tomography (CT) dataset of a patient which had been segmented for water, bone, soft tissue, fat and kidney. The combined effect of inhomogeneous attenuation and soundspeed was found to result in an 11.0 dB drop in spatial peak-temporal average (SPTA) intensity in the kidney compared to pure water. The simulation without refraction effects showed a 6.3 dB decrease indicating that both attenuation and refraction contribute to the loss in focal intensity. The losses due to reflections at soft tissue interfaces were less than 0.1 dB. Focal point shifting due to refraction effects resulted in -1.3, 2.6 and 1.3 mm displacements in x-, y- and z-directions respectively. Furthermore, focal point splitting into several smaller subvolumes was observed. The total volume of the secondary focal points was approximately 46% of the largest primary focal point. This could potentially lead to undesired heating outside the target location and longer therapy times.

  11. Ultrasound and 3D Skin Imaging: Methods to Evaluate Efficacy of Striae Distensae Treatment.

    PubMed

    Bleve, Mariella; Capra, Priscilla; Pavanetto, Franca; Perugini, Paola

    2012-01-01

    Background. Over time, the striae rubra develop into striae alba that appear white, flat, and depressed. It is very important to determine the optimum striae management. In order to evaluate the effectiveness of these therapies, objective measurement tools are necessary. Objective. The aim of this study is to evaluate if ultrasonography and PRIMOS can be used to obtain an objective assessment of stretch marks type and stage; furthermore, we aim to apply these techniques to evaluate the efficacy of a topical treatment. Methods. 20 volunteers were enrolled with a two-month study. A marketed cosmetic product was used as the active over one body area. The controlateral area with stretch marks was treated with a "placebo" formulation without active, as a control. The instrumental evaluation was carried out at the beginning of the trial (baseline values or t(0)), after 1 month (t(1)), and at the end of the study (t(2)). Results. PRIMOS was able to measure and document striae distensae maturation; furthermore, ultrasound imaging permitted to visualize and diagnose the striae. Statistical analysis of skin roughness demonstrated a statistically significant reduction of Rp value only in a treated group. In fact, the Rp value represented a maximum peak height in the area selected. These results demonstrated that after two months of treatment only the striae rubra can be treated successfully. Conclusions. This work demonstrated that the 22MHz ultrasound can diagnose stretch marks; PRIMOS device can detect and measure striae distensae type and maturation. Furthermore, the high-frequency ultrasound and the 3D image device, described in this work, can be successfully employed in order to evaluate the efficacy of a topical treatment.

  12. Ultrasound and 3D Skin Imaging: Methods to Evaluate Efficacy of Striae Distensae Treatment

    PubMed Central

    Bleve, Mariella; Capra, Priscilla; Pavanetto, Franca; Perugini, Paola

    2012-01-01

    Background. Over time, the striae rubra develop into striae alba that appear white, flat, and depressed. It is very important to determine the optimum striae management. In order to evaluate the effectiveness of these therapies, objective measurement tools are necessary. Objective. The aim of this study is to evaluate if ultrasonography and PRIMOS can be used to obtain an objective assessment of stretch marks type and stage; furthermore, we aim to apply these techniques to evaluate the efficacy of a topical treatment. Methods. 20 volunteers were enrolled with a two-month study. A marketed cosmetic product was used as the active over one body area. The controlateral area with stretch marks was treated with a “placebo” formulation without active, as a control. The instrumental evaluation was carried out at the beginning of the trial (baseline values or t0), after 1 month (t1), and at the end of the study (t2). Results. PRIMOS was able to measure and document striae distensae maturation; furthermore, ultrasound imaging permitted to visualize and diagnose the striae. Statistical analysis of skin roughness demonstrated a statistically significant reduction of Rp value only in a treated group. In fact, the Rp value represented a maximum peak height in the area selected. These results demonstrated that after two months of treatment only the striae rubra can be treated successfully. Conclusions. This work demonstrated that the 22MHz ultrasound can diagnose stretch marks; PRIMOS device can detect and measure striae distensae type and maturation. Furthermore, the high-frequency ultrasound and the 3D image device, described in this work, can be successfully employed in order to evaluate the efficacy of a topical treatment. PMID:22203840

  13. Evaluation of an improved algorithm for producing realistic 3D breast software phantoms: Application for mammography

    PubMed Central

    Bliznakova, K.; Suryanarayanan, S.; Karellas, A.; Pallikarakis, N.

    2010-01-01

    Purpose: This work presents an improved algorithm for the generation of 3D breast software phantoms and its evaluation for mammography. Methods: The improved methodology has evolved from a previously presented 3D noncompressed breast modeling method used for the creation of breast models of different size, shape, and composition. The breast phantom is composed of breast surface, duct system and terminal ductal lobular units, Cooper’s ligaments, lymphatic and blood vessel systems, pectoral muscle, skin, 3D mammographic background texture, and breast abnormalities. The key improvement is the development of a new algorithm for 3D mammographic texture generation. Simulated images of the enhanced 3D breast model without lesions were produced by simulating mammographic image acquisition and were evaluated subjectively and quantitatively. For evaluation purposes, a database with regions of interest taken from simulated and real mammograms was created. Four experienced radiologists participated in a visual subjective evaluation trial, as they judged the quality of the simulated mammograms, using the new algorithm compared to mammograms, obtained with the old modeling approach. In addition, extensive quantitative evaluation included power spectral analysis and calculation of fractal dimension, skewness, and kurtosis of simulated and real mammograms from the database. Results: The results from the subjective evaluation strongly suggest that the new methodology for mammographic breast texture creates improved breast models compared to the old approach. Calculated parameters on simulated images such as β exponent deducted from the power law spectral analysis and fractal dimension are similar to those calculated on real mammograms. The results for the kurtosis and skewness are also in good coincidence with those calculated from clinical images. Comparison with similar calculations published in the literature showed good agreement in the majority of cases. Conclusions: The

  14. Evaluation of an improved algorithm for producing realistic 3D breast software phantoms: Application for mammography

    SciTech Connect

    Bliznakova, K.; Suryanarayanan, S.; Karellas, A.; Pallikarakis, N.

    2010-11-15

    Purpose: This work presents an improved algorithm for the generation of 3D breast software phantoms and its evaluation for mammography. Methods: The improved methodology has evolved from a previously presented 3D noncompressed breast modeling method used for the creation of breast models of different size, shape, and composition. The breast phantom is composed of breast surface, duct system and terminal ductal lobular units, Cooper's ligaments, lymphatic and blood vessel systems, pectoral muscle, skin, 3D mammographic background texture, and breast abnormalities. The key improvement is the development of a new algorithm for 3D mammographic texture generation. Simulated images of the enhanced 3D breast model without lesions were produced by simulating mammographic image acquisition and were evaluated subjectively and quantitatively. For evaluation purposes, a database with regions of interest taken from simulated and real mammograms was created. Four experienced radiologists participated in a visual subjective evaluation trial, as they judged the quality of the simulated mammograms, using the new algorithm compared to mammograms, obtained with the old modeling approach. In addition, extensive quantitative evaluation included power spectral analysis and calculation of fractal dimension, skewness, and kurtosis of simulated and real mammograms from the database. Results: The results from the subjective evaluation strongly suggest that the new methodology for mammographic breast texture creates improved breast models compared to the old approach. Calculated parameters on simulated images such as {beta} exponent deducted from the power law spectral analysis and fractal dimension are similar to those calculated on real mammograms. The results for the kurtosis and skewness are also in good coincidence with those calculated from clinical images. Comparison with similar calculations published in the literature showed good agreement in the majority of cases. Conclusions: The

  15. 2D versus 3D cross-correlation-based radial and circumferential strain estimation using multiplane 2D ultrafast ultrasound in a 3D atherosclerotic carotid artery model.

    PubMed

    Fekkes, Stein; Swillens, Abigail E S; Hansen, Hendrik H G; Saris, Anne E C M; Nillesen, Maartje M; Iannaccone, Francesco; Segers, Patrick; de Korte, Chris L

    2016-08-25

    Three-dimensional strain estimation might improve the detection and localization of high strain regions in the carotid artery for identification of vulnerable plaques. This study compares 2D vs. 3D displacement estimation in terms of radial and circumferential strain using simulated ultrasound images of a patient specific 3D atherosclerotic carotid artery model at the bifurcation embedded in surrounding tissue generated with ABAQUS software. Global longitudinal motion was superimposed to the model based on literature data. A Philips L11-3 linear array transducer was simulated which transmitted plane waves at 3 alternating angles at a pulse repetition rate of 10 kHz. Inter-frame radiofrequency ultrasound data were simulated in Field II for 191 equally spaced longitudinal positions of the internal carotid artery. Accumulated radial and circumferential displacements were estimated using tracking of the inter-frame displacements estimated by a two-step normalized cross-correlation method and displacement compounding. Least squares strain estimation was performed to determine accumulated radial and circumferential strain. The performance of the 2D and 3D method was compared by calculating the root-mean-squared error of the estimated strains with respect to the reference strains obtained from the model. More accurate strain images were obtained using the 3D displacement estimation for the entire cardiac cycle. The 3D technique clearly outperformed the 2D technique in phases with high inter-frame longitudinal motion. In fact the large inter-frame longitudinal motion rendered it impossible to accurately track the tissue and cumulate strains over the entire cardiac cycle with the 2D technique.

  16. Automated kidney detection for 3D ultrasound using scan line searching

    NASA Astrophysics Data System (ADS)

    Noll, Matthias; Nadolny, Anne; Wesarg, Stefan

    2016-04-01

    Ultrasound (U/S) is a fast and non-expensive imaging modality that is used for the examination of various anatomical structures, e.g. the kidneys. One important task for automatic organ tracking or computer-aided diagnosis is the identification of the organ region. During this process the exact information about the transducer location and orientation is usually unavailable. This renders the implementation of such automatic methods exceedingly challenging. In this work we like to introduce a new automatic method for the detection of the kidney in 3D U/S images. This novel technique analyses the U/S image data along virtual scan lines. Here, characteristic texture changes when entering and leaving the symmetric tissue regions of the renal cortex are searched for. A subsequent feature accumulation along a second scan direction produces a 2D heat map of renal cortex candidates, from which the kidney location is extracted in two steps. First, the strongest candidate as well as its counterpart are extracted by heat map intensity ranking and renal cortex size analysis. This process exploits the heat map gap caused by the renal pelvis region. Substituting the renal pelvis detection with this combined cortex tissue feature increases the detection robustness. In contrast to model based methods that generate characteristic pattern matches, our method is simpler and therefore faster. An evaluation performed on 61 3D U/S data sets showed, that in 55 cases showing none or minor shadowing the kidney location could be correctly identified.

  17. Characterization of neonatal patients with intraventricular hemorrhage using 3D ultrasound cerebral ventricle volumes

    NASA Astrophysics Data System (ADS)

    Kishimoto, Jessica; Fenster, Aaron; Lee, David S. C.; de Ribaupierre, Sandrine

    2015-03-01

    One of the major non-congenital cause of neurological impairment among neonates born very preterm is intraventricular hemorrhage (IVH) - bleeding within the lateral ventricles. Most IVH patients will have a transient period of ventricle dilation that resolves spontaneously. However, those patients most at risk of long-term impairment are those who have progressive ventricle dilation as this causes macrocephaly, an abnormally enlarged head, then later causes increases intracranial pressure (ICP). 2D ultrasound (US) images through the fontanelles of the patients are serially acquired to monitor the progression of the ventricle dilation. These images are used to determine when interventional therapies such as needle aspiration of the built up CSF might be indicated for a patient. Initial therapies usually begin during the third week of life. Such interventions have been shown to decrease morbidity and mortality in IVH patients; however, this comes with risks of further hemorrhage or infection; therefore only patients requiring it should be treated. Previously we have developed and validated a 3D US system to monitor the progression of ventricle volumes (VV) in IVH patients. This system has been validated using phantoms and a small set of patient images. The aim of this work is to determine the ability of 3D US generated VV to categorize patients into those who will require interventional therapies, and those who will have spontaneous resolution. Patients with higher risks could therefore be monitored better, by re-allocating some of the resources as the low risks infants would need less monitoring.

  18. A preliminary evaluation work on a 3D ultrasound imaging system for 2D array transducer

    NASA Astrophysics Data System (ADS)

    Zhong, Xiaoli; Li, Xu; Yang, Jiali; Li, Chunyu; Song, Junjie; Ding, Mingyue; Yuchi, Ming

    2016-04-01

    This paper presents a preliminary evaluation work on a pre-designed 3-D ultrasound imaging system. The system mainly consists of four parts, a 7.5MHz, 24×24 2-D array transducer, the transmit/receive circuit, power supply, data acquisition and real-time imaging module. The row-column addressing scheme is adopted for the transducer fabrication, which greatly reduces the number of active channels . The element area of the transducer is 4.6mm by 4.6mm. Four kinds of tests were carried out to evaluate the imaging performance, including the penetration depth range, axial and lateral resolution, positioning accuracy and 3-D imaging frame rate. Several strong reflection metal objects , fixed in a water tank, were selected for the purpose of imaging due to a low signal-to-noise ratio of the transducer. The distance between the transducer and the tested objects , the thickness of aluminum, and the seam width of the aluminum sheet were measured by a calibrated micrometer to evaluate the penetration depth, the axial and lateral resolution, respectively. The experiment al results showed that the imaging penetration depth range was from 1.0cm to 6.2cm, the axial and lateral resolution were 0.32mm and 1.37mm respectively, the imaging speed was up to 27 frames per second and the positioning accuracy was 9.2%.

  19. 3D functional ultrasound imaging of the cerebral visual system in rodents.

    PubMed

    Gesnik, Marc; Blaize, Kevin; Deffieux, Thomas; Gennisson, Jean-Luc; Sahel, José-Alain; Fink, Mathias; Picaud, Serge; Tanter, Mickaël

    2017-02-03

    3D functional imaging of the whole brain activity during visual task is a challenging task in rodents due to the complex tri-dimensional shape of involved brain regions and the fine spatial and temporal resolutions required to reveal the visual tract. By coupling functional ultrasound (fUS) imaging with a translational motorized stage and an episodic visual stimulation device, we managed to accurately map and to recover the activity of the visual cortices, the Superior Colliculus (SC) and the Lateral Geniculate Nuclei (LGN) in 3D. Cerebral Blood Volume (CBV) responses during visual stimuli were found to be highly correlated with the visual stimulus time profile in visual cortices (r=0.6), SC (r=0.7) and LGN (r=0.7). These responses were found dependent on flickering frequency and contrast, and optimal stimulus parameters for largest CBV increases were obtained. In particular, increasing the flickering frequency higher than 7Hz revealed a decrease of visual cortices response while the SC response was preserved. Finally, cross-correlation between CBV signals exhibited significant delays (d=0.35s +/-0.1s) between blood volume response in SC and visual cortices in response to our visual stimulus. These results emphasize the interest of fUS imaging as a whole brain neuroimaging modality for brain vision studies in rodent models.

  20. 3D ultrasound system to investigate intraventricular hemorrhage in preterm neonates

    NASA Astrophysics Data System (ADS)

    Kishimoto, J.; de Ribaupierre, S.; Lee, D. S. C.; Mehta, R.; St. Lawrence, K.; Fenster, A.

    2013-11-01

    Intraventricular hemorrhage (IVH) is a common disorder among preterm neonates that is routinely diagnosed and monitored by 2D cranial ultrasound (US). The cerebral ventricles of patients with IVH often have a period of ventricular dilation (ventriculomegaly). This initial increase in ventricle size can either spontaneously resolve, which often shows clinically as a period of stabilization in ventricle size and eventual decline back towards a more normal size, or progressive ventricular dilation that does not stabilize and which may require interventional therapy to reduce symptoms relating to increased intracranial pressure. To improve the characterization of ventricle dilation, we developed a 3D US imaging system that can be used with a conventional clinical US scanner to image the ventricular system of preterm neonates at risk of ventriculomegaly. A motorized transducer housing was designed specifically for hand-held use inside an incubator using a transducer commonly used for cranial 2D US scans. This system was validated using geometric phantoms, US/MRI compatible ventricle volume phantoms, and patient images to determine 3D reconstruction accuracy and inter- and intra-observer volume estimation variability. 3D US geometric reconstruction was found to be accurate with an error of <0.2%. Measured volumes of a US/MRI compatible ventricle-like phantom were within 5% of gold standard water displacement measurements. Intra-class correlation for the three observers was 0.97, showing very high agreement between observers. The coefficient of variation was between 1.8-6.3% for repeated segmentations of the same patient. The minimum detectable difference was calculated to be 0.63 cm3 for a single observer. Results from ANOVA for three observers segmenting three patients of IVH grade II did not show any significant differences (p > 0.05) for the measured ventricle volumes between observers. This 3D US system can reliably produce 3D US images of the neonatal ventricular

  1. Model-based correction of velocity measurements in navigated 3-D ultrasound imaging during neurosurgical interventions.

    PubMed

    Iversen, Daniel Hoyer; Lindseth, Frank; Unsgaard, Geirmund; Torp, Hans; Lovstakken, Lasse

    2013-09-01

    In neurosurgery, information of blood flow is important to identify and avoid damage to important vessels. Three-dimensional intraoperative ultrasound color-Doppler imaging has proven useful in this respect. However, due to Doppler angle-dependencies and the complexity of the vascular architecture, clinical valuable 3-D information of flow direction and velocity is currently not available. In this work, we aim to correct for angle-dependencies in 3-D flow images based on a geometric model of the neurovascular tree generated on-the-fly from free-hand 2-D imaging and an accurate position sensor system. The 3-D vessel model acts as a priori information of vessel orientation used to angle-correct the Doppler measurements, as well as provide an estimate of the average flow direction. Based on the flow direction we were also able to do aliasing correction to approximately double the measurable velocity range. In vitro experiments revealed a high accuracy and robustness for estimating the mean direction of flow. Accurate angle-correction of axial velocities were possible given a sufficient beam-to-flow angle for at least parts of a vessel segment . In vitro experiments showed an absolute relative bias of 9.5% for a challenging low-flow scenario. The method also showed promising results in vivo, improving the depiction of flow in the distal branches of intracranial aneurysms and the feeding arteries of an arteriovenous malformation. Careful inspection by an experienced surgeon confirmed the correct flow direction for all in vivo examples.

  2. A new optimization approach for the calibration of an ultrasound probe using a 3D optical localizer.

    PubMed

    Dardenne, G; Cano, J D Gil; Hamitouche, C; Stindel, E; Roux, C

    2007-01-01

    This paper describes a fast procedure for the calibration of an ultrasound (US) probe using a 3D optical localizer. This calibration step allows us to obtain the 3D position of any point located on the 2D ultrasonic (US) image. To carry out correctly this procedure, a phantom of known geometric properties is probed and these geometries are found in the US images. A segmentation step is applied in order to obtain automatically the needed information in the US images and then, an optimization approach is performed to find the optimal calibration parameters. A new optimization method to estimate the calibration parameters for an ultrasound (US) probe is developed.

  3. Mapping 3D Strains with Ultrasound Speckle Tracking: Method Validation and Initial Results in Porcine Scleral Inflation.

    PubMed

    Cruz Perez, Benjamin; Pavlatos, Elias; Morris, Hugh J; Chen, Hong; Pan, Xueliang; Hart, Richard T; Liu, Jun

    2016-07-01

    This study aimed to develop and validate a high frequency ultrasound method for measuring distributive, 3D strains in the sclera during elevations of intraocular pressure. A 3D cross-correlation based speckle-tracking algorithm was implemented to compute the 3D displacement vector and strain tensor at each tracking point. Simulated ultrasound radiofrequency data from a sclera-like structure at undeformed and deformed states with known strains were used to evaluate the accuracy and signal-to-noise ratio (SNR) of strain estimation. An experimental high frequency ultrasound (55 MHz) system was built to acquire 3D scans of porcine eyes inflated from 15 to 17 and then 19 mmHg. Simulations confirmed good strain estimation accuracy and SNR (e.g., the axial strains had less than 4.5% error with SNRs greater than 16.5 for strains from 0.005 to 0.05). Experimental data in porcine eyes showed increasing tensile, compressive, and shear strains in the posterior sclera during inflation, with a volume ratio close to one suggesting near-incompressibility. This study established the feasibility of using high frequency ultrasound speckle tracking for measuring 3D tissue strains and its potential to characterize physiological deformations in the posterior eye.

  4. Transvaginal 3-d power Doppler ultrasound evaluation of the fetal brain at 10-13 weeks' gestation.

    PubMed

    Hata, Toshiyuki; Tanaka, Hirokazu; Noguchi, Junko

    2012-03-01

    The objective of this study was to measure the fetal brain volume (FBV) and vascularization and blood flow using transvaginal 3-D power Doppler (3DPD) ultrasound late in the first trimester of pregnancy. 3DPD ultrasound examinations with the VOCAL imaging analysis program were performed on 36 normal fetuses from 10-13 weeks' gestation. FBV and 3DPD indices related to the fetal brain vascularization (vascularization index [VI], flow index [FI] and vascularization flow index [VFI]) were calculated in each fetus. Intra- and interclass correlation coefficients and intra- and interobserver agreements of measurements were assessed. FBV was curvilinearly correlated well with the gestational age (R2 = 0.861, p < 0.0001). All 3-D power Doppler indices (VI, FI and VFI) showed no change at 10-13 weeks' gestation. FBV and all 3-D power Doppler indices (VI, FI and VFI) showed a correlation > 0.82, with good intra- and interobserver agreement. Our findings suggest that 3-D ultrasound is a superior means of evaluating the FBV in utero, and that 3-D power Doppler ultrasound histogram analysis may provide new information on the assessment of fetal brain perfusion.

  5. Breast ultrasound tomography with total-variation regularization

    SciTech Connect

    Huang, Lianjie; Li, Cuiping; Duric, Neb

    2009-01-01

    Breast ultrasound tomography is a rapidly developing imaging modality that has the potential to impact breast cancer screening and diagnosis. A new ultrasound breast imaging device (CURE) with a ring array of transducers has been designed and built at Karmanos Cancer Institute, which acquires both reflection and transmission ultrasound signals. To extract the sound-speed information from the breast data acquired by CURE, we have developed an iterative sound-speed image reconstruction algorithm for breast ultrasound transmission tomography based on total-variation (TV) minimization. We investigate applicability of the TV tomography algorithm using in vivo ultrasound breast data from 61 patients, and compare the results with those obtained using the Tikhonov regularization method. We demonstrate that, compared to the Tikhonov regularization scheme, the TV regularization method significantly improves image quality, resulting in sound-speed tomography images with sharp (preserved) edges of abnormalities and few artifacts.

  6. Ultrasound guided nerve block for breast surgery.

    PubMed

    Diéguez, P; Casas, P; López, S; Fajardo, M

    2016-03-01

    The breast surgery has undergone changes in recent years, encouraging new initiatives for the anaesthetic management of these patients in order to achieve maximum quality and rapid recovery. The fundamental tool that has allowed a significant improvement in the progress of regional anaesthesia for breast disease has been ultrasound, boosting the description and introduction into clinical practice of interfascial chest wall blocks, although the reference standard is still the paravertebral block. It is very likely that these blocks will change the protocols in the coming years. A review is presented of the anatomy of the breast region, description of nerve blocks and techniques, as well as their indications, all according to published articles and the opinion of the authors based on their experience.

  7. Reproducing 2D breast mammography images with 3D printed phantoms

    NASA Astrophysics Data System (ADS)

    Clark, Matthew; Ghammraoui, Bahaa; Badal, Andreu

    2016-03-01

    Mammography is currently the standard imaging modality used to screen women for breast abnormalities and, as a result, it is a tool of great importance for the early detection of breast cancer. Physical phantoms are commonly used as surrogates of breast tissue to evaluate some aspects of the performance of mammography systems. However, most phantoms do not reproduce the anatomic heterogeneity of real breasts. New fabrication technologies, such as 3D printing, have created the opportunity to build more complex, anatomically realistic breast phantoms that could potentially assist in the evaluation of mammography systems. The primary objective of this work is to present a simple, easily reproducible methodology to design and print 3D objects that replicate the attenuation profile observed in real 2D mammograms. The secondary objective is to evaluate the capabilities and limitations of the competing 3D printing technologies, and characterize the x-ray properties of the different materials they use. Printable phantoms can be created using the open-source code introduced in this work, which processes a raw mammography image to estimate the amount of x-ray attenuation at each pixel, and outputs a triangle mesh object that encodes the observed attenuation map. The conversion from the observed pixel gray value to a column of printed material with equivalent attenuation requires certain assumptions and knowledge of multiple imaging system parameters, such as x-ray energy spectrum, source-to-object distance, compressed breast thickness, and average breast material attenuation. A detailed description of the new software, a characterization of the printed materials using x-ray spectroscopy, and an evaluation of the realism of the sample printed phantoms are presented.

  8. Semiautomatic registration of 3D transabdominal ultrasound images for patient repositioning during postprostatectomy radiotherapy

    SciTech Connect

    Presles, Benoît Rit, Simon; Sarrut, David; Fargier-Voiron, Marie; Liebgott, Hervé; Biston, Marie-Claude; Munoz, Alexandre; Pommier, Pascal; Lynch, Rod

    2014-12-15

    Purpose: The aim of the present work is to propose and evaluate registration algorithms of three-dimensional (3D) transabdominal (TA) ultrasound (US) images to setup postprostatectomy patients during radiation therapy. Methods: Three registration methods have been developed and evaluated to register a reference 3D-TA-US image acquired during the planning CT session and a 3D-TA-US image acquired before each treatment session. The first method (method A) uses only gray value information, whereas the second one (method B) uses only gradient information. The third one (method C) combines both sets of information. All methods restrict the comparison to a region of interest computed from the dilated reference positioning volume drawn on the reference image and use mutual information as a similarity measure. The considered geometric transformations are translations and have been optimized by using the adaptive stochastic gradient descent algorithm. Validation has been carried out using manual registration by three operators of the same set of image pairs as the algorithms. Sixty-two treatment US images of seven patients irradiated after a prostatectomy have been registered to their corresponding reference US image. The reference registration has been defined as the average of the manual registration values. Registration error has been calculated by subtracting the reference registration from the algorithm result. For each session, the method has been considered a failure if the registration error was above both the interoperator variability of the session and a global threshold of 3.0 mm. Results: All proposed registration algorithms have no systematic bias. Method B leads to the best results with mean errors of −0.6, 0.7, and −0.2 mm in left–right (LR), superior–inferior (SI), and anterior–posterior (AP) directions, respectively. With this method, the standard deviations of the mean error are of 1.7, 2.4, and 2.6 mm in LR, SI, and AP directions, respectively

  9. 2-D Versus 3-D Cross-Correlation-Based Radial and Circumferential Strain Estimation Using Multiplane 2-D Ultrafast Ultrasound in a 3-D Atherosclerotic Carotid Artery Model.

    PubMed

    Fekkes, Stein; Swillens, Abigail E S; Hansen, Hendrik H G; Saris, Anne E C M; Nillesen, Maartje M; Iannaccone, Francesco; Segers, Patrick; de Korte, Chris L

    2016-10-01

    Three-dimensional (3-D) strain estimation might improve the detection and localization of high strain regions in the carotid artery (CA) for identification of vulnerable plaques. This paper compares 2-D versus 3-D displacement estimation in terms of radial and circumferential strain using simulated ultrasound (US) images of a patient-specific 3-D atherosclerotic CA model at the bifurcation embedded in surrounding tissue generated with ABAQUS software. Global longitudinal motion was superimposed to the model based on the literature data. A Philips L11-3 linear array transducer was simulated, which transmitted plane waves at three alternating angles at a pulse repetition rate of 10 kHz. Interframe (IF) radio-frequency US data were simulated in Field II for 191 equally spaced longitudinal positions of the internal CA. Accumulated radial and circumferential displacements were estimated using tracking of the IF displacements estimated by a two-step normalized cross-correlation method and displacement compounding. Least-squares strain estimation was performed to determine accumulated radial and circumferential strain. The performance of the 2-D and 3-D methods was compared by calculating the root-mean-squared error of the estimated strains with respect to the reference strains obtained from the model. More accurate strain images were obtained using the 3-D displacement estimation for the entire cardiac cycle. The 3-D technique clearly outperformed the 2-D technique in phases with high IF longitudinal motion. In fact, the large IF longitudinal motion rendered it impossible to accurately track the tissue and cumulate strains over the entire cardiac cycle with the 2-D technique.

  10. Time efficiency and diagnostic agreement of 2-D versus 3-D ultrasound acquisition of the neonatal brain.

    PubMed

    Romero, Javier M; Madan, Neil; Betancur, Ilda; Ciobanu, Adrian; Murphy, Erin; McCullough, Danielle; Grant, P Ellen

    2014-08-01

    The purpose of this study was to compare acquisition time efficiency and diagnostic agreement of neonatal brain ultrasound (US) scans obtained with a 3-D volume US acquisition protocol and the conventional 2-D acquisition protocol. Ninety-one consecutive premature neonatal brain ultrasound scans were prospectively performed on 59 neonates with the conventional 2-D acquisition protocol. Immediately after the 2-D study, a coronal 3-D ultrasound volume was acquired and later reconstructed into axial and sagittal planes. All 59 neonates were imaged in the neonatal intensive care unit to rule out intracranial hemorrhage. Total time for 2-D and 3-D acquisition protocols was recorded, and a two-tailed t-test was used to determine if study durations differed significantly. One pediatric neuroradiologist reviewed the reformatted 3-D images, tomographic ultrasound images. Results were compared with the clinical interpretation of the 2-D conventional study. The mean scanning time for the 2-D US acquisition protocol was 10.56 min (standard deviation [SD] = 7.11), and that for the 3-D volume US acquisition protocol was 1.48 min (SD = 0.59) (p ≤ 0.001). Inter-observer agreement revealed k values of 0.84 for hydrocephalus, 0.80 for germinal matrix hemorrhage/intraventricular hemorrhage, 0.74 for periventricular leukomalacia and 0.91 for subdural collection, hence near-perfect to substantial agreement between imaging protocols. There was a significant decrease in acquisition time for the 3-D volume ultrasound acquisition protocol compared with the conventional 2-D US protocol (p = <0.001), without compromising the diagnostic quality compared with a conventional 2-D US imaging protocol.

  11. Ezrin and BCAR1/p130Cas mediate breast cancer growth as 3-D spheroids.

    PubMed

    Konstantinovsky, Sophya; Davidson, Ben; Reich, Reuven

    2012-08-01

    CAS proteins and Ezrin, Radixin, Moesin (ERM) family members act as intracellular scaffolds and are involved in interactions with the cytoskeleton, respectively. Both protein families have previously been associated with metastasis and poor prognosis in cancer. Our group recently reported on the overexpression of EZR/VIL2 and BCAR1 and their protein products in breast carcinoma effusions compared to primary breast carcinoma. In the present study, the role of these two proteins was studied in semi-normal MCF10A cells and metastatic MDA-MB-231 breast carcinoma cells cultured in tri-dimensional (3-D) conditions that were hypothesized to reproduce the in vivo conditions of breast cancer metastasis. MCF10A cells formed spheroid-shaped colonies without any Matrigel invasion, while MDA-MB-231 cells displayed an invasive phenotype and showed satellite projections that bridged multiple cell colonies in 3-D culture. E-cadherin was expressed in MCF10A, but not in MDA-MB-231 cells. The temporal expression of ezrin and BCAR1/p130Cas at the mRNA and protein level differed in the two cell lines upon 3-D culturing on Matrigel. Upregulation of BCAR1/p130cas was observed in the transition of MDA-MB-231 from attached to detached culture. Silencing of Ezrin and p130Cas in MDA-MB-231 cells by short hairpin RNA resulted in decreased invasive potential, and p130Cas silencing further resulted in smaller spheroid/colony formation. Our data show that MCF10A and MDA-MB-231 cells differ in their ability to form spheroids, in expression of E-cadherin and in the expression of Ezrin and BCAR1/p130Cas in 3-D cultures on Matrigel, suggesting a role in tumor progression in breast carcinoma.

  12. 3-D Ultrasound Segmentation of the Placenta Using the Random Walker Algorithm: Reliability and Agreement.

    PubMed

    Stevenson, Gordon N; Collins, Sally L; Ding, Jane; Impey, Lawrence; Noble, J Alison

    2015-12-01

    Volumetric segmentation of the placenta using 3-D ultrasound is currently performed clinically to investigate correlation between organ volume and fetal outcome or pathology. Previously, interpolative or semi-automatic contour-based methodologies were used to provide volumetric results. We describe the validation of an original random walker (RW)-based algorithm against manual segmentation and an existing semi-automated method, virtual organ computer-aided analysis (VOCAL), using initialization time, inter- and intra-observer variability of volumetric measurements and quantification accuracy (with respect to manual segmentation) as metrics of success. Both semi-automatic methods require initialization. Therefore, the first experiment compared initialization times. Initialization was timed by one observer using 20 subjects. This revealed significant differences (p < 0.001) in time taken to initialize the VOCAL method compared with the RW method. In the second experiment, 10 subjects were used to analyze intra-/inter-observer variability between two observers. Bland-Altman plots were used to analyze variability combined with intra- and inter-observer variability measured by intra-class correlation coefficients, which were reported for all three methods. Intra-class correlation coefficient values for intra-observer variability were higher for the RW method than for VOCAL, and both were similar to manual segmentation. Inter-observer variability was 0.94 (0.88, 0.97), 0.91 (0.81, 0.95) and 0.80 (0.61, 0.90) for manual, RW and VOCAL, respectively. Finally, a third observer with no prior ultrasound experience was introduced and volumetric differences from manual segmentation were reported. Dice similarity coefficients for observers 1, 2 and 3 were respectively 0.84 ± 0.12, 0.94 ± 0.08 and 0.84 ± 0.11, and the mean was 0.87 ± 0.13. The RW algorithm was found to provide results concordant with those for manual segmentation and to outperform VOCAL in aspects of observer

  13. An in vitro 3D model using collagen coated gelatin nanofibers for studying breast cancer metastasis.

    PubMed

    Janani, G; Pillai, Mamatha M; Selvakumar, R; Bhattacharyya, Amitava; Sabarinath, C

    2017-02-07

    The study of breast cancer metastasis is limited due to poor knowledge of molecular progression of breast tumor and varied heterogeneity. For a better understanding of tumor metastasis, a reliable 3D in vitro model bridging the gap between 2D cultures and in vivo animal model studies is essential. Our study is focused on two key points: (i) designing a 3D microenvironment for studying metastasis and (ii) simulating the metastasis milieu by inducing epithelial to mesenchymal transition (EMT) and mesenchymal to epithelial transition (MET). An electrospun gelatin nanofiber matrix (EGNF) was fabricated using electrospinning and further dip coated with different concentrations of collagen to obtain surface complexity and mechanical properties, similar to connective tissues. Nanofiber matrices were physically characterized by Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), and field-emission scanning electron microscopy (FESEM). The FTIR, AFM, and FESEM results indicated the crosslinking and confirmed the presence of pores in the nanofiber matrices. Comparative studies on biocompatibility, cell attachment, and the proliferation of MCF-7 cells on EGNF and collagen coated gelatin nanofibrous matrix (CCGM) revealed higher cellular attachment and proliferation in CCGM. CCGM with human metastatic breast cancer cell line (MCF-7) was taken to study breast cancer metastasis using estrogen (induces EMT) and progesterone (induces MET) hormones for 24 h. Quantitative real-time PCR was used for quantifying the expression of metastasis related genes, and fluorescence microscopy for verifying the invasion of cells to the matrices. The expression of E-cadherin and matrix metalloproteinase 2 (MMP 2) confirmed the occurrence of EMT and MET. Live cell imaging and cellular attachment showed significant increase of cellular invasion in crosslinked 0.15% CCGM that serves as a suitable non-toxic, biocompatible, and affordable scaffold for studying breast cancer

  14. Improved Human Bone Marrow Mesenchymal Stem Cell Osteogenesis in 3D Bioprinted Tissue Scaffolds with Low Intensity Pulsed Ultrasound Stimulation.

    PubMed

    Zhou, Xuan; Castro, Nathan J; Zhu, Wei; Cui, Haitao; Aliabouzar, Mitra; Sarkar, Kausik; Zhang, Lijie Grace

    2016-09-06

    3D printing and ultrasound techniques are showing great promise in the evolution of human musculoskeletal tissue repair and regeneration medicine. The uniqueness of the present study was to combine low intensity pulsed ultrasound (LIPUS) and advanced 3D printing techniques to synergistically improve growth and osteogenic differentiation of human mesenchymal stem cells (MSC). Specifically, polyethylene glycol diacrylate bioinks containing cell adhesive Arginine-Glycine-Aspartic acid-Serene (RGDS) peptide and/or nanocrystalline hydroxyapatite (nHA) were used to fabricate 3D scaffolds with different geometric patterns via novel table-top stereolithography 3D printer. The resultant scaffolds provide a highly porous and interconnected 3D environment to support cell proliferation. Scaffolds with small square pores were determined to be the optimal geometric pattern for MSC attachment and growth. The optimal LIPUS working parameters were determined to be 1.5 MHz, 20% duty cycle with 150 mW/cm(2) intensity. Results demonstrated that RGDS peptide and nHA containing 3D printed scaffolds under LIPUS treatment can greatly promote MSC proliferation, alkaline phosphatase activity, calcium deposition and total protein content. These results illustrate the effectiveness of the combination of LIPUS and biomimetic 3D printing scaffolds as a valuable combinatorial tool for improved MSC function, thus make them promising for future clinical and various regenerative medicine application.

  15. Improved Human Bone Marrow Mesenchymal Stem Cell Osteogenesis in 3D Bioprinted Tissue Scaffolds with Low Intensity Pulsed Ultrasound Stimulation

    PubMed Central

    Zhou, Xuan; Castro, Nathan J.; Zhu, Wei; Cui, Haitao; Aliabouzar, Mitra; Sarkar, Kausik; Zhang, Lijie Grace

    2016-01-01

    3D printing and ultrasound techniques are showing great promise in the evolution of human musculoskeletal tissue repair and regeneration medicine. The uniqueness of the present study was to combine low intensity pulsed ultrasound (LIPUS) and advanced 3D printing techniques to synergistically improve growth and osteogenic differentiation of human mesenchymal stem cells (MSC). Specifically, polyethylene glycol diacrylate bioinks containing cell adhesive Arginine-Glycine-Aspartic acid-Serene (RGDS) peptide and/or nanocrystalline hydroxyapatite (nHA) were used to fabricate 3D scaffolds with different geometric patterns via novel table-top stereolithography 3D printer. The resultant scaffolds provide a highly porous and interconnected 3D environment to support cell proliferation. Scaffolds with small square pores were determined to be the optimal geometric pattern for MSC attachment and growth. The optimal LIPUS working parameters were determined to be 1.5 MHz, 20% duty cycle with 150 mW/cm2 intensity. Results demonstrated that RGDS peptide and nHA containing 3D printed scaffolds under LIPUS treatment can greatly promote MSC proliferation, alkaline phosphatase activity, calcium deposition and total protein content. These results illustrate the effectiveness of the combination of LIPUS and biomimetic 3D printing scaffolds as a valuable combinatorial tool for improved MSC function, thus make them promising for future clinical and various regenerative medicine application. PMID:27597635

  16. 3D dynamic model of healthy and pathologic arteries for ultrasound technique evaluation.

    PubMed

    Balocco, Simone; Basset, Olivier; Azencot, Jacques; Tortoli, Piero; Cachard, Christian

    2008-12-01

    A 3D model reproducing the biomechanical behavior of human blood vessels is presented. The model, based on a multilayer geometry composed of right generalized cylinders, enables the representation of different vessel morphologies, including bifurcations, either healthy or affected by stenoses. Using a finite element approach, blood flow is simulated by considering a dynamic displacement of the scatterers (erythrocytes), while arterial pulsation due to the hydraulic pressure is taken into account through a fluid-structure interaction based on a wall model. Each region is acoustically characterized using FIELD II software, which produces the radio frequency echo signals corresponding to echographic scans. Three acoustic physiological phantoms of carotid arteries surrounded by elastic tissue are presented to illustrate the model's capability. The first corresponds to a healthy blood vessel, the second includes a 50% stenosis, and the third represents a carotid bifurcation. Examples of M mode, B mode and color Doppler images derived from these phantoms are shown. Two examples of M-mode image segmentation and the identification of the atherosclerotic plaque boundaries on Doppler color images are reported. The model could be used as a tool for the preliminary evaluation of ultrasound signal processing and visualization techniques.

  17. 2D Ultrasound and 3D MR Image Registration of the Prostate for Brachytherapy Surgical Navigation

    PubMed Central

    Zhang, Shihui; Jiang, Shan; Yang, Zhiyong; Liu, Ranlu

    2015-01-01

    Abstract Two-dimensional (2D) ultrasound (US) images are widely used in minimally invasive prostate procedure for its noninvasive nature and convenience. However, the poor quality of US image makes it difficult to be used as guiding utility. To improve the limitation, we propose a multimodality image guided navigation module that registers 2D US images with magnetic resonance imaging (MRI) based on high quality preoperative models. A 2-step spatial registration method is used to complete the procedure which combines manual alignment and rapid mutual information (MI) optimize algorithm. In addition, a 3-dimensional (3D) reconstruction model of prostate with surrounding organs is employed to combine with the registered images to conduct the navigation. Registration accuracy is measured by calculating the target registration error (TRE). The results show that the error between the US and preoperative MR images of a polyvinyl alcohol hydrogel model phantom is 1.37 ± 0.14 mm, with a similar performance being observed in patient experiments. PMID:26448009

  18. TU-CD-207-09: Analysis of the 3-D Shape of Patients’ Breast for Breast Imaging and Surgery Planning

    SciTech Connect

    Agasthya, G; Sechopoulos, I

    2015-06-15

    Purpose: Develop a method to accurately capture the 3-D shape of patients’ external breast surface before and during breast compression for mammography/tomosynthesis. Methods: During this IRB-approved, HIPAA-compliant study, 50 women were recruited to undergo 3-D breast surface imaging during breast compression and imaging for the cranio-caudal (CC) view on a digital mammography/breast tomosynthesis system. Digital projectors and cameras mounted on tripods were used to acquire 3-D surface images of the breast, in three conditions: (a) positioned on the support paddle before compression, (b) during compression by the compression paddle and (c) the anterior-posterior view with the breast in its natural, unsupported position. The breast was compressed to standard full compression with the compression paddle and a tomosynthesis image was acquired simultaneously with the 3-D surface. The 3-D surface curvature and deformation with respect to the uncompressed surface was analyzed using contours. The 3-D surfaces were voxelized to capture breast shape in a format that can be manipulated for further analysis. Results: A protocol was developed to accurately capture the 3-D shape of patients’ breast before and during compression for mammography. Using a pair of 3-D scanners, the 50 patient breasts were scanned in three conditions, resulting in accurate representations of the breast surfaces. The surfaces were post processed, analyzed using contours and voxelized, with 1 mm{sup 3} voxels, converting the breast shape into a format that can be easily modified as required. Conclusion: Accurate characterization of the breast curvature and shape for the generation of 3-D models is possible. These models can be used for various applications such as improving breast dosimetry, accurate scatter estimation, conducting virtual clinical trials and validating compression algorithms. Ioannis Sechopoulos is consultant for Fuji Medical Systems USA.

