Science.gov

Sample records for 3d canopy architecture

  1. Performance of the Cray T3D and Emerging Architectures on Canopy QCD Applications

    NASA Astrophysics Data System (ADS)

    Fischler, Mark; Uchima, Mike

    1996-03-01

    The Cray T3D, an MIMD system with NUMA shared memory capabilities and in principle very low communications latency, can support the Canopy framework for grid-oriented applications. CANOPY has been ported to the T3D, with the intent of making it available to a spectrum of users. The performance of the T3D running Canopy has been benchmarked on five QCD applications extensively run on ACPMAPS at Fermilab, requiring a variety of data access patterns. The net performance and scaling behavior reveals an efficiency relative to peak Gflops almost identical to that achieved on ACPMAPS. Detailed studies of the major factors impacting performance are presented. Generalizations applying this analysis to the newly emerging crop of commercial systems reveal where their limitations will lie. On these applications, efficiencies of above 25% are not to be expected; eliminating overheads due to Canopy will improve matters, but by less than a factor of two.

  2. Sweet Pepper (Capsicum annuum L.) Canopy Photosynthesis Modeling Using 3D Plant Architecture and Light Ray-Tracing.

    PubMed

    Kim, Jee Hoon; Lee, Joon Woo; Ahn, Tae In; Shin, Jong Hwa; Park, Kyung Sub; Son, Jung Eek

    2016-01-01

    Canopy photosynthesis has typically been estimated using mathematical models that have the following assumptions: the light interception inside the canopy exponentially declines with the canopy depth, and the photosynthetic capacity is affected by light interception as a result of acclimation. However, in actual situations, light interception in the canopy is quite heterogenous depending on environmental factors such as the location, microclimate, leaf area index, and canopy architecture. It is important to apply these factors in an analysis. The objective of the current study is to estimate the canopy photosynthesis of paprika (Capsicum annuum L.) with an analysis of by simulating the intercepted irradiation of the canopy using a 3D ray-tracing and photosynthetic capacity in each layer. By inputting the structural data of an actual plant, the 3D architecture of paprika was reconstructed using graphic software (Houdini FX, FX, Canada). The light curves and A/C i curve of each layer were measured to parameterize the Farquhar, von Caemmerer, and Berry (FvCB) model. The difference in photosynthetic capacity within the canopy was observed. With the intercepted irradiation data and photosynthetic parameters of each layer, the values of an entire plant's photosynthesis rate were estimated by integrating the calculated photosynthesis rate at each layer. The estimated photosynthesis rate of an entire plant showed good agreement with the measured plant using a closed chamber for validation. From the results, this method was considered as a reliable tool to predict canopy photosynthesis using light interception, and can be extended to analyze the canopy photosynthesis in actual greenhouse conditions.

  3. Sweet Pepper (Capsicum annuum L.) Canopy Photosynthesis Modeling Using 3D Plant Architecture and Light Ray-Tracing

    PubMed Central

    Kim, Jee Hoon; Lee, Joon Woo; Ahn, Tae In; Shin, Jong Hwa; Park, Kyung Sub; Son, Jung Eek

    2016-01-01

    Canopy photosynthesis has typically been estimated using mathematical models that have the following assumptions: the light interception inside the canopy exponentially declines with the canopy depth, and the photosynthetic capacity is affected by light interception as a result of acclimation. However, in actual situations, light interception in the canopy is quite heterogenous depending on environmental factors such as the location, microclimate, leaf area index, and canopy architecture. It is important to apply these factors in an analysis. The objective of the current study is to estimate the canopy photosynthesis of paprika (Capsicum annuum L.) with an analysis of by simulating the intercepted irradiation of the canopy using a 3D ray-tracing and photosynthetic capacity in each layer. By inputting the structural data of an actual plant, the 3D architecture of paprika was reconstructed using graphic software (Houdini FX, FX, Canada). The light curves and A/Ci curve of each layer were measured to parameterize the Farquhar, von Caemmerer, and Berry (FvCB) model. The difference in photosynthetic capacity within the canopy was observed. With the intercepted irradiation data and photosynthetic parameters of each layer, the values of an entire plant's photosynthesis rate were estimated by integrating the calculated photosynthesis rate at each layer. The estimated photosynthesis rate of an entire plant showed good agreement with the measured plant using a closed chamber for validation. From the results, this method was considered as a reliable tool to predict canopy photosynthesis using light interception, and can be extended to analyze the canopy photosynthesis in actual greenhouse conditions. PMID:27667994

  4. Use of Very High-Resolution Airborne Images to Analyse 3d Canopy Architecture of a Vineyard

    NASA Astrophysics Data System (ADS)

    Burgos, S.; Mota, M.; Noll, D.; Cannelle, B.

    2015-08-01

    Differencing between green cover and grape canopy is a challenge for vigour status evaluation in viticulture. This paper presents the acquisition methodology of very high-resolution images (4 cm), using a Sensefly Swinglet CAM unmanned aerial vehicle (UAV) and their processing to construct a 3D digital surface model (DSM) for the creation of precise digital terrain models (DTM). The DTM was obtained using python processing libraries. The DTM was then subtracted to the DSM in order to obtain a differential digital model (DDM) of a vineyard. In the DDM, the vine pixels were then obtained by selecting all pixels with an elevation higher than 50 [cm] above the ground level. The results show that it was possible to separate pixels from the green cover and the vine rows. The DDM showed values between -0.1 and + 1.5 [m]. A manually delineation of polygons based on the RGB image belonging to the green cover and to the vine rows gave a highly significant differences with an average value of 1.23 [m] and 0.08 [m] for the vine and the ground respectively. The vine rows elevation is in good accordance with the topping height of the vines 1.35 [m] measured on the field. This mask could be used to analyse images of the same plot taken at different times. The extraction of only vine pixels will facilitate subsequent analyses, for example, a supervised classification of these pixels.

  5. Modeling radiative transfer in heterogeneous 3D vegetation canopies

    NASA Astrophysics Data System (ADS)

    Gastellu-Etchegorry, J. P.; Demarez, V.; Pinel, Veronique; Zagolski, Francis

    1995-01-01

    The DART (discrete anisotropic radiative transfer) model simulates radiative transfer in heterogeneous 3-D scenes; here, a forest plantation. Similarly to Kimes model, the scene is divided into a rectangular cell matrix, i.e., a building block for simulating larger scenes. Cells are parallelipipedic. The scene encompasses different landscape features (i.e., trees with leaves and trunks, grass, water, and soil) with specific optical (reflectance, transmittance) and structural (LAI, LAD) characteristics. Radiation directions are subdivided into contiguous sectors with possibly uneven spacing. Topography, hot spot, and multiple interactions (scattering, attenuation) within cells are modeled. Two major steps are distinguished: (1) Illumination of cells by direct sun radiation. Actual locations of within cell scattering are determined for optimizing scattering computation. (2) Interception and scattering of previously scattered radiation. Diffuse atmospheric radiation is input at this level. Multiple scattering is represented with a spherical harmonic decomposition, for reducing data volume. The model iterates on step 2 for all cells, and stops with the energetic equilibrium. This model predicts the bi-directional reflectance factors of 3D canopies, with each scene component contribution; it was successfully tested with homogeneous covers. It gives also the radiation regime with canopies, and consequently some information about volume distribution of photosynthesis rates and primary production.

  6. 3-D physical modeling of a complex salt canopy

    SciTech Connect

    Wiley, R.W.; Sekharan, K.K.

    1996-12-31

    Recent drilling has confirmed both significant reservoir potential and the presence of commercial hydrocarbons below salt structures in the Gulf of Mexico. Obtaining definitive seismic images with standard processing schemes beneath these salt structures is very difficult if not impossible. Because of the complicated seismic behavior of these structures, full volume 3-D prestack depth migration is required. Unfortunately, carrying out the multitude of calculations needed to create a proper image requires the largest and fastest supercomputers and rather complex numerical algorithms. Furthermore, developing and testing the imaging algorithms is quite involved and requires appropriate test data sets. To better understand the problems and issues of subsalt imaging, Marathon Oil Company and Louisiana Land and Exploration Company contracted with the University of Houston`s Allied Geophysical Laboratories (AGL) to construct a salt canopy physical model. The model is patterned after the SEG/EAEG Salt Model and is made from synthetic materials. It is a full three-dimensional model with an irregularly shaped, lateral salt structure embedded in five distinct sedimentary layers. The model was used to acquire a multi-offset 3-D marine-style survey. These data are being used to address problems of subsalt imaging. In addition to standard processing techniques, the authors investigate algorithms for multiple removal and prestack depth migration.

  7. Measurement of tree canopy architecture

    NASA Technical Reports Server (NTRS)

    Martens, S. N.; Ustin, S. L.; Norman, J. M.

    1991-01-01

    The lack of accurate extensive geometric data on tree canopies has retarded development and validation of radiative transfer models. A stratified sampling method was devised to measure the three-dimensional geometry of 16 walnut trees which had received irrigation treatments of either 100 or 33 per cent of evapotranspirational (ET) demand for the previous two years. Graphic reconstructions of the three-dimensional geometry were verified by 58 independent measurements. The distributions of stem- and leaf-size classes, lengths, and angle classes were determined and used to calculate leaf area index (LAI), stem area, and biomass. Reduced irrigation trees have lower biomass of stems, leaves and fruit, lower LAI, steeper leaf angles and altered biomass allocation to large stems. These data can be used in ecological models that link canopy processes with remotely sensed measurements.

  8. 3D printing of interdigitated Li-ion microbattery architectures.

    PubMed

    Sun, Ke; Wei, Teng-Sing; Ahn, Bok Yeop; Seo, Jung Yoon; Dillon, Shen J; Lewis, Jennifer A

    2013-09-06

    3D interdigitated microbattery architectures (3D-IMA) are fabricated by printing concentrated lithium oxide-based inks. The microbatteries are composed of interdigitated, high-aspect ratio cathode and anode structures. Our 3D-IMA, which exhibit high areal energy and power densities, may find potential application in autonomously powered microdevices.

  9. Coniferous Canopy BRF Simulation Based on 3-D Realistic Scene

    NASA Technical Reports Server (NTRS)

    Wang, Xin-yun; Guo, Zhi-feng; Qin, Wen-han; Sun, Guo-qing

    2011-01-01

    It is difficulties for the computer simulation method to study radiation regime at large-scale. Simplified coniferous model was investigate d in the present study. It makes the computer simulation methods such as L-systems and radiosity-graphics combined method (RGM) more powerf ul in remote sensing of heterogeneous coniferous forests over a large -scale region. L-systems is applied to render 3-D coniferous forest scenarios: and RGM model was used to calculate BRF (bidirectional refle ctance factor) in visible and near-infrared regions. Results in this study show that in most cases both agreed well. Meanwhiie at a tree and forest level. the results are also good.

  10. 3D lidar imaging for detecting and understanding plant responses and canopy structure.

    PubMed

    Omasa, Kenji; Hosoi, Fumiki; Konishi, Atsumi

    2007-01-01

    Understanding and diagnosing plant responses to stress will benefit greatly from three-dimensional (3D) measurement and analysis of plant properties because plant responses are strongly related to their 3D structures. Light detection and ranging (lidar) has recently emerged as a powerful tool for direct 3D measurement of plant structure. Here the use of 3D lidar imaging to estimate plant properties such as canopy height, canopy structure, carbon stock, and species is demonstrated, and plant growth and shape responses are assessed by reviewing the development of lidar systems and their applications from the leaf level to canopy remote sensing. In addition, the recent creation of accurate 3D lidar images combined with natural colour, chlorophyll fluorescence, photochemical reflectance index, and leaf temperature images is demonstrated, thereby providing information on responses of pigments, photosynthesis, transpiration, stomatal opening, and shape to environmental stresses; these data can be integrated with 3D images of the plants using computer graphics techniques. Future lidar applications that provide more accurate dynamic estimation of various plant properties should improve our understanding of plant responses to stress and of interactions between plants and their environment. Moreover, combining 3D lidar with other passive and active imaging techniques will potentially improve the accuracy of airborne and satellite remote sensing, and make it possible to analyse 3D information on ecophysiological responses and levels of various substances in agricultural and ecological applications and in observations of the global biosphere.

  11. Architectural Advancements in RELAP5-3D

    SciTech Connect

    Dr. George L. Mesina

    2005-11-01

    As both the computer industry and field of nuclear science and engineering move forward, there is a need to improve the computing tools used in the nuclear industry to keep pace with these changes. By increasing the capability of the codes, the growing modeling needs of nuclear plant analysis will be met and advantage can be taken of more powerful computer languages and architecture. In the past eighteen months, improvements have been made to RELAP5-3D [1] for these reasons. These architectural advances include code restructuring, conversion to Fortran 90, high performance computing upgrades, and rewriting of the RELAP5 Graphical User Interface (RGUI) [2] and XMGR5 [3] in Java. These architectural changes will extend the lifetime of RELAP5-3D, reduce the costs for development and maintenance, and improve it speed and reliability.

  12. Automatic Texture Mapping of Architectural and Archaeological 3d Models

    NASA Astrophysics Data System (ADS)

    Kersten, T. P.; Stallmann, D.

    2012-07-01

    Today, detailed, complete and exact 3D models with photo-realistic textures are increasingly demanded for numerous applications in architecture and archaeology. Manual texture mapping of 3D models by digital photographs with software packages, such as Maxon Cinema 4D, Autodesk 3Ds Max or Maya, still requires a complex and time-consuming workflow. So, procedures for automatic texture mapping of 3D models are in demand. In this paper two automatic procedures are presented. The first procedure generates 3D surface models with textures by web services, while the second procedure textures already existing 3D models with the software tmapper. The program tmapper is based on the Multi Layer 3D image (ML3DImage) algorithm and developed in the programming language C++. The studies showing that the visibility analysis using the ML3DImage algorithm is not sufficient to obtain acceptable results of automatic texture mapping. To overcome the visibility problem the Point Cloud Painter algorithm in combination with the Z-buffer-procedure will be applied in the future.

  13. Designing bioinspired composite reinforcement architectures via 3D magnetic printing

    NASA Astrophysics Data System (ADS)

    Martin, Joshua J.; Fiore, Brad E.; Erb, Randall M.

    2015-10-01

    Discontinuous fibre composites represent a class of materials that are strong, lightweight and have remarkable fracture toughness. These advantages partially explain the abundance and variety of discontinuous fibre composites that have evolved in the natural world. Many natural structures out-perform the conventional synthetic counterparts due, in part, to the more elaborate reinforcement architectures that occur in natural composites. Here we present an additive manufacturing approach that combines real-time colloidal assembly with existing additive manufacturing technologies to create highly programmable discontinuous fibre composites. This technology, termed as `3D magnetic printing', has enabled us to recreate complex bioinspired reinforcement architectures that deliver enhanced material performance compared with monolithic structures. Further, we demonstrate that we can now design and evolve elaborate reinforcement architectures that are not found in nature, demonstrating a high level of possible customization in discontinuous fibre composites with arbitrary geometries.

  14. Designing bioinspired composite reinforcement architectures via 3D magnetic printing

    PubMed Central

    Martin, Joshua J.; Fiore, Brad E.; Erb, Randall M.

    2015-01-01

    Discontinuous fibre composites represent a class of materials that are strong, lightweight and have remarkable fracture toughness. These advantages partially explain the abundance and variety of discontinuous fibre composites that have evolved in the natural world. Many natural structures out-perform the conventional synthetic counterparts due, in part, to the more elaborate reinforcement architectures that occur in natural composites. Here we present an additive manufacturing approach that combines real-time colloidal assembly with existing additive manufacturing technologies to create highly programmable discontinuous fibre composites. This technology, termed as ‘3D magnetic printing', has enabled us to recreate complex bioinspired reinforcement architectures that deliver enhanced material performance compared with monolithic structures. Further, we demonstrate that we can now design and evolve elaborate reinforcement architectures that are not found in nature, demonstrating a high level of possible customization in discontinuous fibre composites with arbitrary geometries. PMID:26494282

  15. 3D architectures are not just for microbatteries anymore

    NASA Astrophysics Data System (ADS)

    Lytle, Justin C.; Long, Jeffrey W.; Chervin, Christopher N.; Sassin, Megan B.; Rolison, Debra R.

    2011-06-01

    Building battery architectures with functional interfaces that are interpenetrated in three dimensions opens the door to major gains in performance as compared to conventional 2-D battery designs, particularly with respect to the battery footprint. We are developing 3-D solid-state Li-ion batteries that are sequentially assembled from interpenetrating and tricontinuous networks of anode, cathode, and electrolyte/separator materials. We use fiberpaper- supported carbon nanofoams as a massively parallel, conductive, ultraporous base platform within which to create the 3-D cell. The components required for battery operation are incorporated into the x,y,z-scalable papers and include nanoscale coatings of metal oxides that serve as Li-ion-insertion electrodes and ultrathin, electroninsulating/ Li-ion conducting polymer coatings that serve as the electrolyte/separator.

  16. Canopy architecture of a walnut orchard

    NASA Technical Reports Server (NTRS)

    Ustin, Susan L.; Martens, Scott N.; Vanderbilt, Vern C.

    1991-01-01

    A detailed dataset describing the canopy geometry of a walnut orchard was acquired to support testing and comparison of the predictions of canopy microwave and optical inversion models. Measured canopy properties included the quantity, size, and orientation of stems, leaves, and fruit. Eight trees receiving 100 percent of estimated potential evapotranspiration water use and eight trees receiving 33 percent of potential water use were measured. The vertical distributions of stem, leaf, and fruit properties are presented with respect to irrigation treatment. Zenith and probability distributions for stems and leaf normals are presented. These data show that, after two years of reduced irrigation, the trees receiving only 33 percent of their potential water requirement had reduced fruit yields, lower leaf area index, and altered allocation of biomass within the canopy.

  17. Controlled architectural and chemotactic studies of 3D cell migration.

    PubMed

    Tayalia, Prakriti; Mazur, Eric; Mooney, David J

    2011-04-01

    Chemotaxis plays a critical role in tissue development and wound repair, and is widely studied using ex vivo model systems in applications such as immunotherapy. However, typical chemotactic models employ 2D systems that are less physiologically relevant or use end-point assays, that reveal little about the stepwise dynamics of the migration process. To overcome these limitations, we developed a new model system using microfabrication techniques, sustained drug delivery approaches, and theoretical modeling of chemotactic agent diffusion. This model system allows us to study the effects of 3D architecture and chemotactic agent gradient on immune cell migration in real time. We find that dendritic cell migration is characterized by a strong interplay between matrix architecture and chemotactic gradients, and migration is also influenced dramatically by the cell activation state. Our results indicate that Lipopolysaccharide-activated dendritic cells studied in a traditional transwell system actually exhibit anomalous migration behavior. Such a 3D ex vivo system lends itself for analyzing cell migratory behavior in response to single or multiple competitive cues and could prove useful in vaccine development.

  18. 3D model tools for architecture and archaeology reconstruction

    NASA Astrophysics Data System (ADS)

    Vlad, Ioan; Herban, Ioan Sorin; Stoian, Mircea; Vilceanu, Clara-Beatrice

    2016-06-01

    The main objective of architectural and patrimonial survey is to provide a precise documentation of the status quo of the surveyed objects (monuments, buildings, archaeological object and sites) for preservation and protection, for scientific studies and restoration purposes, for the presentation to the general public. Cultural heritage documentation includes an interdisciplinary approach having as purpose an overall understanding of the object itself and an integration of the information which characterize it. The accuracy and the precision of the model are directly influenced by the quality of the measurements realized on field and by the quality of the software. The software is in the process of continuous development, which brings many improvements. On the other side, compared to aerial photogrammetry, close range photogrammetry and particularly architectural photogrammetry is not limited to vertical photographs with special cameras. The methodology of terrestrial photogrammetry has changed significantly and various photographic acquisitions are widely in use. In this context, the present paper brings forward a comparative study of TLS (Terrestrial Laser Scanner) and digital photogrammetry for 3D modeling. The authors take into account the accuracy of the 3D models obtained, the overall costs involved for each technology and method and the 4th dimension - time. The paper proves its applicability as photogrammetric technologies are nowadays used at a large scale for obtaining the 3D model of cultural heritage objects, efficacious in their assessment and monitoring, thus contributing to historic conservation. Its importance also lies in highlighting the advantages and disadvantages of each method used - very important issue for both the industrial and scientific segment when facing decisions such as in which technology to invest more research and funds.

  19. Canopy polarized BRDF simulation based on non-stationary Monte Carlo 3-D vector RT modeling

    NASA Astrophysics Data System (ADS)

    Kallel, Abdelaziz; Gastellu-Etchegorry, Jean Philippe

    2017-03-01

    Vector radiative transfer (VRT) has been largely used to simulate polarized reflectance of atmosphere and ocean. However it is still not properly used to describe vegetation cover polarized reflectance. In this study, we try to propose a 3-D VRT model based on a modified Monte Carlo (MC) forward ray tracing simulation to analyze vegetation canopy reflectance. Two kinds of leaf scattering are taken into account: (i) Lambertian diffuse reflectance and transmittance and (ii) specular reflection. A new method to estimate the condition on leaf orientation to produce reflection is proposed, and its probability to occur, Pl,max, is computed. It is then shown that Pl,max is low, but when reflection happens, the corresponding radiance Stokes vector, Io, is very high. Such a phenomenon dramatically increases the MC variance and yields to an irregular reflectance distribution function. For better regularization, we propose a non-stationary MC approach that simulates reflection for each sunny leaf assuming that its orientation is randomly chosen according to its angular distribution. It is shown in this case that the average canopy reflection is proportional to Pl,max ·Io which produces a smooth distribution. Two experiments are conducted: (i) assuming leaf light polarization is only due to the Fresnel reflection and (ii) the general polarization case. In the former experiment, our results confirm that in the forward direction, canopy polarizes horizontally light. In addition, they show that in inclined forward direction, diagonal polarization can be observed. In the latter experiment, polarization is produced in all orientations. It is particularly pointed out that specular polarization explains just a part of the forward polarization. Diffuse scattering polarizes light horizontally and vertically in forward and backward directions, respectively. Weak circular polarization signal is also observed near the backscattering direction. Finally, validation of the non

  20. Numerical and measured data from the 3D salt canopy physical modeling project

    SciTech Connect

    Bradley, C.; House, L.; Fehler, M.; Pearson, J.; TenCate, J.; Wiley, R.

    1997-11-01

    The evolution of salt structures in the Gulf of Mexico have been shown to provide a mechanism for the trapping of significant hydrocarbon reserves. Most of these structures have complex geometries relative to the surrounding sedimentary layers. This aspect in addition to high velocities within the salt tend to scatter and defocus seismic energy and make imaging of subsalt lithology extremely difficult. An ongoing program the SEG/EAEG modeling project (Aminzadeh et al. 1994a: Aminzadeh et al. 1994b: Aminzadeh et al. 1995), and a follow-up project funded as part of the Advanced Computational Technology Initiative (ACTI) (House et al. 1996) have sought to investigate problems with imaging beneath complex salt structures using numerical modeling and more recently, construction of a physical model patterned after the numerical subsalt model (Wiley and McKnight. 1996). To date, no direct comparison of the numerical and physical aspects of these models has been attempted. We present the results of forward modeling a numerical realization of the 3D salt canopy physical model with the French Petroleum Institute (IFP) acoustic finite difference algorithm used in the numerical subsalt tests. We compare the results from the physical salt canopy model, the acoustic modeling of the physical/numerical model and the original numerical SEG/EAEG Salt Model. We will be testing the sensitivity of migration to the presence of converted shear waves and acquisition geometry.

  1. RELAP5-3D Architectural Developments in 2004

    SciTech Connect

    Dr. George L. Mesina

    2004-08-01

    Currently, RELAP5 is undergoing a transformation that will replace much of its coding with equivalent structured Fortran 90 coding. Four efforts are underway to modernize the code architecture of RELAP5-3D. These are parallelization, vectorization, code restructuring, and conversion to Fortran 90. The first two improve code run speed via on computer platforms of certain architectures. These code modifications have little effect on normal code performance on non-vector and non-parallel computers because they are mostly done with compiler directives. The third and fourth efforts involve considerable rewriting of the source code. The third code improvement effort addresses code readability and maintainability. These are being greatly enhanced by application of a Fortran code-restructuring tool. The fourth effort is conversion to Fortran 90. The bulk of the coding is being rewritten in Fortran 90. This is a ground up reworking of the coding that begins with completely reorganizing the underlying database and continues with the source code. It will reach every part of RELAP5-3D. Each of these efforts is discussed in detail in a different section. Section 1 relates background information. Section 2 covers the parallelization effort. Section 3 covers the efforts to vectorize the code. Section 4 covers the code restructuring. Section 5 covers the Fortran 90 effort. Outline Background: longevity, maintenance & development, reliability, speed Parallelization: KAI to OpenMP, previous work & current, domain decomposition, done. Vectorization: Speed - Fed init, vectors in PCs, INL Cray SV1, R5 Phant, EXV, results. Code Restructuring: Reason to restructure, study of restruct, For Study: what it does, Fortran 90: Modernization -

  2. LED projection architectures for stereoscopic and multiview 3D displays

    NASA Astrophysics Data System (ADS)

    Meuret, Youri; Bogaert, Lawrence; Roelandt, Stijn; Vanderheijden, Jana; Avci, Aykut; De Smet, Herbert; Thienpont, Hugo

    2010-04-01

    LED-based projection systems have several interesting features: extended color-gamut, long lifetime, robustness and a fast turn-on time. However, the possibility to develop compact projectors remains the most important driving force to investigate LED projection. This is related to the limited light output of LED projectors that is a consequence of the relative low luminance of LEDs, compared to high intensity discharge lamps. We have investigated several LED projection architectures for the development of new 3D visualization displays. Polarization-based stereoscopic projection displays are often implemented using two identical projectors with passive polarizers at the output of their projection lens. We have designed and built a prototype of a stereoscopic projection system that incorporates the functionality of both projectors. The system uses high-resolution liquidcrystal- on-silicon light valves and an illumination system with LEDs. The possibility to add an extra LED illumination channel was also investigated for this optical configuration. Multiview projection displays allow the visualization of 3D images for multiple viewers without the need to wear special eyeglasses. Systems with large number of viewing zones have already been demonstrated. Such systems often use multiple projection engines. We have investigated a projection architecture that uses only one digital micromirror device and a LED-based illumination system to create multiple viewing zones. The system is based on the time-sequential modulation of the different images for each viewing zone and a special projection screen with micro-optical features. We analyzed the limitations of a LED-based illumination for the investigated stereoscopic and multiview projection systems and discuss the potential of a laser-based illumination.

  3. How neighbor canopy architecture affects target plant performance

    SciTech Connect

    Tremmel, D.C.; Bazzaz, F.A. )

    1993-10-01

    Plant competition occurs through the negative effects that individual plants have on resource availability to neighboring individuals. Therefore competition experiments need to examine how different species change resource availability to their neighbors, and how different species respond to these changes-allocationally, architecturally, and physiologically-through time. In a greenhouse study we used a model system of annuals to examine how canopies of species having differing morphologies differed in their architectures and light-interception abilities, and how different species performed when grown in these canopies. Abutilon theophrasti, Datura stramonium, and Polygonum pensylvanicum were grown as [open quotes]targets[close quotes]. Plants were grown in pots, with one target plant and four neighbor plants. Detailed measurements of neighbor canopy structure and target plant canopy architecture were made at five harvests. Species with different morphologies showed large differences in canopy structure, particularly when grass and forb species were compared. Setaria, a grass, had a more open canopy than the other species (all forbs), and was a consistently weak competitor. Overall, however, the relative effects of different neighbors on target biomass varied with target species. Target biomass was poorly correlated with neighbor biomass and leaf area, but was highly correlated with a measure of target light-interception ability that took into account both target leaf deployment and neighbor light interception. Despite clear differences among neighbor species in canopy structure and effect on light penetration, the results suggest no broad generalizations about the effects of different species as neighbors. Knowledge of morphological, physiological, and life history characteristics of both the target and neighbor species may be necessary to explain the results of their competition. 53 refs., 4 figs., 4 tabs.

  4. Leaf Area Index Estimation in Vineyards from Uav Hyperspectral Data, 2d Image Mosaics and 3d Canopy Surface Models

    NASA Astrophysics Data System (ADS)

    Kalisperakis, I.; Stentoumis, Ch.; Grammatikopoulos, L.; Karantzalos, K.

    2015-08-01

    The indirect estimation of leaf area index (LAI) in large spatial scales is crucial for several environmental and agricultural applications. To this end, in this paper, we compare and evaluate LAI estimation in vineyards from different UAV imaging datasets. In particular, canopy levels were estimated from i.e., (i) hyperspectral data, (ii) 2D RGB orthophotomosaics and (iii) 3D crop surface models. The computed canopy levels have been used to establish relationships with the measured LAI (ground truth) from several vines in Nemea, Greece. The overall evaluation indicated that the estimated canopy levels were correlated (r2 > 73%) with the in-situ, ground truth LAI measurements. As expected the lowest correlations were derived from the calculated greenness levels from the 2D RGB orthomosaics. The highest correlation rates were established with the hyperspectral canopy greenness and the 3D canopy surface models. For the later the accurate detection of canopy, soil and other materials in between the vine rows is required. All approaches tend to overestimate LAI in cases with sparse, weak, unhealthy plants and canopy.

  5. Polygonal Shapes Detection in 3d Models of Complex Architectures

    NASA Astrophysics Data System (ADS)

    Benciolini, G. B.; Vitti, A.

    2015-02-01

    A sequential application of two global models defined on a variational framework is proposed for the detection of polygonal shapes in 3D models of complex architectures. As a first step, the procedure involves the use of the Mumford and Shah (1989) 1st-order variational model in dimension two (gridded height data are processed). In the Mumford-Shah model an auxiliary function detects the sharp changes, i.e., the discontinuities, of a piecewise smooth approximation of the data. The Mumford-Shah model requires the global minimization of a specific functional to simultaneously produce both the smooth approximation and its discontinuities. In the proposed procedure, the edges of the smooth approximation derived by a specific processing of the auxiliary function are then processed using the Blake and Zisserman (1987) 2nd-order variational model in dimension one (edges are processed in the plane). This second step permits to describe the edges of an object by means of piecewise almost-linear approximation of the input edges themselves and to detects sharp changes of the first-derivative of the edges so to detect corners. The Mumford-Shah variational model is used in two dimensions accepting the original data as primary input. The Blake-Zisserman variational model is used in one dimension for the refinement of the description of the edges. The selection among all the boundaries detected by the Mumford-Shah model of those that present a shape close to a polygon is performed by considering only those boundaries for which the Blake-Zisserman model identified discontinuities in their first derivative. The output of the procedure are hence shapes, coming from 3D geometric data, that can be considered as polygons. The application of the procedure is suitable for, but not limited to, the detection of objects such as foot-print of polygonal buildings, building facade boundaries or windows contours. v The procedure is applied to a height model of the building of the Engineering

  6. A Lidar Point Cloud Based Procedure for Vertical Canopy Structure Analysis And 3D Single Tree Modelling in Forest

    PubMed Central

    Wang, Yunsheng; Weinacker, Holger; Koch, Barbara

    2008-01-01

    A procedure for both vertical canopy structure analysis and 3D single tree modelling based on Lidar point cloud is presented in this paper. The whole area of research is segmented into small study cells by a raster net. For each cell, a normalized point cloud whose point heights represent the absolute heights of the ground objects is generated from the original Lidar raw point cloud. The main tree canopy layers and the height ranges of the layers are detected according to a statistical analysis of the height distribution probability of the normalized raw points. For the 3D modelling of individual trees, individual trees are detected and delineated not only from the top canopy layer but also from the sub canopy layer. The normalized points are resampled into a local voxel space. A series of horizontal 2D projection images at the different height levels are then generated respect to the voxel space. Tree crown regions are detected from the projection images. Individual trees are then extracted by means of a pre-order forest traversal process through all the tree crown regions at the different height levels. Finally, 3D tree crown models of the extracted individual trees are reconstructed. With further analyses on the 3D models of individual tree crowns, important parameters such as crown height range, crown volume and crown contours at the different height levels can be derived. PMID:27879916

  7. A Lidar Point Cloud Based Procedure for Vertical Canopy Structure Analysis And 3D Single Tree Modelling in Forest.

    PubMed

    Wang, Yunsheng; Weinacker, Holger; Koch, Barbara

    2008-06-12

    A procedure for both vertical canopy structure analysis and 3D single tree modelling based on Lidar point cloud is presented in this paper. The whole area of research is segmented into small study cells by a raster net. For each cell, a normalized point cloud whose point heights represent the absolute heights of the ground objects is generated from the original Lidar raw point cloud. The main tree canopy layers and the height ranges of the layers are detected according to a statistical analysis of the height distribution probability of the normalized raw points. For the 3D modelling of individual trees, individual trees are detected and delineated not only from the top canopy layer but also from the sub canopy layer. The normalized points are resampled into a local voxel space. A series of horizontal 2D projection images at the different height levels are then generated respect to the voxel space. Tree crown regions are detected from the projection images. Individual trees are then extracted by means of a pre-order forest traversal process through all the tree crown regions at the different height levels. Finally, 3D tree crown models of the extracted individual trees are reconstructed. With further analyses on the 3D models of individual tree crowns, important parameters such as crown height range, crown volume and crown contours at the different height levels can be derived.

  8. Evaluating Dense 3d Reconstruction Software Packages for Oblique Monitoring of Crop Canopy Surface

    NASA Astrophysics Data System (ADS)

    Brocks, S.; Bareth, G.

    2016-06-01

    Crop Surface Models (CSMs) are 2.5D raster surfaces representing absolute plant canopy height. Using multiple CMSs generated from data acquired at multiple time steps, a crop surface monitoring is enabled. This makes it possible to monitor crop growth over time and can be used for monitoring in-field crop growth variability which is useful in the context of high-throughput phenotyping. This study aims to evaluate several software packages for dense 3D reconstruction from multiple overlapping RGB images on field and plot-scale. A summer barley field experiment located at the Campus Klein-Altendorf of University of Bonn was observed by acquiring stereo images from an oblique angle using consumer-grade smart cameras. Two such cameras were mounted at an elevation of 10 m and acquired images for a period of two months during the growing period of 2014. The field experiment consisted of nine barley cultivars that were cultivated in multiple repetitions and nitrogen treatments. Manual plant height measurements were carried out at four dates during the observation period. The software packages Agisoft PhotoScan, VisualSfM with CMVS/PMVS2 and SURE are investigated. The point clouds are georeferenced through a set of ground control points. Where adequate results are reached, a statistical analysis is performed.

  9. Studies of microwave scattering and canopy architecture for boreal forests

    NASA Technical Reports Server (NTRS)

    Lockhart, G. Lance; Gogineni, S. P.

    1995-01-01

    This is an annual report on the project titled 'Study of Microwave Scattering and Canopy Architecture for Boreal Forests.' The objectives of our work are to study the interaction of microwave signals with vegetation components and to determine the radar's ability to provide accurate estimates of biophysical parameters such as biomass. Our research is aimed at refining the current microwave models and using these improvements to facilitate more accurate interpretations of SAR (synthetic aperture radar) imagery.

  10. An Update on Design Tools for Optimization of CMC 3D Fiber Architectures

    NASA Technical Reports Server (NTRS)

    Lang, J.; DiCarlo, J.

    2012-01-01

    Objective: Describe and up-date progress for NASA's efforts to develop 3D architectural design tools for CMC in general and for SIC/SiC composites in particular. Describe past and current sequential work efforts aimed at: Understanding key fiber and tow physical characteristics in conventional 2D and 3D woven architectures as revealed by microstructures in the literature. Developing an Excel program for down-selecting and predicting key geometric properties and resulting key fiber-controlled properties for various conventional 3D architectures. Developing a software tool for accurately visualizing all the key geometric details of conventional 3D architectures. Validating tools by visualizing and predicting the Internal geometry and key mechanical properties of a NASA SIC/SIC panel with a 3D orthogonal architecture. Applying the predictive and visualization tools toward advanced 3D orthogonal SiC/SIC composites, and combining them into a user-friendly software program.

  11. Development of a Simulation Tool for 3D Braiding Architectures

    NASA Astrophysics Data System (ADS)

    Tolosana, N.; Lomov, S.; Stüve, J.; Miravete, A.

    2007-04-01

    The usage of textile technologies for composites is widely extended in aeronautic applications. They provide an improvement on mechanical properties in the thickness direction, and offer some other advantages in comparison with prepreg technology regarding production. Nowadays 3D-braiding machines do not only enable the production of solid profiles but enable also the production of complex near-net-shape reinforcement structures with changing cross section geometry. In order to attain a full understanding on structure of 3d braids to be able to predict mechanical properties, simulation tools including machine operation are needed. A simulation tool is being developed as a part of the EU project "Integrated Tool for Simulation of Textile Composites", starting from 3d braiding machinery description and operation. This information is required to reproduce yarn paths in the produced unit cell, based on the interlacing pattern of the braid.

  12. Supramolecular 3d-4f single-molecule magnet architectures.

    PubMed

    Schmitz, Sebastian; van Leusen, Jan; Izarova, Natalya V; Lan, Yanhua; Wernsdorfer, Wolfgang; Kögerler, Paul; Monakhov, Kirill Yu

    2016-10-18

    The nanosized self-assemblies {[{Ln(III)}{H2O⊂CrLn}]2(H2O)} (Ln = Dy, 1 and Tb, 2) based on new 3d-4f mixed-metal coordination topologies are formed via extensive intramolecular hydrogen bonding that is directed by enclosed water molecules. Compounds 1 and 2 show single-molecule magnet characteristics manifested by hysteresis loops up to 1.6 K (Ueff = 8.3 cm(-1)) and 1 K (Ueff = 3.4 cm(-1)), respectively.

  13. Automated Reconstruction Algorithm for Identification of 3D Architectures of Cribriform Ductal Carcinoma In Situ

    PubMed Central

    Norton, Kerri-Ann; Namazi, Sameera; Barnard, Nicola; Fujibayashi, Mariko; Bhanot, Gyan; Ganesan, Shridar; Iyatomi, Hitoshi; Ogawa, Koichi; Shinbrot, Troy

    2012-01-01

    Ductal carcinoma in situ (DCIS) is a pre-invasive carcinoma of the breast that exhibits several distinct morphologies but the link between morphology and patient outcome is not clear. We hypothesize that different mechanisms of growth may still result in similar 2D morphologies, which may look different in 3D. To elucidate the connection between growth and 3D morphology, we reconstruct the 3D architecture of cribriform DCIS from resected patient material. We produce a fully automated algorithm that aligns, segments, and reconstructs 3D architectures from microscopy images of 2D serial sections from human specimens. The alignment algorithm is based on normalized cross correlation, the segmentation algorithm uses histogram equilization, Otsu's thresholding, and morphology techniques to segment the duct and cribra. The reconstruction method combines these images in 3D. We show that two distinct 3D architectures are indeed found in samples whose 2D histological sections are similarly identified as cribriform DCIS. These differences in architecture support the hypothesis that luminal spaces may form due to different mechanisms, either isolated cell death or merging fronds, leading to the different architectures. We find that out of 15 samples, 6 were found to have ‘bubble-like’ cribra, 6 were found to have ‘tube-like’ criba and 3 were ‘unknown.’ We propose that the 3D architectures found, ‘bubbles’ and ‘tubes’, account for some of the heterogeneity of the disease and may be prognostic indicators of different patient outcomes. PMID:22970156

  14. Evaluating radiative transfer schemes treatment of vegetation canopy architecture in land surface models

    NASA Astrophysics Data System (ADS)

    Braghiere, Renato; Quaife, Tristan; Black, Emily

    2016-04-01

    Incoming shortwave radiation is the primary source of energy driving the majority of the Earth's climate system. The partitioning of shortwave radiation by vegetation into absorbed, reflected, and transmitted terms is important for most of biogeophysical processes, including leaf temperature changes and photosynthesis, and it is currently calculated by most of land surface schemes (LSS) of climate and/or numerical weather prediction models. The most commonly used radiative transfer scheme in LSS is the two-stream approximation, however it does not explicitly account for vegetation architectural effects on shortwave radiation partitioning. Detailed three-dimensional (3D) canopy radiative transfer schemes have been developed, but they are too computationally expensive to address large-scale related studies over long time periods. Using a straightforward one-dimensional (1D) parameterisation proposed by Pinty et al. (2006), we modified a two-stream radiative transfer scheme by including a simple function of Sun zenith angle, so-called "structure factor", which does not require an explicit description and understanding of the complex phenomena arising from the presence of vegetation heterogeneous architecture, and it guarantees accurate simulations of the radiative balance consistently with 3D representations. In order to evaluate the ability of the proposed parameterisation in accurately represent the radiative balance of more complex 3D schemes, a comparison between the modified two-stream approximation with the "structure factor" parameterisation and state-of-art 3D radiative transfer schemes was conducted, following a set of virtual scenarios described in the RAMI4PILPS experiment. These experiments have been evaluating the radiative balance of several models under perfectly controlled conditions in order to eliminate uncertainties arising from an incomplete or erroneous knowledge of the structural, spectral and illumination related canopy characteristics typical

  15. Template-Free Synthesis of Functional 3D BN architecture for removal of dyes from water

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Lei, Weiwei; Qin, Si; Chen, Ying

    2014-03-01

    Three-dimensional (3D) architectures are of interest in applications in electronics, catalysis devices, sensors and adsorption materials. However, it is still a challenge to fabricate 3D BN architectures by a simple method. Here, we report the direct synthesis of 3D BN architectures by a simple thermal treatment process. A 3D BN architecture consists of an interconnected flexible network of nanosheets. The typical nitrogen adsorption/desorption results demonstrate that the specific surface area for the as-prepared samples is up to 1156 m2 g-1, and the total pore volume is about 1.17 cm3 g-1. The 3D BN architecture displays very high adsorption rates and large capacities for organic dyes in water without any other additives due to its low densities, high resistance to oxidation, good chemical inertness and high surface area. Importantly, 88% of the starting adsorption capacity is maintained after 15 cycles. These results indicate that the 3D BN architecture is potential environmental materials for water purification and treatment.

  16. Influence of Fibre Architecture on Impact Damage Tolerance in 3D Woven Composites

    NASA Astrophysics Data System (ADS)

    Potluri, P.; Hogg, P.; Arshad, M.; Jetavat, D.; Jamshidi, P.

    2012-10-01

    3D woven composites, due to the presence of through-thickness fibre-bridging, have the potential to improve damage tolerance and at the same time to reduce the manufacturing costs. However, ability to withstand damage depends on weave topology as well as geometry of individual tows. There is an extensive literature on damage tolerance of 2D prepreg laminates but limited work is reported on the damage tolerance of 3D weaves. In view of the recent interest in 3D woven composites from aerospace as well as non-aerospace sectors, this paper aims to provide an understanding of the impact damage resistance as well as damage tolerance of 3D woven composites. Four different 3D woven architectures, orthogonal, angle interlocked, layer-to-layer and modified layer-to-layer structures, have been produced under identical weaving conditions. Two additional structures, Unidirectional (UD) cross-ply and 2D plain weave, have been developed for comparison with 3D weaves. All the four 3D woven laminates have similar order of magnitude of damage area and damage width, but significantly lower than UD and 2D woven laminates. Damage Resistance, calculated as impact energy per unit damage area, has been shown to be significantly higher for 3D woven laminates. Rate of change of CAI strength with impact energy appears to be similar for all four 3D woven laminates as well as UD laminate; 2D woven laminate has higher rate of degradation with respect to impact energy. Undamaged compression strength has been shown to be a function of average tow waviness angle. Additionally, 3D weaves exhibit a critical damage size; below this size there is no appreciable reduction in compression strength. 3D woven laminates have also exhibited a degree of plasticity during compression whereas UD laminates fail instantly. The experimental work reported in this paper forms a foundation for systematic development of computational models for 3D woven architectures for damage tolerance.

  17. An architecture for integrating planar and 3D cQED devices

    NASA Astrophysics Data System (ADS)

    Axline, C.; Reagor, M.; Heeres, R.; Reinhold, P.; Wang, C.; Shain, K.; Pfaff, W.; Chu, Y.; Frunzio, L.; Schoelkopf, R. J.

    2016-07-01

    Numerous loss mechanisms can limit coherence and scalability of planar and 3D-based circuit quantum electrodynamics (cQED) devices, particularly due to their packaging. The low loss and natural isolation of 3D enclosures make them good candidates for coherent scaling. We introduce a coaxial transmission line device architecture with coherence similar to traditional 3D cQED systems. Measurements demonstrate well-controlled external and on-chip couplings, a spectrum absent of cross-talk or spurious modes, and excellent resonator and qubit lifetimes. We integrate a resonator-qubit system in this architecture with a seamless 3D cavity, and separately pattern a qubit, readout resonator, Purcell filter, and high-Q stripline resonator on a single chip. Device coherence and its ease of integration make this a promising tool for complex experiments.

  18. Architectural proteins: regulators of 3D genome organization in cell fate.

    PubMed

    Gómez-Díaz, Elena; Corces, Victor G

    2014-11-01

    The relation between alterations in chromatin structure and changes in gene expression during cell differentiation has served as a paradigm to understand the link between genome organization and function. Yet, the factors involved and the mechanisms by which the 3D organization of the nucleus is established remain poorly understood. The use of Chromosome Conformation-Capture (3C)-based approaches has resulted in a new appreciation of the role of architectural proteins in the establishment of 3D genome organization. Architectural proteins orchestrate higher-order chromatin organization through the establishment of interactions between regulatory elements across multiple spatial scales. The regulation of these proteins, their interaction with DNA, and their co-occurrence in the genome, may be responsible for the plasticity of 3D chromatin architecture that dictates cell and time-specific blueprints of gene expression.

  19. Laser-assisted direct ink writing of planar and 3D metal architectures

    NASA Astrophysics Data System (ADS)

    Skylar-Scott, Mark A.; Gunasekaran, Suman; Lewis, Jennifer A.

    2016-05-01

    The ability to pattern planar and freestanding 3D metallic architectures at the microscale would enable myriad applications, including flexible electronics, displays, sensors, and electrically small antennas. A 3D printing method is introduced that combines direct ink writing with a focused laser that locally anneals printed metallic features “on-the-fly.” To optimize the nozzle-to-laser separation distance, the heat transfer along the printed silver wire is modeled as a function of printing speed, laser intensity, and pulse duration. Laser-assisted direct ink writing is used to pattern highly conductive, ductile metallic interconnects, springs, and freestanding spiral architectures on flexible and rigid substrates.

  20. Laser-assisted direct ink writing of planar and 3D metal architectures.

    PubMed

    Skylar-Scott, Mark A; Gunasekaran, Suman; Lewis, Jennifer A

    2016-05-31

    The ability to pattern planar and freestanding 3D metallic architectures at the microscale would enable myriad applications, including flexible electronics, displays, sensors, and electrically small antennas. A 3D printing method is introduced that combines direct ink writing with a focused laser that locally anneals printed metallic features "on-the-fly." To optimize the nozzle-to-laser separation distance, the heat transfer along the printed silver wire is modeled as a function of printing speed, laser intensity, and pulse duration. Laser-assisted direct ink writing is used to pattern highly conductive, ductile metallic interconnects, springs, and freestanding spiral architectures on flexible and rigid substrates.

  1. Laser-assisted direct ink writing of planar and 3D metal architectures

    PubMed Central

    Skylar-Scott, Mark A.; Gunasekaran, Suman; Lewis, Jennifer A.

    2016-01-01

    The ability to pattern planar and freestanding 3D metallic architectures at the microscale would enable myriad applications, including flexible electronics, displays, sensors, and electrically small antennas. A 3D printing method is introduced that combines direct ink writing with a focused laser that locally anneals printed metallic features “on-the-fly.” To optimize the nozzle-to-laser separation distance, the heat transfer along the printed silver wire is modeled as a function of printing speed, laser intensity, and pulse duration. Laser-assisted direct ink writing is used to pattern highly conductive, ductile metallic interconnects, springs, and freestanding spiral architectures on flexible and rigid substrates. PMID:27185932

  2. Employing lidar to detail vegetation canopy architecture for prediction of aeolian transport

    USGS Publications Warehouse

    Sankey, Joel B.; Law, Darin J.; Breshears, David D.; Munson, Seth M.; Webb, Robert H.

    2013-01-01

    The diverse and fundamental effects that aeolian processes have on the biosphere and geosphere are commonly generated by horizontal sediment transport at the land surface. However, predicting horizontal sediment transport depends on vegetation architecture, which is difficult to quantify in a rapid but accurate manner. We demonstrate an approach to measure vegetation canopy architecture at high resolution using lidar along a gradient of dryland sites ranging from 2% to 73% woody plant canopy cover. Lidar-derived canopy height, distance (gaps) between vegetation elements (e.g., trunks, limbs, leaves), and the distribution of gaps scaled by vegetation height were correlated with canopy cover and highlight potentially improved horizontal dust flux estimation than with cover alone. Employing lidar to estimate detailed vegetation canopy architecture offers promise for improved predictions of horizontal sediment transport across heterogeneous plant assemblages.

  3. Effect of vegetative canopy architecture on vertical transport of massless particles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of large-eddy simulations were performed to examine the effect of canopy architecture on particle dispersion. A heterogeneous canopy geometry was simulated that consists of a set of infinitely repeating vegetation rows. Simulations in which row structure was approximately resolved were comp...

  4. Modeling radiative transfer in tropical rainforest canopies: sensitivity of simulated albedo to canopy architectural and optical parameters.

    PubMed

    Yanagi, Sílvia N M; Costa, Marcos H

    2011-12-01

    This study evaluates the sensitivity of the surface albedo simulated by the Integrated Biosphere Simulator (IBIS) to a set of Amazonian tropical rainforest canopy architectural and optical parameters. The parameters tested in this study are the orientation and reflectance of the leaves of upper and lower canopies in the visible (VIS) and near-infrared (NIR) spectral bands. The results are evaluated against albedo measurements taken above the K34 site at the INPA (Instituto Nacional de Pesquisas da Amazônia) Cuieiras Biological Reserve. The sensitivity analysis indicates a strong response to the upper canopy leaves orientation (χup) and to the reflectivity in the near-infrared spectral band (ρNIR,up), a smaller sensitivity to the reflectivity in the visible spectral band (ρVIS,up) and no sensitivity at all to the lower canopy parameters, which is consistent with the canopy structure. The combination of parameters that minimized the Root Mean Square Error and mean relative error are χup = 0.86, ρVIS,up = 0.062 and ρNIR,up = 0.275. The parameterizations performed resulted in successful simulations of tropical rainforest albedo by IBIS, indicating its potential to simulate the canopy radiative transfer for narrow spectral bands and permitting close comparison with remote sensing products.

  5. Novel Synthesis of 3D Graphene-CNF Electrode Architectures for Supercapacitor Applications

    DTIC Science & Technology

    2013-06-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited NOVEL SYNTHESIS OF...AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE NOVEL SYNTHESIS OF 3D GRAPHENE-CNF ELECTRODE ARCHITECTURES FOR SUPERCAPACITOR...Carbon Nanofibers (CNF). The Reduction Expansion Synthesis (RES) approach was used for both, the exfoliation of Graphitic Oxide to produce Graphene

  6. 3D dendritic gold nanostructures: seeded growth of a multi-generation fractal architecture.

    PubMed

    Pan, Ming; Xing, Shuangxi; Sun, Ting; Zhou, Wenwen; Sindoro, Melinda; Teo, Hui Hian; Yan, Qingyu; Chen, Hongyu

    2010-10-14

    In this report, we focus on the synthetic challenges for nanoscale 3D fractal architectures, namely the multi-generation growth with control in both size uniformity and colloidal stability; by directing the simultaneous growth of Au and polyaniline on Au seeds, fractal nanoparticles can be achieved with a topology distinctively different from those of spheres, cubes or rods.

  7. A parallel 3-D discrete wavelet transform architecture using pipelined lifting scheme approach for video coding

    NASA Astrophysics Data System (ADS)

    Hegde, Ganapathi; Vaya, Pukhraj

    2013-10-01

    This article presents a parallel architecture for 3-D discrete wavelet transform (3-DDWT). The proposed design is based on the 1-D pipelined lifting scheme. The architecture is fully scalable beyond the present coherent Daubechies filter bank (9, 7). This 3-DDWT architecture has advantages such as no group of pictures restriction and reduced memory referencing. It offers low power consumption, low latency and high throughput. The computing technique is based on the concept that lifting scheme minimises the storage requirement. The application specific integrated circuit implementation of the proposed architecture is done by synthesising it using 65 nm Taiwan Semiconductor Manufacturing Company standard cell library. It offers a speed of 486 MHz with a power consumption of 2.56 mW. This architecture is suitable for real-time video compression even with large frame dimensions.

  8. Architectural proteins: Regulators of 3D genome organization in cell fate

    PubMed Central

    Gómez-Díaz, Elena; Corces, Victor G.

    2014-01-01

    The relationship between alterations in chromatin structure and changes in gene expression during cell differentiation has served as a paradigm to understand the link between genome organization and function. Yet the factors involved and the mechanisms by which the three-dimensional organization of the nucleus is established remain poorly understood. The use of Chromosome Conformation-Capture (3C) based approaches has resulted in a new appreciation of the role of architectural proteins in the establishment of 3D genome organization. Architectural proteins orchestrate higher-order chromatin organization through the establishment of interactions between regulatory elements across multiple spatial scales. The regulation of these proteins, their interaction with DNA, and their co occurrence in the genome, may be responsible for the plasticity of 3D-chromatin architecture that dictates cell and time-specific blueprints of gene expression. PMID:25218583

  9. Fabrication of Single, Vertically Aligned Carbon Nanotubes in 3D Nanoscale Architectures

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Megerian, Krikor G.; Von Allmen, Paul A.; Baron, Richard L.

    2010-01-01

    Plasma-enhanced chemical vapor deposition (PECVD) and high-throughput manufacturing techniques for integrating single, aligned carbon nanotubes (CNTs) into novel 3D nanoscale architectures have been developed. First, the PECVD growth technique ensures excellent alignment of the tubes, since the tubes align in the direction of the electric field in the plasma as they are growing. Second, the tubes generated with this technique are all metallic, so their chirality is predetermined, which is important for electronic applications. Third, a wafer-scale manufacturing process was developed that is high-throughput and low-cost, and yet enables the integration of just single, aligned tubes with nanoscale 3D architectures with unprecedented placement accuracy and does not rely on e-beam lithography. Such techniques should lend themselves to the integration of PECVD grown tubes for applications ranging from interconnects, nanoelectromechanical systems (NEMS), sensors, bioprobes, or other 3D electronic devices. Chemically amplified polyhydroxystyrene-resin-based deep UV resists were used in conjunction with excimer laser-based (lambda = 248 nm) step-and-repeat lithography to form Ni catalyst dots = 300 nm in diameter that nucleated single, vertically aligned tubes with high yield using dc PECVD growth. This is the first time such chemically amplified resists have been used, resulting in the nucleation of single, vertically aligned tubes. In addition, novel 3D nanoscale architectures have been created using topdown techniques that integrate single, vertically aligned tubes. These were enabled by implementing techniques that use deep-UV chemically amplified resists for small-feature-size resolution; optical lithography units that allow unprecedented control over layer-to-layer registration; and ICP (inductively coupled plasma) etching techniques that result in near-vertical, high-aspect-ratio, 3D nanoscale architectures, in conjunction with the use of materials that are

  10. Rice Morphogenesis and Plant Architecture: Measurement, Specification and the Reconstruction of Structural Development by 3D Architectural Modelling

    PubMed Central

    WATANABE, TOMONARI; HANAN, JIM S.; ROOM, PETER M.; HASEGAWA, TOSHIHIRO; NAKAGAWA, HIROSHI; TAKAHASHI, WATARU

    2005-01-01

    • Background and Aims The morphogenesis and architecture of a rice plant, Oryza sativa, are critical factors in the yield equation, but they are not well studied because of the lack of appropriate tools for 3D measurement. The architecture of rice plants is characterized by a large number of tillers and leaves. The aims of this study were to specify rice plant architecture and to find appropriate functions to represent the 3D growth across all growth stages. • Methods A japonica type rice, ‘Namaga’, was grown in pots under outdoor conditions. A 3D digitizer was used to measure the rice plant structure at intervals from the young seedling stage to maturity. The L-system formalism was applied to create ‘3D virtual rice’ plants, incorporating models of phenological development and leaf emergence period as a function of temperature and photoperiod, which were used to determine the timing of tiller emergence. • Key Results The relationships between the nodal positions and leaf lengths, leaf angles and tiller angles were analysed and used to determine growth functions for the models. The ‘3D virtual rice’ reproduces the structural development of isolated plants and provides a good estimation of the tillering process, and of the accumulation of leaves. • Conclusions The results indicated that the ‘3D virtual rice’ has a possibility to demonstrate the differences in the structure and development between cultivars and under different environmental conditions. Future work, necessary to reflect both cultivar and environmental effects on the model performance, and to link with physiological models, is proposed in the discussion. PMID:15820987

  11. 3D Sorghum Reconstructions from Depth Images Identify QTL Regulating Shoot Architecture1[OPEN

    PubMed Central

    2016-01-01

    Dissecting the genetic basis of complex traits is aided by frequent and nondestructive measurements. Advances in range imaging technologies enable the rapid acquisition of three-dimensional (3D) data from an imaged scene. A depth camera was used to acquire images of sorghum (Sorghum bicolor), an important grain, forage, and bioenergy crop, at multiple developmental time points from a greenhouse-grown recombinant inbred line population. A semiautomated software pipeline was developed and used to generate segmented, 3D plant reconstructions from the images. Automated measurements made from 3D plant reconstructions identified quantitative trait loci for standard measures of shoot architecture, such as shoot height, leaf angle, and leaf length, and for novel composite traits, such as shoot compactness. The phenotypic variability associated with some of the quantitative trait loci displayed differences in temporal prevalence; for example, alleles closely linked with the sorghum Dwarf3 gene, an auxin transporter and pleiotropic regulator of both leaf inclination angle and shoot height, influence leaf angle prior to an effect on shoot height. Furthermore, variability in composite phenotypes that measure overall shoot architecture, such as shoot compactness, is regulated by loci underlying component phenotypes like leaf angle. As such, depth imaging is an economical and rapid method to acquire shoot architecture phenotypes in agriculturally important plants like sorghum to study the genetic basis of complex traits. PMID:27528244

  12. Damage Accumulation in SiC/SiC Composites with 3D Architectures

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Yun, Hee-Mann; DiCarlo, James A.

    2003-01-01

    The formation and propagation of multiple matrix cracks in relatively dense ceramic matrix composites when subjected to increasing tensile stress is necessary for high strength and tough composites. However, the occurrence of matrix cracks at low stresses may limit the usefulness of some non-oxide composite systems when subjected to oxidizing environments for long times at stresses sufficient to cause matrix cracking. For SiC fiber-reinforced composites with two-dimensional woven architectures and chemically vapor infiltrated (CVI) SiC matrix and melt-infiltrated (MI) Si/SiC matrix composites, the matrix cracking behavior has been fairly well characterized for different fiber-types and woven architectures. It was found that the occurrence, degree, and growth of matrix cracks depends on the material properties of the composite constituents as well as other physical properties of the composite or architecture, e.g., matrix porosity and size of the fiber bundle. In this study, matrix cracking in SiC fiber reinforced, melt-infiltrated SiC composites with a 3D orthogonal architecture was determined for specimens tested in tension at room temperature. Acoustic emission (AE) was used to monitor the matrix cracking activity, which was later confirmed by microscopic examination of specimens that had failed. The determination of the exact location of AE demonstrated that initial cracking occurred in the matrix rich regions when a large z-direction fiber bundle was used. For specimens with large z-direction fiber tows, the earliest matrix cracking could occur at half the stress for standard 2D woven composites with similar constituents. Damage accumulation in 3D architecture composites will be compared to damage accumulation in 2D architecture composites and discussed with respect to modeling composite stress-strain behavior and use of these composites at elevated temperatures.

  13. Retrieval of Vegetation Structural Parameters and 3-D Reconstruction of Forest Canopies Using Ground-Based Echidna® Lidar

    NASA Astrophysics Data System (ADS)

    Strahler, A. H.; Yao, T.; Zhao, F.; Yang, X.; Schaaf, C.; Woodcock, C. E.; Jupp, D. L.; Culvenor, D.; Newnham, G.; Lovell, J.

    2010-12-01

    A ground-based, scanning, near-infrared lidar, the Echidna® validation instrument (EVI), built by CSIRO Australia, retrieves structural parameters of forest stands rapidly and accurately, and by merging multiple scans into a single point cloud, the lidar also provides 3-D stand reconstructions. Echidna lidar technology scans with pulses of light at 1064 nm wavelength and digitizes the full return waveform sufficiently finely to recover and distinguish the differing shapes of return pulses as they are scattered by leaves, trunks, and branches. Deployments in New England in 2007 and the southern Sierra Nevada of California in 2008 tested the ability of the instrument to retrieve mean tree diameter, stem count density (stems/ha), basal area, and above-ground woody biomass from single scans at points beneath the forest canopy. Parameters retrieved from five scans located within six 1-ha stand sites matched manually-measured parameters with values of R2 = 0.94-0.99 in New England and 0.92-0.95 in the Sierra Nevada. Retrieved leaf area index (LAI) values were similar to those of LAI-2000 and hemispherical photography. In New England, an analysis of variance showed that EVI-retrieved values were not significantly different from other methods (power = 0.84 or higher). In the Sierra, R2 = 0.96 and 0.81 for hemispherical photos and LAI-2000, respectively. Foliage profiles, which measure leaf area with canopy height, showed distinctly different shapes for the stands, depending on species composition and age structure. New England stand heights, obtained from foliage profiles, were not significantly different (power = 0.91) from RH100 values observed by LVIS in 2003. Three-dimensional stand reconstruction identifies one or more “hits” along the pulse path coupled with the peak return of each hit expressed as apparent reflectance. Returns are classified as trunk, leaf, or ground returns based on the shape of the return pulse and its location. These data provide a point

  14. Foldectures: 3D Molecular Architectures from Self-Assembly of Peptide Foldamers.

    PubMed

    Yoo, Sung Hyun; Lee, Hee-Seung

    2017-02-13

    The wide range of fascinating supramolecular architectures found in nature, from DNA double helices to giant protein shells, inspires researchers to mimic the diverse shapes and functions of natural systems. Thus, a variety of artificial molecular platforms have been developed by assembling DNA-, peptide-, and protein-based building blocks for medicinal and biological applications. There has also been a significant interest in the research of non-natural oligomers (i.e., foldamers) that fold into well-defined secondary structures analogous to those found in proteins, because the assemblies of foldamers are expected not only to form biomimetic supramolecular architectures that resemble those of nature but also to display unique functions and unprecedented topologies at the same time due to their different folding propensities from those of natural building blocks. Foldamer-based supramolecular architectures have been reported in the form of nanofibers, nanochannels, nanosheets, and finite three-dimensional (3D) shapes. We have developed a new class of crystalline peptidic materials termed "foldectures" (a compound of foldamer and architecture) with unprecedented topological complexity derived from the rapid and nonequilibrium aqueous phase self-assembly of foldamers. In this Account, we discuss the morphological features, molecular packing structures, physical properties, and potential applications of foldectures. Foldectures exhibit well-defined, microscale, homogeneous, and finite structures with unique morphologies such as windmill, tooth, and trigonal bipyramid shapes. The symmetry elements of the morphologies vary with the foldamer building blocks and are retained upon surfactant-assisted shape evolution. Structural characterization by powder X-ray diffraction (PXRD) revealed the molecular packing structures, suggesting how the foldamer building blocks assembled in the 3D structure. The analysis by PXRD showed that intermolecular hydrogen bonding connects

  15. Effects of extracellular fiber architecture on cell membrane shear stress in a 3D fibrous matrix.

    PubMed

    Pedersen, John A; Boschetti, Federica; Swartz, Melody A

    2007-01-01

    Interstitial fluid flow has been shown to affect the organization and behavior of cells in 3D environments in vivo and in vitro, yet the forces driving such responses are not clear. Due to the complex architecture of the extracellular matrix (ECM) and the difficulty of measuring fluid flow near cells embedded in it, the levels of shear stress experienced by cells in this environment are typically estimated using bulk-averaged matrix parameters such as hydraulic permeability. While this is useful for estimating average stresses, it cannot yield insight into how local matrix fiber architecture-which is cell-controlled in the immediate pericellular environment-affects the local stresses imposed on the cell surface. To address this, we used computational fluid dynamics to study flow through an idealized mesh constructed of a cubic lattice of fibers simulating a typical in vitro collagen gel. We found that, in such high porosity matrices, the fibers strongly affect the flow fields near the cell, with peak shear stresses up to five times higher than those predicted by the Brinkman equation. We also found that minor remodeling of the fibers near the cell surface had major effects on the shear stress profile on the cell. These findings demonstrate the importance of fiber architecture to the fluid forces on a cell embedded in a 3D matrix, and also show how small modifications in the local ECM can lead to large changes in the mechanical environment of the cell.