  19. 3D surface imaging for guidance in breast cancer radiotherapy: organs at risk

    NASA Astrophysics Data System (ADS)

    Alderliesten, Tanja; Betgen, Anja; van Vliet-Vroegindeweij, Corine; Remeijer, Peter

    2013-03-01

    Purpose: To evaluate the variability in heart position in deep-inspiration breath-hold (DIBH) radiotherapy for breast cancer when 3D surface imaging would be used for monitoring the depth of the breath hold during treatment. Materials and Methods: Ten patients who received DIBH radiotherapy after breast-conserving surgery (BCS) were included. Retrospectively, heart-based registrations were performed for cone-beam computed tomography (CBCT) to planning CT and breast surface registrations were performed for a 3D surface (two different regions of interest [ROIs]), captured concurrently with CBCT, to planning CT. The resulting setup errors were compared with linear regression analysis and receiver operating characteristic (ROC) analysis was performed to investigate the prediction quality of 3D surface imaging for 3D heart displacement. Further, the residual setup errors (systematic [Σ] and random [σ]) of the heart were estimated relative to the surface registrations. Results: When surface imaging [ROIleft-side;ROIboth-sides] would be used for monitoring, the residual errors of the heart position are in left-right: Σ=[0.360.12], σ=[0.160.14] cranio-caudal: Σ=[0.540.54], σ=[0.280.31] and in anteriorposterior: Σ=[0.180.14], σ=[0.200.19] cm. Correlations between setup errors were: R2 = [0.23;0.73], [0.67;0.65], [0.65;0.73] in left-right, cranio-caudal, and anterior-posterior direction, respectively. ROC analysis resulted in an area under the ROC curve of [0.82;0.78]. Conclusion: The use of ROIboth-sides provided promising results. However, considerable variability in the heart position, particularly in CC direction, is observed when 3D surface imaging would be used for guidance in DIBH radiotherapy after BCS. Planning organ at risk volume margins should be used to take into account the heart-position variability.

  20. Diagnostic Value of 3D Fast Low-Angle Shot Dynamic MRI of Breast Papillomas

    PubMed Central

    Kim, Eun-Kyung; Kim, Jeong-Ah; Kwak, Jin Young; Jeong, Joon

    2009-01-01

    Purpose To evaluate the value of breast MRI in analysis of papillomas of the breast. Materials and Methods From 1996 to 2004, 94 patients underwent surgery due to papillomas of the breast. Among them, 21 patients underwent 3D fast low angle shot (FLASH) dynamic breast MRI. Eight masses were palpable and 11 of 21 patients had nipple discharge. Two radiologists indifferently analyzed the location, size of the lesions and shape, margin of the masses, multiplicity and ductal relation. The MRI findings were categorized according to breast imaging reporting and data system (BI-RADS) lexicon. The amount and pattern of enhancement and associated findings were also evaluated according to BI-RADS. We then compared the MRI findings with galactography, mammography and breast ultrasonography (US) and examined histopathologic correlation. Results On breast MRI, the lesion size was 0.4-1.59 cm, and 18 patients showed subareolar location. On 4.25 cm (mean 1.54) dynamic enhanced images, imaging findings showed mass (n = 10), intracystic mass (n = 3), focus (n = 5), ductal enhancement (n = 2), and segmental enhancement (n = 1). In cases of the masses, the shapes of the masses were round (n = 4), lobulated (n = 3), and irregular (n = 6), and margins were circumscribed (n = 6), microlobulated (n = 5), and indistinct (n = 2). The enhancement patterns were homogeneous enhancement (n = 7), heterogeneous (n = 3) or rim enhancement (n = 3). Conclusion The contrast enhanced dynamic breast MRI was highly sensitive for diagnosis of breast papillomas. MRI could play a key role in the pre-operative work-up for multiple papillomas and papillomatosis. PMID:20046427

  1. Three-dimensional ultrasound guidance of autonomous robotic breast biopsy: feasibility study.

    PubMed

    Liang, Kaicheng; Rogers, Albert J; Light, Edward D; von Allmen, Daniel; Smith, Stephen W

    2010-01-01

    Feasibility studies of autonomous robot biopsies in tissue have been conducted using real-time three-dimensional (3-D) ultrasound combined with simple thresholding algorithms. The robot first autonomously processed 3-D image volumes received from the ultrasound scanner to locate a metal rod target embedded in turkey breast tissue simulating a calcification, and in a separate experiment, the center of a water-filled void in the breast tissue simulating a cyst. In both experiments the robot then directed a needle to the desired target, with no user input required. Separate needle-touch experiments performed by the image-guided robot in a water tank yielded an rms error of 1.15 mm. (E-mail: kaicheng.liang@duke.edu).

  2. A second generation of physical anthropomorphic 3D breast phantoms based on human subject data

    NASA Astrophysics Data System (ADS)

    Nolte, Adam; Kiarashi, Nooshin; Samei, Ehsan; Segars, W. P.; Lo, Joseph Y.

    2014-03-01

    Previous fabrication of anthropomorphic breast phantoms has demonstrated their viability as a model for 2D (mammography) and 3D (tomosynthesis) breast imaging systems. Further development of these models will be essential for the evaluation of breast x-ray systems. There is also the potential to use them as the ground truth in virtual clinical trials. The first generation of phantoms was segmented from human subject dedicated breast computed tomography data and fabricated into physical models using highresolution 3D printing. Two variations were made. The first was a multi-material model (doublet) printed with two photopolymers to represent glandular and adipose tissues with the greatest physical contrast available, mimicking 75% and 35% glandular tissue. The second model was printed with a single 75% glandular equivalent photopolymer (singlet) to represent glandular tissue, which can be filled independently with an adipose-equivalent material such as oil. For this study, we have focused on improving the latter, the singlet phantom. First, the temporary oil filler has been replaced with a permanent adipose-equivalent urethane-based polymer. This offers more realistic contrast as compared to the multi-material approach at the expense of air bubbles and pockets that form during the filling process. Second, microcalcification clusters have been included in the singlet model via crushed eggshells, which have very similar chemical composition to calcifications in vivo. The results from these new prototypes demonstrate significant improvement over the first generation of anthropomorphic physical phantoms.

  3. Initial Validation and Clinical Experience with 3D Optical-Surface-Guided Whole Breast Irradiation of Breast Cancer

    PubMed Central

    Li, S.; DeWeese, T.; Movsas, B.; Frassica, Deborah; Liu, Dezhi; Kim, Jinkoo; Chen, Qing; Walker, Eleanor

    2015-01-01

    We had introduced 3D optical surface-guided radiotherapy (SGRT) of the breast cancer (BC). We then initiated the feasibility, accuracy, and precision studies of stereovision in detection of any breast displacement through the course of treatment for total thirty breasts undertaken whole breast irradiation (WBI). In the SGRT, CT-based plan data were parsed into an in-house computer program through which the reference surfaces were generated in 3D video format. When patients were positioned on treatment Tables, real-time stereovisions were rapidly acquired while the live surface tracking shown steady thorax motion. The real-time surface images were automatically aligned with the reference surface and detected shape and location changes of the breast were online corrected through the Table and beam adjustments. Accumulated dose to each patient was computed according to the frequency distribution of the measured breast locations during beam on time. Application of SGRT had diminished large skin-marking errors of >5-mm and daily breast-setup errors of >10-mm that occurred on half of cases. Accuracy (mean) and precision (two standard deviations) of the breast displacements across the tangential field edges in the (U, V) directions were improved from (−0.5 ± 8.8, 2.2 ± 10.8) mm in conventional setup to (0.4 ± 4.6, 0.7 ± 4.4) mm in the final position while intra-fractional motion contributed only (0.1 ± 2.8, 0.0 ± 2.2) mm in free breathing. Dose uniformity and coverage to targets had both been increased by up to 10% and the lung or heart intersections have been decreased by half of those volumes if they were irradiated at the initial positions. SGRT of BC appears to be feasible regardless of skin tones, as fast as a snapshot for 3D imaging, and very accurate and precise for daily setup of flexible breast targets. Importantly, the technique allows us to verify the breast shape and position during beam-on time. PMID:22181332

  4. 3D thoracoscopic ultrasound volume measurement validation in an ex vivo and in vivo porcine model of lung tumours

    NASA Astrophysics Data System (ADS)

    Hornblower, V. D. M.; Yu, E.; Fenster, A.; Battista, J. J.; Malthaner, R. A.

    2007-01-01

    The purpose of this study was to validate the accuracy and reliability of volume measurements obtained using three-dimensional (3D) thoracoscopic ultrasound (US) imaging. Artificial 'tumours' were created by injecting a liquid agar mixture into spherical moulds of known volume. Once solidified, the 'tumours' were implanted into the lung tissue in both a porcine lung sample ex vivo and a surgical porcine model in vivo. 3D US images were created by mechanically rotating the thoracoscopic ultrasound probe about its long axis while the transducer was maintained in close contact with the tissue. Volume measurements were made by one observer using the ultrasound images and a manual-radial segmentation technique and these were compared with the known volumes of the agar. In vitro measurements had average accuracy and precision of 4.76% and 1.77%, respectively; in vivo measurements had average accuracy and precision of 8.18% and 1.75%, respectively. The 3D thoracoscopic ultrasound can be used to accurately and reproducibly measure 'tumour' volumes both in vivo and ex vivo.

  5. A 2D to 3D ultrasound image registration algorithm for robotically assisted laparoscopic radical prostatectomy

    NASA Astrophysics Data System (ADS)

    Esteghamatian, Mehdi; Pautler, Stephen E.; McKenzie, Charles A.; Peters, Terry M.

    2011-03-01

    Robotically assisted laparoscopic radical prostatectomy (RARP) is an effective approach to resect the diseased organ, with stereoscopic views of the targeted tissue improving the dexterity of the surgeons. However, since the laparoscopic view acquires only the surface image of the tissue, the underlying distribution of the cancer within the organ is not observed, making it difficult to make informed decisions on surgical margins and sparing of neurovascular bundles. One option to address this problem is to exploit registration to integrate the laparoscopic view with images of pre-operatively acquired dynamic contrast enhanced (DCE) MRI that can demonstrate the regions of malignant tissue within the prostate. Such a view potentially allows the surgeon to visualize the location of the malignancy with respect to the surrounding neurovascular structures, permitting a tissue-sparing strategy to be formulated directly based on the observed tumour distribution. If the tumour is close to the capsule, it may be determined that the adjacent neurovascular bundle (NVB) needs to be sacrificed within the surgical margin to ensure that any erupted tumour was resected. On the other hand, if the cancer is sufficiently far from the capsule, one or both NVBs may be spared. However, in order to realize such image integration, the pre-operative image needs to be fused with the laparoscopic view of the prostate. During the initial stages of the operation, the prostate must be tracked in real time so that the pre-operative MR image remains aligned with patient coordinate system. In this study, we propose and investigate a novel 2D to 3D ultrasound image registration algorithm to track the prostate motion with an accuracy of 2.68+/-1.31mm.

  6. Critical assessment of intramodality 3D ultrasound imaging for prostate IGRT compared to fiducial markers

    SciTech Connect

    Meer, Skadi van der; Bloemen-van Gurp, Esther; Hermans, Jolanda; Voncken, Robert; Heuvelmans, Denys; Gubbels, Carol; Fontanarosa, Davide; Visser, Peter; Lutgens, Ludy; Gils, Francis van; Verhaegen, Frank

    2013-07-15

    Purpose: A quantitative 3D intramodality ultrasound (US) imaging system was verified for daily in-room prostate localization, and compared to prostate localization based on implanted fiducial markers (FMs).Methods: Thirteen prostate patients underwent multiple US scans during treatment. A total of 376 US-scans and 817 matches were used to determine the intra- and interoperator variability. Additionally, eight other patients underwent daily prostate localization using both US and electronic portal imaging (EPI) with FMs resulting in 244 combined US-EPI scans. Scanning was performed with minimal probe pressure and a correction for the speed of sound aberration was performed. Uncertainties of both US and FM methods were assessed. User variability of the US method was assessed.Results: The overall US user variability is 2.6 mm. The mean differences between US and FM are: 2.5 {+-} 4.0 mm (LR), 0.6 {+-} 4.9 mm (SI), and -2.3 {+-} 3.6 mm (AP). The intramodality character of this US system mitigates potential errors due to transducer pressure and speed of sound aberrations.Conclusions: The overall accuracy of US (3.0 mm) is comparable to our FM workflow (2.2 mm). Since neither US nor FM can be considered a gold standard no conclusions can be drawn on the superiority of either method. Because US imaging captures the prostate itself instead of surrogates no invasive procedure is required. It requires more effort to standardize US imaging than FM detection. Since US imaging does not involve a radiation burden, US prostate imaging offers an alternative for FM EPI positioning.

  7. 3D perfused brain phantom for interstitial ultrasound thermal therapy and imaging: design, construction and characterization

    NASA Astrophysics Data System (ADS)

    Martínez, José M.; Jarosz, Boguslaw J.

    2015-03-01

    Thermal therapy has emerged as an independent modality of treating some tumors. In many clinics the hyperthermia, one of the thermal therapy modalities, has been used adjuvant to radio- or chemotherapy to substantially improve the clinical treatment outcomes. In this work, a methodology for building a realistic brain phantom for interstitial ultrasound low dose-rate thermal therapy of the brain is proposed. A 3D brain phantom made of the tissue mimicking material (TMM) had the acoustic and thermal properties in the 20-32 °C range, which is similar to that of a brain at 37 °C. The phantom had 10-11% by mass of bovine gelatin powder dissolved in ethylene glycol. The TMM sonicated at 1 MHz, 1.6 MHz and 2.5 MHz yielded the amplitude attenuation coefficients of 62  ±  1 dB m-1, 115  ±  4 dB m-1 and 175  ±  9 dB m-1, respectively. The density and acoustic speed determination at room temperature (~24 °C) gave 1040  ±  40 kg m-3 and 1545  ±  44 m s-1, respectively. The average thermal conductivity was 0.532 W m-1 K-1. The T1 and T2 values of the TMM were 207  ±  4 and 36.2  ±  0.4 ms, respectively. We envisage the use of our phantom for treatment planning and for quality assurance in MRI based temperature determination. Our phantom preparation methodology may be readily extended to other thermal therapy technologies.

  8. 3D perfused brain phantom for interstitial ultrasound thermal therapy and imaging: design, construction and characterization.

    PubMed

    Martínez, José M; Jarosz, Boguslaw J

    2015-03-07

    Thermal therapy has emerged as an independent modality of treating some tumors. In many clinics the hyperthermia, one of the thermal therapy modalities, has been used adjuvant to radio- or chemotherapy to substantially improve the clinical treatment outcomes. In this work, a methodology for building a realistic brain phantom for interstitial ultrasound low dose-rate thermal therapy of the brain is proposed. A 3D brain phantom made of the tissue mimicking material (TMM) had the acoustic and thermal properties in the 20-32 °C range, which is similar to that of a brain at 37 °C. The phantom had 10-11% by mass of bovine gelatin powder dissolved in ethylene glycol. The TMM sonicated at 1 MHz, 1.6 MHz and 2.5 MHz yielded the amplitude attenuation coefficients of 62  ±  1 dB m(-1), 115  ±  4 dB m(-1) and 175  ±  9 dB m(-1), respectively. The density and acoustic speed determination at room temperature (~24 °C) gave 1040  ±  40 kg m(-3) and 1545  ±  44 m s(-1), respectively. The average thermal conductivity was 0.532 W m(-1) K(-1). The T1 and T2 values of the TMM were 207  ±  4 and 36.2  ±  0.4 ms, respectively. We envisage the use of our phantom for treatment planning and for quality assurance in MRI based temperature determination. Our phantom preparation methodology may be readily extended to other thermal therapy technologies.

  9. 3D Bioprinting a Cell-Laden Bone Matrix for Breast Cancer Metastasis Study.

    PubMed

    Zhou, Xuan; Zhu, Wei; Nowicki, Margaret; Miao, Shida; Cui, Haitao; Holmes, Benjamin; Glazer, Robert I; Zhang, Lijie Grace

    2016-11-09

    Metastasis is one of the deadliest consequences of breast cancer, with bone being one of the primary sites of occurrence. Insufficient 3D biomimetic models currently exist to replicate this process in vitro. In this study, we developed a biomimetic bone matrix using 3D bioprinting technology to investigate the interaction between breast cancer (BrCa) cells and bone stromal cells (fetal osteoblasts and human bone marrow mesenchymal stem cells (MSCs)). A tabletop stereolithography 3D bioprinter was employed to fabricate a series of bone matrices consisting of osteoblasts or MSCs encapsulated in gelatin methacrylate (GelMA) hydrogel with nanocrystalline hydroxyapatite (nHA). When BrCa cells were introduced into the stromal cell-laden bioprinted matrices, we found that the growth of BrCa cells was enhanced by the presence of osteoblasts or MSCs, whereas the proliferation of the osteoblasts or MSCs was inhibited by the BrCa cells. The BrCa cells co-cultured with MSCs or osteoblasts presented increased vascular endothelial growth factor (VEGF) secretion in comparison to that of monocultured BrCa cells. Additionally, the alkaline phosphatase activity of MSCs or osteoblasts was reduced after BrCa cell co-culture. These results demonstrate that the 3D bioprinted matrix, with BrCa cells and bone stromal cells, provides a suitable model with which to study the interactive effects of cells in the context of an artificial bone microenvironment and thus may serve as a valuable tool for the investigation of postmetastatic breast cancer progression in bone.

  10. Stereotactic vacuum-assisted biopsies on a digital breast 3D-tomosynthesis system.

    PubMed

    Viala, Juliette; Gignier, Pierre; Perret, Baudouin; Hovasse, Claudie; Hovasse, Denis; Chancelier-Galan, Marie-Dominique; Bornet, Gregoire; Hamrouni, Adel; Lasry, Jean-Louis; Convard, Jean-Paul

    2013-01-01

    The purpose of this study was to describe our operating process and to report results of 118 stereotactic vacuum-assisted biopsies performed on a digital breast 3D-tomosynthesis system. From October 2009 to December 2010, 118 stereotactic vacuum assisted biopsies have been performed on a digital breast 3D-tomosynthesis system. Informed consent was obtained for all patients. A total of 106 patients had a lesion, six had two lesions. Sixty-one lesions were clusters of micro-calcifications, 54 were masses and three were architectural distortions. Patients were in lateral decubitus position to allow shortest skin-target approach (or sitting). Specific compression paddle, adapted on the system, performed, and graduated, allowing localization in X-Y. Tomosynthesis views define the depth of lesion. Graduated Coaxial localization kit determines the beginning of the biopsy window. Biopsies were performed with an ATEC-Suros, 9 Gauge handpiece. All biopsies, except one, have reached the lesions. Five hemorrhages were incurred in the process, but no interruption was needed. Eight breast hematomas, were all spontaneously resolved. One was an infection. About 40% of patients had a skin ecchymosis. Processing is fast, easy, and requires lower irradiation dose than with classical stereotactic biopsies. Histology analysis reported 45 benign clusters of micro-calcifications, 16 malignant clusters of micro-calcifications, 24 benign masses, and 33 malignant masses. Of 13 malignant lesions, digital 2D-mammography failed to detect eight lesions and underestimated the classification of five lesions. Digital breast 3D-tomosynthesis depicts malignant lesions not visualized on digital 2D-mammography. Development of tomosynthesis biopsy unit integrated to stereotactic system will permit histology analysis for suspicious lesions.

  11. Laser irradiated fluorescent perfluorocarbon microparticles in 2-D and 3-D breast cancer cell models

    NASA Astrophysics Data System (ADS)

    Niu, Chengcheng; Wang, Long; Wang, Zhigang; Xu, Yan; Hu, Yihe; Peng, Qinghai

    2017-03-01

    Perfluorocarbon (PFC) droplets were studied as new generation ultrasound contrast agents via acoustic or optical droplet vaporization (ADV or ODV). Little is known about the ODV irradiated vaporization mechanisms of PFC-microparticle complexs and the stability of the new bubbles produced. In this study, fluorescent perfluorohexane (PFH) poly(lactic-co-glycolic acid) (PLGA) particles were used as a model to study the process of particle vaporization and bubble stability following excitation in two-dimensional (2-D) and three-dimensional (3-D) cell models. We observed localization of the fluorescent agent on the microparticle coating material initially and after vaporization under fluorescence microscopy. Furthermore, the stability and growth dynamics of the newly created bubbles were observed for 11 min following vaporization. The particles were co-cultured with 2-D cells to form 3-D spheroids and could be vaporized even when encapsulated within the spheroids via laser irradiation, which provides an effective basis for further work.

  12. The ultrasound brain helmet: early human feasibility study of multiple simultaneous 3D scans of cerebral vasculature

    NASA Astrophysics Data System (ADS)

    Lindsey, Brooks D.; Ivancevich, Nikolas M.; Whitman, John; Light, Edward; Fronheiser, Matthew; Nicoletto, Heather A.; Laskowitz, Daniel T.; Smith, Stephen W.

    2009-02-01

    We describe early stage experiments to test the feasibility of an ultrasound brain helmet to produce multiple simultaneous real-time 3D scans of the cerebral vasculature from temporal and suboccipital acoustic windows of the skull. The transducer hardware and software of the Volumetrics Medical Imaging real-time 3D scanner were modified to support dual 2.5 MHz matrix arrays of 256 transmit elements and 128 receive elements which produce two simultaneous 64° pyramidal scans. The real-time display format consists of two coronal B-mode images merged into a 128° sector, two simultaneous parasagittal images merged into a 128° × 64° C-mode plane, and a simultaneous 64° axial image. Real-time 3D color Doppler images acquired in initial clinical studies after contrast injection demonstrate flow in several representative blood vessels. An offline Doppler rendering of data from two transducers simultaneously scanning via the temporal windows provides an early visualization of the flow in vessels on both sides of the brain. The long-term goal is to produce real-time 3D ultrasound images of the cerebral vasculature from a portable unit capable of internet transmission, thus enabling interactive 3D imaging, remote diagnosis and earlier therapeutic intervention. We are motivated by the urgency for rapid diagnosis of stroke due to the short time window of effective therapeutic intervention.

  13. Low intensity pulse ultrasound stimulate chondrocytes growth in a 3-D alginate scaffold through improved porosity and permeability.

    PubMed

    Guo, Gepu; Lu, Lu; Ji, Hongfei; Ma, Yong; Dong, Rui; Tu, Juan; Guo, Xiasheng; Qiu, Yuanyuan; Wu, Junru; Zhang, Dong

    2015-04-01

    A 3-D scaffold culture system has been used to promote in producing functional chondrocytes for repairing damaged cartilage. In the present study, the low intensity pulse ultrasound (LIPUS) (P(-)=0, 0.055, 0.085 and 0.11 MPa) was applied to improve the porosity and permeability of a 3-D alginate scaffold which was beneficial for the nutrition supply and metabolism during cell growth in 3-D alginate scaffold. The porosity and permeability of the scaffold was quantitatively analyzed based on scanning electron microscopy examination and fluorescence image observation. The results suggest that, for the scaffold exposed to LIPUS, its porosity and permeability could be significantly enhanced by the increasing LIPUS amplitude, which might be induced by the microstreaming shear stress generated by ultrasound-driven microbubble oscillations. Furthermore, the assessments of cell proliferation and collagen II expression confirmed that chondrocytes growth could be effectively promoted in 3-D alginate scaffolds treated by LIPUS, because of the improved scaffold porosity and permeability might benefit cell growth space and nutrition supply. It should also be noticed that appropriate LIPUS driving parameters should be adapted to achieve optimized chondrocytes culture effect in 3-D alginate scaffold.

  14. The simulation of 3D microcalcification clusters in 2D digital mammography and breast tomosynthesis

    SciTech Connect

    Shaheen, Eman; Van Ongeval, Chantal; Zanca, Federica; Cockmartin, Lesley; Marshall, Nicholas; Jacobs, Jurgen; Young, Kenneth C.; Dance, David R.; Bosmans, Hilde

    2011-12-15

    Purpose: This work proposes a new method of building 3D models of microcalcification clusters and describes the validation of their realistic appearance when simulated into 2D digital mammograms and into breast tomosynthesis images. Methods: A micro-CT unit was used to scan 23 breast biopsy specimens of microcalcification clusters with malignant and benign characteristics and their 3D reconstructed datasets were segmented to obtain 3D models of microcalcification clusters. These models were then adjusted for the x-ray spectrum used and for the system resolution and simulated into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. Six radiologists were asked to distinguish between 40 real and 40 simulated clusters of microcalcifications in two separate studies on 2D mammography and tomosynthesis datasets. Receiver operating characteristic (ROC) analysis was used to test the ability of each observer to distinguish between simulated and real microcalcification clusters. The kappa statistic was applied to assess how often the individual simulated and real microcalcification clusters had received similar scores (''agreement'') on their realistic appearance in both modalities. This analysis was performed for all readers and for the real and the simulated group of microcalcification clusters separately. ''Poor'' agreement would reflect radiologists' confusion between simulated and real clusters, i.e., lesions not systematically evaluated in both modalities as either simulated or real, and would therefore be interpreted as a success of the present models. Results: The area under the ROC curve, averaged over the observers, was 0.55 (95% confidence interval [0.44, 0.66]) for the 2D study, and 0.46 (95% confidence interval [0.29, 0.64]) for the tomosynthesis study, indicating no statistically significant difference between real and simulated

  15. SU-E-T-393: Investigation of Hot Spots in Tomotherapy 3D Conformal Breast Plan

    SciTech Connect

    Chen, Q; Siebers, J; Khandelwal, S

    2014-06-01

    Purpose: The purpose of this study is to determine the root-cause of hotspots inherent to Tomotherapy static beam 3D conformal radiotherapy (3DCRT) for breast treatment. ASTRO (ref here) recommends that IMRT be avoided for breast treatments. Despite Tomotherapy's inherent IMRT-like optimization and delivery, our experience at a Tomotherapy-only site has been that Tomotherapy 3DCRT fail to produce a clinically acceptable plan for 79% of our breast patients. Hot-spots have been one of the major obstacles. Methods: Eight lumpectomy patients were planned according to RTOG-1005 specification. Two or four tangential beams were used for 3DCRT breast planning. To spare the contralateral breast and ipsilateral lung, part of the PTV was not covered by the primary beam, yielding adjacent hot-spots. We hypothesize that the planning system creates hotspots adjacent to the cold spots to yield scatter radiation dose compensation in the blocked region. Various phantom and patient setup were used to test the hypothesis. Results: Hot spots outside of PTV in the range of 135% - 174% were observed for patient plan. It is confirmed that the PTV partial block causes the adjacent hot spot. The root cause is the optimizer quadratic objective function over- weighs improving the cold spot. The IMRT flexibility offered by Tomotherapy is counter-productive in static-beam 3DCRT breast treatment. For phantom case, as the Modulation-Factor increases from 1.1 to 5, the hot spot increases from 110% to 300%. Limiting the 3DCRT intensity modulation is shown to produce clinically acceptable plan. Conclusion: Most of the hot spots in Tomotherapy 3DCRT breast plan originate from the planning-system optimizer attempting to cover PTV cold spots rather than from the beam energy. Altering the objective function could improve clinical acceptability of static beam Tomotherapy 3DCRT.

  16. Novel Ultrasound Sensor and Reconstruction Algorithm for Breast Cancer Detection

    SciTech Connect

    Kallman, J S; Ashby, A E; Ciarlo, D R; Thomas, G H

    2002-09-09

    Mammography is currently used for screening women over the age of 40 for breast cancer. It has not been used routinely on younger women because their breast composition is mostly glandular, or radiodense, meaning there is an increased radiation exposure risk as well as a high likelihood of poor image quality. For these younger women, it is calculated that the radiation exposure risk is higher than the potential benefit from the screening. It is anticipated that transmission ultrasound will enable screening of much younger women and complement mamographic screening in women over 40. Ultrasonic transmission tomography holds out the hope of being a discriminating tool for breast cancer screening that is safe, comfortable, and inexpensive. From its inception, however, this imaging modality has been plagued by the problem of how to quickly and inexpensively obtain the data necessary for the tomographic reconstruction. The objectives of this project were: to adapt a new kind of sensor to data acquisition for ultrasonic transmission tomography of the breast, to collect phantom data, to devise new reconstruction algorithms to use that data, and to recommend improved methods for displaying the reconstructions. The ultrasound sensor images an acoustic pressure wave over an entire surface by converting sound pressure into an optical modulation. At the beginning of this project the sensor imaged an area of approximately 7mm by 7mm and was very fragile. During the first year of this research we improved the production and assembly process of the sensors so they now last indefinitely. Our goal for the second year was to enlarge the sensor aperture. Due to unavailability of high quality materials, we were not able to enlarge our original design. We created a phantom of materials similar to those used in manufacturing breast phantoms. We used the sensors to collect data from this phantom. We used both established (diffraction tomography) and new (paraxial adjoint method tomography

  17. FINAL INTERIM REPORT, CANDIDATE SITES, MACHINES IN USE, DATA STORAGE AND TRANSMISSION METHODS: TESTING FEASIBILITY OF 3D ULTRASOUND DATA ACQUISITION AND RELIABILITY OF DATA RETRIEVAL FROM STORED 3D IMAGES

    EPA Science Inventory

    The purpose of this Work Assignment, 02-03, is to examine the feasibility of collecting transmitting, and analyzing 3-D ultrasound data in the context of a multi-center study of pregnant women. The study will also examine the reliability of measurements obtained from 3-D images< ...

  18. Theoretical Analysis of the Accuracy and Safety of MRI-Guided Transurethral 3-D Conformal Ultrasound Prostate Therapy

    NASA Astrophysics Data System (ADS)

    Burtnyk, Mathieu; Chopra, Rajiv; Bronskill, Michael

    2009-04-01

    MRI-guided transurethral ultrasound therapy is a promising new approach for the treatment of localized prostate cancer. Several studies have demonstrated the feasibility of producing large regions of thermal coagulation adequate for prostate therapy; however, the quantitative assessment of shaping these regions to complex 3-D human prostate geometries has not been fully explored. This study used numerical simulations and twenty manually-segmented pelvic anatomical models derived from high-quality MR images of prostate cancer patients to evaluate the treatment accuracy and safety of 3-D conformal MRI-guided transurethral ultrasound therapy. The simulations incorporated a rotating multi-element planar dual-frequency ultrasound transducer (seventeen 4×3 mm elements) operating at 4.7/9.7 MHz and 10 W/cm2 maximum acoustic power. Results using a novel feedback control algorithm which modulated the ultrasound frequency, power and device rate of rotation showed that regions of thermal coagulation could be shaped to predefined prostate volumes within 1.0 mm across the vast majority of these glands. Treatment times were typically 30 min and remained below 60 min for large 60 cc prostates. With a rectal cooling temperature of 15° C, the rectal wall did not exceed 30EM43 in half of the twenty patient models with only a few 1 mm3 voxels above this threshold in the other cases. At 4.7 MHz, heating of the pelvic bone can become significant when it is located less than 10 mm from the prostate. Numerical simulations show that MRI-guided transurethral ultrasound therapy can thermally coagulate whole prostate glands accurately and safely in 3-D.

  19. Real-time 3D ultrasound fetal image enhancment techniques using motion-compensated frame rate up-conversion

    NASA Astrophysics Data System (ADS)

    Lee, Gun-Ill; Park, Rae-Hong; Song, Young-Seuk; Kim, Cheol-An; Hwang, Jae-Sub

    2003-05-01

    In this paper, we present a motion compensated frame rate up-conversion method for real-time three-dimensional (3-D) ultrasound fetal image enhancement. The conventional mechanical scan method with one-dimensional (1-D) array converters used for 3-D volume data acquisition has a slow frame rate of multi-planar images. This drawback is not an issue for stationary objects, however in ultrasound images showing a fetus of more than about 25 weeks, we perceive abrupt changes due to fast motions. To compensate for this defect, we propose the frame rate up-conversion method by which new interpolated frames are inserted between two input frames, giving smooth renditions to human eyes. More natural motions can be obtained by frame rate up-conversion. In the proposed algorithm, we employ forward motion estimation (ME), in which motion vectors (MVs) ar estimated using a block matching algorithm (BMA). To smooth MVs over neighboring blocks, vector median filtering is performed. Using these smoothed MVs, interpolated frames are reconstructed by motion compensation (MC). The undesirable blocking artifacts due to blockwise processing are reduced by block boundary filtering using a Gaussian low pass filter (LPF). The proposed method can be used in computer aided diagnosis (CAD), where more natural 3-D ultrasound images are displayed in real-time. Simulation results with several real test sequences show the effectiveness of the proposed algorithm.

  20. Register cardiac fiber orientations from 3D DTI volume to 2D ultrasound image of rat hearts

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Lerakis, Stamatios; Wagner, Mary B.; Fei, Baowei

    2015-03-01

    Two-dimensional (2D) ultrasound or echocardiography is one of the most widely used examinations for the diagnosis of cardiac diseases. However, it only supplies the geometric and structural information of the myocardium. In order to supply more detailed microstructure information of the myocardium, this paper proposes a registration method to map cardiac fiber orientations from three-dimensional (3D) magnetic resonance diffusion tensor imaging (MR-DTI) volume to the 2D ultrasound image. It utilizes a 2D/3D intensity based registration procedure including rigid, log-demons, and affine transformations to search the best similar slice from the template volume. After registration, the cardiac fiber orientations are mapped to the 2D ultrasound image via fiber relocations and reorientations. This method was validated by six images of rat hearts ex vivo. The evaluation results indicated that the final Dice similarity coefficient (DSC) achieved more than 90% after geometric registrations; and the inclination angle errors (IAE) between the mapped fiber orientations and the gold standards were less than 15 degree. This method may provide a practical tool for cardiologists to examine cardiac fiber orientations on ultrasound images and have the potential to supply additional information for diagnosis of cardiac diseases.

  1. Investigation of mass transfer intensification under power ultrasound irradiation using 3D computational simulation: A comparative analysis.

    PubMed

    Sajjadi, Baharak; Asgharzadehahmadi, Seyedali; Asaithambi, Perumal; Raman, Abdul Aziz Abdul; Parthasarathy, Rajarathinam

    2017-01-01

    This paper aims at investigating the influence of acoustic streaming induced by low-frequency (24kHz) ultrasound irradiation on mass transfer in a two-phase system. The main objective is to discuss the possible mass transfer improvements under ultrasound irradiation. Three analyses were conducted: i) experimental analysis of mass transfer under ultrasound irradiation; ii) comparative analysis between the results of the ultrasound assisted mass transfer with that obtained from mechanically stirring; and iii) computational analysis of the systems using 3D CFD simulation. In the experimental part, the interactive effects of liquid rheological properties, ultrasound power and superficial gas velocity on mass transfer were investigated in two different sonicators. The results were then compared with that of mechanical stirring. In the computational part, the results were illustrated as a function of acoustic streaming behaviour, fluid flow pattern, gas/liquid volume fraction and turbulence in the two-phase system and finally the mass transfer coefficient was specified. It was found that additional turbulence created by ultrasound played the most important role on intensifying the mass transfer phenomena compared to that in stirred vessel. Furthermore, long residence time which depends on geometrical parameters is another key for mass transfer. The results obtained in the present study would help researchers understand the role of ultrasound as an energy source and acoustic streaming as one of the most important of ultrasound waves on intensifying gas-liquid mass transfer in a two-phase system and can be a breakthrough in the design procedure as no similar studies were found in the existing literature.

  2. Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation

    PubMed Central

    Jeon, Jessie S.; Bersini, Simone; Gilardi, Mara; Dubini, Gabriele; Charest, Joseph L.; Moretti, Matteo; Kamm, Roger D.

    2015-01-01

    A key aspect of cancer metastases is the tendency for specific cancer cells to home to defined subsets of secondary organs. Despite these known tendencies, the underlying mechanisms remain poorly understood. Here we develop a microfluidic 3D in vitro model to analyze organ-specific human breast cancer cell extravasation into bone- and muscle-mimicking microenvironments through a microvascular network concentrically wrapped with mural cells. Extravasation rates and microvasculature permeabilities were significantly different in the bone-mimicking microenvironment compared with unconditioned or myoblast containing matrices. Blocking breast cancer cell A3 adenosine receptors resulted in higher extravasation rates of cancer cells into the myoblast-containing matrices compared with untreated cells, suggesting a role for adenosine in reducing extravasation. These results demonstrate the efficacy of our model as a drug screening platform and a promising tool to investigate specific molecular pathways involved in cancer biology, with potential applications to personalized medicine. PMID:25524628

  3. The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis

    SciTech Connect

    Shaheen, Eman De Keyzer, Frederik; Bosmans, Hilde; Ongeval, Chantal Van; Dance, David R.; Young, Kenneth C.

    2014-08-15

    Purpose: This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Methods: Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with an iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. Results: The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly

  4. Skeletonization approach for characterization of benign vs. malignant single thyroid nodules using 3D contrast enhanced ultrasound

    NASA Astrophysics Data System (ADS)

    Molinari, Filippo; Mantovani, Alice; Deandrea, Maurilio; Limone, Paolo; Garberoglio, Roberto; Suri, Jasjit S.

    2011-03-01

    High-resolution ultrasonography (HRUS) has potentialities in differential diagnosis between malignant and benign thyroid lesions, but interpretative pitfalls remain and accuracy is still poor. We developed an image processing technique for characterizing the intra-nodular vascularization of thyroid lesions. Twenty nodules (ten malignant) were analyzed by 3-D contrast-enhanced ultrasound imaging. The 3-D volumes were preprocessed and skeletonized. Seven vascular parameters were computed on the skeletons: number of vascular trees (NT); vascular density (VD); number of branching nodes (or branching points) (NB); mean vessel radius (MR); 2-D (DM) and 3-D (SOAM) tortuosity; and inflection count metric (ICM). Results showed that the malignant nodules had higher values of NT (83.1 vs. 18.1), VD (00.4 vs. 0.01), NB (1453 vs. 552), DM (51 vs. 18), ICM (19.9 vs. 8.7), and SOAM (26 vs. 11). Quantification of nodular vascularization based on 3-D contrast-enhanced ultrasound and skeletonization could help differential diagnosis of thyroid lesions.

  5. A 3D Freehand Ultrasound System for Multi-view Reconstructions from Sparse 2D Scanning Planes

    PubMed Central

    2011-01-01

    Background A significant limitation of existing 3D ultrasound systems comes from the fact that the majority of them work with fixed acquisition geometries. As a result, the users have very limited control over the geometry of the 2D scanning planes. Methods We present a low-cost and flexible ultrasound imaging system that integrates several image processing components to allow for 3D reconstructions from limited numbers of 2D image planes and multiple acoustic views. Our approach is based on a 3D freehand ultrasound system that allows users to control the 2D acquisition imaging using conventional 2D probes. For reliable performance, we develop new methods for image segmentation and robust multi-view registration. We first present a new hybrid geometric level-set approach that provides reliable segmentation performance with relatively simple initializations and minimum edge leakage. Optimization of the segmentation model parameters and its effect on performance is carefully discussed. Second, using the segmented images, a new coarse to fine automatic multi-view registration method is introduced. The approach uses a 3D Hotelling transform to initialize an optimization search. Then, the fine scale feature-based registration is performed using a robust, non-linear least squares algorithm. The robustness of the multi-view registration system allows for accurate 3D reconstructions from sparse 2D image planes. Results Volume measurements from multi-view 3D reconstructions are found to be consistently and significantly more accurate than measurements from single view reconstructions. The volume error of multi-view reconstruction is measured to be less than 5% of the true volume. We show that volume reconstruction accuracy is a function of the total number of 2D image planes and the number of views for calibrated phantom. In clinical in-vivo cardiac experiments, we show that volume estimates of the left ventricle from multi-view reconstructions are found to be in better

  6. Accurate visualization and quantification of coronary vasculature by 3D/4D fusion from biplane angiography and intravascular ultrasound

    NASA Astrophysics Data System (ADS)

    Wahle, Andreas; Mitchell, Steven C.; Olszewski, Mark E.; Long, Ryan M.; Sonka, Milan

    2001-01-01

    In the rapidly evolving field of intravascular ultrasound (IVUS) for tissue characterization and visualization, the assessment of vessel morphology still lacks a geometrically correct 3D reconstruction. The IVUS frames are usually stacked up to form a straight vessel, neglecting curvature and the axial twisting of the catheter during the pullback. This paper presents a comprehensive system for geometrically correct reconstruction of IVUS images by fusion with biplane angiography, thus combining the advantages of both modalities. Vessel cross-section and tissue characteristics are obtained form IVUS, while the 3D locations are derived by geometrical reconstruction from the angiographic projections. ECG-based timing ensures a proper match of the image data with the respective heart phase. The fusion is performed for each heart phase individually, thus yielding the 4-D data as a set of 3-D reconstructions.

  7. Left Ventricular Myocardial Segmentation in 3-D Ultrasound Recordings: Effect of Different Endocardial and Epicardial Coupling Strategies.

    PubMed

    Pedrosa, Joao; Barbosa, Daniel; Heyde, Brecht; Schnell, Frederic; Rosner, Assami; Claus, Piet; D'hooge, Jan

    2017-03-01

    Cardiac volume/function assessment remains a critical step in daily cardiology, and 3-D ultrasound plays an increasingly important role. Though development of automatic endocardial segmentation methods has received much attention, the same cannot be said about epicardial segmentation, in spite of the importance of full myocardial segmentation. In this paper, different ways of coupling the endocardial and epicardial segmentations are contrasted and compared with uncoupled segmentation. For this purpose, the B-spline explicit active surfaces framework was used; 27 3-D echocardiographic images were used to validate the different coupling strategies, which were compared with manual contouring of the endocardial and epicardial borders performed by an expert. It is shown that an independent segmentation of the endocardium followed by an epicardial segmentation coupled to the endocardium is the most advantageous. In this way, a framework for fully automatic 3-D myocardial segmentation is proposed using a novel coupling strategy.