  16. Image-Based Modeling Techniques for Architectural Heritage 3d Digitalization: Limits and Potentialities

    NASA Astrophysics Data System (ADS)

    Santagati, C.; Inzerillo, L.; Di Paola, F.

    2013-07-01

    3D reconstruction from images has undergone a revolution in the last few years. Computer vision techniques use photographs from data set collection to rapidly build detailed 3D models. The simultaneous applications of different algorithms (MVS), the different techniques of image matching, feature extracting and mesh optimization are inside an active field of research in computer vision. The results are promising: the obtained models are beginning to challenge the precision of laser-based reconstructions. Among all the possibilities we can mainly distinguish desktop and web-based packages. Those last ones offer the opportunity to exploit the power of cloud computing in order to carry out a semi-automatic data processing, thus allowing the user to fulfill other tasks on its computer; whereas desktop systems employ too much processing time and hard heavy approaches. Computer vision researchers have explored many applications to verify the visual accuracy of 3D model but the approaches to verify metric accuracy are few and no one is on Autodesk 123D Catch applied on Architectural Heritage Documentation. Our approach to this challenging problem is to compare the 3Dmodels by Autodesk 123D Catch and 3D models by terrestrial LIDAR considering different object size, from the detail (capitals, moldings, bases) to large scale buildings for practitioner purpose.

  17. Efficient 3-D medical image registration using a distributed blackboard architecture.

    PubMed

    Tait, Roger J; Schaefer, Gerald; Hopgood, Adrian A; Zhu, Shao Ying

    2006-01-01

    A major drawback of 3-D medical image registration techniques is the performance bottleneck associated with re-sampling and similarity computation. Such bottlenecks limit registration applications in clinical situations where fast execution times are required and become particularly apparent in the case of registering 3-D data sets. In this paper a novel framework for high performance intensity-based volume registration is presented. Geometric alignment of both reference and sensed volume sets is achieved through a combination of scaling, translation, and rotation. Crucially, resampling and similarity computation is performed intelligently by a set of knowledge sources. The knowledge sources work in parallel and communicate with each other by means of a distributed blackboard architecture. Partitioning of the blackboard is used to balance communication and processing workloads. Large-scale registrations with substantial speedups, when compared with a conventional implementation, have been demonstrated.

  18. From Tls to Hbim. High Quality Semantically-Aware 3d Modeling of Complex Architecture

    NASA Astrophysics Data System (ADS)

    Quattrini, R.; Malinverni, E. S.; Clini, P.; Nespeca, R.; Orlietti, E.

    2015-02-01

    In order to improve the framework for 3D modeling, a great challenge is to obtain the suitability of Building Information Model (BIM) platform for historical architecture. A specific challenge in HBIM is to guarantee appropriateness of geometrical accuracy. The present work demonstrates the feasibility of a whole HBIM approach for complex architectural shapes, starting from TLS point clouds. A novelty of our method is to work in a 3D environment throughout the process and to develop semantics during the construction phase. This last feature of HBIM was analyzed in the present work verifying the studied ontologies, enabling the data enrichment of the model with non-geometrical information, such as historical notes, decay or deformation evidence, decorative elements etc. The case study is the Church of Santa Maria at Portonovo, an abbey from the Romanesque period. Irregular or complex historical architecture, such as Romanesque, needs the construction of shared libraries starting from the survey of its already existing elements. This is another key aspect in delivering Building Information Modeling standards. In particular, we focus on the quality assessment of the obtained model, using an open-source sw and the point cloud as reference. The proposed work shows how it is possible to develop a high quality 3D model semantic-aware, capable of connecting geometrical-historical survey with descriptive thematic databases. In this way, a centralized HBIM will serve as comprehensive dataset of information about all disciplines, particularly for restoration and conservation. Moreover, the geometric accuracy will ensure also reliable visualization outputs.

  19. 3D imaging of telomeres and nuclear architecture: An emerging tool of 3D nano-morphology-based diagnosis.

    PubMed

    Knecht, Hans; Mai, Sabine

    2011-04-01

    Patient samples are evaluated by experienced pathologists whose diagnosis guides treating physicians. Pathological diagnoses are complex and often assisted by the application of specific tissue markers. However, cases still exist where pathologists cannot distinguish between closely related entities or determine the aggressiveness of the disease they identify under the microscope. This is due to the absence of reliable markers that define diagnostic subgroups in several cancers. Three-dimensional (3D) imaging of nuclear telomere signatures is emerging as a new tool that may change this situation offering new opportunities to the patients. This article will review current and future avenues in the assessment of diagnostic patient samples.

  20. Fluorescence fluctuation microscopy to reveal 3D architecture and function in the cell nucleus.

    PubMed

    Lenser, Thorsten; Weisshart, Klaus; Ulbricht, Tobias; Klement, Karolin; Hemmerich, Peter

    2010-01-01

    The three-dimensional (3D) architecture of the cell nucleus is determined not only by the presence of subnuclear domains, such as the nuclear envelope, chromosome territories, and nuclear bodies, but also by smaller domains which form in response to specific functions, such as RNA transcription, DNA replication, and DNA repair. Since both stable and dynamic structures contribute to nuclear morphology, it is important to study the biophysical principles of the formation of macromolecular assemblies within the nucleus. For this purpose, a variety of fluorescence fluctuation microscopy techniques can be applied. Here, we summarize our current knowledge on the 3D architecture of the mammalian cell nucleus and describe in detail how the assembly of functional nuclear protein complexes can be analyzed in living cells using fluorescence bleaching techniques, fluorescence correlation spectroscopy, raster image correlation spectroscopy, and mathematical modeling. In conclusion, the application of all these techniques in combination is a powerful tool to assess the full spectrum of nuclear protein dynamics and to understand the biophysical principles underlying nuclear structure and function.

  1. Pt-decorated 3D architectures built from graphene and graphitic carbon nitride nanosheets as efficient methanol oxidation catalysts.

    PubMed

    Huang, Huajie; Yang, Shubin; Vajtai, Robert; Wang, Xin; Ajayan, Pulickel M

    2014-08-13

    Homogeneous dispersion of ultrafine Pt nanoparticles on 3D architectures constructed of graphene and exfoliated graphitic carbon nitride results in hybrids with 3D porous structures, large surface area, high nitrogen content, and good electrical conductivity. This leads to excellent electrocatalytic activity, unusually high poison tolerance, and reliable stability for methanol oxidation, making them of interest as catalysts in direct methanol fuel cells.

  2. Improving and validating 3D models for the leaf energy balance in canopy-scale problems with complex geometry

    NASA Astrophysics Data System (ADS)

    Bailey, B.; Stoll, R., II; Miller, N. E.; Pardyjak, E.; Mahaffee, W.

    2014-12-01

    Plants cover the majority of Earth's land surface, and thus play a critical role in the surface energy balance. Within individual plant communities, the leaf energy balance is a fundamental component of most biophysical processes. Absorbed radiation drives the energy balance and provides the means by which plants produce food. Available energy is partitioned into sensible and latent heat fluxes to determine surface temperature, which strongly influences rates of metabolic activity and growth. The energy balance of an individual leaf is coupled with other leaves in the community through longwave radiation emission and advection through the air. This complex coupling can make scaling models from leaves to whole-canopies difficult, specifically in canopies with complex, heterogeneous geometries. We present a new three-dimensional canopy model that simultaneously resolves sub-tree to whole-canopy scales. The model provides spatially explicit predictions of net radiation exchange, boundary-layer and stomatal conductances, evapotranspiration rates, and ultimately leaf surface temperature. The radiation model includes complex physics such as anisotropic emission and scattering. Radiation calculations are accelerated by leveraging graphics processing unit (GPU) technology, which allows canopy-scale problems to be performed on a standard desktop workstation. Since validating the three-dimensional distribution of leaf temperature can be extremely challenging, we used several independent measurement techniques to quantify errors in measured and modeled values. When compared with measured leaf temperatures, the model gave a mean error of about 2°C, which was close to the estimated measurement uncertainty.

  3. DANTSYS/MPI: a system for 3-D deterministic transport on parallel architectures

    SciTech Connect

    Baker, R.S.; Alcouffe, R.E.

    1996-12-31

    Since 1994, we have been using a data parallel form of our deterministic transport code DANTSYS to perform time-independent fixed source and eigenvalue calculations on the CM-200`s at Los Alamos National Laboratory (LANL). Parallelization of the transport sweep is obtained by using a 2-D spatial decomposition which retains the ability to invert the source iteration equation in a single iteration (i.e., the diagonal plane sweep). We have now implemented a message passing version of DANTSYS, referred to as DANTSYS/MPI, on the Cray T3D installed at Los Alamos in 1995. By taking advantage of the SPMD (Single Program, Multiple Data) architecture of the Cray T3D, as well as its low latency communications network, we have managed to achieve grind times (time to solve a single cell in phase space) of less than 10 nanoseconds on the 512 PE (Processing Element) T3D, as opposed to typical grind times of 150-200 nanoseconds on a 2048 PE CM-200, or 300-400 nanoseconds on a single PE of a Cray Y-MP. In addition, we have also parallelized the Diffusion Synthetic Accelerator (DSA) equations which are used to accelerate the convergence of the transport equation. DANTSYS/MPI currently runs on traditional Cray PVP`s and the Cray T3D, and it`s computational kernel (Sweep3D) has been ported to and tested on an array of SGI SMP`s (Symmetric Memory Processors), a network of IBM 590 workstations, an IBM SP2, and the Intel TFLOPs machine at Sandia National Laboratory. This paper describes the implementation of DANTSYS/MPI on the Cray T3D, and presents a simple performance model which accurately predicts the grind time as a function of the number of PE`s and problem size, or scalability. This paper also describes the parallel implementation and performance of the elliptic solver used in DANTSYS/MPI for solving the synthetic acceleration equations.

  4. An unusual 3D interdigitated architecture assembled from Keggin polyoxometalates and dinuclear copper(II) complexes

    SciTech Connect

    Pang, Haijun; Yang, Ming; Kang, Lu; Ma, Huiyuan; Liu, Bo; Li, Shaobin; Liu, Heng

    2013-02-15

    A novel organic-inorganic hybrid compound, [Cu{sub 2}(bipy){sub 3}({mu}{sub 1}-H{sub 2}O){sub 2}({mu}{sub 2}-H{sub 2}O)({mu}{sub 2}-OH)(H{sub 2}BW{sub 12}O{sub 40})]{center_dot}4 H{sub 2}O (1) (bipy=4,4 Prime -bipy), has been synthesized in hydrothermal condition and characterized by elemental analysis, IR spectrum, TG analysis and single-crystal X-ray diffraction. Compound 1 possesses poly-pendant layered motifs composed of 12-tungstoborates and dinuclear copper(II) complexes, in which the mono-coordinated bipy molecules are orderly appended to both sides of the layer, respectively. Adjacent layers mutually engage in a zipper-like pattern to result in a novel 3D interdigitated architecture. The variable-temperature magnetic susceptibility of 1 showed that there existed weak antiferromagnetic interaction in 1. Toward the reduction of hydrogen peroxide, 1 has good electrocatalytic activity and remarkable stability. - A new compound has been obtained, which represents the first interdigitated architecture assembled by POMs and dinuclear copper(II) complexes. Highlights: Black-Right-Pointing-Pointer The first example of interdigitated architecture assembled by POMs and dinuclear copper(II) complexes is observed. Black-Right-Pointing-Pointer A zipper-like pattern is observed in the structure. Black-Right-Pointing-Pointer The IR, TG, XRPD, magnetism and electrochemical property of the title compound were studied.

  5. Architecture of web services in the enhancement of real-time 3D video virtualization in cloud environment

    NASA Astrophysics Data System (ADS)

    Bada, Adedayo; Wang, Qi; Alcaraz-Calero, Jose M.; Grecos, Christos

    2016-04-01

    This paper proposes a new approach to improving the application of 3D video rendering and streaming by jointly exploring and optimizing both cloud-based virtualization and web-based delivery. The proposed web service architecture firstly establishes a software virtualization layer based on QEMU (Quick Emulator), an open-source virtualization software that has been able to virtualize system components except for 3D rendering, which is still in its infancy. The architecture then explores the cloud environment to boost the speed of the rendering at the QEMU software virtualization layer. The capabilities and inherent limitations of Virgil 3D, which is one of the most advanced 3D virtual Graphics Processing Unit (GPU) available, are analyzed through benchmarking experiments and integrated into the architecture to further speed up the rendering. Experimental results are reported and analyzed to demonstrate the benefits of the proposed approach.

  6. High-Performance 3D Compressive Sensing MRI Reconstruction Using Many-Core Architectures

    PubMed Central

    Kim, Daehyun; Trzasko, Joshua; Smelyanskiy, Mikhail; Haider, Clifton; Dubey, Pradeep; Manduca, Armando

    2011-01-01

    Compressive sensing (CS) describes how sparse signals can be accurately reconstructed from many fewer samples than required by the Nyquist criterion. Since MRI scan duration is proportional to the number of acquired samples, CS has been gaining significant attention in MRI. However, the computationally intensive nature of CS reconstructions has precluded their use in routine clinical practice. In this work, we investigate how different throughput-oriented architectures can benefit one CS algorithm and what levels of acceleration are feasible on different modern platforms. We demonstrate that a CUDA-based code running on an NVIDIA Tesla C2050 GPU can reconstruct a 256 × 160 × 80 volume from an 8-channel acquisition in 19 seconds, which is in itself a significant improvement over the state of the art. We then show that Intel's Knights Ferry can perform the same 3D MRI reconstruction in only 12 seconds, bringing CS methods even closer to clinical viability. PMID:21922017

  7. Copper pillar and memory characteristics using Al2O3 switching material for 3D architecture

    PubMed Central

    2014-01-01

    A novel idea by using copper (Cu) pillar is proposed in this study, which can replace the through-silicon-vias (TSV) technique in future three-dimensional (3D) architecture. The Cu pillar formation under external bias in an Al/Cu/Al2O3/TiN structure is simple and low cost. The Cu pillar is formed in the Al2O3 film under a small operation voltage of <5 V and a high-current-carrying conductor of >70 mA is obtained. More than 100 devices have shown tight distribution of the Cu pillars in Al2O3 film for high current compliance (CC) of 70 mA. Robust read pulse endurances of >106 cycles are observed with read voltages of −1, 1, and 4 V. However, read endurance is failed with read voltages of −1.5, −2, and −4 V. By decreasing negative read voltage, the read endurance is getting worst, which is owing to ruptured Cu pillar. Surface roughness and TiO x N y on TiN bottom electrode are observed by atomic force microscope and transmission electron microscope, respectively. The Al/Cu/Al2O3/TiN memory device shows good bipolar resistive switching behavior at a CC of 500 μA under small operating voltage of ±1 V and good data retention characteristics of >103 s with acceptable resistance ratio of >10 is also obtained. This suggests that high-current operation will help to form Cu pillar and lower-current operation will have bipolar resistive switching memory. Therefore, this new Cu/Al2O3/TiN structure will be benefited for 3D architecture in the future. PMID:25136279

  8. Vertically aligned carbon nanofiber architecture as a multifunctional 3-D neural electrical interface.

    PubMed

    Nguyen-Vu, T D Barbara; Chen, Hua; Cassell, Alan M; Andrews, Russell J; Meyyappan, M; Li, Jun

    2007-06-01

    Developing biomaterial constructs that closely mimic the natural tissue microenvironment with its complex chemical and physical cues is essential for improving the function and reliability of implantable devices, especially those that require direct neural-electrical interfaces. Here we demonstrate that free-standing vertically aligned carbon nanofiber (VACNF) arrays can be used as a multifunctional 3-D brush-like nanoengineered matrix that interpenetrates the neuronal network of PC12 cells. We found that PC12 neuron cells cultured on VACNF substrates can form extended neural network upon proper chemical and biochemical modifications. The soft 3-D VACNF architecture provides a new platform to fine-tune the topographical, mechanical, chemical, and electrical cues at subcellular nanoscale. This new biomaterial platform can be used for both fundamental studies of material-cell interactions and the development of chronically stable implantable neural devices. Micropatterned multiplex VACNF arrays can be selectively controlled by electrical and electrochemical methods to provide localized stimulation with extraordinary spatiotemporal resolution. Further development of this technology may potentially result in a highly multiplex closed-loop system with multifunctions for neuromodulation and neuroprostheses.

  9. Predicting the Electronic Properties of 3D, Million-atom Semiconductor nanostructure Architectures

    SciTech Connect

    Jack Dongarra; Stanimire Tomov

    2012-03-15

    This final report describes the work done by Jack Dongarra (University Distinguished Professor) and Stanimire Tomov (Research Scientist) related to the DOE project entitled Predicting the Electronic Properties of 3D, Million-Atom Semiconductor Nanostructure Architectures. In this project we addressed the mathematical methodology required to calculate the electronic and transport properties of large nanostructures with comparable accuracy and reliability to that of current ab initio methods. This capability is critical for further developing the field, yet it is missing in all the existing computational methods. Additionally, quantitative comparisons with experiments are often needed for a qualitative understanding of the physics, and for guiding the design of new nanostructures. We focused on the mathematical challenges of the project, in particular on solvers and preconditioners for large scale eigenvalue problems that occur in the computation of electronic states of large nanosystems. Usually, the states of interest lie in the interior of the spectrum and their computation poses great difficulties for existing algorithms. The electronic properties of a semiconductor nanostructure architecture can be predicted/determined by computing its band structure. Of particular importance are the 'band edge states' (electronic states near the energy gap) which can be computed from a properly defined interior eigenvalue problem. Our primary mathematics and computational challenge here has been to develop an efficient solution methodology for finding these interior states for very large systems. Our work has produced excellent results in terms of developing both new and extending current state-of-the-art techniques.

  10. Mechanical properties of aligned carbon nanotube architectures: origin from 3D morphology

    NASA Astrophysics Data System (ADS)

    Stein, Itai Y.; Wardle, Brian L.

    The scale-dependent properties of carbon nanotubes (CNTs) continue to motivate their study for next-generation material architectures. While recent work has shown that aligned CNT arrays can be made on the cm-scale, such systems exhibit properties that are orders of magnitude below those predicted by existing theories. This deviation mainly stems from the rudimentary assumptions made about the CNT morphology: CNTs are either devoid of local curvature (i.e. waviness) or have waviness that is easy to model, e.g. using helices and sine waves. Here, we use a simulation framework comprised of 105 CNTs with realistic 3D stochastic morphologies to elucidate the role morphology plays in the orders of magnitude over-prediction of the effective stiffness of aligned CNT structures. Application to aligned CNT polymer and carbon matrix nanocomposites reveals that the elimination of the torsion deformation mechanism, which dominates the effective compliance of CNT arrays, through CNT interactions with the matrix is responsible for the stiffness enhancement in CNT nanocomposites. This works paves the way to more accurate property prediction of CNT nanocomposites, and further work to predict the transport properties of aligned CNT architectures is planned.

  11. Relevance of 2D radiographic texture analysis for the assessment of 3D bone micro-architecture

    SciTech Connect

    Apostol, Lian; Boudousq, Vincent; Basset, Oliver; Odet, Christophe; Yot, Sophie; Tabary, Joachim; Dinten, Jean-Marc; Boller, Elodie; Kotzki, Pierre-Olivier; Peyrin, Francoise

    2006-09-15

    Although the diagnosis of osteoporosis is mainly based on dual x-ray absorptiometry, it has been shown that trabecular bone micro-architecture is also an important factor in regard to fracture risk. In vivo, techniques based on high-resolution x-ray radiography associated to texture analysis have been proposed to investigate bone micro-architecture, but their relevance for giving pertinent 3D information is unclear. Thirty-three calcaneus and femoral neck bone samples including the cortical shells (diameter: 14 mm, height: 30-40 mm) were imaged using 3D-synchrotron x-ray micro-CT at the ESRF. The 3D reconstructed images with a cubic voxel size of 15 {mu}m were further used for two purposes: (1) quantification of three-dimensional trabecular bone micro-architecture (2) simulation of realistic x-ray radiographs under different acquisition conditions. The simulated x-ray radiographs were then analyzed using a large variety of texture analysis methods (co-occurrence, spectral density, fractal, morphology, etc.). The range of micro-architecture parameters was in agreement with previous studies and rather large, suggesting that the population was representative. More than 350 texture parameters were tested. A small number of them were selected based on their correlation to micro-architectural morphometric parameters. Using this subset of texture parameters, multiple regression allowed one to predict up to 93% of the variance of micro-architecture parameters using three texture features. 2D texture features predicting 3D micro-architecture parameters other than BV/TV were identified. The methodology proposed for evaluating the relationships between 3D micro-architecture and 2D texture parameters may also be used for optimizing the conditions for radiographic imaging. Further work will include the application of the method to physical radiographs. In the future, this approach could be used in combination with DXA to refine osteoporosis diagnosis.

  12. Dryland Wheat Domestication Changed the Development of Aboveground Architecture for a Well-Structured Canopy

    PubMed Central

    Li, Pu-Fang; Cheng, Zheng-Guo; Ma, Bao-Luo; Palta, Jairo A.; Kong, Hai-Yan; Mo, Fei; Wang, Jian-Yong; Zhu, Ying; Lv, Guang-Chao; Batool, Asfa; Bai, Xue; Li, Feng-Min; Xiong, You-Cai

    2014-01-01

    We examined three different-ploidy wheat species to elucidate the development of aboveground architecture and its domesticated mechanism under environment-controlled field conditions. Architecture parameters including leaf, stem, spike and canopy morphology were measured together with biomass allocation, leaf net photosynthetic rate and instantaneous water use efficiency (WUEi). Canopy biomass density was decreased from diploid to tetraploid wheat, but increased to maximum in hexaploid wheat. Population yield in hexaploid wheat was higher than in diploid wheat, but the population fitness and individual competition ability was higher in diploid wheats. Plant architecture was modified from a compact type in diploid wheats to an incompact type in tetraploid wheats, and then to a more compact type of hexaploid wheats. Biomass accumulation, population yield, harvest index and the seed to leaf ratio increased from diploid to tetraploid and hexaploid, associated with heavier specific internode weight and greater canopy biomass density in hexaploid and tetraploid than in diploid wheat. Leaf photosynthetic rate and WUEi were decreased from diploid to tetraploid and increased from tetraploid to hexaploid due to more compact leaf type in hexaploid and diploid than in tetraploid. Grain yield formation and WUEi were closely associated with spatial stance of leaves and stems. We conclude that the ideotype of dryland wheats could be based on spatial reconstruction of leaf type and further exertion of leaf photosynthetic rate. PMID:25181037

  13. A procedure for the evaluation of 2D radiographic texture analysis to assess 3D bone micro-architecture

    NASA Astrophysics Data System (ADS)

    Apostol, Lian; Peyrin, Francoise; Yot, Sophie; Basset, Olivier; Odet, Christophe; Tabary, Joachim; Dinten, Jean-Marc; Boller, Elodie; Boudousq, Vincent; Kotzki, Pierre-Olivier

    2004-05-01

    Although the diagnosis of osteoporosis is mainly based on Dual X-ray Absorptiometry, it has been shown that trabecular bone micro-architecture is also an important factor in regards of fracture risk, which can be efficiently assessed in vitro using three-dimensional x-ray microtomography (μCT). In vivo, techniques based on high-resolution s-ray radiography associated to texture analysis have been proposed to investigate bone micro-architecture, but their relevance for giving pertinent 3D information is unclear. The purpose of this work was to develop a method for evaluating the relationships betweeen 3D micro-architecture and 2D texture parameters, and optimizing the conditions for radiographic imaging. Bone sample images taken from cortical to cortical were acquired using 3D-synchrotron x-ray μCT at the ESRF. The 3D digital imagees were further used for two purposes: 1) quantification of three-dimensional bone micro-architecture, 2) simulation of realistic x-ray radiographs under different acquisition conditions. Texture analysis was then applied to these 2D radiographs using a large variety of methods (co-occurence, spectrum, fractal...). First results of the statistical analysis between 2D and 3D parameters allowed identfying the most relevant 2D texture parameters.

  14. 3D reconstruction and dynamic modeling of root architecture in situ and its application to crop phosphorus research.

    PubMed

    Fang, Suqin; Yan, Xiaolong; Liao, Hong

    2009-12-01

    Root architecture plays important roles in plant water and nutrient acquisition. However, accurate modeling of the root system that provides a realistic representation of roots in the soil is limited by a lack of appropriate tools for the non-destructive and precise measurement of the root system architecture in situ. Here we describe a root growth system in which the roots grow in a solid gel matrix that was used to reconstruct 3D root architecture in situ and dynamically simulate its changes under various nutrient conditions with a high degree of precision. A 3D laser scanner combined with a transparent gel-based growth system was used to capture 3D images of roots. The root system skeleton was extracted using a skeleton extraction method based on the Hough transformation, and mesh modeling using Ball-B spline was employed. We successfully used this system to reconstruct rice and soybean root architectures and determine their changes under various phosphorus (P) supply conditions. Our results showed that the 3D root architecture parameters that were dynamically calculated based on the skeletonization and simulation of root systems were significantly correlated with the biomass and P content of rice and soybean based on both the simulation system and previous reports. Therefore, this approach provides a novel technique for the study of crop root growth and its adaptive changes to various environmental conditions.

  15. Modelling the effect of wheat canopy architecture as affected by sowing density on Septoria tritici epidemics using a coupled epidemic–virtual plant model

    PubMed Central

    Baccar, Rim; Fournier, Christian; Dornbusch, Tino; Andrieu, Bruno; Gouache, David; Robert, Corinne

    2011-01-01

    Background and Aims The relationship between Septoria tritici, a splash-dispersed disease, and its host is complex because of the interactions between the dynamic plant architecture and the vertical progress of the disease. The aim of this study was to test the capacity of a coupled virtual wheat–Septoria tritici epidemic model (Septo3D) to simulate disease progress on the different leaf layers for contrasted sowing density treatments. Methods A field experiment was performed with winter wheat ‘Soissons’ grown at three contrasted densities. Plant architecture was characterized to parameterize the wheat model, and disease dynamic was monitored to compare with simulations. Three simulation scenarios, differing in the degree of detail with which plant variability of development was represented, were defined. Key Results Despite architectural differences between density treatments, few differences were found in disease progress; only the lower-density treatment resulted in a slightly higher rate of lesion development. Model predictions were consistent with field measurements but did not reproduce the higher rate of lesion progress in the low density. The canopy reconstruction scenario in which inter-plant variability was taken into account yielded the best agreement between measured and simulated epidemics. Simulations performed with the canopy represented by a population of the same average plant deviated strongly from the observations. Conclusions It was possible to compare the predicted and measured epidemics on detailed variables, supporting the hypothesis that the approach is able to provide new insights into the processes and plant traits that contribute to the epidemics. On the other hand, the complex and dynamic responses to sowing density made it difficult to test the model precisely and to disentangle the various aspects involved. This could be overcome by comparing more contrasted and/or simpler canopy architectures such as those resulting from quasi

  16. The Use of 3D Telomere FISH for the Characterization of the Nuclear Architecture in EBV-Positive Hodgkin's Lymphoma.

    PubMed

    Knecht, Hans; Mai, Sabine

    2017-01-01

    The 3D nuclear architecture is closely related to cellular functions and chromosomes are organized in distinct territories. Quantitative 3D telomere FISH analysis (3D Q-FISH) and 3D super-resolution imaging (3D-SIM) at a resolution up to 80 nm as well as the recently developed combined quantitative 3D TRF2-telomere immune FISH technique (3D TRF2/Telo-Q-FISH) have substantially contributed to elucidate molecular pathogenic mechanisms of hematological diseases. Here we report the methods we applied to uncover major molecular steps involved in the pathogenesis of EBV-associated Hodgkin's lymphoma. These methods allowed us to identify the EBV-encoded oncoprotein LMP1 as a key element in the formation of Hodgkin (H-cell) and multinucleated Reed-Sternberg cells (RS-cell), the diagnostic tumor cell of classical Hodgkin's lymphoma (cHL). LMP1 mediates multinuclearity through downregulation of shelterin proteins, in particular telomere repeat binding factor 2 (TRF2).

  17. 3D modeling of architectural objects from video data obtained with the fixed focal length lens geometry

    NASA Astrophysics Data System (ADS)

    Deliś, Paulina; Kędzierski, Michał; Fryśkowska, Anna; Wilińska, Michalina

    2013-12-01

    The article describes the process of creating 3D models of architectural objects on the basis of video images, which had been acquired by a Sony NEX-VG10E fixed focal length video camera. It was assumed, that based on video and Terrestrial Laser Scanning data it is possible to develop 3D models of architectural objects. The acquisition of video data was preceded by the calibration of video camera. The process of creating 3D models from video data involves the following steps: video frames selection for the orientation process, orientation of video frames using points with known coordinates from Terrestrial Laser Scanning (TLS), generating a TIN model using automatic matching methods. The above objects have been measured with an impulse laser scanner, Leica ScanStation 2. Created 3D models of architectural objects were compared with 3D models of the same objects for which the self-calibration bundle adjustment process was performed. In this order a PhotoModeler Software was used. In order to assess the accuracy of the developed 3D models of architectural objects, points with known coordinates from Terrestrial Laser Scanning were used. To assess the accuracy a shortest distance method was used. Analysis of the accuracy showed that 3D models generated from video images differ by about 0.06 ÷ 0.13 m compared to TLS data. Artykuł zawiera opis procesu opracowania modeli 3D obiektów architektonicznych na podstawie obrazów wideo pozyskanych kamerą wideo Sony NEX-VG10E ze stałoogniskowym obiektywem. Przyjęto założenie, że na podstawie danych wideo i danych z naziemnego skaningu laserowego (NSL) możliwe jest opracowanie modeli 3D obiektów architektonicznych. Pozyskanie danych wideo zostało poprzedzone kalibracją kamery wideo. Model matematyczny kamery był oparty na rzucie perspektywicznym. Proces opracowania modeli 3D na podstawie danych wideo składał się z następujących etapów: wybór klatek wideo do procesu orientacji, orientacja klatek wideo na

  18. In-body tissue-engineered aortic valve (Biovalve type VII) architecture based on 3D printer molding.

    PubMed

    Nakayama, Yasuhide; Takewa, Yoshiaki; Sumikura, Hirohito; Yamanami, Masashi; Matsui, Yuichi; Oie, Tomonori; Kishimoto, Yuichiro; Arakawa, Mamoru; Ohmuma, Kentaro; Tajikawa, Tsutomu; Kanda, Keiichi; Tatsumi, Eisuke

    2015-01-01

    In-body tissue architecture--a novel and practical regeneration medicine technology--can be used to prepare a completely autologous heart valve, based on the shape of a mold. In this study, a three-dimensional (3D) printer was used to produce the molds. A 3D printer can easily reproduce the 3D-shape and size of native heart valves within several processing hours. For a tri-leaflet, valved conduit with a sinus of Valsalva (Biovalve type VII), the mold was assembled using two conduit parts and three sinus parts produced by the 3D printer. Biovalves were generated from completely autologous connective tissue, containing collagen and fibroblasts, within 2 months following the subcutaneous embedding of the molds (success rate, 27/30). In vitro evaluation, using a pulsatile circulation circuit, showed excellent valvular function with a durability of at least 10 days. Interposed between two expanded polytetrafluoroethylene grafts, the Biovalves (N = 3) were implanted in goats through an apico-aortic bypass procedure. Postoperative echocardiography showed smooth movement of the leaflets with minimal regurgitation under systemic circulation. After 1 month of implantation, smooth white leaflets were observed with minimal thrombus formation. Functional, autologous, 3D-shaped heart valves with clinical application potential were formed following in-body embedding of specially designed molds that were created within several hours by 3D printer.

  19. Embedded 3D Photopatterning of Hydrogels with Diverse and Complex Architectures for Tissue Engineering and Disease Models

    PubMed Central

    Davey, Shruti Krishna; Aung, Aereas; Agrawal, Gaurav; Lim, Han Liang; Kar, Mrityunjoy

    2015-01-01

    Techniques that can create three-dimensional (3D) structures to provide architectural support for cells have a significant impact in generating complex and hierarchically organized tissues/organs. In recent times, a number of technologies, including photopatterning, have been developed to create such intricate 3D structures. In this study, we describe an easy-to-implement photopatterning approach, involving a conventional fluorescent microscope and a simple photomask, to encapsulate cells within spatially defined 3D structures. We have demonstrated the ease and the versatility of this approach by creating simple to complex as well as multilayered structures. We have extended this photopatterning approach to incorporate and spatially organize multiple cell types, thereby establishing coculture systems. Such cost-effective and easy-to-use approaches can greatly advance tissue engineering strategies. PMID:26154197

  20. Study on Information Management for the Conservation of Traditional Chinese Architectural Heritage - 3d Modelling and Metadata Representation

    NASA Astrophysics Data System (ADS)

    Yen, Y. N.; Weng, K. H.; Huang, H. Y.

    2013-07-01

    After over 30 years of practise and development, Taiwan's architectural conservation field is moving rapidly into digitalization and its applications. Compared to modern buildings, traditional Chinese architecture has considerably more complex elements and forms. To document and digitize these unique heritages in their conservation lifecycle is a new and important issue. This article takes the caisson ceiling of the Taipei Confucius Temple, octagonal with 333 elements in 8 types, as a case study for digitization practise. The application of metadata representation and 3D modelling are the two key issues to discuss. Both Revit and SketchUp were appliedin this research to compare its effectiveness to metadata representation. Due to limitation of the Revit database, the final 3D models wasbuilt with SketchUp. The research found that, firstly, cultural heritage databasesmustconvey that while many elements are similar in appearance, they are unique in value; although 3D simulations help the general understanding of architectural heritage, software such as Revit and SketchUp, at this stage, could onlybe used tomodel basic visual representations, and is ineffective indocumenting additional critical data ofindividually unique elements. Secondly, when establishing conservation lifecycle information for application in management systems, a full and detailed presentation of the metadata must also be implemented; the existing applications of BIM in managing conservation lifecycles are still insufficient. Results of the research recommends SketchUp as a tool for present modelling needs, and BIM for sharing data between users, but the implementation of metadata representation is of the utmost importance.

  1. Leaf-architectured 3D Hierarchical Artificial Photosynthetic System of Perovskite Titanates Towards CO2 Photoreduction Into Hydrocarbon Fuels

    NASA Astrophysics Data System (ADS)

    Zhou, Han; Guo, Jianjun; Li, Peng; Fan, Tongxiang; Zhang, Di; Ye, Jinhua

    2013-04-01

    The development of an ``artificial photosynthetic system'' (APS) having both the analogous important structural elements and reaction features of photosynthesis to achieve solar-driven water splitting and CO2 reduction is highly challenging. Here, we demonstrate a design strategy for a promising 3D APS architecture as an efficient mass flow/light harvesting network relying on the morphological replacement of a concept prototype-leaf's 3D architecture into perovskite titanates for CO2 photoreduction into hydrocarbon fuels (CO and CH4). The process uses artificial sunlight as the energy source, water as an electron donor and CO2 as the carbon source, mimicking what real leaves do. To our knowledge this is the first example utilizing biological systems as ``architecture-directing agents'' for APS towards CO2 photoreduction, which hints at a more general principle for APS architectures with a great variety of optimized biological geometries. This research would have great significance for the potential realization of global carbon neutral cycle.

  2. Leaf-architectured 3D Hierarchical Artificial Photosynthetic System of Perovskite Titanates Towards CO2 Photoreduction Into Hydrocarbon Fuels

    PubMed Central

    Zhou, Han; Guo, Jianjun; Li, Peng; Fan, Tongxiang; Zhang, Di; Ye, Jinhua

    2013-01-01

    The development of an “artificial photosynthetic system” (APS) having both the analogous important structural elements and reaction features of photosynthesis to achieve solar-driven water splitting and CO2 reduction is highly challenging. Here, we demonstrate a design strategy for a promising 3D APS architecture as an efficient mass flow/light harvesting network relying on the morphological replacement of a concept prototype-leaf's 3D architecture into perovskite titanates for CO2 photoreduction into hydrocarbon fuels (CO and CH4). The process uses artificial sunlight as the energy source, water as an electron donor and CO2 as the carbon source, mimicking what real leaves do. To our knowledge this is the first example utilizing biological systems as “architecture-directing agents” for APS towards CO2 photoreduction, which hints at a more general principle for APS architectures with a great variety of optimized biological geometries. This research would have great significance for the potential realization of global carbon neutral cycle. PMID:23588925

  3. 3D Modelling of Interior Spaces: Learning the Language of Indoor Architecture

    NASA Astrophysics Data System (ADS)

    Khoshelham, K.; Díaz-Vilariño, L.

    2014-06-01

    3D models of indoor environments are important in many applications, but they usually exist only for newly constructed buildings. Automated approaches to modelling indoor environments from imagery and/or point clouds can make the process easier, faster and cheaper. We present an approach to 3D indoor modelling based on a shape grammar. We demonstrate that interior spaces can be modelled by iteratively placing, connecting and merging cuboid shapes. We also show that the parameters and sequence of grammar rules can be learned automatically from a point cloud. Experiments with simulated and real point clouds show promising results, and indicate the potential of the method in 3D modelling of large indoor environments.

  4. High-Performance 3D Image Processing Architectures for Image-Guided Interventions

    DTIC Science & Technology

    2008-01-01

    Circuits and Systems, vol. 1 (2), 2007, pp. 116-127. iv • O. Dandekar, C. Castro- Pareja , and R. Shekhar, “FPGA-based real-time 3D image...How low can we go?,” presented at IEEE International Symposium on Biomedical Imaging, 2006, pp. 502-505. • C. R. Castro- Pareja , O. Dandekar, and R...Venugopal, C. R. Castro- Pareja , and O. Dandekar, “An FPGA-based 3D image processor with median and convolution filters for real-time applications,” in

  5. Software architecture as a freedom for 3D content providers and users along with independency on purposes and used devices

    NASA Astrophysics Data System (ADS)

    Sultana, Razia; Christ, Andreas; Meyrueis, Patrick

    2014-05-01

    The improvements in the hardware and software of communication devices have allowed running Virtual Reality (VR) and Augmented Reality (AR) applications on those. Nowadays, it is possible to overlay synthetic information on real images, or even to play 3D on-line games on smart phones or some other mobile devices. Hence the use of 3D data for business and specially for education purposes is ubiquitous. Due to always available at hand and always ready to use properties of mobile phones, those are considered as most potential communication devices. The total numbers of mobile phone users are increasing all over the world every day and that makes mobile phones the most suitable device to reach a huge number of end clients either for education or for business purposes. There are different standards, protocols and specifications to establish the communication among different communication devices but there is no initiative taken so far to make it sure that the send data through this communication process will be understood and used by the destination device. Since all the devices are not able to deal with all kind of 3D data formats and it is also not realistic to have different version of the same data to make it compatible with the destination device, it is necessary to have a prevalent solution. The proposed architecture in this paper describes a device and purpose independent 3D data visibility any time anywhere to the right person in suitable format. There is no solution without limitation. The architecture is implemented in a prototype to make an experimental validation of the architecture which also shows the difference between theory and practice.

  6. A Portable 3D FFT Package for Distributed-Memory Parallel Architectures

    NASA Technical Reports Server (NTRS)

    Ding, H. Q.; Ferraro, R. D.; Gennery, D. B.

    1995-01-01

    A parallel algorithm for 3D FFTs is implemented as a series of local 1D FFTs combined with data transposes. This allows the use of vendor supplied (often fully optimized) sequential 1D FFTs. The FFTs are carried out in-place by using an in-place data transpose across the processors.

  7. Consistent Coupling of Canopy Structure with Stem Diameter Distributions and Demography Reveals Organizing Principles of Amazonian Forest Architecture

    NASA Astrophysics Data System (ADS)

    Stark, S. C.; Enquist, B. J.; Saleska, S. R.; Leitold, V.; de Castilho, C. V.; Longo, M.; Alves, L. F.; Schietti, J.; Costa, F. R.; Shimabukuro, Y. E.; Lefsky, M. A.; Camargo, P. B.; de Oliveira, R. C.

    2013-12-01

    The spatial structure of leaf area and light in forest canopies (canopy structure) critically influences ecosystem production and forest dynamics. Increasing light limitation (H1) with greater depth in the canopy may influence growth, mortality and the fluxes of individuals over size classes, which in turn determine the distribution of individuals over tree size (diameter distribution). On the other hand, physiological adaptations may allow trees to grow and survive in low light such that competition for canopy space (H2) regulates demographic fluxes and the diameter distribution. While there is acute need for theory that connects canopy structure with forest dynamics to predict the consequences of global increases in tree mortality, these hypotheses remain little explored and have never been evaluated in a model framework that quantitatively links (i) observations of canopy structure including light and leaf area, (ii) tree demography and (iii) diameter distributions. Building from metabolic scaling theory of tree architecture, we provide such a framework and show that diameter distributions from two sites with contrasting dynamics in the central Amazon can be predicted from remote observations of canopy structure, but only by incorporating crown plasticity to enhance light interception (H3). Uniquely, we derived light absorption estimates for size classes from this model and compared these estimates with plot-based observations of demographic transitions. We found similar relationships between absorption and demographic flux rates in sites, in spite of large differences in patterns of growth and mortality over tree size. This suggested that competition for canopy space may coordinate demographic rates and influence diameter distributions, but with an additional consistent influence of light limitation. Site differences in light absorption over tree size, furthermore, partially explained site differences in diameter distributions. The rapid remote detection of

  8. Architectural integration of the components necessary for electrical energy storage on the nanoscale and in 3D.

    PubMed

    Rhodes, Christopher P; Long, Jeffrey W; Pettigrew, Katherine A; Stroud, Rhonda M; Rolison, Debra R

    2011-04-01

    We describe fabrication of three-dimensional (3D) multifunctional nanoarchitectures in which the three critical components of a battery--cathode, separator/electrolyte, and anode--are internally assembled as tricontinuous nanoscopic phases. The architecture is initiated using sol-gel chemistry and processing to erect a 3D self-wired nanoparticulate scaffold of manganese oxide (>200 m(2) g(-1)) with a continuous, open, and mesoporous void volume. The integrated 3D system is generated by exhaustive coverage of the oxide network by an ultrathin, conformal layer of insulating polymer that forms via self-limiting electrodeposition of poly(phenylene oxide). The remaining interconnected void volume is then wired with RuO(2) nanowebs using subambient thermal decomposition of RuO(4). Transmission electron microscopy demonstrates that the three nanoscopic charge-transfer functional components--manganese oxide, polymer separator/cation conductor, and RuO(2)--exhibit the stratified, tricontinuous design of the phase-by-phase construction. This architecture contains all three components required for a solid-state energy storage device within a void volume sized at tens of nanometres such that nanometre-thick distances are established between the opposing electrodes. We have now demonstrated the ability to assemble multifunctional energy-storage nanoarchitectures on the nanoscale and in three dimensions.

  9. How computer science can help in understanding the 3D genome architecture.

    PubMed

    Shavit, Yoli; Merelli, Ivan; Milanesi, Luciano; Lio', Pietro

    2016-09-01

    Chromosome conformation capture techniques are producing a huge amount of data about the architecture of our genome. These data can provide us with a better understanding of the events that induce critical regulations of the cellular function from small changes in the three-dimensional genome architecture. Generating a unified view of spatial, temporal, genetic and epigenetic properties poses various challenges of data analysis, visualization, integration and mining, as well as of high performance computing and big data management. Here, we describe the critical issues of this new branch of bioinformatics, oriented at the comprehension of the three-dimensional genome architecture, which we call 'Nucleome Bioinformatics', looking beyond the currently available tools and methods, and highlight yet unaddressed challenges and the potential approaches that could be applied for tackling them. Our review provides a map for researchers interested in using computer science for studying 'Nucleome Bioinformatics', to achieve a better understanding of the biological processes that occur inside the nucleus.

  10. An approach to architecture 3D scaffold with interconnective microchannel networks inducing angiogenesis for tissue engineering.

    PubMed

    Sun, Jiaoxia; Wang, Yuanliang; Qian, Zhiyong; Hu, Chenbo

    2011-11-01

    The angiogenesis of 3D scaffold is one of the major current limitations in clinical practice tissue engineering. The new strategy of construction 3D scaffold with microchannel circulation network may improve angiogenesis. In this study, 3D poly(D: ,L: -lactic acid) scaffolds with controllable microchannel structures were fabricated using sacrificial sugar structures. Melt drawing sugar-fiber network produced by a modified filament spiral winding method was used to form the microchannel with adjustable diameters and porosity. This fabrication process was rapid, inexpensive, and highly scalable. The porosity, microchannel diameter, interconnectivity and surface topographies of the scaffold were characterized by scanning electron microscopy. Mechanical properties were evaluated by compression tests. The mean porosity values of the scaffolds were in the 65-78% and the scaffold exhibited microchannel structure with diameter in the 100-200 μm range. The results showed that the scaffolds exhibited an adequate porosity, interconnective microchannel network, and mechanical properties. The cell culture studies with endothelial cells (ECs) demonstrated that the scaffold allowed cells to proliferate and penetrate into the volume of the entire scaffold. Overall, these findings suggest that the fabrication process offers significant advantages and flexibility in generating a variety of non-cytotoxic tissue engineering scaffolds with controllable distributions of porosity and physical properties that could provide the necessary physical cues for ECs and further improve angiogenesis for tissue engineering.

  11. Direct 3D-printing of cell-laden constructs in microfluidic architectures.

    PubMed

    Liu, Justin; Hwang, Henry H; Wang, Pengrui; Whang, Grace; Chen, Shaochen

    2016-04-21

    Microfluidic platforms have greatly benefited the biological and medical fields, however standard practices require a high cost of entry in terms of time and energy. The utilization of three-dimensional (3D) printing technologies has greatly enhanced the ability to iterate and build functional devices with unique functions. However, their inability to fabricate within microfluidic devices greatly increases the cost of producing several different devices to examine different scientific questions. In this work, a variable height micromixer (VHM) is fabricated using projection 3D-printing combined with soft lithography. Theoretical and flow experiments demonstrate that altering the local z-heights of VHM improved mixing at lower flow rates than simple geometries. Mixing of two fluids occurs as low as 320 μL min(-1) in VHM whereas the planar zigzag region requires a flow rate of 2.4 mL min(-1) before full mixing occurred. Following device printing, to further demonstrate the ability of this projection-based method, complex, user-defined cell-laden scaffolds are directly printed inside the VHM. The utilization of this unique ability to produce 3D tissue models within a microfluidic system could offer a unique platform for medical diagnostics and disease modeling.

  12. Scalable, high-performance 3D imaging software platform: system architecture and application to virtual colonoscopy.

    PubMed

    Yoshida, Hiroyuki; Wu, Yin; Cai, Wenli; Brett, Bevin

    2012-01-01

    One of the key challenges in three-dimensional (3D) medical imaging is to enable the fast turn-around time, which is often required for interactive or real-time response. This inevitably requires not only high computational power but also high memory bandwidth due to the massive amount of data that need to be processed. In this work, we have developed a software platform that is designed to support high-performance 3D medical image processing for a wide range of applications using increasingly available and affordable commodity computing systems: multi-core, clusters, and cloud computing systems. To achieve scalable, high-performance computing, our platform (1) employs size-adaptive, distributable block volumes as a core data structure for efficient parallelization of a wide range of 3D image processing algorithms; (2) supports task scheduling for efficient load distribution and balancing; and (3) consists of a layered parallel software libraries that allow a wide range of medical applications to share the same functionalities. We evaluated the performance of our platform by applying it to an electronic cleansing system in virtual colonoscopy, with initial experimental results showing a 10 times performance improvement on an 8-core workstation over the original sequential implementation of the system.

  13. Lithospheric architecture of the Slave craton, northwest Canada, as determined from an interdisciplinary 3-D model

    NASA Astrophysics Data System (ADS)

    Snyder, D. B.; Hillier, M. J.; Kjarsgaard, B. A.; de Kemp, E. A.; Craven, J. A.

    2014-05-01

    geologic structures characteristic of mantle lithosphere within cratons found in continent interiors are interpreted using geo-registered diverse data sets from the Slave craton of northwest Canada. We developed and applied a new method for mapping seismic discontinuities in three dimensions using multiyear observations at sparse, individual broadband receivers. New, fully 3-D conductivity models used all available magnetotelluric data. Discontinuity surfaces and conductivity models were geo-registered with previously published P-wave and surface-wave velocity models to confirm first-order structures such as a midlithosphere discontinuity. Our 3-D model to 400 km depth was calibrated by "drill hole" observations derived from xenolith suites extracted from kimberlites. A number of new structural discontinuities emerge from direct comparison of coregistered data sets and models. Importantly, we distinguish primary mantle layers from secondary features related to younger metasomatism. Subhorizontal Slave craton layers with tapered, wedge-shaped margins indicate construction of the craton core at 2.7 Ga by underthrusting and flat stacking of lithosphere. Mapping of conductivity and metasomatism in 3-D, the latter inferred via mineral recrystallization and resetting of isotopic ages in xenoliths, indicates overprinting of the primary layered structures. The observed distribution of relatively conductive mantle at 100-200 km depths is consistent with pervasive metasomatism; vertical "chimneys" reaching to crustal depths in locations where kimberlites erupted or where Au mineralization is known.

  14. Construction of Modular Hydrogel Sheets for Micropatterned Macro-scaled 3D Cellular Architecture.

    PubMed

    Son, Jaejung; Bae, Chae Yun; Park, Je-Kyun

    2016-01-11

    Hydrogels can be patterned at the micro-scale using microfluidic or micropatterning technologies to provide an in vivo-like three-dimensional (3D) tissue geometry. The resulting 3D hydrogel-based cellular constructs have been introduced as an alternative to animal experiments for advanced biological studies, pharmacological assays and organ transplant applications. Although hydrogel-based particles and fibers can be easily fabricated, it is difficult to manipulate them for tissue reconstruction. In this video, we describe a fabrication method for micropatterned alginate hydrogel sheets, together with their assembly to form a macro-scale 3D cell culture system with a controlled cellular microenvironment. Using a mist form of the calcium gelling agent, thin hydrogel sheets are easily generated with a thickness in the range of 100 - 200 µm, and with precise micropatterns. Cells can then be cultured with the geometric guidance of the hydrogel sheets in freestanding conditions. Furthermore, the hydrogel sheets can be readily manipulated using a micropipette with an end-cut tip, and can be assembled into multi-layered structures by stacking them using a patterned polydimethylsiloxane (PDMS) frame. These modular hydrogel sheets, which can be fabricated using a facile process, have potential applications of in vitro drug assays and biological studies, including functional studies of micro- and macrostructure and tissue reconstruction.

  15. 3D phenotyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture.

    PubMed

    Topp, Christopher N; Iyer-Pascuzzi, Anjali S; Anderson, Jill T; Lee, Cheng-Ruei; Zurek, Paul R; Symonova, Olga; Zheng, Ying; Bucksch, Alexander; Mileyko, Yuriy; Galkovskyi, Taras; Moore, Brad T; Harer, John; Edelsbrunner, Herbert; Mitchell-Olds, Thomas; Weitz, Joshua S; Benfey, Philip N

    2013-04-30

    Identification of genes that control root system architecture in crop plants requires innovations that enable high-throughput and accurate measurements of root system architecture through time. We demonstrate the ability of a semiautomated 3D in vivo imaging and digital phenotyping pipeline to interrogate the quantitative genetic basis of root system growth in a rice biparental mapping population, Bala × Azucena. We phenotyped >1,400 3D root models and >57,000 2D images for a suite of 25 traits that quantified the distribution, shape, extent of exploration, and the intrinsic size of root networks at days 12, 14, and 16 of growth in a gellan gum medium. From these data we identified 89 quantitative trait loci, some of which correspond to those found previously in soil-grown plants, and provide evidence for genetic tradeoffs in root growth allocations, such as between the extent and thoroughness of exploration. We also developed a multivariate method for generating and mapping central root architecture phenotypes and used it to identify five major quantitative trait loci (r(2) = 24-37%), two of which were not identified by our univariate analysis. Our imaging and analytical platform provides a means to identify genes with high potential for improving root traits and agronomic qualities of crops.

  16. BOREAS TE-23 Canopy Architecture and Spectral Data from Hemispherical Photographs

    NASA Technical Reports Server (NTRS)

    Rich, Paul M.; Hall, Forrest G. (Editor); Papagno, Andrea (Editor)

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-23 (Terrestrial Ecology) team collected hemispherical photographs in support of its efforts to characterize and interpret information on estimates of canopy architecture and radiative transfer properties for most BOREAS study sites. Various Old Aspen (OA), Old Black Spruce (OBS), Old Jack Pine (OJP), Young Jack Pine (YJP), and Young Aspen (YA) sites in the boreal forest were measured from May to August 1994. The hemispherical photographs were used to derive values of leaf area index (LAI), leaf angle, gap fraction, and clumping index. This documentation describes these derived values. The derived data are stored in tabular ASCII files. The hemispherical photographs are stored in the original set of 42 CD-ROMs that were supplied by TE-23. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  17. Tailoring bulk mechanical properties of 3D printed objects of polylactic acid varying internal micro-architecture

    NASA Astrophysics Data System (ADS)

    Malinauskas, Mangirdas; Skliutas, Edvinas; Jonušauskas, Linas; Mizeras, Deividas; Šešok, Andžela; Piskarskas, Algis

    2015-05-01

    Herein we present 3D Printing (3DP) fabrication of structures having internal microarchitecture and characterization of their mechanical properties. Depending on the material, geometry and fill factor, the manufactured objects mechanical performance can be tailored from "hard" to "soft." In this work we employ low-cost fused filament fabrication 3D printer enabling point-by-point structuring of poly(lactic acid) (PLA) with~̴400 µm feature spatial resolution. The chosen architectures are defined as woodpiles (BCC, FCC and 60 deg rotating). The period is chosen to be of 1200 µm corresponding to 800 µm pores. The produced objects structural quality is characterized using scanning electron microscope, their mechanical properties such as flexural modulus, elastic modulus and stiffness are evaluated by measured experimentally using universal TIRAtest2300 machine. Within the limitation of the carried out study we show that the mechanical properties of 3D printed objects can be tuned at least 3 times by only changing the woodpile geometry arrangement, yet keeping the same filling factor and periodicity of the logs. Additionally, we demonstrate custom 3D printed µ-fluidic elements which can serve as cheap, biocompatible and environmentally biodegradable platforms for integrated Lab-On-Chip (LOC) devices.

  18. A multiscale approach for the reconstruction of the fiber architecture of the human brain based on 3D-PLI

    PubMed Central

    Reckfort, Julia; Wiese, Hendrik; Pietrzyk, Uwe; Zilles, Karl; Amunts, Katrin; Axer, Markus

    2015-01-01

    Structural connectivity of the brain can be conceptionalized as a multiscale organization. The present study is built on 3D-Polarized Light Imaging (3D-PLI), a neuroimaging technique targeting the reconstruction of nerve fiber orientations and therefore contributing to the analysis of brain connectivity. Spatial orientations of the fibers are derived from birefringence measurements of unstained histological sections that are interpreted by means of a voxel-based analysis. This implies that a single fiber orientation vector is obtained for each voxel, which reflects the net effect of all comprised fibers. We have utilized two polarimetric setups providing an object space resolution of 1.3 μm/px (microscopic setup) and 64 μm/px (macroscopic setup) to carry out 3D-PLI and retrieve fiber orientations of the same tissue samples, but at complementary voxel sizes (i.e., scales). The present study identifies the main sources which cause a discrepancy of the measured fiber orientations observed when measuring the same sample with the two polarimetric systems. As such sources the differing optical resolutions and diverging retardances of the implemented waveplates were identified. A methodology was implemented that enables the compensation of measured different systems' responses to the same birefringent sample. This opens up new ways to conduct multiscale analysis in brains by means of 3D-PLI and to provide a reliable basis for the transition between different scales of the nerve fiber architecture. PMID:26388744

  19. Cloud GIS and 3d Modelling to Enhance Sardinian Late Gothic Architectural Heritage

    NASA Astrophysics Data System (ADS)

    Pisu, C.; Casu, P.

    2013-07-01

    This work proposes the documentation, virtual reconstruction and spreading of architectural heritage through the use of software packages that operate in cloud computing. Cloud computing makes available a variety of applications and tools which can be effective both for the preparation and for the publication of different kinds of data. We tested the versatil ity and ease of use of such documentation tools in order to study a particular architectural phenomenon. The ultimate aim is to develop a multi-scale and multi-layer information system, oriented to the divulgation of Sardinian late gothic architecture. We tested the applications on portals of late Gothic architecture in Sardinia. The actions of conservation, protection and enhancement of cultural heritage are all founded on the social function that can be reached only through the widest possible fruition by the community. The applications of digital technologies on cultural heritage can contribute to the construction of effective communication models that, relying on sensory and emotional involvement of the viewer, can attract a wider audience to cultural content.

  20. An Online 3D Database System for Endangered Architectural and Archaeological Heritage in the South-Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Abate, D.; Avgousti, A.; Faka, M.; Hermon, S.; Bakirtzis, N.; Christofi, P.

    2017-02-01

    The World Heritage Convention, drawn by various international bodies in 1972, was designed to protect cultural or natural places of outstanding universal value so that future generations may be able to enjoy them. Responding to these principles as well as to the Charter on the Preservation of Digital heritage (Vancouver, 2003), this multidisciplinary project, which involves archaeologists, art historians, conservators and computer scientists, aims to create an open access, 3D interactive online geo-database of endangered architectural and archaeological heritage in the South Eastern Mediterranean basin; a region of tremendous cultural importance whose rech heritage is unfortunately threatened by both natural and human factors. A wide range of 3D modelling and topographic techniques have been applied to create accurate reconstructions of heritage sites, enriched by a extensive array of metadata.

  1. Viral Infection at High Magnification: 3D Electron Microscopy Methods to Analyze the Architecture of Infected Cells.

    PubMed

    Romero-Brey, Inés; Bartenschlager, Ralf

    2015-12-03

    As obligate intracellular parasites, viruses need to hijack their cellular hosts and reprogram their machineries in order to replicate their genomes and produce new virions. For the direct visualization of the different steps of a viral life cycle (attachment, entry, replication, assembly and egress) electron microscopy (EM) methods are extremely helpful. While conventional EM has given important information about virus-host cell interactions, the development of three-dimensional EM (3D-EM) approaches provides unprecedented insights into how viruses remodel the intracellular architecture of the host cell. During the last years several 3D-EM methods have been developed. Here we will provide a description of the main approaches and examples of innovative applications.

  2. Viral Infection at High Magnification: 3D Electron Microscopy Methods to Analyze the Architecture of Infected Cells

    PubMed Central

    Romero-Brey, Inés; Bartenschlager, Ralf

    2015-01-01

    As obligate intracellular parasites, viruses need to hijack their cellular hosts and reprogram their machineries in order to replicate their genomes and produce new virions. For the direct visualization of the different steps of a viral life cycle (attachment, entry, replication, assembly and egress) electron microscopy (EM) methods are extremely helpful. While conventional EM has given important information about virus-host cell interactions, the development of three-dimensional EM (3D-EM) approaches provides unprecedented insights into how viruses remodel the intracellular architecture of the host cell. During the last years several 3D-EM methods have been developed. Here we will provide a description of the main approaches and examples of innovative applications. PMID:26633469

  3. WARP3D-Release 10.8: Dynamic Nonlinear Analysis of Solids using a Preconditioned Conjugate Gradient Software Architecture

    NASA Technical Reports Server (NTRS)

    Koppenhoefer, Kyle C.; Gullerud, Arne S.; Ruggieri, Claudio; Dodds, Robert H., Jr.; Healy, Brian E.

    1998-01-01

    This report describes theoretical background material and commands necessary to use the WARP3D finite element code. WARP3D is under continuing development as a research code for the solution of very large-scale, 3-D solid models subjected to static and dynamic loads. Specific features in the code oriented toward the investigation of ductile fracture in metals include a robust finite strain formulation, a general J-integral computation facility (with inertia, face loading), an element extinction facility to model crack growth, nonlinear material models including viscoplastic effects, and the Gurson-Tver-gaard dilatant plasticity model for void growth. The nonlinear, dynamic equilibrium equations are solved using an incremental-iterative, implicit formulation with full Newton iterations to eliminate residual nodal forces. The history integration of the nonlinear equations of motion is accomplished with Newmarks Beta method. A central feature of WARP3D involves the use of a linear-preconditioned conjugate gradient (LPCG) solver implemented in an element-by-element format to replace a conventional direct linear equation solver. This software architecture dramatically reduces both the memory requirements and CPU time for very large, nonlinear solid models since formation of the assembled (dynamic) stiffness matrix is avoided. Analyses thus exhibit the numerical stability for large time (load) steps provided by the implicit formulation coupled with the low memory requirements characteristic of an explicit code. In addition to the much lower memory requirements of the LPCG solver, the CPU time required for solution of the linear equations during each Newton iteration is generally one-half or less of the CPU time required for a traditional direct solver. All other computational aspects of the code (element stiffnesses, element strains, stress updating, element internal forces) are implemented in the element-by- element, blocked architecture. This greatly improves

  4. Rationally designed graphene-nanotube 3D architectures with a seamless nodal junction for efficient energy conversion and storage

    PubMed Central

    Xue, Yuhua; Ding, Yong; Niu, Jianbing; Xia, Zhenhai; Roy, Ajit; Chen, Hao; Qu, Jia; Wang, Zhong Lin; Dai, Liming

    2015-01-01

    One-dimensional (1D) carbon nanotubes (CNTs) and 2D single-atomic layer graphene have superior thermal, electrical, and mechanical properties. However, these nanomaterials exhibit poor out-of-plane properties due to the weak van der Waals interaction in the transverse direction between graphitic layers. Recent theoretical studies indicate that rationally designed 3D architectures could have desirable out-of-plane properties while maintaining in-plane properties by growing CNTs and graphene into 3D architectures with a seamless nodal junction. However, the experimental realization of seamlessly-bonded architectures remains a challenge. We developed a strategy of creating 3D graphene-CNT hollow fibers with radially aligned CNTs (RACNTs) seamlessly sheathed by a cylindrical graphene layer through a one-step chemical vapor deposition using an anodized aluminum wire template. By controlling the aluminum wire diameter and anodization time, the length of the RACNTs and diameter of the graphene hollow fiber can be tuned, enabling efficient energy conversion and storage. These fibers, with a controllable surface area, meso-/micropores, and superior electrical properties, are excellent electrode materials for all-solid-state wire-shaped supercapacitors with poly(vinyl alcohol)/H2SO4 as the electrolyte and binder, exhibiting a surface-specific capacitance of 89.4 mF/cm2 and length-specific capacitance up to 23.9 mF/cm, — one to four times the corresponding record-high capacities reported for other fiber-like supercapacitors. Dye-sensitized solar cells, fabricated using the fiber as a counter electrode, showed a power conversion efficiency of 6.8% and outperformed their counterparts with an expensive Pt wire counter electrode by a factor of 2.5. These novel fiber-shaped graphene-RACNT energy conversion and storage devices are so flexible they can be woven into fabrics as power sources. PMID:26601246

  5. Different enhancer classes in Drosophila bind distinct architectural proteins and mediate unique chromatin interactions and 3D architecture.

    PubMed

    Cubeñas-Potts, Caelin; Rowley, M Jordan; Lyu, Xiaowen; Li, Ge; Lei, Elissa P; Corces, Victor G

    2016-11-28

    Eukaryotic gene expression is regulated by enhancer-promoter interactions but the molecular mechanisms that govern specificity have remained elusive. Genome-wide studies utilizing STARR-seq identified two enhancer classes in Drosophila that interact with different core promoters: housekeeping enhancers (hkCP) and developmental enhancers (dCP). We hypothesized that the two enhancer classes are occupied by distinct architectural proteins, affecting their enhancer-promoter contacts. By evaluating ChIP-seq occupancy of architectural proteins, typical enhancer-associated proteins, and histone modifications, we determine that both enhancer classes are enriched for RNA Polymerase II, CBP, and architectural proteins but there are also distinctions. hkCP enhancers contain H3K4me3 and exclusively bind Cap-H2, Chromator, DREF and Z4, whereas dCP enhancers contain H3K4me1 and are more enriched for Rad21 and Fs(1)h-L. Additionally, we map the interactions of each enhancer class utilizing a Hi-C dataset with <1 kb resolution. Results suggest that hkCP enhancers are more likely to form multi-TSS interaction networks and be associated with topologically associating domain (TAD) borders, while dCP enhancers are more often bound to one or two TSSs and are enriched at chromatin loop anchors. The data support a model suggesting that the unique architectural protein occupancy within enhancers is one contributor to enhancer-promoter interaction specificity.

  6. The Exopolysaccharide Matrix Modulates the Interaction between 3D Architecture and Virulence of a Mixed-Species Oral Biofilm

    PubMed Central

    Xiao, Jin; Klein, Marlise I.; Falsetta, Megan L.; Lu, Bingwen; Delahunty, Claire M.; Yates, John R.; Heydorn, Arne; Koo, Hyun

    2012-01-01

    Virulent biofilms are responsible for a range of infections, including oral diseases. All biofilms harbor a microbial-derived extracellular-matrix. The exopolysaccharides (EPS) formed on tooth-pellicle and bacterial surfaces provide binding sites for microorganisms; eventually the accumulated EPS enmeshes microbial cells. The metabolic activity of the bacteria within this matrix leads to acidification of the milieu. We explored the mechanisms through which the Streptococcus mutans-produced EPS-matrix modulates the three-dimensional (3D) architecture and the population shifts during morphogenesis of biofilms on a saliva-coated-apatitic surface using a mixed-bacterial species system. Concomitantly, we examined whether the matrix influences the development of pH-microenvironments within intact-biofilms using a novel 3D in situ pH-mapping technique. Data reveal that the production of the EPS-matrix helps to create spatial heterogeneities by forming an intricate network of exopolysaccharide-enmeshed bacterial-islets (microcolonies) through localized cell-to-matrix interactions. This complex 3D architecture creates compartmentalized acidic and EPS-rich microenvironments throughout the biofilm, which triggers the dominance of pathogenic S. mutans within a mixed-species system. The establishment of a 3D-matrix and EPS-enmeshed microcolonies were largely mediated by the S. mutans gtfB/gtfC genes, expression of which was enhanced in the presence of Actinomyces naeslundii and Streptococcus oralis. Acidic pockets were found only in the interiors of bacterial-islets that are protected by EPS, which impedes rapid neutralization by buffer (pH 7.0). As a result, regions of low pH (<5.5) were detected at specific locations along the surface of attachment. Resistance to chlorhexidine was enhanced in cells within EPS-microcolony complexes compared to those outside such structures within the biofilm. Our results illustrate the critical interaction between matrix architecture and p

  7. From condiment to metal–organic framework and its derived 3D architecture nanoporous carbon for supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Lu, Xiaowang; Chen, Zhidong

    2017-02-01

    The crystalline metal-organic-framework (MOF) microrods from monosodium glutamate and zinc acetate dihydrate were spontaneously formed by mixing their solution at room temperature. After carbonization in an inert atmosphere, these MOF microrods are evolved into N and O co-doped nanoporous carbon with 3D-architecture. The model of gas bubbles is elucidated for the formation of these interconnected porous structure. As the electrode material for supercapacitor, the derived nanoporous carbon at the temperature of 800 °C exhibits good capacitance performance in alkali aqueous electrolyte.

  8. CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin Topology for Transcription

    PubMed Central

    Tang, Zhonghui; Luo, Oscar Junhong; Li, Xingwang; Zheng, Meizhen; Zhu, Jacqueline Jufen; Szalaj, Przemyslaw; Trzaskoma, Pawel; Magalska, Adriana; Wlodarczyk, Jakub; Ruszczycki, Blazej; Michalski, Paul; Piecuch, Emaly; Wang, Ping; Wang, Danjuan; Tian, Simon Zhongyuan; Penrad-Mobayed, May; Sachs, Laurent M.; Ruan, Xiaoan; Wei, Chia-Lin; Liu, Edison T.; Wilczynski, Grzegorz M.; Plewczynski, Dariusz; Li, Guoliang; Ruan, Yijun

    2015-01-01

    Summary Spatial genome organization and its effect on transcription remains a fundamental question. We applied an advanced ChIA-PET strategy to comprehensively map higher-order chromosome folding and specific chromatin interactions mediated by CTCF and RNAPII with haplotype specificity and nucleotide resolution in different human cell lineages. We find that CTCF/cohesin-mediated interaction anchors serve as structural foci for spatial organization of constitutive genes concordant with CTCF-motif orientation, whereas RNAPII interacts within these structures by selectively drawing cell-type-specific genes towards CTCF-foci for coordinated transcription. Furthermore, we show that haplotype-variants and allelic-interactions have differential effects on chromosome configuration influencing gene expression and may provide mechanistic insights into functions associated with disease susceptibility. 3D-genome simulation suggests a model of chromatin folding around chromosomal axes, where CTCF is involved in defining the interface between condensed and open compartments for structural regulation. Our 3D-genome strategy thus provides unique insights in the topological mechanism of human variations and diseases. PMID:26686651

  9. VIEWNET: a neural architecture for learning to recognize 3D objects from multiple 2D views

    NASA Astrophysics Data System (ADS)

    Grossberg, Stephen; Bradski, Gary

    1994-10-01

    A self-organizing neural network is developed for recognition of 3-D objects from sequences of their 2-D views. Called VIEWNET because it uses view information encoded with networks, the model processes 2-D views of 3-D objects using the CORT-X 2 filter, which discounts the illuminant, regularizes and completes figural boundaries, and removes noise from the images. A log-polar transform is taken with respect to the centroid of the resulting figure and then re-centered to achieve 2-D scale and rotation invariance. The invariant images are coarse coded to further reduce noise, reduce foreshortening effects, and increase generalization. These compressed codes are input into a supervised learning system based on the Fuzzy ARTMAP algorithm which learns 2-D view categories. Evidence from sequences of 2-D view categories is stored in a working memory. Voting based on the unordered set of stored categories determines object recognition. Recognition is studied with noisy and clean images using slow and fast learning. VIEWNET is demonstrated on an MIT Lincoln Laboratory database of 2-D views of aircraft with and without additive noise. A recognition rate of up to 90% is achieved with one 2-D view category and of up to 98.5% correct with three 2-D view categories.

  10. Assembly of one dimensional inorganic nanostructures into functional 2D and 3D architectures. Synthesis, arrangement and functionality.

    PubMed

    Joshi, Ravi K; Schneider, Jörg J

    2012-08-07

    This review will focus on the synthesis, arrangement, structural assembly, for current and future applications, of 1D nanomaterials (tubes, wires, rods) in 2D and 3D ordered arrangements. The ability to synthesize and arrange one dimensional nanomaterials into ordered 2D or 3D micro or macro sized structures is of utmost importance in developing new devices and applications of these materials. Micro and macro sized architectures based on such 1D nanomaterials (e.g. tubes, wires, rods) provide a platform to integrate nanostructures at a larger and thus manageable scale into high performance electronic devices like field effect transistors, as chemo- and biosensors, catalysts, or in energy material applications. Carbon based, metal oxide and metal based 1D arranged materials as well as hybrid or composite 1D materials of the latter provide a broad materials platform, offering a perspective for new entries into fascinating structures and future applications of such assembled architectures. These architectures allow bridging the gap between 1D nanostructures and the micro and macro world and are the basis for an assembly of 1D materials into higher hierarchy domains. This critical review is intended to provide an interesting starting point to view the current state of the art and show perspectives for future developments in this field. The emphasis is on selected nanomaterials and the possibilities for building three dimensional arrays starting from one dimensional building blocks. Carbon nanotubes, metal oxide nanotubes and nanowires (e.g. ZnO, TiO(2), V(2)O(5), Cu(2)O, NiO, Fe(2)O(3)), silicon and germanium nanowires, and group III-V or II-VI based 1D semiconductor nanostructures like GaS and GaN, pure metals as well as 1D hybrid materials and their higher organized architectures (foremost in 3D) will be focussed. These materials have been the most intensively studied within the last 5-10 years with respect to nano-micro integration aspects and their functional and

  11. Fabrication of 3D-culture platform with sandwich architecture for preserving liver-specific functions of hepatocytes using 3D bioprinter.

    PubMed

    Arai, Kenichi; Yoshida, Toshiko; Okabe, Motonori; Goto, Mitsuaki; Mir, Tanveer Ahmad; Soko, Chika; Tsukamoto, Yoshinari; Akaike, Toshihiro; Nikaido, Toshio; Zhou, Kaixuan; Nakamura, Makoto

    2016-09-19

    The development of new three-dimensional (3D) cell culture system that maintains the physiologically relevant signals of hepatocytes is essential in drug discovery and tissue engineering research. Conventional two-dimensional (2D) culture yields cell growth, proliferation, and differentiation. However, gene expression and signaling profiles can be different from in vivo environment. Here, we report the fabrication of a 3D culture system using an artificial scaffold and our custom-made inkjet 3D bioprinter as a new strategy for studying liver-specific functions of hepatocytes. We built a 3D culture platform for hepatocytes-attachment and formation of cell monolayer by interacting the galactose chain of galactosylated alginate gel (GA-gel) with asialoglycoprotein receptor (ASGPR) of hepatocytes. The 3D geometrical arrangement of cells was controlled by using 3D bioprinter, and cell polarity was controlled with the galactosylated hydrogels. The fabricated GA-gel was able to successfully promote adhesion of hepatocytes. To observe liver-specific functions and to mimic hepatic cord, an additional parallel layer of hepatocytes was generated using two gel sheets. These results indicated that GA-gel biomimetic matrices can be used as a 3D culture system that could be effective for the engineering of liver tissues. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2016.

  12. Status of the phenomena representation, 3D modeling, and cloud-based software architecture development

    SciTech Connect

    Smith, Curtis L.; Prescott, Steven; Kvarfordt, Kellie; Sampath, Ram; Larson, Katie

    2015-09-01

    Early in 2013, researchers at the Idaho National Laboratory outlined a technical framework to support the implementation of state-of-the-art probabilistic risk assessment to predict the safety performance of advanced small modular reactors. From that vision of the advanced framework for risk analysis, specific tasks have been underway in order to implement the framework. This report discusses the current development of a several tasks related to the framework implementation, including a discussion of a 3D physics engine that represents the motion of objects (including collision and debris modeling), cloud-based analysis tools such as a Bayesian-inference engine, and scenario simulations. These tasks were performed during 2015 as part of the technical work associated with the Advanced Reactor Technologies Program.

  13. Ardnamurchan 3D cone-sheet architecture explained by a single elongate magma chamber.

    PubMed

    Burchardt, Steffi; Troll, Valentin R; Mathieu, Lucie; Emeleus, Henry C; Donaldson, Colin H

    2013-10-08

    The Palaeogene Ardnamurchan central igneous complex, NW Scotland, was a defining place for the development of the classic concepts of cone-sheet and ring-dyke emplacement and has thus fundamentally influenced our thinking on subvolcanic structures. We have used the available structural information on Ardnamurchan to project the underlying three-dimensional (3D) cone-sheet structure. Here we show that a single elongate magma chamber likely acted as the source of the cone-sheet swarm(s) instead of the traditionally accepted model of three successive centres. This proposal is supported by the ridge-like morphology of the Ardnamurchan volcano and is consistent with the depth and elongation of the gravity anomaly underlying the peninsula. Our model challenges the traditional model of cone-sheet emplacement at Ardnamurchan that involves successive but independent centres in favour of a more dynamical one that involves a single, but elongate and progressively evolving magma chamber system.

  14. Ardnamurchan 3D cone-sheet architecture explained by a single elongate magma chamber

    PubMed Central

    Burchardt, Steffi; Troll, Valentin R.; Mathieu, Lucie; Emeleus, Henry C.; Donaldson, Colin H.

    2013-01-01

    The Palaeogene Ardnamurchan central igneous complex, NW Scotland, was a defining place for the development of the classic concepts of cone-sheet and ring-dyke emplacement and has thus fundamentally influenced our thinking on subvolcanic structures. We have used the available structural information on Ardnamurchan to project the underlying three-dimensional (3D) cone-sheet structure. Here we show that a single elongate magma chamber likely acted as the source of the cone-sheet swarm(s) instead of the traditionally accepted model of three successive centres. This proposal is supported by the ridge-like morphology of the Ardnamurchan volcano and is consistent with the depth and elongation of the gravity anomaly underlying the peninsula. Our model challenges the traditional model of cone-sheet emplacement at Ardnamurchan that involves successive but independent centres in favour of a more dynamical one that involves a single, but elongate and progressively evolving magma chamber system. PMID:24100542

  15. Design Curve Generation for 3D SiC Fiber Architecture

    NASA Technical Reports Server (NTRS)

    Lang, Jerry; Dicarlo, James A.

    2014-01-01

    The design tool provides design curves that allow a simple and quick way to examine multiple factors that can influence the processing and key properties of the preforms and their final SiC-reinforced ceramic composites without over obligating financial capital for the fabricating of materials. Tool predictions for process and fiber fraction properties have been validated for a HNS 3D preform.The virtualization aspect of the tool will be used to provide a quick generation of solid models with actual fiber paths for finite element evaluation to predict mechanical and thermal properties of proposed composites as well as mechanical displacement behavior due to creep and stress relaxation to study load sharing characteristic between constitutes for better performance.Tool predictions for the fiber controlled properties of the SiCSiC CMC fabricated from the HNS preforms will be valuated and up-graded from the measurements on these CMC

  16. Ardnamurchan 3D cone-sheet architecture explained by a single elongate magma chamber

    NASA Astrophysics Data System (ADS)

    Burchardt, Steffi; Troll, Valentin R.; Mathieu, Lucie; Emeleus, Henry C.; Donaldson, Colin H.

    2013-10-01

    The Palaeogene Ardnamurchan central igneous complex, NW Scotland, was a defining place for the development of the classic concepts of cone-sheet and ring-dyke emplacement and has thus fundamentally influenced our thinking on subvolcanic structures. We have used the available structural information on Ardnamurchan to project the underlying three-dimensional (3D) cone-sheet structure. Here we show that a single elongate magma chamber likely acted as the source of the cone-sheet swarm(s) instead of the traditionally accepted model of three successive centres. This proposal is supported by the ridge-like morphology of the Ardnamurchan volcano and is consistent with the depth and elongation of the gravity anomaly underlying the peninsula. Our model challenges the traditional model of cone-sheet emplacement at Ardnamurchan that involves successive but independent centres in favour of a more dynamical one that involves a single, but elongate and progressively evolving magma chamber system.

  17. Design Novel 3D Nano Architectures for Developing Ultra Fast Thermal Energy Storage Materials

    DTIC Science & Technology

    2015-04-30

    used multi-scale modeling to design sp2 materials based on SiC and BN nanotubes , attempting to create junctions in such a way that all atoms will be of...characterization, and moved on to pillared nanotube structures. The report itself is lightweight but the bulk of the detailed findings are in two published...computational approach to design novel sp2 nano-architectures based in SiC and BN Nanotubes . We used first principle ab-initio methods for studying the

  18. Multiple 3d Approaches for the Architectural Study of the Medieval Abbey of Cormery in the Loire Valley

    NASA Astrophysics Data System (ADS)

    Pouyet, T.

    2017-02-01

    This paper will focus on the technical approaches used for a PhD thesis regarding architecture and spatial organization of benedict abbeys in Touraine in the Middle Ages, in particular the abbey of Cormery in the heart of the Loire Valley. Monastic space is approached in a diachronic way, from the early Middle Ages to the modern times using multi-sources data: architectural study, written sources, ancient maps, various iconographic documents… Many scales are used in the analysis, from the establishment of the abbeys in a territory to the scale of a building like the tower-entrance of the church of Cormery. These methodological axes have been developed in the research unit CITERES for many years and the 3D technology is now used to go further along in that field. The recording in 3D of the buildings of the abbey of Cormery allows us to work at the scale of the monastery and to produce useful data such as sections or orthoimages of the ground and the walls faces which are afterwards drawn and analysed. The study of these documents, crossed with the other historical sources, allowed us to emphasize the presence of walls older than what we thought and to discover construction elements that had not been recognized earlier and which enhance the debate about the construction date St Paul tower and associated the monastic church.

  19. Single, aligned carbon nanotubes in 3D nanoscale architectures enabled by top-down and bottom-up manufacturable processes.

    PubMed

    Kaul, Anupama B; Megerian, Krikor G; von Allmen, Paul; Baron, Richard L

    2009-02-18

    We have developed manufacturable approaches for forming single, vertically aligned carbon nanotubes, where the tubes are centered precisely, and placed within a few hundred nm of 1-1.5 microm deep trenches. These wafer-scale approaches were enabled by using chemically amplified resists and high density, low pressure plasma etching techniques to form the 3D nanoscale architectures. The tube growth was performed using dc plasma-enhanced chemical vapor deposition (PECVD), and the materials used in the pre-fabricated 3D architectures were chemically and structurally compatible with the high temperature (700 degrees C) PECVD synthesis of our tubes, in an ammonia and acetylene ambient. Such scalable, high throughput top-down fabrication processes, when integrated with the bottom-up tube synthesis techniques, should accelerate the development of plasma grown tubes for a wide variety of applications in electronics, such as nanoelectromechanical systems, interconnects, field emitters and sensors. Tube characteristics were also engineered to some extent, by adjusting the Ni catalyst thickness, as well as the pressure and plasma power during growth.

  20. Separating Leaves from Trunks and Branches with Dual-Wavelength Terrestrial Lidar Scanning: Improving Canopy Structure Characterization in 3-D Space

    NASA Astrophysics Data System (ADS)

    Li, Z.; Strahler, A. H.; Schaaf, C.; Howe, G.; Martel, J.; Hewawasam, K.; Douglas, E. S.; Chakrabarti, S.; Cook, T.; Paynter, I.; Saenz, E.; Wang, Z.; Yang, X.; Yao, T.; Zhao, F.; Woodcock, C.; Jupp, D.; Schaefer, M.; Culvenor, D.; Newnham, G.; Lowell, J.

    2013-12-01

    branches and avoids the misclassification of trunk edges as leaves. Such classified waveforms and point clouds can provide gap probabilities of leafy and woody materials separately and thus provide better estimate LAI, thereby characterizing 3-D canopy structure more accurately for use in modeling radiation regimes and terrestrial ecosystems. NDI image (part of a scan here) from waveform mean intensities at the two wavelengths. Azimuth angle in X axis and Zenith angle in Y axis

  1. Modelling the impact of the light regime on single tree transpiration based on 3D representations of plant architecture

    NASA Astrophysics Data System (ADS)

    Bittner, S.; Priesack, E.

    2012-04-01

    We apply a functional-structural model of tree water flow to single old-growth trees in a temperate broad-leaved forest stand. Roots, stems and branches are represented by connected porous cylinder elements further divided into the inner heartwood cylinders surrounded by xylem and phloem. Xylem water flow is simulated by applying a non-linear Darcy flow in porous media driven by the water potential gradient according to the cohesion-tension theory. The flow model is based on physiological input parameters such as the hydraulic conductivity, stomatal response to leaf water potential and root water uptake capability and, thus, can reflect the different properties of tree species. The actual root water uptake is calculated using also a non-linear Darcy law based on the gradient between root xylem water potential and rhizosphere soil water potential and by the simulation of soil water flow applying Richards equation. A leaf stomatal conductance model is combined with the hydrological tree and soil water flow model and a spatially explicit three-dimensional canopy light model. The structure of the canopy and the tree architectures are derived by applying an automatic tree skeleton extraction algorithm from point clouds obtained by use of a terrestrial laser scanner allowing an explicit representation of the water flow path in the stem and branches. The high spatial resolution of the root and branch geometry and their connectivity makes the detailed modelling of the water use of single trees possible and allows for the analysis of the interaction between single trees and the influence of the canopy light regime (including different fractions of direct sunlight and diffuse skylight) on the simulated sap flow and transpiration. The model can be applied at various sites and to different tree species, enabling the up-scaling of the water usage of single trees to the total transpiration of mixed stands. Examples are given to reveal differences between diffuse- and ring

  2. Thermostructural Properties Of Sic/Sic Panels With 2.5d And 3d Fiber Architectures

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; DeCarlo, J. A.; Bhatt, R. H.; Jaskowiak, M. H.

    2005-01-01

    CMC hot-section components in advanced engines for power and propulsion will typically require high cracking strength, high ultimate strength and strain, high creep- rupture resistance, and high thermal conductivity in all directions. In the past, NASA has demonstrated fabrication of a variety of SiC/SiC flat panels and round tubes with various 2D fiber architectures using the high-modulus high-performance Sylramic-iBN Sic fiber and Sic-based matrices derived by CVI, MI, and/or PIP processes. The thermo- mechanical properties of these CMC have shown state-of-the-art performance, but primarily in the in-plane directions. Currently NASA is extending the thermostructural capability of these SiC/SiC systems in the thru-thickness direction by using various 2.5D and 3D fiber architectures. NASA is also using specially designed fabrication steps to optimize the properties of the BN-based interphase and Sic-based matrices. In this study, Sylramic-iBN/SiC panels with 2D plain weave, 2.5D satin weave, 2.5D ply-to-ply interlock weave, and 3D angle interlock fiber architectures, all woven at AITI, were fabricated using matrix densification routes previously established between NASA and GEPSC for CVI-MI processes and between NASA and Starfire-Systems for PIP processes. Introduction of the 2.5 D fiber architecture along with an improved matrix process was found to increase inter-laminar tensile strength from 1.5 -2 to 3 - 4 ksi and thru-thickness thermal conductivity from 15-20 to 30-35 BTU/ft.hr.F with minimal reduction in in-plane strength and creep-rupture properties. Such improvements should reduce thermal stresses and increase the thermostructural operating envelope for SiC/SiC engine components. These results are analyzed to offer general guidelines for selecting fiber architectures and constituent processes for high-performance SiC/SiC engine components.

  3. Critical Analysis and Digital Reconstructions of Alberti's Architectures by the Use of 3d Morphometric Integrated Survey Database

    NASA Astrophysics Data System (ADS)

    Ferrari, F.; Medici, M.

    2017-02-01

    Since 2005, DIAPReM Centre of the Department of Architecture of the University of Ferrara, in collaboration with the "Centro Studi Leon Battista Alberti" Foundation and the Consorzio Futuro in Ricerca, is carrying out a research project for the creation of 3D databases that could allow the development of a critical interpretation of Alberti's architectural work. The project is primarily based on a common three-dimensional integrated survey methodology for the creation of a navigable multilayered database. The research allows the possibility of reiterative metrical analysis, thanks to the use of a coherent data in order to check and validate hypothesis by researchers, art historians and scholars on Alberti's architectural work. Coherently with this methodological framework, indeed, two case studies are explained in this paper: the church of San Sebastiano in Matua and The Church of the Santissima Annunziata in Florence. Furthermore, thanks to a brief introduction of further developments of the project, a short graphical analysis of preliminary results on Tempio Malatestiano in Rimini opens new perspectives of research.

  4. 3D-Printing of inverted pyramid suspending architecture for pyroelectric infrared detectors with inhibited microphonic effect

    NASA Astrophysics Data System (ADS)

    Xu, Qing; Zhao, Xiangyong; Li, Xiaobing; Deng, Hao; Yan, Hong; Yang, Linrong; Di, Wenning; Luo, Haosu; Neumann, Norbert

    2016-05-01

    A sensitive chip with ultralow dielectric loss based on Mn doped PMNT (71/29) has been proposed for high-end pyroelectric devices. The dielectric loss at 1 kHz is 0.005%, one order lower than the minimum value reported so far. The detective figure of merit (Fd) is up to 92.6 × 10-5 Pa-1/2 at 1 kHz and 53.5 × 10-5 Pa-1/2 at 10 Hz, respectively. In addition, an inverted pyramid suspending architecture for supporting the sensitive chip has been designed and manufactured by 3D printing technology. The combination of this sensitive chip and the proposed suspending architecture largely enhances the performance of the pyroelectric detectors. The responsivity and specific detectivity are 669,811 V/W and 3.32 × 109 cm Hz1/2/W at 10 Hz, respectively, 1.9 times and 1.5 times higher than those of the highest values in literature. Furthermore, the microphonic effect can be largely inhibited according to the theoretical and experimental analysis. This architecture will have promising applications in high-end and stable pyroelectric infrared detectors.

  5. Modeling 3-D permeability distribution in alluvial fans using facies architecture and geophysical acquisitions

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; Gong, Huili; Dai, Zhenxue; Guo, Gaoxuan; Teatini, Pietro

    2017-02-01

    Alluvial fans are highly heterogeneous in hydraulic properties due to complex depositional processes, which make it difficult to characterize the spatial distribution of the hydraulic conductivity (K). An original methodology is developed to identify the spatial statistical parameters (mean, variance, correlation range) of the hydraulic conductivity in a three-dimensional (3-D) setting by using geological and geophysical data. More specifically, a large number of inexpensive vertical electric soundings are integrated with a facies model developed from borehole lithologic data to simulate the log10(K) continuous distributions in multiple-zone heterogeneous alluvial megafans. The Chaobai River alluvial fan in the Beijing Plain, China, is used as an example to test the proposed approach. Due to the non-stationary property of the K distribution in the alluvial fan, a multiple-zone parameterization approach is applied to analyze the conductivity statistical properties of different hydrofacies in the various zones. The composite variance in each zone is computed to describe the evolution of the conductivity along the flow direction. Consistently with the scales of the sedimentary transport energy, the results show that conductivity variances of fine sand, medium-coarse sand, and gravel decrease from the upper (zone 1) to the lower (zone 3) portion along the flow direction. In zone 1, sediments were moved by higher-energy flooding, which induces poor sorting and larger conductivity variances. The composite variance confirms this feature with statistically different facies from zone 1 to zone 3. The results of this study provide insights to improve our understanding on conductivity heterogeneity and a method for characterizing the spatial distribution of K in alluvial fans.

  6. Evolving technologies for growing, imaging and analyzing 3D root system architecture of crop plants.

    PubMed

    Piñeros, Miguel A; Larson, Brandon G; Shaff, Jon E; Schneider, David J; Falcão, Alexandre Xavier; Yuan, Lixing; Clark, Randy T; Craft, Eric J; Davis, Tyler W; Pradier, Pierre-Luc; Shaw, Nathanael M; Assaranurak, Ithipong; McCouch, Susan R; Sturrock, Craig; Bennett, Malcolm; Kochian, Leon V

    2016-03-01

    A plant's ability to maintain or improve its yield under limiting conditions, such as nutrient deficiency or drought, can be strongly influenced by root system architecture (RSA), the three-dimensional distribution of the different root types in the soil. The ability to image, track and quantify these root system attributes in a dynamic fashion is a useful tool in assessing desirable genetic and physiological root traits. Recent advances in imaging technology and phenotyping software have resulted in substantive progress in describing and quantifying RSA. We have designed a hydroponic growth system which retains the three-dimensional RSA of the plant root system, while allowing for aeration, solution replenishment and the imposition of nutrient treatments, as well as high-quality imaging of the root system. The simplicity and flexibility of the system allows for modifications tailored to the RSA of different crop species and improved throughput. This paper details the recent improvements and innovations in our root growth and imaging system which allows for greater image sensitivity (detection of fine roots and other root details), higher efficiency, and a broad array of growing conditions for plants that more closely mimic those found under field conditions.

  7. Mapping 3D genome architecture through in situ DNase Hi-C.

    PubMed

    Ramani, Vijay; Cusanovich, Darren A; Hause, Ronald J; Ma, Wenxiu; Qiu, Ruolan; Deng, Xinxian; Blau, C Anthony; Disteche, Christine M; Noble, William S; Shendure, Jay; Duan, Zhijun

    2016-11-01

    With the advent of massively parallel sequencing, considerable work has gone into adapting chromosome conformation capture (3C) techniques to study chromosomal architecture at a genome-wide scale. We recently demonstrated that the inactive murine X chromosome adopts a bipartite structure using a novel 3C protocol, termed in situ DNase Hi-C. Like traditional Hi-C protocols, in situ DNase Hi-C requires that chromatin be chemically cross-linked, digested, end-repaired, and proximity-ligated with a biotinylated bridge adaptor. The resulting ligation products are optionally sheared, affinity-purified via streptavidin bead immobilization, and subjected to traditional next-generation library preparation for Illumina paired-end sequencing. Importantly, in situ DNase Hi-C obviates the dependence on a restriction enzyme to digest chromatin, instead relying on the endonuclease DNase I. Libraries generated by in situ DNase Hi-C have a higher effective resolution than traditional Hi-C libraries, which makes them valuable in cases in which high sequencing depth is allowed for, or when hybrid capture technologies are expected to be used. The protocol described here, which involves ∼4 d of bench work, is optimized for the study of mammalian cells, but it can be broadly applicable to any cell or tissue of interest, given experimental parameter optimization.

  8. Aligned Silk-Based 3D Architectures for Contact Guidance in Tissue Engineering

    PubMed Central

    Oliveira, A.L.; Sun, L.; Kim, H. J.; Hu, X.; Rice, W.; Kluge, J.; Reis, R. L.; Kaplan, D. L.

    2011-01-01

    An important challenge in the biomaterials field is to mimic the structure of functional tissues via cell and extracellular matrix (ECM) alignment and anisotropy. Toward this goal, silk-based scaffolds resembling bone lamellar structure were developed using a freeze-drying technique. The structure could be controlled directly by solute concentration and freezing parameters, resulting in lamellar scaffolds with regular morphology. Different post-treatments were investigated to induce water stability, such as methanol, water annealing and steam sterilization. The resulting structures exhibited significant differences in terms of morphological integrity, structure and mechanical properties. the lamellar thicknesses were around ~2,6 μm for the methanol treated scaffolds and ~5,8 μm for water-annealed. These values are in the range of the reported for human lamellar bone. Human bone marrow-derived mesenchymal stem cells (hMSCs) were seeded on these silk fibroin lamellar scaffolds and grown under osteogenic conditions to assess the effect of the microstructure on cell behaviour. Collagen in the newly deposited ECM, was found aligned along the lamellar architectures. In the case of methanol treated lamellar structures the hMSCs were able to migrate into the interior of the scaffolds producing a multilamellar hybrid construct. The present morphology constitutes a useful pattern onto which hMSCs cells attach and proliferate for guided formation of a highly oriented extracellular matrix. PMID:22202909

  9. Rapid tissue engineering of biomimetic human corneal limbal crypts with 3D niche architecture.

    PubMed

    Levis, Hannah J; Massie, Isobel; Dziasko, Marc A; Kaasi, Andreas; Daniels, Julie T

    2013-11-01

    Limbal epithelial stem cells are responsible for the maintenance of the human corneal epithelium and these cells reside in a specialised stem cell niche. They are located at the base of limbal crypts, in a physically protected microenvironment in close proximity to a variety of neighbouring niche cells. Design and recreation of elements of various stem cell niches have allowed researchers to simplify aspects of these complex microenvironments for further study in vitro. We have developed a method to rapidly and reproducibly create bioengineered limbal crypts (BLCs) in a collagen construct using a simple one-step method. Liquid is removed from collagen hydrogels using hydrophilic porous absorbers (HPAs) that have custom moulded micro-ridges on the base. The resulting topography on the surface of the thin collagen constructs resembles the dimensions of the stromal crypts of the human limbus. Human limbal epithelial cells seeded onto the surface of the constructs populate these BLCs and form numerous layers with a high proportion of the cells lining the crypts expressing putative stem cell marker, p63α. The HPAs are produced using a moulding process that is flexible and can be adapted depending on the requirements of the end user. Creation of defined topographical features using this process could be applicable to numerous tissue-engineering applications where varied 3-dimensional niche architectures are required.

  10. Tree architecture and forest canopy structure obtained from terrestrial LiDAR measurements

    NASA Astrophysics Data System (ADS)

    Hentschel, Reiner; Bittner, Sebastian; Ritter, Daniel; Priesack, Eckart

    2013-04-01

    ranging from single tree architectures to tree stand architecture of almost 100 deciduous trees of 25 meter height. The handling of the effects of self-shadowing and data gaps and the limits of the algorithm is discussed as well as the requirements for the laser scanner hardware and data acquisition. We show the use of the obtained tree and canopy architectures to simulate water uptake, water storage, and transpiration in combination with light absorption and leaf photosynthesis using a ray tracer model.

  11. 3D architecture of a graphene/CoMoO4 composite for asymmetric supercapacitors usable at various temperatures.

    PubMed

    Jiang, Yaru; Zheng, Xin; Yan, Xiaoqin; Li, Yong; Zhao, Xuan; Zhang, Yue

    2017-05-01

    Designing and optimizing the electrode materials and studying the electrochemical performance or cycle life of the supercapacitor under different working conditions are crucial to its practical application. Herein, we proposed a rational design of 3D-graphene/CoMoO4 nanoplates by a facile two-step hydrothermal method. Owing to the high electron transfer rate of graphene and the high activity of the CoMoO4 nanoplates, the three-dimensional electrode architectures achieved remarkable electrochemical performances with high areal specific capacitance (1255.24F/g at 1A/g) and superior cycling stability (91.3% of the original specific capacitance after 3000 cycles at 1A/g). The all-solid-state asymmetric supercapacitor composed of 3D-graphene/CoMoO4 and activated carbon (AC) exhibited a specific capacitance of 109F/g at 0.2A/g and an excellent cycling stability with only 12.1% of the initial specific capacitance off after 3000 cycles at 2A/g. The effects of temperature and charge-discharge current densities on the charge storage capacity of the supercapacitor were also investigated in detail for practical applications.

  12. 3D Structural and Stratigraphic Architecture of the Northwest Santa Barbara Channel and Implications for Submarine Landslide Generation

    NASA Astrophysics Data System (ADS)

    Wright, A.; Kluesner, J. W.; Brothers, D. S.; Johnson, S. Y.

    2015-12-01

    Multiple submarine landslides have been previously documented on the north flank of the Santa Barbara Channel, and such failures are considered capable of generating local tsunamis. 2D seismic-reflection datasets provide a general view of regional framework geology, including faulting and folding associated with north-south compression. However, better understanding of the relationships between faults, folds, stratigraphic architecture, and submarine landslides can be obtained with 3D seismic datasets. In this study we use an industry 3D seismic-reflection volume that encompasses the slope and shelfbreak surrounding the Gaviota submarine landslide (3.8 km2) to investigate structural and stratigraphic controls on slope failure in this region. The depth-migrated seismic volume shows a network of stacked thrust faults, backthrusts, and splays that results in both broad and local zones of compression and folding along the slope and shelf. One localized zone of enhanced folding associated with small-offset thrust faults is located directly beneath the Gaviota landslide headwall, while another zone is located directly below an imaged seafloor fissure. In addition, 3D seismic attribute analysis provides insight into the shallow sedimentary section of the failed and non-failed sedimentary packages. Calculation of RMS amplitude and dominant frequency within a windowed region below the seafloor horizon delineates an apparent zone of gas-charged strata that onlaps onto older folded sediments. The up-dip limit of these gas-charged sediments aligns with the location of a seafloor fissure that extends westward from the Gaviota landslide headwall. We propose that the combination of deformation and fluid charging acted to pre-condition and trigger the failure of the Gaviota landslide, and as a result, the presence of these conditions along the fissure adjacent to the Gaviota landslide suggests this area should be considered landslide prone.

  13. 3D Functional Corneal Stromal Tissue Equivalent Based on Corneal Stromal Stem Cells and Multi-Layered Silk Film Architecture

    PubMed Central

    Marelli, Benedetto; Omenetto, Fiorenzo G.; Funderburgh, James L.; Kaplan, David L.

    2017-01-01

    The worldwide need for human cornea equivalents continues to grow. Few clinical options are limited to allogenic and synthetic material replacements. We hypothesized that tissue engineered human cornea systems based on mechanically robust, patterned, porous, thin, optically clear silk protein films, in combination with human corneal stromal stem cells (hCSSCs), would generate 3D functional corneal stroma tissue equivalents, in comparison to previously developed 2D approaches. Silk film contact guidance was used to control the alignment and distribution of hCSSCs on RGD-treated single porous silk films, which were then stacked in an orthogonally, multi-layered architecture and cultured for 9 weeks. These systems were compared similar systems generated with human corneal fibroblasts (hCFs). Both cell types were viable and preferentially aligned along the biomaterial patterns for up to 9 weeks in culture. H&E histological sections showed that the systems seeded with the hCSSCs displayed ECM production throughout the entire thickness of the constructs. In addition, the ECM proteins tested positive for keratocyte-specific tissue markers, including keratan sulfate, lumican, and keratocan. The quantification of hCSSC gene expression of keratocyte-tissue markers, including keratocan, lumican, human aldehyde dehydrogenase 3A1 (ALDH3A1), prostaglandin D2 synthase (PTDGS), and pyruvate dehydrogenase kinase, isozyme 4 (PDK4), within the 3D tissue systems demonstrated upregulation when compared to 2D single silk films and to the systems generated with the hCFs. Furthermore, the production of ECM from the hCSSC seeded systems and subsequent remodeling of the initial matrix significantly improved cohesiveness and mechanical performance of the constructs, while maintaining transparency after 9 weeks. PMID:28099503

  14. Crystal engineering in 3D: Converting nanoscale lamellar manganese oxide to cubic spinel while affixed to a carbon architecture

    DOE PAGES

    Donakowski, Martin D.; Wallace, Jean M.; Sassin, Megan B.; ...

    2016-06-17

    Here, by applying differential pair distribution function (DPDF) analyses to the energy–storage relevant MnOx/carbon system— but in a 3D architectural rather than powder–composite configuration—we can remove contributions of the carbon nanofoam paper scaffold and quantify the multiphasic oxide speciation as the nanoscale, disordered MnOx grafted to the carbon walls (MnOx@CNF) structurally rearranges in situ from birnessite AMnOx (A = Na+; Li+) to tetragonal Mn3O4 to spinel LiMn2O4. The first reaction step involves topotactic exchange of interlayer Na+ by Li+ in solution followed by thermal treatments to crystal engineer the –10–nm–thick 2D layered oxide throughout the macroscale nanofoam paper into amore » spinel phase. The oxide remains affixed to the walls of the nanofoam throughout the phase transformations. The DPDF fits are improved by retention of one plane of birnessite–like oxide after conversion to spinel. We support the DPDF–derived assignments by X–ray photoelectron spectroscopy and Raman spectroscopy, the latter of which tracks how crystal engineering the oxide affects the disorder of the carbon substrate. We further benchmark MnOx@CNF with nonaqueous electrochemical measurements versus lithium as the oxide converts from X–ray–amorphous birnessite to interlayer-registered LiMnOx to spinel. The lamellar AMnOx displays pseudocapacitive electrochemical behavior, with a doubling of specific capacitance for the interlayer–registered LiMnOx, while the spinel LiMn2O4@CNF displays a faradaic electrochemical response characteristic of Li–ion insertion. Our results highlight the need for holistic understanding when crystal engineering an (atomistic) charge–storing phase within the (architectural) structure of practical electrodes.« less

  15. Performance of Composites from 3D Orthogonal Woven Preforms in terms of Architecture and Sample Location during Resin Infusion

    NASA Astrophysics Data System (ADS)

    Ince, Mehmet Erdem

    Geometric modeling of woven preforms is a useful tool to predict preform thickness, preform areal density and fiber volume fraction (FVF) of constituent yarns. Previous geometrical models of 3D orthogonal woven preforms, which are extensively reviewed in Chapter 2, were limited to plain weave interlacing pattern in jammed case. In this study, generalized geometric models in terms of weave design (represented by a numerical value termed "weave factor") were developed. The models cover both jammed and non-jammed cases, consider circular, racetrack, and rectangular yarn cross-sectional shapes. The models predict thickness, constituent yarn weights, and FVFs of 3D orthogonal woven preforms. The models illustrated fabric architecture potential of 3D orthogonal woven preforms. Numerical results for hypothetical structures showed how to control through the thickness components of the z-yarn and total FVF, that have direct effect on the in-plane and out-of-plane properties, with interlacing pattern (weave factor) and z-yarn linear density. The models were demonstrated as an essential design tool that may be used to develop composites with predicted level of structural parameters and performance. Broad range of 3D orthogonal woven preforms from glass fibers with different architectures were woven and consolidated by vacuum infusion process (VIP) with different z-yarn interlacing pattern, number of y-yarn layers, and x-yarn spacing to verify the model for filament yarns. Dry preform thickness and weight of in-plane yarns predicted by the geometric model for filament yarns correlated well with experimental results. Z-yarn weight of dry preform was 24.3% overestimated by the model due to shortening of z-yarn at cross overs in real preforms due to the flattening of x-yarns caused by the tension of z-yarns. Total FVF of actual dry preform was 0.4% greater than model prediction. However, total FVF of composite was 5.4% overestimated by the model, which is within the experimental

  16. Crystal engineering in 3D: Converting nanoscale lamellar manganese oxide to cubic spinel while affixed to a carbon architecture

    SciTech Connect

    Donakowski, Martin D.; Wallace, Jean M.; Sassin, Megan B.; Chapman, Karena W.; Parker, Joseph F.; Long, Jeffrey W.; Rolison, Debra R.

    2016-06-17

    Here, by applying differential pair distribution function (DPDF) analyses to the energy–storage relevant MnOx/carbon system— but in a 3D architectural rather than powder–composite configuration—we can remove contributions of the carbon nanofoam paper scaffold and quantify the multiphasic oxide speciation as the nanoscale, disordered MnOx grafted to the carbon walls (MnOx@CNF) structurally rearranges in situ from birnessite AMnOx (A = Na+; Li+) to tetragonal Mn3O4 to spinel LiMn2O4. The first reaction step involves topotactic exchange of interlayer Na+ by Li+ in solution followed by thermal treatments to crystal engineer the –10–nm–thick 2D layered oxide throughout the macroscale nanofoam paper into a spinel phase. The oxide remains affixed to the walls of the nanofoam throughout the phase transformations. The DPDF fits are improved by retention of one plane of birnessite–like oxide after conversion to spinel. We support the DPDF–derived assignments by X–ray photoelectron spectroscopy and Raman spectroscopy, the latter of which tracks how crystal engineering the oxide affects the disorder of the carbon substrate. We further benchmark MnOx@CNF with nonaqueous electrochemical measurements versus lithium as the oxide converts from X–ray–amorphous birnessite to interlayer-registered LiMnOx to spinel. The lamellar AMnOx displays pseudocapacitive electrochemical behavior, with a doubling of specific capacitance for the interlayer–registered LiMnOx, while the spinel LiMn2O4@CNF displays a faradaic electrochemical response characteristic of Li–ion insertion. Our results highlight the need for holistic understanding when crystal engineering an (atomistic) charge–storing phase within the (architectural) structure of practical electrodes.

  17. Genetic Architecture of Phenomic-Enabled Canopy Coverage in Glycine max.

    PubMed

    Xavier, Alencar; Hall, Benjamin; Hearst, Anthony A; Cherkauer, Keith A; Rainey, Katy M

    2017-03-31

    Digital imagery can help to quantify seasonal changes in desirable crop phenotypes that can be treated as quantitative traits. Because limitations in precise and functional phenotyping restrain genetic improvement in the post-genomic era, imagery-based phenomics could become the next breakthrough to accelerate genetic gains in field crops. Whereas many phenomic studies focus on exploratory analysis of spectral data without obvious interpretative value, we used field images to directly measure soybean canopy development from phenological stage V2 to R5. Over three years, we collected imagery using ground and aerial platforms of a large and diverse nested association panel comprising 5,555 lines. Genome-wide association analysis of canopy coverage across sampling dates detected a large quantitative trait locus on soybean (Glycine max, L. Merr.) chromosome 19. This QTL provided an increase in yield of 47.3 kg.ha(-1) Variance component analysis indicated that a parameter, described as average canopy coverage, is a highly heritable trait (h(2) = 0.77) with a promising genetic correlation with grain yield (0.87), enabling indirect selection of yield via canopy development parameters. Our findings indicate that fast canopy coverage is an early season trait that is inexpensive to measure and has great potential for application in breeding programs focused on yield improvement. We recommend using the average canopy coverage in multiple trait schemes, especially for the early stages of the breeding pipeline (including progeny rows and preliminary yield trials), in which the large number of field plots makes collection of grain yield data challenging.

  18. 3D Sedimentary Architecture of the Nidelva Delta (Trondheim, Norway): Implications for Regional Slope Instability and Slide Development

    NASA Astrophysics Data System (ADS)

    L'Heureux, J.; Longva, O.; Hansen, L.

    2006-12-01

    The city of Trondheim, Norway is built on the Nidelv delta plain and urban development over the last hundred years has extended on the submarine part of the delta. A number of coastal slides are known to have occurred historically at the delta front. Skaven-Haug (1955) describes two large slides which occured in the Trondheim Harbor in 1888 and 1950 while Emdal and Janbu (1996) describes the slide at Lade peninsula that took place in 1990. From these events, damage to railways, roads and houses in addition to tsunami and loss of life occurred. In the last 15 years, land reclamation along the coast has been intensified for construction work and building activity. This has increased the concerns about the stability of the delta sediments and has highlighted the need for a regional stability assessment. This paper presents an ongoing study of the Nidelv delta, which includes in a first stage the construction of a 3D geological model of the raised subaerial portion of delta from a large data set comprising cone penetration tests (CPT), rotary pressure drilling tests and core sampling. The architectural model shows that the Nidelva delta reposes partly on bedrock, moraine material and on marine clays. The outskirts of the delta laps onto marine clays which form today's land surface. Different sedimentary facies have been recognized from the Nidelva delta: (1) prodelta clay and silts, prodelta silts, loose delta front silts and sands and alluvial sand and gravel. The materials, which have been involved in the mass movement, are delta front and prodelta sequences of loose fine sand and silt of Holocene age presenting low shear strength value based on the results from the geotechnical boreholes. The submarine part of the delta is constructed based on newly acquired high- resolution seismic data and swath bathymetry. The seismic data show numerous reflectors interpreted as sliding planes, shallow ruptures, slide scarps and slump debris in the delta deposit. The multibeam

  19. A task-based parallelism and vectorized approach to 3D Method of Characteristics (MOC) reactor simulation for high performance computing architectures

    NASA Astrophysics Data System (ADS)

    Tramm, John R.; Gunow, Geoffrey; He, Tim; Smith, Kord S.; Forget, Benoit; Siegel, Andrew R.

    2016-05-01

    In this study we present and analyze a formulation of the 3D Method of Characteristics (MOC) technique applied to the simulation of full core nuclear reactors. Key features of the algorithm include a task-based parallelism model that allows independent MOC tracks to be assigned to threads dynamically, ensuring load balancing, and a wide vectorizable inner loop that takes advantage of modern SIMD computer architectures. The algorithm is implemented in a set of highly optimized proxy applications in order to investigate its performance characteristics on CPU, GPU, and Intel Xeon Phi architectures. Speed, power, and hardware cost efficiencies are compared. Additionally, performance bottlenecks are identified for each architecture in order to determine the prospects for continued scalability of the algorithm on next generation HPC architectures.

  20. Facile Fabrication of 3D Layer-by-layer Graphene-gold Nanorod Hybrid Architecture for Hydrogen Peroxide Based Electrochemical Biosensor

    DTIC Science & Technology

    2015-01-01

    Facile fabrication of 3D layer-by-layer graphene-gold nanorod hybrid architecture for hydrogen peroxide based electrochemical biosensor Chenming Xue...the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/). 1. Introduction Electrochemical biosensors are highly effective in...measurement techniques such as radioisotope tracing, NMR spectroscopy, and microfluorometry assay [12,25,18]. In recent years, electrochemical biosensors

  1. Acclimation response of spring wheat in a free-air CO(2) enrichment (FACE) atmosphere with variable soil nitrogen regimes. 3. Canopy architecture and gas exchange.

    PubMed

    Brooks, T J; Wall, G W; Pinter, P J; Kimball, B A; Lamorte, R L; Leavitt, S W; Matthias, A D; Adamsen, F J; Hunsaker, D J; Webber, A N

    2000-01-01

    The response of whole-canopy net CO(2) exchange rate (CER) and canopy architecture to CO(2) enrichment and N stress during 1996 and 1997 for open-field-grown wheat ecosystem (Triticum aestivum L. cv. Yecora Rojo) are described. Every Control (C) and FACE (F) CO(2) treatment (defined as ambient and ambient +200 mumol mol(-1), respectively) contained a Low- and High-N treatment. Low-N treatments constituted initial soil content amended with supplemental nitrogen applied at a rate of 70 kg N ha(-1) (1996) and 15 kg N ha(-1) (1997), whereas High-N treatments were supplemented with 350 kg N ha(-1) (1996 and 1997). Elevated CO(2) enhanced season-long carbon accumulation by 8% and 16% under Low-N and High-N, respectively. N-stress reduced season-long carbon accumulation 14% under ambient CO(2), but by as much as 22% under CO(2) enrichment. Averaging both years, green plant area index (GPAI) peaked approximately 76 days after planting at 7.13 for FH, 6.00 for CH, 3.89 for FL, and 3.89 for CL treatments. Leaf tip angle distribution (LTA) indicated that Low-N canopies were more erectophile than those of High-N canopies: 48 degrees for FH, 52 degrees for CH, and 58 degrees for both FL and CL treatments. Temporal trends in canopy greenness indicated a decrease in leaf chlorophyll content from the flag to flag-2 leaves of 25% for FH, 28% for CH, 17% for CL, and 33% for FL during 1997. These results indicate that significant modifications of canopy architecture occurs in response to both CO(2) and N-stress. Optimization of canopy architecture may serve as a mechanism to diminish CO(2) and N-stress effects on CER.

  2. Canopy architectural and physiological characterization of near-isogenic wheat lines differing in the tiller inhibition gene tin

    PubMed Central

    Moeller, Carina; Evers, Jochem B.; Rebetzke, Greg

    2014-01-01

    Tillering is a core constituent of plant architecture, and influences light interception to affect plant and crop performance. Near-isogenic lines (NILs) varying for a tiller inhibition (tin) gene and representing two genetic backgrounds were investigated for tillering dynamics, organ size distribution, leaf area, light interception, red: far-red ratio, and chlorophyll content. Tillering ceased earlier in the tin lines to reduce the frequencies of later primary and secondary tillers compared to the free-tillering NILs, and demonstrated the genetically lower tillering plasticity of tin-containing lines. The distribution of organ sizes along shoots varied between NILs contrasting for tin. Internode elongation commenced at a lower phytomer, and the peduncle was shorter in the tin lines. The flag leaves of tin lines were larger, and the longest leaf blades were observed at higher phytomers in the tin than in free-tillering lines. Total leaf area was reduced in tin lines, and non-tin lines invested more leaf area at mid-canopy height. The tiller economy (ratio of seed-bearing shoots to numbers of shoots produced) was 10% greater in the tin lines (0.73–0.76) compared to the free-tillering sisters (0.62–0.63). At maximum tiller number, the red: far-red ratio (light quality stimulus that is thought to induce the cessation of tillering) at the plant-base was 0.18–0.22 in tin lines and 0.09–0.11 in free-tillering lines at levels of photosynthetic active radiation of 49–53% and 30–33%, respectively. The tin lines intercepted less radiation compared to their free-tillering sisters once genotypic differences in tiller numbers had established, and maintained green leaf area in the lower canopy later into the season. Greater light extinction coefficients (k) in tin lines prior to, but reduced k after, spike emergence indicated that differences in light interception between NILs contrasting in tin cannot be explained by leaf area alone but that geometric and optical

  3. Canopy architectural and physiological characterization of near-isogenic wheat lines differing in the tiller inhibition gene tin.

    PubMed

    Moeller, Carina; Evers, Jochem B; Rebetzke, Greg

    2014-01-01

    Tillering is a core constituent of plant architecture, and influences light interception to affect plant and crop performance. Near-isogenic lines (NILs) varying for a tiller inhibition (tin) gene and representing two genetic backgrounds were investigated for tillering dynamics, organ size distribution, leaf area, light interception, red: far-red ratio, and chlorophyll content. Tillering ceased earlier in the tin lines to reduce the frequencies of later primary and secondary tillers compared to the free-tillering NILs, and demonstrated the genetically lower tillering plasticity of tin-containing lines. The distribution of organ sizes along shoots varied between NILs contrasting for tin. Internode elongation commenced at a lower phytomer, and the peduncle was shorter in the tin lines. The flag leaves of tin lines were larger, and the longest leaf blades were observed at higher phytomers in the tin than in free-tillering lines. Total leaf area was reduced in tin lines, and non-tin lines invested more leaf area at mid-canopy height. The tiller economy (ratio of seed-bearing shoots to numbers of shoots produced) was 10% greater in the tin lines (0.73-0.76) compared to the free-tillering sisters (0.62-0.63). At maximum tiller number, the red: far-red ratio (light quality stimulus that is thought to induce the cessation of tillering) at the plant-base was 0.18-0.22 in tin lines and 0.09-0.11 in free-tillering lines at levels of photosynthetic active radiation of 49-53% and 30-33%, respectively. The tin lines intercepted less radiation compared to their free-tillering sisters once genotypic differences in tiller numbers had established, and maintained green leaf area in the lower canopy later into the season. Greater light extinction coefficients (k) in tin lines prior to, but reduced k after, spike emergence indicated that differences in light interception between NILs contrasting in tin cannot be explained by leaf area alone but that geometric and optical canopy

  4. High-Throughput Top-Down and Bottom-Up Processes for Forming Single-Nanotube Based Architectures for 3D Electronics

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Megerian, Krikor G.; von Allmen, Paul; Kowalczyk, Robert; Baron, Richard

    2009-01-01

    We have developed manufacturable approaches to form single, vertically aligned carbon nanotubes, where the tubes are centered precisely, and placed within a few hundred nm of 1-1.5 micron deep trenches. These wafer-scale approaches were enabled by chemically amplified resists and inductively coupled Cryo-etchers for forming the 3D nanoscale architectures. The tube growth was performed using dc plasma-enhanced chemical vapor deposition (PECVD), and the materials used for the pre-fabricated 3D architectures were chemically and structurally compatible with the high temperature (700 C) PECVD synthesis of our tubes, in an ammonia and acetylene ambient. Tube characteristics were also engineered to some extent, by adjusting growth parameters, such as Ni catalyst thickness, pressure and plasma power during growth. Such scalable, high throughput top-down fabrication techniques, combined with bottom-up tube synthesis, should accelerate the development of PECVD tubes for applications such as interconnects, nano-electromechanical (NEMS), sensors or 3D electronics in general.

  5. Insights into the complex 3-D architecture of thylakoid membranes in unicellular cyanobacterium Cyanothece sp. ATCC 51142.

    PubMed

    Liberton, Michelle; Austin, Jotham R; Berg, R Howard; Pakrasi, Himadri B

    2011-04-01

    In cyanobacteria and chloroplasts, thylakoids are the complex internal membrane system where the light reactions of oxygenic photosynthesis occur. In plant chloroplasts, thylakoids are differentiated into a highly interconnected system of stacked grana and unstacked stroma membranes. In contrast, in cyanobacteria, the evolutionary progenitors of chloroplasts, thylakoids do not routinely form stacked and unstacked regions, and the architecture of the thylakoid membrane systems is only now being described in detail in these organisms. We used electron tomography to examine the thylakoid membrane systems in one cyanobacterium, Cyanothece sp. ATCC 51142. Our data showed that thylakoids form a complicated branched network with a rudimentary quasi-helical architecture in this organism. A well accepted helical model of grana-stroma architecture of plant thylakoids describes an organization in which stroma thylakoids wind around stacked granum in right-handed spirals. Here we present data showing that the simplified helical architecture in Cyanothece 51142 is left-handed in nature. We propose a model comparing the thylakoid membranes in plants and this cyanobacterium in which the system in Cyanothece 51142 is composed of non-stacked membranes linked by fret-like connections to other membrane components of the system in a limited left-handed arrangement.

  6. Maize canopy architecture and adaptation to high plant density in long term selection programs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grain yield since the 1930s has increased more than five-fold in large part due to improvements in adaptation to high plant density. Changes to plant architecture that associated with improved light interception have made a major contribution to improved adaptation to high plant density. Improved ...

  7. Self-assembled 3D flowerlike hierarchical Fe3O4@Bi2O3 core-shell architectures and their enhanced photocatalytic activity under visible light.

    PubMed

    Wang, Yang; Li, Shikuo; Xing, Xianran; Huang, Fangzhi; Shen, Yuhua; Xie, Anjian; Wang, Xiufang; Zhang, Jian

    2011-04-18

    Three-dimensional (3D) flowerlike hierarchical Fe(3)O(4)@Bi(2)O(3) core-shell architectures were synthesized by a simple and direct solvothermal route without any linker shell. The results indicated that the size of the 3D flowerlike hierarchical microspheres was about 420 nm and the shell was composed of several nanosheets with a thickness of 4-10 nm and a width of 100-140 nm. The saturation magnetization of the superparamagnetic composite microspheres was about 41 emu g(-1) at room temperature. Moreover, the Fe(3)O(4)@Bi(2)O(3) composite microspheres showed much higher (7-10 times) photocatalytic activity than commercial Bi(2)O(3) particles under visible-light irradiation. The possible formation mechanism was proposed for Ostwald ripening and the self-assembled process. This novel composite material may have potential applications in water treatment, degradation of dye pollutants, and environmental cleaning, for example.

  8. Quantitative assessment of cancer vascular architecture by skeletonization of high-resolution 3-D contrast-enhanced ultrasound images: role of liposomes and microbubbles.

    PubMed

    Molinari, F; Meiburger, K M; Giustetto, P; Rizzitelli, S; Boffa, C; Castano, M; Terreno, E

    2014-12-01

    The accurate characterization and description of the vascular network of a cancer lesion is of paramount importance in clinical practice and cancer research in order to improve diagnostic accuracy or to assess the effectiveness of a treatment. The aim of this study was to show the effectiveness of liposomes as an ultrasound contrast agent to describe the 3-D vascular architecture of a tumor. Eight C57BL/6 mice grafted with syngeneic B16-F10 murine melanoma cells were injected with a bolus of 1,2-Distearoyl-sn-glycero-3-phosphocoline (DSPC)-based non-targeted liposomes and with a bolus of microbubbles. 3-D contrast-enhanced images of the tumor lesions were acquired in three conditions: pre-contrast, after the injection of microbubbles, and after the injection of liposomes. By using a previously developed reconstruction and characterization image processing technique, we obtained the 3-D representation of the vascular architecture in these three conditions. Six descriptive parameters of these networks were also computed: the number of vascular trees (NT), the vascular density (VD), the number of branches, the 2-D curvature measure, the number of vascular flexes of the vessels, and the 3-D curvature. Results showed that all the vascular descriptors obtained by liposome-based images were statistically equal to those obtained by using microbubbles, except the VD which was found to be lower for liposome images. All the six descriptors computed in pre-contrast conditions had values that were statistically lower than those computed in presence of contrast, both for liposomes and microbubbles. Liposomes have already been used in cancer therapy for the selective ultrasound-mediated delivery of drugs. This work demonstrated their effectiveness also as vascular diagnostic contrast agents, therefore proving that liposomes can be used as efficient "theranostic" (i.e. therapeutic 1 diagnostic) ultrasound probes.