  8. Characterization of controlled bone defects using 2D and 3D ultrasound imaging techniques.

    PubMed

    Parmar, Biren J; Longsine, Whitney; Sabonghy, Eric P; Han, Arum; Tasciotti, Ennio; Weiner, Bradley K; Ferrari, Mauro; Righetti, Raffaella

    2010-08-21

    Ultrasound is emerging as an attractive alternative modality to standard x-ray and CT methods for bone assessment applications. As of today, however, there is a lack of systematic studies that investigate the performance of diagnostic ultrasound techniques in bone imaging applications. This study aims at understanding the performance limitations of new ultrasound techniques for imaging bones in controlled experiments in vitro. Experiments are performed on samples of mammalian and non-mammalian bones with controlled defects with size ranging from 400 microm to 5 mm. Ultrasound findings are statistically compared with those obtained from the same samples using standard x-ray imaging modalities and optical microscopy. The results of this study demonstrate that it is feasible to use diagnostic ultrasound imaging techniques to assess sub-millimeter bone defects in real time and with high accuracy and precision. These results also demonstrate that ultrasound imaging techniques perform comparably better than x-ray imaging and optical imaging methods, in the assessment of a wide range of controlled defects both in mammalian and non-mammalian bones. In the future, ultrasound imaging techniques might provide a cost-effective, real-time, safe and portable diagnostic tool for bone imaging applications.

  9. A new concept for intraoperative matching of 3D ultrasound and CT.

    PubMed

    Schorr, O; Wörn, H

    2001-01-01

    Matching of ultrasound images with CT or MRI scans is an awkward and unsatisfactory task when using conventional methods. Wide ranging differences in modality of ultrasound and CT/MRI require new techniques to be explored for successful alignment. Ultrasound images characteristically show comparable high noise ratio due to scattering inside the region of interest and the surrounding area. Additionally, shadowing and tissue dependent echo response time produce geometric artifacts. These image distortions are sophisticated to recover. Though image quality and geometric relationship are poor, ultrasound images show the potential for fast, low-cost, non-invasive and flexible image acquisition, predestinated for intraoperative application. The fusion of intraoperative ultrasound and preoperatively acquired CT/MRI images provides both, geometric invariance and flexible fast image acquisition, merging in a powerful tool for augmented three dimensional reality. In this paper we describe a completely new concept for alignment with abstaining from direct rigid or elastic matching of ultrasound to CT/MRI. Instead of placing those images in direct relationship, our approach involves a simulation of ultrasound wave behavior in order to predict B-mode images.

  10. High-frequency ultrasound imaging for breast cancer biopsy guidance

    PubMed Central

    Cummins, Thomas; Yoon, Changhan; Choi, Hojong; Eliahoo, Payam; Kim, Hyung Ham; Yamashita, Mary W.; Hovanessian-Larsen, Linda J.; Lang, Julie E.; Sener, Stephen F.; Vallone, John; Martin, Sue E.; Kirk Shung, K.

    2015-01-01

    Abstract. Image-guided core needle biopsy is the current gold standard for breast cancer diagnosis. Microcalcifications, an important radiographic finding on mammography suggestive of early breast cancer such as ductal carcinoma in situ, are usually biopsied under stereotactic guidance. This procedure, however, is uncomfortable for patients and requires the use of ionizing radiation. It would be preferable to biopsy microcalcifications under ultrasound guidance since it is a faster procedure, more comfortable for the patient, and requires no radiation. However, microcalcifications cannot reliably be detected with the current standard ultrasound imaging systems. This study is motivated by the clinical need for real-time high-resolution ultrasound imaging of microcalcifications, so that biopsies can be accurately performed under ultrasound guidance. We have investigated how high-frequency ultrasound imaging can enable visualization of microstructures in ex vivo breast tissue biopsy samples. We generated B-mode images of breast tissue and applied the Nakagami filtering technique to help refine image output so that microcalcifications could be better assessed during ultrasound-guided core biopsies. We describe the preliminary clinical results of high-frequency ultrasound imaging of ex vivo breast biopsy tissue with microcalcifications and without Nakagami filtering and the correlation of these images with the pathology examination by hematoxylin and eosin stain and whole slide digital scanning. PMID:26693167

  11. Investigation of a scanned cylindrical ultrasound system for breast hyperthermia.

    PubMed

    Ju, Kuen-Cheng; Tseng, Li-Te; Chen, Yung-Yaw; Lin, Win-Li

    2006-02-07

    This paper investigates the feasibility of a scanned cylindrical ultrasound system for producing uniform heating from the central to the superficial portions of the breast or localized heating within the breast at a specific location. The proposed system consists of plane ultrasound transducer(s) mounted on a scanned cylindrical support. The breast was immersed in water and surrounded by this system during the treatment. The control parameters considered are the size of the transducer, the ultrasound frequency, the scan angle and the shifting distance between the axes of the breast and the system. Three-dimensional acoustical and thermal models were used to calculate the temperature distribution. Non-perfused phantom experiments were performed to verify the simulation results. Simulation results indicate that high frequency ultrasound could be used for the superficial heating, and the scan angle of the transducer could be varied to obtain an appropriate high temperature region to cover the desired treatment region. Low frequency ultrasound could be used for deep heating and the high temperature region could be moved by shifting the system. In addition, a combination of low and high frequency ultrasound could result in a portion treatment from the central to the superficial breast or an entire breast treatment. Good agreement was obtained between non-perfused experiments and simulation results. The findings of this study can be used to determine the effects of the control parameters of this system, as well as to select the optimal parameters for a specific treatment.

  12. Conceptual detector development and Monte Carlo simulation of a novel 3D breast computed tomography system

    NASA Astrophysics Data System (ADS)

    Ziegle, Jens; Müller, Bernhard H.; Neumann, Bernd; Hoeschen, Christoph

    2016-03-01

    A new 3D breast computed tomography (CT) system is under development enabling imaging of microcalcifications in a fully uncompressed breast including posterior chest wall tissue. The system setup uses a steered electron beam impinging on small tungsten targets surrounding the breast to emit X-rays. A realization of the corresponding detector concept is presented in this work and it is modeled through Monte Carlo simulations in order to quantify first characteristics of transmission and secondary photons. The modeled system comprises a vertical alignment of linear detectors hold by a case that also hosts the breast. Detectors are separated by gaps to allow the passage of X-rays towards the breast volume. The detectors located directly on the opposite side of the gaps detect incident X-rays. Mechanically moving parts in an imaging system increase the duration of image acquisition and thus can cause motion artifacts. So, a major advantage of the presented system design is the combination of the fixed detectors and the fast steering electron beam which enable a greatly reduced scan time. Thereby potential motion artifacts are reduced so that the visualization of small structures such as microcalcifications is improved. The result of the simulation of a single projection shows high attenuation by parts of the detector electronics causing low count levels at the opposing detectors which would require a flat field correction, but it also shows a secondary to transmission ratio of all counted X-rays of less than 1 percent. Additionally, a single slice with details of various sizes was reconstructed using filtered backprojection. The smallest detail which was still visible in the reconstructed image has a size of 0.2mm.

  13. Migration dynamics of breast cancer cells in a tunable 3D interstitial flow chamber.

    PubMed

    Haessler, Ulrike; Teo, Jeremy C M; Foretay, Didier; Renaud, Philippe; Swartz, Melody A

    2012-04-01

    The migration of cells such as leukocytes, tumor cells, and fibroblasts through 3D matrices is critical for regulating homeostasis and immunity and for driving pathogenesis. Interstitial flow through the extracellular matrix, which can substantially increase during inflammation and in the tumor microenvironment, can influence cell migration in multiple ways. Leukocytes and tumor cells are heterogeneous in their migration responses to flow, yet most 3D migration studies use endpoint measurements representing average characteristics. Here we present a robust new microfluidic device for 3D culture with live imaging under well-controlled flow conditions, along with a comparison of analytical methods for describing the migration behavior of heterogeneous cell populations. We then use the model to provide new insight on how interstitial flow affects MDA-MB-231 breast cancer cell invasion, phenomena that are not seen from averaged or endpoint measurements. Specifically, we find that interstitial flow increases the percentage of cells that become migratory, and increases migrational speed in about 20% of the cells. It also increases the migrational persistence of a subpopulation (5-10% of cells) in the positive or negative flow direction. Cells that migrated upstream moved faster but with less directedness, whereas cells that migrated in the direction of flow moved at slower speeds but with higher directedness. These findings demonstrate how fluid flow in the tumor microenvironment can enhance tumor cell invasion by directing a subpopulation of tumor cells in the flow direction; i.e., towards the draining lymphatic vessels, a major route of metastasis.

  14. SIMULTANEOUS BILATERAL REAL-TIME 3-D TRANSCRANIAL ULTRASOUND IMAGING AT 1 MHZ THROUGH POOR ACOUSTIC WINDOWS

    PubMed Central

    Lindsey, Brooks D.; Nicoletto, Heather A.; Bennett, Ellen R.; Laskowitz, Daniel T.; Smith, Stephen W.

    2013-01-01

    Ultrasound imaging has been proposed as a rapid, portable alternative imaging modality to examine stroke patients in pre-hospital or emergency room settings. However, in performing transcranial ultrasound examinations, 8%–29% of patients in a general population may present with window failure, in which case it is not possible to acquire clinically useful sonographic information through the temporal bone acoustic window. In this work, we describe the technical considerations, design and fabrication of low-frequency (1.2 MHz), large aperture (25.3 mm) sparse matrix array transducers for 3-D imaging in the event of window failure. These transducers are integrated into a system for real-time 3-D bilateral transcranial imaging—the ultrasound brain helmet—and color flow imaging capabilities at 1.2 MHz are directly compared with arrays operating at 1.8 MHz in a flow phantom with attenuation comparable to the in vivo case. Contrast-enhanced imaging allowed visualization of arteries of the Circle of Willis in 5 of 5 subjects and 8 of 10 sides of the head despite probe placement outside of the acoustic window. Results suggest that this type of transducer may allow acquisition of useful images either in individuals with poor windows or outside of the temporal acoustic window in the field. PMID:23415287

  15. Simultaneous bilateral real-time 3-d transcranial ultrasound imaging at 1 MHz through poor acoustic windows.

    PubMed

    Lindsey, Brooks D; Nicoletto, Heather A; Bennett, Ellen R; Laskowitz, Daniel T; Smith, Stephen W

    2013-04-01

    Ultrasound imaging has been proposed as a rapid, portable alternative imaging modality to examine stroke patients in pre-hospital or emergency room settings. However, in performing transcranial ultrasound examinations, 8%-29% of patients in a general population may present with window failure, in which case it is not possible to acquire clinically useful sonographic information through the temporal bone acoustic window. In this work, we describe the technical considerations, design and fabrication of low-frequency (1.2 MHz), large aperture (25.3 mm) sparse matrix array transducers for 3-D imaging in the event of window failure. These transducers are integrated into a system for real-time 3-D bilateral transcranial imaging-the ultrasound brain helmet-and color flow imaging capabilities at 1.2 MHz are directly compared with arrays operating at 1.8 MHz in a flow phantom with attenuation comparable to the in vivo case. Contrast-enhanced imaging allowed visualization of arteries of the Circle of Willis in 5 of 5 subjects and 8 of 10 sides of the head despite probe placement outside of the acoustic window. Results suggest that this type of transducer may allow acquisition of useful images either in individuals with poor windows or outside of the temporal acoustic window in the field.

  16. Development and applications of 4-D ultrasound (dynamic 3-D) in neurosonology.

    PubMed

    Delcker, A; Schürks, M; Polz, H

    1999-10-01

    The development and application of color-coded data in three-dimensional (3-D) reconstruction or four-dimensional (4-D) imaging (equal to dynamic 3-D) are demonstrated. In 4-D imaging, electrocardiography-triggered data acquisition of consecutive phases during the heart cycle are stored to form a multiphase 3-D data set. The option of color-coded data gives a new insight into such hemodynamic information. In the past, 3-D reconstructions were simple unicolor images, as in power mode, and the color-coded hemodynamic information was lost. These new options are presented here, along with color-coded data in examples of angiographically controlled pathologic results in extracranial and intracranial vessels.

  17. Laser irradiated fluorescent perfluorocarbon microparticles in 2-D and 3-D breast cancer cell models

    PubMed Central

    Niu, Chengcheng; Wang, Long; Wang, Zhigang; Xu, Yan; Hu, Yihe; Peng, Qinghai

    2017-01-01

    Perfluorocarbon (PFC) droplets were studied as new generation ultrasound contrast agents via acoustic or optical droplet vaporization (ADV or ODV). Little is known about the ODV irradiated vaporization mechanisms of PFC-microparticle complexs and the stability of the new bubbles produced. In this study, fluorescent perfluorohexane (PFH) poly(lactic-co-glycolic acid) (PLGA) particles were used as a model to study the process of particle vaporization and bubble stability following excitation in two-dimensional (2-D) and three-dimensional (3-D) cell models. We observed localization of the fluorescent agent on the microparticle coating material initially and after vaporization under fluorescence microscopy. Furthermore, the stability and growth dynamics of the newly created bubbles were observed for 11 min following vaporization. The particles were co-cultured with 2-D cells to form 3-D spheroids and could be vaporized even when encapsulated within the spheroids via laser irradiation, which provides an effective basis for further work. PMID:28262671

  18. Development and Implementation of a Web-Enabled 3D Consultation Tool for Breast Augmentation Surgery Based on 3D-Image Reconstruction of 2D Pictures

    PubMed Central

    Garcia, Jaime; Olariu, Radu; Dindoyal, Irving; Le Huu, Serge

    2012-01-01

    Background Producing a rich, personalized Web-based consultation tool for plastic surgeons and patients is challenging. Objective (1) To develop a computer tool that allows individual reconstruction and simulation of 3-dimensional (3D) soft tissue from ordinary digital photos of breasts, (2) to implement a Web-based, worldwide-accessible preoperative surgical planning platform for plastic surgeons, and (3) to validate this tool through a quality control analysis by comparing 3D laser scans of the patients with the 3D reconstructions with this tool from original 2-dimensional (2D) pictures of the same patients. Methods The proposed system uses well-established 2D digital photos for reconstruction into a 3D torso, which is then available to the user for interactive planning. The simulation is performed on dedicated servers, accessible via Internet. It allows the surgeon, together with the patient, to previsualize the impact of the proposed breast augmentation directly during the consultation before a surgery is decided upon. We retrospectively conduced a quality control assessment of available anonymized pre- and postoperative 2D digital photographs of patients undergoing breast augmentation procedures. The method presented above was used to reconstruct 3D pictures from 2D digital pictures. We used a laser scanner capable of generating a highly accurate surface model of the patient’s anatomy to acquire ground truth data. The quality of the computed 3D reconstructions was compared with the ground truth data used to perform both qualitative and quantitative evaluations. Results We evaluated the system on 11 clinical cases for surface reconstructions and 4 clinical cases of postoperative simulations, using laser surface scan technologies showing a mean reconstruction error between 2 and 4 mm and a maximum outlier error of 16 mm. Qualitative and quantitative analyses from plastic surgeons demonstrate the potential of these new emerging technologies. Conclusions We

  19. 3D Near Infrared and Ultrasound Imaging of Peripheral Blood Vessels for Real-Time Localization and Needle Guidance

    PubMed Central

    Chen, Alvin I.; Balter, Max L.; Maguire, Timothy J.; Yarmush, Martin L.

    2016-01-01

    This paper presents a portable imaging device designed to detect peripheral blood vessels for cannula insertion that are otherwise difficult to visualize beneath the skin. The device combines near infrared stereo vision, ultrasound, and real-time image analysis to map the 3D structure of subcutaneous vessels. We show that the device can identify adult forearm vessels and be used to guide manual insertions in tissue phantoms with increased first-stick accuracy compared to unassisted cannulation. We also demonstrate that the system may be coupled with a robotic manipulator to perform automated, image-guided venipuncture. PMID:27981261

  20. 3-D high-frequency ultrasound backscatter analysis of human articular cartilage.

    PubMed

    Männicke, Nils; Schöne, Martin; Gottwald, Matthias; Göbel, Felix; Oelze, Michael L; Raum, Kay

    2014-01-01

    High-frequency ultrasound is a promising method for non-invasive characterization of cartilage degeneration. Surface reflection and integrated spectral parameters are often used. In the work described here, human cartilage samples with varying degrees of degeneration were measured using a 40-MHz transducer. Backscatter signals originating from the superficial and transitional zones of cartilage were analyzed using amplitude, spectral and envelope statistical parameters and related to degenerative changes of the matrix given by the Mankin score. The results indicate an increased sensitivity of spectral slope and envelope statistical parameters to early matrix degeneration compared with conventional amplitude parameters. Furthermore, moderate correlations of chondrocyte number with backscatter amplitude and envelope statistics were observed, suggesting that at high frequencies, cells are one important scattering source in cartilage. An application of spectral and envelope statistical parameters to intra-articular ultrasound arthroscopy is conceivable and could improve the diagnostic potential of these examinations. Future studies are necessary to clarify the contributions of chondrocytes, extracellular matrix and collagen content to ultrasound backscatter to further improve the diagnostic potential of ultrasound for cartilage assessment.

  1. Rapid review: Estimates of incremental breast cancer detection from tomosynthesis (3D-mammography) screening in women with dense breasts.

    PubMed

    Houssami, Nehmat; Turner, Robin M

    2016-12-01

    High breast tissue density increases breast cancer (BC) risk, and the risk of an interval BC in mammography screening. Density-tailored screening has mostly used adjunct imaging to screen women with dense breasts, however, the emergence of tomosynthesis (3D-mammography) provides an opportunity to steer density-tailored screening in new directions potentially obviating the need for adjunct imaging. A rapid review (a streamlined evidence synthesis) was performed to summarise data on tomosynthesis screening in women with heterogeneously dense or extremely dense breasts, with the aim of estimating incremental (additional) BC detection attributed to tomosynthesis in comparison with standard 2D-mammography. Meta-analysed data from prospective trials comparing these mammography modalities in the same women (N = 10,188) in predominantly biennial screening showed significant incremental BC detection of 3.9/1000 screens attributable to tomosynthesis (P < 0.001). Studies comparing different groups of women screened with tomosynthesis (N = 103,230) or with 2D-mammography (N = 177,814) yielded a pooled difference in BC detection of 1.4/1000 screens representing significantly higher BC detection in tomosynthesis-screened women (P < 0.001), and a pooled difference for recall of -23.3/1000 screens representing significantly lower recall in tomosynthesis-screened groups (P < 0.001), than for 2D-mammography. These estimates can inform planning of future trials of density-tailored screening and may guide discussion of screening women with dense breasts.

  2. Differences in Multi-Modal Ultrasound Imaging between Triple Negative and Non-Triple Negative Breast Cancer.

    PubMed

    Li, Ziyao; Tian, Jiawei; Wang, Xiaowei; Wang, Ying; Wang, Zhenzhen; Zhang, Lei; Jing, Hui; Wu, Tong

    2016-04-01

    The objective of this study was to identify multi-modal ultrasound imaging parameters that could potentially help to differentiate between triple negative breast cancer (TNBC) and non-TNBC. Conventional ultrasonography, ultrasound strain elastography and 3-D ultrasound (3-D-US) findings from 50 TNBC and 179 non-TNBC patients were retrospectively reviewed. Immunohistochemical examination was used as the reference gold standard for cancer subtyping. Different ultrasound modalities were initially analyzed to define TNBC-related features. Subsequently, logistic regression analysis was applied to TNBC-related features to establish models for predicting TNBC. TNBCs often presented as micro-lobulated, markedly hypo-echoic masses with an abrupt interface (p = 0.015, 0.0015 and 0.004, compared with non-TNBCs, respectively) on conventional ultrasound, and showed a diminished retraction pattern phenomenon in the coronal plane (p = 0.035) on 3-D-US. Our findings suggest that B-mode ultrasound and 3-D-US in multi-modality ultrasonography could be a useful non-invasive technique for differentiating TNBCs from non-TNBCs.

  3. Three dimensional level set based semiautomatic segmentation of atherosclerotic carotid artery wall volume using 3D ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Murad; AlMuhanna, Khalid; Zhao, Limin; Lal, Brajesh K.; Sikdar, Siddhartha

    2014-03-01

    3D segmentation of carotid plaque from ultrasound (US) images is challenging due to image artifacts and poor boundary definition. Semiautomatic segmentation algorithms for calculating vessel wall volume (VWV) have been proposed for the common carotid artery (CCA) but they have not been applied on plaques in the internal carotid artery (ICA). In this work, we describe a 3D segmentation algorithm that is robust to shadowing and missing boundaries. Our algorithm uses distance regularized level set method with edge and region based energy to segment the adventitial wall boundary (AWB) and lumen-intima boundary (LIB) of plaques in the CCA, ICA and external carotid artery (ECA). The algorithm is initialized by manually placing points on the boundary of a subset of transverse slices with an interslice distance of 4mm. We propose a novel user defined stopping surface based energy to prevent leaking of evolving surface across poorly defined boundaries. Validation was performed against manual segmentation using 3D US volumes acquired from five asymptomatic patients with carotid stenosis using a linear 4D probe. A pseudo gold-standard boundary was formed from manual segmentation by three observers. The Dice similarity coefficient (DSC), Hausdor distance (HD) and modified HD (MHD) were used to compare the algorithm results against the pseudo gold-standard on 1205 cross sectional slices of 5 3D US image sets. The algorithm showed good agreement with the pseudo gold standard boundary with mean DSC of 93.3% (AWB) and 89.82% (LIB); mean MHD of 0.34 mm (AWB) and 0.24 mm (LIB); mean HD of 1.27 mm (AWB) and 0.72 mm (LIB). The proposed 3D semiautomatic segmentation is the first step towards full characterization of 3D plaque progression and longitudinal monitoring.

  4. [Spatio-temporal image correlation (STIC) and tomographic ultrasound imaging (TUI)--combined clinical implementation in 3D/4D fetal echocardiography].

    PubMed

    Markov, D

    2010-01-01

    Two new forms of volume data image processing by three (3D) and four (4D) dimensional ultrasound named Spatio-Temporal Image Correlation (STIC) and Tomographic Ultrasound Imaging (TUI) are presented. The advantages and disadvantages of the combined clinical implementation of both modalities in fetal echocardiography are discussed.

  5. Opto-acoustic breast imaging with co-registered ultrasound

    NASA Astrophysics Data System (ADS)

    Zalev, Jason; Clingman, Bryan; Herzog, Don; Miller, Tom; Stavros, A. Thomas; Oraevsky, Alexander; Kist, Kenneth; Dornbluth, N. Carol; Otto, Pamela

    2014-03-01

    We present results from a recent study involving the ImagioTM breast imaging system, which produces fused real-time two-dimensional color-coded opto-acoustic (OA) images that are co-registered and temporally inter- leaved with real-time gray scale ultrasound using a specialized duplex handheld probe. The use of dual optical wavelengths provides functional blood map images of breast tissue and tumors displayed with high contrast based on total hemoglobin and oxygen saturation of the blood. This provides functional diagnostic information pertaining to tumor metabolism. OA also shows morphologic information about tumor neo-vascularity that is complementary to the morphological information obtained with conventional gray scale ultrasound. This fusion technology conveniently enables real-time analysis of the functional opto-acoustic features of lesions detected by readers familiar with anatomical gray scale ultrasound. We demonstrate co-registered opto-acoustic and ultrasonic images of malignant and benign tumors from a recent clinical study that provide new insight into the function of tumors in-vivo. Results from the Feasibility Study show preliminary evidence that the technology may have the capability to improve characterization of benign and malignant breast masses over conventional diagnostic breast ultrasound alone and to improve overall accuracy of breast mass diagnosis. In particular, OA improved speci city over that of conventional diagnostic ultrasound, which could potentially reduce the number of negative biopsies performed without missing cancers.

  6. The systematic and random errors determination using realtime 3D surface tracking system in breast cancer

    NASA Astrophysics Data System (ADS)

    Kanphet, J.; Suriyapee, S.; Dumrongkijudom, N.; Sanghangthum, T.; Kumkhwao, J.; Wisetrintong, M.

    2016-03-01

    The purpose of this study to determine the patient setup uncertainties in deep inspiration breath-hold (DIBH) radiation therapy for left breast cancer patients using real-time 3D surface tracking system. The six breast cancer patients treated by 6 MV photon beams from TrueBeam linear accelerator were selected. The patient setup errors and motion during treatment were observed and calculated for interfraction and intrafraction motions. The systematic and random errors were calculated in vertical, longitudinal and lateral directions. From 180 images tracking before and during treatment, the maximum systematic error of interfraction and intrafraction motions were 0.56 mm and 0.23 mm, the maximum random error of interfraction and intrafraction motions were 1.18 mm and 0.53 mm, respectively. The interfraction was more pronounce than the intrafraction, while the systematic error was less impact than random error. In conclusion the intrafraction motion error from patient setup uncertainty is about half of interfraction motion error, which is less impact due to the stability in organ movement from DIBH. The systematic reproducibility is also half of random error because of the high efficiency of modern linac machine that can reduce the systematic uncertainty effectively, while the random errors is uncontrollable.

  7. In vivo validation of a 3D ultrasound system for imaging the lateral ventricles of neonates

    NASA Astrophysics Data System (ADS)

    Kishimoto, J.; Fenster, A.; Chen, N.; Lee, D.; de Ribaupierre, S.

    2014-03-01

    Dilated lateral ventricles in neonates can be due to many different causes, such as brain loss, or congenital malformation; however, the main cause is hydrocephalus, which is the accumulation of fluid within the ventricular system. Hydrocephalus can raise intracranial pressure resulting in secondary brain damage, and up to 25% of patients with severely enlarged ventricles have epilepsy in later life. Ventricle enlargement is clinically monitored using 2D US through the fontanels. The sensitivity of 2D US to dilation is poor because it cannot provide accurate measurements of irregular volumes such as the ventricles, so most clinical evaluations are of a qualitative nature. We developed a 3D US system to image the cerebral ventricles of neonates within the confines of incubators that can be easily translated to more open environments. Ventricle volumes can be segmented from these images giving a quantitative volumetric measurement of ventricle enlargement without moving the patient into an imaging facility. In this paper, we report on in vivo validation studies: 1) comparing 3D US ventricle volumes before and after clinically necessary interventions removing CSF, and 2) comparing 3D US ventricle volumes to those from MRI. Post-intervention ventricle volumes were less than pre-intervention measurements for all patients and all interventions. We found high correlations (R = 0.97) between the difference in ventricle volume and the reported removed CSF with the slope not significantly different than 1 (p < 0.05). Comparisons between ventricle volumes from 3D US and MR images taken 4 (±3.8) days of each other did not show significant difference (p=0.44) between 3D US and MRI through paired t-test.

  8. [Value of 3D-4D sonography in fetal and gynecological ultrasound examination: principles and indications].

    PubMed

    Levaillant, Jm

    2006-12-01

    Three-dimensional ultrasound has become an essential tool for visualization of fetal structures in the past few years. The recent improvements in transducers and signal processing provide new information, particularly in obstetrics and gynecology sonography. The present paper will present the most recent advances in volume acquisition and presentation modes followed by results of fetal organ visualization in normal and abnormal cases as well as applications in gynecology.

  9. Predicate-Based Focus-and-Context Visualization for 3D Ultrasound.

    PubMed

    Schulte zu Berge, Christian; Baust, Maximilian; Kapoor, Ankur; Navab, Nassir

    2014-12-01

    Direct volume visualization techniques offer powerful insight into volumetric medical images and are part of the clinical routine for many applications. Up to now, however, their use is mostly limited to tomographic imaging modalities such as CT or MRI. With very few exceptions, such as fetal ultrasound, classic volume rendering using one-dimensional intensity-based transfer functions fails to yield satisfying results in case of ultrasound volumes. This is particularly due its gradient-like nature, a high amount of noise and speckle, and the fact that individual tissue types are rather characterized by a similar texture than by similar intensity values. Therefore, clinicians still prefer to look at 2D slices extracted from the ultrasound volume. In this work, we present an entirely novel approach to the classification and compositing stage of the volume rendering pipeline, specifically designed for use with ultrasonic images. We introduce point predicates as a generic formulation for integrating the evaluation of not only low-level information like local intensity or gradient, but also of high-level information, such as non-local image features or even anatomical models. Thus, we can successfully filter clinically relevant from non-relevant information. In order to effectively reduce the potentially high dimensionality of the predicate configuration space, we propose the predicate histogram as an intuitive user interface. This is augmented by a scribble technique to provide a comfortable metaphor for selecting predicates of interest. Assigning importance factors to the predicates allows for focus-and-context visualization that ensures to always show important (focus) regions of the data while maintaining as much context information as possible. Our method naturally integrates into standard ray casting algorithms and yields superior results in comparison to traditional methods in terms of visualizing a specific target anatomy in ultrasound volumes.

  10. High-Resolution Large-Field-of-View Ultrasound Breast Imager

    DTIC Science & Technology

    2014-08-01

    Ultrasound Breast Imager PRINCIPAL INVESTIGATOR: Patrick LaRiviere CONTRACTING...May 2014 4. TITLE AND SUBTITLE High-Resolution Large-Field-of-View Ultrasound Breast Imager 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-11...work, we sought to construct and test the first practical full-field transmission ultrasound breast imaging system. The system will ultimately have a

  11. A computational model for estimating tumor margins in complementary tactile and 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Shamsil, Arefin; Escoto, Abelardo; Naish, Michael D.; Patel, Rajni V.

    2016-03-01

    Conventional surgical methods are effective for treating lung tumors; however, they impose high trauma and pain to patients. Minimally invasive surgery is a safer alternative as smaller incisions are required to reach the lung; however, it is challenging due to inadequate intraoperative tumor localization. To address this issue, a mechatronic palpation device was developed that incorporates tactile and ultrasound sensors capable of acquiring surface and cross-sectional images of palpated tissue. Initial work focused on tactile image segmentation and fusion of position-tracked tactile images, resulting in a reconstruction of the palpated surface to compute the spatial locations of underlying tumors. This paper presents a computational model capable of analyzing orthogonally-paired tactile and ultrasound images to compute the surface circumference and depth margins of a tumor. The framework also integrates an error compensation technique and an algebraic model to align all of the image pairs and to estimate the tumor depths within the tracked thickness of a palpated tissue. For validation, an ex vivo experimental study was conducted involving the complete palpation of 11 porcine liver tissues injected with iodine-agar tumors of varying sizes and shapes. The resulting tactile and ultrasound images were then processed using the proposed model to compute the tumor margins and compare them to fluoroscopy based physical measurements. The results show a good negative correlation (r = -0.783, p = 0.004) between the tumor surface margins and a good positive correlation (r = 0.743, p = 0.009) between the tumor depth margins.

  12. 3D ultrasound in assessment of growth and development of frontal lobes in children with perinatal brain injury.

    PubMed

    Liu, Yunfeng; Zhou, Congle; Wang, Hongmei; Tang, Zezhong; Ding, Haiyan

    2009-01-01

    To investigate the functions of cranial 3D ultrasound in the assessment of growth and development of the volume of frontal lobes in children with perinatal brain injury, 226 neonates of different gestational ages and 86 full term with perinatal brain injury were selected as subjects. The volume of frontal lobe of neonate increased with gestational age within 7 days after birth (r=0.676, P<0.05). The volume of frontal lobe in the 33 children with serious brain injury was lower than that in the control group at 1 month and the difference was significant at 3 and 6 months (P<0.01). There was a correlation between the long-term nervous system dysplasia and the slow increase of frontal lobe volume. The volume of frontal lobe increases with gestational age. The brain injury during the perinatal period affects the development of frontal lobe and is related with neural dysplasia. 3D ultrasound is useful for evaluating the normal and abnormal brain development.

  13. Objective breast tissue image classification using Quantitative Transmission ultrasound tomography

    PubMed Central

    Malik, Bilal; Klock, John; Wiskin, James; Lenox, Mark

    2016-01-01

    Quantitative Transmission Ultrasound (QT) is a powerful and emerging imaging paradigm which has the potential to perform true three-dimensional image reconstruction of biological tissue. Breast imaging is an important application of QT and allows non-invasive, non-ionizing imaging of whole breasts in vivo. Here, we report the first demonstration of breast tissue image classification in QT imaging. We systematically assess the ability of the QT images’ features to differentiate between normal breast tissue types. The three QT features were used in Support Vector Machines (SVM) classifiers, and classification of breast tissue as either skin, fat, glands, ducts or connective tissue was demonstrated with an overall accuracy of greater than 90%. Finally, the classifier was validated on whole breast image volumes to provide a color-coded breast tissue volume. This study serves as a first step towards a computer-aided detection/diagnosis platform for QT. PMID:27934955

  14. Objective breast tissue image classification using Quantitative Transmission ultrasound tomography

    NASA Astrophysics Data System (ADS)

    Malik, Bilal; Klock, John; Wiskin, James; Lenox, Mark

    2016-12-01

    Quantitative Transmission Ultrasound (QT) is a powerful and emerging imaging paradigm which has the potential to perform true three-dimensional image reconstruction of biological tissue. Breast imaging is an important application of QT and allows non-invasive, non-ionizing imaging of whole breasts in vivo. Here, we report the first demonstration of breast tissue image classification in QT imaging. We systematically assess the ability of the QT images’ features to differentiate between normal breast tissue types. The three QT features were used in Support Vector Machines (SVM) classifiers, and classification of breast tissue as either skin, fat, glands, ducts or connective tissue was demonstrated with an overall accuracy of greater than 90%. Finally, the classifier was validated on whole breast image volumes to provide a color-coded breast tissue volume. This study serves as a first step towards a computer-aided detection/diagnosis platform for QT.

  15. SU-E-J-135: An Investigation of Ultrasound Imaging for 3D Intra-Fraction Prostate Motion Estimation

    SciTech Connect

    O'Shea, T; Harris, E; Bamber, J; Evans, P

    2014-06-01

    Purpose: This study investigates the use of a mechanically swept 3D ultrasound (US) probe to estimate intra-fraction motion of the prostate during radiation therapy using an US phantom and simulated transperineal imaging. Methods: A 3D motion platform was used to translate an US speckle phantom while simulating transperineal US imaging. Motion patterns for five representative types of prostate motion, generated from patient data previously acquired with a Calypso system, were using to move the phantom in 3D. The phantom was also implanted with fiducial markers and subsequently tracked using the CyberKnife kV x-ray system for comparison. A normalised cross correlation block matching algorithm was used to track speckle patterns in 3D and 2D US data. Motion estimation results were compared with known phantom translations. Results: Transperineal 3D US could track superior-inferior (axial) and anterior-posterior (lateral) motion to better than 0.8 mm root-mean-square error (RMSE) at a volume rate of 1.7 Hz (comparable with kV x-ray tracking RMSE). Motion estimation accuracy was poorest along the US probe's swept axis (right-left; RL; RMSE < 4.2 mm) but simple regularisation methods could be used to improve RMSE (< 2 mm). 2D US was found to be feasible for slowly varying motion (RMSE < 0.5 mm). 3D US could also allow accurate radiation beam gating with displacement thresholds of 2 mm and 5 mm exhibiting a RMSE of less than 0.5 mm. Conclusion: 2D and 3D US speckle tracking is feasible for prostate motion estimation during radiation delivery. Since RL prostate motion is small in magnitude and frequency, 2D or a hybrid (2D/3D) US imaging approach which also accounts for potential prostate rotations could be used. Regularisation methods could be used to ensure the accuracy of tracking data, making US a feasible approach for gating or tracking in standard or hypo-fractionated prostate treatments.

  16. Lipid Coated Microbubbles and Low Intensity Pulsed Ultrasound Enhance Chondrogenesis of Human Mesenchymal Stem Cells in 3D Printed Scaffolds

    PubMed Central

    Aliabouzar, Mitra; Zhang, Lijie Grace; Sarkar, Kausik

    2016-01-01

    Lipid-coated microbubbles are used to enhance ultrasound imaging and drug delivery. Here we apply these microbubbles along with low intensity pulsed ultrasound (LIPUS) for the first time to enhance proliferation and chondrogenic differentiation of human mesenchymal stem cells (hMSCs) in a 3D printed poly-(ethylene glycol)-diacrylate (PEG-DA) hydrogel scaffold. The hMSC proliferation increased up to 40% after 5 days of culture in the presence of 0.5% (v/v) microbubbles and LIPUS in contrast to 18% with LIPUS alone. We systematically varied the acoustic excitation parameters—excitation intensity, frequency and duty cycle—to find 30 mW/cm2, 1.5 MHz and 20% duty cycle to be optimal for hMSC proliferation. A 3-week chondrogenic differentiation results demonstrated that combining LIPUS with microbubbles enhanced glycosaminoglycan (GAG) production by 17% (5% with LIPUS alone), and type II collagen production by 78% (44% by LIPUS alone). Therefore, integrating LIPUS and microbubbles appears to be a promising strategy for enhanced hMSC growth and chondrogenic differentiation, which are critical components for cartilage regeneration. The results offer possibilities of novel applications of microbubbles, already clinically approved for contrast enhanced ultrasound imaging, in tissue engineering. PMID:27883051

  17. 3-D airborne ultrasound synthetic aperture imaging based on capacitive micromachined ultrasonic transducers.

    PubMed

    Park, Kwan Kyu; Khuri-Yakub, Butrus T

    2013-09-01

    In this paper, we present an airborne 3-D volumetric imaging system based on capacitive micromachined ultrasonic transducers (CMUTs). For this purpose we fabricated 89-kHz CMUTs where each CMUT is made of a circular single-crystal silicon plate with a radius of 1mm and a thickness of 20 μm, which is actuated by electrostatic force through a 20-μm vacuum gap. The measured transmit sensitivity at 300-V DC bias is 14.6 Pa/V and 24.2 Pa/V, when excited by a 30-cycle burst and a continuous wave, respectively. The measured receive sensitivity at 300-V DC bias is 16.6 mV/Pa (-35.6 dB re 1 V/Pa) for a 30-cycle burst. A 26×26 2-D array was implemented by mechanical scanning a co-located transmitter and receiver using the classic synthetic aperture (CSA) method. The measurement of a 1.6λ-size target at a distance of 500 mm presented a lateral resolution of 3.17° and also showed good agreement with the theoretical point spread function. The 3-D imaging of two plates at a distance of 350 mm and 400 mm was constructed to exhibit the capability of the imaging system. This study experimentally demonstrates that a 2-D CMUT array can be used for practical 3-D imaging applications in air, such as a human-machine interface.

  18. Breast ultrasound tomography with two parallel transducer arrays: preliminary clinical results

    NASA Astrophysics Data System (ADS)

    Huang, Lianjie; Shin, Junseob; Chen, Ting; Lin, Youzuo; Intrator, Miranda; Hanson, Kenneth; Epstein, Katherine; Sandoval, Daniel; Williamson, Michael

    2015-03-01

    Ultrasound tomography has great potential to provide quantitative estimations of physical properties of breast tumors for accurate characterization of breast cancer. We design and manufacture a new synthetic-aperture breast ultrasound tomography system with two parallel transducer arrays. The distance of these two transducer arrays is adjustable for scanning breasts with different sizes. The ultrasound transducer arrays are translated vertically to scan the entire breast slice by slice and acquires ultrasound transmission and reflection data for whole-breast ultrasound imaging and tomographic reconstructions. We use the system to acquire patient data at the University of New Mexico Hospital for clinical studies. We present some preliminary imaging results of in vivo patient ultrasound data. Our preliminary clinical imaging results show promising of our breast ultrasound tomography system with two parallel transducer arrays for breast cancer imaging and characterization.

  19. Computer-generated 3D ultrasound images of the carotid artery

    NASA Astrophysics Data System (ADS)

    Selzer, Robert H.; Lee, Paul L.; Lai, June Y.; Frieden, Howard J.; Blankenhorn, David H.

    A method is under development to measure carotid artery lesions from a computer-generated three-dimensional ultrasound image. For each image, the position of the transducer in six coordinates (x, y, z, azimuth, elevation, and roll) is recorded and used to position each B-mode picture element in its proper spatial position in a three-dimensional memory array. After all B-mode images have been assembled in the memory, the three-dimensional image is filtered and resampled to produce a new series of parallel-plane two-dimensional images from which arterial boundaries are determined using edge tracking methods.

  20. Computer-generated 3D ultrasound images of the carotid artery

    NASA Technical Reports Server (NTRS)

    Selzer, Robert H.; Lee, Paul L.; Lai, June Y.; Frieden, Howard J.; Blankenhorn, David H.

    1989-01-01

    A method is under development to measure carotid artery lesions from a computer-generated three-dimensional ultrasound image. For each image, the position of the transducer in six coordinates (x, y, z, azimuth, elevation, and roll) is recorded and used to position each B-mode picture element in its proper spatial position in a three-dimensional memory array. After all B-mode images have been assembled in the memory, the three-dimensional image is filtered and resampled to produce a new series of parallel-plane two-dimensional images from which arterial boundaries are determined using edge tracking methods.

  1. Respiratory gating for proton beam scanning versus photon 3D-CRT for breast cancer radiotherapy.

    PubMed

    Flejmer, Anna M; Edvardsson, Anneli; Dohlmar, Frida; Josefsson, Dan; Nilsson, Mats; Witt Nyström, Petra; Dasu, Alexandru

    2016-05-01

    Background Respiratory gating and proton therapy have both been proposed to reduce the cardiopulmonary burden in breast cancer radiotherapy. This study aims to investigate the additional benefit of proton radiotherapy for breast cancer with and without respiratory gating. Material and methods Twenty left-sided patients were planned on computed tomography (CT)-datasets acquired during enhanced inspiration gating (EIG) and free-breathing (FB), using photon three-dimensional conformal radiation therapy (3D-CRT) and scanned proton beams. Ten patients received treatment to the whole breast only (WBO) and 10 were treated to the breast and the regional lymph nodes (BRN). Dosimetric parameters characterizing the coverage of target volumes and the cardiopulmonary burden were compared using a paired, two-tailed Student's t-test. Results Protons ensured comparable or better target coverage than photons in all patients during both EIG and FB. The heterogeneity index decreased from 12% with photons to about 5% with protons. The mean dose to the ipsilateral lung was reduced in BRN patients from 12 Gy to 7 Gy  (RBE) in EIG and from 14 Gy to 6-7 Gy (RBE) in FB, while for WBO patients all values were about 5-6 Gy (RBE). The mean dose to heart decreased by a factor of four in WBO patients [from 1.1 Gy to 0.3 Gy (RBE) in EIG and from 2.1 Gy to 0.5 Gy (RBE) in FB] and 10 in BRN patients [from 2.1 Gy to 0.2 Gy (RBE) in EIG and from 3.4 Gy to 0.3 Gy (RBE) in FB]. Similarly, the mean and the near maximum dose to the left anterior descending artery (LAD) were significantly lower (p < 0.05) with protons in comparison with photons. Conclusion Proton spot scanning has a high potential to reduce the irradiation of organs at risk and other normal tissues for most patients, beyond what could be achieved with EIG and photon therapy. The largest dose sparing has been seen for BRN patients, both in terms of cardiopulmonary burden and integral dose.