  9. Syntheses, structures, and photoluminescence of d 10 coordination architectures: From 1D to 3D complexes based on mixed ligands

    NASA Astrophysics Data System (ADS)

    Yuan, Gang; Shao, Kui-Zhan; Du, Dong-Ying; Wang, Xin-Long; Su, Zhong-Min

    2011-05-01

    Six new compounds, namely, {[Cd 3(Himpy) 3(tda) 2]·3H 2O} n ( 1), {[Zn 3(bipy) 2(tda) 2(H 2O) 2]·4H 2O} n ( 2), {[Cd 3(bipy) 3(tda) 2]·4H 2O} n ( 3), {[Cd 3(tda) 2(H 2O) 3Cl]·H 2O} n ( 4), {[Zn 2(tz)(tda)(H 2O) 2]·H 2O} n ( 5) and {[Cd 7(pz)(tda) 4(OAc)(H 2O) 7]·3H 2O} n ( 6) [H 3tda = 1H-1,2,3-triazole-4,5-dicarboxylic acid, Himpy = 2-(1H-imidazol-2-yl)pyridine, bipy = 2,2'-bipyridine, Htz = 1H-1,2,4-triazole, H 2pz = piperazine] have been prepared under hydrothermal condition and characterized by elemental analyses, infrared spectroscopy, powder X-ray diffraction and single-crystal X-ray diffraction analyses. Compound 1 is a 1D column-like structure and displays a 3D supramolecular network via the π···π stacking interaction. The compounds 2 and 3 exhibit similar 2D layer-like structure, which further extend to 3D supermolecular structure by the π···π stacking interaction. All of compounds 4- 6 display 3D framework with diverse topology constructed from the tda 3- ligands in different coordination modes and secondary ligands (or bridging atom) connecting metal ions. Furthermore, the thermal stabilities and photoluminescent properties of compounds 1- 6 were studied.

  10. Quantification of the effects of architectural traits on dry mass production and light interception of tomato canopy under different temperature regimes using a dynamic functional-structural plant model.

    PubMed

    Chen, Tsu-Wei; Nguyen, Thi My Nguyet; Kahlen, Katrin; Stützel, Hartmut

    2014-12-01

    There is increasing interest in evaluating the environmental effects on crop architectural traits and yield improvement. However, crop models describing the dynamic changes in canopy structure with environmental conditions and the complex interactions between canopy structure, light interception, and dry mass production are only gradually emerging. Using tomato (Solanum lycopersicum L.) as a model crop, a dynamic functional-structural plant model (FSPM) was constructed, parameterized, and evaluated to analyse the effects of temperature on architectural traits, which strongly influence canopy light interception and shoot dry mass. The FSPM predicted the organ growth, organ size, and shoot dry mass over time with high accuracy (>85%). Analyses of this FSPM showed that, in comparison with the reference canopy, shoot dry mass may be affected by leaf angle by as much as 20%, leaf curvature by up to 7%, the leaf length:width ratio by up to 5%, internode length by up to 9%, and curvature ratios and leaf arrangement by up to 6%. Tomato canopies at low temperature had higher canopy density and were more clumped due to higher leaf area and shorter internodes. Interestingly, dry mass production and light interception of the clumped canopy were more sensitive to changes in architectural traits. The complex interactions between architectural traits, canopy light interception, dry mass production, and environmental conditions can be studied by the dynamic FSPM, which may serve as a tool for designing a canopy structure which is 'ideal' in a given environment.

  11. A fractal approach to the dark silicon problem: A comparison of 3D computer architectures - Standard slices versus fractal Menger sponge geometry

    NASA Astrophysics Data System (ADS)

    Herrmann, Richard

    2015-01-01

    The dark silicon problem, which limits the power-growth of future computer generations, is interpreted as a heat energy transport problem when increasing the energy emitting surface area within a given volume. A comparison of two 3D-configuration models, namely a standard slicing and a fractal surface generation within the Menger sponge geometry is presented. It is shown, that for iteration orders $n>3$ the fractal model shows increasingly better thermal behavior. As a consequence cooling problems may be minimized by using a fractal architecture. Therefore the Menger sponge geometry is a good example for fractal architectures applicable not only in computer science, but also e.g. in chemistry when building chemical reactors, optimizing catalytic processes or in sensor construction technology building highly effective sensors for toxic gases or water analysis.

  12. 3D Polyaniline Architecture by Concurrent Inorganic and Organic Acid Doping for Superior and Robust High Rate Supercapacitor Performance

    PubMed Central

    Gawli, Yogesh; Banerjee, Abhik; Dhakras, Dipti; Deo, Meenal; Bulani, Dinesh; Wadgaonkar, Prakash; Shelke, Manjusha; Ogale, Satishchandra

    2016-01-01

    A good high rate supercapacitor performance requires a fine control of morphological (surface area and pore size distribution) and electrical properties of the electrode materials. Polyaniline (PANI) is an interesting material in supercapacitor context because it stores energy Faradaically. However in conventional inorganic (e.g. HCl) acid doping, the conductivity is high but the morphological features are undesirable. On the other hand, in weak organic acid (e.g. phytic acid) doping, interesting and desirable 3D connected morphological features are attained but the conductivity is poorer. Here the synergy of the positive quality factors of these two acid doping approaches is realized by concurrent and optimized strong-inorganic (HCl) and weak-organic (phytic) acid doping, resulting in a molecular composite material that renders impressive and robust supercapacitor performance. Thus, a nearly constant high specific capacitance of 350 F g−1 is realized for the optimised case of binary doping over the entire range of 1 A g−1 to 40 A g−1 with stability of 500 cycles at 40 A g−1. Frequency dependant conductivity measurements show that the optimized co-doped case is more metallic than separately doped materials. This transport property emanates from the unique 3D single molecular character of such system. PMID:26867570

  13. 3D Polyaniline Architecture by Concurrent Inorganic and Organic Acid Doping for Superior and Robust High Rate Supercapacitor Performance

    NASA Astrophysics Data System (ADS)

    Gawli, Yogesh; Banerjee, Abhik; Dhakras, Dipti; Deo, Meenal; Bulani, Dinesh; Wadgaonkar, Prakash; Shelke, Manjusha; Ogale, Satishchandra

    2016-02-01

    A good high rate supercapacitor performance requires a fine control of morphological (surface area and pore size distribution) and electrical properties of the electrode materials. Polyaniline (PANI) is an interesting material in supercapacitor context because it stores energy Faradaically. However in conventional inorganic (e.g. HCl) acid doping, the conductivity is high but the morphological features are undesirable. On the other hand, in weak organic acid (e.g. phytic acid) doping, interesting and desirable 3D connected morphological features are attained but the conductivity is poorer. Here the synergy of the positive quality factors of these two acid doping approaches is realized by concurrent and optimized strong-inorganic (HCl) and weak-organic (phytic) acid doping, resulting in a molecular composite material that renders impressive and robust supercapacitor performance. Thus, a nearly constant high specific capacitance of 350 F g‑1 is realized for the optimised case of binary doping over the entire range of 1 A g‑1 to 40 A g‑1 with stability of 500 cycles at 40 A g‑1. Frequency dependant conductivity measurements show that the optimized co-doped case is more metallic than separately doped materials. This transport property emanates from the unique 3D single molecular character of such system.

  14. Analysis of trabecular bone architectural changes induced by osteoarthritis in rabbit femur using 3D active shape model and digital topology

    NASA Astrophysics Data System (ADS)

    Saha, P. K.; Rajapakse, C. S.; Williams, D. S.; Duong, L.; Coimbra, A.

    2007-03-01

    Osteoarthritis (OA) is the most common chronic joint disease, which causes the cartilage between the bone joints to wear away, leading to pain and stiffness. Currently, progression of OA is monitored by measuring joint space width using x-ray or cartilage volume using MRI. However, OA affects all periarticular tissues, including cartilage and bone. It has been shown previously that in animal models of OA, trabecular bone (TB) architecture is particularly affected. Furthermore, relative changes in architecture are dependent on the depth of the TB region with respect to the bone surface and main direction of load on the bone. The purpose of this study was to develop a new method for accurately evaluating 3D architectural changes induced by OA in TB. Determining the TB test domain that represents the same anatomic region across different animals is crucial for studying disease etiology, progression and response to therapy. It also represents a major technical challenge in analyzing architectural changes. Here, we solve this problem using a new active shape model (ASM)-based approach. A new and effective semi-automatic landmark selection approach has been developed for rabbit distal femur surface that can easily be adopted for many other anatomical regions. It has been observed that, on average, a trained operator can complete the user interaction part of landmark specification process in less than 15 minutes for each bone data set. Digital topological analysis and fuzzy distance transform derived parameters are used for quantifying TB architecture. The method has been applied on micro-CT data of excised rabbit femur joints from anterior cruciate ligament transected (ACLT) (n = 6) and sham (n = 9) operated groups collected at two and two-to-eight week post-surgery, respectively. An ASM of the rabbit right distal femur has been generated from the sham group micro-CT data. The results suggest that, in conjunction with ASM, digital topological parameters are suitable for

  15. Stratigraphic architecture and fault offsets of alluvial terraces at Te Marua, Wellington fault, New Zealand, revealed by pseudo-3D GPR investigation

    NASA Astrophysics Data System (ADS)

    Beauprêtre, S.; Manighetti, I.; Garambois, S.; Malavieille, J.; Dominguez, S.

    2013-08-01

    earthquake slips on faults are commonly determined by measuring morphological offsets at current ground surface. Because those offsets might not always be well preserved, we examine whether the first 10 m below ground surface contains relevant information to complement them. We focus on the Te Marua site, New Zealand, where 11 alluvial terraces have been dextrally offset by the Wellington fault. We investigated the site using pseudo-3D Ground Penetrating Radar and also produced a high-resolution digital elevation model (DEM) of the zone to constrain the surface slip record. The GPR data reveal additional information: (1) they image the 3D stratigraphic architecture of the seven youngest terraces and show that they are strath terraces carved into graywacke bedrock. Each strath surface is overlain by 3-5 m of horizontally bedded gravel sheets, including two pronounced and traceable reflectors; (2) thanks to the multilayer architecture, terrace risers and channels are imaged at three depths and their lateral offsets can be measured three to four times, constraining respective offsets and their uncertainties more reliably; and (3) the offsets are better preserved in the subsurface than at the ground surface, likely due to subsequent erosion-deposition on the latter. From surface and subsurface data, we infer that Te Marua has recorded six cumulative offsets of 2.9, 7.6, 18, 23.2, 26, and 31 m (± 1-2 m). Large earthquakes on southern Wellington fault might produce 3-5 m of slip, slightly less than previously proposed. Pseudo-3D GPR thus provides a novel paleoseismological tool to complement and refine surface investigations.

  16. Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect.

    PubMed

    Shao, Huifeng; Ke, Xiurong; Liu, An; Sun, Miao; He, Yong; Yang, Xianyan; Fu, Jianzhong; Liu, Yanming; Zhang, Lei; Yang, Guojing; Xu, Sanzhong; Gou, Zhongru

    2017-04-12

    Three-dimensional (3D) printing bioactive ceramics have demonstrated alternative approaches to bone tissue repair, but an optimized materials system for improving the recruitment of host osteogenic cells into the bone defect and enhancing targeted repair of the thin-wall craniomaxillofacial defects remains elusive. Herein we systematically evaluated the role of side-wall pore architecture in the direct-ink-writing bioceramic scaffolds on mechanical properties and osteogenic capacity in rabbit calvarial defects. The pure calcium silicate (CSi) and dilute Mg-doped CSi (CSi-Mg6) scaffolds with different layer thickness and macropore sizes were prepared by varying the layer deposition mode from single-layer printing (SLP) to double-layer printing (DLP) and then by undergoing one-, or two-step sintering. It was found that the dilute Mg doping and/or two-step sintering schedule was especially beneficial for improving the compressive strength (∼25-104 MPa) and flexural strength (∼6-18 MPa) of the Ca-silicate scaffolds. The histological analysis for the calvarial bone specimens in vivo revealed that the SLP scaffolds had a high osteoconduction at the early stage (4 weeks) but the DLP scaffolds displayed a higher osteogenic capacity for a long time stage (8-12 weeks). Although the DLP CSi scaffolds displayed somewhat higher osteogenic capacity at 8 and 12 weeks, the DLP CSi-Mg6 scaffolds with excellent fracture resistance also showed appreciable new bone tissue ingrowth. These findings demonstrate that the side-wall pore architecture in 3D printed bioceramic scaffolds is required to optimize for bone repair in calvarial bone defects, and especially the Mg doping wollastontie is promising for 3D printing thin-wall porous scaffolds for craniomaxillofacial bone defect treatment.

  17. An algorithm to correct 2D near-infrared fluorescence signals using 3D intravascular ultrasound architectural information

    NASA Astrophysics Data System (ADS)

    Mallas, Georgios; Brooks, Dana H.; Rosenthal, Amir; Vinegoni, Claudio; Calfon, Marcella A.; Razansky, R. Nika; Jaffer, Farouc A.; Ntziachristos, Vasilis

    2011-03-01

    Intravascular Near-Infrared Fluorescence (NIRF) imaging is a promising imaging modality to image vessel biology and high-risk plaques in vivo. We have developed a NIRF fiber optic catheter and have presented the ability to image atherosclerotic plaques in vivo, using appropriate NIR fluorescent probes. Our catheter consists of a 100/140 μm core/clad diameter housed in polyethylene tubing, emitting NIR laser light at a 90 degree angle compared to the fiber's axis. The system utilizes a rotational and a translational motor for true 2D imaging and operates in conjunction with a coaxial intravascular ultrasound (IVUS) device. IVUS datasets provide 3D images of the internal structure of arteries and are used in our system for anatomical mapping. Using the IVUS images, we are building an accurate hybrid fluorescence-IVUS data inversion scheme that takes into account photon propagation through the blood filled lumen. This hybrid imaging approach can then correct for the non-linear dependence of light intensity on the distance of the fluorescence region from the fiber tip, leading to quantitative imaging. The experimental and algorithmic developments will be presented and the effectiveness of the algorithm showcased with experimental results in both saline and blood-like preparations. The combined structural and molecular information obtained from these two imaging modalities are positioned to enable the accurate diagnosis of biologically high-risk atherosclerotic plaques in the coronary arteries that are responsible for heart attacks.

  18. Non-covalent bonded 2D-3D supramolecular architectures based on 4-dimethylaminopyridine and organic acids

    NASA Astrophysics Data System (ADS)

    Zhang, Huan; Jin, Shouwen; Wen, Xianhong; Liu, Bin; Fang, Yang; Zhang, Yani; Wang, Daqi

    2015-07-01

    Studies concentrating on non-covalent weak interactions between the organic base of 4-dimethylaminopyridine, and acidic derivatives have led to an increased understanding of the role 4-dimethylaminopyridine has in binding with the organic acid derivatives. Here anhydrous and hydrous multicomponent organic acid-base adducts of 4-dimethylaminopyridine have been prepared with organic acids such as 1,3-benzodioxole-5-carboxylic acid, p-aminobenzoic acid, 2,4-dihydroxybenzoic acid, 3,5-dihydroxybenzoic acid, 5-chlorosalicylic acid, 5-bromosalicylic acid, 5-nitrosalicylic acid, and 5-sulfosalicylic acid. The 4-dimethylaminopyridine is only monoprotonated. All compounds are organic salts with the 1:1 ratio of the cation and the anion. For the 5-sulfosalicylic acid only one H is ionized to exhibit the valence number of -1. The eight crystalline complexes were characterized by X-ray diffraction analysis, IR, mp, and elemental analysis. These structures adopted the hetero supramolecular synthons. Analysis of the crystal packing of 1-8 suggests that there are Nsbnd H⋯O, Osbnd H⋯O, and Osbnd H⋯S hydrogen bonds (charge assisted or neutral) between the organic acid and the 4-dimethylaminopyridine moieties in the studied compounds. Except the classical hydrogen bonding interactions, the secondary propagating interactions also play important roles in structure extension. For the synergistic effect of the various non-covalent interactions, the complexes displayed 2D-3D framework structures.

  19. Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics

    PubMed Central

    Stone, Adam; Jain, Himanshu; Dierolf, Volkmar; Sakakura, Masaaki; Shimotsuma, Yasuhiko; Miura, Kiyotaka; Hirao, Kazuyuki; Lapointe, Jerome; Kashyap, Raman

    2015-01-01

    Direct three-dimensional laser writing of amorphous waveguides inside glass has been studied intensely as an attractive route for fabricating photonic integrated circuits. However, achieving essential nonlinear-optic functionality in such devices will also require the ability to create high-quality single-crystal waveguides. Femtosecond laser irradiation is capable of crystallizing glass in 3D, but producing optical-quality single-crystal structures suitable for waveguiding poses unique challenges that are unprecedented in the field of crystal growth. In this work, we use a high angular-resolution electron diffraction method to obtain the first conclusive confirmation that uniform single crystals can be grown inside glass by femtosecond laser writing under optimized conditions. We confirm waveguiding capability and present the first quantitative measurement of power transmission through a laser-written crystal-in-glass waveguide, yielding loss of 2.64 dB/cm at 1530 nm. We demonstrate uniformity of the crystal cross-section down the length of the waveguide and quantify its birefringence. Finally, as a proof-of-concept for patterning more complex device geometries, we demonstrate the use of dynamic phase modulation to grow symmetric crystal junctions with single-pass writing. PMID:25988599

  20. 3 or 1? - 3D cone-sheet architecture provides insight into the centre(s) of Ardnamurchan

    NASA Astrophysics Data System (ADS)

    Burchardt, Steffi; Troll, Valentin R.; Mathieu, Lucie; Emeleus, Henry C.; Donaldson, Colin H.

    2013-04-01

    The Palaeogene Ardnamurchan igneous centre, NW Scotland, was a defining place for the development of classic concepts of cone-sheet, ring-dyke, and dyke emplacement. It holds therefore an iconic status among geologists and has influenced our understanding of subvolcanic structures fundamentally. We have used historic geological maps of Ardnamurchan to project the underlying three-dimensional (3D) cone-sheet structure. The results illustrate that a single elongate magma chamber likely acted as the source of the cone-sheet swarms, instead of the traditionally accepted model of three successive centres. Our finding is moreover consistent with recent sedimentological, geochemical, geophysical, and structural investigations that all support a ridge-like morphology for the Ardnamurchan volcano. This challenges the static model of cone-sheet emplacement that involves successive but independent centres in favour of a dynamical one that involves a single, but elongate magma chamber that is progressively evolving. The latter model reduces the lifetime required for the Ardnamurchan centre considerably.

  1. A versatile pipeline for the multi-scale digital reconstruction and quantitative analysis of 3D tissue architecture

    PubMed Central

    Morales-Navarrete, Hernán; Segovia-Miranda, Fabián; Klukowski, Piotr; Meyer, Kirstin; Nonaka, Hidenori; Marsico, Giovanni; Chernykh, Mikhail; Kalaidzidis, Alexander; Zerial, Marino; Kalaidzidis, Yannis

    2015-01-01

    A prerequisite for the systems biology analysis of tissues is an accurate digital three-dimensional reconstruction of tissue structure based on images of markers covering multiple scales. Here, we designed a flexible pipeline for the multi-scale reconstruction and quantitative morphological analysis of tissue architecture from microscopy images. Our pipeline includes newly developed algorithms that address specific challenges of thick dense tissue reconstruction. Our implementation allows for a flexible workflow, scalable to high-throughput analysis and applicable to various mammalian tissues. We applied it to the analysis of liver tissue and extracted quantitative parameters of sinusoids, bile canaliculi and cell shapes, recognizing different liver cell types with high accuracy. Using our platform, we uncovered an unexpected zonation pattern of hepatocytes with different size, nuclei and DNA content, thus revealing new features of liver tissue organization. The pipeline also proved effective to analyse lung and kidney tissue, demonstrating its generality and robustness. DOI: http://dx.doi.org/10.7554/eLife.11214.001 PMID:26673893

  2. Architectural improvements and 28 nm FPGA implementation of the APEnet+ 3D Torus network for hybrid HPC systems

    NASA Astrophysics Data System (ADS)

    Ammendola, Roberto; Biagioni, Andrea; Frezza, Ottorino; Lo Cicero, Francesca; Stanislao Paolucci, Pier; Lonardo, Alessandro; Rossetti, Davide; Simula, Francesco; Tosoratto, Laura; Vicini, Piero

    2014-06-01

    Modern Graphics Processing Units (GPUs) are now considered accelerators for general purpose computation. A tight interaction between the GPU and the interconnection network is the strategy to express the full potential on capability computing of a multi-GPU system on large HPC clusters; that is the reason why an efficient and scalable interconnect is a key technology to finally deliver GPUs for scientific HPC. In this paper we show the latest architectural and performance improvement of the APEnet+ network fabric, a FPGA-based PCIe board with 6 fully bidirectional off-board links with 34 Gbps of raw bandwidth per direction, and X8 Gen2 bandwidth towards the host PC. The board implements a Remote Direct Memory Access (RDMA) protocol that leverages upon peer-to-peer (P2P) capabilities of Fermi- and Kepler-class NVIDIA GPUs to obtain real zero-copy, low-latency GPU-to-GPU transfers. Finally, we report on the development activities for 2013 focusing on the adoption of the latest generation 28 nm FPGAs and the preliminary tests performed on this new platform.

  3. Black border, mask 3D effects: covering challenges of EUV mask architecture for 22nm node and beyond

    NASA Astrophysics Data System (ADS)

    Davydova, Natalia; van Setten, Eelco; de Kruif, Robert; Connolly, Brid; Fukugami, Norihito; Kodera, Yutaka; Morimoto, Hiroaki; Sakata, Yo; Kotani, Jun; Kondo, Shinpei; Imoto, Tomohiro; Rolff, Haiko; Ullrich, Albrecht; Jaganatharaja, Ramasubramanian Kottumakulal; Lammers, Ad; Oorschot, Dorothe; Man, Cheuk-Wah; Schiffelers, Guido; van Dijk, Joep

    2014-10-01

    Photomask is at the heart of a lithographic scanner's optical path. It cannot be left non-optimized from the imaging point of view. In this work we provide new insights on two critical aspects of EUV mask architecture: optimization of absorber for 16 nm half-pitch imaging and a systematic approach to black border EUV and DUV reflectance specifications. Good 16 nm imaging is demonstrated on ASML NXE:3300 EUV scanner. Currently a relatively high dose resist is used for imaging and the dose reduction is desired. Optimization (reduction) of absorber height and mask CD bias can allow for up to 30% dose reduction without essential contrast loss. Disadvantages of absorber height reduction are ~7 nm increase of best focus range through pitch and tighter absorber height mean to target and uniformity requirements. A disadvantage of a smaller reticle CD (down to 14 nm 1x) is manufacturing process uniformity over the reticle. A systematic approach of black border reflections impact on imaging is established. The image border is a pattern free dark area surrounding the image field and preventing exposure of the image field neighborhood on wafer. Currently accepted design of the black border on EUV reticle is an image border where the absorber and multilayer stack are etched down to the substrate and EUV reflectance is reduced to <0.05%. DUV reflectance of such a black border is about 5%. It is shown that a tighter DUV reflectance specification <1.5% is required driven by the impact of DUV reflections from the black border on imaging. NXE:3300 and NXE:3100 experimental imaging results are shown. The need of low DUV wavelength reflectance metrology (in the range 100-300 nm) is demonstrated using an estimated NXE scanner out-of-band DUV spectrum. Promising results of low DUV reflectance of the black border are shown.

  4. Estimation of canopy parameters for inhomogeneous vegetation canopies from reflectance data. III - TRIM: A model for radiative transfer in heterogeneous three-dimensional canopies

    NASA Technical Reports Server (NTRS)

    Goel, Narendra S.; Grier, Toby

    1988-01-01

    A model for radiative transfer in heterogeneous three-dimensional canopies such as those found in forests is proposed. Its use in estimating important biophysical variables such as leaf area index and canopy architecture from bidirectional canopy reflectance data is discussed. The model and its use in estimating canopy parameters through its inversion are validated with measured canopy reflectance data for corn canopies.

  5. Distinct 3D Architecture and Dynamics of the Human HtrA2(Omi) Protease and Its Mutated Variants

    PubMed Central

    Gieldon, Artur; Zurawa-Janicka, Dorota; Jarzab, Miroslaw; Wenta, Tomasz; Golik, Przemyslaw; Dubin, Grzegorz; Lipinska, Barbara; Ciarkowski, Jerzy

    2016-01-01

    HtrA2(Omi) protease controls protein quality in mitochondria and plays a major role in apoptosis. Its HtrA2S306A mutant (with the catalytic serine routinely disabled for an X-ray study to avoid self-degradation) is a homotrimer whose subunits contain the serine protease domain (PD) and the regulatory PDZ domain. In the inactive state, a tight interdomain interface limits penetration of both PDZ-activating ligands and PD substrates into their respective target sites. We successfully crystalized HtrA2V226K/S306A, whose active counterpart HtrA2V226K has had higher proteolytic activity, suggesting higher propensity to opening the PD-PDZ interface than that of the wild type HtrA2. Yet, the crystal structure revealed the HtrA2V226K/S306A architecture typical of the inactive protein. To get a consistent interpretation of crystallographic data in the light of kinetic results, we employed molecular dynamics (MD). V325D inactivating mutant was used as a reference. Our simulations demonstrated that upon binding of a specific peptide ligand NH2-GWTMFWV-COOH, the PDZ domains open more dynamically in the wild type protease compared to the V226K mutant, whereas the movement is not observed in the V325D mutant. The movement relies on a PDZ vs. PD rotation which opens the PD-PDZ interface in a lid-like (budding flower-like in trimer) fashion. The noncovalent hinges A and B are provided by two clusters of interfacing residues, harboring V325D and V226K in the C- and N-terminal PD barrels, respectively. The opening of the subunit interfaces progresses in a sequential manner during the 50 ns MD simulation. In the systems without the ligand only minor PDZ shifts relative to PD are observed, but the interface does not open. Further activation-associated events, e.g. PDZ-L3 positional swap seen in any active HtrA protein (vs. HtrA2), were not observed. In summary, this study provides hints on the mechanism of activation of wtHtrA2, the dynamics of the inactive HtrA2V325D, but does not

  6. Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy.

    PubMed

    Zhang, Zijiao; Sheng, Hongwei; Wang, Zhangjie; Gludovatz, Bernd; Zhang, Ze; George, Easo P; Yu, Qian; Mao, Scott X; Ritchie, Robert O

    2017-02-20

    Combinations of high strength and ductility are hard to attain in metals. Exceptions include materials exhibiting twinning-induced plasticity. To understand how the strength-ductility trade-off can be defeated, we apply in situ, and aberration-corrected scanning, transmission electron microscopy to examine deformation mechanisms in the medium-entropy alloy CrCoNi that exhibits one of the highest combinations of strength, ductility and toughness on record. Ab initio modelling suggests that it has negative stacking-fault energy at 0K and high propensity for twinning. With deformation we find that a three-dimensional (3D) hierarchical twin network forms from the activation of three twinning systems. This serves a dual function: conventional twin-boundary (TB) strengthening from blockage of dislocations impinging on TBs, coupled with the 3D twin network which offers pathways for dislocation glide along, and cross-slip between, intersecting TB-matrix interfaces. The stable twin architecture is not disrupted by interfacial dislocation glide, serving as a continuous source of strength, ductility and toughness.

  7. Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Zijiao; Sheng, Hongwei; Wang, Zhangjie; Gludovatz, Bernd; Zhang, Ze; George, Easo P.; Yu, Qian; Mao, Scott X.; Ritchie, Robert O.

    2017-02-01

    Combinations of high strength and ductility are hard to attain in metals. Exceptions include materials exhibiting twinning-induced plasticity. To understand how the strength-ductility trade-off can be defeated, we apply in situ, and aberration-corrected scanning, transmission electron microscopy to examine deformation mechanisms in the medium-entropy alloy CrCoNi that exhibits one of the highest combinations of strength, ductility and toughness on record. Ab initio modelling suggests that it has negative stacking-fault energy at 0K and high propensity for twinning. With deformation we find that a three-dimensional (3D) hierarchical twin network forms from the activation of three twinning systems. This serves a dual function: conventional twin-boundary (TB) strengthening from blockage of dislocations impinging on TBs, coupled with the 3D twin network which offers pathways for dislocation glide along, and cross-slip between, intersecting TB-matrix interfaces. The stable twin architecture is not disrupted by interfacial dislocation glide, serving as a continuous source of strength, ductility and toughness.

  8. Photonic bandgap extension of surface-disordered 3D photonic crystals based on the TiO2 inverse opal architecture.

    PubMed

    Wang, Aijun; Liu, Wenfang; Tang, Junjie; Chen, Sheng-Li; Dong, Peng

    2014-04-15

    A photonic bandgap (PBG) extension of surface-disordered 3D photonic crystals (PCs) based on the TiO2 inverse opal (TiO2-IO) architecture has been demonstrated. By using a liquid phase deposition (LPD) process based on the controlled hydrolysis of ammonium hexafluorotitanate and boric acid, an extra layer of TiO2 nanoparticles were deposited onto the internal surface of the air voids in the TiO2-IOs to increase their surface roughness, thereby introducing surface disorder in the 3D order structures. The PBG relative width of surface-disordered TiO2-IOs has been broadened significantly, and, compared to the original TiO2-IO, its largest rate of increase (27%) has been obtained. It was found that the PBG relative width increased rapidly at first and then to a much slower rate of change with increase of the duration of the LPD time. A possible cause for this finding is discussed in this Letter.

  9. 3D PLUS HI-REL DDR2 Termination Regulator Module- A Building Block Function for High Reliability SDRAM DDR2 System Architecture

    NASA Astrophysics Data System (ADS)

    Perrot, Nicolas; Dubus, Patrick; Garcia-Sanchez, Esther

    2015-09-01

    Memory system architectures using DDR2 technology need to be compliant with JEDEC JESD8-15A standard [1]. Therefore a bus termination regulator able to sink and source current while regulating VTT voltage is used for this purpose. Such module has been developed by 3D PLUS and is the first space qualified DDR Termination Regulator (DDR2-TR) available on the market. It is based on an innovative Bang-Bang regulation principle, chosen for its speed performance and to guarantee an output voltage that remains within the predefined limits regardless of any output current transients. The output filter type is selected to make the module rugged to any overload condition without complex protection circuits. The module has been specifically designed for low input voltage, low noise and high reliability systems where space is a key consideration. The module uses the 3D PLUS SIP (System-In-Package) technology embedding 3 stacked PCBs. No external filters or decoupling capacitors are needed.

  10. Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy

    PubMed Central

    Zhang, Zijiao; Sheng, Hongwei; Wang, Zhangjie; Gludovatz, Bernd; Zhang, Ze; George, Easo P.; Yu, Qian; Mao, Scott X.; Ritchie, Robert O.

    2017-01-01

    Combinations of high strength and ductility are hard to attain in metals. Exceptions include materials exhibiting twinning-induced plasticity. To understand how the strength-ductility trade-off can be defeated, we apply in situ, and aberration-corrected scanning, transmission electron microscopy to examine deformation mechanisms in the medium-entropy alloy CrCoNi that exhibits one of the highest combinations of strength, ductility and toughness on record. Ab initio modelling suggests that it has negative stacking-fault energy at 0K and high propensity for twinning. With deformation we find that a three-dimensional (3D) hierarchical twin network forms from the activation of three twinning systems. This serves a dual function: conventional twin-boundary (TB) strengthening from blockage of dislocations impinging on TBs, coupled with the 3D twin network which offers pathways for dislocation glide along, and cross-slip between, intersecting TB-matrix interfaces. The stable twin architecture is not disrupted by interfacial dislocation glide, serving as a continuous source of strength, ductility and toughness. PMID:28218267

  11. Synthesis of novel 3D SnO flower-like hierarchical architectures self-assembled by nano-leaves and its photocatalysis

    SciTech Connect

    Cui, Yongkui; Wang, Fengping Iqbal, M. Zubair; Wang, Ziya; Li, Yan; Tu, Jianhai

    2015-10-15

    Highlights: • Novel 3D SnO flowers self-assembled by 2D nano-leaves were synthesized by hydrothermal method. • The SnO nano-leaf is of single crystalline nature. • The band gap of 2.59 eV of as-prepared products was obtained. • The as-synthesized material will be a promising photocatalytic material. - Abstract: In this report, the novel 3D SnO flower-like hierarchical architectures self-assembled by 2D SnO nano-leaves are successfully synthesized via template-free hydrothermal approach under facile conditions. The high-resolution transmission electron microscopy results demonstrate that the 2D nano-leaves structure is of single crystalline nature. The band gap 2.59 eV for prepared product is obtained from UV–vis diffuse reflectance spectrum. The photocatalysis of the as prepared SnO for degrading methyl orange (MO) has been studied. A good photocatalytic activity is obtained and the mechanism is discussed in detail. Results indicate that the SnO nanostructures are the potential candidates for photocatalyst applications.

  12. Novel 3D electrospun scaffolds with fibers oriented randomly and evenly in three dimensions to closely mimic the unique architectures of extracellular matrices in soft tissues: fabrication and mechanism study.

    PubMed

    Cai, Shaobo; Xu, Helan; Jiang, Qiuran; Yang, Yiqi

    2013-02-19

    In this work, novel electrospun scaffolds with fibers oriented randomly and evenly in three dimensions (3D) including in the thickness direction were developed based on the principle of electrostatic repulsion. This unique structure is different from most electrospun scaffolds with fibers oriented mainly in one direction. The structure of novel 3D scaffolds could more closely mimic the 3D randomly oriented fibrous architectures in many native extracellular matrices (ECMs). The cell culture results of this study indicated that, instead of becoming flattened cells when cultured in conventional electrospun scaffolds, the cells cultured on novel 3D scaffolds could develop into stereoscopic topographies, which highly simulated in vivo 3D cellular morphologies and are believed to be of vital importance for cells to function and differentiate appropriately. Also, due to the randomly oriented fibrous structure, improvement of nearly 5 times in cell proliferation could be observed when comparing our 3D scaffolds with 2D counterparts after 7 days of cell culture, while most currently reported 3D scaffolds only showed 1.5- to 2.5-fold improvement for the similar comparison. One mechanism of this fabrication process has also been proposed and showed that the rapid delivery of electrons on the fibers was the crucial factor for formation of 3D architectures.

  13. Combining sedimentological and geophysical data for high-resolution 3-D mapping of fluvial architectural elements in the Quaternary Po plain (Italy)

    NASA Astrophysics Data System (ADS)

    Bersezio, R.; Giudici, M.; Mele, M.

    2007-11-01

    Current approaches to the reconstruction of the geometry of fluvial sediments of Quaternary alluvial plains and the characterization of their internal architecture are strongly dependent on core data (1-D). Accurate 2-D and 3-D reconstructions and maps of the subsurface are needed in hydrostratigraphy, hydrogeology and geotechnical studies. The present study aims to: 1) improve current methods for geophysical imaging of the subsurface by means of VES, ERGI and GPR data, and calibration with geomorphological and geological reconstructions, 2) optimize the horizontal and vertical resolution of subsurface imaging in order to resolve sedimentary heterogeneity, and 3) check the reliability/uncertainty of the results (maps and architectural reconstructions) by comparison with exposed analogues. The method was applied to shallow (0 to 15 m) aquifers of the fluvial plain of southern Lombardy (Northern Italy). At two sites we studied fluvial sediments of meandering systems of the Last Glacial Maximum and post-glacial historical age. These sediments comprise juxtaposed and superimposed gravel-sand units with fining-upward sequences (channel-bar depositional elements), which are separated by thin and laterally discontinuous silty and sandy clay units (overbank and flood plain deposits). The sedimentary architecture has been studied at different scales in the two areas. At the scale of the depositional system, we reconstructed the subsurface over an area of 4 km 2 to a depth of 18 m (study site 1). Reconstructed sequences based on 10 boreholes and water-well stratigraphic logs were integrated with the interpretation of 10 vertical electrical soundings (VES) with Schlumberger arrays and 1570 m long dipole-dipole electrical resistivity ground imaging profiles (ERGI). In unsaturated sediments, vertical and horizontal transitions between gravel-sand units and fine-grained sediments could be mapped respectively at the meter- to decameter scale after calibration of the VES with

  14. Electron tomography of cryo-immobilized plant tissue: a novel approach to studying 3D macromolecular architecture of mature plant cell walls in situ.

    PubMed

    Sarkar, Purbasha; Bosneaga, Elena; Yap, Edgar G; Das, Jyotirmoy; Tsai, Wen-Ting; Cabal, Angelo; Neuhaus, Erica; Maji, Dolonchampa; Kumar, Shailabh; Joo, Michael; Yakovlev, Sergey; Csencsits, Roseann; Yu, Zeyun; Bajaj, Chandrajit; Downing, Kenneth H; Auer, Manfred

    2014-01-01

    Cost-effective production of lignocellulosic biofuel requires efficient breakdown of cell walls present in plant biomass to retrieve the wall polysaccharides for fermentation. In-depth knowledge of plant cell wall composition is therefore essential for improving the fuel production process. The precise spatial three-dimensional (3D) organization of cellulose, hemicellulose, pectin and lignin within plant cell walls remains unclear to date since the microscopy techniques used so far have been limited to two-dimensional, topographic or low-resolution imaging, or required isolation or chemical extraction of the cell walls. In this paper we demonstrate that by cryo-immobilizing fresh tissue, then either cryo-sectioning or freeze-substituting and resin embedding, followed by cryo- or room temperature (RT) electron tomography, respectively, we can visualize previously unseen details of plant cell wall architecture in 3D, at macromolecular resolution (∼ 2 nm), and in near-native state. Qualitative and quantitative analyses showed that wall organization of cryo-immobilized samples were preserved remarkably better than conventionally prepared samples that suffer substantial extraction. Lignin-less primary cell walls were well preserved in both self-pressurized rapidly frozen (SPRF), cryo-sectioned samples as well as high-pressure frozen, freeze-substituted and resin embedded (HPF-FS-resin) samples. Lignin-rich secondary cell walls appeared featureless in HPF-FS-resin sections presumably due to poor stain penetration, but their macromolecular features could be visualized in unprecedented details in our cryo-sections. While cryo-tomography of vitreous tissue sections is currently proving to be instrumental in developing 3D models of lignin-rich secondary cell walls, here we confirm that the technically easier method of RT-tomography of HPF-FS-resin sections could be used immediately for routine study of low-lignin cell walls. As a proof of principle, we characterized the

  15. Electron Tomography of Cryo-Immobilized Plant Tissue: A Novel Approach to Studying 3D Macromolecular Architecture of Mature Plant Cell Walls In Situ

    PubMed Central

    Sarkar, Purbasha; Bosneaga, Elena; Yap, Edgar G.; Das, Jyotirmoy; Tsai, Wen-Ting; Cabal, Angelo; Neuhaus, Erica; Maji, Dolonchampa; Kumar, Shailabh; Joo, Michael; Yakovlev, Sergey; Csencsits, Roseann; Yu, Zeyun; Bajaj, Chandrajit; Downing, Kenneth H.; Auer, Manfred

    2014-01-01

    Cost-effective production of lignocellulosic biofuel requires efficient breakdown of cell walls present in plant biomass to retrieve the wall polysaccharides for fermentation. In-depth knowledge of plant cell wall composition is therefore essential for improving the fuel production process. The precise spatial three-dimensional (3D) organization of cellulose, hemicellulose, pectin and lignin within plant cell walls remains unclear to date since the microscopy techniques used so far have been limited to two-dimensional, topographic or low-resolution imaging, or required isolation or chemical extraction of the cell walls. In this paper we demonstrate that by cryo-immobilizing fresh tissue, then either cryo-sectioning or freeze-substituting and resin embedding, followed by cryo- or room temperature (RT) electron tomography, respectively, we can visualize previously unseen details of plant cell wall architecture in 3D, at macromolecular resolution (∼2 nm), and in near-native state. Qualitative and quantitative analyses showed that wall organization of cryo-immobilized samples were preserved remarkably better than conventionally prepared samples that suffer substantial extraction. Lignin-less primary cell walls were well preserved in both self-pressurized rapidly frozen (SPRF), cryo-sectioned samples as well as high-pressure frozen, freeze-substituted and resin embedded (HPF-FS-resin) samples. Lignin-rich secondary cell walls appeared featureless in HPF-FS-resin sections presumably due to poor stain penetration, but their macromolecular features could be visualized in unprecedented details in our cryo-sections. While cryo-tomography of vitreous tissue sections is currently proving to be instrumental in developing 3D models of lignin-rich secondary cell walls, here we confirm that the technically easier method of RT-tomography of HPF-FS-resin sections could be used immediately for routine study of low-lignin cell walls. As a proof of principle, we characterized the

  16. Performance of linear and nonlinear texture measures in 2D and 3D for monitoring architectural changes in osteoporosis using computer-generated models of trabecular bone

    NASA Astrophysics Data System (ADS)

    Boehm, Holger F.; Link, Thomas M.; Monetti, Roberto A.; Mueller, Dirk; Rummeny, Ernst J.; Raeth, Christoph W.

    2005-04-01

    Osteoporosis is a metabolic bone disease leading to de-mineralization and increased risk of fracture. The two major factors that determine the biomechanical competence of bone are the degree of mineralization and the micro-architectural integrity. Today, modern imaging modalities (high resolution MRI, micro-CT) are capable of depicting structural details of trabecular bone tissue. From the image data, structural properties obtained by quantitative measures are analysed with respect to the presence of osteoporotic fractures of the spine (in-vivo) or correlated with biomechanical strength as derived from destructive testing (in-vitro). Fairly well established are linear structural measures in 2D that are originally adopted from standard histo-morphometry. Recently, non-linear techniques in 2D and 3D based on the scaling index method (SIM), the standard Hough transform (SHT), and the Minkowski Functionals (MF) have been introduced, which show excellent performance in predicting bone strength and fracture risk. However, little is known about the performance of the various parameters with respect to monitoring structural changes due to progression of osteoporosis or as a result of medical treatment. In this contribution, we generate models of trabecular bone with pre-defined structural properties which are exposed to simulated osteoclastic activity. We apply linear and non-linear texture measures to the models and analyse their performance with respect to detecting architectural changes. This study demonstrates, that the texture measures are capable of monitoring structural changes of complex model data. The diagnostic potential varies for the different parameters and is found to depend on the topological composition of the model and initial "bone density". In our models, non-linear texture measures tend to react more sensitively to small structural changes than linear measures. Best performance is observed for the 3rd and 4th Minkowski Functionals and for the scaling

  17. The persistence and role of basin structures on the 3D architecture of the Marañón Fold-Thrust Belt, Peru

    NASA Astrophysics Data System (ADS)

    Scherrenberg, Arne F.; Holcombe, Rodney J.; Rosenbaum, Gideon

    2014-04-01

    The 3D architecture of fold-thrust belts commonly involves thin-skinned and thick-skinned deformation. Both thick- and thin-skinned deformation styles have been suggested to occur in the Marañón Fold-Thrust Belt (MFTB) in Peru, but the relative timing and strain partitioning associated with them are not well understood. We demonstrate that inherited basement structures along the Peruvian convergent margin reactivated during the evolution of the MFTB. We present results from field mapping, interpretation of remote sensing imagery, and cross section construction and restoration. The results show that the Chonta Fault, a median pre-folding basin normal fault, was inverted and acted as a mechanical buttress during initial east-vergent contraction of the fold-thrust belt. This fault separates the belt into two domains of distinctly different structural styles. During the Eocene, units to the west of the Chonta Fault deformed by folding, using the fault as a buttress, and subsequently propagated eastward by thin-skinned thrusting. This was followed in the Miocene by west-vergent, basement-involved deformation, which overprinted the earlier east-vergent, thin-skinned structures. The proposed tectonic model of the MFTB highlights the role of basement-fault reactivation during orogenesis and the involvement of deep structures in partitioning deformation styles.

  18. Real architecture For 3D Tissue (RAFT™) culture system improves viability and maintains insulin and glucagon production of mouse pancreatic islet cells.

    PubMed

    Szebeni, Gabor J; Tancos, Zsuzsanna; Feher, Liliana Z; Alfoldi, Robert; Kobolak, Julianna; Dinnyes, Andras; Puskas, Laszlo G

    2017-04-01

    There is an unmet medical need for the improvement of pancreatic islet maintenance in culture. Due to restricted donor availability it is essential to ameliorate islet viability and graft engraftment. The aim of this study was to compare the standard tissue culture techniques with the advanced Real Architecture For 3D Tissue (RAFT™) culture system in terms of viability and hormone production. Here, we first report that islets embedded in RAFT™ collagen type I advanced tissue culture system maintain their tissue integrity better than in monolayer and suspension cultures. The Calcein violet assay and Annexin V/propidium-iodide staining show higher cell viability in the RAFT™ culture system. Quantitative real-time PCR data showed that RAFT™ increases insulin expression after 18 days in culture compared to traditional methods. Enhanced insulin and glucagon production was further verified by immunofluorescent staining in a time-course manner. These results indicate that RAFT™ tissue culture platform can be a promising tool to maintain pancreatic islet spheroid integrity and culture islets for downstream high throughput pharmacological studies ex vivo.

  19. Micromechanics of Amorphous Metal/Polymer Hybrid Structures with 3D Cellular Architectures: Size Effects, Buckling Behavior, and Energy Absorption Capability.

    PubMed

    Mieszala, Maxime; Hasegawa, Madoka; Guillonneau, Gaylord; Bauer, Jens; Raghavan, Rejin; Frantz, Cédric; Kraft, Oliver; Mischler, Stefano; Michler, Johann; Philippe, Laetitia

    2017-02-01

    By designing advantageous cellular geometries and combining the material size effects at the nanometer scale, lightweight hybrid microarchitectured materials with tailored structural properties are achieved. Prior studies reported the mechanical properties of high strength cellular ceramic composites, obtained by atomic layer deposition. However, few studies have examined the properties of similar structures with metal coatings. To determine the mechanical performance of polymer cellular structures reinforced with a metal coating, 3D laser lithography and electroless deposition of an amorphous layer of nickel-boron (NiB) is used for the first time to produce metal/polymer hybrid structures. In this work, the mechanical response of microarchitectured structures is investigated with an emphasis on the effects of the architecture and the amorphous NiB thickness on their deformation mechanisms and energy absorption capability. Microcompression experiments show an enhancement of the mechanical properties with the NiB thickness, suggesting that the deformation mechanism and the buckling behavior are controlled by the brittle-to-ductile transition in the NiB layer. In addition, the energy absorption properties demonstrate the possibility of tuning the energy absorption efficiency with adequate designs. These findings suggest that microarchitectured metal/polymer hybrid structures are effective in producing materials with unique property combinations.

  20. Canopy for VERAView Installation Guide

    SciTech Connect

    Lee, Ronald W.

    2016-09-12

    With the addition of the 3D volume slicer widget, VERAView now relies on Mayavi and its dependents. Enthought's Canopy Python environment provides everything VERAView needs, and pre-built Canopy versions for Windows, Mac OSX, and Linux can be downloaded.

  1. The 4-Dimensional Plant: Effects of Wind-Induced Canopy Movement on Light Fluctuations and Photosynthesis

    PubMed Central

    Burgess, Alexandra J.; Retkute, Renata; Preston, Simon P.; Jensen, Oliver E.; Pound, Michael P.; Pridmore, Tony P.; Murchie, Erik H.

    2016-01-01

    Physical perturbation of a plant canopy brought about by wind is a ubiquitous phenomenon and yet its biological importance has often been overlooked. This is partly due to the complexity of the issue at hand: wind-induced movement (or mechanical excitation) is a stochastic process which is difficult to measure and quantify; plant motion is dependent upon canopy architectural features which, until recently, were difficult to accurately represent and model in 3-dimensions; light patterning throughout a canopy is difficult to compute at high-resolutions, especially when confounded by other environmental variables. Recent studies have reinforced the expectation that canopy architecture is a strong determinant of productivity and yield; however, links between the architectural properties of the plant and its mechanical properties, particularly its response to wind, are relatively unknown. As a result, biologically relevant data relating canopy architecture, light- dynamics, and short-scale photosynthetic responses in the canopy setting are scarce. Here, we hypothesize that wind-induced movement will have large consequences for the photosynthetic productivity of our crops due to its influence on light patterning. To address this issue, in this study we combined high resolution 3D reconstructions of a plant canopy with a simple representation of canopy perturbation as a result of wind using solid body rotation in order to explore the potential effects on light patterning, interception, and photosynthetic productivity. We looked at two different scenarios: firstly a constant distortion where a rice canopy was subject to a permanent distortion throughout the whole day; and secondly, a dynamic distortion, where the canopy was distorted in incremental steps between two extremes at set time points in the day. We find that mechanical canopy excitation substantially alters light dynamics; light distribution and modeled canopy carbon gain. We then discuss methods required for

  2. The 4-Dimensional Plant: Effects of Wind-Induced Canopy Movement on Light Fluctuations and Photosynthesis.

    PubMed

    Burgess, Alexandra J; Retkute, Renata; Preston, Simon P; Jensen, Oliver E; Pound, Michael P; Pridmore, Tony P; Murchie, Erik H

    2016-01-01

    Physical perturbation of a plant canopy brought about by wind is a ubiquitous phenomenon and yet its biological importance has often been overlooked. This is partly due to the complexity of the issue at hand: wind-induced movement (or mechanical excitation) is a stochastic process which is difficult to measure and quantify; plant motion is dependent upon canopy architectural features which, until recently, were difficult to accurately represent and model in 3-dimensions; light patterning throughout a canopy is difficult to compute at high-resolutions, especially when confounded by other environmental variables. Recent studies have reinforced the expectation that canopy architecture is a strong determinant of productivity and yield; however, links between the architectural properties of the plant and its mechanical properties, particularly its response to wind, are relatively unknown. As a result, biologically relevant data relating canopy architecture, light- dynamics, and short-scale photosynthetic responses in the canopy setting are scarce. Here, we hypothesize that wind-induced movement will have large consequences for the photosynthetic productivity of our crops due to its influence on light patterning. To address this issue, in this study we combined high resolution 3D reconstructions of a plant canopy with a simple representation of canopy perturbation as a result of wind using solid body rotation in order to explore the potential effects on light patterning, interception, and photosynthetic productivity. We looked at two different scenarios: firstly a constant distortion where a rice canopy was subject to a permanent distortion throughout the whole day; and secondly, a dynamic distortion, where the canopy was distorted in incremental steps between two extremes at set time points in the day. We find that mechanical canopy excitation substantially alters light dynamics; light distribution and modeled canopy carbon gain. We then discuss methods required for

  3. FPGA architectures for electronically scanned wide-band RF beams using 3-D FIR/IIR digital filters for rectangular array aperture receivers

    NASA Astrophysics Data System (ADS)

    Wijayaratna, Sewwandi; Madanayake, Arjuna; Beall, Brandon D.; Bruton, Len T.

    2014-05-01

    Real-time digital implementation of three-dimensional (3-D) infinite impulse response (IIR) beam filters are discussed. The 3-D IIR filter building blocks have filter coefficients, which are defined using algebraic closed-form expressions that are functions of desired beam personalities, such as the look-direction of the aperture, the bandwidth and sampling frequency of interest, inter antenna spacing, and 3dB beam size. Real-time steering of such 3-D beam filters are obtained by proposed calculation of filter coefficients. Application specific computing units for rapidly calculating the 3-D IIR filter coefficients at nanosecond speed potentially allows fast real-time tracking of low radar cross section (RCS) objects at close range. Proposed design consists of 3-D IIR beam filter with 4 4 antenna grid and the filter coefficient generation block in separate FPGAs. The hardware is designed and co-simulated using a Xilinx Virtex-6 XC6VLX240T FPGA. The 3-D filter operates over 90 MHz and filter coefficient computing structure can operate at up to 145 MHz.

  4. Vegetation species composition and canopy architecture information expressed in leaf water absorption measured in the 1000 nm and 2200 spectral region by an imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Roberts, Dar A.

    1995-01-01

    Plant species composition and plant architectural attributes are critical parameters required for the measuring, monitoring, and modeling of terrestrial ecosystems. Remote sensing is commonly cited as an important tool for deriving vegetation properties at an appropriate scale for ecosystem studies, ranging from local to regional and even synoptic scales. Classical approaches rely on vegetation indices such as the normalized difference vegetation index (NDVI) to estimate biophysical parameters such as leaf area index or intercepted photosynthetically active radiation (IPAR). Another approach is to apply a variety of classification schemes to map vegetation and thus extrapolate fine-scale information about specific sites to larger areas of similar composition. Imaging spectrometry provides additional information that is not obtainable through broad-band sensors and that may provide improved inputs both to direct biophysical estimates as well as classification schemes. Some of this capability has been demonstrated through improved discrimination of vegetation, estimates of canopy biochemistry, and liquid water estimates from vegetation. We investigate further the potential of leaf water absorption estimated from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data as a means for discriminating vegetation types and deriving canopy architectural information. We expand our analysis to incorporate liquid water estimates from two spectral regions, the 1000-nm region and the 2200-nm region. The study was conducted in the vicinity of Jasper Ridge, California, which is located on the San Francisco peninsula to the west of the Stanford University campus. AVIRIS data were acquired over Jasper Ridge, CA, on June 2, 1992, at 19:31 UTC. Spectra from three sites in this image were analyzed. These data are from an area of healthy grass, oak woodland, and redwood forest, respectively. For these analyses, the AVIRIS-measured upwelling radiance spectra for the entire Jasper

  5. Automated 3D architecture reconstruction from photogrammetric structure-and-motion: A case study of the One Pilla pagoda, Hanoi, Vienam

    NASA Astrophysics Data System (ADS)

    To, T.; Nguyen, D.; Tran, G.

    2015-04-01

    Heritage system of Vietnam has decline because of poor-conventional condition. For sustainable development, it is required a firmly control, space planning organization, and reasonable investment. Moreover, in the field of Cultural Heritage, the use of automated photogrammetric systems, based on Structure from Motion techniques (SfM), is widely used. With the potential of high-resolution, low-cost, large field of view, easiness, rapidity and completeness, the derivation of 3D metric information from Structure-and- Motion images is receiving great attention. In addition, heritage objects in form of 3D physical models are recorded not only for documentation issues, but also for historical interpretation, restoration, cultural and educational purposes. The study suggests the archaeological documentation of the "One Pilla" pagoda placed in Hanoi capital, Vietnam. The data acquired through digital camera Cannon EOS 550D, CMOS APS-C sensor 22.3 x 14.9 mm. Camera calibration and orientation were carried out by VisualSFM, CMPMVS (Multi-View Reconstruction) and SURE (Photogrammetric Surface Reconstruction from Imagery) software. The final result represents a scaled 3D model of the One Pilla Pagoda and displayed different views in MeshLab software.

  6. Morphology-Tuned Synthesis of NiCo2 O4 -Coated 3D Graphene Architectures Used as Binder-Free Electrodes for Lithium-Ion Batteries.

    PubMed

    Zhang, Chunfei; Yu, Jong-Sung

    2016-03-18

    Nanostructured NiCo2O4 is directly grown on the surface of three-dimensional graphene-coated nickel foam (3D-GNF) by a facile electrodeposition technique and subsequent annealing. The resulting NiCo2O4 possesses a distinct flower or sheet morphology, tuned by potential or current variation electrodeposition, which are used as binder-free lithium-ion battery anodes for the first time. Both samples exhibit high lithium storage capacity, profiting from the unique binder-free electrode structures. The flower-type NiCo2O4 demonstrates high reversible discharge capacity (1459 mAh g(-1) at 200 mA g(-1)) and excellent cyclability with around 71% retention of the reversible capacity after 60 cycles, which are superior to the sheet-type NiCo2O4. Such superb performance can be attributed to high volume utilization efficiency with unique morphological character, a well-preserved connection between the active materials and the current collector, a short lithium-ion diffusion path, and fast electrolyte transfer in the binder-free NiCo2O4 coated 3D graphene structure. The simple preparation process and easily controllable morphology make the binder-free NiCo2O4/3D-GNF hybrid a potential material for commercial applications.

  7. 3D Reconstructed Cyto-, Muscarinic M2 Receptor, and Fiber Architecture of the Rat Brain Registered to the Waxholm Space Atlas

    PubMed Central

    Schubert, Nicole; Axer, Markus; Schober, Martin; Huynh, Anh-Minh; Huysegoms, Marcel; Palomero-Gallagher, Nicola; Bjaalie, Jan G.; Leergaard, Trygve B.; Kirlangic, Mehmet E.; Amunts, Katrin; Zilles, Karl

    2016-01-01

    High-resolution multiscale and multimodal 3D models of the brain are essential tools to understand its complex structural and functional organization. Neuroimaging techniques addressing different aspects of brain organization should be integrated in a reference space to enable topographically correct alignment and subsequent analysis of the various datasets and their modalities. The Waxholm Space (http://software.incf.org/software/waxholm-space) is a publicly available 3D coordinate-based standard reference space for the mapping and registration of neuroanatomical data in rodent brains. This paper provides a newly developed pipeline combining imaging and reconstruction steps with a novel registration strategy to integrate new neuroimaging modalities into the Waxholm Space atlas. As a proof of principle, we incorporated large scale high-resolution cyto-, muscarinic M2 receptor, and fiber architectonic images of rat brains into the 3D digital MRI based atlas of the Sprague Dawley rat in Waxholm Space. We describe the whole workflow, from image acquisition to reconstruction and registration of these three modalities into the Waxholm Space rat atlas. The registration of the brain sections into the atlas is performed by using both linear and non-linear transformations. The validity of the procedure is qualitatively demonstrated by visual inspection, and a quantitative evaluation is performed by measurement of the concordance between representative atlas-delineated regions and the same regions based on receptor or fiber architectonic data. This novel approach enables for the first time the generation of 3D reconstructed volumes of nerve fibers and fiber tracts, or of muscarinic M2 receptor density distributions, in an entire rat brain. Additionally, our pipeline facilitates the inclusion of further neuroimaging datasets, e.g., 3D reconstructed volumes of histochemical stainings or of the regional distributions of multiple other receptor types, into the Waxholm Space

  8. 3D Reconstructed Cyto-, Muscarinic M2 Receptor, and Fiber Architecture of the Rat Brain Registered to the Waxholm Space Atlas.

    PubMed

    Schubert, Nicole; Axer, Markus; Schober, Martin; Huynh, Anh-Minh; Huysegoms, Marcel; Palomero-Gallagher, Nicola; Bjaalie, Jan G; Leergaard, Trygve B; Kirlangic, Mehmet E; Amunts, Katrin; Zilles, Karl

    2016-01-01

    High-resolution multiscale and multimodal 3D models of the brain are essential tools to understand its complex structural and functional organization. Neuroimaging techniques addressing different aspects of brain organization should be integrated in a reference space to enable topographically correct alignment and subsequent analysis of the various datasets and their modalities. The Waxholm Space (http://software.incf.org/software/waxholm-space) is a publicly available 3D coordinate-based standard reference space for the mapping and registration of neuroanatomical data in rodent brains. This paper provides a newly developed pipeline combining imaging and reconstruction steps with a novel registration strategy to integrate new neuroimaging modalities into the Waxholm Space atlas. As a proof of principle, we incorporated large scale high-resolution cyto-, muscarinic M2 receptor, and fiber architectonic images of rat brains into the 3D digital MRI based atlas of the Sprague Dawley rat in Waxholm Space. We describe the whole workflow, from image acquisition to reconstruction and registration of these three modalities into the Waxholm Space rat atlas. The registration of the brain sections into the atlas is performed by using both linear and non-linear transformations. The validity of the procedure is qualitatively demonstrated by visual inspection, and a quantitative evaluation is performed by measurement of the concordance between representative atlas-delineated regions and the same regions based on receptor or fiber architectonic data. This novel approach enables for the first time the generation of 3D reconstructed volumes of nerve fibers and fiber tracts, or of muscarinic M2 receptor density distributions, in an entire rat brain. Additionally, our pipeline facilitates the inclusion of further neuroimaging datasets, e.g., 3D reconstructed volumes of histochemical stainings or of the regional distributions of multiple other receptor types, into the Waxholm Space

  9. Molecular tectonics: self-complementary supramolecular Se...N synthons directing assembly of 1D silver chains into 3D porous molecular architectures.

    PubMed

    Zhou, Ai-Ju; Zheng, Shao-Liang; Fang, Yue; Tong, Ming-Liang

    2005-06-27

    Reaction of 2,1,3-benzoselenadiazole (bsd) with AgNO3 results in the formation of a novel model example of a Se...N synthon directed molecular network of different polymorphs at different temperatures. Alpha-[Ag(bsd)2(NO3)] x 0.5bsd formed at ambient temperature, has a 3D porous molecular network constructed with monomeric [Ag(bsd)2(NO3)] motif, and has 1D channels that are encapsulated with 1D arrays of two-fold-disordered dimeric (bsd)2 guests aggregated by the self-complementary nonbonded Se...N interactions. This is the first molecular net directed by supramolecular Se...N synthons. The second polymorph, beta-[Ag(bsd)2(NO3)] x 0.5bsd, formed from an analogous reaction at 50 degrees C, contains a similar 3D molecular network constructed with tetrameric [Ag4(bsd)8(NO3)4] motif and 1D arrays of well-ordered dimeric (bsd)2 guests are encapsulated in the channels. Such ordered (bsd)2 dimers provide an excellent simplified dimeric model for MO calculations of intermolecular nonbonded Se...N interactions.

  10. 3D Porous Architecture of Stacks of β-TCP Granules Compared with That of Trabecular Bone: A microCT, Vector Analysis, and Compression Study

    PubMed Central

    Chappard, Daniel; Terranova, Lisa; Mallet, Romain; Mercier, Philippe

    2015-01-01

    The 3D arrangement of porous granular biomaterials usable to fill bone defects has received little study. Granular biomaterials occupy 3D space when packed together in a manner that creates a porosity suitable for the invasion of vascular and bone cells. Granules of beta-tricalcium phosphate (β-TCP) were prepared with either 12.5 or 25 g of β-TCP powder in the same volume of slurry. When the granules were placed in a test tube, this produced 3D stacks with a high (HP) or low porosity (LP), respectively. Stacks of granules mimic the filling of a bone defect by a surgeon. The aim of this study was to compare the porosity of stacks of β-TCP granules with that of cores of trabecular bone. Biomechanical compression tests were done on the granules stacks. Bone cylinders were prepared from calf tibia plateau, constituted high-density (HD) blocks. Low-density (LD) blocks were harvested from aged cadaver tibias. Microcomputed tomography was used on the β-TCP granule stacks and the trabecular bone cores to determine porosity and specific surface. A vector-projection algorithm was used to image porosity employing a frontal plane image, which was constructed line by line from all images of a microCT stack. Stacks of HP granules had porosity (75.3 ± 0.4%) and fractal lacunarity (0.043 ± 0.007) intermediate between that of HD (respectively 69.1 ± 6.4%, p < 0.05 and 0.087 ± 0.045, p < 0.05) and LD bones (respectively 88.8 ± 1.57% and 0.037 ± 0.014), but exhibited a higher surface density (5.56 ± 0.11 mm2/mm3 vs. 2.06 ± 0.26 for LD, p < 0.05). LP granular arrangements created large pores coexisting with dense areas of material. Frontal plane analysis evidenced a more regular arrangement of β-TCP granules than bone trabecule. Stacks of HP granules represent a scaffold that resembles trabecular bone in its porous microarchitecture. PMID:26528240

  11. 3D Porous Architecture of Stacks of β-TCP Granules Compared with That of Trabecular Bone: A microCT, Vector Analysis, and Compression Study.