  2. Dual-mode intracranial catheter integrating 3D ultrasound imaging and hyperthermia for neuro-oncology: feasibility study.

    PubMed

    Herickhoff, Carl D; Light, Edward D; Bing, Kristin F; Mukundan, Srinivasan; Grant, Gerald A; Wolf, Patrick D; Smith, Stephen W

    2009-04-01

    In this study, we investigated the feasibility of an intracranial catheter transducer with dual-mode capability of real-time 3D (RT3D) imaging and ultrasound hyperthermia, for application in the visualization and treatment of tumors in the brain. Feasibility is demonstrated in two ways: first by using a 50-element linear array transducer (17 mm x 3.1 mm aperture) operating at 4.4 MHz with our Volumetrics diagnostic scanner and custom, electrical impedance-matching circuits to achieve a temperature rise over 4 degrees C in excised pork muscle, and second, by designing and constructing a 12 Fr, integrated matrix and linear-array catheter transducer prototype for combined RT3D imaging and heating capability. This dual-mode catheter incorporated 153 matrix array elements and 11 linear array elements diced on a 0.2 mm pitch, with a total aperture size of 8.4 mm x 2.3 mm. This 3.64 MHz array achieved a 3.5 degrees C in vitro temperature rise at a 2 cm focal distance in tissue-mimicking material. The dual-mode catheter prototype was compared with a Siemens 10 Fr AcuNav catheter as a gold standard in experiments assessing image quality and therapeutic potential and both probes were used in an in vivo canine brain model to image anatomical structures and color Doppler blood flow and to attempt in vivo heating.

  3. 3-D microvessel-mimicking ultrasound phantoms produced with a scanning motion system.

    PubMed

    Gessner, Ryan C; Kothadia, Roshni; Feingold, Steven; Dayton, Paul A

    2011-05-01

    Ultrasound techniques are currently being developed that can assess the vascularization of tissue as a marker for therapeutic response. Some of these ultrasound imaging techniques seek to extract quantitative features about vessel networks, whereas high-frequency imaging also allows individual vessels to be resolved. The development of these new techniques, and subsequent imaging analysis strategies, necessitates an understanding of their sensitivities to vessel and vessel network structural abnormalities. Constructing in-vitro flow phantoms for this purpose can be prohibitively challenging, because simulating precise flow environments with nontrivial structures is often impossible using conventional methods of construction for flow phantoms. Presented in this manuscript is a method to create predefined structures with <10 μm precision using a three-axis motion system. The application of this technique is demonstrated for the creation of individual vessel and vessel networks, which can easily be made to simulate the development of structural abnormalities typical of diseased vasculature in vivo. In addition, beyond facilitating the creation of phantoms that would otherwise be very challenging to construct, the method presented herein enables one to precisely simulate very slow blood flow and respiration artifacts, and to measure imaging resolution.

  4. Numerical Modeling of 3-D Dynamics of Ultrasound Contrast Agent Microbubbles Using the Boundary Integral Method

    NASA Astrophysics Data System (ADS)

    Calvisi, Michael; Manmi, Kawa; Wang, Qianxi

    2014-11-01

    Ultrasound contrast agents (UCAs) are microbubbles stabilized with a shell typically of lipid, polymer, or protein and are emerging as a unique tool for noninvasive therapies ranging from gene delivery to tumor ablation. The nonspherical dynamics of contrast agents are thought to play an important role in both diagnostic and therapeutic applications, for example, causing the emission of subharmonic frequency components and enhancing the uptake of therapeutic agents across cell membranes and tissue interfaces. A three-dimensional model for nonspherical contrast agent dynamics based on the boundary integral method is presented. The effects of the encapsulating shell are approximated by adapting Hoff's model for thin-shell, spherical contrast agents to the nonspherical case. A high-quality mesh of the bubble surface is maintained by implementing a hybrid approach of the Lagrangian method and elastic mesh technique. Numerical analyses for the dynamics of UCAs in an infinite liquid and near a rigid wall are performed in parameter regimes of clinical relevance. The results show that the presence of a coating significantly reduces the oscillation amplitude and period, increases the ultrasound pressure amplitude required to incite jetting, and reduces the jet width and velocity.

  5. Using High Frequency Focused Water-Coupled Ultrasound for 3-D Surface Depression Profiling

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Whalen, Mike F.; Hendricks, J. Lynne; Bodis, James R.

    1999-01-01

    Surface topography is an important variable in the performance of many industrial components and is normally measured with diamond-tip profilometry over a small area or using optical scattering methods for larger area measurement. A prior study was performed demonstrating that focused air-coupled ultrasound at 1 MHz was capable of profiling surfaces with 25 micron depth resolution and 400 micron lateral resolution over a 1.4 mm depth range. In this article, the question of whether higher-frequency focused water-coupled ultrasound can improve on these specifications is addressed. 10 and 25 MHz focused ultrasonic transducers were employed in the water-coupled mode. Time-of-flight images of the sample surface were acquired and converted to depth / surface profile images using the simple relation (d = V*t/2) between distance (d), time-of-flight (t), and the velocity of sound in water (V). Results are compared for the two frequencies used and with those from the 1 MHz air-coupled configuration.

  6. User-guided segmentation of preterm neonate ventricular system from 3-D ultrasound images using convex optimization.

    PubMed

    Qiu, Wu; Yuan, Jing; Kishimoto, Jessica; McLeod, Jonathan; Chen, Yimin; de Ribaupierre, Sandrine; Fenster, Aaron

    2015-02-01

    A three-dimensional (3-D) ultrasound (US) system has been developed to monitor the intracranial ventricular system of preterm neonates with intraventricular hemorrhage (IVH) and the resultant dilation of the ventricles (ventriculomegaly). To measure ventricular volume from 3-D US images, a semi-automatic convex optimization-based approach is proposed for segmentation of the cerebral ventricular system in preterm neonates with IVH from 3-D US images. The proposed semi-automatic segmentation method makes use of the convex optimization technique supervised by user-initialized information. Experiments using 58 patient 3-D US images reveal that our proposed approach yielded a mean Dice similarity coefficient of 78.2% compared with the surfaces that were manually contoured, suggesting good agreement between these two segmentations. Additional metrics, the mean absolute distance of 0.65 mm and the maximum absolute distance of 3.2 mm, indicated small distance errors for a voxel spacing of 0.22 × 0.22 × 0.22 mm(3). The Pearson correlation coefficient (r = 0.97, p < 0.001) indicated a significant correlation of algorithm-generated ventricular system volume (VSV) with the manually generated VSV. The calculated minimal detectable difference in ventricular volume change indicated that the proposed segmentation approach with 3-D US images is capable of detecting a VSV difference of 6.5 cm(3) with 95% confidence, suggesting that this approach might be used for monitoring IVH patients' ventricular changes using 3-D US imaging. The mean segmentation times of the graphics processing unit (GPU)- and central processing unit-implemented algorithms were 50 ± 2 and 205 ± 5 s for one 3-D US image, respectively, in addition to 120 ± 10 s for initialization, less than the approximately 35 min required by manual segmentation. In addition, repeatability experiments indicated that the intra-observer variability ranges from 6.5% to 7.5%, and the inter-observer variability is 8.5% in terms

  7. Skin-sparing Helical Tomotherapy vs 3D-conformal Radiotherapy for Adjuvant Breast Radiotherapy: In Vivo Skin Dosimetry Study

    SciTech Connect

    Capelle, Lisa; Warkentin, Heather; MacKenzie, Marc; Joseph, Kurian; Gabos, Zsolt; Pervez, Nadeem; Tankel, Keith; Chafe, Susan; Amanie, John; Ghosh, Sunita; Parliament, Matthew; Abdulkarim, Bassam

    2012-08-01

    Purpose: We investigated whether treatment-planning system (TPS)-calculated dose accurately reflects skin dose received for patients receiving adjuvant breast radiotherapy (RT) with standard three-dimensional conformal RT (3D-CRT) or skin-sparing helical tomotherapy (HT). Methods and Materials: Fifty patients enrolled in a randomized controlled trial investigating acute skin toxicity from adjuvant breast RT with 3D-CRT compared to skin-sparing HT, where a 5-mm strip of ipsilateral breast skin was spared. Thermoluminescent dosimetry or optically stimulated luminescence measurements were made in multiple locations and were compared to TPS-calculated doses. Skin dosimetric parameters and acute skin toxicity were recorded in these patients. Results: With HT there was a significant correlation between calculated and measured dose in the medial and lateral ipsilateral breast (r = 0.67, P<.001; r = 0.44, P=.03, respectively) and the medial and central contralateral breast (r = 0.73, P<.001; r = 0.88, P<.001, respectively). With 3D-CRT there was a significant correlation in the medial and lateral ipsilateral breast (r = 0.45, P=.03; r = 0.68, P<.001, respectively); the medial and central contralateral breast (r = 0.62, P=.001; r = 0.86, P<.001, respectively); and the mid neck (r = 0.42, P=.04, respectively). On average, HT-calculated dose overestimated the measured dose by 14%; 3D-CRT underestimated the dose by 0.4%. There was a borderline association between highest measured skin dose and moist desquamation (P=.05). Skin-sparing HT had greater skin homogeneity (homogeneity index of 1.39 vs 1.65, respectively; P=.005) than 3D-CRT plans. HT plans had a lower skin{sub V50} (1.4% vs 5.9%, respectively; P=.001) but higher skin{sub V40} and skin{sub V30} (71.7% vs 64.0%, P=.02; and 99.0% vs 93.8%, P=.001, respectively) than 3D-CRT plans. Conclusion: The 3D-CRT TPS more accurately reflected skin dose than the HT TPS, which tended to overestimate dose received by 14% in patients

  8. Prognostic breast cancer signature identified from 3D culture model accurately predicts clinical outcome across independent datasets

    SciTech Connect

    Martin, Katherine J.; Patrick, Denis R.; Bissell, Mina J.; Fournier, Marcia V.

    2008-10-20

    One of the major tenets in breast cancer research is that early detection is vital for patient survival by increasing treatment options. To that end, we have previously used a novel unsupervised approach to identify a set of genes whose expression predicts prognosis of breast cancer patients. The predictive genes were selected in a well-defined three dimensional (3D) cell culture model of non-malignant human mammary epithelial cell morphogenesis as down-regulated during breast epithelial cell acinar formation and cell cycle arrest. Here we examine the ability of this gene signature (3D-signature) to predict prognosis in three independent breast cancer microarray datasets having 295, 286, and 118 samples, respectively. Our results show that the 3D-signature accurately predicts prognosis in three unrelated patient datasets. At 10 years, the probability of positive outcome was 52, 51, and 47 percent in the group with a poor-prognosis signature and 91, 75, and 71 percent in the group with a good-prognosis signature for the three datasets, respectively (Kaplan-Meier survival analysis, p<0.05). Hazard ratios for poor outcome were 5.5 (95% CI 3.0 to 12.2, p<0.0001), 2.4 (95% CI 1.6 to 3.6, p<0.0001) and 1.9 (95% CI 1.1 to 3.2, p = 0.016) and remained significant for the two larger datasets when corrected for estrogen receptor (ER) status. Hence the 3D-signature accurately predicts breast cancer outcome in both ER-positive and ER-negative tumors, though individual genes differed in their prognostic ability in the two subtypes. Genes that were prognostic in ER+ patients are AURKA, CEP55, RRM2, EPHA2, FGFBP1, and VRK1, while genes prognostic in ER patients include ACTB, FOXM1 and SERPINE2 (Kaplan-Meier p<0.05). Multivariable Cox regression analysis in the largest dataset showed that the 3D-signature was a strong independent factor in predicting breast cancer outcome. The 3D-signature accurately predicts breast cancer outcome across multiple datasets and holds prognostic

  9. Transition from Paris dosimetry system to 3D image-guided planning in interstitial breast brachytherapy

    PubMed Central

    Wronczewska, Anna; Kabacińska, Renata; Makarewicz, Roman

    2015-01-01

    Purpose The purpose of this study is to evaluate our first experience with 3D image-guided breast brachytherapy and to compare dose distribution parameters between Paris dosimetry system (PDS) and image-based plans. Material and methods First 49 breast cancer patients treated with 3D high-dose-rate interstitial brachytherapy as a boost were selected for the study. Every patient underwent computed tomography, and the planning target volume (PTV) and organs at risk (OAR) were outlined. Two treatment plans were created for every patient. First, based on a Paris dosimetry system (PDS), and the second one, imaged-based plan with graphical optimization (OPT). The reference isodose in PDS implants was 85%, whereas in OPT plans the isodose was chosen to obtain proper target coverage. Dose and volume parameters (D90, D100, V90, V100), doses at OARs, total reference air kerma (TRAK), and quality assurance parameters: dose nonuniformity ratio (DNR), dose homogeneity index (DHI), and conformity index (COIN) were used for a comparison of both plans. Results The mean number of catheters was 7 but the mean for 20 first patients was 5 and almost 9 for the next 29 patients. The mean value of prescribed isodose for OPT plans was 73%. The mean D90 was 88.2% and 105.8%, the D100 was 59.8% and 75.7%, the VPTV90 was 88.6% and 98.1%, the VPTV100 was 79.9% and 98.9%, and the TRAK was 0.00375 Gym–1 and 0.00439 Gym–1 for the PDS and OPT plans, respectively. The mean DNR was 0.29 and 0.42, the DHI was 0.71 and 0.58, and the COIN was 0.68 and 0.76, respectively. Conclusions The target coverage in image-guided plans (OPT) was significantly higher than in PDS plans but the dose homogeneity was worse. Also, the value of TRAK increased because of change of prescribing isodose. The learning curve slightly affected our results. PMID:26816505

  10. Use of Three-Dimensional Ultrasound in the Detection of Breast Tumor Bed Displacement During Radiotherapy

    SciTech Connect

    Wong, Philip; Muanza, Thierry; Reynard, Eric; Robert, Karine; Barker, Jennifer; Sultanem, Khalil

    2011-01-01

    Purpose: To evaluate the feasibility and usefulness of a three-dimensional ultrasound (3D-US) image-guided system in identifying and tracking the tumor bed (TB) for planning and daily localization before radiation delivery for breast cancer. Methods and Materials: Twenty breast cancer patients underwent two CT scans at the time of simulation and just before their boost. Three-dimensional ultrasound images were acquired immediately after the CT scans, to which the images were automatically fused. Three-dimensional ultrasound images were also acquired immediately before treatment. Spatial and temporal TB differences between CT and US were evaluated. Results: The TB was not visible on US and CT in 1 subject who had and 1 subject who had not received chemotherapy before whole-breast radiotherapy. The mean (SD) TB volume overlap was 78% (14%). The mean centroid position of the TB on CT vs. US differed by 0.1, 0.2, and 0.4 mm in the anterior-posterior, left-right, and superior-inferior directions. The mean (SD) absolute radial displacement of the TB on each fraction from the treatment plan was 10.8 (6.3) mm. Conclusions: The TB was well visualized by US for the majority of patients. Clinically insignificant differences in the displacements calculated by paired CT vs. paired US demonstrate the feasibility of using 3D-US. The present study suggests that a 10-mm planning target volume margin could result in undercoverage of the clinical target volumes in 50% of treatments. Multimodality planning and image-guided radiotherapy with US potentially offers an accurate and non-ionizing solution for the daily definition of the TB position during partial-breast irradiation and boost treatments.

  11. Development of model observers applied to 3D breast tomosynthesis microcalcifications and masses

    NASA Astrophysics Data System (ADS)

    Diaz, Ivan; Timberg, Pontus; Zhang, Sheng; Abbey, Craig; Verdun, Francis; Bochud, François O.

    2011-03-01

    The development of model observers for mimicking human detection strategies has followed from symmetric signals in simple noise to increasingly complex backgrounds. In this study we implement different model observers for the complex task of detecting a signal in a 3D image stack. The backgrounds come from real breast tomosynthesis acquisitions and the signals were simulated and reconstructed within the volume. Two different tasks relevant to the early detection of breast cancer were considered: detecting an 8 mm mass and detecting a cluster of microcalcifications. The model observers were calculated using a channelized Hotelling observer (CHO) with dense difference-of-Gaussian channels, and a modified (Partial prewhitening [PPW]) observer which was adapted to realistic signals which are not circularly symmetric. The sustained temporal sensitivity function was used to filter the images before applying the spatial templates. For a frame rate of five frames per second, the only CHO that we calculated performed worse than the humans in a 4-AFC experiment. The other observers were variations of PPW and outperformed human observers in every single case. This initial frame rate was a rather low speed and the temporal filtering did not affect the results compared to a data set with no human temporal effects taken into account. We subsequently investigated two higher speeds at 5, 15 and 30 frames per second. We observed that for large masses, the two types of model observers investigated outperformed the human observers and would be suitable with the appropriate addition of internal noise. However, for microcalcifications both only the PPW observer consistently outperformed the humans. The study demonstrated the possibility of using a model observer which takes into account the temporal effects of scrolling through an image stack while being able to effectively detect a range of mass sizes and distributions.

  12. Comparison between Thin-Slice 3-D Volumetric Ultrasound and Conventional Ultrasound in the Differentiation of Benign and Malignant Thyroid Lesions.

    PubMed

    Li, Wen-Bo; Zhang, Bo; Zhu, Qing-Li; Jiang, Yu-Xin; Sun, Jian; Yang, Meng; Li, Jian-Chu

    2015-12-01

    We explored the efficacy of thin-slice volumetric 3-D ultrasound (3-DUS) in distinguishing between benign and malignant thyroid nodules. A total of 103 thyroid nodules were evaluated prospectively using 3-D gray-scale ultrasonography. The shape, margin, halo and potential capsular invasion of the nodules were compared with the findings of conventional 2-D ultrasound (2-DUS). Of the 103 thyroid nodules, there were 50 pathologically confirmed benign lesions and 53 malignant lesions (51.5%). Shape irregularity, ill-defined margins and capsular invasion provided sensitivities of 90.0%, 47.2% and 39.6% and specificities of 88.0%, 84.0% and 100%, respectively, for the malignant lesions. The diagnosis of thyroid cancer was improved in 3-DUS compared with 2-DUS, with a sensitivity of 88.7%, specificity of 90.0%, positive predictive value of 90.4%, negative predictive value of 88.2% and accuracy of 89.3%. The sensitivity of detection for lesions with capsular invasion increased to 39.6% with 3-DUS, more than twice that of 2-DUS. Three-dimensional US is highly accurate in diagnosing thyroid nodules, particularly those with capsular invasion.

  13. Development of 3D ultrasound needle guidance for high-dose-rate interstitial brachytherapy of gynaecological cancers

    NASA Astrophysics Data System (ADS)

    Rodgers, J.; Tessier, D.; D'Souza, D.; Leung, E.; Hajdok, G.; Fenster, A.

    2016-04-01

    High-dose-rate (HDR) interstitial brachytherapy is often included in standard-of-care for gynaecological cancers. Needles are currently inserted through a perineal template without any standard real-time imaging modality to assist needle guidance, causing physicians to rely on pre-operative imaging, clinical examination, and experience. While two-dimensional (2D) ultrasound (US) is sometimes used for real-time guidance, visualization of needle placement and depth is difficult and subject to variability and inaccuracy in 2D images. The close proximity to critical organs, in particular the rectum and bladder, can lead to serious complications. We have developed a three-dimensional (3D) transrectal US system and are investigating its use for intra-operative visualization of needle positions used in HDR gynaecological brachytherapy. As a proof-of-concept, four patients were imaged with post-insertion 3D US and x-ray CT. Using software developed in our laboratory, manual rigid registration of the two modalities was performed based on the perineal template's vaginal cylinder. The needle tip and a second point along the needle path were identified for each needle visible in US. The difference between modalities in the needle trajectory and needle tip position was calculated for each identified needle. For the 60 needles placed, the mean trajectory difference was 3.23 +/- 1.65° across the 53 visible needle paths and the mean difference in needle tip position was 3.89 +/- 1.92 mm across the 48 visible needles tips. Based on the preliminary results, 3D transrectal US shows potential for the development of a 3D US-based needle guidance system for interstitial gynaecological brachytherapy.

  14. A novel fast full inversion based breast ultrasound elastography technique.

    PubMed

    Karimi, Hirad; Fenster, Aaron; Samani, Abbas

    2013-04-07

    Cancer detection and classification have been the focus of many imaging and therapeutic research studies. Elastography is a non-invasive technique to visualize suspicious soft tissue areas where tissue stiffness is used as image contrast mechanism. In this study, a breast ultrasound elastography system including software and hardware is proposed. Unlike current elastography systems that image the tissue strain and present it as an approximation to relative tissue stiffness, this system is capable of imaging the breast absolute Young's modulus in fast fashion. To improve the quality of elastography images, a novel system consisting of two load cells has been attached to the ultrasound probe. The load cells measure the breast surface forces to be used for calculating the tissue stress distribution throughout the breast. To facilitate fast imaging, this stress calculation is conducted by an accelerated finite element method. Acquired tissue displacements and surface force data are used as input to the proposed Young's modulus reconstruction technique. Numerical and tissue mimicking phantom studies were conducted for validating the proposed system. These studies indicated that fast imaging of breast tissue absolute Young's modulus using the proposed ultrasound elastography system is feasible. The tissue mimicking phantom study indicated that the system is capable of providing reliable absolute Young's modulus values for both normal tissue and tumour as the maximum Young's modulus reconstruction error was less than 6%. This demonstrates that the proposed system has a good potential to be used for clinical breast cancer assessment.

  15. A novel fast full inversion based breast ultrasound elastography technique

    NASA Astrophysics Data System (ADS)

    Karimi, Hirad; Fenster, Aaron; Samani, Abbas

    2013-04-01

    Cancer detection and classification have been the focus of many imaging and therapeutic research studies. Elastography is a non-invasive technique to visualize suspicious soft tissue areas where tissue stiffness is used as image contrast mechanism. In this study, a breast ultrasound elastography system including software and hardware is proposed. Unlike current elastography systems that image the tissue strain and present it as an approximation to relative tissue stiffness, this system is capable of imaging the breast absolute Young’s modulus in fast fashion. To improve the quality of elastography images, a novel system consisting of two load cells has been attached to the ultrasound probe. The load cells measure the breast surface forces to be used for calculating the tissue stress distribution throughout the breast. To facilitate fast imaging, this stress calculation is conducted by an accelerated finite element method. Acquired tissue displacements and surface force data are used as input to the proposed Young’s modulus reconstruction technique. Numerical and tissue mimicking phantom studies were conducted for validating the proposed system. These studies indicated that fast imaging of breast tissue absolute Young’s modulus using the proposed ultrasound elastography system is feasible. The tissue mimicking phantom study indicated that the system is capable of providing reliable absolute Young’s modulus values for both normal tissue and tumour as the maximum Young’s modulus reconstruction error was less than 6%. This demonstrates that the proposed system has a good potential to be used for clinical breast cancer assessment.

  16. Evaluation and comparison of current biopsy needle localization and tracking methods using 3D ultrasound.

    PubMed

    Zhao, Yue; Shen, Yi; Bernard, Adeline; Cachard, Christian; Liebgott, Hervé

    2017-01-01

    This article compares four different biopsy needle localization algorithms in both 3D and 4D situations to evaluate their accuracy and execution time. The localization algorithms were: Principle component analysis (PCA), random Hough transform (RHT), parallel integral projection (PIP) and ROI-RK (ROI based RANSAC and Kalman filter). To enhance the contrast of the biopsy needle and background tissue, a line filtering pre-processing step was implemented. To make the PCA, RHT and PIP algorithms comparable with the ROI-RK method, a region of interest (ROI) strategy was added. Simulated and ex-vivo data were used to evaluate the performance of the different biopsy needle localization algorithms. The resolutions of the sectorial and cylindrical volumes were 0.3mm×0.4mm×0.6mmand0.1mm×0.1mm×0.2mm (axial×lateral×azimuthal) respectively. In so far as the simulation and experimental results show, the ROI-RK method successfully located and tracked the biopsy needle in both 3D and 4D situations. The tip localization error was within 1.5mm and the axis accuracy was within 1.6mm. To the best of our knowledge, considering both localization accuracy and execution time, the ROI-RK was the most stable and time-saving method. Normally, accuracy comes at the expense of time. However, the ROI-RK method was able to locate the biopsy needle with high accuracy in real time, which makes it a promising method for clinical applications.

  17. Localization of spots in FISH images of breast cancer using 3-D shape analysis.

    PubMed

    Les, T; Markiewicz, T; Osowski, S; Jesiotr, M; Kozlowski, W

    2016-06-01

    The fluorescence in situ (FISH) belongs to the most often used molecular cytogenetic techniques, applied in many areas of diagnosis and research. The analysis of FISH images relies on localization and counting the red and green spots in order to determine HER2 status of the breast cancer samples. The algorithm of spot localization presented in the paper is based on 3-D shape analysis of the image objects. The subsequent regions of the image are matched to the reference pattern and the results of this matching influence localization of spots. The paper compares different shapes of the reference pattern and their efficiency in spot localization. The numerical experiments have been performed on the basis of 12 cases (patients), each represented by three images. Few thousands of cells have been analysed. The quantitative analyses comparing different versions of algorithm are presented and compared to the expert results. The best version of the procedure provides the absolute relative difference to the expert results smaller than 3%. These results confirm high efficiency of the proposed approach to the spot identification. The proposed method of FISH image analysis improves the efficiency of detecting fluorescent signals in FISH images. The evaluation results are encouraging for further testing of the developed automatic system directed to application in medical practice.

  18. Evaluation of 3D modality-independent elastography for breast imaging: a simulation study

    NASA Astrophysics Data System (ADS)

    Ou, J. J.; Ong, R. E.; Yankeelov, T. E.; Miga, M. I.

    2008-01-01

    This paper reports on the development and preliminary testing of a three-dimensional implementation of an inverse problem technique for extracting soft-tissue elasticity information via non-rigid model-based image registration. The modality-independent elastography (MIE) algorithm adjusts the elastic properties of a biomechanical model to achieve maximal similarity between images acquired under different states of static loading. A series of simulation experiments with clinical image sets of human breasts were performed to test the ability of the method to identify and characterize a radiographically occult stiff lesion. Because boundary conditions are a critical input to the algorithm, a comparison of three methods for semi-automated surface point correspondence was conducted in the context of systematic and randomized noise processes. The results illustrate that 3D MIE was able to successfully reconstruct elasticity images using data obtained from both magnetic resonance and x-ray computed tomography systems. The lesion was localized correctly in all cases and its relative elasticity found to be reasonably close to the true values (3.5% with the use of spatial priors and 11.6% without). In addition, the inaccuracies of surface registration performed with thin-plate spline interpolation did not exceed empiric thresholds of unacceptable boundary condition error.

  19. Development of a 3D ultrasound system to investigate post-hemorrhagic hydrocephalus in pre-term neonates

    NASA Astrophysics Data System (ADS)

    Kishimoto, J.; Lee, D.; St. Lawrence, K.; Romano, W.; Fenster, A.; de Ribaupierre, S.

    2013-03-01

    Clinical intracranial ultrasound (US) is performed as a standard of care on neonates at risk of intraventricular hemorrhaging (IVH) and is also used after a diagnosis to monitor for potential ventricular dilation. However, it is difficult to estimate the volume of ventricles with 2D US due to their irregular shape. We developed a 3D US system to be used as an adjunct to a clinical system to investigate volumetric changes in the ventricles of neonates with IVH. Our system has been found have an error of within 1% of actual distance measurements in all three directions and volume measurements of manually segmented volumes from phantoms were not statistically significantly different from the actual values (p>0.3). Interobserver volume measurements of the lateral ventricles in a patient with grade III IVH found no significant differences between measurements. There is the potential to use this system in IVH patients to monitor the progression of ventriculomegaly over time.

  20. 3D ultrasound biomicroscopy for assessment of cartilage repair tissue: volumetric characterisation and correlation to established classification systems.

    PubMed

    Schöne, M; Männicke, N; Somerson, J S; Marquaß, B; Henkelmann, R; Mochida, J; Aigner, T; Raum, K; Schulz, R M

    2016-02-08

    Objective and sensitive assessment of cartilage repair outcomes lacks suitable methods. This study investigated the feasibility of 3D ultrasound biomicroscopy (UBM) to quantify cartilage repair outcomes volumetrically and their correlation with established classification systems. 32 sheep underwent bilateral treatment of a focal cartilage defect. One or two years post-operatively the repair outcomes were assessed and scored macroscopically (Outerbridge, ICRS-CRA), by magnetic resonance imaging (MRI, MOCART), and histopathology (O'Driscoll, ICRS-I and ICRS-II). The UBM data were acquired after MRI and used to reconstruct the shape of the initial cartilage layer, enabling the estimation of the initial cartilage thickness and defect volume as well as volumetric parameters for defect filling, repair tissue, bone loss and bone overgrowth. The quantification of the repair outcomes revealed high variations in the initial thickness of the cartilage layer, indicating the need for cartilage thickness estimation before creating a defect. Furthermore, highly significant correlations were found for the defect filling estimated from UBM to the established classification systems. 3D visualisation of the repair regions showed highly variable morphology within single samples. This raises the question as to whether macroscopic, MRI and histopathological scoring provide sufficient reliability. The biases of the individual methods will be discussed within this context. UBM was shown to be a feasible tool to evaluate cartilage repair outcomes, whereby the most important objective parameter is the defect filling. Translation of UBM into arthroscopic or transcutaneous ultrasound examinations would allow non-destructive and objective follow-up of individual patients and better comparison between the results of clinical trials.

  1. 3D optical imagery for motion compensation in a limb ultrasound system

    NASA Astrophysics Data System (ADS)

    Ranger, Bryan J.; Feigin, Micha; Zhang, Xiang; Mireault, Al; Raskar, Ramesh; Herr, Hugh M.; Anthony, Brian W.

    2016-04-01

    Conventional processes for prosthetic socket fabrication are heavily subjective, often resulting in an interface to the human body that is neither comfortable nor completely functional. With nearly 100% of amputees reporting that they experience discomfort with the wearing of their prosthetic limb, designing an effective interface to the body can significantly affect quality of life and future health outcomes. Active research in medical imaging and biomechanical tissue modeling of residual limbs has led to significant advances in computer aided prosthetic socket design, demonstrating an interest in moving toward more quantifiable processes that are still patient-specific. In our work, medical ultrasonography is being pursued to acquire data that may quantify and improve the design process and fabrication of prosthetic sockets while greatly reducing cost compared to an MRI-based framework. This paper presents a prototype limb imaging system that uses a medical ultrasound probe, mounted to a mechanical positioning system and submerged in a water bath. The limb imaging is combined with three-dimensional optical imaging for motion compensation. Images are collected circumferentially around the limb and combined into cross-sectional axial image slices, resulting in a compound image that shows tissue distributions and anatomical boundaries similar to magnetic resonance imaging. In this paper we provide a progress update on our system development, along with preliminary results as we move toward full volumetric imaging of residual limbs for prosthetic socket design. This demonstrates a novel multi-modal approach to residual limb imaging.

  2. Double difference tomography for breast ultrasound sound speed imaging

    NASA Astrophysics Data System (ADS)

    Li, Cuiping; Duric, Neb; Rama, Olsi; Burger, Angelika; Polin, Lisa; Nechiporchik, Nicole

    2011-03-01

    Breast ultrasound tomography is a rapidly developing imaging modality that has the potential to impact breast cancer screening and diagnosis. Double difference (DD) tomography utilizes more accurate differential time-of-flight (ToF) data to reconstruct the sound speed structure of the breast. It can produce more precise and better resolution sound speed images than standard tomography that uses absolute ToF data. We apply DD tomography to phantom data and excised mouse mammary glands data. DD tomograms demonstrate sharper sound speed contrast than the standard tomograms.

  3. A Longitudinal Study of Remodeling in a Revised Peripheral Artery Bypass Graft Using 3D Ultrasound Imaging and Computational Hemodynamics

    PubMed Central

    Leotta, Daniel F.; Beach, Kirk W.; Riley, James J.; Aliseda, Alberto

    2011-01-01

    We report a study of the role of hemodynamic shear stress in the remodeling and failure of a peripheral artery bypass graft. Three separate scans of a femoral to popliteal above-knee bypass graft were taken over the course of a 16 month period following a revision of the graft. The morphology of the lumen is reconstructed from data obtained by a custom 3D ultrasound system. Numerical simulations are performed with the patient-specific geometries and physiologically realistic flow rates. The ultrasound reconstructions reveal two significant areas of remodeling: a stenosis with over 85% reduction in area, which ultimately caused graft failure, and a poststenotic dilatation or widening of the lumen. Likewise, the simulations reveal a complicated hemodynamic environment within the graft. Preliminary comparisons with in vivo velocimetry also showed qualitative agreement with the flow dynamics observed in the simulations. Two distinct flow features are discerned and are hypothesized to directly initiate the observed in vivo remodeling. First, a flow separation occurs at the stenosis. A low shear recirculation region subsequently develops distal to the stenosis. The low shear region is thought to be conducive to smooth muscle cell proliferation and intimal growth. A poststenotic jet issues from the stenosis and subsequently impinges onto the lumen wall. The lumen dilation is thought to be a direct result of the high shear stress and high frequency pressure fluctuations associated with the jet impingement. PMID:21428682

  4. A longitudinal study of remodeling in a revised peripheral artery bypass graft using 3D ultrasound imaging and computational hemodynamics.

    PubMed

    McGah, Patrick M; Leotta, Daniel F; Beach, Kirk W; Riley, James J; Aliseda, Alberto

    2011-04-01

    We report a study of the role of hemodynamic shear stress in the remodeling and failure of a peripheral artery bypass graft. Three separate scans of a femoral to popliteal above-knee bypass graft were taken over the course of a 16 month period following a revision of the graft. The morphology of the lumen is reconstructed from data obtained by a custom 3D ultrasound system. Numerical simulations are performed with the patient-specific geometries and physiologically realistic flow rates. The ultrasound reconstructions reveal two significant areas of remodeling: a stenosis with over 85% reduction in area, which ultimately caused graft failure, and a poststenotic dilatation or widening of the lumen. Likewise, the simulations reveal a complicated hemodynamic environment within the graft. Preliminary comparisons with in vivo velocimetry also showed qualitative agreement with the flow dynamics observed in the simulations. Two distinct flow features are discerned and are hypothesized to directly initiate the observed in vivo remodeling. First, a flow separation occurs at the stenosis. A low shear recirculation region subsequently develops distal to the stenosis. The low shear region is thought to be conducive to smooth muscle cell proliferation and intimal growth. A poststenotic jet issues from the stenosis and subsequently impinges onto the lumen wall. The lumen dilation is thought to be a direct result of the high shear stress and high frequency pressure fluctuations associated with the jet impingement.

  5. Non-invasive transcranial ultrasound therapy based on a 3D CT scan: protocol validation and in vitro results

    NASA Astrophysics Data System (ADS)

    Marquet, F.; Pernot, M.; Aubry, J.-F.; Montaldo, G.; Marsac, L.; Tanter, M.; Fink, M.

    2009-05-01

    A non-invasive protocol for transcranial brain tissue ablation with ultrasound is studied and validated in vitro. The skull induces strong aberrations both in phase and in amplitude, resulting in a severe degradation of the beam shape. Adaptive corrections of the distortions induced by the skull bone are performed using a previous 3D computational tomography scan acquisition (CT) of the skull bone structure. These CT scan data are used as entry parameters in a FDTD (finite differences time domain) simulation of the full wave propagation equation. A numerical computation is used to deduce the impulse response relating the targeted location and the ultrasound therapeutic array, thus providing a virtual time-reversal mirror. This impulse response is then time-reversed and transmitted experimentally by a therapeutic array positioned exactly in the same referential frame as the one used during CT scan acquisitions. In vitro experiments are conducted on monkey and human skull specimens using an array of 300 transmit elements working at a central frequency of 1 MHz. These experiments show a precise refocusing of the ultrasonic beam at the targeted location with a positioning error lower than 0.7 mm. The complete validation of this transcranial adaptive focusing procedure paves the way to in vivo animal and human transcranial HIFU investigations.

  6. Accurate 3D Modeling of Breast Deformation for Temporal Mammogram Registration

    DTIC Science & Technology

    2008-09-01

    SUPPLEMENTARY NOTES 14. ABSTRACT In this research project, we have developed mathematical model of breast deformation to simulate breast compression during...proposed to simulate and analyze breast deformation that can significantly improve the accuracy of matching in temporal mammograms and thus, the...performance of diagnosis and treatment. In this research project, we have developed a mathematical model of breast deformation to simulate breast

  7. Automated Breast Volume Scanning: Identifying 3-D Coronal Plane Imaging Features May Help Categorize Complex Cysts.

    PubMed

    Wang, Hong-Yan; Jiang, Yu-Xin; Zhu, Qing-Li; Zhang, Jing; Xiao, Meng-Su; Liu, He; Dai, Qing; Li, Jian-Chu; Sun, Qiang

    2016-03-01

    The study described here sought to identify specific ultrasound (US) automated breast volume scanning (ABVS) features that distinguish benign from malignant lesions. Medical records of 750 patients with 792 breast lesions were retrospectively reviewed. Of the 750 patients, 101 with 122 cystic lesions were included in this study, and the results ABVS results were compared with biopsy pathology results. These lesions were classified into six categories based on ABVS sonographic features: type I = simple cyst; type II = clustered cyst; type III = cystic masses with thin septa; type IV = complex cyst; type V = predominantly cystic masses; and type VI = predominantly solid masses. Comparisons were conducted between the ABVS coronal plane features of the lesions and histopathology results, and the positive predictive value (PPV) was calculated for each feature. Of the 122 lesions, 90 (73.8%) were classified as benign, and 32 (26.2%) were classified as malignant. The sensitivity, specificity and accuracy associated with ABVS features for cystic lesions were 78.1%, 74.4% and 75.4%, respectively. The 11 cases (8.9%) of type I-IV cysts were all benign. Of the 22 (18.0%) type V cysts, 16 (13.1%) were benign and 6 (4.9%) were malignant. Of the 89 (72.9%) type VI cysts, 63 (51.7%) were benign and 26 (21.3%) were malignant. The typical symptoms of malignancy on ABVS include retraction (PPV = 100%, p < 0.05), hyper-echoic halos (PPV = 85.7%, p < 0.05), microcalcification (PPV = 66.7%, p < 0.05), thick walls or thick septa (PPV = 62.5%, p < 0.05), irregular shape (PPV: 51.2%, p < 0.05), indistinct margin (PPV: 48.6%, p < 0.05) and predominantly solid masses with eccentric cystic foci (PPV = 46.8%, p < 0.05). ABVS can reveal sonographic features of the lesions along the coronal plane, which may be of benefit in the detection of malignant, predominantly cystic masses and provide high clinical values.

  8. Semi-automatic assessment of pediatric hydronephrosis severity in 3D ultrasound

    NASA Astrophysics Data System (ADS)

    Cerrolaza, Juan J.; Otero, Hansel; Yao, Peter; Biggs, Elijah; Mansoor, Awais; Ardon, Roberto; Jago, James; Peters, Craig A.; Linguraru, Marius George

    2016-03-01

    Hydronephrosis is the most common abnormal finding in pediatric urology. Thanks to its non-ionizing nature, ultrasound (US) imaging is the preferred diagnostic modality for the evaluation of the kidney and the urinary track. However, due to the lack of correlation of US with renal function, further invasive and/or ionizing studies might be required (e.g., diuretic renograms). This paper presents a computer-aided diagnosis (CAD) tool for the accurate and objective assessment of pediatric hydronephrosis based on morphological analysis of kidney from 3DUS scans. The integration of specific segmentation tools in the system, allows to delineate the relevant renal structures from 3DUS scans of the patients with minimal user interaction, and the automatic computation of 90 anatomical features. Using the washout half time (T1/2) as indicative of renal obstruction, an optimal subset of predictive features is selected to differentiate, with maximum sensitivity, those severe cases where further attention is required (e.g., in the form of diuretic renograms), from the noncritical ones. The performance of this new 3DUS-based CAD system is studied for two clinically relevant T1/2 thresholds, 20 and 30 min. Using a dataset of 20 hydronephrotic cases, pilot experiments show how the system outperforms previous 2D implementations by successfully identifying all the critical cases (100% of sensitivity), and detecting up to 100% (T1/2 = 20 min) and 67% (T1/2 = 30 min) of non-critical ones for T1/2 thresholds of 20 and 30 min, respectively.

  9. Precisely shaped acoustic ablation of tumors utilizing steerable needle and 3D ultrasound image guidance

    NASA Astrophysics Data System (ADS)

    Boctor, Emad M.; Stolka, Philipp; Kang, Hyun-Jae; Clarke, Clyde; Rucker, Caleb; Croom, Jordon; Burdette, E. Clif; Webster, Robert J., III

    2010-02-01

    Many recent studies have demonstrated the efficacy of interstitial ablative approaches for the treatment of hepatic tumors. Despite these promising results, current systems remain highly dependent on operator skill, and cannot treat many tumors because there is little control of the size and shape of the zone of necrosis, and no control over ablator trajectory within tissue once insertion has taken place. Additionally, tissue deformation and target motion make it extremely difficult to place the ablator device precisely into the target. Irregularly shaped target volumes typically require multiple insertions and several overlapping (thermal) lesions, which are even more challenging to accomplish in a precise, predictable, and timely manner without causing excessive damage to surrounding normal tissues. In answer to these problems, we have developed a steerable acoustic ablator called the ACUSITT with the ability of directional energy delivery to precisely shape the applied thermal dose . In this paper, we address image guidance for this device, proposing an innovative method for accurate tracking and tool registration with spatially-registered intra-operative three-dimensional US volumes, without relying on an external tracking device. This method is applied to guid-ance of the flexible, snake-like, lightweight, and inexpensive ACUSITT to facilitate precise placement of its ablator tip within the liver, with ablation monitoring via strain imaging. Recent advancements in interstitial high-power ultrasound applicators enable controllable and penetrating heating patterns which can be dynamically altered. This paper summarizes the design and development of the first synergistic system that integrates a novel steerable interstitial acoustic ablation device with a novel trackerless 3DUS guidance strategy.

  10. Prenatal Diagnosis of Amniotic Band Syndrome in the Third Trimester of Pregnancy using 3D Ultrasound

    PubMed Central

    Nardozza, Luciano Marcondes Machado; Araujo, Edward; Caetano, Ana Carolina Rabachini; Moron, Antonio Fernandes

    2012-01-01

    Amniotic band syndrome is characterized by a build-up of bands and strings of fibrous tissue that adhere to the fetus and can compress parts of the fetus, thus causing malformations and even limb amputation while the fetus is still in the uterus. The clinical manifestations are extremely variable and their extent may range from a single abnormality, like a constriction ring, to multiple abnormalities. Such abnormalities are generally diagnosed at the end of the first or the beginning of the second trimester using two-dimensional ultrasonography (2DUS). Three-dimensional ultrasonography (3DUS) in rendering mode allows spatial analysis of the fetus and amniotic band, thus enabling better comprehension of this pathological condition and better counseling for the parents. There has not previously been any evidence to show that 3DUS would be useful in cases of late diagnosis (third trimester) of amniotic band syndrome. In the present case, a primigravid woman underwent her second obstetric ultrasound scan in the 34th week, from which we observed two bands in contact with the right forearm, but with normal movement of this limb and its fingers. 3DUS made it possible to see the spatial relationship of these bands to the fetal body, thereby confirming their adherence to the limb. After the birth, the prenatal diagnosis of amniotic band syndrome without limb constriction was confirmed. A surgical procedure was carried out on the third day after birth to excise the bands, and the newborn was then discharged in a good general condition. PMID:22616039

  11. Dynamic shape modeling of the mitral valve from real-time 3D ultrasound images using continuous medial representation

    NASA Astrophysics Data System (ADS)

    Pouch, Alison M.; Yushkevich, Paul A.; Jackson, Benjamin M.; Gorman, Joseph H., III; Gorman, Robert C.; Sehgal, Chandra M.

    2012-03-01

    Purpose: Patient-specific shape analysis of the mitral valve from real-time 3D ultrasound (rt-3DUS) has broad application to the assessment and surgical treatment of mitral valve disease. Our goal is to demonstrate that continuous medial representation (cm-rep) is an accurate valve shape representation that can be used for statistical shape modeling over the cardiac cycle from rt-3DUS images. Methods: Transesophageal rt-3DUS data acquired from 15 subjects with a range of mitral valve pathology were analyzed. User-initialized segmentation with level sets and symmetric diffeomorphic normalization delineated the mitral leaflets at each time point in the rt-3DUS data series. A deformable cm-rep was fitted to each segmented image of the mitral leaflets in the time series, producing a 4D parametric representation of valve shape in a single cardiac cycle. Model fitting accuracy was evaluated by the Dice overlap, and shape interpolation and principal component analysis (PCA) of 4D valve shape were performed. Results: Of the 289 3D images analyzed, the average Dice overlap between each fitted cm-rep and its target segmentation was 0.880+/-0.018 (max=0.912, min=0.819). The results of PCA represented variability in valve morphology and localized leaflet thickness across subjects. Conclusion: Deformable medial modeling accurately captures valve geometry in rt-3DUS images over the entire cardiac cycle and enables statistical shape analysis of the mitral valve.

  12. Accurate quantification of local changes for carotid arteries in 3D ultrasound images using convex optimization-based deformable registration

    NASA Astrophysics Data System (ADS)

    Cheng, Jieyu; Qiu, Wu; Yuan, Jing; Fenster, Aaron; Chiu, Bernard

    2016-03-01

    Registration of longitudinally acquired 3D ultrasound (US) images plays an important role in monitoring and quantifying progression/regression of carotid atherosclerosis. We introduce an image-based non-rigid registration algorithm to align the baseline 3D carotid US with longitudinal images acquired over several follow-up time points. This algorithm minimizes the sum of absolute intensity differences (SAD) under a variational optical-flow perspective within a multi-scale optimization framework to capture local and global deformations. Outer wall and lumen were segmented manually on each image, and the performance of the registration algorithm was quantified by Dice similarity coefficient (DSC) and mean absolute distance (MAD) of the outer wall and lumen surfaces after registration. In this study, images for 5 subjects were registered initially by rigid registration, followed by the proposed algorithm. Mean DSC generated by the proposed algorithm was 79:3+/-3:8% for lumen and 85:9+/-4:0% for outer wall, compared to 73:9+/-3:4% and 84:7+/-3:2% generated by rigid registration. Mean MAD of 0:46+/-0:08mm and 0:52+/-0:13mm were generated for lumen and outer wall respectively by the proposed algorithm, compared to 0:55+/-0:08mm and 0:54+/-0:11mm generated by rigid registration. The mean registration time of our method per image pair was 143+/-23s.

  13. The ultrasound brain helmet: new transducers and volume registration for in vivo simultaneous multi-transducer 3-D transcranial imaging.

    PubMed

    Lindsey, Brooks D; Light, Edward D; Nicoletto, Heather A; Bennett, Ellen R; Laskowitz, Daniel T; Smith, Stephen W

    2011-06-01

    Because stroke remains an important and time-sensitive health concern in developed nations, we present a system capable of fusing 3-D transcranial ultrasound volumes acquired from two sides of the head. This system uses custom sparse array transducers built on flexible multilayer circuits that can be positioned for simultaneous imaging through both temporal acoustic windows, allowing for potential registration of multiple real-time 3-D scans of cerebral vasculature. We examine hardware considerations for new matrix arrays-transducer design and interconnects-in this application. Specifically, it is proposed that SNR may be increased by reducing the length of probe cables. This claim is evaluated as part of the presented system through simulation, experimental data, and in vivo imaging. Ultimately, gains in SNR of 7 dB are realized by replacing a standard probe cable with a much shorter flex interconnect; higher gains may be possible using ribbon-based probe cables. In vivo images are presented, showing cerebral arteries with and without the use of microbubble contrast agent; they have been registered and fused using a simple algorithm which maximizes normalized cross-correlation.

  14. Left-Atrial Segmentation From 3-D Ultrasound Using B-Spline Explicit Active Surfaces With Scale Uncoupling.

    PubMed

    Almeida, Nuno; Friboulet, Denis; Sarvari, Sebastian Imre; Bernard, Olivier; Barbosa, Daniel; Samset, Eigil; Dhooge, Jan

    2016-02-01

    Segmentation of the left atrium (LA) of the heart allows quantification of LA volume dynamics which can give insight into cardiac function. However, very little attention has been given to LA segmentation from three-dimensional (3-D) ultrasound (US), most efforts being focused on the segmentation of the left ventricle (LV). The B-spline explicit active surfaces (BEAS) framework has been shown to be a very robust and efficient methodology to perform LV segmentation. In this study, we propose an extension of the BEAS framework, introducing B-splines with uncoupled scaling. This formulation improves the shape support for less regular and more variable structures, by giving independent control over smoothness and number of control points. Semiautomatic segmentation of the LA endocardium using this framework was tested in a setup requiring little user input, on 20 volumetric sequences of echocardiographic data from healthy subjects. The segmentation results were evaluated against manual reference delineations of the LA. Relevant LA morphological and functional parameters were derived from the segmented surfaces, in order to assess the performance of the proposed method on its clinical usage. The results showed that the modified BEAS framework is capable of accurate semiautomatic LA segmentation in 3-D transthoracic US, providing reliable quantification of the LA morphology and function.

  15. A Patient-Specific Polylactic Acid Bolus Made by a 3D Printer for Breast Cancer Radiation Therapy

    PubMed Central

    Park, Jong Min; Chun, MinSoo; Han, Ji Hye; Kim, Jung-in

    2016-01-01

    Purpose The aim of this study was to assess the feasibility and advantages of a patient-specific breast bolus made using a 3D printer technique. Methods We used the anthropomorphic female phantom with breast attachments, which volumes are 200, 300, 400, 500 and 650 cc. We simulated the treatment for a right breast patient using parallel opposed tangential fields. Treatment plans were used to investigate the effect of unwanted air gaps under bolus on the dose distribution of the whole breast. The commercial Super-Flex bolus and 3D-printed polylactic acid (PLA) bolus were applied to investigate the skin dose of the breast with the MOSFET measurement. Two boluses of 3 and 5 mm thicknesses were selected. Results There was a good agreement between the dose distribution for a virtual bolus generated by the TPS and PLA bolus. The difference in dose distribution between the virtual bolus and Super-Flex bolus was significant within the bolus and breast due to unwanted air gaps. The average differences between calculated and measured doses in a 200 and 300 cc with PLA bolus were not significant, which were -0.7% and -0.6% for 3mm, and -1.1% and -1.1% for 5 mm, respectively. With the Super-Flex bolus, however, significant dose differences were observed (-5.1% and -3.2% for 3mm, and -6.3% and -4.2% for 5 mm). Conclusion The 3D-printed solid bolus can reduce the uncertainty of the daily setup and help to overcome the dose discrepancy by unwanted air gaps in the breast cancer radiation therapy. PMID:27930717

  16. Mechanically assisted 3D ultrasound for pre-operative assessment and guiding percutaneous treatment of focal liver tumors

    NASA Astrophysics Data System (ADS)

    Sadeghi Neshat, Hamid; Bax, Jeffery; Barker, Kevin; Gardi, Lori; Chedalavada, Jason; Kakani, Nirmal; Fenster, Aaron

    2014-03-01

    Image-guided percutaneous ablation is the standard treatment for focal liver tumors deemed inoperable and is commonly used to maintain eligibility for patients on transplant waitlists. Radiofrequency (RFA), microwave (MWA) and cryoablation technologies are all delivered via one or a number of needle-shaped probes inserted directly into the tumor. Planning is mostly based on contrast CT/MRI. While intra-procedural CT is commonly used to confirm the intended probe placement, 2D ultrasound (US) remains the main, and in some centers the only imaging modality used for needle guidance. Corresponding intraoperative 2D US with planning and other intra-procedural imaging modalities is essential for accurate needle placement. However, identification of matching features of interest among these images is often challenging given the limited field-of-view (FOV) and low quality of 2D US images. We have developed a passive tracking arm with a motorized scan-head and software tools to improve guiding capabilities of conventional US by large FOV 3D US scans that provides more anatomical landmarks that can facilitate registration of US with both planning and intra-procedural images. The tracker arm is used to scan the whole liver with a high geometrical accuracy that facilitates multi-modality landmark based image registration. Software tools are provided to assist with the segmentation of the ablation probes and tumors, find the 2D view that best shows the probe(s) from a 3D US image, and to identify the corresponding image from planning CT scans. In this paper, evaluation results from laboratory testing and a phase 1 clinical trial for planning and guiding RFA and MWA procedures using the developed system will be presented. Early clinical results show a comparable performance to intra-procedural CT that suggests 3D US as a cost-effective alternative with no side-effects in centers where CT is not available.

  17. A 3-D ultrasound imaging robotic system to detect and quantify lower limb arterial stenoses: in vivo feasibility.

    PubMed

    Janvier, Marie-Ange; Merouche, Samir; Allard, Louise; Soulez, Gilles; Cloutier, Guy

    2014-01-01

    The degree of stenosis is the most common criterion used to assess the severity of lower limb peripheral arterial disease. Two-dimensional ultrasound (US) imaging is the first-line diagnostic method for investigating lesions, but it cannot render a 3-D map of the entire lower limb vascular tree required for therapy planning. We propose a prototype 3-D US imaging robotic system that can potentially reconstruct arteries from the iliac in the lower abdomen down to the popliteal behind the knee. A realistic multi-modal vascular phantom was first conceptualized to evaluate the system's performance. Geometric accuracies were assessed in surface reconstruction and cross-sectional area in comparison to computed tomography angiography (CTA). A mean surface map error of 0.55 mm was recorded for 3-D US vessel representations, and cross-sectional lumen areas were congruent with CTA geometry. In the phantom study, stenotic lesions were properly localized and severe stenoses up to 98.3% were evaluated with -3.6 to 11.8% errors. The feasibility of the in vivo system in reconstructing the normal femoral artery segment of a volunteer and detecting stenoses on a femoral segment of a patient was also investigated and compared with that of CTA. Together, these results encourage future developments to increase the robot's potential to adequately represent lower limb vessels and clinically evaluate stenotic lesions for therapy planning and recurrent non-invasive and non-ionizing follow-up examinations.

  18. Dosimetric comparison of 3D conformal, IMRT, and V-MAT techniques for accelerated partial-breast irradiation (APBI).

    PubMed

    Qiu, Jian-Jian; Chang, Zheng; Horton, Janet K; Wu, Qing-Rong Jackie; Yoo, Sua; Yin, Fang-Fang

    2014-01-01

    The purpose is to dosimetrically compare the following 3 delivery techniques: 3-dimensional conformal radiation therapy (3D-CRT), intensity-modulated arc therapy (IMRT), and volumetric-modulated arc therapy (V-MAT) in the treatment of accelerated partial-breast irradiation (APBI). Overall, 16 patients with T1/2N0 breast cancer were treated with 3D-CRT (multiple, noncoplanar photon fields) on the RTOG 0413 partial-breast trial. These cases were subsequently replanned using static gantry IMRT and V-MAT technology to understand dosimetric differences among these 3 techniques. Several dosimetric parameters were used in plan quality evaluation, including dose conformity index (CI) and dose-volume histogram analysis of normal tissue coverage. Quality assurance studies including gamma analysis were performed to compare the measured and calculated dose distributions. The IMRT and V-MAT plans gave more conformal target dose distributions than the 3D-CRT plans (p < 0.05 in CI). The volume of ipsilateral breast receiving 5 and 10Gy was significantly less using the V-MAT technique than with either 3D-CRT or IMRT (p < 0.05). The maximum lung dose and the ipsilateral lung volume receiving 10 (V10) or 20Gy (V20) were significantly less with both V-MAT and IMRT (p < 0.05). The IMRT technique was superior to 3D-CRT and V-MAT of low dose distributions in ipsilateral lung (p < 0.05 in V5 and D5). The total mean monitor units (MUs) for V-MAT (621.0 ± 111.9) were 12.2% less than those for 3D-CRT (707.3 ± 130.9) and 46.5% less than those for IMRT (1161.4 ± 315.6) (p < 0.05). The average machine delivery time was 1.5 ± 0.2 minutes for the V-MAT plans, 7.0 ± 1.6 minutes for the 3D-CRT plans, and 11.5 ± 1.9 minutes for the IMRT plans, demonstrating much less delivery time for V-MAT. Based on this preliminary study, V-MAT and IMRT techniques offer improved dose conformity as compared with 3D-CRT techniques without increasing dose to the ipsilateral lung. In terms of MU and delivery

  19. 3D parallel-detection microwave tomography for clinical breast imaging

    NASA Astrophysics Data System (ADS)

    Epstein, N. R.; Meaney, P. M.; Paulsen, K. D.

    2014-12-01

    of 3D dielectric property distributions for breast-like phantoms with tumor inclusions utilizing both the in-plane and new cross-plane data.

  20. 3D parallel-detection microwave tomography for clinical breast imaging.

    PubMed

    Epstein, N R; Meaney, P M; Paulsen, K D

    2014-12-01

    of 3D dielectric property distributions for breast-like phantoms with tumor inclusions utilizing both the in-plane and new cross-plane data.

  1. 3D parallel-detection microwave tomography for clinical breast imaging

    SciTech Connect

    Epstein, N. R.; Meaney, P. M.; Paulsen, K. D.

    2014-12-15

    recovery of 3D dielectric property distributions for breast-like phantoms with tumor inclusions utilizing both the in-plane and new cross-plane data.

  2. 3D parallel-detection microwave tomography for clinical breast imaging

    PubMed Central

    Meaney, P. M.; Paulsen, K. D.

    2014-01-01

    recovery of 3D dielectric property distributions for breast-like phantoms with tumor inclusions utilizing both the in-plane and new cross-plane data. PMID:25554311

  3. Automated segmentation of breast lesions in ultrasound images.

    PubMed

    Liu, Xu; Huo, Zhimin; Zhang, Jiwu

    2005-01-01

    Breast cancer is one of the leading causes of death in women. As a convenient and safe diagnosis method, ultrasound is most commonly used second to mammography for early detection and diagnosis of breast cancer. Here we proposed an automatic method to segment lesions in ultrasound images. The images are first filtered with anisotropic diffusion algorithm to remove speckle noise. The edge is enhanced to emphasize the lesion regions. Normalized cut is a graph theoretic that admits combination of different features for image segmentation, and has been successfully used in object parsing and grouping. In this paper we combine normalized cut with region merging method for the segmentation. The merging criteria are derived from the empirical rules used by radiologists when they interpret breast images. In the performance evaluation, we compared the computer-detected lesion boundaries with manually delineated borders. The experimental results show that the algorithm has efficient and robust performance for different kinds of lesions.

  4. Computer-aided diagnosis of breast DCE-MRI using pharmacokinetic model and 3-D morphology analysis.

    PubMed

    Wang, Teh-Chen; Huang, Yan-Hao; Huang, Chiun-Sheng; Chen, Jeon-Hor; Huang, Guei-Yu; Chang, Yeun-Chung; Chang, Ruey-Feng

    2014-04-01

    Three-dimensional (3-D) dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) consists of a large number of images in different enhancement phases which are used to identify and characterize breast lesions. The purpose of this study was to develop a computer-assisted algorithm for tumor segmentation and characterization using both kinetic information and morphological features of 3-D breast DCE-MRI. An integrated color map created by intersecting kinetic and area under the curve (AUC) color maps was used to detect potential breast lesions, followed by the application of a region growing algorithm to segment the tumor. Modified fuzzy c-means clustering was used to identify the most representative kinetic curve of the whole segmented tumor, which was then characterized by using conventional curve analysis or pharmacokinetic model. The 3-D morphological features including shape features (compactness, margin, and ellipsoid fitting) and texture features (based on the grey level co-occurrence matrix) of the segmented tumor were obtained to characterize the lesion. One hundred and thirty-two biopsy-proven lesions (63 benign and 69 malignant) were used to evaluate the performance of the proposed computer-aided system for breast MRI. Five combined features including rate constant (kep), volume of plasma (vp), energy (G1), entropy (G2), and compactness (C1), had the best performance with an accuracy of 91.67% (121/132), sensitivity of 91.30% (63/69), specificity of 92.06% (58/63), and Az value of 0.9427. Combining the kinetic and morphological features of 3-D breast MRI is a potentially useful and robust algorithm when attempting to differentiate benign and malignant lesions.

  5. How well can levator ani muscle morphology on 3D pelvic floor ultrasound predict the levator ani muscle function?

    PubMed Central

    Rostaminia, G.; Peck, J. D.; Quiroz, L. H.; Shobeiri, S. A.

    2016-01-01

    Introduction and hypothesis The aim of our study was to assess the performance of levator ani muscle deficiency (LAD) evaluated by 3D endovaginal ultrasound (EVUS) to detect pelvic floor muscle function as assessed by digital examination. Methods This cross-sectional study was conducted among 77 patients referred to our urogynecology clinic for pelvic floor dysfunction symptoms. Patients underwent physical examinations including digital pelvic muscle strength assessment using the Modified Oxford scale (MOS). EVUS volumes were evaluated and levator ani muscles were scored according to a validated LAD scoring system. MOS scores were categorized as nonfunctional (scores 0–1) and functional (scores 2–5). Results Mean age of participants was 56 (SD± 12.5) and 71% were menopausal. Overall, 32.5% had nonfunctional muscle strength and 44.2% were classified as having significant LAD. LAD identified by ultrasound had a sensitivity of 60% (95% CI 41%–79%) for detecting nonfunctional muscle and a specificity of 63% (95% CI 50%–77%) for detecting functional muscle. Overall, LAD demonstrated fair ability to discriminate between patient with and without poor muscle function (area under the ROC curve = 0.70 (95% CI 0.58–0.83). Among patients with an LAD score of 16–18, representing almost total muscle avulsion, 70% had nonfunctional MOS scores. Whereas, in patients with normal/minimal LAD (scores of 0–4), 89.5% had functional MOS scores Conclusions LAD and MOS scales were moderately negatively correlated Among patients with normal morphology or the most severe muscle deficiency, LAD scores can identify the majority of patients with functional or non-functional MOS scores, respectively. PMID:25246297

  6. Hand-held and automated breast ultrasound

    SciTech Connect

    Bassett, L.W.; Gold, R.H.; Kimme-Smith, C.

    1985-01-01

    The book is a guide for physicians and technologists who use US as an adjunct to mammography; it carefully outlines the pros and cons of US of the breast and its role in the diagnosis of benign and malignant diseases. After an introduction that discusses the philosophy of breast US, the chapters cover the physics of US and instrumentation (both hand-held transducers as well as automated water path scanners), then proceed to a discussion of the normal breast. Sections on benign disorders, malignant lesions, and pitfalls of diagnosis are followed by quiz cases.

  7. Elsevier Trophoblast Research Award Lecture: Searching for an early pregnancy 3-D morphometric ultrasound marker to predict fetal growth restriction.

    PubMed

    Collins, S L; Stevenson, G N; Noble, J A; Impey, L

    2013-03-01

    Fetal growth restriction (FGR) is a major cause of perinatal morbidity and mortality, even in term babies. An effective screening test to identify pregnancies at risk of FGR, leading to increased antenatal surveillance with timely delivery, could decrease perinatal mortality and morbidity. Placental volume, measured with commercially available packages and a novel, semi-automated technique, has been shown to predict small for gestational age babies. Placental morphology measured in 2-D in the second trimester and ex-vivo post delivery, correlates with FGR. This has also been investigated using 2-D estimates of diameter and site of cord insertion obtained using the Virtual Organ Computer-aided AnaLysis (VOCAL) software. Data is presented describing a pilot study of a novel 3-D method for defining compactness of placental shape. We prospectively recruited women with a singleton pregnancy and BMI of <35. A 3-D ultrasound scan was performed between 11 and 13 + 6 weeks' gestation. The placental volume, total placental surface area and the area of the utero-placental interface were calculated using our validated technique. From these we generated dimensionless indices including sphericity (ψ), standardised placental volume (sPlaV) and standardised functional area (sFA) using Buckingham π theorem. The marker for FGR used was small for gestational age, defined as <10th customised birth weight centile (cSGA). Regression analysis examined which of the morphometric indices were independent predictors of cSGA. Data were collected for 143 women, 20 had cSGA babies. Only sPlaV and sFA were significantly correlated to birth weight (p < 0.001). Regression demonstrated all dimensionless indices were inter-dependent co-factors. ROC curves showed no advantage for using sFA over the simpler sPlaV. The generated placental indices are not independent of placental volume this early in gestation. It is hoped that another placental ultrasound marker based on vascularity can improve the

  8. A 3D reconstruction algorithm for magneto-acoustic tomography with magnetic induction based on ultrasound transducer characteristics

    NASA Astrophysics Data System (ADS)

    Ma, Ren; Zhou, Xiaoqing; Zhang, Shunqi; Yin, Tao; Liu, Zhipeng

    2016-12-01

    In this study we present a three-dimensional (3D) reconstruction algorithm for magneto-acoustic tomography with magnetic induction (MAT-MI) based on the characteristics of the ultrasound transducer. The algorithm is investigated to solve the blur problem of the MAT-MI acoustic source image, which is caused by the ultrasound transducer and the scanning geometry. First, we established a transducer model matrix using measured data from the real transducer. With reference to the S-L model used in the computed tomography algorithm, a 3D phantom model of electrical conductivity is set up. Both sphere scanning and cylinder scanning geometries are adopted in the computer simulation. Then, using finite element analysis, the distribution of the eddy current and the acoustic source as well as the acoustic pressure can be obtained with the transducer model matrix. Next, using singular value decomposition, the inverse transducer model matrix together with the reconstruction algorithm are worked out. The acoustic source and the conductivity images are reconstructed using the proposed algorithm. Comparisons between an ideal point transducer and the realistic transducer are made to evaluate the algorithms. Finally, an experiment is performed using a graphite phantom. We found that images of the acoustic source reconstructed using the proposed algorithm are a better match than those using the previous one, the correlation coefficient of sphere scanning geometry is 98.49% and that of cylinder scanning geometry is 94.96%. Comparison between the ideal point transducer and the realistic transducer shows that the correlation coefficients are 90.2% in sphere scanning geometry and 86.35% in cylinder scanning geometry. The reconstruction of the graphite phantom experiment also shows a higher resolution using the proposed algorithm. We conclude that the proposed reconstruction algorithm, which considers the characteristics of the transducer, can obviously improve the resolution of the

  9. 3D electron density imaging using single scattered x rays with application to breast CT and mammographic screening

    NASA Astrophysics Data System (ADS)

    van Uytven, Eric Peter

    Screening mammography is the current standard in detecting breast cancer. However, its fundamental disadvantage is that it projects a 3D object into a 2D image. Small lesions are difficult to detect when superimposed over layers of normal tissue. Commercial Computed Tomography (CT) produces a true 3D image yet has a limited role in mammography due to relatively low resolution and contrast. With the intent of enhancing mammography and breast CT, we have developed an algorithm which can produce 3D electron density images using a single projection. Imaging an object with x rays produces a characteristic scattered photon spectrum at the detector plane. A known incident beam spectrum, beam shape, and arbitrary 3D matrix of electron density values enable a theoretical scattered photon distribution to be calculated. An iterative minimization algorithm is used to make changes to the electron density voxel matrix to reduce regular differences between the theoretical and the experimentally measured distributions. The object is characterized by the converged electron density image. This technique has been validated in simulation using data produced by the EGSnrc Monte Carlo code system. At both mammographic and CT energies, a scanning polychromatic pencil beam was used to image breast tissue phantoms containing lesion-like inhomogeneities. The resulting Monte Carlo data is processed using a Nelder-Mead iterative algorithm (MATLAB) to produce the 3D matrix of electron density values. Resulting images have confirmed the ability of the algorithm to detect various 1x1x2.5 mm3 lesions with calcification content as low as 0.5% (p<0.005) at a dose comparable to mammography.

  10. In vivo breast sound-speed imaging with ultrasound tomography

    SciTech Connect

    Huang, Lianjie; Li, Cuiping; Duric, Neb; Littrup, Peter

    2009-01-01

    We discuss a bent-ray ultrasound tomography algorithm with total-variation (TV) regularization. We have applied this algorithm to 61 in vivo breast datasets collected with our in-house clinical prototype for imaging sound-speed distributions in the breast. Our analysis showed that TV regularization could preserve sharper lesion edges than the classic Tikhonov regularization. Furthermore, the image quality of our TV bent-ray sound-speed tomograms was superior to that of the straight-ray counterparts for all types of breasts within BI-RADS density categories 1-4. For all four breast types from fatty to dense, the improvements for average sharpness (in the unit of (m{center_dot} s) {sup -1}) of lesion edges in our TV bent-ray tomograms are between 2.1 to 3.4 fold compared to the straight ray tomograms. Reconstructed sound-speed tomograms illustrated that our algorithm could successfully image fatty and glandular tissues within the breast. We calculated the mean sound-speed values for fatty tissue and breast parenchyma as 1422 {+-} 9 mls (mean{+-} SD) and1487 {+-} 21 mls, respectively. Based on 32 lesions in a cohort of 61 patients, we also found that the mean sound-speed for malignant breast lesions (1548{+-}17 mls) was higher, on average, than that of benign ones (1513{+-}27 mls) (one-sided pbreast density (, and therefore, breast cancer risk), as well as detect and help differentiate breast lesions. Finally, our sound-speed tomograms may also be a useful tool to monitor clinical response of breast cancer patients to neo-adjuvant chemotherapy.

  11. Real-time target tracking of soft tissues in 3D ultrasound images based on robust visual information and mechanical simulation.

    PubMed

    Royer, Lucas; Krupa, Alexandre; Dardenne, Guillaume; Le Bras, Anthony; Marchand, Eric; Marchal, Maud

    2017-01-01

    In this paper, we present a real-time approach that allows tracking deformable structures in 3D ultrasound sequences. Our method consists in obtaining the target displacements by combining robust dense motion estimation and mechanical model simulation. We perform evaluation of our method through simulated data, phantom data, and real-data. Results demonstrate that this novel approach has the advantage of providing correct motion estimation regarding different ultrasound shortcomings including speckle noise, large shadows and ultrasound gain variation. Furthermore, we show the good performance of our method with respect to state-of-the-art techniques by testing on the 3D databases provided by MICCAI CLUST'14 and CLUST'15 challenges.

  12. Antenatal Diagnosis of a Large Immature Abdominal Wall Teratoma by 2D-3D Ultrasound Using HDlive and Magnetic Resonance Imaging.

    PubMed

    Werner, Heron; Mocarzel, Carolina; Sá, Renato Augusto; Tonni, Gabriele; Novoa Y Novoa, Victoria Arruga; Avvad-Portari, Elyzabeth; Bonasoni, Paola; Araujo Júnior, Edward

    2016-01-01

    We describe the first case of prenatally detected teratoma of the fetal abdomen wall using ultrasound and fetal magnetic resonance imaging (MRI). A heterogeneous mass, partly solid and cystic, originating from the anterior abdominal wall of the fetus close to an omphalocele sac was detected by means of 2D/3D ultrasound and MRI. Amniodrainage was performed and due to sign of impending fetal risk, an emergency Cesarean section was performed. A bulky, crumbly and bleeding tumoral mass was confirmed at delivery. Ligation of the supplying artery to the tumor was complicated by uncontrollable hemorrhage and early neonatal death. Pathology identified the tumor as an immature teratoma of the anterior fetal abdominal wall. 2D/3D ultrasound, especially using HDlive application and MRI demonstrated accurate detection and characterization of this congenital tumor.

  13. 2-D and 3-D Digital Analysis of Breast Calcifications: A Technique to Improve Mammographic Specificity

    DTIC Science & Technology

    2001-06-01

    the Institute of Laboratory Resources, national Research Council (NIH Publication No. 86-23, Revised 1985). X For the protection of human subjects...193-200, 1983. 23 Sigfusson BF, Andersson I, Aspegren K, et al. Clustered breast calcifications. Acta Radiologica 24: 273-281, 1983. September 19...the breast. Clin Radiol 34:193-200, 1983. 23. Sigfusson BF, Andersson I, Aspegren K, et al. Clustered breast calcifications. Acta Radiologica 24: 273

  14. An algorithm to correct 2D near-infrared fluorescence signals using 3D intravascular ultrasound architectural information

    NASA Astrophysics Data System (ADS)

    Mallas, Georgios; Brooks, Dana H.; Rosenthal, Amir; Vinegoni, Claudio; Calfon, Marcella A.; Razansky, R. Nika; Jaffer, Farouc A.; Ntziachristos, Vasilis

    2011-03-01

    Intravascular Near-Infrared Fluorescence (NIRF) imaging is a promising imaging modality to image vessel biology and high-risk plaques in vivo. We have developed a NIRF fiber optic catheter and have presented the ability to image atherosclerotic plaques in vivo, using appropriate NIR fluorescent probes. Our catheter consists of a 100/140 μm core/clad diameter housed in polyethylene tubing, emitting NIR laser light at a 90 degree angle compared to the fiber's axis. The system utilizes a rotational and a translational motor for true 2D imaging and operates in conjunction with a coaxial intravascular ultrasound (IVUS) device. IVUS datasets provide 3D images of the internal structure of arteries and are used in our system for anatomical mapping. Using the IVUS images, we are building an accurate hybrid fluorescence-IVUS data inversion scheme that takes into account photon propagation through the blood filled lumen. This hybrid imaging approach can then correct for the non-linear dependence of light intensity on the distance of the fluorescence region from the fiber tip, leading to quantitative imaging. The experimental and algorithmic developments will be presented and the effectiveness of the algorithm showcased with experimental results in both saline and blood-like preparations. The combined structural and molecular information obtained from these two imaging modalities are positioned to enable the accurate diagnosis of biologically high-risk atherosclerotic plaques in the coronary arteries that are responsible for heart attacks.

  15. High-throughput, high-frequency 3-D ultrasound for in utero analysis of embryonic mouse brain development.

    PubMed

    Aristizábal, Orlando; Mamou, Jonathan; Ketterling, Jeffrey A; Turnbull, Daniel H

    2013-12-01

    With the emergence of the mouse as the predominant model system for studying mammalian brain development, in utero imaging methods are urgently required to analyze the dynamics of brain growth and patterning in mouse embryos. To address this need, we combined synthetic focusing with a high-frequency (38-MHz) annular-array ultrasound imaging system for extended depth-of-field, coded excitation for improved penetration and respiratory-gated transmit/receive. This combination allowed non-invasive in utero acquisition of motion-free 3-D data from individual embryos in approximately 2 min, and data from four or more embryos in a pregnant mouse in less than 30 min. Data were acquired from 148 embryos spanning 5 d of early to mid-gestational stages of brain development. The results indicated that brain anatomy and cerebral vasculature can be imaged with this system and that quantitative analyses of segmented cerebral ventricles can be used to characterize volumetric changes associated with mouse brain development.

  16. 3-D ultrasound imaging using a forward-looking CMUT ring array for intravascular/intracardiac applications.

    PubMed

    Yeh, David T; Oralkan, Omer; Wygant, Ira O; O'Donnell, Matthew; Khuri-Yakub, Butrus T

    2006-06-01

    Forward-viewing ring arrays can enable new applications in intravascular and intracardiac ultrasound. This work presents compelling, full-synthetic, phased-array volumetric images from a forward-viewing capacitive micromachined ultrasonic transducer (CMUT) ring array wire bonded to a custom integrated circuit front end. The CMUT ring array has a diameter of 2 mm and 64 elements each 100 microm x 100 microm in size. In conventional mode, echo signals received from a plane reflector at 5 mm had 70% fractional bandwidth around a center frequency of 8.3 MHz. In collapse mode, 69% fractional bandwidth is measured around 19 MHz. Measured signal-to-noise ratio (SNR) of the echo averaged 16 times was 29 dB for conventional operation and 35 dB for collapse mode. B-scans were generated of a target consisting of steel wires 0.3 mm in diameter to determine resolution performance. The 6 dB axial and lateral resolutions for the B-scan of the wire target are 189 microm and 0.112 radians for 8 MHz, and 78 microm and 0.051 radians for 19 MHz. A reduced firing set suitable for real-time, intravascular applications was generated and shown to produce acceptable images. Rendered three-dimensional (3-D) images of a Palmaz-Schatz stent also are shown, demonstrating that the imaging quality is sufficient for practical applications.

  17. Ultrasound-Based Guidance for Partial Breast Irradiation Therapy

    DTIC Science & Technology

    2010-01-01

    SUPPLEMENTARY NOTES 14. ABSTRACT Tracked ultrasound elastography can be used for guidance in partial breast radiotherapy by visualizing the hard...scar tissue around the lumpectomy cavity. For clinical success, the elastography method needs to be robust to the sources of decorrelation between...out-of-plane motion of the probe. In this wok, we present a novel elastography technique that is based on analytic minimization of a regularized cost

  18. Understanding the Impact of 2D and 3D Fibroblast Cultures on In Vitro Breast Cancer Models

    PubMed Central

    Sung, Kyung Eun; Su, Xiaojing; Berthier, Erwin; Pehlke, Carolyn; Friedl, Andreas; Beebe, David J.

    2013-01-01

    The utilization of 3D, physiologically relevant in vitro cancer models to investigate complex interactions between tumor and stroma has been increasing. Prior work has generally focused on the cancer cells and, the role of fibroblast culture conditions on tumor-stromal cell interactions is still largely unknown. Here, we focus on the stroma by comparing functional behaviors of human mammary fibroblasts (HMFs) cultured in 2D and 3D and their effects on the invasive progression of breast cancer cells (MCF10DCIS.com). We identified increased levels of several paracrine factors from HMFs cultured in 3D conditions that drive the invasive transition. Using a microscale co-culture model with improved compartmentalization and sensitivity, we demonstrated that HMFs cultured in 3D intensify the promotion of the invasive progression through the HGF/c-Met interaction. This study highlights the importance of the 3D stromal microenvironment in the development of multiple cell type in vitro cancer models. PMID:24124550

  19. Acrania/encephalocele sequence (exencephaly) associated with 92,XXXX karyotype: early prenatal diagnosis at 9(+5) weeks by 3D transvaginal ultrasound and coelocentesis.

    PubMed

    Tonni, Gabriele; Ventura, Alessandro; Bonasoni, Maria Paola

    2009-09-01

    A 27-year-old pregnant woman was diagnosed by 3D transvaginal ultrasound as carrying a fetus of 9(+5) weeks gestation affected by acrania/encephalocele (exencephaly) sequence. A 2D transvaginal ultrasound-guided aspiration of 5 mL of extra-coelomic fluid was performed under cervical block before uterine suction. Conventional cytogenetic analysis demonstrated a 92,XXXX karyotype. Transvaginal 2D ultrasound-guided coelocentesis for rapid karyotyping can be proposed to women who are near to miscarriage or in cases where a prenatal ultrasound diagnosis of congenital anomaly is performed at an early stage of development. Genetic analysis can be performed using traditional cytogenetic analysis or can be aided by fluorescence in situ hybridization (FISH). Coelocentesis may become an integral part of first trimester armamentarium and may be clinically useful in the understanding of the pathogenesis of early prenatally diagnosed congenital anomalies.

  20. Peptide hydrogelation and cell encapsulation for 3D culture of MCF-7 breast cancer cells.

    PubMed

    Huang, Hongzhou; Ding, Ying; Sun, Xiuzhi S; Nguyen, Thu A

    2013-01-01

    Three-dimensional (3D) cell culture plays an invaluable role in tumor biology by providing in vivo like microenviroment and responses to therapeutic agents. Among many established 3D scaffolds, hydrogels demonstrate a distinct property as matrics for 3D cell culture. Most of the existing pre-gel solutions are limited under physiological conditions such as undesirable pH or temperature. Here, we report a peptide hydrogel that shows superior physiological properties as an in vitro matrix for 3D cell culture. The 3D matrix can be accomplished by mixing a self-assembling peptide directly with a cell culture medium without any pH or temperature adjustment. Results of dynamic rheological studies showed that this hydrogel can be delivered multiple times via pipetting without permanently destroying the hydrogel architecture, indicating the deformability and remodeling ability of the hydrogel. Human epithelial cancer cells, MCF-7, are encapsulated homogeneously in the hydrogel matrix during hydrogelation. Compared with two-dimensional (2D) monolayer culture, cells residing in the hydrogel matrix grow as tumor-like clusters in 3D formation. Relevant parameters related to cell morphology, survival, proliferation, and apoptosis were analyzed using MCF-7 cells in 3D hydrogels. Interestingly, treatment of cisplatin, an anti-cancer drug, can cause a significant decrease of cell viability of MCF-7 clusters in hydrogels. The responses to cisplatin were dose- and time-dependent, indicating the potential usage of hydrogels for drug testing. Results of confocal microscopy and Western blotting showed that cells isolated from hydrogels are suitable for downstream proteomic analysis. The results provided evidence that this peptide hydrogel is a promising 3D cell culture material for drug testing.

  1. Treatment techniques for 3D conformal radiation to breast and chest wall including the internal mammary chain.

    PubMed

    Sonnik, Deborah; Selvaraj, Raj N; Faul, Clare; Gerszten, Kristina; Heron, Dwight E; King, Gwendolyn C

    2007-01-01

    Breast, chest wall, and regional nodal irradiation have been associated with an improved outcome in high-risk breast cancer patients. Complex treatment planning is often utilized to ensure complete coverage of the target volume while minimizing the dose to surrounding normal tissues. The 2 techniques evaluated in this report are the partially wide tangent fields (PWTFs) and the 4-field photon/electron combination (the modified "Kuske Technique"). These 2 techniques were evaluated in 10 consecutive breast cancer patients. All patients had computerized tomographic (CT) scans for 3D planning supine on a breast board. The breast was defined clinically by the physician and confirmed radiographically with radiopaque bebes. The resulting dose-volume histograms (DVHs) of normal and target tissues were then compared. The deep tangent field with blocks resulted in optimal coverage of the target and the upper internal mammary chain (IMC) while sparing of critical and nontarget tissues. The wide tangent technique required less treatment planning and delivery time. We compared the 2 techniques and their resultant DVHs and feasibility in a busy clinic.

  2. Treatment techniques for 3D conformal radiation to breast and chest wall including the internal mammary chain

    SciTech Connect

    Sonnik, Deborah; Selvaraj, Raj N. . E-mail: selvarajrn@upmc.edu; Faul, Clare; Gerszten, Kristina; Heron, Dwight E.; King, Gwendolyn C.

    2007-04-01

    Breast, chest wall, and regional nodal irradiation have been associated with an improved outcome in high-risk breast cancer patients. Complex treatment planning is often utilized to ensure complete coverage of the target volume while minimizing the dose to surrounding normal tissues. The 2 techniques evaluated in this report are the partially wide tangent fields (PWTFs) and the 4-field photon/electron combination (the modified 'Kuske Technique'). These 2 techniques were evaluated in 10 consecutive breast cancer patients. All patients had computerized tomographic (CT) scans for 3D planning supine on a breast board. The breast was defined clinically by the physician and confirmed radiographically with radiopaque bebes. The resulting dose-volume histograms (DVHs) of normal and target tissues were then compared. The deep tangent field with blocks resulted in optimal coverage of the target and the upper internal mammary chain (IMC) while sparing of critical and nontarget tissues. The wide tangent technique required less treatment planning and delivery time. We compared the 2 techniques and their resultant DVHs and feasibility in a busy clinic.

  3. Dosimetric comparison of preoperative single-fraction partial breast radiotherapy techniques: 3D CRT, noncoplanar IMRT, coplanar IMRT, and VMAT.

    PubMed

    Yoo, Sua; Blitzblau, Rachel; Yin, Fang-Fang; Horton, Janet K

    2015-01-08

    The purpose of this study was to compare dosimetric parameters of treatment plans among four techniques for preoperative single-fraction partial breast radiotherapy in order to select an optimal treatment technique. The techniques evaluated were noncoplanar 3D conformal radiation therapy (3D CRT), noncoplanar intensity-modulated radiation therapy (IMRTNC), coplanar IMRT (IMRTCO), and volumetric-modulated arc therapy (VMAT). The planning CT scans of 16 patients in the prone position were used in this study, with the single-fraction prescription doses of 15 Gy for the first eight patients and 18 Gy for the remaining eight patients. Six (6) MV photon beams were designed to avoid the heart and contralateral breast. Optimization for IMRT and VMAT was performed to reduce the dose to the skin and normal breast. All plans were normalized such that 100% of the prescribed dose covered greater than 95% of the clinical target volume (CTV) consisting of gross tumor volume (GTV) plus 1.5 cm margin. Mean homogeneity index (HI) was the lowest (1.05 ± 0.02) for 3D CRT and the highest (1.11 ± 0.04) for VMAT. Mean conformity index (CI) was the lowest (1.42 ± 0.32) for IMRTNC and the highest (1.60 ± 0.32) for VMAT. Mean of the maximum point dose to skin was the lowest (73.7 ± 11.5%) for IMRTNC and the highest (86.5 ± 6.68%) for 3D CRT. IMRTCO showed very similar HI, CI, and maximum skin dose to IMRTNC (differences <1%). The estimated mean treatment delivery time, excluding the time spent for patient positioning and imaging, was 7.0 ± 1.0, 8.3 ± 1.1, 9.7 ± 1.0, and 11.0 ± 1.5min for VMAT, IMRTCO, IMRTNC and 3D CRT, respectively. In comparison of all four techniques for preoperative single-fraction partial breast radiotherapy, we can conclude that noncoplanar or coplanar IMRT were optimal in this study as IMRT plans provided homogeneous and conformal target coverage, skin sparing, and relatively short treatment delivery time.