    PubMed

    Chappard, Daniel; Terranova, Lisa; Mallet, Romain; Mercier, Philippe

    2015-01-01

    The 3D arrangement of porous granular biomaterials usable to fill bone defects has received little study. Granular biomaterials occupy 3D space when packed together in a manner that creates a porosity suitable for the invasion of vascular and bone cells. Granules of beta-tricalcium phosphate (β-TCP) were prepared with either 12.5 or 25 g of β-TCP powder in the same volume of slurry. When the granules were placed in a test tube, this produced 3D stacks with a high (HP) or low porosity (LP), respectively. Stacks of granules mimic the filling of a bone defect by a surgeon. The aim of this study was to compare the porosity of stacks of β-TCP granules with that of cores of trabecular bone. Biomechanical compression tests were done on the granules stacks. Bone cylinders were prepared from calf tibia plateau, constituted high-density (HD) blocks. Low-density (LD) blocks were harvested from aged cadaver tibias. Microcomputed tomography was used on the β-TCP granule stacks and the trabecular bone cores to determine porosity and specific surface. A vector-projection algorithm was used to image porosity employing a frontal plane image, which was constructed line by line from all images of a microCT stack. Stacks of HP granules had porosity (75.3 ± 0.4%) and fractal lacunarity (0.043 ± 0.007) intermediate between that of HD (respectively 69.1 ± 6.4%, p < 0.05 and 0.087 ± 0.045, p < 0.05) and LD bones (respectively 88.8 ± 1.57% and 0.037 ± 0.014), but exhibited a higher surface density (5.56 ± 0.11 mm(2)/mm(3) vs. 2.06 ± 0.26 for LD, p < 0.05). LP granular arrangements created large pores coexisting with dense areas of material. Frontal plane analysis evidenced a more regular arrangement of β-TCP granules than bone trabecule. Stacks of HP granules represent a scaffold that resembles trabecular bone in its porous microarchitecture.

  12. All-in-one assembly based on 3D-intertangled and cross-jointed architectures of Si/Cu 1D-nanowires for lithium ion batteries

    PubMed Central

    Hwang, Chihyun; Kim, Tae-Hee; Cho, Yoon-Gyo; Kim, Jieun; Song, Hyun-Kon

    2015-01-01

    All-in-one assemblies of separator, electrode and current collector (SECA) for lithium ion batteries are presented by using 1D nanowires of Si and Cu (nwSi and nwCu). Even without binders, integrity of SECA is secured via structural joints based on ductility of Cu as well as entanglement of nwSi and nwCu. By controlling the ratio of the nanowires, the number of contact points and voids accommodating volume expansion of Si active material are tunable. Zero volume expansion and high energy density are simultaneously achievable by the architecture. PMID:25720334

  13. An interactive multiview 3D display system

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoxing; Geng, Zheng; Zhang, Mei; Dong, Hui

    2013-03-01

    The progresses in 3D display systems and user interaction technologies will help more effective 3D visualization of 3D information. They yield a realistic representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them. In this paper, we describe an autostereoscopic multiview 3D display system with capability of real-time user interaction. Design principle of this autostereoscopic multiview 3D display system is presented, together with the details of its hardware/software architecture. A prototype is built and tested based upon multi-projectors and horizontal optical anisotropic display structure. Experimental results illustrate the effectiveness of this novel 3D display and user interaction system.

  14. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  15. New High-Resolution 3D Seismic Imagery of Deformation and Fault Architecture Along Newport-Inglewood/Rose Canyon Fault in the Inner California Borderlands

    NASA Astrophysics Data System (ADS)

    Holmes, J. J.; Bormann, J. M.; Driscoll, N. W.; Kent, G.; Harding, A. J.; Wesnousky, S. G.

    2014-12-01

    The tectonic deformation and geomorphology of the Inner California Borderlands (ICB) records the transition from a convergent plate margin to a predominantly dextral strike-slip system. Geodetic measurements of plate boundary deformation onshore indicate that approximately 15%, or 6-8 mm/yr, of the total Pacific-North American relative plate motion is accommodated by faults offshore. The largest near-shore fault system, the Newport-Inglewood/Rose Canyon (NI/RC) fault complex, has a Holocene slip rate estimate of 1.5-2.0 mm/yr, according to onshore trenching, and current models suggest the potential to produce an Mw 7.0+ earthquake. The fault zone extends approximately 120 km, initiating from the south near downtown San Diego and striking northwards with a constraining bend north of Mt. Soledad in La Jolla and continuing northwestward along the continental shelf, eventually stepping onshore at Newport Beach, California. In late 2013, we completed the first high-resolution 3D seismic survey (3.125 m bins) of the NI/RC fault offshore of San Onofre as part of the Southern California Regional Fault Mapping project. We present new constraints on fault geometry and segmentation of the fault system that may play a role in limiting the extent of future earthquake ruptures. In addition, slip rate estimates using piercing points such as offset channels will be explored. These new observations will allow us to investigate recent deformation and strain transfer along the NI/RC fault system.

  16. 2.5D/3D Models for the enhancement of architectural-urban heritage. An Virtual Tour of design of the Fascist headquarters in Littoria

    NASA Astrophysics Data System (ADS)

    Ippoliti, E.; Calvano, M.; Mores, L.

    2014-05-01

    Enhancement of cultural heritage is not simply a matter of preserving material objects but comes full circle only when the heritage can be enjoyed and used by the community. This is the rationale behind this presentation: an urban Virtual Tour to explore the 1937 design of the Fascist Headquarters in Littoria, now part of Latina, by the architect Oriolo Frezzotti. Although the application is deliberately "simple", it was part of a much broader framework of goals. One such goal was to create "friendly and perceptively meaningful" interfaces by integrating different "3D models" and so enriching. In fact, by exploiting the activation of natural mechanisms of visual perception and the ensuing emotional emphasis associated with vision, the illusionistic simulation of the scene facilitates access to the data even for "amateur" users. A second goal was to "contextualise the information" on which the concept of cultural heritage is based. In the application, communication of the heritage is linked to its physical and linguistic context; the latter is then used as a basis from which to set out to explore and understand the historical evidence. A third goal was to foster the widespread dissemination and sharing of this heritage of knowledge. On the one hand we worked to make the application usable from the Web, on the other, we established a reliable, rapid operational procedure with high quality processed data and ensuing contents. The procedure was also repeatable on a large scale.

  17. Strong light scattering and broadband (UV to IR) photoabsorption in stretchable 3D hybrid architectures based on Aerographite decorated by ZnO nanocrystallites

    PubMed Central

    Tiginyanu, Ion; Ghimpu, Lidia; Gröttrup, Jorit; Postolache, Vitalie; Mecklenburg, Matthias; Stevens-Kalceff, Marion A.; Ursaki, Veaceslav; Payami, Nader; Feidenhansl, Robert; Schulte, Karl; Adelung, Rainer; Mishra, Yogendra Kumar

    2016-01-01

    In present work, the nano- and microscale tetrapods from zinc oxide were integrated on the surface of Aerographite material (as backbone) in carbon-metal oxide hybrid hierarchical network via a simple and single step magnetron sputtering process. The fabricated hybrid networks are characterized for morphology, microstructural and optical properties. The cathodoluminescence investigations revealed interesting luminescence features related to carbon impurities and inherent host defects in zinc oxide. Because of the wide bandgap of zinc oxide and its intrinsic defects, the hybrid network absorbs light in the UV and visible regions, however, this broadband photoabsorption behavior extends to the infrared (IR) region due to the dependence of the optical properties of ZnO architectures upon size and shape of constituent nanostructures and their doping by carbon impurities. Such a phenomenon of broadband photoabsorption ranging from UV to IR for zinc oxide based hybrid materials is novel. Additionally, the fabricated network exhibits strong visible light scattering behavior. The developed Aerographite/nanocrystalline ZnO hybrid network materials, equipped with broadband photoabsorption and strong light scattering, are very promising candidates for optoelectronic technologies. PMID:27616632

  18. Strong light scattering and broadband (UV to IR) photoabsorption in stretchable 3D hybrid architectures based on Aerographite decorated by ZnO nanocrystallites

    NASA Astrophysics Data System (ADS)

    Tiginyanu, Ion; Ghimpu, Lidia; Gröttrup, Jorit; Postolache, Vitalie; Mecklenburg, Matthias; Stevens-Kalceff, Marion A.; Ursaki, Veaceslav; Payami, Nader; Feidenhansl, Robert; Schulte, Karl; Adelung, Rainer; Mishra, Yogendra Kumar

    2016-09-01

    In present work, the nano- and microscale tetrapods from zinc oxide were integrated on the surface of Aerographite material (as backbone) in carbon-metal oxide hybrid hierarchical network via a simple and single step magnetron sputtering process. The fabricated hybrid networks are characterized for morphology, microstructural and optical properties. The cathodoluminescence investigations revealed interesting luminescence features related to carbon impurities and inherent host defects in zinc oxide. Because of the wide bandgap of zinc oxide and its intrinsic defects, the hybrid network absorbs light in the UV and visible regions, however, this broadband photoabsorption behavior extends to the infrared (IR) region due to the dependence of the optical properties of ZnO architectures upon size and shape of constituent nanostructures and their doping by carbon impurities. Such a phenomenon of broadband photoabsorption ranging from UV to IR for zinc oxide based hybrid materials is novel. Additionally, the fabricated network exhibits strong visible light scattering behavior. The developed Aerographite/nanocrystalline ZnO hybrid network materials, equipped with broadband photoabsorption and strong light scattering, are very promising candidates for optoelectronic technologies.

  19. The 3D fault and vein architecture of strike-slip releasing- and restraining bends: Evidence from volcanic-centre-relatedmineral deposits

    USGS Publications Warehouse

    Berger, B.R.; ,

    2007-01-01

    High-temperature, volcanic-centre-related hydrothermal systems involve large fluid-flow volumes and are observed to have high discharge rates in the order of 100-400 kg/s. The flows and discharge occur predominantly on networks of critically stressed fractures. The coupling of hydrothermal fluid flow with deformation produces the volumes of veins found in epithermal mineral deposits. Owing to this coupling, veins provide information on the fault-fracture architecture in existence at the time of mineralization. They therefore provide information on the nature of deformation within fault zones, and the relations between different fault sets. The Virginia City and Goldfield mining districts, Nevada, were localized in zones of strike-slip transtension in an Early to Mid-Miocene volcanic belt along the western margin of North America. The Camp Douglas mining area occurs within the same belt, but is localized in a zone of strike-slip transpression. The vein systems in these districts record the spatial evolution of strike-slip extensional and contractional stepovers, as well as geometry of faulting in and adjacent to points along strike-slip faults where displacement has been interrupted and transferred into releasing and restraining stepovers. ?? The Geological Society of London 2007.

  20. Strong light scattering and broadband (UV to IR) photoabsorption in stretchable 3D hybrid architectures based on Aerographite decorated by ZnO nanocrystallites.

    PubMed

    Tiginyanu, Ion; Ghimpu, Lidia; Gröttrup, Jorit; Postolache, Vitalie; Mecklenburg, Matthias; Stevens-Kalceff, Marion A; Ursaki, Veaceslav; Payami, Nader; Feidenhansl, Robert; Schulte, Karl; Adelung, Rainer; Mishra, Yogendra Kumar

    2016-09-12

    In present work, the nano- and microscale tetrapods from zinc oxide were integrated on the surface of Aerographite material (as backbone) in carbon-metal oxide hybrid hierarchical network via a simple and single step magnetron sputtering process. The fabricated hybrid networks are characterized for morphology, microstructural and optical properties. The cathodoluminescence investigations revealed interesting luminescence features related to carbon impurities and inherent host defects in zinc oxide. Because of the wide bandgap of zinc oxide and its intrinsic defects, the hybrid network absorbs light in the UV and visible regions, however, this broadband photoabsorption behavior extends to the infrared (IR) region due to the dependence of the optical properties of ZnO architectures upon size and shape of constituent nanostructures and their doping by carbon impurities. Such a phenomenon of broadband photoabsorption ranging from UV to IR for zinc oxide based hybrid materials is novel. Additionally, the fabricated network exhibits strong visible light scattering behavior. The developed Aerographite/nanocrystalline ZnO hybrid network materials, equipped with broadband photoabsorption and strong light scattering, are very promising candidates for optoelectronic technologies.

  1. Active faulting, 3-D geological architecture and Plio-Quaternary structural evolution of extensional basins in the central Apennine chain, Italy

    NASA Astrophysics Data System (ADS)

    Gori, Stefano; Falcucci, Emanuela; Ladina, Chiara; Marzorati, Simone; Galadini, Fabrizio

    2017-03-01

    The general basin and range Apennine topographic characteristic is generally attributed to the presently active normal fault systems, whose long-term activity (throughout the Quaternary) is supposed to have been responsible for the creation of morphological/structural highs and lows. By coupling field geological survey and geophysical investigations, we reconstructed the 3-D geological model of an inner tectonic basin of the central Apennines, the Subequana Valley, bounded to the northeast by the southern segment of one of the major active and seismogenic normal faults of the Apennines, known as the Middle Aterno Valley-Subequana Valley fault system. Our analyses revealed that, since the late Pliocene, the basin evolved in a double half-graben configuration through a polyphase tectonic development. An early phase, Late Pliocene-Early Pleistocene in age, was controlled by the ENE-WSW-striking and SSE-dipping Avezzano-Bussi fault, that determined the formation of an early depocentre towards the N-NW. Subsequently, the main fault became the NW-SE-striking faults, which drove the formation during the Quaternary of a new fault-related depocentre towards the NE. By considering the available geological information, a similar structural evolution has likely involved three close tectonic basins aligned along the Avezzano-Bussi fault, namely the Fucino Basin, the Subequana Valley, and the Sulmona Basin, and it has been probably experienced by other tectonic basins of the chain. The present work therefore points out the role of pre-existing transverse tectonic structures, inherited by previous tectonic phases, in accommodating the ongoing tectonic deformation and, consequently, in influencing the structural characteristics of the major active normal faults. This has implications in terms of earthquake fault rupture propagation and segmentation. Lastly, the morpho-tectonic setting of the Apennine chain results from the superposition of deformation events whose

  2. Insights into the 3D architecture of an active caldera ring-fault at Tendürek volcano through modeling of geodetic data

    NASA Astrophysics Data System (ADS)

    Bathke, H.; Nikkhoo, M.; Holohan, E. P.; Walter, T. R.

    2015-07-01

    The three-dimensional assessment of ring-fault geometries and kinematics at active caldera volcanoes is typically limited by sparse field, geodetic or seismological data, or by only partial ring-fault rupture or slip. Here we use a novel combination of spatially dense InSAR time-series data, numerical models and sand-box experiments to determine the three-dimensional geometry and kinematics of a sub-surface ring-fault at Tendürek volcano in Turkey. The InSAR data reveal that the area within the ring-fault not only subsides, but also shows substantial westward-directed lateral movement. The models and experiments explain this as a consequence of a 'sliding-trapdoor' ring-fault architecture that is mostly composed of outward-inclined reverse segments, most markedly so on the volcano's western flanks but includes inward-inclined normal segments on its eastern flanks. Furthermore, the model ring-fault exhibits dextral and sinistral strike-slip components that are roughly bilaterally distributed onto its northern and southern segments, respectively. Our more complex numerical model describes the deformation at Tendürek better than an analytical solution for a single rectangular dislocation in a half-space. Comparison to ring-faults defined at Glen Coe, Fernandina and Bárðarbunga calderas suggests that 'sliding-trapdoor' ring-fault geometries may be common in nature and should therefore be considered in geological and geophysical interpretations of ring-faults at different scales worldwide.

  3. 3d-3d correspondence revisited

    DOE PAGES

    Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; ...

    2016-04-21

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  4. VitiCanopy: A Free Computer App to Estimate Canopy Vigor and Porosity for Grapevine.

    PubMed

    De Bei, Roberta; Fuentes, Sigfredo; Gilliham, Matthew; Tyerman, Steve; Edwards, Everard; Bianchini, Nicolò; Smith, Jason; Collins, Cassandra

    2016-04-23

    Leaf area index (LAI) and plant area index (PAI) are common and important biophysical parameters used to estimate agronomical variables such as canopy growth, light interception and water requirements of plants and trees. LAI can be either measured directly using destructive methods or indirectly using dedicated and expensive instrumentation, both of which require a high level of know-how to operate equipment, handle data and interpret results. Recently, a novel smartphone and tablet PC application, VitiCanopy, has been developed by a group of researchers from the University of Adelaide and the University of Melbourne, to estimate grapevine canopy size (LAI and PAI), canopy porosity, canopy cover and clumping index. VitiCanopy uses the front in-built camera and GPS capabilities of smartphones and tablet PCs to automatically implement image analysis algorithms on upward-looking digital images of canopies and calculates relevant canopy architecture parameters. Results from the use of VitiCanopy on grapevines correlated well with traditional methods to measure/estimate LAI and PAI. Like other indirect methods, VitiCanopy does not distinguish between leaf and non-leaf material but it was demonstrated that the non-leaf material could be extracted from the results, if needed, to increase accuracy. VitiCanopy is an accurate, user-friendly and free alternative to current techniques used by scientists and viticultural practitioners to assess the dynamics of LAI, PAI and canopy architecture in vineyards, and has the potential to be adapted for use on other plants.

  5. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  6. 3D Printed Bionic Nanodevices.

    PubMed

    Kong, Yong Lin; Gupta, Maneesh K; Johnson, Blake N; McAlpine, Michael C

    2016-06-01

    The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and 'living' platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with the

  7. From 3D view to 3D print

    NASA Astrophysics Data System (ADS)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  8. Integration of real-time 3D image acquisition and multiview 3D display

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoxing; Geng, Zheng; Li, Tuotuo; Li, Wei; Wang, Jingyi; Liu, Yongchun

    2014-03-01

    Seamless integration of 3D acquisition and 3D display systems offers enhanced experience in 3D visualization of the real world objects or scenes. The vivid representation of captured 3D objects displayed on a glasses-free 3D display screen could bring the realistic viewing experience to viewers as if they are viewing real-world scene. Although the technologies in 3D acquisition and 3D display have advanced rapidly in recent years, effort is lacking in studying the seamless integration of these two different aspects of 3D technologies. In this paper, we describe our recent progress on integrating a light-field 3D acquisition system and an autostereoscopic multiview 3D display for real-time light field capture and display. This paper focuses on both the architecture design and the implementation of the hardware and the software of this integrated 3D system. A prototype of the integrated 3D system is built to demonstrate the real-time 3D acquisition and 3D display capability of our proposed system.

  9. Remote canopy hemispherical image collection system

    NASA Astrophysics Data System (ADS)

    Wan, Xuefen; Liu, Bingyu; Yang, Yi; Han, Fang; Cui, Jian

    2016-11-01

    Canopies are major part of plant photosynthesis and have distinct architectural elements such as tree crowns, whorls, branches, shoots, etc. By measuring canopy structural parameters, the solar radiation interception, photosynthesis effects and the spatio-temporal distribution of solar radiation under the canopy can be evaluated. Among canopy structure parameters, Leaf Area Index (LAI) is the key one. Leaf area index is a crucial variable in agronomic and environmental studies, because of its importance for estimating the amount of radiation intercepted by the canopy and the crop water requirements. The LAI can be achieved by hemispheric images which are obtained below the canopy with high accuracy and effectiveness. But existing hemispheric images canopy-LAI measurement technique is based on digital SLR camera with a fisheye lens. Users need to collect hemispheric image manually. The SLR camera with fisheye lens is not suit for long-term canopy-LAI outdoor measurement too. And the high cost of SLR limits its capacity. In recent years, with the development of embedded system and image processing technology, low cost remote canopy hemispheric image acquisition technology is becoming possible. In this paper, we present a remote hemispheric canopy image acquisition system with in-field/host configuration. In-field node based on imbed platform, low cost image sensor and fisheye lens is designed to achieve hemispherical image of plant canopy at distance with low cost. Solar radiation and temperature/humidity data, which are important for evaluating image data validation, are obtained for invalid hemispherical image elimination and node maintenance too. Host computer interacts with in-field node by 3G network. The hemispherical image calibration and super resolution are used to improve image quality in host computer. Results show that the remote canopy image collection system can make low cost remote canopy image acquisition for LAI effectively. It will be a potential

  10. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  11. Third Radiation Transfer Model Intercomparison (RAMI) exercise: Documenting progress in canopy reflectance models

    NASA Astrophysics Data System (ADS)

    Widlowski, J.-L.; Taberner, M.; Pinty, B.; Bruniquel-Pinel, V.; Disney, M.; Fernandes, R.; Gastellu-Etchegorry, J.-P.; Gobron, N.; Kuusk, A.; Lavergne, T.; Leblanc, S.; Lewis, P. E.; Martin, E.; Mõttus, M.; North, P. R. J.; Qin, W.; Robustelli, M.; Rochdi, N.; Ruiloba, R.; Soler, C.; Thompson, R.; Verhoef, W.; Verstraete, M. M.; Xie, D.

    2007-05-01

    The Radiation Transfer Model Intercomparison (RAMI) initiative benchmarks canopy reflectance models under well-controlled experimental conditions. Launched for the first time in 1999, this triennial community exercise encourages the systematic evaluation of canopy reflectance models on a voluntary basis. The first phase of RAMI focused on documenting the spread among radiative transfer (RT) simulations over a small set of primarily 1-D canopies. The second phase expanded the scope to include structurally complex 3-D plant architectures with and without background topography. Here sometimes significant discrepancies were noted which effectively prevented the definition of a reliable "surrogate truth," over heterogeneous vegetation canopies, against which other RT models could then be compared. The present paper documents the outcome of the third phase of RAMI, highlighting both the significant progress that has been made in terms of model agreement since RAMI-2 and the capability of/need for RT models to accurately reproduce local estimates of radiative quantities under conditions that are reminiscent of in situ measurements. Our assessment of the self-consistency and the relative and absolute performance of 3-D Monte Carlo models in RAMI-3 supports their usage in the generation of a "surrogate truth" for all RAMI test cases. This development then leads (1) to the presentation of the "RAMI Online Model Checker" (ROMC), an open-access web-based interface to evaluate RT models automatically, and (2) to a reassessment of the role, scope, and opportunities of the RAMI project in the future.

  12. Canopy bidirectional reflectance dependence on leaf orientation

    NASA Technical Reports Server (NTRS)

    Brakke, Thomas W.; Otterman, Joseph

    1990-01-01

    The dependence of the bidirectional reflectance (BR) on the inclination and azimuthal orientation of a leaf is analyzed, with the primary assumption that, in terms of both obscuration and shadowing, the entire canopy consists of the same leaves. The BR patterns of a dense canopy are examined as a function of canopy architecture. It is assumed that the leaves are opaque Lambertian reflectors, having identical orientation and relfecting properties throughout the canopy, and distributed randomly with respect to the the irradiation field and the viewing direction. Analytical expressions are presented and analyzed for the BR factor. It is noted that maximal BR occurs at large viewing zenith angles. A complex and often steep dependence of the BR on azimuthal location is reported, noting that the BR thus depends on the leaf azimuth as well as the zenith angle. It is concluded that the question of azimuthal distribution has to be addressed when conducting model inversions to infer canopy characteristics and architecture.

  13. 3-D sedimentological and geophysical studies of clastic reservoir analogs: Facies architecture, reservoir properties, and flow behavior within delta front facies elements of the Cretaceous Wall Creek Member, Frontier Formation, Wyoming

    SciTech Connect

    Janok P. Bhattacharya; George A. McMechan

    2007-02-16

    This project examined the internal architecture of delta front sandstones at two locations within the Turonian-age Wall Creek Member of the Frontier Formation, in Wyoming. The project involved traditional outcrop field work integrated with core-data, and 2D and 3D ground penetrating radar (GPR) imaging from behind the outcrops. The fluid-flow engineering work, handled through a collaborative grant given to PI Chris White at LSU, focused on effects on fluid flow of late-stage calcite cement nodules in 3D. In addition to the extensive field component, the work funded 2 PhD students (Gani and Lee) and resulted in publication of 10 technical papers, 17 abstracts, and 4 internal field guides. PI Bhattacharya also funded an additional 3 PhD students that worked on the Wall Creek sandstone funded separately through an industrial consortium, two of whom graduated in the fall 2006 ((Sadeque and Vakarelov). These additional funds provided significant leverage to expand the work to include a regional stratigraphic synthesis of the Wall Creek Member of the Frontier Formation, in addition to the reservoir-scale studies that DOE directly funded. Awards given to PI Bhattacharya included the prestigious AAPG Distinguished Lecture Award, which involved a tour of about 25 Universities and Geological Societies in the US and Canada in the fall of 2005 and Spring of 2006. Bhattacharya gave two talks, one entitled “Applying Deltaic and Shallow Marine Outcrop Analogs to the Subsurface”, which highlighted the DOE sponsored work and the other titled “Martian River Deltas and the Origin of Life”. The outcrop analog talk was given at about 1/2 of the venues visited.

  14. AE3D

    SciTech Connect

    Spong, Donald A

    2016-06-20

    AE3D solves for the shear Alfven eigenmodes and eigenfrequencies in a torodal magnetic fusion confinement device. The configuration can be either 2D (e.g. tokamak, reversed field pinch) or 3D (e.g. stellarator, helical reversed field pinch, tokamak with ripple). The equations solved are based on a reduced MHD model and sound wave coupling effects are not currently included.

  15. A virtual canopy generator (V-CaGe) for modelling complex heterogeneous forest canopies at high resolution

    NASA Astrophysics Data System (ADS)

    Bohrer, Gil; Wolosin, Michael; Brady, Rachael; Avissar, Roni

    2007-07-01

    The structure of tree canopies affects turbulence in the atmospheric boundary layer, and light attenuation, reflection and emission from forested areas. Through these effects, canopy structure interacts with fluxes of heat, water, CO2, and volatile organic compounds, and affects patterns of soil moisture and ecosystem dynamics. The effects of canopy structure on the atmosphere are hard to measure and can be studied efficiently with large-eddy simulations. Remote sensing images that can be interpreted for biophysical properties are prone to errors due to effects of canopy structure, such as shading. However, the detailed 3-D canopy structure throughout a large spatial domain (up to several km2) is rarely available. We introduce a new method, namely the virtual canopy generator (V-CaGe), to construct finely detailed, 3-D, virtual forest canopies for use in remote sensing, and atmospheric and other environmental models. These virtual canopies are based on commonly observed mean and variance of biophysical forest properties, and a map (or a remotely-sensed image) of leaf area, or canopy heights, of a canopy subdomain. The canopies are constructed by inverse 2-D Fourier-transform of the observed spatial autocorrelation function and a random phase. The resulting field is expanded to 3-D by using empirical allometric profiles. We demonstrate that the V-CaGe can generate realistic simulation domains.

  16. How We 3D-Print Aerogel

    SciTech Connect

    2015-04-23

    A new type of graphene aerogel will make for better energy storage, sensors, nanoelectronics, catalysis and separations. Lawrence Livermore National Laboratory researchers have made graphene aerogel microlattices with an engineered architecture via a 3D printing technique known as direct ink writing. The research appears in the April 22 edition of the journal, Nature Communications. The 3D printed graphene aerogels have high surface area, excellent electrical conductivity, are lightweight, have mechanical stiffness and exhibit supercompressibility (up to 90 percent compressive strain). In addition, the 3D printed graphene aerogel microlattices show an order of magnitude improvement over bulk graphene materials and much better mass transport.

  17. Fabrication of 3D Silicon Sensors

    SciTech Connect

    Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; Kenney, C.; Hasi, J.; Da Via, C.; Parker, S.I.; /Hawaii U.

    2012-06-06

    Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

  18. Interactions between Fragmented Seagrass Canopies and the Local Hydrodynamics

    PubMed Central

    El Allaoui, Nazha; Colomer, Jordi; Soler, Marianna; Casamitjana, Xavier; Oldham, Carolyn

    2016-01-01

    The systematic creation of gaps within canopies results in fragmentation and the architecture of fragmented canopies differs substantially from non-fragmented canopies. Canopy fragmentation leads to spatial heterogeneity in hydrodynamics and therefore heterogeneity in the sheltering of canopy communities. Identifying the level of instability due to canopy fragmentation is important for canopies in coastal areas impacted by human activities and indeed, climate change. The gap orientation relative to the wave direction is expected to play an important role in determining wave attenuation and sheltering. Initially we investigated the effect of a single transversal gap within a canopy (i.e. a gap oriented perpendicular to the wave direction) on hydrodynamics, which was compared to fully vegetated canopies (i.e. no gaps) and also to bare sediment. The wave velocity increased with gap width for the two canopy densities studied (2.5% and 10% solid plant fraction) reaching wave velocities found over bare sediments. The turbulent kinetic energy (TKE) within the gap also increased, but was more attenuated by the adjacent vegetation than the wave velocity. As expected, denser canopies produced a greater attenuation of both the wave velocity and the turbulent kinetic energy within an adjacent gap, compared to sparse canopies. Using non-dimensional analysis and our experimental data, a parameterization for predicting TKE in a canopy gap was formulated, as a function of easily measured variables. Based on the experimental results, a fragmented canopy model was then developed to determine the overall mixing level in such canopies. The model revealed that canopies with large gaps present more mixing than canopies with small gaps despite having the same total gap area in the canopy. Furthermore, for the same total gap area, dense fragmented canopies provide more shelter than sparse fragmented canopies. PMID:27227321

  19. A specification of 3D manipulation in virtual environments

    NASA Technical Reports Server (NTRS)

    Su, S. Augustine; Furuta, Richard

    1994-01-01

    In this paper we discuss the modeling of three basic kinds of 3-D manipulations in the context of a logical hand device and our virtual panel architecture. The logical hand device is a useful software abstraction representing hands in virtual environments. The virtual panel architecture is the 3-D component of the 2-D window systems. Both of the abstractions are intended to form the foundation for adaptable 3-D manipulation.

  20. 3-D Seismic Interpretation

    NASA Astrophysics Data System (ADS)

    Moore, Gregory F.

    2009-05-01

    This volume is a brief introduction aimed at those who wish to gain a basic and relatively quick understanding of the interpretation of three-dimensional (3-D) seismic reflection data. The book is well written, clearly illustrated, and easy to follow. Enough elementary mathematics are presented for a basic understanding of seismic methods, but more complex mathematical derivations are avoided. References are listed for readers interested in more advanced explanations. After a brief introduction, the book logically begins with a succinct chapter on modern 3-D seismic data acquisition and processing. Standard 3-D acquisition methods are presented, and an appendix expands on more recent acquisition techniques, such as multiple-azimuth and wide-azimuth acquisition. Although this chapter covers the basics of standard time processing quite well, there is only a single sentence about prestack depth imaging, and anisotropic processing is not mentioned at all, even though both techniques are now becoming standard.

  1. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  2. Bootstrapping 3D fermions

    DOE PAGES

    Iliesiu, Luca; Kos, Filip; Poland, David; ...

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  3. Bootstrapping 3D fermions

    SciTech Connect

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  4. Positional Awareness Map 3D (PAM3D)

    NASA Technical Reports Server (NTRS)

    Hoffman, Monica; Allen, Earl L.; Yount, John W.; Norcross, April Louise

    2012-01-01

    The Western Aeronautical Test Range of the National Aeronautics and Space Administration s Dryden Flight Research Center needed to address the aging software and hardware of its current situational awareness display application, the Global Real-Time Interactive Map (GRIM). GRIM was initially developed in the late 1980s and executes on older PC architectures using a Linux operating system that is no longer supported. Additionally, the software is difficult to maintain due to its complexity and loss of developer knowledge. It was decided that a replacement application must be developed or acquired in the near future. The replacement must provide the functionality of the original system, the ability to monitor test flight vehicles in real-time, and add improvements such as high resolution imagery and true 3-dimensional capability. This paper will discuss the process of determining the best approach to replace GRIM, and the functionality and capabilities of the first release of the Positional Awareness Map 3D.

  5. Venus in 3D

    NASA Technical Reports Server (NTRS)

    Plaut, Jeffrey J.

    1993-01-01

    Stereographic images of the surface of Venus which enable geologists to reconstruct the details of the planet's evolution are discussed. The 120-meter resolution of these 3D images make it possible to construct digital topographic maps from which precise measurements can be made of the heights, depths, slopes, and volumes of geologic structures.

  6. 3D photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Carson, Jeffrey J. L.; Roumeliotis, Michael; Chaudhary, Govind; Stodilka, Robert Z.; Anastasio, Mark A.

    2010-06-01

    Our group has concentrated on development of a 3D photoacoustic imaging system for biomedical imaging research. The technology employs a sparse parallel detection scheme and specialized reconstruction software to obtain 3D optical images using a single laser pulse. With the technology we have been able to capture 3D movies of translating point targets and rotating line targets. The current limitation of our 3D photoacoustic imaging approach is its inability ability to reconstruct complex objects in the field of view. This is primarily due to the relatively small number of projections used to reconstruct objects. However, in many photoacoustic imaging situations, only a few objects may be present in the field of view and these objects may have very high contrast compared to background. That is, the objects have sparse properties. Therefore, our work had two objectives: (i) to utilize mathematical tools to evaluate 3D photoacoustic imaging performance, and (ii) to test image reconstruction algorithms that prefer sparseness in the reconstructed images. Our approach was to utilize singular value decomposition techniques to study the imaging operator of the system and evaluate the complexity of objects that could potentially be reconstructed. We also compared the performance of two image reconstruction algorithms (algebraic reconstruction and l1-norm techniques) at reconstructing objects of increasing sparseness. We observed that for a 15-element detection scheme, the number of measureable singular vectors representative of the imaging operator was consistent with the demonstrated ability to reconstruct point and line targets in the field of view. We also observed that the l1-norm reconstruction technique, which is known to prefer sparseness in reconstructed images, was superior to the algebraic reconstruction technique. Based on these findings, we concluded (i) that singular value decomposition of the imaging operator provides valuable insight into the capabilities of

  7. MAP3D: a media processor approach for high-end 3D graphics

    NASA Astrophysics Data System (ADS)

    Darsa, Lucia; Stadnicki, Steven; Basoglu, Chris

    1999-12-01

    Equator Technologies, Inc. has used a software-first approach to produce several programmable and advanced VLIW processor architectures that have the flexibility to run both traditional systems tasks and an array of media-rich applications. For example, Equator's MAP1000A is the world's fastest single-chip programmable signal and image processor targeted for digital consumer and office automation markets. The Equator MAP3D is a proposal for the architecture of the next generation of the Equator MAP family. The MAP3D is designed to achieve high-end 3D performance and a variety of customizable special effects by combining special graphics features with high performance floating-point and media processor architecture. As a programmable media processor, it offers the advantages of a completely configurable 3D pipeline--allowing developers to experiment with different algorithms and to tailor their pipeline to achieve the highest performance for a particular application. With the support of Equator's advanced C compiler and toolkit, MAP3D programs can be written in a high-level language. This allows the compiler to successfully find and exploit any parallelism in a programmer's code, thus decreasing the time to market of a given applications. The ability to run an operating system makes it possible to run concurrent applications in the MAP3D chip, such as video decoding while executing the 3D pipelines, so that integration of applications is easily achieved--using real-time decoded imagery for texturing 3D objects, for instance. This novel architecture enables an affordable, integrated solution for high performance 3D graphics.

  8. Advanced 3D polarimetric flash ladar imaging through foliage

    NASA Astrophysics Data System (ADS)

    Murray, James T.; Moran, Steven E.; Roddier, Nicolas; Vercillo, Richard; Bridges, Robert; Austin, William

    2003-08-01

    High-resolution three-dimensional flash ladar system technologies are under development that enables remote identification of vehicles and armament hidden by heavy tree canopies. We have developed a sensor architecture and design that employs a 3D flash ladar receiver to address this mission. The receiver captures 128×128×>30 three-dimensional images for each laser pulse fired. The voxel size of the image is 3"×3"×4" at the target location. A novel signal-processing algorithm has been developed that achieves sub-voxel (sub-inch) range precision estimates of target locations within each pixel. Polarization discrimination is implemented to augment the target-to-foliage contrast. When employed, this method improves the range resolution of the system beyond the classical limit (based on pulsewidth and detection bandwidth). Experiments were performed with a 6 ns long transmitter pulsewidth that demonstrate 1-inch range resolution of a tank-like target that is occluded by foliage and a range precision of 0.3" for unoccluded targets.

  9. RAG-3D: A search tool for RNA 3D substructures

    SciTech Connect

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; Schlick, Tamar

    2015-08-24

    In this study, to address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally described in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding.

  10. RAG-3D: A search tool for RNA 3D substructures

    DOE PAGES

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; ...

    2015-08-24

    In this study, to address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally describedmore » in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding.« less

  11. VitiCanopy: A Free Computer App to Estimate Canopy Vigor and Porosity for Grapevine

    PubMed Central

    De Bei, Roberta; Fuentes, Sigfredo; Gilliham, Matthew; Tyerman, Steve; Edwards, Everard; Bianchini, Nicolò; Smith, Jason; Collins, Cassandra

    2016-01-01

    Leaf area index (LAI) and plant area index (PAI) are common and important biophysical parameters used to estimate agronomical variables such as canopy growth, light interception and water requirements of plants and trees. LAI can be either measured directly using destructive methods or indirectly using dedicated and expensive instrumentation, both of which require a high level of know-how to operate equipment, handle data and interpret results. Recently, a novel smartphone and tablet PC application, VitiCanopy, has been developed by a group of researchers from the University of Adelaide and the University of Melbourne, to estimate grapevine canopy size (LAI and PAI), canopy porosity, canopy cover and clumping index. VitiCanopy uses the front in-built camera and GPS capabilities of smartphones and tablet PCs to automatically implement image analysis algorithms on upward-looking digital images of canopies and calculates relevant canopy architecture parameters. Results from the use of VitiCanopy on grapevines correlated well with traditional methods to measure/estimate LAI and PAI. Like other indirect methods, VitiCanopy does not distinguish between leaf and non-leaf material but it was demonstrated that the non-leaf material could be extracted from the results, if needed, to increase accuracy. VitiCanopy is an accurate, user-friendly and free alternative to current techniques used by scientists and viticultural practitioners to assess the dynamics of LAI, PAI and canopy architecture in vineyards, and has the potential to be adapted for use on other plants. PMID:27120600

  12. Reproducibility of 3D chromatin configuration reconstructions

    PubMed Central

    Segal, Mark R.; Xiong, Hao; Capurso, Daniel; Vazquez, Mariel; Arsuaga, Javier

    2014-01-01

    It is widely recognized that the three-dimensional (3D) architecture of eukaryotic chromatin plays an important role in processes such as gene regulation and cancer-driving gene fusions. Observing or inferring this 3D structure at even modest resolutions had been problematic, since genomes are highly condensed and traditional assays are coarse. However, recently devised high-throughput molecular techniques have changed this situation. Notably, the development of a suite of chromatin conformation capture (CCC) assays has enabled elicitation of contacts—spatially close chromosomal loci—which have provided insights into chromatin architecture. Most analysis of CCC data has focused on the contact level, with less effort directed toward obtaining 3D reconstructions and evaluating the accuracy and reproducibility thereof. While questions of accuracy must be addressed experimentally, questions of reproducibility can be addressed statistically—the purpose of this paper. We use a constrained optimization technique to reconstruct chromatin configurations for a number of closely related yeast datasets and assess reproducibility using four metrics that measure the distance between 3D configurations. The first of these, Procrustes fitting, measures configuration closeness after applying reflection, rotation, translation, and scaling-based alignment of the structures. The others base comparisons on the within-configuration inter-point distance matrix. Inferential results for these metrics rely on suitable permutation approaches. Results indicate that distance matrix-based approaches are preferable to Procrustes analysis, not because of the metrics per se but rather on account of the ability to customize permutation schemes to handle within-chromosome contiguity. It has recently been emphasized that the use of constrained optimization approaches to 3D architecture reconstruction are prone to being trapped in local minima. Our methods of reproducibility assessment provide a

  13. Twin Peaks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The two hills in the distance, approximately one to two kilometers away, have been dubbed the 'Twin Peaks' and are of great interest to Pathfinder scientists as objects of future study. 3D glasses are necessary to identify surface detail. The white areas on the left hill, called the 'Ski Run' by scientists, may have been formed by hydrologic processes.

    The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  14. 3D and beyond

    NASA Astrophysics Data System (ADS)

    Fung, Y. C.

    1995-05-01

    This conference on physiology and function covers a wide range of subjects, including the vasculature and blood flow, the flow of gas, water, and blood in the lung, the neurological structure and function, the modeling, and the motion and mechanics of organs. Many technologies are discussed. I believe that the list would include a robotic photographer, to hold the optical equipment in a precisely controlled way to obtain the images for the user. Why are 3D images needed? They are to achieve certain objectives through measurements of some objects. For example, in order to improve performance in sports or beauty of a person, we measure the form, dimensions, appearance, and movements.

  15. 3D Audio System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

  16. 3D Surgical Simulation

    PubMed Central

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  17. Martian terrain - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    An area of rocky terrain near the landing site of the Sagan Memorial Station can be seen in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  18. Vegetation Species Composition and Canopy Architecture Information Expressed in Leaf Water Absorption Measured in the 1000nm and 2200 nm Spectral Region by an Imaging Spectometer

    NASA Technical Reports Server (NTRS)

    Green, R. O.; Roberts, D. A.

    1994-01-01

    Plant species composition and plant architectural attributes are critical parameters required for the measuring, monitoring and modeling of terrestrial ecosystems. Remote sensing is commonly cited as an important tool for deriving vegetation properties at an appropriate scale for ecosystem studies, ranging from local, to regional and even synoptic scales (e.g. Wessman 1992).

  19. Shinnery oak bidirectional reflectance properties and canopy model inversion

    NASA Technical Reports Server (NTRS)

    Deering, Donald W.; Eck, Thomas F.; Grier, Toby

    1992-01-01

    Field measurements are presented, together with the results of a 3D canopy-model inversion for sand shinnery oak community in western Texas. The spectral bidirectional radiance measurements were in three spectral channels encompassing both the complete land surface and sky hemispheres. The changes in canopy reflectance that occur with variations in solar zenith angle and view direction for two seasons of the year were evaluated, and the 3D radiation-interaction model was inverted to estimate the oak leaf area index and canopy density from the reflectance data.

  20. 3D field harmonics

    SciTech Connect

    Caspi, S.; Helm, M.; Laslett, L.J.

    1991-03-30

    We have developed an harmonic representation for the three dimensional field components within the windings of accelerator magnets. The form by which the field is presented is suitable for interfacing with other codes that make use of the 3D field components (particle tracking and stability). The field components can be calculated with high precision and reduced cup time at any location (r,{theta},z) inside the magnet bore. The same conductor geometry which is used to simulate line currents is also used in CAD with modifications more readily available. It is our hope that the format used here for magnetic fields can be used not only as a means of delivering fields but also as a way by which beam dynamics can suggest correction to the conductor geometry. 5 refs., 70 figs.

  1. Interior Reconstruction Using the 3d Hough Transform

    NASA Astrophysics Data System (ADS)

    Dumitru, R.-C.; Borrmann, D.; Nüchter, A.

    2013-02-01

    Laser scanners are often used to create accurate 3D models of buildings for civil engineering purposes, but the process of manually vectorizing a 3D point cloud is time consuming and error-prone (Adan and Huber, 2011). Therefore, the need to characterize and quantify complex environments in an automatic fashion arises, posing challenges for data analysis. This paper presents a system for 3D modeling by detecting planes in 3D point clouds, based on which the scene is reconstructed at a high architectural level through removing automatically clutter and foreground data. The implemented software detects openings, such as windows and doors and completes the 3D model by inpainting.

  2. Highly compressible 3D periodic graphene aerogel microlattices

    SciTech Connect

    Zhu, Cheng; Han, T. Yong-Jin; Duoss, Eric B.; Golobic, Alexandra M.; Kuntz, Joshua D.; Spadaccini, Christopher M.; Worsley, Marcus A.

    2015-04-22

    Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young’s moduli of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Ultimately, adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications.

  3. Highly compressible 3D periodic graphene aerogel microlattices

    NASA Astrophysics Data System (ADS)

    Zhu, Cheng; Han, T. Yong-Jin; Duoss, Eric B.; Golobic, Alexandra M.; Kuntz, Joshua D.; Spadaccini, Christopher M.; Worsley, Marcus A.

    2015-04-01

    Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young's moduli of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications.

  4. Highly compressible 3D periodic graphene aerogel microlattices

    PubMed Central

    Zhu, Cheng; Han, T. Yong-Jin; Duoss, Eric B.; Golobic, Alexandra M.; Kuntz, Joshua D.; Spadaccini, Christopher M.; Worsley, Marcus A.

    2015-01-01

    Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young's moduli of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications. PMID:25902277

  5. Computational fluid dynamic studies of a solid and ribbon 12-gore parachute canopy in subsonic and supersonic flow

    SciTech Connect

    Nelsen, J.M.

    1995-06-01

    Computational fluid dynamic studies of 3-D, fixed geometry, gore-shaped parachute canopies are presented. Both solid and ribbon canopies with a 10% vent diameter are investigated. The flowfields analyzed are laminar and compressible, broaching both the subsonic and supersonic regimes. Results presented include characterization of the local and global flowfields and the internal and external canopy surface pressure distributions. The canopy surface pressure distributions may be utilized in subsequent structural analyses to assess the integrity of the parachute canopy fabric components.

  6. Intraoral 3D scanner

    NASA Astrophysics Data System (ADS)

    Kühmstedt, Peter; Bräuer-Burchardt, Christian; Munkelt, Christoph; Heinze, Matthias; Palme, Martin; Schmidt, Ingo; Hintersehr, Josef; Notni, Gunther

    2007-09-01

    Here a new set-up of a 3D-scanning system for CAD/CAM in dental industry is proposed. The system is designed for direct scanning of the dental preparations within the mouth. The measuring process is based on phase correlation technique in combination with fast fringe projection in a stereo arrangement. The novelty in the approach is characterized by the following features: A phase correlation between the phase values of the images of two cameras is used for the co-ordinate calculation. This works contrary to the usage of only phase values (phasogrammetry) or classical triangulation (phase values and camera image co-ordinate values) for the determination of the co-ordinates. The main advantage of the method is that the absolute value of the phase at each point does not directly determine the coordinate. Thus errors in the determination of the co-ordinates are prevented. Furthermore, using the epipolar geometry of the stereo-like arrangement the phase unwrapping problem of fringe analysis can be solved. The endoscope like measurement system contains one projection and two camera channels for illumination and observation of the object, respectively. The new system has a measurement field of nearly 25mm × 15mm. The user can measure two or three teeth at one time. So the system can by used for scanning of single tooth up to bridges preparations. In the paper the first realization of the intraoral scanner is described.

  7. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  8. Prominent rocks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  9. 3-D Packaging: A Technology Review

    NASA Technical Reports Server (NTRS)

    Strickland, Mark; Johnson, R. Wayne; Gerke, David

    2005-01-01

    Traditional electronics are assembled as a planar arrangement of components on a printed circuit board (PCB) or other type of substrate. These planar assemblies may then be plugged into a motherboard or card cage creating a volume of electronics. This architecture is common in many military and space electronic systems as well as large computer and telecommunications systems and industrial electronics. The individual PCB assemblies can be replaced if defective or for system upgrade. Some applications are constrained by the volume or the shape of the system and are not compatible with the motherboard or card cage architecture. Examples include missiles, camcorders, and digital cameras. In these systems, planar rigid-flex substrates are folded to create complex 3-D shapes. The flex circuit serves the role of motherboard, providing interconnection between the rigid boards. An example of a planar rigid - flex assembly prior to folding is shown. In both architectures, the interconnection is effectively 2-D.

  10. 3D fascicle orientations in triceps surae.

    PubMed

    Rana, Manku; Hamarneh, Ghassan; Wakeling, James M

    2013-07-01

    The aim of this study was to determine the three-dimensional (3D) muscle fascicle architecture in human triceps surae muscles at different contraction levels and muscle lengths. Six male subjects were tested for three contraction levels (0, 30, and 60% of maximal voluntary contraction) and four ankle angles (-15, 0, 15, and 30° of plantar flexion), and the muscles were imaged with B-mode ultrasound coupled to 3D position sensors. 3D fascicle orientations were represented in terms of pennation angle relative to the major axis of the muscle and azimuthal angle (a new architectural parameter introduced in this study representing the radial angle around the major axis). 3D orientations of the fascicles, and the sheets along which they lie, were regionalized in all the three muscles (medial and lateral gastrocnemius and the soleus) and changed significantly with contraction level and ankle angle. Changes in the azimuthal angle were of similar magnitude to the changes in pennation angle. The 3D information was used for an error analysis to determine the errors in predictions of pennation that would occur in purely two-dimensional studies. A comparison was made for assessing pennation in the same plane for different contraction levels, or for adjusting the scanning plane orientation for different contractions: there was no significant difference between the two simulated scanning conditions for the gastrocnemii; however, a significant difference of 4.5° was obtained for the soleus. Correct probe orientation is thus more critical during estimations of pennation for the soleus than the gastrocnemii due to its more complex fascicle arrangement.

  11. 3D Imaging with Structured Illumination for Advanced Security Applications

    SciTech Connect

    Birch, Gabriel Carisle; Dagel, Amber Lynn; Kast, Brian A.; Smith, Collin S.

    2015-09-01

    Three-dimensional (3D) information in a physical security system is a highly useful dis- criminator. The two-dimensional data from an imaging systems fails to provide target dis- tance and three-dimensional motion vector, which can be used to reduce nuisance alarm rates and increase system effectiveness. However, 3D imaging devices designed primarily for use in physical security systems are uncommon. This report discusses an architecture favorable to physical security systems; an inexpensive snapshot 3D imaging system utilizing a simple illumination system. The method of acquiring 3D data, tests to understand illumination de- sign, and software modifications possible to maximize information gathering capability are discussed.

  12. Plant canopy gap-size analysis theory for improving optical measurements of leaf-area index

    NASA Astrophysics Data System (ADS)

    Chen, Jing M.; Cihlar, Josef

    1995-09-01

    Optical instruments currently available for measuring the leaf-area index (LAI) of a plant canopy all utilize only the canopy gap-fraction information. These instruments include the Li-Cor LAI-2000 Plant Canopy Analyzer, Decagon, and Demon. The advantages of utilizing both the canopy gap-fraction and gap-size information are shown. For the purpose of measuring the canopy gap size, a prototype sunfleck-LAI instrument named Tracing Radiation and Architecture of Canopies (TRAC), has been developed and tested in two pure conifer plantations, red pine (Pinus resinosa Ait.) and jack pine (Pinus banksiana Lamb). A new gap-size-analysis theory is presented to quantify the effect of canopy architecture on optical measurements of LAI based on the gap-fraction principle. The theory is an improvement on that of Lang and Xiang [Agric. For. Meteorol. 37, 229 (1986)]. In principle, this theory can be used for any heterogeneous canopies.

  13. 3D Bioprinting for Organ Regeneration.

    PubMed

    Cui, Haitao; Nowicki, Margaret; Fisher, John P; Zhang, Lijie Grace

    2017-01-01

    Regenerative medicine holds the promise of engineering functional tissues or organs to heal or replace abnormal and necrotic tissues/organs, offering hope for filling the gap between organ shortage and transplantation needs. Three-dimensional (3D) bioprinting is evolving into an unparalleled biomanufacturing technology due to its high-integration potential for patient-specific designs, precise and rapid manufacturing capabilities with high resolution, and unprecedented versatility. It enables precise control over multiple compositions, spatial distributions, and architectural accuracy/complexity, therefore achieving effective recapitulation of microstructure, architecture, mechanical properties, and biological functions of target tissues and organs. Here we provide an overview of recent advances in 3D bioprinting technology, as well as design concepts of bioinks suitable for the bioprinting process. We focus on the applications of this technology for engineering living organs, focusing more specifically on vasculature, neural networks, the heart and liver. We conclude with current challenges and the technical perspective for further development of 3D organ bioprinting.

  14. A Three-dimensional Statistical Reconstruction Model of Grapevine (Vitis vinifera) Simulating Canopy Structure Variability within and between Cultivar/Training System Pairs

    PubMed Central

    Louarn, Gaëtan; Lecoeur, Jérémie; Lebon, Eric

    2008-01-01

    Background and Aims In grapevine, canopy-structure-related variations in light interception and distribution affect productivity, yield and the quality of the harvested product. A simple statistical model for reconstructing three-dimensional (3D) canopy structures for various cultivar–training system (C × T) pairs has been implemented with special attention paid to balance the time required for model parameterization and accuracy of the representations from organ to stand scales. Such an approach particularly aims at overcoming the weak integration of interplant variability using the usual direct 3D measurement methods. Model This model is original in combining a turbid-medium-like envelope enclosing the volume occupied by vine shoots with the use of discrete geometric polygons representing leaves randomly located within this volume to represent plant structure. Reconstruction rules were adapted to capture the main determinants of grapevine shoot architecture and their variability. Using a simplified set of parameters, it was possible to describe (1) the 3D path of the main shoot, (2) the volume occupied by the foliage around this path and (3) the orientation of individual leaf surfaces. Model parameterization (estimation of the probability distribution for each parameter) was carried out for eight contrasting C × T pairs. Key Results and Conclusions The parameter values obtained in each situation were consistent with our knowledge of grapevine architecture. Quantitative assessments for the generated virtual scenes were carried out at the canopy and plant scales. Light interception efficiency and local variations of light transmittance within and between experimental plots were correctly simulated for all canopies studied. The approach predicted these key ecophysiological variables significantly more accurately than the classical complete digitization method with a limited number of plants. In addition, this model accurately reproduced the characteristics of a

  15. 3D Spectroscopy in Astronomy

    NASA Astrophysics Data System (ADS)

    Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco

    2011-09-01

    Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.

  16. Spherical 3D isotropic wavelets

    NASA Astrophysics Data System (ADS)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2012-04-01

    Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at http://jstarck.free.fr/mrs3d.html

  17. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-04-14

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  18. The New Realm of 3-D Vision

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Dimension Technologies Inc., developed a line of 2-D/3-D Liquid Crystal Display (LCD) screens, including a 15-inch model priced at consumer levels. DTI's family of flat panel LCD displays, called the Virtual Window(TM), provide real-time 3-D images without the use of glasses, head trackers, helmets, or other viewing aids. Most of the company initial 3-D display research was funded through NASA's Small Business Innovation Research (SBIR) program. The images on DTI's displays appear to leap off the screen and hang in space. The display accepts input from computers or stereo video sources, and can be switched from 3-D to full-resolution 2-D viewing with the push of a button. The Virtual Window displays have applications in data visualization, medicine, architecture, business, real estate, entertainment, and other research, design, military, and consumer applications. Displays are currently used for computer games, protein analysis, and surgical imaging. The technology greatly benefits the medical field, as surgical simulators are helping to increase the skills of surgical residents. Virtual Window(TM) is a trademark of Dimension Technologies Inc.

  19. Counter-sniper 3D laser radar

    NASA Astrophysics Data System (ADS)

    Shepherd, Orr; LePage, Andrew J.; Wijntjes, Geert J.; Zehnpfennig, Theodore F.; Sackos, John T.; Nellums, Robert O.

    1999-01-01

    Visidyne, Inc., teaming with Sandia National Laboratories, has developed the preliminary design for an innovative scannerless 3-D laser radar capable of acquiring, tracking, and determining the coordinates of small caliber projectiles in flight with sufficient precision, so their origin can be established by back projecting their tracks to their source. The design takes advantage of the relatively large effective cross-section of a bullet at optical wavelengths. Kay to its implementation is the use of efficient, high- power laser diode arrays for illuminators and an imaging laser receiver using a unique CCD imager design, that acquires the information to establish x, y (angle-angle) and range coordinates for each bullet at very high frame rates. The detection process achieves a high degree of discrimination by using the optical signature of the bullet, solar background mitigation, and track detection. Field measurements and computer simulations have been used to provide the basis for a preliminary design of a robust bullet tracker, the Counter Sniper 3-D Laser Radar. Experimental data showing 3-D test imagery acquired by a lidar with architecture similar to that of the proposed Counter Sniper 3-D Lidar are presented. A proposed Phase II development would yield an innovative, compact, and highly efficient bullet-tracking laser radar. Such a device would meet the needs of not only the military, but also federal, state, and local law enforcement organizations.

  20. 3D Integration for Wireless Multimedia

    NASA Astrophysics Data System (ADS)

    Kimmich, Georg

    The convergence of mobile phone, internet, mapping, gaming and office automation tools with high quality video and still imaging capture capability is becoming a strong market trend for portable devices. High-density video encode and decode, 3D graphics for gaming, increased application-software complexity and ultra-high-bandwidth 4G modem technologies are driving the CPU performance and memory bandwidth requirements close to the PC segment. These portable multimedia devices are battery operated, which requires the deployment of new low-power-optimized silicon process technologies and ultra-low-power design techniques at system, architecture and device level. Mobile devices also need to comply with stringent silicon-area and package-volume constraints. As for all consumer devices, low production cost and fast time-to-volume production is key for success. This chapter shows how 3D architectures can bring a possible breakthrough to meet the conflicting power, performance and area constraints. Multiple 3D die-stacking partitioning strategies are described and analyzed on their potential to improve the overall system power, performance and cost for specific application scenarios. Requirements and maturity of the basic process-technology bricks including through-silicon via (TSV) and die-to-die attachment techniques are reviewed. Finally, we highlight new challenges which will arise with 3D stacking and an outlook on how they may be addressed: Higher power density will require thermal design considerations, new EDA tools will need to be developed to cope with the integration of heterogeneous technologies and to guarantee signal and power integrity across the die stack. The silicon/wafer test strategies have to be adapted to handle high-density IO arrays, ultra-thin wafers and provide built-in self-test of attached memories. New standards and business models have to be developed to allow cost-efficient assembly and testing of devices from different silicon and technology

  1. Highly-stretchable 3D-architected Mechanical Metamaterials

    PubMed Central

    Jiang, Yanhui; Wang, Qiming

    2016-01-01

    Soft materials featuring both 3D free-form architectures and high stretchability are highly desirable for a number of engineering applications ranging from cushion modulators, soft robots to stretchable electronics; however, both the manufacturing and fundamental mechanics are largely elusive. Here, we overcome the manufacturing difficulties and report a class of mechanical metamaterials that not only features 3D free-form lattice architectures but also poses ultrahigh reversible stretchability (strain > 414%), 4 times higher than that of the existing counterparts with the similar complexity of 3D architectures. The microarchitected metamaterials, made of highly stretchable elastomers, are realized through an additive manufacturing technique, projection microstereolithography, and its postprocessing. With the fabricated metamaterials, we reveal their exotic mechanical behaviors: Under large-strain tension, their moduli follow a linear scaling relationship with their densities regardless of architecture types, in sharp contrast to the architecture-dependent modulus power-law of the existing engineering materials; under large-strain compression, they present tunable negative-stiffness that enables ultrahigh energy absorption efficiencies. To harness their extraordinary stretchability and microstructures, we demonstrate that the metamaterials open a number of application avenues in lightweight and flexible structure connectors, ultraefficient dampers, 3D meshed rehabilitation structures and stretchable electronics with designed 3D anisotropic conductivity. PMID:27667638

  2. Highly-stretchable 3D-architected Mechanical Metamaterials

    NASA Astrophysics Data System (ADS)

    Jiang, Yanhui; Wang, Qiming

    2016-09-01

    Soft materials featuring both 3D free-form architectures and high stretchability are highly desirable for a number of engineering applications ranging from cushion modulators, soft robots to stretchable electronics; however, both the manufacturing and fundamental mechanics are largely elusive. Here, we overcome the manufacturing difficulties and report a class of mechanical metamaterials that not only features 3D free-form lattice architectures but also poses ultrahigh reversible stretchability (strain > 414%), 4 times higher than that of the existing counterparts with the similar complexity of 3D architectures. The microarchitected metamaterials, made of highly stretchable elastomers, are realized through an additive manufacturing technique, projection microstereolithography, and its postprocessing. With the fabricated metamaterials, we reveal their exotic mechanical behaviors: Under large-strain tension, their moduli follow a linear scaling relationship with their densities regardless of architecture types, in sharp contrast to the architecture-dependent modulus power-law of the existing engineering materials; under large-strain compression, they present tunable negative-stiffness that enables ultrahigh energy absorption efficiencies. To harness their extraordinary stretchability and microstructures, we demonstrate that the metamaterials open a number of application avenues in lightweight and flexible structure connectors, ultraefficient dampers, 3D meshed rehabilitation structures and stretchable electronics with designed 3D anisotropic conductivity.

  3. Highly-stretchable 3D-architected Mechanical Metamaterials.

    PubMed

    Jiang, Yanhui; Wang, Qiming

    2016-09-26

    Soft materials featuring both 3D free-form architectures and high stretchability are highly desirable for a number of engineering applications ranging from cushion modulators, soft robots to stretchable electronics; however, both the manufacturing and fundamental mechanics are largely elusive. Here, we overcome the manufacturing difficulties and report a class of mechanical metamaterials that not only features 3D free-form lattice architectures but also poses ultrahigh reversible stretchability (strain > 414%), 4 times higher than that of the existing counterparts with the similar complexity of 3D architectures. The microarchitected metamaterials, made of highly stretchable elastomers, are realized through an additive manufacturing technique, projection microstereolithography, and its postprocessing. With the fabricated metamaterials, we reveal their exotic mechanical behaviors: Under large-strain tension, their moduli follow a linear scaling relationship with their densities regardless of architecture types, in sharp contrast to the architecture-dependent modulus power-law of the existing engineering materials; under large-strain compression, they present tunable negative-stiffness that enables ultrahigh energy absorption efficiencies. To harness their extraordinary stretchability and microstructures, we demonstrate that the metamaterials open a number of application avenues in lightweight and flexible structure connectors, ultraefficient dampers, 3D meshed rehabilitation structures and stretchable electronics with designed 3D anisotropic conductivity.

  4. 3D World Building System

    ScienceCinema

    None

    2016-07-12

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  5. 3D Buckligami: Digital Matter

    NASA Astrophysics Data System (ADS)

    van Hecke, Martin; de Reus, Koen; Florijn, Bastiaan; Coulais, Corentin

    2014-03-01

    We present a class of elastic structures which exhibit collective buckling in 3D, and create these by a 3D printing/moulding technique. Our structures consist of cubic lattice of anisotropic unit cells, and we show that their mechanical properties are programmable via the orientation of these unit cells.

  6. 3D World Building System

    SciTech Connect

    2013-10-30

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  7. LLNL-Earth3D

    SciTech Connect

    2013-10-01

    Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.

  8. Market study: 3-D eyetracker

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.

  9. Euro3D Science Conference

    NASA Astrophysics Data System (ADS)

    Walsh, J. R.

    2004-02-01

    The Euro3D RTN is an EU funded Research Training Network to foster the exploitation of 3D spectroscopy in Europe. 3D spectroscopy is a general term for spectroscopy of an area of the sky and derives its name from its two spatial + one spectral dimensions. There are an increasing number of instruments which use integral field devices to achieve spectroscopy of an area of the sky, either using lens arrays, optical fibres or image slicers, to pack spectra of multiple pixels on the sky (``spaxels'') onto a 2D detector. On account of the large volume of data and the special methods required to reduce and analyse 3D data, there are only a few centres of expertise and these are mostly involved with instrument developments. There is a perceived lack of expertise in 3D spectroscopy spread though the astronomical community and its use in the armoury of the observational astronomer is viewed as being highly specialised. For precisely this reason the Euro3D RTN was proposed to train young researchers in this area and develop user tools to widen the experience with this particular type of data in Europe. The Euro3D RTN is coordinated by Martin M. Roth (Astrophysikalisches Institut Potsdam) and has been running since July 2002. The first Euro3D science conference was held in Cambridge, UK from 22 to 23 May 2003. The main emphasis of the conference was, in keeping with the RTN, to expose the work of the young post-docs who are funded by the RTN. In addition the team members from the eleven European institutes involved in Euro3D also presented instrumental and observational developments. The conference was organized by Andy Bunker and held at the Institute of Astronomy. There were over thirty participants and 26 talks covered the whole range of application of 3D techniques. The science ranged from Galactic planetary nebulae and globular clusters to kinematics of nearby galaxies out to objects at high redshift. Several talks were devoted to reporting recent observations with newly

  10. 3D vision system assessment

    NASA Astrophysics Data System (ADS)

    Pezzaniti, J. Larry; Edmondson, Richard; Vaden, Justin; Hyatt, Bryan; Chenault, David B.; Kingston, David; Geulen, Vanilynmae; Newell, Scott; Pettijohn, Brad

    2009-02-01

    In this paper, we report on the development of a 3D vision system consisting of a flat panel stereoscopic display and auto-converging stereo camera and an assessment of the system's use for robotic driving, manipulation, and surveillance operations. The 3D vision system was integrated onto a Talon Robot and Operator Control Unit (OCU) such that direct comparisons of the performance of a number of test subjects using 2D and 3D vision systems were possible. A number of representative scenarios were developed to determine which tasks benefited most from the added depth perception and to understand when the 3D vision system hindered understanding of the scene. Two tests were conducted at Fort Leonard Wood, MO with noncommissioned officers ranked Staff Sergeant and Sergeant First Class. The scenarios; the test planning, approach and protocols; the data analysis; and the resulting performance assessment of the 3D vision system are reported.

  11. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  12. PLOT3D user's manual

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  13. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  14. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  15. Nano-spatial parameters from 3D to 2D lattice dimensionality by organic variant in [ZnCl4]- [R]+ hybrid materials: Structure, architecture-lattice dimensionality, microscopy, optical Eg and PL correlations

    NASA Astrophysics Data System (ADS)

    Kumar, Ajit; Verma, Sanjay K.; Alvi, P. A.; Jasrotia, Dinesh

    2016-04-01

    The nanospatial morphological features of [ZnCl]- [C5H4NCH3]+ hybrid derivative depicts 28 nm granular size and 3D spreader shape packing pattern as analyzed by FESEM and single crystal XRD structural studies. The organic moiety connect the inorganic components through N-H+…Cl- hydrogen bond to form a hybrid composite, the replacement of organic derivatives from 2-methylpyridine to 2-Amino-5-choloropyridine results the increase in granular size from 28nm to 60nm and unit cell packing pattern from 3D-2D lattice dimensionality along ac plane. The change in optical energy direct band gap value from 3.01eV for [ZnCl]- [C5H4NCH3]+ (HM1) to 3.42eV for [ZnCl]- [C5H5ClN2]+ (HM2) indicates the role of organic moiety in optical properties of hybrid materials. The photoluminescence emission spectra is observed in the wavelength range of 370 to 600 nm with maximum peak intensity of 9.66a.u. at 438 nm for (HM1) and 370 to 600 nm with max peak intensity of 9.91 a.u. at 442 nm for (HM2), indicating that the emission spectra lies in visible range. PL excitation spectra depicts the maximum excitation intensity [9.8] at 245.5 nm for (HM1) and its value of 9.9 a.u. at 294 nm, specify the excitation spectra lies in UV range. Photoluminescence excitation spectra is observed in the wavelength range of 280 to 350 nm with maximum peak intensity of 9.4 a.u. at 285.5 nm and 9.9 a.u. at 294 and 297 nm, indicating excitation in the UV spectrum. Single crystal growth process and detailed physiochemical characterization such as XRD, FESEM image analysis photoluminescence property reveals the structure stability with non-covalent interactions, lattice dimensionality (3D-2D) correlations interweaving into the design of inorganic-organic hybrid materials.

  16. Unassisted 3D camera calibration

    NASA Astrophysics Data System (ADS)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  17. Disruption of the 3D cancer genome blueprint.

    PubMed

    Achinger-Kawecka, Joanna; Clark, Susan J

    2017-01-01

    Recent advances in chromosome conformation capture technologies are improving the current appreciation of how 3D genome architecture affects its function in different cell types and disease. Long-range chromatin interactions are organized into topologically associated domains, which are known to play a role in constraining gene expression patterns. However, in cancer cells there are alterations in the 3D genome structure, which impacts on gene regulation. Disruption of topologically associated domains architecture can result in alterations in chromatin interactions that bring new regulatory elements and genes together, leading to altered expression of oncogenes and tumor suppressor genes. Here, we discuss the impact of genetic and epigenetic changes in cancer and how this affects the spatial organization of chromatin. Understanding how disruptions to the 3D architecture contribute to the cancer genome will provide novel insights into the principles of epigenetic gene regulation in cancer and mechanisms responsible for cancer associated mutations and rearrangements.

  18. 3D Scan Systems Integration

    DTIC Science & Technology

    2007-11-02

    AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 5 Feb 98 4. TITLE AND SUBTITLE 3D Scan Systems Integration REPORT TYPE AND DATES COVERED...2-89) Prescribed by ANSI Std. Z39-1 298-102 [ EDO QUALITY W3PECTEDI DLA-ARN Final Report for US Defense Logistics Agency on DDFG-T2/P3: 3D...SCAN SYSTEMS INTEGRATION Contract Number SPO100-95-D-1014 Contractor Ohio University Delivery Order # 0001 Delivery Order Title 3D Scan Systems

  19. 3D polymer scaffold arrays.

    PubMed

    Simon, Carl G; Yang, Yanyin; Dorsey, Shauna M; Ramalingam, Murugan; Chatterjee, Kaushik

    2011-01-01

    We have developed a combinatorial platform for fabricating tissue scaffold arrays that can be used for screening cell-material interactions. Traditional research involves preparing samples one at a time for characterization and testing. Combinatorial and high-throughput (CHT) methods lower the cost of research by reducing the amount of time and material required for experiments by combining many samples into miniaturized specimens. In order to help accelerate biomaterials research, many new CHT methods have been developed for screening cell-material interactions where materials are presented to cells as a 2D film or surface. However, biomaterials are frequently used to fabricate 3D scaffolds, cells exist in vivo in a 3D environment and cells cultured in a 3D environment in vitro typically behave more physiologically than those cultured on a 2D surface. Thus, we have developed a platform for fabricating tissue scaffold libraries where biomaterials can be presented to cells in a 3D format.

  20. Autofocus for 3D imaging

    NASA Astrophysics Data System (ADS)

    Lee-Elkin, Forest

    2008-04-01

    Three dimensional (3D) autofocus remains a significant challenge for the development of practical 3D multipass radar imaging. The current 2D radar autofocus methods are not readily extendable across sensor passes. We propose a general framework that allows a class of data adaptive solutions for 3D auto-focus across passes with minimal constraints on the scene contents. The key enabling assumption is that portions of the scene are sparse in elevation which reduces the number of free variables and results in a system that is simultaneously solved for scatterer heights and autofocus parameters. The proposed method extends 2-pass interferometric synthetic aperture radar (IFSAR) methods to an arbitrary number of passes allowing the consideration of scattering from multiple height locations. A specific case from the proposed autofocus framework is solved and demonstrates autofocus and coherent multipass 3D estimation across the 8 passes of the "Gotcha Volumetric SAR Data Set" X-Band radar data.

  1. Combinatorial 3D Mechanical Metamaterials

    NASA Astrophysics Data System (ADS)

    Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin

    2015-03-01

    We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.

  2. 3D dendritic α-Fe{sub 2}O{sub 3} nano-architectures: Synthesis and its application on electrochemical non-enzymatic H{sub 2}O{sub 2} sensing

    SciTech Connect

    Majumder, S.

    2015-06-24

    In this manuscript we have successfully synthesized a large scale 3D dendritic α-Fe{sub 2}O{sub 3} hierarchical structure via a hydrothermal reaction. The crystallinity, composition, purity, morphology of the synthesized α-Fe{sub 2}O{sub 3} are characterized by powder X-ray diffraction (PXRD), field emission scanning electron microscopic (FESEM), energy dispersive X-ray spectroscopic (EDS). FESEM image reveals that the individual α-Fe{sub 2}O{sub 3} dendrite consists of a long central trunk with secondary and tertiary branches. For electrochemical H{sub 2}O{sub 2} sensing we have carried out cyclic voltammetry (CV), amperometric i-t measurement. It has been found that the current density vs. H{sub 2}O{sub 2} concentration calibration curve is linear in nature. The present study reveals that the dendritic α-Fe{sub 2}O{sub 3} hierarchical structure exhibits very sensitive electrochemical sensing capability towards H{sub 2}O{sub 2} reduction.

  3. 3D printing of functional biomaterials for tissue engineering.

    PubMed

    Zhu, Wei; Ma, Xuanyi; Gou, Maling; Mei, Deqing; Zhang, Kang; Chen, Shaochen

    2016-08-01

    3D printing is emerging as a powerful tool for tissue engineering by enabling 3D cell culture within complex 3D biomimetic architectures. This review discusses the prevailing 3D printing techniques and their most recent applications in building tissue constructs. The work associated with relatively well-known inkjet and extrusion-based bioprinting is presented with the latest advances in the fields. Emphasis is put on introducing two relatively new light-assisted bioprinting techniques, including digital light processing (DLP)-based bioprinting and laser based two photon polymerization (TPP) bioprinting. 3D bioprinting of vasculature network is particularly discussed for its foremost significance in maintaining tissue viability and promoting functional maturation. Limitations to current bioprinting approaches, as well as future directions of bioprinting functional tissues are also discussed.

  4. Direct-Write 3D Nanoprinting of Plasmonic Structures

    DOE PAGES

    Winkler, Robert; Schmidt, Franz-Philipp; Karl-Franzens Univ.; ...

    2016-11-23

    During the past decade, significant progress has been made in the field of resonant optics ranging from fundamental aspects to concrete applications. And while several techniques have been introduced for the fabrication of highly defined metallic nanostructures, the synthesis of complex, free-standing three-dimensional (3D) structures is still an intriguing, but so far intractable, challenge. Here, we demonstrate a 3D direct-write synthesis approach that addresses this challenge. Specifically, we succeeded in the direct-write fabrication of 3D nanoarchitectures via electron-stimulated reactions, which are applicable on virtually any material and surface morphology. Furthermore, by that, complex 3D nanostructures composed of highly compact, puremore » gold can be fabricated, which reveal strong plasmonic activity and pave the way for a new generation of 3D nanoplasmonic architectures that can be printed on-demand.« less

  5. Direct-Write 3D Nanoprinting of Plasmonic Structures.

    PubMed

    Winkler, Robert; Schmidt, Franz-Philipp; Haselmann, Ulrich; Fowlkes, Jason D; Lewis, Brett B; Kothleitner, Gerald; Rack, Philip D; Plank, Harald

    2017-03-08

    During the past decade, significant progress has been made in the field of resonant optics ranging from fundamental aspects to concrete applications. While several techniques have been introduced for the fabrication of highly defined metallic nanostructures, the synthesis of complex, free-standing three-dimensional (3D) structures is still an intriguing, but so far intractable, challenge. In this study, we demonstrate a 3D direct-write synthesis approach that addresses this challenge. Specifically, we succeeded in the direct-write fabrication of 3D nanoarchitectures via electron-stimulated reactions, which are applicable on virtually any material and surface morphology. By that, complex 3D nanostructures composed of highly compact, pure gold can be fabricated, which reveal strong plasmonic activity and pave the way for a new generation of 3D nanoplasmonic architectures that can be printed on-demand.

  6. Direct-Write 3D Nanoprinting of Plasmonic Structures

    SciTech Connect

    Winkler, Robert; Schmidt, Franz-Philipp; Haselmann, Ulrich; Fowlkes, Jason D.; Lewis, Brett B.; Kothleitner, Gerald; Rack, Philip D.; Plank, Harald

    2016-11-23

    During the past decade, significant progress has been made in the field of resonant optics ranging from fundamental aspects to concrete applications. And while several techniques have been introduced for the fabrication of highly defined metallic nanostructures, the synthesis of complex, free-standing three-dimensional (3D) structures is still an intriguing, but so far intractable, challenge. Here, we demonstrate a 3D direct-write synthesis approach that addresses this challenge. Specifically, we succeeded in the direct-write fabrication of 3D nanoarchitectures via electron-stimulated reactions, which are applicable on virtually any material and surface morphology. Furthermore, by that, complex 3D nanostructures composed of highly compact, pure gold can be fabricated, which reveal strong plasmonic activity and pave the way for a new generation of 3D nanoplasmonic architectures that can be printed on-demand.

  7. Thermal Infrared Hot Spot and Dependence on Canopy Geometry

    NASA Technical Reports Server (NTRS)

    Smith, James A.; Ballard, Jerrell R., Jr.; Smith, David E. (Technical Monitor)

    2001-01-01

    We perform theoretical calculations of the canopy thermal infrared (TIR) hot spot using a first principles 3-D model described earlier. Various theoretical canopies of varying leaf size and for differing canopy height are used to illustrate the magnitude of the TIR effect. Our results are similar to predicted behavior in the reflective hot spot as a function of canopy geometry and comparable to TIR measurements from the literature and our own simple ground experiments. We apply the MODTRAN atmospheric code to estimate the at-sensor variation in brightness temperature with view direction in the solar principal plane. For simple homogeneous canopies, we predict canopy thermal infrared hot spot variations of 2 degrees C at the surface with respect to nadir viewing. Dependence on leaf size is weak as long as the ratio of leaf size to canopy height is maintained. However, the angular width of the hot spot increases as the ratio of leaf diameter to canopy height increases. Atmospheric effects minimize but do not eliminate the TIR hot spot at satellite altitudes.

  8. Inferential modeling of 3D chromatin structure.

    PubMed

    Wang, Siyu; Xu, Jinbo; Zeng, Jianyang

    2015-04-30

    For eukaryotic cells, the biological processes involving regulatory DNA elements play an important role in cell cycle. Understanding 3D spatial arrangements of chromosomes and revealing long-range chromatin interactions are critical to decipher these biological processes. In recent years, chromosome conformation capture (3C) related techniques have been developed to measure the interaction frequencies between long-range genome loci, which have provided a great opportunity to decode the 3D organization of the genome. In this paper, we develop a new Bayesian framework to derive the 3D architecture of a chromosome from 3C-based data. By modeling each chromosome as a polymer chain, we define the conformational energy based on our current knowledge on polymer physics and use it as prior information in the Bayesian framework. We also propose an expectation-maximization (EM) based algorithm to estimate the unknown parameters of the Bayesian model and infer an ensemble of chromatin structures based on interaction frequency data. We have validated our Bayesian inference approach through cross-validation and verified the computed chromatin conformations using the geometric constraints derived from fluorescence in situ hybridization (FISH) experiments. We have further confirmed the inferred chromatin structures using the known genetic interactions derived from other studies in the literature. Our test results have indicated that our Bayesian framework can compute an accurate ensemble of 3D chromatin conformations that best interpret the distance constraints derived from 3C-based data and also agree with other sources of geometric constraints derived from experimental evidence in the previous studies. The source code of our approach can be found in https://github.com/wangsy11/InfMod3DGen.

  9. 3D printed quantum dot light-emitting diodes.

    PubMed

    Kong, Yong Lin; Tamargo, Ian A; Kim, Hyoungsoo; Johnson, Blake N; Gupta, Maneesh K; Koh, Tae-Wook; Chin, Huai-An; Steingart, Daniel A; Rand, Barry P; McAlpine, Michael C

    2014-12-10

    Developing the ability to 3D print various classes of materials possessing distinct properties could enable the freeform generation of active electronics in unique functional, interwoven architectures. Achieving seamless integration of diverse materials with 3D printing is a significant challenge that requires overcoming discrepancies in material properties in addition to ensuring that all the materials are compatible with the 3D printing process. To date, 3D printing has been limited to specific plastics, passive conductors, and a few biological materials. Here, we show that diverse classes of materials can be 3D printed and fully integrated into device components with active properties. Specifically, we demonstrate the seamless interweaving of five different materials, including (1) emissive semiconducting inorganic nanoparticles, (2) an elastomeric matrix, (3) organic polymers as charge transport layers, (4) solid and liquid metal leads, and (5) a UV-adhesive transparent substrate layer. As a proof of concept for demonstrating the integrated functionality of these materials, we 3D printed quantum dot-based light-emitting diodes (QD-LEDs) that exhibit pure and tunable color emission properties. By further incorporating the 3D scanning of surface topologies, we demonstrate the ability to conformally print devices onto curvilinear surfaces, such as contact lenses. Finally, we show that novel architectures that are not easily accessed using standard microfabrication techniques can be constructed, by 3D printing a 2 × 2 × 2 cube of encapsulated LEDs, in which every component of the cube and electronics are 3D printed. Overall, these results suggest that 3D printing is more versatile than has been demonstrated to date and is capable of integrating many distinct classes of materials.

  10. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    NASA Astrophysics Data System (ADS)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  11. Speaking Volumes About 3-D

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.

  12. Macrophage podosomes go 3D.

    PubMed

    Van Goethem, Emeline; Guiet, Romain; Balor, Stéphanie; Charrière, Guillaume M; Poincloux, Renaud; Labrousse, Arnaud; Maridonneau-Parini, Isabelle; Le Cabec, Véronique

    2011-01-01

    Macrophage tissue infiltration is a critical step in the immune response against microorganisms and is also associated with disease progression in chronic inflammation and cancer. Macrophages are constitutively equipped with specialized structures called podosomes dedicated to extracellular matrix (ECM) degradation. We recently reported that these structures play a critical role in trans-matrix mesenchymal migration mode, a protease-dependent mechanism. Podosome molecular components and their ECM-degrading activity have been extensively studied in two dimensions (2D), but yet very little is known about their fate in three-dimensional (3D) environments. Therefore, localization of podosome markers and proteolytic activity were carefully examined in human macrophages performing mesenchymal migration. Using our gelled collagen I 3D matrix model to obligate human macrophages to perform mesenchymal migration, classical podosome markers including talin, paxillin, vinculin, gelsolin, cortactin were found to accumulate at the tip of F-actin-rich cell protrusions together with β1 integrin and CD44 but not β2 integrin. Macrophage proteolytic activity was observed at podosome-like protrusion sites using confocal fluorescence microscopy and electron microscopy. The formation of migration tunnels by macrophages inside the matrix was accomplished by degradation, engulfment and mechanic compaction of the matrix. In addition, videomicroscopy revealed that 3D F-actin-rich protrusions of migrating macrophages were as dynamic as their 2D counterparts. Overall, the specifications of 3D podosomes resembled those of 2D podosome rosettes rather than those of individual podosomes. This observation was further supported by the aspect of 3D podosomes in fibroblasts expressing Hck, a master regulator of podosome rosettes in macrophages. In conclusion, human macrophage podosomes go 3D and take the shape of spherical podosome rosettes when the cells perform mesenchymal migration. This work

  13. Petal, terrain & airbags - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Portions of the lander's deflated airbags and a petal are at the lower area of this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. The metallic object at lower right is part of the lander's low-gain antenna. This image is part of a 3D 'monster

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  14. 3D Computations and Experiments

    SciTech Connect

    Couch, R; Faux, D; Goto, D; Nikkel, D

    2004-04-05

    This project consists of two activities. Task A, Simulations and Measurements, combines all the material model development and associated numerical work with the materials-oriented experimental activities. The goal of this effort is to provide an improved understanding of dynamic material properties and to provide accurate numerical representations of those properties for use in analysis codes. Task B, ALE3D Development, involves general development activities in the ALE3D code with the focus of improving simulation capabilities for problems of mutual interest to DoD and DOE. Emphasis is on problems involving multi-phase flow, blast loading of structures and system safety/vulnerability studies.

  15. Highly compressible 3D periodic graphene aerogel microlattices

    DOE PAGES

    Zhu, Cheng; Han, T. Yong-Jin; Duoss, Eric B.; ...

    2015-04-22

    Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young’s modulimore » of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Ultimately, adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications.« less

  16. Experimental 3D Asynchronous Field Programmable Gate Array (FPGA)

    DTIC Science & Technology

    2015-03-01

    microprocessor . 3.1. Asynchronous FPGA Overview In terms of the major building blocks, the asynchronous FPGA (AFPGA) architecture looks like a traditional...devices—from O(N1/2) to O(N1/3), where N is the number of devices in the system. 3D chip stacking has been proposed as a way to improve microprocessor

  17. Real-time hardware for a new 3D display

    NASA Astrophysics Data System (ADS)

    Kaufmann, B.; Akil, M.

    2006-02-01

    We describe in this article a new multi-view auto-stereoscopic display system with a real time architecture to generate images of n different points of view of a 3D scene. This architecture generates all the different points of view with only one generation process, the different pictures are not generated independently but all at the same time. The architecture generates a frame buffer that contains all the voxels with their three dimensions and regenerates the different pictures on demand from this frame buffer. The need of memory is decreased because there is no redundant information in the buffer.

  18. 3D printing of versatile reactionware for chemical synthesis.

    PubMed

    Kitson, Philip J; Glatzel, Stefan; Chen, Wei; Lin, Chang-Gen; Song, Yu-Fei; Cronin, Leroy

    2016-05-01

    In recent decades, 3D printing (also known as additive manufacturing) techniques have moved beyond their traditional applications in the fields of industrial manufacturing and prototyping to increasingly find roles in scientific research contexts, such as synthetic chemistry. We present a general approach for the production of bespoke chemical reactors, termed reactionware, using two different approaches to extrusion-based 3D printing. This protocol describes the printing of an inert polypropylene (PP) architecture with the concurrent printing of soft material catalyst composites, using two different 3D printer setups. The steps of the PROCEDURE describe the design and preparation of a 3D digital model of the desired reactionware device and the preparation of this model for use with fused deposition modeling (FDM) type 3D printers. The protocol then further describes the preparation of composite catalyst-silicone materials for incorporation into the 3D-printed device and the steps required to fabricate a reactionware device. This combined approach allows versatility in the design and use of reactionware based on the specific needs of the experimental user. To illustrate this, we present a detailed procedure for the production of one such reactionware device that will result in the production of a sealed reactor capable of effecting a multistep organic synthesis. Depending on the design time of the 3D model, and including time for curing and drying of materials, this procedure can be completed in ∼3 d.

  19. The World of 3-D.

    ERIC Educational Resources Information Center

    Mayshark, Robin K.

    1991-01-01

    Students explore three-dimensional properties by creating red and green wall decorations related to Christmas. Students examine why images seem to vibrate when red and green pieces are small and close together. Instructions to conduct the activity and construct 3-D glasses are given. (MDH)

  20. 3D Printing: Exploring Capabilities

    ERIC Educational Resources Information Center

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  1. SNL3dFace

    SciTech Connect

    Russ, Trina; Koch, Mark; Koudelka, Melissa; Peters, Ralph; Little, Charles; Boehnen, Chris; Peters, Tanya

    2007-07-20

    This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial features of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.

  2. Making Inexpensive 3-D Models

    ERIC Educational Resources Information Center

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  3. 3D web visualization of huge CityGML models

    NASA Astrophysics Data System (ADS)

    Prandi, F.; Devigili, F.; Soave, M.; Di Staso, U.; De Amicis, R.

    2015-08-01

    Nowadays, rapid technological development into acquiring geo-spatial information; joined to the capabilities to process these data in a relative short period of time, allows the generation of detailed 3D textured city models that will become an essential part of the modern city information infrastructure (Spatial Data Infrastructure) and, can be used to integrate various data from different sources for public accessible visualisation and many other applications. One of the main bottlenecks, which at the moment limit the use of these datasets to few experts, is a lack on efficient visualization systems through the web and interoperable frameworks that allow standardising the access to the city models. The work presented in this paper tries to satisfy these two requirements developing a 3D web-based visualization system based on OGC standards and effective visualization concepts. The architectural framework, based on Services Oriented Architecture (SOA) concepts, provides the 3D city data to a web client designed to support the view process in a very effective way. The first part of the work is to design a framework compliant to the 3D Portrayal Service drafted by the of the Open Geospatial Consortium (OGC) 3D standardization working group. The latter is related to the development of an effective web client able to render in an efficient way the 3D city models.

  4. TACO3D. 3-D Finite Element Heat Transfer Code

    SciTech Connect

    Mason, W.E.

    1992-03-04

    TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.

  5. Luminescence and magnetic properties of novel nanoparticle-sheathed 3D Micro-Architectures of Fe0.5R0.5(MoO4)1.5:Ln3+ (R = Gd3+, La3+), (Ln = Eu, Tb, Dy) for bifunctional application

    NASA Astrophysics Data System (ADS)

    Krishnan, Rajagopalan; Thirumalai, Jagannathan; Kathiravan, Arunkumar

    2015-01-01

    For the first time, we report the successful synthesis of novel nanoparticle-sheathed bipyramid-like and almond-like Fe0.5R0.5(MoO4)1.5:Ln3+ (R = Gd3+, La3+), (Ln = Eu, Tb, Dy) 3D hierarchical microstructures through a simple disodium ethylenediaminetetraacetic acid (Na2EDTA) facilitated hydrothermal method. Interestingly, time-dependent experiments confirm that the assembly-disassembly process is responsible for the formation of self-aggregated 3D architectures via Ostwald ripening phenomena. The resultant products are characterized by x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), photoluminescence (PL), and magnetic measurements. The growth and formation mechanisms of the self-assembled 3D micro structures are discussed in detail. To confirm the presence of all the elements in the microstructure, the energy loss induced by the K, L shell electron ionization is observed in order to map the Fe, Gd, Mo, O, and Eu components. The photo luminescence properties of Fe0.5R0.5(MoO4)1.5 doped with Eu3+, Tb3+, Dy3+ are investigated. The room temperature and low temperature magnetic properties suggest that the interaction between the local-fields introduced by the magnetic Fe3+ ions and the R3+ (La, Gd) ions in the dodecahedral sites determine the magnetism in Fe0.5R0.5(MoO4)1.5:Eu3+. This work provides a new approach to synthesizing the novel Fe0.5R0.5(MoO4)1.5:Ln3+ for bi-functional magnetic and luminescence applications.

  6. Canopy stomatal conductance

    SciTech Connect

    Baldocchi, D.D.; Luxmoore, R.J.; Hatfield, J.L.

    1989-07-14

    Stomata are major conduits for the diffusion of many trace gas species between leaves and the atmosphere. The role of the stomata on controlling gas exchange between the terrestrial biosphere and the atmosphere at the landscape, meso- and global-scales has only recently been recognized. Further advances in modelling large-scale trace gas exchange will depend on our ability to understand and model stomatal mechanics at the scale of the pertinent sub-unit, which is typically that of the canopy. This paper describes two approaches for estimating canopy stomatal conductance. One approach is based on 'bottom-up' scaling. This approach computes canopy stomatal conductance by integrating detailed leaf-level and environmentally-driven, physiological processes with the use of a detailed canopy micrometeorology model. The other approach is based on 'top-down' scaling. It interprets the integrated canopy stomatal conductance from measured fluxes of trace gas exchange. Frameworks for extending these scaling approaches to non-idea conditions are given. 96 refs., 5 figs.

  7. Virtual VMASC: A 3D Game Environment

    NASA Technical Reports Server (NTRS)

    Manepalli, Suchitra; Shen, Yuzhong; Garcia, Hector M.; Lawsure, Kaleen

    2010-01-01

    The advantages of creating interactive 3D simulations that allow viewing, exploring, and interacting with land improvements, such as buildings, in digital form are manifold and range from allowing individuals from anywhere in the world to explore those virtual land improvements online, to training military personnel in dealing with war-time environments, and to making those land improvements available in virtual worlds such as Second Life. While we haven't fully explored the true potential of such simulations, we have identified a requirement within our organization to use simulations like those to replace our front-desk personnel and allow visitors to query, naVigate, and communicate virtually with various entities within the building. We implemented the Virtual VMASC 3D simulation of the Virginia Modeling Analysis and Simulation Center (VMASC) office building to not only meet our front-desk requirement but also to evaluate the effort required in designing such a simulation and, thereby, leverage the experience we gained in future projects of this kind. This paper describes the goals we set for our implementation, the software approach taken, the modeling contribution made, and the technologies used such as XNA Game Studio, .NET framework, Autodesk software packages, and, finally, the applicability of our implementation on a variety of architectures including Xbox 360 and PC. This paper also summarizes the result of our evaluation and the lessons learned from our effort.

  8. Does spatial arrangement of 3D plants affect light transmission and extinction coefficient within maize crops?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Row spacing effects on light interception and extinction coefficient have been inconsistent for maize (Zea mays L.) when calculated with field measurements. To avoid inconsistencies due to variable light conditions and variable leaf canopies, we used a model to describe three-dimensional (3D) shoot ...

  9. Microscopy in 3D: a biologist’s toolbox

    PubMed Central

    Fischer, Robert S.; Wu, Yicong; Kanchanawong, Pakorn; Shroff, Hari; Waterman, Clare M.

    2012-01-01

    The power of fluorescence microscopy to study cellular structures and macromolecular complexes spans a wide range of size scales, from studies of cell behavior and function in physiological, three-dimensional (3D) environments, to understanding the molecular architecture of organelles. At each length scale, the challenge in 3D imaging is to extract the most spatial and temporal resolution possible while limiting photodamage/bleaching to living cells. A number of advancements in 3D fluorescence microscopy now offer higher resolution, improved speed, and reduced photobleaching relative to traditional point-scanning microscopy methods. Here, we discuss a few specific microscopy modalities that we believe will be particularly advantageous in imaging cells and subcellular structures in physiologically relevant 3D environments. PMID:22047760

  10. Towards Single Cell Traction Microscopy within 3D Collagen Matrices

    PubMed Central

    Hall, Matthew S.; Long, Rong; Feng, Xinzeng; Huang, YuLing; Hui, Chung-Yuen; Wu, Mingming

    2013-01-01

    Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell-ECM and cell-cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives on the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cells migration within collagen gels. PMID:23806281

  11. Forensic 3D scene reconstruction

    NASA Astrophysics Data System (ADS)

    Little, Charles Q.; Small, Daniel E.; Peters, Ralph R.; Rigdon, J. B.

    2000-05-01

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a fieldable prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  12. 3D Printed Robotic Hand

    NASA Technical Reports Server (NTRS)

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  13. Comparing swimsuits in 3D.

    PubMed

    van Geer, Erik; Molenbroek, Johan; Schreven, Sander; deVoogd-Claessen, Lenneke; Toussaint, Huib

    2012-01-01

    In competitive swimming, suits have become more important. These suits influence friction, pressure and wave drag. Friction drag is related to the surface properties whereas both pressure and wave drag are greatly influenced by body shape. To find a relationship between the body shape and the drag, the anthropometry of several world class female swimmers wearing different suits was accurately defined using a 3D scanner and traditional measuring methods. The 3D scans delivered more detailed information about the body shape. On the same day the swimmers did performance tests in the water with the tested suits. Afterwards the result of the performance tests and the differences found in body shape was analyzed to determine the deformation caused by a swimsuit and its effect on the swimming performance. Although the amount of data is limited because of the few test subjects, there is an indication that the deformation of the body influences the swimming performance.

  14. Forensic 3D Scene Reconstruction

    SciTech Connect

    LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN; SMALL,DANIEL E.

    1999-10-12

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  15. 3D-graphite structure

    SciTech Connect

    Belenkov, E. A. Ali-Pasha, V. A.

    2011-01-15

    The structure of clusters of some new carbon 3D-graphite phases have been calculated using the molecular-mechanics methods. It is established that 3D-graphite polytypes {alpha}{sub 1,1}, {alpha}{sub 1,3}, {alpha}{sub 1,5}, {alpha}{sub 2,1}, {alpha}{sub 2,3}, {alpha}{sub 3,1}, {beta}{sub 1,2}, {beta}{sub 1,4}, {beta}{sub 1,6}, {beta}{sub 2,1}, and {beta}{sub 3,2} consist of sp{sup 2}-hybridized atoms, have hexagonal unit cells, and differ in regards to the structure of layers and order of their alternation. A possible way to experimentally synthesize new carbon phases is proposed: the polymerization and carbonization of hydrocarbon molecules.

  16. Improving Semantic Updating Method on 3d City Models Using Hybrid Semantic-Geometric 3d Segmentation Technique

    NASA Astrophysics Data System (ADS)

    Sharkawi, K.-H.; Abdul-Rahman, A.

    2013-09-01

    to LoD4. The accuracy and structural complexity of the 3D objects increases with the LoD level where LoD0 is the simplest LoD (2.5D; Digital Terrain Model (DTM) + building or roof print) while LoD4 is the most complex LoD (architectural details with interior structures). Semantic information is one of the main components in CityGML and 3D City Models, and provides important information for any analyses. However, more often than not, the semantic information is not available for the 3D city model due to the unstandardized modelling process. One of the examples is where a building is normally generated as one object (without specific feature layers such as Roof, Ground floor, Level 1, Level 2, Block A, Block B, etc). This research attempts to develop a method to improve the semantic data updating process by segmenting the 3D building into simpler parts which will make it easier for the users to select and update the semantic information. The methodology is implemented for 3D buildings in LoD2 where the buildings are generated without architectural details but with distinct roof structures. This paper also introduces hybrid semantic-geometric 3D segmentation method that deals with hierarchical segmentation of a 3D building based on its semantic value and surface characteristics, fitted by one of the predefined primitives. For future work, the segmentation method will be implemented as part of the change detection module that can detect any changes on the 3D buildings, store and retrieve semantic information of the changed structure, automatically updates the 3D models and visualize the results in a userfriendly graphical user interface (GUI).

  17. [Real time 3D echocardiography

    NASA Technical Reports Server (NTRS)

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  18. GPU-Accelerated Denoising in 3D (GD3D)

    SciTech Connect

    2013-10-01

    The raw computational power GPU Accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. This software addresses two facets of this promising application: what tuning is necessary to achieve optimal performance on a modern GPU? And what parameters yield the best denoising results in practice? To answer the first question, the software performs an autotuning step to empirically determine optimal memory blocking on the GPU. To answer the second, it performs a sweep of algorithm parameters to determine the combination that best reduces the mean squared error relative to a noiseless reference image.

  19. Spatial heterogeneity in vegetation canopies and remote sensing of absorbed photosynthetically active radiation - A modeling study

    NASA Technical Reports Server (NTRS)

    Asrar, G.; Myneni, R. B.; Choudhury, B. J.

    1992-01-01

    A 3D radiative transfer model is used to investigate the relationship between spectral indices and fraction of absorbed photosynthetically active radiation (PAR) in horizontally heterogeneous vegetation canopies. Canopy reflection at optical wavelengths and PAR absorption are simulated. Data obtained indicate that the leaf area index of a canopy is less of an instructive parameter than the ground cover and clump leaf area index for these canopies. It is found that the relationship between the normalized difference vegetation index and fraction of absorbed PAR is almost linear and independent of spatial heterogeneity.

  20. Magmatic Systems in 3-D

    NASA Astrophysics Data System (ADS)

    Kent, G. M.; Harding, A. J.; Babcock, J. M.; Orcutt, J. A.; Bazin, S.; Singh, S.; Detrick, R. S.; Canales, J. P.; Carbotte, S. M.; Diebold, J.

    2002-12-01

    Multichannel seismic (MCS) images of crustal magma chambers are ideal targets for advanced visualization techniques. In the mid-ocean ridge environment, reflections originating at the melt-lens are well separated from other reflection boundaries, such as the seafloor, layer 2A and Moho, which enables the effective use of transparency filters. 3-D visualization of seismic reflectivity falls into two broad categories: volume and surface rendering. Volumetric-based visualization is an extremely powerful approach for the rapid exploration of very dense 3-D datasets. These 3-D datasets are divided into volume elements or voxels, which are individually color coded depending on the assigned datum value; the user can define an opacity filter to reject plotting certain voxels. This transparency allows the user to peer into the data volume, enabling an easy identification of patterns or relationships that might have geologic merit. Multiple image volumes can be co-registered to look at correlations between two different data types (e.g., amplitude variation with offsets studies), in a manner analogous to draping attributes onto a surface. In contrast, surface visualization of seismic reflectivity usually involves producing "fence" diagrams of 2-D seismic profiles that are complemented with seafloor topography, along with point class data, draped lines and vectors (e.g. fault scarps, earthquake locations and plate-motions). The overlying seafloor can be made partially transparent or see-through, enabling 3-D correlations between seafloor structure and seismic reflectivity. Exploration of 3-D datasets requires additional thought when constructing and manipulating these complex objects. As numbers of visual objects grow in a particular scene, there is a tendency to mask overlapping objects; this clutter can be managed through the effective use of total or partial transparency (i.e., alpha-channel). In this way, the co-variation between different datasets can be investigated

  1. 3D Printed Graphene Based Energy Storage Devices.

    PubMed

    Foster, Christopher W; Down, Michael P; Zhang, Yan; Ji, Xiaobo; Rowley-Neale, Samuel J; Smith, Graham C; Kelly, Peter J; Banks, Craig E

    2017-03-03

    3D printing technology provides a unique platform for rapid prototyping of numerous applications due to its ability to produce low cost 3D printed platforms. Herein, a graphene-based polylactic acid filament (graphene/PLA) has been 3D printed to fabricate a range of 3D disc electrode (3DE) configurations using a conventional RepRap fused deposition moulding (FDM) 3D printer, which requires no further modification/ex-situ curing step. To provide proof-of-concept, these 3D printed electrode architectures are characterised both electrochemically and physicochemically and are advantageously applied as freestanding anodes within Li-ion batteries and as solid-state supercapacitors. These freestanding anodes neglect the requirement for a current collector, thus offering a simplistic and cheaper alternative to traditional Li-ion based setups. Additionally, the ability of these devices' to electrochemically produce hydrogen via the hydrogen evolution reaction (HER) as an alternative to currently utilised platinum based electrodes (with in electrolysers) is also performed. The 3DE demonstrates an unexpectedly high catalytic activity towards the HER (-0.46 V vs. SCE) upon the 1000th cycle, such potential is the closest observed to the desired value of platinum at (-0.25 V vs. SCE). We subsequently suggest that 3D printing of graphene-based conductive filaments allows for the simple fabrication of energy storage devices with bespoke and conceptual designs to be realised.

  2. 3D Printed Graphene Based Energy Storage Devices

    PubMed Central

    Foster, Christopher W.; Down, Michael P.; Zhang, Yan; Ji, Xiaobo; Rowley-Neale, Samuel J.; Smith, Graham C.; Kelly, Peter J.; Banks, Craig E.

    2017-01-01

    3D printing technology provides a unique platform for rapid prototyping of numerous applications due to its ability to produce low cost 3D printed platforms. Herein, a graphene-based polylactic acid filament (graphene/PLA) has been 3D printed to fabricate a range of 3D disc electrode (3DE) configurations using a conventional RepRap fused deposition moulding (FDM) 3D printer, which requires no further modification/ex-situ curing step. To provide proof-of-concept, these 3D printed electrode architectures are characterised both electrochemically and physicochemically and are advantageously applied as freestanding anodes within Li-ion batteries and as solid-state supercapacitors. These freestanding anodes neglect the requirement for a current collector, thus offering a simplistic and cheaper alternative to traditional Li-ion based setups. Additionally, the ability of these devices’ to electrochemically produce hydrogen via the hydrogen evolution reaction (HER) as an alternative to currently utilised platinum based electrodes (with in electrolysers) is also performed. The 3DE demonstrates an unexpectedly high catalytic activity towards the HER (−0.46 V vs. SCE) upon the 1000th cycle, such potential is the closest observed to the desired value of platinum at (−0.25 V vs. SCE). We subsequently suggest that 3D printing of graphene-based conductive filaments allows for the simple fabrication of energy storage devices with bespoke and conceptual designs to be realised. PMID:28256602

  3. 3D Printed Graphene Based Energy Storage Devices

    NASA Astrophysics Data System (ADS)

    Foster, Christopher W.; Down, Michael P.; Zhang, Yan; Ji, Xiaobo; Rowley-Neale, Samuel J.; Smith, Graham C.; Kelly, Peter J.; Banks, Craig E.

    2017-03-01

    3D printing technology provides a unique platform for rapid prototyping of numerous applications due to its ability to produce low cost 3D printed platforms. Herein, a graphene-based polylactic acid filament (graphene/PLA) has been 3D printed to fabricate a range of 3D disc electrode (3DE) configurations using a conventional RepRap fused deposition moulding (FDM) 3D printer, which requires no further modification/ex-situ curing step. To provide proof-of-concept, these 3D printed electrode architectures are characterised both electrochemically and physicochemically and are advantageously applied as freestanding anodes within Li-ion batteries and as solid-state supercapacitors. These freestanding anodes neglect the requirement for a current collector, thus offering a simplistic and cheaper alternative to traditional Li-ion based setups. Additionally, the ability of these devices’ to electrochemically produce hydrogen via the hydrogen evolution reaction (HER) as an alternative to currently utilised platinum based electrodes (with in electrolysers) is also performed. The 3DE demonstrates an unexpectedly high catalytic activity towards the HER (‑0.46 V vs. SCE) upon the 1000th cycle, such potential is the closest observed to the desired value of platinum at (‑0.25 V vs. SCE). We subsequently suggest that 3D printing of graphene-based conductive filaments allows for the simple fabrication of energy storage devices with bespoke and conceptual designs to be realised.

  4. Stereoscopic display of 3D models for design visualization

    NASA Astrophysics Data System (ADS)

    Gilson, Kevin J.

    2006-02-01

    Advances in display technology and 3D design visualization applications have made real-time stereoscopic visualization of architectural and engineering projects a reality. Parsons Brinkerhoff (PB) is a transportation consulting firm that has used digital visualization tools from their inception and has helped pioneer the application of those tools to large scale infrastructure projects. PB is one of the first Architecture/Engineering/Construction (AEC) firms to implement a CAVE- an immersive presentation environment that includes stereoscopic rear-projection capability. The firm also employs a portable stereoscopic front-projection system, and shutter-glass systems for smaller groups. PB is using commercial real-time 3D applications in combination with traditional 3D modeling programs to visualize and present large AEC projects to planners, clients and decision makers in stereo. These presentations create more immersive and spatially realistic presentations of the proposed designs. This paper will present the basic display tools and applications, and the 3D modeling techniques PB is using to produce interactive stereoscopic content. The paper will discuss several architectural and engineering design visualizations we have produced.

  5. Computational challenges of emerging novel true 3D holographic displays

    NASA Astrophysics Data System (ADS)

    Cameron, Colin D.; Pain, Douglas A.; Stanley, Maurice; Slinger, Christopher W.

    2000-11-01

    A hologram can produce all the 3D depth cues that the human visual system uses to interpret and perceive real 3D objects. As such it is arguably the ultimate display technology. Computer generated holography, in which a computer calculates a hologram that is then displayed using a highly complex modulator, combines the ultimate qualities of a traditional hologram with the dynamic capabilities of a computer display producing a true 3D real image floating in space. This technology is set to emerge over the next decade, potentially revolutionizing application areas such as virtual prototyping (CAD-CAM, CAID etc.), tactical information displays, data visualization and simulation. In this paper we focus on the computational challenges of this technology. We consider different classes of computational algorithms from true computer-generated holograms (CGH) to holographic stereograms. Each has different characteristics in terms of image qualities, computational resources required, total CGH information content, and system performance. Possible trade- offs will be discussed including reducing the parallax. The software and hardware architectures used to implement the CGH algorithms have many possible forms. Different schemes, from high performance computing architectures to graphics based cluster architectures will be discussed and compared. Assessment will be made of current and future trends looking forward to a practical dynamic CGH based 3D display.

  6. 3D printed components with ultrasonically arranged microscale structure

    NASA Astrophysics Data System (ADS)

    Llewellyn-Jones, Thomas M.; Drinkwater, Bruce W.; Trask, Richard S.

    2016-02-01

    This paper shows the first application of in situ manipulation of discontinuous fibrous structure mid-print, within a 3D printed polymeric composite architecture. Currently, rapid prototyping methods (fused filament fabrication, stereolithography) are gaining increasing popularity within the engineering commnity to build structural components. Unfortunately, the full potential of these components is limited by the mechanical properties of the materials used. The aim of this study is to create and demonstrate a novel method to instantaneously orient micro-scale glass fibres within a selectively cured photocurable resin system, using ultrasonic forces to align the fibres in the desired 3D architecture. To achieve this we have mounted a switchable, focused laser module on the carriage of a three-axis 3D printing stage, above an in-house ultrasonic alignment rig containing a mixture of photocurable resin and discontinuous 14 μm diameter glass fibre reinforcement(50 μm length). In our study, a suitable print speed of 20 mm s-1 was used, which is comparable to conventional additive layer techniques. We show the ability to construct in-plane orthogonally aligned sections printed side by side, where the precise orientation of the configurations is controlled by switching the ultrasonic standing wave profile mid-print. This approach permits the realisation of complex fibrous architectures within a 3D printed landscape. The versatile nature of the ultrasonic manipulation technique also permits a wide range of particle types (diameters, aspect ratios and functions) and architectures (in-plane, and out-plane) to be patterned, leading to the creation of a new generation of fibrous reinforced composites for 3D printing.

  7. Interactive 3D Mars Visualization

    NASA Technical Reports Server (NTRS)

    Powell, Mark W.

    2012-01-01

    The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.

  8. Strategies to reconstruct 3D Coffea arabica L. plant structure.

    PubMed

    Matsunaga, Fabio Takeshi; Tosti, Jonas Barbosa; Androcioli-Filho, Armando; Brancher, Jacques Duílio; Costes, Evelyne; Rakocevic, Miroslava

    2016-01-01

    Accurate model of structural elements is necessary to model the foliage and fruit distributions in cultivated plants, both of them being key parameters for yield prediction. However, the level of details in architectural data collection could vary, simplifying the data collection when plants get older and because of the high time cost required. In the present study, we aimed at reconstructing and analyzing plant structure, berry distributions and yield in Coffea arabica (Arabica coffee), by using both detailed or partial morphological information and probabilistic functions. Different datasets of coffee plant architectures were available with different levels of detail depending on the tree age. Three scales of decomposition-plant, axes and metamers were used reconstruct the plant architectures. CoffePlant3D, a software which integrates a series of mathematical, computational and statistical methods organized in three newly developed modules, AmostraCafe3D, VirtualCafe3D and Cafe3D, was developed to accurately reconstruct coffee plants in 3D, whatever the level of details available. The number of metamers of the 2nd order axes was shown to be linearly proportional to that of the orthotropic trunk, and the number of berries per metamer was modeled as a Gaussian function within a specific zone along the plagiotropic axes. This ratio of metamer emission rhythm between the orthotropic trunk and plagiotropic axes represents the pillar of botanical events in the C. arabica development and was central in our modeling approach, especially to reconstruct missing data. The methodology proposed for reconstructing coffee plants under the CoffePlant3D was satisfactorily validated across dataset available and could be performed for any other Arabica coffee variety.

  9. 3D Nanostructuring of Semiconductors

    NASA Astrophysics Data System (ADS)

    Blick, Robert

    2000-03-01

    Modern semiconductor technology allows to machine devices on the nanometer scale. I will discuss the current limits of the fabrication processes, which enable the definition of single electron transistors with dimensions down to 8 nm. In addition to the conventional 2D patterning and structuring of semiconductors, I will demonstrate how to apply 3D nanostructuring techniques to build freely suspended single-crystal beams with lateral dimension down to 20 nm. In transport measurements in the temperature range from 30 mK up to 100 K these nano-crystals are characterized regarding their electronic as well as their mechanical properties. Moreover, I will present possible applications of these devices.

  10. What Lies Ahead (3-D)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D cylindrical-perspective mosaic taken by the navigation camera on the Mars Exploration Rover Spirit on sol 82 shows the view south of the large crater dubbed 'Bonneville.' The rover will travel toward the Columbia Hills, seen here at the upper left. The rock dubbed 'Mazatzal' and the hole the rover drilled in to it can be seen at the lower left. The rover's position is referred to as 'Site 22, Position 32.' This image was geometrically corrected to make the horizon appear flat.

  11. Making Inexpensive 3-D Models

    NASA Astrophysics Data System (ADS)

    Manos, Harry

    2016-03-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the TPT theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity well tailored to specific class lessons. Most of the supplies are readily available in the home or at school: rubbing alcohol, a rag, two colors of spray paint, art brushes, and masking tape. The cost of these supplies, if you don't have them, is less than 20.

  12. A Clean Adirondack (3-D)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is a 3-D anaglyph showing a microscopic image taken of an area measuring 3 centimeters (1.2 inches) across on the rock called Adirondack. The image was taken at Gusev Crater on the 33rd day of the Mars Exploration Rover Spirit's journey (Feb. 5, 2004), after the rover used its rock abrasion tool brush to clean the surface of the rock. Dust, which was pushed off to the side during cleaning, can still be seen to the left and in low areas of the rock.

  13. 3D Printed Shelby Cobra

    SciTech Connect

    Love, Lonnie

    2015-01-09

    ORNL's newly printed 3D Shelby Cobra was showcased at the 2015 NAIAS in Detroit. This "laboratory on wheels" uses the Shelby Cobra design, celebrating the 50th anniversary of this model and honoring the first vehicle to be voted a national monument. The Shelby was printed at the Department of Energy’s Manufacturing Demonstration Facility at ORNL using the BAAM (Big Area Additive Manufacturing) machine and is intended as a “plug-n-play” laboratory on wheels. The Shelby will allow research and development of integrated components to be tested and enhanced in real time, improving the use of sustainable, digital manufacturing solutions in the automotive industry.

  14. Are leaf chemistry signatures preserved at the canopy level?

    SciTech Connect

    Borel, C.C.; Gerstl, S.A.W.

    1994-05-01

    Imaging spectrometers have the potential to be very useful in remote sensing of canopy chemistry constituents such as nitrogen and lignin. In this study under the HIRIS project the question of how leaf chemical composition which is reflected in leaf spectral features in the reflectance and transmittance is affected by canopy architecture was investigated. Several plants were modeled with high fidelity and a radiosity model was used to compute the canopy spectral signature over the visible and near infrared. We found that chemical constituent specific signatures such as absorptions are preserved and in the case of low absorption are actually enhanced. For moderately dense canopies the amount of a constituent depends also on the total leaf area.

  15. 3D plasmonic crystal metamaterials for ultra-sensitive biosensing

    NASA Astrophysics Data System (ADS)

    Aristov, Andrey I.; Manousidaki, Maria; Danilov, Artem; Terzaki, Konstantina; Fotakis, Costas; Farsari, Maria; Kabashin, Andrei V.

    2016-05-01

    We explore the excitation of plasmons in 3D plasmon crystal metamaterials and report the observation of a delocalized plasmon mode, which provides extremely high spectral sensitivity (>2600 nm per refractive index unit (RIU) change), outperforming all plasmonic counterparts excited in 2D nanoscale geometries, as well as a prominent phase-sensitive response (>3*104 deg. of phase per RIU). Combined with a large surface for bioimmobilization provided by the 3D matrix, the proposed sensor architecture promises a new important landmark in the advancement of plasmonic biosensing technology.

  16. 3D plasmonic crystal metamaterials for ultra-sensitive biosensing

    PubMed Central

    Aristov, Andrey I.; Manousidaki, Maria; Danilov, Artem; Terzaki, Konstantina; Fotakis, Costas; Farsari, Maria; Kabashin, Andrei V.

    2016-01-01

    We explore the excitation of plasmons in 3D plasmon crystal metamaterials and report the observation of a delocalized plasmon mode, which provides extremely high spectral sensitivity (>2600 nm per refractive index unit (RIU) change), outperforming all plasmonic counterparts excited in 2D nanoscale geometries, as well as a prominent phase-sensitive response (>3*104 deg. of phase per RIU). Combined with a large surface for bioimmobilization provided by the 3D matrix, the proposed sensor architecture promises a new important landmark in the advancement of plasmonic biosensing technology. PMID:27151104

  17. 3D printed bionic ears.

    PubMed

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing.

  18. 3D Printable Graphene Composite

    PubMed Central

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-01-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C−1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process. PMID:26153673

  19. 3D Printed Bionic Ears

    PubMed Central

    Mannoor, Manu S.; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A.; Soboyejo, Winston O.; Verma, Naveen; Gracias, David H.; McAlpine, Michael C.

    2013-01-01

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the precise anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

  20. Martian terrain & airbags - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Portions of the lander's deflated airbags and a petal are at lower left in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  1. Martian terrain & airbags - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Portions of the lander's deflated airbags and a petal are at the lower area of this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  2. 3D structured illumination microscopy

    NASA Astrophysics Data System (ADS)

    Dougherty, William M.; Goodwin, Paul C.

    2011-03-01

    Three-dimensional structured illumination microscopy achieves double the lateral and axial resolution of wide-field microscopy, using conventional fluorescent dyes, proteins and sample preparation techniques. A three-dimensional interference-fringe pattern excites the fluorescence, filling in the "missing cone" of the wide field optical transfer function, thereby enabling axial (z) discrimination. The pattern acts as a spatial carrier frequency that mixes with the higher spatial frequency components of the image, which usually succumb to the diffraction limit. The fluorescence image encodes the high frequency content as a down-mixed, moiré-like pattern. A series of images is required, wherein the 3D pattern is shifted and rotated, providing down-mixed data for a system of linear equations. Super-resolution is obtained by solving these equations. The speed with which the image series can be obtained can be a problem for the microscopy of living cells. Challenges include pattern-switching speeds, optical efficiency, wavefront quality and fringe contrast, fringe pitch optimization, and polarization issues. We will review some recent developments in 3D-SIM hardware with the goal of super-resolved z-stacks of motile cells.

  3. From Tls Point Clouds to 3d Models of Trees: a Comparison of Existing Algorithms for 3d Tree Reconstruction

    NASA Astrophysics Data System (ADS)

    Bournez, E.; Landes, T.; Saudreau, M.; Kastendeuch, P.; Najjar, G.

    2017-02-01

    3D models of tree geometry are important for numerous studies, such as for urban planning or agricultural studies. In climatology, tree models can be necessary for simulating the cooling effect of trees by estimating their evapotranspiration. The literature shows that the more accurate the 3D structure of a tree is, the more accurate microclimate models are. This is the reason why, since 2013, we have been developing an algorithm for the reconstruction of trees from terrestrial laser scanner (TLS) data, which we call TreeArchitecture. Meanwhile, new promising algorithms dedicated to tree reconstruction have emerged in the literature. In this paper, we assess the capacity of our algorithm and of two others -PlantScan3D and SimpleTree- to reconstruct the 3D structure of trees. The aim of this reconstruction is to be able to characterize the geometric complexity of trees, with different heights, sizes and shapes of branches. Based on a specific surveying workflow with a TLS, we have acquired dense point clouds of six different urban trees, with specific architectures, before reconstructing them with each algorithm. Finally, qualitative and quantitative assessments of the models are performed using reference tree reconstructions and field measurements. Based on this assessment, the advantages and the limits of every reconstruction algorithm are highlighted. Anyway, very satisfying results can be reached for 3D reconstructions of tree topology as well as of tree volume.

  4. 3-D Enzymatic Nanomaterial Architectures for Energy Harvesting

    DTIC Science & Technology

    2016-06-30

    sodium phosphate buffer, 40 mM imidazole, 50 mM NaCl at 7.3 mM) with HALT EDTA-free protease inhibitor. Cells were sonicated for 6 minutes using a...and bound proteins were eluted with a linear gradient of 0 to 100% Buffer B (20 mM sodium phosphate buffer, 500 mM Imidazole, 500 mM NaCl at 7.3 mM...against 10 mM sodium phosphate buffer at pH 7.3 and concentrated by ultrafiltration. Purified SLAC-DC-His and SLAC-His solutions were incubated with

  5. 3-D VLSI Architecture Implementation for Data Fusion Problems

    NASA Technical Reports Server (NTRS)

    Duong, T.; Weldon, D.; Thomas, T.

    1999-01-01

    This paper gives an overview of hardware implementation techniques employed in solving real-time classification problems using Neural Network, Principle Component Analysis (PCA), and Independent Component Analysis (ICA) techniques.

  6. Third-space Architecture for Learning in 3D

    DTIC Science & Technology

    2011-01-01

    wind, and geothermal ( Fogg , 1997). A viable Mars ecosystem rests on whether energy resources can be harnessed profitably. In other words, net...Lessons in curriculum, instruction, assessment, and professional development. Mahwah, NJ: Erlbaum. Fogg , M. J. (1997). The utility of geothermal

  7. Tow Architecture and Mechanical Properties of 3-D Woven Composites

    DTIC Science & Technology

    2010-06-01

    within the fabric. The second was automated voxel modelling using a Python script written as part of this research program, resulting in an approximate...assignment The automated modelling approach, named ConEn V1.0, has been instituted using PYTHON 2.5 \\ Additional sub components of the code required to...develop the program include the Python Imaging Library (PIL) and Numpy. The program works by processing a series of cross-sectional images, from

  8. Filling gaps in cultural heritage documentation by 3D photography

    NASA Astrophysics Data System (ADS)

    Schuhr, W.; Lee, J. D.

    2015-08-01

    This contribution promotes 3D photography as an important tool to obtain objective object information. Keeping mainly in mind World Heritage documentation as well as Heritage protection, it is another intention of this paper, to stimulate the interest in applications of 3D photography for professionals as well as for amateurs. In addition this is also an activity report of the international CIPA task group 3. The main part of this paper starts with "Digging the treasure of existing international 3D photography". This does not only belong to tangible but also to intangible Cultural Heritage. 3D photography clearly supports the recording, the visualization, the preservation and the restoration of architectural and archaeological objects. Therefore the use of 3D photography in C.H. should increase on an international level. The presented samples in 3D represent a voluminous, almost partly "forgotten treasure" of international archives for 3D photography. The next chapter is on "Promoting new 3D photography in Cultural Heritage". Though 3D photographs are a well-established basic photographic and photogrammetric tool, even suited to provide "near real" documentation, they are still a matter of research and improvement. Beside the use of 3D cameras even single lenses cameras are very much suited for photographic 3D documentation purposes in Cultural Heritage. Currently at the Faculty of Civil Engineering of the University of Applied Sciences Magdeburg-Stendal, low altitude aerial photography is exposed from a maximum height of 13m, using a hand hold carbon telescope rod. The use of this "huge selfie stick" is also an (international) recommendation, to expose high resolution 3D photography of monuments under expedition conditions. In addition to the carbon rod recently a captive balloon and a hexacopter UAV- platform is in use, mainly to take better synoptically (extremely low altitude, ground truth) aerial photography. Additional experiments with respect to "easy

  9. 3D Printing of Graphene Aerogels.

    PubMed

    Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong

    2016-04-06

    3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction.

  10. 3D visualization for research and teaching in geosciences

    NASA Astrophysics Data System (ADS)

    Manea, Marina; Constantin Manea, Vlad

    2010-05-01

    Today, we are provided with an abundance of visual images from a variety of sources. In doing research, data visualization represents an important part, and sophisticated models require special tools that should enhance the comprehension of modeling results. Also, helping our students gain visualization skills is an important way to foster greater comprehension when studying geosciences. For these reasons we build a 3D stereo-visualization system, or a GeoWall, that permits to explore in depth 3D modeling results and provide for students an attractive way for data visualization. In this study, we present the architecture of such low cost system, and how is used. The system consists of three main parts: a DLP-3D capable display, a high performance workstation and several pairs of wireless liquid crystal shutter eyewear. The system is capable of 3D stereo visualization of Google Earth and/or 3D numeric modeling results. Also, any 2D image or movie can be instantly viewed in 3D stereo. Such flexible-easy-to-use visualization system proved to be an essential research and teaching tool.

  11. Toward single cell traction microscopy within 3D collagen matrices

    SciTech Connect

    Hall, Matthew S.; Long, Rong; Feng, Xinzeng; Huang, YuLing; Hui, Chung-Yuen; Wu, Mingming

    2013-10-01

    Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three-dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell–ECM and cell–cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives on the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cell migration within collagen gels. - Highlights: • Review of the current state of the art in 3D cell traction force microscopy. • Bulk and micro-characterization of remodelable fibrous collagen gels. • Strategies for performing 3D cell traction microscopy within collagen gels.

  12. Quasi 3D dispersion experiment

    NASA Astrophysics Data System (ADS)

    Bakucz, P.

    2003-04-01

    This paper studies the problem of tracer dispersion in a coloured fluid flowing through a two-phase 3D rough channel-system in a 40 cm*40 cm plexi-container filled by homogen glass fractions and colourless fluid. The unstable interface between the driving coloured fluid and the colourless fluid develops viscous fingers with a fractal structure at high capillary number. Five two-dimensional fractal fronts have been observed at the same time using four cameras along the vertical side-walls and using one camera located above the plexi-container. In possession of five fronts the spatial concentration contours are determined using statistical models. The concentration contours are self-affine fractal curves with a fractal dimension D=2.19. This result is valid for disperison at high Péclet numbers.

  13. ShowMe3D

    SciTech Connect

    Sinclair, Michael B

    2012-01-05

    ShowMe3D is a data visualization graphical user interface specifically designed for use with hyperspectral image obtained from the Hyperspectral Confocal Microscope. The program allows the user to select and display any single image from a three dimensional hyperspectral image stack. By moving a slider control, the user can easily move between images of the stack. The user can zoom into any region of the image. The user can select any pixel or region from the displayed image and display the fluorescence spectrum associated with that pixel or region. The user can define up to 3 spectral filters to apply to the hyperspectral image and view the image as it would appear from a filter-based confocal microscope. The user can also obtain statistics such as intensity average and variance from selected regions.