  4. Optimization, pharmacophore modeling and 3D-QSAR studies of sipholanes as breast cancer migration and proliferation inhibitors.

    PubMed

    Foudah, Ahmed I; Sallam, Asmaa A; Akl, Mohamed R; El Sayed, Khalid A

    2014-02-12

    Sipholenol A, a triterpene isolated from the Red Sea sponge Callyspongia siphonella, was previously shown to reverse multidrug resistance in P-glycoprotein-overexpressing cancer cells. Moreover, sipholanes showed promising in vitro inhibitory effects against the invasion and migration of the metastatic human breast cancer cell line MDA-MB-231. The breast tumor kinase (Brk), a mediator of cancer cell phenotypes important for proliferation, survival, and migration, was proposed as a potential target. This study reports additional semisynthetic optimization of sipholenol A esters to improve the breast cancer antimigratory and antiproliferative activities as well as Brk phosphorylation inhibition. Fifteen new sipholenol A analogs (25-39) were semisynthesized. Sipholenol A 4β-4',5'-dichlorobenzoate ester (29) was the most potent, with an IC50 value of 1.3 μM in the migration assay. The level of Brk phosphorylation inhibition of 29 was assessed using the Z'-LYTE™ kinase assay and Western blot analysis. Active analogs showed no toxicity on the non-tumorigenic epithelial breast cell line MCF10A at doses equal to their IC50 values or higher in migration and proliferation assays, suggesting their selectivity towards malignant cells. Pharmacophore modeling and 3D-QSAR studies were conducted to identify important pharmacophoric features and correlate 3D-chemical structure with activity. These studies provided the evidence for future design of novel antimigratory compounds based on a simplified sipholane structure possessing rings A and B (perhydrobenzoxepine) connected to substituted aromatic esters, with the elimination of rings C and D ([5,3,0]bicyclodecane system). This will enable the future synthesis of the new active entities feasibly and cost-effectively. These results demonstrate the potential of marine natural products for the discovery of novel scaffolds for the control and management of metastatic breast cancer.

  5. Retroareolar Carcinomas in Breast Ultrasound: Pearls and Pitfalls

    PubMed Central

    Ferré, Romuald; Paré, Martine; Smith, Lisa; Thériault, Mélanie; Aldis, Ann; Kao, Ellen; Mesurolle, Benoit

    2016-01-01

    Breast Ultrasound (US) is an important tool for both screening and diagnostic examinations. Although breast US has benefitted from significant recent technical improvements, its use for the retroareolar region is known to be more challenging than for other locations. The retroareolar location was defined by Giess et al. in 1998 as the region where any lesion is situated at less than two cm from the nipple and/or involves the nipple-areolar complex on mammogram. Understanding of the complex anatomy and physiology of the nipple-areolar region is important to avoid misinterpretation and misdiagnosis. The ability for the breast imager to manage difficulties related to the retroareolar area is paramount by adjusting settings (compounding, frequency, Doppler) and utilizing specific manoeuvers. Cases illustrating difficulties encountered in diagnosis of retroareolar carcinomas are presented. PMID:28042819

  6. Microenvironment complexity and matrix stiffness regulate breast cancer cell activity in a 3D in vitro model

    PubMed Central

    Cavo, Marta; Fato, Marco; Peñuela, Leonardo; Beltrame, Francesco; Raiteri, Roberto; Scaglione, Silvia

    2016-01-01

    Three-dimensional (3D) cell cultures represent fundamental tools for the comprehension of cellular phenomena both in normal and in pathological conditions. In particular, mechanical and chemical stimuli play a relevant role on cell fate, cancer onset and malignant evolution. Here, we use mechanically-tuned alginate hydrogels to study the role of substrate elasticity on breast adenocarcinoma cell activity. The hydrogel elastic modulus (E) was measured via atomic force microscopy (AFM) and a remarkable range (150–4000 kPa) was obtained. A breast cancer cell line, MCF-7, was seeded within the 3D gels, on standard Petri and alginate-coated dishes (2D controls). Cells showed dramatic morphological differences when cultured in 3D versus 2D, exhibiting a flat shape in both 2D conditions, while maintaining a circular, spheroid-organized (cluster) conformation within the gels, similar to those in vivo. Moreover, we observed a strict correlation between cell viability and substrate elasticity; in particular, the number of MCF-7 cells decreased constantly with increasing hydrogel elasticity. Remarkably, the highest cellular proliferation rate, associated with the formation of cell clusters, occurred at two weeks only in the softest hydrogels (E = 150–200 kPa), highlighting the need to adopt more realistic and a priori defined models for in vitro cancer studies. PMID:27734939

  7. Automated quality assessment in three-dimensional breast ultrasound images.

    PubMed

    Schwaab, Julia; Diez, Yago; Oliver, Arnau; Martí, Robert; van Zelst, Jan; Gubern-Mérida, Albert; Mourri, Ahmed Bensouda; Gregori, Johannes; Günther, Matthias

    2016-04-01

    Automated three-dimensional breast ultrasound (ABUS) is a valuable adjunct to x-ray mammography for breast cancer screening of women with dense breasts. High image quality is essential for proper diagnostics and computer-aided detection. We propose an automated image quality assessment system for ABUS images that detects artifacts at the time of acquisition. Therefore, we study three aspects that can corrupt ABUS images: the nipple position relative to the rest of the breast, the shadow caused by the nipple, and the shape of the breast contour on the image. Image processing and machine learning algorithms are combined to detect these artifacts based on 368 clinical ABUS images that have been rated manually by two experienced clinicians. At a specificity of 0.99, 55% of the images that were rated as low quality are detected by the proposed algorithms. The areas under the ROC curves of the single classifiers are 0.99 for the nipple position, 0.84 for the nipple shadow, and 0.89 for the breast contour shape. The proposed algorithms work fast and reliably, which makes them adequate for online evaluation of image quality during acquisition. The presented concept may be extended to further image modalities and quality aspects.

  8. Accurate 3D Modeling of Breast Deformation for Temporal Mammogram Registration

    DTIC Science & Technology

    2009-09-01

    Modal Registration Algorithm of Eye Fundus Images Using Vessels Detection and Hough Transform,” IEEE Transactions on Medical Imaging 18(5), pp. 419–428...breast compression during mammographic imaging . We have developed two types of mammogram registration methods: magnetic resonance imaging (MRI) guided...knowledge and large compression of breast during X-ray imaging often cause mismatch among temporal mammograms, which eventually leads to incorrect

  9. Methodology for generating a 3D computerized breast phantom from empirical data

    PubMed Central

    Li, Christina M.; Segars, W. Paul; Tourassi, Georgia D.; Boone, John M.; Dobbins, James T.

    2009-01-01

    The initial process for creating a flexible three-dimensional computer-generated breast phantom based on empirical data is described. Dedicated breast computed-tomography data were processed to suppress noise and scatter artifacts in the reconstructed image set. An automated algorithm was developed to classify the breast into its primary components. A preliminary phantom defined using subdivision surfaces was generated from the segmented data. To demonstrate potential applications of the phantom, simulated mammographic image data were acquired of the phantom using a simplistic compression model and an analytic projection algorithm directly on the surface model. The simulated image was generated using a model for a polyenergetic cone-beam projection of the compressed phantom. The methods used to create the breast phantom generate resulting images that have a high level of tissue structure detail available and appear similar to actual mammograms. Fractal dimension measurements of simulated images of the phantom are comparatively similar to measurements from images of real human subjects. A realistic and geometrically defined breast phantom that can accurately simulate imaging data may have many applications in breast imaging research. PMID:19673211

  10. Determining inter-fractional motion of the uterus using 3D ultrasound imaging during radiotherapy for cervical cancer

    NASA Astrophysics Data System (ADS)

    Baker, Mariwan; Jensen, Jørgen Arendt; Behrens, Claus F.

    2014-03-01

    Uterine positional changes can reduce the accuracy of radiotherapy for cervical cancer patients. The purpose of this study was to; 1) Quantify the inter-fractional uterine displacement using a novel 3D ultrasound (US) imaging system, and 2) Compare the result with the bone match shift determined by Cone- Beam CT (CBCT) imaging.Five cervical cancer patients were enrolled in the study. Three of them underwent weekly CBCT imaging prior to treatment and bone match shift was applied. After treatment delivery they underwent a weekly US scan. The transabdominal scans were conducted using a Clarity US system (Clarity® Model 310C00). Uterine positional shifts based on soft-tissue match using US was performed and compared to bone match shifts for the three directions. Mean value (+/-1 SD) of the US shifts were (mm); anterior-posterior (A/P): (3.8+/-5.5), superior-inferior (S/I) (-3.5+/-5.2), and left-right (L/R): (0.4+/-4.9). The variations were larger than the CBCT shifts. The largest inter-fractional displacement was from -2 mm to +14 mm in the AP-direction for patient 3. Thus, CBCT bone matching underestimates the uterine positional displacement due to neglecting internal uterine positional change to the bone structures. Since the US images were significantly better than the CBCT images in terms of soft-tissue visualization, the US system can provide an optional image-guided radiation therapy (IGRT) system. US imaging might be a better IGRT system than CBCT, despite difficulty in capturing the entire uterus. Uterine shifts based on US imaging contains relative uterus-bone displacement, which is not taken into consideration using CBCT bone match.

  11. Accurate assessment of breast volume: a study comparing the volumetric gold standard (direct water displacement measurement of mastectomy specimen) with a 3D laser scanning technique.

    PubMed

    Yip, Jia Miin; Mouratova, Naila; Jeffery, Rebecca M; Veitch, Daisy E; Woodman, Richard J; Dean, Nicola R

    2012-02-01

    Preoperative assessment of breast volume could contribute significantly to the planning of breast-related procedures. The availability of 3D scanning technology provides us with an innovative method for doing this. We performed this study to compare measurements by this technology with breast volume measurement by water displacement. A total of 30 patients undergoing 39 mastectomies were recruited from our center. The volume of each patient's breast(s) was determined with a preoperative 3D laser scan. The volume of the mastectomy specimen was then measured in the operating theater by water displacement. There was a strong linear association between breast volumes measured using the 2 different methods when using a Pearson correlation (r = 0.95, P < 0.001). The mastectomy mean volume was defined by the equation: mastectomy mean volume = (scan mean volume × 1.03) -70.6. This close correlation validates the Cyberware WBX Scanner as a tool for assessment of breast volume.

  12. A Compressive Sensing Approach for 3D Breast Cancer Microwave Imaging With Magnetic Nanoparticles as Contrast Agent.

    PubMed

    Bevacqua, Martina T; Scapaticci, Rosa

    2016-02-01

    In microwave breast cancer imaging magnetic nanoparticles have been recently proposed as contrast agent. Due to the non-magnetic nature of human tissues, magnetic nanoparticles make possible the overcoming of some limitations of conventional microwave imaging techniques, thus providing reliable and specific diagnosis of breast cancer. In this paper, a Compressive Sensing inspired inversion technique is introduced for the reconstruction of the magnetic contrast induced within the tumor. The applicability of Compressive Sensing theory is guaranteed by the fact that the underlying inverse scattering problem is linear and the searched magnetic perturbation is sparse. From the numerical analysis, performed in realistic conditions in 3D geometry, it has been pointed out that the adoption of this new tool allows improving resolution and accuracy of the reconstructions, as well as reducing the number of required measurements.

  13. Altering the Microenvironment to Promote Dormancy of Metastatic Breast Cancer Cell in a 3D Bone Culture System

    DTIC Science & Technology

    2014-04-01

    for metastatic breast cancer cells to grow or remain dormant. This hypothesis is being tested using a 3D bioreactor of ECM, derived from osteoblasts...dormant human cells to proliferate in the bioreactor in co-culture with OB. The effect appears to depend on prostaglandin production. Chronic...growth of cancer cells, murine osteoblasts, MC3T3-E1, were grown for 2 months in the bioreactor with a basal medium of αMEM with 10mM β

  14. Cross-Modality Validation of Acetabular Surface Models Using 3-D Ultrasound Versus Magnetic Resonance Imaging in Normal and Dysplastic Infant Hips.

    PubMed

    Diederichs, Chad; Heath, Alana; Hareendranathan, Abhilash R; Zonoobi, Dornoosh; Kuntze, Gregor; Dulai, Sukhdeep; Mabee, Myles G; Ronsky, Janet L; Jaremko, Jacob L

    2016-09-01

    Current imaging diagnosis of developmental dysplasia of the hip (DDH) in infancy relies on 2-D ultrasound (US), which is highly operator-dependent. 3-D US offers more complete, and potentially more reliable, imaging of infant hip geometry. We sought to validate the fidelity of acetabular surface models obtained by 3-D US against those obtained concurrently by magnetic resonance imaging (MRI). 3-D US and MRI scans were performed on the same d in 20 infants with normal to severely dysplastic hips (mean age, 57 d; range 13-181 d). 3-D US was performed by two observers using a Philips VL13-5 probe. Coronal 3-D multi-echo data image combination (MEDIC) magnetic resonance (MR) images (1-mm slice thickness) were obtained, usually without sedation, in a 1.5 T Siemens unit. Acetabular surface models were generated for 40 hips from 3-D US and MRI using semi-automated tracing software, separately by three observers. For each hip, the 3-D US and MRI models were co-registered to overlap as closely as possible using Amira software, and the root mean square (RMS) distances between points on the models were computed. 3-D US scans took 3.2 s each. Inter-modality variability was visually minimal. Mean RMS distance between corresponding points on the acetabular surface at 3-D US and MRI was 0.4 ± 0.3 mm, with 95% confidence interval <1 mm. Mean RMS errors for inter-observer and intra-observer comparisons were significantly less for 3-D US than for MRI, while inter-scan and inter-modality comparisons showed no significant difference. Acetabular geometry was reproduced by 3-D US surface models within 1 mm of the corresponding 3-D MRI surface model, and the 3-D US models were more reliable. This validates the fidelity of 3-D US modeling and encourages future use of 3-D US in assessing infant acetabulum anatomy, which may be useful to detect and monitor treatment of hip dysplasia.

  15. Computer-aided classification of liver tumors in 3D ultrasound images with combined deformable model segmentation and support vector machine

    NASA Astrophysics Data System (ADS)

    Lee, Myungeun; Kim, Jong Hyo; Park, Moon Ho; Kim, Ye-Hoon; Seong, Yeong Kyeong; Cho, Baek Hwan; Woo, Kyoung-Gu

    2014-03-01

    In this study, we propose a computer-aided classification scheme of liver tumor in 3D ultrasound by using a combination of deformable model segmentation and support vector machine. For segmentation of tumors in 3D ultrasound images, a novel segmentation model was used which combined edge, region, and contour smoothness energies. Then four features were extracted from the segmented tumor including tumor edge, roundness, contrast, and internal texture. We used a support vector machine for the classification of features. The performance of the developed method was evaluated with a dataset of 79 cases including 20 cysts, 20 hemangiomas, and 39 hepatocellular carcinomas, as determined by the radiologist's visual scoring. Evaluation of the results showed that our proposed method produced tumor boundaries that were equal to or better than acceptable in 89.8% of cases, and achieved 93.7% accuracy in classification of cyst and hemangioma.

  16. Polyvinyl chloride plastisol breast phantoms for ultrasound imaging.

    PubMed

    de Carvalho, Isabela Miller; De Matheo, Lucas Lobianco; Costa Júnior, José Francisco Silva; Borba, Cecília de Melo; von Krüger, Marco Antonio; Infantosi, Antonio Fernando Catelli; Pereira, Wagner Coelho de Albuquerque

    2016-08-01

    Ultrasonic phantoms are objects that mimic some features of biological tissues, allowing the study of their interactions with ultrasound (US). In the diagnostic-imaging field, breast phantoms are an important tool for testing performance and optimizing US systems, as well as for training medical professionals. This paper describes the design and manufacture of breast lesions by using polyvinyl chloride plastisol (PVCP) as the base material. Among the materials available for this study, PVCP was shown to be stable, durable, and easy to handle. Furthermore, it is a nontoxic, nonpolluting, and low-cost material. The breast's glandular tissue (image background) was simulated by adding graphite powder with a concentration of 1% to the base material. Mixing PVCP and graphite powder in differing concentrations allows one to simulate lesions with different echogenicity patterns (anechoic, hypoechoic, and hyperechoic). From this mixture, phantom materials were obtained with speed of sound varying from 1379.3 to 1397.9ms(-1) and an attenuation coefficient having values between 0.29 and 0.94dBcm(-1) for a frequency of 1MHz at 24°C. A single layer of carnauba wax was added to the lesion surface in order to evaluate its applicability for imaging. The images of the phantoms were acquired using commercial ultrasound equipment; a specialist rated the images, elaborating diagnoses representative of both benign and malignant lesions. The results indicated that it was possible to easily create a phantom by using low-cost materials, readily available in the market and stable at room temperature, as the basis of ultrasonic phantoms that reproduce the image characteristics of fatty breast tissue and typical lesions of the breast.

  17. Anatomy of the lactating human breast redefined with ultrasound imaging

    PubMed Central

    Ramsay, DT; Kent, JC; Hartmann, RA; Hartman, PE

    2005-01-01

    The aim of this study was to use ultrasound imaging to re-investigate the anatomy of the lactating breast. The breasts of 21 fully lactating women (1–6 months post partum) were scanned using an ACUSON XP10 (5–10 MHz linear array probe). The number of main ducts was measured, ductal morphology was determined, and the distribution of glandular and adipose tissue was recorded. Milk ducts appeared as hypoechoic tubular structures with echogenic walls that often contained echoes. Ducts were easily compressed and did not display typical sinuses. All ducts branched within the areolar radius, the first branch occurring 8.0 ± 5.5 mm from the nipple. Duct diameter was 1.9 ± 0.6 mm, 2.0 ± 90.7 mm and the number of main ducts was 9.6 ± 2.9, 9.2 ± 2.9, for left and right breast, respectively. Milk ducts are superficial, easily compressible and echoes within the duct represent fat globules in breastmilk. The low number and size of the ducts, the rapid branching under the areola and the absence of sinuses suggest that ducts transport breastmilk, rather than store it. The distribution of adipose and glandular tissue showed wide variation between women but not between breasts within women. The proportion of glandular and fat tissue and the number and size of ducts were not related to milk production. This study highlights inconsistencies in anatomical literature that impact on breast physiology, breastfeeding management and ultrasound assessment. PMID:15960763

  18. Measuring shape complexity of breast lesions on ultrasound images

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Zhang, Su; Chen, Yazhu; Li, Wenying; Chen, Yaqing

    2008-03-01

    The shapes of malignant breast tumors are more complex than the benign lesions due to their nature of infiltration into surrounding tissues. We investigated the efficacy of shape features and presented a method using polygon shape complexity to improve the discrimination of benign and malignant breast lesions on ultrasound. First, 63 lesions (32 benign and 31 malignant) were segmented by K-way normalized cut with the priori rules on the ultrasound images. Then, the shape measures were computed from the automatically extracted lesion contours. A polygon shape complexity measure (SCM) was introduced to characterize the complexity of breast lesion contour, which was calculated from the polygonal model of lesion contour. Three new statistical parameters were derived from the local integral invariant signatures to quantify the local property of the lesion contour. Receiver operating characteristic (ROC) analysis was carried on to evaluate the performance of each individual shape feature. SCM outperformed the other shape measures, the area under ROC curve (AUC) of SCM was 0.91, and the sensitivity of SCM could reach 0.97 with the specificity 0.66. The measures of shape feature and margin feature were combined in a linear discriminant classifier. The resubstitution and leave-one-out AUC of the linear discriminant classifier were 0.94 and 0.92, respectively. The distinguishing ability of SCM showed that it could be a useful index for the clinical diagnosis and computer-aided diagnosis to reduce the number of unnecessary biopsies.

  19. [A preliminary study on data mining techniques for utilizing the breast ultrasound database].

    PubMed

    Peng, Yulan; Zhang, Heqing; Jing, Jigang; Ma, Buyun; Lu, Xiao; Tang, Chong; Nie, Shan; Liu, Ying; Qin, Yuzhou; Luo, Yan

    2010-08-01

    Based on the breast ultrasound database of West China Hospital from January 1, 2002 to December 31, 2007, a study of data mining techniques for utilizing the diagnostic information of breast ultrasound and breast pathology was carried out. An innovative computerized retrieval system was invented. With the visual user interface of the system, the data of benignancy or malignancy diagnosed by ultrasound and pathologic examination, and the data on the diagnostic correlation of ultrasound and pathology were obtained, respectively. The qualities of data mining were 99. 98%-100%. By means of the retrieval system, the users can secure numerous data from the breast ultrasound database rapidly and accurately; so it contributes to the rational utilization of information from medical database for serving various medical studies. This method may also be helpful for doctors to utilize ultrasound database in other fields.

  20. Pulsed Ultrasound Enhances Nanoparticle Penetration into Breast Cancer Spheroids

    PubMed Central

    Grainger, Stephanie J.; Serna, Juliana Valencia; Sunny, Steffi; Zhou, Yun; Deng, Cheri X.; El-Sayed, Mohamed E.H.

    2010-01-01

    Effective treatment of solid tumors requires homogenous distribution of anticancer drugs within the entire tumor volume to deliver lethal concentrations to resistant cancer cells and tumor-initiating cancer stem cells. However, penetration of small molecular weight chemotherapeutic agents and drug-loaded polymeric and lipid particles into the hypoxic and necrotic regions of solid tumors remains a significant challenge. This article reports the results of pulsed ultrasound enhanced penetration of nano-sized fluorescent particles into MCF-7 breast cancer spheroids (300-350 μm diameter) as a function of particle size and charge. With pulsed ultrasound application in the presence of microbubbles, small (20 nm) particles achieve 6-20 folds higher penetration and concentration in the spheroid's core compared to those not exposed to ultrasound. Increase in particle size to 40 nm and 100 nm results in their effective penetration into the spheroid's core to 9 and 3 folds, respectively. In addition, anionic carboxylate particles achieved higher penetration (2.3, 3.7, and 4.7 folds) into the core (0.25r) of MCF-7 breast cancer spheroids compared to neutral (2.2, 1.9, and 2.4 folds) and cationic particles (1.5, 1.4 and 1.9 folds) upon US exposure for 30, 60, and 90 seconds under the same experimental conditions. These results demonstrate the feasibility of utilizing pulsed ultrasound to increase the penetration of nano-sized particles into MCF-7 spheroids mimicking tumor tissue. The effects of particle properties on the penetration enhancement were also illustrated. PMID:20957996

  1. Development of Ultrasound Tomography for Breast Imaging: Technical Assessment

    SciTech Connect

    Duric, N; Littrup, P; Babkin, A; Chambers, D; Azevedo, S; Arkady, K; Pevzner, R; Tokarev, M; Holsapple, E

    2004-09-30

    Ultrasound imaging is widely used in medicine because of its benign characteristics and real-time capabilities. Physics theory suggests that the application of tomographic techniques may allow ultrasound imaging to reach its full potential as a diagnostic tool allowing it to compete with other tomographic modalities such as X-ray CT and MRI. This paper describes the construction and use of a prototype tomographic scanner and reports on the feasibility of implementing tomographic theory in practice and the potential of US tomography in diagnostic imaging. Data were collected with the prototype by scanning two types of phantoms and a cadaveric breast. A specialized suite of algorithms was developed and utilized to construct images of reflectivity and sound speed from the phantom data. The basic results can be summarized as follows: (1) A fast, clinically relevant US tomography scanner can be built using existing technology. (2) The spatial resolution, deduced from images of reflectivity, is 0.4 mm. The demonstrated 10 cm depth-of-field is superior to that of conventional ultrasound and the image contrast is improved through the reduction of speckle noise and overall lowering of the noise floor. (3) Images of acoustic properties such as sound speed suggest that it is possible to measure variations in the sound speed of 5 m/s. An apparent correlation with X-ray attenuation suggests that the sound speed can be used to discriminate between various types of soft tissue. (4) Ultrasound tomography has the potential to improve diagnostic imaging in relation to breast cancer detection.

  2. 3D In Vitro Model for Breast Cancer Research Using Magnetic Levitation and Bioprinting Method.

    PubMed

    Leonard, Fransisca; Godin, Biana

    2016-01-01

    Tumor microenvironment composition and architecture are known as a major factor in orchestrating the tumor growth and its response to various therapies. In this context, in vivo studies are necessary to evaluate the responses. However, while tumor cells can be of human origin, tumor microenvironment in the in vivo models is host-based. On the other hand, in vitro studies in a flat monoculture of tumor cells (the most frequently used in vitro tumor model) are unable to recapitulate the complexity of tumor microenvironment. Three-dimensional (3D) in vitro cell cultures of tumor cells have been proven to be an important experimental tool in understanding mechanisms of tumor growth, response to therapeutics, and transport of nutrients/drugs. We have recently described a novel tool to create 3D co-cultures of tumor cells and cells in the tumor microenvironment. Our method utilizes magnetic manipulation/levitation of the specific ratios of tumor cells and cells in the tumor microenvironment (from human or animal origin) aiding in the formation of tumor spheres with defined cellular composition and density, as quickly as within 24 h. This chapter describes the experimental protocols developed to model the 3D structure of the cancer environment using the above method.

  3. 3D in vitro model for breast cancer research using magnetic levitation and bioprinting method

    PubMed Central

    Leonard, Fransisca; Godin, Biana

    2016-01-01

    Summary Tumor microenvironment composition and architecture are known as a major factor in orchestrating the tumor growth and its response to various therapies. In this context, in vivo studies are necessary to evaluate the responses. However, while tumor cells can be of human origin, tumor microenvironment in the in vivo models is host-based. On the other hand, in vitro studies in a flat monoculture of tumor cells (the most frequently used in vitro tumor model) are unable to recapitulate the complexity of tumor microenvironment. Three-dimensional (3D) in vitro cell cultures of tumor cells have been proven to be an important experimental tool in understanding mechanisms of tumor growth, response to therapeutics and transport of nutrients/drugs. We have recently described a novel tool to create 3D co-cultures of tumor cells and cells in the tumor microenvironment. Our method utilizes magnetic manipulation/levitation of the specific ratios of tumor cells and cells in the tumor microenvironment (from human or animal origin) aiding in the formation of tumor spheres with defined cellular composition and density, as quickly as within 24 hours. This chapter describes the experimental protocols developed to model the 3D structure of the cancer environment using the above method. PMID:26820961

  4. Evaluating the extent of cell death in 3D high frequency ultrasound by registration with whole-mount tumor histopathology

    SciTech Connect

    Vlad, Roxana M.; Kolios, Michael C.; Moseley, Joanne L.; Czarnota, Gregory J.; Brock, Kristy K.

    2010-08-15

    Purpose: High frequency ultrasound imaging, 10-30 MHz, has the capability to assess tumor response to radiotherapy in mouse tumors as early as 24 h after treatment administration. The advantage of this technique is that the image contrast is generated by changes in the physical properties of dying cells. Therefore, a subject can be imaged before and multiple times during the treatment without the requirement of injecting specialized contrast agents. This study is motivated by a need to provide metrics of comparison between the volume and localization of cell death, assessed from histology, with the volume and localization of cell death surrogate, assessed as regions with increased echogeneity from ultrasound images. Methods: The mice were exposed to radiation doses of 2, 4, and 8 Gy. Ultrasound images were collected from each tumor before and 24 h after exposure to radiation using a broadband 25 MHz center frequency transducer. After radiotherapy, tumors exhibited hyperechoic regions in ultrasound images that corresponded to areas of cell death in histology. The ultrasound and histological images were rigidly registered. The tumors and regions of cell death were manually outlined on histological images. Similarly, the tumors and hyperechoic regions were outlined on the ultrasound images. Each set of contours was converted to a volumetric mesh in order to compare the volumes and the localization of cell death in histological and ultrasound images. Results: A shrinkage factor of 17{+-}2% was calculated from the difference in the tumor volumes evaluated from histological and ultrasound images. This was used to correct the tumor and cell death volumes assessed from histology. After this correction, the average absolute difference between the volume of cell death assessed from ultrasound and histological images was 11{+-}14% and the volume overlap was 70{+-}12%. Conclusions: The method provided metrics of comparison between the volume of cell death assessed from

  5. Comparative assessment of 3D surface scanning systems in breast plastic and reconstructive surgery.

    PubMed

    Patete, Paolo; Eder, Maximilian; Raith, Stefan; Volf, Alexander; Kovacs, Laszlo; Baroni, Guido

    2013-10-01

    In this work, we compared accuracy, repeatability, and usability in breast surface imaging of 2 commercial surface scanning systems and a hand-held laser surface scanner prototype coupled with a patient's motion acquisition and compensation methodology. The accuracy of the scanners was assessed on an anthropomorphic phantom, and to evaluate the usability of the scanners on humans, thorax surface images of 3 volunteers were acquired. Both the intrascanner repeatability and the interscanner comparative accuracy were assessed. The results showed surface-to-surface distance errors inferior to 1 mm and to 2 mm, respectively, for the 2 commercial scanners and for the prototypical one. Moreover, comparable performances of the 3 scanners were found when used for acquiring the breast surface. On the whole, this study demonstrated that handheld laser surface scanners coupled with subject motion compensation methods lend themselves as competitive technologies for human body surface modeling.

  6. Quantitative analysis of breast echotexture patterns in automated breast ultrasound images

    SciTech Connect

    Chang, Ruey-Feng; Hou, Yu-Ling; Lo, Chung-Ming; Huang, Chiun-Sheng; Chen, Jeon-Hor; Kim, Won Hwa; Chang, Jung Min; Bae, Min Sun; Moon, Woo Kyung

    2015-08-15

    Purpose: Breast tissue composition is considered to be associated with breast cancer risk. This study aimed to develop a computer-aided classification (CAC) system to automatically classify echotexture patterns as heterogeneous or homogeneous using automated breast ultrasound (ABUS) images. Methods: A CAC system was proposed that can recognize breast echotexture patterns in ABUS images. For each case, the echotexture pattern was assessed by two expert radiologists and classified as heterogeneous or homogeneous. After neutrosophic image transformation and fuzzy c-mean clusterings, the lower and upper boundaries of the fibroglandular tissues were defined. Then, the number of hypoechoic regions and histogram features were extracted from the fibroglandular tissues, and the support vector machine model with the leave-one-out cross-validation method was utilized as the classifier. The authors’ database included a total of 208 ABUS images of the breasts of 104 females. Results: The accuracies of the proposed system for the classification of heterogeneous and homogeneous echotexture patterns were 93.48% (43/46) and 92.59% (150/162), respectively, with an overall Az (area under the receiver operating characteristic curve) of 0.9786. The agreement between the radiologists and the proposed system was almost perfect, with a kappa value of 0.814. Conclusions: The use of ABUS and the proposed method can provide quantitative information on the echotexture patterns of the breast and can be used to evaluate whether breast echotexture patterns are associated with breast cancer risk in the future.

  7. Diffraction tomography applied to simulated ultrasound through breast tissue

    NASA Astrophysics Data System (ADS)

    Chambers, David H.

    2002-11-01

    Diffraction tomography is used to obtain images of sound speed and attenuation of a slice of breast tissue obtained from the Visible Woman data set. Simulated ultrasound data was generated using an acoustic propagation code run on the ASCI Blue Pacific computer at Lawrence Livermore National Laboratory. Data was generated for a slice of healthy tissue, and a slice with simulated lesions to determine the ability of the imaging method to detect various abnormalities in the breast. In addition, the time reversal operator for the slice was constructed from the data and the eigenfunctions backpropagated into the slice as first suggested by Mast [Mast, Nachman, and Waag, J. Acoust. Soc. Am. 102(2)] to identify structures associated with each time reversal mode for both the healthy tissue and tissue with lesions.

  8. Infrared thermography and ultrasound C-scan for non-destructive evaluation of 3D carbon fiber materials: a comparative study

    NASA Astrophysics Data System (ADS)

    Zhang, Hai; Genest, Marc; Robitaille, Francois; Maldague, Xavier; West, Lucas; Joncas, Simon; Leduc, Catherine

    2015-05-01

    3D Carbon fiber polymer matrix composites (3D CF PMCs) are increasingly used for aircraft construction due to their exceptional stiffness and strength-to-mass ratios. However, defects are common in the 3D combining areas and are challenging to inspect. In this paper, Stitching is used to decrease these defects, but causes some new types of defects. Infrared NDT (non-destructive testing) and ultrasound NDT are used. In particular, a micro-laser line thermography technique (micro-LLT) and a micro-laser spot thermography (micro-LST) with locked-in technique are used to detect the micro-defects. In addition, a comparative study is conducted by using pulsed thermography (PT), vibrothermography (VT). In order to confirm the types of the defects, microscopic inspection is carried out before NDT work, after sectioning and polishing a small part of the sample..

  9. Conformal ultrasound imaging system for anatomical breast inspection.

    PubMed

    Rouyer, Julien; Mensah, Serge; Franceschini, Emilie; Lasaygues, Philippe; Lefebvre, Jean-Pierre

    2012-07-01

    Ultrasound tomography has considerable potential as a means of breast cancer detection because it reduces the operator-dependency observed in echography. A half-ring transducer array was designed based on breast anatomy, to obtain reflectivity images of the ductolobular structures using tomographic reconstruction procedures. The 3-MHz transducer array comprises 1024 elements set in a 190-degree circular arc with a radius of 100 mm. The front-end electronics incorporate 32 independent parallel transmit/receive channels and a 32-to-1024 multiplexer unit. The transmit and receive circuitries have a variable sampling frequency of up to 80 MHz and 12-bit precision. Arbitrary waveforms are synthesized to improve the signal-to-noise ratio and to increase the spatial resolution when working with low-contrast objects. The setup was calibrated with academic objects and a needle hydrophone to develop the data correction tools and specify the properties of the system. The backscattering field was recorded using a restricted aperture, and tomographic acquisitions were performed with a pair of 0.08-mm-diameter steel wires, a low-contrast 2-D breast phantom, and a breast-shaped phantom containing inclusions. Data were processed with dedicated correction tools and a pulse compression technique. Objects were reconstructed using the elliptical back-projection algorithm.

  10. Quantitative assessment of cancer vascular architecture by skeletonization of high-resolution 3-D contrast-enhanced ultrasound images: role of liposomes and microbubbles.

    PubMed

    Molinari, F; Meiburger, K M; Giustetto, P; Rizzitelli, S; Boffa, C; Castano, M; Terreno, E

    2014-12-01

    The accurate characterization and description of the vascular network of a cancer lesion is of paramount importance in clinical practice and cancer research in order to improve diagnostic accuracy or to assess the effectiveness of a treatment. The aim of this study was to show the effectiveness of liposomes as an ultrasound contrast agent to describe the 3-D vascular architecture of a tumor. Eight C57BL/6 mice grafted with syngeneic B16-F10 murine melanoma cells were injected with a bolus of 1,2-Distearoyl-sn-glycero-3-phosphocoline (DSPC)-based non-targeted liposomes and with a bolus of microbubbles. 3-D contrast-enhanced images of the tumor lesions were acquired in three conditions: pre-contrast, after the injection of microbubbles, and after the injection of liposomes. By using a previously developed reconstruction and characterization image processing technique, we obtained the 3-D representation of the vascular architecture in these three conditions. Six descriptive parameters of these networks were also computed: the number of vascular trees (NT), the vascular density (VD), the number of branches, the 2-D curvature measure, the number of vascular flexes of the vessels, and the 3-D curvature. Results showed that all the vascular descriptors obtained by liposome-based images were statistically equal to those obtained by using microbubbles, except the VD which was found to be lower for liposome images. All the six descriptors computed in pre-contrast conditions had values that were statistically lower than those computed in presence of contrast, both for liposomes and microbubbles. Liposomes have already been used in cancer therapy for the selective ultrasound-mediated delivery of drugs. This work demonstrated their effectiveness also as vascular diagnostic contrast agents, therefore proving that liposomes can be used as efficient "theranostic" (i.e. therapeutic 1 diagnostic) ultrasound probes.

  11. 3-D analysis of breast morphology changes after inverted T-scar and vertical-scar reduction mammaplasty over 12 months.

    PubMed

    Eder, Maximilian; Klöppel, Markus; Müller, Daniel; Papadopulos, Nikolaos A; Machens, Hans-Günther; Kovacs, Laszlo

    2013-06-01

    One major objective of all types of breast reduction procedures is to achieve a long-lasting, stable and aesthetically pleasing three-dimensional (3-D) breast shape, but current surgical outcome evaluation is limited. This study compares the extent of soft-tissue oedema and breast tissue migration related to 3-D breast morphology changes after inverted T-scar and vertical-scar breast reduction over 12 months. 3-D breast surface scans of patients undergoing inverted T-scar (n=52 breasts) and vertical-scar (n=44 breasts) reduction mammaplasty were obtained preoperatively and 2-3 days, 1 week, 1 month, 3 months, 6 months, 9 months and 12 months postoperatively. 3-D images were analysed at each time point comparing distances, 3-D breast contour deviations (%), breast surface (cm2) and volume (cc) measurements including volumetric distribution between the upper portion (UP) and the lower portion (LP) of the breast (%). Total postoperative breast volume decreased by 11.7% (T-scar) and by 7.8% (vertical-scar) during the first 3 months (both p<0.001) without relevant changes in the following months, indicating that soft-tissue oedema is resolved after 3 months. The T-scar (vertical-scar) group showed a preoperative UP to LP volumetric distribution of 43:57% (45:55%) versus 86:14% (91:9%) immediately after surgery. Breast tissue significantly redistributes (both p=0.001) from the UP to the LP during the first postoperative year by 16.5% (T-scar) and 21% (vertical-scar), resulting in a final UP to LP ratio of 70:30% for both techniques, without further breast contour deviations (both p>0.05) after 6 months (T-scar) and 9 months (vertical-scar). Breast morphological changes after reduction mammaplasty are completed after a period of 3-6 months in the T-scar group and 6-9 months in the vertical-scar group.

  12. 3-D Ultrasound Localization Microscopy for Identifying Microvascular Morphology Features of Tumor Angiogenesis at a Resolution Beyond the Diffraction Limit of Conventional Ultrasound

    PubMed Central

    Lin, Fanglue; Shelton, Sarah E.; Espíndola, David; Rojas, Juan D.; Pinton, Gianmarco; Dayton, Paul A.

    2017-01-01

    Angiogenesis has been known as a hallmark of solid tumor cancers for decades, yet ultrasound has been limited in its ability to detect the microvascular changes associated with malignancy. Here, we demonstrate the potential of 'ultrasound localization microscopy' applied volumetrically in combination with quantitative analysis of microvascular morphology, as an approach to overcome this limitation. This pilot study demonstrates our ability to image complex microvascular patterns associated with tumor angiogenesis in-vivo at a resolution of tens of microns - substantially better than the diffraction limit of traditional clinical ultrasound, yet using an 8 MHz clinical ultrasound probe. Furthermore, it is observed that data from healthy and tumor-bearing tissue exhibit significant differences in microvascular pattern and density. Results suggests that with continued development of these novel technologies, ultrasound has the potential to detect biomarkers of cancer based on the microvascular 'fingerprint' of malignant angiogenesis rather than through imaging of blood flow dynamics or the tumor mass itself. PMID:28042327

  13. Analysis of 3D Subharmonic Ultrasound Signals from Patients with Known Breast Masses for Lesion Differentiation

    DTIC Science & Technology

    2014-12-01

    ductal carcinomas (23/35) made up the majority of the malignant cases, while fibroadenoma (30/99) was the most prevalent classification of the benign...heterogeneity plot of a benign case (a fibroadenoma ) across the peripheral and central sections. The presence of vascularity in the central sections is...heterogeneity plots of (a) benign ( fibroadenoma ) and (b) malignant (invasive ductal carcinoma) across the peripheral and central sections of the lesion

  14. A comparative analysis of 3D conformal deep inspiratory-breath hold and free-breathing intensity-modulated radiation therapy for left-sided breast cancer.

    PubMed

    Reardon, Kelli A; Read, Paul W; Morris, Monica M; Reardon, Michael A; Geesey, Constance; Wijesooriya, Krishni

    2013-01-01

    Patients undergoing radiation for left-sided breast cancer have increased rates of coronary artery disease. Free-breathing intensity-modulated radiation therapy (FB-IMRT) and 3-dimensional conformal deep inspiratory-breath hold (3D-DIBH) reduce cardiac irradiation. The purpose of this study is to compare the dose to organs at risk in FB-IMRT vs 3D-DIBH for patients with left-sided breast cancer. Ten patients with left-sided breast cancer had 2 computed tomography scans: free breathing and voluntary DIBH. Optimization of the IMRT plan was performed on the free-breathing scan using 6 noncoplanar tangential beams. The 3D-DIBH plan was optimized on the DIBH scan and used standard tangents. Mean volumes of the heart, the left anterior descending coronary artery (LAD), the total lung, and the right breast receiving 5% to 95% (5% increments) of the prescription dose were calculated. Mean volumes of the heart and the LAD were lower (p<0.05) in 3D-DIBH for volumes receiving 5% to 80% of the prescription dose for the heart and 5% for the LAD. Mean dose to the LAD and heart were lower in 3D-DIBH (p≤0.01). Mean volumes of the total lung were lower in FB-IMRT for dose levels 20% to 75% (p<0.05), but mean dose was not different. Mean volumes of the right breast were not different for any dose; however, mean dose was lower for 3D-DIBH (p = 0.04). 3D-DIBH is an alternative approach to FB-IMRT that provides a clinically equivalent treatment for patients with left-sided breast cancer while sparing organs at risk with increased ease of implementation.

  15. A comparative analysis of 3D conformal deep inspiratory–breath hold and free-breathing intensity-modulated radiation therapy for left-sided breast cancer

    SciTech Connect

    Reardon, Kelli A.; Read, Paul W.; Morris, Monica M.; Reardon, Michael A.; Geesey, Constance; Wijesooriya, Krishni

    2013-07-01

    Patients undergoing radiation for left-sided breast cancer have increased rates of coronary artery disease. Free-breathing intensity-modulated radiation therapy (FB-IMRT) and 3-dimensional conformal deep inspiratory–breath hold (3D-DIBH) reduce cardiac irradiation. The purpose of this study is to compare the dose to organs at risk in FB-IMRT vs 3D-DIBH for patients with left-sided breast cancer. Ten patients with left-sided breast cancer had 2 computed tomography scans: free breathing and voluntary DIBH. Optimization of the IMRT plan was performed on the free-breathing scan using 6 noncoplanar tangential beams. The 3D-DIBH plan was optimized on the DIBH scan and used standard tangents. Mean volumes of the heart, the left anterior descending coronary artery (LAD), the total lung, and the right breast receiving 5% to 95% (5% increments) of the prescription dose were calculated. Mean volumes of the heart and the LAD were lower (p<0.05) in 3D-DIBH for volumes receiving 5% to 80% of the prescription dose for the heart and 5% for the LAD. Mean dose to the LAD and heart were lower in 3D-DIBH (p≤0.01). Mean volumes of the total lung were lower in FB-IMRT for dose levels 20% to 75% (p<0.05), but mean dose was not different. Mean volumes of the right breast were not different for any dose; however, mean dose was lower for 3D-DIBH (p = 0.04). 3D-DIBH is an alternative approach to FB-IMRT that provides a clinically equivalent treatment for patients with left-sided breast cancer while sparing organs at risk with increased ease of implementation.