  14. 3D Printed Shelby Cobra

    ScienceCinema

    Love, Lonnie

    2016-11-02

    ORNL's newly printed 3D Shelby Cobra was showcased at the 2015 NAIAS in Detroit. This "laboratory on wheels" uses the Shelby Cobra design, celebrating the 50th anniversary of this model and honoring the first vehicle to be voted a national monument. The Shelby was printed at the Department of Energy’s Manufacturing Demonstration Facility at ORNL using the BAAM (Big Area Additive Manufacturing) machine and is intended as a “plug-n-play” laboratory on wheels. The Shelby will allow research and development of integrated components to be tested and enhanced in real time, improving the use of sustainable, digital manufacturing solutions in the automotive industry.

  15. Implémentation de la Méthode des Eléments de Frontière pour les problèmes de magnétostatique 3D sur architecture parallèle à mémoire distribuée

    NASA Astrophysics Data System (ADS)

    Lobry, Jacques; Daoudi, El Mostafa

    1992-11-01

    Linear and homogeneous problems of the 3D Magnetostatics are of a Poisson or Laplace type. In this case, the Boundary Element Method is a technique which often offers, among others, important advantages over “domain” types solutions, such as finite elements since it provides a great economy in computing time and memory amount. However, when the geometry is complex, a dense mesh is required, leading to a large linear system, of which the forming and solving times should be reduced. The Parallel Computing techniques offer new efficient tools in this respect. Our study is devoted to the presentation and the comparison of different parallel implementations of the Boundary Element Method for the 3D Poisson problems on multiprocessor computers with distributed memory. Experimental results are obtained on a Meiko Computing Surface with 32 T800 transputers. Les problèmes linéaires tridimensionnels de type Poisson ou Laplace que l'on rencontre en Magnétostatique se traitent souvent avec une grande économie de calcul et d'espace mémoire notamment par la Méthode des Eléments de Frontière en comparaison avec la Méthode des Eléments Finis. Cependant, quand la géométrie des domaines est complexe, un maillage de frontière dense devient nécessaire et il importe alors de minimiser les temps de construction et de résolution du système d'équations linéaires associé. Les techniques de calcul parallèle qui se développent actuellement offrent une solution très intéressante face aux limitations imposées par la modélisation numérique elle-même et la vitesse de traitement des ordinateurs classiques. L'objet du présent papier est d'étudier diverses stratégies d'implémentation parallèle de la Méthode des Eléments de Frontière appliquée au problème de Poisson 3D sur architecture multiprocesseurs à mémoire distribuée. Des résultats expérimentaux sont obtenus sur une surface de calcul Meiko composée de 32 transputers T800 et d'une station SUN qui

  16. Supernova Remnant in 3-D

    NASA Technical Reports Server (NTRS)

    2009-01-01

    wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through.

    The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave.

    This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron.

    High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these

  17. Using "click-e-bricks" to make 3D elastomeric structures.

    PubMed

    Morin, Stephen A; Shevchenko, Yanina; Lessing, Joshua; Kwok, Sen Wai; Shepherd, Robert F; Stokes, Adam A; Whitesides, George M

    2014-09-10

    Soft, 3D elastomeric structures and composite structures are easy to fabricate using click-e-bricks, and the internal architecture of these structures together with the capabilities built into the bricks themselves provide mechanical, optical, electrical, and fluidic functions.

  18. 3D-Flow processor for a programmable Level-1 trigger (feasibility study)

    SciTech Connect

    Crosetto, D.

    1992-10-01

    A feasibility study has been made to use the 3D-Flow processor in a pipelined programmable parallel processing architecture to identify particles such as electrons, jets, muons, etc., in high-energy physics experiments.

  19. From 1D to 3D - macroscopic nanowire aerogel monoliths

    NASA Astrophysics Data System (ADS)

    Cheng, Wei; Rechberger, Felix; Niederberger, Markus

    2016-07-01

    Here we present a strategy to assemble one-dimensional nanostructures into a three-dimensional architecture with macroscopic size. With the assistance of centrifugation, we successfully gel ultrathin W18O49 nanowires with diameters of 1 to 2 nm and aspect ratios larger than 100 into 3D networks, which are transformed into monolithic aerogels by supercritical drying.Here we present a strategy to assemble one-dimensional nanostructures into a three-dimensional architecture with macroscopic size. With the assistance of centrifugation, we successfully gel ultrathin W18O49 nanowires with diameters of 1 to 2 nm and aspect ratios larger than 100 into 3D networks, which are transformed into monolithic aerogels by supercritical drying. Electronic supplementary information (ESI) available: Experimental details, SEM and TEM images, and digital photographs. See DOI: 10.1039/c6nr04429h

  20. Modeling of forest canopy BRDF using DIRSIG

    NASA Astrophysics Data System (ADS)

    Rengarajan, Rajagopalan; Schott, John R.

    2016-05-01

    The characterization and temporal analysis of multispectral and hyperspectral data to extract the biophysical information of the Earth's surface can be significantly improved by understanding its aniosotropic reflectance properties, which are best described by a Bi-directional Reflectance Distribution Function (BRDF). The advancements in the field of remote sensing techniques and instrumentation have made hyperspectral BRDF measurements in the field possible using sophisticated goniometers. However, natural surfaces such as forest canopies impose limitations on both the data collection techniques, as well as, the range of illumination angles that can be collected from the field. These limitations can be mitigated by measuring BRDF in a virtual environment. This paper presents an approach to model the spectral BRDF of a forest canopy using the Digital Image and Remote Sensing Image Generation (DIRSIG) model. A synthetic forest canopy scene is constructed by modeling the 3D geometries of different tree species using OnyxTree software. The field collected spectra from the Harvard forest is used to represent the optical properties of the tree elements. The canopy radiative transfer is estimated using the DIRSIG model for specific view and illumination angles to generate BRDF measurements. A full hemispherical BRDF is generated by fitting the measured BRDF to a semi-empirical BRDF model. The results from fitting the model to the measurement indicates a root mean square error of less than 5% (2 reflectance units) relative to the forest's reflectance in the VIS-NIR-SWIR region. The process can be easily extended to generate a spectral BRDF library for various biomes.

  1. A 3D Split Manufacturing Approach to Trustworthy System Development

    DTIC Science & Technology

    2012-12-01

    Acıiçmez, J.P. Seifert, and C.K. Koc. Micro -architectural cryptanalysis. IEEE Security and Privacy Magazine, 5(4), July-August 2007. [4] Daniel J...International Symposium on Microarchitecture ( MICRO ), Orlando, FL, December 2006. VALAMEHR et al.: A 3D SPLIT MANUFACTURING APPROACH TO TRUSTWORTHY SYSTEM...IEEE Micro , 27(3), May-June 2007. [16] Gian Luca Loi, Banit Agrawal, Navin Srivastava, Sheng-Chih Lin, Timothy Sherwood, and Kaustav Banerjee. A

  2. 3D Protein Dynamics in the Cell Nucleus.

    PubMed

    Singh, Anand P; Galland, Rémi; Finch-Edmondson, Megan L; Grenci, Gianluca; Sibarita, Jean-Baptiste; Studer, Vincent; Viasnoff, Virgile; Saunders, Timothy E

    2017-01-10

    The three-dimensional (3D) architecture of the cell nucleus plays an important role in protein dynamics and in regulating gene expression. However, protein dynamics within the 3D nucleus are poorly understood. Here, we present, to our knowledge, a novel combination of 1) single-objective based light-sheet microscopy, 2) photoconvertible proteins, and 3) fluorescence correlation microscopy, to quantitatively measure 3D protein dynamics in the nucleus. We are able to acquire >3400 autocorrelation functions at multiple spatial positions within a nucleus, without significant photobleaching, allowing us to make reliable estimates of diffusion dynamics. Using this tool, we demonstrate spatial heterogeneity in Polymerase II dynamics in live U2OS cells. Further, we provide detailed measurements of human-Yes-associated protein diffusion dynamics in a human gastric cancer epithelial cell line.

  3. 3D Bioprinting for Tissue and Organ Fabrication.

    PubMed

    Zhang, Yu Shrike; Yue, Kan; Aleman, Julio; Mollazadeh-Moghaddam, Kamyar; Bakht, Syeda Mahwish; Yang, Jingzhou; Jia, Weitao; Dell'Erba, Valeria; Assawes, Pribpandao; Shin, Su Ryon; Dokmeci, Mehmet Remzi; Oklu, Rahmi; Khademhosseini, Ali

    2017-01-01

    The field of regenerative medicine has progressed tremendously over the past few decades in its ability to fabricate functional tissue substitutes. Conventional approaches based on scaffolding and microengineering are limited in their capacity of producing tissue constructs with precise biomimetic properties. Three-dimensional (3D) bioprinting technology, on the other hand, promises to bridge the divergence between artificially engineered tissue constructs and native tissues. In a sense, 3D bioprinting offers unprecedented versatility to co-deliver cells and biomaterials with precise control over their compositions, spatial distributions, and architectural accuracy, therefore achieving detailed or even personalized recapitulation of the fine shape, structure, and architecture of target tissues and organs. Here we briefly describe recent progresses of 3D bioprinting technology and associated bioinks suitable for the printing process. We then focus on the applications of this technology in fabrication of biomimetic constructs of several representative tissues and organs, including blood vessel, heart, liver, and cartilage. We finally conclude with future challenges in 3D bioprinting as well as potential solutions for further development.

  4. On the Estimation of Forest Resources Using 3D Remote Sensing Techniques and Point Cloud Data

    NASA Astrophysics Data System (ADS)

    Karjalainen, Mika; Karila, Kirsi; Liang, Xinlian; Yu, Xiaowei; Huang, Guoman; Lu, Lijun

    2016-08-01

    In recent years, 3D capable remote sensing techniques have shown great potential in forest biomass estimation because of their ability to measure the forest canopy structure, tree height and density. The objective of the Dragon3 forest resources research project (ID 10667) and the supporting ESA young scientist project (ESA contract NO. 4000109483/13/I-BG) was to study the use of satellite based 3D techniques in forest tree height estimation, and consequently in forest biomass and biomass change estimation, by combining satellite data with terrestrial measurements. Results from airborne 3D techniques were also used in the project. Even though, forest tree height can be estimated from 3D satellite SAR data to some extent, there is need for field reference plots. For this reason, we have also been developing automated field plot measurement techniques based on Terrestrial Laser Scanning data, which can be used to train and calibrate satellite based estimation models. In this paper, results of canopy height models created from TerraSAR-X stereo and TanDEM-X INSAR data are shown as well as preliminary results from TLS field plot measurement system. Also, results from the airborne CASMSAR system to measure forest canopy height from P- and X- band INSAR are presented.

  5. A modern approach to storing of 3D geometry of objects in machine engineering industry

    NASA Astrophysics Data System (ADS)

    Sokolova, E. A.; Aslanov, G. A.; Sokolov, A. A.

    2017-02-01

    3D graphics is a kind of computer graphics which has absorbed a lot from the vector and raster computer graphics. It is used in interior design projects, architectural projects, advertising, while creating educational computer programs, movies, visual images of parts and products in engineering, etc. 3D computer graphics allows one to create 3D scenes along with simulation of light conditions and setting up standpoints.

  6. 3D Kitaev spin liquids

    NASA Astrophysics Data System (ADS)

    Hermanns, Maria

    The Kitaev honeycomb model has become one of the archetypal spin models exhibiting topological phases of matter, where the magnetic moments fractionalize into Majorana fermions interacting with a Z2 gauge field. In this talk, we discuss generalizations of this model to three-dimensional lattice structures. Our main focus is the metallic state that the emergent Majorana fermions form. In particular, we discuss the relation of the nature of this Majorana metal to the details of the underlying lattice structure. Besides (almost) conventional metals with a Majorana Fermi surface, one also finds various realizations of Dirac semi-metals, where the gapless modes form Fermi lines or even Weyl nodes. We introduce a general classification of these gapless quantum spin liquids using projective symmetry analysis. Furthermore, we briefly outline why these Majorana metals in 3D Kitaev systems provide an even richer variety of Dirac and Weyl phases than possible for electronic matter and comment on possible experimental signatures. Work done in collaboration with Kevin O'Brien and Simon Trebst.

  7. 3D multiplexed immunoplasmonics microscopy

    NASA Astrophysics Data System (ADS)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  8. Crowdsourcing Based 3d Modeling

    NASA Astrophysics Data System (ADS)

    Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.

    2016-06-01

    Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  9. Dual redundant display in bubble canopy applications

    NASA Astrophysics Data System (ADS)

    Mahdi, Ken; Niemczyk, James

    2010-04-01

    Today's cockpit integrator, whether for state of the art military fast jet, or piston powered general aviation, is striving to utilize all available panel space for AMLCD based displays to enhance situational awareness and increase safety. The benefits of a glass cockpit have been well studied and documented. The technology used to create these glass cockpits, however, is driven by commercial AMLCD demand which far outstrips the combined worldwide avionics requirements. In order to satisfy the wide variety of human factors and environmental requirements, large area displays have been developed to maximize the usable display area while also providing necessary redundancy in case of failure. The AMLCD has been optimized for extremely wide viewing angles driven by the flat panel TV market. In some cockpit applications, wide viewing cones are desired. In bubble canopy cockpits, however, narrow viewing cones are desired to reduce canopy reflections. American Panel Corporation has developed AMLCD displays that maximize viewing area, provide redundancy, while also providing a very narrow viewing cone even though commercial AMLCD technology is employed suitable for high performance AMLCD Displays. This paper investigates both the large area display architecture with several available options to solve redundancy as well as beam steering techniques to also limit canopy reflections.

  10. [Effects of canopy shapes of grape on canopy microenvironment, leaf and fruit quality in greenhouse].

    PubMed

    Shi, Xiang-bin; Liu, Feng-zhi; Cheng, Cun-gang; Wang, Xiao-di; Wang, Bao-liang; Zheng, Xiao-cui; Wang, Hai-bo

    2015-12-01

    The effects of three canopy shapes, i.e., vertical canopy, V-shaped canopy and horizontal canopy, on canopy microenvironment, quality of leaves and fruits were studied in the 3-year-old grape 'Jingmi' grafted on ' Beta' in greenhouse. The results showed that gap fraction and openness of vertical canopy were significantly higher than that of V-shaped canopy and horizontal canopy, and leaf area index, light interception rate and canopy temperature difference between day and night were significantly lower than those of V-shaped canopy and horizontal canopy. There was no significant difference between the latter two treatments. The palisade thickness of V-shaped canopy was significantly greater than that of vertical canopy, and horizontal canopy was in the middle. The chlorophyll and carotenoid contents of V-shaped canopy were significantly higher than those of vertical canopy and horizontal canopy, and those in the latter two treatments had no significant difference. The fruit quality of V-shaped canopy was the best, and that of horizontal canopy was the worst. The results of GC-MS analysis showed that 29 types of volatile aroma compounds were detected in V-shaped canopy, but just 17 and 16 in vertical canopy and horizontal canopy, respectively. In V-shaped canopy, the characteristic aroma in grape 'Jingmi' was higher, except ethanol, trans-2- hexene-1-alcohol, 2-octyl ketone and formic acid ester. The linalool content in vertical canopy and V-shaped canopy was higher than that in horizontal canopy. The nerol content in V-shaped canopy was higher than that in vertical canopy and horizontal canopy, and the leaf alcohol content in V-shaped canopy and horizontal canopy was higher than that in vertical canopy. The citronellol was de-tected only in V-shaped canopy. In greenhouse, the fruit aroma of V-shaped canopy grape was stronger, and well reflected the variety characteristics.

  11. Integration of real-time 3D capture, reconstruction, and light-field display

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoxing; Geng, Zheng; Li, Tuotuo; Pei, Renjing; Liu, Yongchun; Zhang, Xiao

    2015-03-01

    Effective integration of 3D acquisition, reconstruction (modeling) and display technologies into a seamless systems provides augmented experience of visualizing and analyzing real objects and scenes with realistic 3D sensation. Applications can be found in medical imaging, gaming, virtual or augmented reality and hybrid simulations. Although 3D acquisition, reconstruction, and display technologies have gained significant momentum in recent years, there seems a lack of attention on synergistically combining these components into a "end-to-end" 3D visualization system. We designed, built and tested an integrated 3D visualization system that is able to capture in real-time 3D light-field images, perform 3D reconstruction to build 3D model of the objects, and display the 3D model on a large autostereoscopic screen. In this article, we will present our system architecture and component designs, hardware/software implementations, and experimental results. We will elaborate on our recent progress on sparse camera array light-field 3D acquisition, real-time dense 3D reconstruction, and autostereoscopic multi-view 3D display. A prototype is finally presented with test results to illustrate the effectiveness of our proposed integrated 3D visualization system.

  12. Canopy Research Network seeks input

    NASA Astrophysics Data System (ADS)

    In July 1993, the Canopy Research Network was established with a 2-year planning grant from the National Science Foundation to bring together forest canopy researchers, quantitative scientists, and computer specialists to establish methods for collecting, storing, analyzing, interpreting, and displaying three-dimensional data that relate to tree crowns and forest canopies. The CRN is now soliciting input from scientists in other fields who may have developed techniques and software to help obtain answers to questions that concern the complex three-dimensional structure of tree crowns and forest canopies. Over the next 3 years, the CRN plans to compile an array of research questions and issues requiring information on canopy structure, examine useful information models and software tools already in use in allied fields, and develop conceptual models and recommendations for the types and format of information and analyses necessary to answer research questions posed by canopy researchers.

  13. Photosynthesis and resource distribution through plant canopies.

    PubMed

    Niinemets, Ulo

    2007-09-01

    Plant canopies are characterized by dramatic gradients of light between canopy top and bottom, and interactions between light, temperature and water vapour deficits. This review summarizes current knowledge of potentials and limitations of acclimation of foliage photosynthetic capacity (A(max)) and light-harvesting efficiency to complex environmental gradients within the canopies. Acclimation of A(max) to high light availability involves accumulation of rate-limiting photosynthetic proteins per unit leaf area as the result of increases in leaf thickness in broad-leaved species and volume: total area ratio and mesophyll thickness in species with complex geometry of leaf cross-section. Enhancement of light-harvesting efficiency in low light occurs through increased chlorophyll production per unit dry mass, greater leaf area per unit dry mass investment in leaves and shoot architectural modifications that improve leaf exposure and reduce within-shoot shading. All these acclimation responses vary among species, resulting in species-specific use efficiencies of low and high light. In fast-growing canopies and in evergreen species, where foliage developed and acclimated to a certain light environment becomes shaded by newly developing foliage, leaf senescence, age-dependent changes in cell wall characteristics and limited foliage re-acclimation capacity can constrain adjustment of older leaves to modified light availabilities. The review further demonstrates that leaves in different canopy positions respond differently to dynamic fluctuations in light availability and to multiple environmental stresses. Foliage acclimated to high irradiance respond more plastically to rapid changes in leaf light environment, and is more resistant to co-occurring heat and water stress. However, in higher light, co-occurring stresses can more strongly curb the efficiency of foliage photosynthetic machinery through reductions in internal diffusion conductance to CO(2). This review

  14. [3D emulation of epicardium dynamic mapping].

    PubMed

    Lu, Jun; Yang, Cui-Wei; Fang, Zu-Xiang

    2005-03-01

    In order to realize epicardium dynamic mapping of the whole atria, 3-D graphics are drawn with OpenGL. Some source codes are introduced in the paper to explain how to produce, read, and manipulate 3-D model data.

  15. Laser Based 3D Volumetric Display System

    DTIC Science & Technology

    1993-03-01

    Literature, Costa Mesa, CA July 1983. 3. "A Real Time Autostereoscopic Multiplanar 3D Display System", Rodney Don Williams, Felix Garcia, Jr., Texas...8217 .- NUMBERS LASER BASED 3D VOLUMETRIC DISPLAY SYSTEM PR: CD13 0. AUTHOR(S) PE: N/AWIU: DN303151 P. Soltan, J. Trias, W. Robinson, W. Dahlke 7...laser generated 3D volumetric images on a rotating double helix, (where the 3D displays are computer controlled for group viewing with the naked eye

  16. True 3d Images and Their Applications

    NASA Astrophysics Data System (ADS)

    Wang, Z.; wang@hzgeospace., zheng.

    2012-07-01

    A true 3D image is a geo-referenced image. Besides having its radiometric information, it also has true 3Dground coordinates XYZ for every pixels of it. For a true 3D image, especially a true 3D oblique image, it has true 3D coordinates not only for building roofs and/or open grounds, but also for all other visible objects on the ground, such as visible building walls/windows and even trees. The true 3D image breaks the 2D barrier of the traditional orthophotos by introducing the third dimension (elevation) into the image. From a true 3D image, for example, people will not only be able to read a building's location (XY), but also its height (Z). true 3D images will fundamentally change, if not revolutionize, the way people display, look, extract, use, and represent the geospatial information from imagery. In many areas, true 3D images can make profound impacts on the ways of how geospatial information is represented, how true 3D ground modeling is performed, and how the real world scenes are presented. This paper first gives a definition and description of a true 3D image and followed by a brief review of what key advancements of geospatial technologies have made the creation of true 3D images possible. Next, the paper introduces what a true 3D image is made of. Then, the paper discusses some possible contributions and impacts the true 3D images can make to geospatial information fields. At the end, the paper presents a list of the benefits of having and using true 3D images and the applications of true 3D images in a couple of 3D city modeling projects.

  17. Cell proliferation and migration in silk fibroin 3D scaffolds.

    PubMed

    Mandal, Biman B; Kundu, Subhas C

    2009-05-01

    Pore architecture in 3D polymeric scaffolds is known to play a critical role in tissue engineering as it provides the vital framework for the seeded cells to organize into a functioning tissue. In this report, we investigated the effects of different freezing temperature regimes on silk fibroin protein 3D scaffold pore microstructure. The fabricated scaffolds using freeze-dry technique were used as a 3D model to monitor cell proliferation and migration. Pores of 200-250microm diameter were formed by slow cooling at temperatures of -20 and -80 degrees C but were found to be limited in porosity and pore interconnectivity as observed through scanning electron microscopic images. In contrast, highly interconnected pores with 96% porosity were observed when silk solutions were rapidly frozen at -196 degrees C. A detailed study was conducted to assess the affect of pore size, porosity and interconnectivity on human dermal fibroblast cell proliferation and migration on these 3D scaffolds using confocal microscopy. The cells were observed to migrate within the scaffold interconnectivities and were found to reach scaffold periphery within 28 days of culture. Confocal images further confirmed normal cell attachment and alignment of actin filaments within the porous scaffold matrix with well-developed nuclei. This study indicates rapid freeze-drying technique as an alternative method to fabricate highly interconnected porous scaffolds for developing functional 3D silk fibroin matrices for potential tissue engineering, biomedical and biotechnological applications.

  18. Influence of scaffold design on 3D printed cell constructs.

    PubMed

    Souness, Auryn; Zamboni, Fernanda; Walker, Gavin M; Collins, Maurice N

    2017-02-14

    Additive manufacturing is currently receiving significant attention in the field of tissue engineering and biomaterial science. The development of precise, affordable 3D printing technologies has provided a new platform for novel research to be undertaken in 3D scaffold design and fabrication. In the past, a number of 3D scaffold designs have been fabricated to investigate the potential of a 3D printed scaffold as a construct which could support cellular life. These studies have shown promising results; however, few studies have utilized a low-cost desktop 3D printing technology as a potential rapid manufacturing route for different scaffold designs. Here six scaffold designs were manufactured using a Fused deposition modeling, a "bottom-up" solid freeform fabrication approach, to determine optimal scaffold architecture for three-dimensional cell growth. The scaffolds, produced from PLA, are coated using pullulan and hyaluronic acid to assess the coating influence on cell proliferation and metabolic rate. Scaffolds are characterized both pre- and postprocessing using water uptake analysis, mechanical testing, and morphological evaluation to study the inter-relationships between the printing process, scaffold design, and scaffold properties. It was found that there were key differences between each scaffold design in terms of porosity, diffusivity, swellability, and compressive strength. An optimal design was chosen based on these physical measurements which were then weighted in accordance to design importance based on literature and utilizing a design matrix technique. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017.

  19. Optimizing 3D image quality and performance for stereoscopic gaming

    NASA Astrophysics Data System (ADS)

    Flack, Julien; Sanderson, Hugh; Pegg, Steven; Kwok, Simon; Paterson, Daniel

    2009-02-01

    The successful introduction of stereoscopic TV systems, such as Samsung's 3D Ready Plasma, requires high quality 3D content to be commercially available to the consumer. Console and PC games provide the most readily accessible source of high quality 3D content. This paper describes innovative developments in a generic, PC-based game driver architecture that addresses the two key issues affecting 3D gaming: quality and speed. At the heart of the quality issue are the same considerations that studios face producing stereoscopic renders from CG movies: how best to perform the mapping from a geometric CG environment into the stereoscopic display volume. The major difference being that for game drivers this mapping cannot be choreographed by hand but must be automatically calculated in real-time without significant impact on performance. Performance is a critical issue when dealing with gaming. Stereoscopic gaming has traditionally meant rendering the scene twice with the associated performance overhead. An alternative approach is to render the scene from one virtual camera position and use information from the z-buffer to generate a stereo pair using Depth-Image-Based Rendering (DIBR). We analyze this trade-off in more detail and provide some results relating to both 3D image quality and render performance.

  20. Plant canopy specular reflectance model

    NASA Technical Reports Server (NTRS)

    Vanderbilt, V. C.; Grant, L.

    1985-01-01

    A model is derived for the amount of light specularly reflected and polarized by a plant canopy. The model is based on the morphological and phenological characteristics of the canopy and upon the Fresnel equations of optics. The theory demonstrates that the specular reflectance of the plant canopy is a function of the angle of incidence and potentially contains information to help discriminate between species. The theory relates the specular reflectance to botanical condition of the canopy - to factors such as development stage, plant vigor, and leaf area index (LAI).

  1. 3D Printing and Its Urologic Applications

    PubMed Central

    Soliman, Youssef; Feibus, Allison H; Baum, Neil

    2015-01-01

    3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology. PMID:26028997

  2. Teaching Geography with 3-D Visualization Technology

    ERIC Educational Resources Information Center

    Anthamatten, Peter; Ziegler, Susy S.

    2006-01-01

    Technology that helps students view images in three dimensions (3-D) can support a broad range of learning styles. "Geo-Wall systems" are visualization tools that allow scientists, teachers, and students to project stereographic images and view them in 3-D. We developed and presented 3-D visualization exercises in several undergraduate courses.…

  3. Expanding Geometry Understanding with 3D Printing

    ERIC Educational Resources Information Center

    Cochran, Jill A.; Cochran, Zane; Laney, Kendra; Dean, Mandi

    2016-01-01

    With the rise of personal desktop 3D printing, a wide spectrum of educational opportunities has become available for educators to leverage this technology in their classrooms. Until recently, the ability to create physical 3D models was well beyond the scope, skill, and budget of many schools. However, since desktop 3D printers have become readily…

  4. Beowulf 3D: a case study

    NASA Astrophysics Data System (ADS)

    Engle, Rob

    2008-02-01

    This paper discusses the creative and technical challenges encountered during the production of "Beowulf 3D," director Robert Zemeckis' adaptation of the Old English epic poem and the first film to be simultaneously released in IMAX 3D and digital 3D formats.

  5. 3D Flow Visualization Using Texture Advection

    NASA Technical Reports Server (NTRS)

    Kao, David; Zhang, Bing; Kim, Kwansik; Pang, Alex; Moran, Pat (Technical Monitor)

    2001-01-01

    Texture advection is an effective tool for animating and investigating 2D flows. In this paper, we discuss how this technique can be extended to 3D flows. In particular, we examine the use of 3D and 4D textures on 3D synthetic and computational fluid dynamics flow fields.

  6. (abstract) A High Throughput 3-D Inner Product Processor

    NASA Technical Reports Server (NTRS)

    Daud, Tuan

    1996-01-01

    A particularily challenging image processing application is the real time scene acquisition and object discrimination. It requires spatio-temporal recognition of point and resolved objects at high speeds with parallel processing algorithms. Neural network paradigms provide fine grain parallism and, when implemented in hardware, offer orders of magnitude speed up. However, neural networks implemented on a VLSI chip are planer architectures capable of efficient processing of linear vector signals rather than 2-D images. Therefore, for processing of images, a 3-D stack of neural-net ICs receiving planar inputs and consuming minimal power are required. Details of the circuits with chip architectures will be described with need to develop ultralow-power electronics. Further, use of the architecture in a system for high-speed processing will be illustrated.

  7. Concentrated hydroxyapatite inks for direct-write assembly of 3-D periodic scaffolds.

    PubMed

    Michna, Sarah; Wu, Willie; Lewis, Jennifer A

    2005-10-01

    Hydroxyapatite (HA) scaffolds with a 3-D periodic architecture and multiscale porosity have been fabricated by direct-write assembly. Concentrated HA inks with tailored viscoelastic properties were developed to enable the construction of complex 3-D architectures comprised of self-supporting cylindrical rods in a layer-by-layer patterning sequence. By controlling their lattice constant and sintering conditions, 3-D periodic HA scaffolds were produced with a bimodal pore size distribution. Mercury intrusion porosimetry (MIP) was used to determine the characteristic pore size and volume associated with the interconnected pore channels between HA rods and the finer pores within the partially sintered HA rods.

  8. 3-D Perspective Pasadena, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This perspective view shows the western part of the city of Pasadena, California, looking north towards the San Gabriel Mountains. Portions of the cities of Altadena and La Canada, Flintridge are also shown. The image was created from three datasets: the Shuttle Radar Topography Mission (SRTM) supplied the elevation data; Landsat data from November 11, 1986 provided the land surface color (not the sky) and U.S. Geological Survey digital aerial photography provides the image detail. The Rose Bowl, surrounded by a golf course, is the circular feature at the bottom center of the image. The Jet Propulsion Laboratory is the cluster of large buildings north of the Rose Bowl at the base of the mountains. A large landfill, Scholl Canyon, is the smooth area in the lower left corner of the scene. This image shows the power of combining data from different sources to create planning tools to study problems that affect large urban areas. In addition to the well-known earthquake hazards, Southern California is affected by a natural cycle of fire and mudflows. Wildfires strip the mountains of vegetation, increasing the hazards from flooding and mudflows for several years afterwards. Data such as shown on this image can be used to predict both how wildfires will spread over the terrain and also how mudflows will be channeled down the canyons. The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission was designed to collect three dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency

  9. Case study: Beauty and the Beast 3D: benefits of 3D viewing for 2D to 3D conversion

    NASA Astrophysics Data System (ADS)

    Handy Turner, Tara

    2010-02-01

    From the earliest stages of the Beauty and the Beast 3D conversion project, the advantages of accurate desk-side 3D viewing was evident. While designing and testing the 2D to 3D conversion process, the engineering team at Walt Disney Animation Studios proposed a 3D viewing configuration that not only allowed artists to "compose" stereoscopic 3D but also improved efficiency by allowing artists to instantly detect which image features were essential to the stereoscopic appeal of a shot and which features had minimal or even negative impact. At a time when few commercial 3D monitors were available and few software packages provided 3D desk-side output, the team designed their own prototype devices and collaborated with vendors to create a "3D composing" workstation. This paper outlines the display technologies explored, final choices made for Beauty and the Beast 3D, wish-lists for future development and a few rules of thumb for composing compelling 2D to 3D conversions.

  10. 3D curvature of muscle fascicles in triceps surae.

    PubMed

    Rana, Manku; Hamarneh, Ghassan; Wakeling, James M

    2014-12-01

    Muscle fascicles curve along their length, with the curvatures occurring around regions of high intramuscular pressure, and are necessary for mechanical stability. Fascicles are typically considered to lie in fascicle planes that are the planes visualized during dissection or two-dimensional (2D) ultrasound scans. However, it has previously been predicted that fascicles must curve in three-dimensional (3D) and thus the fascicle planes may actually exist as 3D sheets. 3D fascicle curvatures have not been explored in human musculature. Furthermore, if the fascicles do not lie in 2D planes, then this has implications for architectural measures that are derived from 2D ultrasound scans. The purpose of this study was to quantify the 3D curvatures of the muscle fascicles and fascicle sheets within the triceps surae muscles and to test whether these curvatures varied among different contraction levels, muscle length, and regions within the muscle. Six male subjects were tested for three torque levels (0, 30, and 60% maximal voluntary contraction) and four ankle angles (-15, 0, 15, and 30° plantar flexion), and fascicles were imaged using 3D ultrasound techniques. The fascicle curvatures significantly increased at higher ankle torques and shorter muscle lengths. The fascicle sheet curvatures were of similar magnitude to the fascicle curvatures but did not vary between contractions. Fascicle curvatures were regionalized within each muscle with the curvature facing the deeper aponeuroses, and this indicates a greater intramuscular pressure in the deeper layers of muscles. Muscle architectural measures may be in error when using 2D images for complex geometries such as the soleus.

  11. Mini 3D for shallow gas reconnaissance

    SciTech Connect

    Vallieres, T. des; Enns, D.; Kuehn, H.; Parron, D.; Lafet, Y.; Van Hulle, D.

    1996-12-31

    The Mini 3D project was undertaken by TOTAL and ELF with the support of CEPM (Comite d`Etudes Petrolieres et Marines) to define an economical method of obtaining 3D seismic HR data for shallow gas assessment. An experimental 3D survey was carried out with classical site survey techniques in the North Sea. From these data 19 simulations, were produced to compare different acquisition geometries ranging from dual, 600 m long cables to a single receiver. Results show that short offset, low fold and very simple streamer positioning are sufficient to give a reliable 3D image of gas charged bodies. The 3D data allow a much more accurate risk delineation than 2D HR data. Moreover on financial grounds Mini-3D is comparable in cost to a classical HR 2D survey. In view of these results, such HR 3D should now be the standard for shallow gas surveying.

  12. Heterogeneously Assembled Metamaterials and Metadevices via 3D Modular Transfer Printing

    PubMed Central

    Lee, Seungwoo; Kang, Byungsoo; Keum, Hohyun; Ahmed, Numair; Rogers, John A.; Ferreira, Placid M.; Kim, Seok; Min, Bumki

    2016-01-01

    Metamaterials have made the exotic control of the flow of electromagnetic waves possible, which is difficult to achieve with natural materials. In recent years, the emergence of functional metadevices has shown immense potential for the practical realization of highly efficient photonic devices. However, complex and heterogeneous architectures that enable diverse functionalities of metamaterials and metadevices have been challenging to realize because of the limited manufacturing capabilities of conventional fabrication methods. Here, we show that three-dimensional (3D) modular transfer printing can be used to construct diverse metamaterials in complex 3D architectures on universal substrates, which is attractive for achieving on-demand photonic properties. Few repetitive processing steps and rapid constructions are additional advantages of 3D modular transfer printing. Thus, this method provides a fascinating route to generate flexible and stretchable 2D/3D metamaterials and metadevices with heterogeneous material components, complex device architectures, and diverse functionalities. PMID:27283594

  13. Modeling the backscattering and transmission properties of vegetation canopies

    NASA Technical Reports Server (NTRS)

    Allen, C. T.; Ulaby, F. T.

    1984-01-01

    Experimental measurements of canopy attenuation at 10.2 GHz (X-band) for canopies of wheat and soybeans, experimental observations of the effect upon the microwave backscattering coefficient (sigma) of free water in a vegetation canopy, and experimental measurements of sigma (10.2 GHz, 50 deg, VV and VH polarization) of 30 agricultural fields over the growing season of each crop are discussed. The measurements of the canopy attenuation through wheat independently determined the attenuation resulting from the wheat heads and that from the stalks. An experiment conducted to simulate the effects of rain or dew on sigma showed that sigma increases by about 3 dB as a result of spraying a vegetation canopy with water. The temporal observations of sigma for the 30 agricultural fields (10 each of wheat, corn, and soybeans) indicated fields of the same crop type exhibits similar temporal patterns. Models previously reported were tested using these multitemporal sigma data, and a new model for each crop type was developed and tested. The new models proved to be superior to the previous ones.

  14. Advances in animal ecology from 3D ecosystem mapping with LiDAR

    NASA Astrophysics Data System (ADS)

    Davies, A.; Asner, G. P.

    2015-12-01

    The advent and recent advances of Light Detection and Ranging (LiDAR) have enabled accurate measurement of 3D ecosystem structure. Although the use of LiDAR data is widespread in vegetation science, it has only recently (< 14 years) been applied to animal ecology. Despite such recent application, LiDAR has enabled new insights in the field and revealed the fundamental importance of 3D ecosystem structure for animals. We reviewed the studies to date that have used LiDAR in animal ecology, synthesising the insights gained. Structural heterogeneity is most conducive to increased animal richness and abundance, and increased complexity of vertical vegetation structure is more positively influential than traditionally measured canopy cover, which produces mixed results. However, different taxonomic groups interact with a variety of 3D canopy traits and some groups with 3D topography. LiDAR technology can be applied to animal ecology studies in a wide variety of environments to answer an impressive array of questions. Drawing on case studies from vastly different groups, termites and lions, we further demonstrate the applicability of LiDAR and highlight new understanding, ranging from habitat preference to predator-prey interactions, that would not have been possible from studies restricted to field based methods. We conclude with discussion of how future studies will benefit by using LiDAR to consider 3D habitat effects in a wider variety of ecosystems and with more taxa to develop a better understanding of animal dynamics.

  15. Turbulent Dispersion of Pathogenic Spores Within and Above Plant Canopies: Field Experiments and Lagrangian Modeling

    NASA Astrophysics Data System (ADS)

    Gleicher, S.; Chamecki, M.; Isard, S.; Katul, G. G.

    2012-12-01

    Plant disease epidemics caused by pathogenic spores are a common and consequential threat to agricultural crops. In most cases, pathogenic spores are produced and released deep inside plant canopies and must be transported out of the canopy region in order to infect other fields and spread the disease. The fraction of spores that "escape" the canopy is crucial in determining how fast and far these plant diseases will spread. The goal of this work is to use a field experiment, coupled with a Lagrangian Stochastic Model (LSM), to investigate how properties of canopy turbulence impact the dispersion of spores inside the canopy and the fraction of spores that escape from the canopy. An extensive field experiment was conducted to study spore dispersion inside and outside a corn canopy. The spores were released from point sources located at various depths inside the canopy. Concentration measurements were obtained inside and above the canopy by a 3-dimensional grid of spore collectors. The experimental measurements of mean spore concentration are used to validate a LSM for spore dispersion. In the LSM, flow field statistics used to drive the particle dispersion are specified by a second-order closure model for turbulence within plant canopies. The dispersion model includes spore deposition on and rebound from canopy elements. The combination of experimental and numerical simulations is used to quantify the fraction of spores that escape the canopy. Effects of release height, friction velocity, and canopy architecture on the escape fraction of spores are explored using the LSM, and implications for disease propagation are discussed.

  16. Use of spectral analogy to evaluate canopy reflectance sensitivity to leaf optical property

    NASA Technical Reports Server (NTRS)

    Baret, Frederic; Vanderbilt, Vern C.; Steven, Michael D.; Jacquemoud, Stephane

    1993-01-01

    The spectral variation of canopy reflectance is mostly governed by the absorption properties of the elements, hence the leaves, since their intrinsic scattering properties show very little spectral variation. The relationship between canopy reflectance and leaf reflectance measured at the red edge over sugar beet canopies was used to simulate canopy reflectance from leaf reflectance spectra measured over the whole spectral domain. The results show that the spectral analogies found allows accurate reconstruction of canopy reflectance spectra. Explicit assumptions about the very low spectral variation of leaf intrinsic scattering properties are thus indirectly justified. The sensitivity of canopy reflectance (rho(sub c)) to leaf optical properties can then be investigated from concurrent spectral variations of canopy (delta rho(sub c)/delta lambda) and leaf reflectance (delta rho(sub l)/delta lambda): (delta rho(sub c))/(delta rho(sub l)) = ((delta rho(sub c))/(delta lambda) ((delta rho( sub l))/(delta lambda))(sup -1)). This expression is strictly valid only when the optical properties of the soil background or the other vegetation elements such as bark are either spectrally flat or do not contribute significantly to canopy reflectance. Simulations using the SAIL and PROSPECT models demonstrate that the sensitivity of canopy reflectance to leaf reflectance is significant for large vegetation cover fractions in spectral domains where absorption is low. In these conditions, multiple, scattering enhances the leaf absorption features by a factor that can be greater than 2.0. To override the limitations of the SAIL model for the description of the canopy architecture, we tested the previous findings on experimental data. Concurrent canopy and leaf reflectance spectra were measured for a range of sugar beet canopies. The results show good agreement with the theoretical findings. Conclusions are drawn about the applicability of these findings, with particular attention to

  17. Canopy temperature and cotton performance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract The temperature of a cotton canopy is a useful indicator of both the metabolic state and water status of the crop. Recent advances in equipment have resulted in reductions in the cost and complexity of near continuous canopy temperature monitoring. Measurements on a seasonal timeframe at a ...

  18. Calculation of TIR Canopy Hot Spot and Implications for Earth Radiation Budget

    NASA Technical Reports Server (NTRS)

    Smith, J. A.; Ballard, J. R., Jr.

    2000-01-01

    Using a 3-D model for thermal infrared exitance and the Lowtran 7 atmospheric radiative transfer model, we compute the variation in brightness temperature with view direction and, in particular, the canopy thermal hot spot. We then perform a sensitivity analysis of surface energy balance components for a nominal case using a simple SVAT model given the uncertainty in canopy temperature arising from the thermal hot spot effect. Canopy thermal hot spot variations of two degrees C lead to differences of plus or minus 24% in the midday available energy.

  19. 3-D Technology Approaches for Biological Ecologies

    NASA Astrophysics Data System (ADS)

    Liu, Liyu; Austin, Robert; U. S-China Physical-Oncology Sciences Alliance (PS-OA) Team

    Constructing three dimensional (3-D) landscapes is an inevitable issue in deep study of biological ecologies, because in whatever scales in nature, all of the ecosystems are composed by complex 3-D environments and biological behaviors. Just imagine if a 3-D technology could help complex ecosystems be built easily and mimic in vivo microenvironment realistically with flexible environmental controls, it will be a fantastic and powerful thrust to assist researchers for explorations. For years, we have been utilizing and developing different technologies for constructing 3-D micro landscapes for biophysics studies in in vitro. Here, I will review our past efforts, including probing cancer cell invasiveness with 3-D silicon based Tepuis, constructing 3-D microenvironment for cell invasion and metastasis through polydimethylsiloxane (PDMS) soft lithography, as well as explorations of optimized stenting positions for coronary bifurcation disease with 3-D wax printing and the latest home designed 3-D bio-printer. Although 3-D technologies is currently considered not mature enough for arbitrary 3-D micro-ecological models with easy design and fabrication, I hope through my talk, the audiences will be able to sense its significance and predictable breakthroughs in the near future. This work was supported by the State Key Development Program for Basic Research of China (Grant No. 2013CB837200), the National Natural Science Foundation of China (Grant No. 11474345) and the Beijing Natural Science Foundation (Grant No. 7154221).

  20. 3D change detection - Approaches and applications

    NASA Astrophysics Data System (ADS)

    Qin, Rongjun; Tian, Jiaojiao; Reinartz, Peter

    2016-12-01

    Due to the unprecedented technology development of sensors, platforms and algorithms for 3D data acquisition and generation, 3D spaceborne, airborne and close-range data, in the form of image based, Light Detection and Ranging (LiDAR) based point clouds, Digital Elevation Models (DEM) and 3D city models, become more accessible than ever before. Change detection (CD) or time-series data analysis in 3D has gained great attention due to its capability of providing volumetric dynamics to facilitate more applications and provide more accurate results. The state-of-the-art CD reviews aim to provide a comprehensive synthesis and to simplify the taxonomy of the traditional remote sensing CD techniques, which mainly sit within the boundary of 2D image/spectrum analysis, largely ignoring the particularities of 3D aspects of the data. The inclusion of 3D data for change detection (termed 3D CD), not only provides a source with different modality for analysis, but also transcends the border of traditional top-view 2D pixel/object-based analysis to highly detailed, oblique view or voxel-based geometric analysis. This paper reviews the recent developments and applications of 3D CD using remote sensing and close-range data, in support of both academia and industry researchers who seek for solutions in detecting and analyzing 3D dynamics of various objects of interest. We first describe the general considerations of 3D CD problems in different processing stages and identify CD types based on the information used, being the geometric comparison and geometric-spectral analysis. We then summarize relevant works and practices in urban, environment, ecology and civil applications, etc. Given the broad spectrum of applications and different types of 3D data, we discuss important issues in 3D CD methods. Finally, we present concluding remarks in algorithmic aspects of 3D CD.

  1. RT3D tutorials for GMS users

    SciTech Connect

    Clement, T.P.; Jones, N.L.

    1998-02-01

    RT3D (Reactive Transport in 3-Dimensions) is a computer code that solves coupled partial differential equations that describe reactive-flow and transport of multiple mobile and/or immobile species in a three dimensional saturated porous media. RT3D was developed from the single-species transport code, MT3D (DoD-1.5, 1997 version). As with MT3D, RT3D also uses the USGS groundwater flow model MODFLOW for computing spatial and temporal variations in groundwater head distribution. This report presents a set of tutorial problems that are designed to illustrate how RT3D simulations can be performed within the Department of Defense Groundwater Modeling System (GMS). GMS serves as a pre- and post-processing interface for RT3D. GMS can be used to define all the input files needed by RT3D code, and later the code can be launched from within GMS and run as a separate application. Once the RT3D simulation is completed, the solution can be imported to GMS for graphical post-processing. RT3D v1.0 supports several reaction packages that can be used for simulating different types of reactive contaminants. Each of the tutorials, described below, provides training on a different RT3D reaction package. Each reaction package has different input requirements, and the tutorials are designed to describe these differences. Furthermore, the tutorials illustrate the various options available in GMS for graphical post-processing of RT3D results. Users are strongly encouraged to complete the tutorials before attempting to use RT3D and GMS on a routine basis.

  2. Perception-based shape retrieval for 3D building models

    NASA Astrophysics Data System (ADS)

    Zhang, Man; Zhang, Liqiang; Takis Mathiopoulos, P.; Ding, Yusi; Wang, Hao

    2013-01-01

    With the help of 3D search engines, a large number of 3D building models can be retrieved freely online. A serious disadvantage of most rotation-insensitive shape descriptors is their inability to distinguish between two 3D building models which are different at their main axes, but appear similar when one of them is rotated. To resolve this problem, we present a novel upright-based normalization method which not only correctly rotates such building models, but also greatly simplifies and accelerates the abstraction and the matching of building models' shape descriptors. Moreover, the abundance of architectural styles significantly hinders the effective shape retrieval of building models. Our research has shown that buildings with different designs are not well distinguished by the widely recognized shape descriptors for general 3D models. Motivated by this observation and to further improve the shape retrieval quality, a new building matching method is introduced and analyzed based on concepts found in the field of perception theory and the well-known Light Field descriptor. The resulting normalized building models are first classified using the qualitative shape descriptors of Shell and Unevenness which outline integral geometrical and topological information. These models are then put in on orderly fashion with the help of an improved quantitative shape descriptor which we will term as Horizontal Light Field Descriptor, since it assembles detailed shape characteristics. To accurately evaluate the proposed methodology, an enlarged building shape database which extends previous well-known shape benchmarks was implemented as well as a model retrieval system supporting inputs from 2D sketches and 3D models. Various experimental performance evaluation results have shown that, as compared to previous methods, retrievals employing the proposed matching methodology are faster and more consistent with human recognition of spatial objects. In addition these performance

  3. Episcopic 3D Imaging Methods: Tools for Researching Gene Function

    PubMed Central

    Weninger, Wolfgang J; Geyer, Stefan H

    2008-01-01

    This work aims at describing episcopic 3D imaging methods and at discussing how these methods can contribute to researching the genetic mechanisms driving embryogenesis and tissue remodelling, and the genesis of pathologies. Several episcopic 3D imaging methods exist. The most advanced are capable of generating high-resolution volume data (voxel sizes from 0.5x0.5x1 µm upwards) of small to large embryos of model organisms and tissue samples. Beside anatomy and tissue architecture, gene expression and gene product patterns can be three dimensionally analyzed in their precise anatomical and histological context with the aid of whole mount in situ hybridization or whole mount immunohistochemical staining techniques. Episcopic 3D imaging techniques were and are employed for analyzing the precise morphological phenotype of experimentally malformed, randomly produced, or genetically engineered embryos of biomedical model organisms. It has been shown that episcopic 3D imaging also fits for describing the spatial distribution of genes and gene products during embryogenesis, and that it can be used for analyzing tissue samples of adult model animals and humans. The latter offers the possibility to use episcopic 3D imaging techniques for researching the causality and treatment of pathologies or for staging cancer. Such applications, however, are not yet routine and currently only preliminary results are available. We conclude that, although episcopic 3D imaging is in its very beginnings, it represents an upcoming methodology, which in short terms will become an indispensable tool for researching the genetic regulation of embryo development as well as the genesis of malformations and diseases. PMID:19452045

  4. 3D measurement for rapid prototyping

    NASA Astrophysics Data System (ADS)

    Albrecht, Peter; Lilienblum, Tilo; Sommerkorn, Gerd; Michaelis, Bernd

    1996-08-01

    Optical 3-D measurement is an interesting approach for rapid prototyping. On one hand it's necessary to get the 3-D data of an object and on the other hand it's necessary to check the manufactured object (quality checking). Optical 3-D measurement can realize both. Classical 3-D measurement procedures based on photogrammetry cause systematic errors at strongly curved surfaces or steps in surfaces. One possibility to reduce these errors is to calculate the 3-D coordinates from several successively taken images. Thus it's possible to get higher spatial resolution and to reduce the systematic errors at 'problem surfaces.' Another possibility is to process the measurement values by neural networks. A modified associative memory smoothes and corrects the calculated 3-D coordinates using a-priori knowledge about the measurement object.

  5. Photorefractive Polymers for Updateable 3D Displays

    DTIC Science & Technology

    2010-02-24

    Final Performance Report 3. DATES COVERED (From - To) 01-01-2007 to 11-30-2009 4. TITLE AND SUBTITLE Photorefractive Polymers for Updateable 3D ...ABSTRACT During the tenure of this project a large area updateable 3D color display has been developed for the first time using a new co-polymer...photorefractive polymers have been demonstrated. Moreover, a 6 inch × 6 inch sample was fabricated demonstrating the feasibility of making large area 3D

  6. 3D Microperfusion Model of ADPKD

    DTIC Science & Technology

    2015-10-01

    Stratasys 3D printer . PDMS was cast in the negative molds in order to create permanent biocompatible plastic masters (SmoothCast 310). All goals of task...1 AWARD NUMBER: W81XWH-14-1-0304 TITLE: 3D Microperfusion Model of ADPKD PRINCIPAL INVESTIGATOR: David L. Kaplan CONTRACTING ORGANIZATION...ADDRESS. 1. REPORT DATE October 2015 2. REPORT TYPE Annual Report 3. DATES COVERED 15 Sep 2014 - 14 Sep 2015 4. TITLE AND SUBTITLE 3D

  7. 3D carotid plaque MR Imaging

    PubMed Central

    Parker, Dennis L.

    2015-01-01

    SYNOPSIS There has been significant progress made in 3D carotid plaque magnetic resonance imaging techniques in recent years. 3D plaque imaging clearly represents the future in clinical use. With effective flow suppression techniques, choices of different contrast weighting acquisitions, and time-efficient imaging approaches, 3D plaque imaging offers flexible imaging plane and view angle analysis, large coverage, multi-vascular beds capability, and even can be used in fast screening. PMID:26610656

  8. 3-D Extensions for Trustworthy Systems

    DTIC Science & Technology

    2011-01-01

    3- D Extensions for Trustworthy Systems (Invited Paper) Ted Huffmire∗, Timothy Levin∗, Cynthia Irvine∗, Ryan Kastner† and Timothy Sherwood...address these problems, we propose an approach to trustworthy system development based on 3- D integration, an emerging chip fabrication technique in...which two or more integrated circuit dies are fabricated individually and then combined into a single stack using vertical conductive posts. With 3- D

  9. Hardware Trust Implications of 3-D Integration

    DTIC Science & Technology

    2010-12-01

    enhancing a commod- ity processor with a variety of security functions. This paper examines the 3-D design approach and provides an analysis concluding...of key components. The question addressed by this paper is, “Can a 3-D control plane provide useful secure services when it is conjoined with an...untrust- worthy computation plane?” Design-level investigation of this question yields a definite yes. This paper explores 3- D applications and their

  10. Digital holography and 3-D imaging.

    PubMed

    Banerjee, Partha; Barbastathis, George; Kim, Myung; Kukhtarev, Nickolai

    2011-03-01

    This feature issue on Digital Holography and 3-D Imaging comprises 15 papers on digital holographic techniques and applications, computer-generated holography and encryption techniques, and 3-D display. It is hoped that future work in the area leads to innovative applications of digital holography and 3-D imaging to biology and sensing, and to the development of novel nonlinear dynamic digital holographic techniques.

  11. 3D Medical Volume Reconstruction Using Web Services

    PubMed Central

    Kooper, Rob; Shirk, Andrew; Lee, Sang-Chul; Lin, Amy; Folberg, Robert; Bajcsy, Peter

    2008-01-01

    We address the problem of 3D medical volume reconstruction using web services. The use of proposed web services is motivated by the fact that the problem of 3D medical volume reconstruction requires significant computer resources and human expertise in medical and computer science areas. Web services are implemented as an additional layer to a dataflow framework called Data to Knowledge. In the collaboration between UIC and NCSA, pre-processed input images at NCSA are made accessible to medical collaborators for registration. Every time UIC medical collaborators inspected images and selected corresponding features for registration, the web service at NCSA is contacted and the registration processing query is executed using the Image to Knowledge library of registration methods. Co-registered frames are returned for verification by medical collaborators in a new window. In this paper, we present 3D volume reconstruction problem requirements and the architecture of the developed prototype system at http://isda.ncsa.uiuc.edu/MedVolume. We also explain the tradeoffs of our system design and provide experimental data to support our system implementation. The prototype system has been used for multiple 3D volume reconstructions of blood vessels and vasculogenic mimicry patterns in histological sections of uveal melanoma studied by fluorescent confocal laser scanning microscope. PMID:18336808

  12. 3D vertical nanostructures for enhanced infrared plasmonics.

    PubMed

    Malerba, Mario; Alabastri, Alessandro; Miele, Ermanno; Zilio, Pierfrancesco; Patrini, Maddalena; Bajoni, Daniele; Messina, Gabriele C; Dipalo, Michele; Toma, Andrea; Proietti Zaccaria, Remo; De Angelis, Francesco

    2015-11-10

    The exploitation of surface plasmon polaritons has been mostly limited to the visible and near infrared range, due to the low frequency limit for coherent plasmon excitation and the reduction of confinement on the metal surface for lower energies. In this work we show that 3D--out of plane--nanostructures can considerably increase the intrinsic quality of the optical output, light confinement and electric field enhancement factors, also in the near and mid-infrared. We suggest that the physical principle relies on the combination of far field and near field interactions between neighboring antennas, promoted by the 3D out-of-plane geometry. We first analyze the changes in the optical behavior, which occur when passing from a single on-plane nanostructure to a 3D out-of-plane configuration. Then we show that by arranging the nanostructures in periodic arrays, 3D architectures can provide, in the mid-IR, a much stronger plasmonic response, compared to that achievable with the use of 2D configurations, leading to higher energy harvesting properties and improved Q-factors, with bright perspective up to the terahertz range.

  13. Constructing 3D microtubule networks using holographic optical trapping

    PubMed Central

    Bergman, J.; Osunbayo, O.; Vershinin, M.

    2015-01-01

    Developing abilities to assemble nanoscale structures is a major scientific and engineering challenge. We report a technique which allows precise positioning and manipulation of individual rigid filaments, enabling construction of custom-designed 3D filament networks. This approach uses holographic optical trapping (HOT) for nano-positioning and microtubules (MTs) as network building blocks. MTs are desirable engineering components due to their high aspect ratio, rigidity, and their ability to serve as substrate for directed nano-transport, reflecting their roles in the eukaryotic cytoskeleton. The 3D architecture of MT cytoskeleton is a significant component of its function, however experimental tools to study the roles of this geometric complexity in a controlled environment have been lacking. We demonstrate the broad capabilities of our system by building a self-supporting 3D MT-based nanostructure and by conducting a MT-based transport experiment on a dynamically adjustable 3D MT intersection. Our methodology not only will advance studies of cytoskeletal networks (and associated processes such as MT-based transport) but will also likely find use in engineering nanostructures and devices. PMID:26657337

  14. 3D vertical nanostructures for enhanced infrared plasmonics

    PubMed Central

    Malerba, Mario; Alabastri, Alessandro; Miele, Ermanno; Zilio, Pierfrancesco; Patrini, Maddalena; Bajoni, Daniele; Messina, Gabriele C.; Dipalo, Michele; Toma, Andrea; Proietti Zaccaria, Remo; De Angelis, Francesco

    2015-01-01

    The exploitation of surface plasmon polaritons has been mostly limited to the visible and near infrared range, due to the low frequency limit for coherent plasmon excitation and the reduction of confinement on the metal surface for lower energies. In this work we show that 3D - out of plane - nanostructures can considerably increase the intrinsic quality of the optical output, light confinement and electric field enhancement factors, also in the near and mid-infrared. We suggest that the physical principle relies on the combination of far field and near field interactions between neighboring antennas, promoted by the 3D out-of-plane geometry. We first analyze the changes in the optical behavior, which occur when passing from a single on-plane nanostructure to a 3D out-of-plane configuration. Then we show that by arranging the nanostructures in periodic arrays, 3D architectures can provide, in the mid-IR, a much stronger plasmonic response, compared to that achievable with the use of 2D configurations, leading to higher energy harvesting properties and improved Q-factors, with bright perspective up to the terahertz range. PMID:26552340

  15. Geospatial Modelling Approach for 3d Urban Densification Developments

    NASA Astrophysics Data System (ADS)

    Koziatek, O.; Dragićević, S.; Li, S.

    2016-06-01

    With growing populations, economic pressures, and the need for sustainable practices, many urban regions are rapidly densifying developments in the vertical built dimension with mid- and high-rise buildings. The location of these buildings can be projected based on key factors that are attractive to urban planners, developers, and potential buyers. Current research in this area includes various modelling approaches, such as cellular automata and agent-based modelling, but the results are mostly linked to raster grids as the smallest spatial units that operate in two spatial dimensions. Therefore, the objective of this research is to develop a geospatial model that operates on irregular spatial tessellations to model mid- and high-rise buildings in three spatial dimensions (3D). The proposed model is based on the integration of GIS, fuzzy multi-criteria evaluation (MCE), and 3D GIS-based procedural modelling. Part of the City of Surrey, within the Metro Vancouver Region, Canada, has been used to present the simulations of the generated 3D building objects. The proposed 3D modelling approach was developed using ESRI's CityEngine software and the Computer Generated Architecture (CGA) language.

  16. Dimensional accuracy of 3D printed vertebra

    NASA Astrophysics Data System (ADS)

    Ogden, Kent; Ordway, Nathaniel; Diallo, Dalanda; Tillapaugh-Fay, Gwen; Aslan, Can

    2014-03-01

    3D printer applications in the biomedical sciences and medical imaging are expanding and will have an increasing impact on the practice of medicine. Orthopedic and reconstructive surgery has been an obvious area for development of 3D printer applications as the segmentation of bony anatomy to generate printable models is relatively straightforward. There are important issues that should be addressed when using 3D printed models for applications that may affect patient care; in particular the dimensional accuracy of the printed parts needs to be high to avoid poor decisions being made prior to surgery or therapeutic procedures. In this work, the dimensional accuracy of 3D printed vertebral bodies derived from CT data for a cadaver spine is compared with direct measurements on the ex-vivo vertebra and with measurements made on the 3D rendered vertebra using commercial 3D image processing software. The vertebra was printed on a consumer grade 3D printer using an additive print process using PLA (polylactic acid) filament. Measurements were made for 15 different anatomic features of the vertebral body, including vertebral body height, endplate width and depth, pedicle height and width, and spinal canal width and depth, among others. It is shown that for the segmentation and printing process used, the results of measurements made on the 3D printed vertebral body are substantially the same as those produced by direct measurement on the vertebra and measurements made on the 3D rendered vertebra.

  17. Robust bioengineered 3D functional human intestinal epithelium

    PubMed Central

    Chen, Ying; Lin, Yinan; Davis, Kimberly M.; Wang, Qianrui; Rnjak-Kovacina, Jelena; Li, Chunmei; Isberg, Ralph R.; Kumamoto, Carol A.; Mecsas, Joan; Kaplan, David L.

    2015-01-01

    Intestinal functions are central to human physiology, health and disease. Options to study these functions with direct relevance to the human condition remain severely limited when using conventional cell cultures, microfluidic systems, organoids, animal surrogates or human studies. To replicate in vitro the tissue architecture and microenvironments of native intestine, we developed a 3D porous protein scaffolding system, containing a geometrically-engineered hollow lumen, with adaptability to both large and small intestines. These intestinal tissues demonstrated representative human responses by permitting continuous accumulation of mucous secretions on the epithelial surface, establishing low oxygen tension in the lumen, and interacting with gut-colonizing bacteria. The newly developed 3D intestine model enabled months-long sustained access to these intestinal functions in vitro, readily integrable with a multitude of different organ mimics and will therefore ensure a reliable ex vivo tissue system for studies in a broad context of human intestinal diseases and treatments. PMID:26374193

  18. Mirror Identification and Correction of 3d Point Clouds

    NASA Astrophysics Data System (ADS)

    Käshammer, P.-F.; Nüchter, A.

    2015-02-01

    In terrestrial laser scanning (TLS), the surface geometry of objects is scanned by laser beams and recorded digitally. This produces a discrete set of scan points, commonly referred to as a point cloud. The coordinates of the scan points are determined by measuring the angles and the time-of-flight relative to the origin (scanner position). However, if it comes to mirror surfaces laser beams are fully reflected, due to the high reflectivity. Mirrors do not appear in the point cloud at all. Instead, for every reflected beam, a incorrect scan point is created behind the actual mirror plane. Consequently, problems arise in multiple derived application fields such as 3D virtual reconstruction of complex architectures. The paper presents a new approach to automatically detect framed rectangular mirrors with known dimensions and to correct the 3D point cloud, using the calculated mirror plane.

  19. Microfluidic titer plate for stratified 3D cell culture.

    PubMed

    Trietsch, Sebastiaan J; Israëls, Guido D; Joore, Jos; Hankemeier, Thomas; Vulto, Paul

    2013-09-21

    Human tissues and organs are inherently heterogeneous. Their functionality is determined by the interplay between different cell types, their secondary architecture, vascular system and gradients of signaling molecules and metabolites. Here we propose a stratified 3D cell culture platform, in which adjacent lanes of gels and liquids are patterned by phaseguides to capture this tissue heterogeneity. We demonstrate 3D cell culture of HepG2 hepatocytes under continuous perfusion, a rifampicin toxicity assay and co-culture with fibroblasts. 4T1 breast cancer cells are used to demonstrate invasion and aggregation models. The platform is incorporated in a microtiter plate format that renders it fully compatible with automation and high-content screening equipment. The extended functionality, ease of handling and full compatibility to standard equipment is an important step towards adoption of Organ-on-a-Chip technology for screening in an industrial setting.

  20. Robust bioengineered 3D functional human intestinal epithelium.

    PubMed

    Chen, Ying; Lin, Yinan; Davis, Kimberly M; Wang, Qianrui; Rnjak-Kovacina, Jelena; Li, Chunmei; Isberg, Ralph R; Kumamoto, Carol A; Mecsas, Joan; Kaplan, David L

    2015-09-16

    Intestinal functions are central to human physiology, health and disease. Options to study these functions with direct relevance to the human condition remain severely limited when using conventional cell cultures, microfluidic systems, organoids, animal surrogates or human studies. To replicate in vitro the tissue architecture and microenvironments of native intestine, we developed a 3D porous protein scaffolding system, containing a geometrically-engineered hollow lumen, with adaptability to both large and small intestines. These intestinal tissues demonstrated representative human responses by permitting continuous accumulation of mucous secretions on the epithelial surface, establishing low oxygen tension in the lumen, and interacting with gut-colonizing bacteria. The newly developed 3D intestine model enabled months-long sustained access to these intestinal functions in vitro, readily integrable with a multitude of different organ mimics and will therefore ensure a reliable ex vivo tissue system for studies in a broad context of human intestinal diseases and treatments.

  1. FastScript3D - A Companion to Java 3D

    NASA Technical Reports Server (NTRS)

    Koenig, Patti

    2005-01-01

    FastScript3D is a computer program, written in the Java 3D(TM) programming language, that establishes an alternative language that helps users who lack expertise in Java 3D to use Java 3D for constructing three-dimensional (3D)-appearing graphics. The FastScript3D language provides a set of simple, intuitive, one-line text-string commands for creating, controlling, and animating 3D models. The first word in a string is the name of a command; the rest of the string contains the data arguments for the command. The commands can also be used as an aid to learning Java 3D. Developers can extend the language by adding custom text-string commands. The commands can define new 3D objects or load representations of 3D objects from files in formats compatible with such other software systems as X3D. The text strings can be easily integrated into other languages. FastScript3D facilitates communication between scripting languages [which enable programming of hyper-text markup language (HTML) documents to interact with users] and Java 3D. The FastScript3D language can be extended and customized on both the scripting side and the Java 3D side.

  2. Isotopic characteristics of canopies in simulated leaf assemblages

    NASA Astrophysics Data System (ADS)

    Graham, Heather V.; Patzkowsky, Mark E.; Wing, Scott L.; Parker, Geoffrey G.; Fogel, Marilyn L.; Freeman, Katherine H.

    2014-11-01

    The geologic history of closed-canopy forests is of great interest to paleoecologists and paleoclimatologists alike. Closed canopies have pronounced effects on local, continental and global rainfall and temperature patterns. Although evidence for canopy closure is difficult to reconstruct from the fossil record, the characteristic isotope gradients of the "canopy effect" could be preserved in leaves and proxy biomarkers. To assess this, we employed new carbon isotopic data for leaves collected in diverse light environments within a deciduous, temperate forest (Maryland, USA) and for leaves from a perennially closed canopy, moist tropical forest (Bosque Protector San Lorenzo, Panamá). In the tropical forest, leaf carbon isotope values range 10‰, with higher δ13Cleaf values occurring both in upper reaches of the canopy, and with higher light exposure and lower humidity. Leaf fractionation (Δleaf) varied negatively with height and light and positively with humidity. Vertical 13C enrichment in leaves largely reflects changes in Δleaf, and does not trend with δ13C of CO2 within the canopy. At the site in Maryland, leaves express a more modest δ13C range (∼6‰), with a clear trend that follows both light and leaf height. Using a model we simulate leaf assemblage isotope patterns from canopy data binned by elevation. The re-sampling (bootstrap) model determined both the mean and range of carbon isotope values for simulated leaf assemblages ranging in size from 10 to over 1000 leaves. For the tropical forest data, the canopy's isotope range is captured with 50 or more randomly sampled leaves. Thus, with a sufficient number of fossil leaves it is possible to distinguish isotopic gradients in an ancient closed canopy forest from those in an open forest. For very large leaf assemblages, mean isotopic values approximate the δ13C of carbon contributed by leaves to soil and are similar to observed δ13Clitter values at forested sites within Panamá, including the

  3. 3D ultrafast ultrasound imaging in vivo.

    PubMed

    Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-07

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra--and inter-observer variability.

  4. 3D ultrafast ultrasound imaging in vivo

    NASA Astrophysics Data System (ADS)

    Provost, Jean; Papadacci, Clement; Esteban Arango, Juan; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra—and inter-observer variability.

  5. An aerial 3D printing test mission

    NASA Astrophysics Data System (ADS)

    Hirsch, Michael; McGuire, Thomas; Parsons, Michael; Leake, Skye; Straub, Jeremy

    2016-05-01

    This paper provides an overview of an aerial 3D printing technology, its development and its testing. This technology is potentially useful in its own right. In addition, this work advances the development of a related in-space 3D printing technology. A series of aerial 3D printing test missions, used to test the aerial printing technology, are discussed. Through completing these test missions, the design for an in-space 3D printer may be advanced. The current design for the in-space 3D printer involves focusing thermal energy to heat an extrusion head and allow for the extrusion of molten print material. Plastics can be used as well as composites including metal, allowing for the extrusion of conductive material. A variety of experiments will be used to test this initial 3D printer design. High altitude balloons will be used to test the effects of microgravity on 3D printing, as well as parabolic flight tests. Zero pressure balloons can be used to test the effect of long 3D printing missions subjected to low temperatures. Vacuum chambers will be used to test 3D printing in a vacuum environment. The results will be used to adapt a current prototype of an in-space 3D printer. Then, a small scale prototype can be sent into low-Earth orbit as a 3-U cube satellite. With the ability to 3D print in space demonstrated, future missions can launch production hardware through which the sustainability and durability of structures in space will be greatly improved.

  6. Integration of Jeddah Historical BIM and 3D GIS for Documentation and Restoration of Historical Monument

    NASA Astrophysics Data System (ADS)

    Baik, A.; Yaagoubi, R.; Boehm, J.

    2015-08-01

    This work outlines a new approach for the integration of 3D Building Information Modelling and the 3D Geographic Information System (GIS) to provide semantically rich models, and to get the benefits from both systems to help document and analyse cultural heritage sites. Our proposed framework is based on the Jeddah Historical Building Information Modelling process (JHBIM). This JHBIM consists of a Hijazi Architectural Objects Library (HAOL) that supports higher level of details (LoD) while decreasing the time of modelling. The Hijazi Architectural Objects Library has been modelled based on the Islamic historical manuscripts and Hijazi architectural pattern books. Moreover, the HAOL is implemented using BIM software called Autodesk Revit. However, it is known that this BIM environment still has some limitations with the non-standard architectural objects. Hence, we propose to integrate the developed 3D JHBIM with 3D GIS for more advanced analysis. To do so, the JHBIM database is exported and semantically enriched with non-architectural information that is necessary for restoration and preservation of historical monuments. After that, this database is integrated with the 3D Model in the 3D GIS solution. At the end of this paper, we'll illustrate our proposed framework by applying it to a Historical Building called Nasif Historical House in Jeddah. First of all, this building is scanned by the use of a Terrestrial Laser Scanner (TLS) and Close Range Photogrammetry. Then, the 3D JHBIM based on the HOAL is designed on Revit Platform. Finally, this model is integrated to a 3D GIS solution through Autodesk InfraWorks. The shown analysis presented in this research highlights the importance of such integration especially for operational decisions and sharing the historical knowledge about Jeddah Historical City. Furthermore, one of the historical buildings in Old Jeddah, Nasif Historical House, was chosen as a test case for the project.

  7. 3D site specific sample preparation and analysis of 3D devices (FinFETs) by atom probe tomography.

    PubMed

    Kambham, Ajay Kumar; Kumar, Arul; Gilbert, Matthieu; Vandervorst, Wilfried

    2013-09-01

    With the transition from planar to three-dimensional device architectures such as Fin field-effect-transistors (FinFETs), new metrology approaches are required to meet the needs of semiconductor technology. It is important to characterize the 3D-dopant distributions precisely as their extent, positioning relative to gate edges and absolute concentration determine the device performance in great detail. At present the atom probe has shown its ability to analyze dopant distributions in semiconductor and thin insulating materials with sub-nm 3D-resolution and good dopant sensitivity. However, so far most reports have dealt with planar devices or restricted the measurements to 2D test structures which represent only limited challenges in terms of localization and site specific sample preparation. In this paper we will discuss the methodology to extract the dopant distribution from real 3D-devices such as a 3D-FinFET device, requiring the sample preparation to be carried out at a site specific location with a positioning accuracy ∼50 nm.

  8. Immersive 3D Geovisualization in Higher Education

    ERIC Educational Resources Information Center

    Philips, Andrea; Walz, Ariane; Bergner, Andreas; Graeff, Thomas; Heistermann, Maik; Kienzler, Sarah; Korup, Oliver; Lipp, Torsten; Schwanghart, Wolfgang; Zeilinger, Gerold

    2015-01-01

    In this study, we investigate how immersive 3D geovisualization can be used in higher education. Based on MacEachren and Kraak's geovisualization cube, we examine the usage of immersive 3D geovisualization and its usefulness in a research-based learning module on flood risk, called GEOSimulator. Results of a survey among participating students…

  9. A 3D Geostatistical Mapping Tool

    SciTech Connect

    Weiss, W. W.; Stevenson, Graig; Patel, Ketan; Wang, Jun

    1999-02-09

    This software provides accurate 3D reservoir modeling tools and high quality 3D graphics for PC platforms enabling engineers and geologists to better comprehend reservoirs and consequently improve their decisions. The mapping algorithms are fractals, kriging, sequential guassian simulation, and three nearest neighbor methods.

  10. 3D Printing. What's the Harm?

    ERIC Educational Resources Information Center

    Love, Tyler S.; Roy, Ken

    2016-01-01

    Health concerns from 3D printing were first documented by Stephens, Azimi, Orch, and Ramos (2013), who found that commercially available 3D printers were producing hazardous levels of ultrafine particles (UFPs) and volatile organic compounds (VOCs) when plastic materials were melted through the extruder. UFPs are particles less than 100 nanometers…

  11. Topology dictionary for 3D video understanding.

    PubMed

    Tung, Tony; Matsuyama, Takashi

    2012-08-01

    This paper presents a novel approach that achieves 3D video understanding. 3D video consists of a stream of 3D models of subjects in motion. The acquisition of long sequences requires large storage space (2 GB for 1 min). Moreover, it is tedious to browse data sets and extract meaningful information. We propose the topology dictionary to encode and describe 3D video content. The model consists of a topology-based shape descriptor dictionary which can be generated from either extracted patterns or training sequences. The model relies on 1) topology description and classification using Reeb graphs, and 2) a Markov motion graph to represent topology change states. We show that the use of Reeb graphs as the high-level topology descriptor is relevant. It allows the dictionary to automatically model complex sequences, whereas other strategies would require prior knowledge on the shape and topology of the captured subjects. Our approach serves to encode 3D video sequences, and can be applied for content-based description and summarization of 3D video sequences. Furthermore, topology class labeling during a learning process enables the system to perform content-based event recognition. Experiments were carried out on various 3D videos. We showcase an application for 3D video progressive summarization using the topology dictionary.

  12. 3D elastic control for mobile devices.

    PubMed

    Hachet, Martin; Pouderoux, Joachim; Guitton, Pascal

    2008-01-01

    To increase the input space of mobile devices, the authors developed a proof-of-concept 3D elastic controller that easily adapts to mobile devices. This embedded device improves the completion of high-level interaction tasks such as visualization of large documents and navigation in 3D environments. It also opens new directions for tomorrow's mobile applications.

  13. 3D Printing of Molecular Models

    ERIC Educational Resources Information Center

    Gardner, Adam; Olson, Arthur

    2016-01-01

    Physical molecular models have played a valuable role in our understanding of the invisible nano-scale world. We discuss 3D printing and its use in producing models of the molecules of life. Complex biomolecular models, produced from 3D printed parts, can demonstrate characteristics of molecular structure and function, such as viral self-assembly,…

  14. 3D Printed Block Copolymer Nanostructures

    ERIC Educational Resources Information Center

    Scalfani, Vincent F.; Turner, C. Heath; Rupar, Paul A.; Jenkins, Alexander H.; Bara, Jason E.

    2015-01-01

    The emergence of 3D printing has dramatically advanced the availability of tangible molecular and extended solid models. Interestingly, there are few nanostructure models available both commercially and through other do-it-yourself approaches such as 3D printing. This is unfortunate given the importance of nanotechnology in science today. In this…

  15. Infrastructure for 3D Imaging Test Bed

    DTIC Science & Technology

    2007-05-11

    analysis. (c.) Real time detection & analysis of human gait: using a video camera we capture walking human silhouette for pattern modeling and gait ... analysis . Fig. 5 shows the scanning result result that is fed into a Geo-magic software tool for 3D meshing. Fig. 5: 3D scanning result In

  16. Wow! 3D Content Awakens the Classroom

    ERIC Educational Resources Information Center

    Gordon, Dan

    2010-01-01

    From her first encounter with stereoscopic 3D technology designed for classroom instruction, Megan Timme, principal at Hamilton Park Pacesetter Magnet School in Dallas, sensed it could be transformative. Last spring, when she began pilot-testing 3D content in her third-, fourth- and fifth-grade classrooms, Timme wasn't disappointed. Students…

  17. Stereo 3-D Vision in Teaching Physics

    ERIC Educational Resources Information Center

    Zabunov, Svetoslav

    2012-01-01

    Stereo 3-D vision is a technology used to present images on a flat surface (screen, paper, etc.) and at the same time to create the notion of three-dimensional spatial perception of the viewed scene. A great number of physical processes are much better understood when viewed in stereo 3-D vision compared to standard flat 2-D presentation. The…

  18. Pathways for Learning from 3D Technology

    ERIC Educational Resources Information Center

    Carrier, L. Mark; Rab, Saira S.; Rosen, Larry D.; Vasquez, Ludivina; Cheever, Nancy A.

    2012-01-01

    The purpose of this study was to find out if 3D stereoscopic presentation of information in a movie format changes a viewer's experience of the movie content. Four possible pathways from 3D presentation to memory and learning were considered: a direct connection based on cognitive neuroscience research; a connection through "immersion"…

  19. 3D, or Not to Be?

    ERIC Educational Resources Information Center

    Norbury, Keith

    2012-01-01

    It may be too soon for students to be showing up for class with popcorn and gummy bears, but technology similar to that behind the 3D blockbuster movie "Avatar" is slowly finding its way into college classrooms. 3D classroom projectors are taking students on fantastic voyages inside the human body, to the ruins of ancient Greece--even to faraway…

  20. Static & Dynamic Response of 3D Solids

    SciTech Connect

    Lin, Jerry

    1996-07-15

    NIKE3D is a large deformations 3D finite element code used to obtain the resulting displacements and stresses from multi-body static and dynamic structural thermo-mechanics problems with sliding interfaces. Many nonlinear and temperature dependent constitutive models are available.

  1. BEAMS3D Neutral Beam Injection Model

    SciTech Connect

    Lazerson, Samuel

    2014-04-14

    With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.

  2. 2D/3D switchable displays

    NASA Astrophysics Data System (ADS)

    Dekker, T.; de Zwart, S. T.; Willemsen, O. H.; Hiddink, M. G. H.; IJzerman, W. L.

    2006-02-01

    A prerequisite for a wide market acceptance of 3D displays is the ability to switch between 3D and full resolution 2D. In this paper we present a robust and cost effective concept for an auto-stereoscopic switchable 2D/3D display. The display is based on an LCD panel, equipped with switchable LC-filled lenticular lenses. We will discuss 3D image quality, with the focus on display uniformity. We show that slanting the lenticulars in combination with a good lens design can minimize non-uniformities in our 20" 2D/3D monitors. Furthermore, we introduce fractional viewing systems as a very robust concept to further improve uniformity in the case slanting the lenticulars and optimizing the lens design are not sufficient. We will discuss measurements and numerical simulations of the key optical characteristics of this display. Finally, we discuss 2D image quality, the switching characteristics and the residual lens effect.

  3. 6D Interpretation of 3D Gravity

    NASA Astrophysics Data System (ADS)

    Herfray, Yannick; Krasnov, Kirill; Scarinci, Carlos

    2017-02-01

    We show that 3D gravity, in its pure connection formulation, admits a natural 6D interpretation. The 3D field equations for the connection are equivalent to 6D Hitchin equations for the Chern–Simons 3-form in the total space of the principal bundle over the 3-dimensional base. Turning this construction around one gets an explanation of why the pure connection formulation of 3D gravity exists. More generally, we interpret 3D gravity as the dimensional reduction of the 6D Hitchin theory. To this end, we show that any \\text{SU}(2) invariant closed 3-form in the total space of the principal \\text{SU}(2) bundle can be parametrised by a connection together with a 2-form field on the base. The dimensional reduction of the 6D Hitchin theory then gives rise to 3D gravity coupled to a topological 2-form field.

  4. Biocompatible 3D Matrix with Antimicrobial Properties.

    PubMed

    Ion, Alberto; Andronescu, Ecaterina; Rădulescu, Dragoș; Rădulescu, Marius; Iordache, Florin; Vasile, Bogdan Ștefan; Surdu, Adrian Vasile; Albu, Madalina Georgiana; Maniu, Horia; Chifiriuc, Mariana Carmen; Grumezescu, Alexandru Mihai; Holban, Alina Maria

    2016-01-20

    The aim of this study was to develop, characterize and assess the biological activity of a new regenerative 3D matrix with antimicrobial properties, based on collagen (COLL), hydroxyapatite (HAp), β-cyclodextrin (β-CD) and usnic acid (UA). The prepared 3D matrix was characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Microscopy (FT-IRM), Transmission Electron Microscopy (TEM), and X-ray Diffraction (XRD). In vitro qualitative and quantitative analyses performed on cultured diploid cells demonstrated that the 3D matrix is biocompatible, allowing the normal development and growth of MG-63 osteoblast-like cells and exhibited an antimicrobial effect, especially on the Staphylococcus aureus strain, explained by the particular higher inhibitory activity of usnic acid (UA) against Gram positive bacterial strains. Our data strongly recommend the obtained 3D matrix to be used as a successful alternative for the fabrication of three dimensional (3D) anti-infective regeneration matrix for bone tissue engineering.

  5. Quon 3D language for quantum information

    PubMed Central

    Liu, Zhengwei; Wozniakowski, Alex; Jaffe, Arthur M.

    2017-01-01

    We present a 3D topological picture-language for quantum information. Our approach combines charged excitations carried by strings, with topological properties that arise from embedding the strings in the interior of a 3D manifold with boundary. A quon is a composite that acts as a particle. Specifically, a quon is a hemisphere containing a neutral pair of open strings with opposite charge. We interpret multiquons and their transformations in a natural way. We obtain a type of relation, a string–genus “joint relation,” involving both a string and the 3D manifold. We use the joint relation to obtain a topological interpretation of the C∗-Hopf algebra relations, which are widely used in tensor networks. We obtain a 3D representation of the controlled NOT (CNOT) gate that is considerably simpler than earlier work, and a 3D topological protocol for teleportation. PMID:28167790

  6. EarthServer - 3D Visualization on the Web

    NASA Astrophysics Data System (ADS)

    Wagner, Sebastian; Herzig, Pasquale; Bockholt, Ulrich; Jung, Yvonne; Behr, Johannes

    2013-04-01

    EarthServer (www.earthserver.eu), funded by the European Commission under its Seventh Framework Program, is a project to enable the management, access and exploration of massive, multi-dimensional datasets using Open GeoSpatial Consortium (OGC) query and processing language standards like WCS 2.0 and WCPS. To this end, a server/client architecture designed to handle Petabyte/Exabyte volumes of multi-dimensional data is being developed and deployed. As an important part of the EarthServer project, six Lighthouse Applications, major scientific data exploitation initiatives, are being established to make cross-domain, Earth Sciences related data repositories available in an open and unified manner, as service endpoints based on solutions and infrastructure developed within the project. Clients technology developed and deployed in EarthServer ranges from mobile and web clients to immersive virtual reality systems, all designed to interact with a physically and logically distributed server infrastructure using exclusively OGC standards. In this contribution, we would like to present our work on a web-based 3D visualization and interaction client for Earth Sciences data using only technology found in standard web browsers without requiring the user to install plugins or addons. Additionally, we are able to run the earth data visualization client on a wide range of different platforms with very different soft- and hardware requirements such as smart phones (e.g. iOS, Android), different desktop systems etc. High-quality, hardware-accelerated visualization of 3D and 4D content in standard web browsers can be realized now and we believe it will become more and more common to use this fast, lightweight and ubiquitous platform to provide insights into big datasets without requiring the user to set up a specialized client first. With that in mind, we will also point out some of the limitations we encountered using current web technologies. Underlying the EarthServer web client

  7. Landscape Scale Assessment of Predominant Pine Canopy Height for Red-cockaded Woodpecker Habitat Assessment Using Light Detection and Ranging (LIDAR) Data

    DTIC Science & Technology

    2011-03-26

    Figures Figures 1 Top of canopy digital terrain model ( DTM ) from statewide, large footprint, lower sampling density LIDAR data provided by the North...4 2 Top of canopy DTM from small footprint, higher sampling density LIDAR data ..................... 4 3 Top of canopy DTM ... DTM from small footprint, higher sampling density LIDAR data provided by ERDC-CERL and used in the case study (3-D perspective

  8. Close-range environmental remote sensing with 3D hyperspectral technologies

    NASA Astrophysics Data System (ADS)

    Nevalainen, O.; Honkavaara, E.; Hakala, T.; Kaasalainen, Sanna; Viljanen, N.; Rosnell, T.; Khoramshahi, E.; Näsi, R.

    2016-10-01

    Estimation of the essential climate variables (ECVs), such as photosynthetically active radiation (FAPAR) and the leaf area index (LAI), is largely based on satellite-based remote sensing and the subsequent inversion of radiative transfer (RT) models. In order to build models that accurately describe the radiative transfer within and below the canopy, detailed 3D structural (geometrical) and spectral (radiometrical) information of the canopy is needed. Close-range remote sensing, such as terrestrial remote sensing and UAV-based 3D spectral measurements, offers significant opportunity to improve the RT modelling and ECV estimation of forests. Finnish Geospatial Research Institute (FGI) has been developing active and passive high resolution 3D hyperspectral measurement technologies that provide reflectance, anisotropy and 3D structure information of forests (i.e. hyperspectral point clouds). Technologies include hyperspectral imaging from unmanned airborne vehicle (UAV), terrestrial hyperspectral lidar (HSL) and terrestrial hyperspectral stereoscopic imaging. A measurement campaign to demonstrate these technologies in ECV estimation with uncertainty propagation was carried out in the Wytham Woods, Oxford, UK, in June 2015. Our objective is to develop traceable processing procedures for generating hyperspectral point clouds with geometric and radiometric uncertainty propagation using hyperspectral aerial and terrestrial imaging and hyperspectral terrestrial laser scanning. The article and presentation will present the methodology, instrumentation and first results of our study.

  9. 3D Ultrafast Ultrasound Imaging In Vivo

    PubMed Central

    Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-01-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative real-time imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in three dimensions based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32×32 matrix-array probe. Its capability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3-D Shear-Wave Imaging, 3-D Ultrafast Doppler Imaging and finally 3D Ultrafast combined Tissue and Flow Doppler. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3-D Ultrafast Doppler was used to obtain 3-D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, for the first time, the complex 3-D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, and the 3-D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3-D Ultrafast Ultrasound Imaging for the 3-D real-time mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra- and inter-observer variability. PMID:25207828

  10. 3D Visualization Development of SIUE Campus

    NASA Astrophysics Data System (ADS)

    Nellutla, Shravya

    Geographic Information Systems (GIS) has progressed from the traditional map-making to the modern technology where the information can be created, edited, managed and analyzed. Like any other models, maps are simplified representations of real world. Hence visualization plays an essential role in the applications of GIS. The use of sophisticated visualization tools and methods, especially three dimensional (3D) modeling, has been rising considerably due to the advancement of technology. There are currently many off-the-shelf technologies available in the market to build 3D GIS models. One of the objectives of this research was to examine the available ArcGIS and its extensions for 3D modeling and visualization and use them to depict a real world scenario. Furthermore, with the advent of the web, a platform for accessing and sharing spatial information on the Internet, it is possible to generate interactive online maps. Integrating Internet capacity with GIS functionality redefines the process of sharing and processing the spatial information. Enabling a 3D map online requires off-the-shelf GIS software, 3D model builders, web server, web applications and client server technologies. Such environments are either complicated or expensive because of the amount of hardware and software involved. Therefore, the second objective of this research was to investigate and develop simpler yet cost-effective 3D modeling approach that uses available ArcGIS suite products and the free 3D computer graphics software for designing 3D world scenes. Both ArcGIS Explorer and ArcGIS Online will be used to demonstrate the way of sharing and distributing 3D geographic information on the Internet. A case study of the development of 3D campus for the Southern Illinois University Edwardsville is demonstrated.

  11. Pathways for Learning from 3D Technology

    PubMed Central

    Carrier, L. Mark; Rab, Saira S.; Rosen, Larry D.; Vasquez, Ludivina; Cheever, Nancy A.

    2016-01-01

    The purpose of this study was to find out if 3D stereoscopic presentation of information in a movie format changes a viewer's experience of the movie content. Four possible pathways from 3D presentation to memory and learning were considered: a direct connection based on cognitive neuroscience research; a connection through "immersion" in that 3D presentations could provide additional sensorial cues (e.g., depth cues) that lead to a higher sense of being surrounded by the stimulus; a connection through general interest such that 3D presentation increases a viewer’s interest that leads to greater attention paid to the stimulus (e.g., "involvement"); and a connection through discomfort, with the 3D goggles causing discomfort that interferes with involvement and thus with memory. The memories of 396 participants who viewed two-dimensional (2D) or 3D movies at movie theaters in Southern California were tested. Within three days of viewing a movie, participants filled out an online anonymous questionnaire that queried them about their movie content memories, subjective movie-going experiences (including emotional reactions and "presence") and demographic backgrounds. The responses to the questionnaire were subjected to path analyses in which several different links between 3D presentation to memory (and other variables) were explored. The results showed there were no effects of 3D presentation, either directly or indirectly, upon memory. However, the largest effects of 3D presentation were on emotions and immersion, with 3D presentation leading to reduced positive emotions, increased negative emotions and lowered immersion, compared to 2D presentations. PMID:28078331

  12. The psychology of the 3D experience

    NASA Astrophysics Data System (ADS)

    Janicke, Sophie H.; Ellis, Andrew

    2013-03-01

    With 3D televisions expected to reach 50% home saturation as early as 2016, understanding the psychological mechanisms underlying the user response to 3D technology is critical for content providers, educators and academics. Unfortunately, research examining the effects of 3D technology has not kept pace with the technology's rapid adoption, resulting in large-scale use of a technology about which very little is actually known. Recognizing this need for new research, we conducted a series of studies measuring and comparing many of the variables and processes underlying both 2D and 3D media experiences. In our first study, we found narratives within primetime dramas had the power to shift viewer attitudes in both 2D and 3D settings. However, we found no difference in persuasive power between 2D and 3D content. We contend this lack of effect was the result of poor conversion quality and the unique demands of 3D production. In our second study, we found 3D technology significantly increased enjoyment when viewing sports content, yet offered no added enjoyment when viewing a movie trailer. The enhanced enjoyment of the sports content was shown to be the result of heightened emotional arousal and attention in the 3D condition. We believe the lack of effect found for the movie trailer may be genre-related. In our final study, we found 3D technology significantly enhanced enjoyment of two video games from different genres. The added enjoyment was found to be the result of an increased sense of presence.

  13. Estimating Canopy Dark Respiration for Crop Models

    NASA Technical Reports Server (NTRS)

    Monje Mejia, Oscar Alberto

    2014-01-01

    Crop production is obtained from accurate estimates of daily carbon gain.Canopy gross photosynthesis (Pgross) can be estimated from biochemical models of photosynthesis using sun and shaded leaf portions and the amount of intercepted photosyntheticallyactive radiation (PAR).In turn, canopy daily net carbon gain can be estimated from canopy daily gross photosynthesis when canopy dark respiration (Rd) is known.

  14. Mechanical properties of 3D ceramic nanolattices

    NASA Astrophysics Data System (ADS)

    Meza, Lucas

    Developments in advanced nanoscale fabrication techniques have allowed for the creation of 3-dimensional hierarchical structural meta-materials that can be designed with arbitrary geometry. These structures can be made on length scales spanning multiple orders of magnitude, from tens of nanometers to hundreds of microns. The smallest features are controllable on length scales where materials have been shown to exhibit size effects in their mechanical properties. Combining novel nanoscale mechanical properties with a 3-dimensional architecture enables the creation of new classes of materials with tunable and unprecedented mechanical properties. We present the fabrication and mechanical deformation of hollow tube alumina nanolattices that were fabricated using two-photon lithography direct laser writing (DLW), atomic layer deposition (ALD), and oxygen plasma etching. Nanolattices were designed in a number of different geometries including octet-truss, octahedron, and 3D Kagome. Additionally, a number of structural parameters were varied including tube wall thickness (t) , tube major axis (a) , and unit cell size (L) . The resulting nanolattices had a range of densities from ρ = 4 to 250 mg/cm3. Uniaxial compression and cyclic loading tests were performed on the nanolattices to obtain the yield strength and modulus. In these tests, a marked change in the deformation response was observed when the wall thickness was reduced below 20nm; thick-walled nanolattices (t>20nm) underwent catastrophic, brittle failure, which transitioned to a gradual, ductile-like deformation as wall thickness was reduced. Thick-walled nanolattices also exhibited no recovery after compression, while thin-walled structures demonstrated notable recovery, with some recovering by 98% after compression to 50% strain and by 80% when compressed to 90% strain. Across all geometries, unit cell sizes, and wall thicknesses, we found a consistent power law relation between strength and modulus with

  15. Plant photomorphogenesis and canopy growth

    NASA Technical Reports Server (NTRS)

    Ballare, Carlos L.; Scopel, Ana L.

    1994-01-01

    An important motivation for studying photomorphogenesis is to understand the relationships among plant photophysiology in canopies, canopy productivity, and agronomic yield. This understanding is essential to optimize lighting systems used for plant farming in controlled environments (CE) and for the design of genetically engineered crop strains with altered photoresponses. This article provides an overview of some basic principles of plant photomorphogenesis in canopies and discusses their implications for (1) scaling up information on plant photophysiology from individual plants in CE to whole canopies in the field, and (2) designing lighting conditions to increase plant productivity in CE used for agronomic purposes (e.g. space farming in CE Life Support Systems). We concentrate on the visible (lambda between 400 and 700 nm) and far-infrared (FR; lambda greater than 700 nm) spectral regions, since the ultraviolet (UV; 280 to 400 nm) is covered by other authors in this volume.

  16. Canopy hot-spot as crop identifier

    SciTech Connect

    Gerstl, S.A.W.; Simmer, C.; Powers, B.J.

    1986-05-01

    Illuminating any reflective rough or structured surface by a directional light source results in an angular reflectance distribution that shows a narrow peak in the direction of retro-reflection. This is called the Heiligenschein or hot-spot of vegetation canopies and is caused by mutual shading of leaves. The angular intensity distribution of the hot-spot, its brightness and slope, are therefore indicators of the plant's geometry. We propose the use of hot-spot characteristics as crop identifiers in satellite remote sensing because the canopy hot-spot carries information about plant stand architecture that is more distinctive for different plant species than, for instance, their spectral reflectance characteristics. A simple three-dimensional Monte Carlo/ray tracing model and an analytic two-dimensional model are developed to estimate the angular distribution of the hot-spot as a function of the size of the plant leaves. The results show that the brightness-distribution and slope of the hot-spot change distinctively for different leaf sizes indicating a much more peaked maximum for the smaller leaves.

  17. Directing Matter: Toward Atomic-Scale 3D Nanofabrication

    SciTech Connect

    Jesse, Stephen; Borisevich, Albina Y.; Fowlkes, Jason D.; Lupini, Andrew R.; Rack, Philip D.; Unocic, Raymond R.; Sumpter, Bobby G.; Kalinin, Sergei V.; Belianinov, Alex; Ovchinnikova, Olga S.

    2016-05-16

    Here we report that enabling memristive, neuromorphic, and quantum based computing as well as efficient mainstream energy storage and conversion technologies requires next generation of materials customized at the atomic scale. This requires full control of atomic arrangement and bonding in three dimensions. The last two decades witnessed substantial industrial, academic, and government research efforts directed towards this goal through various lithographies and scanning probe based methods. These technologies emphasize 2D surface structures, with some limited 3D capability. Recently, a range of focused electron and ion based methods have demonstrated compelling alternative pathways to achieving atomically precise manufacturing of 3D structures in solids, liquids, and at interfaces. Electron and ion microscopies offer a platform that can simultaneously observe dynamic and static structures at the nano and atomic scales, and also induce structural rearrangements and chemical transformation. The addition of predictive modeling or rapid image analytics and feedback enables guiding these in a controlled manner. Here, we review the recent results that used focused electron and ion beams to create free-standing nanoscale 3D structures, radiolysis and the fabrication potential with liquid precursors, epitaxial crystallization of amorphous oxides with atomic layer precision, as well as visualization and control of individual dopant motion within a 3D crystal lattice. These works lay the foundation for new approaches to directing nanoscale level architectures and offer a potential roadmap to full 3D atomic control in materials. Lastly, in this perspective we lay out the gaps that currently constrain the processing range of these platforms, reflect on indirect requirements, such as the integration of large scale data analysis with theory, and discuss future prospects of these technologies.

  18. Directing Matter: Toward Atomic-Scale 3D Nanofabrication.

    PubMed

    Jesse, Stephen; Borisevich, Albina Y; Fowlkes, Jason D; Lupini, Andrew R; Rack, Philip D; Unocic, Raymond R; Sumpter, Bobby G; Kalinin, Sergei V; Belianinov, Alex; Ovchinnikova, Olga S

    2016-06-28

    Enabling memristive, neuromorphic, and quantum-based computing as well as efficient mainstream energy storage and conversion technologies requires the next generation of materials customized at the atomic scale. This requires full control of atomic arrangement and bonding in three dimensions. The last two decades witnessed substantial industrial, academic, and government research efforts directed toward this goal through various lithographies and scanning-probe-based methods. These technologies emphasize 2D surface structures, with some limited 3D capability. Recently, a range of focused electron- and ion-based methods have demonstrated compelling alternative pathways to achieving atomically precise manufacturing of 3D structures in solids, liquids, and at interfaces. Electron and ion microscopies offer a platform that can simultaneously observe dynamic and static structures at the nano- and atomic scales and also induce structural rearrangements and chemical transformation. The addition of predictive modeling or rapid image analytics and feedback enables guiding these in a controlled manner. Here, we review the recent results that used focused electron and ion beams to create free-standing nanoscale 3D structures, radiolysis, and the fabrication potential with liquid precursors, epitaxial crystallization of amorphous oxides with atomic layer precision, as well as visualization and control of individual dopant motion within a 3D crystal lattice. These works lay the foundation for approaches to directing nanoscale level architectures and offer a potential roadmap to full 3D atomic control in materials. In this paper, we lay out the gaps that currently constrain the processing range of these platforms, reflect on indirect requirements, such as the integration of large-scale data analysis with theory, and discuss future prospects of these technologies.

  19. Assessing the potential of low-cost 3D cameras for the rapid measurement of plant woody structure.

    PubMed

    Nock, Charles A; Taugourdeau, Olivier; Delagrange, Sylvain; Messier, Christian

    2013-11-27

    Detailed 3D plant architectural data have numerous applications in plant science, but many existing approaches for 3D data collection are time-consuming and/or require costly equipment. Recently, there has been rapid growth in the availability of low-cost, 3D cameras and related open source software applications. 3D cameras may provide measurements of key components of plant architecture such as stem diameters and lengths, however, few tests of 3D cameras for the measurement of plant architecture have been conducted. Here, we measured Salix branch segments ranging from 2-13 mm in diameter with an Asus Xtion camera to quantify the limits and accuracy of branch diameter measurement with a 3D camera. By scanning at a variety of distances we also quantified the effect of scanning distance. In addition, we also test the sensitivity of the program KinFu for continuous 3D object scanning and modeling as well as other similar software to accurately record stem diameters and capture plant form (<3 m in height). Given its ability to accurately capture the diameter of branches >6 mm, Asus Xtion may provide a novel method for the collection of 3D data on the branching architecture of woody plants. Improvements in camera measurement accuracy and available software are likely to further improve the utility of 3D cameras for plant sciences in the future.

  20. Assessing the Potential of Low-Cost 3D Cameras for the Rapid Measurement of Plant Woody Structure

    PubMed Central

    Nock, Charles A; Taugourdeau, Olivier; Delagrange, Sylvain; Messier, Christian

    2013-01-01

    Detailed 3D plant architectural data have numerous applications in plant science, but many existing approaches for 3D data collection are time-consuming and/or require costly equipment. Recently, there has been rapid growth in the availability of low-cost, 3D cameras and related open source software applications. 3D cameras may provide measurements of key components of plant architecture such as stem diameters and lengths, however, few tests of 3D cameras for the measurement of plant architecture have been conducted. Here, we measured Salix branch segments ranging from 2–13 mm in diameter with an Asus Xtion camera to quantify the limits and accuracy of branch diameter measurement with a 3D camera. By scanning at a variety of distances we also quantified the effect of scanning distance. In addition, we also test the sensitivity of the program KinFu for continuous 3D object scanning and modeling as well as other similar software to accurately record stem diameters and capture plant form (<3 m in height). Given its ability to accurately capture the diameter of branches >6 mm, Asus Xtion may provide a novel method for the collection of 3D data on the branching architecture of woody plants. Improvements in camera measurement accuracy and available software are likely to further improve the utility of 3D cameras for plant sciences in the future. PMID:24287538

  1. Voxel-Based 3-D Tree Modeling from Lidar Images for Extracting Tree Structual Information

    NASA Astrophysics Data System (ADS)

    Hosoi, F.

    2014-12-01

    Recently, lidar (light detection and ranging) has been used to extracting tree structural information. Portable scanning lidar systems can capture the complex shape of individual trees as a 3-D point-cloud image. 3-D tree models reproduced from the lidar-derived 3-D image can be used to estimate tree structural parameters. We have proposed the voxel-based 3-D modeling for extracting tree structural parameters. One of the tree parameters derived from the voxel modeling is leaf area density (LAD). We refer to the method as the voxel-based canopy profiling (VCP) method. In this method, several measurement points surrounding the canopy and optimally inclined laser beams are adopted for full laser beam illumination of whole canopy up to the internal. From obtained lidar image, the 3-D information is reproduced as the voxel attributes in the 3-D voxel array. Based on the voxel attributes, contact frequency of laser beams on leaves is computed and LAD in each horizontal layer is obtained. This method offered accurate LAD estimation for individual trees and woody canopy trees. For more accurate LAD estimation, the voxel model was constructed by combining airborne and portable ground-based lidar data. The profiles obtained by the two types of lidar complemented each other, thus eliminating blind regions and yielding more accurate LAD profiles than could be obtained by using each type of lidar alone. Based on the estimation results, we proposed an index named laser beam coverage index, Ω, which relates to the lidar's laser beam settings and a laser beam attenuation factor. It was shown that this index can be used for adjusting measurement set-up of lidar systems and also used for explaining the LAD estimation error using different types of lidar systems. Moreover, we proposed a method to estimate woody material volume as another application of the voxel tree modeling. In this method, voxel solid model of a target tree was produced from the lidar image, which is composed of

  2. 3D bioprinting of tissues and organs.

    PubMed

    Murphy, Sean V; Atala, Anthony

    2014-08-01

    Additive manufacturing, otherwise known as three-dimensional (3D) printing, is driving major innovations in many areas, such as engineering, manufacturing, art, education and medicine. Recent advances have enabled 3D printing of biocompatible materials, cells and supporting components into complex 3D functional living tissues. 3D bioprinting is being applied to regenerative medicine to address the need for tissues and organs suitable for transplantation. Compared with non-biological printing, 3D bioprinting involves additional complexities, such as the choice of materials, cell types, growth and differentiation factors, and technical challenges related to the sensitivities of living cells and the construction of tissues. Addressing these complexities requires the integration of technologies from the fields of engineering, biomaterials science, cell biology, physics and medicine. 3D bioprinting has already been used for the generation and transplantation of several tissues, including multilayered skin, bone, vascular grafts, tracheal splints, heart tissue and cartilaginous structures. Other applications include developing high-throughput 3D-bioprinted tissue models for research, drug discovery and toxicology.

  3. Medical 3D Printing for the Radiologist.

    PubMed

    Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A; Cai, Tianrun; Kumamaru, Kanako K; George, Elizabeth; Wake, Nicole; Caterson, Edward J; Pomahac, Bohdan; Ho, Vincent B; Grant, Gerald T; Rybicki, Frank J

    2015-01-01

    While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article.

  4. Medical 3D Printing for the Radiologist

    PubMed Central

    Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A.; Cai, Tianrun; Kumamaru, Kanako K.; George, Elizabeth; Wake, Nicole; Caterson, Edward J.; Pomahac, Bohdan; Ho, Vincent B.; Grant, Gerald T.

    2015-01-01

    While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article. ©RSNA, 2015 PMID:26562233

  5. 3D imaging in forensic odontology.

    PubMed

    Evans, Sam; Jones, Carl; Plassmann, Peter

    2010-06-16

    This paper describes the investigation of a new 3D capture method for acquiring and subsequent forensic analysis of bite mark injuries on human skin. When documenting bite marks with standard 2D cameras errors in photographic technique can occur if best practice is not followed. Subsequent forensic analysis of the mark is problematic when a 3D structure is recorded into a 2D space. Although strict guidelines (BAFO) exist, these are time-consuming to follow and, due to their complexity, may produce errors. A 3D image capture and processing system might avoid the problems resulting from the 2D reduction process, simplifying the guidelines and reducing errors. Proposed Solution: a series of experiments are described in this paper to demonstrate that the potential of a 3D system might produce suitable results. The experiments tested precision and accuracy of the traditional 2D and 3D methods. A 3D image capture device minimises the amount of angular distortion, therefore such a system has the potential to create more robust forensic evidence for use in courts. A first set of experiments tested and demonstrated which method of forensic analysis creates the least amount of intra-operator error. A second set tested and demonstrated which method of image capture creates the least amount of inter-operator error and visual distortion. In a third set the effects of angular distortion on 2D and 3D methods of image capture were evaluated.

  6. NUBEAM developments and 3d halo modeling

    NASA Astrophysics Data System (ADS)

    Gorelenkova, M. V.; Medley, S. S.; Kaye, S. M.

    2012-10-01

    Recent developments related to the 3D halo model in NUBEAM code are described. To have a reliable halo neutral source for diagnostic simulation, the TRANSP/NUBEAM code has been enhanced with full implementation of ADAS atomic physic ground state and excited state data for hydrogenic beams and mixed species plasma targets. The ADAS codes and database provide the density and temperature dependence of the atomic data, and the collective nature of the state excitation process. To be able to populate 3D halo output with sufficient statistical resolution, the capability to control the statistics of fast ion CX modeling and for thermal halo launch has been added to NUBEAM. The 3D halo neutral model is based on modification and extension of the ``beam in box'' aligned 3d Cartesian grid that includes the neutral beam itself, 3D fast neutral densities due to CX of partially slowed down fast ions in the beam halo region, 3D thermal neutral densities due to CX deposition and fast neutral recapture source. More details on the 3D halo simulation design will be presented.

  7. Optically rewritable 3D liquid crystal displays.

    PubMed

    Sun, J; Srivastava, A K; Zhang, W; Wang, L; Chigrinov, V G; Kwok, H S

    2014-11-01

    Optically rewritable liquid crystal display (ORWLCD) is a concept based on the optically addressed bi-stable display that does not need any power to hold the image after being uploaded. Recently, the demand for the 3D image display has increased enormously. Several attempts have been made to achieve 3D image on the ORWLCD, but all of them involve high complexity for image processing on both hardware and software levels. In this Letter, we disclose a concept for the 3D-ORWLCD by dividing the given image in three parts with different optic axis. A quarter-wave plate is placed on the top of the ORWLCD to modify the emerging light from different domains of the image in different manner. Thereafter, Polaroid glasses can be used to visualize the 3D image. The 3D image can be refreshed, on the 3D-ORWLCD, in one-step with proper ORWLCD printer and image processing, and therefore, with easy image refreshing and good image quality, such displays can be applied for many applications viz. 3D bi-stable display, security elements, etc.

  8. 3D packaging for integrated circuit systems

    SciTech Connect

    Chu, D.; Palmer, D.W.

    1996-11-01

    A goal was set for high density, high performance microelectronics pursued through a dense 3D packing of integrated circuits. A {open_quotes}tool set{close_quotes} of assembly processes have been developed that enable 3D system designs: 3D thermal analysis, silicon electrical through vias, IC thinning, mounting wells in silicon, adhesives for silicon stacking, pretesting of IC chips before commitment to stacks, and bond pad bumping. Validation of these process developments occurred through both Sandia prototypes and subsequent commercial examples.

  9. FUN3D Manual: 12.5

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2014-01-01

    This manual describes the installation and execution of FUN3D version 12.5, including optional dependent packages. FUN3D is a suite of computational uid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables ecient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  10. FUN3D Manual: 12.4

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2014-01-01

    This manual describes the installation and execution of FUN3D version 12.4, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixedelement unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  11. 3D Immersive Visualization with Astrophysical Data

    NASA Astrophysics Data System (ADS)

    Kent, Brian R.

    2017-01-01

    We present the refinement of a new 3D immersion technique for astrophysical data visualization.Methodology to create 360 degree spherical panoramas is reviewed. The 3D software package Blender coupled with Python and the Google Spatial Media module are used together to create the final data products. Data can be viewed interactively with a mobile phone or tablet or in a web browser. The technique can apply to different kinds of astronomical data including 3D stellar and galaxy catalogs, images, and planetary maps.

  12. A high capacity 3D steganography algorithm.

    PubMed

    Chao, Min-Wen; Lin, Chao-hung; Yu, Cheng-Wei; Lee, Tong-Yee

    2009-01-01

    In this paper, we present a very high-capacity and low-distortion 3D steganography scheme. Our steganography approach is based on a novel multilayered embedding scheme to hide secret messages in the vertices of 3D polygon models. Experimental results show that the cover model distortion is very small as the number of hiding layers ranges from 7 to 13 layers. To the best of our knowledge, this novel approach can provide much higher hiding capacity than other state-of-the-art approaches, while obeying the low distortion and security basic requirements for steganography on 3D models.

  13. FUN3D Manual: 12.6

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2015-01-01

    This manual describes the installation and execution of FUN3D version 12.6, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  14. FUN3D Manual: 12.9

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2016-01-01

    This manual describes the installation and execution of FUN3D version 12.9, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  15. FUN3D Manual: 13.1

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2017-01-01

    This manual describes the installation and execution of FUN3D version 13.1, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  16. FUN3D Manual: 12.7

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2015-01-01

    This manual describes the installation and execution of FUN3D version 12.7, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  17. FUN3D Manual: 13.0

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bill; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2016-01-01

    This manual describes the installation and execution of FUN3D version 13.0, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  18. FUN3D Manual: 12.8

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2015-01-01

    This manual describes the installation and execution of FUN3D version 12.8, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  19. An Improved Version of TOPAZ 3D

    SciTech Connect

    Krasnykh, Anatoly

    2003-07-29

    An improved version of the TOPAZ 3D gun code is presented as a powerful tool for beam optics simulation. In contrast to the previous version of TOPAZ 3D, the geometry of the device under test is introduced into TOPAZ 3D directly from a CAD program, such as Solid Edge or AutoCAD. In order to have this new feature, an interface was developed, using the GiD software package as a meshing code. The article describes this method with two models to illustrate the results.

  20. RHOCUBE: 3D density distributions modeling code

    NASA Astrophysics Data System (ADS)

    Nikutta, Robert; Agliozzo, Claudia

    2016-11-01

    RHOCUBE models 3D density distributions on a discrete Cartesian grid and their integrated 2D maps. It can be used for a range of applications, including modeling the electron number density in LBV shells and computing the emission measure. The RHOCUBE Python package provides several 3D density distributions, including a powerlaw shell, truncated Gaussian shell, constant-density torus, dual cones, and spiralling helical tubes, and can accept additional distributions. RHOCUBE provides convenient methods for shifts and rotations in 3D, and if necessary, an arbitrary number of density distributions can be combined into the same model cube and the integration ∫ dz performed through the joint density field.

  1. Explicit 3-D Hydrodynamic FEM Program

    SciTech Connect

    2000-11-07

    DYNA3D is a nonlinear explicit finite element code for analyzing 3-D structures and solid continuum. The code is vectorized and available on several computer platforms. The element library includes continuum, shell, beam, truss and spring/damper elements to allow maximum flexibility in modeling physical problems. Many materials are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding, single surface contact and automatic contact generation.

  2. 3D-HIM: A 3D High-density Interleaved Memory for Bipolar RRAM Design

    DTIC Science & Technology

    2013-05-01

    JOURNAL ARTICLE (Post Print ) 3. DATES COVERED (From - To) DEC 2010 – NOV 2012 4. TITLE AND SUBTITLE 3D -HIM: A 3D HIGH-DENSITY INTERLEAVED MEMORY...emerged as one of the promising candidates for large data storage in computing systems. Moreover, building up RRAM in a three dimensional ( 3D ) stacking...brings in the potential reliability issue. To alleviate the situation, we introduce two novel 3D stacking structures built upon bipolar RRAM

  3. Brandenburg 3D - a comprehensive 3D Subsurface Model, Conception of an Infrastructure Node and a Web Application

    NASA Astrophysics Data System (ADS)

    Kerschke, Dorit; Schilling, Maik; Simon, Andreas; Wächter, Joachim

    2014-05-01

    The Energiewende and the increasing scarcity of raw materials will lead to an intensified utilization of the subsurface in Germany. Within this context, geological 3D modeling is a fundamental approach for integrated decision and planning processes. Initiated by the development of the European Geospatial Infrastructure INSPIRE, the German State Geological Offices started digitizing their predominantly analog archive inventory. Until now, a comprehensive 3D subsurface model of Brandenburg did not exist. Therefore the project B3D strived to develop a new 3D model as well as a subsequent infrastructure node to integrate all geological and spatial data within the Geodaten-Infrastruktur Brandenburg (Geospatial Infrastructure, GDI-BB) and provide it to the public through an interactive 2D/3D web application. The functionality of the web application is based on a client-server architecture. Server-sided, all available spatial data is published through GeoServer. GeoServer is designed for interoperability and acts as the reference implementation of the Open Geospatial Consortium (OGC) Web Feature Service (WFS) standard that provides the interface that allows requests for geographical features. In addition, GeoServer implements, among others, the high performance certified compliant Web Map Service (WMS) that serves geo-referenced map images. For publishing 3D data, the OGC Web 3D Service (W3DS), a portrayal service for three-dimensional geo-data, is used. The W3DS displays elements representing the geometry, appearance, and behavior of geographic objects. On the client side, the web application is solely based on Free and Open Source Software and leans on the JavaScript API WebGL that allows the interactive rendering of 2D and 3D graphics by means of GPU accelerated usage of physics and image processing as part of the web page canvas without the use of plug-ins. WebGL is supported by most web browsers (e.g., Google Chrome, Mozilla Firefox, Safari, and Opera). The web

  4. Nanofabricated Neural Probes for Dense 3-D Recordings of Brain Activity

    PubMed Central

    2016-01-01

    Computations in brain circuits involve the coordinated activation of large populations of neurons distributed across brain areas. However, monitoring neuronal activity in the brain of intact animals with high temporal and spatial resolution has remained a technological challenge. Here we address this challenge by developing dense, three-dimensional (3-D) electrode arrays for electrophysiology. The 3-D arrays constitute the front-end of a modular and configurable system architecture that enables monitoring neuronal activity with unprecedented scale and resolution. PMID:27766885

  5. Do-It-Yourself: 3D Models of Hydrogenic Orbitals through 3D Printing

    ERIC Educational Resources Information Center

    Griffith, Kaitlyn M.; de Cataldo, Riccardo; Fogarty, Keir H.

    2016-01-01

    Introductory chemistry students often have difficulty visualizing the 3-dimensional shapes of the hydrogenic electron orbitals without the aid of physical 3D models. Unfortunately, commercially available models can be quite expensive. 3D printing offers a solution for producing models of hydrogenic orbitals. 3D printing technology is widely…

  6. Optical 3D surface digitizing in forensic medicine: 3D documentation of skin and bone injuries.

    PubMed

    Thali, Michael J; Braun, Marcel; Dirnhofer, Richard

    2003-11-26

    Photography process reduces a three-dimensional (3D) wound to a two-dimensional level. If there is a need for a high-resolution 3D dataset of an object, it needs to be three-dimensionally scanned. No-contact optical 3D digitizing surface scanners can be used as a powerful tool for wound and injury-causing instrument analysis in trauma cases. The 3D skin wound and a bone injury documentation using the optical scanner Advanced TOpometric Sensor (ATOS II, GOM International, Switzerland) will be demonstrated using two illustrative cases. Using this 3D optical digitizing method the wounds (the virtual 3D computer model of the skin and the bone injuries) and the virtual 3D model of the injury-causing tool are graphically documented in 3D in real-life size and shape and can be rotated in the CAD program on the computer screen. In addition, the virtual 3D models of the bone injuries and tool can now be compared in a 3D CAD program against one another in virtual space, to see if there are matching areas. Further steps in forensic medicine will be a full 3D surface documentation of the human body and all the forensic relevant injuries using optical 3D scanners.

  7. XML3D and Xflow: combining declarative 3D for the Web with generic data flows.

    PubMed

    Klein, Felix; Sons, Kristian; Rubinstein, Dmitri; Slusallek, Philipp

    2013-01-01

    Researchers have combined XML3D, which provides declarative, interactive 3D scene descriptions based on HTML5, with Xflow, a language for declarative, high-performance data processing. The result lets Web developers combine a 3D scene graph with data flows for dynamic meshes, animations, image processing, and postprocessing.

  8. Multi-sensor 3D volumetric reconstruction using CUDA

    NASA Astrophysics Data System (ADS)

    Aliakbarpour, Hadi; Almeida, Luis; Menezes, Paulo; Dias, Jorge

    2011-12-01

    This paper presents a full-body volumetric reconstruction of a person in a scene using a sensor network, where some of them can be mobile. The sensor network is comprised of couples of camera and inertial sensor (IS). Taking advantage of IS, the 3D reconstruction is performed using no planar ground assumption. Moreover, IS in each couple is used to define a virtual camera whose image plane is horizontal and aligned with the earth cardinal directions. The IS is furthermore used to define a set of inertial planes in the scene. The image plane of each virtual camera is projected onto this set of parallel-horizontal inertial-planes, using some adapted homography functions. A parallel processing architecture is proposed in order to perform human real-time volumetric reconstruction. The real-time characteristic is obtained by implementing the reconstruction algorithm on a graphics processing unit (GPU) using Compute Unified Device Architecture (CUDA). In order to show the effectiveness of the proposed algorithm, a variety of the gestures of a person acting in the scene is reconstructed and demonstrated. Some analyses have been carried out to measure the performance of the algorithm in terms of processing time. The proposed framework has potential to be used by different applications such as smart-room, human behavior analysis and 3D teleconference. [Figure not available: see fulltext.

  9. Genetics-based dynamic systems model of canopy photosynthesis: the key to improve light and resource use efficiencies for crops.

    PubMed

    Song, Qingfeng; Chu, Chengcai; Parry, Martin A J; Zhu, Xin-Guang

    2016-02-01

    Improving canopy photosynthetic light use efficiency instead of leaf photosynthesis holds great potential to catalyze the next "green revolution". However, leaves in a canopy experience different biochemical limitations due to the heterogeneities of microclimates and also physiological parameters. Mechanistic dynamic systems models of canopy photosynthesis are now available which can be used to design the optimal canopy architectural and physiological parameters to maximize CO 2 uptake. Rapid development of modern crop genetics research now makes it possible to link such canopy models with genetic variations of crops to develop genetics-based dynamic systems models of canopy photosynthesis. Such models can guide marker-assisted breeding or genomic selection or engineering of crops to enhance light and nitrogen use efficiencies for different regions under future climate change scenarios.

  10. Quantifying modes of 3D cell migration

    PubMed Central

    Driscoll, Meghan K.; Danuser, Gaudenz

    2015-01-01

    Although it is widely appreciated that cells migrate in a variety of diverse environments in vivo, we are only now beginning to use experimental workflows that yield images with sufficient spatiotemporal resolution to study the molecular processes governing cell migration in 3D environments. Since cell migration is a dynamic process, it is usually studied via microscopy, but 3D movies of 3D processes are difficult to interpret by visual inspection. In this review, we discuss the technologies required to study the diversity of 3D cell migration modes with a focus on the visualization and computational analysis tools needed to study cell migration quantitatively at a level comparable to the analyses performed today on cells crawling on flat substrates. PMID:26603943

  11. Modeling cellular processes in 3D.

    PubMed

    Mogilner, Alex; Odde, David

    2011-12-01

    Recent advances in photonic imaging and fluorescent protein technology offer unprecedented views of molecular space-time dynamics in living cells. At the same time, advances in computing hardware and software enable modeling of ever more complex systems, from global climate to cell division. As modeling and experiment become more closely integrated we must address the issue of modeling cellular processes in 3D. Here, we highlight recent advances related to 3D modeling in cell biology. While some processes require full 3D analysis, we suggest that others are more naturally described in 2D or 1D. Keeping the dimensionality as low as possible reduces computational time and makes models more intuitively comprehensible; however, the ability to test full 3D models will build greater confidence in models generally and remains an important emerging area of cell biological modeling.

  12. Cyclone Rusty's Landfall in 3-D

    NASA Video Gallery

    This 3-D image derived from NASA's TRMM satellite Precipitation Radar data on February 26, 2013 at 0654 UTC showed that the tops of some towering thunderstorms in Rusty's eye wall were reaching hei...

  13. Tropical Cyclone Jack in Satellite 3-D

    NASA Video Gallery

    This 3-D flyby from NASA's TRMM satellite of Tropical Cyclone Jack on April 21 shows that some of the thunderstorms were shown by TRMM PR were still reaching height of at least 17 km (10.5 miles). ...

  14. Future Engineers 3-D Print Timelapse

    NASA Video Gallery

    NASA Challenges K-12 students to create a model of a container for space using 3-D modeling software. Astronauts need containers of all kinds - from advanced containers that can study fruit flies t...

  15. 3-D Animation of Typhoon Bopha

    NASA Video Gallery

    This 3-D animation of NASA's TRMM satellite data showed Typhoon Bopha tracking over the Philippines on Dec. 3 and moving into the Sulu Sea on Dec. 4, 2012. TRMM saw heavy rain (red) was falling at ...

  16. DNA biosensing with 3D printing technology.

    PubMed

    Loo, Adeline Huiling; Chua, Chun Kiang; Pumera, Martin

    2017-01-16

    3D printing, an upcoming technology, has vast potential to transform conventional fabrication processes due to the numerous improvements it can offer to the current methods. To date, the employment of 3D printing technology has been examined for applications in the fields of engineering, manufacturing and biological sciences. In this study, we examined the potential of adopting 3D printing technology for a novel application, electrochemical DNA biosensing. Metal 3D printing was utilized to construct helical-shaped stainless steel electrodes which functioned as a transducing platform for the detection of DNA hybridization. The ability of electroactive methylene blue to intercalate into the double helix structure of double-stranded DNA was then exploited to monitor the DNA hybridization process, with its inherent reduction peak serving as an analytical signal. The designed biosensing approach was found to demonstrate superior selectivity against a non-complementary DNA target, with a detection range of 1-1000 nM.

  17. Designing Biomaterials for 3D Printing.

    PubMed

    Guvendiren, Murat; Molde, Joseph; Soares, Rosane M D; Kohn, Joachim

    2016-10-10

    Three-dimensional (3D) printing is becoming an increasingly common technique to fabricate scaffolds and devices for tissue engineering applications. This is due to the potential of 3D printing to provide patient-specific designs, high structural complexity, rapid on-demand fabrication at a low-cost. One of the major bottlenecks that limits the widespread acceptance of 3D printing in biomanufacturing is the lack of diversity in "biomaterial inks". Printability of a biomaterial is determined by the printing technique. Although a wide range of biomaterial inks including polymers, ceramics, hydrogels and composites have been developed, the field is still struggling with processing of these materials into self-supporting devices with tunable mechanics, degradation, and bioactivity. This review aims to highlight the past and recent advances in biomaterial ink development and design considerations moving forward. A brief overview of 3D printing technologies focusing on ink design parameters is also included.

  18. 3D Printing for Tissue Engineering.

    PubMed

    Richards, Dylan Jack; Tan, Yu; Jia, Jia; Yao, Hai; Mei, Ying

    2013-10-01

    Tissue engineering aims to fabricate functional tissue for applications in regenerative medicine and drug testing. More recently, 3D printing has shown great promise in tissue fabrication with a structural control from micro- to macro-scale by using a layer-by-layer approach. Whether through scaffold-based or scaffold-free approaches, the standard for 3D printed tissue engineering constructs is to provide a biomimetic structural environment that facilitates tissue formation and promotes host tissue integration (e.g., cellular infiltration, vascularization, and active remodeling). This review will cover several approaches that have advanced the field of 3D printing through novel fabrication methods of tissue engineering constructs. It will also discuss the applications of synthetic and natural materials for 3D printing facilitated tissue fabrication.

  19. 3-D Flyover Visualization of Veil Nebula

    NASA Video Gallery

    This 3-D visualization flies across a small portion of the Veil Nebula as photographed by the Hubble Space Telescope. This region is a small part of a huge expanding remnant from a star that explod...

  20. TRMM 3-D Flyby of Ingrid

    NASA Video Gallery

    This 3-D flyby of Tropical Storm Ingrid's rainfall was created from TRMM satellite data for Sept. 16. Heaviest rainfall appears in red towers over the Gulf of Mexico, while moderate rainfall stretc...