  16. Prenatal diagnosis of a patent urachus cyst with the use of 2D, 3D, 4D ultrasound and fetal magnetic resonance imaging.

    PubMed

    Fuchs, F; Picone, O; Levaillant, J M; Mabille, M; Mas, A E; Frydman, R; Senat, M V

    2008-01-01

    Patent urachus cyst is a rare umbilical anomaly, which is poorly detected prenatally and frequently confounded with pseudo bladder exstrophy or omphalocele. A 27-year-old woman was referred to our prenatal diagnosis centre at 18 weeks of gestation after diagnosis of a megabladder and 2 umbilical cord cysts. Subsequent 2D, 3D and 4D ultrasound examinations and fetal magnetic resonance imaging (MRI) revealed a typical umbilical cyst and an extra-abdominal cyst, communicating with the vertex of the fetal bladder through a small channel that increased in size when the fetus voided urine. Termination of pregnancy occured at 31 weeks because of associated cerebral septal agenesis, and autopsy confirmed the prenatal diagnosis of urachus cyst. Few cases of urachus cyst diagnosed prenatally are reported in literature, but none were associated with other extra-abdominal disorders and none used 3D, 4D and fetal MRI. Our case illustrated the efficiency in prenatal diagnosis of 3D and 4D ultrasound examinations. This could help pediatrician surgeons to explain to a couple about neonatal surgical repair and plastic reconstruction in the prenatal period.

  17. 3-D transcranial ultrasound imaging with bilateral phase aberration correction of multiple isoplanatic patches: a pilot human study with microbubble contrast enhancement.

    PubMed

    Lindsey, Brooks D; Nicoletto, Heather A; Bennett, Ellen R; Laskowitz, Daniel T; Smith, Stephen W

    2014-01-01

    With stroke currently the second-leading cause of death globally, and 87% of all strokes classified as ischemic, the development of a fast, accessible, cost-effective approach for imaging occlusive stroke could have a significant impact on health care outcomes and costs. Although clinical examination and standard computed tomography alone do not provide adequate information for understanding the complex temporal events that occur during an ischemic stroke, ultrasound imaging is well suited to the task of examining blood flow dynamics in real time and may allow for localization of a clot. A prototype bilateral 3-D ultrasound imaging system using two matrix array probes on either side of the head allows for correction of skull-induced aberration throughout two entire phased array imaging volumes. We investigated the feasibility of applying this custom correction technique in five healthy volunteers with Definity microbubble contrast enhancement. Subjects were scanned simultaneously via both temporal acoustic windows in 3-D color flow mode. The number of color flow voxels above a common threshold increased as a result of aberration correction in five of five subjects, with a mean increase of 33.9%. The percentage of large arteries visualized by 3-D color Doppler imaging increased from 46% without aberration correction to 60% with aberration correction.

  18. Breast epithelial tissue morphology is affected in 3D cultures by species-specific collagen-based extracellular matrix.

    PubMed

    Dhimolea, Eugen; Soto, Ana M; Sonnenschein, Carlos

    2012-11-01

    Collagen-based gels have been widely used to determine the factors that regulate branching morphogenesis in the mammary gland. The patterns of biomechanical gradients and collagen reorganization influence the shape and orientation of epithelial structures in three-dimensional (3D) conditions. We explored in greater detail whether collagen type I fibers with distinct biomechanical and fiber-assembling properties, isolated from either bovine or rat tail tendon, differentially affected the epithelial phenotype in a tissue culture model of the human breast. Rat tail collagen fibers were densely packed into significantly longer and thicker bundles compared to those of the bovine type (average fascicle length 7.35 and 2.29 μm, respectively; p = 0.0001), indicating increased fiber alignment and biomechanical enablement in the former. MCF10A epithelial cells formed elaborated branched tubular structures in bovine but only nonbranched ducts and acini in rat tail collagen matrices. Ductal branching in bovine collagen was associated with interactions between neighboring structures mediated through packed collagen fibers; these fiber-mediated interactions were absent in rat tail collagen gels. Normal breast fibroblasts increased the final size and number of ducts only in rat tail collagen gels while not affecting branching. Our results suggest that the species of origin of collagen used in organotypic cultures may influence epithelial differentiation into alveolar or ductal structures and the patterns of epithelial branching. These observations underscore the importance of considering the species of origin and fiber alignment properties of collagen when engineering branching organs in 3D matrices and interpreting their role in the tissue phenotype.

  19. A Micro CT Study in Patients with Breast Microcalcifications Using a Mathematical Algorithm to Assess 3D Structure

    PubMed Central

    Varga, Zsuzsanna; Heuer, Heike; Dedes, Konstantin J.; Berger, Nicole; Filli, Lukas; Boss, Andreas

    2017-01-01

    Purpose The aim of this study was to evaluate the relevance of the three-dimensional (3D) structure of breast microcalcifications (MC) as a predictor of malignancy using highly resolved micro-computed tomography (micro-CT) datasets of biopsy samples. Material and Methods The study included 28 women with suspicious MC in their mammogram undergoing vacuum-assisted biopsy. Directly after the intervention, the specimens were scanned in a micro-CT with an isometric spatial resolution of 9 μm. Datasets were analysed regarding the number, volume and morphology of suspicious non-monomorphic MC (fl—fine linear, fp—fine pleomorphic, ch—coarse heterogeneous) and the structure model index (SMI). Histological evaluation was performed according to the B-classification: normal tissue or benign (group A: B1, B2), unclear malignant potential or suspicious of malignancy (group B: B3, B4) and malignant lesions (group C: B5). Results In all groups, suspicious non-monomorphic MC were found: group A exhibited fp MC in 38.5% of samples, no fl/ch; group B: fl 14.3%, fp 28.6%, ch 14.3%; group C always had at least one type of suspicious non-monomorphic MC (fl (57.1%) or fp (57.1%)) in each sample. The different histologic groups showed a similar mean SMI (benign: 2.97 ± 0.31, malignant: 3.02 ± 0.10, unclear: 2.90 ± 0.28). Between the three groups, no significant differences were found regarding number, volume or SMI value of MC. Conclusion 3D structure based on the SMI of MC analysed with highest spatial resolution is not significantly associated with the B-classification of breast lesions. Thus, magnification views of MC may be omitted in the analysis of MC detected in mammograms. PMID:28107436

  20. Breast imaging with ultrasound tomography: a comparative study with MRI

    NASA Astrophysics Data System (ADS)

    Ranger, Bryan; Littrup, Peter; Duric, Neb; Li, Cuiping; Schmidt, Steven; Lupinacci, Jessica; Myc, Lukasz; Szczepanski, Amy; Rama, Olsi; Bey-Knight, Lisa

    2010-03-01

    The purpose of this study was to investigate the performance of an ultrasound tomography (UST) prototype relative to magnetic resonance (MR) for imaging overall breast anatomy and accentuating tumors relative to background tissue. The study was HIPAA compliant, approved by the Institutional Review Board, and performed after obtaining the requisite informed consent. Twenty-three patients were imaged with MR and the UST prototype. T1 weighted images with fat saturation, with and without gadolinium enhancement, were used to examine anatomical structures and tumors, while T2 weighted images were used to identify cysts. The UST scans generated sound speed, attenuation, and reflection images. A qualitative visual comparison of the MRI and UST images was then used to identify anatomical similarities. A more focused approach that involved a comparison of reported masses, lesion volumes, and breast density was used to quantify the findings from the visual assessment. Our acoustic tomography prototype imaged distributions of fibrous stroma, parenchyma, fatty tissues, and lesions in patterns similar to those seen in the MR images. The range of thresholds required to establish tumor volume equivalency between MRI and UST suggested that a universal threshold for isolating masses relative to background tissue is feasible with UST. UST has demonstrated the ability to visualize and characterize breast tissues in a manner comparable to MRI. Thresholding techniques accentuate masses relative to background anatomy, which may prove clinically useful for early cancer detection.

  1. Influence of ultrasound power on acoustic streaming and micro-bubbles formations in a low frequency sono-reactor: mathematical and 3D computational simulation.

    PubMed

    Sajjadi, Baharak; Raman, Abdul Aziz Abdul; Ibrahim, Shaliza

    2015-05-01

    This paper aims at investigating the influence of ultrasound power amplitude on liquid behaviour in a low-frequency (24 kHz) sono-reactor. Three types of analysis were employed: (i) mechanical analysis of micro-bubbles formation and their activities/characteristics using mathematical modelling. (ii) Numerical analysis of acoustic streaming, fluid flow pattern, volume fraction of micro-bubbles and turbulence using 3D CFD simulation. (iii) Practical analysis of fluid flow pattern and acoustic streaming under ultrasound irradiation using Particle Image Velocimetry (PIV). In mathematical modelling, a lone micro bubble generated under power ultrasound irradiation was mechanistically analysed. Its characteristics were illustrated as a function of bubble radius, internal temperature and pressure (hot spot conditions) and oscillation (pulsation) velocity. The results showed that ultrasound power significantly affected the conditions of hotspots and bubbles oscillation velocity. From the CFD results, it was observed that the total volume of the micro-bubbles increased by about 4.95% with each 100 W-increase in power amplitude. Furthermore, velocity of acoustic streaming increased from 29 to 119 cm/s as power increased, which was in good agreement with the PIV analysis.

  2. Inhibitors of Rho kinase (ROCK) signaling revert the malignant phenotype of breast cancer cells in 3D context.

    PubMed

    Matsubara, Masahiro; Bissell, Mina J

    2016-05-31

    Loss of polarity and quiescence along with increased cellular invasiveness are associated with breast tumor progression. ROCK plays a central role in actin-cytoskeletal rearrangement. We used physiologically relevant 3D cultures of nonmalignant and cancer cells in gels made of laminin-rich extracellular matrix, to investigate ROCK function. Whereas expression levels of ROCK1 and ROCK2 were elevated in cancer cells compared to nonmalignant cells, this was not observed in 2D cultures. Malignant cells showed increased phosphorylation of MLC, corresponding to disorganized F-actin. Inhibition of ROCK signaling restored polarity, decreased disorganization of F-actin, and led to reduction of proliferation. Inhibition of ROCK also decreased EGFR and Integrinβ1 levels, and consequently suppressed activation of Akt, MAPK and FAK as well as GLUT3 and LDHA levels. Again, ROCK inhibition did not inhibit these molecules in 2D. A triple negative breast cancer cell line, which lacks E-cadherin, had high levels of ROCK but was less sensitive to ROCK inhibitors. Exogenous overexpression of E-cadherin, however, rendered these cells strikingly sensitive to ROCK inhibition. Our results add to the growing literature that demonstrate the importance of context and tissue architecture in determining not only regulation of normal and malignant phenotypes but also drug response.

  3. Inhibitors of Rho kinase (ROCK) signaling revert the malignant phenotype of breast cancer cells in 3D context

    PubMed Central

    Matsubara, Masahiro; Bissell, Mina J.

    2016-01-01

    Loss of polarity and quiescence along with increased cellular invasiveness are associated with breast tumor progression. ROCK plays a central role in actin-cytoskeletal rearrangement. We used physiologically relevant 3D cultures of nonmalignant and cancer cells in gels made of laminin-rich extracellular matrix, to investigate ROCK function. Whereas expression levels of ROCK1 and ROCK2 were elevated in cancer cells compared to nonmalignant cells, this was not observed in 2D cultures. Malignant cells showed increased phosphorylation of MLC, corresponding to disorganized F-actin. Inhibition of ROCK signaling restored polarity, decreased disorganization of F-actin, and led to reduction of proliferation. Inhibition of ROCK also decreased EGFR and Integrinβ1 levels, and consequently suppressed activation of Akt, MAPK and FAK as well as GLUT3 and LDHA levels. Again, ROCK inhibition did not inhibit these molecules in 2D. A triple negative breast cancer cell line, which lacks E-cadherin, had high levels of ROCK but was less sensitive to ROCK inhibitors. Exogenous overexpression of E-cadherin, however, rendered these cells strikingly sensitive to ROCK inhibition. Our results add to the growing literature that demonstrate the importance of context and tissue architecture in determining not only regulation of normal and malignant phenotypes but also drug response. PMID:27203208

  4. Design and evaluation of the variable-angle slant-hole collimator for 3D molecular breast imaging

    NASA Astrophysics Data System (ADS)

    Gopan, Olga

    Purpose: The purpose of this work is to develop an improved method for 3D molecular imaging of the breast using limited angle SPECT. Methods: The proposed method uses a variable-angle slant-hole (VASH) collimator. Rather than rotate the camera around the breast, the VASH collimator allows limited angle, tomographic acquisition while the detector remains stationary and flush against the compression paddle. This design minimizes object-to-detector distance for high spatial resolution. Theoretical analysis is presented of VASH spatial resolution and sensitivity, including depth-of-interaction (DOI) effects and magnification. The theory is compared with Monte Carlo simulation results for a point source, a breast phantom including a compression paddle and a realistically segmented breast phantom with an inhomogeneous background uptake. A channelized Hotelling observer is applied to the evaluation of VASH using a lesion detection task, and the standard areaunder- the-curve (AUC) metric is obtained. Experimental results are presented using a proof-of-concept VASH collimator constructed of brass and used to image a low energy, Am-241 source. Results: The theoretical model of the VASH system showed good agreement with Monte Carlo simulations based on spatial resolution, including DOI effects, and sensitivity. The DOI effect resulted in roughly a 2 mm loss in spatial resolution only in depth dimension; in the other two dimensions the spatial resolution was not affected by DOI. In terms of contrast-to-noise ratio (CNR) and AUC, VASH outperformed a parallel hole SPECT approach. In terms of CNR, VASH outperformed a planar approach when the background inhomogeneity level was greater than 20% and in discerning two overlapping lesions. The difference in VASH and planar AUCs was not statistically significant. The reconstructed images from the proof-of-concept VASH collimator demonstrated the expected image blur in the depth dimension due to limited projection angle effects

  5. Quantification of Coupled Stiffness and Fiber Orientation Remodeling in Hypertensive Rat Right-Ventricular Myocardium Using 3D Ultrasound Speckle Tracking with Biaxial Testing

    PubMed Central

    Park, Dae Woo; Sebastiani, Andrea; Yap, Choon Hwai; Simon, Marc A.; Kim, Kang

    2016-01-01

    Mechanical and structural changes of right ventricular (RV) in response to pulmonary hypertension (PH) are inadequately understood. While current standard biaxial testing provides information on the mechanical behavior of RV tissues using surface markers, it is unable to fully assess structural and mechanical properties across the full tissue thickness. In this study, the mechanical and structural properties of normotensive and pulmonary hypertension right ventricular (PHRV) myocardium through its full thickness were examined using mechanical testing combined with 3D ultrasound speckle tracking (3D-UST). RV pressure overload was induced in Sprague–Dawley rats by pulmonary artery (PA) banding. The second Piola–Kirchhoff stress tensors and Green-Lagrangian strain tensors were computed in the RV myocardium using the biaxial testing combined with 3D-UST. A previously established non-linear curve-fitting algorithm was applied to fit experimental data to a Strain Energy Function (SEF) for computation of myofiber orientation. The fiber orientations obtained by the biaxial testing with 3D-UST compared well with the fiber orientations computed from the histology. In addition, the re-orientation of myofiber in the right ventricular free wall (RVFW) along longitudinal direction (apex-to-outflow-tract direction) was noticeable in response to PH. For normotensive RVFW samples, the average fiber orientation angles obtained by 3D-UST with biaxial test spiraled from 20° at the endo-cardium to -42° at the epi-cardium (Δ = 62°). For PHRV samples, the average fiber orientation angles obtained by 3D-UST with biaxial test had much less spiral across tissue thickness: 3° at endo-cardium to -7° at epi-cardium (Δ = 10°, P<0.005 compared to normotensive). PMID:27780271

  6. Refraction corrected transmission ultrasound computed tomography for application in breast imaging

    PubMed Central

    Li, Shengying; Jackowski, Marcel; Dione, Donald P.; Varslot, Trond; Staib, Lawrence H.; Mueller, Klaus

    2010-01-01

    Purpose: We present an iterative framework for CT reconstruction from transmission ultrasound data which accurately and efficiently models the strong refraction effects that occur in our target application: Imaging the female breast. Methods: Our refractive ray tracing framework has its foundation in the fast marching method (FNMM) and it allows an accurate as well as efficient modeling of curved rays. We also describe a novel regularization scheme that yields further significant reconstruction quality improvements. A final contribution is the development of a realistic anthropomorphic digital breast phantom based on the NIH Visible Female data set. Results: Our system is able to resolve very fine details even in the presence of significant noise, and it reconstructs both sound speed and attenuation data. Excellent correspondence with a traditional, but significantly more computationally expensive wave equation solver is achieved. Conclusions: Apart from the accurate modeling of curved rays, decisive factors have also been our regularization scheme and the high-quality interpolation filter we have used. An added benefit of our framework is that it accelerates well on GPUs where we have shown that clinical 3D reconstruction speeds on the order of minutes are possible. PMID:20527557

  7. Diffraction and coherence in breast ultrasound tomography: a study with a toroidal array

    SciTech Connect

    Huang, Lianjie; Simonetti, Francesco; Duric, Neb; Littrup, Peter

    2008-01-01

    Ultrasound is commonly used as an adjunct to mammography for diagnostic evaluation of suspicions arising from breast cancer screening. As an alternative to conventional sonography that uses hand-held transducers, toroidal array probes that encircle the breast immersed in a water bath have been investigated for ultrasound tomography. In this paper, two sets of experiments performed with a prototype ultrasound scanner on a phantom and a human breast in vivo are used to investigate the effects of diffraction and coherence in ultrasound tomography. Reconstructions obtained with transmission diffraction tomography (TDT) are compared with conventional reflection imaging and computerized ultrasound tomography showing a substantial improvement. The in vivo tests demonstrate that TDT can image the complex boundary of a cancer mass and suggest that it can reveal the anatomy of milk ducts and Cooper's ligaments.

  8. Computer-aided diagnosis of mass-like lesion in breast MRI: differential analysis of the 3-D morphology between benign and malignant tumors.

    PubMed

    Huang, Yan-Hao; Chang, Yeun-Chung; Huang, Chiun-Sheng; Wu, Tsung-Ju; Chen, Jeon-Hor; Chang, Ruey-Feng

    2013-12-01

    This study aimed to evaluate the value of using 3-D breast MRI morphologic features to differentiate benign and malignant breast lesions. The 3-D morphological features extracted from breast MRI were used to analyze the malignant likelihood of tumor from ninety-five solid breast masses (44 benign and 51 malignant) of 82 patients. Each mass-like lesion was examined with regards to three categories of morphologic features, including texture-based gray-level co-occurrence matrix (GLCM) feature, shape, and ellipsoid fitting features. For obtaining a robust combination of features from different categories, the biserial correlation coefficient (|r(pb)|)≧0.4 was used as the feature selection criterion. Receiver operating characteristic (ROC) curve was used to evaluate performance and Student's t-test to verify the classification accuracy. The combination of the selected 3-D morphological features, including conventional compactness, radius, spiculation, surface ratio, volume covering ratio, number of inside angular regions, sum of number of inside and outside angular regions, showed an accuracy of 88.42% (84/95), sensitivity of 88.24% (45/51), and specificity of 88.64% (39/44), respectively. The AZ value was 0.8926 for these seven combined morphological features. In conclusion, 3-D MR morphological features specified by GLCM, tumor shape and ellipsoid fitting were useful for differentiating benign and malignant breast masses.

  9. A dosimetric comparison of 3D-CRT, IMRT, and static tomotherapy with an SIB for large and small breast volumes

    SciTech Connect

    Michalski, Andrea; Atyeo, John; Cox, Jennifer; Rinks, Marianne; Morgia, Marita; Lamoury, Gillian

    2014-07-01

    Radiation therapy to the breast is a complex task, with many different techniques that can be employed to ensure adequate dose target coverage while minimizing doses to the organs at risk. This study compares the dose planning outcomes of 3 radiation treatment modalities, 3 dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), and static tomotherapy, for left-sided whole-breast radiation treatment with a simultaneous integrated boost (SIB). Overall, 20 patients with left-sided breast cancer were separated into 2 cohorts, small and large, based on breast volume. Dose plans were produced for each patient using 3D-CRT, IMRT, and static tomotherapy. All patients were prescribed a dose of 45 Gy in 20 fractions to the breast with an SIB of 56 Gy in 20 fractions to the tumor bed and normalized so that D{sub 98%} > 95% of the prescription dose. Dosimetric comparisons were made between the 3 modalities and the interaction of patient size. All 3 modalities offered adequate planning target volume (PTV) coverage with D{sub 98%} > 95% and D{sub 2%} < 107%. Static tomotherapy offered significantly improved (p = 0.006) dose homogeneity to the PTV{sub boost} {sub eval} (0.079 ± 0.011) and breast minus the SIB volume (Breast{sub SIB}) (p < 0.001, 0.15 ± 0.03) compared with the PTV{sub boost} {sub eval} (0.085 ± 0.008, 0.088 ± 0.12) and Breast{sub SIB} (0.22 ± 0.05, 0.23 ± 0.03) for IMRT and 3D-CRT, respectively. Static tomotherapy also offered statistically significant reductions (p < 0.001) in doses to the ipsilateral lung mean dose of 6.79 ± 2.11 Gy compared with 7.75 ± 2.54 Gy and 8.29 ± 2.76 Gy for IMRT and 3D-CRT, respectively, and significantly (p < 0.001) reduced heart doses (mean = 2.83 ± 1.26 Gy) compared to both IMRT and 3D-CRT (mean = 3.70 ± 1.44 Gy and 3.91 ± 1.58 Gy). Static tomotherapy is the dosimetrically superior modality for the whole breast with an SIB compared with IMRT and 3D-CRT. IMRT is superior to 3D

  10. Biomimetic 3D Clusters Using Human Adipose Derived Mesenchymal Stem Cells and Breast Cancer Cells: A Study on Migration and Invasion of Breast Cancer Cells.

    PubMed

    Park, Min Hee; Song, Boa; Hong, Seungpyo; Kim, Sang Heon; Lee, Kangwon

    2016-07-05

    Invasion and metastasis of cancer directly related to human death have been associated with interactions among many different types of cells and three-dimensional (3D) tissue matrices. Precise mechanisms related to cancer invasion and metastasis still remain unknown due to their complexities. Development of tumor microenvironment (TME)-mimicking system could play a key role in understanding cancer environments and in elucidating the relating phenomena and their driving forces. Here we report a facile and novel platform of 3D cancer cell-clusters using human adipose-derived mesenchymal stem cells (hASCs) and breast cancer cells (MDA-MB-231) within a collagen gel matrix to show cancer invasion in the cell and extracellular matrix (ECM). Both clusters A (hASC only) and AC (hASC and MDA-MB-231) exhibited different behaviors and expressions of migration and invasion, as observed by the relating markers such as fibronectin, α-SMA, and CXCR4. hASCs showed a protrusive migration from a cluster center, whereas MDA-MB-231 spread out radially followed by hASC migration. Finally, the effect of matrix was further discussed by varying collagen gel densities. The new biomimetic system of 3D cancer clusters developed here has the potential to be utilized for research on migration and invasion of cancer cells in extracellular matrices.

  11. Ultrasound assessment of breast development: distinction between premature thelarche and precocious puberty.

    PubMed

    Youn, Inyoung; Park, Sung Hee; Lim, In Seok; Kim, Soo Jin

    2015-03-01

    OBJECTIVE. We analyzed the correlation between breast development and ultrasound-measured breast bud diameter. We also evaluated different breast ultrasound findings in pediatric subjects with precocious puberty and premature thelarche while comparing bone age and hormone levels. MATERIALS AND METHODS. We performed a retrospective study with a sample of 90 girls (mean age, 7.8 years) who underwent breast ultrasound for evaluation of early breast development between March 2011 and February 2013. We evaluated breast ultrasound grade, bud diameter, and clinical characteristics including bone age and hormone levels. Among the 90 girls, 69 were up to 8 years old (mean age, 7.3 years). We divided them into healthy, precocious puberty, and premature thelarche groups and evaluated the clinicoradiologic findings for each group. RESULTS. Breast ultrasound grade was correlated with age, bone age, bud diameter, luteinizing hormone (LH), follicle-stimulating hormone (FSH), and estradiol (E2). Bud diameter was correlated with age, bone age, LH, FSH, and E2. However, the difference between bone age and chronological age was not correlated with ultrasound grade or bud diameter. Among 69 girls up to 8 years old, including 11 healthy girls (15.9%), 26 girls with precocious puberty (37.7%) (mean [SD] age, 7.3 years), and 32 girls with premature thelarche (46.4%) (mean age, 7.2 years), there were no significant differences in other variables except values for bone age (p = 0.001) and difference between bone age and chronological age (p < 0.001). CONCLUSION. Breast ultrasound might be useful for evaluating sexual development with respect to bud diameter or ultrasound grade. However, its ability to distinguish precocious puberty from premature thelarche is limited.

  12. A 3D time reversal cavity for the focusing of high-intensity ultrasound pulses over a large volume

    NASA Astrophysics Data System (ADS)

    Robin, J.; Arnal, B.; Tanter, M.; Pernot, M.

    2017-02-01

    Shock wave ultrasound therapy techniques, increasingly used for non-invasive surgery, require extremely high pressure amplitudes in precise focal spots, and large high-power transducers arranged on a spherical shell are usually used to achieve that. This solution allows limited steering of the beam around the geometrical focus of the device at the cost of a large number of transducer elements, and the treatment of large and moving organs like the heart is challenging or impossible. This paper validates numerically and experimentally the possibility of using a time reversal cavity (TRC) for the same purpose. A 128-element, 1 MHz power transducer combined with different multiple scattering media in a TRC was used. We were able to focus high-power ultrasound pulses over a large volume in a controlled manner, with a limited number of transducer elements. We reached sufficiently high pressure amplitudes to erode an Ultracal® target over a 10 cm2 area.

  13. Improved image guidance technique for minimally invasive mitral valve repair using real-time tracked 3D ultrasound

    NASA Astrophysics Data System (ADS)

    Rankin, Adam; Moore, John; Bainbridge, Daniel; Peters, Terry

    2016-03-01

    In the past ten years, numerous new surgical and interventional techniques have been developed for treating heart valve disease without the need for cardiopulmonary bypass. Heart valve repair is now being performed in a blood-filled environment, reinforcing the need for accurate and intuitive imaging techniques. Previous work has demonstrated how augmenting ultrasound with virtual representations of specific anatomical landmarks can greatly simplify interventional navigation challenges and increase patient safety. These techniques often complicate interventions by requiring additional steps taken to manually define and initialize virtual models. Furthermore, overlaying virtual elements into real-time image data can also obstruct the view of salient image information. To address these limitations, a system was developed that uses real-time volumetric ultrasound alongside magnetically tracked tools presented in an augmented virtuality environment to provide a streamlined navigation guidance platform. In phantom studies simulating a beating-heart navigation task, procedure duration and tool path metrics have achieved comparable performance to previous work in augmented virtuality techniques, and considerable improvement over standard of care ultrasound guidance.

  14. Evaluation of a prototype 3D ultrasound system for multimodality imaging of cervical nodes for adaptive radiation therapy

    NASA Astrophysics Data System (ADS)

    Fraser, Danielle; Fava, Palma; Cury, Fabio; Vuong, Te; Falco, Tony; Verhaegen, Frank

    2007-03-01

    Sonography has good topographic accuracy for superficial lymph node assessment in patients with head and neck cancers. It is therefore an ideal non-invasive tool for precise inter-fraction volumetric analysis of enlarged cervical nodes. In addition, when registered with computed tomography (CT) images, ultrasound information may improve target volume delineation and facilitate image-guided adaptive radiation therapy. A feasibility study was developed to evaluate the use of a prototype ultrasound system capable of three dimensional visualization and multi-modality image fusion for cervical node geometry. A ceiling-mounted optical tracking camera recorded the position and orientation of a transducer in order to synchronize the transducer's position with respect to the room's coordinate system. Tracking systems were installed in both the CT-simulator and radiation therapy treatment rooms. Serial images were collected at the time of treatment planning and at subsequent treatment fractions. Volume reconstruction was performed by generating surfaces around contours. The quality of the spatial reconstruction and semi-automatic segmentation was highly dependent on the system's ability to track the transducer throughout each scan procedure. The ultrasound information provided enhanced soft tissue contrast and facilitated node delineation. Manual segmentation was the preferred method to contour structures due to their sonographic topography.

  15. Prone Hypofractionated Whole-Breast Radiotherapy Without a Boost to the Tumor Bed: Comparable Toxicity of IMRT Versus a 3D Conformal Technique

    SciTech Connect

    Hardee, Matthew E.; Raza, Shahzad; Becker, Stewart J.; Jozsef, Gabor; Lymberis, Stella C.; Hochman, Tsivia; Goldberg, Judith D.; DeWyngaert, Keith J.; Formenti, Silvia C.

    2012-03-01

    Purpose: We report a comparison of the dosimetry and toxicity of three-dimensional conformal radiotherapy (3D-CRT) vs. intensity-modulated radiotherapy (IMRT) among patients treated in the prone position with the same fractionation and target of the hypofractionation arm of the Canadian/Whelan trial. Methods and Materials: An institutional review board-approved protocol identified a consecutive series of early-stage breast cancer patients treated according to the Canadian hypofractionation regimen but in the prone position. Patients underwent IMRT treatment planning and treatment if the insurance carrier approved reimbursement for IMRT; in case of refusal, a 3D-CRT plan was used. A comparison of the dosimetric and toxicity outcomes during the acute, subacute, and long-term follow-up of the two treatment groups is reported. Results: We included 97 consecutive patients with 100 treatment plans in this study (3 patients with bilateral breast cancer); 40 patients were treated with 3D-CRT and 57 with IMRT. IMRT significantly reduced the maximum dose (Dmax median, 109.96% for 3D-CRT vs. 107.28% for IMRT; p < 0.0001, Wilcoxon test) and improved median dose homogeneity (median, 1.15 for 3D-CRT vs. 1.05 for IMRT; p < 0.0001, Wilcoxon test) when compared with 3D-CRT. Acute toxicity consisted primarily of Grade 1 to 2 dermatitis and occurred in 92% of patients. Grade 2 dermatitis occurred in 13% of patients in the 3D-CRT group and 2% in the IMRT group. IMRT moderately decreased rates of acute pruritus (p = 0.03, chi-square test) and Grade 2 to 3 subacute hyperpigmentation (p = 0.01, Fisher exact test). With a minimum of 6 months' follow-up, the treatment was similarly well tolerated in either group, including among women with large breast volumes. Conclusion: Hypofractionated breast radiotherapy is well tolerated when treating patients in the prone position, even among those with large breast volumes. Breast IMRT significantly improves dosimetry but yields only a modest but

  16. In vivo surface dose measurement using GafChromic film dosimetry in breast cancer radiotherapy: comparison of 7-field IMRT, tangential IMRT and tangential 3D-CRT

    PubMed Central

    2014-01-01

    Purpose The purpose of this study was to compare the surface dose of 7-field IMRT (7 F-IMRT), tangential beam IMRT (TB-IMRT), and tangential beam 3D-CRT (3D-CRT) of breast cancer patients receiving adjuvant radiotherapy by means of in vivo GafChromic film dosimetry. Material and methods Breast cancer patients receiving adjuvant radiotherapy of the whole breast or the chest wall were eligible for the study. Study patients were treated with a treatment plan using two different radiotherapy techniques (first patient series, 3D-CRT followed by TB-IMRT; second patient series, TB-IMRT followed by 7 F-IMRT). The surface dose was evaluated on three consecutive treatment fractions per radiotherapy technique using in vivo GafChromic film dosimetry. The paired t-test was used to assess the difference of in vivo GafChromic film readings or calculated plan parameters of the compared pairs of radiation techniques for statistical significance. Results Forty-five unselected breast cancer patients were analysed in this study. 7 F-IMRT significantly reduced the surface dose compared to TB-IMRT. Differences were greatest in the central and lateral breast or chest wall region and amounted to a dose reduction of -11.8% to -18.8%. No significant difference of the surface dose was observed between TB-IMRT and 3D-CRT. A corresponding observation was obtained for the calculated skin dose derived from dose-volume histograms. Conclusions In adjuvant breast cancer radiotherapy, 7 F-IMRT offers a significantly reduced surface dose compared to TB-IMRT or 3D-CRT. PMID:25022449

  17. Breast ultrasound computed tomography using waveform inversion with source encoding

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Matthews, Thomas; Anis, Fatima; Li, Cuiping; Duric, Neb; Anastasio, Mark A.

    2015-03-01

    Ultrasound computed tomography (USCT) holds great promise for improving the detection and management of breast cancer. Because they are based on the acoustic wave equation, waveform inversion-based reconstruction methods can produce images that possess improved spatial resolution properties over those produced by ray-based methods. However, waveform inversion methods are computationally demanding and have not been applied widely in USCT breast imaging. In this work, source encoding concepts are employed to develop an accelerated USCT reconstruction method that circumvents the large computational burden of conventional waveform inversion methods. This method, referred to as the waveform inversion with source encoding (WISE) method, encodes the measurement data using a random encoding vector and determines an estimate of the speed-of-sound distribution by solving a stochastic optimization problem by use of a stochastic gradient descent algorithm. Computer-simulation studies are conducted to demonstrate the use of the WISE method. Using a single graphics processing unit card, each iteration can be completed within 25 seconds for a 128 × 128 mm2 reconstruction region. The results suggest that the WISE method maintains the high spatial resolution of waveform inversion methods while significantly reducing the computational burden.

  18. Breast Cancer Detection by B7-H3-Targeted Ultrasound Molecular Imaging.

    PubMed

    Bachawal, Sunitha V; Jensen, Kristin C; Wilson, Katheryne E; Tian, Lu; Lutz, Amelie M; Willmann, Jürgen K

    2015-06-15

    Ultrasound complements mammography as an imaging modality for breast cancer detection, especially in patients with dense breast tissue, but its utility is limited by low diagnostic accuracy. One emerging molecular tool to address this limitation involves contrast-enhanced ultrasound using microbubbles targeted to molecular signatures on tumor neovasculature. In this study, we illustrate how tumor vascular expression of B7-H3 (CD276), a member of the B7 family of ligands for T-cell coregulatory receptors, can be incorporated into an ultrasound method that can distinguish normal, benign, precursor, and malignant breast pathologies for diagnostic purposes. Through an IHC analysis of 248 human breast specimens, we found that vascular expression of B7-H3 was selectively and significantly higher in breast cancer tissues. B7-H3 immunostaining on blood vessels distinguished benign/precursors from malignant lesions with high diagnostic accuracy in human specimens. In a transgenic mouse model of cancer, the B7-H3-targeted ultrasound imaging signal was increased significantly in breast cancer tissues and highly correlated with ex vivo expression levels of B7-H3 on quantitative immunofluorescence. Our findings offer a preclinical proof of concept for the use of B7-H3-targeted ultrasound molecular imaging as a tool to improve the diagnostic accuracy of breast cancer detection in patients.

  19. Volumetry and biomechanical parameters detected by 3D and 2D ultrasound in patients with and without an abdominal aortic aneurysm.

    PubMed

    Batagini, Nayara Cioffi; Ventura, Carlos Augusto Pinto; Raghavan, Madhavan L; Chammas, Maria Cristina; Tachibana, Adriano; da Silva, Erasmo Simão

    2016-06-01

    The objective was to demonstrate the ability of ultrasound (US) with 3D properties to evaluate volumetry and biomechanical parameters of the aorta in patients with and without abdominal aortic aneurysm (AAA). Thirty-one patients with normal aortas (group 1), 46 patients with AAA measuring 3.0-5.5 cm (group 2) and 31 patients with AAA ⩾ 5.5 cm (group 3) underwent a 2D/3D-US examination of the infra-renal aorta, and the images were post-processed prior to being analyzed. In the maximum diameter, the global circumferential strain and the global maximum rotation assessed by 2D speckle-tracking algorithms were compared among the three groups. The volumetry data obtained using 3D-US from 40 AAA patients were compared with the volumetry data obtained by a contemporary computed tomography (CT) scan. The median global circumferential strain was 2.0% (interquartile range (IR): 1.0-3.0), 1.0% (IR: 1.0-2.0) and 1.0% (IR: 1.0-1.75) in groups 1, 2 and 3, respectively (p < 0.001). The median global maximum rotation decreased progressively from group 1 to group 3 (1.38º (IR: 0.77-2.13), 0.80º (IR: 0.57-1.0) and 0.50º (IR: 0.31-0.75), p < 0.001). AAA volume estimations by 3D-US correlated well with CT (R(2) = 0.76). In conclusion, US with 3D properties is non-invasive and has the potential to evaluate volumetry and biomechanical characteristics of AAA.

  20. A comparison of needle tip localization accuracy using 2D and 3D trans-rectal ultrasound for high-dose-rate prostate cancer brachytherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Hrinivich, W. Thomas; Hoover, Douglas A.; Surry, Kathleen; Edirisinghe, Chandima; Montreuil, Jacques; D'Souza, David; Fenster, Aaron; Wong, Eugene

    2016-03-01

    Background: High-dose-rate brachytherapy (HDR-BT) is a prostate cancer treatment option involving the insertion of hollow needles into the gland through the perineum to deliver a radioactive source. Conventional needle imaging involves indexing a trans-rectal ultrasound (TRUS) probe in the superior/inferior (S/I) direction, using the axial transducer to produce an image set for organ segmentation. These images have limited resolution in the needle insertion direction (S/I), so the sagittal transducer is used to identify needle tips, requiring a manual registration with the axial view. This registration introduces a source of uncertainty in the final segmentations and subsequent treatment plan. Our lab has developed a device enabling 3D-TRUS guided insertions with high S/I spatial resolution, eliminating the need to align axial and sagittal views. Purpose: To compare HDR-BT needle tip localization accuracy between 2D and 3D-TRUS. Methods: 5 prostate cancer patients underwent conventional 2D TRUS guided HDR-BT, during which 3D images were also acquired for post-operative registration and segmentation. Needle end-length measurements were taken, providing a gold standard for insertion depths. Results: 73 needles were analyzed from all 5 patients. Needle tip position differences between imaging techniques was found to be largest in the S/I direction with mean+/-SD of -2.5+/-4.0 mm. End-length measurements indicated that 3D TRUS provided statistically significantly lower mean+/-SD insertion depth error of -0.2+/-3.4 mm versus 2.3+/-3.7 mm with 2D guidance (p < .001). Conclusions: 3D TRUS may provide more accurate HDR-BT needle localization than conventional 2D TRUS guidance for the majority of HDR-BT needles.

  1. Prenatal diagnosis of a giant foetal lymphangioma and haemangiolymphoma in the second trimester using 2D and 3D ultrasound.

    PubMed

    Mittermayer, C; Blaicher, W; Deutinger, J; Bernaschek, G; Lee, A

    2003-12-01

    Lymphangiomas are benign tumours of the lymphatic system. Early prenatal diagnosis is important to permit a planned delivery and provide adequate postnatal care. It thereby improves prognosis and allows the option of terminating the pregnancy if poor outcome is predicted. We report two cases, a giant haemangiolymphoma and a lymphangioma. 2D and 3D US findings are presented and differential diagnosis, therapeutic options and prognosis are discussed.

  2. Interim Cosmetic Results and Toxicity Using 3D Conformal External Beam Radiotherapy to Deliver Accelerated Partial Breast Irradiation in Patients With Early-Stage Breast Cancer Treated With Breast-Conserving Therapy

    SciTech Connect

    Vicini, Frank A. Chen, Peter; Wallace, Michelle; Mitchell, Christina; Hasan, Yasmin; Grills, Inga; Kestin, Larry; Schell, Scott; Goldstein, Neal S.; Kunzman, Jonathan; Gilbert, Sam; Martinez, Alvaro

    2007-11-15

    Purpose: We present our ongoing clinical experience utilizing three-dimensional (3D)-conformal radiation therapy (3D-CRT) to deliver accelerated partial breast irradiation (APBI) in patients with early-stage breast cancer treated with breast-conserving therapy. Methods and Materials: Ninety-one consecutive patients were treated with APBI using our previously reported 3D-CRT technique. The clinical target volume consisted of the lumpectomy cavity plus a 10- to 15 -mm margin. The prescribed dose was 34 or 38.5 Gy in 10 fractions given over 5 consecutive days. The median follow-up was 24 months. Twelve patients have been followed for {>=}4 years, 20 for {>=}3.5 years, 29 for >3.0 years, 33 for {>=}2.5 years, and 46 for {>=}2.0 years. Results: No local recurrences developed. Cosmetic results were rated as good/excellent in 100% of evaluable patients at {>=} 6 months (n = 47), 93% at 1 year (n = 43), 91% at 2 years (n = 21), and in 90% at {>=}3 years (n = 10). Erythema, hyperpigmentation, breast edema, breast pain, telangiectasias, fibrosis, and fat necrosis were evaluated at 6, 24, and 36 months after treatment. All factors stabilized by 3 years posttreatment with grade I or II rates of 0%, 0%, 0%, 0%, 9%, 18%, and 9%, respectively. Only 2 patients (3%) developed grade III toxicity (breast pain), which resolved with time. Conclusions: Delivery of APBI with 3D-CRT resulted in minimal chronic ({>=}6 months) toxicity to date with good/excellent cosmetic results. Additional follow-up is needed to assess the long-term efficacy of this form of APBI.

  3. A complex 3D human tissue culture system based on mammary stromal cells and silk scaffolds for modeling breast morphogenesis and function.

    PubMed

    Wang, Xiuli; Sun, Lin; Maffini, Maricel V; Soto, Ana; Sonnenschein, Carlos; Kaplan, David L

    2010-05-01

    Epithelial-stromal interactions play a crucial role in normal embryonic development and carcinogenesis of the human breast while the underlying mechanisms of these events remain poorly understood. To address this issue, we constructed a physiologically relevant, three-dimensional (3D) culture surrogate of complex human breast tissue that included a tri-culture system made up of human mammary epithelial cells (MCF10A), human fibroblasts and adipocytes, i.e., the two dominant breast stromal cell types, in a Matrigel/collagen mixture on porous silk protein scaffolds. The presence of stromal cells inhibited MCF10A cell proliferation and induced both alveolar and ductal morphogenesis and enhanced casein expression. In contrast to the immature polarity exhibited by co-cultures with either fibroblasts or adipocytes, the alveolar structures formed by the tri-cultures exhibited proper polarity similar to that observed in breast tissue in vivo. Only alveolar structures with reverted polarity were observed in MCF10A monocultures. Consistent with their phenotypic appearance, more functional differentiation of epithelial cells was also observed in the tri-cultures, where casein alpha- and -beta mRNA expression was significantly increased. This in vitro tri-culture breast tissue system sustained on silk scaffold effectively represents a more physiologically relevant 3D microenvironment for mammary epithelial cells and stromal cells than either co-cultures or monocultures. This experimental model provides an important first step for bioengineering an informative human breast tissue system, with which to study normal breast morphogenesis and neoplastic transformation.

  4. NOTE: Adaptation of a 3D prostate cancer atlas for transrectal ultrasound guided target-specific biopsy

    NASA Astrophysics Data System (ADS)

    Narayanan, R.; Werahera, P. N.; Barqawi, A.; Crawford, E. D.; Shinohara, K.; Simoneau, A. R.; Suri, J. S.

    2008-10-01

    Due to lack of imaging modalities to identify prostate cancer in vivo, current TRUS guided prostate biopsies are taken randomly. Consequently, many important cancers are missed during initial biopsies. The purpose of this study was to determine the potential clinical utility of a high-speed registration algorithm for a 3D prostate cancer atlas. This 3D prostate cancer atlas provides voxel-level likelihood of cancer and optimized biopsy locations on a template space (Zhan et al 2007). The atlas was constructed from 158 expert annotated, 3D reconstructed radical prostatectomy specimens outlined for cancers (Shen et al 2004). For successful clinical implementation, the prostate atlas needs to be registered to each patient's TRUS image with high registration accuracy in a time-efficient manner. This is implemented in a two-step procedure, the segmentation of the prostate gland from a patient's TRUS image followed by the registration of the prostate atlas. We have developed a fast registration algorithm suitable for clinical applications of this prostate cancer atlas. The registration algorithm was implemented on a graphical processing unit (GPU) to meet the critical processing speed requirements for atlas guided biopsy. A color overlay of the atlas superposed on the TRUS image was presented to help pick statistically likely regions known to harbor cancer. We validated our fast registration algorithm using computer simulations of two optimized 7- and 12-core biopsy protocols to maximize the overall detection rate. Using a GPU, patient's TRUS image segmentation and atlas registration took less than 12 s. The prostate cancer atlas guided 7- and 12-core biopsy protocols had cancer detection rates of 84.81% and 89.87% respectively when validated on the same set of data. Whereas the sextant biopsy approach without the utility of 3D cancer atlas detected only 70.5% of the cancers using the same histology data. We estimate 10-20% increase in prostate cancer detection rates

  5. Clinical significance of interval changes in breast lesions initially categorized as probably benign on breast ultrasound

    PubMed Central

    Jang, Ja Yoon; Kim, Sun Mi; Kim, Jin Hwan; Jang, Mijung; La Yun, Bo; Lee, Jong Yoon; Lee, Soo Hyun; Kim, Bohyoung

    2017-01-01

    Abstract The aims of this study were to determine the malignancy rate of probably benign lesions that show an interval change on follow-up ultrasound and to evaluate the differences seen on imaging between benign and malignant lesions initially categorized as probably benign but with interval change on follow-up breast ultrasound. We retrospectively reviewed 11,323 lesions from ultrasound-guided core-biopsies performed between June 2004 and December 2014 and identified 289 lesions (266 patients) with an interval change from probably benign (Breast Imaging Reporting and Data System [BI-RADS] category 3) in the previous 2 years. Malignancy rates were compared according to the ultrasound findings and the characteristics of the interval changes, including changes in morphology and/or diameter. The malignancy rate for probably benign lesions that showed an interval change on follow-up ultrasound was 6.9% (20/289). The malignancy rate was higher for clustered cysts (33.3%) and irregular or noncircumscribed masses (12.7%) than for circumscribed oval masses (5%) or complicated cysts (5%) seen on initial ultrasound (P = 0.043). Fifty-five percent of the malignancies were found to be ductal carcinoma in situ and there was 1 case of lymph node metastasis among the patients with invasive disease in whom biopsy was delayed by 6 to 15 months. The extent of invasiveness was greater in missed cases. There was a significant difference in the maximal diameter change between the 20 malignant lesions and the 269 benign lesions (4.0 mm vs 2.7 mm, P = 0.002). The cutoff value for maximal diameter change per initial diameter was 39.0% for predicting malignancy (sensitivity 95%, specificity 53.5%). The malignancy rate for morphologically changed lesions was significantly higher than for morphologically stable lesions (13.6% vs 4.9%; P = 0.024) Our 6.9% of probably benign lesions that showed an interval change finally turned out to be malignancy was mostly DCIS. The

  6. MR-Guided High-Intensity Focused Ultrasound Ablation of Breast Cancer with a Dedicated Breast Platform

    SciTech Connect

    Merckel, Laura G.; Bartels, Lambertus W.; Koehler, Max O.; Bongard, H. J. G. Desiree van den; Deckers, Roel; Mali, Willem P. Th. M.; Binkert, Christoph A.; Moonen, Chrit T.; Gilhuijs, Kenneth G. A. Bosch, Maurice A. A. J. van den

    2013-04-15

    Optimizing the treatment of breast cancer remains a major topic of interest. In current clinical practice, breast-conserving therapy is the standard of care for patients with localized breast cancer. Technological developments have fueled interest in less invasive breast cancer treatment. Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) is a completely noninvasive ablation technique. Focused beams of ultrasound are used for ablation of the target lesion without disrupting the skin and subcutaneous tissues in the beam path. MRI is an excellent imaging method for tumor targeting, treatment monitoring, and evaluation of treatment results. The combination of HIFU and MR imaging offers an opportunity for image-guided ablation of breast cancer. Previous studies of MR-HIFU in breast cancer patients reported a limited efficacy, which hampered the clinical translation of this technique. These prior studies were performed without an MR-HIFU system specifically developed for breast cancer treatment. In this article, a novel and dedicated MR-HIFU breast platform is presented. This system has been designed for safe and effective MR-HIFU ablation of breast cancer. Furthermore, both clinical and technical challenges are discussed, which have to be solved before MR-HIFU ablation of breast cancer can be implemented in routine clinical practice.

  7. Disruption of 3D MCF-12A Breast Cell Cultures by Estrogens – An In Vitro Model for ER-Mediated Changes Indicative of Hormonal Carcinogenesis

    PubMed Central

    Marchese, Stephanie; Silva, Elisabete

    2012-01-01

    Introduction Estrogens regulate the proliferation of normal and neoplastic breast epithelium. Although the intracellular mechanisms of estrogens in the breast are largely understood, little is known about how they induce changes in the structure of the mammary epithelium, which are characteristic of breast cancer. In vitro three dimensional (3D) cultures of immortalised breast epithelial cells recapitulate features of the breast epithelium in vivo, including formation of growth arrested acini with hollow lumen and basement membrane. This model can also reproduce features of malignant transformation and breast cancer, such as increased cellular proliferation and filling of the lumen. However, a system where a connection between estrogen receptor (ER) activation and disruption of acini formation can be studied to elucidate the role of estrogens is still missing. Methods/Principal Findings We describe an in vitro 3D model for breast glandular structure development, using breast epithelial MCF-12A cells cultured in a reconstituted basement membrane matrix. These cells are estrogen receptor (ER)α, ERβ and G-protein coupled estrogen receptor 1 (GPER) competent, allowing the investigation of the effects of estrogens on mammary gland formation and disruption. Under normal conditions, MCF-12A cells formed organised acini, with deposition of basement membrane and hollow lumen. However, treatment with 17β-estradiol, and the exogenous estrogens bisphenol A and propylparaben resulted in deformed acini and filling of the acinar lumen. When these chemicals were combined with ER and GPER inhibitors (ICI 182,780 and G-15, respectively), the deformed acini recovered normal features, such as a spheroid shape, proliferative arrest and luminal clearing, suggesting a role for the ER and GPER in the estrogenic disruption of acinar formation. Conclusion This new model offers the opportunity to better understand the role of the ER and GPER in the morphogenesis of breast glandular

  8. Mitigation of Variability among 3D Echocardiography-Derived Regional Strain Values Acquired by Multiple Ultrasound Systems by Vendor Independent Analysis

    PubMed Central

    Streiff, Cole; Zhu, Meihua; Shimada, Eriko; Sahn, David J.; Ashraf, Muhammad

    2016-01-01

    Introduction This study compared the variability of 3D echo derived circumferential and longitudinal strain values computed from vendor-specific and vendor-independent analyses of images acquired using ultrasound systems from different vendors. Methods Ten freshly harvested porcine hearts were studied. Each heart was mounted on a custom designed phantom and driven to simulate normal cardiac motion. Cardiac rotation was digitally controlled and held constant at 5°, while pumped stroke volume (SV) ranged from 30-70ml. Full-volume image data was acquired using three different ultrasound systems from different vendors. The image data was analyzed for longitudinal and circumferential strains (LS, CS) using both vendor-specific and vendor-independent analysis packages. Results Good linear relationships were observed for each vendor-specific analysis package for both CS and LS at the mid-anterior segment, with correlation coefficients ranging from 0.82–0.91 (CS) and 0.86–0.89 (LS). Comparable linear regressions were observed for results determined by a vendor independent program (CS: R = 0.82–0.89; LS: R = 0.86–0.89). Variability between analysis packages was examined via a series of ANOVA tests. A statistical difference was found between vendor-specific analysis packages (p<0.001), while no such difference was observed between ultrasound systems when using the vendor-independent program (p>0.05). Conclusions Circumferential and longitudinal regional strain values differ when quantified by vendor-specific analysis packages; however, this variability is mitigated by use of a vendor-independent quantification method. These results suggest that echocardiograms acquired using different ultrasound systems could be meaningfully compared using vendor-independent software. PMID:27149685

  9. Computerized Ultrasound Risk Evaluation (CURE) System: Development of Combined Transmission and Reflection Ultrasound with New Reconstruction Algorithms for Breast Imaging

    SciTech Connect

    Littrup, P J; Duric, N; Azevedo, S; Chambers, D; Candy, J V; Johnson, S; Auner, G; Rather, J; Holsapple, E T

    2001-09-07

    Our Computerized Ultrasound Risk Evaluation (CURE) system has been developed to the engineering prototype stage and generated unique data sets of both transmission and reflection ultrasound (US). This paper will help define the clinical underpinnings of the developmental process and interpret the imaging results from a similar perspective. The CURE project was designed to incorporate numerous diagnostic parameters to improve upon two major areas of early breast cancer detection. CURE may provide improved tissue characterization of breast masses and reliable detection of abnormal microcalcifications found in some breast cancers and ductal carcinoma in situ (DCIS). Current breast US is limited to mass evaluation, whereas mammography also detects and guides biopsy of malignant calcifications. Screening with CURE remains a distant goal, but improved follow-up of mammographic abnormalities may represent a feasible breakthrough. Improved tissue characterization could result in reduction of the estimated one million benign biopsies each year in the United States, costing up to several billion dollars. Most breast calcifications are benign and comprise-80% of stereotactic biopsies guided by mammography. Ultrasound has the capability of finding some groups of calcifications, but further improvements in resolution should also address tissue characterization to define the soft tissue filling of ducts by DCIS. In this manner, CURE may be able to more accurately identify the malignant calcifications associated with progression of DCIS or early cancers. Currently, high-resolution US images of the breast are performed in the reflection mode at higher frequencies, which also limits depth of penetration. Reconstruction of reflection ultrasound images relies upon acoustic impedance differences in the tissue and includes only direct backscatter of the ultrasound signal. Resolution and tissue contrast of current US continues to improve with denser transducer arrays and image

  10. HER2 signaling pathway activation and response of breast cancer cells to HER2-targeting agents is dependent strongly on the 3D microenvironment

    SciTech Connect

    Weigelt, Britta; Lo, Alvin T; Park, Catherine C; Gray, Joe W; Bissell, Mina J

    2009-07-27

    Development of effective and durable breast cancer treatment strategies requires a mechanistic understanding of the influence of the microenvironment on response. Previous work has shown that cellular signaling pathways and cell morphology are dramatically influenced by three-dimensional (3D) cultures as opposed to traditional two-dimensional (2D) monolayers. Here, we compared 2D and 3D culture models to determine the impact of 3D architecture and extracellular matrix (ECM) on HER2 signaling and on the response of HER2-amplified breast cancer cell lines to the HER2-targeting agents Trastuzumab, Pertuzumab and Lapatinib. We show that the response of the HER2-amplified AU565, SKBR3 and HCC1569 cells to these anti-HER2 agents was highly dependent on whether the cells were cultured in 2D monolayer or 3D laminin-rich ECM gels. Inhibition of {beta}1 integrin, a major cell-ECM receptor subunit, significantly increased the sensitivity of the HER2-amplified breast cancer cell lines to the humanized monoclonal antibodies Trastuzumab and Pertuzumab when grown in a 3D environment. Finally, in the absence of inhibitors, 3D cultures had substantial impact on HER2 downstream signaling and induced a switch between PI3K-AKT- and RAS-MAPKpathway activation in all cell lines studied, including cells lacking HER2 amplification and overexpression. Our data provide direct evidence that breast cancer cells are able to rapidly adapt to different environments and signaling cues by activating alternative pathways that regulate proliferation and cell survival, events that may play a significant role in the acquisition of resistance to targeted therapies.

  11. The relevance of using 3D cell cultures, in addition to 2D monolayer cultures, when evaluating breast cancer drug sensitivity and resistance

    PubMed Central

    Breslin, Susan; O'Driscoll, Lorraine

    2016-01-01

    Solid tumours naturally grow in 3D wherein the spatial arrangement of cells affects how they interact with each other. This suggests that 3D cell culture may mimic the natural in vivo setting better than traditional monolayer (2D) cell culture, where cells are grown attached to plastic. Here, using HER2-positive breast cancer cell lines as models (BT474, HCC1954, EFM192A), the effects of culturing cells in 3D using the poly-HEMA method compared to 2D cultures were assessed in terms of cellular viability, response/resistance to anti-cancer drugs, protein expression and enzyme activity. Scanning electron microscopy showed the morphology of cells in 3D to be substantially different to those cultured in 2D. Cell viability in 3D cells was substantially lower than that of cells in 2D cultures, while 3D cultures were more resistant to the effects of HER-targeted (neratinib) and classical chemotherapy (docetaxel) drugs. Expression of proteins involved in cell survival, transporters associated with drug resistance and drug targets were increased in 3D cultures. Finally, activity of drug metabolising enzyme CYP3A4 was substantially increased in 3D compared to 2D cultures. Together this data indicates that the biological information represented by 3D and 2D cell cultures is substantially different i.e. 3D cell cultures demonstrate higher innate resistance to anti-cancer drugs compared to 2D cultures, which may be facilitated by the altered receptor proteins, drug transporters and metabolising enzyme activity. This highlights the importance of considering 3D in addition to 2D culture methods in pre-clinical studies of both newer targeted and more traditional anti-cancer drugs. PMID:27304190

  12. The relevance of using 3D cell cultures, in addition to 2D monolayer cultures, when evaluating breast cancer drug sensitivity and resistance.

    PubMed

    Breslin, Susan; O'Driscoll, Lorraine

    2016-07-19

    Solid tumours naturally grow in 3D wherein the spatial arrangement of cells affects how they interact with each other. This suggests that 3D cell culture may mimic the natural in vivo setting better than traditional monolayer (2D) cell culture, where cells are grown attached to plastic. Here, using HER2-positive breast cancer cell lines as models (BT474, HCC1954, EFM192A), the effects of culturing cells in 3D using the poly-HEMA method compared to 2D cultures were assessed in terms of cellular viability, response/resistance to anti-cancer drugs, protein expression and enzyme activity. Scanning electron microscopy showed the morphology of cells in 3D to be substantially different to those cultured in 2D. Cell viability in 3D cells was substantially lower than that of cells in 2D cultures, while 3D cultures were more resistant to the effects of HER-targeted (neratinib) and classical chemotherapy (docetaxel) drugs. Expression of proteins involved in cell survival, transporters associated with drug resistance and drug targets were increased in 3D cultures. Finally, activity of drug metabolising enzyme CYP3A4 was substantially increased in 3D compared to 2D cultures. Together this data indicates that the biological information represented by 3D and 2D cell cultures is substantially different i.e. 3D cell cultures demonstrate higher innate resistance to anti-cancer drugs compared to 2D cultures, which may be facilitated by the altered receptor proteins, drug transporters and metabolising enzyme activity. This highlights the importance of considering 3D in addition to 2D culture methods in pre-clinical studies of both newer targeted and more traditional anti-cancer drugs.

  13. Breast cancers detected in only one of two arms of a tomosynthesis (3D-mammography) population screening trial (STORM-2).

    PubMed

    Bernardi, Daniela; Houssami, Nehmat

    2017-04-01

    The prospective 'screening with tomosynthesis or standard mammography-2 (STORM-2)' trial compared mammography screen-reading strategies and showed that each of integrated 2D/3D-mammography or 2Dsynthetic/3D-mammography detected significantly more breast cancers than 2D-mammography alone. This short report describes 13 (from 90) cancers detected in only one of two parallel double-reading arms implemented in STORM-2. Amongst this subset of cases, the majority was invasive cancer ≤16 mm, mostly depicted as irregular masses or distortions. Furthermore, most were detected at 3D-mammography only and predominantly by one reader from double-reading pairs, highlighting that 3D-mammography may enable detection of cancers that are challenging to perceive at routine screening.

  14. Numerical modeling of the 3D dynamics of ultrasound contrast agent microbubbles using the boundary integral method

    NASA Astrophysics Data System (ADS)

    Wang, Qianxi; Manmi, Kawa; Calvisi, Michael L.

    2015-02-01

    Ultrasound contrast agents (UCAs) are microbubbles stabilized with a shell typically of lipid, polymer, or protein and are emerging as a unique tool for noninvasive therapies ranging from gene delivery to tumor ablation. While various models have been developed to describe the spherical oscillations of contrast agents, the treatment of nonspherical behavior has received less attention. However, the nonspherical dynamics of contrast agents are thought to play an important role in therapeutic applications, for example, enhancing the uptake of therapeutic agents across cell membranes and tissue interfaces, and causing tissue ablation. In this paper, a model for nonspherical contrast agent dynamics based on the boundary integral method is described. The effects of the encapsulating shell are approximated by adapting Hoff's model for thin-shell, spherical contrast agents. A high-quality mesh of the bubble surface is maintained by implementing a hybrid approach of the Lagrangian method and elastic mesh technique. The numerical model agrees well with a modified Rayleigh-Plesset equation for encapsulated spherical bubbles. Numerical analyses of the dynamics of UCAs in an infinite liquid and near a rigid wall are performed in parameter regimes of clinical relevance. The oscillation amplitude and period decrease significantly due to the coating. A bubble jet forms when the amplitude of ultrasound is sufficiently large, as occurs for bubbles without a coating; however, the threshold amplitude required to incite jetting increases due to the coating. When a UCA is near a rigid boundary subject to acoustic forcing, the jet is directed towards the wall if the acoustic wave propagates perpendicular to the boundary. When the acoustic wave propagates parallel to the rigid boundary, the jet direction has components both along the wave direction and towards the boundary that depend mainly on the dimensionless standoff distance of the bubble from the boundary. In all cases, the jet

  15. Prenatally detected congenital perineal mass using 3D ultrasound which was diagnosed as lipoblastoma combined with anorectal malformation: case report.

    PubMed

    Ahn, Ki Hoon; Boo, Yoon Jung; Seol, Hyun Joo; Park, Hyun Tae; Hong, Soon Cheol; Oh, Min Jeong; Kim, Tak; Kim, Hai Joong; Kim, Young Tae; Kim, Sun Haeng; Lee, Kyu Wan

    2010-07-01

    We report a case of prenatally diagnosed congenital perineal mass which was combined with anorectal malformation. The mass was successfully treated with posterior sagittal anorectoplasty postnatally. On ultrasound examination at a gestational age of 23 weeks the fetal perineal mass were found on the right side. Any other defects were not visible on ultrasonography during whole gestation. Amniocentesis was performed to evaluate the fetal karyotyping and acetylcholinesterase which were also normal. As the fetus grew up, the mass size was slowly increased more and more. At birth, a female neonate had a perineal mass on the right side as expected. During operation, the anal sphincteric displacement was found near the mass and reconstructed through posterior sagittal incision. This is the first reported case of prenatally diagnosed congenital perineal mass, after birth which was diagnosed as lipoblastoma and even combined with anorectal malformation. This case shows that it can be of clinical importance to be aware of this rare fetal perineal mass in prenatal diagnosis and counseling.

  16. Alignment of sparse freehand 3-D ultrasound with preoperative images of the liver using models of respiratory motion and deformation.

    PubMed

    Blackall, Jane M; Penney, Graeme P; King, Andrew P; Hawkes, David J

    2005-11-01

    We present a method for alignment of an interventional plan to optically tracked two-dimensional intraoperative ultrasound (US) images of the liver. Our clinical motivation is to enable the accurate transfer of information from three-dimensional preoperative imaging modalities [magnetic resonance (MR) or computed tomography (CT)] to intraoperative US to aid needle placement for thermal ablation of liver metastases. An initial rigid registration to intraoperative coordinates is obtained using a set of US images acquired at maximum exhalation. A preprocessing step is applied to both the preoperative images and the US images to produce evidence of corresponding structures. This yields two sets of images representing classification of regions as vessels. The registration then proceeds using these images. The preoperative images and plan are then warped to correspond to a single US slice acquired at an unknown point in the breathing cycle where the liver is likely to have moved and deformed relative to the preoperative image. Alignment is constrained using a patient-specific model of breathing motion and deformation. Target registration error is estimated by carrying out simulation experiments using resliced MR volumes to simulate real US and comparing the registration results to a "bronze-standard" registration performed on the full MR volume. Finally, the system is tested using real US and verified using visual inspection.

  17. Position tracking of moving liver lesion based on real-time registration between 2D ultrasound and 3D preoperative images

    SciTech Connect

    Weon, Chijun; Hyun Nam, Woo; Lee, Duhgoon; Ra, Jong Beom; Lee, Jae Young

    2015-01-15

    Purpose: Registration between 2D ultrasound (US) and 3D preoperative magnetic resonance (MR) (or computed tomography, CT) images has been studied recently for US-guided intervention. However, the existing techniques have some limits, either in the registration speed or the performance. The purpose of this work is to develop a real-time and fully automatic registration system between two intermodal images of the liver, and subsequently an indirect lesion positioning/tracking algorithm based on the registration result, for image-guided interventions. Methods: The proposed position tracking system consists of three stages. In the preoperative stage, the authors acquire several 3D preoperative MR (or CT) images at different respiratory phases. Based on the transformations obtained from nonrigid registration of the acquired 3D images, they then generate a 4D preoperative image along the respiratory phase. In the intraoperative preparatory stage, they properly attach a 3D US transducer to the patient’s body and fix its pose using a holding mechanism. They then acquire a couple of respiratory-controlled 3D US images. Via the rigid registration of these US images to the 3D preoperative images in the 4D image, the pose information of the fixed-pose 3D US transducer is determined with respect to the preoperative image coordinates. As feature(s) to use for the rigid registration, they may choose either internal liver vessels or the inferior vena cava. Since the latter is especially useful in patients with a diffuse liver disease, the authors newly propose using it. In the intraoperative real-time stage, they acquire 2D US images in real-time from the fixed-pose transducer. For each US image, they select candidates for its corresponding 2D preoperative slice from the 4D preoperative MR (or CT) image, based on the predetermined pose information of the transducer. The correct corresponding image is then found among those candidates via real-time 2D registration based on a

  18. Histamine-functionalized copolymer micelles as a drug delivery system in 2D and 3D models of breast cancer

    PubMed Central

    Zhang, Yuning; Lundberg, Pontus; Diether, Maren; Porsch, Christian; Janson, Caroline; Lynd, Nathaniel A.; Ducani, Cosimo; Malkoch, Michael; Malmström, Eva; Hawker, Craig J.; Nyström, Andreas M.

    2015-01-01

    Histamine functionalized block copolymers based on poly(allyl glycidyl ether)-b-poly(ethylene oxide) (PAGE-b-PEO) were prepared with different ratios of histamine and octyl or benzyl groups using UV-initiated thiol-ene click chemistry. At neutral pH, the histamine units are uncharged and hydrophobic, while in acidic environments, such as in the endosome, lysosomes, or extracellular sites of tumours, the histamine groups are positively charged and hydrophilic. pH responsible polymer drug delivery systems is a promising route to site specific delivery of drugs and offers the potential to avoid side effects of systemic treatment. Our detailed in vitro experiments of the efficacy of drug delivery and the intracellular localization characteristics of this library of NPs in 2D and 3D cultures of breast cancer revealed that the 50% histamine-modified polymer loaded with DOX exhibited rapid accumulation in the nucleus of free DOX within 2 h. Confocal studies showed enhanced mitochondrial localization and lysosomal escape when compared to controls. From these combined studies, it was shown that by accurately tuning the structure of the initial block copolymers, the resulting self-assembled NPs can be designed to exploit histamine as an endosomal escape trigger and the octyl/benzyl units give rise to a hydrophobic core resulting in highly efficacious drug delivery systems (DDS) with control over intracellular localization. Optimization and rational control of the intracellular localization of both DDS and the parent drug can give nanomedicines a substantial increase in efficacy and should be explored in future studies. PMID:26257912

  19. Cytotoxic responses of carnosic acid and doxorubicin on breast cancer cells in butterfly-shaped microchips in comparison to 2D and 3D culture.

    PubMed

    Yildiz-Ozturk, Ece; Gulce-Iz, Sultan; Anil, Muge; Yesil-Celiktas, Ozlem

    2017-04-01

    Two dimensional (2D) cell culture systems lack the ability to mimic in vivo conditions resulting in limitations for preclinical cell-based drug and toxicity screening assays and modelling tumor biology. Alternatively, 3D cell culture systems mimic the specificity of native tissue with better physiological integrity. In this regard, microfluidic chips have gained wide applicability for in vitro 3D cancer cell studies. The aim of this research was to develop a 3D biomimetic model comprising culture of breast cancer cells in butterfly-shaped microchip to determine the cytotoxicity of carnosic acid and doxorubicin on both estrogen dependent (MCF-7) and independent (MDA-MB231) breast cancer cells along with healthy mammary epithelial cells (MCF-10A) in 2D, 3D Matrigel™ and butterfly-shaped microchip environment. According to the developed mimetic model, carnosic acid exhibited a higher cytotoxicity towards MDA-MB 231, while doxorubicin was more effective against MCF-7. Although the cell viabilities were higher in comparison to 2D and 3D cell culture systems, the responses of the investigated molecules were different in the microchips based on the molecular weight and structural complexity indicating the importance of biomimicry in a physiologically relevant matrix.

  20. Development of transrectal diffuse optical tomography combined with 3D-transrectal ultrasound imaging to monitor the photocoagulation front during interstitial photothermal therapy of primary focal prostate cancer

    NASA Astrophysics Data System (ADS)

    He, Jie; Weersink, Robert; Veilleux, Israel; Mayo, Kenwrick; Zhang, Anqi; Piao, Daqing; Alam, Adeel; Trachtenberg, John; Wilson, Brian C.

    2013-03-01

    Interstitial near-infrared laser thermal therapy (LITT) is currently undergoing clinical trials as an alternative to watchful waiting or radical surgery in patients with low-risk focal prostate cancer. Currently, we use magnetic resonance image (MRI)-based thermography to monitor treatment delivery and determine indirectly the completeness of the target tissue destruction while avoiding damage to adjacent normal tissues, particularly the rectal wall. However, incomplete tumor destruction has occurred in a significant fraction of patients due to premature termination of treatment, since the photocoagulation zone is not directly observed. Hence, we are developing transrectal diffuse optical tomography (TRDOT), in combination with transrectal 3D ultrasound (3D-TRUS), to address his limitation. This is based on the large changes in optical scattering expected upon tissue coagulation. Here, we present forward simulations of a growing coagulated lesion with optical scattering contrast, using an established finite element analysis software platform (NIRFAST). The simulations were validated in tissue-simulating phantoms, with measurements acquired by a state-of-the-art continuous wave (CW) TRDOT system and a recently assembled bench-top CW-DOT system, with specific source-detector configurations. Two image reconstruction schemes were investigated and evaluated, specifically for the accurate delineation of the posterior boundary of the coagulation zone as the critical parameter for treatment guidance in this clinical application.

  1. Automation and Preclinical Evaluation of a Dedicated Emission Mammotomography System for Fully 3-D Molecular Breast Imaging

    DTIC Science & Technology

    2009-10-01

    volumetric shape. These MRI breast image sets can thus be used as the digital “ phantoms ” when utilizing computer models for system development and orbit...future breast phantom experiments should utilize ~700mL breast volumes as previous experiments in our lab have mainly used phantoms >1000mL in volume...sizes from this study retrospectively validate the range of shapes and sizes (250 to 1700 mL volumes) of custom shaped pendant breast phantoms

  2. Magnetic resonance image-guided versus ultrasound-guided high-intensity focused ultrasound in the treatment of breast cancer

    PubMed Central

    Li, Sheng; Wu, Pei-Hong

    2013-01-01

    Image-guided high-intensity focused ultrasound (HIFU) has been used for more than ten years, primarily in the treatment of liver and prostate cancers. HIFU has the advantages of precise cancer ablation and excellent protection of healthy tissue. Breast cancer is a common cancer in women. HIFU therapy, in combination with other therapies, has the potential to improve both oncologic and cosmetic outcomes for breast cancer patients by providing a curative therapy that conserves mammary shape. Currently, HIFU therapy is not commonly used in breast cancer treatment, and efforts to promote the application of HIFU is expected. In this article, we compare different image-guided models for HIFU and reviewed the status, drawbacks, and potential of HIFU therapy for breast cancer. PMID:23237221

  3. Multiple capture locations for 3D ultrasound-guided robotic retrieval of moving bodies from a beating heart

    NASA Astrophysics Data System (ADS)

    Thienphrapa, Paul; Ramachandran, Bharat; Elhawary, Haytham; Taylor, Russell H.; Popovic, Aleksandra

    2012-02-01

    Free moving bodies in the heart pose a serious health risk as they may be released in the arteries causing blood flow disruption. These bodies may be the result of various medical conditions and trauma. The conventional approach to removing these objects involves open surgery with sternotomy, the use of cardiopulmonary bypass, and a wide resection of the heart muscle. We advocate a minimally invasive surgical approach using a flexible robotic end effector guided by 3D transesophageal echocardiography. In a phantom study, we track a moving body in a beating heart using a modified normalized cross-correlation method, with mean RMS errors of 2.3 mm. We previously found the foreign body motion to be fast and abrupt, rendering infeasible a retrieval method based on direct tracking. We proposed a strategy based on guiding a robot to the most spatially probable location of the fragment and securing it upon its reentry to said location. To improve efficacy in the context of a robotic retrieval system, we extend this approach by exploring multiple candidate capture locations. Salient locations are identified based on spatial probability, dwell time, and visit frequency; secondary locations are also examined. Aggregate results indicate that the location of highest spatial probability (50% occupancy) is distinct from the longest-dwelled location (0.84 seconds). Such metrics are vital in informing the design of a retrieval system and capture strategies, and they can be computed intraoperatively to select the best capture location based on constraints such as workspace, time, and device manipulability. Given the complex nature of fragment motion, the ability to analyze multiple capture locations is a desirable capability in an interventional system.

  4. Ultrasound findings of the physiological changes and most common breast diseases during pregnancy and lactation*

    PubMed Central

    de Holanda, Antônio Arildo Reginaldo; Gonçalves, Ana Katherine da Silveira; de Medeiros, Robinson Dias; de Oliveira, António Manuel Gouveia; Maranhão, Técia Maria de Oliveira

    2016-01-01

    Because of the physiological changes that occur during pregnancy and lactation, diagnostic ultrasound of the breast during these periods is a challenge for physicians. Therefore, a comprehensive understanding of imaging, anatomy, and physiology of the breast is important to effectively diagnosing diseases that can arise in women who are pregnancy or lactating. The aim of this article was to review the physiological changes that occur in the breasts during pregnancy and lactation, as well as to describe the main features of the breast diseases that occur most frequently during these periods. PMID:28057965

  5. Ultrasound findings of the physiological changes and most common breast diseases during pregnancy and lactation.

    PubMed

    de Holanda, Antônio Arildo Reginaldo; Gonçalves, Ana Katherine da Silveira; de Medeiros, Robinson Dias; de Oliveira, António Manuel Gouveia; Maranhão, Técia Maria de Oliveira

    2016-01-01

    Because of the physiological changes that occur during pregnancy and lactation, diagnostic ultrasound of the breast during these periods is a challenge for physicians. Therefore, a comprehensive understanding of imaging, anatomy, and physiology of the breast is important to effectively diagnosing diseases that can arise in women who are pregnancy or lactating. The aim of this article was to review the physiological changes that occur in the breasts during pregnancy and lactation, as well as to describe the main features of the breast diseases that occur most frequently during these periods.

  6. A 3D in situ cell counter reveals that breast tumor cell (MDA-MB-231) proliferation rate is reduced by the collagen matrix density

    PubMed Central

    Bunaciu, Rodica P.; Yen, Andrew; Wu, Mingming

    2015-01-01

    Many cell types require the biophysical and biochemical cues within the 3D extracellular matrix (ECM) to exhibit their true physiologically relevant behavior. As a result, cell culture platforms have been evolving from traditional 2D petri-dish plates into 3D biomatrices, and there is a need for developing analytic tools to characterize 3D cell culture. The existing cell counting method, using a hemocytometer or coulter counter, requires that cells are suspended in fluids prior to counting. This poses a challenge for 3D cell culture as cells are embedded in a 3D biomatrix. We use a facile 3D cell counting method that overcomes this limitation and allows for in situ cell counting in a 3D cell culture using equipment that is commonly available in a biology lab. Using a breast tumor cell line, MDA-MB-231, as a model system, we demonstrated that MDA-MB-231 cells (1) grow slower within a 3D collagen matrix than on a 2D substrate for an extended growth time (a week) with a comparable, initial cell-to-cell distance, (2) their cell growth rate decreases with the increase of collagen concentration, showing a linear growth rate rather than an exponential growth rate. Further work using flow cytometry showed that the observed growth rate reduction was consistent with the retardation of the transition to S (synthesis) phase in the cell cycle. This work demonstrates the validity of the 3D cell counting method and the importance of cell-ECM interactions in cell proliferation. PMID:25683564

  7. Comparison of Radiation Treatment Plans for Breast Cancer between 3D Conformal in Prone and Supine Positions in Contrast to VMAT and IMRT Supine Positions

    NASA Astrophysics Data System (ADS)

    Bejarano Buele, Ana Isabel

    The treatment regimen for breast cancer patients typically involves Whole Breast Irradiation (WBI). The coverage and extent of the radiation treatment is dictated by location of tumor mass, breast tissue distribution, involvement of lymph nodes, and other factors. The current standard treatment approach used at our institution is a 3D tangential beam geometry, which involves two fields irradiating the breast, or a four field beam arrangement covering the whole breast and involved nodes, while decreasing the dose to organs as risk (OARs) such as the lung and heart. The coverage of these targets can be difficult to achieve in patients with unfavorable thoracic geometries, especially in those cases in which the planning target volume (PTV) is extended to the chest wall. It is a well-known fact that exposure of the heart to ionizing radiation has been proved to increase the subsequent rate of ischemic heart disease. In these cases, inverse planned treatments have become a proven alternative to the 3D approach. The goal of this research project is to evaluate the factors that affect our current techniques as well as to adapt the development of inverse modulated techniques for our clinic, in which breast cancer patients are one of the largest populations treated. For this purpose, a dosimetric comparison along with the evaluation of immobilization devices was necessary. Radiation treatment plans were designed and dosimetrically compared for 5 patients in both, supine and prone positions. For 8 patients, VMAT and IMRT plans were created and evaluated in the supine position. Skin flash incorporation for inverse modulated plans required measurement of the surface dose as well as an evaluation of breast volume changes during a treatment course. It was found that prone 3D conformal plans as well as the VMAT and IMRT plans are generally superior in sparing OARs to supine plans with comparable PTV coverage. Prone setup leads to larger shifts in breast volume as well as in

  8. Magnetic resonance imaging-targeted, 3D transrectal ultrasound-guided fusion biopsy for prostate cancer: Quantifying the impact of needle delivery error on diagnosis

    SciTech Connect

    Martin, Peter R.; Cool, Derek W.; Romagnoli, Cesare; Fenster, Aaron; Ward, Aaron D.

    2014-07-15

    Purpose: Magnetic resonance imaging (MRI)-targeted, 3D transrectal ultrasound (TRUS)-guided “fusion” prostate biopsy intends to reduce the ∼23% false negative rate of clinical two-dimensional TRUS-guided sextant biopsy. Although it has been reported to double the positive yield, MRI-targeted biopsies continue to yield false negatives. Therefore, the authors propose to investigate how biopsy system needle delivery error affects the probability of sampling each tumor, by accounting for uncertainties due to guidance system error, image registration error, and irregular tumor shapes. Methods: T2-weighted, dynamic contrast-enhanced T1-weighted, and diffusion-weighted prostate MRI and 3D TRUS images were obtained from 49 patients. A radiologist and radiology resident contoured 81 suspicious regions, yielding 3D tumor surfaces that were registered to the 3D TRUS images using an iterative closest point prostate surface-based method to yield 3D binary images of the suspicious regions in the TRUS context. The probabilityP of obtaining a sample of tumor tissue in one biopsy core was calculated by integrating a 3D Gaussian distribution over each suspicious region domain. Next, the authors performed an exhaustive search to determine the maximum root mean squared error (RMSE, in mm) of a biopsy system that gives P ≥ 95% for each tumor sample, and then repeated this procedure for equal-volume spheres corresponding to each tumor sample. Finally, the authors investigated the effect of probe-axis-direction error on measured tumor burden by studying the relationship between the error and estimated percentage of core involvement. Results: Given a 3.5 mm RMSE for contemporary fusion biopsy systems,P ≥ 95% for 21 out of 81 tumors. The authors determined that for a biopsy system with 3.5 mm RMSE, one cannot expect to sample tumors of approximately 1 cm{sup 3} or smaller with 95% probability with only one biopsy core. The predicted maximum RMSE giving P ≥ 95% for each

  9. Hypofractionated breast cancer radiotherapy. Helical tomotherapy in supine position or classic 3D-conformal radiotherapy in prone position: which is better?

    PubMed

    Cammarota, Fabrizio; Giugliano, Francesca Maria; Iadanza, Luciano; Cutillo, Luisa; Muto, Matteo; Toledo, Diego; Ravo, Vincenzo; Falivene, Sara; Muto, Paolo

    2014-03-01

    We propose a comparative dosimetric study of whole-breast hypofractionated radiation therapy using helical tomotherapy (HT) in supine position and 3-D conformal radiotherapy (3D-CRT) in prone position. Twelve patients undergoing breast-conserving therapy were retrospectively selected from October to December 2012. Specific dose-volume parameters were selected for the study. The target coverage was adequate in all patients for both techniques. Significant differences in lung dose distribution were observed: maximum dose (mean value over the 12 plans) was 23.41 Gy in HT plans and 6.65 Gy in 3D-CRT; V20 (i.e. the lung volume receiving 20 Gy) was 0.31% in HT plans and 0.0% in 3D-CRT plans. The mean dose to the heart was 5.57 Gy and 0.93 Gy, respectively. The differences between the two techniques were significant (p<0.05) only for some parameters. We noted better results in the prone position, but with HT, dose constraints were mentioned for the whole set of considered organs.

  10. Clinical benefits of combined diagnostic three-dimensional digital breast tomosynthesis and ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Varjonen, Mari; Pamilo, Martti; Raulisto, Leena

    2005-04-01

    Our goal is to evaluate diagnostic digital breast tomosynthesis and ultrasound imaging clinical value in detecting and diagnosing early stage breast cancers. Determine if fusion imaging would decrease the number of biopsies and reduce further patient workup otherwise required to establish a definitive diagnosis. This paper presents the clinical results based on the study conducted at Helsinki University Central Hospital. Presentation demonstrates clinical dual modality images and results. Tomosynthesis of amorphous selenium based full field digital mammography system will be also presented. Forty asymptomatic women enrolled in the study based on prior identification of suspicious findings on screening mammograms where the possibility of breast cancer could not be excluded. Abnormal screening mammogram findings included tumor-like densities, parenchymal asymmetries and architectural distortions. Eight women were operated and 32 were not referred for surgery. Those cases, which were operated, three lesions represented ductal carcinoma in situ, two ductal carcinomas, one atypical ductal hyperplasia, one fibroadenoma and one radial scar. The 32 not operated cases revealed to be benign or superimposition of normal parenchymal breast tissue. The cases were returned to biennial screening. Ultrasound did not show clearly any lesions, but using tomosynthesis and ultrasound together we were able to analyze and locate the lesions exactly. Special tomosynthesis improves overall lesion detection and analysis. The value of tomosynthesis and ultrasound fusion imaging will be to provide additional clinical information in order to improve decision making accuracy to either confirm or exclude a suspected abnormality and in particular detect small breast cancers.

  11. Breast cancer screening with imaging: recommendations from the Society of Breast Imaging and the ACR on the use of mammography, breast MRI, breast ultrasound, and other technologies for the detection of clinically occult breast cancer.

    PubMed

    Lee, Carol H; Dershaw, D David; Kopans, Daniel; Evans, Phil; Monsees, Barbara; Monticciolo, Debra; Brenner, R James; Bassett, Lawrence; Berg, Wendie; Feig, Stephen; Hendrick, Edward; Mendelson, Ellen; D'Orsi, Carl; Sickles, Edward; Burhenne, Linda Warren

    2010-01-01

    Screening for breast cancer with mammography has been shown to decrease mortality from breast cancer, and mammography is the mainstay of screening for clinically occult disease. Mammography, however, has well-recognized limitations, and recently, other imaging including ultrasound and magnetic resonance imaging have been used as adjunctive screening tools, mainly for women who may be at increased risk for the development of breast cancer. The Society of Breast Imaging and the Breast